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Abstract. Techniques are developed for creating new and general lan-
guage families of only semilinear languages, and for showing families
only contain semilinear languages. It is shown that for language fami-
lies L that are semilinear full trios, the smallest full AFL containing the
languages obtained by intersecting languages in L with languages in NCM
(where NCM is the family of languages accepted by NFAs augmented with
reversal-bounded counters), is also semilinear. If these closure properties
are effective, this also immediately implies decidability of membership,
emptiness, and infiniteness for these general families. From the general
techniques, new grammar systems are given that are extensions of well-
known families of semilinear full trios, whereby it is implied that these
extensions must only describe semilinear languages. This also implies
positive decidability properties for the new systems. Some characteriza-
tions of the new families are also given.

1 Introduction

One-way nondeterministic reversal-bounded multicounter machines (NCM) oper-
ate like NFAs with λ transitions, where there are some number of stores that
each can contain some non-negative integer. The transition function can detect
whether each counter is zero or non-zero, and optionally increment or decrement
each counter; however, there is a bound on the number of changes each counter
can make between non-decreasing and non-increasing. These machines have been
extensively studied in the literature, for example in [15], where it was shown that
NCMs only accept semilinear languages (defined in Sect. 2). As the semilinear
property is effective for NCM (in that, the proof consists of an algorithm for con-
structing a finite representation of the semilinear sets), this implies that NCMs
have decidable membership, emptiness, and infiniteness properties, as emptiness
and infiniteness can be decided easily on semilinear sets (and membership follows
from emptiness by effective closure under intersection with regular languages).
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NCM machines have been applied extensively in the literature, for example, to
model checking and verification [16,17,21,22], often using the positive decidabil-
ity properties of the family.

More general machine models have been studied with an unrestricted
pushdown store augmented by some number of reversal-bounded counters
(NPCM, [15]). Despite the unrestricted pushdown, the languages accepted are
all semilinear, implying they have the same decidable properties. This family
too has been applied to several verification problems [4,18], including model
checking recursive programs with numeric data types [10], synchronization- and
reversal-bounded analysis of multithreaded programs [8], for showing decidable
properties of models of integer-manipulating programs with recursive parallelism
[9], and for decidability of problems on commutativity [19]. In these papers, the
positive decidability properties—the result of the semilinearity—plus the use of
the main store (the pushdown), plus the counters, played a key role. Hence,
(effective) semilinearity is a crucial property for families of languages.

The ability to augment a machine model with reversal-bounded counters and
to only accept semilinear languages is not unique to pushdown automata; in [11],
it was found that many classes of machines M accepting semilinear languages
could be augmented with reversal-bounded counters, and the resulting family
Mc would also only accept semilinear languages. This includes models such as
Turing machines with a one-way read-only input tape and a finite-crossing1 work-
tape. However, a precise formulation of which classes of machines this pertains
to was not given.

Here, a precise formulation of families of languages that can be “augmented”
with counters will be examined in terms of closure properties rather than machine
models. This allows for application to families described by machine models,
or grammatical models. It is shown that for any full trio (a family closed
under homomorphism, inverse homomorphism, and intersection with regular
languages) of semilinear languages L0, then the smallest full AFL L (a full trio
also closed under union, concatenation, and Kleene-*) containing all languages
obtained from intersecting a language in L0 with a language in NCM, must only
contain semilinear languages. Furthermore, if the closure properties and semilin-
earity are effective in L0, this implies a decidable membership, emptiness, and
infiniteness problem in L. Hence, this provides a new method for creating general
families of languages with positive decidability properties.

Several specific models are created by adding counters. For example, indexed
grammars are a well-studied general grammatical model like context-free gram-
mars except where nonterminals keep stacks of “indices”. Although this system
can generate non-semilinear languages, linear indexed grammars (indexed gram-
mars with at most one nonterminal in the right hand side of every production)
generate only semilinear languages [5]. Here, we define linear indexed grammars
with counters, akin to linear indexed grammars, where every sentential form con-
tains the usual sentential form, plus k counter values; each production operates as

1 A worktape is finite-crossing if there is a bound on the number of times the boundary
of all neighboring cells on the worktape are crossed.
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usual and can also optionally increase each counter by some amount; and a termi-
nal word can be generated only if it can be produced with all counter values equal.
It is shown that the family of languages generated must be semilinear since it is
contained in the smallest full AFL containing the intersection of linear indexed
languages and NCM languages. A characterization is also shown: linear indexed
grammars with counters generate exactly those languages obtained by intersect-
ing a linear indexed language with an NCM and then applying a homomorphism.
Furthermore, it is shown that right linear indexed grammars (where terminals
only appear to the left of nonterminals in productions) with counters coincide
exactly with the machine model NPCM. Therefore, linear indexed grammars with
counters are a natural generalization of NPCM containing only semilinear lan-
guages. This model is generalized once again as follows: an indexed grammar is
uncontrolled finite-index if, there is a value k such that, for every derivation in
the grammar, there are at most k occurrences of nonterminals in every sentential
form. It is known that every uncontrolled finite-index indexed grammar generates
only semilinear languages [3,25]. It is shown here that uncontrolled finite-index
indexed grammars with counters generate only semilinear languages, which is
also a natural generalization of both linear indexed grammars with counters
and NPCM. This immediately shows decidability of membership, emptiness, and
infiniteness for this family.

Lastly, the closure property theoretic method of adding counters is found
to often be more helpful than the machine model method of [11] in terms of
determining whether the resulting family is semilinear, as here a machine model
M is constructed such that the language family accepted by M is a semilinear
full trio, but adding counters to the model to create Mc accepts non-semilinear
languages. This implies from our earlier results, that Mc can accept languages
that cannot be obtained by intersecting a language accepted by a machine in M
with a NCM and then applying any of the full AFL properties.

This paper therefore contains useful new techniques for creating new lan-
guage families, and for showing existing language families only contain semilinear
languages, which can then be used to immediately obtain decidable emptiness,
membership, and infiniteness problems. Such families can perhaps also be applied
to various areas, such as to verification, similarly to the use of NPCM.

All proofs are omitted due to space constraints.

2 Preliminaries

In this section, preliminary background and notation is given.
Let N0 be the set of non-negative integers, and let N

k
0 be the set of all

k-tuples of non-negative integers. A set Q ⊆ N
k
0 is linear if there exists vectors

v0,v1, . . . ,vl ∈ N
k
0 such that Q = {v0 + i1v1 + · · · + ilvl | i1, . . . , il ∈ N0}. Here,

v0 is called the constant, and v1, . . . ,vl are called the periods. A set Q is called
semilinear if it is a finite union of linear sets.

Introductory knowledge of formal language and automata theory is assumed
such as nondeterministic finite automata (NFAs), pushdown automata (NPDAs),
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Turing machines, and closure properties. [14]. An alphabet Σ is a finite set of
symbols, a word w over Σ is a finite sequence of symbols from Σ, and Σ∗ is the
set of all words over Σ which includes the empty word λ. A language L over Σ
is any L ⊆ Σ∗. The complement of a language L ⊆ Σ∗, denoted by L, is Σ∗ −L.

Given a word w ∈ Σ∗, the length of w is denoted by |w|. For a ∈ Σ,
the number of a’s in w is denoted by |w|a. Given a word w over an alphabet
Σ = {a1, . . . , ak}, the Parikh map of w, ψ(w) = (|w|a1 , . . . , |w|ak

), and the
Parikh map of a language L is {ψ(w) | w ∈ L}. The commutative closure of a
language L is the language comm(L) = {w ∈ Σ∗ | ψ(w) = ψ(v), v ∈ L}. Two
languages are letter-equivalent if ψ(L1) = ψ(L2).

A language L is semilinear if ψ(L) is a semilinear set. Equivalently, a language
is semilinear if and only if it is letter-equivalent to some regular language [12].
A family of languages is semilinear if all languages in it are semilinear, and it
is said that it is effectively semilinear if there is an algorithm to construct the
constant and periods for each linear set from a representation of each language
in the family. For example, it is well-known that all context-free languages are
effectively semilinear [23].

Notation from AFL (abstract families of languages) theory is used from [6].
A full trio is any family of languages closed under homomorphism, inverse homo-
morphism, and intersection with regular languages. Furthermore, a full AFL is
a full trio closed under union, concatenation, and Kleene-*. Given a language
family L, the smallest family containing L that is closed under arbitrary homo-
morphism is denoted by Ĥ(L), the smallest full trio containing L is denoted
by M̂(L), and the smallest full AFL containing L is denoted by F̂(L). Given
families L1 and L2, let L1 ∧ L2 = {L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2}.

We will only define NCM and NPCM informally here, and refer to [15] for a
formal definition. A one-way nondeterministic counter machine can be defined
equivalently to a one-way nondeterministic pushdown automaton [14] with only
a bottom-of-pushdown marker plus one other symbol. Hence, the machine can
add to the counter (by pushing), subtract from the counter (by popping), and can
detect emptiness and non-emptiness of the pushdown. A k-counter machine has k
independent counters. A k-counter machine M is l-reversal-bounded, if M makes
at most l changes between non-decreasing and non-increasing of each counter in
every accepting computation. Let NCM be the class of one-way nondeterminis-
tic l-reversal-bounded k-counter machines, for some k, l (DCM for deterministic
machines). Let NPCM be the class of machines with one unrestricted pushdown
plus some number of reversal-bounded counters. By a slight abuse of notation,
we also use these names for the family of languages they accept.

3 Full AFLs Containing Counter Languages

This section will start by showing that for every semilinear full trio L, the small-
est full AFL containing L ∧ NCM is a semilinear full AFL. First, the following
intermediate result is required.
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Lemma 1. If L is a semilinear full trio, then M̂(L ∧ NCM) = Ĥ(L ∧ NCM) is
a semilinear full trio.

The next result is relatively straightforward from results in [6,7], however we
have not seen it explicitly stated as we have done. From Corollary 2, Sect. 3.4
of [6], for any full trio L, the smallest full AFL containing L is the substitution
of the regular languages into L. And from [7], the substitution closure of one
semilinear family into another is semilinear. Therefore, we obtain:

Lemma 2. If L is a semilinear full trio, then the smallest full AFL containing
L is semilinear.

From these, it is immediate that for semilinear full trios L, the smallest full
AFL containing intersections of languages in L with NCM is semilinear.

Theorem 3. If L is a semilinear full trio L, then F̂(L ∧ NCM) is semilinear.

It is worth noting that this procedure can be iterated, as therefore
F̂(F̂(L ∧ NCM) ∧ NCM) must also be a semilinear full AFL, etc. for additional
levels, but it is not clear whether this can increase the capacity or not.

Many acceptors and grammar systems are known to be semilinear full trios,
such as finite-index ET0L systems [24], indexed grammars with a bound on
the number of variables appearing in every sentential form (called uncontrolled
finite-index) [3], multi-push-down machines (which have k pushdowns that can
simultaneously be written to, but they can only pop from the first non-empty
pushdown) [2], a Turing machine variant with one finite-crossing worktape [11],
and pushdown machines that can flip their pushdown up to k times [13].

Corollary 4. Let L be any of the following families:

– languages generated by context-free grammars,
– languages generated by finite-index ETOL,
– languages generated by uncontrolled finite-index indexed languages,
– languages accepted by one-way multi-push-down machine languages,
– languages accepted by one-way read-only input nondeterministic Turing

machines with a two-way finite-crossing read/write worktape,
– languages accepted by one-way k-flip pushdown automata.

Then the smallest full AFL containing L ∧ NCM is a semilinear full AFL.

A simplified analogue to this result is known for certain types of machines
[11], although the new result here is defined entirely using closure properties
rather than machines. Furthermore, the results in [11] do not allow Kleene-* type
closure as part of the full AFL properties. For the machine models M above, it is
an easy exercise to show that augmenting them with reversal-bounded counters
to produce Mc, the languages accepted by Mc are a subset of the smallest full
AFL containing intersections of languages in M with NCM. Hence, these models
augmented by counters only accept semilinear languages. Similarly, this type of
technique also works for grammar systems, as seen in Sect. 5.



216 O. H. Ibarra and I. McQuillan

In addition, in [7], it was shown that if L is a semilinear family, then the
smallest AFL containing the commutative closure of L is a semilinear AFL. It
is known that the commutative closure of every semilinear language is in NCM
[19], and we know now that if we have a semilinear full trio L, then the smallest
full AFL containing L is also semilinear. So, we obtain an alternate proof that
is an immediate corollary since we know that the smallest full AFL containing
NCM is a semilinear full AFL.

For any semilinear full trio L where the semilinearity and the intersection
with regular language properties are effective, the membership and emptiness
problems in L are decidable. Indeed, to decide emptiness, it suffices to check if
the semilinear set is empty. And to decide if a word w is in L, one constructs
the language L ∩ {w}, then emptiness is decided.

Corollary 5. For any semilinear full trio L where the semilinearity and
intersection with regular language properties are effective, then the membership,
emptiness, and infiniteness problems are decidable for languages in F̂(L∧NCM).
In these cases, F̂(L ∧ NCM) are a strict subset of the recursive languages.

As membership is decidable, the family must only contain recursive languages,
and the inclusion must be strict as the recursive languages are not closed under
homomorphism.

The next property on commutative closure also follows.

Proposition 6. Let L be a semilinear full trio, where these properties are
effective. Then, the problem, for L1, L2 ∈ F̂(L ∧ NCM) is L1 ⊆ comm(L2),
is decidable. Furthermore, the problem, is L1 ∩ comm(L2) = ∅ is decidable.

Next, we provide an interesting decomposition theorem of semilinear
languages into linear parts. Consider any semilinear language L, where its
Parikh image is a finite union of linear sets A1, . . . , Ak, and the constant and
periods for each linear set can be constructed. Then we can effectively create
languages in perhaps another semilinear full trio separately accepting those
words in Li = {w ∈ L | ψ(w) ∈ Ai}, for each 1 ≤ i ≤ k.

Corollary 7. Let L be a semilinear full trio, where semilinearity is effective.
Then, given L ∈ L, we can determine that the Parikh map of L is A = A1 ∪
· · · ∪ Ak, A1, . . . , Ak are linear sets, and we can effectively construct languages
L1, . . . , Lk in the semilinear full trio M̂(L ∧ NCM) such that Li = {w ∈ L |
ψ(w) ∈ Ai}.
Proof. Since semilinearity is effective, we can construct a representation of linear
sets A1, . . . , Ak. An NCM Mi can be created to accept ψ−1(Ai), for each i,
1 ≤ i ≤ k. Then, Li = L ∩ L(Mi) ∈ M̂(L ∧ NCM), for each i, 1 ≤ i ≤ k. 	


4 Application to General Multi-store Machine Models

In [6], a generalized type of multitape automata was studied, called multitape
abstract families of automata (multitape AFAs). We will not define the notation
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used there, but in Theorem 4.6.1 (and Exercise 4.6.3), it is shown that if we
have two types of automata M1 and M2 (defined using the AFA formalism),
accepting language families L1 and L2 respectively, then the languages accepted
by automata combining together the stores of M1 and M2, accepts exactly the
family Ĥ(L1 ∧ L2). This is shown for machines accepting full AFLs in Theorem
4.6.1 of [6], and for union-closed full trios mentioned in Exercise 4.6.3. We will
show that this is tightly coupled with this precise definition of AFAs, as we
will define a simple type of multitape automata where this is not the case,
but each type still satisfies the same closure properties. This result uses the
characterization of Theorem 3.

A checking stack automaton (NCSA) M is a one-way NFA with a store tape,
called a stack. At each move, M pushes a string (possibly λ) on the stack, but M
cannot pop. And, M can enter and read from the inside of the stack in two-way
read-only fashion. But once the machine enters the stack, it can no longer change
the contents. The checking stack automaton is said to be restricted (or no-read
using the terminology of [20]), if it does not read from the inside of the stack
until the end of the input. We denote by RNCSA the family of machines, as well
as the family of languages described by the machines above, with RDCSA being
the deterministic version. Let RNCSAc (RDCSAc) be the family of machines and
languages in RNCSA (RDCSA) augmented with reversal-bounded counters. A
preliminary investigation of RNCSAc and RDCSAc was done in [20].

Here, we will show the following:

1. RNCSA is a full trio of semilinear languages,
2. F̂(RNCSA ∧ NCM) is a semilinear full AFL,
3. every language in RNCSA ∧ NCM is accepted by some machine in RNCSAc,
4. there are non-semilinear languages accepted by machines in RNCSAc.

Therefore, RNCSAc contains some languages not in the smallest full AFL
containing RNCSA ∧ NCM, and the multitape automata and results from [6,11]
do not apply to this type of automata.

Proposition 8. RNCSA accepts exactly the regular languages, which is a full
trio of semilinear languages.

From Theorem 3, the following is true:

Corollary 9. F̂(RNCSA ∧ NCM) is a semilinear full AFL.

Since RNCSA accepts the regular languages, and NCM is closed
under intersection with regular languages, the following is true:

Proposition 10. RNCSA ∧ NCM = NCM ⊆ RNCSAc.

Proposition 11. The non-semilinear L = {aibj | i, j ≥ 1, j is divisible by i}
can be accepted by an RDCSAc M with one counter that makes only one reversal.

It is concluded that RNCSAc contains some languages not in RNCSA∧NCM =
NCM, since NCM is semilinear [15]. Moreover, F̂(RNCSA ∧ NCM) is semilinear
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as well, so it does not contain all languages of RNCSAc. Then it is clear that
combining together the stores of RNCSA and NCM accepts significantly more
than Ĥ(RNCSA∧NCM) as is the case for multitape AFA [6]. The reason for the
discrepancy between this result and Ginsburg’s result is that the definition of
multitape AFA allows for reading the input while performing instructions (like
operating in two-way read-only mode in the stack). In contrast, RNCSA does
not allow this behavior. And if this behavior is added into the definition, the full
capability of checking stack automata is achieved which accepts non-semilinear
languages, and not regular languages.

A similar analysis can be done using the method developed in [11] for
augmenting the machine models with counters. Let M be a family of one-way
acceptors with some type of store structure X. For example, if the storage X is a
pushdown stack, then M is the family of nondeterministic pushdown automata
(NPDAs). Let the machines in M be augmented with reversal-bounded coun-
ters, and call the resulting family Mc. In [11], the following was shown for many
families M:

(*) If M is a semilinear family (i.e., the languages accepted by the machines in
M have semilinear Parikh map), then Mc is also a semilinear family.

It was not clear in [11] whether the result above is true for all types of one-way
acceptors, in general. However, the family RNCSA is semilinear (Proposition 8),
but RDCSAc is not semilinear (Proposition 11).

5 Applications to Indexed Grammars with Counters

In this section, we describe some new types of grammars obtained from existing
grammars generating a semilinear language family L, by adding counters. The
languages generated by these new grammars are then shown to be contained
in F̂(L ∧ NCM), and by an application of Theorem 3, are all semilinear with
positive decidability properties.

We need the definition of an indexed grammar introduced in [1] by following
the notation of [14], Sect. 14.3.

Definition 12. An indexed grammar is a 5-tuple G = (V,Σ, I, P, S), where
V,Σ, I are finite pairwise disjoint sets: the set of nonterminals, terminals, and
indices, respectively, S is the start nonterminal, and P is a finite set of produc-
tions, each of the form either

(1) A → ν, (2) A → Bf, or (3) Af → ν,

where A,B ∈ V, f ∈ I and ν ∈ (V ∪ Σ)∗.

Let ν be an arbitrary sentential form of G, which is of the form

ν = u1A1α1u2A2α2 · · · ukAkαkuk+1,

where Ai ∈ V, αi ∈ I∗, ui ∈ Σ∗, 1 ≤ i ≤ k, uk+1 ∈ Σ∗. For a sentential form
ν′ ∈ (V I∗ ∪Σ)∗, we write ν ⇒G ν′ if one of the following three conditions holds:
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1. There exists a production in P of the form (1) A → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ Σ∗, and there exists i with 1 ≤ i ≤ k, Ai = A and

ν′ = u1A1α1 · · · ui(w1C1αi · · · w�C�αiw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

2. There exists a production in P of the form (2) A → Bf and there exists i, 1 ≤
i ≤ k, Ai = A and ν′ = u1A1α1 · · · ui(Bfαi)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

3. There exists a production in P of the form (3) Af → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ Σ∗, and an i, 1 ≤ i ≤ k, Ai = A, αi = fα′

i, α
′
i ∈ I∗, with

ν′ = u1A1α1 · · · ui(w1C1α
′
i · · · w�C�α

′
iw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

Then, ⇒∗
G denotes the reflexive and transitive closure of ⇒G. The language L(G)

generated by G is the set L(G) = {u ∈ Σ∗ | S ⇒∗
G u}.

This type of grammar can be generalized to include counters as follows:

Definition 13. An indexed grammar with k counters is defined as in indexed
grammars, except where rules (1), (2), (3) above are modified so that a rule
α → β now becomes:

α → (β, c1, . . . , ck), (1)

where ci ≥ 0, 1 ≤ i ≤ k. Sentential forms are of the form (ν, n1, . . . , nk), and
⇒G operates as do indexed grammars on ν, and for a production in Eq. 1, adds
ci to ni, for 1 ≤ i ≤ k. The language generated by G with terminal alpha-
bet Σ and start nonterminal S is, L(G) = {w | w ∈ Σ∗, (S, 0, . . . , 0) ⇒∗

G

(w, n1, . . . , nk), n1 = · · · = nk}.
Given an indexed grammar with counters, the underlying grammar is

the indexed grammar obtained by removing the counter components from
productions.

Although indexed grammars generate non-semilinear languages, restrictions
will be studied that only generate semilinear languages.

An indexed grammar G is linear [5] if the right side of every production of
G has at most one variable. Furthermore, G is right linear if it is linear, and
terminals can only appear to the left of a nonterminal in productions. Let L-IND
be the family of languages generated by linear indexed grammars, and let RL-IND
be the family of languages generated by right linear indexed grammars.

Similarly, indexed grammars with counters can be restricted to be linear.
An indexed grammar with k-counters is said to be linear indexed (resp. right
linear) with k counters, if the underlying grammar is linear (resp. right linear).
Let L-INDc (resp. RL-INDc) be the family of languages generated by linear (resp.
right linear) indexed grammars with counters.

Example 14. Consider the language L = {v$w | v, w ∈ {a, b, c}∗, |v|a = |v|b =
|v|c, |w|a = |w|b = |w|c} which can be generated by a linear indexed grammar
with counters G = (V,Σ, I, P, S) where P contains

S → (S, 1, 1, 1, 0, 0, 0) | (S, 0, 0, 0, 1, 1, 1) | (T, 0, 0, 0, 0, 0, 0)

T → (aT, 1, 0, 0, 0, 0, 0) | (bT, 0, 1, 0, 0, 0, 0) | (cT, 0, 0, 1, 0, 0, 0) | ($R, 0, 0, 0, 0, 0, 0)

R → (aR, 0, 0, 0, 1, 0, 0) | (bR, 0, 0, 0, 0, 1, 0) | (cR, 0, 0, 0, 0, 0, 1) | (λ, 0, 0, 0, 0, 0, 0).

This language cannot be generated by a linear indexed grammar [3].
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The following is a characterization of languages generated by these grammars.

Proposition 15. L ∈ L-INDc if and only if there is a homomorphism h, L1 ∈
L-IND, and L2 ∈ NCM such that L = h(L1 ∩ L2).

Implied from the above result and Theorem 3 and since L-IND is an effectively
semilinear trio [5] is that L-INDc ⊆ F̂(L-IND ∧ NCM), and therefore L-INDc is
effectively semilinear.

Corollary 16. The languages generated by linear indexed grammar with
counters are effectively semilinear, with decidable emptiness, membership, and
infiniteness problems.

Next, a machine model characterization of right linear indexed grammars
with counters will be provided. Recall that an NPCM is a pushdown automaton
augmented by reversal-bounded counters. The proof uses the fact that every
context-free language can be generated by a right-linear indexed grammar [5].

Theorem 17. RL-INDc = NPCM.

We conjecture that the family of languages generated by right-linear indexed
grammars with counters (the family of NPCM languages) is properly contained
in the family of languages generated by linear indexed grammars with counters.
Candidate witness languages are L = {w$w | w ∈ {a, b, c}∗, |w|a + |w|b = |w|c}
and L′ = {w$w | w ∈ {a, b}∗}. It is known that L′ is generated by a linear
indexed grammar [5], and hence L can be generated by such a grammar with
two counters. But, both L′ and L seem unlikely to be accepted by any NPCM.
Therefore, indexed grammars with counters form quite a general semilinear fam-
ily as it seems likely to be more general than NPCM.

Next, another subfamily of indexed languages is studied that are even more
expressive than linear indexed grammars but only generate semilinear languages.

An indexed grammar G = (V,Σ, I, P, S) is said to be uncontrolled index-r if,
every sentential form in every successful derivation has at most r nonterminals.
G is uncontrolled finite-index if G is uncontrolled index-r, for some r. Let U-IND
be the languages generated by uncontrolled finite-index indexed grammars.

Uncontrolled finite-index indexed grammars have also been studied under
the name of breadth-bounded indexed grammars in [3,25], where it was shown
that the languages generated by these grammars are a semilinear full trio.

This concept can then be carried over to indexed grammars with counters.

Definition 18. An indexed grammar with k-counters is uncontrolled index-r
(resp. uncontrolled finite-index) if the underlying grammar is uncontrolled
index-r (resp. uncontrolled finite-index). Let U-INDc be the languages generated
by uncontrolled finite-index indexed grammar with k-counters, for some k.

One can easily verify that Proposition 15 also applies to uncontrolled
finite-index indexed grammars with counters. Hence, we have:
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Proposition 19. L ∈ U-INDc if and only if there is a homomorphism h, L1 ∈
U-IND, L2 ∈ NCM such that L = h(L1 ∩ L2).

Implied from the above Proposition and Theorem 3 also is that these new
languages are all semilinear.

Corollary 20. U-INDc is effectively semilinear, with decidable emptiness,
membership, and infiniteness problems.

Hence, RL-INDc ⊆ L-INDc ⊆ U-INDc. We conjecture that both containments
are strict; the first was discussed previously, and the second is likely true since
L-IND � U-IND [3]. Hence, U-INDc forms quite a general semilinear family, con-
taining NPCM with positive decidability properties.
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determinism. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 361–372.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6 29

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

15. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

16. Ibarra, O.H., Bultan, T., Su, J.: Reachability analysis for some models of infinite-
state transition systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877,
pp. 183–198. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-
4 15

17. Ibarra, O.H., Bultan, T., Su, J.: On reachability and safety in infinite-state systems.
Int. J. Found. Comput. Sci. 12(6), 821–836 (2001)

18. Ibarra, O.H., Dang, Z.: Eliminating the storage tape in reachability constructions.
Theoret. Comput. Sci. 299(1–3), 687–706 (2003)

19. Ibarra, O.H., McQuillan, I.: The effect of end-markers on counter machines and
commutativity. Theoret. Comput. Sci. 627, 71–81 (2016)

20. Ibarra, O.H., McQuillan, I.: Variations of checking stack automata: obtaining unex-
pected decidability properties. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017.
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