
Generalised Twinning Property

Stefan Gerdjikov1,2(B)

1 Faculty of Mathematics and Informatics,
Sofia University, 5, James Bourchier Blvd., 1164 Sofia, Bulgaria

stefangerdzhikov@fmi.uni-sofia.bg
2 Institute of Information and Communication Technologies,

Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

Abstract. In this paper we consider the problem of sequentialisation
of rational functions f : Σ∗ → M. We introduce a class of monoids
that includes infinitary groups, free monoids, tropical monoids and is
closed under Cartesian Product. For this class of monoids we provide
a sequentialisation construction for transducers and appropriately gen-
eralise the notion of Twinning Property. We provide a construction to
test the Twinning Property for transducers over the considered class of
monoids and prove that it is a necessary and sufficient condition for the
sequentialisation construction to terminate.
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1 Introduction

Finite State Transducers (FST) provide a natural effective way to represent a
large class of relations, called rational relations, applied in Natural Language
Processing [12,14–17]. In their essence the FST’s are formal devices that gener-
alise the classical Finite State Automata (FSA).

Aiming at linear on-line algorithms for processing words, one prefers the
Deterministic FSA to the general FSA. In the case of FSA it is well known that
both formalisms are equivalent in their expressive power, [11]. However, for the
FST’s and the deterministic, called sequential, FST’s this is not the case, [2,13,
15]. The constraint for an FST to deterministically process an input word clearly
implies that it represents a graph of a function f : Σ∗ → M. But it is by far
not sufficient that an FST to be functional to be turned into a sequential FST.
Functions recognised by some sequential FST are called sequential functions.

The problem we are looking at in this paper is to recognise if a given trans-
ducer T represents a sequential function and if so to construct a sequential
transducer equivalent to T .

In the case where M is a free monoid this problem has been solved by
Choffrut [2]. The case where M is the tropical monoid was solved by Mohri [14,
15]. For a survey see also [13]. In [9] a class of monoids, sequentiable structures,
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has been introduced and the results from [2,13–15] have been generalised. The
case where M is an infinitary group was solved in [3]. In this paper we consider
a class of monoids that contains the free monoids, the tropical monoids, the
sequentiable structures, and infinitary groups and additionally is closed under
Cartesian Product. In its essence the class of monoids that we consider is a
subclass of mge monoids [10] and the monoids considered in [7] obtained by
adding three more axioms. We formally introduce it in Sect. 3.

Typically, the problem for sequentialisation of an FST starts with a func-
tionality test. This problem can be efficiently solved for free monoids, [1], and
groups, [5]. These techniques were generalised to arbitrary mge monoids in [10].
The second step is usually to characterise the sequential functions as rational
functions of bounded variation, [2,3,9,13,15]. The third step is to introduce an
appropriate notion of Twinning Property, [2,3,13,18].

We generalise the notion of Twinning Property in Sect. 4.2, but we do not
have an appropriate notion for bounded variation. Thus, we cannot follow the
common way, [2,3,9,13,15,18], of proving the characterisation theorem in order
(i) sequential; (ii) bounded variation; (iii) Twinning Property; (iv) termination
of a power set construction. The proof in Sect. 4.3 skips (ii) and also requires a
modification of the power set construction. The latter is presented in Sect. 4.1.

2 Preliminaries

The reader familiar with the main notions on monoids and automata1, [4,18],
may prefer to skip this section.

A monoid M = 〈M, ◦, e〉 is a semigroup 〈M, ◦〉 with a unit element e. A
special case of monoids are the free monoids Σ∗ generated by a finite set Σ.
The support of Σ∗ is the set of all finite sequence over Σ, called words, the
multiplication is the concatenation of words, and the unit element is the empty
word, ε. For monoids Mi = 〈Mi, ◦i, ei〉 for i = 1, 2, the Cartesian Product
M = M1 × M2 is defined as M = 〈M1 × M2, ◦, 〈e1, e2〉〉 where:

〈a1, a2〉 ◦ 〈b1, b2〉 = 〈a1 ◦1 b1, a2 ◦2 b2〉 .

It is straightforward to see that M is also a monoid, [4]. For an element a ∈ M
and set S ⊆ M , we use aS and Sa as abbreviations for:

aS = {as | s ∈ S} and Sa = {sa | s ∈ S}.

A finite automaton over a monoid M is a tuple A = 〈M, Q, s, F,Δ, ι, Ψ〉
where Q is a finite set of states, s ∈ Q is the initial state, F ⊆ Q is the set
of final states, Δ ⊆ Q × M × Q is a finite relation of transitions, ι ∈ M , and
Ψ : F → M is the terminal function.

A non-trivial path in an automaton A is a non-empty sequence of transitions
π = 〈p0,m1, p1〉 . . . 〈pn−1,mn, pn〉. For each state p ∈ Q we also have the trivial
1 We consider one-letter transducers with unique initial state. It emits an initial out-

put. Final states emit final outputs.
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path π = (p). A path is either a trivial or a non-trivial path. Each path π has a
source state, σ(π), a terminal state, τ(π), label, 
(π), and length, |π|. For a non-
trivial path π = 〈p0,m1, p1〉 . . . 〈pn−1,mn, pn〉 they are defined as: σ(π) = p0,
τ(π) = pn, 
(π) =

∏n
i=1 mi, and |π| = n. For a trivial path π = (p), σ(π) =

τ(π) = p, 
(π) = e, |π| = 0.
A path π is called successful if σ(π) = s and τ(π) ∈ F . In these notions, the

language of a finite automaton A = 〈M, Q, s, F,Δ, ι, Ψ〉 is:

L(A) = {ι ◦ 
(π) ◦ Ψ(τ(π)) |π is a successful path in A}.

We also denote Δ∗ = {〈σ(π), 
(π), τ(π)〉 |π is a path in A}. A state p is called
accessible if there exists a path π with σ(π) = s and τ(π) = p. A state p is called
co-accessible if there exists a path π with σ(π) = p and τ(π) ∈ F . We say that an
automaton is trimmed if all its states are both accessible and co-accessible. For a
state p ∈ Q we denote with Ap = 〈M, Q, p, F,Δ, e, Ψ〉 and we set L(p) = L(Ap).

Rng(f) stays for the range of a function, f . Given a finite set Σ and a monoid
M, a finite state transducer is an automaton T = 〈Σ∗ × M, Q, s, F,Δ, ι, Ψ〉. If:

Δ ⊆ Q × ((Σ ∪ {ε}) × M) × Q, ι ∈ {ε} × M and Rng(Ψ) ⊆ {ε} × M,

then T is called one-letter transducer. Clearly, an FST over some monoid, M,
is equivalent to a one-letter transducer, [4]. We denote one-letter transducers
like T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉 and we tacitly identify ι = 〈ε, ι2〉 with ι2 and,
similarly, with Ψ(f) = 〈ε, Ψ2(f)〉 we intend Ψ(f) = Ψ2(f) ∈ M . By definition, a
one-letter transducer recognises a relation L(T ) ⊆ Σ∗ × M. We say that T is
functional if L(T ) is a graph of a function OT : Σ∗ → M . If Tp is functional, we
use O(p)

T to denote the function corresponding to Tp.
A special class of functional one-letter transducers are the sequential trans-

ducers. Formally, these are one-letter transducers, T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉
such that there exist functions δ : Q × Σ → Q and λ : Q × Σ → M with
Dom(δ) = Dom(λ) satisfying: Δ = {〈p, 〈a, λ(p, a)〉 , δ(p, a)〉 | 〈p, a〉 ∈ Dom(δ)}.
To stress these particularities of the sequential transducers, we denote them as
T = 〈Σ × M, Q, s, F, δ, λ, ι, Ψ〉. As usual, δ∗ : Q×Σ∗ → Q and λ∗ : Q×Σ∗ → M
denote the natural extensions of δ and λ with Dom(λ∗) = Dom(δ∗) s.t.:

Δ∗ = {〈p, 〈w, λ∗(p,w)〉 , δ∗(p,w)〉 | 〈p,w〉 ∈ Dom(δ∗)}.

With these notions we can express the function OT : Σ∗ → M as:

OT (w) = ι ◦ λ∗(s, w) ◦ Ψ(f), where f = δ∗(s, w).

3 Classes of Monoids

In this section we define the class of monoids that we shall be interested in. It
represents a subclass of the monoids considered in [7]. Similarly to the monoids
considered in [7], it contains the free monoids, the tropical monoid, and sequen-
tiable structures, [8,9], and it is closed under Cartesian Product. It also contains
the infinitary groups, [3].
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In the first paragraph, below, we revisit the basic notions from [7] and sum-
marise the results obtained there. In the second paragraph, we introduce the
new concepts that are important for the outline in next section.

3.1 MGE Monoids with LSL- and GCLF-axioms

First, we generalise the notions of a prefix and longest common prefix to monoids:

Definition 1. For a monoid M and elements a, b ∈ M we say that a ≤M b if
there is an element c ∈ M with a ◦ c = b. We use a ∼M b as an abbreviation for
the induced equivalence relation, a ≤M b & b ≤M a. For a set S ⊆ M, we define
the sets low(S) and up(S) of lower and upper bounds for S, resp. as follows:

low(S) = {a ∈ M | ∀s ∈ S(a ≤M s)} up(S) = {b ∈ M | ∀s ∈ S(s ≤M b)}.

We define the sets of infimums and supremums for S as:

inf S = low(S) ∩ up(low(S)) and supS = up(S) ∩ low(up(S)).

Definition 2. Let T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉 be a one-letter transducer. We
say that T is onward if for every accessible p ∈ Q it holds e ∈ inf Rng(L(p)).

Definition 3. An mge monoid is a monoid M with the following properties:

1. (LC, left cancellation) for all a, b ∈ M there is at most one element c = b
a

with a ◦ c = b.
2. (RC, right cancellation) for all a, b ∈ M there is at most one element c = b−a

with c ◦ a = b.
3. (RMGE, right most general equaliser) for all a, b ∈ M s.t. up({a, b}) 
= ∅,

there is an element a ∨ b ∈ sup{a, b}.
An mge monoid M is called effective, if M is effective and the functions a

b ,
a − b, and a ∨ b are computable and their domains are recursive.

Theorem 1 ([10]). Let M be an effective mge monoid. Then it is decidable
given a one-letter Σ − M-transducer T whether T is functional.

Definition 4. We say that a monoid M satisfies the left semi-lattice and great-
est common left factor axioms, respectively, if:

1. the LSL-axiom2 iff for all a, b ∈ M there is an element a� b ∈ inf{a, b}.
2. the GCLF-axiom3 iff for all a, b, c ∈ M , b ≤M c and b ≤M ac imply b ≤M ab.

Theorem 2 ([7]). Let M be an (effective) mge monoid with LSL- and GCLF-
axioms. Then there is an (effective) construction that for every one-letter Σ−M-
transducer produces an equivalent onward transducer with the same states and
input4 transitions.

Remark 1 ([7]). Groups, free monoids, and tropical monoids are all mge monoids
with LSL- and GCLF-axioms. Furthermore the mge monoids and mge monoids
with LSL- and GCLF-axioms are closed under Cartesian Product.
2 LSL stays for lower semi-lattice.
3 GCLF stays for greatest common left factor.
4 That is, the only difference in the transitions is their M-coordinate.
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3.2 Sequentialisation Axioms

In this section we define some new notions that will be used in the constructions
and proofs to come in the subsequent paragraphs.

Definition 5. Let M be a monoid. For a natural number n ∈ N we define the
relation ≡(n)

M ⊆ Mn × Mn as:

a ≡(n)
M b ⇐⇒ ∃u ∈ M(∀i ≤ n(uai = bi) and u is invertible).

Lemma 1. For each n ∈ N, the relation ≡(n)
M is an equivalence relation.

The following definition is the symmetric variant5 of the RMGE-axiom. In terms
of free monoids, it requires that if two words are suffixes of the same word, then
there is a shortest word with this property.

Definition 6. A monoid M satisfies the Left Most General Equaliser Axiom
(LMGE-axiom) if:

∀a, b ∈ M(Ma ∩ Mb 
= ∅ ⇒ ∃c ∈ M(Ma ∩ Mb = Mc)).

Definition 7. A monoid M is an (effective) 2mge-monoid if it is an (effective)
mge monoid and satisfies the LMGE-axiom.

Definition 8. Let M be a monoid. A left equaliser for u ∈ Mn is an n-tuple
a ∈ Mn such that aiui = ajuj for all i, j ≤ n. An element u ∈ Mn is called left
equalisable if it admits a left equaliser. We say that a is a left mge for u if both:

1. a is a left equaliser for u,
2. for every left equaliser, b, for u there is c ∈ M such that: bj = caj for j ≤ n.

Lemma 2. If M is a 2mge-monoid, and u ∈ Mn is left equalisable, then u
admits a unique up to equivalence w.r.t. ≡(n)

M left mge a ∈ Mn.

Definition 9. A monoid M satisfies the Conjugate Closeness Axiom (CC) if:

∀u, r ∈ M(∃k ≥ 1(ruk ∈ Mr)) ⇒ ru ∈ Mr.

Next definition captures the property that is characteristic for infinitary groups.

Definition 10. A monoid M satisfies the Prime Root Axiom (PR) if:

∀u, v ∈ M(∃k ≥ 1(uk = vk)) ⇒ u = v.

Lemma 3. LMGE, CC, and PR-axioms hold for free and tropical monoids6.

5 Note that up({a, b}) = aM ∩ bM .
6 The result extends to sequentiable structures, for the definition see [9].
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Lemma 4. If G is a group then it satisfies the LMGE- and the CC-axiom. Fur-
thermore, G is an infinitary group if and only if G satisfies the PR-axiom.

Lemma 5. Let M1 and M2 be monoids. If A ∈ {LMGE,CC,PR} and Mi

satisfies A for i = 1, 2, then so does M = M1 × M2.

Lemma 6. Let M be an mge-monoid satisfying the CC-axiom and the PR-
axiom. If r1, r2, u1, u2, t ∈ M and k ≥ 1 are such that: riu

k
i = tri for i ∈ {1, 2},

then there is s ∈ M with riui = sri for i ∈ {1, 2}.

4 Sequentialisation

In this section we will be interested in the Sequentialisation Problem:

Given:M effective 2mge-monoid with LSL and GCLF
T = 〈Σ × M, Q, i, F ,Δ, ι, Ψ〉 transducer

Output:TD, sequential transducer with OTD
= OT , if such exists.

No, alternatively.

In view of Theorems 1 and 2 this problem is equivalent to the following Restricted
Sequentialisation Problem:

Given:M effective 2mge-monoid with LSL and GCLF
T = 〈Σ × M, Q, i, F ,Δ, ι, Ψ〉 trimmed, functional, onward

Output:TD, sequential transducer with OTD
= OT , if such exists.

No, alternatively.

4.1 Sequentialisation Construction

We start by providing a natural semi-decision construction for the Restricted
Sequentialisation Problem. It specialises the classical power-set construction of
Choffrut, [2]. Under additional assumptions for the monoid M, namely the PR-
and CC-axioms, we are going to give necessary and sufficient condition for this
procedure to halt.

First, note that since T is functional and trimmed whereas M satisfies LC-
and RC-axioms, every cycle 〈p, 〈ε,m〉 , p〉 ∈ Δ∗ satisfies m = e. The sequential-
isation of T proceeds stepwise and constructs a sequence of sequential trans-
ducers: Tk = 〈Σ,M, Qk, s, Fk, δk, λk, ι, Ψk〉. The states, Qk, are sets of pairs,
Qk ⊆ 2Q×M. The initial state is defined as s = {〈p,m〉 | 〈i, 〈ε,m〉 , p〉 ∈ Δ∗}.

The main difference of our construction from the classical constructions [2,
13,16,18] lies in the special cares in Step 2.(c), below. Intuitively, they aim at
preventing the unnecessary creation of equivalent states w.r.t. ≡M .

1. At step k = 0, set Q0 = {s}, Q−1 = ∅, and T0 = 〈Σ,M, {s}, s, ∅, ∅, ∅, ι, ∅〉.
2. If Qk = Qk−1, then TD = Tk and stop. Otherwise, set δk+1 = δk, λk+1 = λk:

(a) Fk+1 = Fk ∪ {P ∈ Qk \ Qk−1 | ∃ 〈p, v〉 ∈ P (p ∈ F )}.



Generalised Twinning Property 179

(b) Ψk+1(P ) = v ◦ Ψ(f) s.t. there is 〈f, v〉 ∈ P with f ∈ F .
(c) for each P ∈ Qk \ Qk−1 and each character a ∈ Σ:

i. compute the monoid element and the set of pairs:


(P, a) =
�

{v ◦ m | 〈p, v〉 ∈ P and ∃q ∈ Q(〈p, 〈a,m〉 , q〉 ∈ Δ∗)}

∂(P, a) =
{〈

q,
v ◦ m


(P, a)

〉

| 〈p, v〉 ∈ P and (〈p, 〈a,m〉 , q〉 ∈ Δ∗)
}

Denote ∂(P, a) = {〈qk, uk〉}K
k=1.

ii. check if there is already a state P ′ ∈ Qk ∪ Rng(δk+1) satisfying:
A. P ′ = {〈qk, u′

k〉}K
k=1 for some u′

k ∈ M,
B. 〈u1, u2, . . . , uK〉 ≡(K)

M 〈u′
1, u

′
2, . . . , u

′
K〉.

If such a state P ′ exists, set u = u′
1−u1 if K ≥ 1 and u = e otherwise.

iii. Update:

〈δk+1(P, a), λk+1(P, a)〉 =

{
〈P ′, 
(P, a) ◦ u〉 if u is defined
〈∂(P, a), 
(P, a)〉 otherwise.

(d) Qk+1 = Qk ∪ Rng(δk+1) and increase k to k + 1. Goto 2.

Lemma 7. Let T be an onward functional transducer with unique initial state.
Let k ∈ N and α ∈ Σ∗ be such that P = δ∗

k(s, α) is defined. Then λ∗
k(s, α) = u

is defined and:

1. if P 
= ∅, then
�

{v | ∃p ∈ Q(〈p, v〉 ∈ P )} ∼M e.
2. for each p ∈ Q and v ∈ M it holds: 〈p, v〉 ∈ P ⇐⇒ 〈i, 〈α, uv〉 , p〉 ∈ Δ∗.

Proof. The proof follows by a straightforward induction on the length of α. ��

As a corollary we get:

Corollary 1. If Qk−1 = Qk, then Tk is a sequential transducer and OTk
= OT .

4.2 Squared Automaton and Twinning Property

Let T = 〈Σ × M, Q, i, F,Δ〉 be an onward trimmed functional transducer over
a regular 2mge-monoid. We denote with A2 the squared automaton for T :

A2 =
〈
Σ × M2, Q2, 〈i, i〉 , F 2,Δ2, e, e

〉
, where

Δ2 = {〈〈p1, p2〉 , 〈a, 〈m1,m2〉〉 , 〈p′
1, p

′
2〉〉 | a ∈ Σ,

〈
pj , 〈a,mj〉 , p′

j

〉
∈ Δ for j ≤ 2}

∪{〈〈p1, p2〉 , 〈ε, 〈m1, e〉〉 , 〈p′
1, p2〉〉 | 〈p1, 〈ε,m1〉 , p′

1〉 ∈ Δ}
∪{〈〈p1, p2〉 , 〈ε, 〈e,m2〉〉 , 〈p1, p′

2〉〉 | 〈p2, 〈ε,m2〉 , p′
2〉 ∈ Δ}

The squared automaton A2 has the following structural property:

Lemma 8. Let q,q′ ∈ Q2 be arbitrary. Then for a word α ∈ Σ∗ and m ∈ M2

the following are equivalent:
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1. 〈q, 〈α,m〉 ,q′〉 ∈ Δ∗
2,

2. for each i ≤ 2, 〈qi, 〈α,mi〉 ,q′
i〉 ∈ Δ∗,

Proof. The implication 1 ⇒ 2 follows by induction on the length of the gener-
alised transition, 〈q, 〈α,m〉 ,q′〉. In turn, the implication 2 ⇒ 1 follows by induc-
tion on the sum of the lengths of the generalised transitions, 〈qi, 〈α,mi〉 ,q′

i〉 ��

Next, we introduce the advance action. It generalises the delay of runs, [1,3], by
factorising w.r.t. the equivalence relation ≡(2)

M . Let t = 〈q, a,m,q′〉 ∈ Δ2 be a
transition. We introduce advt : M2 → M2 as:

advt(v) =
〈

(v1 ◦ m1)
m

,
(v2 ◦ m2)

m

〉

, where m = (v1 ◦ m1)�(v2 ◦ m2).

For a path π = t1t2 . . . tn in A2, we denote with adv(π) : M2 → M2 the function:

adv(π) = advt1 ◦ advt2 ◦ · · · ◦ advtn .

Next we list some useful properties of the advance action.

Lemma 9. Let v ≤M v1 and v ≤M v2, then advt(〈v1,v2〉) ≡(2)
M advt(

〈
v1
v , v2

v

〉
).

Corollary 2. Let v′ ≡(2)
M v′′ and t ∈ Δ2, then advt(v′) ≡(2)

M advt(v′′).

Proof. Since v′ ≡(2)
M v′′ there is an invertible element c with v′

j

c = v′′
j for j = 1, 2.

Now the result follows by the previous lemma. ��

Corollary 3. Let π1 and π2 be paths in A2 that start at 〈i, i〉 and terminate in
the same state q be such that: adv(π1)(e, e) ≡(2)

M adv(π2)(e, e). Then for any path
π in A2 that starts at q it holds that: adv(π1π)(e, e) ≡(2)

M adv(π2π)(e, e).

Proof. The proof follows by Corollary 2 and straightforward induction on the
length of the path π. ��

Lemma 10. Let π be a path in A2 from i = 〈i, i〉 to some state q ∈ Q2. Let

(π) = 〈α,m〉 be the label of π, and m = m1 �m2, then:

adv(π)(〈e, e〉) ≡(2)
M

〈m1

m
,
m2

m

〉
.

Definition 11. Let A2 be a squared automaton for a trimmed onward trans-
ducer with unique initial state. We say that A2 satisfies the Twinning Prop-
erty iff for any two paths π1 and π2 in A2 such that σ(π1) = 〈i, i〉 and
τ(π1) = σ(π2) = τ(π2), i.e. π2 is a cycle starting at τ(π1), it holds:

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

We conclude this section by showing that the Twinning Property is decidable:
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Lemma 11. Given a squared automaton A2 over an effective 2mge-monoid,
M, with LSL- and GCLF-axioms we can effectively test whether A2 obeys the
Twinning Property.

Proof. (Idea) Let n = |Q2|. We denote with Π2n and C the sets:

Π2n = {π path in A2 |σ(π) = 〈i, i〉 , |π| < 2n} and C = {π simple cycle in A2}.

We say that A2 satisfies the restricted Twinning Property if and only if for every
π1 ∈ Π2n and any π2 ∈ C such that τ(π1) = σ(π2):

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

Clearly, under the assumptions of the lemma, the restricted Twinning Property is
decidable. It is also clear that the Twinning Property implies the restricted Twin-
ning Property. The reverse is also true. This follows by induction, the Pigeonhole
Principle, and Corollary 3. ��

4.3 Twinning Property ⇔ Sequentialisation Algorithm Halts

The main result in this section is the following:

Theorem 3. Assume that M is a 2mge-monoid satisfying the PR- and CC-
axioms. Let T = 〈Σ × M, Q, i, F,Δ, ι, Ψ〉 be an onward, trimmed, functional
transducer and let f = OT . Then the following are equivalent:

1. the sequentialisation procedure on T terminates.
2. f is sequential.
3. A2 satisfies the Twinning Property.

Before we step to the formal proof of Theorem 3, we note the important conse-
quence of this theorem:

Theorem 4. Let M be an effective 2mge-monoid with PR-, CC-, LSL-, and
GCLF-axioms. Then it is decidable given a transducer T over Σ∗ × M whether
T represents a sequential function.

Proof. Immediate from Theorem 1, Theorem 2, Lemma 11, and Theorem 3. ��

The rest of this section is devoted to the proof of Theorem 3. The implication
1 ⇒ 2 is obvious and follows immediately from Corollary 1. The implication
3 ⇒ 1 is standard as it appropriately generalises the main ideas from [2,3,9,
13,15,18]. Yet, the implication 2 ⇒ 3 is more involved since it has to surmount
the lack of Bounded Variation Property that is usually the bridge between the
sequential functions and the Twinning Property. This is also the only place in
the proof where we need the PR- and the CC-axioms and more precisely their
consequence Lemma 6. With these remarks we delve into the proof of Theorem 3:
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Proof (of Theorem 3). 1 ⇒ 2. Follows by Corollary 1.
2 ⇒ 3 Let the paths π1, π2, with q = τ(π1) = σ(π2) = τ(π2) satisfy the

premise of the Twinning Property. Let 
(π1) = 〈α,m〉 and 
(π2) = 〈β,n〉. First
consider the case where β = ε. Since, T is trimmed and functional over an
mge monoid (LC- and RC-axiom), we conclude that m = e. Therefore 
(π1) =

(π1π2). Thus by Lemma 10 we deduce that:

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

In the sequel we assume that β 
= ε. Let Γ ⊆ Σ∗ be the language7 Γ = {α} ◦
⋃2

j=1 Dom(O(qj)
T ). We set g = f � Γ , i.e. the restriction of f to Γ . Since there

is a sequential transducer for f and Γ is regular, it follows that there is also a
sequential transducer for g. Let

m(k) = (m1 ◦ nk
1)�(m2 ◦ nk

2) and r(k) =
〈
m1 ◦ nk

1

m(k)
,
m2 ◦ nk

2

m(k)

〉

.

Note that by Lemma 10 we have that r(k) ≡(2)
M adv(π1πk

2 )(e, e). To complete the
proof we need the following:

Lemma 12. If T is trimmed and onward, and g = f � Γ is sequential, then
there is some l ∈ N with r(l) ≡M r(l+1).

Proof (Idea). First, using the sequential transducer for g we find two integers
k > l such that αβk and αβl lead to the same state in this transducer. Then, we
establish the existence of u′ ∼M m(l) and v′ ∼M m(k) and a function ĝ′ : Σ∗ →
M such that for any γ ∈ Dom(O(q1)

T ) ∪ Dom(O(q2)
T ) it holds:

g(αβlγ) = u′ ◦ ĝ′(γ) and g(αβkγ) = v′ ◦ ĝ′(γ). (1)

The mere existence of u, v, and ĝ satisfying Eq. 1 can be easily derived from the
sequential transducer for g. The onward property of the original transducer T ,
allows us to conclude that u ≤M m(l) and v ≤M m(k). Using the RMGE-axiom
it is then easy to construct u′ ∼M m(l), v′ ∼M m(k), and ĝ′ satisfying Eqs. 1.

Next, the function ĝ′ allows us to transfer information from the reduct, r(l),
to the reduct, r(k), and obtain that r(l) ≡(2)

M r(k). Finally, using that mj ◦
nk

j = m(k)r(k)j and mj ◦ nk
j = m(l)r(l)j nk−l

j and r(l) ≡M r(k) we can see that

tr(l)j = r(l)j nk−l
j where t does not depend on j = 1, 2. Now, the result follows by

Lemma 6. ��

Back to the Proof of 2 ⇒ 3. Let l be such r(l) ≡(2)
M r(l+1). Then by

r(0) ≡(2)
M adv(π1)(〈e, e〉) and r(1) ≡(2)

M adv(π1π2)(〈e, e〉) Lemma 10 implies:

r(l) ≡(2)
M adv(πl

2)(r(0)) and r(l) ≡(2)
M r(l+1) ≡(2)

M adv(πl
2)(r(1)).

7 Note that T is functional and M satisfies the LC-axiom. Therefore Tq is functional

for any accessible state q, hence O(qj)

T are well-defined.



Generalised Twinning Property 183

This means that yr(l)j = r(0)j nl
j and wr(l)j = r(1)j nl

j for appropriate y, w ∈ M that

are independent of j = 1, 2. This shows that for j = 1, 2 the pairs
〈
r(l)j ,n(l)

j

〉
are

left equalisable. We conclude that both
〈
y, r(0)j

〉
and

〈
w, r(1)j

〉
are equalisers for

this pair. Let 〈aj , bj〉 be a left mge for the pair
〈
r(l)j ,n(l)

j

〉
. Therefore there are

cj , dj ∈ M with:

y = cjaj and w = djaj , r(0)j = cjbj and r(1)j = djbj

Considering the first pair of equalities, we have that 〈a1, a2〉 is left equalisable
and 〈c1, c2〉 and 〈d1, d2〉 are left equalisers for this pair. Hence, if 〈a′

1, a
′
2〉 is the

left mge for 〈a1, a2〉, then there are c, d with cj = ca′
j and dj = da′

j . This shows

that d ≤M r(1)j for j = 1, 2 and similarly, c ≤M r(0)j . Since r(0)1 � r(0)2 ∼M e and

r(1)1 � r(1)2 ∼M e we conclude that c and d are invertible. Therefore w ≡M y. Let
uw = y where u is invertible. Therefore:

ur(0)j nl
j = uyr(l)j = uyr(l)j = wr(l)j = r(1)j nl

j

and by the RC-axiom, we derive that r(0)j = ur(1)j for j = 1, 2 with u ∼M e.

Therefore r(0) ≡(2)
M r(1), i.e. adv(π1)(e, e) ≡(2)

M adv(π1π2)(e, e), as required.
3 ⇒ 1. By Corollary 1, it suffices to show that if A2 obeys the Twinning

Property, then Qk+1 = Qk for some k. We set out to show that there are only
finitely many tuples in 2Q×M that can be generated by the algorithm. Let:

Adv(q1, q2) = {[adv(π)(〈e, e〉)]≡(2)
M

|π is a path from 〈i, i〉 to 〈q1, q2〉 in A2}

for q1, q2 ∈ Q. The Twinning Property implies that Adv(q1, q2) is generated
entirely by cycle-free paths, thus it is finite.

Next, consider a state P = {〈pj , vj〉}J
j=1 ∈ Qk−1 for some k. Let α be a

word such that: δ∗
k(s, α) = P and λ∗

k(s, α) = u. By Lemma 7 for each j we have:
〈i, 〈α, uvj〉 , pj〉 ∈ Δ∗. Therefore in the squared automaton A2 there are paths:

〈〈i, i〉 , 〈α, 〈uvj1 , uvj2〉〉 , 〈pj1 , pj2〉〉 ∈ Δ∗
2

for all j1, j2 ≤ J . Hence there is an element r(j1, j2) = 〈r1(j1, j2), r2(j1, j2)〉 such
that [r(j1, j2)] ∈ Adv(pj1 , pj2) and:

uvji = t(j1, j2)ri(j1, j2) for i = 1, 2 where t(j1, j2) = uvj1 �uvj2 .

Consider the sequence 〈r1(1, j)〉J
j=1. It is left equalisable for uv1 = t(1, j)r1(1, j).

Thus, by Lemma 2, it has a left mge 〈a1, a2, . . . , aJ 〉. In particular, there exists
a t′ s.t. t(1, j) = t′ ◦ aj for all j ≤ J . Since t′ ∼M

�
j t(1, j) ∼M

�
j uvj

and, by construction,
�

vj ∼M e, we get that t′ ∼M u. Finally, the equali-
ties u ◦ vj = t(1, j)r2(1, j) = t′ajr2(1, j), show that vj = t′

u ajr2(1, j). Since
t′
u is invertible, 〈vj〉J

j=1 ≡(J)
M 〈ajr2(1, j)〉J

j=1 is determined by {r(1, j)}J
j=1 up to
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equivalence w.r.t. ≡(J)
M . This is exactly what Step 2.(c) in our algorithm guards.

This proves the existence of an injection between the states in
⋃∞

k=0 Qk and the

subsets of Q×
(⋃

p,q∈Q Adv(p, q)
)
, which is finite. Since Qk ⊆ Qk+1 for all k, this

implies that the algorithm halts. ��

5 Conclusion

In this paper we described a general class of monoids and characterised the
sequential functions w.r.t. this class in terms of and appropriately generalised
Twinning Property. We consider that the axiomatisation approach should make
it easier to strengthen these results or alternatively to recognise that some of
these axioms are necessary.

Most of the axioms seem natural from algebraic point of view. Yet, the GCLF-
and PR-axioms are odd. From [7] we know that there are mge monoids with
LSL-axiom that violate the GCLF-axiom and that admit regular languages with
inf L = ∅. Yet, the GCLF-axiom is the only axiom from the mge and LSL-axioms
not satisfied by the gcd monoids, [19]. Actually, both GCLF- and PR-axioms
have the intrinsic property we need to surmount the cycles in the transducers
and effectively reduce the infinite nature of the problem to a finite one. Can we
relax them?

Notably, we have a characterisation of the sequential functions in terms of
congruence relations, both for gcd monoids [19] and mge monoids with GCLF-
axiom and additional (but rather tight) second order axiom, [6]. This challenges
the necessity of all: LMGE-, PR-, and CC-axioms. Are there monoids that admit
characterisation of sequential functions in terms of congruence relations but do
not admit sequentialisation algorithm?
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