
State Complexity of Overlap Assembly

Janusz A. Brzozowski1, Lila Kari1, Bai Li1, and Marek Szyku�la2(B)

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada
{brzozo,lila}@uwaterloo.ca, bai.li.2005@gmail.com
2 Institute of Computer Science, University of Wroc�law,

Joliot-Curie 15, 50-383 Wroc�law, Poland
msz@cs.uni.wroc.pl

Abstract. The state complexity of a regular language Lm is the number
m of states in a minimal deterministic finite automaton (DFA) accepting
Lm. The state complexity of a regularity-preserving binary operation on
regular languages is defined as the maximal state complexity of the result
of the operation where the two operands range over all languages of state
complexities ≤ m and ≤ n, respectively. We find a tight upper bound on
the state complexity of the binary operation overlap assembly on regular
languages. This operation was introduced by Csuhaj-Varjú, Petre, and
Vaszil to model the process of self-assembly of two linear DNA strands
into a longer DNA strand, provided that their ends “overlap”. We prove
that the state complexity of the overlap assembly of languages Lm and
Ln, where m ≥ 2 and n ≥ 1, is at most 2(m − 1)3n−1 + 2n. Moreover,
for m ≥ 2 and n ≥ 3 there exist languages Lm and Ln over an alphabet
of size n whose overlap assembly meets the upper bound and this bound
cannot be met with smaller alphabets.

Keywords: Overlap assembly · Regular language · State complexity
Tight upper bound

1 Introduction

The state complexity of a regular language is the number of states in a min-
imal deterministic finite automaton (DFA) accepting the language. The state
complexity of a regularity-preserving binary operation on regular languages is
the maximal state complexity of the result of the operation when the operands
range over all languages of state complexities ≤ m and ≤ n; it is a function
of m and n. State complexity was introduced by Maslov [14] in 1970, but his
short paper was relatively unknown for many years. A more complete study of
state complexity was presented by Yu et al. [15] in 1994. Since the publication

This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grants No. OGP0000871 and R2824A01, and by the National Sci-
ence Centre, Poland, under project number 2014/15/B/ST6/00615.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 109–120, 2018.
https://doi.org/10.1007/978-3-319-94812-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_10&domain=pdf

110 J. A. Brzozowski et al.

of [15], many authors have written on this subject; for an extensive bibliography
see the recent surveys [1,8]. In particular, the state complexities of the so-called
basic operations, namely Boolean operations, concatenation, star and reversal
in various subclasses of the class of regular languages have been studied [1].

We consider the state complexity of a biologically inspired binary word and
language operation called overlap assembly. Formally, overlap assembly is a
binary operation which, when applied to two input words xy and yz (where
y is their nonempty overlap), produces the output xyz. As a formal language
operation, overlap assembly was introduced by Csuhaj-Varjú et al. [4] under
the name “self-assembly”, and studied by Enaganti et al. [6,7]. A particular
case of overlap assembly, called chop operation, where the overlap consists of a
single letter, was studied in, e.g., [10]. Other similar operations have been stud-
ied in the literature, such as the short concatenation [3], which uses only the
maximum-length (possibly empty) overlap y between operands, the Latin prod-
uct of words [9] where the overlap consists of only one letter, and the operation⊗

which imposes the restriction that the non-overlapping part xz is not empty
[12]. Overlap assembly can also be considered as a particular case of semantic
shuffle on trajectories with trajectory 0∗σ+1∗ [5] or as a generalization of the
operation

⊙
N from [5] which imposes the length of the overlap to be ≥ N .

In this paper we investigate the state complexity of overlap assembly as a
binary operation on regular languages. Section 2 describes the biological moti-
vation of overlap assembly. Section 3 introduces our notation, and describes an
NFA that accepts the results of overlap assembly of two regular languages, given
by their accepting DFAs. In Sect. 4 we prove that the state complexity of the
overlap assembly of languages Lm and Ln, where m ≥ 2 and n ≥ 1, is at most
2(m−1)3n−1 +2n. Moreover, for m ≥ 2 and n ≥ 3 there exist languages Lm and
Ln over an alphabet of size n whose overlap assembly meets the upper bound
and, in addition, this bound cannot be met with smaller alphabets.

2 Overlap Assembly

The bio-operation of overlap assembly was intended to model the procedure
whereby short DNA single strands can be concatenated (assembled) together
into longer strands under the action of the enzyme DNA polymerase, provided
they have ends that “overlap”. Recall that DNA single strands are oriented
words from the DNA alphabet Δ = {A,C,G, T}, where one end of a strand
is labeled by 5′ and the other by 3′, and two DNA single strands of opposite
orientation, that are Watson-Crick (W/C) complementary, bind to each other
to form a DNA double-strand. The W/C complementarity of DNA strands has
been traditionally modeled [11,13] as an antimorphic involution θ : Δ∗ −→ Δ∗,
that is, an involution on Δ (θ2 is the identity on Δ) extended to an antimorphism
on Δ∗, whereby θ(uv) = θ(v)θ(u) for all u, v ∈ Δ∗. In this formalism, the W/C
complement of a DNA strand u ∈ Δ+ is θ(u).

Using the convention that a word x over the DNA alphabet represents the
DNA single strand x in the 5′ to 3′ direction (usually depicted as the top strand

State Complexity of Overlap Assembly 111

of a double DNA strand), the overlap assembly of a strand uv with a strand
θ(w)θ(v) is illustrated in Fig. 1.

(a) u v5 3

3 5θ(v) θ(w)

5 3(b) u v w

3 5θ(v) θ(w)

5 3(c) u v w

3 5θ(u) θ(v) θ(w)

Fig. 1. (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to each other
through their complementary segments v and θ(v), forming a partially double-stranded
DNA complex. (b) DNA polymerase extends the 3′ end of the strand uv. (c) DNA
polymerase extends the 3′ end of the other strand. The resulting DNA double strand
is considered to be the output of the overlap assembly of the two input single strands.

Assuming that all involved DNA strands are initially double-stranded, that
is, whenever the strand x is available, its W/C complement θ(x) is also available,
this model was further simplified [4] as follows: Given words x, y over an alphabet
Σ, the overlap assembly of x with y is defined as:

x � y = {z ∈ Σ+ | ∃u,w ∈ Σ∗,∃v ∈ Σ+ : x = uv, y = vw, z = uvw}.

This can be naturally generalized to languages: Given languages Lm and Ln

of state complexities m and n, respectively, the overlap assembly of Lm and Ln

is defined as: Lm � Ln = {z | z = x � y, x ∈ Lm, y ∈ Ln}.

3 An ε-NFA for Overlap Assembly

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆
Q is the set of final states. We extend δ to functions δ : Q × Σ∗ → Q and
δ : 2Q × Σ∗ → 2Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F .
The language accepted by D is denoted by L(D). If q is a state of D, then the
language Lq(D) of q is the language accepted by the DFA (Q,Σ, δ, q, F). A state
is empty (or dead or a sink state) if its language is empty. Two states p and
q of D are equivalent if Lp(D) = Lq(D). A state q is reachable if there exists
w ∈ Σ∗ such that δ(q0, w) = q. A DFA D is minimal if it has the smallest
number of states and the smallest alphabet among all DFAs accepting L(D). It
is well known that a DFA is minimal if it uses the smallest alphabet, all of its
states are reachable, and no two states are equivalent.

112 J. A. Brzozowski et al.

A nondeterministic finite automaton (NFA) is a quintuple N =
(R,Σ, η, I, F), where R, Σ, and F are as Q, Σ, and F in a DFA respec-
tively, η : R × Σ → 2R, and I ⊆ R is the set of initial states. Each triple
(p, a, q) with p, q ∈ R, a ∈ Σ is a transition if q ∈ η(p, a). A sequence
((p0, a0, q0), (p1, a1, q1), . . . , (pk−1, ak−1, qk−1)) of transitions, where pi+1 = qi

for i = 0, . . . , k − 2 is a path in N . The word a0a1 · · · ak−1 is the word spelled
by the path. A word w is accepted by N if there exists a path with p0 ∈ I and
qk−1 ∈ F that spells w. If q ∈ η(p, a) we also use the notation p

a−→ q. We extend
this notation also to words, and write p

w−→ q for w ∈ Σ∗. An ε-NFA is an NFA
in which transitions under the empty word ε are also permitted.

Given any two DFAs, we construct an ε-NFA that recognizes the overlap
assembly of the languages accepted by the DFAs. This proves constructively
that the family of regular languages is closed under overlap assembly.

Let Dm = (Qm, Σ, δm, 0, F) and D′
n = (Q′

n, Σ, δ′
n, 0′, F ′) be two DFAs with

Dm recognizing Lm and D′
n recognizing L′

n, where F = {f1, . . . , fh} and F ′ =
{f ′

1, . . . , f
′
h′}. Let Qm = {0, . . . , m − 1}, Q′

n = {0′, . . . , (n − 1)′} and let 0 and
0′ be the initial states. We claim that the NFA N , constructed as shown below,
accepts the result of the overlap assembly of Lm and L′

n.
The NFA is defined as N = (R,Σ, η, {r0}, FN) where the set of states is

R = (Qm∪{t})×(Q′
n∪{s′}) with s′, t new symbols not occurring in Qm∪Q′

n, the
initial state is r0 = (0, s′), and the set of final states is FN = {(t, q′) | q′ ∈ F ′}.
Intuitively, the NFA simulates reading the word first by Dm, then by both Dm

and D′
n, and then by D′

n. Hence the states in R contain a state of Dm and a state
of D′

n. The states with s′ indicate that D′
n has not yet read any letter, while the

states with t indicate that Dm has finished the reading. The set of transitions η
is defined below. The informal explanations at the right of transition definitions
assume two operands uv ∈ Lm and vw ∈ L′

n respectively. The word z = uvw
belongs to their overlap assembly.

i {(qi, s
′) a−→ (qj , s

′) | qi
a−→ qj ∈ δm}; read u.

ii {(qi, s
′) a−→ (qj , q

′
k) | qi

a−→ qj ∈ δm, 0′ a−→ q′
k ∈ δ′

n}; read the first letter of v.
iii {(qi, q

′
k) a−→ (qj , q

′
�) | qi

a−→ qj ∈ δm, q′
k

a−→ q′
� ∈ δ′

n}; read the remainder of v.
iv {(fi, q

′
k) ε−→ (t, q′

k) | fi ∈ F, q′
k ∈ Q′

n}; v has been read.
v {(t, q′

k) a−→ (t, q′
�) | q′

k
a−→ q′

� ∈ δ′
n}; these rules read w.

Figure 2 shows the construction of an NFA, denoted by N ′, for two particular
two-state DFAs D2 and D′

2 accepting the languages L(D2) (all words over {a, b}∗

that have an odd number of as) and L(D′
2) (all words over {a, b}∗ that end in

the letter a). Note that the overlap assembly of L(D2) and L(D′
2) is L(D′

2).
In the automaton N ′ of Fig. 2, states (0, s′) and (1, s′) in the first row of

the figure behave as specified in Rule (i), using the transitions of D2. Rule (ii)
moves the states from the first row to the second row of the figure. In the second
row the transitions are those of the direct product of D2 and D′

2, as directed
by Rule (iii). Note that neither Rule (i) nor Rule (ii) can be used again since s′

does not appear as a component of any state after Rule (iii) is used. When N ′

is in a state where the first component is 1, which is a final state of D2, N ′ can

State Complexity of Overlap Assembly 113

0 1
a

a

b bD2 D2

0 1
a

b

b a

(0, s) (1, s)
a

a

b b

N

(0, 0) (0, 1) (1, 1) (1, 0)

a

b

a

b

b

a
a

b
b

a a
b

(t, 1) (t, 0)
b

a

ba
ε ε

Fig. 2. An example of an NFA N ′ that accepts the overlap assembly of the languages
accepted by the DFAs D2 and D′

2.

move to the next row following Rule (iv), and change the first component of the
state to t. Note that Rule (iii) cannot be used again since t appears as the first
component of every state after Rule (iv) is used. Finally, N ′ moves to the third
row and follows the transitions of D′

2. Note that Rule (iv) cannot be used again
because of t. While the NFA N ′ has eight states, converting it to a DFA and
minimizing this DFA results in D′

2. The NFA N ′ accepts the overlap assembly
of L(D2) and L(D′

2). In general, the following result holds:

Proposition 1. Let Lm and L′
n be two regular languages accepted by the DFAs

defined above, and let the NFA N be the automaton constructed as above. NFA
N has the following properties:

1. If uv ∈ Lm and vw ∈ L′
n, then r0

uvw−−−→ rf in N where rf ∈ FN .
2. If r0

z−→ rf in N , then there exist u,w ∈ Σ∗, v ∈ Σ+ such that z = uvw,
where uv ∈ Lm and vw ∈ L′

n.
3. N accepts Lm � L′

n.

Proof. 1. For the first claim, let v = ax, where a ∈ Σ. If uv ∈ Lm then 0 uax−−→ fi,
for some fi ∈ F in Dm. So there exist qi and qj in Qm such that 0 u−→ qi

a−→
qj

x−→ fi in Dm. Similarly, if vw ∈ Ln, then there exist q′
k and q′

� in Q′
n such

that 0′ a−→ q′
k

x−→ q′
�

w−→ f ′
j , for some f ′

j ∈ F ′ in D′
n.

By construction we have in N :

(0, s′) u−→
(i)

(qi, s
′) a−−→

(ii)
(qj , q

′
k) x−−→

(iii)
(fi, q

′
�)

ε−−→
(iv)

(t, q′
�)

w−−→
(v)

(t, f ′
j),

which proves our first claim.

114 J. A. Brzozowski et al.

2. Suppose that r0
z−→ rf in N , where rf ∈ FN . By the construction of N ,

such a path must proceed by i applications of rule (i), one application of rule
(ii), j applications of rule (iii), one ε-transition via rule (iv), and k applications
of rule (v), where i, j, k ≥ 0. Thus there exist u, v, and w in Σ∗ such that
z = uvw, |u| = i, |v| = j + 1, and |w| = k. Owing to the construction of
N , there must exist derivations 0 uv−→ fi in Dm and 0′ vw−−→ f ′

j in D′
n, which

means uv ∈ Lm and vw ∈ L′
n.

3. If x ∈ Lm and y ∈ L′
n, then by (1), for every u, v, w where x = uv and

y = vw, uvw is recognized by N ; so Lm � Ln ⊆ L(N). Conversely, if a word
z is recognized by N , then by (2), z = uvw for some u, v, w where uv ∈ Lm

and vw ∈ Ln; so L(N) ⊆ Lm � Ln. Hence L(N) = Lm � Ln.
�

4 Tight Upper Bound for Overlap Assembly

To establish the state complexity of overlap assembly we need to determinize the
ε-NFA N = (R,Σ, η, r0, FN) defined in Sect. 3, and then minimize the resulting
DFA. The first step is to find an upper bound on the number of subsets S of
the set R of states of N . We begin by characterizing the reachable subsets of R.
They will all have the form

S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′), (1)

where q ∈ Qm, T ′ ⊆ S′ ⊆ Q′
n if q /∈ F , T ′ = S′ ⊆ Q′

n if q ∈ F , and S′ is
non-empty unless S = {(0, s′)}. We call q the selector of S, subset S′ \ {0′} is
its core, and subset T ′ is its subcore.

We illustrate this using the NFA of Fig. 2. The initial subset is {(0, s′)}; this
has form (1) with S′ = T ′ = ∅. From this initial subset we reach by b the subset
{(0, s′), (0, 0′)} = {0, s′} ∪ ({0} × {0′}); here T ′ = ∅ and S′ = {0′}. By a we
reach {(1, s′)} ∪ {(1, 1′)} ∪ {(t, 1′)} = {(1, s′)} ∪ ({1} × {1′}) ∪ ({t} × {1′}); here
S′ = T ′ = {1′}.

We now proceed to prove the claim about form (1).

Lemma 1. Let m ≥ 2, n ≥ 1, and let D be the DFA obtained by determinization
of the NFA for the overlap assembly Lm � Ln. Every reachable subset of D
is of the form (1). Moreover, if q /∈ F , then S cannot be distinguished from
S ∪ {(q, 0′)}.
Proof. First we show that every reachable subset S ⊆ R is of the desired form.
We will prove this claim by induction. The initial subset {(0, s′)} has this form.
Suppose that S has this form, consider a letter a ∈ Σ, and the subset U = η(S, a).
Observe that (δm(q, a), s′) is the only pair in U containing s′, because of the
transitions (i) and because Dm is deterministic. Also, every state (q, p′), where
p′ ∈ Q′

n ∪ {s′}, is mapped to a state (δm(q, a), r′) ∈ {δm(q, a)} × Q′
n by the

transitions (ii) and (iii). Finally, the states in {t}×T ′ are mapped only to states
from {t} × Q′

n by the transitions (iv) and (v).
Note that subsets S with S′ = ∅ are not reachable, unless S is the initial

subset {(0, s′)}.

State Complexity of Overlap Assembly 115

We show that if S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′) is reachable, then
T ′ ⊆ S′. Let r′ ∈ T ′. Then there exists a word xy such that:

(0, s) x−→ (q1, p′) ε−→ (t, p′)
y−→ (t, r′),

where q1 ∈ F . We also have: (q1, p′)
y−→ (q2, r′). Thus (q2, r′) ∈ S, and so r′ ∈ S′.

We observe that if q ∈ F , then by ε-transitions (transitions (iv)), every state
(q, r′) ∈ S is mapped to (t, r′), thus T ′ = S′, which concludes the characteriza-
tion of reachable subsets.

Finally, we show that if q /∈ F , then S cannot be distinguished from S ∪
{(q, 0′)}. Indeed, let a ∈ Σ be any letter. Then η((q, 0′), a) = η((q, s′), a) because
the transitions (iii) and (ii) coincide. Since (q, s′) ∈ S, we have η(S, a) = η(S ∪
{(q, 0′)}, a).
�

From Lemma 1 two reachable subsets with a different selector, or a differ-
ent core, or a different subcore are potentially distinguishable. If two reachable
subsets have the same selector, core, and subcore, then they can differ only by
state (q, 0′) if the selector q is not in F ; thus they cannot be distinguished. If two
reachable subsets have the same selector q that is in F , then they cannot differ
just by (q, 0′), as by ε-transitions from (q, 0′) we immediately obtain (t, 0′).

Theorem 1. For m ≥ 2 and n ≥ 1, the state complexity of Lm � Ln is at most

2(m − 1)3n−1 + 2n.

Proof. Using Lemma 1, we count the number of potentially reachable and dis-
tinguishable subsets S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′).

Reachable Subsets: For every state q ∈ Qm, we count the number of potentially
reachable subsets with selector q. There are 2 cases:

– If q is non-final, we can choose any non-empty set S′ ⊆ Q′
n of cardinality k

and any subset T ′ of S′. The number of ways of doing this is
∑n

k=1

(
n
k

)
2k.

– If q is final, again we choose any non-empty set S′, but now T ′ = S′ is fixed.
The number of ways of doing this is 2n − 1.

There is also the initial subset {(0, s′)} which contributes 1 to the sum. In total,
this yields:

(m − |F |) ·
(

n∑

k=1

(
n

k

)

2k

)

+ |F | · (2n − 1) + 1.

Distinguishable Subsets: The above formula gives the number of potentially
reachable subsets, but overestimates the state complexity because not all subsets
are distinguishable. Recall that by Lemma 1 if the selector q is not in F , then S
cannot be distinguished from S ∪{(q, 0′)}. Thus we do not need to count subsets
S without 0′, as S ∪{(q, 0′)} is potentially reachable and always equivalent to S.
Hence, for a given q ∈ Qm \F we choose S′ to be any subset of Q′

n that contains
0′, and again let T ′ be any subset of S′. This can be done in

∑n
k=1

(
n−1
k−1

)
2k ways.

116 J. A. Brzozowski et al.

Thus the total number of potentially reachable and distinguishable subsets is at
most

(m − |F |) ·
(

n∑

k=1

(
n − 1
k − 1

)

2k

)

+ |F | · (2n − 1) + 1.

By algebra, we have
∑n

k=1

(
n−1
k−1

)
2k = 2 · 3n−1, which is greater than 2n − 1; so

this formula is maximized when |F | = 1, and we conclude that the maximum
state complexity of overlap assembly is 2(m − 1)3n−1 + 2n.
�
Theorem 2. At least n letters are required to meet the bound from Theorem 1.

Proof. Let q ∈ F be a final state of Dm. For each p′ ∈ Q′
n we consider the subset

Tp′ = {(q, s′), (q, p′), (t, p′)}. If the upper bound is met, then, in particular, all
subsets S with q ∈ F must be reachable in view of Lemma 1. These subsets
were counted in the upper bound, and there are no other subsets of reachable
form that could be equivalent to them when the upper bound is met. Hence, in
particular all subsets Tp′ must be reachable.

Suppose that Tp′ is reachable by a word wp′ap′ , for some letter ap′ . Note
that (q, p′) is the only one of the three states in Tp′ that can be reached by
transitions (ii) of the NFA. Consider η(r0, wp′); it must contain (r, s′) for some
r ∈ Qm, because by Lemma 1 every reachable subset has exactly one such
pair. Thus, (r, s′) must be mapped by transitions (ii) induced by ap′ to (q, p′).
Therefore, δ′

n(0′, ap′) = p′, which proves that ap′ are different for every p′.
�
We define the witness DFAs for m,n ≥ 2. Let Σ = {a0, . . . , an−1}.
Let Wm = (Qm, Σ, δm, 0, F) be defined as follows: F = {0}; ai : 1m

for i ∈ {0, 2, . . . , n − 1}, where 1m is the identity transformation on Qm;
a1 : (0, 1, . . . ,m − 1) is a cyclic permutation of Qm.

Let W ′
n = (Q′

n, Σ, δ′
n, 0′, F ′) be defined as follows: F = {(n−1)′}; a0 : (Q′

n →
0′) maps all the states of Q′

n to 0′; ai : (1′, 2′, 3′, . . . , (i − 1)′, 0′, i′, . . . , (n − 1)′)
for i ∈ {1, . . . , n − 1}. Here ai permutes the states of Q′

n, mapping 1′ to 2′, 2′ to
3′, etc., then (i− 1)′ to 0′, 0′ to i′, and then i′ to (i+1)′, etc., and (n− 1)′ to 1′.

The transitions of these DFAs with m = 3 and n = 4 states are illustrated
in Fig. 3. Let Lm and L′

n be the languages of Wm and W ′
n, respectively.

By a cyclic shift of a core subset S′ ⊆ {1′, . . . , (n − 1)′} we understand any
subset obtained by shifting the states along the cycle (1′, . . . , (n−1)′), i positions
clockwise, i.e., the subset {(((p − 1 + i) mod (n − 1)) + 1)′ | p′ ∈ S′} for any
i ≥ 0. The next and previous cyclic shifts correspond to i = 1 and i = n − 2,
respectively.

The transitions of letters a1, a2, . . . , an−1 produce next cyclic shifts of the
states in {1′, . . . , (n − 1)′}, with the exception that state 0′ replaces one of the
states in the cycle. The idea behind the witness is that we can add an arbitrary
state to the core using these letters and produce arbitrary cyclic shifts as well,
as will be shown later. Letter a0 plays an important role of reset, which is
necessary to reach small subsets. The main difficulty is that a1 shares both roles
of producing cyclic shifts and switching the selector.

State Complexity of Overlap Assembly 117

W3 : W4 :

0 1 2

a0 a0 a0

0 1 2
a1 a1

a1

0 1 2

a2 a2 a2

0 1 2

a3 a3 a3

0 1 2 3

a0

a0

a0

a0

0 1 2 3
a1 a1 a1

a1

0 1 2 3

a2

a2

a2

a2

0 1 2 3

a3

a3

a3

a3

Fig. 3. The action of the letters in W3 and W ′
4.

Theorem 3. For m ≥ 2 and n ≥ 3, Lm � L′
n meets the upper bound.

Proof. Reachability: It is enough to show that all subsets S from Lemma 1 are
reachable, with the exception that if q /∈ F then it suffices to show reachability
of either S \ {(q, 0′)} or S ∪ {(q, 0′)}.
• First we show that for all subsets S = {(q, s′)}∪({q}×S′), where q ∈ Qm \{0}
and ∅
= S′ ⊆ Q′

n \ {0′}, either S \ {(q, 0′)} or S ∪ {(q, 0′)} is reachable. These
subsets have core S′ and an empty subcore.

We prove this by induction on the size |S′| of the core. For |S′| = 0, apply
aq
1a0 to (0, s′); this yields {(q, s′), (q, 0′)}.

Consider |S′| = 1. If q = 1, then we just use a1, which yields {(1, s′), (1, 1′)}.
To meet the other subsets {(1, s′), (1, p′)} for p ≥ 2, from {(1, s′), (1, 1′)} we use
a0ap. For q ≥ 2, we use aq−1

1 a0a1, which yields {(q, s′), (q, 1′)}. Then to meet the
other subsets {(q, s′), (q, p′)} for p ≥ 2, from {(q, s′), (q, 1′)} we also use a0ap.

Consider |S′| ≥ 2 and assume the induction hypothesis for subsets S with
a smaller core. Since S′ contains at least two states different from 0′, there is
a state p′ ∈ S′ \ {1′}. Let X ′ be the previous cyclic shift of S′ \ {p′}. Since
p′ /∈ S′ \{p′}, X ′ does not contain (p−1)′, but this is its only difference from the
previous cyclic shift of S′. By the inductive assumption, {(q, s′)} ∪ ({q} × X ′)
is reachable. We apply ap to this subset, which maps X ′ to its next cyclic shift,
and also (q, s′) to (q, p′), which yields {(q, s′} ∪ ({q} × S′).

118 J. A. Brzozowski et al.

• Now we show reachability of subsets S = {(0, s′)} ∪ ({0} × S′) ∪ ({t} × S′),
where ∅
= S′ ⊆ Q′

n. These are all potentially reachable subsets with selector 0.
First consider the case 0′ /∈ S′. For {(m − 1, s′), (m − 1, 1′)} we apply a0a1,

which yields {(0, s′), (0, 1′), (t, 1′)}. Then we continue the induction on |S′| as
before when |S′| ≥ 2, with just {t} × S′ added to the subsets.

Now consider the case 0′ ∈ S′. The case S′ = {0′} is easily covered by
applying a0 to {(0, s′), (0, 1′), (t, 1′)}. If S′ = {0′, 1′}, then from {(m−1, s′), (m−
1, (n − 1)′)} we apply a1 and get {(0, s′), (0, 0′), (0, 1′), (t, 0′), (t, 1′)} as desired.
Let S′
= {0′, 1′}. We already know that {(0, s′)}∪({0, t}×X ′) is reachable, where
X ′ is the previous cyclic shift of S′ \ {0′}. Since |S′| ≥ 2 and S′
= {0′, 1′}, there
is a p′ ∈ S′ \{1′}. We apply ap to {(0, s′)}∪ ({0, t}×X ′). We have X ′ \{(p−1)′}
mapped to S′\{p′} and (p−1)′ mapped to 0′, which gives ({0}×(S′∪{0′}\{p′})
by transitions (iii), and (0, p′) is added by transitions (ii). Thus, after completing
by ε-transitions this yields {(0, s′)} ∪ ({0, t} × S′).
• Finally, we show that for all subsets S = {(q, s′)}∪({q}×S′)∪({t}×T ′), where
q
= 0 and ∅
= T ′ ⊆ S′ ⊆ Q′

n, either S \ {(q, 0′)} or S ∪ {(q, 0′)} is reachable.
Consider the special case S′ = T ′ = {0′}. We reach it from

{(0, s′), (0, 0′), (t, 0′)} by applying aq
1a0. For the rest, assume that S′ \ {0′} is

non-empty.
We need an auxiliary argument that from {(0, s′)} we can reach a sub-

set with selector q, core S′, and an empty subcore, using a word from
{a1, a2, . . . , an−1}∗ (any word without a0). We prove this by induction on
the core size |S′ \ {0′}|. For |S′ \ {0′}| = 1, at the beginning we use a1,
which yields {(1, s′), (1, 1′)}. Now we can reach {(1, s′), (1, 0′), (1, p′)} for any
p′ ∈ {2′, . . . , (n−1)′} by using a2a3 . . . ap. Then, from {(1, s′), (1, 0′), (1, (n−1)′)}
we reach {(2, s′), (2, 0′), (2, 1′)}, and it remains to repeat the argument to reach
every remaining subset of the form {(q, s′), (q, 0′), (q, p′)} for q ∈ Qm \{0, 1} and
p′ ∈ Q′

n \{0′}. For |S′ \{0′}| ≥ 2 we follow the first part of the reachability argu-
ment as before, but we reach either {(q, s′)}∪({q}×(S′\{0′}) or {(q, s′)}∪({q}×
(S′ ∪ {0′})), instead of just the former. Let w ∈ {a1, a2, . . . , an−1}∗ be a word
that reaches either {(q, s′)} ∪ ({q} × (S′ \ {0′}) or {(q, s′)} ∪ ({q} × (S′ ∪ {0′})).

Suppose that we start from the subset S0 = {(0, s′)} ∪ ({0, t} × T ′
0), where

T ′
0 is some subset such that ∅
= T ′

0 ⊆ Q′
n. We already know that for every T ′

0,
subset S0 is reachable. After applying a1w, we reach either

Sq = {(q, s′)} ∪ ({q} × (S′ ∪ T ′
q \ {0′})) ∪ ({t} × T ′

q),

or Sq ∪{(q, 0′)}, where T ′
q is obtained by applying some permutation π of Q′

n to
T ′
0. This is because {(0, s′)} is mapped by a1w to {(q, s′)} ∪ ({q} × (S′ \ {0′})

or {(q, s′)} ∪ ({q} × (S′ ∪ {0′})), word a1w acts as a permutation on ({t} × Q′
q),

and {0} × T ′
0 is mapped to ({q} × T ′

q). Note that a1w does not depend on T ′
0, so

we can choose T ′
0 arbitrarily. Let T ′

0 = π−1(T ′), so π(T ′
0) = T ′. We obtain either

Sq = {(q, s′)} ∪ ({q} × ((S′ \ {0′}) ∪ T ′) ∪ ({t} × T ′),

or Sq = {(q, s′)} ∪ ({q} × ((S′ ∪ {0′}) ∪ T ′) ∪ ({t} × T ′).

State Complexity of Overlap Assembly 119

Recall that T ′ ⊆ S′ and if 0′ ∈ T then also 0′ ∈ S′; hence (S′ \{0′})∪T ′ is either
S′ or S′ \ {0′}, and (S′ ∪ {0′}) ∪ T ′ = S′ ∪ {0′}. Thus, Sq is either S \ {(q, 0′)}
or S ∪ {(q, 0′)}.

Distinguishability: Consider two reachable subsets

S1 = {(q1, s′)} ∪ ({q1} × S′
1) ∪ ({t} × T ′

1),

and S2 = {(q2, s′)} ∪ ({q2} × S′
2) ∪ ({t} × T ′

2),

with different selectors, different cores, or different subcores. Thus we have q1
=
q2, or T ′

1
= T ′
2, or (S′

1 \ {(q1, 0′)})
= (S′
2 \ {(q2, 0′}). These are precisely all the

reachable and potentially distinguishable subsets in view of Lemma 1. Note that
the initial subset also has this form, where q1 = 0 and S′

1 and T ′
1 are empty.

If q1
= q2, then without loss of generality let q1 < q2. We apply am−q2
1 a0a

2
n−1.

For S1, first am−q2
1 a0 maps it to a subset {(q, s′), (0, s′)} or {(q, s′), (q, 0′), (t, 0′)}

(if T ′
1 is non-empty) for some q
= 0. Then a2

n−1 results in a subset that from
the states from ({t} × Q′

n) contains at most (t, 1′), which is not final. On the
other hand, S2 by am−q2

1 a0 is mapped to {(0, s′), (0, 0′), (t, 0′)}. Then a2
n1

yields
{(0, s′), (0, 0′), (t, 1′), (t, (n − 1)′)}, where (t, (n − 1)′) is final.

So suppose that q1 = q2. If q1
= 0 and T ′
1
= T ′

2, then we apply ai
n−1 for a

suitable i ≥ 0. Since an−1 acts cyclically on all states ({t} × Q′
n) and no other

states from the subsets are mapped to ({t} × Q′
n), we can repeat the cycle so

that exactly one of η({t} × T ′
1, a

i
n−1) and η({t} × T ′

2, a
i
n−1) contains the final

state (t, (n − 1)′). If q1 = 0 and T ′
1
= T ′

2, then also S′
1
= S′

2, so it remains to
cover this case.

Suppose that S′
1
= S′

2. If q1 = q2 = 0, then also T ′
1
= T ′

2. We apply a1, which
maps S1 to the subset {(1, s′)}∪({1}×(δm(S′

1, a1)∪{2′}))∪({t}×δ′
n(T ′

1, a1)), and
analogously S2. Since T ′

1
= T ′
2 and a1 acts cyclically on Q′

n, we have δ′
n(T ′

1, a1)
=
δ′
n(T ′

2, a1). The case of these subsets has been covered in the previous paragraph.
There remains the case where T ′

1 = T ′
2, S′

1
= S′
2, q1 = q2
= 0. We follow

the induction on the selector q1 starting with q1 = m − 1 and decreasing it. We
will show for q1 = m − 1 that we can reach subsets with selector 0 that still
have different cores. We have already shown in the previous paragraph that the
subsets with selector 0 and different cores can be distinguished. For q1 < m − 1
we will show that we can reach subsets with the same property but with selector
q1 + 1, which will follow by the inductive assumption. So let p be the largest
index such that, without loss of generality, p′ ∈ S′

1 and p′ /∈ S′
2. Note that p
= 0,

because then the subsets cannot be distinguished. If p < n−1, then we apply a1,
which yields subsets with the desired property. If p = n − 1, then we first apply
a2, which yields the subset with p′ = 1′, and then we can apply a1 as before.
�

5 Conclusions

We have found an upper bound of 2(m − 1)3n−1 + 2n on the state complexity
of overlap assembly, a biologically inspired operation on regular languages, and
we have shown that this bound is tight for languages over an alphabet of size n.

120 J. A. Brzozowski et al.

For completeness, we state without proof some results about the unary and binary
languages. Proofs can be found in [2].

Theorem 4. Let m,n ≥ 1, and let Lm and Ln be two unary languages of state
complexities m and n, respectively. The state complexity of Lm � Ln is at most
m + n, and this bound is met by Lm = {amk+n−1 | k ∈ Z,mk + n − 1 ≥ 0} and
Ln = {ank+m−1 | k ∈ Z, nk + m − 1 ≥ 0}.

For binary languages we have found an exponential lower bound on the com-
plexity of overlap assembly; the proof is based on ideas similar to those in the
proof of Theorem 3.

Theorem 5. For every m ≥ 2 and n ≥ 3, there exist binary DFAs Bm and B′
n

such that the state complexity of L(Bm) � L(B′
n) is at least m(2n−1 − 2) + 2.

References

1. Brzozowski, J.A.: Towards a theory of complexity of regular languages. J. Autom.
Lang. Comb. 23(1–3), 67–101 (2018). http://arxiv.org/abs/1702.05024

2. Brzozowski, J.A., Kari, L., Li, B., Szyku�la, M.: State Complexity of Overlap Assem-
bly (2017). http://arxiv.org/abs/1710.06000

3. Carausu, A., Paun, G.: String intersection and short concatenation. Rev. Roumaine
Math. Pures Appl. 26, 713–726 (1981)

4. Csuhaj-Varjú, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages. The-
oret. Comput. Sci. 374(1–3), 74–81 (2007)

5. Domaratzki, M.: Minimality in template-guided recombination. Inf. Comput.
207(11), 1209–1220 (2009)

6. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: On the overlap assembly of
strings and languages. Nat. Comput. 16(1), 175–185 (2016)

7. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA over-
lap assembly. Inform. Comput. 253, 143–154 (2017)

8. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21(4), 251–310 (2016)

9. Golan, J.S.: The Theory of Semirings with Applications in Mathematics and The-
oretical Computer Science. Addison-Wesley Longman Ltd., Essex (1992)

10. Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. Theoret. Comput. Sci.
682, 122–137 (2017)

11. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. In:
Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 57–69. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-48017-X 6

12. Ito, M., Lischke, G.: Generalized periodicity and primitivity for words. Math. Logic
Q. 53(1), 91–106 (2007)

13. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45711-9 21

14. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970). (in Russian) English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

15. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

http://arxiv.org/abs/1702.05024
http://arxiv.org/abs/1710.06000
https://doi.org/10.1007/3-540-48017-X_6
https://doi.org/10.1007/3-540-45711-9_21
https://doi.org/10.1007/3-540-45711-9_21

	State Complexity of Overlap Assembly
	1 Introduction
	2 Overlap Assembly
	3 An -NFA for Overlap Assembly
	4 Tight Upper Bound for Overlap Assembly
	5 Conclusions
	References

