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Abstract. A grammar characterization of partially blind one-counter
languages is presented. One-counter automata are used to build parse
trees of the respective grammars. One-counter automata are also used
to find the most probable derivations for the stochastic versions of these
grammars. Both these tasks are executed in quadratic time in the size of
the input. Regular expressions are extended with one-counter language
capabilities. Context-free languages are approximated with one-counter
languages.

1 Introduction

The time complexity of parsing context-free (CF) languages is cubic in the size of
the input in a general case, which includes the majority of ambiguous languages.
See the CYK and Earley algorithms [1]. This time complexity is prohibitive
for some applications. Sub-cubic parsing algorithms do exist but they are not
practical [2].

CF grammars are often ambiguous. Natural language grammars are almost
always ambiguous [1]. Ambiguous grammars are widely used in bioinformatics
[3]. Selecting better derivations is an additional parsing challenge for these lan-
guages. Stochastic (aka probabilistic) grammars are an instrument for dealing
with ambiguity. They associate probabilities with productions. Stochastic pars-
ing amounts to finding the most probable derivations for given input strings [1].
Due to grammar splitting methods, stochastic parsing can be highly accurate,
including natural language parsing [4].

Finding the most probable derivation is solved by dynamic programming
algorithms such as the CYK algorithm for stochastic CF grammars [1]. The
stochastic CYK algorithm also has a cubic time complexity in the size of the
input. Enhanced algorithms for parsing stochastic CF languages execute much
faster than the CYK algorithm in practice, but still exhibit a cubic asymptotic
time complexity [5].

As opposed to CF languages, regular languages can be parsed in linear time
by finite automata (FA). The task of finding the most probable derivation can
be solved in linear time of the size of the input by the Viterbi algorithm [1].
The Viterbi algorithm finds the most probable sequence of automaton transi-
tions (path) accepting the input for stochastic FAs. It can be applied to the
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automata recognizing right-linear, i.e. regular, grammars. The most probable
path is also the most probable derivation in the respective right-linear grammar.
Its time complexity makes the Viterbi algorithm the tool of choice for numerous
applications, since many of them require a real-time result. Unfortunately, regu-
lar languages constitute a very limited subclass of CF languages. Having faster
parsing algorithms for supersets of regular languages including algorithms for
finding the most probable derivations is crucial.

One-counter (OC) automata are FAs extended with a non-negative counter
[6]. The languages recognized by OC automata are a proper subset of CF lan-
guages and a proper superset of regular languages. OC automata have plenty
of applications [7,8], and so do stochastic OC automata [9,10]. Stochastic OC
automata are equivalent to discrete-time quasi-birth death processes [11].

Partially blind one-counter (PBOC) automata are OC automata without
counter tests [12]. They are also known as restricted one-counter automata [13]
and one-counter nets [14]. PBOC automata are equivalent to B-automata [15].
The languages recognized by PBOC automata are a proper superset of regular
languages and a proper subset of OC languages. The properties of OC and PBOC
languages have been extensively studied [6,13,14,16].

OC automata, including stochastic ones, have not been used much for pars-
ing. Grammar characterization of OC and PBOC languages has been an open
issue for decades [6,8]. We specify a class of grammars characterizing PBOC
languages. We describe how to build matching PBOC automata from these
grammars and vice versa. The time complexity of parsing the characterizing
languages, including stochastic parsing, is quadratic in the size of the input. We
augment regular expressions (RE) with OC capabilities. These extended REs
give another characterization of PBOC languages.

The approximation of CF languages has recently caught much attention. CF
languages are usually approximated with regular languages [17]. Fast parsing is
one of the reasons of this approximation. Some advanced approximation methods
have been developed [18].

We introduce a technique for approximating CF languages by OC automata.
OC automata are more adequate for handling parenthesis constructs than FAs.
This technique enables the generation of approximate parse trees. The languages
accepted by the approximating automata include the source CF languages. We
present a sufficient decidable condition for a CF grammar to be recognizable by a
OC automaton. We describe a method for approximating automaton transition
probabilities from grammar production probabilities.

2 One-Counter Automata

Definition 1. A (nondeterministic) OC automaton is a tuple (S,R, s, F, T )
where S is a finite set of states, R is a set of input symbols (alphabet), s ∈ S
is the start state, F ⊂ S is a set of final states, T is a set of transitions. The
transitions have the form: s, t, c → r, n where s and r are states, t is an input
symbol, c ∈ {0,+} is a counter test, n ∈ {+1,−1, 0} is a counter operation.
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Transitions with c = 0 apply when the counter is zero, and transitions with
c = + apply when the counter is positive. The transition adds n to the counter
value. Transitions with c = 0 and n = −1 are disallowed. The value of the
counter is zero at the start. An input is accepted if the automaton is in a final
state and the counter is zero. Transitions are classified as incrementing (n = +1),
decrementing (n = −1), and internal (n = 0).

Some definitions of OC automata allow ε-transitions, i.e. transitions with-
out input symbols. Alternatively, OC automata can be defined as pushdown
automata with a single stack symbol and a special bottom symbol [11].

Definition 2. A transition sequence is called balanced if the counter value at
the beginning equals its value at the end, and the counter value at other states is
not less than that.

In the case of stochastic OC automata, probability p is associated with every
transition [11]. It is assumed that transition probabilities satisfy the following
conditions for any non-final state s:

∑

t,r,n

p(s, t, 0 → r, n) = 1
∑

t,r,n

p(s, t,+ → r, n) = 1

For any final state, these sums are less than one by the final state probability.
Some definitions of stochastic OC automata include start state probabilities.

The probability of an automaton path is defined as the product of the proba-
bilities of its transitions. The Viterbi algorithm from [19] outputs the most prob-
able path accepting the input of a stochastic OC automaton. Its time complexity
is quadratic in the size of the input. This algorithm can be used to output accep-
tance paths for non-stochastic OC automata if we assign p(s, t, c → r, n) = 1
instead of probabilities for all transitions.

Trees can be generated from acceptance paths of OC automata [19]. These
trees play the role of parse trees. Input symbols are leaf nodes of these trees.
The source states of incrementing and internal transitions label non-leaf nodes.
The source states of decrementing transitions could be leaf nodes, or these states
could have one child. Both interpretations are based on the intuitive assumption
that any incrementing transition opens a construct, and a matching decrement-
ing transition closes it.

In order to build a tree, we iterate over transitions in an acceptance path
and maintain the stack of states. For any transition A, u, c → B, 0, u and B are
the children of A. For any transition A, u, c → B,+1, u and B are the first two
children of A. A is pushed onto the stack. For any transition C, v,+ → D,−1,
the top state is popped from the stack. Under the first interpretation, C has no
child nodes, v and D are added as children of the node popped from the stack.
Under the second interpretation, v becomes the sole child of C, and D is added
as a child of the node popped from the stack.

Definition 3. A OC automaton is called PBOC if the following holds for any
s, t, r, h: the automaton has transition s, t, 0 → r, h iff it has transition s, t,+ →
r, h (cf. [12]).
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Usually, PBOC automata are defined by transitions without the counter test,
and the automata halt when the counter becomes negative. Following this tradi-
tion, we drop the counter test from the notation of PBOC automaton transitions.
PBOC automata can also be defined as pushdown automata with a single stack
symbol and without bottom symbol transitions [13].

3 Counting Regular Expressions

REs are regarded as a simpler notation than CF grammars. REs are also more
widely used [20]. The notion of a counter can be incorporated into REs without
affecting their simplicity but enhancing the expressiveness. OC automata can
be used to parse these extended REs, which will be called counting regular
expressions (CRE), and to generate trees. Let L denote the language defined by
a RE, grammar, or automaton.

CREs are defined as REs in which some terminals may be annotated with
plus or minus, for instance, a+ or a− for terminal a. A string matches a CRE if
the following three conditions are met. First, the string matches this CRE with
the annotations ignored. Second, the number of input symbols matching the plus
terminals should be greater or equal to the number of input symbols matching
the minus terminals for any partial input, i.e. for any substring n1...nk of input
n1...nm. Third, these two numbers should be equal for the entire input.

For example, the following CRE specifies additive expressions (terminals are
underlined, terminal id represents identifiers):

((+)∗ id ()−)∗ ((+ | −) ((+)∗ id ()−)∗)∗

Theorem 1. The sets of languages defined by CREs and PBOC automata are
identical.

Proof. We can view any CRE X as a RE in which a, a+, a− are treated as dis-
tinct terminals even though they match the same input. Let us convert this RE
to its recognizing nondeterministic FA without ε-transitions X ′ [21]. Now we can
transform X ′ transitions into transitions of PBOC automaton X ′′ as follows:

s, x → t ⇒ s, x → t, 0
s, x+ → t ⇒ s, x → t,+1
s, x− → t ⇒ s, x → t,−1

The start and final states remain unchanged. Any string s ∈ L(X) is accepted
by X ′. Using the above rules, we can transform any X ′ acceptance path into a
X ′′ path. It is also an acceptance path for X ′′ because it is balanced, and the
counter is zero at the end. Now suppose string u is accepted by X ′′. It is also
accepted by X ′. Since the input symbols matching annotated terminals of X
satisfy the CRE conditions, u ∈ L(X).

These transformations can be reverted to transform any PBOC automaton
to a FA with annotated terminals. Any FA can be transformed to an equivalent
RE. Annotations are carried from the FA to this RE which is treated as a CRE.
We can use the same arguments as before to show that this CRE and the source
PBOC automaton define the same language. ��
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Using the Viterbi algorithm for OC automata and the first interpretation of
acceptance paths, we can build parse trees for the strings matching CRE.

4 Compartmentalized Grammars

Without loss of generality, we can assume that CF grammar productions are
in the quadratic Greibach normal form (QGNF), i.e. every production is A →
bB1...Bk where 0 ≤ k ≤ 2 [6]. As usual, =>∗ denotes grammar derivation.
Let R(A) be the set consisting of nonterminal A and all such nonterminals
B that A =>∗ αB where α is a string of terminals and/or nonterminals. A
simple iterative procedure can calculate R(A) for all nonterminals A of any CF
grammar. Let I be the set of nonterminals D such that there is production
A → bB1B2, and D ∈ R(B1).

Consider a OC automaton whose states are grammar nonterminals. Addition-
ally, there is one and only final state Z that does not map to any nonterminal.
Start nonterminal S is the start state. Transitions are constructed as follows:

For every production A → bB1:
A, b, 0 → B1, 0 if A ∈ R(S)
A, b,+ → B1, 0 if A ∈ I

For every production A → bB1B2:
A, b, 0 → B1,+1 if A ∈ R(S)
A, b,+ → B1,+1 if A ∈ I

For every production A → bB1B2 and production D → d such that D ∈ R(B1):
D, d,+ → B2,−1

For every production D → d such that D ∈ R(S):
D, d, 0 → Z, 0

Theorem 2. If OC automaton Ω is built by the above rules from CF grammar
Γ in QGNF, then L(Γ ) ⊆ L(Ω).

Proof. Consider the parse tree of an input string from L(Γ ). Let us traverse this
parse tree in pre-order. Nonterminals and terminals alternate in the traversal
sequence. Every triple A, b, C in the sequence (where b is a terminal) corresponds
to a transition of the automaton generated from the grammar. Triples originating
from productions A → tB map to transitions A, t, n → B, 0 where n = 0 or
n = + depending on the counter value. Productions A → uBC are the source of
transitions A, u, n → B,+1. Along with productions D → c where D ∈ R(B),
they are also the source of transitions D, c,+ → C,−1. In both cases, A ∈ R(S)
if n = 0, and A ∈ I if n > 0.

The destination state of every transition in the traversal sequence equals to
the source state of the next one. Incrementing and decrementing transitions are
paired according to parse tree nodes for productions A → uBC. Therefore, the
counter value is always non-negative and equals zero at the end. The counter is
always positive at the source states of decrementing transitions. If A, b is the last
pair in the traversal sequence, then A ∈ R(S), and this pair maps to transition
A, b, 0 → Z, 0. Therefore, the input is accepted by Ω. ��
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We also can construct a PBOC automaton from productions of any grammar
in QGNF. Let both A, u, 0 → B, h and A, u,+ → B, h be generated regardless
of whether A ∈ R(S), A ∈ I, or not. Clearly, Theorem 2 holds after this change.

Definition 4. Grammar Γ in QGNF is called compartmentalized quadratic
Greibach (CQG) if for any two productions A → bBC and E → fFG,
R(B) ∩ R(F ) = ∅. If for any such productions, either R(B) ∩ R(F ) = ∅ or
the grammar includes productions A → bBG and E → fFC as well, then Γ is
called semi-compartmentalized (SCQG).

For example, the following grammar is CQG:
S → id S → id S S → (SR R →) R →)S

Here is the PBOC automaton constructed from this grammar:
S, id → S, 0 R, ) → S, 0 S, (→ S,+1
S, id → R,−1 R, ) → R,−1 S, id → Z, 0 R, ) → Z, 0

Theorem 3. If OC automaton Ω is built by the above rules from SCQG gram-
mar Γ , then L(Γ ) = L(Ω).

Proof. Let
←−
t and

−→
t denote the source and destination state of transition t,

respectively. We prove by induction on the number of incrementing transitions
that if t1...tn is a balanced sequence of transitions of Ω for input string s1...sn

and
−→
tn = Z, then

←−
t1 ⇒∗ s1...sn

−→
tn is a valid derivation in Γ , and

−→
tn ∈ R(

←−
t1 ).

Base: Clearly, this proposition holds for balanced sequences without incre-
menting transitions.

Induction step: Suppose the proposition holds for sequences with not more
than m incrementing transitions. Consider the first incrementing transition ti
in sequence t1...tn with m + 1 incrementing transitions. Let tj be its balancing
decrementing transition.

Suppose ti corresponds to production A → siB1B2, and tj corresponds to
production pair E → sj , C → dD1D2 such that E ∈ R(D1). By the induc-
tion assumption, transition sequence ti+1...tj−1 maps to derivation B1 ⇒∗

si+1...sj−1E, and E ∈ R(B1). Since E ∈ R(D1), Γ contains production
A → siB1D2 as well. Transition ti is identical to the transition generated from
production A → siB1D2, and tj is identical to the transition generated from
production pair E → sj , A → siB1D2, and hence, A ⇒∗ si...sjD2.

By the induction assumption, D2 ⇒∗ sj+1...sn
−→
tn is a valid derivation, and−→

tn ∈ R(D2). Transitions s1...si−1 are all internal, and thus,
←−
t1 ⇒∗ s1...si−1A,

A ∈ R(
←−
t1 ). Combining the three derivations, we get

←−
t1 ⇒∗ s1...sn

−→
tn , and

−→
tn ∈

R(
←−
t1 ).
If t1...tk is an acceptance path, then t1...tk−1 is balanced, S ⇒∗ s1...sk−1

−−→
tk−1

is a valid derivation in Γ , and
−−→
tk−1 ∈ R(S). Γ has production

−−→
tk−1 → sk because−→

tk = Z. Hence, S ⇒∗ s1...sk. ��
Theorem 3 also holds for the PBOC automata built from SCQG grammars.

Using the second interpretation of OC automaton acceptance paths, we can build
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trees from acceptance paths for the OC automata built from CF grammars in
QGNF. These trees contain relevant syntactic information even if they do not
exactly match productions of the source grammar. As the proof of Theorem 3
shows, the trees constructed from acceptance paths can be converted to the parse
trees of the source SCQG grammars.

5 Stochastic Parsing

Any proper CQG grammar has no more than one distinct production A → bBC
for any triple A, b,B. For any production D → c from a CQG grammar, there
is no more than one such production A → bBC that D ∈ R(B).

Transition probabilities of the OC automata built from stochastic CQG gram-
mars are expressed via grammar production probabilities:

p(A, b, 0 → B, 0) = p(A, b,+ → B, 0) = p(A → bB)
p(A, b, 0 → B,+1) = p(A, b,+ → B,+1) = p(A → bBC)
p(A, b,+ → B,−1) = p(A → b) p(A, b, 0 → Z, 0) = p(A → b)

In stochastic grammars, the sum of probabilities of the productions A → ...
equals one for every nonterminal A [1]. For every state A except Z, the sum
of p(A, b,+ → B,n) for all b,B, n equals one because the sum of the respec-
tive production probabilities equals one. The same is true about the sum of
p(A, b, 0 → B,n) for all b,B, n.

If a grammar undergoes a transformation, then the probabilities of new pro-
ductions usually cannot be expressed via the probabilities of original productions.
The following theorem guarantees that the Viterbi algorithm from [19] can be
used to find the most probable derivations for stochastic CQG grammars.

Theorem 4. Suppose stochastic OC automaton Ω is built from stochastic CQG
grammar Γ , and their probabilities satisfy the above equations. A derivation in
Γ is the most probable iff the respective Ω acceptance path is the most probable.

Proof. The probability of a grammar derivation is calculated as the product of
the probabilities of the productions in the respective parse tree. The probabil-
ity of an acceptance path is the product of the probabilities of its transitions.
There is one-to-one mapping between nonterminal nodes of Γ parse trees and
transitions of Ω acceptance paths. The probabilities of the Γ productions asso-
ciated with parse tree nodes and the probabilities of the respective Ω transitions
equal each other. The most probable derivations corresponds to the most prob-
able acceptance paths for CQG grammars and their counterpart stochastic OC
automata because the probabilities of the derivations and acceptance paths are
calculated as the products of the same values. ��

6 Grammar Characterization

We can transform any PBOC automaton into a CF grammar. Let us
assign a unique positive number (identifier) to every distinct transition pair
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(A, b → B,+1, D, c → C,−1). We define nonterminal [B, r] for every state B
and every transition pair identifier r. Also, we define nonterminal [B, 0] for every
state B where 0 is a dummy identifier. If S is the start state, then [S, 0] is the
start nonterminal. The following rules define grammar productions. ε denotes
the empty string.

1. [A, r] → b [B, r] for every transition A, b → B, 0 and every identifier r
2. [A, r] → b [B, u] c [C, r] for every identifier u = (A, b → B,+1, D, c → C,−1)

and every identifier r
3. [D,u] → ε for every identifier u = (A, b → B,+1, D, c → C,−1)
4. [A, 0] → ε for every final state A

Lemma 1. If grammar Γ is built from PBOC automaton Ω by the above rules,
then L(Γ ) = L(Ω).

Proof. 1. L(Γ ) ⊆ L(Ω)
Consider an arbitrary parse tree for Γ and traverse it in pre-order. Every

triple [A, r], b, [B, r] in the traversal string corresponding to production [A, r] →
b [B, r] has source transition A, b → B, 0. Let [A, r], b, [B, u] and [E, v], c, [C, r] be
the first and the last triple corresponding to production [A, r] → b [B, u] c [C, r] in
the parse tree. This production is induced by transition pair u = (A, b → B,+1,
D, c → C,−1). u = v because [E, v] ∈ R([B, u]), and all elements of R([B, u])
share the same identifier. Hence, E = D.

Every triple maps to an Ω transition. The destination state of every transition
in the traversal sequence equals to the source state of the next one. Increment-
ing and decrementing transitions are paired according to parse tree nodes for
productions [A, r] → b [B, u] c [C, r]. Therefore, the counter value is always non-
negative, and it equals zero at the end. The counter value is always positive at
nodes [D,u] corresponding to the source states of decrementing transitions. If
[C, s] is the last node in the traversal sequence, then s = 0, and hence, C is a
final state. Therefore, the sequence of triples from the traversal maps to an Ω
acceptance path.

2. L(Ω) ⊆ L(Γ )
We can prove by induction on the number of incrementing transitions that

if t1...tn is a balanced sequence of transitions of Ω for input string s1...sn, and r
is an identifier, then [

←−
t1 , r] ⇒∗ s1...sn[

−→
tn , r] is a valid derivation in Γ . The fact

that the input string of any Ω acceptance path is derivable in Γ is a corollary
of that because the last state is final, and we can pick r = 0.

The proof is similar to the proof of Theorem 3. The difference is the following.
If ti is the first incrementing transition, and tj is its balancing decrementing
transition, then production [

←−
tj , u] → ε is generated for transition pair u = (ti, tj).

Productions [
←−
ti , v] → si [

←−−
ti+1, u] sj [

−→
tj , v] are generated for u = (ti, tj) and for

every v. Combining these productions with derivation [
←−−
ti+1, u] ⇒∗ si+1...sj−1

[
−−→
tj−1, u], we get [

←−
ti , v] ⇒∗ si...sj [

−→
tj , v]. ��
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Theorem 5. The sets of languages defined by CQG grammars, SCQG gram-
mars, and PBOC automata are identical.

Proof. The Theorems 2 and 3 reformulated for PBOC automata show that an
equivalent PBOC automaton, i.e. defining the same language, can be constructed
for any SCQG grammar. Lemma 1 shows that an equivalent CF grammar can be
constructed for any PBOC automaton. Consider any two productions [A, r] →
b [B, u] c [C, r] and [E, s] → f [F, v] g [G, s] of the grammar built from a PBOC
automaton. If u = v, then these productions are identical. If the two productions
are distinct, then R([B, u])∩R([F, v]) = ∅ because all elements of R([X, z]) share
the same identifier z.

The grammars built from PBOC automata can be easily transformed into
equivalent grammars in QGNF. First, every production A → bBcC is trans-
formed into pair A → bBC ′, C ′ → cC where C ′ is a new nonterminal. Second,
productions A → b and A → bB are added in lieu of productions D → ε. These
additional productions are the result of removing D from the right-hand sides of
productions. The resulting grammar defines the same language, it is CQG, and
thus, SCQG as well. ��

Any CQG grammar can be converted to an equivalent PBOC automaton
and vice versa. The same is true about CREs and PBOC automata. Hence, any
CRE can be converted to an equivalent CQG grammar and vice versa.

7 Approximation of Context-Free Languages

Theorem 3 gives an indication that OC automata better approximate grammars
with fewer productions A → bB1B2. We call them long productions. For instance,
grammars having one long production are recognizable by OC automata.

Definition 5. Nonterminal A from a CF grammar in QGNF is called regular
if no E ∈ R(A) has long productions or if all nonterminals from the right-hand
side of every A production are regular.

Regular nonterminals can be effectively identified. If the start nonterminal
is regular, then the grammar is regular. The following grammar transformation
may boost the accuracy of the approximation by OC automata.

If B1 is a regular nonterminal, then productions A → bB1B2 can be elimi-
nated at the expense of newly introduced nonterminals and productions of the
form C → dD. Let us start with such B1 that no D ∈ R(B1) has long produc-
tions. First, we replicate all these D along with all their productions and replace
all replicas E → c with productions E → cB2. Second, we replace A → bB1B2

with A → bB′ where B′ is the replica of B1. By applying the above transfor-
mation iteratively, we eliminate all long productions with regular nonterminals
B1. This transformation does not introduce new long productions and does not
change the language defined by the grammar.

Any proper CF grammar can be effectively converted to QGNF [6]. After
that, the aforementioned transformation can be applied. Finally, we check if the
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transformed grammar is SCQG. Therefore, we have a sufficient condition for
CF languages to be recognizable by PBOC automata. This condition can be
effectively verified for an arbitrary CF grammar, and the recognizing automaton
can be built when the condition is met.

Now we outline an approach to approximating transition probabilities of
stochastic OC automata generated from stochastic CF grammars in QGNF.
The transition probabilities can be learned from grammar production proba-
bilities. Describing implementation details and estimating the accuracy of this
approximation is beyond the scope of this paper.

A training set can be easily created. Strings belonging to the language are
generated by constructing random derivations from the start nonterminal. For
this purpose, productions are randomly applied by taking into account their
probabilities. We calculate the probabilities of the generated strings from their
parse trees. We generate acceptance paths of the approximating OC automaton
from the parse trees as it is done in the proof of Theorem 2.

Let us build a model for the approximation of the probabilities of transitions.
wi will denote the probability of transition i. If there is only one transition t
for source state a and counter test c, then wt = 1. Otherwise, let us pick one
transition among all transitions for given a and c. Note that a is not final. Let
X be the set of these picked transitions, Y be its complement, and C(i) denote
the set of complementary transitions for transition i ∈ X. The probabilities of
transitions from Y are model parameters.

The model equation is:

z =
∏

i∈Y

wmi
i

∏

i∈X

(1 −
∑

j∈C(i)

wj)mi

where mi is the number of occurrences of transition i in the acceptance path, z
is the probability of the corresponding grammar derivation. This model also has
the following box constraints: 0 ≤ wi ≤ 1 for i ∈ Y .

We can symbolically calculate ∂z
∂wi

for i ∈ Y . Therefore, the model parameters
wi can be learned by gradient descent methods, e.g. stochastic gradient descent
with square loss or another loss function [22]. Projections onto sets defined by
box constraints are trivial. It is well-known that stochastic gradient descent gives
robust results for a variety of optimization problems like this [22].

8 Related Work

The author is unaware of any previous work investigating the relationship
between OC automata and grammars except for XML grammars. PBOC
automata are used to validate XML documents against certain recursive DTDs
in [8].

Recursive REs aim to incorporate CF features into REs [20]. They extend
and complicate the notation of REs. Recursive REs disallow backtracking within
recursive calls [20], i.e. recursive REs are not declarative unlike REs and CF
grammars. Our extension, i.e. CREs, is less ambitious, but it adds the power of
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OC languages while preserving the simplicity of REs and retaining their declar-
ative nature.

RE parsers usually produce parse trees on the basis of the structure of a
given RE [23]. CRE parsing employs annotated terminals as opening and closing
markers for parse tree nodes.

Regular approximation of CF languages usually leads to the loss of syntactic
information. A grammar defining arithmetic expressions is used as an illustrat-
ing example in [17]. Its approximating FA has only two states, and thus, its
acceptance paths do not carry much syntactic information.

It is claimed in [17] that the approximating FAs can be used for parsing,
but the parse trees reconstructed from acceptance paths of the approximating
automaton differ from the parse trees of the source language. Another method for
reconstructing parse trees from acceptance paths of the approximating automata
was proposed in [24]. The problem with this method is that the reconstruction
requires cubic time, which defeats the purpose of language approximation.

A method of learning transitions probabilities of stochastic FAs was proposed
in [25]. This method works only for unambiguous FAs, while stochastic automata
and grammars are expected to be ambiguous. In general, unambiguous automata
do not need stochastic methods.

9 Conclusion

The characterization of PBOC languages by CREs and CQG grammars is an
indication of relevance of PBOC automata to parsing. However, the approxi-
mation of CF languages could potentially be more accurate if it involves all OC
automata. CQG languages is a new addition to the sparse collection of subclasses
of ambiguous or stochastic CF languages that can be parsed in quadratic time
or faster.

The approximation of CF languages by OC automata has the potential to
be more realistic than the approximation by regular languages. The latter is
inhibited by the limitations of regular languages. Our approximation applies to
stochastic CF grammars as well. Language approximation makes more sense for
stochastic languages because stochastic parsing is inherently approximate.
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