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Abstract. Motivated by preprocessing devices occurring for example in
the context of syntactic parsers or HTML sanitization, we study pairs
of finite state transducers and deterministic machines such as pushdown
automata or queue automata as language accepting devices, where the
original input is translated by a finite state transducer to an input of the
deterministic machine which eventually accepts or rejects the prepro-
cessed input. As deterministic machines we study input-driven machines
as well as reversible machines equipped with a pushdown store or a
queue store. It turns out that the preprocessing boosts on the one hand
the computational power of the machines in all four cases, but on the
other hand preserves and adds some positive closure properties as well as
decidable problems. Thus, the preprocessing extends the computational
power moderately by retaining most of the nice properties of the original
machine.

1 Introduction

The syntactical analysis of a computer program, a web page, or an XML docu-
ment is typically done after the lexical analysis in which the correct formatting
of the input is verified, comments are removed, the spelling of the commands is
checked, and the sequence of input symbols is translated into a list of tokens.
This preprocessing of the input is typically done by a finite state transducer and
the output is subsequently processed by a more powerful machine such as, for
example, a pushdown automaton. Further examples where the input is prepro-
cessed and afterwards processed by other devices are HTML sanitization and
embedded SQL. As a generalization of preprocessing one may have, for example,
cascades of preprocessors P1, P2, . . . , Pn, where the output of Pi is the input for
the next preprocessor Pi+1. Cascades of finite state transducers have been used,
for example, in [8] for extracting information from natural language texts.

In terms of formal languages, machines processing preprocessed input can be
formulated as follows. Let T be some transducer such as, for example, a finite
state transducer or a pushdown transducer (see, e.g., [1]), and M be some accept-
ing machine such as, for example, a finite automaton or a pushdown automaton.
Then, for such a pair (M,T ), we are interested in the set of words w such that
T (w) is accepted by M . From a language theoretic perspective it is an immedi-
ate question which language classes can be accepted by such composed devices.
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C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 28–40, 2018.
https://doi.org/10.1007/978-3-319-94812-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_3&domain=pdf


Boosting Pushdown and Queue Machines by Preprocessing 29

Clearly, the answer depends on the power of both components. If T is a finite
state transducer and M is a finite automaton, nothing more than regular lan-
guages can be described by (M,T ), since a finite automaton can be constructed
that simultaneously simulates T on the input given and M on the output pro-
duced by T . Similarly, if T is a finite state transducer and M is a pushdown
automaton, nothing more than the context-free languages can be described. On
the other hand, if T is a nondeterministic pushdown transducer and M is a
pushdown automaton, then it is possible to construct for any recursively enu-
merable language L some pair (M,T ) accepting L. For the language classes in
between these both extremes there are interesting results given in [7]. For exam-
ple, it is shown that a pair (M,T ) of a deterministic pushdown transducer T
combined with a deterministic pushdown automaton M can accept the non-
context-free language {wcw | w ∈ {a, b}∗ }. Moreover, cascades of deterministic
pushdown transducers are studied and a strict hierarchy with respect to the
number of transducers is obtained. If we confine ourselves with the combination
of finite state transducers and pushdown automata, then the combination of a
nondeterministic finite state transducer with a deterministic or nondeterministic
pushdown automaton as well as of a deterministic finite state transducer with
a nondeterministic pushdown automaton gives nothing more than the context-
free languages. Finally, the combination of a deterministic finite state transducer
and a deterministic pushdown automaton gives the deterministic context-free
languages. Thus, we can summarize that, roughly speaking, the preprocessing
by finite state transducers leads to the classes inside the context-free languages,
whereas the preprocessing by pushdown transducers leads to language classes
beyond the context-free languages. So far, we have not put any restriction on
the automata except the property of working deterministically or nondetermin-
istically. It is therefore an obvious approach to consider restricted pushdown
automata and to investigate whether the restrictions can be compensated by
the preprocessing.

In this paper, we will basically consider two restricted versions of determinis-
tic pushdown automata, namely, input-driven pushdown automata and reversible
pushdown automata. Both variants are in addition real-time deterministic push-
down automata, whose corresponding language class is known to be a proper sub-
set of the deterministic context-free languages. Input-driven pushdown automata
are ordinary pushdown automata where the actions on the pushdown store are
dictated by the input symbols. This variant of pushdown automata has been
introduced in 1980 by Mehlhorn in [16] and further investigations have been
done in 1985 by von Braunmühl and Verbeek in [5]. The early results comprise
the equivalence of nondeterministic and deterministic models and the proof that
the membership problem is solvable in logarithmic space. The model has been
revisited in 2004 in [2] where, for example, descriptional complexity aspects for
the determinization are investigated as well as closure properties and decidabil-
ity questions which turned out to be similar to those of finite automata. More
results on the model may be found in the survey [17].
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The second model we are going to investigate in more detail in connection
with a preprocessing transducer are reversible pushdown automata which have
been introduced in [10] and are basically pushdown automata which are forward
and backward deterministic. This means that every configuration has a unique
successor configuration and a unique predecessor configuration. Reversible com-
putations are information preserving computations and are mainly motivated by
the physical observation that a loss of information results in heat dissipation [15].
For reversible pushdown automata it is known that they accept a language class
that lies properly in between the regular languages and the real-time determin-
istic context-free languages, they share with deterministic pushdown automata
the closure under complementation and inverse homomorphism, whereas the clo-
sure under union and intersection with regular languages gets lost, and they still
have an undecidable inclusion problem.

It turns out that in both cases the preprocessing by weak deterministic finite
state transducers leads to language classes that properly contain the original
language class, but on the other hand is properly contained in the deterministic
context-free languages as well. Thus, the preprocessing boosts the power of the
original automata moderately. In addition, some closure properties as well as
positive decidability results are preserved as well.

If we replace the data structure of a pushdown store by a queue, we obtain
for the above-discussed cases input-driven queue automata [11] and reversible
queue automata [13]. Again, we may ask what happens when the input is prepro-
cessed by finite state transducers. Interestingly, we can apply similar methods
as are done for pushdown automata and we obtain again language classes that
properly contain the original language class, but on the other hand are properly
contained in the general language classes. Thus, the preprocessing boosts also
in this case the power of the original automata moderately and preserves some
closure properties as well as positive decidability results.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

In this paper, the preprocessing of the input will be done by one-way finite
state transducers which are basically finite automata with the ability to emit
symbols. We consider here essentially deterministic finite state transducers
(DFST) which are formally defined as a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is
the set of internal states, Σ is the set of input symbols, Δ is the set of output
symbols, q0 is the initial state, and δ is the transition function mapping from
Q×Σ to Q×Δ∗. By T (w) ∈ Δ∗ we denote the output computed by T on input
w ∈ Σ∗.

Since we are interested in weak preprocessing devices, we will consider
length-preserving deterministic finite state transducers, also known as Mealy
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machines, where the transition function is restricted to be a mapping from Q×Σ
to Q×Δ. Moreover, we will put the additional restriction on the transition func-
tion to be injective and obtain injective DFSTs (injective Mealy machines).

Let M be an automaton such as, for example, a finite automaton, pushdown
automaton, or queue automaton, and T be a transducer such as, for example,
a finite state transducer or a pushdown transducer. Furthermore, the output
alphabet of T is the input alphabet of M . Then, the language accepted by the
pair (M,T ) is L(M,T ) = {w ∈ Σ∗ | T (w) ∈ L(M) }.

3 Boosting Input-Driven Machines

A conventional deterministic pushdown automaton (DPDA) is an input-driven
pushdown automaton (IDPDA), if the next input symbol defines the next action
on the pushdown store. To this end, the input alphabet Σ is divided into three
disjunct sets ΣN , ΣD, and ΣR, where a symbol from ΣN implies a state change
only without changing the pushdown store, a symbol from ΣD implies a state
change and the pushing of a symbol, and a symbol from ΣR implies a state
change and the popping of a symbol. This partition of the input alphabet is also
called signature.

Input-driven pushdown automata have properties which are similar to those
of finite automata. For example, it is shown in [5] that the language classes
accepted by nondeterministic and deterministic models coincide. Considering
the usually studied closure properties it has been shown in [2] that IDPDAs
(like finite automata) are closed under the Boolean operations, concatenation,
iteration, and reversal. It should be noted that the results for union, intersec-
tion, and concatenation only hold in general if the underlying automata have
compatible signatures, that is, if they possess an identical pushdown behavior on
their input symbols. In contrast to finite automata, it is known that IDPDAs
are not closed under homomorphism and inverse homomorphism. With regard to
decidability questions, inclusion is decidable in case of compatible signatures in
contrast to the undecidability of inclusion for arbitrary DPDAs. Together with
known positively decidable questions for arbitrary DPDAs, we obtain that the
questions of emptiness, finiteness, equivalence, and inclusion are all decidable
for IDPDAs, which is true for finite automata as well. Obviously, every language
accepted by an IDPDA is a real-time deterministic context-free language. On the
other hand, it is easy to see that the language class accepted by IDPDAs is also a
proper subset of the real-time deterministic context-free languages. For example,
the languages L1 = { an$an | n ≥ 1 } and L2 = { anb2n | n ≥ 1 } are not accepted
by any input-driven pushdown automaton. On the other hand, the marginally
changed languages L′

1 = { an$bn | n ≥ 1 } and L′
2 = { an(bc)n | n ≥ 1 } are

accepted by IDPDAs. For L′
1 every a induces a push-operation, every b induces

a pop-operation, and a $ leaves the pushdown store unchanged. Similarly, for L′
2

every a induces a push-operation, every b induces a pop-operation, and a c leaves
the pushdown store unchanged. Obviously, L′

1 can be obtained from L1 by a sim-
ple finite state transduction which translates all a’s before the $ to a’s, and all a’s
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after the $ to b’s. Similarly, L′
2 can be obtained from L2 by translating every a

to a and every b alternately to b and c. In both cases we can observe that the
preprocessing of the input by a deterministic finite state transducer, which is in
addition injective and length-preserving, helps to enlarge the class of languages
accepted.

In the following, we will study tinput-driven pushdown automata (TDPDA)
which are pairs (M,T ), where T is an injective and length-preserving DFST
and M is an IDPDA. TDPDAs have been introduced in [14] and in the sequel we
will summarize basic results on their computational capacity, closure properties,
and decidability questions.

By choosing a DFST that realizes the identity it is clear that every IDPDA
can be simulated by a TDPDA. Furthermore, as discussed above, language L1 is
an example of a deterministic context-free language that is not accepted by any
IDPDA, but accepted by a TDPDA. Thus, TDPDAs can be more powerful than
IDPDAs. On the other hand, every TDPDA can be simulated by a real-time
DPDA. The basic idea is to compute the output of the DFST internally so that
the IDPDA can directly be simulated. Since every IDPDA works in real time, the
resulting DPDA works in real time as well. Finally, it is possible to show that the
real-time deterministic context-free language { anbn+mam | n,m ≥ 1 } cannot be
accepted by any TDPDA. Hence, we obtain the following proper hierarchy.

Theorem 1. L (IDPDA) ⊂ L (TDPDA) ⊂ L (rt-DPDA).

It is a nice feature of IDPDAs that their nondeterministic and deterministic
variants coincide which in addition deepens the analogy to finite automata. Thus,
it is an obvious question whether a similar result can be shown for TDPDAs.
Since a TDPDA consists of two components, each of which may work determin-
istically or nondeterministically, we are concerned with four cases. We denote by
TDPDAx,y with x, y ∈ {n, d} a TDPDA whose transducer works in mode x
and whose pushdown automaton works in mode y. Since determinization is
possible for IDPDAs, we obtain that the classes TDPDAd,n and TDPDAd,d

as well as TDPDAn,n and TDPDAn,d coincide. On the other hand, language
{ anbn+mam | n,m ≥ 1 } cannot be accepted by any TDPDAd,d, but is accepted
by a TDPDAn,d. Hence, we have the following hierarchy.

Theorem 2.

L (TDPDAd,d) = L (TDPDAd,n) ⊂ L (TDPDAn,n) = L (TDPDAn,d).

For the rest of the section where we will discuss closure properties and
decidability questions we confine ourselves to considering TDPDAd,ds only.
When studying binary language operations such as union, intersection, or con-
catenation for IDPDAs and TDPDAs it is essential that the signatures of the
corresponding IDPDAs are compatible. For IDPDAs the closure under union,
intersection, and concatenation is shown in [2], but the compatibility of the sig-
natures has to be provided. If this condition is not fulfilled, the closure results
may get lost. Consider, for example, the languages { anbncm | n,m ≥ 1 } and
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{ anbmcm | n,m ≥ 1 } which each can be accepted by an IDPDA. However, both
signatures are not compatible and the intersection of both languages gives the
non-context-free language { anbncn | n ≥ 1 }. In case of binary language opera-
tions for TDPDAs we additionally have to require that both transducers realize
the same transduction. Then, similar to the proofs for IDPDAs, the closure
under the Boolean operations can be shown. Additionally, a detailed construc-
tion shows the closure under inverse homomorphism for TDPDAs which is in
contrast to IDPDAs.

Theorem 3. Let (M,T ) and (M ′, T ) be two TDPDAs with compatible signa-
tures. Then, TDPDAs accepting the intersection L(M,T )∩L(M ′, T ), the union
L(M,T ) ∪ L(M ′, T ), the complement L(M,T ), and the inverse homomorphic
image h−1(L(M,T )) for some homomorphism h can effectively be constructed.

On the other hand, one can prove the non-closure under iteration, rever-
sal, length-preserving homomorphism, and concatenation. The latter non-closure
result interestingly holds even if both signatures are compatible and both trans-
ducers are identical: we consider language L = { anbn | n ≥ 1 }∪{ bnan | n ≥ 1 }
which is accepted by some TDPDA since a DFST can translate L to lan-
guage { anbn | n ≥ 1 } ∪ { cndn | n ≥ 1 } which is clearly accepted by
some IDPDA. However, if TDPDAs were closed under concatenation, then
L · L ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } could be accepted by some TDPDA
which is a contradiction. The remaining non-closure results can basically be
shown by utilizing again the fact that { anbn+mam | n,m ≥ 1 } is not accepted
by any TDPDA. The closure properties are summarized in Table 1.

Table 1. Closure properties of the language families discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for DFAs and DPDAs and are marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. h−1 REV

REG Yes Yes Yes — — Yes — Yes Yes Yes Yes

L (IDPDA) Yes No No Yes Yes No Yes Yes No No Yes

L (TDPDA) Yes No No Yes Yes No No No No Yes No

L (rt-DPDA) Yes No No — — No — No No Yes No

Since the questions of emptiness, finiteness, infiniteness, universality, and
regularity are decidable for DPDAs, all questions are decidable for TDPDAs
as well. However, the question of inclusion is undecidable for DPDAs, but
decidable for IDPDAs. Thus, the question arises whether or not inclusion is
decidable for two TDPDAs (M,T ) and (M ′, T ). Since the inclusion of the lan-
guages L(M,T ) ⊆ L(M ′, T ) is equivalent to L(M,T )∩L(M,T ) = ∅ and we know
that TDPDAs are closed under complementation and intersection and the empti-
ness problem for TDPDAs is decidable, we obtain that the inclusion problem
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is decidable under the condition that the signatures of the given TDPDAs are
compatible. Moreover, the latter assumption is in fact necessary, since it is shown
in [14] that the inclusion problem becomes undecidable in case of incompatible
signatures even for IDPDAs with the additional restriction on their pushdown
store to be a counter only.

Let us now replace the data structure of a pushdown store by a queue store. In
this way, we obtain input-driven queue automata (IDQA) introduced in [11] and
tinput-driven queue automata studied in [12]. Here, every IDQA has a signature
(ΣN , ΣD, ΣR), where a symbol from ΣN leaves the queue store unchanged, a
symbol from ΣD enters a symbol to the queue store, and a symbol from ΣD

removes a symbol from the queue store. Interestingly, for TDQAs we can apply
similar ideas and methods as for TDPDAs which lead to similar results as for
the pushdown variants.

Similar to our discussion for TDPDAs, both languages L1 = { an$an | n ≥ 1 }
and L2 = { anb2n | n ≥ 1 } are not accepted by any IDQA, whereas their
preprocessed variants L′

1 = { an$bn | n ≥ 1 } and L′
2 = { an(bc)n | n ≥ 1 }

are easily accepted by TDQAs. Hence, TDQAs may be more powerful than
IDQAs. On the other hand, every TDQA can be simulated by some real-time
deterministic queue automaton (rt-DQA) and it can be shown that the language
{ anbn+mam | n,m ≥ 1 } already used is not accepted by any TDQA as well.
Hence, we obtain the following hierarchy.

Theorem 4. L (IDQA) ⊂ L (TDQA) ⊂ L (rt-DQA).

Considering deterministic and nondeterministic variants of the underlying
transducer T and the underlying IDQA M of a TDQA (M,T ) leads again to
four cases. For TDPDAs it is known that the underlying IDPDA can always be
determinized which leads to two classes depending on whether the underlying
finite state transducer is deterministic or nondeterministic. This is no longer true
for TDQAs, since it can be shown that language

{ an$h(w1)$h(w2)$ · · · $h(wm) | m,n ≥ 1, wk ∈ {a, b}n, 1 ≤ k ≤ m,

and there exist 1 ≤ i < j ≤ m so that wi = wj },

where h is the homomorphism that maps a to #a and b to #b, is accepted by
some TDQAd,n, but not by any TDQAd,d. On the other hand, each TDQAn,n

can be converted to an equivalent TDQAn,d. Here, the basic idea is to shift the
nondeterminism of the IDQA to the transducer. This means basically that the
transducer additionally guesses the nondeterministic moves of the IDQA and
outputs these guesses as suitable symbols which in turn can be processed by
an IDQA in a deterministic way. Finally, it is possible to separate the language
classes induced by TDQAd,ns and TDQAn,ns using the union of the languages
{u$v#1u | u, v ∈ {a, b}∗ } and {u$v#2v | u, v ∈ {a, b}∗ }. Altogether, these
results lead to the following hierarchy.
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Theorem 5. L (TDQAd,d) ⊂ L (TDQAd,n) ⊂ L (TDQAn,n) = L (TDQAn,d).

Under the condition of compatible signatures it is again possible to show
the closure under the Boolean operations. However, the closure under union
and intersection may get lost if the signatures are no longer compatible. For
example, the languages { bancanb | n ≥ 0 } and { banbamcamb | m,n ≥ 0 } are
each accepted by some TDQA with different signatures, but it is shown in [6]
that their union is not even accepted by any real-time DQA.

Theorem 6. Let (M,T ) and (M ′, T ) be two TDQAs with compatible signa-
tures. Then, TDQAs accepting the intersection L(M,T ) ∩ L(M ′, T ), the union
L(M,T )∪L(M ′, T ), and the complement L(M,T ) can effectively be constructed.

Interestingly, the reversal of the union of the above languages is accepted by
some TDQA, which shows the non-closure under reversal. Further non-closure
results are known for concatenation, iteration, and length-preserving homomor-
phism. These proofs are basically identical to that for TDPDAs, since the proofs
refer to the fact that language { anbn+mam | n,m ≥ 1 } is not accepted by any
TDPDA, which is true for any TDQA as well. The closure properties are sum-
marized in Table 2. Since it is known that the questions of emptiness, finiteness,
universality, inclusion, equivalence, regularity, and context-freeness are undecid-
able for IDQAs [11], it is clear that all questions are undecidable for TDQAs as
well. However, when considering the restricted variant of k-turn deterministic
queue automata (DQAk), which means that in every computation at most k
changes between increasing and decreasing the queue store may take place for
some fixed integer k, then the questions of emptiness, finite, and universality
become decidable [11]. These decidability results can be extended to hold for
IDQAks and TDQAks as well. Furthermore, exploiting again the closure under
the Boolean operations in case of compatible signatures and the decidability
of emptiness, it can be shown that inclusion and equivalence is decidable for
TDQAks with compatible signatures.

Table 2. Closure properties of the language families discussed. Symbols ∪c and ∩c

denote union and intersection with compatible signatures. Such operations are not
defined for DFAs and DQAs and are marked with ‘—’.

∪ ∩ ∪c ∩c · ∗ hl.p. REV

REG Yes Yes Yes — — Yes Yes Yes Yes

L (IDQA) Yes No No Yes Yes No No No No

L (TDQA) Yes No No Yes Yes No No No No

L (rt-DQA) Yes No No — — No No No No

Theorem 7. Let k ≥ 0 be a constant and (M,T ) as well as (M ′, T ) be k-turn
TDQA with compatible signatures. Then, emptiness, finiteness, and universal-
ity of L(M,T ) is decidable. Furthermore, the inclusion and the equivalence of
L(M,T ) and L(M ′, T ) is decidable as well.
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Finally, we remark that the decidability of inclusion is no longer true for
IDQAks in case of incompatible signatures which holds for TDQAks as well,
whereas it is an open problem whether or not the equivalence problem is decid-
able for IDQAks or TDQAks in case of incompatible signatures. If we come back
to general TDQAs, then it is known that inclusion and equivalence is undecidable
even if compatible signatures are considered.

We can summarize so far that the preprocessing of the input in case of
input-driven automata with pushdown or queue store boosts their computa-
tional power, but at the same time preserves the nice features of input-driven
automata such as the closure under Boolean operations as well as the decidability
of inclusion and equivalence in case of compatible signatures.

4 Boosting Reversible Machines

Reversible pushdown automata (REV-PDA) are conventional DPDAs that in
addition to their transition function δ possess a reverse transition function
δ← such that a configuration c′ is reached from configuration c by apply-
ing δ if and only if c is reached from c′ by applying δ←. REV-PDAs have
been introduced in [10] and it is shown there, for example, that REV-PDAs
can be assumed to work in real time and induce a language class that is a
proper subset of the real-time deterministic context-free languages which is
witnessed by the language L = { anbn | n ≥ 1 }. The gap between reversible
and irreversible context-free languages is very small, since the slightly changed
language L′ = { ancbn−1 | n ≥ 1 } is accepted by a REV-PDA. Again as
observed for IDPDAs, language L′ can be obtained from L by preprocessing the
input by an injective and length-preserving deterministic finite state transducer.
Hence, we will consider in the following transducer reversible pushdown automata
(T-REV-PDA) which are pairs (M,T ), where T is an injective and length-
preserving DFST and M is a REV-PDA. Similarly, if M is a reversible finite
automaton or a reversible queue automaton [13] (REV-QA), we obtain trans-
ducer reversible finite automata (T-REV-FA) as well as transducer reversible
queue automata (T-REV-QA). All these models have been introduced in [3,4]
and we will in the sequel summarize known results with respect to their com-
putational capacity and closure properties. Since general DQAs may perform
arbitrarily many λ-steps, which is necessary to show their computational uni-
versality, we limit for REV-QAs and T-REV-QAs the maximal number of con-
secutive λ-steps to a fixed number. Moreover, it can be shown for both models
that they can be converted to equivalent REV-QAs and T-REV-QAs, respec-
tively, that work in real time. It should also be noted that in a first definition
the DFSTs had to be reversible as well. However, it is possible to cede this con-
dition (as well as the condition of being injective), since it can be shown that
both conditions can be recovered by the pair of transducer and automaton so
that the same language classes are accepted not depending on the reversibility
or injectivity of the given preprocessing transducer.
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Concerning the computational capacity we can state that the preprocess-
ing boosts the computational power of all three variants. For T-REV-FAs the
equality with the regular languages can be established. As discussed above,
a T-REV-PDA can accept the irreversible deterministic context-free language
{ anbn | n ≥ 1 }, and language { ambn$w#w | m,n ≥ 0, w ∈ {a, b}∗ } is accepted
by some T-REV-QA, but is not accepted by any REV-QA. On the other hand,
by computing the output of the DFST internally and simulating the automa-
ton directly on the output, every T-REV-PDA can be simulated by a real-time
DPDA as well as every T-REV-QA can be simulated by a real-time DQA. The
inclusions of both corresponding language classes are proper which is witnessed
by the two languages

{w$wR | w ∈ {a, b}∗ } ∪ {w$cn | w ∈ {a, b}∗ and |w| = n } and
{w1$w1#w2$w2 | w1, w2 ∈ {a, b}∗ } ∪ {w1$c

|w1|#w2$w2 | w1, w2 ∈ {a, b}∗ }.

Hence, we have the following hierarchies.

Theorem 8. – L (T-REV-FA) = REG,
– L (T-REV-FA) ⊂ L (REV-PDA) ⊂ L (T-REV-PDA) ⊂ L (rt-DPDA), and
– L (T-REV-FA) ⊂ L (REV-QA) ⊂ L (T-REV-QA) ⊂ L (rt-DQA).

So far, we have required that the preprocessing transducer of our devices
is deterministic and length-preserving. It has been discussed above that the
reversibility and injectivity can be ceded without changing the language classes.
This immediately raises the question what happens when both conditions are
weakened. We will not discuss nondeterministic transducers here, since we want
to stick with reversible models which are deterministic by definition. Interest-
ingly, the condition to be length-preserving can be ceded as well without changing
the corresponding language classes which means that the preprocessing trans-
ducer may be an arbitrary general finite state transducer. The basic idea of
the construction is that such a general transducer T is converted to a length-
preserving transducer T ′ that emits symbols which are identified with the words
emitted by T . Then, the automaton M ′ has to work on this compressed alpha-
bet which means that reading one symbol emitted by T ′ implies to simulate
several steps of the original automaton M , which in turn means that M ′ must
be able to handle compressed symbols over the pushdown alphabet and queue
alphabet, respectively. However, this can be achieved for REV-PDAs as well as
for REV-QAs by detailed constructions.

Theorem 9. The family L (T-REV-PDA) is equal to the family of languages
accepted by pairs of general DFSTs and REV-PDAs. The family L (T-REV-QA)
is equal to the family of languages accepted by pairs of general DFSTs and
REV-QAs.

Finally, we discuss the closure properties of the families L (T-REV-PDA)
and L (T-REV-QA) which are summarized in Table 3. We start with the comple-
mentation operation for which the positive closure can be shown. The traditional
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Table 3. Closure properties of the language classes induced by transducer reversible
automata.

∪ ∩ ∪R ∩R · ∗ hl.p. h−1 REV

REG Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

L (REV-PDA) Yes No No No No No No No Yes No

L (T-REV-PDA) Yes No No Yes Yes No No No Yes No

L (rt-DPDA) Yes No No Yes Yes No No No Yes No

L (REV-QA) Yes No No No No No No No Yes No

L (T-REV-QA) Yes No No Yes Yes No No No Yes No

L (rt-DQA) Yes No No Yes Yes No No No Yes No

approach to show closure under complementation is to interchange accepting and
non-accepting states. However, as in the construction for DPDAs [9] one has to
ensure that the complete input is read and that no infinite loop on empty input
is ever entered. The latter problem does neither occur for T-REV-PDAs nor for
T-REV-QAs since both models can be assumed to work in real time. The former
problem can be overcome by introducing a new sink state to which all undefined
transitions are redirected and, to preserve reversibility, to log the predecessor
of the sink state and the remaining input symbols on the pushdown store and
queue store, respectively. For the closure under inverse homomorphism we can
apply the fact shown in Theorem 9. In detail, it shown that the inverse homo-
morphic image can be represented by a pair of a general DFST and a REV-PDA
or a REV-QA, respectively. Finally, we can use the DFST of a T-REV-PDA
(T-REV-QA) for the reversible simulation of a regular language. Then, a stan-
dard construction using the Cartesian product shows the closure under union
and intersection with regular languages. We note that REV-PDAs as well as
REV-QAs are not closed under both operations in general. One has additionally
to ensure that the given regular languages are reversible.

Theorem 10. Let (M,T ) be a T-REV-PDA (resp. T-REV-QA) and R a regular
language. Then, a T-REV-PDA (resp. T-REV-QA) accepting the intersection
L(M,T ) ∩ R, the union L(M,T ) ∪ R, the complement L(M,T ), and the inverse
homomorphic image h−1(L(M,T )) for some homomorphism h can effectively be
constructed.

The families L (T-REV-PDA) and L (T-REV-QA) are not closed under
intersection in general. Here, basically the proofs known for DPDAs and
rt-DQAs apply. Due to the closure under complementation, both families can-
not be closed under union as well. To show the non-closure under concatenation,
iteration, reversal, and length-preserving homomorphism one can utilize some
languages already used in the corresponding proofs for REV-PDAs, DPDAs,
REV-QAs, and rt-DQAs. In all cases, the assumption that L (T-REV-PDA) or
L (T-REV-QA) is closed under one operation leads to a language that is no
longer acceptable by a DPDA or a rt-DQA, respectively.
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Theorem 11. The families L (T-REV-PDA) and L (T-REV-QA) are neither
closed under union, intersection, concatenation, iteration, reversal, nor under
length-preserving homomorphism.

We can summarize that the preprocessing of the input also in case of
reversible automata with pushdown or queue store boosts their computational
power, preserves the positive closure results of the reversible automata, and adds
the closure under union and intersection with regular languages.
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