
State Complexity of Reversals
of Deterministic Finite Automata

with Output

Sylvie Davies(B)

Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
sldavies@uwaterloo.ca

Abstract. We investigate the worst-case state complexity of reversals of
deterministic finite automata with output (DFAOs). In these automata,
each state is assigned some output value, rather than simply being
labelled final or non-final. This directly generalizes the well-studied prob-
lem of determining the worst-case state complexity of reversals of ordi-
nary deterministic finite automata. If a DFAO has n states and k possible
output values, there is a known upper bound of kn for the state complex-
ity of reversal. We show this bound can be reached with a ternary input
alphabet. We conjecture it cannot be reached with a binary input alpha-
bet except when k = 2, and give a lower bound for the case 3 ≤ k < n.
We prove that the state complexity of reversal depends solely on the
transition monoid of the DFAO and the mapping that assigns output
values to states.

1 Introduction

The problem of determining the worst-case state complexity of the reversal
operation on regular languages has been well-studied. Work on this problem
dates back to the 1960 s; see Jirásková and Šebej [5] for a historical overview.
It is known that if L is recognized by an n-state deterministic finite automaton
(DFA), then the (deterministic) state complexity of the reverse LR is at most
2n, and this bound can be reached over a binary alphabet.

We study a generalization of this problem to deterministic finite automata
with output (DFAOs). In a DFAO, each state is assigned an output from a
finite output alphabet Δ. Rather than recognizing languages, DFAOs compute
functions f : Σ∗ → Δ, where Σ is the input alphabet. The value f(w) is defined to
be the output of the state reached by starting in the initial state and following the
path spelling w. DFAOs directly generalize DFAs; the |Δ| = 2 case is equivalent
to assigning a value of “final” or “non-final” to each state. DFAOs are different
from Moore machines [8], which build up an output word as each state is visited.

DFAOs are used in the study of automatic sequences [1]. If we treat the words
w ∈ Σ∗ as representations of natural numbers in some base, we can view the
function f : Σ∗ → Δ as a function f : N → Δ, that is, an infinite sequence of

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 133–145, 2018.
https://doi.org/10.1007/978-3-319-94812-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_12&domain=pdf

134 S. Davies

elements of Δ. Sequences for which the corresponding function can be computed
by a DFAO are called automatic.

The reverse of the function f : Σ∗ → Δ is the function fR : Σ∗ → Δ defined
by fR(w) = f(wR). The reversal operation on DFAOs can thus be viewed as
changing the direction in which the DFAO reads input: from left-to-right to
right-to-left, or vice versa. We are concerned with the maximal blow-up in size
(number of states) when the input reading direction of a DFAO is reversed. That
is, given a function f computed by an n-state DFAO, what is the worst-case state
complexity of fR? The standard construction for reversal of DFAOs [1, Theorem
4.3.3] gives an upper bound of |Δ|n, where Δ is the output alphabet. However,
it does not seem to be known whether this bound is reachable.

We prove that when the input alphabet has size three or greater, the upper
bound |Δ|n is indeed reachable. When the input alphabet is binary, the problem
becomes much more complicated. We conjecture that if |Δ| ≥ 3, the upper
bound |Δ|n is not reachable over a binary alphabet, despite the fact that it is
known to be reachable for |Δ| = 2 (the ordinary DFA case). While we could
not prove that the upper bound is unreachable in all cases, we have proved it
is unreachable when |Δ| = n (that is, the cardinality of Δ equals the number
of states n) and |Δ| ≥ 3, and verified computationally that it is unreachable for
(|Δ|, n) ∈ {(3, 4), (3, 5), (3, 6), (4, 5)}. We prove a lower bound for the case of a
binary input alphabet and 3 ≤ |Δ| < n.

We also demonstrate that the state complexity of DFAO reversal is com-
pletely determined by the transition monoid of the DFAO and the map which
assigns outputs to states. In particular, if function f is computed by a minimal n-
state DFAO with state set Q, transition monoid M , and output map τ : Q → Δ,
then the state complexity of fR is exactly |τM |, where τM = {τ ◦ m : m ∈ M}
and ◦ denotes function composition. Since DFAs are special cases of DFAOs, this
gives a new characterization of the state complexity of DFA reversal in terms of
the transition monoid and the characteristic function of the final state set.

2 Preliminaries

We assume familiarity with basic concepts and results on regular languages and
finite automata. There are many references on this subject, such as [4].

A deterministic finite automaton with output (DFAO) is a 6-tuple D =
(Q,Σ, ·, q0,Δ, τ), where:

– Q is a finite set of states and q0 ∈ Q is the initial state.
– Σ is the input alphabet and Δ is the output alphabet ; both are finite.
– · : Q × Σ → Q is the transition function.
– τ : Q → Δ is the output map.

We use infix notation for the transition function: the image of the pair (q, a)
under the transition function is denoted q · a. We extend the transition function
to words in Σ∗ as follows: for q ∈ Q, we define q · ε = q, and for w = ax, a ∈ Σ,
x ∈ Σ∗ we inductively define q · ax = (q · a) · x. If p · a = q for p, q ∈ Q and

State Complexity of Reversals of Deterministic Finite Automata 135

a ∈ Σ, we say there is a transition from p to q on a. If p · w = q for w ∈ Σ∗, we
say there is a path from p to q spelling w.

The function computed by a DFAO is the function f : Σ∗ → Δ defined by
f(w) = τ(q0 · w). That is, we determine f(w) by starting in the initial state q0,
following the path corresponding to w to reach some state q, then applying the
output map τ to get the output value associated with q. A function that can be
computed by a DFAO is called a finite-state function.

A state q ∈ Q is reachable if there is a path to it from the initial state q0,
i.e., there exists w ∈ Σ∗ such that q0 · w = q. The DFAO D is called trim if
all states are reachable. Two states p, q ∈ Q are distinguishable if there exists
w ∈ Σ∗ such that τ(p · w) �= τ(q · w). A DFAO is minimal if it has the least
possible number of states among all DFAOs computing the same function. The
following result is well-known for DFAs, and it can be shown to hold for DFAOs
using essentially the same proof.

Proposition 1. A DFAO is minimal if and only if all states are reachable and
every pair of distinct states is distinguishable.

For further reference on the DFAO model, see [1].
Let Q be a finite set; we usually assume without loss of generality that

Q = {1, 2, . . . , n}. A transformation of Q is a function t : Q → Q. The image
of a transformation t : Q → Q is the set t(Q) = {t(q) : q ∈ Q}. The rank of a
transformation is the size of its image. Transformations of Q (or more generally,
functions f : Q → X for some set X) can be specified explicitly using matrix
notation:

t =
(

1 2 3 · · · n
t(1) t(2) t(3) · · · t(n)

)
.

Transformations (or functions f : Q → X) can be written concisely using list

notation; for example, the list [1, 4, 3, 5, 2, 2, 3] denotes
(

1 2 3 4 5 6 7
1 4 3 5 2 2 3

)
.

A bijective transformation is called a permutation. Permutations can be writ-
ten concisely using disjoint cycle notation; for example, (1, 2, 4, 5)(6, 7) denotes
the permutation [2, 4, 3, 5, 1, 7, 6].

Transformations can be composed using the ◦ operator; the image of q under
s ◦ t is s(t(q)). A set of transformations of Q that is closed under composition is
called a transformation monoid on Q. The size of Q is called the degree of the
transformation monoid. The full transformation monoid on Q is the set of all
transformations of Q. The symmetric group on Q is the set of all permutations
of Q. A transformation monoid M is generated by a set of transformations T if
every transformation in M can be written as a composition of transformations
from T . We say a monoid is k-generated if it is generated by a set of size k.

Each DFAO D = (Q,Σ, ·, q0,Δ, τ) has a transformation monoid associated
with it, called the transition monoid of the DFAO. It is defined as follows. For
each w ∈ Σ∗, define the function w : Q → Q by w(q) = q · w. The function w is
called the action of w in D. Composition of actions obeys the following rule:

x ◦ y = yx, since x(y(q)) = q · y · x = q · yx = yx.

136 S. Davies

Since the set {w : w ∈ Σ∗} of all word actions in D is closed under composition,
this set forms a transformation monoid on Q. This is the transition monoid of
D. The transition monoid is generated by the set {a : a ∈ Σ} of letter actions.

When working with multiple DFAOs, say D = (Q,Σ, ·, q0,Δ, τ) and D′ =
(Q′, Σ′, ·′, q′

0,Δ
′, τ ′), the notation w is ambiguous: it is unclear whether this is

the action of w in D or in D′. We adopt the following convention: the notation
w refers to the action of w in a DFA whose transition function is named “ · ”.
Thus in this case, w would refer to the action of w in D, rather than D′. This
convention will be sufficient to keep things unambiguous in this paper.

If w = a1a2 · · · an−1an is a word over Σ∗ with a1, . . . , an ∈ Σ, the reverse of w

is wR = anan−1 · · · a2a1. Note that a1◦a2◦· · ·◦an−1◦an = anan−1 · · · a2a1 = wR.
On the other hand, an ◦ an−1 ◦ · · · ◦ a2 ◦ a1 = a1a2 · · · an−1an = w. The reverse
of a finite-state function f : Σ∗ → Δ is the function fR : Σ∗ → Δ defined by
fR(w) = f(wR). Following [1, Theorem 4.3.3], we give a DFAO construction for
fR in terms of a DFAO for f .

Proposition 2. Let D = (Q,Σ, ·, q0,Δ, τ) be a DFAO computing the function
f . There exists a DFAO DR computing fR.

Proof. Let DR = (ΔQ, Σ,�, τ,Δ,Ω), where:

– The state set is ΔQ, the set of all functions from Q to Δ.
– The initial state is τ : Q → Δ, the output map of D.
– The transition function � is defined as follows: g � a = g ◦ a, for g ∈ ΔQ and

a ∈ Σ.
– The output map Ω: ΔQ → Δ is defined by Ω(g) = g(q0).

By definition, the function computed by D is f(w) = τ(q0 · w). The function
computed by DR is Ω(τ � w) = (τ � w)(q0); we must show this equals fR(w) =
f(wR). If w = a1a2 · · · an, then we have

τ � w = τ � a1 � a2 � · · · � an = τ ◦ a1 ◦ a2 ◦ · · · ◦ an = τ ◦ wR.

It follows that

(τ ◦ wR)(q0) = τ(wR(q0)) = τ(q0 · wR) = f(wR) = fR(w)

as required. 	

The state complexity of a finite-state function is the size of a minimal DFAO
computing the function. If a function f is computed by an n-state minimal
DFAO (i.e., the function has state complexity n), Proposition 2 shows that the
state complexity of fR is bounded above by |Δ|n, since the size of the state set
ΔQ of DR is |Δ||Q| = |Δ|n.

The following proposition makes it easier to compute the state complexity of
fR. The analogous result for DFAs is known (e.g., see [5, Proposition 3]).

Proposition 3. If D is trim, then all states of DR are pairwise distinguishable.

State Complexity of Reversals of Deterministic Finite Automata 137

Proof. Let g and h be distinct states of DR. There exists q ∈ Q such that
g(q) �= h(q). Since D is trim, q is reachable. Choose w ∈ Σ∗ such that q0 · wR =
q. Observe that Ω(g � w) = (g ◦ wR)(q0) = g(q0 · wR) = g(q), and similarly
Ω(h � w) = h(q). Since Ω(g � w) �= Ω(h � w), g and h are distinguishable. 	

If we take DR and remove all unreachable states from it, we obtain a DFAO
for fR with all states reachable and every pair of distinct states distinguishable.
By Proposition 1, this is a minimal DFAO for fR. Hence given a function f
computed by a trim DFAO D, to determine the state complexity of fR, we can
simply count the number of reachable states in DR.

3 Main Results

We first prove that the state complexity of reversal of DFAOs is completely
determined by the transition monoid and the output map.

Proposition 4. Let D = (Q,Σ, ·, q0,Δ, τ) be a trim DFAO computing function
f . Let M be the transition monoid of D. The state complexity of fR is |τM |,
where τM = {τ ◦ w : w ∈ Σ∗}.
Proof. The DFAO DR = (ΔQ, Σ,�, τ,Δ,Ω) computes fR. By Proposition 3, all
states of DR are distinguishable, so the state complexity of fR is the number of
reachable states in DR.

Recall from the proof of Proposition 2 that g�w = g ◦wR for g : Q → Δ and
w ∈ Σ∗. In particular, since τ is the initial state of DR, every reachable state
of DR has the form τ � w = τ ◦ wR. Hence the set of reachable states of DR is
{τ ◦wR : w ∈ Σ∗}. But this is the same set as τM = {τ ◦w : w ∈ Σ∗}. It follows
that the number of reachable states in DR is precisely |τM |. 	

Recall that DFAs are essentially DFAOs with |Δ| = 2, if we view the output
map as telling us whether a state is final. Hence we have the following corollary:

Corollary 1. Let D = (Q,Σ, ·, q0, F) be a trim DFA recognizing language L.
Let M be the transition monoid of D. The state complexity of LR is |χF M |,
where χF : Q → {0, 1} is the characteristic function of F .

Throughout the rest of this section, Q and Δ will be finite sets with |Q| = n
and |Δ| = k, the monoid M will be a transformation monoid on Q, and τ : Q →
Δ will be a surjective function. Note that the surjectivity of τ implies |Δ| ≤ |Q|.
It is fine to make this assumption, since if |Δ| > |Q| there are more possible
outputs than there are states, and so we can shrink Δ without loss of generality.

Theorem 1. Let M be the full transformation monoid on Q. Then |τM | = kn

for all surjective functions τ : Q → Δ.

138 S. Davies

Proof. It suffices to show that every function h : Q → Δ lies in τM , i.e., every
such function h can be written as τ ◦ g for some g : Q → Q.

For q ∈ Q, we define g(q) as follows. Since τ is surjective, there exists pq ∈ Q
such that τ(pq) = h(q). Define g(q) = pq. Then (τ ◦ g)(q) = τ(g(q)) = τ(pq) =
h(q) for all q ∈ Q, so τ ◦ g = h as required. 	

Corollary 2. Let f be a finite-state function computed by a minimal DFAO
D = (Q,Σ, ·, q0,Δ, τ) with |Δ| ≤ |Q| (i.e., k ≤ n). The state complexity of fR

is at most |Δ||Q| = kn, and this bound can be reached when |Σ| ≥ 3.

Proof. The upper bound on fR follows from the construction for DR. For the
lower bound, we use the well-known fact that the full transformation monoid on
Q can be generated by three elements: two generators of the symmetric group on
Q, and a transformation of rank |Q| − 1. If Q = {1, . . . , n}, an explicit example
of three generators is f1 = (1, 2, . . . , n), f2 = (1, 2) and f3 = (1 → 2), where
(1 → 2) is the function that maps 1 to 2 and fixes all other elements. Choose
{a, b, c} ⊆ Σ and let D be a DFAO such that a = f1, b = f2 and c = f3. Then
the transition monoid M of D is the full transformation monoid. Furthermore,
D is trim (all states can be reached via a). Hence Proposition 4 applies. If we
take the output map τ to be surjective, by Theorem 1 we see that the state
complexity of fR is |τM | = kn, as required. 	

We now turn to the case where the input alphabet of the DFAO is binary,
i.e., |Σ| = 2. This case is significantly harder than the |Σ| ≥ 3 case. We assume
|Δ| ≥ 3, since if |Δ| = 2, this case is equivalent to studying reversal of DFAs
with binary alphabets, and for DFAs the upper bound of 2n is reachable [5].

Since the state complexity of DFAO reversal is completely determined by the
transition monoid and output map, there are connections between the |Σ| = 2
case and the problem of finding the largest 2-generated transformation monoids
of a particular degree. This problem has been studied by Holzer and König [3]
and by Krawetz, Lawrence and Shallit [7].

Following Holzer and König, we define two families of monoids. First and
most important are the U�,m monoids [3, Definition 5]. The monoid U�,m is a
transformation monoid on Q = {1, . . . , � + m} defined as follows. Let α : Q → Q
be the permutation (1, . . . , �)(�+1, . . . , �+m). A function γ : Q → Q belongs to
U�,m if and only if it satisfies one of the following conditions:

1. There exists i ≥ 0 such that γ = αi, that is, γ = α ◦ α ◦ · · · ◦ α (where there
are i occurrences of α).

2. γ({1, . . . , �}) ∩ γ({� + 1, . . . , � + m}) �= ∅, and there exists an element i ∈
{� + 1, . . . , � + m} such that i is not in the image of γ.

If 1 < � < m and gcd(�,m) = 1, then U�,m can be generated by two elements [3,
Theorem 8]. Krawetz [6] gives an explicit generating set: one of the generators
is α, and the other is β : Q → Q, where

β =
(

1 2 3 4 · · · � + m − 1 � + m
� + 1 2 3 4 · · · � + m − 1 1

)

State Complexity of Reversals of Deterministic Finite Automata 139

if k = 2 or � is even, and otherwise

β =
(

1 2 3 4 · · · � + m − 1 � + m
� + 1 3 2 4 · · · � + m − 1 1

)
.

Let n = � + m. For n ≥ 7 and n prime, Holzer and König proved that there
exist � and m with 1 < � < m and gcd(�,m) = 1 such that U�,m is the largest
2-generated transformation monoid [3, Theorem 15]. They conjecture that this
also holds when n ≥ 7 and n is not prime.

When n ≤ 6, the largest 2-generated transformation monoids belong to a
different family: the V d

n monoids [3, Definition 16]. Let α be the permutation
(1, 2, . . . , n). A function γ : Q → Q belongs to V d

n if and only if it satisfies one of
the following conditions:

1. There exists i ≥ 0 such that γ = αi.
2. There exist i, j ∈ {1, . . . , n} such that γ(i) = γ(j) and j ≡ i + d (mod n).

For 2 ≤ n ≤ 6, Holzer and König determined explicit generating sets for the
largest 2-generated transformation monoids on Q = {1, . . . , n}, which are all
V d

n monoids for some d. One of the generators is always αn = (1, 2, . . . , n). For
2 ≤ n ≤ 6, the other generator βn is:

β2 =
(

1 2
1 1

)
, β3 =

(
1 2 3
1 1 3

)
, β4 =

(
1 2 3 4
1 1 4 3

)
,

β5 =
(

1 2 3 4 5
1 1 4 5 3

)
, β6 =

(
1 2 3 4 5 6
1 4 1 5 6 2

)
.

Holzer and König also give a more general construction for 2-element generating
sets of V d

n monoids [3, Theorem 18].
With these definitions done, we return to the problem of computing worst-

case state complexity of reversal for binary input alphabets. First we consider
the special case |Q| = |Δ|. Here it turns out that the state complexity problem
almost completely reduces to the 2-generated monoid problem:

Theorem 2. Let f be a finite-state function computed by a minimal DFAO
D = (Q,Σ, ·, q0,Δ, τ) with |Σ| = 2 and |Q| = |Δ| = n. Let m2(n) denote the
size of the largest 2-generated transformation monoid on Q = {1, 2, . . . , n} that
occurs as the transition monoid of some trim DFA. The state complexity of fR

is at most m2(n), and this bound is reachable.

Proof. Let Σ = {a, b}. By assumption, we can construct a trim DFAO D so
that a and b generate a monoid of size m2(n). and let τ : Q → Δ be a bijection.
By Proposition 4, the state complexity of fR is |τM |. But τ is a bijection, so
|τM | = |M | = m2(n). 	

140 S. Davies

It may be the case that for some values of n, the largest transformation monoid
on {1, 2, . . . , n} generated by two elements does not occur as the transition
monoid of a trim DFA. Thus we do not quite get a complete reduction to the
2-generated monoid problem. Note that the U�,m and V d

n monoids do occur as
transition monoids of trim DFAs.

It is well known that if |Q| ≥ 3, the full transformation monoid on a finite set
Q cannot be generated by two elements. Hence m2(n) never reaches the upper
bound of |Δ||Q| = nn except when |Q| = n = 2.

Table 1 shows the known values for m2(n) for 2 ≤ n ≤ 7, taken from [3,
Table 1]. The value is not known for n > 7 except when n is prime, in which
case m2(n) is the size of the largest 2-generated U�,m monoid. The values of nn

are also shown for comparison.

Table 1. Values of m2(n) for 2 ≤ n ≤ 7.

n 2 3 4 5 6 7

m2(n) 4 24 176 2110 32262 610871

nn 4 27 256 3125 46656 823543

We now turn to the case where |Δ| < |Q|. Our main result in this case is
a formula for the size of |τU�,m|, which in turn leads to a lower bound on the
worst-case state complexity of fR. The notation

{
�
i

}
below means the number

of partitions of {1, . . . , �} into i parts (a Stirling number of the second kind).

Theorem 3. Let |Δ| = k and let |Q| = � + m = n, with 2 ≤ k < n and
1 ≤ � ≤ m. Define

F (k, �,m) =
�∑

i=1

(
k

i

)
i!

{
�
i

}
(k − i)m.

G(k, �,m) =

⎧⎪⎨
⎪⎩

lcm(�,m), if k ≥ 4;
m, if k = 3;
1, if k = 2.

There exists a function τ : Q → Δ such that

|τU�,m| = kn − F (k, �,m) + G(k, �,m).

To prove this theorem, we will need the following technical lemma. For space
considerations, we omit the proof of the lemma; the proof can be found in the
arXiv version of this paper [2].

Lemma 1. Let Δ = {1, . . . , k} and let Q = {1, . . . , n}, with 2 ≤ k < n. Fix �
and m such that � + m = n and 1 ≤ � ≤ m. Let α : Q → Q be the permutation
α = (1, . . . , �)(� + 1, . . . , � + m). There exists a function τ : Q → Δ with the
following properties:

State Complexity of Reversals of Deterministic Finite Automata 141

– τ : Q → Δ is surjective.
– τ({1, . . . , �}) ∩ τ({� + 1, . . . , � + m}) = ∅.
– There exist distinct p, p′ ∈ {� + 1, . . . , � + m} such that τ(p) = τ(p′).
– The size of the set {τ ◦αi : i ≥ 0} is precisely given by the function G(k, �,m).

Proof (Theorem 3). We start with a brief outline of the proof strategy. Without
loss of generality, assume Δ = {1, . . . , k} and Q = {1, . . . , n = � + m}. Define
F�,m = {f : Q → Δ : f({1, . . . , �}) ∩ f({� + 1, . . . , � + m}) = ∅}.

– First, we show that ΔQ = τU�,m ∪ F�,m for certain τ .
– After proving this, the inclusion-exclusion principle gives the formula

kn = |ΔQ| = |τU�,m| + |F�,m| − |τU�,m ∩ F�,m|.

– We show that |F�,m| = F (k, �,m).
– We show that |τU�,m ∩ F�,m| = G(k, �,m).
– Rearranging the inclusion-exclusion formula above gives the result.

Let us show that for an appropriate choice of τ : Q → Δ, we have ΔQ = τU�,m ∪
F�,m. That is, every function from Q to Δ lies in one of τU�,m or F�,m.

We select τ with the following properties:

– τ : Q → Δ is surjective.
– τ({1, . . . , �}) ∩ τ({� + 1, . . . , � + m}) = ∅, that is, τ ∈ F�,m.
– There exist distinct p, p′ ∈ {� + 1, . . . , � + m} such that τ(p) = τ(p′).
– The size of the set {τ ◦ αi : i ≥ 0} is precisely G(k, �,m).

Such a function τ exists by Lemma 1. Note that we need k < n and � ≤ m to
apply Lemma 1; this is the only place we use these hypotheses.

Now, let g : Q → Δ be arbitrary. We will show that if g is not in F�,m, then it
must be in τU�,m, thus proving that ΔQ = τU�,m∪F�,m. To show that g ∈ τU�,m,
we define a function f : Q → Q such that f ∈ U�,m and τ ◦ f = g.

Since g �∈ F�,m, there exist distinct elements r ∈ {1, . . . , �} and r′ ∈ {� +
1, . . . , � + m} such that g(r) = g(r′). Since τ is surjective, there exists s such
that τ(s) = g(r). Furthermore, we can choose s so that s �= p′. Indeed, if p′

is one of the possible choices for s, then by the fact that τ(p) = τ(p′), we can
choose s = p instead. Now, we define f : Q → Q for each q ∈ Q as follows:

– If q ∈ {r, r′}, define f(q) = s.
– If g(q) = τ(p) and q �∈ {r, r′}, define f(q) = p.
– Otherwise, choose an element q′ such that τ(q′) = g(q) (by surjectivity) and

define f(q) = q′.

We verify in each case that τ ◦ f = g:

– If q = r, then f(r) = s, so τ(f(r)) = τ(s) = g(r).
– If q = r′, then f(q) = s, and since g(r) = g(r′) we have τ(f(r′)) = τ(s) =

g(r) = g(r′).

142 S. Davies

– If q �∈ {r, r′} and g(q) = τ(p), then f(q) = p, so τ(f(q)) = τ(p) = g(q).
– Otherwise, we have f(q) = q′ such that τ(f(q)) = τ(q′) = g(q).

Now, we show that f ∈ U�,m. First, note that there exist elements r ∈ {1, . . . , �}
and r′ ∈ {�+1, . . . , �+m} such that f(r) = f(r′). Next, observe that the element
p′ ∈ {� + 1, . . . , � + m} is not in the image of f . To see this, note that if we have
f(q) = p′, then we have τ(f(q)) = τ(p′) = τ(p). But τ(f(q)) = g(q), so this
implies g(q) = τ(p). In the case where g(q) = τ(p), we defined f(q) = p �= p′, so
this is a contradiction. It follows that f meets the conditions to belong to U�,m.

This proves that if g : Q → Δ is not in F�,m, then g ∈ τU�,m and thus
ΔQ = τU�,m ∪ F�,m. Next, we show that |F�,m| = F (k, �,m).

Write f ∈ F�,m in list notation as [a1, a2, . . . , a�, b1, b2, . . . , bm], where f(i) =
ai and f(� + i) = bi. For this function to lie in F�,m, we must have the prop-
erty that {a1, a2, . . . , a�} ∩ {b1, b2, . . . , bm} = ∅. Note that since F�,m is a set of
functions from Q to Δ, we have {a1, . . . , a�}, {b1, . . . , bm} ⊆ Δ. We count the
number of distinct “function lists” in F�,m as follows:

– Fix a set S ⊆ Δ and assume {a1, . . . , a�} = S. Let |S| = i.
– In the first segment [a1, . . . , a�] of the list, each ai can be an arbitrary element

of S. However, since {a1, . . . , a�} = S, each element of S must appear at
least once in the list. Thus the first segment [a1, . . . , a�] of the list represents
a surjective function from {1, . . . , �} onto S. Since |S| = i, the number of
such surjective functions is i!

{
�
i

}
. (It is known in general that the number of

surjective functions from {1, . . . , m} to {1, . . . , n} is n!
{

m
n

}
.)

– In the second segment [b1, . . . , bm] of the list, each bi must be an element
of Δ \ S, since we want {a1, . . . , a�} ∩ {b1, . . . , bm} = ∅. Since |S| = i and
|Δ| = k, there are k− i elements to pick from in Δ\S, and we need to choose
m of them. Thus there are (k − i)m choices for the second segment of the list.
In total, for a fixed set S of size i, there are i!

{
�
i

}
(k − i)m distinct lists with

{a1, . . . , ak} = S.
– Now, we take the sum over all possible choices for the set S. Since S =

{a1, . . . , a�} and S is non-empty, we have 1 ≤ |S| ≤ �. For each set size i,
there are

(
k
i

)
ways to choose S ⊆ Δ with |S| = i. Thus the total number of

functions in F�,m is

�∑
i=1

(
k

i

)
i!

{
�
i

}
(k − i)m = F (k, �,m).

Next, we show that |τU�,m ∩ F�,m| = G(k, �,m). We claim that

τU�,m ∩ F�,m =

{
∅, if τ �∈ F�,m;
{τ ◦ αi : i ≥ 0}, if τ ∈ F�,m.

Then the size equality with G(k, �,m) follows from the properties of τ .
To see the claim, suppose that τ ◦g ∈ F�,m for some g ∈ U�,m. Since g ∈ U�,m,

either g = αi for some i, or there exists p ∈ {1, . . . , �} and q ∈ {�+1, . . . , �+m}

State Complexity of Reversals of Deterministic Finite Automata 143

such that g(p) = g(q). In the latter case, τ(g(p)) = τ(g(q)), which contradicts the
assumption that τ ◦g is in F�,m. Hence g = αi for some i ≥ 0, and so τ ◦g = τ ◦αi.
Now, note that τ(αi({1, . . . , �})) = τ({1, . . . , �}), and τ(αi({�+1, . . . , �+m})) =
τ({� + 1, . . . , � + m}). Thus τ ◦ αi is in F�,m if and only if τ is in F�,m, and the
claim follows.

Finally, we can conclude the proof. Recall that |Δ| = k and |Q| = n, and
thus |ΔQ| = |Δ||Q| = kn. Thus by the inclusion-exclusion principle, we have

kn = |ΔQ| = |τU�,m| + |F�,m| − |τU�,m ∩ F�,m|.
Rearranging this, we get:

|τU�,m| = kn − |F�,m| + |τU�,m ∩ F�,m|.
We proved that |F�,m| = F (k, �,m) and |τU�,m ∩ F�,m| = G(k, �,m). It follows
that |τU�,m| = kn − F (k, �,m) + G(k, �,m), as required. 	

This theorem gives the following lower bound on the worst-case state com-
plexity of DFAO reversal when |Σ| = 2.

Corollary 3. Let |Q| = n ≥ 2 and |Δ| = k ≥ 2. There exists a trim DFAO
D = (Q,Σ, ·, q0,Δ, τ) computing function f , with |Σ| = 2 and k < n, such that
the state complexity of fR is

max{kn − F (k, �,m) + G(k, �,m) : 1 < � < m, � + m = n, gcd(�,m) = 1}.

Proof. Pick � and m such that 1 < � < m, � + m = n and gcd(�,m) = 1.
Then U�,m can be generated by two elements. Hence we can construct a DFAO
D over a binary alphabet with state set Q = {1, . . . , n} and transition monoid
U�,m. This DFAO will be trim: all states in {1, . . . , �} are reachable by α =
(1, . . . , �)(� + 1, . . . , � + m), and U�,m contains elements which map 1 to � + 1, so
the rest of the states are reachable. By Theorem 3, there exists τ : Q → Δ such
that

|τU�,m| = kn − F (k, �,m) + G(k, �,m).

Take τ as the output map of D. Then by Proposition 4, the state complexity of
fR is |τU�,m|. Taking the maximum over all values of � and m that satisfy the
desired properties gives the result. 	

Table 2 gives the values of this lower bound for various values of |Δ| = k and
|Q| = n with k < n. For n ∈ {1, 2, 3, 4, 6} there are no pairs (�,m) such that
1 < � < m, � + m = n and gcd(�,m) = 1, so those values of n are ignored.

Note that for |Δ| = 2, this lower bound is off by one from the upper bound
of 2n. The known examples where 2n is achieved do not use U�,m monoids. We
conjecture that for |Δ| ≥ 3, the upper bound |Δ|n = kn is not reachable. Jason
Bell has recently claimed a proof of this conjecture (private communication).

We close this section by mentioning the results of some computational exper-
iments. The goal of these experiments was to find, for small values of |Q| = n

144 S. Davies

Table 2. Values for the lower bound of Corollary 3.

k\n 5 6 7 8 9

2 31 - 127 255 511

3 216 - 2125 6452 19550

4 826 - 15472 63403 258360

5 - - 71037 368020 1902365

6 - - 243438 1539561 9657446

and |Δ| = k, the maximal size of |τM |, where M is a monoid generated by two
functions α : Q → Q and β : Q → Q, and τ : Q → Δ is a surjective function. The
results of our experiments are shown in Table 3. The values in bold are true
maximal values for |τM | (and thus for the state complexity of binary DFAO
reversal), which have been confirmed by brute force search. The other, non-bold
values in the table are simply the largest we found through random search.

Table 3. Largest known values for |τM |, where M is a 2-generated transformation
monoid on {1, . . . , n} and τ : {1, . . . , n} → {1, . . . , k} is surjective. Bold values have
been confirmed to be maximal by brute force search.

k\n 3 4 5 6 7 8

3 24 67 218 699 2125 6452

4 - 176 826 3526 15472 63403

Note that for n ≥ 7, the conjectured maximal values in Table 3 match the
values in Table 2 for lower bound of Corollary 3. For this reason, we suspect the
bound of Corollary 3 may in fact be optimal for n ≥ 7. However, the evidence at
this point is limited.

4 Conclusions

For DFAs, the worst-case state complexity of the reversal operation is 2n for
languages of state complexity n. When we generalize to DFAOs, the worst-case
state complexity is bounded above by kn, where k is the number of outputs of
the DFAO. We proved that this upper bound can be attained by DFAOs over a
ternary input alphabet. For binary input alphabets, we demonstrated there are
connections with the problem of finding the largest 2-generated transformation
monoid, and gave a lower bound on the worst-case state complexity for the
k < n case. Computational experiments suggest that the upper bound kn is not
reachable using binary input alphabets if k ≥ 3.

State Complexity of Reversals of Deterministic Finite Automata 145

Acknowledgements. I thank Jason Bell, Janusz Brzozowski, Jeffrey Shallit, and the
anonymous referees for proofreading and helpful comments. This work was supported
by the Natural Sciences and Engineering Research Council of Canada under grant No.
OGP0000871.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Davies, S.: State complexity of reversals of deterministic finite automata with out-
put. CoRR abs/1705.07150 (2017). http://arxiv.org/abs/1705.07150

3. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327(3), 319–347 (2004)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory Languages and
Computation, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston
(1979)

5. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012)

6. Krawetz, B.: Monoids and the state complexity of root(L). Master’s thesis (2003).
https://cs.uwaterloo.ca/∼shallit/krawetz.pdf

7. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transfor-
mations of a finite set. Int. J. Found. Comput. Sci. 16(03), 547–563 (2005)

8. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies,
pp. 129–153. Princeton University Press (1956)

http://arxiv.org/abs/1705.07150
https://cs.uwaterloo.ca/~shallit/krawetz.pdf

	State Complexity of Reversals of Deterministic Finite Automata with Output
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusions
	References

