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Abstract. In this paper we extend several weighted finite automata
(WFA) algorithms to automata with failure transitions (ϕ-WFAs).
Failure transitions, which are taken only when no immediate match is
possible at a given state, are used to compactly represent automata and
have many applications. Efficient algorithms to intersect two ϕ-WFAs,
to remove failure transitions, to trim, and to compute (over R+) the
shortest distance in a ϕ-WFA are presented.

1 Introduction

Weighted finite automata are used in many applications including speech
recognition [19], speech synthesis [11], machine translation [13], computational
biology [10], image processing [2], and optical character recognition [7]. Such
applications often have strict time and memory requirements, so efficient repre-
sentations and algorithms are paramount. We examine one useful technique, the
use of failure transitions, to represent automata compactly. A failure transition is
taken only when no immediate match to the input is possible at a given state. In
this paper, we will present efficient algorithms to combine, optimize and search
weighted automata with failure transitions.

Aho and Corasick [1] introduce failure transitions in the context of efficient
string matching from a finite set of strings input. Mohri [16] shows how to use
failure transitions in string matching from finite automata input. Several authors
explore constructing deterministic failure automata from arbitrary deterministic
finite automata (DFA) for space optimization [6,15,22].

Automata with failure transitions, initially introduced for string matching
problems, have found wider use including compactly representing language,
pronunciation, transliteration and semantic models [3,8,12,14,20,21,27].

Mohri [18] gives a concise presentation of various fundamental weighted
automata algorithms, many generalizations of classical algorithms to the
weighted case. These algorithms include intersection, epsilon removal and short-
est distance. Our goal here is to present similar algorithms for weighted automata
with failure transitions.

This paper is organized as follows. In Sect. 2 we introduce the automata
classes and related notation used here. In Sect. 3 we present the algorithms for
automata with failure transitions. In Sect. 4 offer discussion and include mention
of a related open-source software library.
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2 Preliminaries

2.1 Semirings

A semiring K = (K,⊕,⊗, 0, 1) consists of a set K together with an associative
and commutative operation ⊕ and an associative operation ⊗, with identities 0
and 1, respectively, such that ⊗ distributes over ⊕, and 0 ⊗ x = x ⊗ 0 = 0. A
semiring is commutative if the ⊗ operation is also commutative.

Let K be a semiring equipped with a metric Δ.1 A family {xi}i∈I of elements
in K is summable to x ∈ K if ∀η > 0 there is a Jη ⊂ I such that

Δ
( ⊕

i∈L

xi, x
)

≤ η (1)

for all finite L with Jη ⊆ L ⊂ I [25].

2.2 Weighted Automata

A weighted finite automaton (WFA) A = (Σ,Q,E, i, F, ρ) over a semiring K is
given by a finite alphabet Σ, a finite set of states Q, a finite set of transitions
E ⊆ Q × Σ × K × Q, an initial state i ∈ Q, a set of final states F ⊆ Q, and a
final weight function ρ : F → K.

A transition e = (p[e], �[e], w[e], n[e]) ∈ E represents a move from the source
or previous state p[e] to the destination or next state n[e] with the label �[e] and
weight w[e]. The transitions with source state q are denoted by E[q].

Transitions e1 and e2 are consecutive if n[ei] = p[ei+1]. A path π = e1 · · · en ∈
E∗ is a finite sequence of consecutive transitions. The source state of a path we
denote by p[π] and the destination state by n[π]. The label of a path is the
concatenation of its transition labels: �[π] = �[e1] · · · �[en]. The weight of a path
is obtained by ⊗-multiplying its transition weights: w[π] = w[e1] ⊗ · · · ⊗ w[en].
For a non-empty path, the i-th transition is denoted by πi.

P (q, q′) denotes the set of all paths in A from q to q′. We extend this to sets
in the obvious way: P (q,R) denotes the set of all paths q to q′ ∈ R and so forth.

A path π is successful if it is in P (i, F ) and in that case the automaton is
said to accept the input string α = �[π]. The weight of α ∈ Σ∗ assigned by the
automaton is:

A(α) =
⊕

π∈P (i,F ): �[π]=α

w[π]ρ(n[π]). (2)

2.3 Weighted Automata with ε or ϕ Transitions

A weighted finite automaton with ε-transitions (ε-WFA) Aε = (Σ,Q,Eε, i, F, ρ)
is a WFA extended to allow a transition to have an empty label denoted by ε:
Eε ⊆ Q× (Σ ∪{ε})×K×Q. A weighted finite automaton with failure transitions
1 A metric Δ : K × K → R+ satisfies (1) Δ(x, y) = Δ(y, x), (2) Δ(x, y) = 0 iff x = y,

and (3) Δ(x, y) ≤ Δ(x, z) + Δ(y, z) for all x, y, z ∈ K.
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Fig. 1. The (dashed red) path ei = (qi, ϕ, ωi, qi+1) to ej = (qj , a, ωj , qj+1) is disallowed
since a can be read already on e = (qi, a, ω, q). (Color figure online)

(ϕ-WFA) Aϕ = (Σ,Q,Eϕ, i, F, ρ) is a WFA extended to allow a transition to
have a special failure label denoted by ϕ: Eϕ ⊆ Q × (Σ ∪ {ϕ}) × K × Q.

Neither ε and ϕ transitions add to a path label; they consume no input as
their labels are identity elements of string concatenation for their respective
automata. An ε-transition places no restriction on a path; it is a ‘free’ move.
A failure transition, however, is followed only when the input can not be read
immediately.

Specifically, a path e1 · · · en in a ϕ-WFA is disallowed if it contains a subpath
ei · · · ej such that �[ek] = ϕ for i ≤ k < j and there is another transition
e ∈ E such that p[ei] = p[e] and �[ej ] = �[e] ∈ Σ (see Fig. 1). Since the label
a = l[ej ] can be read on e, we do not follow the failure transitions to read it on
ej as well.

We use P ∗(q, q′) ⊆ P (q, q′) to denote the set of (not dis-) allowed paths from
q to q′ in a ϕ-WFA. This again extends to sets in the obvious way. A path π is
successful in a ϕ-WFA if π ∈ P ∗(i, F ) and �[π|π|] �= ϕ and only in that case is
the input string α = �[π] accepted.2

The weight of α ∈ Σ∗ assigned by the automaton is:

Aϕ(α) =
⊕

π∈P ∗(i,F ): �[π]=α,�[π|π|] �=ϕ

w[π]ρ(n[π]). (3)

For these automata, we will assume there are no ε- or ϕ-labeled cycles.
When there is at most one exiting failure transition per state we call the
automaton ϕ-deterministic. We will also assume the ϕ-WFAs in this paper are
ϕ-deterministic.

Two automata are equivalent if they accept the same strings with the same
weights. Any weighted finite automaton is trivially also a ϕ-WFA. In the next
section we describe how to remove the failure transitions from a ϕ-WFA to
produce an equivalent ϕ-free WFA. As with ε-transitions, ϕ-transitions do not
extend the set of weighted languages, rational power series, representable by
WFAs [5].

2 The condition that a successful path cannot end in a ϕ-labeled transition simplifies
the presentation without loss of generality since there is an equivalent ϕ-WFA with
the final weights propagated to the ϕ sources.
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ϕ-Intersection(A1, A2)
1 i ← (i1, i2)
2 Q ← S ← {i}
3 while S �= ∅ do
4 (q1, q2) ← Head(S)
5 Dequeue(S)
6 for each e1 ∈ E1[q1] do
7 if �[e1] �= ϕ then
8 for e2 ∈ E∗

2 (q2) s.t. �[e1] = �[e2] do
9 Add((q1, q2), �[e1], w[e1] ⊗ w[e2], (n[e1], n[e2]))

10 else
11 Add((q1, q2), ϕ, w[e1], (n[e1], q2))
12 if q1 ∈ F1 and q2 ∈ F2 then
13 F ← F ∪ {(q1, q2)}
14 ρ(q1, q2) ← ρ1(q1) ⊗ ρ2(q2)
15 return A

Add(q, l, w, q′)
1 if q′ �∈ Q then
2 Q ← Q ∪ {q′}
3 Enqueue(S, q′)
4 E ← E ∪ {(q, l, w, q′)}

Fig. 2. Pseudocode of the intersection algorithm with failure transitions.

2.4 ϕ-Removed Automata

Given a ϕ-WFA A = (Σ,Q,E, i, F, ρ), let the ϕ-removed transitions leaving q
be defined as:

E∗[q] =
{

(q, a, ω, q′) : π ∈ P ∗(q,Q), a = �[π] = �[π|π|] ∈ Σ, q′ = n[π],

ω =
⊕

π′∈P ∗(q,q′): a=�[π′]=�[π′
|π′|],q

′=n[π′]

w[π′]
}

This is a set of (possibly new) transitions (q, a, ω, q′), one for each source state
q and destination state q′ of one or more a-labeled paths with optional leading
failure transitions. The weight is the ⊕-sum of all such paths between those state
pairs and with that label.

Then define the ϕ-removed WFA as (Σ,Q,∪q∈QE∗[q], i, F, ρ).

3 Algorithms

In this section we wish to extend some common WFA algorithms to the case
where failure transitions are present.

3.1 Intersection

Computing the intersection of two WFAs is a fundamental operation and one of
the most useful. For example, the application of an n-gram language model to
an unweighted string (or more general unweighted automaton) is accomplished
by intersection [3]. We extend intersection to ϕ-WFAs as follows:
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Let K be a commutative semiring and let A1 = (Σ,Q1, E1, ii, F1, ρ1) and
A2 = (Σ,Q2, E2, i2, F2, ρ2) be two ϕ-WFAs over the same alphabet. The inter-
section of A1 and A2 is a ϕ-WFA denoted by A1 ∩ A2 and specified for
all x by:

(A1 ∩ A2)(x) = A1(x) ⊗ A2(x). (4)

Leaving aside ϕ-transitions, the following rule specifies how to compute a transi-
tion of A1∩A2 from transitions of A1 and A2 with matching labels: (q1, a, ω1, q

′
1)

and (q2, a, w2, q
′
2) results in ((q1, q2), a, w1 ⊗ w2, (q′

1, q
′
2)). A simple algorithm to

compute the intersection of two such automata, following the above rule, is given
in [16].

The idea for extending the intersection algorithm when one or both automata
have failure transitions is to output failure transitions where appropriate other-
wise follow the failure transitions when matching. Figure 2 gives the pseudocode
for computing A = A1 ∩ A2 = (Σ,Q,E, i, F, ρ) in this case.

E and F are assumed initialized to the empty set and grown as needed.
The algorithm uses a queue S with arbitrary discipline to hold the state pairs
yet to be examined. The state set Q is initially the pair of initial states
(lines 1–2). Each time through the loop in lines 3–14, a new pair of states (q1, q2)
is extracted from S (lines 4–5). Each non-ϕ-transition e1 leaving q1 is matched
with ϕ-removed transitions e2 leaving q2 (lines 7–8). A transition is created
with the matching label from (q1, q2) to (n[e1], n[e2]) with weight computed by
⊗-multiplying the weights of the matching transitions. A transition is also cre-
ated for each ϕ-transition e1 leaving q1 from (q1, q2) to (n[e1], q2) with weight
w[e1] (lines 10–11). If q1 and q2 are final, the pair (q1, q2) is final with final weight
computed by ⊗-multiplying the component final weights (lines 12–14).

If there are no failure transitions in A1, this algorithm is simply the WFA
intersection of A1 with the ϕ-removed A2 (lines 7–9). Failure transitions in A1,
however, appear in the output; they delay failure matching on that side (lines 10–
11) similar to epsilon processing in ε-WFAs [16]. The choice of which automaton
is used in line 6 can be generalized to be state-dependent. For example, one
could use the automaton at line 6 for which |Ei(qi)| is less.

The worst-case time complexity of the algorithm is in O(|E1||Q2|(m2 +
l2log d2)), where di is the maximum out-degree, mi is the maximum label multi-
plicity3 and li the maximum length of a ϕ-labeled path at a state in Ai (assuming
line 8 is implemented as a binary search).

3.2 ϕ-Removal

An algorithm to ϕ-remove a WFA A over alphabet Σ to produce an equivalent
WFA is shown in Fig. 3. The pseudocode uses the algorithm of Fig. 2 to intersect
the input with a ϕ-free WFA that accepts Σ∗. The intersection algorithm only
outputs failure transitions from its first argument, as previously noted, and there
are none. Intersection with Σ∗ produces an equivalent result.
3 Label multiplicity at state q is the maximum number of outgoing transitions in q

sharing the same label.
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ϕ-Removal(A)
1 E0 ← {

(i0, a, 1, i0) : a ∈ Σ
}

2 ρ0(i0) ← 1
3 A0 ← (Σ, {i0}, E0, i0, {i0}, ρ0)
4 return ϕ-Intersection(A0, A)

Fig. 3. Pseudocode of the ϕ-removal algorithm

ϕ-Trim(A)
1 Acc, Σ⊥ ← ϕ-Accessible(A)
2 CoAcc ← ϕ-CoAccessible(A)
3 E ← {e ∈ E | �[e] �∈ Σ⊥[p[e]]}
4 Q′ ← φ, E′ ← φ
5 if i ∈ F then
6 Q′ ← Q′ ∪ {i}
7 for each e ∈ E do
8 if Useful(e) then
9 E′ ← E′ ∪ {e}

10 Q′ ← Q′ ∪ {p[e], n[e]}
11 return (Σ, Q′, E′, i, F ∩ Q′, ρ)

Useful(e)
1 if Acc[p[e]] = undiscovered then
2 return false
3 if CoAcc[n[e]] �= undiscovered then
4 return true
5 if (p[e], ϕ, β, q′) ∈ E then
6 for each e′ ∈ E∗[q′] s.t. �[e′] = �[e] do
7 if CoAcc[n[e′]] �= undiscovered then
8 return true
9 return false

Fig. 4. Pseudocode to trim a ϕ-WFA.

3.3 Trimming

Trimming removes states and transitions from an automaton that are useless.
These could arise, for example, as the by-product of an intersection algorithm.
In a WFA, a state or transition is useless if it is not on a successful path or
equivalently, it is not both accessible and coaccessible. A state is accessible if
it can be discovered in a visitation (e.g., depth-first) from the initial state [9].
Similarly, coaccessibility can be determined in a visitation in the reverse direction
from the final states [9].

For a ϕ-WFA we must keep each state and transition that is on a suc-
cessful path or equivalently if it is both ϕ-accessible from the initial state and
ϕ-coaccessible to a final state. A state q is ϕ-accessible if P ∗(i, q) is not empty.
ϕ-accessible transitions and ϕ-coaccessible states and transitions are similarly
defined. Unlike a WFA we may also need to retain a state or transition in order
to disallow a path in a ϕ-WFA. For example in Fig. 7 the a-labeled transition
leaving state q and its destination state are needed, regardless if on a successful
path, to disallow reading ϕa from q to q′′.

Figure 4 gives the pseudocode to ϕ-trim a ϕ-WFA A. First the ϕ-accessible
and ϕ-coaccessible states are found (lines 1–2). The set of disallowed labels at a
state Σ⊥, i.e. those that are not the label of a transition leaving q that is on a
ϕ-accessible path, is also computed at this time. See below for their implemen-
tations. The disallowed transitions are then filtered out (line 3).
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ϕ-Accessible(A)
1 for each q ∈ Q do
2 Acc[q] ← undiscovered
3 Acc[i] ← discovered
4 S ← {i}
5 while S �= ∅ do
6 q ← Head(S)
7 Dequeue(S)
8 N ← {e ∈ E[q] s.t. �[e] /∈ Σ⊥[q] and Acc[n[e]] /∈ {discovered,visited}}
9 for each e ∈ N do

10 if �[e] �= ϕ then
11 Σ⊥[n[e]] ← φ
12 Acc[n[e]] ← discovered
13 else
14 ϕ-Discover(n[e], q, N)
15 Acc[n[e]] ← ϕ-discovered
16 if n[e] /∈ S then
17 Enqueue(S, n[e])
18 if Acc[q] = discovered then
19 Acc[q] ← visited
20 else
21 Acc[q] ← ϕ-visited
22 return Acc, Σ⊥

ϕ-Discover(n, q, N)
1 if Acc[n] = undiscovered then
2 Σ⊥[n] ← Σ⊥[q] ∪ {l[e] ∈ Σ | e ∈ N}
3 else
4 Σ⊥[n] ← Σ⊥[n] ∩ (Σ⊥[q] ∪ {l[e] ∈ Σ | e ∈ N})

Fig. 5. Pseudocode to determine which states are ϕ-accessible and which labels are
disallowed at a state.

The automaton is then examined for useful transitions and any found are
retained in the result (lines 4–11). A transition is useful if its source state is
ϕ-accessible and its destination is ϕ-coaccessible (lines 1–4) or if it is needed to
forbid a path (lines 5–8).

Figure 5 gives the pseudocode for computing ϕ-accessibility. The algorithm
uses an arbitrary queue S containing the states to be processed. Each time
through the loop in lines 5–21, a new state q is extracted from S (lines 6–7).
Each transition e leaving q that is not already discovered, visited or has a dis-
allowed label is considered in turn (lines 8–9). If it is a non-ϕ-transition, then
its destination state is marked as discovered and cleared of any previously dis-
allowed labels (lines 10–12). Otherwise, it is a ϕ-transition and its destination
state is marked as ϕ-discovered (line 14–15).

In this ϕ-discovered case, the disallowed labels at q together with the tran-
sition labels leaving q become the disallowed labels at n[q] if just discovered
(lines 1–2). Otherwise, the existing set is filtered by the disallowed labels at q
and any newly allowed transition labels leaving q (lines 3–4).

Once a transition is processed, its destination state n[q] is enqueued if needed
(lines 16–17). Once all the transitions leaving q are processed, state q is marked
as visited or ϕ-visited if previously discovered or ϕ-discovered (lines 18–21).
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ϕ-coaccessibility on the ϕ-accessible component of A can be computed with a
standard coaccessibility computation if restricted to paths that are ϕ-accessible,
as previously found, and that do not end in a ϕ-labeled transition. The time com-
plexity of trimming is dominated by the computation of ϕ-accessibility, which
is in O(l(|E| + (CS + log d)|Q|)) where d is the maximum out-degree, l is the
maximum length of a ϕ-labeled path in A, and CS is the maximum cost of a
queue operation for S.

3.4 Shortest Distance

Shortest-distance algorithms play a central role in applications on weighted
automata requiring searching, counting, normalization or approximation
[3,20,23,27]. In these applications, the tropical semiring (R+∪{∞},min,+,∞, 0)
and the positive real semiring R+ = (R+,+,×, 0, 1) are among the most widely
used.
Shortest Distance on WFAs and ε-WFAs. The shortest distance from the
initial state i to state q in a WFA A over semiring K is defined as:

δ[q] =
⊕

π∈P (i,q)

w[π] (5)

when well-defined and in K [17]. Mohri presented an algorithm to compute this
shortest distance that is often much more efficient than alternatives such as
Floyd-Warshall [17]. The pseudocode is shown in Fig. 6. We show his extended
version where K is equipped with a metric Δ and an ε threshold.

The algorithm is a generalization of classical shortest distance algorithms
over the tropical semiring4 to more general semirings [9]. The algorithm uses a
queue S to extract states (line 7) whose transitions e are relaxed to update d[n[e]]
(lines 11–13), the estimate of the shortest distance to that state. Unlike the clas-
sical algorithms, a second array r[q] is maintained (lines 9, 14) that ensures that
the weights added to d[q] from paths in P (i, q) are applied only once, important
for the non-idempotent case (i.e. when a⊕a �= a). See [17] for the detailed proofs.

Mohri proved exact computation of δ[q] (with Δ(x, y) = 1x�=y and ε = 1
for any queue S) when the input is acyclic, is over a k-closed semiring, or is k-
closed for A.5 For other semirings such as R+, it is an approximation algorithm
controlled by ε. We prove convergence and correctness for R+ below.

Theorem 1. Let A be a WFA over R+ equipped with the usual metric Δ(x, y) =
|x − y|. Assume the family of path weights {w[π]}π∈P (i,q) defining δ[q] is
summable for all q ∈ Q. Then ShortestDistance(A, S, ε) terminates for
any queue S and any ε > 0. Further for any η > 0, there is an ε > 0 such that
at termination Δ(d[q], δ[q]) ≤ η for any q ∈ Q.
4 Such as Dijkstra or Bellman-Ford with the appropriate queue disciplines on S.
5 Semiring K is k-closed if for all a in K,

⊕k+1
i=0 ai =

⊕k
i=0 ai. It is k-closed for A if

the weight a of each cycle in A verifies
⊕k+1

n=0 an =
⊕k

n=0 an. The tropical semiring
is 0-closed [17].
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To prove this theorem, we first introduce a lemma. As in [17], define finite
D(q) ⊆ P (i, q), q ∈ Q as the set of all paths whose weight have been added so
far to d[q] at some time in the execution of the program.

ShortestDistance(A, S, ε)
1 for each q ∈ Q do
2 d[q] ← r[q] ← 0
3 d[i] ← r[i] ← 1
4 S ← {i}
5 while S �= ∅ do
6 q ← Head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q] ← 0

10 for each e ∈ E[q] do
11 d′ ← d[n[e]] ⊕ (r′ ⊗ w[e])
12 if Δ(d[n[e]], d′) ≥ ε then
13 d[n[e]] ← d′

14 r[n[e]] ← r[n[e]] ⊕ (r′ ⊗ w[e])
15 if n[e] /∈ S then
16 Enqueue(S, n[e])
17 d[i] ← 1
18 return d

ϕ-ShortestDistance(A, S, ε)
1 return ShortestDistance(Aε, Sε, ε)

Enqueue(Sε, q)
1 if q ∈ Q then
2 Enqueue(S, q)
3 else
4 e ← (q − |Q|), ϕ, β, q′) ∈ E
5 Enqueue(Sfifo[n[e]], q)

Head(Sε)
1 q ← Head(S)
2 if Sfifo[q] �= φ then
3 return Head(Sfifo[q])
4 else
5 return q

Dequeue(Sε)
1 q ← Head(S)
2 if Sfifo[q] �= φ then
3 Dequeue(Sfifo[q])
4 else
5 Dequeue(S)

Fig. 6. Shortest-distance algorithm without [17] and with failure transitions.

Lemma 1. For any path π ∈ P (i, q), there is a θπ > 0 such that π is in D(n[π])
after some point in the execution of the algorithm provided the algorithm is run
with ε ≤ θπ and it terminates.

Proof. If |π| = 0, then π ∈ D(i) with θπ = 1 by line 3. If |π| > 0, let π = τe, e ∈
E and assume, by induction, τ ∈ D(n[τ ]) for all ε ≤ θτ . Let θπ = min {θτ , w[π]}.
State n[τ ] was enqueued since τ ∈ D(n[τ ]). When it is dequeued, which must
happen since the algorithm is assumed to terminate, line 11 will succeed for π.
This follows since Δ(d[n[e]], d[n[e]] ⊕ (r′ ⊗ w[e])) = |r′w[e]| ≥ |(w[τ ] + x)w[e]| ≥
w[π] ≥ θπ, where x represents the weight of any other paths added to r′. Thus
π is added to D(n[π]) at line 12 for all ε ≤ θπ.

Proof (Theorem 1). Termination: The d[q] form a monotone increasing sequence
of partial sums d1, d2, . . . during the execution of the program and are bounded
above by δ(q). This ensures the condition in line 11 succeeds only finitely many
times.
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Convergence to δ[q]: Select finite Jη(q) to satisfy Eq. 1 for the summable
family {w[π]}π∈P (i,q) for η > 0. By Lemma 1 there is a θq = minπ∈Jη(q) θπ such
that Jη(q) ⊆ D(q) and by Eq. 1

Δ
( ⊕

π∈D(q)

w[π], δ[q]
)

≤ η

provided ε ≤ θq. But d[q] =
⊕

π∈D(q) w[π] as shown in [17]. So if we select ε as
minq∈Q θq, we prove the theorem. ��

Fig. 7. Failure transitions in A are replaced by ε-transitions in Aε. To compensate for
the formerly disallowed paths, new (dashed red) negatively-weighted paths are added.
(Color figure online)

The time complexity of the algorithm is in O(Nε(|E| + CS |Q|)) where Nε

is the maximum number of times a state can be enqueued given the threshold
ε and CS is the maximum cost of a queue operation for S [17].

Since the transition labels play no role in the definitions and results of this
section, they apply equally to ε-WFAs. In the next section, the labels matter.
Shortest Distance on ϕ-WFAs. We define the shortest distance from the
initial state i to state q in a ϕ-WFA as:

δ[q] =
⊕

π∈P ∗(i,q)

w[π] (6)

when well-defined and in K.
We present an algorithm for the positive real semiring R+, an important case

in applications. To do so, we will transform ϕ-WFA A on R+ to an equivalent
ε-WFA Aε on R = (R,+, ∗, 0, 1). We can then use the ShortestDistance
algorithm in Fig. 6, suitably adapted.

Given a ϕ-WFA A = (Σ,Q,E, i, F, ρ) with Q = {1, . . . , |Q|} define
Qε = {1, . . . , 2|Q|} and

Eε = {(q, a, ω, q′) ∈ E : a ∈ Σ} ∪
{(q, ε, β, q′) : (q, ϕ, β, q′) ∈ E} ∪ {(q, ε, β, q + |Q|) : (q, ϕ, β, q′) ∈ E} ∪
{(q + |Q|, a,−ν, q′′) : (q, ϕ, β, q′)(q′, a, ν, q′′) ∈ P (q, q′′), a ∈ Σ} .
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Then let the ε-WFA be Aε = (Σ,Qε, Eε, i, F, ρ). Each failure transition in A
is relabeled with an ε in Aε, allowing previously disallowed paths. To compensate
for this, each disallowed consecutive ϕ- and a-labeled transition pair in A also
has a corresponding negatively-weighted consecutive ϕ- and a-labeled transition
pair in Aε that cancels it (see Fig. 7) [20,23].

If A is acyclic, the family of path weights defining δ[q] is summable in Aε since
finite and ShortestDistance can be applied. The cyclic case requires more
care; the presence of negative weights means that the partial sums may diverge
or converge to something other than δ[q] depending on the ordering of the sum-
mands (cf. the Reimann Rearrangement Theorem [24]). We will select a queue
discipline for the new states in Aε to ensure the correct behavior. The idea is to
have the negatively-weighted terms be immediately cancelled by their positively-
weighted counterparts in the running of the algorithm (cf. [26]). Figure 6 shows
the pseudocode for the queue and the general shortest distance algorithm with
failure transitions.

The queue Sε enqueues states in Q in the arbitrary subqueue S
(lines 1–2). New states q + |Q|, q ∈ Q are enqueued in a FIFO subqueue array
Sfifo[q′] indexed by the ϕ-successor state q′ of q (lines 3–5). Sε ensures that any
new state is dequeued from the subqueue array (lines 2–3) just before its index
state (lines 4–5). In this way, the positive and negative weights of the disallowed
a transitions will immediately cancel in d[q′′] at relaxation (see Fig. 7).6

The complexity is the same as in the ϕ-free case since |Qε| = 2|Q|, |Eε| < 2|E|
and CSε

∈ O(CS).

4 Discussion

The intersection algorithm presented ensures ϕ-determinism in the result with
ϕ-deterministic input. Mohri and Yang [20] describe an alternative algorithm
that adds ϕ-non-determinism but avoids the ϕ-removal E∗

2 [q2].
The proof of Theorem 1 takes advantage of rather specific (complete, mono-

tonic, total) order properties of R rather than more general metric properties.7

Can this shortest distance algorithm be extended to further semirings? It is
easy to see that if the algorithm is correct with semirings K1 and K2 hav-
ing metrics Δ1 and Δ2, then K1 × K2 having the square metric Δ(x, y) =
max(Δ1(x, y),Δ2(x, y)) is also correct.

These algorithms have been implemented as part of SFST, an open-source
C++ library for normalizing, sampling, combining, and approximating stochastic
finite-state transducers [4].

6 We could also add logic so that when line 12 of the shortest distance algorithm is
executed for a disallowed transition then it is also always executed for any nega-
tive compensating transition in case |r[q + |Q|]ν| < ε < |r[q′]ν|. This however is
an unneeded precaution since with small enough ε any discrepancy is insignificant
compared to the floating-point precision of d[q′′].

7 The real numbers can be defined axiomatically as a field with a complete, monotonic
total order [24].
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