
Cezar Câmpeanu (Ed.)

 123

LN
CS

 1
09

77

23rd International Conference, CIAA 2018
Charlottetown, PE, Canada, July 30 – August 2, 2018
Proceedings

Implementation
and Application
of Automata

Lecture Notes in Computer Science 10977

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Cezar Câmpeanu (Ed.)

Implementation
and Application
of Automata
23rd International Conference, CIAA 2018
Charlottetown, PE, Canada, July 30 – August 2, 2018
Proceedings

123

Editor
Cezar Câmpeanu
University of Prince Edward Island
Charlottetown, PE
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94811-9 ISBN 978-3-319-94812-6 (eBook)
https://doi.org/10.1007/978-3-319-94812-6

Library of Congress Control Number: 2018947440

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-9777-3012

Preface

This volume contains the papers presented at the 23rd International Conference on
Implementation and Application of Automata (CIAA 2018) organized by the School of
Mathematical and Computational Science, University of Prince Edward Island, during
July 30 – August 2, 2018, in Charlottetown, Prince Edward Island, Canada. The CIAA
conference series is a major international venue for the dissemination of new results in
the implementation, application, and theory of automata.

There were 39 submissions from 19 different counties: Algeria, Bulgaria, Canada,
China, France, Finland, France, Germany, India, Israel, Italy, Japan, Pakistan, Poland,
Russia, Singapore, Slovakia, South Africa, South Korea, Sweden, and the USA. Each
submission was reviewed by at least three reviewers and thoroughly discussed by the
Program Committee (PC). The committee decided to accept 23 papers for oral pre-
sentation and publication in this volume. The program also includes four invited talks
by Anne Condon, Stavros Konstantinidis, Andreas Malcher, and Jacques Sakarovitch.

The previous 22 conferences were held in various locations all around the globe:
Paris (2017), Seoul (2016), Umeå (2015), Giessen (2014), Halifax (2013), Porto
(2012), Blois (2011), Winnipeg (2010), Sydney (2009), San Francisco (2008), Prague
(2007), Taipei (2006), Nice (2005), Kingston (2004), Santa Barbara (2003), Tours
(2002), Pretoria (2001), London Ontario (2000), Potsdam (WIA 1999), Rouen (WIA
1998), and London Ontario (WIA 1997 and WIA 1996). Like its predecessors, the
theme of CIAA 2018 was the implementation of automata and applications in related
fields. The topics of the presented papers include state complexity of automata,
implementations of automata and experiments, enhanced regular expressions, and
complexity analysis.

I would like to thank to the members of the PC and the external reviewers for their
help in selecting the papers. I am very grateful to all invited speakers, authors of
submitted papers, and participants who made CIAA 2018 possible. I also note that the
work of the PC and the preparation of the proceedings were greatly simplified by the
EasyChair conference system.

I also appreciate the help of the editorial staff at Springer in producing this book, in
particular to Alfred Hofmann, Anna Kramer, and their Computer Science Editorial
team, for their guidance and help during the process of publishing this volume and for
supporting the event through publication in the LNCS series.

Finally, I am grateful to the conference sponsors: the University of Prince Edward
Island (the President, the Vice President of Academics and Research, the Dean of
Science, and the Associate Dean of School of Mathematical and Computational

Science), and the Atlantic Association for Research in the Mathematical Sciences
(AARMS) for their generous financial support, and Meetings & Conventions PEI for
their continuous logistic support.

We all look forward to seeing you at CIAA 2019 in Kosice, Slovakia!

May 2018 Cezar Câmpeanu

VI Preface

Organization

Program Committee

Francine Blanchet-Sadri The University of North Carolina at Chapel Hill, USA
Cezar Câmpeanu (Chair) University of Prince Edward Island, Canada
Arnaud Carayol CNRS, LIGM, Université Paris Est, France
Jean-Marc Champarnaud LITIS, University of Rouen, France
Salimur Choudhury Algoma University, Canada
Jan Daciuk Gdańsk University of Technology, Poland
Dora Giammarresi University of Rome Tor Vergata, Italy
Yo-Sub Han Yonsei University, Japan
Markus Holzer Institut für Informatik, Universität Giessen, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Galina Jiraskova Slovak Academy of Sciences, Slovakia
Juhani Karhumäki University of Turku, Finland
Sylvain Lombardy LaBRI, CNRS, Institut Polytechnique de Bordeaux,

France
Carlo Mereghetti University of Milan, Italy
Frantisek Mraz Charles University, Prague, Czech Republic
Cyril Nicaud LIGM Universitè Paris Est, France
Alexander Okhotin St. Petersburg State University
Giovanni Pighizzini University of Milan, Italy
Daniel Reidenbach Loughborough University, UK
Rogério Reis University of Porto, Portugal
Kai Salomaa Queen’s University, Canada
Shinnosuke Seki University of Electro-Communications, Japan
Klaus Sutner Carnegie Mellon University, USA
Mikhail Volkov Ural State University, Russia
Bruce Watson Stellenbosch University, South Africa
Abuzer Yakaryilmaz University of Latvia, Latvia
Hsu-Chun Yen National Taiwan University, Taiwan

Additional Reviewers

Becker, Tim
Beier, Simon
Carpentieri, Bruno
Cherubini, Alessandra
Cho, Da-Jung
Conrad, Tim
Dassow, Jürgen

De La Higuera, Colin
Francis, Nadime
Freydenberger, Dominik D.
Gauwin, Olivier
Guingne, Franck
Gutierrez, Abraham
Haque, Sardar

Jugé, Vincent
Kapoutsis, Christos
Kari, Jarkko
Kim, Hwee
Ko, Sang-Ki
Kosolobov, Dmitry
Kufleitner, Manfred
Loff, Bruno
Madonia, Maria
Maletti, Andreas
McQuillan, Ian
Mercas, Robert
Nicart, Florent
Ouardi, Faissal

Pribavkina, Elena
Ravikumar, Balasubramanian
Reinhardt, Klaus
Ryzhikov, Andrew
Schabanel, Nicolas
Schmitz, Sylvain
Serre, Olivier
Smith, Taylor
Strauss, Tinus
Sutner, Klaus
Szykuła, Marek
Talbot, Jean-Marc
Tamm, Hellis
Zheng, Shenggen

VIII Organization

Contents

On Design and Analysis of Chemical Reaction Network Algorithms 1
Anne Condon

Regular Expressions and Transducers over Alphabet-Invariant
and User-Defined Labels . 4

Stavros Konstantinidis, Nelma Moreira, Rogério Reis,
and Joshua Young

Boosting Pushdown and Queue Machines by Preprocessing 28
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

The Validity of Weighted Automata . 41
Sylvain Lombardy and Jacques Sakarovitch

Algorithms for Weighted Finite Automata with Failure Transitions 46
Cyril Allauzen and Michael D. Riley

The Bottom-Up Position Tree Automaton and Its Compact Version. 59
Samira Attou, Ludovic Mignot, and Djelloul Ziadi

A New Hierarchy for Automaton Semigroups. 71
Laurent Bartholdi, Thibault Godin, Ines Klimann,
and Matthieu Picantin

Synchronizing Random Almost-Group Automata . 84
Mikhail V. Berlinkov and Cyril Nicaud

A Comparison of Two N-Best Extraction Methods for
Weighted Tree Automata . 97

Johanna Björklund, Frank Drewes, and Anna Jonsson

State Complexity of Overlap Assembly . 109
Janusz A. Brzozowski, Lila Kari, Bai Li, and Marek Szykuła

Online Stochastic Pattern Matching . 121
Marco Cognetta and Yo-Sub Han

State Complexity of Reversals of Deterministic Finite Automata
with Output . 133

Sylvie Davies

Algorithms and Training for Weighted Multiset Automata and Regular
Expressions . 146

Justin DeBenedetto and David Chiang

Solving Parity Games: Explicit vs Symbolic . 159
Antonio Di Stasio, Aniello Murano, and Moshe Y. Vardi

Generalised Twinning Property . 173
Stefan Gerdjikov

Non-self-embedding Grammars, Constant-Height Pushdown Automata,
and Limited Automata . 186

Bruno Guillon, Giovanni Pighizzini, and Luca Prigioniero

The Ranges of Accepting State Complexities of Languages Resulting
From Some Operations . 198

Michal Hospodár and Markus Holzer

Semilinearity of Families of Languages . 211
Oscar H. Ibarra and Ian McQuillan

The Exact Complexity of Star-Complement-Star . 223
Jozef Jirásek and Galina Jirásková

Parametrizing String Assembling Systems . 236
Martin Kutrib and Matthias Wendlandt

Two Routes to Automata Minimization and the Ways to Reach
It Efficiently . 248

Sylvain Lombardy and Jacques Sakarovitch

Towards the Algorithmic Molecular Self-assembly of Fractals
by Cotranscriptional Folding. 261

Yusei Masuda, Shinnosuke Seki, and Yuki Ubukata

On the Values for Factor Complexity . 274
Birzhan Moldagaliyev, Ludwig Staiger, and Frank Stephan

Enumeration of Cryptarithms Using Deterministic Finite Automata 286
Yuki Nozaki, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

One-Counter Automata for Parsing and Language Approximation 299
Alexander Sakharov

X Contents

On Syntactic Complexity of Circular Semi-flower Automata. 312
Shubh N. Singh and K. V. Krishna

Complexity of Proper Suffix-Convex Regular Languages 324
Corwin Sinnamon

Author Index . 339

Contents XI

On Design and Analysis of Chemical
Reaction Network Algorithms

Anne Condon(B)

The Department of Computer Science,
University of British Columbia, Vancouver, Canada

condon@cs.ubc.ca

The fields of DNA computing, molecular programming and DNA nanotech-
nology offer exciting new possibilities for organizing and manipulating matter
at the nanoscale, and prompt us to think about computation in creative new
ways. Molecules reacting in a test tube change state, and counts of molecules
can in principle be used to simulate counter machines, all in a highly distributed,
asynchronous and stochastic manner. In this talk I’ll give some background on
models of molecular programming, focusing on Stochastic Chemical Reaction
Networks, and describe some beautiful results and open problems pertaining to
this model of computing.

Stochastic Chemical Reaction Networks (CRNs) have traditionally been used
to model the dynamics of interacting molecules in a well-mixed solution [1], par-
ticularly when the counts of some molecular species is low, in which case mass
action kinetics is not a good model. More recently, stochastic CRNs have become
a popular model for describing molecular programs - programs that can be exe-
cuted in a test tube or other wet environment [2,3]. Reactions are the basic
instructions of these programs, acting on molecules in a well-mixed solution.
CRNs are closely related to population protocols among resource-limited agents
in distributed networks [4], as well as models of gene regulatory networks, infec-
tious diseases and voting processes [5–8].

Stable Function Computation by CRNs. In one model of predicate computation
by CRNs proposed by Angluin et al. [9,10], inputs are represented by initial
counts of certain molecular species in a well-mixed solution of fixed volume.
Chen et al. [11] studied function computation in essentially the same model. For
example, if the solution contains n1 copies of species X1 and n2 copies of species
X2, then the two reactions of Fig. 1(a) eventually produce a number of Y ’s equal
to n1 +n2, while the single reaction of Fig. 1(b) produces a number of Y ’s equal
to the min of the counts of X1 and X2, and the reactions of Fig. 1(c) produce the
max of the counts. (Assume that the rate constant associated with each reaction
is 1, although these assertions are true regardless of the rate constant.)

The evolution of a “computation” by a CRN can be described as a sequence
of configurations, where each configuration is a vector of counts of molecular
species and the initial configuration describes initial species counts. There is an
underlying probabilistic model, consistent with the principles of chemical reac-
tions (under fixed environmental conditions such as temperature), that deter-
mines the rates and relative likelihoods of reactions as a function of molecular
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 1–3, 2018.
https://doi.org/10.1007/978-3-319-94812-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_1&domain=pdf

2 A. Condon

X1 → Y X1+X2 → Y X1 → Y
X2 → XY 2 → Y

Z 1+ Z 2

+ Z 1

+ Z 2

→ Y ′

Y + Y ′ → Z
(a) (b) (c)

Fig. 1. Simple CRNs for stably computing the (a) sum, (b) min and (c) max of the
counts of two molecular species X1 and X2. The output is represented by the number
of copies of species Y . The CRN of part (c) integrates the CRN of part (a) with a
slight variant of part (b), thereby computing the max as the sum minus the min.

species counts, reaction rate constants, and the volume of the enclosing solu-
tion. From this probabilistic model, notions of correctness (perhaps allowing for
a small probability of error) as well as efficiency (depending on reaction rates,
which in turn depend on rate constants and counts of molecular reactants) can
be formulated.

All of the CRNs of Fig. 1 compute their functions stably [9–11]: on any com-
putation, a configuration is eventually reached with probability 1 in which the
counts of output species are consistent with the function being computed, and
once reached, the counts never change subsequently. The class of functions that
can be stably computed by CRNs is exactly the semi-linear functions [10,11].

Stable Function Composition. A basic question is: given two CRNs that sta-
bly compute two functions f and g, when is it possible to compose the CRNs
in order to compute the composition g ◦ f? Stable composition is certainly
possible when the CRN that computes f is output-oblivious - that is, no
output species is a reactant in any reaction of the CRN. Not all semi-linear
functions are output-oblivious. We will show that the max function and gen-
eralizations are not output-oblivious, and present a characterization of which
semilinear functions can be stably computed by output-oblivious CRNs.

CRNs with Error: Approximate Majority. The Approximate Majority problem is
as follows: in a mixture of two types of species where the gap between the counts
of the majority and minority species is above some threshold, which species is in
the majority? CRNs that solve Approximate Majority with low error probability
have been well studied but have been difficult to analyze [12]. We’ll describe a
simple way to analyze CRNs for Approximate Majority [13], as well as several
variants, e.g., when reaction rates are uncertain or when some molecules are
Byzantine. These CRNs are described in Fig. 2 which is from Condon et al. [13].
Key to our approach is to first analyze a very simple CRN for Approximate
Majority involving tri-molecular reactions, i.e., reactions with three reactants.
We can show that well-studied bi-molecular CRNs for Approximate Majority
essentially emulate the tri-molecular protocol, and also that the same analy-
sis principles can be used to prove correctness and efficiency of multi-valued
consensus.

On Design and Analysis of Chemical Reaction Network Algorithms 3

X+Y
1/2

X+B (0’x)

X+Y B+B (0’) X+Y
1/2

Y +B (0’y)
X+X+Y X+X+X (1) X+B X+X (1’) X+B X+X (1’)
X+Y +Y Y +Y +Y (2) Y +B Y +Y (2’) Y +B Y +Y (2’)

(a) Tri-molecular CRN. (b) Double-B CRN. (c) Single-B CRN.

Fig. 2. A tri-molecular and two bi-molecular chemical reaction networks (CRNs) for
Approximate Majority. Reactions (0’x) and (1’y) of Single-B have rate constant 1/2
while all other reactions have rate constant 1.

References

1. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

2. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-88869-7 27

3. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

5. Bower, J.M., Bolouri, H.: Computational Modeling of Genetic and Biochemical
Networks. MIT Press, Cambridge (2004)

6. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules.
Queueing Syst. 78(2), 99–120 (2014)

7. Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus
on complete graphs. In Proceedings of the 28th IEEE Conference on Computer
Communications (INFOCOM), pp. 2527–2535. (2009)

8. Moussäıd, M., Kämmer, J.E., Analytis, P.P., Neth, H.: Social influence and the
collective dynamics of opinion formation. PLoS ONE 8(11), e78433 (2013)

9. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

10. Angluin, D., Aspnes, J., Eisentat, D.: Stably computable predicates are semi-linear.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 292–299. ACM (2006)

11. Chen, H., Doty, D., Soloveichik, D.: Deterministic function computation with chem-
ical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

12. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

13. Condon, A., Hajiaghayi, M., Kirkpatrick, D., Maňuch, J.: Simplifying analyses
of chemical reaction networks for approximate majority. In: Brijder, R., Qian, L.
(eds.) DNA 2017. LNCS, vol. 10467, pp. 188–209. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66799-7 13

https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-319-66799-7_13
https://doi.org/10.1007/978-3-319-66799-7_13

Regular Expressions and Transducers
over Alphabet-Invariant
and User-Defined Labels

Stavros Konstantinidis1(B), Nelma Moreira2, Rogério Reis2,
and Joshua Young1

1 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca, jyo04@hotmail.com

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{nam,rvr}@dcc.fc.up.pt

Abstract. We are interested in regular expressions and transducers that
represent word relations in an alphabet-invariant way—for example, the
set of all word pairs u, v where v is a prefix of u independently of what
the alphabet is. Current software systems of formal language objects do
not have a mechanism to define such objects. We define transducers in
which transition labels involve what we call set specifications, some of
which are alphabet invariant. In fact, we consider automata-type objects,
called labelled graphs, where each transition label can be any string, as
long as that string represents a subset of a certain monoid. Then, the
behaviour of the labelled graph is a subset of that monoid. We do the
same for regular expressions. We obtain extensions of known algorithmic
constructions on ordinary regular expressions and transducers, including
partial derivative based methods, at the broad level of labelled graphs
such that the computational efficiency of the extended constructions is
not sacrificed. Then, for regular expressions with set specs we obtain a
direct partial derivative method for membership. For transducers with
set specs we obtain further algorithms that can be applied to questions
about independent regular languages, in particular the witness version
of the property satisfaction question.

Keywords: Alphabet-invariant transducers · Regular expressions
Partial derivatives · Algorithms · Monoids

1 Introduction

We are interested in 2D regular expressions and transducers over alphabets
whose cardinality is not fixed, or whose alphabet is even unknown. In particular,

Research supported by NSERC (Canada) and by FCT project UID/MAT/00144/
2013 (Portugal). Reference [16] is a detailed version of this paper.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 4–27, 2018.
https://doi.org/10.1007/978-3-319-94812-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_2&domain=pdf

Regular Expressions and Transducers 5

assume that the alphabet is Γ = {0, 1, . . . , n − 1} and consider the 2D regular
expression

(
0/0 + · · · + (n − 1)/(n − 1)

)∗(0/e + · · · + (n − 1)/e
)∗

,

where e is the symbol for the empty string. This 2D regular expression has
O(n) symbols and describes the prefix relation: all word pairs (u, v) such that
v is a prefix of u. Similarly, consider the transducer in Fig. 1, which has O(n2)
transitions. Current software systems of formal language objects require users to
enter all these transitions in order to define and process the transducer. We want
to be able to use special labels in transducers such as those in the transducer
t̂sub2 in Fig. 2. In that figure, the label (∀/=) represents the set {(a, a) | a ∈ Γ}
and the label (∀/∀�=) represents the set {(a, a′) | a, a′ ∈ Γ, a �= a′}. Moreover
that transducer has only a fixed number of 5 transitions. Similarly, using these
special labels, the above 2D regular expression can be written as (∀/=)∗(∀/e)∗.
Note that the new regular expression as well as the new transducer in Fig. 2 are
alphabet invariant as they contain no symbol of the intended alphabet Γ—precise
definitions are provided in the next sections.

0 1 2
a/a

(∀a, a ∈ Γ : a = a)

a/a

(∀a, a ∈ Γ : a = a)

a/a (∀a ∈ Γ) a/a (∀a ∈ Γ) a/a (∀a ∈ Γ)

Fig. 1. The transducer realizes the relation of all (u, v) such that u �= v and the
Hamming distance of u, v is at most 2.

We also want to be able to define algorithms that work directly on regular
expressions and transducers with special labels, without of course having to
expand these labels to ordinary ones. Thus, for example, we would like to have an
efficient algorithm that computes whether a pair (u, v) of words is in the relation
realized by the transducer in Fig. 2, and an efficient algorithm to compute the
composition of two transducers with special labels.

We start off with the broad concept of a set B of labels, called label set,
where each label β ∈ B is simply a string that represents a subset I(β) of a
monoid M . Then we define type B automata (called labelled graphs) in which
every transition label is in B. Similarly we consider type B regular expressions
whose base objects (again called labels) are elements of B and represent monoid
subsets. Our first set of results apply to any user-defined set B and monoid
M . Then, we consider further results specific to the cases of (i) 1D regular
expressions and automata (monoid M = Γ ∗), (ii) 2D regular expressions and
transducers (monoid M = Γ ∗ × Γ ∗) with special labels (called set specs). We
note that a concept of label set similar to the one defined here is considered in
[12]. In particular, [12] considers label sets with weights, and the objectives of
that work are different from the ones here.

6 S. Konstantinidis et al.

We emphasize that we do not attempt to define regular expressions and
automata outside of monoids; rather we use monoid-based regular expressions
and automata as a foundation such that (i) one can define such objects with
alphabet invariant labels or with a priori unknown label sets B, as long as
each of the labels represents a subset of a known monoid; (ii) many known
algorithms and constructions on monoid-based regular expressions and automata
are extended to work directly and as efficiently on certain type B objects.

We also mention the framework of symbolic automata and transducers of [23,
24]. In that framework, a transition label is a logic predicate describing a set of
domain elements (characters). The semantics of that framework is very broad and
includes the semantics of label sets in this work. As such, the main algorithmic
results in [23,24] do not include time complexity estimates. Moreover, outside
of the logic predicates there is no provision to allow for user-defined labels and
related algorithms working directly on these labels.

The paper is organized as follows. The next section makes some assumptions
about alphabets Γ of non-fixed size. Section 3 defines two specific label sets: the
set of set specs, in which each element represents a subset of Γ or the empty
string, and the set of pairing specs that is used for transducer-type labelled
graphs. Some of these label sets can be alphabet invariant. Section 4 discusses the
general concept of a label set B, which has a behaviour I and refers to a monoid
mon B; that is, I(β) is a subset of mon B for any label β ∈ B. Section 5 defines
type B labelled graphs ĝ and their behaviours I(ĝ). When B is the set of pairing
specs then ĝ is a transducer-type graph and realizes a word relation. Section 6
defines regular expressions r over any label set B and their behaviour I(r), and
establishes the equivalence of type B graphs and type B regular expressions
(Theorem 1) as well as the partial derivative automaton corresponding to r via
the concept of linear form of r (Theorem 3). Then, for a regular expression r over
set specs it presents the partial derivative machinery for deciding directly if a
word is in L(r) (Lemma 11). Section 7 considers the possibility of defining ‘higher
level’ versions of product constructions that work on automata/transducers over
known monoids. To this end, we consider the concept of polymorphic operation ‘�’
that is partially defined between two elements of some labels sets B,B′, returning
an element of some label set C, and also partially defined on the elements of the
monoids mon B and mon B′, returning an element of the monoid mon C. In
this case, if � is known to work on automata/transducers over mon B,mon B′

then it would also work on type B,B′ graphs (Theorem 4). Section 8 presents
some basic algorithms on automata with set specs and transducers with set specs.
Section 9 defines the composition of two transducers with set specs such that the
complexity of this operation is consistent with the case of ordinary transducers
(Theorem 5). Section 10 considers the questions of whether a transducer with set
specs realizes an identity and whether it realizes a function. It is shown that
both questions can be answered with a time complexity consistent with that
in the case of ordinary transducers (Theorems 6 and 7). Section 11 shows that,
like ordinary transducers, transducers with set specs that define independent
language properties can be processed directly (without expanding them) and

Regular Expressions and Transducers 7

efficiently to answer the witness version of the property satisfaction question for
regular languages (Corollary 2 and Example 12). Finally, the last section contains
a few concluding remarks and directions for future research.

2 Terminology and Alphabets of Non-fixed Size

The set of positive integers is denoted by N. Then, N0 = N ∪ {0}. Let S be a
set. We denote the cardinality of S by |S| and the set of all subsets of S by 2S .
To indicate that φ is a partial mapping of a set S into a set T we shall use the
notation φ : S ��� T. We shall write φ(s) = ⊥ to indicate that φ is not defined
on s ∈ S.

An alphabet space Ω is an infinite and totally ordered set whose elements are
called symbols. We shall assume that Ω is fixed and contains the digits 0, 1, . . . , 9,
which are ordered as usual, as well as the special symbols

∀ ∃ /∃ = �= / e ⊕ �
We shall denote by ‘<’ the total order of Ω. As usual we use the term string or
word to refer to any finite sequence of symbols. The empty string is denoted by
ε. For any string w we say that w is sorted if the symbols contained in w occur
in the left to right direction according to the total order of Ω. For example, the
word 012 is sorted, but 021 is not sorted. For any set of symbols S, we use the
notation wo(S) = the sorted word consisting of the symbols in S. For example,
if S = {0, 1, 2}, then wo(S) = 012 and wo({2, 0}) = 02.

Let g ∈ Ω and w be a string. The expression |w|g denotes the number of
occurrences of g in w, and the expression alph w denotes the set {g ∈ Ω : |w|g >
0}, that is, the set of symbols that occur in w. For example,

alph (1122010) = {0, 1, 2}.

An alphabet is any finite nonempty subset of Ω. In the following definitions
we consider an alphabet Γ , called the alphabet of reference, and we assume that
Γ contains at least two symbols and no special symbols.

Algorithmic Convention About Alphabet Symbols. We shall consider
algorithms on automata and transducers where the alphabets Γ involved are not
of fixed size and, therefore, |Γ | → ∞; thus, the alphabet size |Γ | is accounted
for in time complexity estimates. Moreover, we assume that each Γ -symbol is of
size O(1). This approach is also used in related literature (e.g., [1]), where it is
assumed implicitly that the cost of comparing two Γ -symbols is O(1).

In the algorithms presented below, we need operations that require to access
only a part of Γ or some information about Γ such as |Γ |. We assume that Γ
has been preprocessed such that the value of |Γ | is available and is O(log |Γ |)
bits long and the minimum symbol min Γ of Γ is also available. In particular, we
assume that we have available a sorted array ARRΓ consisting of all Γ -symbols.
While this is a convenient assumption, if in fact it is not applicable then one can
make the array from Γ in time O

(|Γ | log |Γ |). Then, the minimum symbol of Γ
is simply ARRΓ [0]. Moreover, we have available an algorithm notIn(w), which

8 S. Konstantinidis et al.

returns a symbol in Γ that is not in alph w, where w is a sorted word in Γ ∗ with
0 < |w| < |Γ |. Next we explain that the desired algorithm

notIn(w) can be made to work in time O(|w|).
The algorithm notIn(w) works by using an index i, initially i = 0, and incre-
menting i until ARRΓ [i] �= w[i], in which case the algorithm returns ARRΓ [i].

3 Set Specifications and Pairing Specifications

Here we define expressions, called set specs, that are used to represent subsets of
the alphabet Γ or the empty string. These can be used as labels in automata-type
objects (labelled graphs) and regular expressions defined in subsequent sections.

Definition 1. A set specification, or set spec for short, is any string of one of
the four forms

e ∀ ∃w /∃w

where w is any sorted nonempty string containing no repeated symbols and no
special symbols. The set of set specs is denoted by SSP.

Let F,∃u, /∃u,∃v, /∃v be any set specs with F �= e. We define the partial
operation ∩ : SSP×SSP ��� SSP as follows.

e ∩ e = e, e ∩ F = F ∩ e = ⊥
∀ ∩ F = F ∩ ∀ = F
∃u ∩ ∃v = ∃wo

(
alph u ∩ alph v

)
, if

(
alph u ∩ alph v

) �= ∅
∃u ∩ ∃v = ⊥, if

(
alph u ∩ alph v

)
= ∅

/∃u ∩ /∃v = /∃ wo
(
alph u ∪ alph v

)

∃u ∩ /∃v = ∃wo
(
alph u \ alph v

)
, if

(
alph u \ alph v

) �= ∅
∃u ∩ /∃v = ⊥, if

(
alph u \ alph v

)
= ∅

/∃u ∩ ∃v = ∃v ∩ /∃u

Example 1. As any set spec X is a string, it has a length |X|. We have that
|∀| = 1 and |∃w| = 1 + |w|. Also,

∃035 ∩ ∃1358 = ∃35, /∃035 ∩ ∃1358 = ∃18, /∃035 ∩ /∃1358 = /∃01358.

Lemma 1. For any given set specs G and F , G ∩ F can be computed in time
O(|G| + |F |).
Definition 2. Let Γ be an alphabet of reference. We say that a set spec F
respects Γ , if the following restrictions hold when F is of the form ∃w or /∃w:

w ∈ Γ ∗ and 0 < |w| < |Γ |.
In this case, the language L(F) of F (with respect to Γ) is the subset of Γ ∪ {ε}
defined as follows:

L(e) = {ε}, L(∀) = Γ, L(∃w) = alph w, L(/∃w) = Γ \ alph w.

The set of set specs that respect Γ is denoted as follows

SSP[Γ] = {α ∈ SSP | α respects Γ}.

Regular Expressions and Transducers 9

Remark 1. In the above definition, the requirement |w| < |Γ | implies that there
is at least one Γ -symbol that does not occur in w. Thus, to represent Γ we must
use ∀ as opposed to the longer set spec ∃wo(Γ).

Lemma 2. Let Γ be an alphabet of reference and let F �= e be a set spec respect-
ing Γ . The following statements hold true.

1. For given g ∈ Γ , testing whether g ∈ L(F) can be done in time O(log |F |).
2. For given g ∈ Γ , testing whether L(F) \ {g} = ∅ can be done in time O(|F |).
3. For any fixed k ∈ N, testing whether |L(F)| ≥ k can be done in time O(|F | +

log |Γ |), assuming the number |Γ | is given as input along with F .
4. Testing whether |L(F)| = 1 and, in this case, computing the single element

of L(F) can be done in time O(|F |).
5. Computing an element of L(F) can be done in time O(|F |).
6. If |L(F)| ≥ 2 then computing two different L(F)-elements can be done in

time O(|F |).
Now we define expressions for describing certain finite relations that are

subsets of (Γ ∪ {ε}) × (Γ ∪ {ε}).

Definition 3. A pairing specification, or pairing spec for short, is a string of the
form

e/e e/G F/e F/G F/= F/G�= (1)

where F,G are set specs with F,G �= e. The set of pairing specs is denoted by
PSP. The inverse p−1 of a pairing spec p is defined as follows depending on the
possible forms of p displayed in (1):

(e/e)−1 = (e/e), (e/G)−1 = (G/e), (F/e)−1 = (e/F),

(F/G)−1 = (G/F), (F/=)−1 = (F/=), (F/G�=)−1 = (G/F �=).

Example 2. As a pairing spec p is a string, it has a length |p|. We have that
|∀/e| = 3 and |∃u//∃v| = 3+ |u|+ |v|. Also, (∀/e)−1 = (e/∀) and (∃u/∀�=)−1 =
(∀/∃u �=).

Definition 4. A pairing spec is called alphabet invariant if it contains no set
spec of the form ∃w, /∃w. The set of alphabet invariant pairing specs is denoted
by PSPinvar.

Definition 5. Let Γ be an alphabet of reference and let p be a pairing spec. We
say that p respects Γ , if any set spec occurring in p respects Γ . The set of pairing
specs that respect Γ is denoted as follows

PSP[Γ] = {p ∈ PSP : p respects Γ}.

The relation R(p) described by p (with respect to Γ) is the subset of Γ ∗ × Γ ∗

defined as follows.

R(e/e) = {(ε, ε)}; R(e/G) = {(ε, y) | y ∈ L(G)};

10 S. Konstantinidis et al.

R(F/e) = {(x, ε) | x ∈ L(F)}; R(F/G) = {(x, y) | x ∈ L(F), y ∈ L(G)};
R(F/=) = {(x, x) | x ∈ L(F)};
R(F/G�=) = {(x, y) | x ∈ L(F), y ∈ L(G), x �= y}.

Remark 2. All the alphabet invariant pairing specs are

e/e e/∀ ∀/e ∀/∀ ∀/= ∀/∀�=
Any alphabet invariant pairing spec p respects all alphabets of reference Γ , as
p contains no set specs of the form ∃w or /∃w.

4 Label Sets and Their Behaviours

We are interested in automata-type objects (labelled graphs) ĝ in which every
transition label β represents a subset I(β) of some monoid M . These subsets
are the behaviours of the labels and are used to define the behaviour of ĝ as a
subset of M—see next section for labelled graphs. We shall use the notation

εM for the neutral element of the monoid M.

If S, S′ are any two subsets of M then, as usual, we define

SS′ = {mm′ | m ∈ S, m′ ∈ S′} and Si = Si−1S and S∗ = ∪∞
i=0S

i,

where S0 = {εM} and the monoid operation is denoted by simply concatenating
elements. We shall only consider finitely generated monoids M where each m ∈
M has a unique canonical (string) representation m. Then, we write M = {m |
m ∈ M}.

Example 3. We shall consider two standard monoids. First, the free monoid Γ ∗

(or Σ∗) whose neutral element is ε. The canonical representation of a nonempty
word w is w itself and that of ε is e: ε = e. Second, the monoid Σ∗ × Δ∗ (or
Γ ∗ ×Γ ∗) whose neutral element is (ε, ε). The canonical representation of a word
pair (u, v) is u/v. In particular, (ε, ε) = e/e.

A label set B is a nonempty set of nonempty strings (over Ω). A label
behaviour is a mapping I : B → 2M , where M is a monoid. Thus, the behaviour
I(β) of a label β ∈ B is a subset of M . We shall consider label sets B with fixed
behaviours, so we shall

denote by mon B the monoid of B via its fixed behaviour.

Notational Convention. We shall make the convention that for any label sets
B1, B2 with fixed behaviours I1, I2, we have:

if mon B1 = mon B2 then I1(β) = I2(β), for all β ∈ B1 ∩ B2.

With this convention we can simply use a single behaviour notation I for all label
sets with the same behaviour monoid, that is, we shall use I for any B1, B2 with
mon B1 = mon B2. This convention is applied in the example below: we use L
for the behaviour of both the label sets Σe and SSP[Γ].

Regular Expressions and Transducers 11

Example 4. We shall use some of the following label sets and their fixed label
behaviours.

1. Σe = Σ ∪ {e} with behaviour L : Σe → 2Σ∗
such that L(g) = {g}, if g ∈ Σ,

and L(e) = {ε}. Thus, mon Σe = Σ∗.
2. Σ with behaviour L : Σ → 2Σ∗

such that L(g) = {g}, for g ∈ Σ. Thus,
mon Σ = Σ∗.

3. SSP[Γ] with behaviour L : SSP[Γ] → 2Γ ∗
, as specified in Definition 2. Thus,

mon SSP[Γ] = Γ ∗.
4. REGΣ = REG Σe = all regular expressions over Σ with behaviour L :

REGΣ → 2Σ∗
such that L(r) is the language of the regular expression r.

Thus, mon (REG Σ) = Σ∗.
5. [Σe ,Δe] = {x/y | x ∈ Σe , y ∈ Δe} with behaviour R : [Σe ,Δe] → 2Σ∗×Δ∗

such that R(e/e) = {(ε, ε)}, R(x/e) = {(x, ε)}, R(e/y) = {(ε, y)}, R(x/y) =
{(x, y)}, for any x ∈ Σ and y ∈ Δ. Thus, mon [Σe ,Δe] = Σ∗ × Δ∗.

6. PSP[Γ] with behaviour R : PSP[Γ] → 2Γ ∗×Γ ∗
as specified in Definition 5.

Thus, mon PSP[Γ] = Γ ∗ × Γ ∗.
7. PSPinvar with behaviour R⊥ : PSPinvar → {∅}. Thus, I(β) = ∅, for any

β ∈ PSPinvar.
8. If B1, B2 are label sets with behaviours I1, I2, respectively, then [B1, B2] is

the label set {β1/β2 | β1 ∈ B1, β2 ∈ B2} with behaviour and monoid such
that I(β1/β2) = I1(β1) × I2(β2) and mon [B1, B2] = mon B1 × mon B2.

9. [REG Σ,REG Δ] with behaviour R in the monoid Σ∗ ×Δ∗ such that R(r/s)
= L(r) × L(s), for any r ∈ REGΣ and s ∈ REGΔ.

For any monoid of interest M , M is a label set such that

mon M = M and I(m) = {m}.

Thus for example, as mon PSP[Γ] = mon Γ ∗ × Γ ∗ = Γ ∗ ×Γ ∗ and the behaviour
of PSP is denoted by R, we have R((0, 1)) = R(0/1) = {(0, 1)} = R(∃0/∃1).

Remark 3. We shall not attempt to define the set of all labels. We limit ourselves
to those of interest in this paper. Of course one can define new label sets X at will,
depending on the application; and in doing so, one would also define concepts
related to those label sets, such as the mon X.

5 Labelled Graphs, Automata, Transducers

Let B be a label set with behaviour I. A type B graph is a quintuple

ĝ =
(
Q,B, δ, I, F

)

such that Q is a nonempty set whose elements are called states; I ⊆ Q is the
nonempty set of initial, or start states; F ⊆ Q is the set of final states; δ is a
set, called the set of edges or transitions, consisting of triples (p, β, q) such that

12 S. Konstantinidis et al.

p, q ∈ Q and β is a nonempty string of Ω-symbols; the set of labels Labels(ĝ) =
{β | (p, β, q) ∈ δ} is a subset of B.

We shall use the term labelled graph to mean a type B graph as defined above,
for some label set B. The labelled graph is called finite if Q and δ are both finite.
Unless otherwise specified, a labelled graph, or type B graph, will be assumed to
be finite.

As a label β is a string, the length |β| is well-defined. Then, the size |e| of
an edge e = (p, β, q) is the quantity 1 + |β| and the size of δ is ‖δ‖ =

∑
e∈δ |e|.

Then the graph size of ĝ is the |ĝ| = |Q| + ‖δ‖. A path P of ĝ is a sequence of
consecutive transitions, that is, P = 〈qi−1, βi, qi〉�

i=1 such that each (qi−1, βi, qi)
is in δ. The path P is called accepting, if q0 ∈ I and q� ∈ F . If � = 0 then P is
empty and it is an accepting path if I ∩ F �= ∅. A state is called isolated, if it
does not occur in any transition of ĝ. A state is called useful, if it occurs in some
accepting path. Note that any state in I ∩ F is useful and can be isolated. The
labelled graph ĝ is called trim, if

every state of ĝ is useful, and ĝ has at most one isolated state in I ∩ F .

Definition 6. Let ĝ =
(
Q,B, δ, I, F

)
be a labelled graph, for some label set B

with behaviour I. We define the behaviour I(ĝ) of ĝ as the set of all m ∈ mon B
such that there is an accepting path 〈qi−1, βi, qi〉�

i=1 of ĝ with

m ∈ I(β1) · · · I(β�).

The expansion exp ĝ of ĝ is the labelled graph
(
Q,mon B, δexp, I, F

)
such that

δexp = {(p,m, q) | ∃ (p, β, q) ∈ δ : m ∈ I(β)}.

In some cases it is useful to modify ĝ by adding the transition (q, εmon B, q) (a
self loop) for each state q of ĝ. The resulting labelled graph is denoted by ĝε.

Remark 4. The above definition remains valid with no change if the labelled
graph, or its expansion, is not finite. The expansion graph of ĝ can have infinitely
many transitions—for example if ĝ is of type REGΣ.

Lemma 3. For each type B graph ĝ = (Q,B, δ, I, F), we have that

I(ĝ) = I(exp ĝ) and I(ĝ) = I(ĝε).

Definition 7. Let Σ,Δ, Γ be alphabets.

1. A nondeterministic finite automaton with empty transitions, or ε-NFA for
short, is a labelled graph â = (Q,Σe , δ, I, F). If Labels(â) ⊆ Σ then â is
called an NFA. The language L(â) accepted by â is the behaviour of â with
respect to the label set Σe .

2. An automatonwith set specs is a labelled graph b̂ = (Q,SSP[Γ], δ, I, F). The
language L(b̂) accepted by b̂ is the behaviour of b̂ with respect to SSP[Γ].

3. A transducer (in standard form) is a labelled graph t̂ = (Q, [Σe ,Δe], δ, I, F).
The relation R(t̂) realized by t̂ is the behaviour of t̂ with respect to [Σe ,Δe].

Regular Expressions and Transducers 13

4. A transducer with set specs is a labelled graph ŝ = (Q,PSP[Γ], δ, I, F). The
relation R(ŝ) realized by ŝ is the behaviour of ŝ with respect to PSP[Γ].

5. An alphabet invariant transducer is a labelled graph î = (Q,PSPinvar, δ, I, F).
If Γ is an alphabet then the Γ -version of î is the transducer with set specs
î[Γ] = (Q,PSP[Γ], δ, I, F).

Remark 5. The above definitions about automata and transducers are equivalent
to the standard ones. The only slight deviation is that, instead of using the empty
word ε in transition labels, here we use the empty word symbol e. This has two
advantages: (i) it allows us to make a uniform presentation of definitions and
results and (ii) it is consistent with the use of a symbol for the empty word in
regular expressions. As usual about transducers t̂, we denote by t̂(w) the set of
outputs of t̂ on input w, that is,

t̂(w) = {u | (w, u) ∈ R(t̂)}.

Moreover, for any language L, we have that t̂(L) = ∪w∈Lt̂(w).

Lemma 4. If b̂ is an automaton with set specs then exp b̂ is an ε-NFA. If ŝ is
a transducer with set specs then exp ŝ is a transducer (in standard form).

Convention. Let Φ(û) be any statement about the behaviour of an automaton
or transducer û. If v̂ is an automaton or transducer with set specs then we make
the convention that the statement Φ(v̂) means Φ(exp v̂). For example, “ŝ is an
input-altering transducer” means that “exp ŝ is an input-altering transducer”—a
transducer t̂ is input-altering if u ∈ t̂(w) implies u �= w, or equivalently (w,w) /∈
R(t̂), for any word w.

Example 5. The transducers in Fig. 2 are alphabet invariant. Both transducers
are much more succinct compared to their expanded Γ -versions, as |Γ | → ∞:

| exp t̂sub2[Γ]| = O(|Γ |2) and | exp t̂px[Γ]| = O(|Γ |).

0t̂sub2 : 1 2
∀/∀= ∀/∀=

∀/= ∀/= ∀/=

0t̂px : 1
∀/e

∀/= ∀/=

Fig. 2. The left transducer realizes the relation of all (u, v) such that u �= v and the
Hamming distance of u, v is at most 2. The right transducer realizes the relation of all
(u, v) such that v is a proper prefix of u.

Following [25], if t̂ = (Q, [Σe ,Δe], δ, I, F) is a transducer then t̂−1 is the
transducer (Q, [Δe , Σe], δ′, I, F), where δ′ = {(p, y/x, q) | (p, x/y, q) ∈ δ}, such
that R(t̂−1) = R(t̂)−1.

Lemma 5. For each transducer ŝ with set specs we have that R(ŝ−1) = R(ŝ)−1

and exp(ŝ−1) = (exp ŝ)−1.

14 S. Konstantinidis et al.

6 Regular Expressions over Label Sets

We extend the definitions of regular and 2D regular expressions to include set
specs and pairing specs, respectively. We start off with a definition that would
work with any label set (called set of atomic formulas in [20]).

Definition 8. Let B be a label set with behaviour I such that no β ∈ B contains
the special symbol �. The set REGB of type B regular expressions is the set of
strings consisting of the 1-symbol string � and the strings in the set Z that is
defined inductively as follows.

– εmon B is in Z, and every β ∈ B is in Z.
– If r, s ∈ Z then (r + s), (r · s), (r∗) are in Z.

The behaviour I(r) of a type B regular expression r is defined inductively as
follows.

– I(�) = ∅ and I(εmon B) = εmon B;
– I(β) is the subset of mon B already defined by the behaviour I on B;
– I(r + s) = I(r) ∪ I(s); I(r · s) = I(r)I(s); I(r∗) = I(r)∗.

Example 6. Let Σ,Δ be alphabets. Using Σ as a label set, we have that REG Σ
is the set of ordinary regular expressions over Σ. For the label set [Σe ,Δe], we
have that REG[Σe ,Δe] is the set of rational expressions over Σ∗ × Δ∗ in the
sense of [20].

Example 7. Consider the UNIX utility tr. For any strings u, v of length � > 0,
the command tr u v can be ‘simulated’ by the following regular expression of
type PSP[ASCII]

(
(/∃u/=) + (∃u[0]/∃v[0]) + · · · +

(∃u[� − 1]/v[� − 1]
))∗

where ASCII is the alphabet of standard ASCII characters. Similarly, the com-
mand tr −d u can be ‘simulated’ by the type PSP[ASCII] regular expression(∃u/e + /∃u/=

)∗.
The Thompson method, [22], of converting an ordinary regular expression

over Σ—a type Σe regular expression in the present terminology—to an ε-NFA
can be extended without complications to work with type B regular expressions,
for any label set B. Similarly, the state elimination method of automata, [6], can
be extended to labelled graphs of any type B.

Theorem 1. Let B be a label set with behaviour I. For each type B regular
expression r, there is a type B graph ĝ(r) such that

I(r) = I(
ĝ(r)

)
and |ĝ(r)| = O(|r|).

Conversely, for each type B graph ĝ there is a type B regular expression r such
that I(ĝ) = I(r).

Regular Expressions and Transducers 15

Derivatives based methods for the manipulation of regular expressions
have been widely studied [2,5,7,8,10,17,18]. In recent years, partial derivative
automata were defined and characterised for several kinds of expressions. Not
only they are in general more succinct than other equivalent constructions but
also for several operators they are easily defined (e.g. for intersection [3] or
tuples [11]). The partial derivative automaton of a regular expression over Σ∗

was introduced independently by Mirkin [18] and Antimirov [2]. Champarnaud
and Ziadi [9] proved that the two formulations are equivalent. Lombardy and
Sakarovitch [17] generalised these constructions to weighted regular expressions,
and recently Demaille [11] defined derivative automata for multitape weighted
regular expressions.

Here we define the partial derivative automaton for a regular expressions of
a type B. Given a finite set S of expressions we define its behaviour as I(S) =⋃

s∈S I(s). We say that two regular expressions r, s of a type B are equivalent,
r ∼ s, if I(r) = I(s). Let the set of labels of an expression r be the set SS(r) =
{ β | β ∈ B and β occurs in r }. The size of an expressions r is ‖r‖ = |SS(r)|; it
can be inductively defined as follows:

‖ � ‖ = 0, ‖εmon B‖ = 0, ‖β‖ = 1
‖r + s‖ = ‖r‖ + ‖s‖

‖rs‖ = ‖r‖ + ‖s‖
‖r∗‖ = ‖r‖.

We define the constant part c : REGB → {εmon B ,�} by c(r) = εmon B if
εmon B ∈ I(r), and c(r) = � otherwise. This function is extended to sets of
expressions by c(S) = εmon B if and only if exists r ∈ S such that c(r) = εmon B.

The linear form of a regular expression r, n(r), is given by the following
inductive definition:

n(�) = n(εmon B) = ∅,

n(β) = {(β, εmon B)},

n(r + r′) = n(r) ∪ n(r′),

n(rr′) =

{
n(r)r′ ∪ n(r′) if c(r) = εmon B ,

n(r)r′ otherwise,

n(r∗) = n(r)r∗,

where for any S ⊆ B ×REGB, we define Sεmon B = εmon BS = S, S� = �S =
�, and Ss = { (β, rs) | (β, r) ∈ S } if s �= εmon B (and analogously for sS). Let
I(n(r)) =

⋃
(β,s)∈n(r) I(β)I(s).

Lemma 6. For all r ∈ REGB, r ∼ c(r) ∪ n(r).

Proof. The proof is trivial proceeding by induction on r. ��
For a regular expression r and β ∈ SS(r), the set of partial derivatives of r

w.r.t. β is
∂̂β(r) = { s | (β, s) ∈ n(r) }.

16 S. Konstantinidis et al.

It is clear that we can iteratively compute the linear form of an expression
s ∈ ∂̂β(r), for β ∈ SS(r). The set of all the resulting expressions is denoted by
π(r), and PD(r) = π(r) ∪ {r} is the set of partial derivatives of r.

The partial derivative graph of r is the labeled graph

âPD(r) =
(
PD(r), B, δPD, {r}, F

)
,

where F = { r1 ∈ PD(r) | c(r1) = εmon B }, δPD = ϕ(r) ∪ F(r) with ϕ(r) =
{(r, β, r′) | (β, r′) ∈ n(r)} and F(r) = { (r1, β, r2) | r1 ∈ π(r) ∧ β ∈ SS[r] ∧ r2 ∈
∂̂β(r1) }.

The following lemma generalizes from ordinary regular expressions [5,9,18],
and shows that the set of (strict) partial derivatives is finite.

Lemma 7. π satisfies the following:

π(�) = π(εmon B) = ∅,
π(β) = {εmon B},
π(r∗) = π(r)r∗.

π(r1 + r2) = π(r1) ∪ π(r2),
π(r1r2) = π(r1)r2 ∪ π(r2),

Theorem 2. We have that |π(r)| ≤ ‖r‖ and |PD(r)| ≤ ‖r‖ + 1.

Proof. Direct consequence of Lemma 7 using induction on r. ��
The proof of the following result is analogous to the ones for ordinary regular

expressions [2,18].

Theorem 3. I(âPD(r)) = I(r).

A direct algorithm to decide if an element of mon B belongs to I(r) depends
on the behaviour I of the particular label set B.

6.1 Regular Expressions with Set Specifications

Here we consider regular expressions of type SSP[Σ] whose fixed behaviours are
languages over the alphabet Σ. We want a direct algorithm to decide if a word
belongs to the language represented by the expression. Given L1, L2 ⊆ Σ∗ and
x ∈ Σ, the quotient of a language1 w.r.t x satisfies the following relations

x−1(L1 ∪ L2) = x−1L1 ∪ x−1L2, x−1L∗
1 = (x−1L1)L∗

1,
x−1(L1 L2) = (x−1L1)L2 if ε /∈ L1 or (x−1L1)L2 ∪ x−1L2 if ε ∈ L1.

Quotients can be extended to words and languages: ε−1L = L, (wx)−1
L =

x−1(w−1L) and L1
−1L =

⋃
w∈L1

w−1L. If L1 ⊆ L2 ⊆ Σ∗ then L1
−1L ⊆ L2

−1L

and L−1L1 ⊆ L−1L2.

1 It is customary to use x−1L for denoting quotients; this should not be confused with
the inverse p−1 of a pairing spec.

Regular Expressions and Transducers 17

Given two set specifications F,G ∈ SSP[Σ] \ {e} we extend the notion of
partial derivative to the set of partial derivatives of F w.r.t G with possible
F �= G, by

∂F (G) =

{
{e} if F ∩ G �= ⊥,

∅ otherwise.

and ∂F (r) = ∂̂F (r) for all other cases of r.
The set of partial derivatives of r ∈ REG SSP[Σ] w.r.t. a word x ∈ (SSP[Σ] \

{e})	 is inductively defined by ∂ε(r) = {r} and ∂xF (r) = ∂F (∂x(r)), where,
given a set S ⊆ REG SSP[Σ], ∂F (S) =

⋃
r∈S ∂F (r). Moreover one has L(∂x(r)) =⋃

r1∈∂x(r)
L(r1).

Lemma 8. For two set specifications F,G ∈ SSP[Σ], L(F)−1L(G) = {ε} if
F ∩ G �= ⊥, and L(F)−1L(G) = ∅ otherwise.

For instance, if ∃w ∩ /∃u �= ⊥ then

L(∃w)−1L(/∃u) =
⋃

x∈alph w

x−1(Σ \ alph u) = {ε}.

Lemma 9. For all r ∈ REG SSP[Σ] and F ∈ SSP[Σ], L(F)−1L(r) = L(∂F (r)).

Proof. For r = ∅ and r = e it is obvious. For r = G the result follows from
Lemma 8. In fact, if L(F)−1L(G) = {ε} then ∂F (G) = {e} and thus L(∂F (r)) =
{ε}; otherwise if L(F)−1L(G) = ∅ then ∂F (G) = ∅, and also L(∂F (r)) = ∅. The
remaining cases follow by induction as with ordinary regular expressions. ��
Lemma 10. For all g ∈ (SSP[Σ] \ {e})∗, L(g)−1L(r) = L(∂g(r)).

Proof. By induction on |g| using Lemma 9. ��
Lemma 11. For all w ∈ Σ∗, the following propositions are equivalent:

1. w ∈ L(r)
2. w = x1 · · · xn and there exists s(w) = F1 · · · Fn with Fi ∈ SS(r), ∃xi ∩Fi �= ⊥

and c(∂s(w)(r)) = ε.

7 Label Operations and the Product Construction

We shall consider partial operations � on label sets B,B′ such that, when
defined, the product β � β′ of two labels belongs to a certain label set C. More-
over, we shall assume that � is also a partial operation on mon B,mon B′ such
that, when defined, the product m � m′ of two monoid elements belongs to
mon C. We shall call � a polymorphic operation (in analogy to polymorphic
operations in programming languages) when I(β � β′) = I1(β) � I1(β′) where
I1, I2, I are the behaviours of B,B′, C. This concept shall allow us to also use
� as the name of the product construction on labelled graphs that respects the
behaviours of the two graphs.

18 S. Konstantinidis et al.

Example 8. We shall consider the following monoidal operations, which are bet-
ter known when applied to subsets of the monoid.

– ∩ : Σ∗ × Σ∗ ��� Σ∗ such that u ∩ v = u if u = v; else, u ∩ v = ⊥. Of course,
for any two languages K,L ⊆ Σ∗, K ∩ L is the usual intersection of K,L.

– ◦ : (Σ∗
1 × Δ∗) × (Δ∗ × Σ∗

2) ��� (Σ∗
1 × Σ∗

2) such that (u, v) ◦ (w, z) = (u, z) if
v = w; else, (u, v) ◦ (w, z) = ⊥. For any two relations R,S, R ◦ S is the usual
composition of R,S.

– ↓: (Σ∗ × Δ∗) × Σ∗ ��� (Σ∗ × Δ∗) such that (u, v) ↓ w = (u, v) if u = w; else,
(u, v) ↓ w = ⊥. For a relation R and language L,

R ↓ L = R ∩ (L × Δ∗). (2)

– ↑: (Σ∗ × Δ∗) × Σ∗ ��� (Σ∗ × Δ∗) such that (u, v) ↑ w = (u, v) if v = w; else,
(u, v) ↓ w = ⊥. For a relation R and language L,

R ↑ L = R ∩ (Σ∗ × L). (3)

Definition 9. Let B,B′, C be label sets with behaviours I1, I2, I, respectively. A
polymorphic operation � over B,B′, C, denoted as “� : B ×B′ ⇒ C”, is defined
as follows.

– It is a partial mapping: � : B × B′ ��� C.
– It is a partial mapping: � : mon B × mon B′ ��� mon C.
– For all β ∈ B and β′ ∈ B′ we have

I(β � β′) = I1(β) � I2(β′),

where we assume that I(β � β′) = ∅, if β � β′ = ⊥; and we have used the
notation S�S′ = {m�m′ | m ∈ S,m′ ∈ S′,m�m′ �= ⊥}. for any S ⊆ mon B
and S′ ⊆ mon B′.

Example 9. The following polymorphic operations are based on label sets of
standard automata and transducers using the monoidal operations in Example 8.

– “∩ : Σe × Σe ⇒ Σe” is defined by
• the partial operation ∩ : Σe × Σe ��� Σe such that x ∩ y = x, if x = y,

else x ∩ y = ⊥; and
• the partial operation ∩ : Σ∗ × Σ∗ ��� Σ∗.

Obviously, L(x ∩ y) = L(x) ∩ L(y).
– “◦ : [Σe ,Δe] × [Δe , Σ

′
e] ⇒ [Σe , Σ

′
e]” is defined by

• the operation ◦ : [Σe ,Δe] × [Δe , Σ
′
e] ��� [Σe , Σ

′
e] such that (x/y1) ◦

(y2/z) = (x/z) if y1 = y2, else (x/y1) ◦ (y2/z) = ⊥; and
• the operation ◦ : (Σ∗ × Δ∗) × (Δ∗ × Σ′∗) ��� (Σ∗ × Σ′∗).

Obviously, R((x, y1) ◦ (y2, z)) = R((x, y1)) ◦ R((y2, z)).
– “↓: [Σe ,Δe] × Σe ⇒ [Σe ,Δe]” is defined by

• the operation ↓: [Σe ,Δe] × Σe ��� [Σe ,Δe] such that (x/y) ↓ z = (x/y)
if x = z, else (x/y) ↓ z = ⊥; and

• the operation ↓: (Σ∗ × Δ∗) × Σ∗ ��� (Σ∗ × Δ∗).

Regular Expressions and Transducers 19

Obviously, R((x/y) ↓ z) = R(x/y) ↓ L(z).
– “↑: [Σe ,Δe] × Δe ⇒ [Σe ,Δe]” is defined by

• the operation ↑: [Σe ,Δe] × Δe ��� [Σe ,Δe] such that (x/y) ↑ z = (x/y)
if y = z, else (x/y) ↑ z = ⊥; and

• the operation ↑: (Σ∗ × Δ∗) × Σ∗ ��� (Σ∗ × Δ∗).
Obviously, R((x/y) ↑ z) = R(x/y) ↑ L(z).

Example 10. The following polymorphic operations are based on label sets of
automata and transducers with set specs.

– “∩ : SSP[Γ] × SSP[Γ] ⇒ SSP[Γ]” is defined by the partial operation
∩ : SSP[Γ] × SSP[Γ] ��� SSP[Γ], according to Definition 1, and the par-
tial operation ∩ : Γ ∗ × Γ ∗ ��� Γ ∗. For any B,F ∈ SSP[Γ], we have
L(B ∩ F) = L(B) ∩ L(F).

– “↓: PSP[Γ] × Γe ⇒ PSP[Γ]” is defined as follows. First, by the partial oper-
ation ↓: PSP[Γ] × Γe ��� PSP[Γ] such that

p ↓ x =

⎧
⎪⎨

⎪⎩

e/ right p, if x = e and left p = e;
∃x/ right p, if x, left p �= e and x ∈ L(left p);
⊥, otherwise.

Second, by the partial operation ↓: (Σ∗ × Δ∗) × Σ∗ ��� (Σ∗ × Δ∗). We have
that R(p ↓ x) = R(p) ↓ L(x). Moreover we have that p ↓ x can be computed
from p and x in time O(|p|).

– “↑: PSP[Γ] × Δe ⇒ PSP[Γ]” is defined as follows. First, by the partial oper-
ation ↑: PSP[Γ] × Δe ��� PSP[Γ] such that p ↑ x = (p−1 ↓ x)−1. Second,
by the partial operation ↑: (Σ∗ × Δ∗) × Δ∗ ��� (Σ∗ × Δ∗). We have that
R(p ↑ x) = R(p) ↑ L(x). Moreover we have that p ↑ x can be computed from
p and x in time O(|p|).

Further below, in Sect. 9, we define the polymorphic operation ‘◦’ between pair-
ing specs.

Definition 10. Let ĝ = (Q,B, δ, I, F) and ĝ′ = (Q′, B′, δ′, I ′, F ′) be type B and
B′, respectively, graphs and let “� : B × B′ ⇒ C” be a polymorphic operation.
The product ĝ � ĝ′ is the type C graph

(
P,C, δ � δ′, I × I ′, F × F ′)

defined as follows. First make the following two possible modifications on ĝ, ĝ′: if
there is a label β in ĝ such that εmon B ∈ I(β) then modify ĝ′ to ĝ′ε; and if there
is a label β′ in ĝ′ (before being modified) such that εmon B′ ∈ I(β′) then modify
ĝ′ to ĝ′ε. In any case, use the same names ĝ and ĝ′ independently of whether
they were modified. Then P and δ � δ′ are defined inductively as follows:

1. I × I ′ ⊆ P .
2. If (p, p′) ∈ P and there are (p, β, q) ∈ δ and (p′, β′, q′) ∈ δ′ with β � β′ �= ⊥

then (q, q′) ∈ P and
(
(p, p′), β � β′, (q, q′)

) ∈ δ � δ′.

20 S. Konstantinidis et al.

Example 11. Here we recall three known examples of product constructions
involving automata and transducers.

1. For two ε-NFAs â, â′, using the polymorphic operation “∩ : Σe × Σe ⇒ Σe”,
the product construction produces the ε-NFA â ∩ â′ such that L(â ∩ â′) =
L(â) ∩ L(â′). Note that if â, â′ are NFAs then also â ∩ â′ is an NFA.

2. For two transducers t̂, t̂′, using the polymorphic operation “◦ : [Σe ,Δe] ×
[Δe , Σ

′
e] ⇒ [Σe , Σ

′
e]”, the product construction produces the transducer t̂◦ t̂′

such that R(t̂ ◦ t̂′) = R(t̂) ◦ R(t̂′).
3. For a transducer t̂ and an ε-NFA â, using the polymorphic operation “↓:

[Σe ,Δe]×Σe ⇒ [Σe ,Δe]”, the product construction produces the transducer
t̂ ↓ â such that R(t̂ ↓ â) = R(t̂) ↓ L(â). Similarly, using the polymorphic oper-
ation “↑: [Σe ,Δe] × Δe ⇒ [Σe ,Δe]”, the product construction produces the
transducer t̂ ↑ â such that R(t̂ ↑ â) = R(t̂) ↑ L(â). These product construc-
tions were used in [14] to answer algorithmic questions about independent
languages—see Sect. 11.

Lemma 12. The following statements hold true about the product graph ĝ �
ĝ′ = (P,C, δ � δ′, I × I ′, F × F ′) of two trim labelled graphs ĝ, ĝ′ as defined in
Definition 10.

1. |P | = O(|δ||δ′|) and |δ � δ′| ≤ |δ||δ′|.
2. If the value β � β′ can be computed from the labels β and β′ in time, and is

of size, O(|β| + |β′|), then ‖δ � δ′‖ is of magnitude O(|δ|‖δ′‖ + |δ′|‖δ‖) and
δ � δ′ can be computed within time of the same order of magnitude.

Theorem 4. If “� : B ×B′ ⇒ C” is a polymorphic operation and ĝ, ĝ′ are type
B,B′, respectively, graphs then ĝ � ĝ′ is a type C graph such that

I(ĝ � ĝ′) = I(exp ĝ � exp ĝ′).

How to Apply the Above Theorem. We can apply the theorem when we
have a known product construction � on labelled graphs û, û′ over monoids
M,M ′ (see Example 11) and we wish to apply a ‘higher level’ version of �;
that is, apply � on labelled graphs ĝ, ĝ′ with behaviours in the monoids M,M ′.
This would avoid expanding ĝ and ĝ′. We apply the theorem in Lemma 13.2, in
Theorem 5 and in Corollary 1.

8 Automata and Transducers with Set Specifications

Here we present some basic algorithms on automata and transducers with set
specs. These can be applied to answer the satisfaction question about indepen-
dent languages (see Sect. 11).

Lemma 13. Let b̂ = (Q,SSP[Γ], δ, I, F) and b̂′ = (Q′,SSP[Γ], δ′, I ′, F ′) be trim
automata with set specs and let w be a string.

Regular Expressions and Transducers 21

1. There is a O(|b̂|) algorithm nonEmptyW(b̂) returning either a word in L(b̂), or
None if L(b̂) = ∅. The decision version of this algorithm, emptyP(b̂), simply
returns whether L(b̂) is empty.

2. There is a O(|Γ | + |δ|‖δ′‖ + |δ′|‖δ‖) algorithm returning the automaton with
set specs b̂ ∩ b̂′ such that L(b̂ ∩ b̂′) = L(b̂) ∩ L(b̂′).

3. There is a O(|w||b̂|) algorithm returning whether w ∈ L(b̂).

Proof. (Partial) For the second statement, we compute the product b̂ ∩ b̂′. As
the value β ∩β′ of two labels can be computed in linear time, Lemma 12 implies
that b̂ ∩ b̂′ can be computed in time O(|Γ | + |δ|‖δ′‖ + |δ′|‖δ‖). Now we have

L(b̂ ∩ b̂′) = L(exp b̂ ∩ exp b̂′) (4)

= L(exp b̂) ∩ L(exp b̂′) (5)

= L(b̂) ∩ L(b̂′) (6)

Equation (4) follows from the fact that “∩ : SSP[Γ] × SSP[Γ] ⇒ SSP[Γ]” is
a polymorphic operation—see Theorem 4 and Example 10. Equation (5) follows
from the fact that each exp b̂, exp b̂′ is an ε-NFA and the operation ∩ is well-
defined on these objects—see Lemma 4 and Example 11. For the third statement,
one makes an automaton with set specs b̂w accepting {w}, then computes â =
b̂w ∩ b̂, and then uses emptyP(â) to get the desired answer.

Lemma 14. Let, ŝ = (Q,PSP[Γ], δ, I, F) be a trim transducer with set specs
and let â = (Q′, Γe , δ

′, I ′, F ′) be a trim ε-NFA, and let (u, v) be a pair of words.

1. There is a O(|ŝ|) algorithm nonEmptyW(ŝ) returning either a word pair in
R(ŝ), or None if R(ŝ) = ∅. The decision version of this algorithm, emptyP(ŝ),
simply returns whether R(ŝ) is empty.

2. There is a O(|Γ | + |δ|‖δ′‖ + |δ′|‖δ‖) algorithm returning the transducer with
set specs ŝ ↓ â such that R(ŝ ↓ â) = R(ŝ) ↓ L(â).

3. There is a O(|u||v||ŝ|) algorithm returning whether (u, v) ∈ R(ŝ).

9 Composition of Transducers with Set Specifications

Next we are interested in defining the composition p1 ◦p2 of two pairing specs in
a way that R(p1)◦R(p2) is equal to R(p1 ◦p2). It turns out that, for a particular
subcase about the structure of p1, p2, the operation p1 ◦ p2 can produce two or
three pairing specs. To account for this, we define a new label set:

PSP+[Γ] consists of strings p1 ⊕ · · · ⊕ p�,
where � ∈ N and each pi ∈ PSP[Γ]. Moreover we have the (fixed) label behaviour
R : PSP+[Γ] → 2Γ ∗×Γ ∗

such that

R(p1 ⊕ · · · ⊕ p�) = R(p1) ∪ · · · ∪ R(p�).

22 S. Konstantinidis et al.

Definition 11. Let Γ be an alphabet of reference. The partial operation

◦ : PSP[Γ] × PSP[Γ] ��� PSP+[Γ]

is defined between any two pairing specs p1, p2 respecting Γ as follows.

p1 ◦ p2 = ⊥, if L(rset p1) ∩ L(left p2) = ∅.

Now we assume that the above condition is not true and we consider the structure
of p1 and p2 according to Definition 3(1) using A,B, F,G,W,X, Y, Z as set specs,
where A,B, F,G �= e—thus, we assume below that L(B)∩L(F) �= ∅ and L(X)∩
L(Y) �= ∅.

(W/X) ◦ (Y/Z) = W/Z (W/B) ◦ (F/=) = W/B ∩ F

(W/B) ◦ (
F/G�=)

=

⎧
⎪⎨

⎪⎩

W/G, if |L(B ∩ F)| ≥ 2
W/G ∩ /∃b, if L(B ∩ F) = {b} and L(G) \ {b} �= ∅
⊥, otherwise.

(B/=) ◦ (F/Z) = B ∩ F/Z (B/=) ◦ (F/=) = B ∩ F/=

(B/=) ◦ (F/G�=) =

{
⊥, if L(G) = L(B ∩ F) = {g}
B ∩ F/G�=, otherwise.

(A/B �=) ◦ (F/Z) =

⎧
⎪⎨

⎪⎩

A/Z, if |L(B ∩ F)| ≥ 2
A ∩ /∃b/Z, if L(B ∩ F) = {b} and L(A) \ {b} �= ∅
⊥ otherwise.

(A/B �=) ◦ (F/=) =

{
⊥, if L(A) = L(B ∩ F) = {a}
A/B ∩ F �=, otherwise.

(A/B �=) ◦ (F/G�=) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A/G, if |L(B ∩ F)| ≥ 3
A ∩ /∃b/G ∩ /∃b, if L(B ∩ F) = {b} and L(A) \ {b}

�= ∅ and L(G) \ {b} �= ∅
D, if L(B ∩ F) = {b1, b2}
⊥, otherwise.

where D consists of up to three ⊕-terms as follows: D includes A ∩ /∃b1b2/G, if
L(A) \ {b1, b2} �= ∅; D includes ∃b1/G ∩ /∃b2, if b1 ∈ L(A) and L(G) \ {b2} �= ∅;
D includes ∃b2/G ∩ /∃b1, if b2 ∈ L(A) and L(G) \ {b1} �= ∅; D = ⊥ if none of
the previous three conditions is true.

Remark 6. In the above definition, we have omitted cases where p1 ◦ p2 is
obviously undefined. For example, as F/= and F/G�= are only defined when
F,G �= e, we omit the case (W/e) ◦ (F/=).

Remark 7. If we allowed ⊥ to be a pairing spec, then the set PSP[Γ] with
the composition operation ‘◦’ would be ‘nearly’ a semigroup: the subcase

Regular Expressions and Transducers 23

“(A/B �=) ◦ (F/G�=) with L(B ∩ F) = {b1, b2}” in the above definition is the
only one where the result of the composition is not necessarily a single pairing
spec. For example, let the alphabet Γ be {0, 1, 2} and A = ∃01, B = F = ∃12,
and G = ∃012. Then,

R(A/B �=) ◦ R(F/G�=) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)},

which is equal to R({∃0/∃012, ∃1/∃01}). This relation is not equal to R(p), for
any pairing spec p.

Lemma 15. The relation R(p1 ◦ p2) is equal to R(p1) ◦ R(p2), for any pairing
specs p1, p2 respecting Γ .

Remark 8. The polymorphic operation “◦ : PSP[Γ] × PSP[Γ] ⇒ PSP+[Γ]” is
well-defined by the partial operations ◦ in Definition 11 and in Example 8.

Definition 12. Let t̂ = (Q,PSP[Γ], δ, I, F) and ŝ = (Q′,PSP[Γ], δ′, I ′, F ′) be
transducers with set specs. The transducer t̂ � ŝ with set specs is defined as
follows. First compute the transducer t̂ ◦ ŝ with labels in PSP+[Γ]. Then, t̂ � ŝ
results when each transition (p, p1 ⊕ · · · ⊕ p�, q) of t̂ ◦ ŝ, with � > 1, is replaced
with the � transitions (p, pi, q).

Theorem 5. For any two trim transducers t̂ = (Q,PSP[Γ], δ, I, F) and ŝ =
(Q′,PSP[Γ], δ′, I ′, F ′) with set specs, t̂ � ŝ can be computed in time O(|Γ | +
|δ|‖δ′‖ + |δ′|‖δ‖). Moreover, R(t̂ � ŝ) = R(t̂) ◦ R(ŝ).

10 Transducer Identity and Functionality

The question of whether a given transducer is functional is of central importance
in the theory of rational relations [19]. Also important is the question of whether
a given transducer t̂ realizes an identity, that is, whether t̂(w) = {w}, when
|t̂(w)| > 0. In [1], the authors present an algorithm identityP(t̂) that works in
time O(|δ| + |Q||Δ|) and tells whether t̂ = (Q,Σ,Δ, δ, I, F) realizes an identity.
Here we have that

for trim t̂, identityP(t̂) works in time O(|δ||Δ|). (7)

The algorithm functionalityP(ŝ) deciding functionality of a transducer t̂ =
(Q,Γ, δ, I, F) first constructs the square transducer û, [4], in which the set of
transitions δû consists of tuples ((p, p′), y/y′, (q, q′)) such that (p, x/y, q) and
(p′, x/y′, q′) are any transitions in t̂ε. Then, it follows that t̂ is functional if and
only if û realizes an identity. Note that û has O(|δ|2) transitions and its graph
size is O(|t̂|2). Thus, we have that

for trim t̂, functionalityP(t̂) works in time O(|δ|2|Δ|). (8)

Theorem 6. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I, F)
with set specs realizes an identity can be answered in time O

(|δ||Γ |).

24 S. Konstantinidis et al.

Remark 9. Consider the trim transducer ŝ with set specs in Theorem 6. Of course
one can test whether it realizes an identity by simply using identityP(exp ŝ),
which would work in time O(|δexp||Γ |) according to (7). This time complexity
is clearly higher than the time O(|δ||Γ |) in the above theorem when |δexp| is of
order |δ||Γ | or |δ||Γ |2 (for example if ŝ involves labels ∀/= or ∀/∀).

Theorem 7. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I, F)
with set specs is functional can be answered in time O(|δ|2|Γ |).
Remark 10. Consider the trim transducer ŝ with set specs in Theorem 7. Of
course one can simply use functionalityP(exp ŝ) to test whether ŝ is functional,
which would work in time O(|δexp|2|Γ |) according to (8). This time complexity
is clearly higher than the time O(|δ|2|Γ |) in the above theorem when |δexp| is of
order |δ||Γ | or |δ||Γ |2 (for example if ŝ involves labels ∀/= or ∀/∀).

11 Transducers and Independent Languages

Let t̂ be a transducer. A language L is called t̂-independent, [21], if

u, v ∈ L and v ∈ t̂(u) implies u = v. (9)

If t̂ is input-altering then, [15], the above condition is equivalent to

t̂(L) ∩ L = ∅. (10)

The property described by t̂ is the set of all t̂-independent languages. Main exam-
ples of such properties are code-related properties. For example, the transducer
t̂sub2 describes all the 1-substitution error-detecting languages and t̂px describes
all prefix codes. The property satisfaction question is whether, for given trans-
ducer t̂ and regular language L, the language L is t̂-independent. The witness
version of this question is to compute a pair (u, v) of different L-words (if exists)
violating condition (9).

Remark 11. The witness version of the property satisfaction question for input-
altering transducers ŝ (see Eq. (10)) can be answered in time O(|ŝ| · |â|2), where
â is the given ε-NFA accepting L (see [15]). This can be done using the function
call nonEmptyW(ŝ ↓ â ↑ â). Further below we show that the same question can
be answered even when ŝ has set specs, and this could lead to time savings.

Corollary 1. Let ŝ = (Q,PSP[Γ], δ, I, F) be a transducer with set specs and
let b̂ = (Q′, Γe , δ

′, I ′, F ′) be an ε-NFA. Each transducer ŝ ↓ b̂ and ŝ ↑ b̂ can be
computed in time O(|Γ | + |δ|‖δ′‖ + |δ′|‖δ‖). Moreover, we have that

R(ŝ ↓ b̂) = R(ŝ) ↓ L(b̂) and R(ŝ ↑ b̂) = R(ŝ) ↑ L(b̂).

Corollary 2. Consider the witness version of the property satisfaction question
for input-altering transducers ŝ. The question can be answered in time O(|ŝ|·|â|2)
even when the transducer ŝ involved has set specs.

Regular Expressions and Transducers 25

Example 12. We can apply the above corollary to the transducer t̂sub2[Γ] of
Example 5, where Γ is the alphabet of b̂, so that we can decide whether a regular
language is 1-substitution error-detecting in time O(|b̂|2). On the other hand, if
we used the ordinary transducer exp t̂sub2[Γ] to decide the question, the required
time would be O(|Γ |2 · |b̂|2).

12 Concluding Remarks

Regular expressions and transducers over pairing specs allow us to describe many
independence properties in a simple, alphabet invariant, way and such that
these alphabet invariant objects can be processed as efficiently as their ordi-
nary (alphabet dependent) counterparts. This is possible due to the efficiency of
basic algorithms on these objects presented here. A direction for further research
is to investigate how algorithms not considered here can be extended to regular
expressions and transducers over pairing specs; for example, algorithms involving
transducers that realize synchronous relations.

Algorithms on deterministic machines with set specs might not work as effi-
ciently as their alphabet dependent counterparts. For example the question of
whether w ∈ L(b̂), for given word w and DFA b̂ with set specs, is probably not
decidable efficiently within time O(|w|). Despite this, it might be of interest to
investigate this question further.

Label sets can have any format as long as one provides their behaviour.
For example, a label can be a string representation of a FAdo automaton, [13],
whose behaviour of course is a regular language. At this broad level, we were
able to generalize a few results like the product construction and the partial
derivative automaton. A research direction is to investigate whether more results
can be obtained at this level, or even for label sets satisfying some constraint.
For example, whether membership, or other decision problems, can be decided
using partial derivatives for regular expressions involving labels other than set
and pairing specs2.

References

1. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Autom. Lang. Comb. 8(2), 117–144 (2003)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average com-
plexity of partial derivative automata for semi-extended expressions. J. Autom.
Lang. Comb. 22(1–3), 5–28 (2017)

2 While we have not obtained in this work the partial derivatives corresponding to a
regular expression involving pairing specs, it is our immediate plan to do so—see
[16].

26 S. Konstantinidis et al.

4. Béal, M.-P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theor. Comput. Sci.
292(1), 45–63 (2003)

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. Int. J. Found.
Comput. Sci. 22(7), 1593–1606 (2011). MR2865339

6. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. Electron. Comput. 12, 67–76 (1963)

7. Brzozowski, J.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11,
481–494 (1964)

8. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21254-3 13

9. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inf. 45(3), 195–205 (2001)

10. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289, 137–163 (2002)

11. Demaille, A.: Derived-term automata of multitape rational expressions. In: Han,
Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 51–63. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40946-7 5

12. Demaille, A., Duret-Lutz, A., Lombardy, S., Saiu, L., Sakarovitch, J.: A type sys-
tem for weighted automata and rational expressions. In: Holzer, M., Kutrib, M.
(eds.) CIAA 2014. LNCS, vol. 8587, pp. 162–175. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08846-4 12

13. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/.
Accessed Apr 2018

14. Konstantinidis, S.: Transducers and the properties of error-detection, error-
correction and finite-delay decodability. J. Univ. Comput. Sci. 8, 278–291 (2002)

15. Konstantinidis, S.: Applications of transducers in independent languages, word
distances, codes. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS,
vol. 10316, pp. 45–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60252-3 4

16. Konstantinidis, S. Moreira, N., Reis, R., Young, J.: Regular expressions and trans-
ducers over alphabet-invariant and user-defined labels. arXiv.org, arXiv:1805.01829
(2018)

17. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332(1–3), 141–177 (2005)

18. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 51–57 (1966)

19. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin
(2009)

20. Sakarovitch, J.: Automata and rational expressions. arXiv.org, arXiv:1502.03573
(2015)

21. Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). LNM, vol. 586,
pp. 180–188. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0087133

22. Thompson, K.: Regular expression search algorithm. Commun. ACM (CACM) 11,
419–422 (1968)

https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-319-40946-7_5
https://doi.org/10.1007/978-3-319-08846-4_12
https://doi.org/10.1007/978-3-319-08846-4_12
http://fado.dcc.fc.up.pt/
https://doi.org/10.1007/978-3-319-60252-3_4
https://doi.org/10.1007/978-3-319-60252-3_4
http://arxiv.org/abs/1805.01829
http://arxiv.org/abs/1502.03573
https://doi.org/10.1007/BFb0087133

Regular Expressions and Transducers 27

23. Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.)
CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39274-0 3

24. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: algorithms and applications. In: Field, J., Hicks, M. (eds.) Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, pp. 137–150 (2012)

25. Sheng, Y.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5 2

https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Boosting Pushdown and Queue Machines
by Preprocessing

Martin Kutrib, Andreas Malcher(B), and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Motivated by preprocessing devices occurring for example in
the context of syntactic parsers or HTML sanitization, we study pairs
of finite state transducers and deterministic machines such as pushdown
automata or queue automata as language accepting devices, where the
original input is translated by a finite state transducer to an input of the
deterministic machine which eventually accepts or rejects the prepro-
cessed input. As deterministic machines we study input-driven machines
as well as reversible machines equipped with a pushdown store or a
queue store. It turns out that the preprocessing boosts on the one hand
the computational power of the machines in all four cases, but on the
other hand preserves and adds some positive closure properties as well as
decidable problems. Thus, the preprocessing extends the computational
power moderately by retaining most of the nice properties of the original
machine.

1 Introduction

The syntactical analysis of a computer program, a web page, or an XML docu-
ment is typically done after the lexical analysis in which the correct formatting
of the input is verified, comments are removed, the spelling of the commands is
checked, and the sequence of input symbols is translated into a list of tokens.
This preprocessing of the input is typically done by a finite state transducer and
the output is subsequently processed by a more powerful machine such as, for
example, a pushdown automaton. Further examples where the input is prepro-
cessed and afterwards processed by other devices are HTML sanitization and
embedded SQL. As a generalization of preprocessing one may have, for example,
cascades of preprocessors P1, P2, . . . , Pn, where the output of Pi is the input for
the next preprocessor Pi+1. Cascades of finite state transducers have been used,
for example, in [8] for extracting information from natural language texts.

In terms of formal languages, machines processing preprocessed input can be
formulated as follows. Let T be some transducer such as, for example, a finite
state transducer or a pushdown transducer (see, e.g., [1]), and M be some accept-
ing machine such as, for example, a finite automaton or a pushdown automaton.
Then, for such a pair (M,T), we are interested in the set of words w such that
T (w) is accepted by M . From a language theoretic perspective it is an immedi-
ate question which language classes can be accepted by such composed devices.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 28–40, 2018.
https://doi.org/10.1007/978-3-319-94812-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_3&domain=pdf

Boosting Pushdown and Queue Machines by Preprocessing 29

Clearly, the answer depends on the power of both components. If T is a finite
state transducer and M is a finite automaton, nothing more than regular lan-
guages can be described by (M,T), since a finite automaton can be constructed
that simultaneously simulates T on the input given and M on the output pro-
duced by T . Similarly, if T is a finite state transducer and M is a pushdown
automaton, nothing more than the context-free languages can be described. On
the other hand, if T is a nondeterministic pushdown transducer and M is a
pushdown automaton, then it is possible to construct for any recursively enu-
merable language L some pair (M,T) accepting L. For the language classes in
between these both extremes there are interesting results given in [7]. For exam-
ple, it is shown that a pair (M,T) of a deterministic pushdown transducer T
combined with a deterministic pushdown automaton M can accept the non-
context-free language {wcw | w ∈ {a, b}∗ }. Moreover, cascades of deterministic
pushdown transducers are studied and a strict hierarchy with respect to the
number of transducers is obtained. If we confine ourselves with the combination
of finite state transducers and pushdown automata, then the combination of a
nondeterministic finite state transducer with a deterministic or nondeterministic
pushdown automaton as well as of a deterministic finite state transducer with
a nondeterministic pushdown automaton gives nothing more than the context-
free languages. Finally, the combination of a deterministic finite state transducer
and a deterministic pushdown automaton gives the deterministic context-free
languages. Thus, we can summarize that, roughly speaking, the preprocessing
by finite state transducers leads to the classes inside the context-free languages,
whereas the preprocessing by pushdown transducers leads to language classes
beyond the context-free languages. So far, we have not put any restriction on
the automata except the property of working deterministically or nondetermin-
istically. It is therefore an obvious approach to consider restricted pushdown
automata and to investigate whether the restrictions can be compensated by
the preprocessing.

In this paper, we will basically consider two restricted versions of determinis-
tic pushdown automata, namely, input-driven pushdown automata and reversible
pushdown automata. Both variants are in addition real-time deterministic push-
down automata, whose corresponding language class is known to be a proper sub-
set of the deterministic context-free languages. Input-driven pushdown automata
are ordinary pushdown automata where the actions on the pushdown store are
dictated by the input symbols. This variant of pushdown automata has been
introduced in 1980 by Mehlhorn in [16] and further investigations have been
done in 1985 by von Braunmühl and Verbeek in [5]. The early results comprise
the equivalence of nondeterministic and deterministic models and the proof that
the membership problem is solvable in logarithmic space. The model has been
revisited in 2004 in [2] where, for example, descriptional complexity aspects for
the determinization are investigated as well as closure properties and decidabil-
ity questions which turned out to be similar to those of finite automata. More
results on the model may be found in the survey [17].

30 M. Kutrib et al.

The second model we are going to investigate in more detail in connection
with a preprocessing transducer are reversible pushdown automata which have
been introduced in [10] and are basically pushdown automata which are forward
and backward deterministic. This means that every configuration has a unique
successor configuration and a unique predecessor configuration. Reversible com-
putations are information preserving computations and are mainly motivated by
the physical observation that a loss of information results in heat dissipation [15].
For reversible pushdown automata it is known that they accept a language class
that lies properly in between the regular languages and the real-time determin-
istic context-free languages, they share with deterministic pushdown automata
the closure under complementation and inverse homomorphism, whereas the clo-
sure under union and intersection with regular languages gets lost, and they still
have an undecidable inclusion problem.

It turns out that in both cases the preprocessing by weak deterministic finite
state transducers leads to language classes that properly contain the original
language class, but on the other hand is properly contained in the deterministic
context-free languages as well. Thus, the preprocessing boosts the power of the
original automata moderately. In addition, some closure properties as well as
positive decidability results are preserved as well.

If we replace the data structure of a pushdown store by a queue, we obtain
for the above-discussed cases input-driven queue automata [11] and reversible
queue automata [13]. Again, we may ask what happens when the input is prepro-
cessed by finite state transducers. Interestingly, we can apply similar methods
as are done for pushdown automata and we obtain again language classes that
properly contain the original language class, but on the other hand are properly
contained in the general language classes. Thus, the preprocessing boosts also
in this case the power of the original automata moderately and preserves some
closure properties as well as positive decidability results.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

In this paper, the preprocessing of the input will be done by one-way finite
state transducers which are basically finite automata with the ability to emit
symbols. We consider here essentially deterministic finite state transducers
(DFST) which are formally defined as a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is
the set of internal states, Σ is the set of input symbols, Δ is the set of output
symbols, q0 is the initial state, and δ is the transition function mapping from
Q×Σ to Q×Δ∗. By T (w) ∈ Δ∗ we denote the output computed by T on input
w ∈ Σ∗.

Since we are interested in weak preprocessing devices, we will consider
length-preserving deterministic finite state transducers, also known as Mealy

Boosting Pushdown and Queue Machines by Preprocessing 31

machines, where the transition function is restricted to be a mapping from Q×Σ
to Q×Δ. Moreover, we will put the additional restriction on the transition func-
tion to be injective and obtain injective DFSTs (injective Mealy machines).

Let M be an automaton such as, for example, a finite automaton, pushdown
automaton, or queue automaton, and T be a transducer such as, for example,
a finite state transducer or a pushdown transducer. Furthermore, the output
alphabet of T is the input alphabet of M . Then, the language accepted by the
pair (M,T) is L(M,T) = {w ∈ Σ∗ | T (w) ∈ L(M) }.

3 Boosting Input-Driven Machines

A conventional deterministic pushdown automaton (DPDA) is an input-driven
pushdown automaton (IDPDA), if the next input symbol defines the next action
on the pushdown store. To this end, the input alphabet Σ is divided into three
disjunct sets ΣN , ΣD, and ΣR, where a symbol from ΣN implies a state change
only without changing the pushdown store, a symbol from ΣD implies a state
change and the pushing of a symbol, and a symbol from ΣR implies a state
change and the popping of a symbol. This partition of the input alphabet is also
called signature.

Input-driven pushdown automata have properties which are similar to those
of finite automata. For example, it is shown in [5] that the language classes
accepted by nondeterministic and deterministic models coincide. Considering
the usually studied closure properties it has been shown in [2] that IDPDAs
(like finite automata) are closed under the Boolean operations, concatenation,
iteration, and reversal. It should be noted that the results for union, intersec-
tion, and concatenation only hold in general if the underlying automata have
compatible signatures, that is, if they possess an identical pushdown behavior on
their input symbols. In contrast to finite automata, it is known that IDPDAs
are not closed under homomorphism and inverse homomorphism. With regard to
decidability questions, inclusion is decidable in case of compatible signatures in
contrast to the undecidability of inclusion for arbitrary DPDAs. Together with
known positively decidable questions for arbitrary DPDAs, we obtain that the
questions of emptiness, finiteness, equivalence, and inclusion are all decidable
for IDPDAs, which is true for finite automata as well. Obviously, every language
accepted by an IDPDA is a real-time deterministic context-free language. On the
other hand, it is easy to see that the language class accepted by IDPDAs is also a
proper subset of the real-time deterministic context-free languages. For example,
the languages L1 = { an$an | n ≥ 1 } and L2 = { anb2n | n ≥ 1 } are not accepted
by any input-driven pushdown automaton. On the other hand, the marginally
changed languages L′

1 = { an$bn | n ≥ 1 } and L′
2 = { an(bc)n | n ≥ 1 } are

accepted by IDPDAs. For L′
1 every a induces a push-operation, every b induces

a pop-operation, and a $ leaves the pushdown store unchanged. Similarly, for L′
2

every a induces a push-operation, every b induces a pop-operation, and a c leaves
the pushdown store unchanged. Obviously, L′

1 can be obtained from L1 by a sim-
ple finite state transduction which translates all a’s before the $ to a’s, and all a’s

32 M. Kutrib et al.

after the $ to b’s. Similarly, L′
2 can be obtained from L2 by translating every a

to a and every b alternately to b and c. In both cases we can observe that the
preprocessing of the input by a deterministic finite state transducer, which is in
addition injective and length-preserving, helps to enlarge the class of languages
accepted.

In the following, we will study tinput-driven pushdown automata (TDPDA)
which are pairs (M,T), where T is an injective and length-preserving DFST
and M is an IDPDA. TDPDAs have been introduced in [14] and in the sequel we
will summarize basic results on their computational capacity, closure properties,
and decidability questions.

By choosing a DFST that realizes the identity it is clear that every IDPDA
can be simulated by a TDPDA. Furthermore, as discussed above, language L1 is
an example of a deterministic context-free language that is not accepted by any
IDPDA, but accepted by a TDPDA. Thus, TDPDAs can be more powerful than
IDPDAs. On the other hand, every TDPDA can be simulated by a real-time
DPDA. The basic idea is to compute the output of the DFST internally so that
the IDPDA can directly be simulated. Since every IDPDA works in real time, the
resulting DPDA works in real time as well. Finally, it is possible to show that the
real-time deterministic context-free language { anbn+mam | n,m ≥ 1 } cannot be
accepted by any TDPDA. Hence, we obtain the following proper hierarchy.

Theorem 1. L (IDPDA) ⊂ L (TDPDA) ⊂ L (rt-DPDA).

It is a nice feature of IDPDAs that their nondeterministic and deterministic
variants coincide which in addition deepens the analogy to finite automata. Thus,
it is an obvious question whether a similar result can be shown for TDPDAs.
Since a TDPDA consists of two components, each of which may work determin-
istically or nondeterministically, we are concerned with four cases. We denote by
TDPDAx,y with x, y ∈ {n, d} a TDPDA whose transducer works in mode x
and whose pushdown automaton works in mode y. Since determinization is
possible for IDPDAs, we obtain that the classes TDPDAd,n and TDPDAd,d

as well as TDPDAn,n and TDPDAn,d coincide. On the other hand, language
{ anbn+mam | n,m ≥ 1 } cannot be accepted by any TDPDAd,d, but is accepted
by a TDPDAn,d. Hence, we have the following hierarchy.

Theorem 2.

L (TDPDAd,d) = L (TDPDAd,n) ⊂ L (TDPDAn,n) = L (TDPDAn,d).

For the rest of the section where we will discuss closure properties and
decidability questions we confine ourselves to considering TDPDAd,ds only.
When studying binary language operations such as union, intersection, or con-
catenation for IDPDAs and TDPDAs it is essential that the signatures of the
corresponding IDPDAs are compatible. For IDPDAs the closure under union,
intersection, and concatenation is shown in [2], but the compatibility of the sig-
natures has to be provided. If this condition is not fulfilled, the closure results
may get lost. Consider, for example, the languages { anbncm | n,m ≥ 1 } and

Boosting Pushdown and Queue Machines by Preprocessing 33

{ anbmcm | n,m ≥ 1 } which each can be accepted by an IDPDA. However, both
signatures are not compatible and the intersection of both languages gives the
non-context-free language { anbncn | n ≥ 1 }. In case of binary language opera-
tions for TDPDAs we additionally have to require that both transducers realize
the same transduction. Then, similar to the proofs for IDPDAs, the closure
under the Boolean operations can be shown. Additionally, a detailed construc-
tion shows the closure under inverse homomorphism for TDPDAs which is in
contrast to IDPDAs.

Theorem 3. Let (M,T) and (M ′, T) be two TDPDAs with compatible signa-
tures. Then, TDPDAs accepting the intersection L(M,T)∩L(M ′, T), the union
L(M,T) ∪ L(M ′, T), the complement L(M,T), and the inverse homomorphic
image h−1(L(M,T)) for some homomorphism h can effectively be constructed.

On the other hand, one can prove the non-closure under iteration, rever-
sal, length-preserving homomorphism, and concatenation. The latter non-closure
result interestingly holds even if both signatures are compatible and both trans-
ducers are identical: we consider language L = { anbn | n ≥ 1 }∪{ bnan | n ≥ 1 }
which is accepted by some TDPDA since a DFST can translate L to lan-
guage { anbn | n ≥ 1 } ∪ { cndn | n ≥ 1 } which is clearly accepted by
some IDPDA. However, if TDPDAs were closed under concatenation, then
L · L ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } could be accepted by some TDPDA
which is a contradiction. The remaining non-closure results can basically be
shown by utilizing again the fact that { anbn+mam | n,m ≥ 1 } is not accepted
by any TDPDA. The closure properties are summarized in Table 1.

Table 1. Closure properties of the language families discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for DFAs and DPDAs and are marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. h−1 REV

REG Yes Yes Yes — — Yes — Yes Yes Yes Yes

L (IDPDA) Yes No No Yes Yes No Yes Yes No No Yes

L (TDPDA) Yes No No Yes Yes No No No No Yes No

L (rt-DPDA) Yes No No — — No — No No Yes No

Since the questions of emptiness, finiteness, infiniteness, universality, and
regularity are decidable for DPDAs, all questions are decidable for TDPDAs
as well. However, the question of inclusion is undecidable for DPDAs, but
decidable for IDPDAs. Thus, the question arises whether or not inclusion is
decidable for two TDPDAs (M,T) and (M ′, T). Since the inclusion of the lan-
guages L(M,T) ⊆ L(M ′, T) is equivalent to L(M,T)∩L(M,T) = ∅ and we know
that TDPDAs are closed under complementation and intersection and the empti-
ness problem for TDPDAs is decidable, we obtain that the inclusion problem

34 M. Kutrib et al.

is decidable under the condition that the signatures of the given TDPDAs are
compatible. Moreover, the latter assumption is in fact necessary, since it is shown
in [14] that the inclusion problem becomes undecidable in case of incompatible
signatures even for IDPDAs with the additional restriction on their pushdown
store to be a counter only.

Let us now replace the data structure of a pushdown store by a queue store. In
this way, we obtain input-driven queue automata (IDQA) introduced in [11] and
tinput-driven queue automata studied in [12]. Here, every IDQA has a signature
(ΣN , ΣD, ΣR), where a symbol from ΣN leaves the queue store unchanged, a
symbol from ΣD enters a symbol to the queue store, and a symbol from ΣD

removes a symbol from the queue store. Interestingly, for TDQAs we can apply
similar ideas and methods as for TDPDAs which lead to similar results as for
the pushdown variants.

Similar to our discussion for TDPDAs, both languages L1 = { an$an | n ≥ 1 }
and L2 = { anb2n | n ≥ 1 } are not accepted by any IDQA, whereas their
preprocessed variants L′

1 = { an$bn | n ≥ 1 } and L′
2 = { an(bc)n | n ≥ 1 }

are easily accepted by TDQAs. Hence, TDQAs may be more powerful than
IDQAs. On the other hand, every TDQA can be simulated by some real-time
deterministic queue automaton (rt-DQA) and it can be shown that the language
{ anbn+mam | n,m ≥ 1 } already used is not accepted by any TDQA as well.
Hence, we obtain the following hierarchy.

Theorem 4. L (IDQA) ⊂ L (TDQA) ⊂ L (rt-DQA).

Considering deterministic and nondeterministic variants of the underlying
transducer T and the underlying IDQA M of a TDQA (M,T) leads again to
four cases. For TDPDAs it is known that the underlying IDPDA can always be
determinized which leads to two classes depending on whether the underlying
finite state transducer is deterministic or nondeterministic. This is no longer true
for TDQAs, since it can be shown that language

{ an$h(w1)$h(w2)$ · · · $h(wm) | m,n ≥ 1, wk ∈ {a, b}n, 1 ≤ k ≤ m,

and there exist 1 ≤ i < j ≤ m so that wi = wj },

where h is the homomorphism that maps a to #a and b to #b, is accepted by
some TDQAd,n, but not by any TDQAd,d. On the other hand, each TDQAn,n

can be converted to an equivalent TDQAn,d. Here, the basic idea is to shift the
nondeterminism of the IDQA to the transducer. This means basically that the
transducer additionally guesses the nondeterministic moves of the IDQA and
outputs these guesses as suitable symbols which in turn can be processed by
an IDQA in a deterministic way. Finally, it is possible to separate the language
classes induced by TDQAd,ns and TDQAn,ns using the union of the languages
{u$v#1u | u, v ∈ {a, b}∗ } and {u$v#2v | u, v ∈ {a, b}∗ }. Altogether, these
results lead to the following hierarchy.

Boosting Pushdown and Queue Machines by Preprocessing 35

Theorem 5. L (TDQAd,d) ⊂ L (TDQAd,n) ⊂ L (TDQAn,n) = L (TDQAn,d).

Under the condition of compatible signatures it is again possible to show
the closure under the Boolean operations. However, the closure under union
and intersection may get lost if the signatures are no longer compatible. For
example, the languages { bancanb | n ≥ 0 } and { banbamcamb | m,n ≥ 0 } are
each accepted by some TDQA with different signatures, but it is shown in [6]
that their union is not even accepted by any real-time DQA.

Theorem 6. Let (M,T) and (M ′, T) be two TDQAs with compatible signa-
tures. Then, TDQAs accepting the intersection L(M,T) ∩ L(M ′, T), the union
L(M,T)∪L(M ′, T), and the complement L(M,T) can effectively be constructed.

Interestingly, the reversal of the union of the above languages is accepted by
some TDQA, which shows the non-closure under reversal. Further non-closure
results are known for concatenation, iteration, and length-preserving homomor-
phism. These proofs are basically identical to that for TDPDAs, since the proofs
refer to the fact that language { anbn+mam | n,m ≥ 1 } is not accepted by any
TDPDA, which is true for any TDQA as well. The closure properties are sum-
marized in Table 2. Since it is known that the questions of emptiness, finiteness,
universality, inclusion, equivalence, regularity, and context-freeness are undecid-
able for IDQAs [11], it is clear that all questions are undecidable for TDQAs as
well. However, when considering the restricted variant of k-turn deterministic
queue automata (DQAk), which means that in every computation at most k
changes between increasing and decreasing the queue store may take place for
some fixed integer k, then the questions of emptiness, finite, and universality
become decidable [11]. These decidability results can be extended to hold for
IDQAks and TDQAks as well. Furthermore, exploiting again the closure under
the Boolean operations in case of compatible signatures and the decidability
of emptiness, it can be shown that inclusion and equivalence is decidable for
TDQAks with compatible signatures.

Table 2. Closure properties of the language families discussed. Symbols ∪c and ∩c

denote union and intersection with compatible signatures. Such operations are not
defined for DFAs and DQAs and are marked with ‘—’.

∪ ∩ ∪c ∩c · ∗ hl.p. REV

REG Yes Yes Yes — — Yes Yes Yes Yes

L (IDQA) Yes No No Yes Yes No No No No

L (TDQA) Yes No No Yes Yes No No No No

L (rt-DQA) Yes No No — — No No No No

Theorem 7. Let k ≥ 0 be a constant and (M,T) as well as (M ′, T) be k-turn
TDQA with compatible signatures. Then, emptiness, finiteness, and universal-
ity of L(M,T) is decidable. Furthermore, the inclusion and the equivalence of
L(M,T) and L(M ′, T) is decidable as well.

36 M. Kutrib et al.

Finally, we remark that the decidability of inclusion is no longer true for
IDQAks in case of incompatible signatures which holds for TDQAks as well,
whereas it is an open problem whether or not the equivalence problem is decid-
able for IDQAks or TDQAks in case of incompatible signatures. If we come back
to general TDQAs, then it is known that inclusion and equivalence is undecidable
even if compatible signatures are considered.

We can summarize so far that the preprocessing of the input in case of
input-driven automata with pushdown or queue store boosts their computa-
tional power, but at the same time preserves the nice features of input-driven
automata such as the closure under Boolean operations as well as the decidability
of inclusion and equivalence in case of compatible signatures.

4 Boosting Reversible Machines

Reversible pushdown automata (REV-PDA) are conventional DPDAs that in
addition to their transition function δ possess a reverse transition function
δ← such that a configuration c′ is reached from configuration c by apply-
ing δ if and only if c is reached from c′ by applying δ←. REV-PDAs have
been introduced in [10] and it is shown there, for example, that REV-PDAs
can be assumed to work in real time and induce a language class that is a
proper subset of the real-time deterministic context-free languages which is
witnessed by the language L = { anbn | n ≥ 1 }. The gap between reversible
and irreversible context-free languages is very small, since the slightly changed
language L′ = { ancbn−1 | n ≥ 1 } is accepted by a REV-PDA. Again as
observed for IDPDAs, language L′ can be obtained from L by preprocessing the
input by an injective and length-preserving deterministic finite state transducer.
Hence, we will consider in the following transducer reversible pushdown automata
(T-REV-PDA) which are pairs (M,T), where T is an injective and length-
preserving DFST and M is a REV-PDA. Similarly, if M is a reversible finite
automaton or a reversible queue automaton [13] (REV-QA), we obtain trans-
ducer reversible finite automata (T-REV-FA) as well as transducer reversible
queue automata (T-REV-QA). All these models have been introduced in [3,4]
and we will in the sequel summarize known results with respect to their com-
putational capacity and closure properties. Since general DQAs may perform
arbitrarily many λ-steps, which is necessary to show their computational uni-
versality, we limit for REV-QAs and T-REV-QAs the maximal number of con-
secutive λ-steps to a fixed number. Moreover, it can be shown for both models
that they can be converted to equivalent REV-QAs and T-REV-QAs, respec-
tively, that work in real time. It should also be noted that in a first definition
the DFSTs had to be reversible as well. However, it is possible to cede this con-
dition (as well as the condition of being injective), since it can be shown that
both conditions can be recovered by the pair of transducer and automaton so
that the same language classes are accepted not depending on the reversibility
or injectivity of the given preprocessing transducer.

Boosting Pushdown and Queue Machines by Preprocessing 37

Concerning the computational capacity we can state that the preprocess-
ing boosts the computational power of all three variants. For T-REV-FAs the
equality with the regular languages can be established. As discussed above,
a T-REV-PDA can accept the irreversible deterministic context-free language
{ anbn | n ≥ 1 }, and language { ambn$w#w | m,n ≥ 0, w ∈ {a, b}∗ } is accepted
by some T-REV-QA, but is not accepted by any REV-QA. On the other hand,
by computing the output of the DFST internally and simulating the automa-
ton directly on the output, every T-REV-PDA can be simulated by a real-time
DPDA as well as every T-REV-QA can be simulated by a real-time DQA. The
inclusions of both corresponding language classes are proper which is witnessed
by the two languages

{w$wR | w ∈ {a, b}∗ } ∪ {w$cn | w ∈ {a, b}∗ and |w| = n } and
{w1$w1#w2$w2 | w1, w2 ∈ {a, b}∗ } ∪ {w1$c

|w1|#w2$w2 | w1, w2 ∈ {a, b}∗ }.

Hence, we have the following hierarchies.

Theorem 8. – L (T-REV-FA) = REG,
– L (T-REV-FA) ⊂ L (REV-PDA) ⊂ L (T-REV-PDA) ⊂ L (rt-DPDA), and
– L (T-REV-FA) ⊂ L (REV-QA) ⊂ L (T-REV-QA) ⊂ L (rt-DQA).

So far, we have required that the preprocessing transducer of our devices
is deterministic and length-preserving. It has been discussed above that the
reversibility and injectivity can be ceded without changing the language classes.
This immediately raises the question what happens when both conditions are
weakened. We will not discuss nondeterministic transducers here, since we want
to stick with reversible models which are deterministic by definition. Interest-
ingly, the condition to be length-preserving can be ceded as well without changing
the corresponding language classes which means that the preprocessing trans-
ducer may be an arbitrary general finite state transducer. The basic idea of
the construction is that such a general transducer T is converted to a length-
preserving transducer T ′ that emits symbols which are identified with the words
emitted by T . Then, the automaton M ′ has to work on this compressed alpha-
bet which means that reading one symbol emitted by T ′ implies to simulate
several steps of the original automaton M , which in turn means that M ′ must
be able to handle compressed symbols over the pushdown alphabet and queue
alphabet, respectively. However, this can be achieved for REV-PDAs as well as
for REV-QAs by detailed constructions.

Theorem 9. The family L (T-REV-PDA) is equal to the family of languages
accepted by pairs of general DFSTs and REV-PDAs. The family L (T-REV-QA)
is equal to the family of languages accepted by pairs of general DFSTs and
REV-QAs.

Finally, we discuss the closure properties of the families L (T-REV-PDA)
and L (T-REV-QA) which are summarized in Table 3. We start with the comple-
mentation operation for which the positive closure can be shown. The traditional

38 M. Kutrib et al.

Table 3. Closure properties of the language classes induced by transducer reversible
automata.

∪ ∩ ∪R ∩R · ∗ hl.p. h−1 REV

REG Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

L (REV-PDA) Yes No No No No No No No Yes No

L (T-REV-PDA) Yes No No Yes Yes No No No Yes No

L (rt-DPDA) Yes No No Yes Yes No No No Yes No

L (REV-QA) Yes No No No No No No No Yes No

L (T-REV-QA) Yes No No Yes Yes No No No Yes No

L (rt-DQA) Yes No No Yes Yes No No No Yes No

approach to show closure under complementation is to interchange accepting and
non-accepting states. However, as in the construction for DPDAs [9] one has to
ensure that the complete input is read and that no infinite loop on empty input
is ever entered. The latter problem does neither occur for T-REV-PDAs nor for
T-REV-QAs since both models can be assumed to work in real time. The former
problem can be overcome by introducing a new sink state to which all undefined
transitions are redirected and, to preserve reversibility, to log the predecessor
of the sink state and the remaining input symbols on the pushdown store and
queue store, respectively. For the closure under inverse homomorphism we can
apply the fact shown in Theorem 9. In detail, it shown that the inverse homo-
morphic image can be represented by a pair of a general DFST and a REV-PDA
or a REV-QA, respectively. Finally, we can use the DFST of a T-REV-PDA
(T-REV-QA) for the reversible simulation of a regular language. Then, a stan-
dard construction using the Cartesian product shows the closure under union
and intersection with regular languages. We note that REV-PDAs as well as
REV-QAs are not closed under both operations in general. One has additionally
to ensure that the given regular languages are reversible.

Theorem 10. Let (M,T) be a T-REV-PDA (resp. T-REV-QA) and R a regular
language. Then, a T-REV-PDA (resp. T-REV-QA) accepting the intersection
L(M,T) ∩ R, the union L(M,T) ∪ R, the complement L(M,T), and the inverse
homomorphic image h−1(L(M,T)) for some homomorphism h can effectively be
constructed.

The families L (T-REV-PDA) and L (T-REV-QA) are not closed under
intersection in general. Here, basically the proofs known for DPDAs and
rt-DQAs apply. Due to the closure under complementation, both families can-
not be closed under union as well. To show the non-closure under concatenation,
iteration, reversal, and length-preserving homomorphism one can utilize some
languages already used in the corresponding proofs for REV-PDAs, DPDAs,
REV-QAs, and rt-DQAs. In all cases, the assumption that L (T-REV-PDA) or
L (T-REV-QA) is closed under one operation leads to a language that is no
longer acceptable by a DPDA or a rt-DQA, respectively.

Boosting Pushdown and Queue Machines by Preprocessing 39

Theorem 11. The families L (T-REV-PDA) and L (T-REV-QA) are neither
closed under union, intersection, concatenation, iteration, reversal, nor under
length-preserving homomorphism.

We can summarize that the preprocessing of the input also in case of
reversible automata with pushdown or queue store boosts their computational
power, preserves the positive closure results of the reversible automata, and adds
the closure under union and intersection with regular languages.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. Vol.
I: Parsing. Prentice-Hall Inc., Englewood Cliffs (1972)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Sym-
posium on Theory of Computing (STOC 2004), pp. 202–211. ACM (2004)

3. Axelsen, H.B., Kutrib, M., Malcher, A., Wendlandt, M.: Boosting reversible push-
down machines by preprocessing. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS,
vol. 9720, pp. 89–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40578-0 6

4. Axelsen, H.B., Kutrib, M., Malcher, A., Wendlandt, M.: Boosting reversible push-
down and queue machines by preprocessing (2018, Submitted to a journal)

5. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Karpinski, M., van Leeuwen, J. (eds.) Topics in the Theory of Computa-
tion, Mathematics Studies, vol. 102, pp. 1–19. North-Holland, Amsterdam (1985)

6. Cherubini, A., Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: QRT FIFO automata,
breadth-first grammars and their relations. Theor. Comput. Sci. 85, 171–203 (1991)

7. Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: On deterministic multi-pass analysis.
SIAM J. Comput. 15(3), 668–693 (1986)

8. Friburger, N., Maurel, D.: Finite-state transducer cascades to extract named enti-
ties in texts. Theor. Comput. Sci. 313(1), 93–104 (2004)

9. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

10. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.
78(6), 1814–1827 (2012)

11. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B., Wendlandt, M.: Determinis-
tic input-driven queue automata: finite turns, decidability, and closure properties.
Theor. Comput. Sci. 578, 58–71 (2015)

12. Kutrib, M., Malcher, A., Wendlandt, M.: Input-driven queue automata with inter-
nal transductions. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2016. LNCS, vol. 9618, pp. 156–167. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30000-9 12

13. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. Fundam.
Inform. 148(3–4), 341–368 (2016)

14. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown, counter, and
stack automata. Fundam. Inform. 155(1–2), 59–88 (2017)

15. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

https://doi.org/10.1007/978-3-319-40578-0_6
https://doi.org/10.1007/978-3-319-40578-0_6
https://doi.org/10.1007/978-3-319-30000-9_12
https://doi.org/10.1007/978-3-319-30000-9_12

40 M. Kutrib et al.

16. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

17. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014)

https://doi.org/10.1007/3-540-10003-2_89

The Validity of Weighted Automata

Sylvain Lombardy1 and Jacques Sakarovitch2(B)

1 LaBRI - UMR 5800 - Bordeaux INP - Bordeaux University - CNRS,
Bordeaux, France

2 IRIF - UMR 8243 - CNRS/Paris Diderot University and Telecom ParisTech,
Paris, France

sakarovitch@enst.fr

Extended Abstract
(adapted from the introduction of [14])

This invited talk presents the work conducted on the problems that arise
when dealing with weighted automata containing ε-transitions: how to define the
behaviour of such automata in which the presence of ε-circuits results in infinite
summations, and second how to eliminate the ε-transitions in an automaton
whose behaviour has been recognised to be well-defined. The origin of this work
is the implementation, in the Awali platform [19], of an ε-transition removal
algorithm for automata with weight in Q or R, a case that had never been treated
before in the rich literature on the subject of ε-transition removal algorithms
(cf. [16] for a survey). The results of this work have been published in [14].

The equivalence between non-deterministic finite automata (NFA) and non-
deterministic finite automata with ε-transitions (ε-NFA) is a basic result in the
theory of finite automata (e.g. in [10]). Besides the proof that ε-transitions do
not increase the power of the computation model, this equivalence allows simple
constructions; hence the interest in the construction of NFA from ε-NFA which
amounts to the computation of the transitive closure of the graph of ε-transi-
tions, more or less intertwined with the construction of the NFA itself.

Automata with weights taken in semirings have been considered since the
beginning of the 60’s and the recent investigations on quantitative evaluation
of systems make them of current interest. Removal of ε-transitions is of equal
importance for weighted automata as for Boolean ones, but even the definition
of the behaviour of a weighted automaton with ε-transitions is not so obvious: if
the graph of ε-transitions contains a circuit, then the sum of the weights along
the paths following this circuit may well be not defined, as for instance in the
automaton Q1 of Fig. 1(a). For that reason, some of the most mathematically
oriented works on automata, such as [1] or [12], have ruled out the possibility of
having circuits of ε-transitions in automata, either explicitly with the hypothesis
of cycle-free automata, or implicitly by considering the discrete topology on the
weight semiring. As a result, the automaton Q2 of Fig. 1(b) is also considered
as an illegitimate object. Yet, the natural topology on Q or R should allow to
consider that such weighted automata with circuits of ε-transitions may be valid.

J. Sakarovitch Joint work with S. Lombardy.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 41–45, 2018.
https://doi.org/10.1007/978-3-319-94812-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_4&domain=pdf

42 S. Lombardy and J. Sakarovitch

a |1
ε |1

(a) Q1

a |1
ε | 1

2

(b) Q2

Fig. 1. A non-valid automaton Q1, and Q2 that should be considered valid

The definition of the behaviour of weighted automata with ε-transitions
requires a theoretical framework in which it is possible to define infinite sums, at
least some particular ones. It appears indeed that these infinite sums are created
by the paths along a circuit (as in the loops in Fig. 1) and may be expressed by
the star operator.

A first approach to solving the issue of infinite sums, which we call the
axiomatic approach, is the setting of a framework in which the star operator
is always defined — making the previous evaluation always possible — and
satisfies a number of axioms that guarantee the behaviour be well-defined and
the evaluation correct. This yields on one hand the notions of complete, and
continuous, semirings (cf. [2,4,7,11]), and on the other the notion of Conway
and partial Conway semirings (cf. [2,3,9]). The weighted automata we want to
deal with, such as probabilistic or distance automata, are natural computational
models, while their weight semirings (e.g. Q, R or Zmin) are neither complete
nor continuous nor partial Conway semirings. In order to address these cases,
we have made the choice in our previous work ([17,18]) of a topological approach
to infinite sums and to the notion of summability of infinite families.

A natural definition for a valid automaton is then that the family of all
computations be summable, that is, that for every word w the family of weights
of paths with label w be summable. One may be more cautious, and require that
for every pair of states the family of weights of paths between these states and
with label w be summable. This definition, taken in [17,18], yields a consistent
theory; it however conceals the weakness of not being effective as it says nothing
on how one can compute or decide that an infinite family is summable. As noted
above, the evaluation of infinite sums is made through the star operator, which
implies block summations. And then, computations are likely to meet two pitfalls,
different, and almost opposite:

1. A subfamily of a summable family is not necessarily summable, and an evalu-
ation may fail on what is considered as a ‘valid’ automaton. Such a situation
occurs with the automaton T2 of Fig. 2(a) whose weights are in N∞, the
semiring N ∪ +∞ equipped with the discrete topology, where an infinite sum
is defined if, and only if, almost all terms are 0, or at least one term is +∞.
The sum of the weights of paths in this automaton is therefore defined, but
the evaluation of this sum through the star operator may require to compute
the star of 1 which is not defined.

2. On the other side, it is well-known that block summations may give values to
non summable families. Automaton Q3 of Fig. 2(b) yields an example of such

The Validity of Weighted Automata 43

a phenomenon. Weights of Q3 are in Q where, for every x in]− 1; 1[, the star
of x is defined and is equal to (1−x)−1. The usual formula for the evaluation

of the computations labelled by ε gives
(

−1
2 + 1

2

(−1
2

)∗ 1
2

)∗
= 3

5 but a direct

computation on the transition matrix M yields M2 = −M which shows that
computations grouped by length are not summable.

ε |+∞

ε |1

ε |1

(a) 2

ε | 1
2

ε | 1
2

ε | −1
2 ε | −1

2

(b) Q3

Fig. 2. The two pitfalls of the ε-removal computations

We therefore take a stronger definition of validity : we will say that a weighted
automaton is valid if the sum of weighted labels of every rational set of paths is
well-defined. This definition has several outcomes. It insures first that in any kind
of semirings, any (reasonable) ε-removal algorithm will succeed on every valid
weighted automaton and turn it into an equivalent proper automaton. Second,
this definition is not as restrictive as it may appear. It rules out tricky examples
in awkward semirings (such as N∞) but coincides with the former definition in
all cases of usual semirings. It encompasses the cases treated with the axiomatic
approach where indeed the decision of validity is trivial. Finally, this definition
provides a framework in which the closure algorithm yields a decision procedure
for the validity of automata in the cases we wanted to treat. All in all, this
definition of validity is more complex than the other ones but fulfills our goals
without narrowing its domain of application.

A byproduct of this definition of validity is the stability and consistency with
natural transformations of automata: a subautomaton of a valid automaton is
valid and so is a covering (kind of unfolding) of a valid automaton. The validity
of automata is also consistent with that of rational expressions, provided the
transformation of the latter into the former does not artificially introduce ε-tran-
sitions. This last condition brings to light a weakness of Thompson’s construction
compared to the other classical ones.

After the definition of validity, the next step is the computation of the
behaviour of an automaton, which amounts to describing algorithms for ε-tran-
sition removal. It begins with the study of the relationships between the validity
of an automaton and the starability of its transition matrix. In the axiomatic
approach, the behaviour of an automaton is defined by the star of the transition
matrix and the problem is to set up conditions that guarantee its starability. The
topological approach goes in the opposite direction and an automaton which is
not valid may well have a starable transition matrix. It is proved that under the

44 S. Lombardy and J. Sakarovitch

condition that an automaton is valid, its transition matrix is starable and the
classical formulas can be applied to compute the star. This leads to a first family
of algorithms that have been abundantly described in the literature ([13,15,16]).

Another family of algorithms, hardly less classical, is based on the iteration
of elementary operations of suppression of ε-transitions. The correctness comes
from the correctness of each elementary operation, but the termination of the
algorithm has to be carefully checked.

The final task is to address the problem of deciding the validity of an automa-
ton. The success of an algorithm on a given automaton is not a sufficient condi-
tion for the automaton be valid. There is no general and uniform answer to the
problem and that the existence, and the details, of a solution will depend on the
properties of the weight semiring. It is for instance classical that the only valid
automata with weights in N or Z are those with no circuits of ε-transitions, a
decidable property. The opposite case, that is, the one in which every automaton
is valid, and which meets the class of rationally additive semirings of [8], is also
characterised.

The cases in-between, that is, semirings such that some, but not all, automata
with circuits of ε-transitions are valid, is a new area of reasearch. In this work,
it is established that the validity of K-automata is decidable — decided by the
success of the algorithm quoted above — when K is a topological (partially)
ordered positive semiring (TOPS) with the property that the domain of the star
operator is downward closed. This class of semirings contains for instance Q+,
R+, Zmin (and all the tropical semirings). Moreover, in starable TOPS — such as
for instance the semiring Rat A∗ of rational languages over A∗ — every weighted
automaton is valid and this class contains the continuous semirings (cf. [5]).

With a last step, the decidability problem for Q- or R-automata is reduced
to the one for automata with weights in TOPS by considering the absolute value
of such automata. The initial goal of solving the problem of ε-transition removal
algorithm for Q- or R-automata is then reached: we have both the theoretical
justification and the algorithm that allows to transform the automaton Q4 of
Fig. 3(a) into the automaton Q5 of Fig. 3(b).

2
a |1

b |1

ε | 1
2

ε |−1

(a) Q4

a | 2
3

b | 2
3

b | 1
3 a | −2

3

2
3

4
3

(b) Q5

Fig. 3. A transformation which needs theoretical foundation

As a last remark, it can be mentioned that, for sake of simplicity, the only
automata considered in this work are the weighted automata over free monoids,
but the same definitions, constructions and results hold for automata over graded
monoids (that is, monoids with a length), and thus in particular for transducers.

The Validity of Weighted Automata 45

This work fills the effectivity gap that was left open by our definition of valid
automata in [17,18]. In general, the success of any ε-removal algorithm may never
insure the validity of an automaton. In order to reach a decidability procedure,
we have been led to a strong definition of validity, which implies stability under
automata transformations that are paths preserving. The algorithms described
in this work are implemented in Awali [19].

References

1. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications.
Cambridge University Press, Cambridge (2011)

2. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993). https://doi.
org/10.1007/978-3-642-78034-9

3. Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration semirings. Fundam.
Inform. 86, 19–40 (2008)

4. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

5. Droste, M., Kuich, W.: Semirings and formal power series. In: Droste et al. [6], pp.
3–28

6. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

7. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

8. Ésik, Z., Kuich, W.: Locally closed semirings. Monatshefte für Mathematik 137,
21–29 (2002)

9. Ésik, Z., Kuich, W.: Finite automata. In: Droste et al. [6], pp. 69–104
10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,

Languages and Computation, 3rd edn. Addison-Wesley, Boston (2006)
11. Kuich, W.: Automata and languages generalized to ω-continuous semirings. The-

oret. Comput. Sci. 79, 137–150 (1991)
12. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer, Heidelberg

(1986). https://doi.org/10.1007/978-3-642-69959-7
13. Lehmann, D.J.: Algebraic structure for transitive closure. Theoret. Comput. Sci.

4, 59–76 (1977)
14. Lombardy, S., Sakarovitch, J.: The validity of weighted automata. Int. J. Algebra

Comput. 23(4), 863–914 (2013)
15. Mohri, M.: Generic ε-removal and input ε-normalization algorithms for weighted

transducers. Int. J. Found. Comput. Sci. 13, 129–143 (2002)
16. Mohri, M.: Weighted automata algorithms. In: Droste et al. [6], pp. 213–254
17. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-

bridge (2009). corrected English translation of Éléments de théorie des automates,
Vuibert, Paris (2003)

18. Sakarovitch, J.: Rational and recognisable power series. In: Droste et al. [6], pp.
105–174

19. Awali: Another Weighted Automata LIbrary. vaucanson-project.org/AWALI

https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-69959-7
http://vaucanson-project.org/AWALI

Algorithms for Weighted Finite
Automata with Failure Transitions

Cyril Allauzen(B) and Michael D. Riley

Google, New York, NY, USA
allauzen@google.com, riley@google.com

Abstract. In this paper we extend several weighted finite automata
(WFA) algorithms to automata with failure transitions (ϕ-WFAs).
Failure transitions, which are taken only when no immediate match is
possible at a given state, are used to compactly represent automata and
have many applications. Efficient algorithms to intersect two ϕ-WFAs,
to remove failure transitions, to trim, and to compute (over R+) the
shortest distance in a ϕ-WFA are presented.

1 Introduction

Weighted finite automata are used in many applications including speech
recognition [19], speech synthesis [11], machine translation [13], computational
biology [10], image processing [2], and optical character recognition [7]. Such
applications often have strict time and memory requirements, so efficient repre-
sentations and algorithms are paramount. We examine one useful technique, the
use of failure transitions, to represent automata compactly. A failure transition is
taken only when no immediate match to the input is possible at a given state. In
this paper, we will present efficient algorithms to combine, optimize and search
weighted automata with failure transitions.

Aho and Corasick [1] introduce failure transitions in the context of efficient
string matching from a finite set of strings input. Mohri [16] shows how to use
failure transitions in string matching from finite automata input. Several authors
explore constructing deterministic failure automata from arbitrary deterministic
finite automata (DFA) for space optimization [6,15,22].

Automata with failure transitions, initially introduced for string matching
problems, have found wider use including compactly representing language,
pronunciation, transliteration and semantic models [3,8,12,14,20,21,27].

Mohri [18] gives a concise presentation of various fundamental weighted
automata algorithms, many generalizations of classical algorithms to the
weighted case. These algorithms include intersection, epsilon removal and short-
est distance. Our goal here is to present similar algorithms for weighted automata
with failure transitions.

This paper is organized as follows. In Sect. 2 we introduce the automata
classes and related notation used here. In Sect. 3 we present the algorithms for
automata with failure transitions. In Sect. 4 offer discussion and include mention
of a related open-source software library.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 46–58, 2018.
https://doi.org/10.1007/978-3-319-94812-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_5&domain=pdf

Algorithms for Weighted Finite Automata with Failure Transitions 47

2 Preliminaries

2.1 Semirings

A semiring K = (K,⊕,⊗, 0, 1) consists of a set K together with an associative
and commutative operation ⊕ and an associative operation ⊗, with identities 0
and 1, respectively, such that ⊗ distributes over ⊕, and 0 ⊗ x = x ⊗ 0 = 0. A
semiring is commutative if the ⊗ operation is also commutative.

Let K be a semiring equipped with a metric Δ.1 A family {xi}i∈I of elements
in K is summable to x ∈ K if ∀η > 0 there is a Jη ⊂ I such that

Δ
(⊕

i∈L

xi, x
)

≤ η (1)

for all finite L with Jη ⊆ L ⊂ I [25].

2.2 Weighted Automata

A weighted finite automaton (WFA) A = (Σ,Q,E, i, F, ρ) over a semiring K is
given by a finite alphabet Σ, a finite set of states Q, a finite set of transitions
E ⊆ Q × Σ × K × Q, an initial state i ∈ Q, a set of final states F ⊆ Q, and a
final weight function ρ : F → K.

A transition e = (p[e], �[e], w[e], n[e]) ∈ E represents a move from the source
or previous state p[e] to the destination or next state n[e] with the label �[e] and
weight w[e]. The transitions with source state q are denoted by E[q].

Transitions e1 and e2 are consecutive if n[ei] = p[ei+1]. A path π = e1 · · · en ∈
E∗ is a finite sequence of consecutive transitions. The source state of a path we
denote by p[π] and the destination state by n[π]. The label of a path is the
concatenation of its transition labels: �[π] = �[e1] · · · �[en]. The weight of a path
is obtained by ⊗-multiplying its transition weights: w[π] = w[e1] ⊗ · · · ⊗ w[en].
For a non-empty path, the i-th transition is denoted by πi.

P (q, q′) denotes the set of all paths in A from q to q′. We extend this to sets
in the obvious way: P (q,R) denotes the set of all paths q to q′ ∈ R and so forth.

A path π is successful if it is in P (i, F) and in that case the automaton is
said to accept the input string α = �[π]. The weight of α ∈ Σ∗ assigned by the
automaton is:

A(α) =
⊕

π∈P (i,F): �[π]=α

w[π]ρ(n[π]). (2)

2.3 Weighted Automata with ε or ϕ Transitions

A weighted finite automaton with ε-transitions (ε-WFA) Aε = (Σ,Q,Eε, i, F, ρ)
is a WFA extended to allow a transition to have an empty label denoted by ε:
Eε ⊆ Q× (Σ ∪{ε})×K×Q. A weighted finite automaton with failure transitions
1 A metric Δ : K × K → R+ satisfies (1) Δ(x, y) = Δ(y, x), (2) Δ(x, y) = 0 iff x = y,

and (3) Δ(x, y) ≤ Δ(x, z) + Δ(y, z) for all x, y, z ∈ K.

48 C. Allauzen and M. D. Riley

Fig. 1. The (dashed red) path ei = (qi, ϕ, ωi, qi+1) to ej = (qj , a, ωj , qj+1) is disallowed
since a can be read already on e = (qi, a, ω, q). (Color figure online)

(ϕ-WFA) Aϕ = (Σ,Q,Eϕ, i, F, ρ) is a WFA extended to allow a transition to
have a special failure label denoted by ϕ: Eϕ ⊆ Q × (Σ ∪ {ϕ}) × K × Q.

Neither ε and ϕ transitions add to a path label; they consume no input as
their labels are identity elements of string concatenation for their respective
automata. An ε-transition places no restriction on a path; it is a ‘free’ move.
A failure transition, however, is followed only when the input can not be read
immediately.

Specifically, a path e1 · · · en in a ϕ-WFA is disallowed if it contains a subpath
ei · · · ej such that �[ek] = ϕ for i ≤ k < j and there is another transition
e ∈ E such that p[ei] = p[e] and �[ej] = �[e] ∈ Σ (see Fig. 1). Since the label
a = l[ej] can be read on e, we do not follow the failure transitions to read it on
ej as well.

We use P ∗(q, q′) ⊆ P (q, q′) to denote the set of (not dis-) allowed paths from
q to q′ in a ϕ-WFA. This again extends to sets in the obvious way. A path π is
successful in a ϕ-WFA if π ∈ P ∗(i, F) and �[π|π|] �= ϕ and only in that case is
the input string α = �[π] accepted.2

The weight of α ∈ Σ∗ assigned by the automaton is:

Aϕ(α) =
⊕

π∈P ∗(i,F): �[π]=α,�[π|π|] �=ϕ

w[π]ρ(n[π]). (3)

For these automata, we will assume there are no ε- or ϕ-labeled cycles.
When there is at most one exiting failure transition per state we call the
automaton ϕ-deterministic. We will also assume the ϕ-WFAs in this paper are
ϕ-deterministic.

Two automata are equivalent if they accept the same strings with the same
weights. Any weighted finite automaton is trivially also a ϕ-WFA. In the next
section we describe how to remove the failure transitions from a ϕ-WFA to
produce an equivalent ϕ-free WFA. As with ε-transitions, ϕ-transitions do not
extend the set of weighted languages, rational power series, representable by
WFAs [5].

2 The condition that a successful path cannot end in a ϕ-labeled transition simplifies
the presentation without loss of generality since there is an equivalent ϕ-WFA with
the final weights propagated to the ϕ sources.

Algorithms for Weighted Finite Automata with Failure Transitions 49

ϕ-Intersection(A1, A2)
1 i ← (i1, i2)
2 Q ← S ← {i}
3 while S �= ∅ do
4 (q1, q2) ← Head(S)
5 Dequeue(S)
6 for each e1 ∈ E1[q1] do
7 if �[e1] �= ϕ then
8 for e2 ∈ E∗

2 (q2) s.t. �[e1] = �[e2] do
9 Add((q1, q2), �[e1], w[e1] ⊗ w[e2], (n[e1], n[e2]))

10 else
11 Add((q1, q2), ϕ, w[e1], (n[e1], q2))
12 if q1 ∈ F1 and q2 ∈ F2 then
13 F ← F ∪ {(q1, q2)}
14 ρ(q1, q2) ← ρ1(q1) ⊗ ρ2(q2)
15 return A

Add(q, l, w, q′)
1 if q′ �∈ Q then
2 Q ← Q ∪ {q′}
3 Enqueue(S, q′)
4 E ← E ∪ {(q, l, w, q′)}

Fig. 2. Pseudocode of the intersection algorithm with failure transitions.

2.4 ϕ-Removed Automata

Given a ϕ-WFA A = (Σ,Q,E, i, F, ρ), let the ϕ-removed transitions leaving q
be defined as:

E∗[q] =
{

(q, a, ω, q′) : π ∈ P ∗(q,Q), a = �[π] = �[π|π|] ∈ Σ, q′ = n[π],

ω =
⊕

π′∈P ∗(q,q′): a=�[π′]=�[π′
|π′|],q

′=n[π′]

w[π′]
}

This is a set of (possibly new) transitions (q, a, ω, q′), one for each source state
q and destination state q′ of one or more a-labeled paths with optional leading
failure transitions. The weight is the ⊕-sum of all such paths between those state
pairs and with that label.

Then define the ϕ-removed WFA as (Σ,Q,∪q∈QE∗[q], i, F, ρ).

3 Algorithms

In this section we wish to extend some common WFA algorithms to the case
where failure transitions are present.

3.1 Intersection

Computing the intersection of two WFAs is a fundamental operation and one of
the most useful. For example, the application of an n-gram language model to
an unweighted string (or more general unweighted automaton) is accomplished
by intersection [3]. We extend intersection to ϕ-WFAs as follows:

50 C. Allauzen and M. D. Riley

Let K be a commutative semiring and let A1 = (Σ,Q1, E1, ii, F1, ρ1) and
A2 = (Σ,Q2, E2, i2, F2, ρ2) be two ϕ-WFAs over the same alphabet. The inter-
section of A1 and A2 is a ϕ-WFA denoted by A1 ∩ A2 and specified for
all x by:

(A1 ∩ A2)(x) = A1(x) ⊗ A2(x). (4)

Leaving aside ϕ-transitions, the following rule specifies how to compute a transi-
tion of A1∩A2 from transitions of A1 and A2 with matching labels: (q1, a, ω1, q

′
1)

and (q2, a, w2, q
′
2) results in ((q1, q2), a, w1 ⊗ w2, (q′

1, q
′
2)). A simple algorithm to

compute the intersection of two such automata, following the above rule, is given
in [16].

The idea for extending the intersection algorithm when one or both automata
have failure transitions is to output failure transitions where appropriate other-
wise follow the failure transitions when matching. Figure 2 gives the pseudocode
for computing A = A1 ∩ A2 = (Σ,Q,E, i, F, ρ) in this case.

E and F are assumed initialized to the empty set and grown as needed.
The algorithm uses a queue S with arbitrary discipline to hold the state pairs
yet to be examined. The state set Q is initially the pair of initial states
(lines 1–2). Each time through the loop in lines 3–14, a new pair of states (q1, q2)
is extracted from S (lines 4–5). Each non-ϕ-transition e1 leaving q1 is matched
with ϕ-removed transitions e2 leaving q2 (lines 7–8). A transition is created
with the matching label from (q1, q2) to (n[e1], n[e2]) with weight computed by
⊗-multiplying the weights of the matching transitions. A transition is also cre-
ated for each ϕ-transition e1 leaving q1 from (q1, q2) to (n[e1], q2) with weight
w[e1] (lines 10–11). If q1 and q2 are final, the pair (q1, q2) is final with final weight
computed by ⊗-multiplying the component final weights (lines 12–14).

If there are no failure transitions in A1, this algorithm is simply the WFA
intersection of A1 with the ϕ-removed A2 (lines 7–9). Failure transitions in A1,
however, appear in the output; they delay failure matching on that side (lines 10–
11) similar to epsilon processing in ε-WFAs [16]. The choice of which automaton
is used in line 6 can be generalized to be state-dependent. For example, one
could use the automaton at line 6 for which |Ei(qi)| is less.

The worst-case time complexity of the algorithm is in O(|E1||Q2|(m2 +
l2log d2)), where di is the maximum out-degree, mi is the maximum label multi-
plicity3 and li the maximum length of a ϕ-labeled path at a state in Ai (assuming
line 8 is implemented as a binary search).

3.2 ϕ-Removal

An algorithm to ϕ-remove a WFA A over alphabet Σ to produce an equivalent
WFA is shown in Fig. 3. The pseudocode uses the algorithm of Fig. 2 to intersect
the input with a ϕ-free WFA that accepts Σ∗. The intersection algorithm only
outputs failure transitions from its first argument, as previously noted, and there
are none. Intersection with Σ∗ produces an equivalent result.
3 Label multiplicity at state q is the maximum number of outgoing transitions in q

sharing the same label.

Algorithms for Weighted Finite Automata with Failure Transitions 51

ϕ-Removal(A)
1 E0 ← {

(i0, a, 1, i0) : a ∈ Σ
}

2 ρ0(i0) ← 1
3 A0 ← (Σ, {i0}, E0, i0, {i0}, ρ0)
4 return ϕ-Intersection(A0, A)

Fig. 3. Pseudocode of the ϕ-removal algorithm

ϕ-Trim(A)
1 Acc, Σ⊥ ← ϕ-Accessible(A)
2 CoAcc ← ϕ-CoAccessible(A)
3 E ← {e ∈ E | �[e] �∈ Σ⊥[p[e]]}
4 Q′ ← φ, E′ ← φ
5 if i ∈ F then
6 Q′ ← Q′ ∪ {i}
7 for each e ∈ E do
8 if Useful(e) then
9 E′ ← E′ ∪ {e}

10 Q′ ← Q′ ∪ {p[e], n[e]}
11 return (Σ, Q′, E′, i, F ∩ Q′, ρ)

Useful(e)
1 if Acc[p[e]] = undiscovered then
2 return false
3 if CoAcc[n[e]] �= undiscovered then
4 return true
5 if (p[e], ϕ, β, q′) ∈ E then
6 for each e′ ∈ E∗[q′] s.t. �[e′] = �[e] do
7 if CoAcc[n[e′]] �= undiscovered then
8 return true
9 return false

Fig. 4. Pseudocode to trim a ϕ-WFA.

3.3 Trimming

Trimming removes states and transitions from an automaton that are useless.
These could arise, for example, as the by-product of an intersection algorithm.
In a WFA, a state or transition is useless if it is not on a successful path or
equivalently, it is not both accessible and coaccessible. A state is accessible if
it can be discovered in a visitation (e.g., depth-first) from the initial state [9].
Similarly, coaccessibility can be determined in a visitation in the reverse direction
from the final states [9].

For a ϕ-WFA we must keep each state and transition that is on a suc-
cessful path or equivalently if it is both ϕ-accessible from the initial state and
ϕ-coaccessible to a final state. A state q is ϕ-accessible if P ∗(i, q) is not empty.
ϕ-accessible transitions and ϕ-coaccessible states and transitions are similarly
defined. Unlike a WFA we may also need to retain a state or transition in order
to disallow a path in a ϕ-WFA. For example in Fig. 7 the a-labeled transition
leaving state q and its destination state are needed, regardless if on a successful
path, to disallow reading ϕa from q to q′′.

Figure 4 gives the pseudocode to ϕ-trim a ϕ-WFA A. First the ϕ-accessible
and ϕ-coaccessible states are found (lines 1–2). The set of disallowed labels at a
state Σ⊥, i.e. those that are not the label of a transition leaving q that is on a
ϕ-accessible path, is also computed at this time. See below for their implemen-
tations. The disallowed transitions are then filtered out (line 3).

52 C. Allauzen and M. D. Riley

ϕ-Accessible(A)
1 for each q ∈ Q do
2 Acc[q] ← undiscovered
3 Acc[i] ← discovered
4 S ← {i}
5 while S �= ∅ do
6 q ← Head(S)
7 Dequeue(S)
8 N ← {e ∈ E[q] s.t. �[e] /∈ Σ⊥[q] and Acc[n[e]] /∈ {discovered,visited}}
9 for each e ∈ N do

10 if �[e] �= ϕ then
11 Σ⊥[n[e]] ← φ
12 Acc[n[e]] ← discovered
13 else
14 ϕ-Discover(n[e], q, N)
15 Acc[n[e]] ← ϕ-discovered
16 if n[e] /∈ S then
17 Enqueue(S, n[e])
18 if Acc[q] = discovered then
19 Acc[q] ← visited
20 else
21 Acc[q] ← ϕ-visited
22 return Acc, Σ⊥

ϕ-Discover(n, q, N)
1 if Acc[n] = undiscovered then
2 Σ⊥[n] ← Σ⊥[q] ∪ {l[e] ∈ Σ | e ∈ N}
3 else
4 Σ⊥[n] ← Σ⊥[n] ∩ (Σ⊥[q] ∪ {l[e] ∈ Σ | e ∈ N})

Fig. 5. Pseudocode to determine which states are ϕ-accessible and which labels are
disallowed at a state.

The automaton is then examined for useful transitions and any found are
retained in the result (lines 4–11). A transition is useful if its source state is
ϕ-accessible and its destination is ϕ-coaccessible (lines 1–4) or if it is needed to
forbid a path (lines 5–8).

Figure 5 gives the pseudocode for computing ϕ-accessibility. The algorithm
uses an arbitrary queue S containing the states to be processed. Each time
through the loop in lines 5–21, a new state q is extracted from S (lines 6–7).
Each transition e leaving q that is not already discovered, visited or has a dis-
allowed label is considered in turn (lines 8–9). If it is a non-ϕ-transition, then
its destination state is marked as discovered and cleared of any previously dis-
allowed labels (lines 10–12). Otherwise, it is a ϕ-transition and its destination
state is marked as ϕ-discovered (line 14–15).

In this ϕ-discovered case, the disallowed labels at q together with the tran-
sition labels leaving q become the disallowed labels at n[q] if just discovered
(lines 1–2). Otherwise, the existing set is filtered by the disallowed labels at q
and any newly allowed transition labels leaving q (lines 3–4).

Once a transition is processed, its destination state n[q] is enqueued if needed
(lines 16–17). Once all the transitions leaving q are processed, state q is marked
as visited or ϕ-visited if previously discovered or ϕ-discovered (lines 18–21).

Algorithms for Weighted Finite Automata with Failure Transitions 53

ϕ-coaccessibility on the ϕ-accessible component of A can be computed with a
standard coaccessibility computation if restricted to paths that are ϕ-accessible,
as previously found, and that do not end in a ϕ-labeled transition. The time com-
plexity of trimming is dominated by the computation of ϕ-accessibility, which
is in O(l(|E| + (CS + log d)|Q|)) where d is the maximum out-degree, l is the
maximum length of a ϕ-labeled path in A, and CS is the maximum cost of a
queue operation for S.

3.4 Shortest Distance

Shortest-distance algorithms play a central role in applications on weighted
automata requiring searching, counting, normalization or approximation
[3,20,23,27]. In these applications, the tropical semiring (R+∪{∞},min,+,∞, 0)
and the positive real semiring R+ = (R+,+,×, 0, 1) are among the most widely
used.
Shortest Distance on WFAs and ε-WFAs. The shortest distance from the
initial state i to state q in a WFA A over semiring K is defined as:

δ[q] =
⊕

π∈P (i,q)

w[π] (5)

when well-defined and in K [17]. Mohri presented an algorithm to compute this
shortest distance that is often much more efficient than alternatives such as
Floyd-Warshall [17]. The pseudocode is shown in Fig. 6. We show his extended
version where K is equipped with a metric Δ and an ε threshold.

The algorithm is a generalization of classical shortest distance algorithms
over the tropical semiring4 to more general semirings [9]. The algorithm uses a
queue S to extract states (line 7) whose transitions e are relaxed to update d[n[e]]
(lines 11–13), the estimate of the shortest distance to that state. Unlike the clas-
sical algorithms, a second array r[q] is maintained (lines 9, 14) that ensures that
the weights added to d[q] from paths in P (i, q) are applied only once, important
for the non-idempotent case (i.e. when a⊕a �= a). See [17] for the detailed proofs.

Mohri proved exact computation of δ[q] (with Δ(x, y) = 1x�=y and ε = 1
for any queue S) when the input is acyclic, is over a k-closed semiring, or is k-
closed for A.5 For other semirings such as R+, it is an approximation algorithm
controlled by ε. We prove convergence and correctness for R+ below.

Theorem 1. Let A be a WFA over R+ equipped with the usual metric Δ(x, y) =
|x − y|. Assume the family of path weights {w[π]}π∈P (i,q) defining δ[q] is
summable for all q ∈ Q. Then ShortestDistance(A, S, ε) terminates for
any queue S and any ε > 0. Further for any η > 0, there is an ε > 0 such that
at termination Δ(d[q], δ[q]) ≤ η for any q ∈ Q.
4 Such as Dijkstra or Bellman-Ford with the appropriate queue disciplines on S.
5 Semiring K is k-closed if for all a in K,

⊕k+1
i=0 ai =

⊕k
i=0 ai. It is k-closed for A if

the weight a of each cycle in A verifies
⊕k+1

n=0 an =
⊕k

n=0 an. The tropical semiring
is 0-closed [17].

54 C. Allauzen and M. D. Riley

To prove this theorem, we first introduce a lemma. As in [17], define finite
D(q) ⊆ P (i, q), q ∈ Q as the set of all paths whose weight have been added so
far to d[q] at some time in the execution of the program.

ShortestDistance(A, S, ε)
1 for each q ∈ Q do
2 d[q] ← r[q] ← 0
3 d[i] ← r[i] ← 1
4 S ← {i}
5 while S �= ∅ do
6 q ← Head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q] ← 0

10 for each e ∈ E[q] do
11 d′ ← d[n[e]] ⊕ (r′ ⊗ w[e])
12 if Δ(d[n[e]], d′) ≥ ε then
13 d[n[e]] ← d′

14 r[n[e]] ← r[n[e]] ⊕ (r′ ⊗ w[e])
15 if n[e] /∈ S then
16 Enqueue(S, n[e])
17 d[i] ← 1
18 return d

ϕ-ShortestDistance(A, S, ε)
1 return ShortestDistance(Aε, Sε, ε)

Enqueue(Sε, q)
1 if q ∈ Q then
2 Enqueue(S, q)
3 else
4 e ← (q − |Q|), ϕ, β, q′) ∈ E
5 Enqueue(Sfifo[n[e]], q)

Head(Sε)
1 q ← Head(S)
2 if Sfifo[q] �= φ then
3 return Head(Sfifo[q])
4 else
5 return q

Dequeue(Sε)
1 q ← Head(S)
2 if Sfifo[q] �= φ then
3 Dequeue(Sfifo[q])
4 else
5 Dequeue(S)

Fig. 6. Shortest-distance algorithm without [17] and with failure transitions.

Lemma 1. For any path π ∈ P (i, q), there is a θπ > 0 such that π is in D(n[π])
after some point in the execution of the algorithm provided the algorithm is run
with ε ≤ θπ and it terminates.

Proof. If |π| = 0, then π ∈ D(i) with θπ = 1 by line 3. If |π| > 0, let π = τe, e ∈
E and assume, by induction, τ ∈ D(n[τ]) for all ε ≤ θτ . Let θπ = min {θτ , w[π]}.
State n[τ] was enqueued since τ ∈ D(n[τ]). When it is dequeued, which must
happen since the algorithm is assumed to terminate, line 11 will succeed for π.
This follows since Δ(d[n[e]], d[n[e]] ⊕ (r′ ⊗ w[e])) = |r′w[e]| ≥ |(w[τ] + x)w[e]| ≥
w[π] ≥ θπ, where x represents the weight of any other paths added to r′. Thus
π is added to D(n[π]) at line 12 for all ε ≤ θπ.

Proof (Theorem 1). Termination: The d[q] form a monotone increasing sequence
of partial sums d1, d2, . . . during the execution of the program and are bounded
above by δ(q). This ensures the condition in line 11 succeeds only finitely many
times.

Algorithms for Weighted Finite Automata with Failure Transitions 55

Convergence to δ[q]: Select finite Jη(q) to satisfy Eq. 1 for the summable
family {w[π]}π∈P (i,q) for η > 0. By Lemma 1 there is a θq = minπ∈Jη(q) θπ such
that Jη(q) ⊆ D(q) and by Eq. 1

Δ
(⊕

π∈D(q)

w[π], δ[q]
)

≤ η

provided ε ≤ θq. But d[q] =
⊕

π∈D(q) w[π] as shown in [17]. So if we select ε as
minq∈Q θq, we prove the theorem. ��

Fig. 7. Failure transitions in A are replaced by ε-transitions in Aε. To compensate for
the formerly disallowed paths, new (dashed red) negatively-weighted paths are added.
(Color figure online)

The time complexity of the algorithm is in O(Nε(|E| + CS |Q|)) where Nε

is the maximum number of times a state can be enqueued given the threshold
ε and CS is the maximum cost of a queue operation for S [17].

Since the transition labels play no role in the definitions and results of this
section, they apply equally to ε-WFAs. In the next section, the labels matter.
Shortest Distance on ϕ-WFAs. We define the shortest distance from the
initial state i to state q in a ϕ-WFA as:

δ[q] =
⊕

π∈P ∗(i,q)

w[π] (6)

when well-defined and in K.
We present an algorithm for the positive real semiring R+, an important case

in applications. To do so, we will transform ϕ-WFA A on R+ to an equivalent
ε-WFA Aε on R = (R,+, ∗, 0, 1). We can then use the ShortestDistance
algorithm in Fig. 6, suitably adapted.

Given a ϕ-WFA A = (Σ,Q,E, i, F, ρ) with Q = {1, . . . , |Q|} define
Qε = {1, . . . , 2|Q|} and

Eε = {(q, a, ω, q′) ∈ E : a ∈ Σ} ∪
{(q, ε, β, q′) : (q, ϕ, β, q′) ∈ E} ∪ {(q, ε, β, q + |Q|) : (q, ϕ, β, q′) ∈ E} ∪
{(q + |Q|, a,−ν, q′′) : (q, ϕ, β, q′)(q′, a, ν, q′′) ∈ P (q, q′′), a ∈ Σ} .

56 C. Allauzen and M. D. Riley

Then let the ε-WFA be Aε = (Σ,Qε, Eε, i, F, ρ). Each failure transition in A
is relabeled with an ε in Aε, allowing previously disallowed paths. To compensate
for this, each disallowed consecutive ϕ- and a-labeled transition pair in A also
has a corresponding negatively-weighted consecutive ϕ- and a-labeled transition
pair in Aε that cancels it (see Fig. 7) [20,23].

If A is acyclic, the family of path weights defining δ[q] is summable in Aε since
finite and ShortestDistance can be applied. The cyclic case requires more
care; the presence of negative weights means that the partial sums may diverge
or converge to something other than δ[q] depending on the ordering of the sum-
mands (cf. the Reimann Rearrangement Theorem [24]). We will select a queue
discipline for the new states in Aε to ensure the correct behavior. The idea is to
have the negatively-weighted terms be immediately cancelled by their positively-
weighted counterparts in the running of the algorithm (cf. [26]). Figure 6 shows
the pseudocode for the queue and the general shortest distance algorithm with
failure transitions.

The queue Sε enqueues states in Q in the arbitrary subqueue S
(lines 1–2). New states q + |Q|, q ∈ Q are enqueued in a FIFO subqueue array
Sfifo[q′] indexed by the ϕ-successor state q′ of q (lines 3–5). Sε ensures that any
new state is dequeued from the subqueue array (lines 2–3) just before its index
state (lines 4–5). In this way, the positive and negative weights of the disallowed
a transitions will immediately cancel in d[q′′] at relaxation (see Fig. 7).6

The complexity is the same as in the ϕ-free case since |Qε| = 2|Q|, |Eε| < 2|E|
and CSε

∈ O(CS).

4 Discussion

The intersection algorithm presented ensures ϕ-determinism in the result with
ϕ-deterministic input. Mohri and Yang [20] describe an alternative algorithm
that adds ϕ-non-determinism but avoids the ϕ-removal E∗

2 [q2].
The proof of Theorem 1 takes advantage of rather specific (complete, mono-

tonic, total) order properties of R rather than more general metric properties.7

Can this shortest distance algorithm be extended to further semirings? It is
easy to see that if the algorithm is correct with semirings K1 and K2 hav-
ing metrics Δ1 and Δ2, then K1 × K2 having the square metric Δ(x, y) =
max(Δ1(x, y),Δ2(x, y)) is also correct.

These algorithms have been implemented as part of SFST, an open-source
C++ library for normalizing, sampling, combining, and approximating stochastic
finite-state transducers [4].

6 We could also add logic so that when line 12 of the shortest distance algorithm is
executed for a disallowed transition then it is also always executed for any nega-
tive compensating transition in case |r[q + |Q|]ν| < ε < |r[q′]ν|. This however is
an unneeded precaution since with small enough ε any discrepancy is insignificant
compared to the floating-point precision of d[q′′].

7 The real numbers can be defined axiomatically as a field with a complete, monotonic
total order [24].

Algorithms for Weighted Finite Automata with Failure Transitions 57

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Albert, J., Kari, J.: Digital image compression. In: Droste, M., Kuich, W., Vogler,
H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series, pp. 453–479. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-01492-5 11

3. Allauzen, C., Mohri, M., Roark, B.: Generalized algorithms for constructing lan-
guage models. In: Proceedings of ACL, pp. 40–47 (2003)

4. Allauzen, C., Riley, M.: SFST: Stochastic FST Library (2017). http://sfst.
opengrm.org

5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Hei-
delberg (1988)

6. Björklund, H., Björklund, J., Zechner, N.: Compact representation of finite
automata with failure transitions. Technical report, UMINF 13.11, Ume̊a Uni-
versity (2013)

7. Breuel, T.M.: The OCRopus open source OCR system. In: Proceedings of
IS&T/SPIE 20th Annual Symposium (2008)

8. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Technical report, TR-10-98, Harvard University (1998)

9. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MITP (1992)
10. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
London (1998)

11. Ebden, P., Sproat, R.: The Kestrel TTS text normalization system. Nat. Lang.
Eng. 21(3), 333–353 (2015)

12. Hellsten, L., Roark, B., Goyal, P., Allauzen, C., Beaufays, F., Ouyang, T., Riley,
M., Rybach, D.: Transliterated mobile keyboard input via weighted finite-state
transducers. In: FSMNLP 2017, pp. 10–19 (2017)

13. Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., Riley, M.: Hierarchical phrase-
based translation representations. In: EMNLP 2011, pp. 1373–1383 (2011)

14. Katz, S.M.: Estimation of probabilities from sparse data for the language model
component of a speech recogniser. IEEE Trans. Acoust. Speech Signal Process.
35(3), 400–401 (1987)

15. Kourie, D.G., Watson, B.W., Cleophas, L.G., Venter, F.: Failure deterministic
finite automata. In: Stringology, pp. 28–41 (2012)

16. Mohri, M.: String-matching with automata. Nord. J. Comput. 4(2), 217–231 (1997)
17. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.

Automata Lang. Comb. 7(3), 321–350 (2002)
18. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.

(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series, pp. 213–254. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-01492-5 6

19. Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state
transducers. In: Benesty, J., Sondhi, M.M., Huang, Y.A. (eds.) Springer Handbook
of Speech Processing. SH, pp. 559–584. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-49127-9 28

20. Mohri, M., Yang, S.: Competing with automata-based expert sequences. In: Pro-
ceedings of AISTATS (2018)

https://doi.org/10.1007/978-3-642-01492-5_11
https://doi.org/10.1007/978-3-642-01492-5_11
http://sfst.opengrm.org
http://sfst.opengrm.org
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1007/978-3-540-49127-9_28

58 C. Allauzen and M. D. Riley

21. Novak, J.R., Minematsu, N., Hirose, K.: Failure transitions for joint n-gram models
and G2P conversion. In: INTERSPEECH, pp. 1821–1825 (2013)

22. Nxumalo, M., Kourie, D.G., Cleophas, L., Watson, B.W.: An assessment of algo-
rithms for deriving failure deterministic finite automata. S. Afr. Comput. J. 29(1),
43–68 (2017)

23. Roark, B., Allauzen, C., Riley, M.: Smoothed marginal distribution constraints for
language modeling. In: ACL 2013, vol. 1, pp. 43–52 (2013)

24. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York
(1964)

25. Sakarovich, J.: Rational and recognizable power series. In: Droste, M., Kuich, W.,
Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical
Computer Science. An EATCS Series, pp. 105–174. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 4

26. Schaefer, P.: Sum-preserving rearrangements of infinite series. Am. Math. Monthly
88(1), 33–40 (1981)

27. Velikovich, L.: Semantic model for fast tagging of word lattices. In: 2016 IEEE
Spoken Language Technology Workshop (SLT), pp. 398–405. IEEE (2016)

https://doi.org/10.1007/978-3-642-01492-5_4

The Bottom-Up Position Tree Automaton
and Its Compact Version

Samira Attou1, Ludovic Mignot2(B), and Djelloul Ziadi2

1 Faculty of Mathematics, RECITS Laboratory, USTHB,
BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria

sattou@usthb.dz
2 Groupe de Recherche Rouennais en Informatique Fondamentale,

Université de Rouen Normandie,
Avenue de l’Université, 76801 Saint-Étienne-du-Rouvray, France

{ludovic.mignot,djelloul.ziadi}@univ-rouen.fr

Abstract. The conversion of a given regular tree expression into a
tree automaton has been widely studied. However, classical interpre-
tations are based upon a Top-Down interpretation of tree automata.
In this paper, we propose a new construction based on Gluskov’s
one using a Bottom-Up interpretation. One of the main goals of this
technique is to consider as a next step the links with deterministic recog-
nizers, consideration that cannot be performed with classical Top-Down
approaches. Furthermore, we exhibit a method to factorize transitions of
tree automata and show that this technique is particularly interesting for
the Glushkov constructions, by considering natural factorizations due to
the structure of regular expression.

1 Introduction

Automata are recognizers used in various domains of applications especially in
computer science, e.g. to represent (non necessarily finite) languages, or to solve
the membership test, i.e. to verify whether a given element belongs to a language
or not. Regular expressions are compact representations for these recognizers.
Indeed, in the case where elements are words, it is well known that each regular
expression can be transformed into a finite state machine recognizing the lan-
guage it defines. Several methods have been proposed to realize this conversion.
As an example, Glushkov [6] (and independently Mc-Naughton and Yamada [9])
showed how to construct a non deterministic finite automaton with n + 1 states
where n represents the number of letters of a given regular expression. The main
idea of the construction is to define some particular sets named First, Follow
and Last that are computed with respect to the occurrences of the symbols that
appear in the expression.

These so-called Glushkov automata (or position automata) are finite state
machines that have been deeply studied. They have been structurally charac-
terized by Caron and Ziadi [4], allowing us to invert the Glushkov computation

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 59–70, 2018.
https://doi.org/10.1007/978-3-319-94812-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_6&domain=pdf

60 S. Attou et al.

by constructing an expression with n symbols from a Glushkov automaton with
n + 1 states. They have been considered too in the theoretical notion of one-
unambiguity by Bruggemann-Klein and Wood [3], characterizing regular lan-
guages recognized by a deterministic Glushkov automaton, or with practical
thoughts, like expression updating [2]. Finally, it is also related to combinatorial
research topics. As an example, Nicaud [12] proved that the average number of
transitions of Glushkov automata is linear.

The Glushkov construction was extended to tree automata [8,11], using a
Top-Down interpretation of tree expressions. This interpretation can be prob-
lematic while considering determinism. Indeed, it is a folklore that there exist
regular tree languages that cannot be recognized by Top-Down deterministic
tree automata. Extensions of one-ambiguity are therefore incompatible with this
approach.

In this paper, we propose a new approach based on the construction of
Glushkov in a Bottom-Up interpretation. We also define a compressed version
of tree automata in order to factorize the transitions, and we show how to apply
it directly over the Glushkov computation using natural factorizations due to
the structure of the expressions. The paper is structured as follows: in Sect. 2,
we recall some properties related to regular tree expressions; we also introduce
some basics definitions. We define, in Sect. 3, the position functions used for the
construction of the Bottom-Up position tree automaton. Section 4 indicates the
way that we construct the Bottom-Up position tree automaton with a linear
number of states using the functions shown in Sect. 3. In Sect. 5, we propose the
notion of compressed automaton and show how to reduce the size of the position
automaton computed in the previous section.

2 Preliminaries

Let us first introduce some notations and preliminary definitions. For a
boolean condition ψ, we denote by (E | ψ) E if ψ is satisfied, ∅ otherwise.
Let Σ = (Σn)n≥0 be a finite ranked alphabet. A tree t over Σ is inductively
defined by t = f(t1, . . . , tk) where f ∈ Σk and t1, . . . , tk are k trees over Σ. The
relation “s is a subtree of t” is denoted by s ≺ t for any two trees s and t. We
denote by root(t) the root symbol of the tree t, i.e.

root(f(t1, . . . , tk)) = f. (1)

The predecessors of a symbol f in a tree t are the symbols that appear directly
above it. We denote by father(t, f), for a tree t and a symbol f the pairs

father(t, f) = {(g, i) ∈ Σl × N | ∃g(s1, . . . , sl) ≺ t, root(si) = f}. (2)

These couples link the predecessors of f and the indices of the subtrees in t that
f is the root of. Let us consider a tree t = g(t1, . . . , tk) and a symbol f . By
definition of the structure of a tree, a predecessor of f in t is a predecessor of f

The Bottom-Up Position Tree Automaton and Its Compact Version 61

in a subtree ti of t, or g if f is a root of a subtree ti of t. Consequently:

father(t, f) =
⋃

i≤n

father(ti, f) ∪ {(g, i) | f ∈ root(ti)}. (3)

We denote by TΣ the set of trees over Σ. A tree language L is a subset of TΣ .
For any 0-ary symbol c, let t ·c L denote the tree language constituted of the

trees obtained by substitution of any symbol c of t by a tree of L. By a linear
extension, we denote by L ·c L′ = {t ·c L′ | t ∈ L}. For an integer n, the n-th
substitution c,n of a language L is the language Lc,n recursively defined by

Lc,n =

{
{c}, if n = 0,

L ·c Lc,n−1 otherwise.

Finally, we denote by L(E∗c
1) the language

⋃
k≥0 L(E1)c,k.

An automaton over Σ is a 4-tuple A = (Q,Σ,QF , δ) where Q is a set of
states, QF ⊆ Q is the set of final states, and δ ⊂ ⋃

k≥0(Q
k × Σk × Q) is the set

of transitions, which can be seen as the function from Qk × Σk to 2Q defined by

(q1, . . . , qk, f, q) ∈ δ ⇔ q ∈ δ(q1, . . . , qk, f).

It can be linearly extended as the function from (2Q)k × Σk to 2Q defined by

δ(Q1, . . . , Qn, f) =
⋃

(q1,...,qn)∈Q1×···Qn

δ(q1, . . . , qn, f). (4)

Finally, we also consider the function Δ from TΣ to 2Q defined by

Δ(f(t1, . . . , tn)) = δ(Δ(t1), . . . ,Δ(tn), f).

Using these definitions, the language recognized by the automaton A is the
language {t ∈ TΣ | Δ(t) ∩ QF �= ∅}.

A regular expression E over the alphabet Σ is inductively defined by:

E = f(E1, . . . , Ek), E = E1 + E2,

E = E1 ·c E2, E = E∗c
1 ,

where k ∈ N, c ∈ Σ0, f ∈ Σk and E1, . . . , Ek are any k regular expressions over
Σ. In what follows, we consider expressions where the subexpression E1 ·c E2

only appears when c appears in the expression E1. The language denoted by E
is the language L(E) inductively defined by

L(f(E1, . . . , Ek)) = {f(t1, . . . , tk) | tj ∈ L(Ej), j ≤ k},

L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 ·c E2) = L(E1) ·c L(E2),

L(E∗c
1) = L(E1)∗c ,

62 S. Attou et al.

with k ∈ N, c ∈ Σ0, f ∈ Σk and E1, . . . , Ek any k regular expressions
over Σ.

A regular expression E is linear if each symbol Σn with n �= 0 occurs at
most once in E. Note that the symbols of rank 0 may appear more than once.
We denote by E the linearized form of E, which is the expression E where any
occurrence of a symbol is indexed by its position in the expression. The set
of indexed symbols, called positions, is denoted by Pos(E). We also consider
the delinearization mapping h sending a linearized expression over its original
unindexed version.

Let φ be a function between two alphabets Σ and Σ′ such that φ sends Σn

to Σ′
n for any integer n. By a well-known adjunction, this function is extended

to an alphabetical morphism from T (Σ) to T (Σ′) by setting φ(f(t1, . . . , tn)) =
φ(f)(φ(t1), . . . , φ(tn)). As an example, one can consider the delinearization mor-
phism h that sends an indexed alphabet to its unindexed version. Given a lan-
guage L, we denote by φ(L) the set {φ(t) | t ∈ L}. The image by φ of an
automaton A = (Σ,Q,QF , δ) is the automaton φ(A) = (Σ′, Q,QF , δ′) where

δ′ = {(q1, . . . , qn, φ(f), q) | (q1, . . . , qn, f, q) ∈ δ}.

By a trivial induction over the structure of the trees, it can be shown that

φ(L(A)) = L(φ(A)). (5)

3 Position Functions

In this section, we define the position functions that are considered in the con-
struction of the Bottom-Up automaton in the next sections. We show how to
compute them and how they characterize the trees in the language denoted by
a given expression.

Let E be a linear expression over a ranked alphabet Σ and f be a symbol
∈ Σk. The set Root(E), subset of Σ, contains the roots of the trees in L(E), i.e.

Root(E) = {root(t) | t ∈ L(E)}. (6)

The set Father(E, f), subset of Σ × N, contains a couple (g, i) if there exists a
tree in L(E) with a node labeled by g the i-th child of is a node labeled by f :

Father(E, f) =
⋃

t∈L(E)

father(t, f). (7)

Example 1. Let us consider the ranked alphabet defined by Σ2 = {f}, Σ1 = {g},
and Σ0 = {a, b}. Let E and E be the expressions defined by

E = (f(a, a) + g(b))∗a ·b f(g(a), b), E = (f1(a, a) + g2(b))∗a ·b f3(g4(a), b).

The Bottom-Up Position Tree Automaton and Its Compact Version 63

Hence,

Root(E) = {a, f1, g2},

Father(E, f1) = {(f1, 1), (f1, 2)}, Father(E, a) = {(f1, 1), (f1, 2), (g4, 1)},

Father(E, g2) = {(f1, 1), (f1, 2)}, Father(E, b) = {(f3, 2)},

Father(E, f3) = {(g2, 1)}, Father(E, g4) = {f3, 1}.

Let us show how to inductively compute these functions.

Lemma 1. Let E be a linear expression over a ranked alphabet Σ. The set
Root(E) is inductively computed as follows:

Root(f(E1, ..., En)) = {f},

Root(E1 + E2) = Root(E1) ∪ Root(E2),

Root(E1 ·c E2) =

{
Root(E1) \ {c} ∪ Root(E2) if c ∈ L(E1),
Root(E1) otherwise,

Root(E∗c
1) = Root(E1) ∪ {c},

where E1, . . . , En are n regular expressions over Σ, f is a symbol in Σn and c
is a symbol in Σ0.

Lemma 2. Let E be a linear expression and f be a symbol in Σk. The set
Father(E, f) is inductively computed as follows:

Father(g(E1, ..., En), f) =
⋃

i≤n

Father(Ei, f) ∪ {(g, i) | f ∈ Root(Ei)},

Father(E1 + E2, f) = Father(E1, f) ∪ Father(E2, f),
Father(E1 ·c E2, f) = (Father(E1, f) | f �= c) ∪ Father(E2, f)

∪ (Father(E1, c) | f ∈ Root(E2))
Father(E∗c

1 , f) = Father(E1, f) ∪ (Father(E1, c) | f ∈ Root(E1)),

where E1, . . . , En are n regular expressions over Σ, g is a symbol in Σn and c
is a symbol in Σ0.

Proof (partial). Let us consider the following cases.

(1) Let us consider a tree t = t1 ·c L(E2) with t1 ∈ L(E1). By definition, t equals
t1 where the occurrences of c have been replaced by some trees t2 in L(E2).
Two cases may occur. (a) If c �= f , then a predecessor of the symbol f in
t can be a predecessor of the symbol f in a tree t2 in L(E2), a predecessor
of the symbol f in t1, or a predecessor of c in t1 if an occurrence of c in t1
has been replaced by a tree t2 in L(E2) the root of which is f . (b) If c = f ,
since the occurrences of c have been replaced by some trees t2 of L(E2), a
predecessor of the symbol c in t can be a predecessor of the symbol c in a
tree t2 in L(E2), or a predecessor of c in t1 if an occurrence of c has been
replaced by itself (and therefore if it appears in L(E2)). In both of these two
cases, we conclude using Eqs. (3) and (6).

64 S. Attou et al.

(2) By definition, L(E∗c
1) =

⋃
k≥0 L(E1)c,k. Therefore, a tree t in L(E∗c

1) is
either c or a tree t1 in L(E1) where the occurrences of c have been replaced
by some trees t2 in L(E1)c,k for some integer k. Let us then proceed by
recursion over k. If k = 1, a predecessor of f in t is a predecessor of f in
t1, a predecessor of f in a tree t2 in L(E1)c,1 or a predecessor of c in t1 if
an occurrence of c in t1 was substituted by a tree t2 in L(E1)c,1 the root of
which is f , i.e.

Father(Ec,2
1 , f) = Father(E1, f) ∪ (Father(E1, c) | f ∈ Root(E1)).

By recursion over k and with the same reasoning, each recursion step adds
Father(E1, f) to the result of the previous step, and therefore

Father(Ec,k
1 , f) = Father(E1, f) ∪ (Father(E1, c) | f ∈ Root(E1)).

�
Let us now show how these functions characterize, for a tree t, the membership
of t in the language denoted by an expression.

Definition 1. Let E be a linear expression over a ranked alphabet Σ and t be
a tree in T (Σ). The property P (t) is the property defined by

∀s = f(t1, . . . , tn) ≺ t,∀i ≤ n, (f, i) ∈ Father(E, root(ti)).

Proposition 1. Let E be a linear expression over a ranked alphabet Σ and t be
a tree in T (Σ). Then (1) t is in L(E) if and only if (2) root(t) is in Root(E)
and P (t) is satisfied.

Proof (partial). Let us first notice that the proposition 1 ⇒ 2 is direct by defini-
tion of Root and Father. Let us show the second implication by induction over
the structure of E. Hence, let us suppose that root(t) is in Root(E) and P (t) is
satisfied.

(1) Let us consider the case when E = E1 ·c E2. Let us first suppose that root(t)
is in Root(E2). Then c is in L(E1) and P (t) is equivalent to

∀s = f(t1, . . . , tn) ≺ t,∀i ≤ n, (f, i) ∈ Father(E2, root(ti)).

By induction hypothesis t is in L(E2) and therefore in L(E).
Let us suppose now that root(t) is in Root(E1). Since E is linear, let us

consider the subtrees t2 of t with only symbols of E2 and a symbol of E1 as
a predecessor in t. Since P (t) holds, according to induction hypothesis and
Lemma 2, each of these trees belongs to L(E2). Hence t belongs to t1 ·c L(E2)
where t1 is equal to t where the previously defined t2 trees are replaced by
c. Once again, since P (t) holds and since root(t) is in Root(E1), t1 belongs
to L(E1).

In these two cases, t belongs to L(E).

The Bottom-Up Position Tree Automaton and Its Compact Version 65

(2) Let us consider the case when E = E∗c
1 . Let us proceed by induction over

the structure of t. If t = c, the proposition holds from Lemmas 1 and 2.
Following Lemma 2, each predecessor of a symbol f in t is a predecessor
of f in E1 (case 1) or a predecessor of c in E1 (case 2). If all the prede-
cessors of the symbols satisfy the case 1, then by induction hypothesis t
belongs to L(E1) and therefore to L(E). Otherwise, we can consider (simi-
larly to the catenation product case) the smallest subtrees t2 of t the root of
which admits a predecessor in t which is a predecessor of c in E1. By induc-
tion hypothesis, these trees belong to L(E1). And consequently t belongs to
t′ · · · L(E1) where t′ is equal to t where the subtrees t2 have been substituted
by c. Once again, by induction hypothesis, t′ belongs to L(E∗c

1). As a direct
consequence, t belongs to L(E). �

4 Bottom-Up Position Automaton

In this section, we show how to compute a Bottom-Up automaton with a linear
number of states from the position functions previously defined.

Definition 2. The Bottom-Up position automaton PE of a linear expression E
over a ranked alphabet Σ is the automaton (Σ,Pos(E),Root(E), δ) defined by:

((f1, . . . , fn), g, g) ∈ δ ⇔ ∀i ≤ n, (g, i) ∈ Father(E, fi).

Example 2. The Bottom-Up position automaton (Pos(E),Pos(E),Root(E), δ)
of the expression E defined in Example 1 is defined as follows:

Pos(E) = {a, b, f1, g2, f3, g4},Root(E) = {a, f1, g2},

δ = {(a, a), (b, b), ((a, a), f1, f1), ((a, f1), f1, f1), ((a, g2), f1, f1), ((f1, a), f1, f1),
((f1, f1), f1, f1), ((f1, g2), f1, f1), ((g2, a), f1, f1), ((g2, f1), f1, f1),
((g2, g2), f1, f1), (f3, g2, g2), ((b, g4), f3, f3), (a, g4, g4)}

Let us now show that the position automaton of E recognizes L(E).

Lemma 3. Let PE = (Σ,Q,QF , δ) be the Bottom-Up position automaton of a
linear expression E over a ranked alphabet Σ, t be a tree in TΣ and f be a symbol
in Pos(E). Then (1) f ∈ Δ(t) if and only if (2) root(t) = f ∧ P (t).

Proof. Let us proceed by induction over the structure of t = f(t1, . . . , tn). By
definition, Δ(t) = δ(Δ(t1), . . . ,Δ(tn), f). For any state fi in Δi, it holds from
the induction hypothesis that

fi ∈ Δ(ti) ⇔ root(ti) = fi ∧ P (ti). (*)

Then, suppose that (1) holds (i.e. f ∈ Δ(t)). Equivalently, there exists by
definition of PE a transition ((f1, . . . , fn), f, f) in δ such that fi is in Δ(ti) for
any integer i ≤ n. Consequently, f is the root of t. Moreover, from the equivalence
stated in Eq. (*), root(ti) = fi and P (ti) holds for any integer i ≤ n. Finally and
equivalently, P (t) holds as a consequence of Eq. (3). The reciprocal condition
can be proved similarly since only equivalences are considered. �

66 S. Attou et al.

As a direct consequence of Lemma 3 and Proposition 1.

Proposition 2. The Bottom-Up position automaton of a linear expression E
recognizes L(E).

The Bottom-Up position automaton of a (not necessarily linear) expression E
can be obtained by first computing the Bottom-Up position automaton of its
linearized expression E and then by applying the alphabetical morphism h. As
a direct consequence of Eq. (5).

Proposition 3. The Bottom-Up position automaton of an expression E recog-
nizes L(E).

5 Compressed Bottom-Up Position Automaton

In this section, we show that the structure of an expression allows us to fac-
torize the transitions of a tree automaton by only considering the values of the
Father function. The basic idea of the factorizations is to consider the cartesian
product of sets. Imagine that a tree automaton contains four binary transitions
(q1, q1, f, q3), (q1, q2, f, q3), (q2, q1, f, q3) and (q2, q2, f, q3). These four transitions
can be factorized as a compressed transition ({q1, q2}, {q1, q2}, f, q3) using set of
states instead of sets. The behavior of the original automaton can be simulated
by considering the cartesian product of the origin states of the transition.

We first show how to encode such a notion of compressed automaton and
how it can be used in order to solve the membership test.

Definition 3. A compressed tree automaton over a ranked alphabet Σ is a
4-tuple (Σ,Q,QF , δ) where Q is a set of states, QF ⊂ Q is the set of final
states, δ ⊂ (2Q)n × Σn × 2Q is the set of compressed transitions that can be
seen as a function from (2Q)k × Σk to 2Q defined by

(Q1, . . . , Qk, f, q) ∈ δ ⇔ q ∈ δ(Q1, . . . , Qk, f).

Example 3. Let us consider the compressed automaton A = (Σ,Q,QF , δ) shown
in Fig. 1. Its transitions are

δ = {({1, 2, 5}, {3,4}, f, 1), ({2, 3, 5}, {4, 6}, f, 2),
({1, 2}, {3}, f, 5), ({6}, g, 4), ({6}, g, 5), (a, 6), (a, 4), (b, 3)}.

The transition function δ can be restricted to a function from Qn × Σn to
2Q (e.g. in order to simulate the behavior of an uncompressed automaton) by
considering for a tuple (q1, . . . , qk) of states and a symbol f in Σk all the “active”
transitions (Q1, . . . , Qk, f, q), that are the transitions where qi is in Qi for i ≤ k.
More formally, for any states (q1, . . . , qk) in Qk, for any symbol f in Σk,

δ(q1, . . . , qk, f) =
⋃

(Q1,...,Qk,f,q)∈δ,
∀i≤k,qi∈Qi

{q}. (8)

The Bottom-Up Position Tree Automaton and Its Compact Version 67

2

1

5

4

3

6

b

a

a

f

f

g
g

f

Fig. 1. The compressed automaton A.

The transition set δ can be extended to a function Δ from T (Σ) to 2Q by induc-
tively considering, for a tree f(t1, . . . , tk) the “active” transitions (Q1, . . . , Qk,
f, q) once a subtree is read, that is when Δ(qi) and Qi admits a common state
for i ≤ k. More formally, for any tree t = f(t1, . . . , tk) in T (Σ),

Δ(t) =
⋃

(Q1,...,Qk,f,q)∈δ,
∀i≤k,Δ(ti)∩Qi
=∅

{q}.

As a direct consequence of the two previous equations,

Δ(f(t1, . . . , tn)) =
⋃

(q1,...,qn)∈Δ(t1)×···×Δ(tn)

δ(q1, . . . , qn, f). (9)

The language recognized by a compressed automaton A = (Σ,Q,QF , δ) is the
subset L(A) of T (Σ) defined by

L(A) = {t ∈ T (Σ) | Δ(t) ∩ QF �= ∅}.

Example 4. Let us consider the automaton of Fig. 1 and let us show that the
tree t = f(f(b, a), g(a)) belongs to L(A). In order to do so, let us compute Δ(t′)
for each subtree t′ of t. First, by definition,

Δ(a) = {4, 6}, Δ(b) = {3}.

68 S. Attou et al.

Since the only transition in δ labeled by f containing 3 in its first origin set and
4 or 6 in its second is the transition ({2, 3, 5}, {4, 6}, f, 2),

Δ(f(b, a)) = {2}.

Since the two transitions labeled by g are ({6}, g, 4) and ({6}, g, 5),

Δ(g(a)) = {4, 5}.

Finally, there are two transitions labeled by f containing 2 in their first origin and
4 or 5 in its second: ({2, 3, 5}, {4, 6}, f, 2) and ({1, 2, 5}, {3, 4}, f, 1). Therefore

Δ(f(f(b, a), g(a))) = {1, 2}.

Finally, since 1 is a final state, t ∈ L(A).

Let φ be an alphabetical morphism between two alphabets Σ and Σ′. The image
by φ of a compressed automaton A = (Σ,Q,QF , δ) is the compressed automaton
φ(A) = (Σ′, Q,QF , δ′) where

δ′ = {(Q1, . . . , Qn, φ(f), q) | (Q1, . . . , Qn, f, q) ∈ δ}.

By a trivial induction over the structure of the trees, it can be shown that

L(φ(A)) = φ(L(A)). (10)

Due to their inductive structure, regular expressions are naturally factorizing
the structure of transitions of a Glushkov automaton. Let us now define the
compressed position automaton of an expression.

Definition 4. The compressed Bottom-Up position automaton C(E) of a linear
expression E is the automaton (Σ,Pos(E),Root(E), δ) defined by

δ = {(Q1, . . . , Qk, f, {f}) | Qi = {g | (f, i) ∈ Father(E, g)}}.

Example 5. Let us consider the expression E defined in Example 1. The com-
pressed automaton of E is represented at Fig. 2.

As a direct consequence of Definition 4 and of Eq. (8),

Lemma 4. Let E be a linear expression over a ranked alphabet Σ. Let C(E) =
(Σ,Q,QF , δ). Then, for any states (q1, . . . , qn) in Qn, for any symbol f in Σk,

δ(q1, . . . , qn, f) = {f} ⇔ ∀i ≤ n, (f, i) ∈ Father(E, qi).

Consequently, considering Definition 2, Lemma 4 and Eq. (9),

Proposition 4. Let E be a linear expression over a ranked alphabet Σ. Let
PE = (, , , δ) and C(E) = (, , , δ′). For any tree t in T (Σ),

Δ(t) = Δ′(t).

The Bottom-Up Position Tree Automaton and Its Compact Version 69

f1

g2

f3

bg4

aa

b

g2

g4

f1
f3

Fig. 2. The compressed automata of the expression (f1(a, a) + g2(b))
∗a ·b f3(g4(a), b).

Since the Bottom-Up position automaton of a linear expression E and its com-
pressed version have the same states and the same final states,

Corollary 1. The Glushkov automaton of an expression and its compact version
recognize the same language.

The compressed Bottom-Up position automaton of a (not necessarily linear)
expression E can be obtained by first computing the compressed Bottom-Up
position automaton of its linearized expression E and then by applying the
alphabetical morphism h. Therefore, considering Eq. (10),

Proposition 5. The compressed Bottom-Up position automaton of a regular
expression E recognizes L(E).

6 Web Application

The computation of the position functions and the Glushkov constructions have
been implemented in a web application (made in Haskell, compiled into Java-
script using the reflex platform, represented with viz.js) in order to help
the reader to manipulate the notions. From a regular expression, it computes
the classical Top-Down Glushkov defined in [8], and both the normal and the
compressed versions of the Glushkov Bottom-Up automaton.

This web application can be found here [10]. As an example, the expression
(f(a, a) + g(b))∗a ·b f(g(a), b) of Example 1 can be defined from the literal input
(f(a,a)+g(b))*a.bf(g(a),b).

7 Conclusion and Perspectives

In this paper, we have shown how to compute the Bottom-Up position automaton
associated with a regular expression. This construction is relatively similar to

https://github.com/reflex-frp/reflex-platform
https://github.com/mdaines/viz.js
http://ludovicmignot.free.fr/programmes/glushkovBotUp/index.html

70 S. Attou et al.

the classical one defined over a word expression [6]. We have also proposed a
reduced version, the compressed Bottom-Up position automaton, that can be
easily defined for word expressions too.

Since this construction is related to the classical one, one can wonder if all
the studies involving Glushkov word automata can be extended to tree ones
([2–4,12]). The classical Glushkov construction was also studied via its morphic
links with other well-known constructions. The next step of our study is to
extend Antimirov partial derivatives [1] in a Bottom-Up way too (in a different
way from [7]), using the Bottom-Up quotient defined in [5].

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

2. Bouchou, B., Duarte, D., Alves, M.H.F., Laurent, D., Musicante, M.A.: Schema
evolution for XML: a consistency-preserving approach. In: Fiala, J., Koubek, V.,
Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 876–888. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-28629-5 69

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 140(2), 229–253 (1998)

4. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci.
233(1–2), 75–90 (2000)

5. Champarnaud, J., Mignot, L., Sebti, N.O., Ziadi, D.: Bottom-up quotients for tree
languages. J. Autom. Lang. Comb. 22(4), 243–269 (2017)

6. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

7. Kuske, D., Meinecke, I.: Construction of tree automata from regular expressions.
RAIRO Theor. Inf. Appli. 45(3), 347–370 (2011)

8. Laugerotte, É., Sebti, N.O., Ziadi, D.: From regular tree expression to position
tree automaton. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013.
LNCS, vol. 7810, pp. 395–406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37064-9 35

9. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for
automata. IEEE Trans. Electron. Comput. 9, 39–57 (1960)

10. Mignot, L.: Application: Glushkov tree automata. http://ludovicmignot.free.fr/
programmes/glushkovBotUp/index.html. Accessed 27 Feb 2018

11. Mignot, L., Sebti, N.O., Ziadi, D.: Tree automata constructions from regular
expressions: a comparative study. Fundam. Inform. 156(1), 69–94 (2017)

12. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 53

https://doi.org/10.1007/978-3-540-28629-5_69
https://doi.org/10.1007/978-3-642-37064-9_35
https://doi.org/10.1007/978-3-642-37064-9_35
http://ludovicmignot.free.fr/programmes/glushkovBotUp/index.html
http://ludovicmignot.free.fr/programmes/glushkovBotUp/index.html
https://doi.org/10.1007/978-3-642-00982-2_53

A New Hierarchy for Automaton
Semigroups

Laurent Bartholdi1,2, Thibault Godin3, Ines Klimann4,
and Matthieu Picantin4(B)

1 École Normale Supérieure, Paris, France
laurent.bartholdi@ens.fr

2 Georg-August-Universität zu Göttingen, Göttingen, Germany
3 University of Turku, Turku, Finland

thibault.godin@utu.fi
4 IRIF, UMR 8243 CNRS & Université Paris Diderot, Paris, France

{klimann,picantin}@irif.fr

Abstract. We define a new strict and computable hierarchy for the
family of automaton semigroups, which reflects the various asymptotic
behaviors of the state-activity growth. This hierarchy extends that given
by Sidki for automaton groups, and also gives new insights into the latter.
Its exponential part coincides with a notion of entropy for some associ-
ated automata.

We prove that the Order Problem is decidable when the state-activity
is bounded. The Order Problem remains open for the next level of this
hierarchy, that is, when the state-activity is linear. Gillibert showed that
it is undecidable in the whole family.

The former results are implemented and will be available in the GAP
package FR developed by the first author.

Keywords: Automaton · Semigroup · Entropy · Hierarchy
Decision problem

1 Introduction

The family of automaton groups and semigroups has provided a wide playground
to various algorithmic problems in computational (semi)group theory [1–6,8–11].
While many undecidable questions in the world of (semi)groups remain unde-
cidable for this family, the underlying Mealy automata provide a combinatorial
leverage to solve the Word Problem for this family, and various other problems
in some important subfamilies. Recall that a Mealy automaton is a letter-to-
letter, complete, deterministic transducer with same input and output alphabet,
so each of its states induces a transformation from the set of words over its
alphabet into itself. Composing these Mealy transformations leads to so-called

T. Godin—supported by the Academy of Finland grant 296018.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 71–83, 2018.
https://doi.org/10.1007/978-3-319-94812-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_7&domain=pdf

72 L. Bartholdi et al.

automaton (semi)groups, and the Word Problem can be solved using a classical
technique of minimization.

The Order Problem is one of the current challenging problems in computa-
tional (semi)group theory. On the one hand, it was proven to be undecidable
for automaton semigroups by Gillibert [8]. On the other hand, Sidki introduced
a polynomial hierarchy for invertible Mealy transformations in [19] and, with
Bondarenko et al. in [6], solved the Order Problem for its lowest level (bounded
invertible automata).

Our main contributions in this paper are the following: an activity-based
hierarchy for possibly non-invertible Mealy transformations (Sect. 3), extend-
ing Sidki’s construction [19] to non-necessarily-invertible transformations; and a
study of the algorithmic properties in the lowest level of the hierarchy, namely
transducers with bounded activity. We prove:

Theorem (see Sect. 5). The Order Problem is decidable for bounded Mealy
transformations; namely, there is an algorithm that, given a bounded initial
Mealy automaton, decides whether the transformation τ that it defines has infi-
nite order, and if not finds the minimal r > s such that τ r = τs.

Our strategy of proof follows closely that of Sidki’s [19] and Bondarenko,
Bondarenko et al. [6], with some crucial differences. On the one hand, a naive
count of the number of non-trivial states of a transformation does not yield a
useful invariant, nor a hierarchy stable under multiplication; on the other hand,
the structure of cyclic semigroups (〈a | am = am+n〉 has index m and period n)
is more complex than that of cyclic groups (〈a | am〉 has order m).

2 Notions from Automata and Graph Theory

This section gathers some basics about automata, especially some links between
automata, Mealy automata, automaton semigroups, and finite-state transfor-
mations. We refer the reader to handbooks for graph theory [15], automata
theory [16], and automaton (semi)groups [5].

A non-deterministic finite-state automaton (NFA for short) is given by a
directed graph with finite vertex set Q, a set of edges Δ labeled by an alphabet Σ,
and two distinguished subsets of vertices I ⊆ Q and F ⊆ Q. The vertices of the
graph are called states of the automaton and its edges are called transitions. The
elements of I and F are called respectively initial and final states. A transition
from the state p to the state q with label x is denoted by p

x−−→ q.
A NFA is deterministic—DFA for short—(resp. complete) if for each state q

and each letter x, there exists at most (resp. at least) one transition from q with
label x. Given a word w = w1w2 · · · wn ∈ Σ∗ (where the wi are letters), a
run with label w in an automaton (NFA or DFA) is a sequence of consecutive
transitions

q1
w1−−−→ q2

w2−−−→ q3 → · · · → qn
wn−−−→ qn+1 .

Such a run is successful whenever q1 is an initial state and qn+1 a final state.
A word in Σ∗ is recognized by an automaton if it is the label of at least one
successful run. The language recognized by an automaton is the set of words it

A New Hierarchy for Automaton Semigroups 73

recognizes. A DFA is coaccessible if each state belongs to some run ending at a
final state.

Let A be a NFA with stateset Q. The Rabin–Scott powerset construction [14]
returns, in a nutshell, the (co)accessible DFA—denoted by det (A)—with states
corresponding to subsets of Q, whose initial state is the subset of all initial states
of A and whose final states are the subsets containing at least on final state of A;
its transition labeled by x from a state S ⊆ 2Q leads to the state {q |∃p ∈ S, p

x−→
q in A}. Notice that the size of the resulting DFA might therefore be exponential
in the size of the original NFA.

The language of a NFA is the subset of Σ∗ consisting in the words recognized
by it. Given a language L ⊆ Σ∗, its entropy is

h(L) = lim
�→∞

1
�

log #
(
L ∩ Σ�

)
.

This quantity appears in various situations, in particular for subshifts [13] and
finite-state automata [7]. We shall see how to compute it with matrices.

To a NFA A, associate its transition matrix A = {Ai,j}i,j ∈ N
n×n where Ai,j

is the number of transitions from i to j. Let furthermore v ∈ N
n be the row

vector with ‘1’ at all positions in I and w ∈ N
n be the column vector with

‘1’ at all positions in F . Then vA�w is the number of successful runs in A of
length �. Assuming furthermore that A is deterministic, vA�w is the cardinality
of L ∩ Σ�. Since the transition matrix of an automaton A is non-negative, it
admits a positive real eigenvalue of maximal absolute value, which is called its
Perron-Frobenius eigenvalue and is written λ(A). Assuming therefore that A is
coaccessible, we get

Proposition 2.1. [18, Theorem 1.2] Let A be a coaccessible DFA recognizing
the language L. Then we have h(L) = log λ(A).

2.1 Mealy Transducers

A Mealy automaton is a DFA over an alphabet of the form Σ × Σ. If an edge’s
label is (x, y), one calls x the input and y the output, and denotes the transition

by p
x|y−−−→ q. Such a Mealy automaton M is assumed to be complete and

deterministic in its inputs: for every state p and letter x, there exists exactly one
transition from p with input letter x. We denote by xp its corresponding output
letter and by p@x its target state, so we have

p p@x
x|xp

In this way, states act on letters and letters on states. Such actions can be
composed in the following way: let q ∈ Q∗, p ∈ Q, u ∈ Σ∗, and x ∈ Σ, we have

xqp = (xq)p and p@(ux) = (p@u)@x .

74 L. Bartholdi et al.

We extend recursively the actions of states on letters and of letters on states
(see below left). Compositions can be more easily understood via an alternative
representation by a cross-diagram [1] (below right).

For all x ∈ Σ, u ∈ Σ∗, p ∈ Q, q ∈ Q∗, we have:

(ux)q = uqxq@u

and

(qp)@u = q@u · p@uq .

q p

u uq uqp

q@u p@uq

x xq@u

q@ux

The mappings defined above are length-preserving and prefix-preserving.
Note that in particular the image of the empty word is itself.

From an algebraic point of view, the composition gives a semigroup structure
to the set of transformations u 	→ uq for q ∈ Q∗. This semigroup is called the
semigroup generated by M and denoted by 〈M〉+. An automaton semigroup is a
semigroup which can be generated by a Mealy automaton. Any element of such
an automaton semigroup induces a so-called finite-state transformation.

Conversely, for any transformation t of Σ∗ and any word u ∈ Σ∗, we denote
by ut the image of u by t, and by t@u the unique transformation s of Σ∗

satisfying (uv)t = utvs for any v ∈ Σ∗. Whenever Q(t) = {t@u : u ∈ Σ∗} is
finite, t is said to be finite-state and admits a unique (minimal) associated Mealy
automaton Mt with stateset Q(t).

We also use the following convenient notation to define a finite-state trans-
formation t: for each u ∈ Q(t), we write an equation (traditionally called wreath
recursion in the algebraic theory of automata) of the following form

u = (u@x1, . . . , u@x|Σ|)σu,

where σu = [x1
u, . . . , x|Σ|u] denotes the transformation on Σ induced by u.

We consider the semigroup FEnd(Σ∗) of those finite-state transformations
of Σ∗.

Example 2.2. The transformation t0 = (1, t0)[2, 2] belongs to FEnd({1, 2}∗)
with Q(t0) = {1, t0}. See Examples 4.4 and 5.3 for further details about t0.

Example 2.3. The transformation p = (q, r) with q = (r, 1) and r = (r, r)[2, 2]
also belongs to FEnd({1, 2}∗) with Q(p) = {1, p, q, r}. See Fig. 1a for Mp.

3 An Activity-Based Hierarchy for FEnd(Σ∗)

In this section we define a suitable notion of activity for finite-state transforma-
tions, together with two norms, from which we build a new hierarchy. We will
prove its strictness and its computability in Sect. 4.

A New Hierarchy for Automaton Semigroups 75

p

r

q

1|2
2|2

1|1

2|1

1|1

2|2

1|1
2|2

(a)

p

q

r

1|1 2|2

1|1

r

r

1|2

r

2|2

2|1

(b)

Fig. 1. (a) An example of a transformation p with αp(1) = 1 and αp(2) = 2. (b)
The transformation p induces 3 nontrivial transformations on level 2: the leftmost
one is associated with the output 11, the middle right one with 12 and the rightmost
one with 12, hence nontrivial transformations can be reached by runs with only two
different output words.

For any element t ∈ FEnd(Σ∗), we define its activity (see Fig. 1) as

αt : n 	−→ #{v ∈ Σn : ∃u ∈ Σn, t@u
= 1 and ut = v}.

We next define two norms on FEnd(Σ∗). When αt has polynomial growth,
namely when the set D = {d : limn→∞

αt(n)
nd = 0} is nonempty, then we define

‖t‖p = min D − 1. Otherwise, the value of limn→∞
log αt(n)

n is denoted by ‖t‖e.
We then define the following classes of finite-state transformations:

SPol(d) = { t ∈ FEnd(Σ∗) : ‖t‖p ≤ d }
and SExp(λ) = { t ∈ FEnd(Σ∗) : ‖t‖e ≤ λ } .

We shall see in Theorem 3.3 that these yield a strict and computable hierarchy
for FEnd(Σ∗). The following basic lemma is crucial:

Lemma 3.1. For each n ≥ 0, the map t 	→ αt(n) is subadditive.

u

s

s@u

v = us

t

t@v

w = vt

(st)@u
= 1

Proof: Assume s, t ∈ FEnd(Σ∗). For any
u ∈ Σn with (st)@u
= 1, we have
either s@u
= 1 or t@us
= 1. We deduce
αst(n) ≤ αs(n) + αt(n) for each n ≥ 0.

��

We deduce that ‖.‖p and ‖.‖e are respectively +− and max-subadditive.

Proposition 3.2. Let Σ be an alphabet. For every integer d ≥ −1, SPol(d) is
a subsemigroup of FEnd(Σ∗). So is SExp(λ) for every 0 ≤ λ ≤ #Σ.

As an easy corollary of Proposition 3.2, the subadditivity property allows us
to compute the hierarchy class of any given Mealy automaton by considering
only its generators.

76 L. Bartholdi et al.

Theorem 3.3. Let Σ be an alphabet. The elements of the semigroup FEnd(Σ∗)
can be graded according to the following strict hierarchy: for any d1, d2 ∈ Z

with −1 < d1 < d2 and any λ1, λ2 ∈ R with 0 < λ1 < λ2 < #Σ, we have:

SPol(−1) � · · · � SPol(d1) � · · · � SPol(d2) � · · · � SExp(0)
� SExp(λ1) � · · · � SExp(λ2) � · · · � SExp(#Σ) .

The proof of the previous result is postponed to the end of Sect. 4 on page 8.
Sidki defined in [19] the activity of a finite-state automorphism t ∈ FAut(Σ∗)

as
θt : n 	−→ #{u ∈ Σn : t@u
= 1},

and the corresponding classes Pol(d). Using this notion of activity θ for transfor-
mations leads inevitably to an impasse: the associated classes with fixed degree
polynomial θ-activity would be not closed under composition. However it is
straightforward that our new notion of activity α coincides with Sidki’s activ-
ity θ in the case of automorphisms.

The class SExp(0) coincides with the infinite union
⋃

d≥−1 SPol(d), whose
corresponding automorphisms class is denoted by Pol(∞) in [19].

4 Structural Characterization of the Activity Norm

From [6], we know that the finite-state automorphisms which have polynomial
activity are exactly those whose underlying automaton does not contain entan-
gled cycles (except on the trivial state). Moreover, the degree of the polynomial
is given by the longest chain of cycles in the automaton. The first claim remains
true for transformations, but things are a bit more involved for the second one
(see Example 4.4).

To any minimal Mealy automaton M with stateset Q and alphabet Σ, we
associate its pruned output automaton Mout defined as the NFA with state-
set Q � {1} (all states being final) and alphabet Σ, and whose transitions are
given, for p, q ∈ Q � {1}, by

p
y−−→ q ∈ Mout ⇐⇒ p

x|y−−−→ q ∈ M.

According to context, we shall identify a transformation t ∈ FEnd(Σ∗), the state
of Mt, and the corresponding state of Mout

t .

Lemma 4.1. The activity of a transformation t ∈ FEnd(Σ∗) is the number of
paths starting from t in the (non-complete) deterministic automaton det (Mout

t)
constructed via the Rabin–Scott construction.

Proof. Let t ∈ FEnd(Σ∗) with Mt its associated automaton. Let us count the
words v ∈ Σn for which there is a word u ∈ Σn with t@u
= 1 and ut = v.
For n = 1, αt(1) is exactly the number of different outputs from the state t that
do not lead to a trivial state of Mt. Now for v ∈ Σn, if E denotes the set of

A New Hierarchy for Automaton Semigroups 77

those states accessible from t by reading v (this corresponds to the Rabin–Scott
powerset construction) in Mout

t , the number of ways to extend v without getting
into a trivial state in Mt corresponds to the number of outputs of the state E
in det (Mout

t), whence the result. ��
Whether the activity of a given t ∈ FEnd(Σ∗) is polynomial or exponential

can be decided by only looking at the cycle structure of Mout
t . Any cycle con-

sidered throughout this paper is simple: no repetitions of vertices or edges are
allowed. Two cycles are coreachable if there exists a path from any of them to
the other one. A chain of cycles is a sequence of cycles such that each cycle is
reachable from its predecessor.

Proposition 4.2. A transformation t ∈ FEnd(Σ∗) has exponential activity if
and only if it can reach two coreachable cycles with distinct labels in Mout

t .

Proof. (⇐) Assume that t can reach a state s ∈ Mout
t that lies on two cycles

with distinct labels. There exist a word u ∈ Σ∗ satisfying t@u = s and two
words v,w ∈ Σ∗ satisfying s@v = s = s@w and vs
= ws. We obtain αt(�) ≥
#{xt | x ∈ u(v + w)∗ ∩ Σ�} for � ≥ 0. Therefore αt grows exponentially. (⇒)
Assume that t has exponential activity and cannot reach two coreachable cycles
in Mout

t . By Lemma 4.1, there exist a subset E ⊂ Q and three words u,v,w ∈ Σ∗

such that E is the set of nontrivial states accessible from t reading u and the
paths labeled by v and w are cycles starting from E in Mout

t . It means that v
and w are also cycles starting from t in Mt, contradiction. ��

Using the subadditivity of the activity (see Lemma 3.1), we get for the poly-
nomial activities:

Corollary 4.3. Let M be a Mealy automaton. The transformations of 〈M〉+
are all of polynomial activity if and only if there are no coreachable cycles in the
automaton det (Mout). Moreover the degree of the (polynomial) activity corre-
sponds to the longest chain of cycles in det (Mout) minus 1.

Example 4.4. Consider the transformation t0 = (1, t0)[2, 2] from Example 2.2,
its square t20, and the associated automata Mt20

and det
(
Mout

t20

)
:

t20 t0 1

2|2
1|2

2|2
1|2

1|1
2|2 {t20} {t20, t0} {t0}2

2 2

Note that, before determinization, two disjoint cycles are accessible from the
state t20. In the determinized version, {t0} and {t20} both access to only one cycle,
and we conclude {t0, t

2
0} ⊂ SPol(0). By Proposition 3.2, we actually knew the

full inclusion 〈 t0 〉+ ⊂ SPol(0).
Defining further tk = (tk−1, tk)[2 − (k mod 2), 2 − (k mod 2)] ∈

FEnd({1, 2}∗), we obtain the family with tk ∈ SPol(k) � SPol(k − 1) for k > 0,
that witnesses the strictness of the polynomial part of the hierarchy from The-
orem 3.3.

78 L. Bartholdi et al.

Using Proposition 2.1, we obtain an explicit formula for the norm ‖ · ‖e:
Proposition 4.5. Let t be a finite-state transformation with associated Mealy
automaton Mt. The norm ‖t‖e is the logarithm of the Perron eigenvalue of the
transition matrix of det (Mout

t):

‖t‖e = log λ(det
(Mout

t

)
) .

Proof. By Lemma 4.1, the activity of t counts the number of paths in det (Mout
t).

Since all its states are final, this automaton is coaccessible and the cardinality of
the language accepted when putting t as the initial state is exactly the activity
of t. Therefore by Proposition 2.1, we have

‖t‖e = lim
�→∞

log αt(�)
�

= lim
�→∞

1
�

log
n∑

t′=1

(A�)t,t′ = h(L) = log λ(det
(Mout

t

)
),

with A = (Ai,j)i,j the adjacency matrix of det (Mout
t). ��

Proof of Theorem 3.3. The strictness for the polynomial part is obtained from
Example 4.4. Now, as the norm ‖.‖e is the logarithm of the maximal eigenvalue
of a matrix with integer coefficients, the classes SExp(λ) increase only when eλ

is an algebraic integer that is the largest zero of its minimal polynomial, i.e.,
a root of a Perron number. Furthermore, each of these numbers is the norm of
some finite-state transformation, see [12, Theorem 3] for a proof. It is also known
that Perron numbers are dense in [1,∞), which gives us the strictness for the
exponential part: λ1 < λ2 implies SExp(λ1) � SExp(λ2).

Finally, the growth rate can be computed with any precision 0 < δ < 1 in
time Θ (− log(δn)), where n is the number of states of the automaton [17]. ��
Example 4.6. Consider the transformations r = (s, r)[1, 1] and s = (1, r) with
common associated automata M (on the left) and det (Mout) (on the right):

r s 12|1
1|1

2|2 1|1
1|1
2|2 {s} {r} {r, s} 1

2 1

2

We find that αr(n) and αs(n + 1) correspond to the n-th Fibonacci num-
ber. We deduce ‖r‖e = ‖s‖e = log ϕ where ϕ is the golden ratio, hence r, s ∈
SExp(log ϕ).

5 The Orbit Signalizer Graph and the Order Problem

This section is devoted to the Order Problem: can one decide whether a given
element generates a finite semigroup? The latter is known to be undecidable for
general automaton semigroups [8] and decidable for Pol(0) [6]. We give a general
construction that associates a graph to a transformation of Σ∗, and show that,

A New Hierarchy for Automaton Semigroups 79

if finite, this graph lets us compute the index and period of the transformation.
We show that this graph is finite for elements from SPol(0), and solve the Order

Problem in this manner.
Let Σ be an alphabet. We define the orbit signalizer graph Φ for FEnd(Σ∗) as

the following (infinite) graph. The vertices are the pairs of elements in FEnd(Σ∗).
For each letter x ∈ Σ, there is an arrow from the source (s, t) with label (x : m , �)
where m and � are the minimal integers (with � > 0) satisfying

xstm+�

= xstm

,

and with target (r@x, t�@xr) for r = stm. The parameters m and � correspond
respectively to the index and to the period of the orbit of x under the action
of stω, see Fig. 2.

In what follows, the intuition is roughly to generalize Fig. 2, by considering
a path π instead of the letter x: such a construction leads also to a pan graph,
whose handle has length between i−t and i+t , and whose cycle has length pt. The
main challenge here is to be able to keep the construction finite, when possible.

xr

xrt
xrt2

xrt3

xrt4xrt�

xstm−1
xstxsx

s

s@x

t

t@xs

t

t@xstm−1

t

t t

t
t

.

r = stm

t�

Fig. 2. The cross-diagram associated with the orbit of some letter x ∈ Σ under the
action of stω. The index m and period � will complete the label of the x-arrow away
from the vertex (s, t) in the graph Φ. Each of the two gray zones indicates an entry of
the corresponding target vertex (r@x, t�@xr) with r = stm.

The inf-index-cost, sup-index-cost, and the period-cost of a given walk π on Φ

π : (s, t)
x1:m1,�1−−−−−−→ · · · x|π|:m|π|,�|π|−−−−−−−−−→ (s′, t′)

are respectively defined by

i−(π) =
∑

1≤k≤|π|

⎛

⎝(1 − δmk,0)

⎛

⎝(mk − 1)

⎛

⎝
∏

1≤j<k

�j

⎞

⎠ + 1

⎞

⎠

⎞

⎠ ,

i+(π) =
∑

1≤k≤|π|

⎛

⎝
∏

1≤j<k

�j

⎞

⎠ mk, and p(π) =
∏

1≤i≤|π|
�i .

80 L. Bartholdi et al.

For any t ∈ FEnd(Σ∗), we define the orbit signalizer graph Φ(t) as the
subgraph of Φ accessible from the source vertex (1, t). The inf-index-cost, sup-
index-cost, and the period-cost of t ∈ FEnd(Σ∗) are then respectively defined
by

i−t = max
π on Φ(t)

i−(π), i+t = max
π on Φ(t)

i+(π), and pt = lcm
π on Φ(t)

p(π) .

Proposition 5.1. The semigroup generated by an element t ∈ FEnd(Σ∗) is
finite if and only if its index-costs i±t and its period-cost pt are finite. In that
case, we have 〈 t 〉+ = 〈 t : tit = tit+pt 〉+ for some index it with i−t ≤ it ≤ i+t .

Proof. Let Σ = {x1, . . . , x|Σ|}. Let (s0, t0) be a vertex in Φ and (sk, tk) its
successor vertex with arrow xk : mk, �k for 1 ≤ k ≤ |Σ|.

(s0, t0)

(s1, t1)

(s|Σ|, t|Σ|)

(i0, p0)

(i1, p1)

(i|Σ|, p|Σ|)

x1 : m1, �1

x|Σ| : m|Σ|, �|Σ|

For 0 ≤ k ≤ |Σ|, let (ik, pk) ∈ {ω, 0, 1, 2, . . .} × {ω, 1, 2, 3 . . .} denote the
possible minimal pair of ordinals (with pk > 0) satisfying

sktik

k = sktik+pk

k .

Whenever there is at least one successor with (ik, pk) = (ω, ω), (s0, t0) satisfies
also (i0, p0) = (ω, ω), and so does any of its predecessors. Otherwise, we claim

max
1≤k≤|Σ|

(
mk + max(0, �k(ik − 1) + 1)

) ≤ i0 ≤ max
1≤k≤|Σ|

(mk + �kik)

and
p0 = lcm

1≤k≤|Σ|
�kpk.

Indeed, for 1 ≤ k ≤ |Σ| and for any u ∈ Σ∗, we have

ykv = (xku)s0t
mk+�kik
0 = (ykv)t

�kpk
0

with yk = xk
s0t

mk
0 and v = uskt

ik+pk
k , as illustrated by the cross-diagram:

yk··ykyk · · ykxk

t�k
0

tk

t�k
0

tk

t�k
0

tk

t�k
0

tk

t�k
0

tk

s0t
mk
0

sk

v···· · · vu

· · · · ··

ik pk

A New Hierarchy for Automaton Semigroups 81

We conclude using an induction on the length of the paths. ��
Theorem 5.2. The Order Problem is decidable for any t ∈ FEnd(Σ∗) with a
finite orbit signalizer graph Φ(t).

Proof. Since Φ(t) is a graph with outdegree ‖Σ‖ > 0 by construction, its finite-
ness implies the existence of cycles. Consider the simple cycles (there is only a
finite number of these). One can compute the index-costs i−(κ) and i+(κ) and
the period-cost p(κ) of each such cycle κ. Whenever i−(κ) > 0 or p(κ) > 1 for
some cycle κ, then t has infinite order, and finite order otherwise. ��
Example 5.3. The transformations s = (s,1)[2, 2] and t0 = (1, t0)[2, 2] (on the
left) admit respective graphs Φ(s) and Φ(t0) (on the right):

s

t0

1

1|2 2|2

2|2 1|2

1|1
2|2

(1, s) (1, 1)

(s, 1) (1, t0)

2:0,1

1:1,1 2:0,1

1:0,1

1:0,1
2:0,1

1:1,1
2:0,1

According to Proposition 5.1, they generate the finite monoid 〈 s : s2 = s 〉+
and the free monoid 〈 t0 : 〉+.

Example 5.4. The transformation b = (a,1, b)[2, 3, 1] from SPol(1) � SPol(0)
with a = (1, 1, a)[1, 1, 2] admits the finite graph Φ(b) displayed on Fig. 3, in which
we can read that both ab and ba have period 1, and that b has thus period pb = 3.
According to Proposition 5.1 again, the index of b satisfies 4 ≤ ib ≤ 9, and can
be explicitly computed as ib = 8.

a

b

ab

ba

3|2
1|1
2|1

3|1

1|2
2|3

1|1
2|2
3|3

1|2
2|2
3|3

1|1
2|2

3|1

(, b)

(, ab) (, ba)

(a, a) (, a) (b, a)

(a,) (b,)(,)

1:0,3
2:0,3
3:0,3

2:0,1
3:0,11:1,1

1:0,1
2:0,1 3:1,1

3:2,1

1:0,1
2:1,13:0,1

1:0,1
2:0,1

1:1,1
2:2,1

3:0,1

3:0,1

1:0,1
2:0,1

3:0,1

1:0,1

2:0,1

1:0,1
2:0,1
3:0,1

Fig. 3. The Mealy automaton Mb and the graph Φ(b) from Example 5.4.

82 L. Bartholdi et al.

Proposition 5.5. Every bounded finite-state transformation t ∈ SPol(0) admits
a finite orbit signalizer graph Φ(t).

Proof. The activity αt of t ∈ SPol(0) is uniformly bounded by some constant C:

#{v ∈ Σn : ∃u ∈ Σn, t@u
= 1 and ut = v} ≤ C for n ≥ 0 .

Now the vertices of the graph Φ(t) are those pairs (r, s) with rs = tK@u, where K

is the greatest integer such that the images uti

for i < K are pairwise different.
Hence rs is the product of at most C nontrivial elements. Moreover these ele-
ments ti@u for i < K lie in a finite set, as t is a finite-state transformation, hence
the vertices belong to a finite set. We conclude that the graph Φ(t) is finite. ��
Corollary 5.6. The Order Problem is decidable for SPol(0).

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: The finiteness
problem for automaton semigroups. Internat. J. Alg. Comput. 22(6), 1–26 (2012)

2. Bartholdi, L.: Algorithmic decidability of engel’s property for automaton groups.
In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 29–40.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2 3

3. Bartholdi, L.: FR-GAP package “Computations with functionally recursive groups”,
Version 2.4.3 http://www.gap-system.org/Packages/fr.html (2017)

4. Bartholdi, L., Mitrofanov, I.: The word and order problems for self-similar and
automata groups arXiv:1710.10109 (2017)

5. Bartholdi, L., Silva, P.V.: Groups defined by automata. In: Pin, J.-É. (ed.) Hand-
book AutoMathA arXiv:1012.1531 (2018, to appear)

6. Bondarenko, I., Bondarenko, N., Sidki, S., Zapata, F.: On the conjugacy problem
for finite-state automorphisms. Groups Geom. Dyn. 7(2), 323–355 (2013)

7. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1(2), 91–112 (1958)
8. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable.

Internat. J. Alg. Comput. 24(1), 1–9 (2014)
9. Gillibert, P.: An automaton group with undecidable order and Engel problems. J.

Algebra 497, 363–392 (2018)
10. Godin, T., Klimann, I.: On bireversible Mealy automata and the Burnside problem.

Theor. Comput. Sci. 707, 24–35 (2018)
11. Klimann, I., Mairesse, J., Picantin, M.: Implementing computations in automaton

(Semi)groups. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp.
240–252. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31606-
7 21

12. Lind, D.A.: The entropies of topological markov shifts and a related class of alge-
braic integers. Ergodic Theor. Dyn. Syst. 4(2), 283–300 (1984)

13. Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York (1995)

14. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3(2), 114–125 (1959)

15. Rigo, M.: Advanced Graph Theory and Combinatorics. Wiley, Hoboken (2016)

https://doi.org/10.1007/978-3-319-34171-2_3
http://www.gap-system.org/Packages/fr.html
http://arxiv.org/abs/1710.10109
http://arxiv.org/abs/1012.1531
https://doi.org/10.1007/978-3-642-31606-7_21
https://doi.org/10.1007/978-3-642-31606-7_21

A New Hierarchy for Automaton Semigroups 83

16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

17. Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A.,
Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp.
289–301. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-
8 30

18. Shur, A.M.: Comparing complexity functions of a language and its extendable part.
RAIRO-Theor. Inf. Appl. 42(3), 647–655 (2008)

19. Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclic-
ity. J. Math. Sci. 100(1), 1925–1943 (2000)

https://doi.org/10.1007/978-3-540-79709-8_30
https://doi.org/10.1007/978-3-540-79709-8_30

Synchronizing Random Almost-Group
Automata

Mikhail V. Berlinkov1(B) and Cyril Nicaud2

1 Institute of Natural Sciences and Mathematics, Ural Federal University,
Ekaterinburg 620062, Russia
m.berlinkov@gmail.com

2 LIGM, Université Paris-Est and CNRS,
5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Valléee Cedex 2, France

cyril.nicaud@u-pem.fr

Abstract. In this paper we address the question of synchronizing ran-
dom automata in the critical settings of almost-group automata. Group
automata are automata where all letters act as permutations on the set
of states, and they are not synchronizing (unless they have one state). In
almost-group automata, one of the letters acts as a permutation on n−1
states, and the others as permutations. We prove that this small change
is enough for automata to become synchronizing with high probability.
More precisely, we establish that the probability that a strongly con-

nected almost-group automaton is not synchronizing is 2k−1−1
n2(k−1) (1+o(1)),

for a k-letter alphabet.

1 Introduction

A deterministic automaton is called synchronizing when there exists a word that
brings every state to the same state. If it exists, such a word is called reset or
synchronizing.

Synchronizing automata serve as natural models of error-resistant systems
because a reset word allows to turn a system into a known state, thus reestab-
lishing the control over the system. For instance, prefix code decoders can be
represented by automata. If an automaton corresponding to a decoder is syn-
chronizing, then decoding a reset word, after an error appeared in the process,
would recover the correct decoding process.

There has been a lot of research done on synchronizing automata since pio-
neering works of Černý [3]. Two questions that attract major interest here are
whether an automaton is synchronizing and what is the length of shortest reset
words if the answer to the first question is ‘yes’? These questions are also studied

This work is supported by the French National Agency through ANR-10-LABX-58,
Russian Foundation for Basic Research, grant no. 16-01-00795, and the Competitive-
ness Enhancement Program of Ural Federal University. A major part of the research
was conducted during the scientific collaboration under the Metchnikov program
arranged by French Embassy in Russia.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 84–96, 2018.
https://doi.org/10.1007/978-3-319-94812-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_8&domain=pdf

Synchronizing Random Almost-Group Automata 85

from different perspectives such as algorithmic, general statements etc. and in
variety of settings, e.g. for particular classes of automata, random settings, etc.
The reader is referred to the survey of Volkov [10] for a brief introduction to the
theory of synchronizing automata.

One of the most studied direction of research in this field is the long-standing
conjecture of Černý, which states that if an automaton is synchronizing, then it
admits a reset word of length at most (n − 1)2, where n is the number of states
of the automaton. This bound is best possible, as shown by Černý. However,
despite many efforts, only cubic upper bounds have been obtained so far [7,8].

It is the probabilistic settings that interest us in this article. During the
attempts to tackle the conjecture of Černý, lots of experiments have been done,
showing that random automata seem to be synchronizing with high probability,
and that their reset words seem to be quite small in expectation. This was proved
quite recently in a series of articles:

– Skvortsov and Zaks [11] obtained some results for large alphabets (where the
number of letters grows with n);

– Berlinkov [2] proved that the probability that a random automaton is not
synchronizing is in O(n−k/2), where k is the number of letters, for any k ≥ 2
(this bound is tight for k = 2);

– Nicaud [6] proved that with high probability a random automaton admits a
reset word of length O(n log3 n), for k ≥ 2 (but with less precise error terms
than in [2]).

All these results hold for the uniform distribution on the set of deterministic and
complete automata with n states on an alphabet of size k, where all automata
have the same probability. And it is, indeed, the first probability distribution
to study. The reader is referred to the survey [5] for more information about
random deterministic automata.

In this article we study a distribution on a restricted set of deterministic
automata, the almost-group automata, which will be defined later in this intro-
duction. In order to motivate our choice, we first need to outline the main features
of the uniform distribution on deterministic automata and how they were used
in the proofs of the articles cited above.

In a deterministic and complete automaton, one can consider each letter as
a map from the set of states Q to itself, which is called its action. The action
of a given letter in a uniform random automaton is a uniform random mapping
from Q to Q. Properties of uniform random mappings have been long studied
and most of their typical1 statistics are well known. The functional graph proved
to be a useful tool to describe a mapping; it is the directed graph of vertex set
Q, built from a mapping f : Q → Q by adding an edge i → j whenever j = f(i).
Such a graph can be decomposed as a set of cycles of trees. Vertices that are in

1 In all the informal statements of this article, typical means with high probability as
the size of the object (cardinality of the set, number of states of the automaton, ...)
tends to infinity.

86 M. V. Berlinkov and C. Nicaud

a cycle consists of elements q ∈ Q such that f �(q) = q for some positive �. They
are called cyclic vertices.

The expected number of cyclic vertices in a uniform random mapping on a
set of size n is in Θ(

√
n). This is used in [6] and [2] to obtain the synchronization

of most automata. The intuitive idea is that after reading an, the set of states
already shrinks to a much smaller set, in a uniform random automaton; this
gives enough leverage, combined with the action of the other letters, to fully
synchronize a typical automaton.

In a nutshell, uniform random automata are made of uniform random map-
pings, and each uniform random mapping is already likely to synchronize most
of the states, due to their inherent typical properties. At this point, it seems
natural to look for “harder” random instances with regard to synchronization,
and it was a common question asked when the authors presented their works.

In this article, to prevent easy synchronization from the separate action of
the letter, we propose to study what we call almost-group automata, where the
action of each letter is a permutation, except for one of them which has only one
non-cyclic vertex. An example of such an automaton is depicted on Fig. 1.

0

2

3

6

1 5 4

a, b a

a
a, b

b

b

b

a

a, b

a, b

Fig. 1. An almost-group automaton with 7 states. The action of b is a permutation.
The action of a is not, as 1 has no preimage by a; but if state 1 is removed, a acts as
a permutation on the remaining states.

Since a group automaton with more than one state cannot be synchronizing,
almost-group automata can be seen as the automata with the maximum num-
ber of cyclic states (considering all its letters) that can be synchronizing. The
question we investigate in this article is the following.
Question: For the uniform distribution, what is the probability that a strongly
connected almost-group automaton is synchronizing?

For this question, we consider automata with n states on a k-letter alpha-
bet, with k ≥ 2, and try to answer asymptotically as n tends to infinity. We
prove that such an automaton is synchronizing with probability that tends to
1. We also provide a precise asymptotic estimation of the probability that it
is not synchronizing. In other words, one can state our result as follows: group
automata are always non-synchronizing when there are at least two states, but
if one allows just one letter to act not bijectively for just one state, then the
automaton is synchronizing with high probability. This suggests that from a
probabilistic point of view, it is very difficult to achieve non-synchronization.

Synchronizing Random Almost-Group Automata 87

This article starts with recalling some basic definitions and notations in
Sect. 2. Then some interesting properties of this set of automata regarding syn-
chronization are described in Sect. 3. Finally, we rely on this properties and some
elementary counting techniques to establish our result in Sect. 4.

2 Basic Definitions and Notations

Automata and Synchronization. Throughout the article, we consider
automata on a fixed k-letter alphabet A = {a0, . . . , ak−1}. Since we are only
interested in synchronizing properties, we only focus on the transition structure
of automata: we do not specify initial nor final states, and will never actually
consider recognized languages in the sequel. From now on a deterministic and
complete automaton (DFA) A on the alphabet A is just a pair (Q, ·), where Q is
a non-empty finite set of states and ·, the transition mapping, is a mapping from
Q × A to Q, where the image of (q, a) ∈ Q × A is denoted q · a. It is inductively
extended to a mapping from Q×A∗ to Q by setting q ·ε = q and q ·ua = (q ·u) ·a,
for any word u ∈ A∗ and any letter a ∈ A, where ε denote the empty word.

Let A = (Q, ·) be a DFA. A word u ∈ A∗ is a synchronizing word or a reset
word if for every q, q′ ∈ Q, q · u = q′ · u. An automaton is synchronizing if it
admits a synchronizing word. A subset of states S ⊆ Q is synchronized by a
word u ∈ A∗ if |S · u| = 1.

Observe that if an automaton contains two or more terminal strongly con-
nected components2, then it is not synchronizing. Moreover if it has only one
terminal strongly connected component S, then it is synchronizing if and only if
S is synchronized by some word u. For this reason, most works on synchroniza-
tion focus on strongly connected automata, and this paper is no exception.
Almost-Group Automata. Let Sn be the set of all permutations of En =
{0, . . . , n−1}. A cyclic point of a mapping f is an element x such that f �(x) = x
for some positive �. An almost-permutation of En is a mapping from En to itself
with exactly n−1 cyclic points; its unique non-cyclic point is called dangling point
(or dangling state later on, when we use this notion for automata). Equivalently,
an almost-permutation is a mapping that acts as a permutation on a subset
of size n − 1 of En and that is not a permutation. Let S ′

n denote the set of
almost-permutations on En.

An almost-group automaton is a DFA such that one letter act as an almost-
permutation and all others as permutations. An example of such an automaton
is given in Fig. 1. For counting reasons, we need to normalize the automata,
and define Gn,k as the set of all almost-group automata on the alphabet
{a0, . . . , ak−1} whose state set is En and such that a0 is the almost-permutation
letter.
Probabilities. In this article, we equip non-empty finite sets with the uniform
distribution, where all elements have same probability. The sets under consider-
ation are often sequences of sets, such as Sn; by abuse of notation, we say that

2 A strongly connected component S is terminal when S · u ⊆ S for every u ∈ A∗.

88 M. V. Berlinkov and C. Nicaud

a property hold with high probability for Sn when the probability that it holds,
which is defined for every n, tends to 1 as n tends to infinity.

3 Synchronization of Almost-Group Automata

In this section we introduce the main tools that we use to describe the structure
of synchronizing and of non-synchronizing almost-group automata.

The notion of a stable pair, introduced by Kari [4], has proved to be fruitful
mostly by Trahtman, who managed to use it for solving the famous Road Color-
ing Problem [9]. We make use of this definition in our proof as well, along with
some ideas coming from [9].

A pair of states {p, q} is called stable, if for every word u there is a word v
such that p · uv = q · uv. The stability relation given by the set of stable pairs
joined with a diagonal set {(p, p) | p ∈ Q} is invariant under the actions of
the letters and complete whenever A is synchronizing. The definition on pairs is
sound as stability is a symmetric binary relation. It is also transitive whence it
is an equivalence relation on Q which is a congruence, i.e. invariant under the
actions of the letters.

Notice also, that an automaton is synchronizing if and only if its stability
relation is complete, that is, all pairs are stable. Because of that, if an automaton
is not synchronizing and admits a stable pair, then one can consider a non-
trivial factorization of the automaton by the stability relation. So, we aim at
characterizing stable pairs in a strongly-connected non-synchronizing almost-
permutation automaton, in order to show there is a slim chance for such a
factorization to appear when switching to probabilities.

For this purpose, we need the definition of a deadlock, which is a pair that
cannot be merged into one state by any word (somehow opposite to the notion
of stable pair). A subset S ⊆ Q is called an F -clique of A if it is a set of
maximum size such that each pair of states from S is a deadlock. It follows from
the definition that all F -cliques have same size and that the image of F -clique
by a letter or a word is also an F -clique.

Let us reformulate [9, Lemma 2] for our purposes and present a proof for
self-completeness.

Lemma 1. If S and T are two F -cliques such that S \T = {p} and T \S = {q},
for some states p and q, then {p, q} is a stable pair.

Proof. By contradiction, suppose there is a word u such that {p · u, q · u} is a
deadlock. Then (S∪T) ·u is an F -clique because all its pairs are deadlocks. Since
p · u �= q · u, we have |S ∪ T | = |S| + 1 > |S| contradicting maximality of S. 	

Lemma 2. Each strongly-connected almost-group automaton A ∈ Gn,k with at
least two states, admits a stable pair containing the dangling state that is syn-
chronized by a0.

Synchronizing Random Almost-Group Automata 89

Proof. If A is synchronizing, then we are done because all pairs are stable. In
the opposite case, there must be an F -clique F1 of size at least two.

Let p0 be the dangling state (which is not permuted by a0) and let d be
the product of all cycle lengths of a0. Since A is strongly-connected there is a
word u such that p0 ∈ F1 · u. By the property of F -cliques, F2 = F1 · u and
F3 = F2 · ad

0 are F -cliques too. Notice that p0 is the only state which does
not belong to the cycles of a0 and all the cycle states remains intact under the
action ad

0, by construction of d. Hence F2 \ F3 = {p0} and F3 \ F2 = {p0 · ad
0}.

Hence, by Lemma 1, {p0, p0 · ad
0} is a stable pair. This concludes the proof since

p0 · a0 = p0 · ad+1
0 . 	

To characterize elements of Gn,k that are not synchronizing, we build their
factor automata, which is defined as follows. Let A be a DFA with stability
relation ρ. Let C = {C1, . . . , C�} denote its classes for ρ. The factor automaton
of A, denoted by A/ρ, is the automaton of set of states C with transition function
defined by Ci · a = Cj in A/ρ if and only if Ci · a ⊆ Cj in A. Or equivalently, if
and only if there exists q ∈ Ci such that q · a ∈ Cj in A.

Lemma 3. If A ∈ Gn,k is strongly-connected, then its factor automaton A/ρ is
a strongly-connected permutation automaton.

Proof. Strong-connectivity follows directly from the definition. If one of the let-
ters was not a permutation on the factor automaton, then there would be a
stable class S in A which has no incoming transition by this letter. It would
follow that there is no incoming transition to every state of S in A either. How-
ever, this may happen only for the letter a0 and the (unique) dangling state p0
by this letter. Due to Lemma 2, the dangling state p0 must belong to a stable
pair whence there is another state in S: this contradicts that p0 is the only state
with no incoming transition by a0. 	

Lemma 4. Let A ∈ Gn,k and let D be the stable class of A that contains the
dangling state p0. Then the set of stable classes can be divided into two disjoint,
but possibly empty, subsets B and S such that

• D ∈ B and |B| = |D| for every B ∈ B;
• |S| = |D| − 1 for every S ∈ S;
• The a0-cycle of A/ρ that contains D only contains elements of S besides D;
• Every other cycle in A/ρ lies entirely in either B or S.
Proof. Since stable pairs are mapped to stable pairs, the image of a stable class
by any letter must be included in a stable class. Recall that by Lemma 3 all
letters in A/ρ act as permutations on the stable classes. Our proof consists in
examining the different cycles of the group automaton A/ρ. Let us consider
any cycle of a letter a in A/ρ, made of the stable classes C0, C1, . . . , Cr−1 with
Cj · a ⊆ Cj+1 (mod r), for any j ∈ {0, . . . r − 1}.

If a �= a0 then the letter a acts as a permutation in A, and for each j, we
have |Cj | ≤ |Cj+1 (mod r)|, since a does not merge pairs of states. Therefore,

|C0| ≤ |C1| · · · ≤ |Cr−1| ≤ |C0|.

90 M. V. Berlinkov and C. Nicaud

As a direct consequence, all |Cj | have same cardinality.
If a = a0, then observe that the same argument can be used when one

removes the dangling state p0 and its outgoing transition by a0: the action of
a0 on Q \ {p0} becomes a well-defined permutation. Henceforth, if this cycle
does not degenerate to a simple loop consisting of only D, then all the other
elements of the cycle are stable classes of size |D| − 1. And this is the only
place where changes of size may happen in A/ρ. The lemma follows from the
strong-connectivity of A/ρ. 	

Notice that an almost-group automaton is non-synchronizing if and only if
it has at least two stable classes. The following theorem is a consequence of this
fact and of Lemma 4.

Theorem 1. A strongly-connected almost-group automaton A is non-synchro-
nizing if and only if its partitioning described in Lemma 4 is such that |B∪S| > 1.

4 Counting Non-synchronizing Almost-Group Automata

In this section, we use counting arguments to establish our main result: a pre-
cise estimation of the asymptotic number of strongly connected almost-group
automata that are not synchronizing.

Recall that our working alphabet is A = {a0, . . . , ak−1}, that En =
{0, . . . , n − 1} and that Gn,k is the set of almost-group automata on A with
set of states En. Our first counting lemma is immediate.

Lemma 5. For any n ≥ 1, there are exactly (n − 1)n! almost-permutations of
En. The number of elements of Gn,k is therefore equal to (n − 1)n!k.

Proof. An almost-permutation of En is characterized by its element with no
preimage x0, the way it permutes En \ {x0} and the image of x0 in En \ {x0}.
Since there are n choices for x0, (n − 1)! ways to permute the other elements
and n − 1 choices for the image of x0, the result follows. 	

4.1 Strong-Connectivity

Our computations below focus on strong-connectivity. We shall need an esti-
mation of the number of strongly connected group automata and almost-group
automata. The proofs of the following lemmas are kind of folklore and thus
presented only in the extended version [1] due to a space limit.

Lemma 6. There are at most n(n − 1)!k(1 + o(1)) group automata with set of
states En that are not strongly-connected. Henceforth, there are n!k(1+o(n1−k))
strongly-connected group automata.

Lemma 7. The number of not strongly-connected almost-group automata is at
most 2(n−1)n(n−1)!k(1+o(1)). Henceforth, almost-group automata are strongly
connected with high probability: there are (n − 1)n!k(1 + o(n1−k)) strongly con-
nected elements in Gn,k.

Synchronizing Random Almost-Group Automata 91

4.2 Non-synchronizing Almost-Group Automata: A Lower Bound

In this section we give a lower bound on the number of strongly connected ele-
ments of Gn,k that are not synchronizing. In order to do so, we build a sufficiently
large family of automata of that kind. The construction of this family is intu-
itively driven by the structure given in Lemma 4 but the formal details of the
construction can be done without mentioning this structure.

For n ≥ 3, let Fn,k be the subset of Gn,k, made of the almost-group automata
on A with set of states En such that:

1. there exists a state p that is not the dangling state p0 such that for every
letter a �= a0, either p · a = p0 and p0 · a = p, or p · a = p and p0 · a = p0;

2. for at least one letter a �= a0, we have p · a = p0 and p0 · a = p;
3. there exists a state q ∈ Q′ = En\{p, p0} such that the action of a0 on Q\{p0}

is a permutation with q being the image of p;
4. the image of the dangling state by a0 is p0 · a0 = q.
5. let q′ be the preimage of p by a0; if one removes the states p and p0 and

set q′ · a0 = q, then the resulting automaton is a strongly connected group
automaton;

The structure of such an automaton is depicted on Fig. 2. Clearly from the
definition, an element of Fn,k is a strongly connected almost group automaton
with the dangling state p0.

p0

p

q

q′

a0

a0

a0

a0

a0

a1 a1

a2, a4

a2, a4

Q′

Fig. 2. The shape of an element of Fn,k, with the dangling state p0.

Lemma 8. For every n ≥ 3, every automaton of Fn,k is not synchronizing.

Proof. First observe that {p0, p} is the only pair that can be synchronized by
reading just a letter, which has to be a0. The preimage of {p0, p} is either {p0, p}
for a �= a0 or a singleton {q′} otherwise. Hence, no other pair can be mapped to
{p0, p} and thus be synchronized by more that one letter. 	

92 M. V. Berlinkov and C. Nicaud

Lemma 9. There are (2k−1 − 1)n(n − 1)(n − 2)(n − 2)!k(1 + o(n1−k)) elements
in Fn,k. Thus there are at least that many strongly connected non-synchronizing
almost-group automata.

Proof. From the definition of Fn,k, we observe that there are n(n−1)(n−2) ways
to choose p0, p and q. Once it is done, we choose any strongly connected group
automaton A′ with n − 2 states in EN \ {p0, p}; there are (n − 2)!k(1 + o(n1−k))
ways to do that according to Lemma 6. We then change the transition from the
preimage q′ of q by a0 by setting q′ · a0 = p. We set p · a0 = p0 · a0 = q. Finally
we choose the actions of the letters a ∈ A\{a0} on {p0, p} in one of the 2k−1 −1
possible ways, as at least one of them is not the identity. This concludes the
proof, since all the elements of Fn,k are built exactly once this way. 	

Observe that using the definitions of Lemma 4, an element of Fn,k consists
of exactly one stable class {p0, p} in B and n − 2 stable classes of size 1 in S.

4.3 Non-synchronizing Almost-Group Automata: An Upper Bound

In this section, we upper bound the number of non-synchronizing strongly-
connected elements of Gn,k using the characterization of Lemma 4. In the sequel,
we freely use the notations used in this lemma (the sets D, B, S, . . .).

Let b ≥ 1, s ≥ 0 and � ≥ 1 be three non-negative integers such that (� +
1)b + �s = n. Let Gn,k(b, s, �) denote the subset of Gn,k made of the automata
such that |B| = b, |S| = s and |D| = � + 1.

Lemma 10. The number of non-synchronizing strongly-connected elements of
Gn,k(b, s, �) is at most{

n!(n − 2)!k−1(n − 2)(2k−1 − 1) if b = 1, s = n − 2, and � = 1,

n!max(1, s)�
(
b!s!(� + 1)!b�!s

)k−1 otherwise.

Proof. Our proof consists in counting the number of ways to build, step by step,
an element of Gn,k(b, s, �).

Firstly, by elementary computations, one can easily verify that the number
of ways to split En into b subsets of size � + 1 and s subsets of size � is exactly

n!
(� + 1)!b�!sb!s!

. (1)

Secondly, let us count the number of ways to define the transitions at the
level of the factor automaton, i.e. between stable classes, as follows:

– Choose a permutation on B in b! ways and on S in s! ways for each of the
k − 1 letters a �= a0.

– Choose which stable class of B is the class D, i.e. the one containing the
dangling state p0, amongst the b possibilities.

– Choose a permutation for a0 on the b − 1 classes B \ {D} in (b − 1)! ways.

Synchronizing Random Almost-Group Automata 93

– If s �= 0, choose one of the s! permutations of S for the action of a0 on these
classes, then alter the action of a0 the following way: choose the image D′

of D by a0 in S in s ways, then insert it in the a0-cycle: if D′′ is the former
preimage of D′, then now D · a0 = D′ and D′′ · a0 = D in A/ρ.

– If s = 0, then set D · a0 = D in A/ρ.

In total, the number of ways to define the transitions of the factor automaton
A/ρ, once the stable classes are chosen is

(b!s!)k−1b(b − 1)!max(1, s)s! = b!ks!k max(1, s). (2)

Now, we need to define transitions between stable classes for all letters. For
all letters but a0, there are b injective transitions between stable classes of size
�+1 and s injective transitions between stable classes of size �, that is, there are
at most (� + 1)!b�!s ways to define them for each of the k − 1 letters. This is an
upper bound, as some choices may result in an automaton that is, for instance,
not strongly connected. We refine this bound for the case � = 1, b = 1, s = n−2:
one of the letters must swap the states in the single 2-element class in B for
strong connectivity, so we count just one choice instead of 2 (for (� + 1)!) to
define this letter on this component, that is, we consider only 2k−1 − 1 ways
to define all permutations on B in this case, instead of the ((� + 1)!b)k−1 upper
bound in the general case (this refinement is used to match our lower bound).

For the action of a0, we additionally choose the dangling state p0 ∈ D in
�+1 ways and its image in D ·a0 in � ways: there are � choices in the case where
D · a0 = D, since p0 · a0 �= p0, and also when D · a0 �= D, since D · a0 ∈ S in this
case, according to Lemma 4. Then, it remains to define the injective transitions
between the B\{D} blocks in (�+1)!b−1 ways, and the s+1 injective transitions
between the S ∪ {D′} blocks in �!s+1 ways, where D′ = D \ {p0}.

Thus, the number of ways to define the transitions between stable classes is
at most ((� + 1)!b�!s)k−1�(� + 1)(� + 1)!b−1�!s+1 = �(� + 1)!bk�!sk, in the general
case, and 2(2k−1 − 1) in the case � = 1, b = 1, s = n − 2.

Putting together (1), (2) and this last counting result yield the lemma. 	

Lemma 11. The number of non-synchronizing strongly-connected almost-group
automata in Gn,k is at most n(2k−1 − 1)n!(n − 2)!k−1(1 + o(1/n)).

Proof. By Lemma 9 and Theorem 1, the number of non-synchronizing strongly-
connected almost-group automata in Gn,k is at most

n!
�n/2�∑
�=1

∑
{b,s|b(�+1)+s�=n}

N�,b,s, (3)

where b ≥ 1, s ≥ 0, and b + s ≥ 2, and where N�,b,s is defined by

N�,b,s =

{
max(1, s)�(b!s!(� + 1)!b�!s)k−1, for (�, b, s) �= (1, 1, n − 2)
(n − 2)!k−1(n − 2)(2k−1 − 1), for (�, b, s) = (1, 1, n − 2).

(4)

94 M. V. Berlinkov and C. Nicaud

To finish the proof, it will be sufficient to prove that the sum in (3) is asymptot-
ically equivalent to the term N1,1,n−2 since n!N1,1,n−2 is asymptotically equiva-
lent to the expression stated in Lemma 11.

To prove this, let us consider the following fraction for (�, b, s) �= (1, 1, n−2):

N1,1,n−2

N�,b,s
=

n − 2
max(1, s)�

(n − 2)!k−1(2k−1 − 1)
(b!s!(� + 1)!b�!s)k−1

≥
(

(n − 2)!
b!s!(� + 1)!b�!s

)k−1

, (5)

where we used that n − 2 = s� + b(� + 1) − 2 ≥ s�, as b and � are positive; thus
n − 2 ≥ max(1, s)� if s > 0; but it also holds if s = 0 since b + s ≥ 2.

Observe that, for positive � and m we have

(bm)!
m!b

=
(

1 · 2 · · · m
1 · 2 · · · m

)(
(m + 1)(m + 2) · · · 2m

1 · 2 · · · m
)

· · ·
(

((b − 1)m + 1) · · · bm
1 · 2 · · · m

)
≥ 1m · 2m · · · bm = b!m

Hence, for m = � + 1, we have (b(�+1))!
(�+1)!b

≥ b!�+1. Similarly, one can get that

n!
(b(� + 1))!

1
�!s

≥
(

(b + s)!
b!

)�

. (6)

Let M�,b,s = (n−2)!
b!s!(�+1)!b�!s

, the expression in brackets of (5). This quantity can be
bounded from below as follows.

M�,b,s =
1

n(n − 1)b!s!
(b(� + 1))!
(� + 1)!b

n!
(b(� + 1))!�!s

(7)

≥ b!�+1

n(n − 1)b!s!

(
(b + s)!

b!

)�

≥ (b + s)!�

n2s!
. (8)

Recall that we want to prove that M�,b,s is sufficiently large, so that N1,1,n−2

is really larger than N�,b,s. Notice that there are at most quadratic in n number
of combinations (�, b, s) satisfying b(�+1)+s� = n, as for any values 1 ≤ b, � < n
there is at most one suitable value of s. Therefore, cubic lower bound on M�,b,s

is enough in general. We distinguish two cases:
� If � ≥ 2, then M�,b,s ≥ n−2(b + s)!�−1. If b+ s ≥ ln n, this expression is greater
than Θ(n3) by Stirling formula. Otherwise, because b(� + 1) + s� = n, we have
� ≥ n

lnn − 1 and as b + s ≥ 2 the same Θ(n3) lower bound holds.
� If � = 1, then s = n − 2b and M�,b,s ≥ (n−b)!

n2(n−2b)! . Clearly, this expression
decreases as b increases; for b = 3 it is greater than Θ(n) (and there is only one
such term) and for b > 3 it is greater than Θ(n3). If b = 1, then s = n − 2 and
this is the term N1,1,n−2. The only remaining case is when b = 2, � = 1, and
s = n − 4. For this case by (5), we get

N1,1,n−2

N�,b,s
≥

(
(n − 2)!

b!s!(� + 1)!b�!s

)k−1

=
(

(n − 2)!
8(n − 4)!

)k−1

= Θ(n2(k−1)). (9)

Thus, we proved that the sum (3) is indeed asymptotically equal to the term
N1,1,n−2 multiplied by n!. 	

Synchronizing Random Almost-Group Automata 95

4.4 Main Result and Conclusions

Now, we are ready to prove our main result on the asymptotic number of strongly
connected elements of Gn,k that are not synchronizing.

Theorem 2. The probability that a random strongly connected almost-group
automaton with n states and k ≥ 2 letters is not synchronizing is equal to

(2k−1 − 1)n−2(k−1) (1 + o(1)) . (10)

In particular, random strongly connected almost-group automata are synchroniz-
ing with high probability as n tends to infinity.

Proof. Lemmas 9 and 11 give lower and upper bounds on the number of strongly-
connected non-synchronizing almost-group automata, which are both equal to
(2k−1 − 1)n3(n − 2)!k(1 + o(1/n)). We conclude the proof using the estimation
on the number of strongly-connected almost-group automata given in Lemma 7.
	

Thus we obtained a precise asymptotic on the probability for strongly-
connected almost group automata of being synchronizable for any alphabet size.
Apart from generalizing this result, it would be natural, as in [2], to design
an algorithm which would test on synchronization a given random strongly-
connected almost-group automaton in optimal average time.

We are thankful to anonymous referees whose comments helped to improve
the presentation of the results.

References

1. Belinkov, M., Nicaud, C.: Synchronizing random almost-group automata (2018).
https://arxiv.org/abs/1805.02154

2. Berlinkov, M.V.: On the probability of being synchronizable. In: Govindarajan,
S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 73–84. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 7

3. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matem.-fyzik. Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

4. Kari, J.: Synchronization and stability of finite automata. J. UCS 8(2), 270–277
(2002). https://doi.org/10.3217/jucs-008-02-0270

5. Nicaud, C.: Random deterministic automata. Math. Found. of Comp. Sci. 2014,
5–23 (2014). https://doi.org/10.1007/978-3-662-44522-8 2

6. Nicaud, C.: Fast synchronization of random automata. In: APPROX/RANDOM
2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 60, pp. 43:1–
43:12 (2016)

7. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics,
vol. 75, pp. 535–548 (1983)

8. Szykula, M.: Improving the upper bound on the length of the shortest reset word.
In: 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
LIPIcs, vol. 96, pp. 56:1–56:13 (2018)

https://arxiv.org/abs/1805.02154
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.3217/jucs-008-02-0270
https://doi.org/10.1007/978-3-662-44522-8_2

96 M. V. Berlinkov and C. Nicaud

9. Trahtman, A.: The road coloring problem. Israel J. Math. 172(1), 51–60 (2009).
https://doi.org/10.1007/s11856-009-0062-5

10. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

11. Zaks, Y., Skvortsov, E.: Synchronizing random automata. Discrete Math. Theor.
Comput. Sci. 12(4) (2010)

https://doi.org/10.1007/s11856-009-0062-5
https://doi.org/10.1007/978-3-540-88282-4_4

A Comparison of Two N -Best Extraction
Methods for Weighted Tree Automata

Johanna Björklund, Frank Drewes, and Anna Jonsson(B)

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{johanna,drewes,aj}@cs.umu.se

Abstract. We conduct a comparative study of two state-of-the-art algo-
rithms for extracting the N best trees from a weighted tree automaton
(wta). The algorithms are Best Trees, which uses a priority queue
to structure the search space, and Filtered Runs, which is based on
an algorithm by Huang and Chiang that extracts N best runs, imple-
mented as part of the Tiburon wta toolkit. The experiments are run on
four data sets, each consisting of a sequence of wtas of increasing sizes.
Our conclusion is that Best Trees can be recommended when the input
wtas exhibit a high or unpredictable degree of nondeterminism, whereas
Filtered Runs is the better option when the input wtas are large but
essentially deterministic.

1 Introduction

Data-driven language processing involves as a rule weighted language models.
Rather than providing a definite answer as to whether a sentence belongs to a
target language, these return a probability or a fitness score. This reflects the
inherently ambiguous nature of human language and is convenient for statistical
machine learning, but it often complicates downstream processing. When the
output of a machine translation system is not limited to a small set of possible
translations, but is a weighted device ranking the universe of all possible outputs,
efficient algorithms are needed to find the highest-scoring solutions. This problem
is known as the N -best problem. The input is a weighted automaton M and a
natural number N , and task is to find N best-ranking elements with respect to
M . The difficulty of the problem, and indeed whether there is a unique or several
interchangeable solutions, largely depends on the type of automata at hand and
the domain from which weights are taken.

We consider the N -best problem for weighted tree automata [3,4], which are
useful in natural language processing, owing to their capability to rank parse
trees of context-free languages. This makes them useful for syntax-based forms
of processing, as demonstrated in, e.g., machine translation and program verifi-
cation. Weighted tree automata [2] are typically defined over algebras that have
at least as much structure as a semiring, but semifields or even fields are often
used. The weight of a computation (called a run) of an automaton on an input
tree is the semiring product of the weights of the rules applied, and the weight
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 97–108, 2018.
https://doi.org/10.1007/978-3-319-94812-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_9&domain=pdf

98 J. Björklund et al.

of the tree is the semiring sum of the weights of all runs on this tree. We restrict
ourselves to the so-called tropical semiring, which means that the weight of a
run is the (ordinary) sum of the weights of the applied rules and the weight of
a tree is the minimum of the weights of its runs.

Our main contribution is an empirical evaluation of two N -best algorithms
for weighted tree automata (wta) M over the tropical semiring. Both algorithms
represent the state of the art, but operate in quite different ways. The first
of these is an indirect method based on an N -best runs (or derivations) algo-
rithm proposed by Huang and Chiang [5] and implemented in the wta toolkit
Tiburon [7]. The algorithm computes N best runs in time O(mN log N), where
m is the number of transitions of the wta. This can be used to compute N
best trees by generating a list of N ′ best runs of M , for some large enough
N ′ ≥ N . These runs are evaluated to the corresponding trees and duplicates are
discarded to obtain a list of N best trees. Henceforth, we refer to this method by
Filtered Runs. Filtered Runs thus takes a heuristic approach in the sense
that an unlucky user may request too large or small a number of best runs, either
wasting time or not gathering enough runs to find N unique best trees.

The second algorithm that we evaluate is Best Trees [1], a generalisation
of an N -best algorithm for string automata [8]. Intuitively, Best Trees imple-
ments a breadth-first search, while making extensive use of pruning to avoid a
combinatorial explosion. The running time of Best Trees is O(N2 ·(mn log N +
n3)) [1, slightly simplified], where m and n are the number of transitions and
states of the input wta. Hence, the algorithm is less efficient than the pure
N -best runs algorithm by Huang and Chiang, even though both are polynomial.
However, Best Trees is guaranteed to produce exactly the desired number
of trees without the need to discard duplicates, whereas Filtered Runs may
require the enumeration of a large number of runs. The latter can happen if
the input wtas exhibit a high degree of nondeterminism, i.e. if the number of
distinct trees among the N best runs grows slowly (logarithmically in the worst
case) with increasing N . Filtered Runs is thus expected to run faster even
on large wtas if there is no or very little nondeterminism, while the asymptotic
advantage of Best Trees should become apparent as the degree of nondeter-
minism increases. We perform empirical evaluations in order to (a) confirm this
expected behaviour and (b) get an idea about how the algorithms compare on
different kinds of wta and varying amounts of nondeterminism.

To study this in a setting where the type, size, and amount of nondeterminism
of input wtas can be varied in a controlled way, we run our experiments on a
range of synthesized wtas designed for this purpose rather than using “real life”
wtas. While the results mostly confirm the theoretical expectations, they show
that the precise behaviour is not as simple as the theoretical worst case analysis
suggests. In particular, the running time of Filtered Runs depends on aspects
other than the pure amount of nondeterminism, such as the order in which the
transition rules of the input wta are given.

A Comparison of Two N -Best Extraction Methods 99

2 Preliminaries

We write N for the set of nonnegative integers, N+ for N\{0}, and R+ for the set
of non-negative reals; N∞ and R

∞
+ denote N∪ {∞} and R+ ∪ {∞}, respectively.

For n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅ and [∞] = N.
The cardinality of a (countable) set S is written |S|, and the powerset of S is
denoted by pow (S). The n-fold Cartesian product of a set S with itself is denoted
by Sn. As usual, the set of all finite sequences over S is denoted by S∗, and the
empty sequence by λ.

For a set A, an A-labelled tree is a partial function t : N∗
+ → A whose domain

dom (t) is a finite non-empty set that is prefix-closed and closed to the left:
whenever vi ∈ dom (t) for some v ∈ N

∗
+ and i ∈ N+, it holds that v ∈ dom (t)

(prefix-closedness) and vj ∈ dom (t) for all 1 ≤ j ≤ i (closedness to the left).
The size of t is |t| = |dom (t)|. An element v of dom (t) is called a node of t, and
|{i ∈ N+ | vi ∈ dom (t)}| is the rank of v. The subtree of t ∈ TΣ rooted at v is
the tree t/v defined by dom (t/v) = {u ∈ N

∗
+ | vu ∈ dom (t)} and t/v(u) = t(vu)

for every u ∈ N
∗
+. If t(λ) = f and t/i = ti for all i ∈ [k], where k is the rank of λ

in t, then we denote t by f [t1, . . . , tk], which may be identified with f if k = 0.
A ranked alphabet is a disjoint union of finite sets of symbols, Σ =

⋃
k∈N

Σ(k).
For f ∈ Σ, the k ∈ N such that f ∈ Σ(k) is the rank of f , denoted by rank (f).
The set TΣ of ranked trees over Σ consists of all Σ-labelled trees t in which the
rank of every node v ∈ dom (t) equals the rank of t(v). For a set T of trees we
denote by Σ(T) the set of trees which have a symbol from Σ in their root, with
direct subtrees in T , i.e., {f [t1, . . . , tk] | k ∈ N, f ∈ Σ(k), and t1, . . . , tk ∈ T}.

In the following, let � 	∈ Σ be a special symbol of rank 0. The set of contexts
over Σ is the set CΣ of trees c ∈ TΣ∪{�} containing exactly one node v ∈ dom (c)
with c(v) = �. The substitution of another tree t into c results in the tree c[[t]]
given by dom (c[[t]]) = dom (c) ∪ {vu | u ∈ dom (t)} and

c[[t]](w) =
{

c(w) if w ∈ dom (c) \ {v}, and
t(u) if w = vu for some u ∈ dom (t)

for all w ∈ dom (c[[t]]).
Recall that the domain of the tropical semiring is R

∞
+ , with min serving as

addition and real-valued addition as multiplication. A weighted tree language
over the tropical semiring is a mapping L : TΣ → R

∞
+ , where Σ is a ranked

alphabet. Such languages can be specified by a weighted tree automaton with
final states (wta). A wta is a system M = (Q,Σ,R,Qf) consisting of

– a finite set Q of symbols of rank 0 called states;
– a ranked alphabet Σ of input symbols disjoint with Q;
– a finite set R of transition rules f [q1, . . . , qk] w→ q, where q, q1, . . . , qk ∈ Q,

f ∈ Σ(k), and w ∈ R+; and
– a set Qf ⊆ Q of final states.

A transition rule r : f [q1, . . . , qk] w→ q will also be viewed as a symbol of rank
k, so that R becomes a ranked alphabet. In addition, we view every state q ∈ Q

100 J. Björklund et al.

as a symbol of rank 0. We define the set runsq
M ⊆ TR∪Q of q-runs of M , their

resulting trees resultM (ρ), and their weights wtM (ρ) (for ρ ∈ runsq
M) inductively,

as follows:

1. For every state q ∈ Q, q ∈ runsq
M with resultM (q) = q and wtM (q) = 0.

2. For every r : f [q1, . . . , qk] w→ q in R and all ρ1 ∈ runsq1
M , . . . , ρk ∈ runsqk

M , ρ =
r[ρ1, . . . , ρk] ∈ runsq

M with resultM (ρ) = f [resultM (ρ1), . . . , resultM (ρk)],
and wtM (ρ) = w +

∑
i∈[k] wtM (ρi).

The set of accepting runs is runsM = {runsq
M | q ∈ F}.

Now, the weighted tree language M : TΣ → R
∞
+ recognised by M is given by

M(t) = min{wtM (ρ) | ρ ∈ runsq
M is accepting and resultM (ρ) = t}

for all t ∈ TΣ (where, by convention, min ∅ = ∞). In other words, M(t) is
the minimal weight of an accepting run of t. Note that we, by a slight abuse of
notation, denote by M both the wta and the weighted tree language it computes.

For a wta M and an N ∈ N
∞ as input, the N -best runs problem is the

problem to compute a sequence of N accepting runs of minimal weight according
to M . More precisely, an algorithm solving the problem outputs a sequence
ρ1, ρ2, . . . of N pairwise distinct accepting runs such that there are no i ∈ [N]
and ρ ∈ runsM \ {ρ1, . . . , ρi} with wtM (ρ) < wtM (ρi). (If the total number N ′

of accepting runs is smaller than N , the algorithm only outputs N ′ runs.)
Similarly, the N -best trees problem asks to compute pairwise distinct trees

t1, t2, . . . in TΣ of minimal weight, i.e., such that there are no i ∈ [N] and
t ∈ TΣ \ {t1, . . . , ti} with M(t) < M(ti).

3 Previous Work

The difference between the two N -best problems is that, in the nondeterministic
case, distinct runs may result in the same tree. The wta toolkit Tiburon pro-
vides an implementation of the N -best runs algorithm by Huang and Chiang [5].
This yields an obvious procedure for solving the N -best trees problem: one sim-
ply computes N ′ best runs ρ1, ρ2, . . . for large enough N ′, and outputs those
resultM (ρi) for which resultM (ρi) /∈ {resultM (ρ1), . . . , resultM (ρi−1)}. This pro-
cedure is guaranteed to produce the desired result because any given tree has
at most an exponential number of runs, which means that the next tree will be
encountered after at most exponentially many steps. (If there are no more accept-
ing runs one can simply continue to enumerate arbitrary ones of the remaining
trees, whose weight will by definition be ∞.)

The N -best trees algorithm developed in [1] avoids the detour via N ′ best
runs. We now give a short summary of the reasoning that leads to this algorithm.
Let the size parameters of the input wta M be the following:

– m is the number |R| of transition rules of M ,
– n is the number of states, and

A Comparison of Two N -Best Extraction Methods 101

– r is the maximum rank of symbols.

The algorithm explores its search space by maintaining a priority queue K of
trees that are candidates of output trees. The trees in the queue mark the frontier
of the search space, the priority being determined primarily by the minimal value
of M(c[[t]]), where c ranges over all possible contexts. To determine this value,
note that the definition of M(t) works also for trees t ∈ TΣ∪Q. In particular, t
can be of the form c[[q]], where c is a context and q ∈ Q. This is useful because
of the following. For a run of the form ρ[[ρ′]] where ρ′ ∈ runsq

M we clearly have
wtM (ρ[[ρ′]]) = wtM (ρ) + wtM (ρ′). Hence, if we denote by Mq the wta obtained
from M by replacing its set of final states by {q}, then

M(c[[t]]) = min
q∈Q

(M(c[[q]]) + Mq(t))

for all contexts c and all trees t.
As M(c[[p]]) is independent of t, a context c that minimises it can be calculated

in advance. Such a context c, which we call a cheapest context1 of q and which is
henceforth denoted by cq, is thus a cheapest context into which a subtree t can
be embedded in order to reach a final state, once the state q has been reached
at the root of t. As was shown in [1], a family (cq)q∈Q of cheapest contexts can
efficiently be computed given M .

To solve the N -best trees problem, when looking at a tree t in the frontier of
our search space we are, intuitively, interested in the tree c[[t]] that has the least
possible weight. The smaller this weight is, the higher should the priority of t be.
Clearly, when comparing trees with regard to this, c can be assumed to be one of
the cheapest contexts cp. Thus, our aim has to be to determine the state q that
minimises the weight of cq[[t]]. We call such a state an optimal state for t, and
denote it by opt(t) (breaking ties arbitrarily). In the algorithm, optimal states
can efficiently be computed in an incremental way as trees are assembled from
subtrees, provided that a small amount of bookkeeping information is stored
along with each tree.

Now, the N -best trees algorithm maintains data structures T and K, where

– T is a set of trees that have already been processed and
– K is a priority queue of trees in Σ(T), the frontier of the search space.

The queue K initially contains the trees in Σ0. Its priority order <K is defined
by t <K t′ ⇐⇒ Δ(t) < Δ(t′), where Δ(s) = M(copt(s)[[s]]) for all s ∈ TΣ .

We reproduce the pseudocode of the base algorithm from [1] in Algorithm 1.
As discussed in detail in [1], the set of trees enqueued in line 13 can be pruned
because for every state q at most N trees for which q is an optimal state may
ever become relevant. An additional optimisation was used in the implementation
used for the experiments of this paper: once the algorithm has outputted i ≤ N
trees, it suffices to keep N − i rather than N trees in K for each optimal state.
Hence, the queue shrinks as progress is made. While this does not affect the
asymptotic running time, it does yield a significant improvement in practise.
1 In [1] the term smallest completion was used.

102 J. Björklund et al.

Algorithm 1. Compute N ∈ N
∞ trees of minimal weight according to a wta M

1: procedures Best Trees(M, N)
2: compute cheapest contexts for all states
3: T ← ∅; K ← ∅
4: enqueue(K, Σ0)
5: i ← 0
6: while i < N ∧ K is nonempty do
7: t ← dequeue(K)
8: T ← T ∪ {t}
9: if M(t) = Δ(t) then

10: output(t)
11: i ← i + 1
12: end if
13: enqueue(K, expand(T, t))
14: end while
15: end procedures

4 Experiments

In this section, we experimentally verify the time complexity of Best Trees,
and then compare its performance with the indirect method Filtered Runs.

It is easy to construct worst-case scenarios in which Best Trees works
exponentially faster than Filtered Runs. For example, let Σ = Σ(0) ∪ Σ(1)

with Σ(0) = {a} and Σ(1) = {f}, and consider the wta M with two states q1, q2,

and the rules a
0→ qi and f [qi]

1→ qj for all i, j ∈ [2], where q1 is final. Then
M(t) = |t| for every tree t ∈ TΣ and thus Best Trees simply enumerates trees
by size. However, each tree t has 2|t| accepting runs, all of weight |t|, and thus
Filtered Runs needs to generate 2|t| − 1 best runs to discover t.

In the following, we conduct experiments on synthesized sets of wtas which,
rather than triggering this kind of worst-case behaviour, are designed to shed
light on particular aspects of the algorithms in less extreme (and thus perhaps
practically more relevant) cases. An annotated collection containing all of these
wta sets is available on the project web page2, along with the measured running
times for each wta. Due to space restrictions, we limit ourselves for the present
to brief descriptions of the data.

The experiments were run on a computer with 8 Intel i7 processors, each at a
speed of 3.6 GHz and with 16 GB memory allocated for the JVM. The efficiency
results are based on repeated experimentation, and each reported running time
is a mean value of five runs. As both Best Trees and Filtered Runs are
deterministic algorithms, the existing (but relatively low) variance in the running
times is due to variations in the execution environment, e.g., overall system load.
All plots show the running times in milliseconds as a function of N or wta size,
which is why we exclude the y axis labels from the figures.

2 http://people.cs.umu.se/aj/besttrees experiments/.

http://people.cs.umu.se/aj/besttrees_experiments/

A Comparison of Two N -Best Extraction Methods 103

4.1 Data

Below follows a short presentation of the wta sets used in this paper. Each set
consists of a sequence of language-equivalent wtas of increasing sizes. The rela-
tively small wta sizes are due to the limitations of Tiburon: increasing the number
of states causes out-of-memory errors when adding more nondeterminism.

Basic Example. A sequence of 20 wtas, starting with the example wta in [1].
Each subsequent automaton was derived from its predecessor by mirroring an
existing run for some tree t by the addition of new states and rules resulting
in an alternative run on t. Thus, the numbers of states and transition rules
increase at the same rate, which allows us to check the running time as a
function of the number of states and rules on the one hand, and of N on the
other hand. The amount of nondeterminism, however, does not significantly
increase as only t gets one more accepting run.

Different Weights. A sequence of 16 wtas over a, b of rank 0 and 0, resp.,
and states q1, . . . , q4, in which all of the transition rules have different weights.
All states are final. The transition rules have the weight of the index of their
target state. The weight of transition rule b[qi, qj] → qk is ijk/100, where
ijk is interpreted as a number in decimal notation. The �-th wta (� ∈ [16])
consists of the first 4� of these rules if ordered according to decreasing weight.
As a consequence, the degree of nondeterminism is moderate throughout, but
is changing as the wta sizes grow, as the later rules result in the best runs.
In particular, the degree of nondeterminism of the final wta including all
transition rules is low because only the rules a → q1 and b[q1, q1] → q1 result
in cheapest runs.

Modified Different Weights. Similar to Different Weights, but transi-
tion rules on b are added in a different order, starting with b[q1, q1] → q1 (see
the project web page (see footnote 1) for details). Hence, the best runs in all
16 wtas are those which assign q1 to all nodes, which means that the degree
of nondeterminism is small and grows moderately with growing wta sizes.

Equal Weights. The wta set Equal Weights is also similar to the set
Different Weights, but the weights are equal (all 0) apart from the rules
on a, which have weight 4. Thus, this example has the highest possible degree
of nondeterminism.

4.2 Running Time of BEST TREES

Let us first compare the measured running times of Best Trees with the
theoretical bound O(N2 · (mn log N + n3)) derived in [1].3

A somewhat unexpected outcome of our experiments was that our implemen-
tation of the computation of the cheapest contexts in line 2 of Algorithm 1, which
makes use of an algorithm by Knuth [6], turned out to be slightly less efficient
3 For the sake of clarity, the expression is slightly simplified. In particular, the

maximum rank r of symbols is taken to be constant, as it is typically small in
practise.

104 J. Björklund et al.

0 0.5 1 1.5 2 ·105
0

1,000

2,000

3,000

Size parameter mn

Finding cheapest contexts
0.000024(mn)3/2

Fig. 1. Running time of finding the cheapest contexts for wtas of increasing size in the
set Basic Example.

than the theoretical upper bound O(mn log n). Plotted against the parameter
mn, O(mn log n) should basically become linear when finding the cheapest con-
texts for Basic Example. As can be seen in Fig. 1, the practical running time
appears to instead be proportional to (mn)3/2 on this type of input automata.
Further experiments revealed that when m was increased while n was kept
constant (suggesting a running time of Θ(m)), we instead acquired figures resem-
bling Θ(m2) very closely. Optimising the computation of the cheapest contexts
could therefore give a certain gain when N is small, but since the computation
time is independent of N , its influence vanishes as N grows. Due to this not
being optimised, we from here on disregard the time for finding the cheapest
contexts when presenting running times for Best Trees. This, however, only
affects the runs on Basic Example significantly.

The numbers of rules and states increase at a similar rate in the wta sequence
Basic Example; this behaviour allows us to vary the two parameters N and
mn. Based on the theoretical upper bounds, the running times should be in
O(N2 log N) and O((mn)3/2) (the latter because of the term n3 in the theoretical
estimation, which equals (mn)3/2 for m = n). This is confirmed by our results,
which are visualised in Fig. 2a for increasing N , and in Fig. 2b for increasing mn.
As may be expected, these running times are slightly better than the theoretical
worst-case estimations.

As N varies, the theoretical worst-case running time of O(N2 log N) is only
reached when the priority queue used by the algorithm is at its maximal length
throughout most of the execution. Simply put, this only happens when most
trees can reach most states. In practise, the running time is therefor likely
to be lower. This is for instance the case for the Basic Example test set.

A Comparison of Two N -Best Extraction Methods 105

50 100 150 200
0

2

4

6

·103

N

2.8N3/2 + 10

(a) Running time depending on N ; the
multiple lines represent the increasingly
large wtas of Basic Example .

0.5 1 1.5 2 ·105
0

2

4

6

8

·103

Size parameter mn

0.009mn+ 6000

(b) Running time depending on the size
of wtas; the multiple lines represent N ∈
{10, 20, ..., 200}.

Fig. 2. Running time of Best Trees on the Basic Example set.

Here, the algorithm exhibits the behaviour shown in Fig. 2a, which is roughly
proportional to N3/2.

The waviness of the plot is explained by the pattern of the language recog-
nised by the input wtas: it only contains trees with an even number of symbols of
rank 0. By there only being a binary symbol in addition to the rank 0 symbols,
all of the trees in the language have an odd number of binary symbols. When all
of the trees with 2i − 1 binary symbols have been found, the next accepted tree
is amongst the trees with 2i + 1 binary symbols. However, all of the possibilities
for 2i binary symbols have to be processed as well since a rule application adds
at most one binary symbol to the resulting tree. Thus, the jumps in the plot
represent going from finding the trees with 2i − 1 binary symbols to finding the
trees with 2i + 1 binary symbols.

The measured running time as a function of the size of wtas is also lower
than the theoretical upper bound O((mn)3/2) in this example, namely linear.

4.3 Comparison of BEST TREES and FILTERED RUNS

In these experiments, we used Tiburon v.1.0. We ran Tiburon on the input wta
to get dN runs where dN is the smallest number of runs that produces N distinct
trees. The number dN was found manually for each combination of input wta
and value of N . Then, the list of runs was filtered using a Python script such
that only the N best trees remained. The filtering was done by going through
the list top-down and collecting only the unseen trees (by comparing each to
the previously collected ones) until N trees were gathered. The time spent on

106 J. Björklund et al.

filtering is included in the reported running times but negligible compared to
the running time of Tiburon.

Figure 3 shows how the running times of Filtered Runs and Best Trees
compare on the two extreme example sets. Even though Best Trees is poly-
nomial on Basic Example (as confirmed above), it is much less efficient than
Filtered Runs, which can be explained with the insignificant degree of non-
determinism of the wtas in Basic Example. Turning to Equal Weights
instead, the situation changes: as seen in Fig. 3b, Best Trees remains poly-
nomial whereas Filtered Runs appears to exhibit the expected exponential
behaviour as it is sensitive to the high (and growing) degree of nondeterminism
in Equal Weights.

100 200 300 400 500
102

103

104

Number m of transition rules

Best Trees
Filtered Runs

(a) Comparison of Best Trees and Fil-
tered Runs when run on the Basic Ex-
ample wta set for N = 200.

20 40 60
101

102

103

104

105

106

Number m of transition rules

(b) Comparison of Best Trees and Fil-
tered Runs when run on the Equal
Weights wta set for N = 30.

Fig. 3. Best Trees and Filtered Runs when run on Basic Example and Equal
Weights for fixed N .

The results for the less extreme sets Different Weights and Modified
Different Weights are shown in Fig. 4. On the former, the running time
of Filtered Runs is quite erratic, which can be explained with the changing
degree of nondeterminism. In particular, the running time drops towards the end
because the degree of nondeterminism does. Because of the low, and slowly but
steadily growing degree of nondeterminism of Modified Different Weights,
Filtered Runs runs faster on this set and the behaviour is much smoother as
wta sizes increase.

4.4 Discussion

An obvious advantage of Best Trees is that its argument N is simply the
number of best trees desired. In contrast, using Filtered Runs with the current

A Comparison of Two N -Best Extraction Methods 107

20 40 60
0

0.5

1

1.5
·104

Number m of transition rules

(a) Comparison of Best Trees and Fil-
tered Runs when run on the Different
Weights wta set.

20 40 60
0

1

2

3
·103

Number m of transition rules

Best Trees
Filtered Runs

(b) Comparison of Best Trees and Fil-
tered Runs when run on the Modified
Different Weights wta set.

Fig. 4. Best Trees and Filtered Runs when run on Different Weights and
Modified Different Weights for N = 100.

interface of Tiburon makes it necessary to guess the number dN of runs needed
to produce sufficiently many best runs. To avoid a trial and error procedure, one
would have to compute an appropriate – and thus exponentially large – upper
bound N ′ on dN from N , resulting in a running time that is guaranteed to be
exponentially less efficient than Best Trees even in cases where the actual
dN equals N . However, note that this is not an intrinsic weakness of Filtered
Runs because the best runs algorithm of [5] allows for a lazy implementation
that outputs runs one by one upon request. It should thus not be difficult to
modify the Tiburon implementation so as to allow for N ′ = ∞, resulting in an
infinite (lazy) list of runs that can be inspected in Filtered Runs to extract
any number of best trees. The more serious limitation of Filtered Runs is
that its running time is directly related to the number N ′ of best runs required,
which is difficult to predict. The running times reported in our experiments are
therefore indicative of how many runs had to be computed for each value of N .

Overall, Best Trees shows a more predictable and smoother behaviour than
Filtered Runs, allowing us to predict its time consumption more reliably if
the structure of input wtas is not well known (see Fig. 4a).

During the experiments, the memory usage of Tiburon became too high when
running it on the nondeterministic wta sets for N > 10, forcing us to increase
the memory allocated for the JVM from 2–4 GB to 16 GB. In contrast, Best
Trees did not encounter such problems and thus seems to use less memory.

108 J. Björklund et al.

5 Conclusion

We have experimentally validated the running time of Best Trees, the N -best
algorithm for wtas proposed in [1], and the practical results were in line with
the theoretical predictions. We then continued to compare Best Trees with
Filtered Runs. Whereas Best Trees can be said to take a direct approach,
Filtered Runs is indirect in the sense that it computes a large number of best
runs, and then discards those that duplicate previously outputted trees.

As it is easy to create “artificial” examples that make Filtered Runs expo-
nentially less efficient than Best Trees, we used more benign input automata
in our experiments. The experimental results confirm that the degree of non-
determinism has a decisive influence on the relative efficiency of both methods.
The greater simplicity of Filtered Runs makes it preferable if the degree of
nondeterminism is low and the input wtas are large. Conversely, if the degree
of nondeterminism is high in comparison to the size of the wta, Best Trees is
the more efficient algorithm.

Another, more general, advantage of Best Trees is that it provides guar-
antees, and that it avoids unpredictable behaviour such as the one seen in
Fig. 4a, which may be important in applications where the structure of the input
automata is varied or unclear. Using the currently available implementation pro-
vided by Tiburon, one can also add that it is inconvenient to be forced to guess
the number of runs needed to get N distinct trees.

References

1. Björklund, J., Drewes, F., Zechner, N.: Efficient enumeration of weighted tree lan-
guages over the tropical semiring. J. Comput. Syst. Sci. (2017)

2. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 9

3. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984). https://arxiv.
org/abs/1509.06233

4. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 3, Chap. 1, pp. 1–68. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 1

5. Huang, L., Chiang, D.: Better k-best parsing. In: Proceedings of the Conference
on Parsing Technology 2005, pp. 53–64. Association for Computational Linguistics
(2005)

6. Knuth, D.E.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6, 1–5
(1977)

7. May, J., Knight, K.: Tiburon: a weighted tree automata toolkit. In: Ibarra, O.H.,
Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg
(2006). https://doi.org/10.1007/11812128 11

8. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem. In:
Proceedings of the Conference on Spoken Language Processing (2002)

https://doi.org/10.1007/978-3-642-01492-5_9
https://arxiv.org/abs/1509.06233
https://arxiv.org/abs/1509.06233
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1007/11812128_11

State Complexity of Overlap Assembly

Janusz A. Brzozowski1, Lila Kari1, Bai Li1, and Marek Szyku�la2(B)

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada
{brzozo,lila}@uwaterloo.ca, bai.li.2005@gmail.com
2 Institute of Computer Science, University of Wroc�law,

Joliot-Curie 15, 50-383 Wroc�law, Poland
msz@cs.uni.wroc.pl

Abstract. The state complexity of a regular language Lm is the number
m of states in a minimal deterministic finite automaton (DFA) accepting
Lm. The state complexity of a regularity-preserving binary operation on
regular languages is defined as the maximal state complexity of the result
of the operation where the two operands range over all languages of state
complexities ≤ m and ≤ n, respectively. We find a tight upper bound on
the state complexity of the binary operation overlap assembly on regular
languages. This operation was introduced by Csuhaj-Varjú, Petre, and
Vaszil to model the process of self-assembly of two linear DNA strands
into a longer DNA strand, provided that their ends “overlap”. We prove
that the state complexity of the overlap assembly of languages Lm and
Ln, where m ≥ 2 and n ≥ 1, is at most 2(m − 1)3n−1 + 2n. Moreover,
for m ≥ 2 and n ≥ 3 there exist languages Lm and Ln over an alphabet
of size n whose overlap assembly meets the upper bound and this bound
cannot be met with smaller alphabets.

Keywords: Overlap assembly · Regular language · State complexity
Tight upper bound

1 Introduction

The state complexity of a regular language is the number of states in a min-
imal deterministic finite automaton (DFA) accepting the language. The state
complexity of a regularity-preserving binary operation on regular languages is
the maximal state complexity of the result of the operation when the operands
range over all languages of state complexities ≤ m and ≤ n; it is a function
of m and n. State complexity was introduced by Maslov [14] in 1970, but his
short paper was relatively unknown for many years. A more complete study of
state complexity was presented by Yu et al. [15] in 1994. Since the publication

This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grants No. OGP0000871 and R2824A01, and by the National Sci-
ence Centre, Poland, under project number 2014/15/B/ST6/00615.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 109–120, 2018.
https://doi.org/10.1007/978-3-319-94812-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_10&domain=pdf

110 J. A. Brzozowski et al.

of [15], many authors have written on this subject; for an extensive bibliography
see the recent surveys [1,8]. In particular, the state complexities of the so-called
basic operations, namely Boolean operations, concatenation, star and reversal
in various subclasses of the class of regular languages have been studied [1].

We consider the state complexity of a biologically inspired binary word and
language operation called overlap assembly. Formally, overlap assembly is a
binary operation which, when applied to two input words xy and yz (where
y is their nonempty overlap), produces the output xyz. As a formal language
operation, overlap assembly was introduced by Csuhaj-Varjú et al. [4] under
the name “self-assembly”, and studied by Enaganti et al. [6,7]. A particular
case of overlap assembly, called chop operation, where the overlap consists of a
single letter, was studied in, e.g., [10]. Other similar operations have been stud-
ied in the literature, such as the short concatenation [3], which uses only the
maximum-length (possibly empty) overlap y between operands, the Latin prod-
uct of words [9] where the overlap consists of only one letter, and the operation⊗

which imposes the restriction that the non-overlapping part xz is not empty
[12]. Overlap assembly can also be considered as a particular case of semantic
shuffle on trajectories with trajectory 0∗σ+1∗ [5] or as a generalization of the
operation

⊙
N from [5] which imposes the length of the overlap to be ≥ N .

In this paper we investigate the state complexity of overlap assembly as a
binary operation on regular languages. Section 2 describes the biological moti-
vation of overlap assembly. Section 3 introduces our notation, and describes an
NFA that accepts the results of overlap assembly of two regular languages, given
by their accepting DFAs. In Sect. 4 we prove that the state complexity of the
overlap assembly of languages Lm and Ln, where m ≥ 2 and n ≥ 1, is at most
2(m−1)3n−1 +2n. Moreover, for m ≥ 2 and n ≥ 3 there exist languages Lm and
Ln over an alphabet of size n whose overlap assembly meets the upper bound
and, in addition, this bound cannot be met with smaller alphabets.

2 Overlap Assembly

The bio-operation of overlap assembly was intended to model the procedure
whereby short DNA single strands can be concatenated (assembled) together
into longer strands under the action of the enzyme DNA polymerase, provided
they have ends that “overlap”. Recall that DNA single strands are oriented
words from the DNA alphabet Δ = {A,C,G, T}, where one end of a strand
is labeled by 5′ and the other by 3′, and two DNA single strands of opposite
orientation, that are Watson-Crick (W/C) complementary, bind to each other
to form a DNA double-strand. The W/C complementarity of DNA strands has
been traditionally modeled [11,13] as an antimorphic involution θ : Δ∗ −→ Δ∗,
that is, an involution on Δ (θ2 is the identity on Δ) extended to an antimorphism
on Δ∗, whereby θ(uv) = θ(v)θ(u) for all u, v ∈ Δ∗. In this formalism, the W/C
complement of a DNA strand u ∈ Δ+ is θ(u).

Using the convention that a word x over the DNA alphabet represents the
DNA single strand x in the 5′ to 3′ direction (usually depicted as the top strand

State Complexity of Overlap Assembly 111

of a double DNA strand), the overlap assembly of a strand uv with a strand
θ(w)θ(v) is illustrated in Fig. 1.

(a) u v5 3

3 5θ(v) θ(w)

5 3(b) u v w

3 5θ(v) θ(w)

5 3(c) u v w

3 5θ(u) θ(v) θ(w)

Fig. 1. (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to each other
through their complementary segments v and θ(v), forming a partially double-stranded
DNA complex. (b) DNA polymerase extends the 3′ end of the strand uv. (c) DNA
polymerase extends the 3′ end of the other strand. The resulting DNA double strand
is considered to be the output of the overlap assembly of the two input single strands.

Assuming that all involved DNA strands are initially double-stranded, that
is, whenever the strand x is available, its W/C complement θ(x) is also available,
this model was further simplified [4] as follows: Given words x, y over an alphabet
Σ, the overlap assembly of x with y is defined as:

x � y = {z ∈ Σ+ | ∃u,w ∈ Σ∗,∃v ∈ Σ+ : x = uv, y = vw, z = uvw}.

This can be naturally generalized to languages: Given languages Lm and Ln

of state complexities m and n, respectively, the overlap assembly of Lm and Ln

is defined as: Lm � Ln = {z | z = x � y, x ∈ Lm, y ∈ Ln}.

3 An ε-NFA for Overlap Assembly

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆
Q is the set of final states. We extend δ to functions δ : Q × Σ∗ → Q and
δ : 2Q × Σ∗ → 2Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F .
The language accepted by D is denoted by L(D). If q is a state of D, then the
language Lq(D) of q is the language accepted by the DFA (Q,Σ, δ, q, F). A state
is empty (or dead or a sink state) if its language is empty. Two states p and
q of D are equivalent if Lp(D) = Lq(D). A state q is reachable if there exists
w ∈ Σ∗ such that δ(q0, w) = q. A DFA D is minimal if it has the smallest
number of states and the smallest alphabet among all DFAs accepting L(D). It
is well known that a DFA is minimal if it uses the smallest alphabet, all of its
states are reachable, and no two states are equivalent.

112 J. A. Brzozowski et al.

A nondeterministic finite automaton (NFA) is a quintuple N =
(R,Σ, η, I, F), where R, Σ, and F are as Q, Σ, and F in a DFA respec-
tively, η : R × Σ → 2R, and I ⊆ R is the set of initial states. Each triple
(p, a, q) with p, q ∈ R, a ∈ Σ is a transition if q ∈ η(p, a). A sequence
((p0, a0, q0), (p1, a1, q1), . . . , (pk−1, ak−1, qk−1)) of transitions, where pi+1 = qi

for i = 0, . . . , k − 2 is a path in N . The word a0a1 · · · ak−1 is the word spelled
by the path. A word w is accepted by N if there exists a path with p0 ∈ I and
qk−1 ∈ F that spells w. If q ∈ η(p, a) we also use the notation p

a−→ q. We extend
this notation also to words, and write p

w−→ q for w ∈ Σ∗. An ε-NFA is an NFA
in which transitions under the empty word ε are also permitted.

Given any two DFAs, we construct an ε-NFA that recognizes the overlap
assembly of the languages accepted by the DFAs. This proves constructively
that the family of regular languages is closed under overlap assembly.

Let Dm = (Qm, Σ, δm, 0, F) and D′
n = (Q′

n, Σ, δ′
n, 0′, F ′) be two DFAs with

Dm recognizing Lm and D′
n recognizing L′

n, where F = {f1, . . . , fh} and F ′ =
{f ′

1, . . . , f
′
h′}. Let Qm = {0, . . . , m − 1}, Q′

n = {0′, . . . , (n − 1)′} and let 0 and
0′ be the initial states. We claim that the NFA N , constructed as shown below,
accepts the result of the overlap assembly of Lm and L′

n.
The NFA is defined as N = (R,Σ, η, {r0}, FN) where the set of states is

R = (Qm∪{t})×(Q′
n∪{s′}) with s′, t new symbols not occurring in Qm∪Q′

n, the
initial state is r0 = (0, s′), and the set of final states is FN = {(t, q′) | q′ ∈ F ′}.
Intuitively, the NFA simulates reading the word first by Dm, then by both Dm

and D′
n, and then by D′

n. Hence the states in R contain a state of Dm and a state
of D′

n. The states with s′ indicate that D′
n has not yet read any letter, while the

states with t indicate that Dm has finished the reading. The set of transitions η
is defined below. The informal explanations at the right of transition definitions
assume two operands uv ∈ Lm and vw ∈ L′

n respectively. The word z = uvw
belongs to their overlap assembly.

i {(qi, s
′) a−→ (qj , s

′) | qi
a−→ qj ∈ δm}; read u.

ii {(qi, s
′) a−→ (qj , q

′
k) | qi

a−→ qj ∈ δm, 0′ a−→ q′
k ∈ δ′

n}; read the first letter of v.
iii {(qi, q

′
k) a−→ (qj , q

′
�) | qi

a−→ qj ∈ δm, q′
k

a−→ q′
� ∈ δ′

n}; read the remainder of v.
iv {(fi, q

′
k) ε−→ (t, q′

k) | fi ∈ F, q′
k ∈ Q′

n}; v has been read.
v {(t, q′

k) a−→ (t, q′
�) | q′

k
a−→ q′

� ∈ δ′
n}; these rules read w.

Figure 2 shows the construction of an NFA, denoted by N ′, for two particular
two-state DFAs D2 and D′

2 accepting the languages L(D2) (all words over {a, b}∗

that have an odd number of as) and L(D′
2) (all words over {a, b}∗ that end in

the letter a). Note that the overlap assembly of L(D2) and L(D′
2) is L(D′

2).
In the automaton N ′ of Fig. 2, states (0, s′) and (1, s′) in the first row of

the figure behave as specified in Rule (i), using the transitions of D2. Rule (ii)
moves the states from the first row to the second row of the figure. In the second
row the transitions are those of the direct product of D2 and D′

2, as directed
by Rule (iii). Note that neither Rule (i) nor Rule (ii) can be used again since s′

does not appear as a component of any state after Rule (iii) is used. When N ′

is in a state where the first component is 1, which is a final state of D2, N ′ can

State Complexity of Overlap Assembly 113

0 1
a

a

b bD2 D2

0 1
a

b

b a

(0, s) (1, s)
a

a

b b

N

(0, 0) (0, 1) (1, 1) (1, 0)

a

b

a

b

b

a
a

b
b

a a
b

(t, 1) (t, 0)
b

a

ba
ε ε

Fig. 2. An example of an NFA N ′ that accepts the overlap assembly of the languages
accepted by the DFAs D2 and D′

2.

move to the next row following Rule (iv), and change the first component of the
state to t. Note that Rule (iii) cannot be used again since t appears as the first
component of every state after Rule (iv) is used. Finally, N ′ moves to the third
row and follows the transitions of D′

2. Note that Rule (iv) cannot be used again
because of t. While the NFA N ′ has eight states, converting it to a DFA and
minimizing this DFA results in D′

2. The NFA N ′ accepts the overlap assembly
of L(D2) and L(D′

2). In general, the following result holds:

Proposition 1. Let Lm and L′
n be two regular languages accepted by the DFAs

defined above, and let the NFA N be the automaton constructed as above. NFA
N has the following properties:

1. If uv ∈ Lm and vw ∈ L′
n, then r0

uvw−−−→ rf in N where rf ∈ FN .
2. If r0

z−→ rf in N , then there exist u,w ∈ Σ∗, v ∈ Σ+ such that z = uvw,
where uv ∈ Lm and vw ∈ L′

n.
3. N accepts Lm � L′

n.

Proof. 1. For the first claim, let v = ax, where a ∈ Σ. If uv ∈ Lm then 0 uax−−→ fi,
for some fi ∈ F in Dm. So there exist qi and qj in Qm such that 0 u−→ qi

a−→
qj

x−→ fi in Dm. Similarly, if vw ∈ Ln, then there exist q′
k and q′

� in Q′
n such

that 0′ a−→ q′
k

x−→ q′
�

w−→ f ′
j , for some f ′

j ∈ F ′ in D′
n.

By construction we have in N :

(0, s′) u−→
(i)

(qi, s
′) a−−→

(ii)
(qj , q

′
k) x−−→

(iii)
(fi, q

′
�)

ε−−→
(iv)

(t, q′
�)

w−−→
(v)

(t, f ′
j),

which proves our first claim.

114 J. A. Brzozowski et al.

2. Suppose that r0
z−→ rf in N , where rf ∈ FN . By the construction of N ,

such a path must proceed by i applications of rule (i), one application of rule
(ii), j applications of rule (iii), one ε-transition via rule (iv), and k applications
of rule (v), where i, j, k ≥ 0. Thus there exist u, v, and w in Σ∗ such that
z = uvw, |u| = i, |v| = j + 1, and |w| = k. Owing to the construction of
N , there must exist derivations 0 uv−→ fi in Dm and 0′ vw−−→ f ′

j in D′
n, which

means uv ∈ Lm and vw ∈ L′
n.

3. If x ∈ Lm and y ∈ L′
n, then by (1), for every u, v, w where x = uv and

y = vw, uvw is recognized by N ; so Lm � Ln ⊆ L(N). Conversely, if a word
z is recognized by N , then by (2), z = uvw for some u, v, w where uv ∈ Lm

and vw ∈ Ln; so L(N) ⊆ Lm � Ln. Hence L(N) = Lm � Ln.
�

4 Tight Upper Bound for Overlap Assembly

To establish the state complexity of overlap assembly we need to determinize the
ε-NFA N = (R,Σ, η, r0, FN) defined in Sect. 3, and then minimize the resulting
DFA. The first step is to find an upper bound on the number of subsets S of
the set R of states of N . We begin by characterizing the reachable subsets of R.
They will all have the form

S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′), (1)

where q ∈ Qm, T ′ ⊆ S′ ⊆ Q′
n if q /∈ F , T ′ = S′ ⊆ Q′

n if q ∈ F , and S′ is
non-empty unless S = {(0, s′)}. We call q the selector of S, subset S′ \ {0′} is
its core, and subset T ′ is its subcore.

We illustrate this using the NFA of Fig. 2. The initial subset is {(0, s′)}; this
has form (1) with S′ = T ′ = ∅. From this initial subset we reach by b the subset
{(0, s′), (0, 0′)} = {0, s′} ∪ ({0} × {0′}); here T ′ = ∅ and S′ = {0′}. By a we
reach {(1, s′)} ∪ {(1, 1′)} ∪ {(t, 1′)} = {(1, s′)} ∪ ({1} × {1′}) ∪ ({t} × {1′}); here
S′ = T ′ = {1′}.

We now proceed to prove the claim about form (1).

Lemma 1. Let m ≥ 2, n ≥ 1, and let D be the DFA obtained by determinization
of the NFA for the overlap assembly Lm � Ln. Every reachable subset of D
is of the form (1). Moreover, if q /∈ F , then S cannot be distinguished from
S ∪ {(q, 0′)}.
Proof. First we show that every reachable subset S ⊆ R is of the desired form.
We will prove this claim by induction. The initial subset {(0, s′)} has this form.
Suppose that S has this form, consider a letter a ∈ Σ, and the subset U = η(S, a).
Observe that (δm(q, a), s′) is the only pair in U containing s′, because of the
transitions (i) and because Dm is deterministic. Also, every state (q, p′), where
p′ ∈ Q′

n ∪ {s′}, is mapped to a state (δm(q, a), r′) ∈ {δm(q, a)} × Q′
n by the

transitions (ii) and (iii). Finally, the states in {t}×T ′ are mapped only to states
from {t} × Q′

n by the transitions (iv) and (v).
Note that subsets S with S′ = ∅ are not reachable, unless S is the initial

subset {(0, s′)}.

State Complexity of Overlap Assembly 115

We show that if S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′) is reachable, then
T ′ ⊆ S′. Let r′ ∈ T ′. Then there exists a word xy such that:

(0, s) x−→ (q1, p′) ε−→ (t, p′)
y−→ (t, r′),

where q1 ∈ F . We also have: (q1, p′)
y−→ (q2, r′). Thus (q2, r′) ∈ S, and so r′ ∈ S′.

We observe that if q ∈ F , then by ε-transitions (transitions (iv)), every state
(q, r′) ∈ S is mapped to (t, r′), thus T ′ = S′, which concludes the characteriza-
tion of reachable subsets.

Finally, we show that if q /∈ F , then S cannot be distinguished from S ∪
{(q, 0′)}. Indeed, let a ∈ Σ be any letter. Then η((q, 0′), a) = η((q, s′), a) because
the transitions (iii) and (ii) coincide. Since (q, s′) ∈ S, we have η(S, a) = η(S ∪
{(q, 0′)}, a).
�

From Lemma 1 two reachable subsets with a different selector, or a differ-
ent core, or a different subcore are potentially distinguishable. If two reachable
subsets have the same selector, core, and subcore, then they can differ only by
state (q, 0′) if the selector q is not in F ; thus they cannot be distinguished. If two
reachable subsets have the same selector q that is in F , then they cannot differ
just by (q, 0′), as by ε-transitions from (q, 0′) we immediately obtain (t, 0′).

Theorem 1. For m ≥ 2 and n ≥ 1, the state complexity of Lm � Ln is at most

2(m − 1)3n−1 + 2n.

Proof. Using Lemma 1, we count the number of potentially reachable and dis-
tinguishable subsets S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′).

Reachable Subsets: For every state q ∈ Qm, we count the number of potentially
reachable subsets with selector q. There are 2 cases:

– If q is non-final, we can choose any non-empty set S′ ⊆ Q′
n of cardinality k

and any subset T ′ of S′. The number of ways of doing this is
∑n

k=1

(
n
k

)
2k.

– If q is final, again we choose any non-empty set S′, but now T ′ = S′ is fixed.
The number of ways of doing this is 2n − 1.

There is also the initial subset {(0, s′)} which contributes 1 to the sum. In total,
this yields:

(m − |F |) ·
(

n∑

k=1

(
n

k

)

2k

)

+ |F | · (2n − 1) + 1.

Distinguishable Subsets: The above formula gives the number of potentially
reachable subsets, but overestimates the state complexity because not all subsets
are distinguishable. Recall that by Lemma 1 if the selector q is not in F , then S
cannot be distinguished from S ∪{(q, 0′)}. Thus we do not need to count subsets
S without 0′, as S ∪{(q, 0′)} is potentially reachable and always equivalent to S.
Hence, for a given q ∈ Qm \F we choose S′ to be any subset of Q′

n that contains
0′, and again let T ′ be any subset of S′. This can be done in

∑n
k=1

(
n−1
k−1

)
2k ways.

116 J. A. Brzozowski et al.

Thus the total number of potentially reachable and distinguishable subsets is at
most

(m − |F |) ·
(

n∑

k=1

(
n − 1
k − 1

)

2k

)

+ |F | · (2n − 1) + 1.

By algebra, we have
∑n

k=1

(
n−1
k−1

)
2k = 2 · 3n−1, which is greater than 2n − 1; so

this formula is maximized when |F | = 1, and we conclude that the maximum
state complexity of overlap assembly is 2(m − 1)3n−1 + 2n.
�
Theorem 2. At least n letters are required to meet the bound from Theorem 1.

Proof. Let q ∈ F be a final state of Dm. For each p′ ∈ Q′
n we consider the subset

Tp′ = {(q, s′), (q, p′), (t, p′)}. If the upper bound is met, then, in particular, all
subsets S with q ∈ F must be reachable in view of Lemma 1. These subsets
were counted in the upper bound, and there are no other subsets of reachable
form that could be equivalent to them when the upper bound is met. Hence, in
particular all subsets Tp′ must be reachable.

Suppose that Tp′ is reachable by a word wp′ap′ , for some letter ap′ . Note
that (q, p′) is the only one of the three states in Tp′ that can be reached by
transitions (ii) of the NFA. Consider η(r0, wp′); it must contain (r, s′) for some
r ∈ Qm, because by Lemma 1 every reachable subset has exactly one such
pair. Thus, (r, s′) must be mapped by transitions (ii) induced by ap′ to (q, p′).
Therefore, δ′

n(0′, ap′) = p′, which proves that ap′ are different for every p′.
�
We define the witness DFAs for m,n ≥ 2. Let Σ = {a0, . . . , an−1}.
Let Wm = (Qm, Σ, δm, 0, F) be defined as follows: F = {0}; ai : 1m

for i ∈ {0, 2, . . . , n − 1}, where 1m is the identity transformation on Qm;
a1 : (0, 1, . . . ,m − 1) is a cyclic permutation of Qm.

Let W ′
n = (Q′

n, Σ, δ′
n, 0′, F ′) be defined as follows: F = {(n−1)′}; a0 : (Q′

n →
0′) maps all the states of Q′

n to 0′; ai : (1′, 2′, 3′, . . . , (i − 1)′, 0′, i′, . . . , (n − 1)′)
for i ∈ {1, . . . , n − 1}. Here ai permutes the states of Q′

n, mapping 1′ to 2′, 2′ to
3′, etc., then (i− 1)′ to 0′, 0′ to i′, and then i′ to (i+1)′, etc., and (n− 1)′ to 1′.

The transitions of these DFAs with m = 3 and n = 4 states are illustrated
in Fig. 3. Let Lm and L′

n be the languages of Wm and W ′
n, respectively.

By a cyclic shift of a core subset S′ ⊆ {1′, . . . , (n − 1)′} we understand any
subset obtained by shifting the states along the cycle (1′, . . . , (n−1)′), i positions
clockwise, i.e., the subset {(((p − 1 + i) mod (n − 1)) + 1)′ | p′ ∈ S′} for any
i ≥ 0. The next and previous cyclic shifts correspond to i = 1 and i = n − 2,
respectively.

The transitions of letters a1, a2, . . . , an−1 produce next cyclic shifts of the
states in {1′, . . . , (n − 1)′}, with the exception that state 0′ replaces one of the
states in the cycle. The idea behind the witness is that we can add an arbitrary
state to the core using these letters and produce arbitrary cyclic shifts as well,
as will be shown later. Letter a0 plays an important role of reset, which is
necessary to reach small subsets. The main difficulty is that a1 shares both roles
of producing cyclic shifts and switching the selector.

State Complexity of Overlap Assembly 117

W3 : W4 :

0 1 2

a0 a0 a0

0 1 2
a1 a1

a1

0 1 2

a2 a2 a2

0 1 2

a3 a3 a3

0 1 2 3

a0

a0

a0

a0

0 1 2 3
a1 a1 a1

a1

0 1 2 3

a2

a2

a2

a2

0 1 2 3

a3

a3

a3

a3

Fig. 3. The action of the letters in W3 and W ′
4.

Theorem 3. For m ≥ 2 and n ≥ 3, Lm � L′
n meets the upper bound.

Proof. Reachability: It is enough to show that all subsets S from Lemma 1 are
reachable, with the exception that if q /∈ F then it suffices to show reachability
of either S \ {(q, 0′)} or S ∪ {(q, 0′)}.
• First we show that for all subsets S = {(q, s′)}∪({q}×S′), where q ∈ Qm \{0}
and ∅ = S′ ⊆ Q′

n \ {0′}, either S \ {(q, 0′)} or S ∪ {(q, 0′)} is reachable. These
subsets have core S′ and an empty subcore.

We prove this by induction on the size |S′| of the core. For |S′| = 0, apply
aq
1a0 to (0, s′); this yields {(q, s′), (q, 0′)}.

Consider |S′| = 1. If q = 1, then we just use a1, which yields {(1, s′), (1, 1′)}.
To meet the other subsets {(1, s′), (1, p′)} for p ≥ 2, from {(1, s′), (1, 1′)} we use
a0ap. For q ≥ 2, we use aq−1

1 a0a1, which yields {(q, s′), (q, 1′)}. Then to meet the
other subsets {(q, s′), (q, p′)} for p ≥ 2, from {(q, s′), (q, 1′)} we also use a0ap.

Consider |S′| ≥ 2 and assume the induction hypothesis for subsets S with
a smaller core. Since S′ contains at least two states different from 0′, there is
a state p′ ∈ S′ \ {1′}. Let X ′ be the previous cyclic shift of S′ \ {p′}. Since
p′ /∈ S′ \{p′}, X ′ does not contain (p−1)′, but this is its only difference from the
previous cyclic shift of S′. By the inductive assumption, {(q, s′)} ∪ ({q} × X ′)
is reachable. We apply ap to this subset, which maps X ′ to its next cyclic shift,
and also (q, s′) to (q, p′), which yields {(q, s′} ∪ ({q} × S′).

118 J. A. Brzozowski et al.

• Now we show reachability of subsets S = {(0, s′)} ∪ ({0} × S′) ∪ ({t} × S′),
where ∅ = S′ ⊆ Q′

n. These are all potentially reachable subsets with selector 0.
First consider the case 0′ /∈ S′. For {(m − 1, s′), (m − 1, 1′)} we apply a0a1,

which yields {(0, s′), (0, 1′), (t, 1′)}. Then we continue the induction on |S′| as
before when |S′| ≥ 2, with just {t} × S′ added to the subsets.

Now consider the case 0′ ∈ S′. The case S′ = {0′} is easily covered by
applying a0 to {(0, s′), (0, 1′), (t, 1′)}. If S′ = {0′, 1′}, then from {(m−1, s′), (m−
1, (n − 1)′)} we apply a1 and get {(0, s′), (0, 0′), (0, 1′), (t, 0′), (t, 1′)} as desired.
Let S′ = {0′, 1′}. We already know that {(0, s′)}∪({0, t}×X ′) is reachable, where
X ′ is the previous cyclic shift of S′ \ {0′}. Since |S′| ≥ 2 and S′ = {0′, 1′}, there
is a p′ ∈ S′ \{1′}. We apply ap to {(0, s′)}∪ ({0, t}×X ′). We have X ′ \{(p−1)′}
mapped to S′\{p′} and (p−1)′ mapped to 0′, which gives ({0}×(S′∪{0′}\{p′})
by transitions (iii), and (0, p′) is added by transitions (ii). Thus, after completing
by ε-transitions this yields {(0, s′)} ∪ ({0, t} × S′).
• Finally, we show that for all subsets S = {(q, s′)}∪({q}×S′)∪({t}×T ′), where
q = 0 and ∅ = T ′ ⊆ S′ ⊆ Q′

n, either S \ {(q, 0′)} or S ∪ {(q, 0′)} is reachable.
Consider the special case S′ = T ′ = {0′}. We reach it from

{(0, s′), (0, 0′), (t, 0′)} by applying aq
1a0. For the rest, assume that S′ \ {0′} is

non-empty.
We need an auxiliary argument that from {(0, s′)} we can reach a sub-

set with selector q, core S′, and an empty subcore, using a word from
{a1, a2, . . . , an−1}∗ (any word without a0). We prove this by induction on
the core size |S′ \ {0′}|. For |S′ \ {0′}| = 1, at the beginning we use a1,
which yields {(1, s′), (1, 1′)}. Now we can reach {(1, s′), (1, 0′), (1, p′)} for any
p′ ∈ {2′, . . . , (n−1)′} by using a2a3 . . . ap. Then, from {(1, s′), (1, 0′), (1, (n−1)′)}
we reach {(2, s′), (2, 0′), (2, 1′)}, and it remains to repeat the argument to reach
every remaining subset of the form {(q, s′), (q, 0′), (q, p′)} for q ∈ Qm \{0, 1} and
p′ ∈ Q′

n \{0′}. For |S′ \{0′}| ≥ 2 we follow the first part of the reachability argu-
ment as before, but we reach either {(q, s′)}∪({q}×(S′\{0′}) or {(q, s′)}∪({q}×
(S′ ∪ {0′})), instead of just the former. Let w ∈ {a1, a2, . . . , an−1}∗ be a word
that reaches either {(q, s′)} ∪ ({q} × (S′ \ {0′}) or {(q, s′)} ∪ ({q} × (S′ ∪ {0′})).

Suppose that we start from the subset S0 = {(0, s′)} ∪ ({0, t} × T ′
0), where

T ′
0 is some subset such that ∅ = T ′

0 ⊆ Q′
n. We already know that for every T ′

0,
subset S0 is reachable. After applying a1w, we reach either

Sq = {(q, s′)} ∪ ({q} × (S′ ∪ T ′
q \ {0′})) ∪ ({t} × T ′

q),

or Sq ∪{(q, 0′)}, where T ′
q is obtained by applying some permutation π of Q′

n to
T ′
0. This is because {(0, s′)} is mapped by a1w to {(q, s′)} ∪ ({q} × (S′ \ {0′})

or {(q, s′)} ∪ ({q} × (S′ ∪ {0′})), word a1w acts as a permutation on ({t} × Q′
q),

and {0} × T ′
0 is mapped to ({q} × T ′

q). Note that a1w does not depend on T ′
0, so

we can choose T ′
0 arbitrarily. Let T ′

0 = π−1(T ′), so π(T ′
0) = T ′. We obtain either

Sq = {(q, s′)} ∪ ({q} × ((S′ \ {0′}) ∪ T ′) ∪ ({t} × T ′),

or Sq = {(q, s′)} ∪ ({q} × ((S′ ∪ {0′}) ∪ T ′) ∪ ({t} × T ′).

State Complexity of Overlap Assembly 119

Recall that T ′ ⊆ S′ and if 0′ ∈ T then also 0′ ∈ S′; hence (S′ \{0′})∪T ′ is either
S′ or S′ \ {0′}, and (S′ ∪ {0′}) ∪ T ′ = S′ ∪ {0′}. Thus, Sq is either S \ {(q, 0′)}
or S ∪ {(q, 0′)}.

Distinguishability: Consider two reachable subsets

S1 = {(q1, s′)} ∪ ({q1} × S′
1) ∪ ({t} × T ′

1),

and S2 = {(q2, s′)} ∪ ({q2} × S′
2) ∪ ({t} × T ′

2),

with different selectors, different cores, or different subcores. Thus we have q1 =
q2, or T ′

1 = T ′
2, or (S′

1 \ {(q1, 0′)}) = (S′
2 \ {(q2, 0′}). These are precisely all the

reachable and potentially distinguishable subsets in view of Lemma 1. Note that
the initial subset also has this form, where q1 = 0 and S′

1 and T ′
1 are empty.

If q1 = q2, then without loss of generality let q1 < q2. We apply am−q2
1 a0a

2
n−1.

For S1, first am−q2
1 a0 maps it to a subset {(q, s′), (0, s′)} or {(q, s′), (q, 0′), (t, 0′)}

(if T ′
1 is non-empty) for some q = 0. Then a2

n−1 results in a subset that from
the states from ({t} × Q′

n) contains at most (t, 1′), which is not final. On the
other hand, S2 by am−q2

1 a0 is mapped to {(0, s′), (0, 0′), (t, 0′)}. Then a2
n1

yields
{(0, s′), (0, 0′), (t, 1′), (t, (n − 1)′)}, where (t, (n − 1)′) is final.

So suppose that q1 = q2. If q1 = 0 and T ′
1 = T ′

2, then we apply ai
n−1 for a

suitable i ≥ 0. Since an−1 acts cyclically on all states ({t} × Q′
n) and no other

states from the subsets are mapped to ({t} × Q′
n), we can repeat the cycle so

that exactly one of η({t} × T ′
1, a

i
n−1) and η({t} × T ′

2, a
i
n−1) contains the final

state (t, (n − 1)′). If q1 = 0 and T ′
1 = T ′

2, then also S′
1 = S′

2, so it remains to
cover this case.

Suppose that S′
1 = S′

2. If q1 = q2 = 0, then also T ′
1 = T ′

2. We apply a1, which
maps S1 to the subset {(1, s′)}∪({1}×(δm(S′

1, a1)∪{2′}))∪({t}×δ′
n(T ′

1, a1)), and
analogously S2. Since T ′

1 = T ′
2 and a1 acts cyclically on Q′

n, we have δ′
n(T ′

1, a1) =
δ′
n(T ′

2, a1). The case of these subsets has been covered in the previous paragraph.
There remains the case where T ′

1 = T ′
2, S′

1 = S′
2, q1 = q2 = 0. We follow

the induction on the selector q1 starting with q1 = m − 1 and decreasing it. We
will show for q1 = m − 1 that we can reach subsets with selector 0 that still
have different cores. We have already shown in the previous paragraph that the
subsets with selector 0 and different cores can be distinguished. For q1 < m − 1
we will show that we can reach subsets with the same property but with selector
q1 + 1, which will follow by the inductive assumption. So let p be the largest
index such that, without loss of generality, p′ ∈ S′

1 and p′ /∈ S′
2. Note that p = 0,

because then the subsets cannot be distinguished. If p < n−1, then we apply a1,
which yields subsets with the desired property. If p = n − 1, then we first apply
a2, which yields the subset with p′ = 1′, and then we can apply a1 as before.
�

5 Conclusions

We have found an upper bound of 2(m − 1)3n−1 + 2n on the state complexity
of overlap assembly, a biologically inspired operation on regular languages, and
we have shown that this bound is tight for languages over an alphabet of size n.

120 J. A. Brzozowski et al.

For completeness, we state without proof some results about the unary and binary
languages. Proofs can be found in [2].

Theorem 4. Let m,n ≥ 1, and let Lm and Ln be two unary languages of state
complexities m and n, respectively. The state complexity of Lm � Ln is at most
m + n, and this bound is met by Lm = {amk+n−1 | k ∈ Z,mk + n − 1 ≥ 0} and
Ln = {ank+m−1 | k ∈ Z, nk + m − 1 ≥ 0}.

For binary languages we have found an exponential lower bound on the com-
plexity of overlap assembly; the proof is based on ideas similar to those in the
proof of Theorem 3.

Theorem 5. For every m ≥ 2 and n ≥ 3, there exist binary DFAs Bm and B′
n

such that the state complexity of L(Bm) � L(B′
n) is at least m(2n−1 − 2) + 2.

References

1. Brzozowski, J.A.: Towards a theory of complexity of regular languages. J. Autom.
Lang. Comb. 23(1–3), 67–101 (2018). http://arxiv.org/abs/1702.05024

2. Brzozowski, J.A., Kari, L., Li, B., Szyku�la, M.: State Complexity of Overlap Assem-
bly (2017). http://arxiv.org/abs/1710.06000

3. Carausu, A., Paun, G.: String intersection and short concatenation. Rev. Roumaine
Math. Pures Appl. 26, 713–726 (1981)

4. Csuhaj-Varjú, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages. The-
oret. Comput. Sci. 374(1–3), 74–81 (2007)

5. Domaratzki, M.: Minimality in template-guided recombination. Inf. Comput.
207(11), 1209–1220 (2009)

6. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: On the overlap assembly of
strings and languages. Nat. Comput. 16(1), 175–185 (2016)

7. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA over-
lap assembly. Inform. Comput. 253, 143–154 (2017)

8. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21(4), 251–310 (2016)

9. Golan, J.S.: The Theory of Semirings with Applications in Mathematics and The-
oretical Computer Science. Addison-Wesley Longman Ltd., Essex (1992)

10. Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. Theoret. Comput. Sci.
682, 122–137 (2017)

11. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. In:
Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 57–69. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-48017-X 6

12. Ito, M., Lischke, G.: Generalized periodicity and primitivity for words. Math. Logic
Q. 53(1), 91–106 (2007)

13. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45711-9 21

14. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970). (in Russian) English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

15. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

http://arxiv.org/abs/1702.05024
http://arxiv.org/abs/1710.06000
https://doi.org/10.1007/3-540-48017-X_6
https://doi.org/10.1007/3-540-45711-9_21
https://doi.org/10.1007/3-540-45711-9_21

Online Stochastic Pattern Matching

Marco Cognetta and Yo-Sub Han(B)

Department of Computer Science, Yonsei University, Seoul, Republic of Korea
{mcognetta,emmous}@yonsei.ac.kr

Abstract. The pattern matching problem is to find all occurrences of a
given pattern in an input text. In particular, we consider the case when
the pattern is a stochastic regular language where each pattern string
has its own probability. Our problem is to find all matching patterns—
(start, end) indices in the text—whose probability is larger than a given
threshold probability. A pattern matching procedure is frequently used
on streaming data in several applications, and often it is very challeng-
ing to find the start index of a matching in streaming data. We design
an efficient algorithm for the stochastic pattern matching problem over
streaming data based on the transformation of the pattern PFA into a
weighted automaton and a constant bound on the number of backtracks
required to find a start index while reading the streaming input. We also
employ heuristics that enable us to reduce the number of backtracks,
which improves the practical runtime of our algorithm. We establish the
tight theoretical runtime of the proposed algorithm and experimentally
demonstrate its practical performance. Finally, we show a possible appli-
cation of our algorithm to another stochastic pattern matching problem
where we search for the maximum probability substring of a text that is
a superstring of a specified string.

Keywords: Stochastic pattern matching · Probabilistic automata
Weighted automata · Online matching

1 Introduction

Given a text T and a pattern P , the basic pattern matching problem is to
determine whether or not P appears in T [11]. There are several variants for the
pattern matching problem; for example, if P is a finite set of strings, we have a
keyword pattern matching problem [1]. If P is described by a regular expression,
then the problem becomes the regular expression pattern matching problem [14].
There are also several types of problems depending on what we want to report;
if we only look for an end index of a matching pattern in T , which is common
in grep-like applications, then often the problem is easier compared with the
case when we want to find the exact start and end indices of each matching
pattern in T .

We consider the case when the pattern set is represented by a probabilis-
tic finite automaton, in which each pattern has a weight and the pattern set
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 121–132, 2018.
https://doi.org/10.1007/978-3-319-94812-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_11&domain=pdf

122 M. Cognetta and Y.-S. Han

forms a probability distribution. We search for all matching substrings of T that
have probability greater than a given threshold and report their (start, end)
indices. Additionally, since it is possible for the text to be very large, we consider
this problem in a streaming setting in which we do not hold the entire text in
memory throughout the computation. We call this problem Online Stochastic
Pattern Matching.

Online stochastic pattern matching has several practical applications in fields
such as natural language processing (NLP) and bioinformatics. Here is a possible
example: suppose we have a PFA representing the distribution of RNA subse-
quences that encode some property we wish to study. In such a distribution, the
probability of a subsequence corresponds to how likely it is that the property
manifests if that subsequence is present.

Since minor perturbations in the primary structure of an RNA subsequence
or the configuration of the neighboring regions of the subsequence often have
no effect on its function, the number of subsequences with non-zero probability
could be very large. However, we are only interested in subsequences with prob-
ability exceeding some minimum threshold for the manifestation of the property.
In this setting, given a long RNA sequence to analyze for our property, we want
to detect subsequences that are likely to express the property (which are distin-
guished by their high probability) without having to extract all high probability
subsequences from the distribution. Such problems, where PFAs (generally in an
equivalent form of a hidden Markov model [6]) are used to model biological set-
tings, is an active area of research [2,18]. As illustrated in this example, the online
stochastic pattern matching problem often involves a large input data stream
and requires finding high probability substrings without explicitly extracting all
of the high probability strings from the distribution ahead of time, which is infea-
sible due to the complexity of finding the most probable string in a distribution
[9]. We describe an algorithm that efficiently, both in theory and in practice,
solves such problems. Our algorithm makes use of a weighted automaton con-
struction that can effectively filter out substrings with lower probability than
a given threshold probability. We also employ several properties of stochastic
languages that enable us to bound the maximum length of substrings needed to
be checked independent from the length of T—this is crucial to design an online
algorithm for the problem without storing the whole T .

Researchers have studied several problems related to high probability strings
in a stochastic language extensively. For the related class of Rabin automata, it
is undecidable to determine whether or not there exists a string with probability
greater than some given threshold [3]. For general PFAs, it is NP-hard to deter-
mine the highest probability string in the distribution described by the PFA [4].
Recently, de la Higuera and Oncina [9,10] gave randomized and determinis-
tic approaches for solving the consensus string problem. Parsing with weighted
finite-state transducers is a common method in speech processing and recogni-
tion [12]. However, to the best of our knowledge, there is no prior research on
detecting high probability strings from a distribution in streaming text.

Online Stochastic Pattern Matching 123

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. The set of all
strings of length k over Σ is written Σk. Given some string w = w1w2 · · · wn ∈
Σ∗, we say that the length |w| of w is n. The symbol λ denotes the null string.
Given two strings w and x, wx denotes their concatenation. Then, wΣ∗ and Σ∗w
are the set of all strings in Σ∗ containing w as a prefix and a suffix, respectively.

A semiring is a set S with two binary operations, ⊕ and ⊗, and two spe-
cial elements, 0 and 1, where (S,⊕) is a commutative monoid with identity 0
and (S,⊗) is a monoid with identity 1. Additionally, ⊗ distributes over ⊕ and
∀x ∈ S, 0 ⊗ x = x ⊗ 0 = 0. Such a structure is denoted (S,⊕,⊗, 0, 1). We
utilize the probability semiring or real semiring (R≥0,+,×, 0, 1) and the Viterbi
semiring ([0, 1],max,×, 0, 1).

2.1 Weighted Automata

Weighted automata are a generalization of finite automata that compute a func-
tion W : Σ∗ → S, where S is the set of elements of some semiring. For a given
string w ∈ Σ∗, we call the value W(w) the weight of w.

Given a semiring (S,⊕,⊗, 0, 1), a weighted automaton W is specified by a
tuple (Q,Σ, δ, I, F), where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ × Q → S is the transition function, I : Q → S is the initial weight
function, and F : Q → S is the final weight function. An alternative repre-
sentation of a weighted automaton is in the form of transition matrices where
W = (Q,Σ, {M(c)}c∈Σ , I,F). {M(c)}c∈Σ is a set of |Q| × |Q| transition matrices
where M(c)i,j = δ(qi, c, qj). I and F are 1×|Q| and |Q|×1 vectors corresponding
to the initial and final weights; that is, Ii = I(qi) and Fj = F (qj). For brevity,
we denote M(Σ) =

∑
c∈Σ M(c).

We now describe how to compute the weight of w in a weighted automaton
W. Consider a string w = w1w2 · · · wn and its corresponding labeled path π =
(q0, w1, q1), (q1, w2, q2), . . . , (qn−1, wn, qn). Let the set of all such labeled paths
be Φw. The weight of a path occurring is given by

W(π) = I(q0) ⊗
(

n⊗

i=1

δ(qi−1, wi, qi)

)

⊗ F (qn).

Accordingly, the weight of w is W(w) =
⊕

π∈Φw
W(π).

There exists two equivalent dynamic programming approaches—the forward
and backward algorithms—for computing the weight of a string in W. We can
also use the matrix formulation of W to compute the weight by replacing regular
matrix operations with the operations defined by the semiring and evaluating
W(w) = I

∏|w|
i=1 M(wi)F.

Using either the dynamic programming approach or the matrix approach, we
can compute the weight of a word w in O(|w||Q|2) time. For an introduction to
weighted automata, we direct the reader to Droste et al. [5].

124 M. Cognetta and Y.-S. Han

2.2 Probabilistic Finite Automata

A probabilistic finite automaton (PFA) P = (Q,Σ, {M(c)}c∈Σ , I,F) is a weighted
automaton over the probabilistic semiring with some additional constraints—∑

q∈Q I(q) = 1 and ∀q ∈ Q, F (q) +
∑

q′∈Q,c∈Σ δ(q, c, q′) = 1. Furthermore, we
assume that all states reachable from an initial state (a state with non-zero initial
weight) lie in some non-zero weight path. Then, P describes a probability distri-
bution over Σ∗; in other words, ∀w ∈ Σ∗, 0 ≤ P(w) ≤ 1 and

∑
w∈Σ∗ P(w) = 1.

For PFAs, we use probability instead of weight to refer to the value P(w).
We consider only λ-free PFAs, as they are equivalent to regular PFAs in

expressive power [5]. A PFA is deterministic (DPFA) if P has exactly one state
with non-zero initial probability, and, for each state and character c, at most
one out-transition labeled with c. While DPFAs are strictly weaker than general
PFAs in expressive power, we can compute the probability of a string w in a
DPFA in only O(|w|) time.

Given a PFA P, we can efficiently compute P(wΣ∗) =
∑

x∈Σ∗ P(wx) and
P(Σ∗w) =

∑
x∈Σ∗ P(xw) which correspond to the probability of a word appear-

ing as a prefix and as a suffix, respectively [7]. Let M(Σ∗) =
∑∞

i=0 M(Σ)i =
(1 − M(Σ))−1 where 1 is the identity matrix (we use this notation when the
dimension is clear). We now have

P(wΣ∗) = I(
|w|∏

i=1

M(wi))M(Σ∗)F and P(Σ∗w) = IM(Σ∗)(
|w|∏

i=1

M(wi))F.

One natural question related to PFAs is that of calculating the maximum prob-
ability parse of a string w; namely, to compute arg maxπ∈Φw

P(π). We can solve
this by simply coercing the PFA from the probabilistic semiring into the Viterbi
semiring and calculating P(w). For a more detailed survey of PFAs, see Vidal
et al. [16,17].

A stochastic language over Σ is the set of strings from Σ∗, each of which
has its own probability. That is, given w ∈ Σ∗, 0 ≤ Pr(w) ≤ 1 is the probabil-
ity of w and

∑
w∈Σ∗ Pr(w) = 1. A regular stochastic language is a stochastic

language that can be represented by a PFA—there exists a PFA P such that
∀w ∈ Σ∗, P(w) = Pr(w). A deterministic regular stochastic language is a
stochastic language that can be represented by a DPFA.

We omit all proofs due to space constraints. Omitted proofs can be found in
the appendix.

3 Online Stochastic Pattern Matching

The main problem is to identify all locations (start, end) of matching sub-
strings in a large text that have high probability in some given distribution
modeled by a PFA.
Online Stochastic Pattern Matching (OSPM): Given a streaming text T ,
a PFA P, and a threshold probability 0 ≤ p ≤ 1, report all pairs (i, j) such that
P(TiTi+1 · · · Tj) ≥ p.

Online Stochastic Pattern Matching 125

3.1 Weighted Automaton Construction

A naive approach would be to simply backtrack at each index of T and find
high probability substrings with respect to P. We notice that this method often
leads to unnecessary backtracking. Therefore, we transform P into a weighted
automaton that enables us to compute the sum of the probabilities of all suf-
fixes of the current input without backtracking. This helps to skip unnecessary
backtracking procedures where we can guarantee no high probability string ends.

Algorithm 1. Weighted Transform
1: procedure Weighted Transform(PFA P = (QP , Σ, {MP(c)}c∈Σ , IP ,FP))
2: QW ← QP ∪ {q′}
3: for c ∈ Σ ∪ {λ} do
4: MW(c) ← |QW | × |QW |-zero matrix
5: [MW(c)]1,1 ← 1
6: for i ∈ 1 . . . |QP | do
7: for j ∈ 1 . . . |QP | do
8: [MW(c)]i+1,j+1 ← [MP(c)]i,j

9: IW ← 1 × |QW |-zero vector; FW ← |QW | × 1-zero vector
10: [IW]1 ← 1
11: for i ∈ 1 . . . |Q| do
12: [IW]i+1 ← 0; [FW]i+1 ← [FP]i; [MW(λ)]1,i+1 ← [IP]i

13: return W = (QW , Σ, {MW(c)}c∈Σ , IW ,FW)

Algorithm 1 adds a new state q′ that serves as the only initial state, while
all other states have initial probability 0. From q′ we add λ-transitions to the
initial states of P weighted with their original initial weights and add a weight 1
self-loop for all characters in Σ. Figure 1 shows an example of the construction.

The resulting weighted automaton from Algorithm 1 helps us to compute
the sum of the probabilities of all suffixes of the current streaming input. Then,
if the sum is smaller than a threshold probability, we can skip the backtracking
procedure since there cannot be a high probability string ending at the current
index.

Lemma 1. Given a PFA P = (QP , Σ, {MP(c)}c∈Σ , IP ,FP), the transformed
weighted automaton W = (QW , Σ, {MW(c)}c∈Σ , IW ,FW), and a string w =
w1w2 · · · wn,

W(w) = P(λ) +
n∑

i=1

P(wiwi+1 · · · wn).

Furthermore, we can compute W(w) in O(|w||QP |2) time.

Lemma 1 guarantees that if W(w) < p, then no suffix of w = w1w2 · · · wn has
probability at least p and, thus, none can be valid matching patterns. Note that
the converse is not necessarily true. Nevertheless, using Lemma 1, we can skip
many backtracking steps at indices of T where no suffix can have probability
greater than p.

126 M. Cognetta and Y.-S. Han

a, 0.2 | b, 0.2

a
,0

.3
|b

,0
.1

0.8 | 0.3 0.1 | 0.2

0.0 | 0.30.0 | 0.5

0.1 | 0.6

a, 0.5 | b, 0.2

b, 0.7

b, 0
.2

a,
0.4

a, 0.1

b, 0.2

a, 0.2 | b, 0.2

a
,0

.3
|b

,0
.1

0.0 | 0.3 0.0 | 0.2

0.0 | 0.30.0 | 0.5

0.0 | 0.6

a, 0.5 | b, 0.2

b, 0.7

b, 0
.2

a,
0.4

a, 0.1

b, 0.2

1.0 | 0.0

λ,
0.8

λ, 0.1 λ, 0.1

Σ, 1

(b)(a)

Fig. 1. (a) A PFA and (b) the resulting weighted automaton after Algorithm 1.

3.2 Algorithm Structure

Although we can skip unnecessary backtracking steps when W(w) < p, since
W(w) ≥ p does not necessarily imply that there is a suffix of w with sufficiently
high probability, we still need to individually check each suffix and report a match
only if its probability surpasses the threshold. This gives rise to the algorithm
structure shown in Algorithm 2.

Algorithm 2. Online Stochastic Pattern Matching
1: procedure OSPM(Text T ; PFA P; Probability p)
2: W ← weighted transform(P)
3: V ← IW(1 + MW(λ))
4: matches ← {}
5: for j ∈ 1 . . . |T | do
6: V ← VMW(Tj)(1 + MW(λ))
7: if VFW ≥ p then
8: matches ← matches ∪ backtrack(T, P, p, j)

9: return matches

In line 2, we transform a pattern PFA into a weighted automaton W. Then
using the weighted automaton, we initialize a vector V that allows us to itera-
tively compute the weight of a word in line 3. Specifically, by maintaining V, we
can quickly evaluate W(wa) from W(w) without recomputing the entire word.
Then, for each index of T , we backtrack the text only when VFW ≥ p, and
search for a matching substring whose probability is at least p using the back-
track procedure in lines 5–8. Note that if VFW < p, we know that there is no
sufficiently high probability matching substring ending at index j and, thus, skip
the backtrack procedure and move to the next streaming input.

Online Stochastic Pattern Matching 127

Algorithm 3. Naive Backtracking
1: procedure backtrack(Text T ; PFA P; Probability p; Index j)
2: output ← {}
3: X ← FP
4: for i ← j . . . 1 do
5: X ← MP(Ti)X
6: if IPX ≥ p then
7: output ← output ∪ {(i, j)}
8: return output

Algorithm 3 simply checks every suffix ending at a given index j of T . The
runtime is O(|T ||QP |2) since the algorithm has to backtrack the entire text in
the worst-case. Algorithm 2 runs in O(|T |(|QP |2+|Algorithm 3|)) time, and thus
has an overall runtime of O(|T |2|QP |2). Note that, in this case, Algorithm 2 does
not fit the definition of an online algorithm since the entire text must be stored
in memory. We show that we only need to store a constant number of characters
in the length of the text. Note that de la Higuera and Oncina [9,10] established
the two bounds relating the probability of a string and its length, and we provide
a new bound c = max{i | P(ΣiΣ∗) ≥ p}.

Lemma 2. Let P = (Q,Σ, {M(c)}c∈Σ , I,F) be a PFA, p be a threshold proba-
bility, μ and σ be the mean and variance of the string length described by P, and
c = max{i | P(ΣiΣ∗) ≥ p}.

At each index of T , we need only to backtrack at most

� = min{μ +
σ√
p
,

(|Q| + 1)2

p
, c}

characters, which is independent of T .

The first two bounds are purely theoretical bounds with closed-form represen-
tations based on the structure of the PFA and its distribution. The last bound,
c = max{i | P(ΣiΣ∗) ≥ p}, must be iteratively searched for, but often provides
a much tighter bound, as discussed in Sect. 5. As a pre-processing step, we can
choose the minimum of the three as the maximum backtracking length �. Now we
are ready to tackle OSPM efficiently using the upper-bound of the backtracking
length in Lemma 2 together with Algorithm 2.

Theorem 1. Given a streaming text T , a PFA P, and a probability p, we can
solve the OSPM problem in O(�|T ||QP |2) time with a buffer of size �.

3.3 OSPM with DPFAs

Despite DPFAs being strictly weaker than PFAs in expressive power, they are
still useful in practice [16]. This is mainly because parsing is easier for DPFAs and
several difficult problems for general PFAs (most notably, inferring the distribu-
tion) can be solved efficiently for DPFAs [8,16]. This motivates us to consider a

128 M. Cognetta and Y.-S. Han

variant OSPM problem when the distribution is deterministic regular stochastic;
in other words, P is a DPFA. We consider the case of grep-like pattern match-
ing where we only report the end position of matching substrings. We call this
problem grep-OSPM. Recall that for PFAs, the Viterbi semiring allows us to
compute the most probable parse of a given string. Furthermore, for DPFAs, the
probability of the most probable parse of a string w is exactly the probability
of w. We combine this result with Algorithm 1 to find the highest probability
suffix of a string in a DPFA. We observe that, for grep-OSPM with a DPFA,
backtracking is not necessary and obtain a faster algorithm.

Lemma 3. Given a DPFA P and its weighted transformation W over the
Viterbi semiring,

W(w1w2 · · · wn) = max{P(λ),P(wn),P(wn−1wn) . . . ,P(w1w2 · · · wn)}.

Moreover, we can iteratively compute W(w) for each prefix of w = w1w2 · · · wn

in only O(|w||QP |) time.

Theorem 2. Given a streaming text T , a DPFA P, and a probability p, we can
solve grep-OSPM in O(|T ||QP |) time without backtracking.

4 Heuristic Speedup

The use of the weighted construction in Algorithm 1 is technically a heuristic in
the general PFA case because we could simply backtrack at every character with
the same asymptotic runtime. We describe another heuristic to further speedup
the practical runtime of Algorithm 2 by short-circuiting the backtracking step.

We use the following property of stochastic languages

∀w, x ∈ Σ∗, P r(w) ≤ Pr(Σ∗w) and Pr(Σ∗w) ≥ Pr(Σ∗xw).

Lemma 2 shows that the backtracking step only has to consider a constant
number of characters when a new character of T arrives in stream. However,
it is possible to end the backtracking step early if we can guarantee that no
longer suffix can possibly have sufficiently high probability than p. Suppose that,
during the backtracking step, we have read a suffix x from the buffer, which is
pre-calculated from the upper-bound in Lemma 2. If P(Σ∗x) ≥ p, there may
still be more suffixes (including w) in the buffer with probability at least as
large as our threshold p. However, if P(Σ∗x) < p (line 9 of Algorithm 4), then
we can immediately terminate the backtracking procedure and move to the next
streaming character of T . Thus, Algorithm 4 becomes our new backtracking
algorithm. Note that Algorithm 4 performs O(1) matrix-vector multiplications
per character and thus runs in O(�|QP |2) time.

Online Stochastic Pattern Matching 129

Algorithm 4. Backtracking Step
1: procedure backtrack(Text T ; PFA P; Probability p; Index j)
2: matches ← {}
3: � ← max backtracking length
4: X ← F

5: for i ∈ 0 . . . � do
6: X ← MTj−iX

7: if IX ≥ p then
8: matches ← matches ∪ {j − i, j}
9: if IMΣ∗X < p then

10: return matches
11: return matches

5 Experimental Results

Since there is no previous algorithm to address OSPM, we simply analyze
the effectiveness of the suggested heuristics, and demonstrate that non-trivial
instances of the problem can be solved in reasonable time. We construct two
training sets. The first is a set of 20 PFAs with up to 125 states and alphabets
of size 3 to 15. This set is generated in a manner similar to the test machines
from the PAutomaC PFA learning challenge [15]. We first select up to 1

4 of all
possible state-character-state transitions and assign weights to them before nor-
malization to construct a valid PFA. However, the machines from the PAutomaC
competition generally have very short strings with high probability. This causes
OSPM to perform well in practice since there will be relatively few high proba-
bility strings and the maximum backtracking length is low. We mitigate this by
modifying the structure of the PFAs by choosing a random integer n between 5
and 10 and requiring all non-zero probability strings to have length longer than
n. So that all prefixes are not equiprobable in expectation, one prefix out of Σn

is selected and weighted substantially higher than the rest.
For each PFA P, we sample 1, 000 strings from the distribution represented

by P and select the highest probability string as a baseline threshold. For the
text, we generate strings of length 106 by random sampling. We then run OSPM
20 times using these parameters, halving the threshold probability each time.
This gives a spread of thresholds where on one end nearly all indices in the text
do not have a sufficiently high probability substring ending at the corresponding
indices, whereas at the other nearly all indices do have such substrings. The
second training set is drawn from real data. We first build 4, 5, and 6-grams
using randomly spliced fruit fly RNA data extracted from RNACentral (http://
rnacentral.org/). We use a different fruit fly RNA sequence as our input text.
We then construct a 3-gram of characters from Shakespeare’s King Henry VI,
Parts I & II and use King Henry VI, Part III as the input text. We run the
experiments on an AMD Ryzen 7 1700 (3.0 GHz) 8-Core Processor with 16 GB
of RAM.

http://rnacentral.org/
http://rnacentral.org/

130 M. Cognetta and Y.-S. Han

Table 1. For each PFA, we list the number of states, the alphabet size, the median
threshold value, the backtracking bound calculated by c = max{i | P(ΣiΣ∗) ≥ p},
and the average and maximum number of characters backtracked when the backtrack
procedure is executed.

PFA |Q| |Σ| threshold c avg max
time
(sec)

1 20 3 1.67E-05 787 6.62 13 5.97
2 24 5 5.73E-08 2347 9.44 13 5.46
3 14 10 1.47E-09 1923 6.36 10 3.88
4 10 15 3.79E-07 663 4.47 7 2.86
5 56 3 7.62E-07 614 9.77 17 35.28
6 51 5 1.27E-06 1682 4.77 9 25.97
7 50 10 3.85E-06 3793 4.07 6 22.53
8 53 15 2.74E-06 468 6.20 7 25.69
9 74 3 5.75E-07 1528 7.12 14 72.65
10 71 5 3.29E-08 3579 3.72 11 88.65

RNA
4-gram 341 4 2.06E-04 40 2.10 6 39.19

RNA
6-gram 2096 4 2.08E-04 42 4.45 8 99.87

PFA |Q| |Σ| threshold c avg max
time
(sec)

11 54 10 1.22E-06 706 3.23 7 29.75
12 69 15 4.15E-05 429 4.02 5 48.42
13 109 3 5.44E-06 1890 9.41 14 108.75
14 107 5 3.93E-08 1655 8.55 13 103.10
15 104 10 1.46E-05 850 4.10 6 100.39
16 103 15 6.14E-06 1376 3.25 5 103.76
17 121 3 1.15E-06 1084 9.40 16 130.23
18 121 5 3.98E-07 1735 10.18 12 119.01
19 115 10 7.86E-08 5012 4.31 8 124.29
20 115 15 3.57E-10 5196 4.31 8 119.63

RNA
5-gram 1145 4 2.20E-04 39 3.26 9 108.10

King
Henry 20533 46 1.50E-05 50 2.26 8 489.11

We first consider the bound calculations. Of the three bounds given, our
experimental results show c = max{i | ΣiΣ∗ ≥ p} performs the best. Further-
more, even in the worst-case, the gap between c and μ+ σ√

p or (|Q|+1)2

p is several
orders of magnitude because the latter two depend on the inverse of the thresh-
old value p. This shows that determining c is necessary in practice, since it is
impractical to maintain a buffer the size of which is required by the other two
bounds. The experiments also show that the suffix probability heuristic allows
us to quickly terminate the backtracking procedure when we could guarantee we
would not find a string with probability greater than the threshold later in the
buffer. Throughout the trials, we recorded the average and maximum number
of characters backtracked during each backtracking call. Compared to even the
lowest buffer bound, the average number of characters ever backtracked was very
low, making the algorithm run very quickly in practice. The worst ratio of the
average and maximum backtracking to buffer length is in PFA #5, with ratios
9.77
614 ≈ 0.016 and 17

614 ≈ 0.028, respectively. In no cases did a backtracking pro-
cedure exhaust the entire buffer. Even for very large PFAs, such as 20533-state
PFA built from the King Henry VI data, our algorithm was able to parse large
texts in reasonable time frames. In these cases, the c bound is especially useful
as it can be found quickly, while (1−M(Σ))−1 and thus μ+ σ√

p takes an imprac-
tical amount of time to compute. Table 1 presents our experimental results; we
observe that the heuristic in Sect. 4 reduces the number of backtracking charac-
ters significantly.

Online Stochastic Pattern Matching 131

6 Application

Consider again the scenario where we have a PFA representing a distribution of
RNA subsequences that are associated with the manifestation of some property.
Suppose further that we have a long RNA sequence that exhibits the property,
which implies that a non-zero probability subsequence from our distribution
is present. Then it is of practical importance to determine what the highest
probability subsequence present in the overall RNA sequence is, since that is the
subsequence which most likely caused the property to manifest. Here we present
a variant of OSPM to solve the aforementioned problem.

Problem 1. Highest Probability Matching Substring. Given a streaming
text T , a PFA P, and a string w ∈ Σ+, report the highest probability substring
of T that is a superstring of w or λ if w never appears in T .

Let D be the DFA induced by the Knuth-Morris-Pratt next function of w.
We construct a new weighted automaton W = P ∩ D that has the property∑

w∈Σ∗ W(w) =
∑

w∈L(D) P(w) [13,16]. We then perform our weighted con-
struction on W to construct a new automaton W ′. Finally, we compute an
initial threshold probability that lower bounds the maximum probability of any
string containing w. There are several ways to construct such a lower bound, the
simplest being to use P(w). Unfortunately, this can lead to the pathological case
where P(w) = 0 and T does not contain any instance of w. A better method is
to perform breadth-first search from any starting state to find a non-zero proba-
bility path to any final state and use the probability of the corresponding string
as our initial threshold. This has the added benefit of allowing us to immedi-
ately terminate with λ if no such path exists. We then use Algorithm 2 on T
with W ′ while adaptively updating the threshold probability and saving only
the maximum probability matching substring throughout the computation.

7 Conclusions

We have proposed an algorithm that efficiently solves OSPM and suggested
heuristics to speed up its practical runtime. For a variant of OSPM, where only
the end index of high probability substrings are reported, we have suggested a
faster algorithm without backtracking when a pattern is a deterministic PFA.
For the general OSPM problem, we have first introduced a weighted automaton
construction that allows us to filter out indices at which no sufficiently high prob-
ability substring can end. We have then proposed a new bound on the maximum
possible length of a string with probability above a given threshold. This bound
is often several orders of magnitude smaller than the previous known bounds.
Finally, we have presented a heuristic based on a property of stochastic lan-
guages that allows us to terminate the backtracking procedure of our algorithm
early when we can guarantee backtracking further would not find a sufficiently
high probability string. Experimental results on both artificial and real-life data
have showed that our algorithm, combined with the suggested heuristics, solves
OSPM quickly in practice.

132 M. Cognetta and Y.-S. Han

References

1. Aho, A., Corasick, M.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18, 333–340 (1975)

2. Birney, E.: Hidden Markov models in biological sequence analysis. IBM J. Res.
Dev. 45, 449–454 (2001)

3. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of
fixed dimension. Theory Comput. Syst. 36, 231–245 (2003)

4. Casacuberta, F., de la Higuera, C.: Computational complexity of problems on
probabilistic grammars and transducers. In: Proceedings of the 5th International
Colloquium on Grammatical Inference: Algorithms and Applications, pp. 15–24
(2000)

5. Droste, M., Kuich, W., Volger, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

6. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recogn. 38, 1349–1371 (2005)

7. Fred, A.L.N.: Computation of substring probabilities in stochastic grammars. In:
Proceedings of the 5th International Colloquium on Grammatical Inference: Algo-
rithms and Applications, pp. 103–114 (2000)

8. Guttman, O.: Probabilistic automata and distributions over sequences. Ph.D. the-
sis, The Australian National University (2006)

9. de la Higuera, C., Oncina, J.: Computing the most probable string with a proba-
bilistic finite state machine. In: Proceedings of the 11th International Conference
on Finite State Methods and Natural Language Processing, pp. 1–8 (2013)

10. de la Higuera, C., Oncina, J.: The most probable string: an algorithmic study. J.
Logic Comput. 24, 311–330 (2014)

11. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6, 323–350 (1977)

12. Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state
transducers. Comput. Speech Lang. 16, 69–88 (2002)

13. Nederhof, M., Satta, G.: Computation of infix probabilities for probabilistic
context-free grammars. In: Proceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1213–1221 (2011)

14. Thompson, K.: Regular expression search algorithm. Commun. ACM 11, 419–422
(1968)

15. Verwer, S., Eyraud, R., de la Higuera, C.: PAutomaC: a probabilistic automata
and hidden Markov models learning competition. Mach. Learn. 96(1–2), 129–154
(2014)

16. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27,
1013–1025 (2005)

17. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic finite-state machines-part II. IEEE Trans. Pattern Anal. Mach. Intell. 27,
1026–1039 (2005)

18. Yoon, B.J.: Hidden Markov models and their applications in biological sequence
analysis. Current Genomics 10(6), 402–415 (2009)

https://doi.org/10.1007/978-3-642-01492-5

State Complexity of Reversals
of Deterministic Finite Automata

with Output

Sylvie Davies(B)

Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
sldavies@uwaterloo.ca

Abstract. We investigate the worst-case state complexity of reversals of
deterministic finite automata with output (DFAOs). In these automata,
each state is assigned some output value, rather than simply being
labelled final or non-final. This directly generalizes the well-studied prob-
lem of determining the worst-case state complexity of reversals of ordi-
nary deterministic finite automata. If a DFAO has n states and k possible
output values, there is a known upper bound of kn for the state complex-
ity of reversal. We show this bound can be reached with a ternary input
alphabet. We conjecture it cannot be reached with a binary input alpha-
bet except when k = 2, and give a lower bound for the case 3 ≤ k < n.
We prove that the state complexity of reversal depends solely on the
transition monoid of the DFAO and the mapping that assigns output
values to states.

1 Introduction

The problem of determining the worst-case state complexity of the reversal
operation on regular languages has been well-studied. Work on this problem
dates back to the 1960 s; see Jirásková and Šebej [5] for a historical overview.
It is known that if L is recognized by an n-state deterministic finite automaton
(DFA), then the (deterministic) state complexity of the reverse LR is at most
2n, and this bound can be reached over a binary alphabet.

We study a generalization of this problem to deterministic finite automata
with output (DFAOs). In a DFAO, each state is assigned an output from a
finite output alphabet Δ. Rather than recognizing languages, DFAOs compute
functions f : Σ∗ → Δ, where Σ is the input alphabet. The value f(w) is defined to
be the output of the state reached by starting in the initial state and following the
path spelling w. DFAOs directly generalize DFAs; the |Δ| = 2 case is equivalent
to assigning a value of “final” or “non-final” to each state. DFAOs are different
from Moore machines [8], which build up an output word as each state is visited.

DFAOs are used in the study of automatic sequences [1]. If we treat the words
w ∈ Σ∗ as representations of natural numbers in some base, we can view the
function f : Σ∗ → Δ as a function f : N → Δ, that is, an infinite sequence of

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 133–145, 2018.
https://doi.org/10.1007/978-3-319-94812-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_12&domain=pdf

134 S. Davies

elements of Δ. Sequences for which the corresponding function can be computed
by a DFAO are called automatic.

The reverse of the function f : Σ∗ → Δ is the function fR : Σ∗ → Δ defined
by fR(w) = f(wR). The reversal operation on DFAOs can thus be viewed as
changing the direction in which the DFAO reads input: from left-to-right to
right-to-left, or vice versa. We are concerned with the maximal blow-up in size
(number of states) when the input reading direction of a DFAO is reversed. That
is, given a function f computed by an n-state DFAO, what is the worst-case state
complexity of fR? The standard construction for reversal of DFAOs [1, Theorem
4.3.3] gives an upper bound of |Δ|n, where Δ is the output alphabet. However,
it does not seem to be known whether this bound is reachable.

We prove that when the input alphabet has size three or greater, the upper
bound |Δ|n is indeed reachable. When the input alphabet is binary, the problem
becomes much more complicated. We conjecture that if |Δ| ≥ 3, the upper
bound |Δ|n is not reachable over a binary alphabet, despite the fact that it is
known to be reachable for |Δ| = 2 (the ordinary DFA case). While we could
not prove that the upper bound is unreachable in all cases, we have proved it
is unreachable when |Δ| = n (that is, the cardinality of Δ equals the number
of states n) and |Δ| ≥ 3, and verified computationally that it is unreachable for
(|Δ|, n) ∈ {(3, 4), (3, 5), (3, 6), (4, 5)}. We prove a lower bound for the case of a
binary input alphabet and 3 ≤ |Δ| < n.

We also demonstrate that the state complexity of DFAO reversal is com-
pletely determined by the transition monoid of the DFAO and the map which
assigns outputs to states. In particular, if function f is computed by a minimal n-
state DFAO with state set Q, transition monoid M , and output map τ : Q → Δ,
then the state complexity of fR is exactly |τM |, where τM = {τ ◦ m : m ∈ M}
and ◦ denotes function composition. Since DFAs are special cases of DFAOs, this
gives a new characterization of the state complexity of DFA reversal in terms of
the transition monoid and the characteristic function of the final state set.

2 Preliminaries

We assume familiarity with basic concepts and results on regular languages and
finite automata. There are many references on this subject, such as [4].

A deterministic finite automaton with output (DFAO) is a 6-tuple D =
(Q,Σ, ·, q0,Δ, τ), where:

– Q is a finite set of states and q0 ∈ Q is the initial state.
– Σ is the input alphabet and Δ is the output alphabet ; both are finite.
– · : Q × Σ → Q is the transition function.
– τ : Q → Δ is the output map.

We use infix notation for the transition function: the image of the pair (q, a)
under the transition function is denoted q · a. We extend the transition function
to words in Σ∗ as follows: for q ∈ Q, we define q · ε = q, and for w = ax, a ∈ Σ,
x ∈ Σ∗ we inductively define q · ax = (q · a) · x. If p · a = q for p, q ∈ Q and

State Complexity of Reversals of Deterministic Finite Automata 135

a ∈ Σ, we say there is a transition from p to q on a. If p · w = q for w ∈ Σ∗, we
say there is a path from p to q spelling w.

The function computed by a DFAO is the function f : Σ∗ → Δ defined by
f(w) = τ(q0 · w). That is, we determine f(w) by starting in the initial state q0,
following the path corresponding to w to reach some state q, then applying the
output map τ to get the output value associated with q. A function that can be
computed by a DFAO is called a finite-state function.

A state q ∈ Q is reachable if there is a path to it from the initial state q0,
i.e., there exists w ∈ Σ∗ such that q0 · w = q. The DFAO D is called trim if
all states are reachable. Two states p, q ∈ Q are distinguishable if there exists
w ∈ Σ∗ such that τ(p · w) �= τ(q · w). A DFAO is minimal if it has the least
possible number of states among all DFAOs computing the same function. The
following result is well-known for DFAs, and it can be shown to hold for DFAOs
using essentially the same proof.

Proposition 1. A DFAO is minimal if and only if all states are reachable and
every pair of distinct states is distinguishable.

For further reference on the DFAO model, see [1].
Let Q be a finite set; we usually assume without loss of generality that

Q = {1, 2, . . . , n}. A transformation of Q is a function t : Q → Q. The image
of a transformation t : Q → Q is the set t(Q) = {t(q) : q ∈ Q}. The rank of a
transformation is the size of its image. Transformations of Q (or more generally,
functions f : Q → X for some set X) can be specified explicitly using matrix
notation:

t =
(

1 2 3 · · · n
t(1) t(2) t(3) · · · t(n)

)
.

Transformations (or functions f : Q → X) can be written concisely using list

notation; for example, the list [1, 4, 3, 5, 2, 2, 3] denotes
(

1 2 3 4 5 6 7
1 4 3 5 2 2 3

)
.

A bijective transformation is called a permutation. Permutations can be writ-
ten concisely using disjoint cycle notation; for example, (1, 2, 4, 5)(6, 7) denotes
the permutation [2, 4, 3, 5, 1, 7, 6].

Transformations can be composed using the ◦ operator; the image of q under
s ◦ t is s(t(q)). A set of transformations of Q that is closed under composition is
called a transformation monoid on Q. The size of Q is called the degree of the
transformation monoid. The full transformation monoid on Q is the set of all
transformations of Q. The symmetric group on Q is the set of all permutations
of Q. A transformation monoid M is generated by a set of transformations T if
every transformation in M can be written as a composition of transformations
from T . We say a monoid is k-generated if it is generated by a set of size k.

Each DFAO D = (Q,Σ, ·, q0,Δ, τ) has a transformation monoid associated
with it, called the transition monoid of the DFAO. It is defined as follows. For
each w ∈ Σ∗, define the function w : Q → Q by w(q) = q · w. The function w is
called the action of w in D. Composition of actions obeys the following rule:

x ◦ y = yx, since x(y(q)) = q · y · x = q · yx = yx.

136 S. Davies

Since the set {w : w ∈ Σ∗} of all word actions in D is closed under composition,
this set forms a transformation monoid on Q. This is the transition monoid of
D. The transition monoid is generated by the set {a : a ∈ Σ} of letter actions.

When working with multiple DFAOs, say D = (Q,Σ, ·, q0,Δ, τ) and D′ =
(Q′, Σ′, ·′, q′

0,Δ
′, τ ′), the notation w is ambiguous: it is unclear whether this is

the action of w in D or in D′. We adopt the following convention: the notation
w refers to the action of w in a DFA whose transition function is named “ · ”.
Thus in this case, w would refer to the action of w in D, rather than D′. This
convention will be sufficient to keep things unambiguous in this paper.

If w = a1a2 · · · an−1an is a word over Σ∗ with a1, . . . , an ∈ Σ, the reverse of w

is wR = anan−1 · · · a2a1. Note that a1◦a2◦· · ·◦an−1◦an = anan−1 · · · a2a1 = wR.
On the other hand, an ◦ an−1 ◦ · · · ◦ a2 ◦ a1 = a1a2 · · · an−1an = w. The reverse
of a finite-state function f : Σ∗ → Δ is the function fR : Σ∗ → Δ defined by
fR(w) = f(wR). Following [1, Theorem 4.3.3], we give a DFAO construction for
fR in terms of a DFAO for f .

Proposition 2. Let D = (Q,Σ, ·, q0,Δ, τ) be a DFAO computing the function
f . There exists a DFAO DR computing fR.

Proof. Let DR = (ΔQ, Σ,�, τ,Δ,Ω), where:

– The state set is ΔQ, the set of all functions from Q to Δ.
– The initial state is τ : Q → Δ, the output map of D.
– The transition function � is defined as follows: g � a = g ◦ a, for g ∈ ΔQ and

a ∈ Σ.
– The output map Ω: ΔQ → Δ is defined by Ω(g) = g(q0).

By definition, the function computed by D is f(w) = τ(q0 · w). The function
computed by DR is Ω(τ � w) = (τ � w)(q0); we must show this equals fR(w) =
f(wR). If w = a1a2 · · · an, then we have

τ � w = τ � a1 � a2 � · · · � an = τ ◦ a1 ◦ a2 ◦ · · · ◦ an = τ ◦ wR.

It follows that

(τ ◦ wR)(q0) = τ(wR(q0)) = τ(q0 · wR) = f(wR) = fR(w)

as required. 	

The state complexity of a finite-state function is the size of a minimal DFAO
computing the function. If a function f is computed by an n-state minimal
DFAO (i.e., the function has state complexity n), Proposition 2 shows that the
state complexity of fR is bounded above by |Δ|n, since the size of the state set
ΔQ of DR is |Δ||Q| = |Δ|n.

The following proposition makes it easier to compute the state complexity of
fR. The analogous result for DFAs is known (e.g., see [5, Proposition 3]).

Proposition 3. If D is trim, then all states of DR are pairwise distinguishable.

State Complexity of Reversals of Deterministic Finite Automata 137

Proof. Let g and h be distinct states of DR. There exists q ∈ Q such that
g(q) �= h(q). Since D is trim, q is reachable. Choose w ∈ Σ∗ such that q0 · wR =
q. Observe that Ω(g � w) = (g ◦ wR)(q0) = g(q0 · wR) = g(q), and similarly
Ω(h � w) = h(q). Since Ω(g � w) �= Ω(h � w), g and h are distinguishable. 	

If we take DR and remove all unreachable states from it, we obtain a DFAO
for fR with all states reachable and every pair of distinct states distinguishable.
By Proposition 1, this is a minimal DFAO for fR. Hence given a function f
computed by a trim DFAO D, to determine the state complexity of fR, we can
simply count the number of reachable states in DR.

3 Main Results

We first prove that the state complexity of reversal of DFAOs is completely
determined by the transition monoid and the output map.

Proposition 4. Let D = (Q,Σ, ·, q0,Δ, τ) be a trim DFAO computing function
f . Let M be the transition monoid of D. The state complexity of fR is |τM |,
where τM = {τ ◦ w : w ∈ Σ∗}.
Proof. The DFAO DR = (ΔQ, Σ,�, τ,Δ,Ω) computes fR. By Proposition 3, all
states of DR are distinguishable, so the state complexity of fR is the number of
reachable states in DR.

Recall from the proof of Proposition 2 that g�w = g ◦wR for g : Q → Δ and
w ∈ Σ∗. In particular, since τ is the initial state of DR, every reachable state
of DR has the form τ � w = τ ◦ wR. Hence the set of reachable states of DR is
{τ ◦wR : w ∈ Σ∗}. But this is the same set as τM = {τ ◦w : w ∈ Σ∗}. It follows
that the number of reachable states in DR is precisely |τM |. 	

Recall that DFAs are essentially DFAOs with |Δ| = 2, if we view the output
map as telling us whether a state is final. Hence we have the following corollary:

Corollary 1. Let D = (Q,Σ, ·, q0, F) be a trim DFA recognizing language L.
Let M be the transition monoid of D. The state complexity of LR is |χF M |,
where χF : Q → {0, 1} is the characteristic function of F .

Throughout the rest of this section, Q and Δ will be finite sets with |Q| = n
and |Δ| = k, the monoid M will be a transformation monoid on Q, and τ : Q →
Δ will be a surjective function. Note that the surjectivity of τ implies |Δ| ≤ |Q|.
It is fine to make this assumption, since if |Δ| > |Q| there are more possible
outputs than there are states, and so we can shrink Δ without loss of generality.

Theorem 1. Let M be the full transformation monoid on Q. Then |τM | = kn

for all surjective functions τ : Q → Δ.

138 S. Davies

Proof. It suffices to show that every function h : Q → Δ lies in τM , i.e., every
such function h can be written as τ ◦ g for some g : Q → Q.

For q ∈ Q, we define g(q) as follows. Since τ is surjective, there exists pq ∈ Q
such that τ(pq) = h(q). Define g(q) = pq. Then (τ ◦ g)(q) = τ(g(q)) = τ(pq) =
h(q) for all q ∈ Q, so τ ◦ g = h as required. 	

Corollary 2. Let f be a finite-state function computed by a minimal DFAO
D = (Q,Σ, ·, q0,Δ, τ) with |Δ| ≤ |Q| (i.e., k ≤ n). The state complexity of fR

is at most |Δ||Q| = kn, and this bound can be reached when |Σ| ≥ 3.

Proof. The upper bound on fR follows from the construction for DR. For the
lower bound, we use the well-known fact that the full transformation monoid on
Q can be generated by three elements: two generators of the symmetric group on
Q, and a transformation of rank |Q| − 1. If Q = {1, . . . , n}, an explicit example
of three generators is f1 = (1, 2, . . . , n), f2 = (1, 2) and f3 = (1 → 2), where
(1 → 2) is the function that maps 1 to 2 and fixes all other elements. Choose
{a, b, c} ⊆ Σ and let D be a DFAO such that a = f1, b = f2 and c = f3. Then
the transition monoid M of D is the full transformation monoid. Furthermore,
D is trim (all states can be reached via a). Hence Proposition 4 applies. If we
take the output map τ to be surjective, by Theorem 1 we see that the state
complexity of fR is |τM | = kn, as required. 	

We now turn to the case where the input alphabet of the DFAO is binary,
i.e., |Σ| = 2. This case is significantly harder than the |Σ| ≥ 3 case. We assume
|Δ| ≥ 3, since if |Δ| = 2, this case is equivalent to studying reversal of DFAs
with binary alphabets, and for DFAs the upper bound of 2n is reachable [5].

Since the state complexity of DFAO reversal is completely determined by the
transition monoid and output map, there are connections between the |Σ| = 2
case and the problem of finding the largest 2-generated transformation monoids
of a particular degree. This problem has been studied by Holzer and König [3]
and by Krawetz, Lawrence and Shallit [7].

Following Holzer and König, we define two families of monoids. First and
most important are the U�,m monoids [3, Definition 5]. The monoid U�,m is a
transformation monoid on Q = {1, . . . , � + m} defined as follows. Let α : Q → Q
be the permutation (1, . . . , �)(�+1, . . . , �+m). A function γ : Q → Q belongs to
U�,m if and only if it satisfies one of the following conditions:

1. There exists i ≥ 0 such that γ = αi, that is, γ = α ◦ α ◦ · · · ◦ α (where there
are i occurrences of α).

2. γ({1, . . . , �}) ∩ γ({� + 1, . . . , � + m}) �= ∅, and there exists an element i ∈
{� + 1, . . . , � + m} such that i is not in the image of γ.

If 1 < � < m and gcd(�,m) = 1, then U�,m can be generated by two elements [3,
Theorem 8]. Krawetz [6] gives an explicit generating set: one of the generators
is α, and the other is β : Q → Q, where

β =
(

1 2 3 4 · · · � + m − 1 � + m
� + 1 2 3 4 · · · � + m − 1 1

)

State Complexity of Reversals of Deterministic Finite Automata 139

if k = 2 or � is even, and otherwise

β =
(

1 2 3 4 · · · � + m − 1 � + m
� + 1 3 2 4 · · · � + m − 1 1

)
.

Let n = � + m. For n ≥ 7 and n prime, Holzer and König proved that there
exist � and m with 1 < � < m and gcd(�,m) = 1 such that U�,m is the largest
2-generated transformation monoid [3, Theorem 15]. They conjecture that this
also holds when n ≥ 7 and n is not prime.

When n ≤ 6, the largest 2-generated transformation monoids belong to a
different family: the V d

n monoids [3, Definition 16]. Let α be the permutation
(1, 2, . . . , n). A function γ : Q → Q belongs to V d

n if and only if it satisfies one of
the following conditions:

1. There exists i ≥ 0 such that γ = αi.
2. There exist i, j ∈ {1, . . . , n} such that γ(i) = γ(j) and j ≡ i + d (mod n).

For 2 ≤ n ≤ 6, Holzer and König determined explicit generating sets for the
largest 2-generated transformation monoids on Q = {1, . . . , n}, which are all
V d

n monoids for some d. One of the generators is always αn = (1, 2, . . . , n). For
2 ≤ n ≤ 6, the other generator βn is:

β2 =
(

1 2
1 1

)
, β3 =

(
1 2 3
1 1 3

)
, β4 =

(
1 2 3 4
1 1 4 3

)
,

β5 =
(

1 2 3 4 5
1 1 4 5 3

)
, β6 =

(
1 2 3 4 5 6
1 4 1 5 6 2

)
.

Holzer and König also give a more general construction for 2-element generating
sets of V d

n monoids [3, Theorem 18].
With these definitions done, we return to the problem of computing worst-

case state complexity of reversal for binary input alphabets. First we consider
the special case |Q| = |Δ|. Here it turns out that the state complexity problem
almost completely reduces to the 2-generated monoid problem:

Theorem 2. Let f be a finite-state function computed by a minimal DFAO
D = (Q,Σ, ·, q0,Δ, τ) with |Σ| = 2 and |Q| = |Δ| = n. Let m2(n) denote the
size of the largest 2-generated transformation monoid on Q = {1, 2, . . . , n} that
occurs as the transition monoid of some trim DFA. The state complexity of fR

is at most m2(n), and this bound is reachable.

Proof. Let Σ = {a, b}. By assumption, we can construct a trim DFAO D so
that a and b generate a monoid of size m2(n). and let τ : Q → Δ be a bijection.
By Proposition 4, the state complexity of fR is |τM |. But τ is a bijection, so
|τM | = |M | = m2(n). 	

140 S. Davies

It may be the case that for some values of n, the largest transformation monoid
on {1, 2, . . . , n} generated by two elements does not occur as the transition
monoid of a trim DFA. Thus we do not quite get a complete reduction to the
2-generated monoid problem. Note that the U�,m and V d

n monoids do occur as
transition monoids of trim DFAs.

It is well known that if |Q| ≥ 3, the full transformation monoid on a finite set
Q cannot be generated by two elements. Hence m2(n) never reaches the upper
bound of |Δ||Q| = nn except when |Q| = n = 2.

Table 1 shows the known values for m2(n) for 2 ≤ n ≤ 7, taken from [3,
Table 1]. The value is not known for n > 7 except when n is prime, in which
case m2(n) is the size of the largest 2-generated U�,m monoid. The values of nn

are also shown for comparison.

Table 1. Values of m2(n) for 2 ≤ n ≤ 7.

n 2 3 4 5 6 7

m2(n) 4 24 176 2110 32262 610871

nn 4 27 256 3125 46656 823543

We now turn to the case where |Δ| < |Q|. Our main result in this case is
a formula for the size of |τU�,m|, which in turn leads to a lower bound on the
worst-case state complexity of fR. The notation

{
�
i

}
below means the number

of partitions of {1, . . . , �} into i parts (a Stirling number of the second kind).

Theorem 3. Let |Δ| = k and let |Q| = � + m = n, with 2 ≤ k < n and
1 ≤ � ≤ m. Define

F (k, �,m) =
�∑

i=1

(
k

i

)
i!

{
�
i

}
(k − i)m.

G(k, �,m) =

⎧⎪⎨
⎪⎩

lcm(�,m), if k ≥ 4;
m, if k = 3;
1, if k = 2.

There exists a function τ : Q → Δ such that

|τU�,m| = kn − F (k, �,m) + G(k, �,m).

To prove this theorem, we will need the following technical lemma. For space
considerations, we omit the proof of the lemma; the proof can be found in the
arXiv version of this paper [2].

Lemma 1. Let Δ = {1, . . . , k} and let Q = {1, . . . , n}, with 2 ≤ k < n. Fix �
and m such that � + m = n and 1 ≤ � ≤ m. Let α : Q → Q be the permutation
α = (1, . . . , �)(� + 1, . . . , � + m). There exists a function τ : Q → Δ with the
following properties:

State Complexity of Reversals of Deterministic Finite Automata 141

– τ : Q → Δ is surjective.
– τ({1, . . . , �}) ∩ τ({� + 1, . . . , � + m}) = ∅.
– There exist distinct p, p′ ∈ {� + 1, . . . , � + m} such that τ(p) = τ(p′).
– The size of the set {τ ◦αi : i ≥ 0} is precisely given by the function G(k, �,m).

Proof (Theorem 3). We start with a brief outline of the proof strategy. Without
loss of generality, assume Δ = {1, . . . , k} and Q = {1, . . . , n = � + m}. Define
F�,m = {f : Q → Δ : f({1, . . . , �}) ∩ f({� + 1, . . . , � + m}) = ∅}.

– First, we show that ΔQ = τU�,m ∪ F�,m for certain τ .
– After proving this, the inclusion-exclusion principle gives the formula

kn = |ΔQ| = |τU�,m| + |F�,m| − |τU�,m ∩ F�,m|.

– We show that |F�,m| = F (k, �,m).
– We show that |τU�,m ∩ F�,m| = G(k, �,m).
– Rearranging the inclusion-exclusion formula above gives the result.

Let us show that for an appropriate choice of τ : Q → Δ, we have ΔQ = τU�,m ∪
F�,m. That is, every function from Q to Δ lies in one of τU�,m or F�,m.

We select τ with the following properties:

– τ : Q → Δ is surjective.
– τ({1, . . . , �}) ∩ τ({� + 1, . . . , � + m}) = ∅, that is, τ ∈ F�,m.
– There exist distinct p, p′ ∈ {� + 1, . . . , � + m} such that τ(p) = τ(p′).
– The size of the set {τ ◦ αi : i ≥ 0} is precisely G(k, �,m).

Such a function τ exists by Lemma 1. Note that we need k < n and � ≤ m to
apply Lemma 1; this is the only place we use these hypotheses.

Now, let g : Q → Δ be arbitrary. We will show that if g is not in F�,m, then it
must be in τU�,m, thus proving that ΔQ = τU�,m∪F�,m. To show that g ∈ τU�,m,
we define a function f : Q → Q such that f ∈ U�,m and τ ◦ f = g.

Since g �∈ F�,m, there exist distinct elements r ∈ {1, . . . , �} and r′ ∈ {� +
1, . . . , � + m} such that g(r) = g(r′). Since τ is surjective, there exists s such
that τ(s) = g(r). Furthermore, we can choose s so that s �= p′. Indeed, if p′

is one of the possible choices for s, then by the fact that τ(p) = τ(p′), we can
choose s = p instead. Now, we define f : Q → Q for each q ∈ Q as follows:

– If q ∈ {r, r′}, define f(q) = s.
– If g(q) = τ(p) and q �∈ {r, r′}, define f(q) = p.
– Otherwise, choose an element q′ such that τ(q′) = g(q) (by surjectivity) and

define f(q) = q′.

We verify in each case that τ ◦ f = g:

– If q = r, then f(r) = s, so τ(f(r)) = τ(s) = g(r).
– If q = r′, then f(q) = s, and since g(r) = g(r′) we have τ(f(r′)) = τ(s) =

g(r) = g(r′).

142 S. Davies

– If q �∈ {r, r′} and g(q) = τ(p), then f(q) = p, so τ(f(q)) = τ(p) = g(q).
– Otherwise, we have f(q) = q′ such that τ(f(q)) = τ(q′) = g(q).

Now, we show that f ∈ U�,m. First, note that there exist elements r ∈ {1, . . . , �}
and r′ ∈ {�+1, . . . , �+m} such that f(r) = f(r′). Next, observe that the element
p′ ∈ {� + 1, . . . , � + m} is not in the image of f . To see this, note that if we have
f(q) = p′, then we have τ(f(q)) = τ(p′) = τ(p). But τ(f(q)) = g(q), so this
implies g(q) = τ(p). In the case where g(q) = τ(p), we defined f(q) = p �= p′, so
this is a contradiction. It follows that f meets the conditions to belong to U�,m.

This proves that if g : Q → Δ is not in F�,m, then g ∈ τU�,m and thus
ΔQ = τU�,m ∪ F�,m. Next, we show that |F�,m| = F (k, �,m).

Write f ∈ F�,m in list notation as [a1, a2, . . . , a�, b1, b2, . . . , bm], where f(i) =
ai and f(� + i) = bi. For this function to lie in F�,m, we must have the prop-
erty that {a1, a2, . . . , a�} ∩ {b1, b2, . . . , bm} = ∅. Note that since F�,m is a set of
functions from Q to Δ, we have {a1, . . . , a�}, {b1, . . . , bm} ⊆ Δ. We count the
number of distinct “function lists” in F�,m as follows:

– Fix a set S ⊆ Δ and assume {a1, . . . , a�} = S. Let |S| = i.
– In the first segment [a1, . . . , a�] of the list, each ai can be an arbitrary element

of S. However, since {a1, . . . , a�} = S, each element of S must appear at
least once in the list. Thus the first segment [a1, . . . , a�] of the list represents
a surjective function from {1, . . . , �} onto S. Since |S| = i, the number of
such surjective functions is i!

{
�
i

}
. (It is known in general that the number of

surjective functions from {1, . . . , m} to {1, . . . , n} is n!
{

m
n

}
.)

– In the second segment [b1, . . . , bm] of the list, each bi must be an element
of Δ \ S, since we want {a1, . . . , a�} ∩ {b1, . . . , bm} = ∅. Since |S| = i and
|Δ| = k, there are k− i elements to pick from in Δ\S, and we need to choose
m of them. Thus there are (k − i)m choices for the second segment of the list.
In total, for a fixed set S of size i, there are i!

{
�
i

}
(k − i)m distinct lists with

{a1, . . . , ak} = S.
– Now, we take the sum over all possible choices for the set S. Since S =

{a1, . . . , a�} and S is non-empty, we have 1 ≤ |S| ≤ �. For each set size i,
there are

(
k
i

)
ways to choose S ⊆ Δ with |S| = i. Thus the total number of

functions in F�,m is

�∑
i=1

(
k

i

)
i!

{
�
i

}
(k − i)m = F (k, �,m).

Next, we show that |τU�,m ∩ F�,m| = G(k, �,m). We claim that

τU�,m ∩ F�,m =

{
∅, if τ �∈ F�,m;
{τ ◦ αi : i ≥ 0}, if τ ∈ F�,m.

Then the size equality with G(k, �,m) follows from the properties of τ .
To see the claim, suppose that τ ◦g ∈ F�,m for some g ∈ U�,m. Since g ∈ U�,m,

either g = αi for some i, or there exists p ∈ {1, . . . , �} and q ∈ {�+1, . . . , �+m}

State Complexity of Reversals of Deterministic Finite Automata 143

such that g(p) = g(q). In the latter case, τ(g(p)) = τ(g(q)), which contradicts the
assumption that τ ◦g is in F�,m. Hence g = αi for some i ≥ 0, and so τ ◦g = τ ◦αi.
Now, note that τ(αi({1, . . . , �})) = τ({1, . . . , �}), and τ(αi({�+1, . . . , �+m})) =
τ({� + 1, . . . , � + m}). Thus τ ◦ αi is in F�,m if and only if τ is in F�,m, and the
claim follows.

Finally, we can conclude the proof. Recall that |Δ| = k and |Q| = n, and
thus |ΔQ| = |Δ||Q| = kn. Thus by the inclusion-exclusion principle, we have

kn = |ΔQ| = |τU�,m| + |F�,m| − |τU�,m ∩ F�,m|.
Rearranging this, we get:

|τU�,m| = kn − |F�,m| + |τU�,m ∩ F�,m|.
We proved that |F�,m| = F (k, �,m) and |τU�,m ∩ F�,m| = G(k, �,m). It follows
that |τU�,m| = kn − F (k, �,m) + G(k, �,m), as required. 	

This theorem gives the following lower bound on the worst-case state com-
plexity of DFAO reversal when |Σ| = 2.

Corollary 3. Let |Q| = n ≥ 2 and |Δ| = k ≥ 2. There exists a trim DFAO
D = (Q,Σ, ·, q0,Δ, τ) computing function f , with |Σ| = 2 and k < n, such that
the state complexity of fR is

max{kn − F (k, �,m) + G(k, �,m) : 1 < � < m, � + m = n, gcd(�,m) = 1}.

Proof. Pick � and m such that 1 < � < m, � + m = n and gcd(�,m) = 1.
Then U�,m can be generated by two elements. Hence we can construct a DFAO
D over a binary alphabet with state set Q = {1, . . . , n} and transition monoid
U�,m. This DFAO will be trim: all states in {1, . . . , �} are reachable by α =
(1, . . . , �)(� + 1, . . . , � + m), and U�,m contains elements which map 1 to � + 1, so
the rest of the states are reachable. By Theorem 3, there exists τ : Q → Δ such
that

|τU�,m| = kn − F (k, �,m) + G(k, �,m).

Take τ as the output map of D. Then by Proposition 4, the state complexity of
fR is |τU�,m|. Taking the maximum over all values of � and m that satisfy the
desired properties gives the result. 	

Table 2 gives the values of this lower bound for various values of |Δ| = k and
|Q| = n with k < n. For n ∈ {1, 2, 3, 4, 6} there are no pairs (�,m) such that
1 < � < m, � + m = n and gcd(�,m) = 1, so those values of n are ignored.

Note that for |Δ| = 2, this lower bound is off by one from the upper bound
of 2n. The known examples where 2n is achieved do not use U�,m monoids. We
conjecture that for |Δ| ≥ 3, the upper bound |Δ|n = kn is not reachable. Jason
Bell has recently claimed a proof of this conjecture (private communication).

We close this section by mentioning the results of some computational exper-
iments. The goal of these experiments was to find, for small values of |Q| = n

144 S. Davies

Table 2. Values for the lower bound of Corollary 3.

k\n 5 6 7 8 9

2 31 - 127 255 511

3 216 - 2125 6452 19550

4 826 - 15472 63403 258360

5 - - 71037 368020 1902365

6 - - 243438 1539561 9657446

and |Δ| = k, the maximal size of |τM |, where M is a monoid generated by two
functions α : Q → Q and β : Q → Q, and τ : Q → Δ is a surjective function. The
results of our experiments are shown in Table 3. The values in bold are true
maximal values for |τM | (and thus for the state complexity of binary DFAO
reversal), which have been confirmed by brute force search. The other, non-bold
values in the table are simply the largest we found through random search.

Table 3. Largest known values for |τM |, where M is a 2-generated transformation
monoid on {1, . . . , n} and τ : {1, . . . , n} → {1, . . . , k} is surjective. Bold values have
been confirmed to be maximal by brute force search.

k\n 3 4 5 6 7 8

3 24 67 218 699 2125 6452

4 - 176 826 3526 15472 63403

Note that for n ≥ 7, the conjectured maximal values in Table 3 match the
values in Table 2 for lower bound of Corollary 3. For this reason, we suspect the
bound of Corollary 3 may in fact be optimal for n ≥ 7. However, the evidence at
this point is limited.

4 Conclusions

For DFAs, the worst-case state complexity of the reversal operation is 2n for
languages of state complexity n. When we generalize to DFAOs, the worst-case
state complexity is bounded above by kn, where k is the number of outputs of
the DFAO. We proved that this upper bound can be attained by DFAOs over a
ternary input alphabet. For binary input alphabets, we demonstrated there are
connections with the problem of finding the largest 2-generated transformation
monoid, and gave a lower bound on the worst-case state complexity for the
k < n case. Computational experiments suggest that the upper bound kn is not
reachable using binary input alphabets if k ≥ 3.

State Complexity of Reversals of Deterministic Finite Automata 145

Acknowledgements. I thank Jason Bell, Janusz Brzozowski, Jeffrey Shallit, and the
anonymous referees for proofreading and helpful comments. This work was supported
by the Natural Sciences and Engineering Research Council of Canada under grant No.
OGP0000871.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Davies, S.: State complexity of reversals of deterministic finite automata with out-
put. CoRR abs/1705.07150 (2017). http://arxiv.org/abs/1705.07150

3. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327(3), 319–347 (2004)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory Languages and
Computation, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston
(1979)

5. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012)

6. Krawetz, B.: Monoids and the state complexity of root(L). Master’s thesis (2003).
https://cs.uwaterloo.ca/∼shallit/krawetz.pdf

7. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transfor-
mations of a finite set. Int. J. Found. Comput. Sci. 16(03), 547–563 (2005)

8. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies,
pp. 129–153. Princeton University Press (1956)

http://arxiv.org/abs/1705.07150
https://cs.uwaterloo.ca/~shallit/krawetz.pdf

Algorithms and Training for Weighted
Multiset Automata and Regular

Expressions

Justin DeBenedetto(B) and David Chiang

Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA

{jdebened,dchiang}@nd.edu

Abstract. Multiset automata are a class of automata for which the
symbols can be read in any order and obtain the same result. We inves-
tigate weighted multiset automata and show how to construct them
from weighted regular expressions. We present training methods to learn
the weights for weighted regular expressions and for general multiset
automata from data. Finally, we examine situations in which inside
weights can be computed more efficiently.

Keywords: Multiset automata · Multiset regular expressions
Weighted automata · Weighted regular expressions

1 Introduction

Automata have been widely studied and utilized for pattern and string matching
problems. A string automaton reads the symbols of an input string one at a time,
after which it accepts or rejects the string. But in certain instances, the order in
which the symbols appear is irrelevant.

For example, in a set of graphs, the edges incident to a node are unordered
and therefore their labels form a commutative language. Or, in natural language
processing, applications might arise in situations where a sentence is generated by
a context-free grammar subject to (hard or soft) order-independent constraints.
For example, in summarization, there might be an unordered set of facts that
must be included. Or, there might be a constraint that among the references to
a particular entity, exactly one is a full NP.

To handle these scenarios, we are interested in weighted automata and
weighted regular expressions for multisets. This paper makes three main con-
tributions:

– We define a new translation from weighted multiset regular expressions to
weighted multiset automata, more direct than that of Chiang et al. [3] and
more compact (but less general) than that of Droste and Gastin [4].

– We discuss how to train weighted multiset automata and regular expressions
from data.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 146–158, 2018.
https://doi.org/10.1007/978-3-319-94812-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_13&domain=pdf

Algorithms and Training for Weighted Multiset Automata 147

– We give a new composable representation of partial runs of weighted multiset
automata that is more efficient than that of Chiang et al. [3].

2 Definitions

We begin by defining weighted multiset automata (Sect. 2.2) and the related defi-
nitions from previous papers for weighted multiset regular expressions (Sect. 2.3).

2.1 Preliminaries

For any natural number n, let [n] = {1, . . . , n}.
A multiset over a finite alphabet Σ is a mapping from Σ to N0. For consis-

tency with standard notation for strings, we write a (where a ∈ Σ) instead of
{a}, uv for the multiset union of multisets u and v, and ε for the empty multiset.

The Kronecker product of a m × n matrix A and a p × q matrix B is the
mp × nq matrix

A ⊗ B =

⎡
⎢⎣

A11B · · · A1mB
...

. . .
...

An1B · · · AmnB

⎤
⎥⎦ .

If w is a string over Σ, we write alph(w) for the subset of symbols actually
used in w; similarly for alph(L) where L is a language. If | alph(L)| = 1, we say
that L is unary.

2.2 Weighted Multiset Automata

We formulate weighted automata in terms of matrices as follows. Let K be a
commutative semiring.

Definition 1. A K-weighted finite automaton (WFA) over Σ is a tuple M =
(Q,Σ, λ, μ, ρ), where Q = [d] is a finite set of states, Σ is a finite alphabet,
λ ∈ K

1×d is a row vector of initial weights, μ : Σ → K
d×d assigns a transition

matrix to every symbol, and ρ ∈ K
d×1 is a column vector of final weights.

For brevity, we extend μ to strings: If w ∈ Σ∗, then μ(w) = μ(w1) · · · μ(wn).
Then, the weight of all paths accepting w is M(w) = λμ(w) ρ. Note that in this
paper we do not consider ε-transitions. Note also that one unusual feature of our
definition is that it allows a WFA to have more than one initial state.

Definition 2. A K-weighted multiset finite automaton is one whose transi-
tion matrices commute pairwise. That is, for all a, b ∈ Σ, we have μ(a)μ(b) =
μ(b)μ(a).

148 J. DeBenedetto and D. Chiang

2.3 Weighted Multiset Regular Expressions

This definition follows that of Chiang et al. [3], which in turn is a special case
of that of Droste and Gastin [4].

Definition 3. A K-weighted multiset regular expression over Σ is an expression
belonging to the smallest set R(Σ) satisfying:

– If a ∈ Σ, then a ∈ R(Σ).
– ε ∈ R(Σ).
– ∅ ∈ R(Σ).
– If α, β ∈ R(Σ), then α ∪ β ∈ R(Σ).
– If α, β ∈ R(Σ), then αβ ∈ R(Σ).
– If α ∈ R(Σ), then α∗ ∈ R(Σ).
– If α ∈ R(Σ) and k ∈ K, then kα ∈ R(Σ).

We define the language described by a regular expression, L(α), by analogy
with string regular expressions. Note that ε matches the empty multiset, while ∅
does not match any multisets. Interspersing weights in regular expressions allows
regular expressions to describe weighted languages.

Definition 4. A multiset mc-regular expression is one where in every subex-
pression α∗, α is:

– proper: ε /∈ L(α), and
– monoalphabetic and connected: L(α) is unary.

As an example of why these restrictions are needed, consider the regular expres-
sion (ab)∗. Since the symbols commute, this is equivalent to {anbn}, which mul-
tiset automata would not be able to recognize. From now on, we assume that all
multiset regular expressions are mc-regular and do not write “mc-.”

3 Matching Regular Expressions

In this section, we consider the problem of computing the weight that a multiset
regular expression assigns to a multiset. The bad news is that this problem is
NP-complete (Sect. 3.1). However, we can convert a multiset regular expression
to a multiset automaton (Sect. 3.2) and run the automaton.

3.1 NP-Completeness

Theorem 1. The membership problem for multiset regular expressions is NP-
complete.

Algorithms and Training for Weighted Multiset Automata 149

Proof. Define a transformation T from Boolean formulas in CNF over a set of
variables X to multiset regular expressions over the alphabet X ∪ {x̄ | x ∈ X}:

T (φ1 ∨ φ2) = T (φ1) ∪ T (φ2)
T (φ1 ∧ φ2) = T (φ1)T (φ2)

T (x) = x

T (¬x) = x̄

Given a formula φ in 3CNF, construct the multiset regular expression α = T (φ).
Let n be the number of clauses in φ. Then form the expression

β =
∏
x

(xn(x̄ ∪ ε)n ∪ (x ∪ ε)nx̄n)

Both α and β clearly have length linear in n. We claim that φ is satisfiable if
and only if L(αβ) contains w =

∏
x xnx̄n.

(⇒) If φ is satisfiable, form a string u = u1 · · · un as follows. For i = 1, . . . n, the
ith clause of φ has at least one literal made true by the satisfying assignment. If
it’s x, then ui = x; if it’s ¬x, then ui = x̄. Clearly, u ∈ L(α). Next, form a string
v =

∏
x vx, where the vx are defined as follows. For each x, if x is true under

the assignment, then there are k ≥ 0 occurrences of x in u and zero occurrences
of x̄ in u. Let vx = xn−kx̄n. Likewise, if x is false under the assignment, then
there are k ≥ 0 occurrences of x̄ and zero occurrences of x, so let vx = xkx̄n−k.
Clearly, uv = w and v ∈ L(β).

(⇐) If w ∈ L(αβ), then there exist strings uv = w such that u ∈ L(α) and
v ∈ L(β). For each x, it must be the case that v contains either xn or x̄n, so
that u must either not contain x or not contain x̄. In the former case, let x
be false; in the latter case, let x be true. The result is a satisfying assignment
for φ. �

3.2 Conversion to Multiset Automata

Given a regular expression α, we can construct a finite multiset automaton cor-
responding to that regular expression. In addition to λ, μ(a), and ρ, we compute
Boolean matrices κ(a) with the same dimensions as μ(a). The interpretation of
these matrices is that whenever the automaton is in state q, then [κ(a)]qq = 1
iff the automaton has not read an a yet.

If α = a, then for all b �= a:

λ =
[
1 0

]
μ(a) =

[
0 1
0 0

]
κ(a) =

[
1 0
0 0

]
ρ =

[
0
1

]

μ(b) =
[
0 0
0 0

]
κ(b) =

[
1 0
0 1

]
.

150 J. DeBenedetto and D. Chiang

If α = kα1 (where k ∈ K), then for all a ∈ Σ:

μ(a) = μ1(a) λ = λ1 ρ = kρ1 κ(a) = κ(a).

If α = α1 ∪ α2, then for all a ∈ Σ:

μ(a) =
[
μ1(a) 0

0 μ2(a)

]
λ =

[
λ1 λ2

]
ρ =

[
ρ1
ρ2

]
κ(a) =

[
κ1(a) 0

0 κ2(a)

]

If α = α1α2, then for all a ∈ Σ:

μ(a) = μ1(a) ⊗ κ2(a) + I ⊗ μ2(a) λ = λ1 ⊗ λ2

κ(a) = κ1(a) ⊗ κ2(a) ρ = ρ1 ⊗ ρ2.

If α = α∗
1 and α1 is unary, then for all a ∈ Σ:

μ(a) = μ1(a) + ρλμ1(a) λ = λ1 ρ = ρ1 + λ�
1 κ(a) = κ1(a).

This construction can be explained intuitively as follows. The case α = a is
standard. The union operation is standard except that the use of two initial states
makes for a simpler formulation. The shuffle product is similar to a conventional
shuffle product except for the use of κ2. It builds an automaton whose states are
pairs of states of the automata for α1 and α2. The first term in the definition
of μ(a) feeds a to the first automaton and the second term to the second; but it
can be fed to the first only if the second has not already read an a, as ensured by
κ2(a). Finally, Kleene star adds a transition from final states to “second” states
(states that are reachable from the initial state by a single a-transition), while
also changing all initial states into final states.

Let A(α) denote the multiset automaton constructed from α. We can bound
the number of states of A(α) by 2|α| by induction on the structure of α. For
α = ε, |A(α)| = 1 ≤ 2|α|. For α = a, |A(α)| = 2 ≤ 2|α|. For α = α1

⋃
α2,

|A(α)| = |A(α1)|+|A(α2)| ≤ 2|α|. For α = α1α2, |A(α)| = |A(α1)||A(α2)| ≤ 2|α|.
For α = α∗

1, |A(α)| = |A(α1)| ≤ 2|α|.

3.3 Related Work

Droste and Gastin [4] show how to perform regular operations for the more
general case of trace automata (automata on monoids). Our use of κ resembles
their forward alphabet. Our construction does not utilize anything akin to their
backward alphabet, so that we allow outgoing edges from final states and we
allow initial states to be final states. Their construction, when converting α∗

1,
creates m = | alph(α1)| simultaneous copies of A(α1), that is, it creates an
automaton with |A(α1)|m states. Since our Kleene star is restricted to the unary
case, we can use the standard, much simpler, Kleene star construction [2].

Our construction is a modification of a construction from previous work [3].
Previously, the shuffle operation required alph(α1) and alph(α2) to be disjoint; to
ensure this required some rearranging of the regular expression before converting
to an automaton. Our construction, while sharing the same upper bound on
the number of states, operates directly on the regular expression without any
preprocessing.

Algorithms and Training for Weighted Multiset Automata 151

4 Learning Weights

Given a collection of multisets, the weights of the transition matrices and the
initial and final weights can be learned automatically from data. Given a multiset
w, we let μ(w) =

∏
i μ(wi). The probability of w over all possible multisets is

P (w) =
1
Z

λμ(w)ρ

Z =
∑

multisets w′
λμ(w′)ρ.

We must restrict w′ to multisets up to a given length bound, which can be set
based on the size of the largest multiset which is reasonable to occur in the
particular setting of use. Without this restriction, the infinite sum for Z will
diverge in many cases. For example, if α = a∗, then μ(a)n = μ(a) and thus
λμ(a)ρ = λμ(a)nρ. Since this value is non-zero, the sum diverges.

The goal is to minimize the negative log-likelihood given by

L = −
∑

w∈data

log P (w).

To this end, we envision and describe two unique scenarios for how the multiset
automata are formed.

4.1 Regular Expressions

In certain circumstances, we may start with a set of rules as weighted regular
expressions and wish to learn the weights from data. Conversion from weighted
regular expressions to multiset automata can be done automatically, see Sect. 3.2.
Now the multiset automata that result already have commuting transition matri-
ces. The weights from the weighted regular expression are the parameters to be
learned. These parameters can be learned through stochastic gradient descent
with the gradient computed through automatic differentiation, and the transi-
tion matrices will retain their commutativity by design.

4.2 Finite Automata

We can learn the weighted automaton entirely from data by starting with a fully
connected automaton on n nodes. All initial, transition, and final weights are
initialized randomly. Learning proceeds by gradient descent on the log-likelihood
with a penalty to encourage the transition matrices to commute. Thus our mod-
ified log-likelihood is

L′ = L + α
∑
a,b

(μ(a)μ(b) − μ(b)μ(a))

Over time we increase the penalty by increasing α. This method has the benefit
of allowing us to learn the entire structure of the automaton directly from data

152 J. DeBenedetto and D. Chiang

without having to form rules as regular expressions. Additionally, since we set
n at the start, the number of states can be kept small and computationally
feasible. The main drawback of this method is that the transition matrices, while
penalized for not commuting, may not exactly satisfy the commuting condition.

5 Computing Inside Weights

We can compute the total weight of a multiset incrementally by starting with λ
and multiplying by μ(a) for each a in the multiset. But in some situations, we
might need to compose the weights of two partial runs. That is, having computed
μ(u) and μ(v), we want to compute μ(uv) in the most efficient way. Sometimes
we also want to be able to compute μ(u) + μ(v) in the most efficient way.

For example, if we divide w into parts u and v to compute μ(u) and μ(v)
in parallel [9], afterwards we need to compose them to form μ(w). Or, we could
intersect a context-free grammar with a multiset automaton, and parsing with
the CKY algorithm would involve multiplying and adding these weight matri-
ces. The recognition algorithm for extended DAG automata [3] uses multiset
automata in this way as well.

Let M be a multiset automaton and μ(a) its transition matrices. Let us call
μ(w) the matrix of inside weights of w. If stored in the obvious way, it takes
O(d2) space. If w = uv and we know μ(u) and μ(v), we can compute μ(w) by
matrix multiplication in O(d3) time. Can we do better?

The set of all matrices μ(w) spans a module which we call Ins(M). We show
in this section that, under the right conditions, if M has d states, then Ins(M)
has a generating set of size d, so that we can represent μ(w) as a vector of d
coefficients. We begin with the special case of unary languages (Sect. 5.1), then
after a brief digression to more general languages (Sect. 5.2), we consider multiset
regular expressions converted to multiset automata (Sect. 5.3).

5.1 Unary Languages

Suppose that the automaton is unary, that is, over the alphabet Σ = {a}.
Throughout this section, we write μ for μ(a) for brevity.

Ring-Weighted. The inside weights of a string w = an are simply the matrix
μn, and the inside weights of a set of strings is a polynomial in μ. We can take
this polynomial to be our representation of inside weights, if we can limit the
degree of the polynomial.

The Cayley-Hamilton theorem (CHT) says that any matrix μ over a commu-
tative ring satisfies its own characteristic equation, det(λI−μ) = 0, by substitut-
ing μ for λ. The left-hand side of this equation is the characteristic polynomial ;
its highest-degree term is λd. So if we substitute μ into the characteristic equa-
tion and solve for μd, we have a way of rewriting any polynomial in μ of degree
d or more into a polynomial of degree less than d.

Algorithms and Training for Weighted Multiset Automata 153

So representing the inside weights as a polynomial in μ takes only O(d) space,
and addition takes O(d) time. Naive multiplication of polynomials takes O(d2)
time; fast Fourier transform can be used to speed this up to O(d log d) time,
although d would have to be quite large to make this practical.

Semiring-Weighted. Some very commonly used weights do not form rings: for
example, the Boolean semiring, used for unweighted automata, and the Viterbi
semiring, used to find the highest-weight path for a string.

There is a version of CHT for semirings due to Rutherford [10]. In a ring,
the characteristic equation can be expressed using the sums of determinants of
principal minors of order r. Denote the sum of positive terms (even permutations)
as pr and sum of negative terms (odd permutations) as −qr. Then Rutherford
expresses the characteristic equation applicable for both rings and semirings as

λn + q1λ
n−1 + p2λ

n−2 + q3λ
n−3 + . . . = p1λ

n−1 + q2λ
n−2 + p3λ

n−3 + . . .

For any K ⊆ N, let SK be the set of all permutations of K, and let sgn(σ) be
+1 for an even permutation and −1 for an odd permutation. The characteristic
polynomial is

∑
K⊆[d]

∑
π∈SK

sgn(π)�=(−1)|K|

(∏
i∈K

μi,π(i)

)
λd−|K| =

∑
K⊆[d]

∑
π∈SK

sgn(π)=(−1)|K|

(∏
i∈K

μi,π(i)

)
λd−|K|.

(1)

If we can ensure that the characteristic equation has just λd on the left-hand
side, then we have a compact representation for inside weights. The following
result characterizes the graphs for which this is true.

Theorem 2. Given a semiring-weighted directed graph G, the characteristic
equation of G’s adjacency matrix, given by the semiring version of CHT, has
only λd on its left-hand side if and only if G does not have two node-disjoint
cycles.

Proof. Let K be a node-induced subgraph of the directed graph G. A linear
subgraph of K is a subgraph of K that contains all nodes in K and each node
has indegree and outdegree 1 within the subgraph, that is, a collection of directed
cycles such that each node in K occurs in exactly one cycle. Every permutation
π of K corresponds to the linear subgraph of K containing edges (i, π(i)) for
each i ∈ K [6].

Note that sgn(π) = +1 iff the corresponding linear subgraph has an even
number of even-length cycles. Moreover, note that sgn(π) = (−1)|K| appearing
in (1) holds iff the corresponding linear subgraph has an even number of cycles
(of any length). So if the transition graph does not have two node-disjoint cycles,
the only nonzero term in (1) with sgn(π) = (−1)|K| is that for which K = ∅,
that is, λd. To prove the other direction, suppose that the graph does have two
node-disjoint cycles; then the linear subgraph containing just these two cycles
corresponds to a π that makes sgn(π) = (−1)|K|. �

154 J. DeBenedetto and D. Chiang

The coefficients in (1) look difficult to compute; however, the product inside
the parentheses is zero unless the permutation π corresponds to a cycle in the
transition graph of the automaton. Given that we are interested in computing
this product on linear subgraphs, we are only concerned with simple cycles.
Using an algorithm by Johnson [8], all simple cycles in a directed graph can be
found in O((n+ e)(c+1)) with n = number of nodes, e = number of edges, and
c = number of simple cycles.

Theorem 3. A digraph D with no two disjoint dicycles has at most 2|V |−1 sim-
ple dicycles.

Proof. First, a theorem from Thomassen [11] limits the number of cases we
must consider. In the first case, one vertex, vs, is contained in every cycle. If
we consider G \ {vs}, this is a directed acyclic graph (DAG) and thus there is a
partial order determined by reachability. This partial order determines the order
that vertices appear in any cycle in G, which limits the number of simple cycles
to the number of choices for picking vertices to join vs in each cycle. This is a
binary choice on |V | − 1 vertices, thus 2|V |−1 possible cycles (see Fig. 1).

In the second case, the graph contains a subgraph with 3 vertices with no
self loops, but all 6 other possible edges between them. If we let S be the set
of these three vertices, then G \ S has a partial order on it just as in the first
case. Additionally, for each s ∈ S, there exists a partial order on G \ (S \ {s}),
and these uniquely determine the order of vertices in any cycle in G. While the
bound could be lowered, this is bounded above by 2|V |−1.

All other cases can be combined with the second case by observing that they
all start with the same graph as the second case, then modified by subdivision
(breaking an edge in two by inserting a vertex in the middle) or splitting (break-
ing a vertex in two, one with all in edges, one with all out edges, then adding
one edge from the in vertex to the out vertex). These cases do not violate the
arguments of the second case, nor add any additional cycles. Intuitively, these
are graphs from case two with some edge(s) deleted. �

. . .

Fig. 1. A directed graph achieving the 2|V |−1 simple cycle bound.

5.2 Digression: Binary Languages and Beyond

If Σ has two symbols and the transition matrices are commuting matrices over
a field, then inside weights can still be represented in d dimensions [5]. We give
only a brief sketch here of the simpler, algebraically closed case [1].

Algorithms and Training for Weighted Multiset Automata 155

Given a matrix M with entries in an algebraically closed field, there exists a
matrix S such that S−1MS is in Jordan form. A matrix in Jordan form has the
following block structure. Each Ai is a square matrix and λi is an eigenvalue.

S−1MS =

⎡
⎢⎣

A1 0
. . .

0 Ap

⎤
⎥⎦ Ai =

⎡
⎢⎢⎢⎢⎣

λi 1 0

λi
. . .
. . . 1

0 λi

⎤
⎥⎥⎥⎥⎦

Let the number of rows in Ai be ki. Here let M = μ(a) be one of the commuting
transition matrices. Then the following matrices span the algebra generated by
the commuting transition matrices μ(a) and μ(b):

1, μ(a), . . . , μ(a)k1−1,

μ(b), μ(a)μ(b), . . . , μ(a)k2−1μ(b),
...

μ(b)p−1, μ(a)μ(b)p−1, . . . , μ(a)kp−1μ(b)p−1.

The number of matrices in this span is equal to the dimension of μ(a) and μ(b),
which in our case is d. Further, a basis for the algebra is contained within this
span. Therefore the inside weights can be represented in d dimensions.

On the other hand, if the weights come from a ring, the above fact does
not hold in general [7]. Going beyond binary languages, if Σ has four or more
symbols, then inside weights might need as many as �d2/4�+1 dimensions, which
is not much of an improvement [5]. The case of three symbols remains open [7]
(Fig. 2).

y

x

b

a

Fig. 2. Example commutative automaton whose inside weights require storing more
than d values.

5.3 Regular Expressions

Based on the above results, we might not be optimistic about efficiently rep-
resenting inside weights for languages other than unary languages. But in this
subsection, we show that for multiset automata converted from multiset regular
expressions, we can still represent inside weights using only d coefficients. We
show this inductively on the structure of the regular expression.

156 J. DeBenedetto and D. Chiang

First, we need some properties of the matrices κ(a).

Lemma 1. If μ(a) and κ(a) are constructed from a multiset regular expression,
then

1. κ(a)κ(a) = κ(a).
2. κ(a)κ(b) = κ(b)κ(a).
3. μ(a)κ(a) = 0.
4. μ(a)κ(b) = κ(b)μ(a) if a �= b.

To show that Ins(M) can be expressed in d dimensions, we will need to prove
an additional property about the structure of Ins(M). Note that if Ins(M) is not
a free-module, then dim Ins(M) is the size of the generating set we construct.

Theorem 4. If M is a ring-weighted multiset automaton with d states converted
from a regular expression, then

1. dim Ins(M) = d.
2. Ins(M) can be decomposed into a direct sum

Ins(M) ∼=
⊕
Δ⊆Σ

InsΔ(M)

where μ(w) ∈ InsΔ(M) iff alph(w) = Δ.

Proof. By induction on the structure of the regular expression α.
If α is unary: the Cayley-Hamilton theorem gives a generating set

{I, μ(a), . . . , μ(a)d−1}, which has size d. Moreover, let Ins∅(M) be the span of
{I} and Ins{a}(M) be the span of the μ(a)i (i > 0). The automaton M , by
construction, has a state (the initial state) with no incoming transitions. That
is, its transition matrix has a zero column, which means that its characteristic
polynomial has no I term. Therefore, if w �= ε, μ(w) ∈ Ins{a}(M).

If α = kα1, then Ins(M) = Ins(M1), so both properties hold of Ins(M) if
they hold of Ins(M1).

If α = α1 ∪ α2, the inside weights of M1 ∪ M2 for w are

μ(w) =
∏
a∈w

μ(a) =
∏
a

[
μ1(a) 0

0 μ2(a)

]
=

[∏
a μ1(a) 0

0
∏

a μ2(a)

]
=

[
μ1(w) 0

0 μ2(w)

]
.

Thus, Ins(M) ∼= Ins(M1) ⊕ Ins(M2), and dim Ins(M) = dim Ins(M1) +
dim Ins(M2). Moreover, InsΔ(M) ∼= InsΔ(M1) ⊕ InsΔ(M2).

If α = α1α2, the inside weights of M1

∃

M2 for w are

μ(w) =
∏
a∈w

μ(a) =
∏
a∈w

(μ1(a) ⊗ κ2(a) + I ⊗ μ2(a))

=
∑

uv=w

(∏
a∈u

μ1(a) ⊗
∏
a∈u

κ2(a)
∏
a∈v

μ2(a)

)

=
∑

uv=w

μ1(u) ⊗ κ2(u)μ2(v)

Algorithms and Training for Weighted Multiset Automata 157

where we have used Lemma 1 and properties of the Kronecker product. Let {ei}
and {fi} be a generating set for Ins(M1) and Ins(M2), respectively. Then the
above can be written as a linear combination of terms of the form ei ⊗ κ2(u)fj .
We take these as a generating set for Ins(M). Although it may seem that there
are too many generators, note that if both μ1(u) and μ1(u′) depend on ei,
they belong to the same submodule and therefore use the same symbols, so
κ2(u) = κ2(u′) (Lemma 1.1). Therefore, the ei ⊗ κ2(u)fj form a generating set
of size dim Ins(M1) · dim Ins(M2).

Moreover, let InsΔ(M) be the submodule spanned by all the μ1(u) ⊗
κ2(u)μ2(v) such that alph(uv) = Δ. �

6 Conclusion

We have examined weighted multiset automata, showing how to construct them
from weighted regular expressions, how to learn weights automatically from data,
and how, in certain cases, inside weights can be computed more efficiently in
terms of both time and space complexity. We leave implementation and appli-
cation of these methods for future work.

Acknowledgements. We would like to thank the anonymous reviewers for their very
detailed and helpful comments.

This research is based upon work supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via
AFRL Contract #FA8650-17-C-9116. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

References

1. Barŕıa, J., Halmos, P.R.: Vector bases for two commuting matrices. Linear and
Multilinear Algebra 27, 147–157 (1990)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48, 117–126 (1986)

3. Chiang, D., Drewes, F., Lopez, A., Satta, G.: Weighted DAG automata for semantic
graphs. Comput. Linguist. 44, 119–186 (2018)

4. Droste, M., Gastin, P.: The Kleene-Schützenberger theorem for formal power series
in partially commuting variables. Inf. Comput. 153, 47–80 (1999)

5. Gerstenhaber, M.: On dominance and varieties of commuting matrices. Ann. Math.
73(2), 324–348 (1961)

6. Harary, F.: The determinant of the adjacency matrix of a graph. SIAM Rev. 4(3),
202–210 (1962)

7. Holbrook, J., O’Meara, K.C.: Some thoughts on Gerstenhaber’s theorem. Linear
Algebra Appl. 466, 267–295 (2015)

8. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

158 J. DeBenedetto and D. Chiang

9. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM (JACM) 27(4),
831–838 (1980)

10. Rutherford, D.E.: The Cayley-Hamilton theorem for semi-rings. Proc. Roy. Soc.
Edinb. 66(4), 211–215 (1964)

11. Thomassen, C.: On digraphs with no two disjoint directed cycles. Combinatorica
7(1), 145–150 (1987)

Solving Parity Games:
Explicit vs Symbolic

Antonio Di Stasio1(B), Aniello Murano1, and Moshe Y. Vardi2

1 Università di Napoli “Federico II”, Naples, Italy
distasio.antonio@gmail.com

2 Rice University, Houston, USA

Abstract. In this paper we provide a broad investigation of the sym-
bolic approach for solving Parity Games. Specifically, we implement in
a fresh tool, called SymPGSolver, four symbolic algorithms to solve Par-
ity Games and compare their performances to the corresponding explicit
versions for different classes of games. By means of benchmarks, we show
that for random games, even for constrained random games, explicit algo-
rithms actually perform better than symbolic algorithms. The situation
changes, however, for structured games, where symbolic algorithms seem
to have the advantage. This suggests that when evaluating algorithms
for parity-game solving, it would be useful to have real benchmarks and
not only random benchmarks, as the common practice has been.

1 Introduction

Parity games (PGs) [12,24] are abstract games with a key role in automata the-
ory and formal verification [7,9,18,19,23]. PGs are two-player turn-based games
played on directed graphs whose nodes are labeled with priorities. Players take
turns moving a token along the graph’s edges, starting from an initial node. A
play induces an infinite path and Player 0 wins the play if the smallest priority
visited infinitely often is even. Solving a PG amounts checking whether Player 0
can force such a winning play. Several algorithms to solve PGs have been pro-
posed aiming to tighten the asymptotic complexity of the problem, as well as to
work well in practice. Well known are Recursive (RE) [24], small-progress mea-
sures (SPM) [14], and APT [10,18], the latter originated to deal with the emptiness
of parity automata. Notably, all these algorithms are explicit, that is, they are for-
mulated in terms of the underlying game graphs. Due to the exponential growth
of finite-state systems, and, consequently, of the corresponding game graphs, the
state-explosion problem limits the scalability of these algorithms in practice.

Symbolic algorithms are an efficient way to deal with extremely large graphs.
They avoid explicit access to graphs by using a set of predefined operations that
manipulate Binary Decision Diagrams (BDDs) [3] representing these graphs.

Work supported by NSF grants CCF-1319459 and IIS-1527668, NSF Expeditions
in Computing project “ExCAPE: Expeditions in Computer Augmented Program
Engineering” and GNCS 2018: Logica, Automi e Giochi per Sistemi Auto-adattivi.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 159–172, 2018.
https://doi.org/10.1007/978-3-319-94812-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_14&domain=pdf

160 A. Di Stasio et al.

This enables handling large graphs succinctly, and, in general, it makes sym-
bolic algorithms scale better than explicit ones. For example, in hardware model
checking symbolic algorithms enable going from millions of states to 1020 states
and more [4,20]. In contrast, in the context of PG solvers, symbolic algorithms
have been only marginally explored. In this direction we just mention a symbolic
implementation of RE [2,16], which, however, has been done for different pur-
poses and no benchmark comparison with the explicit version has been carried
out. Other works close to this topic and worth mentioning are [5,8], where a
symbolic version of SPM has been theoretically studied but not implemented.

In this work we provide the first broad investigation of the symbolic app-
roach for solving PGs. We implement four symbolic algorithms and compare
their performances to the corresponding explicit versions for different classes of
PGs. Specifically, we implement in a new tool, called SymPGSolver, the sym-
bolic versions of RE, APT, and two variants of SPM. The tool also allows to gen-
erate random games, as well as compare the performance of different symbolic
algorithms.

The main result we obtain from our comparisons is that for random games,
and even for constrained random games (see Sect. 4), explicit algorithms actually
perform better than symbolic ones, most likely because BDDs do not offer any
compression for random sets. The situation changes, however, for structured
games, where symbolic algorithms sometimes outperform explicit algorithms.
This is similar to what has been observed in the context of model checking [11].
We take this as an important development because it suggests a methodological
weakness in this field of investigation, due to the excessive reliance on random
benchmarks. We believe that, in evaluating algorithms for PG solving, it would
be useful to have real benchmarks and not only random benchmarks, as the
common practice has been. This would lead to a deeper understanding of the
relative merits of PG solving algorithms, both explicit and symbolic.

2 Explicit and Symbolic Parity Games

Explicit Parity Games. A Parity Game (PG, for short) is a tuple G � 〈P0,
P1,Mv , p〉, where P0 and P1 are two finite disjoint sets of nodes for Player 0 and
Player 1, respectively, with P = P0 ∪ P1, Mv ⊆ P × P is the binary relation
of moves, and p : P → N is the priority function. By Mv(q) � {q′ ∈ P :
(q, q′) ∈ Mv} we denote the set of nodes to which the token can be moved,
starting from q.

A play over G is an infinite sequence π = q1q2 . . . ∈ Pω of nodes that agree
with Mv , i.e., (qi, qi+1) ∈ Mv , for each i ∈ N. By p(π) = p(q1)p(q2) . . . ∈ N

ω we
denote the priority sequence associated to π, and by Inf(π) and Inf(p(π)), the
sets of nodes and priorities that occur infinitely often in π and p(π), respectively.
A play π is winning for Player 0 if min(Inf(p(π))) is even. Player 0 (Player 1)
strategy is a function str0 : P∗P0 → P (str1 : P∗P1 → P) that agrees with Mv .
Given a node q, play(q, str0, str1) is the unique play starting in q that agrees
with both str0 and str1. Player 0 wins the game G from q if a strategy str0

Solving Parity Games: Explicit vs Symbolic 161

exists such that, for all strategies str1 it holds that play(q, str0, str1) is winning
for Player 0. Then q is declared winning for Player 0. By Win0(G) we denote
the set of winning nodes in G for Player 0. Parity games enjoy determinacy, i.e.,
for every node q, either q ∈ Win0(G) or q ∈ Win1(G) [12]. Also, if Player 0 has
a winning strategy from a node q, then she has a memoryless one from q [24].
A strategy str0 is memoryless if, for all prefixes of plays ρ1, ρ2, it holds that
str0(ρ1) = str0(ρ2) iff last nodes of ρ1 and ρ2 coincide. Then, one can use str0
defined as str0 : P0 → P.

Symbolic Parity Games. We start with some notation. In the sequel we use
symbols xi for propositions (variables), li for literals, i.e., positive or negative
variables, f for a generic Boolean formula, ||f || for the set of interpretations that
makes the formula f true, and λ(f) ⊆ V for the set of variables in f .

Definition 1. Given a PG G � 〈P0,P1,Mv , p〉, the corresponding symbolic PG
(SPG, for short) is the tuple F = (X ,XM , fP0 , fP1 , fMv , ηp) defined as follows:

– X = {x1, . . . , xn}, with n = �log2(|P|)	, is the set of propositions used
to encode nodes in G, i.e., to each v ∈ P we associate a Boolean formula
fv = lv,1∧...∧lv,n where lv,i is either xi or xi. We also associate to v the inter-
pretation Xv ∈ 2X , i.e., the subset of variables appearing positively in fv.

– XM = {x′
1, ..., x

′
n}, with n = �log2(|P|)	, is the set of propositions used to

encode the successor nodes such that X ∩ XM = ∅. We extend to XM the
definitions of fv and Xv as used in the previous item.

– fPi
, for i ∈ {0, 1}, is a Boolean formula such that ||fPi

|| = Pi.
– fMv is a Boolean formula over the propositions X ∪ XM such that ||fMv || =

Mv.
– ηp is the symbolic representation of the priority function p; formally, it is a

function ηp : 2X → N associating to each interpretation Xv a natural number.

Example. Consider the PG depicted in Fig. 1. It has P0 = {q0, q2} (circles)
and P1 = {q1} (squares); Mv is given by arrows; and p(qi) = i, for 1 ≤ i ≤ 3.

Fig. 1. A parity game

The correlating SPG F = (X ,XM , fP0 , fP1 , fMv , ηp)
is as follows: X = {x1, x2} and XM = {y1, y2} are
the set of propositions; fP0 = (x1∧x2)∨(x1∧x2) and
fP1 = (x1 ∧ x2) are Boolean formulas representing
P0 and P1, respectively; fMv = (x1 ∧ y1 ∧x2 ∧ y2)∨
(x1 ∧ y1 ∧ x2 ∧ y2) ∨ (x1 ∧ y1 ∧ x2 ∧ y2) ∨ (x1 ∧ y1 ∧
x2 ∧ y2) ∨ (x1 ∧ y1 ∧ x2 ∧ y2) ∨ (x1 ∧ y1 ∧ x2 ∧ y2)
is the Boolean formula for Mv ; finally, the function
ηp, given by ηp(0, i) = i, for 1 ≤ i ≤ 3. represents
the priority function p.

To solve an SPG we compute the Boolean formulas fWin0 over X that is
satisfied by those interpretations that correspond to winning nodes for Player 0.

For technical reasons, we also need the definition of symbolic sub-games.

162 A. Di Stasio et al.

Definition 2. Let G � 〈P0,P1,Mv , p〉 be a PG and U ⊆ P. By G \ U = (P0 \
U,P1 \ U,Mv \ (U × P ∪ P × U), p|P\U) we denote the PG restricted to nodes
P \ U .

Let fU be a Boolean formula such that ||fU || = U and F =
(X ,XM , fP0 , fP1 , fMv , ηp) be the corresponding SPG of the PG G. By FP\U =
(X ,XM , f ′

P0
, f ′

P1
, f ′

Mv , η′
p) we denote the SPG of G \ U , where:

– f ′
Pi

= fPi
∧ ¬fU , for i ∈ {0, 1}, is the Boolean formula for nodes v ∈ Pi \ U ;

– fMv ′ = fMv ∧ ¬(fU ∨ f ′
U), where ||f ′

U || = U and λ(f ′
U) = XM , is the Boolean

formula representing moves restricted to Mv \ (U × P ∪ P × U);
– η′

p = 2X → N is the symbolic representation of p|P\U that associates to the
interpretations Xv satisfying the Boolean formula fP∧¬fU a natural number.

3 Solving Parity Games: Explicit vs Symbolic Algorithms

3.1 Explicit Algorithms

Small Progress Measures Algorithm (SPM) [13]. The core idea of SPM is
a ranking function that assigns to each node a vector of counters (namely a
progress measure) collecting the number n of times Player 1 can force a play
to visit an odd priority until a lower priority is seen. If this value is sufficiently
large, then the node is declared winning for Player 1. SPM computes the progress
measure by updating the values of a node according to those associated to its
successors, i.e., by computing a least fixed-point for all nodes with respect to
the ranking function.

We fix some notation. Let G be a PG with maximal priority c and d ∈ N
c be a

c-tuple of non-negative integers. By < we denote the usual lexicographic ordering
over Nc. For each odd number i, by ni we denote the number of nodes in G with
priority i. For i even, we set ni = 0. The progress measure domain is defined as
M�

G = MG ∪ {�} with MG = (M0 × . . . × Mc−1) and Mi = [ni]. The element
� is the biggest value such that m < � for all m ∈ MG. For d = (d0, . . . , dc−1)
and l < c, we set 〈d〉l = (d0, . . . , dl, 0, . . . , 0), i.e., all di>l in d are set to 0. By
inc(d) we denote the smallest tuple d′ ∈ M�

G such that d < d′. This notion easily
extends to tuples in N

l by defining incl(d) with l > 0 to be the smallest tuple
d′ ∈ M�

G such that d <l d′ iff 〈d〉l < 〈d′〉l. In particular, for d = � we have
incl(d) = d. Otherwise, incl(d) = 〈d〉l if l is even and min{y ∈ M�

G |y >l d} if l is
odd. To conclude we introduce a ranking function � : P → M�

G that associates to
each node either a c-tuple in MG or the value �, and a function Lift that defines
the increment of a node v based on its priority and the values of its neighbors.
The formal definition of Lift follows.

Lift(�, v)(u) =

⎧
⎪⎨

⎪⎩

incp(v)(min{�(w)|(v, w) ∈ Mv}), if v ∈ P0

incp(v)(max{�(w)|(v, w) ∈ Mv}), if v ∈ P1

�(u), otherwise

Solving Parity Games: Explicit vs Symbolic 163

Lift is monotone and the progress measures over v is the least fixed point
of Lift(·, v). The solution algorithm starts by setting 0 to every node. Then,
it applies the lift as long as Lift(�, v)(u) > �(v) for some node v. Next lemma
relates the solution of a PG G with the least fixed point calculation of Lift.

Lemma 1 ([13]). If � is a progress measures function then the set of nodes v
with �(v) < � is the set of winning nodes for Player 0.

The APT Algorithm (APT) [10]. APT was first introduced by Kupferman and
Vardi in [18] to solve parity games via emptiness checking of parity automata. It
makes use of two special sets of nodes, V and A, called Visiting and Avoiding,
respectively. Intuitively, a node is visiting for a player at the stage in which it
is clear that, by reaching that node, he can surely induce a winning play. The
reasoning is symmetric for the avoiding set. The algorithm, in turns, tries to
partition all nodes of the game into these two sets. Some formal details follow.

Given a PG G, an Extended Parity Game, (EPG, for short) is a tuple 〈P0,P1,
V,A,Mv , p〉 where P0, P1, P = P0 ∪ P1, Mv , and p are as in PG. Moreover, the
sets V,A ⊆ P are two disjoint sets of Visiting and Avoiding nodes, respectively.
For EPGs we make use of the same notion of play as given for PG. A play π in
P·(P\(V∪A))∗ ·V ·Pω is winning for Player 0, while a play π in P·(P\(V∪A))∗ ·
A ·Pω is winning for Player 1. A play π that never hits either V or A is declared
winning for Player 0 iff it satisfies the parity condition, i.e., min(Inf(p(π))) is
even, otherwise it is winning for Player 1.

To solve an EPG, APT makes use of two functions: forcei(X) and
Wini(α,V,A). For X ⊆ P, forcei(X) = {q ∈ Pi : X ∩ Mv(q) �= ∅} ∪ {q ∈
P1−i : X ⊆ Mv(q)} is the set of nodes from which Player i can force, in
one step, a move to X. The function Wini(α,V,A) denotes the nodes from
which Player i has a strategy that avoids A, and either forces a visit to V
or satisfies the parity condition α. Note that in APT α is given as a finite
sequence α = F0 · . . . · Fk of sets, where Fj = p−1(j), i.e., the set of nodes
with priority j. Formally, Wini(α,V,A) is defined as follows. If α = ε, then
Wini(α,V,A) = forcei(V). Otherwise, if α = F · α′, for some set F, then
Wini(α,V,A) = P \ μY(Win1−i(α′,A ∪ (F \ Y),V ∪ (F ∩ Y))), where μ is the
least fixed-point operator.

Recursive Zielonka Algorithm (RE) [24]. Introduced by Zielonka, RE makes
use of a divide and conquer technique. The core subroutine of RE is the attractor.
Intuitively, given a set of nodes U the attractor of U for a Player i represents
those nodes that i can force the play toward. At each step, the algorithm removes
all nodes with the highest priority p, together with all nodes Player i = p mod 2
can attract to them, and recursively computes the winning sets (W0,W1) for
Player 0 and Player 1, respectively, on the remaining subgame. If Player i wins
the subgame, then he also wins the whole starting game. Otherwise if Player i
does not win the subgame, i.e., W1−i is non empty, the algorithm computes the
attractor for Player 1 − i of W1−i and recursively solves the subgame.

164 A. Di Stasio et al.

3.2 Symbolic Algorithms

We now describe symbolic versions of the explicit algorithms listed in Sect. 3.1.

SPG Implementation. An SPG can be implemented using Binary Decision
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs) [1] to represent and
manipulate the associated Boolean functions introduced along with its definition.
ADDs were introduced to extend BDDs by allowing values from any arbitrary
finite domain to be associated with the terminal nodes of the diagram, i.e., an
ADD can be seen as a BDD whose leaves may take on values belonging to a set
of constants different from 0 and 1. Given an SPG F = (X1,X2, fP0 , fP1 , fMv , ηp)
with maximal priority c, we use BDDs to represent the Boolean formulas fP0 ,
fP1 and fMv , and an ADD for the function ηp. Moreover, we decompose the
function ηp into a sequence of BDDs B = 〈B0, . . . , Bc−1〉 where each Bi encodes
the nodes with priority i, to easily manage the selection of a set of nodes with
a specific priority. In the sequel, by BDD (resp., ADD) f, we denote the BDD
(resp., ADD) representing the function f.
Symbolic SPM (SSP) [5]. This is the first symbolic implementation of SPM we
are aware of, and which we describe with some minor corrections compared to
the one in [5]. Lift is encoded by using ADDs and the algorithm computes the
progress measure as the least fixed point fG of Lift(f, v) on a ranking function
here given by the function f : P → D, with D = MG ∪{∞,−∞}. The algorithm
takes as input an SPG F and returns an ADD representing the least fixed point
fG such that the set of winning nodes for Player 0 is {v|fG(v) < ∞}, and the
set of winning nodes for Player 1 is {v|fG(v) = ∞}. See Algorithm 1.

Algorithm 1. Symbolic Small Progress Measures
1: procedure PARITY (F)
2: f =→ (fP,−∞);
3: repeat
4: fold = f ; f = false;
5: for j = 0 to c − 1 do
6: f = f OR MAXeo(fold, j) OR MINeo(fold, j);
7: until f = fold

The algorithm calls the procedure MAXeo (resp., MINeo), which given an ADD
f : P → D, the BDD fMv , and 1 ≤ j ≤ k, returns an ADD that assigns to every
node v ∈ P1 (resp., v ∈ P0,), with p(v) = j, the value incj(max{f(v′)|(v, v′) ∈
Mv}) (resp., incj(min{f(v′)|(v, v′) ∈ Mv})).

MINeo (resp., MAXeo) aims at constructing an ADD that represents the
ranking function fmin(v) = min{f(v′)|(v, v′) ∈ Mv} (resp., fmax(v) =
max{f(v′)|(v, v′) ∈ Mv}). To do this, given an ADD f : P → D and the BDD
fMv , it is generated an ADD fsuc : (P × P) → D such that fsuc(v, v′) = d if
(v, v′) ∈ Mv and f(v′) = d. Then, the ADD fsuc is given in input to the pro-
cedure MIN, described in Algorithm 2, that constructs the ADD for fmin. The

Solving Parity Games: Explicit vs Symbolic 165

procedure MAX is defined similarly. Let n be an ADD node, we refer to the left
and right successors of n as n.l and n.r, respectively, and refer to the variable
that n represents as n.v.

Algorithm 2. Procedure MIN

1: procedure MIN(ADD n)
2: if n is a terminal node then
3: return n
4: if n.v is in X then
5: return (n.v AND MIN(n.r)) OR (NOT n.v AND MIN(n.l))

6: if n.v is in X ′ then
7: return MERGE(MIN(n.r), MIN(n.l))

The procedure MIN calls the procedure MERGE, reported in Algorithm3, that
gets in input the pointer to the roots n1 and n2 of two ADDs representing the
functions f1 and f2, both from some set U ⊆ P to D, and merges them to an
ADD in which every u ∈ U is mapped into min(f1(u), f2(u)).

Algorithm 3. Procedure MERGE

1: procedure MERGE(ADD n1, ADD n2)
2: if n1 and n2 are a terminal nodes then
3: return min(n1, n2)

4: if o(n1.v) < o(n2.v) then
5: return (n1.v AND MERGE(n1.r, n2)) OR (NOT n1.v AND MERGE(n1.l, n2))

6: if o(n1.v) > o(n2.v) then
7: return (n2.v AND MERGE(n2.r, n1)) OR (NOT n2.v AND MERGE(n2.l, n1))

8: return (n1.v AND MERGE(n1.r, n2.r)) OR (NOT n1.v AND MERGE(n1.l, n2.l))

Set-Based Symbolic SPM (SSP2) [8]. This is a symbolic implementation of SPM
that has been introduced very recently. It allows to use only basic set operations
like ∪, ∩, \, ⊆, and one-step predecessor operations for its description. Unlike the
implementation described previously, the ranking function is implicitly encoded
by using sets of nodes. This allows representing the Lift operator just by BDDs.

To encode the ranking function the algorithm defines for each rank r ∈ M�
G

the set Sr containing the nodes with rank r or higher. Formally, given the ranking
function � : P → M�

G , the corresponding sets are defined as Sr = {v|�(v) ≥ r}.
Conversely, given the family of sets {Sr}r, the corresponding ranking function,
say �{Sr}r

, is given by �{Sr}r
(v) = max{r ∈ M�

G |v ∈ Sr}. This formulation
encodes the ranking function with sets but uses exponential in c many sets.

Space is reduced to a linear number of sets by encoding the value of each
coordinate of the rank r, separately. In detail, for each odd priority i, the algo-
rithm defines the sets Ci

0, . . . , C
i
ni

. Each set Ci
x with x ∈ {0, . . . , ni} contains the

166 A. Di Stasio et al.

nodes that have x as i-th coordinate of their rank. Therefore, the algorithm has
to construct the set Sr whenever it needs it.

Let Cprei(X) = {q ∈ Pi : X ∩ Mv(q) �= ∅} ∪ {q ∈ P1−i : X ⊆ Mv(q)} the
one-step controllable predecessor operator. The algorithm starts initializing the
sets Sr for r > 0 to empty, and S0 with the set of all nodes P. The rank r initially
is set to the second lowest rank inc((0, . . . , 0)). Then, at each iteration the set
Sr is updated for the current value of r by using the Lift encoded by the Cprei

operator. After the update of Sr, it is checked if S′
r ⊇ Sr for all r′ < r, i.e., if

the property of the anti-monotonicity is preserved. Anti-monotonicity together
with the definition of the sets S′

r allows to decide whether the rank of a node v
can be increased to r by only considering one set S′

r. If the anti-monotonicity is
preserved, then for r < � the value of r is increased to the next highest rank
and for r = � the algorithm terminates. Otherwise the nodes newly added to
Sr are also added to all sets with r′ < r that do not already contain them; the
variable r is then updated to the lowest r′ for which a new node is added to S′

r

in this iteration. Due to lack of space, we omit the algorithm (see [8] for more
details).
Symbolic Versions of RE (SRE) and APT (SAPT). RE and APT can be easily
rephrased symbolically by using BDDs to represent the operations they make use
of set basic operations like union, intersection, complement, and inclusion; the
controllable predecessor operators used to implement the function forcei in APT,
and the attractor in RE; the symbolic construction of a subgame used in RE and
implemented following the definition of symbolic subgame reported previously.

4 Experimental Evaluations: Methodology and Results

We now analyze the performance of the introduced symbolic approach to solve
PGs and compare with the explicit one. We have implemented the symbolic algo-
rithms described in Sect. 3.2 in a fresh tool, called SymPGSolver (Symbolic Par-
ity Games Solver). SymPGSolver1 is implemented in C++ and uses the CUDD2

package as the underlying BDD and ADD library. The platform provides a col-
lection of tools to randomly generate and solve SPGs, as well as compare the
performance of different symbolic algorithms.

We have also compared them with Oink, a platform recently developed in
C++ by van Dijk [22], which collects the large majority of explicit PGs algo-
rithms introduced in the literature [6,14,15,24].

4.1 Experimental Results

In this section we report on some experimental results on evaluating the perfor-
mance for the explicit algorithms RE, APT, and SPM, as well as their corresponding

1 The tool is available for download from https://github.com/antoniodistasio/
sympgsolver.

2 http://vlsi.colorado.edu/∼fabio/CUDD/.

https://github.com/antoniodistasio/sympgsolver
https://github.com/antoniodistasio/sympgsolver
http://vlsi.colorado.edu/~fabio/CUDD/

Solving Parity Games: Explicit vs Symbolic 167

symbolic versions SRE, SAPT, SSP and SSP2. All tests have been run on an Intel
Core i7 @2.40 GHz, with 16 GB of RAM running macOS 10.12. We have used
different classes of parity games: random games with linear structures, ladder
games, clique games as well as games corresponding to practical model checking
problems. Random games are generated by SymPGSolver, while for ladder and
clique games we use Oink. We have taken 100 different instances for each class of
games and used the average time execution. In all tests, we use abortT to denote
an aborted execution due to time-out (greater than 200 s). On the class of lad-
der games and in model checking problems the benchmarks have been executed
using the variable ordering given by the heuristic WINDOW2 module available
in the CUDD package.

Random Games with Linear Structure. Tabakov and Vardi showed that in
the context of automata-theoretic problems, explicit algorithms generally dom-
inate symbolic algorithms, as BDDs do not offer any compression for random
sets [21]. We found that the same holds for parity-game solving (we omit details
due to lack of space). In [21] it was observed that, in case of random games with
linear structures, the symbolic algorithms are the best performing ones. Hence,
we have investigated the same class here as well, but with a different outcome.

A random game with linear structure is built by restricting the transition
relation as follows: a node vi can make a transition to node vj , where 0 ≤ i, j ≤
|P| − 1, if and only if |i − j| ≤ d, where d is named as the distance parameter.

Table 1. Runtime executions of the symbolic algorithms

n 2 Pr 3 Pr 5 Pr

SRE SAPT SSP SSP2 SRE SAPT SSP SSP2 SRE SAPT SSP SSP2

1,000 0.04 0.03 29.89 0,95 0.05 0.10 18.9 1,44 0.05 0.45 15.75 abortT

2,000 0.14 0.12 128.06 2,87 0.13 0.18 79.22 26,24 0.12 1.34 69.6 abortT

3,000 0.25 0.23 abortT 10,15 0.21 0.41 193.06 75,49 0.21 2.03 135.04 abortT

4,000 0.33 0.30 abortT 32,42 0.28 0.60 abortT 146,58 0.3 3.01 abortT abortT

7,000 0.79 0.73 abortT abortT 0.65 1.44 abortT abortT 0.59 7.20 abortT abortT

10,000 1.16 1.12 abortT abortT 0.93 2.19 abortT abortT 1.08 11.72 abortT abortT

20,000 2.78 3.10 abortT abortT 2.33 6.34 abortT abortT 3.69 43.87 abortT abortT

100,000 19.21 24.4 abortT abortT 24.38 65.11 abortT abortT 24.89 abortT abortT abortT

Table 1 collects the running time of the symbolic algorithms on random games
with linear structures having priorities 2, 3, and 5, and distance d = 25. The
results show that SAPT performs better than the others in solving games with
n ≤ 10, 000 nodes and 2 priorities, while SRE is the best performing in all other
cases. Also, they show that SSP and SSP2 have the worst performances in all
instances, with SSP overcoming SSP2 of more than 200 s on games with 3, 000
nodes. In Table 2 we collect the execution time of the explicit algorithms on the

168 A. Di Stasio et al.

same set of games. The results highlight that the explicit algorithms are faster
than the symbolic ones in all instances.

Table 2. Runtime executions of the explicit algorithms

n 2 Pr 3 Pr 5 Pr

RE APT SPM RE APT SPM RE APT SPM

1,000 0.0008 0.0006 0.0043 0.0008 0.0007 0.0049 0.0008 0.0008 0.0053

2,000 0.0015 0.0012 0.0084 0.0017 0.0016 0.0096 0.0019 0.0029 0.011

3,000 0.0023 0.0017 0.012 0.0025 0.0022 0.014 0.0029 0.0073 0.020

4,000 0.0031 0.0022 0.016 0.0033 0.0028 0.019 0.0035 0.0066 0.027

7,000 0.0051 0.0039 0.025 0.0053 0.0048 0.032 0.0056 0.012 0.039

10,000 0.0065 0.0057 0.035 0.0067 0.0076 0.046 0.0069 0.018 0.051

20,000 0.013 0.011 0.078 0.014 0.021 8.32 0.17 0.019 107.2

100,000 0.094 0.081 0.44 0.099 0.10 1.47 0.10 0.59 80.37

Ladder Games. In a ladder game, every node in Pi has priority i. In addition,
each node v ∈ P has two successors: one in P0 and one in P1, which form a node
pair. Every pair is connected to the next pair forming a ladder of pairs. Finally,
the last pair is connected to the top. The parameter m specifies the number of
node pairs. Formally, a ladder game of index m is G = (P0,P1,Mv , p) where
P0 = {0, 2, . . . , 2m − 2},P1 = {1, 3, . . . , 2m − 1},Mv = {(v, w)|w ≡2m v + i for
i ∈ {1, 2}}, and p(v) = v mod 2. Tables 3 and 4 report the benchmarks.

Benchmarks indicate that SRE and SAPT outperform their explicit versions,
showing an excellent runtime execution even on fairly large instances. Indeed,
while RE needs 6.31 s for games with index m = 10M , SRE takes just 0.00015 s.
Tests also show that SSP and SSP2 have yet the worst performance (Table 3).

Clique Games. Clique games are fully connected games without self-loops,
where P0 (resp., P1) contains the nodes with an even index (resp., odd) and

Table 3. Runtime executions of the
symbolic algorithms on ladder games.

m SRE SAPT SSP SSP2

1,000 0 0.00013 24.86 0.47

10,000 0.00009 0.00016 abortT 41.22

100,000 0.0001 0.00018 abortT abortT

1,000,000 0.00012 0.00022 abortT abortT

10,000,000 0.00015 0.00025 abortT abortT

Table 4. Runtime executions of the
explicit algorithms on ladder games.

m RE APT SPM

1,000 0.0007 0.0006 0.002

10,000 0.006 0.005 0.0017

100,000 0.057 0.054 0.18

1,000,000 0.59 0.56 1.84

10,000,000 6.31 5.02 20.83

Solving Parity Games: Explicit vs Symbolic 169

each node v ∈ P has as priority the index of v. An important feature of the
clique games is the high number of cycles, which may pose difficulties for certain
algorithms. Formally, a clique game of index n is G = (P0,P1,Mv , p) where
P0 = {0, 2, . . . , n−2},P1 = {1, 3, . . . , n−1},Mv = {(v, w)|v �= w}, and p(v) = v.
Benchmarks on clique games are reported in Tables 5 and 6.

Table 5. Runtime executions of the
symbolic algorithms on clique games

n SRE SAPT SSP SSP2

2,000 0.007 0.003 5.53 abortT

4,000 0.018 0.008 19.27 abortT

6,000 0.025 0.012 39.72 abortT

8,000 0.037 0.017 76.23 abortT

Table 6. Runtime executions of the
explicit algorithms on clique games

n RE APT SPM

2,000 0.021 0.0105 0.0104

4,000 0.082 0.055 0.055

6,000 0.19 0.21 0.22

8,000 0.35 0.59 0.63

Benchmarks show that SAPT is the best one among the symbolic algorithms
in all instances, SAPT and SRE outperform the explicit ones (as in ladder games),
and the symbolic versions of SPM do not show good results even on small games.

Finally, we evaluate the symbolic and explicit approaches on some practical
model checking problems as in [17]. Specifically, we use models coming from:
the Sliding Window Protocol (SWP) with window size (WS) of 2 and 4 (WS
represents the boundary of the total number of packets to be acknowledged by
the receiver), the Onebit Protocol (OP), and the Lifting Truck (Lift). The prop-
erties we check on these models concern: absence of deadlock (ND), a message
of a certain type (d1) is received infinitely often (IORD1), if there are infinitely
many read steps then there are infinitely many write steps (IORW), liveness,
and safety. Note that, in all benchmarks, data size (DS) denotes the number of
messages.

Table 7. SWP (Sliding Window Protocol)

n Pr Property SRE SAPT SSP SSP2 RE APT SPM WS DS

14,065 3 ND 0.00009 0.00006 3.30 0.0001 0.004 0.004 0.029 2 2

17,810 3 IORD1 0.0003 0.0005 abortT 85.4 0.006 0.006 0.037 2 2

34,673 3 IORW 0.0006 0.0008 164.73 56.44 0.015 0.014 0.053 2 2

2,589,056 3 ND 0.0002 abortT abortT 0.29 1.02 0.93 9.09 4 2

3,487,731 3 IORD1 abortT abortT abortT abortT 1.81 1.4 17.45 4 2

6,823,296 3 IORW 0.3 abortT abortT abortT 3.87 3.13 22.26 4 2

As we can see, by comparing Tables 7, 8, and 9, the experiments indicate more
nuanced relationship between the symbolic and explicit approaches. Indeed, they
show a different behavior depending on the protocol and the property we are

170 A. Di Stasio et al.

Table 8. OP (Onebit Protocol)

n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

81,920 3 ND 0.00002 31.69 1.37 0.0016 0.031 0.034 0.22 2

88,833 3 IORD1 0.0027 0.003 abortT abortT 0.036 0.0038 0.27 2

170,752 3 IORW 14.37 98.4 abortT abortT 0.07 0.07 0.47 2

289,297 3 ND 0.0001 154.89 12.3 0.0058 0.13 0.12 1.34 4

308,737 3 IORD1 0.0088 0.009 abortT abortT 0.14 0.13 1.37 4

607,753 3 IORW 43.7 abortT abortT abortT 0.29 0.27 2.06 4

Table 9. Lift (Lifting Truck)

n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

328 1 ND 0.00002 0.002 0.005 0.00002 0.0001 0.0001 0.0004 2

308 1 Safety 0.00002 0.003 0.028 0.00002 0.0001 0.0001 0.0004 2

655 3 Liveness 0.00008 0.0001 5.52 0.09 0.0003 0.0002 0.001 2

51.220 1 Safety 0.0001 1.48 32.14 0.00002 0.01 0.01 0.09 4

53.638 1 ND 0.0001 0.2 4.67 0.0001 0.017 0.015 0.07 4

107,275 3 Liveness 0.005 0.001 abortT abortT 0.03 0.03 0.18 4

checking. Overall, we note that SRE outperforms the other symbolic algorithms
in all protocols, although the advantage over RE is discontinued. Specifically, SRE
is the best performing in checking absence of deadlock in all three protocols, but
for IORD1 in the SWP protocol with WS = 2, or for IORW in the OP protocol,
RE exhibits a significant advantage. Differently, SAPT and SSP2 show better per-
formances on a smaller number of properties. Moreover, the results highlights
that SSP exhibits the worst performances in all protocols and properties.

5 Concluding Remarks

In this paper we have compared for the first time the performances of different
symbolic and explicit versions of classic algorithms to solve parity games. To this
aim we have implemented in a fresh tool, which we have called SymPGSolver, the
symbolic versions of Recursive [24], APT [10,18], and the small-progress-measures
algorithms presented in [5,8].

Our analysis started from constrained random games [21]. The results show
that on these games the explicit approach is better than the symbolic one,
exhibiting a different behavior than the one showed in [21]. To gain a fuller
understanding of the performances of the symbolic and the explicit algorithms,
we have further tested the two approaches on structured games. Precisely, we
have considered ladder games, clique games, as well as game models coming from
practical model-checking problems. We have showed several cases in which the
symbolic algorithms have the advantage over the explicit ones.

Solving Parity Games: Explicit vs Symbolic 171

Our empirical study let us to conclude that on comparing explicit and sym-
bolic algorithms for solving parity games, it would be useful to have real scenarios
and not only random games, as the common practice has been.

References

1. Iris Bahar, R., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods
Syst. Des. 10, 171–206 (1997)

2. Bakera, M., Edelkamp, S., Kissmann, P., Renner, C.D.: Solving µ-calculus parity
games by symbolic planning. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 15–33. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00431-5 2

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35, 677–691 (1986)

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS 1990, pp. 428–439 (1990)

5. Bustan, D., Kupferman, O., Vardi, M.Y.: A measured collapse of the modal µ-
calculus alternation hierarchy. In: Diekert, V., Habib, M. (eds.) STACS 2004.
LNCS, vol. 2996, pp. 522–533. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24749-4 46

6. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC 2017, pp. 252–263 (2017)

7. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: AAAI 2015, pp. 2038–
2044 (2015)

8. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Improved set-based
symbolic algorithms for parity games. In: CSL 2017, pp. 18:1–18:21 (2017)

9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) LP 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0025774

10. Di Stasio, A., Murano, A., Perelli, G., Vardi, M.Y.: Solving parity games using an
automata-based algorithm. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS,
vol. 9705, pp. 64–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40946-7 6

11. Eisner, C., Peled, D.: Comparing symbolic and explicit model checking of a software
system. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 230–239.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46017-9 18

12. Emerson, E.A., Jutla, C.: Tree automata, µ-calculus and determinacy. In: FOCS
1991, pp. 368–377 (1991)

13. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-Up. Inf. Process.
Lett. 68(3), 119–124 (1998)

14. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 24

15. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In:
LICS 2017, pp. 1–9 (2017)

16. Kant, G., van de Pol, J.: Generating and solving symbolic parity games. In:
GRAPHITE 2014, pp. 2–14 (2014)

https://doi.org/10.1007/978-3-642-00431-5_2
https://doi.org/10.1007/978-3-642-00431-5_2
https://doi.org/10.1007/978-3-540-24749-4_46
https://doi.org/10.1007/978-3-540-24749-4_46
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-40946-7_6
https://doi.org/10.1007/978-3-319-40946-7_6
https://doi.org/10.1007/3-540-46017-9_18
https://doi.org/10.1007/3-540-46541-3_24

172 A. Di Stasio et al.

17. Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.)
FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24644-4 9

18. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-
ness. In: STOC 1998, pp. 224–233 (1998)

19. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

20. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell
(1993)

21. Tabakov, D.: Evaluation of explicit and symbolic automata-theoretic algorithm.
Master’s thesis, Rice University (2005)

22. van Dijk, T.: Oink: an implementation and evaluation of modern parity game
solvers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
291–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 16

23. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)

24. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-319-89960-2_16

Generalised Twinning Property

Stefan Gerdjikov1,2(B)

1 Faculty of Mathematics and Informatics,
Sofia University, 5, James Bourchier Blvd., 1164 Sofia, Bulgaria

stefangerdzhikov@fmi.uni-sofia.bg
2 Institute of Information and Communication Technologies,

Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

Abstract. In this paper we consider the problem of sequentialisation
of rational functions f : Σ∗ → M. We introduce a class of monoids
that includes infinitary groups, free monoids, tropical monoids and is
closed under Cartesian Product. For this class of monoids we provide
a sequentialisation construction for transducers and appropriately gen-
eralise the notion of Twinning Property. We provide a construction to
test the Twinning Property for transducers over the considered class of
monoids and prove that it is a necessary and sufficient condition for the
sequentialisation construction to terminate.

Keywords: Sequential functions · Transducers · Sequentialisation
Monoid

1 Introduction

Finite State Transducers (FST) provide a natural effective way to represent a
large class of relations, called rational relations, applied in Natural Language
Processing [12,14–17]. In their essence the FST’s are formal devices that gener-
alise the classical Finite State Automata (FSA).

Aiming at linear on-line algorithms for processing words, one prefers the
Deterministic FSA to the general FSA. In the case of FSA it is well known that
both formalisms are equivalent in their expressive power, [11]. However, for the
FST’s and the deterministic, called sequential, FST’s this is not the case, [2,13,
15]. The constraint for an FST to deterministically process an input word clearly
implies that it represents a graph of a function f : Σ∗ → M. But it is by far
not sufficient that an FST to be functional to be turned into a sequential FST.
Functions recognised by some sequential FST are called sequential functions.

The problem we are looking at in this paper is to recognise if a given trans-
ducer T represents a sequential function and if so to construct a sequential
transducer equivalent to T .

In the case where M is a free monoid this problem has been solved by
Choffrut [2]. The case where M is the tropical monoid was solved by Mohri [14,
15]. For a survey see also [13]. In [9] a class of monoids, sequentiable structures,
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 173–185, 2018.
https://doi.org/10.1007/978-3-319-94812-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_15&domain=pdf

174 S. Gerdjikov

has been introduced and the results from [2,13–15] have been generalised. The
case where M is an infinitary group was solved in [3]. In this paper we consider
a class of monoids that contains the free monoids, the tropical monoids, the
sequentiable structures, and infinitary groups and additionally is closed under
Cartesian Product. In its essence the class of monoids that we consider is a
subclass of mge monoids [10] and the monoids considered in [7] obtained by
adding three more axioms. We formally introduce it in Sect. 3.

Typically, the problem for sequentialisation of an FST starts with a func-
tionality test. This problem can be efficiently solved for free monoids, [1], and
groups, [5]. These techniques were generalised to arbitrary mge monoids in [10].
The second step is usually to characterise the sequential functions as rational
functions of bounded variation, [2,3,9,13,15]. The third step is to introduce an
appropriate notion of Twinning Property, [2,3,13,18].

We generalise the notion of Twinning Property in Sect. 4.2, but we do not
have an appropriate notion for bounded variation. Thus, we cannot follow the
common way, [2,3,9,13,15,18], of proving the characterisation theorem in order
(i) sequential; (ii) bounded variation; (iii) Twinning Property; (iv) termination
of a power set construction. The proof in Sect. 4.3 skips (ii) and also requires a
modification of the power set construction. The latter is presented in Sect. 4.1.

2 Preliminaries

The reader familiar with the main notions on monoids and automata1, [4,18],
may prefer to skip this section.

A monoid M = 〈M, ◦, e〉 is a semigroup 〈M, ◦〉 with a unit element e. A
special case of monoids are the free monoids Σ∗ generated by a finite set Σ.
The support of Σ∗ is the set of all finite sequence over Σ, called words, the
multiplication is the concatenation of words, and the unit element is the empty
word, ε. For monoids Mi = 〈Mi, ◦i, ei〉 for i = 1, 2, the Cartesian Product
M = M1 × M2 is defined as M = 〈M1 × M2, ◦, 〈e1, e2〉〉 where:

〈a1, a2〉 ◦ 〈b1, b2〉 = 〈a1 ◦1 b1, a2 ◦2 b2〉 .

It is straightforward to see that M is also a monoid, [4]. For an element a ∈ M
and set S ⊆ M , we use aS and Sa as abbreviations for:

aS = {as | s ∈ S} and Sa = {sa | s ∈ S}.

A finite automaton over a monoid M is a tuple A = 〈M, Q, s, F,Δ, ι, Ψ〉
where Q is a finite set of states, s ∈ Q is the initial state, F ⊆ Q is the set
of final states, Δ ⊆ Q × M × Q is a finite relation of transitions, ι ∈ M , and
Ψ : F → M is the terminal function.

A non-trivial path in an automaton A is a non-empty sequence of transitions
π = 〈p0,m1, p1〉 . . . 〈pn−1,mn, pn〉. For each state p ∈ Q we also have the trivial
1 We consider one-letter transducers with unique initial state. It emits an initial out-

put. Final states emit final outputs.

Generalised Twinning Property 175

path π = (p). A path is either a trivial or a non-trivial path. Each path π has a
source state, σ(π), a terminal state, τ(π), label,
(π), and length, |π|. For a non-
trivial path π = 〈p0,m1, p1〉 . . . 〈pn−1,mn, pn〉 they are defined as: σ(π) = p0,
τ(π) = pn,
(π) =

∏n
i=1 mi, and |π| = n. For a trivial path π = (p), σ(π) =

τ(π) = p,
(π) = e, |π| = 0.
A path π is called successful if σ(π) = s and τ(π) ∈ F . In these notions, the

language of a finite automaton A = 〈M, Q, s, F,Δ, ι, Ψ〉 is:

L(A) = {ι ◦
(π) ◦ Ψ(τ(π)) |π is a successful path in A}.

We also denote Δ∗ = {〈σ(π),
(π), τ(π)〉 |π is a path in A}. A state p is called
accessible if there exists a path π with σ(π) = s and τ(π) = p. A state p is called
co-accessible if there exists a path π with σ(π) = p and τ(π) ∈ F . We say that an
automaton is trimmed if all its states are both accessible and co-accessible. For a
state p ∈ Q we denote with Ap = 〈M, Q, p, F,Δ, e, Ψ〉 and we set L(p) = L(Ap).

Rng(f) stays for the range of a function, f . Given a finite set Σ and a monoid
M, a finite state transducer is an automaton T = 〈Σ∗ × M, Q, s, F,Δ, ι, Ψ〉. If:

Δ ⊆ Q × ((Σ ∪ {ε}) × M) × Q, ι ∈ {ε} × M and Rng(Ψ) ⊆ {ε} × M,

then T is called one-letter transducer. Clearly, an FST over some monoid, M,
is equivalent to a one-letter transducer, [4]. We denote one-letter transducers
like T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉 and we tacitly identify ι = 〈ε, ι2〉 with ι2 and,
similarly, with Ψ(f) = 〈ε, Ψ2(f)〉 we intend Ψ(f) = Ψ2(f) ∈ M . By definition, a
one-letter transducer recognises a relation L(T) ⊆ Σ∗ × M. We say that T is
functional if L(T) is a graph of a function OT : Σ∗ → M . If Tp is functional, we
use O(p)

T to denote the function corresponding to Tp.
A special class of functional one-letter transducers are the sequential trans-

ducers. Formally, these are one-letter transducers, T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉
such that there exist functions δ : Q × Σ → Q and λ : Q × Σ → M with
Dom(δ) = Dom(λ) satisfying: Δ = {〈p, 〈a, λ(p, a)〉 , δ(p, a)〉 | 〈p, a〉 ∈ Dom(δ)}.
To stress these particularities of the sequential transducers, we denote them as
T = 〈Σ × M, Q, s, F, δ, λ, ι, Ψ〉. As usual, δ∗ : Q×Σ∗ → Q and λ∗ : Q×Σ∗ → M
denote the natural extensions of δ and λ with Dom(λ∗) = Dom(δ∗) s.t.:

Δ∗ = {〈p, 〈w, λ∗(p,w)〉 , δ∗(p,w)〉 | 〈p,w〉 ∈ Dom(δ∗)}.

With these notions we can express the function OT : Σ∗ → M as:

OT (w) = ι ◦ λ∗(s, w) ◦ Ψ(f), where f = δ∗(s, w).

3 Classes of Monoids

In this section we define the class of monoids that we shall be interested in. It
represents a subclass of the monoids considered in [7]. Similarly to the monoids
considered in [7], it contains the free monoids, the tropical monoid, and sequen-
tiable structures, [8,9], and it is closed under Cartesian Product. It also contains
the infinitary groups, [3].

176 S. Gerdjikov

In the first paragraph, below, we revisit the basic notions from [7] and sum-
marise the results obtained there. In the second paragraph, we introduce the
new concepts that are important for the outline in next section.

3.1 MGE Monoids with LSL- and GCLF-axioms

First, we generalise the notions of a prefix and longest common prefix to monoids:

Definition 1. For a monoid M and elements a, b ∈ M we say that a ≤M b if
there is an element c ∈ M with a ◦ c = b. We use a ∼M b as an abbreviation for
the induced equivalence relation, a ≤M b & b ≤M a. For a set S ⊆ M, we define
the sets low(S) and up(S) of lower and upper bounds for S, resp. as follows:

low(S) = {a ∈ M | ∀s ∈ S(a ≤M s)} up(S) = {b ∈ M | ∀s ∈ S(s ≤M b)}.

We define the sets of infimums and supremums for S as:

inf S = low(S) ∩ up(low(S)) and supS = up(S) ∩ low(up(S)).

Definition 2. Let T = 〈Σ × M, Q, s, F,Δ, ι, Ψ〉 be a one-letter transducer. We
say that T is onward if for every accessible p ∈ Q it holds e ∈ inf Rng(L(p)).

Definition 3. An mge monoid is a monoid M with the following properties:

1. (LC, left cancellation) for all a, b ∈ M there is at most one element c = b
a

with a ◦ c = b.
2. (RC, right cancellation) for all a, b ∈ M there is at most one element c = b−a

with c ◦ a = b.
3. (RMGE, right most general equaliser) for all a, b ∈ M s.t. up({a, b}) = ∅,

there is an element a ∨ b ∈ sup{a, b}.
An mge monoid M is called effective, if M is effective and the functions a

b ,
a − b, and a ∨ b are computable and their domains are recursive.

Theorem 1 ([10]). Let M be an effective mge monoid. Then it is decidable
given a one-letter Σ − M-transducer T whether T is functional.

Definition 4. We say that a monoid M satisfies the left semi-lattice and great-
est common left factor axioms, respectively, if:

1. the LSL-axiom2 iff for all a, b ∈ M there is an element a� b ∈ inf{a, b}.
2. the GCLF-axiom3 iff for all a, b, c ∈ M , b ≤M c and b ≤M ac imply b ≤M ab.

Theorem 2 ([7]). Let M be an (effective) mge monoid with LSL- and GCLF-
axioms. Then there is an (effective) construction that for every one-letter Σ−M-
transducer produces an equivalent onward transducer with the same states and
input4 transitions.

Remark 1 ([7]). Groups, free monoids, and tropical monoids are all mge monoids
with LSL- and GCLF-axioms. Furthermore the mge monoids and mge monoids
with LSL- and GCLF-axioms are closed under Cartesian Product.
2 LSL stays for lower semi-lattice.
3 GCLF stays for greatest common left factor.
4 That is, the only difference in the transitions is their M-coordinate.

Generalised Twinning Property 177

3.2 Sequentialisation Axioms

In this section we define some new notions that will be used in the constructions
and proofs to come in the subsequent paragraphs.

Definition 5. Let M be a monoid. For a natural number n ∈ N we define the
relation ≡(n)

M ⊆ Mn × Mn as:

a ≡(n)
M b ⇐⇒ ∃u ∈ M(∀i ≤ n(uai = bi) and u is invertible).

Lemma 1. For each n ∈ N, the relation ≡(n)
M is an equivalence relation.

The following definition is the symmetric variant5 of the RMGE-axiom. In terms
of free monoids, it requires that if two words are suffixes of the same word, then
there is a shortest word with this property.

Definition 6. A monoid M satisfies the Left Most General Equaliser Axiom
(LMGE-axiom) if:

∀a, b ∈ M(Ma ∩ Mb = ∅ ⇒ ∃c ∈ M(Ma ∩ Mb = Mc)).

Definition 7. A monoid M is an (effective) 2mge-monoid if it is an (effective)
mge monoid and satisfies the LMGE-axiom.

Definition 8. Let M be a monoid. A left equaliser for u ∈ Mn is an n-tuple
a ∈ Mn such that aiui = ajuj for all i, j ≤ n. An element u ∈ Mn is called left
equalisable if it admits a left equaliser. We say that a is a left mge for u if both:

1. a is a left equaliser for u,
2. for every left equaliser, b, for u there is c ∈ M such that: bj = caj for j ≤ n.

Lemma 2. If M is a 2mge-monoid, and u ∈ Mn is left equalisable, then u
admits a unique up to equivalence w.r.t. ≡(n)

M left mge a ∈ Mn.

Definition 9. A monoid M satisfies the Conjugate Closeness Axiom (CC) if:

∀u, r ∈ M(∃k ≥ 1(ruk ∈ Mr)) ⇒ ru ∈ Mr.

Next definition captures the property that is characteristic for infinitary groups.

Definition 10. A monoid M satisfies the Prime Root Axiom (PR) if:

∀u, v ∈ M(∃k ≥ 1(uk = vk)) ⇒ u = v.

Lemma 3. LMGE, CC, and PR-axioms hold for free and tropical monoids6.

5 Note that up({a, b}) = aM ∩ bM .
6 The result extends to sequentiable structures, for the definition see [9].

178 S. Gerdjikov

Lemma 4. If G is a group then it satisfies the LMGE- and the CC-axiom. Fur-
thermore, G is an infinitary group if and only if G satisfies the PR-axiom.

Lemma 5. Let M1 and M2 be monoids. If A ∈ {LMGE,CC,PR} and Mi

satisfies A for i = 1, 2, then so does M = M1 × M2.

Lemma 6. Let M be an mge-monoid satisfying the CC-axiom and the PR-
axiom. If r1, r2, u1, u2, t ∈ M and k ≥ 1 are such that: riu

k
i = tri for i ∈ {1, 2},

then there is s ∈ M with riui = sri for i ∈ {1, 2}.

4 Sequentialisation

In this section we will be interested in the Sequentialisation Problem:

Given:M effective 2mge-monoid with LSL and GCLF
T = 〈Σ × M, Q, i, F ,Δ, ι, Ψ〉 transducer

Output:TD, sequential transducer with OTD
= OT , if such exists.

No, alternatively.

In view of Theorems 1 and 2 this problem is equivalent to the following Restricted
Sequentialisation Problem:

Given:M effective 2mge-monoid with LSL and GCLF
T = 〈Σ × M, Q, i, F ,Δ, ι, Ψ〉 trimmed, functional, onward

Output:TD, sequential transducer with OTD
= OT , if such exists.

No, alternatively.

4.1 Sequentialisation Construction

We start by providing a natural semi-decision construction for the Restricted
Sequentialisation Problem. It specialises the classical power-set construction of
Choffrut, [2]. Under additional assumptions for the monoid M, namely the PR-
and CC-axioms, we are going to give necessary and sufficient condition for this
procedure to halt.

First, note that since T is functional and trimmed whereas M satisfies LC-
and RC-axioms, every cycle 〈p, 〈ε,m〉 , p〉 ∈ Δ∗ satisfies m = e. The sequential-
isation of T proceeds stepwise and constructs a sequence of sequential trans-
ducers: Tk = 〈Σ,M, Qk, s, Fk, δk, λk, ι, Ψk〉. The states, Qk, are sets of pairs,
Qk ⊆ 2Q×M. The initial state is defined as s = {〈p,m〉 | 〈i, 〈ε,m〉 , p〉 ∈ Δ∗}.

The main difference of our construction from the classical constructions [2,
13,16,18] lies in the special cares in Step 2.(c), below. Intuitively, they aim at
preventing the unnecessary creation of equivalent states w.r.t. ≡M .

1. At step k = 0, set Q0 = {s}, Q−1 = ∅, and T0 = 〈Σ,M, {s}, s, ∅, ∅, ∅, ι, ∅〉.
2. If Qk = Qk−1, then TD = Tk and stop. Otherwise, set δk+1 = δk, λk+1 = λk:

(a) Fk+1 = Fk ∪ {P ∈ Qk \ Qk−1 | ∃ 〈p, v〉 ∈ P (p ∈ F)}.

Generalised Twinning Property 179

(b) Ψk+1(P) = v ◦ Ψ(f) s.t. there is 〈f, v〉 ∈ P with f ∈ F .
(c) for each P ∈ Qk \ Qk−1 and each character a ∈ Σ:

i. compute the monoid element and the set of pairs:

(P, a) =
�

{v ◦ m | 〈p, v〉 ∈ P and ∃q ∈ Q(〈p, 〈a,m〉 , q〉 ∈ Δ∗)}

∂(P, a) =
{〈

q,
v ◦ m

(P, a)

〉

| 〈p, v〉 ∈ P and (〈p, 〈a,m〉 , q〉 ∈ Δ∗)
}

Denote ∂(P, a) = {〈qk, uk〉}K
k=1.

ii. check if there is already a state P ′ ∈ Qk ∪ Rng(δk+1) satisfying:
A. P ′ = {〈qk, u′

k〉}K
k=1 for some u′

k ∈ M,
B. 〈u1, u2, . . . , uK〉 ≡(K)

M 〈u′
1, u

′
2, . . . , u

′
K〉.

If such a state P ′ exists, set u = u′
1−u1 if K ≥ 1 and u = e otherwise.

iii. Update:

〈δk+1(P, a), λk+1(P, a)〉 =

{
〈P ′,
(P, a) ◦ u〉 if u is defined
〈∂(P, a),
(P, a)〉 otherwise.

(d) Qk+1 = Qk ∪ Rng(δk+1) and increase k to k + 1. Goto 2.

Lemma 7. Let T be an onward functional transducer with unique initial state.
Let k ∈ N and α ∈ Σ∗ be such that P = δ∗

k(s, α) is defined. Then λ∗
k(s, α) = u

is defined and:

1. if P = ∅, then
�

{v | ∃p ∈ Q(〈p, v〉 ∈ P)} ∼M e.
2. for each p ∈ Q and v ∈ M it holds: 〈p, v〉 ∈ P ⇐⇒ 〈i, 〈α, uv〉 , p〉 ∈ Δ∗.

Proof. The proof follows by a straightforward induction on the length of α. ��

As a corollary we get:

Corollary 1. If Qk−1 = Qk, then Tk is a sequential transducer and OTk
= OT .

4.2 Squared Automaton and Twinning Property

Let T = 〈Σ × M, Q, i, F,Δ〉 be an onward trimmed functional transducer over
a regular 2mge-monoid. We denote with A2 the squared automaton for T :

A2 =
〈
Σ × M2, Q2, 〈i, i〉 , F 2,Δ2, e, e

〉
, where

Δ2 = {〈〈p1, p2〉 , 〈a, 〈m1,m2〉〉 , 〈p′
1, p

′
2〉〉 | a ∈ Σ,

〈
pj , 〈a,mj〉 , p′

j

〉
∈ Δ for j ≤ 2}

∪{〈〈p1, p2〉 , 〈ε, 〈m1, e〉〉 , 〈p′
1, p2〉〉 | 〈p1, 〈ε,m1〉 , p′

1〉 ∈ Δ}
∪{〈〈p1, p2〉 , 〈ε, 〈e,m2〉〉 , 〈p1, p′

2〉〉 | 〈p2, 〈ε,m2〉 , p′
2〉 ∈ Δ}

The squared automaton A2 has the following structural property:

Lemma 8. Let q,q′ ∈ Q2 be arbitrary. Then for a word α ∈ Σ∗ and m ∈ M2

the following are equivalent:

180 S. Gerdjikov

1. 〈q, 〈α,m〉 ,q′〉 ∈ Δ∗
2,

2. for each i ≤ 2, 〈qi, 〈α,mi〉 ,q′
i〉 ∈ Δ∗,

Proof. The implication 1 ⇒ 2 follows by induction on the length of the gener-
alised transition, 〈q, 〈α,m〉 ,q′〉. In turn, the implication 2 ⇒ 1 follows by induc-
tion on the sum of the lengths of the generalised transitions, 〈qi, 〈α,mi〉 ,q′

i〉 ��

Next, we introduce the advance action. It generalises the delay of runs, [1,3], by
factorising w.r.t. the equivalence relation ≡(2)

M . Let t = 〈q, a,m,q′〉 ∈ Δ2 be a
transition. We introduce advt : M2 → M2 as:

advt(v) =
〈

(v1 ◦ m1)
m

,
(v2 ◦ m2)

m

〉

, where m = (v1 ◦ m1)�(v2 ◦ m2).

For a path π = t1t2 . . . tn in A2, we denote with adv(π) : M2 → M2 the function:

adv(π) = advt1 ◦ advt2 ◦ · · · ◦ advtn .

Next we list some useful properties of the advance action.

Lemma 9. Let v ≤M v1 and v ≤M v2, then advt(〈v1,v2〉) ≡(2)
M advt(

〈
v1
v , v2

v

〉
).

Corollary 2. Let v′ ≡(2)
M v′′ and t ∈ Δ2, then advt(v′) ≡(2)

M advt(v′′).

Proof. Since v′ ≡(2)
M v′′ there is an invertible element c with v′

j

c = v′′
j for j = 1, 2.

Now the result follows by the previous lemma. ��

Corollary 3. Let π1 and π2 be paths in A2 that start at 〈i, i〉 and terminate in
the same state q be such that: adv(π1)(e, e) ≡(2)

M adv(π2)(e, e). Then for any path
π in A2 that starts at q it holds that: adv(π1π)(e, e) ≡(2)

M adv(π2π)(e, e).

Proof. The proof follows by Corollary 2 and straightforward induction on the
length of the path π. ��

Lemma 10. Let π be a path in A2 from i = 〈i, i〉 to some state q ∈ Q2. Let

(π) = 〈α,m〉 be the label of π, and m = m1 �m2, then:

adv(π)(〈e, e〉) ≡(2)
M

〈m1

m
,
m2

m

〉
.

Definition 11. Let A2 be a squared automaton for a trimmed onward trans-
ducer with unique initial state. We say that A2 satisfies the Twinning Prop-
erty iff for any two paths π1 and π2 in A2 such that σ(π1) = 〈i, i〉 and
τ(π1) = σ(π2) = τ(π2), i.e. π2 is a cycle starting at τ(π1), it holds:

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

We conclude this section by showing that the Twinning Property is decidable:

Generalised Twinning Property 181

Lemma 11. Given a squared automaton A2 over an effective 2mge-monoid,
M, with LSL- and GCLF-axioms we can effectively test whether A2 obeys the
Twinning Property.

Proof. (Idea) Let n = |Q2|. We denote with Π2n and C the sets:

Π2n = {π path in A2 |σ(π) = 〈i, i〉 , |π| < 2n} and C = {π simple cycle in A2}.

We say that A2 satisfies the restricted Twinning Property if and only if for every
π1 ∈ Π2n and any π2 ∈ C such that τ(π1) = σ(π2):

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

Clearly, under the assumptions of the lemma, the restricted Twinning Property is
decidable. It is also clear that the Twinning Property implies the restricted Twin-
ning Property. The reverse is also true. This follows by induction, the Pigeonhole
Principle, and Corollary 3. ��

4.3 Twinning Property ⇔ Sequentialisation Algorithm Halts

The main result in this section is the following:

Theorem 3. Assume that M is a 2mge-monoid satisfying the PR- and CC-
axioms. Let T = 〈Σ × M, Q, i, F,Δ, ι, Ψ〉 be an onward, trimmed, functional
transducer and let f = OT . Then the following are equivalent:

1. the sequentialisation procedure on T terminates.
2. f is sequential.
3. A2 satisfies the Twinning Property.

Before we step to the formal proof of Theorem 3, we note the important conse-
quence of this theorem:

Theorem 4. Let M be an effective 2mge-monoid with PR-, CC-, LSL-, and
GCLF-axioms. Then it is decidable given a transducer T over Σ∗ × M whether
T represents a sequential function.

Proof. Immediate from Theorem 1, Theorem 2, Lemma 11, and Theorem 3. ��

The rest of this section is devoted to the proof of Theorem 3. The implication
1 ⇒ 2 is obvious and follows immediately from Corollary 1. The implication
3 ⇒ 1 is standard as it appropriately generalises the main ideas from [2,3,9,
13,15,18]. Yet, the implication 2 ⇒ 3 is more involved since it has to surmount
the lack of Bounded Variation Property that is usually the bridge between the
sequential functions and the Twinning Property. This is also the only place in
the proof where we need the PR- and the CC-axioms and more precisely their
consequence Lemma 6. With these remarks we delve into the proof of Theorem 3:

182 S. Gerdjikov

Proof (of Theorem 3). 1 ⇒ 2. Follows by Corollary 1.
2 ⇒ 3 Let the paths π1, π2, with q = τ(π1) = σ(π2) = τ(π2) satisfy the

premise of the Twinning Property. Let
(π1) = 〈α,m〉 and
(π2) = 〈β,n〉. First
consider the case where β = ε. Since, T is trimmed and functional over an
mge monoid (LC- and RC-axiom), we conclude that m = e. Therefore
(π1) =

(π1π2). Thus by Lemma 10 we deduce that:

adv(π1)(e, e) ≡(2)
M adv(π1π2)(e, e).

In the sequel we assume that β = ε. Let Γ ⊆ Σ∗ be the language7 Γ = {α} ◦
⋃2

j=1 Dom(O(qj)
T). We set g = f � Γ , i.e. the restriction of f to Γ . Since there

is a sequential transducer for f and Γ is regular, it follows that there is also a
sequential transducer for g. Let

m(k) = (m1 ◦ nk
1)�(m2 ◦ nk

2) and r(k) =
〈
m1 ◦ nk

1

m(k)
,
m2 ◦ nk

2

m(k)

〉

.

Note that by Lemma 10 we have that r(k) ≡(2)
M adv(π1πk

2)(e, e). To complete the
proof we need the following:

Lemma 12. If T is trimmed and onward, and g = f � Γ is sequential, then
there is some l ∈ N with r(l) ≡M r(l+1).

Proof (Idea). First, using the sequential transducer for g we find two integers
k > l such that αβk and αβl lead to the same state in this transducer. Then, we
establish the existence of u′ ∼M m(l) and v′ ∼M m(k) and a function ĝ′ : Σ∗ →
M such that for any γ ∈ Dom(O(q1)

T) ∪ Dom(O(q2)
T) it holds:

g(αβlγ) = u′ ◦ ĝ′(γ) and g(αβkγ) = v′ ◦ ĝ′(γ). (1)

The mere existence of u, v, and ĝ satisfying Eq. 1 can be easily derived from the
sequential transducer for g. The onward property of the original transducer T ,
allows us to conclude that u ≤M m(l) and v ≤M m(k). Using the RMGE-axiom
it is then easy to construct u′ ∼M m(l), v′ ∼M m(k), and ĝ′ satisfying Eqs. 1.

Next, the function ĝ′ allows us to transfer information from the reduct, r(l),
to the reduct, r(k), and obtain that r(l) ≡(2)

M r(k). Finally, using that mj ◦
nk

j = m(k)r(k)j and mj ◦ nk
j = m(l)r(l)j nk−l

j and r(l) ≡M r(k) we can see that

tr(l)j = r(l)j nk−l
j where t does not depend on j = 1, 2. Now, the result follows by

Lemma 6. ��

Back to the Proof of 2 ⇒ 3. Let l be such r(l) ≡(2)
M r(l+1). Then by

r(0) ≡(2)
M adv(π1)(〈e, e〉) and r(1) ≡(2)

M adv(π1π2)(〈e, e〉) Lemma 10 implies:

r(l) ≡(2)
M adv(πl

2)(r(0)) and r(l) ≡(2)
M r(l+1) ≡(2)

M adv(πl
2)(r(1)).

7 Note that T is functional and M satisfies the LC-axiom. Therefore Tq is functional

for any accessible state q, hence O(qj)
T are well-defined.

Generalised Twinning Property 183

This means that yr(l)j = r(0)j nl
j and wr(l)j = r(1)j nl

j for appropriate y, w ∈ M that

are independent of j = 1, 2. This shows that for j = 1, 2 the pairs
〈
r(l)j ,n(l)

j

〉
are

left equalisable. We conclude that both
〈
y, r(0)j

〉
and

〈
w, r(1)j

〉
are equalisers for

this pair. Let 〈aj , bj〉 be a left mge for the pair
〈
r(l)j ,n(l)

j

〉
. Therefore there are

cj , dj ∈ M with:

y = cjaj and w = djaj , r(0)j = cjbj and r(1)j = djbj

Considering the first pair of equalities, we have that 〈a1, a2〉 is left equalisable
and 〈c1, c2〉 and 〈d1, d2〉 are left equalisers for this pair. Hence, if 〈a′

1, a
′
2〉 is the

left mge for 〈a1, a2〉, then there are c, d with cj = ca′
j and dj = da′

j . This shows

that d ≤M r(1)j for j = 1, 2 and similarly, c ≤M r(0)j . Since r(0)1 � r(0)2 ∼M e and

r(1)1 � r(1)2 ∼M e we conclude that c and d are invertible. Therefore w ≡M y. Let
uw = y where u is invertible. Therefore:

ur(0)j nl
j = uyr(l)j = uyr(l)j = wr(l)j = r(1)j nl

j

and by the RC-axiom, we derive that r(0)j = ur(1)j for j = 1, 2 with u ∼M e.

Therefore r(0) ≡(2)
M r(1), i.e. adv(π1)(e, e) ≡(2)

M adv(π1π2)(e, e), as required.
3 ⇒ 1. By Corollary 1, it suffices to show that if A2 obeys the Twinning

Property, then Qk+1 = Qk for some k. We set out to show that there are only
finitely many tuples in 2Q×M that can be generated by the algorithm. Let:

Adv(q1, q2) = {[adv(π)(〈e, e〉)]≡(2)
M

|π is a path from 〈i, i〉 to 〈q1, q2〉 in A2}

for q1, q2 ∈ Q. The Twinning Property implies that Adv(q1, q2) is generated
entirely by cycle-free paths, thus it is finite.

Next, consider a state P = {〈pj , vj〉}J
j=1 ∈ Qk−1 for some k. Let α be a

word such that: δ∗
k(s, α) = P and λ∗

k(s, α) = u. By Lemma 7 for each j we have:
〈i, 〈α, uvj〉 , pj〉 ∈ Δ∗. Therefore in the squared automaton A2 there are paths:

〈〈i, i〉 , 〈α, 〈uvj1 , uvj2〉〉 , 〈pj1 , pj2〉〉 ∈ Δ∗
2

for all j1, j2 ≤ J . Hence there is an element r(j1, j2) = 〈r1(j1, j2), r2(j1, j2)〉 such
that [r(j1, j2)] ∈ Adv(pj1 , pj2) and:

uvji = t(j1, j2)ri(j1, j2) for i = 1, 2 where t(j1, j2) = uvj1 �uvj2 .

Consider the sequence 〈r1(1, j)〉J
j=1. It is left equalisable for uv1 = t(1, j)r1(1, j).

Thus, by Lemma 2, it has a left mge 〈a1, a2, . . . , aJ 〉. In particular, there exists
a t′ s.t. t(1, j) = t′ ◦ aj for all j ≤ J . Since t′ ∼M

�
j t(1, j) ∼M

�
j uvj

and, by construction,
�

vj ∼M e, we get that t′ ∼M u. Finally, the equali-
ties u ◦ vj = t(1, j)r2(1, j) = t′ajr2(1, j), show that vj = t′

u ajr2(1, j). Since
t′
u is invertible, 〈vj〉J

j=1 ≡(J)
M 〈ajr2(1, j)〉J

j=1 is determined by {r(1, j)}J
j=1 up to

184 S. Gerdjikov

equivalence w.r.t. ≡(J)
M . This is exactly what Step 2.(c) in our algorithm guards.

This proves the existence of an injection between the states in
⋃∞

k=0 Qk and the

subsets of Q×
(⋃

p,q∈Q Adv(p, q)
)
, which is finite. Since Qk ⊆ Qk+1 for all k, this

implies that the algorithm halts. ��

5 Conclusion

In this paper we described a general class of monoids and characterised the
sequential functions w.r.t. this class in terms of and appropriately generalised
Twinning Property. We consider that the axiomatisation approach should make
it easier to strengthen these results or alternatively to recognise that some of
these axioms are necessary.

Most of the axioms seem natural from algebraic point of view. Yet, the GCLF-
and PR-axioms are odd. From [7] we know that there are mge monoids with
LSL-axiom that violate the GCLF-axiom and that admit regular languages with
inf L = ∅. Yet, the GCLF-axiom is the only axiom from the mge and LSL-axioms
not satisfied by the gcd monoids, [19]. Actually, both GCLF- and PR-axioms
have the intrinsic property we need to surmount the cycles in the transducers
and effectively reduce the infinite nature of the problem to a finite one. Can we
relax them?

Notably, we have a characterisation of the sequential functions in terms of
congruence relations, both for gcd monoids [19] and mge monoids with GCLF-
axiom and additional (but rather tight) second order axiom, [6]. This challenges
the necessity of all: LMGE-, PR-, and CC-axioms. Are there monoids that admit
characterisation of sequential functions in terms of congruence relations but do
not admit sequentialisation algorithm?

References

1. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. TCS 292(1), 45–63
(2003)

2. Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationelles. TCS 5, 325–338 (1977)

3. Daviaud, L., Reynier, P.A., Talbot, J.M.: A generalised twinning property for min-
imisation of cost register automata. In: Symposium on Logic in Computer Science,
pp. 857–866 (2016)

4. Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York and
London (1974)

5. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 11

6. Gerdjikov, S.: Characterisation of (sub)sequential rational functions over a general
class monoids. CoRR abs/1801.10063 (2018)

https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11

Generalised Twinning Property 185

7. Gerdjikov, S.: A general class of monoids supporting canonisation and minimisation
of (Sub)sequential transducers. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 143–155. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1 11

8. Gerdjikov, S., Mihov, S.: Myhill-Nerode Relation for Sequentiable Structures.
ArXiv e-prints, June 2017. https://arxiv.org/abs/1706.02910

9. Gerdjikov, S., Mihov, S.: Over which monoids is the transducer determinization
procedure applicable? In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 380–392. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 28

10. Gerdjikov, S., Mihov, S., Schulz, K.U.: Space-efficient bimachine construction based
on the equalizer accumulation principle. CoRR abs/1803.04312 (2018)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

12. Kempe, A.: Part of speech tagging with two sequential transducers. CoRR
cs.CL/0110027 (2001). http://arxiv.org/abs/cs.CL/0110027

13. Lombardy, S., Sakarovitch, J.: Sequential? TCS 356(1–2), 224–244 (2006)
14. Mohri, M.: On some applications of finite-state automata theory to natural lan-

guage processing. J. Nat. Lang. Eng. 2, 1–20 (1996)
15. Mohri, M.: Finite-state transducers in language and speech processing. Comput.

Linguist. 23(2), 269–311 (1997)
16. Mohri, M.: Minimization algorithms for sequential transducers. TCS 234, 177–201

(2000)
17. Roche, E., Schabes, Y.: Introduction. In: Roche, E., Schabes, Y. (eds.) Finite-State

Language Processing, pp. 1–66. MIT Press (1997)
18. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-

bridge (2009)
19. Souza, R.N.P.d.: Properties of some classes of rational relations (short version in

English). Master’s thesis, University of Sao Paulo (2004)

https://doi.org/10.1007/978-3-319-77313-1_11
https://doi.org/10.1007/978-3-319-77313-1_11
https://arxiv.org/abs/1706.02910
https://doi.org/10.1007/978-3-319-53733-7_28
https://doi.org/10.1007/978-3-319-53733-7_28
http://arxiv.org/abs/cs.CL/0110027

Non-self-embedding Grammars,
Constant-Height Pushdown Automata,

and Limited Automata

Bruno Guillon, Giovanni Pighizzini, and Luca Prigioniero(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
{guillonb,pighizzini,prigioniero}@di.unimi.it

Abstract. Non-self-embedding grammars are a restriction of context-
free grammars which does not allow to describe recursive structures and,
hence, which characterizes only the class of regular languages. A double
exponential gap in size from non-self-embedding grammars to determin-
istic finite automata is known. The same size gap is also known from
constant-height pushdown automata and 1-limited automata to deter-
ministic finite automata. Constant-height pushdown automata and 1-
limited automata are compared with non-self-embedding grammars. It
is proved that non-self-embedding grammars and constant-height push-
down automata are polynomially related in size. Furthermore, a poly-
nomial size simulation by 1-limited automata is presented. However, the
converse transformation is proved to cost exponential.

1 Introduction

It is well known that the extra capability of context-free grammars with respect
to regular ones is that of describing recursive structures as, for instance, nested
parentheses, arithmetic expressions, typical programming language constructs.
In terms of recognizing devices, this capability is implemented through the push-
down store, which is used to extend finite automata in order to make the resulting
model, namely pushdown automata, equivalent to context-free grammars.

To emphasize this capability, in one of his pioneering papers, Chomsky inves-
tigated the self-embedding property [4]: a context-free grammar is self-embedding
if it contains a variable A which, in some sentential form, is able to reproduce
itself surrounded by two nonempty strings α and β, in symbols A

�==⇒ αAβ.
Roughly speaking, this means that the variable A is “truly” recursive. He proved
that, among all context-free grammars, only self-embedding ones can generate
nonregular languages. Hence, non-self-embedding grammars are no more power-
ful than finite automata.

The relationships between the description sizes of non-self-embedding gram-
mars and finite automata have been investigated in [1,15]. In the worst case,
the size of a deterministic automaton equivalent to a given non-self-embedding
grammar is doubly exponential in the size of the grammar. The gap reduces to
a simple exponential in the case of nondeterministic automata.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 186–197, 2018.
https://doi.org/10.1007/978-3-319-94812-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_16&domain=pdf

NSE Grammars, Constant-Height PDAs, Limited Automata 187

Other formal models characterizing the class of regular languages and exhibit-
ing gaps of the same order with respect to deterministic and nondeterministic
automata have been investigated in the literature. Two of them are constant-
height pushdown automata and 1-limited automata. The aim of this paper is to
study the size relationships between non-self-embedding grammars, constant-
height pushdown automata, and 1-limited automata, three models that restrict
context-free acceptors to the level of regular recognizers.

Constant-height pushdown automata are standard nondeterministic push-
down automata where the amount of available pushdown store is fixed. Hence,
the number of their possible configurations is finite. This implies that they
are no more powerful than finite automata. The exponential and double expo-
nential gaps from constant-height pushdown automata to nondeterministic and
deterministic automata have been proved in [5]. Furthermore, in [2] the authors
showed the interesting result that also the gap from nondeterministic to deter-
ministic constant-height pushdown automata is double exponential. We can
observe that both non-self-embedding grammars and constant-height pushdown
automata are restrictions of the corresponding general models, where true recur-
sions are not possible. In the first part of the paper we compare these two models
by proving that they are polynomially related in size.

In the second part, we turn our attention to the size relationships between 1-
limited automata and non-self-embedding grammars. For each integer d > 0, a d-
limited automaton is a one-tape nondeterminstic Turing machine which is allowed
to rewrite the content of each tape cell only in the first d visits. These models have
been introduced by Hibbard in 1967, who proved that for each d ≥ 2 they char-
acterize context-free languages [6]. This yields a hierarchy of acceptors, merely
obtained by restricting one-tape Turing machines, corresponding to Chomsky’s
classification. Furthermore, as shown in [16, Theorem 12.1], 1-limited automata
are equivalent to finite automata. This equivalence has been investigated from the
descriptional complexity point of view in [13], by proving exponential and double
exponential gaps from 1-limited automata to nondeterministic and deterministic
finite automata, respectively. Our main result is a construction transforming each
non-self-embedding grammar into a 1-limited automaton of polynomial size. For
the converse transformation, we show that an exponential size is necessary. Indeed,
we prove a stronger result by exhibiting, for each n > 0, a language Ln accepted by
a two-way deterministic finite automaton with O(n) states, which requires expo-
nentially many states to be accepted even by an unrestricted pushdown automa-
ton. From the cost of the conversion of 1-limited automata into nondeterministic
automata, it turns out that for the conversion of 1-limited automata into non-self-
embedding grammars an exponential size is also sufficient. Figure 1 summarizes
the main results discussed in the paper.

For brevity reasons some proofs are omitted in this version of the paper.

2 Preliminaries

Given a set S, we denote by #S its cardinality, and by 2S the family of all its
subsets. We assume the reader familiar with notions from formal languages and

188 B. Guillon et al.

h 1

?

Fig. 1. Some bounds discussed in the paper. Dotted arrows denote trivial relationships,
while the dashed arrow indicates the famous Sakoda and Sipser’s question. The expo-
nential cost of the simulation of h-pdas by 2nfas is discussed at the end of Sect. 4.2.

automata theory, in particular with the fundamental variants of finite automata
(1dfas, 1nfas, 2dfas, 2nfas, for short, where 1 and 2 mean one-way and two-
way, respectively, and d and n mean deterministic and nondeterministic, respec-
tively). For further details see, e.g., [7]. The empty word is denoted by ε. Given
a word u ∈ Σ∗, we denote by |u| its length. The set of all nonempty words over
Σ is denoted by Σ+. For two-way devices operating on a tape, we use the special
symbols � and � not belonging to the input alphabet, respectively called the
left and the right endmarkers, that surround the input word.

Given a context-free grammar (cfg, for short) G = 〈V,Σ, P, S〉, we denote by
L(G) the language generated by it. The relations ⇒ and �==⇒ are defined in the
usual way. The production graph of G is a directed graph which has V as vertex
set and contains an edge from A to B if and only if there is a production A →
αBβ in P , for A,B ∈ V and some α, β ∈ (V ∪ Σ)∗. The strongly connected
components of the production graph induce a partial order on variables, namely,
a variable A is smaller than B if there exist a path from A to B and no path
from B to A.

Definition 1. Let G = 〈V,Σ, P, S〉 be a context-free grammar. A variable A ∈ V
is said to be self-embedded when there are two strings α, β ∈ (V ∪ Σ)+ such
that A

�==⇒ αAβ. The grammar G is self-embedding if it contains at least one
self-embedded variable, otherwise G is non-self-embedding (nse, for short).

Chomsky proved that nse grammars generate only regular languages, i.e.,
they are no more powerful than finite automata [3,4]. As shown in [1], given a
grammar G it is possible to decide in polynomial time whether or not it is nse.

A pushdown automaton (pda) is usually obtained from a nondeterministic
finite automaton by adding a pushdown store, containing symbols from a push-
down alphabet Γ . Following [2,5], we consider pdas in the following form, where
the transitions manipulating the pushdown store are clearly distinguished from
those reading the input tape. Furthermore, we consider a restriction of the model
in which the capacity of the pushdown store is bounded by some constant h ∈ N.

NSE Grammars, Constant-Height PDAs, Limited Automata 189

Definition 2. For h ∈ N, a pushdown automaton of height h (h-pda) is a tuple
A = 〈Q,Σ, Γ, δ, q0, F 〉 where Q is the set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, Σ is the input alphabet, Γ is the pushdown
alphabet, and δ ⊆ Q × ({ε} ∪ Σ ∪ {−,+}Γ) × Q is the transition relation with
the following meaning:

– (p, ε, q) ∈ δ: A can reach the state q from the state p without using the input
tape nor the pushdown store (these transitions are also called ε-moves);

– (p, a, q) ∈ δ: A can reach the state q from the state p by reading the symbol a
from the input but without using the pushdown store;

– (p,−X, q) ∈ δ: if the symbol on the top of the pushdown store is X, A can
reach the state q from the state p by popping off X, not using the input tape;

– (p,+X, q) ∈ δ: if the number of symbols contained in the pushdown store is
less than h, A can reach the state q from the state p by pushing X on the
pushdown store, without using the input tape.

The model accepts an input word w ∈ Σ∗ if, starting from the initial state q0
with an empty pushdown store, it can eventually reach an accepting state qf ∈ F ,
after having read all the input symbols.

Without the restriction on the pushdown height, the model is equivalent to
classical pushdown automata, while preserving comparable size (namely, trans-
lations both ways have at most polynomial costs, see [2]). By contrast, 0-pdas
are exactly 1nfas, since they can never push symbols.

One-limited automata (1-las, for short) extend two-way finite automata by
providing the ability to overwrite each tape cell at its first visit by the head. This
extension does not increase the expressiveness of the model. However, they can
be significantly smaller than equivalent finite automata. For instance, the size
gaps from 1-las to 1nfas and 1dfas are exponential and double exponential,
respectively [13], while 2nfas size with respect to deterministic 1-las even in
the unary case, as shown in [9] and improved in [14].

Definition 3. A 1-limited automaton is a tuple A = 〈Q,Σ, Γ, δ, q0, F 〉, where
Q,Σ, q0, F are defined as for 2nfas, Γ is a finite working alphabet such that
Σ ⊆ Γ , and δ : Q × Γ�� → 2Q×Γ��×{−1,+1} is the transition function, where
Γ�� = Γ ∪ {�,�} with �,� /∈ Γ .

In one move, according to δ and to the current state, A reads a symbol from
the tape, changes its state, replaces the symbol just read by a new symbol,
and moves its head to one position backward or forward. However, replacing
symbols is subject to some restrictions, which, essentially, allow to modify the
content of a cell during the first visit only. Formally, symbols from Σ shall
be replaced by symbols from Γ \ Σ, while symbols from Γ�� \ Σ are never
overwritten. In particular, at any time, both special symbols � and � occur
exactly once on the tape at the respective left and right boundaries. Acceptance
for 1-las can be defined in several ways, for instance we can say that a 1-la A
accepts an input word if, starting from the left endmarker in the initial state, a
computation eventually reaches the right endmarker in an accepting state. The
language accepted by A is denoted by L(A).

190 B. Guillon et al.

For each model under consideration, we evaluate its size as the total number
of symbols used to define it. Hence, as a measure for the size of a grammar
〈V,Σ, P, S〉, we consider the total number of symbols used to specify it, defined
as

∑
(A→α)∈P (2+ |α|), cf. [8]. Since we consider simulations between models, we

can suppose that the input alphabet is fixed. Fixed a constant h ≥ 0, the size of
an h-pda 〈Q,Σ, Γ, δ, q0, F 〉 is given by a polynomial in #Q and #Γ . The size of
an n-state nfa (resp., dfa) is quadratic (resp., linear) in n. Finally, the size of
a 1-la 〈Q,Σ, Γ, δ, q0, F 〉 is given by a polynomial in #Q and #Γ .

3 NSE Grammars Versus h-PDAs

We prove here that nse grammars and h-pdas are polynomially related in size.

3.1 From NSE Grammars to h-PDAs

In [1], the authors showed that nse grammars admit a particular form based on
a decomposition into finitely many simpler grammars, that will be now recalled.

First of all, we remind the reader that a grammar is said right-linear (resp.,
left-linear), if each production is either of the form A → wB (resp., A → Bw),
or of the form A → w, for some A,B ∈ V and w ∈ Σ∗. It is well known that
right- or left-linear grammars generate exactly the class of regular languages.

Given two cfgs G1 = 〈V1, Σ1, P1, S1〉 and G2 = 〈V2, Σ2, P2, S2〉 with V1 ∩
V2 = ∅, the ⊕-composition of G1 and G2 is the grammar G1 ⊕ G2 = 〈V,Σ, P, S〉,
where V = V1∪V2, Σ = (Σ1 \ V2) ∪ Σ2, P = P1∪P2, and S = S1. Intuitively, the
grammar G1⊕G2 generates all the strings which can be obtained by replacing in
any string w ∈ L (G1) each symbol A ∈ Σ1 ∩ V2 with some string derived in G2

from the variable A (notice that the definition of G1 ⊕ G2 does not depend on
the start symbol S2 of G2). The ⊕-composition is associative and preserves the
property of being non-self-embedding [1]. The decomposition presented in the
following result was obtained in [1], while its size is discussed in [15].

Theorem 1. For each nse grammar G there exist g grammars G1, G2, . . . , Gg

such that G = G1 ⊕ G2 ⊕ · · · ⊕ Gg, where each Gi is either left- or right-linear.
Furthermore the sum of sizes of Gi’s is linear in the size of G.

Studying the relationships between nse grammars and pdas, in [1] the
authors claimed that from any nse grammar in canonical normal form (namely
with productions A → aγ or A → γ, A ∈ V , a ∈ Σ and γ ∈ V ∗), by applying a
standard transformation, it is possible to obtain an equivalent constant-height
pda. Unfortunately, the argument fails when the grammar contains left-recursive
derivations, i.e., derivations of the form A

�==⇒ Aγ, with γ = ε. For them, the
resulting pda has computations with arbitrarily high pushdown stores. This
problem can be fixed by replacing each left-linear grammar corresponding to a
strongly connected component of the production graph of the given nse grammar
by a set of right-linear grammars.

NSE Grammars, Constant-Height PDAs, Limited Automata 191

Theorem 2. Each nse grammar G = 〈V,Σ, P, S〉 can be converted into an
h-pda A with both h and the size of A polynomial in the size of G.

Proof (sketch). With a polynomial increase of the size, G = G1 ⊕ G2 ⊕ · · · ⊕ Gg,
where each Gi is right-linear. As in the construction in [1], we can prove that if
a variable A ∈ Vi derives a string xα by a leftmost derivation, where x is the
longest prefix of xα consisting only of terminal symbols, then |α| ≤ K(g − i)+1,
where K is the maximum length of production right-hand sides.

From the grammar G, by a standard construction, we obtain a pda M which
simulates any leftmost derivation of G by replacing each variable A occurring
on the top of the pushdown by the right-hand side of a production A → α,
and by popping off the pushdown any terminal symbol occurring on the top
and matching the next input symbol (for details see, e.g., [7]). After consuming
an input prefix y, the pushdown store of M can contain any string zα such
that S

�==⇒ yzα by a leftmost derivation, yz is the longest prefix of yzα consisting
only of terminal symbols, and z is a suitable factor of the string which was most
recently pushed on the pushdown. Since |z| ≤ K and according to the first part
of the proof |α| ≤ K(g−1)+1, we conclude that the pushdown height is bounded
by Kg + 1. Hence, M is a constant-height pda. ��

3.2 From h-PDAs to NSE Grammars

We first show that, modulo acceptance of the empty word, with only a polynomial
increase in the size we can transform any h-pda in a special form.

Lemma 1. For each h-pda A = 〈Q,Σ, Γ, δ, q0, F 〉 there exists an h-pda A′ =
〈Q′, Σ, Γ ′, δ′, q−, {q+}〉 and a mapping h̃ : Γ ′ → {1, . . .} such that:

– L(A′) = L(A) \ {ε};
– A′ has polynomial size with respect to A;
– A′ accepts with empty pushdown;
– each symbol X ∈ Γ ′ can appear on the pushdown only at height h̃(X);
– every nonempty computation path of A′ starting and ending with the same

symbol X on the top of the pushdown, and never popping off X in the mean-
time, consumes some input letters.

From an h-pda A = 〈Q,Σ, Γ, δ, q−, {q+}〉 in the form of Lemma 1, we define
a grammar G = 〈V,Σ, P, S〉, where V consists of an initial symbol S and of
triples of the form [qAp] and 〈qAp〉, for q, p ∈ Q, A ∈ Γ ∪ {⊥}, with the new
symbol ⊥ /∈ Γ denoting the “missed top” in the empty pushdown store. The
set P consists of the following productions:

(i) 〈pAq〉 → a, for (p, a, q) ∈ δ
(ii) 〈pAq〉 → [p′Xq′], for (p,+X, p′), (q′,−X, q) ∈ δ, i.e., push and pop of a

same symbol X
(iii) [pAq] → 〈pAr〉[rAq], for p, q, r ∈ Q, A ∈ Γ

192 B. Guillon et al.

(iv) [pAq] → 〈pAq〉, for p, q ∈ Q, A ∈ Γ
(v) S → [q−⊥q+].

The above definition is derived from the classical construction of cfgs from pdas,
introducing two types of triples in order to obtain an nse grammar. We can prove
that the grammar G generates L(A) and has size polynomial in #Q and #Γ ,
so obtaining:

Theorem 3. For each h-pda there exists an equivalent nse grammar of poly-
nomial size.

By applying the conversion in Theorem 2, the above construction, and a fur-
ther standard transformation, we obtain that each nse grammar can be trans-
formed into a particular form, by paying a polynomial size increase.

Corollary 1. Each nse grammar is equivalent (modulo the empty word) to a
grammar in Chomsky normal form of polynomial size in which, for each pro-
duction X → Y Z, Y is greater than X according to the order induced by the
production graph.

4 NSE Grammars versus 1-LAs

In this section, we compare the sizes of nse grammars and of h-pdas with the
size of equivalent 1-limited automata. We prove that for each nse grammar there
exists an equivalent 1-la of polynomial size. As a consequence, the simulation
of constant-height pdas by 1-las is polynomial in size.

Concerning the converse transformation, we prove that 1-las can be more
succinct than nse grammars and constant-height pdas. Actually, we prove a
stronger result showing the existence of a family (Ln)n>0 of languages such that
each Ln is accepted by a 2dfa with O(n) states, while each Chomsky normal
form grammar or pda accepting Ln would require an exponential size in n.

4.1 From NSE Grammars to 1-LAs

We start from an nse grammar G = 〈V,Σ, P, S〉 in the form given by Corollary
1. Thus, there exists a constant c ≤ #V , such that every derivation tree of G
has the following properties:

– Each internal node is either saturated (i.e., it has exactly two children) and
its children are labeled by some variables, or it has a unique child which is
labeled by a terminal symbol.

– Along every path, the number of left turns (i.e., the number of nodes which
are left child of some node) is bounded by c.

These properties allow us to compress the representation of a derivation tree
generating a word w of length m into a word u of length m over the alphabet
Γ = Σ × V × {0, . . . , c}. The compression is non-injective, thus u may encode
different derivation trees. However, each of these trees should generate the same

NSE Grammars, Constant-Height PDAs, Limited Automata 193

word w, which is the projection of u over Σ. We now describe the compression,
which is illustrated in Fig. 2. Given a derivation tree T of G, we inductively index
its internal nodes according to the following rules:

– the root of T , labeled by the start symbol S, has index 0;
– the left child of a node with index i, has index i + 1;
– the right child of a node with index i, has index i.

In other words, the index of an internal node indicates the number of left turns
along the path from the root to it. By assumption this number is bounded by c.

S, 0

A, 1

C, 2

b

(b, C, 2)

B, 1

C, 2

b

(b, C, 2)

A, 1

a

(a,A, 1)

S, 0

B, 1

C, 2

b

(b, C, 2)

A, 1

a

(a,B, 1)

C, 0

b

(b, S, 0)µ(T) =

w =

Fig. 2. An example of derivation tree

For a leaf 	 of the tree labeled by a symbol a ∈ Σ, we define σ� = (a,X, i) ∈ Γ
where (X, i) is the indexed label of the deepest ancestor of 	 which is not a right
child of any node (such nodes have square shape in Fig. 2). The compression of
the derivation tree T is defined as the word μ(T) = σ�1 · · · σ�m where 	1, . . . , 	m

are the leaves of T taken from left to right.
We now show how to check that a word u ∈ Γ+ is the compression of

some derivation tree. To this end, we highlight the recursive structure of com-
pressions. We first define the three natural projections over Γ : for a symbol
σ = (a,X, i) ∈ Γ , we set letter(σ) = a, var(σ) = X and index(σ) = i.
We fix the convention index(�) = index(�) = −1. For i = 0, . . . , c, we
define Γ>i = {σ ∈ Γ | index(σ) > i}, the restriction of Γ to symbols of index
greater than i.

A word u ∈ Γ+ is a valid compression of level i, 0 ≤ i ≤ c, if, on the one
hand, u = w · (a,X, i) for some w ∈ Γ ∗

>i, a ∈ Σ and X ∈ V , and, on the other
hand, one of the following two cases holds:

1. w = ε and X → a belongs to P ;
2. there exist Y,Z ∈ V , b ∈ Σ, and v, w′ ∈ Γ ∗ such that:

(a) X → Y Z belongs to P ;
(b) w = v(b, Y, i + 1)w′

194 B. Guillon et al.

(c) v(b, Y, i + 1) is a valid compression of level i + 1;
(d) w′(a, Z, i) is a valid compression of level i.

In particular, valid compressions of level c are exactly the single-letter words
(a,X, c) such that X → a ∈ P . Observe that Item 2c implies v ∈ Γ ∗

>i+1 and
therefore, Y and b are read from the leftmost symbol of index i + 1 of u. Hence,
in order to reconstruct the tree, only the variables “Z’s” should be guessed
(these variables correspond indeed to nodes that are right child of some node,
drawn with circle shape on Fig. 2, which are therefore not represented in the
compression of the tree). By construction, we have:

Lemma 2. A word u ∈ Γ+ is a valid compression of level 0 if and only if
u = μ(T) for some derivation tree T of G. Furthermore, T generates a word
w ∈ Σ+ which equals the projection of u over Σ∗.

Proof (sketch). The result can be proved in a more general statement concerning
any level i. Observe that Items 1 and 2a check that the tree recovered from a
word u is consistent with the productions of G, and that Items 2c and 2d are
obtained by induction on the left and right subtrees, respectively. Conversely, a
correct derivation tree can be recovered from its (valid) compression. ��

In every compression μ(T) of some derivation tree T , and for every level
index i, a valid compression of level i is a factor delimited to the left, by a
symbol of index less than or equal to i (not included in the factor), and to
the right, by the symbol of index i corresponding to its root node (included in
the factor). This allows a reading head to locally detect the boundaries of such
a factor of an input. This also implies, that the index of a symbol preceding
a symbol of index i, is always less than or equal to i + 1. For instance, the
compression illustrated in Fig. 2 admits two valid compressions of level 1, namely
the factors (b, C, 2)(b, C, 2)(a,A, 1) and (b, C, 2)(a,B, 1) which correspond to the
subtree rooted in the square-shape nodes (A, 1) and (B, 1), respectively.

We now describe how a 2nfa A can check that a word u ∈ Γ+ is a valid
compression. First of all, the device checks that u belongs to Γ ∗

>0(a, S, 0) for
some letter a ∈ Σ. Then, it iteratively verifies that every maximal factor of
the form Γ ∗

>i(a,X, i) is a valid compression of level i. In order to do this, once
the verification has been performed for the level i + 1, it just needs to check
that the letter before (a,X, i) is of index at most i + 1, and that there is some
consistency between letters of index i + 1 and (a,X, i) of such maximal word,
as follows: sweeping these letters (a1, Y1, i + 1), . . . , (ak, Yk, i + 1) from left to
right and setting Z0 = X, the 2nfa sequentially guesses letters Z1, . . . , Zk such
that Zi−1 → YiZi ∈ P for i = 1, . . . , k, and Zk → a ∈ P . In other words, the
device implements the above-given inductive definition of valid compressions,
with the difference that it tests each subtree of level from c downto 0 instead of
performing recursive calls. This allows to store only one guessed variable Z at
each time.

The 2nfa A implements a collection of nondeterministic subroutines, the
top-level of which is the procedure CheckTree. In each subroutine, σ denotes

NSE Grammars, Constant-Height PDAs, Limited Automata 195

Procedure CheckTree
/* start with the head on the left endmarker */

1 CheckZeroes

2 for i ← c downto 0 do
3 move the head to the right until reaching the next symbol with index i
4 while index(σ) = i do
5 CheckSubtree(i)
6 move the head to the right until reaching the next symbol with index i

7 move the head to the left until reaching the left endmarker

8 Accept

Procedure CheckSubtree(i)

/* start with the head scanning a symbol of index i */

9 C ← var(σ)
10 repeat move the head to the left until index(σ) ≤ i
11 SelectNext(i + 1)
12 while index(σ) �= i do
13 guess Z
14 if C → Y Z �∈ P , where Y = var(σ) then Reject
15 C ← Z
16 SelectNext(i + 1)

17 if C → a �∈ P , where a = letter(σ) then Reject

the symbol currently scanned by the head, which is automatically updated at
each head move. Moreover, the special instruction Reject causes the whole
computation to halt and reject.

As initial phase, a subroutine CheckZeroes checks that the input word
belongs to Γ ∗

>0 · (a, S, 0) for some letter a ∈ Σ. Then, A checks the validity
of each compression of each level from c downto 0 (Lines 2 to 7). This verifica-
tion uses the procedure CheckSubtree (Line 5).

This latter subroutine is the direct implementation of the inductive definition
of valid compressions, where the recursive call to incremented level (Item 2c) is
omitted (the validity of these sub-compressions have already been checked by
previous call to CheckSubtree). It uses the subroutine SelectNext to locate the
leftmost symbol of index i + 1 in the factor under consideration, if any, or to
check if the factor has length 1, otherwise, thus checking Item 2b (or, partially,
Item 1). Items 1 and 2a correspond to Lines 17 and 14, respectively, where C
contains the variable Z (Line 15) which is initially set to X, the variable label of
the root of the subtree (Line 9), thus allowing to verify Item 2d (Lines 12 to 16).

To summarize, we obtained the following result.

Lemma 3. The language of valid compressions of derivation trees of G is rec-
ognized by a 2nfa which uses O(#V 2) states.

196 B. Guillon et al.

Procedure SelectNext(j)

18 move the head to the right
19 if index(σ) �= j − 1 then
20 while index(σ) > j do move the head to the right
21 if index(σ) �= j then Reject

We are now ready to state our main result.

Theorem 4. For every nse grammar G, there exist a 1-state letter-to-letter
nondeterministic transducer T and a 2nfa A of polynomial size, such that a
word w is generated by G if and only if A accepts an image u of w by T . As a
consequence, G can be transformed into a 1-la of polynomial size.

Proof. From an nse grammar G, we obtain an nse grammar G′ over Σ of poly-
nomial size in the form given by Corollary 1, such that L (G′) = L (G) \ {ε}.
The transducer T replaces each letter a ∈ Σ by a symbol (a,X, i) for some
variable X of G′ and some index i ≤ #V . Finally, we build A, using Lemma
3, which recognizes an output of T , if and only if its pre-image was generated
by G′, by Lemma 2. In case ε ∈ L (G), we modify A in order to accept ε. ��

4.2 From 2DFAs to PDAs: An Exponential Gap

In this section, we exhibit an infinite family (Ln)n≥0 of languages over the alpha-
bet {0, 1}, such that each Ln is recognized by a 1-la with size polynomial in n,
but requires an exponential size in order to be recognized by any h-pda. We
can actually prove a stronger result, since each Ln is recognized by a 2dfa (and
even by a rotating deterministic automaton, in which all passes over the input
are from left to right) of linear size, while any grammar in Chomsky normal
form generating Ln requires an exponential number of variables. As a conse-
quence, every pda recognizing Ln requires an exponential size. The proof of
this lower bound is obtained by using the interchange lemma for context-free
languages [11].

Theorem 5. For each n > 0, let Ln be the language of the powers of any string
of length n over {0,1}, i.e., Ln =

{
uk | u ∈ {0, 1}n

, k ≥ 0
}
. Then:

– Ln is accepted by a 2dfa of size O(n);
– each context-free grammar in Chomsky normal form needs exponentially many

variables in n to generate Ln;
– the size of any pda accepting Ln is at least exponential in n.

Corollary 2. The size cost of the conversion of 1-las into nse grammars and
h-pdas is exponential.

Proof. The lower bound derives from Theorem 5. For the upper bound, in [13]
it was proved that each 1-la can be transformed into a 1nfa of exponential size
from which, by a standard construction, we can obtain a regular (and, so, nse)
grammar, without increasing the size asymptotically. ��

NSE Grammars, Constant-Height PDAs, Limited Automata 197

In [2], the question of the cost of the conversion of deterministic h-pdas
into 1nfas was raised. To this regard, we observe that the language (a2n)

∗
is

accepted by a deterministic h-pda of size polynomial in n for large enough h (see,
e.g., [12]) but, by a standard pumping argument, it requires at least 2n states to
be accepted by 1nfas. Actually, as a consequence of state lower bound presented
in [10], 2n states are also necessary to accept it on each 2nfa. Considering
Theorem 5, we can conclude that both simulations from two-way automata to
h-pdas and from h-pdas to two-way automata cost at least exponential.

References

1. Anselmo, M., Giammarresi, D., Varricchio, S.: Finite automata and non-self-
embedding grammars. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002.
LNCS, vol. 2608, pp. 47–56. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-44977-9 4

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. Inf. Comput. 237, 257–267 (2014)

3. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167
(1959)

4. Chomsky, N.: A note on phrase structure grammars. Inf. Control 2(4), 393–395
(1959)

5. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208(4), 385–394
(2010)

6. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2),
196–238 (1967)

7. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Addison-Wesley-Longman, Reading (2001)

8. Kelemenová, A.: Complexity of normal form grammars. Theor. Comput. Sci. 28,
299–314 (1984)

9. Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19225-3 13

10. Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary lan-
guages. J. Automata Lang. Comb. 5(3), 287–300 (2000)

11. Ogden, W.F., Ross, R.J., Winklmann, K.: An “interchange lemma” for context-free
languages. SIAM J. Comput. 14(2), 410–415 (1985)

12. Pighizzini, G.: Deterministic pushdown automata and unary languages. Int. J.
Found. Comput. Sci. 20(4), 629–645 (2009)

13. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25(7), 897–916 (2014)

14. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. In: Charlier,
É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 308–319. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62809-7 23

15. Pighizzini, G., Prigioniero, L.: Non-self-embedding grammars and descriptional
complexity. NCMA 2017, 197–209 (2017)

16. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

https://doi.org/10.1007/3-540-44977-9_4
https://doi.org/10.1007/3-540-44977-9_4
https://doi.org/10.1007/978-3-319-19225-3_13
https://doi.org/10.1007/978-3-319-62809-7_23

The Ranges of Accepting State
Complexities of Languages Resulting

From Some Operations

Michal Hospodár1 and Markus Holzer2(B)

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

Abstract. We examine the accepting state complexity, i.e., the minimal
number of accepting states of deterministic finite automata (DFAs) for
languages resulting from unary and binary operations on languages with
accepting state complexity given as a parameter. This is continuation
of the work of [J. Dassow: On the number of accepting states of finite
automata, J. Autom., Lang. Comb., 21, 2016]. We solve most of the open
problems mentioned thereof. In particular, we consider the operations of
intersection, symmetric difference, right and left quotients, reversal, and
permutation (on finite languages), where we obtain precise ranges of the
accepting state complexities.

1 Introduction

The descriptional complexity of regular languages, to be more precise the state
complexity of deterministic and nondeterministic finite automata and regularity
preserving operations thereof, is well understood. While the deterministic state
complexity of a regular language can be read of from the minimal deterministic
finite automaton (DFA) for the language in question, it is well-known that this
is not the case for the nondeterministic state complexity. Moreover, it is folklore,
that the deterministic and nondeterministic state complexity forms a strict infi-
nite hierarchy w.r.t. the number of states. Yet another well known result is that
for DFAs the number of accepting states is a host for an infinite strict hierarchy,
while for nondeterministic finite automata (NFAs) two accepting states suffice,
and if λ-transitions (spontaneous transitions) are allowed for NFAs even a sin-
gle accepting state is enough to accept every regular language. But what else

M. Hospodár—Research supported by VEGA grant 2/0084/15 and grant APVV-15-
0091. This work was conducted during a research visit at the Institut für Informatik,
Universität Giessen, Germany, funded by the DAAD short-term grant ID 57314022.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 198–210, 2018.
https://doi.org/10.1007/978-3-319-94812-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_17&domain=pdf

The Ranges of Accepting State Complexities of Languages 199

can be said about the number of accepting states for finite automata, in par-
ticular, when regularity preserving operations such as, e.g., Boolean operations,
concatenation, Kleene star, etc., are applied to the finite state devices?

A partial answer to these questions was recently given in [3]. There the accept-
ing state complexity of DFAs and NFAs was introduced and investigated in
detail. To be more precise, the (deterministic) accepting state complexity of a
regular language L is defined as the minimal number of accepting states needed
for a DFA to accept L. Analogously one defines the nondeterministic accepting
state complexity of a regular language. Similarly as for ordinary deterministic
state complexity the deterministic accepting state complexity of a regular lan-
guage can be determined from the minimal DFA for the language under consid-
eration. On the other hand, the nondeterministic accepting state complexity is
trivial as already mentioned above. The major contribution of [3] is the investi-
gation of the deterministic accepting state complexity or for short the accepting
state complexity w.r.t. the operations of complementation, union, concatenation,
set difference, and Kleene star, which are summarized on the left in Table 1—
a number within the range is magic if it cannot be produced by the operation
from any K and L with the appropriate complexities. Hence, the quest to under-
stand the accepting state complexity of operations can be seen as a variant of
the magic number problem—see, e.g., [5,8,10], but now for the descriptional
complexity measure accepting states instead of ordinary states.

Table 1. Results obtained in [3] (left) and the results of this paper (right). It is assumed
that K and L have accepting state complexity m and n, respectively, for m, n ≥ 1.
Then the range indicates the obtainable accepting state complexities of the operation
under consideration and the status of the magic number problem refers to whether
there are magic numbers in the given range or not.

Op. Range Magic num. |Σ|
Σ∗ \ L N ∪ { 0 | n = 1 } no 1

K ∪ L N no 1

KL N no 1

K \ L {0} ∪ N no 1

L∗
N no 1

K ∩ L [0, mn] ?

Op. Range Magic num. |Σ|
K ∩ L [0, mn] no 2

K ⊕ L {0} ∪ N no 1

KL−1 {0} ∪ N no 1

L−1K {0} ∪ N no 1

LR
N no 2

per(L) N \ { 1 | n ≥ 2 } no 2

This is the starting point of our investigation. We study the accepting state
complexity of the operations intersection, symmetric difference, right and left
quotients, reversal, and permutation. The latter operation is only considered
on finite languages, since regular languages are not closed under permutation.
The obtained results are summarized on the right of Table 1. We solve most open

200 M. Hospodár and M. Holzer

problems from [3]. It is worth mentioning that intersection has an accepting state
complexity bounded from above and no magic numbers within this interval.

2 Preliminaries

We recall some definitions on finite automata as contained in [6]. Let Σ∗ denote
the set of all words over the finite alphabet Σ. The empty word is denoted by λ.
Further, we denote the set {i, i + 1, . . . , j} by [i, j], if i and j are integers.

A nondeterministic finite automaton (NNFA) is a 5-tuple A = (Q,Σ, δ, I, F),
where Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q×Σ → 2Q

is the transition function which is naturally extended to the domain 2Q × Σ∗,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of accepting (or final) states.
We say that (p, a, q) is a transition in A if q ∈ δ(p, a). If (p, a, q) is a transition
in A, then we say that the state q has an ingoing transition, and the state p has
an outgoing transition. We sometimes write p

w−→ q, if q ∈ δ(p,w). The language
accepted by A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅ }. If |I| ≥ 2, we say
that A is a nondeterministic finite automaton with nondeterministic choice of
initial state (so we use the abbreviation NNFA, cf. [15]). Otherwise, if |I| = 1,
we say that A is a nondeterministic finite automaton (NFA). In this case we
simple A = (Q,Σ, δ, s, F) instead of A = (Q,Σ, δ, {s}, F). Moreover, an NFA A
is a (partial) deterministic finite automaton (DFA), if |δ(q, a)| ≤ 1, for each q
in Q and each a in Σ, and it is a complete DFA, if |δ(q, a)| = 1, for each q in Q
and each a in Σ.

Every NNFA A = (Q,Σ, δ, I, F) can be converted to an equivalent complete
DFA D(A) = (2Q, Σ, δ, I, {S ∈ 2Q | S ∩ F �= ∅ }), where δ(S, a) =

⋃
q∈S δ(q, a),

for S ∈ 2Q and a ∈ Σ. We call the DFA D(A) the subset automaton of A.
The state complexity of a regular language L, referred to as sc(L), is the

smallest number of states in any complete DFA accepting L. The state complexity
of a regular operation is the number of states that are sufficient and necessary
in the worst case for a DFA to accept the language resulting from the operation,
considered as a function of the number of states of DFAs for the given operands.
Similarly we define the accepting state complexity of a language L by

asc(L) = min{n | L is accepted by a DFA with n accepting states }.

An automaton is minimal (a-minimal, respectively) if it admits no smaller
equivalent automaton w.r.t. the number of states (accepting states, respectively).
For DFAs both properties can be easily verified. Minimality can be shown if all
states are reachable from the initial state and all states are pairwise inequivalent.
For a-minimality the following result shown in [3, Theorem 1] applies.

Theorem 1. Let L be a language accepted by a minimal DFA A. Then the
number of accepting states of A is equal to asc(L).

Note that a-minimality can be shown if all states are reachable from the
initial state and all accepting states are pairwise inequivalent. In fact, we do not
need to prove distinguishability of all (including rejecting) states.

The Ranges of Accepting State Complexities of Languages 201

In order to characterize the behaviour of complexities under operations we
introduce the following notation: for c ∈ {sc, asc}, a k-ary regularity preserving
operation ◦ on languages, and natural numbers n1, n2, . . . , nk, we define

gc
◦(n1, n2, . . . , nk)

as the set of all integers α such that there are k regular languages L1, L2, . . . , Lk

with c(Li) = ni, for 1 ≤ i ≤ k, and c(◦(L1, L2, . . . , Lk)) = α. In case we
only consider unary (finite, respectively) languages L1, L2, . . . , Lk we write gc,u

◦
(gc,f

◦ , respectively) instead. Let Ic
◦ be the smallest integer interval contain-

ing all elements from the set gc
◦(n1, n2, . . . , nk). Then any element from

Ic
◦ \ gc

◦(n1, n2, . . . , nk) is said to be a magic number for the operation ◦ with
respect to the complexities n1, n2, . . . , nk. This notion was introduced in [8,9].

The nondeterministic accepting state complexity of a language L, denoted
by nasc(L), refers to the minimal number of accepting states in any NFA for L. It
was shown in [3] that for every nonempty regular language L we have nasc(L) =
1, if λ /∈ L, but nasc(L) ≤ 2, if λ ∈ L. Thus, the nondeterministic accepting
state complexity is not too interesting. Nevertheless, it was left open to give a
sufficient and necessary condition for a language L such that nasc(L) = 1 and
λ ∈ L. This problem was solved in [11].

Lemma 2. A language L satisfies λ ∈ L and nasc(L) = 1 if and only if L = L∗.

Proof. If λ ∈ L and nasc(L) = 1, then there is an NFA for L in which the single
accepting state is the initial state. Therefore L = L∗.

Conversely, let A = (Q,Σ, δ, s, F) be an NFA accepting the set L. If L = L∗,
then λ ∈ L, so the initial state s of A is accepting. For every accepting state qf

in F \ {s} and every transition (q, a, qf) we add the transition (q, a, s) to A and
make the state qf rejecting. Since L = L∗, the resulting automaton, which has
exactly one accepting state, accepts L. It follows that nasc(L) = 1. ��

3 Results

We investigate the accepting state complexity of various regularity preserving
language operations such as, e.g., intersection, symmetric difference, right and
left quotients, reversal, and permutation on finite languages. We start with the
accepting state complexity of intersection solving an open problem stated in [3].

3.1 Intersection

For two DFAs A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) we apply
the standard cross-product construction in order to construct an automaton for
the intersection of L(A) and L(B). Thus, define C = (QC , Σ, δC , sC , FC) with
QC = QA×QB , sC = (qA, qB), and FC = FA×FB . The transition function is set
to δC((p, q), a) = (δA(p, a), δB(q, a)). Thus, we have L(C) = L(A) ∩ L(B). If A
is an m-state and B an n-state DFA then the above construction results in an

202 M. Hospodár and M. Holzer

mn-state DFA C. In [16] it was shown that this upper bound is necessary in the
worst case, that is, it can be reached by two appropriately chosen minimal DFAs
with m and n states, respectively. Moreover, in [7] it was shown that there are no
magic numbers for intersection on a binary alphabet. This is a direct consequence
of the theorem that there are no magic numbers for union, De Morgan’s law, and
the fact the complementation preserves the state complexity. Thus, for every α
with 1 ≤ α ≤ mn there are minimal m-state and n-state DFAs such that the
intersection of the languages described by these automata requires a minimal
DFA with exactly α states.

Now let us turn our attention to the accepting state complexity of intersec-
tion. The next theorem solves an open problem stated in [3].

Theorem 3. We have gasc∩ (m,n) = gasc∩ (n,m) = [0,mn].

Proof. Since intersection is commutative we have gasc∩ (m,n) = gasc∩ (n,m). Now
let 0 ≤ α ≤ mn. We are going to describe minimal DFAs A and B with m and n
accepting states, respectively, such that asc(L(A) ∩ L(B)) = α. Notice that α
can be expressed as α = kn + �, for some integers k and � with 0 ≤ k ≤ m and
0 ≤ � ≤ n − 1.

Define the DFA A = ([1,m + 1], {a, b}, δA,m + 1, [1,m]), where

δA(i, a) = i − 1, if 2 ≤ i ≤ m + 1; δA(i, b) =

{
i, if 1 ≤ i ≤ m;
k + 1, if i = m + 1.

Next, define the DFA B = ([0, n + 1], {a, b}, δB , n + 1, [1, n]), where

δB(j, a) = n, if j = 0; δB(j, b) =

{
j − 1, if 1 ≤ j ≤ n;
�, if j = n + 1.

The DFAs A and B are depicted in Fig. 1. It is easy to see that both DFAs are
minimal.

Fig. 1. Let α satisfy 0 ≤ α ≤ mn. The witness DFAs A (top) and B (bottom) for
intersection with α = kn + �, for 0 ≤ k ≤ m and 0 ≤ � ≤ n.

We construct the automaton C of A and B according to the previously given
construction. The product automaton C has the following transitions:

The Ranges of Accepting State Complexities of Languages 203

1. → (m + 1, n + 1) b−→ (k + 1, �) b−→ (k + 1, � − 1) b−→ . . .
b−→ (k + 1, 1) b−→ (k + 1, 0),

2. (k + 1, 0) a−→ (k, n) b−→ (k, n − 1) b−→ . . .
b−→ (k, 1) b−→ (k, 0),

3. (k, 0) a−→ (k − 1, n) b−→ (k − 1, n − 1) b−→ · · · b−→ (k − 1, 1) b−→ (k − 1, 0), etc., and
4. (2, 0) a−→ (1, n) b−→ (1, n − 1) b−→ . . .

b−→ (1, 1) b−→ (1, 0).

No other transitions are present in C. It follows that L(C) is a finite lan-
guage with the longest word b�+1(abn)k−1abn−1. Hence every NFA for the lan-
guage L(C) has at least k(n + 1) + � + 1 states. Thus C with the state (1, 0)
removed is a minimal NFA for L(C) = L(A)∩L(B). Next, since C is a DFA it is
a minimal DFA. So every state pair is distinguishable. Note that the states (i, j),
for 1 ≤ i ≤ k and 1 ≤ j ≤ n, and (k + 1, j), for 1 ≤ j ≤ �, are reachable and
accepting in C. It follows that we have kn+� reachable and pairwise distinguish-
able accepting states. Thus asc(L(A) ∩ L(B)) = kn + � = α, and the theorem
follows. ��

3.2 Symmetric Difference

The symmetric difference (⊕) of two languages accepted by finite automata can
also be obtained by a product construction, similar as in the case of intersection.
The only difference to the construction used for intersection is the definition of
the set of accepting states, which in case of symmetric difference is set to FC =
FA ×(QB \FB)∪(QA \FA)×FB , where the notation is that for intersection used
in Subsect. 3.1. Thus, for the ordinary state complexity the upper bound is mn,
which was shown to be tight in [17]. To our knowledge the magic number problem
for state complexity of the symmetric difference operation was not investigated so
far. For the accepting state complexity we find the following situation, where we
utilize the fact that for unary finite and unary co-finite languages it is very easy
to determine the number of accepting states, from a description of the language
in question. For instance, the unary language L = { ai | 2 ≤ i ≤ 5}∪{ aj | j ≥ 7 }
is accepted by a minimal DFA with (5 − 2) + 1 + 1 = 5 accepting states. For the
structure of (minimal) unary DFAs in general we refer to [2].

Lemma 4. Let m,n ≥ 1 and m ≤ n. Then for every α with α ≥ 1 there are
minimal unary DFAs A and B with m and n accepting states, respectively, such
that the minimal DFA for L(A) ⊕ L(B) has α accepting states.

Proof. Define the unary languages K = { ai | 0 ≤ i ≤ m − 2 or i ≥ m } and L =
{ ai | 0 ≤ i ≤ m − 2 or m ≤ i ≤ n − 1 or i ≥ n + α }. Let A and B be minimal
DFAs for K and L, respectively. Then A and B have m and n accepting states,
respectively. Moreover, L(A) ⊕ L(B) = { ai | n ≤ i ≤ n + α − 1 }, which is
accepted by a minimal DFA with α accepting states. ��

Now we are ready to describe the behaviour of the accepting state complexity
measure w.r.t. the symmetric difference operation.

204 M. Hospodár and M. Holzer

Theorem 5. We have

gasc,u⊕ (m,n) = gasc⊕ (m,n) = gasc⊕ (n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{n} if m = 0;
{m} if n = 0;
{0} ∪ N if m, n ≥ 1 andm = n;
N otherwise.

Proof. The symmetric difference of two languages is commutative. Therefore
gasc⊕ (m,n) = gasc⊕ (n,m). The only language with accepting state complexity 0 is
the empty language ∅. For nonempty languages Lemma 4 applies. Since we have
∅⊕L = L, K ⊕∅ = K, and K ⊕L = ∅ if and only if K = L, the first three cases
of gasc⊕ are covered. Thus, all natural numbers can be obtained as the number of
accepting states of a DFA accepting the symmetric difference of DFAs A and B
with m and n accepting states, respectively; notice that m �= n implies K �= L.
Additionally, in case m = n one can also obtain the value 0, since in this case
we can force both languages K and L to be the same, which gives K ⊕ L = ∅.
Finally, gasc⊕ (m,n) = gasc,u⊕ (m,n) since all our witnesses are unary languages. ��

3.3 Right and Left Quotients

The right quotient of a language K by a language L is defined as follows:

KL−1 = {w | there is a x ∈ L such that wx ∈ K }.

The DFA accepting KL−1 is the same as the DFA accepting K except that the
set of accepting states is different. To be more precise, let A = (Q,Σ, δ, s, F) be
the DFA accepting K, then B = (Q,Σ, δ, s, { q | ∃x ∈ L : δ(q, x) ∈ F }) accepts
the language KL−1. Thus, for an m-state DFA the upper bound for the state
complexity of the right quotient w.r.t. any language is m, which is known to be
tight [17]. Similarly one defines the left quotient of K by L as

L−1K = {w | there is a x ∈ L such that xw ∈ K }.

It was proven that for an m-state DFA language K, the state complexity of the
left quotient of K by any language L is at most 2m − 1. Again, this bound is
tight [17]. Note, when considering unary languages K and L, the right and left
quotient coincide, i.e., KL−1 = L−1K. Thus, in this case, the state complexity
is bounded by the state complexity of K. To our knowledge the magic number
problem for state complexity of the quotient operations was not investigated so
far. Next we consider the magic number problem for accepting state complexity
of the quotient operations.

Lemma 6. Let m,n ≥ 1. Then for every α with α ≥ 0 there are minimal
unary DFAs A and B with m and n accepting states, respectively, such that the
minimal DFA for L(A)L(B)−1 has α accepting states.

Proof. We consider two cases:

The Ranges of Accepting State Complexities of Languages 205

1. Let α < n. Define the languages K = { ai | 0 ≤ i ≤ m − 2 or i = m + α }
and L = { ai | m + 1 ≤ i ≤ m + n }. The language K (L, respectively) is
accepted by a minimal DFA with m (n, respectively) accepting states. Next
KL−1 = { ai | 0 ≤ i ≤ α − 1 }, whose minimal DFA has α accepting states.
Observe, that this case also covers α = 0, where KL−1 becomes empty.

2. Now let α ≥ n. Let K be the same language as above and define the set L =
{ ai | m ≤ i ≤ m + n − 2 or i ≥ m + n }. The language K (L, respectively) is
accepted by a minimal DFA with m (n, respectively) accepting states. Next
KL−1 = { ai | 0 ≤ i ≤ α − n or α − n + 2 ≤ i ≤ α }, whose minimal DFA
has α accepting states. ��
In the next theorem we use an alternative notation for the quotients, namely

K/L := KL−1 for the right quotient and L\K := L−1K for the left quotient.

Theorem 7. We have gasc,u/ (m,n) = gasc/ (m,n) and

gasc/ (m,n) =

{
{0} ifm = 0 or n = 0;
{0} ∪ N otherwise.

Next, we have gasc\ (m,n) = gasc/ (m,n) and gasc,u\ (m,n) = gasc,u/ (m,n). ��

3.4 Reversal

As usual, the reverse of a word over Σ is defined by λR = λ and (va)R =
avR, for every a in Σ and v in Σ∗. The reverse of a language L is defined as
LR = {wR | w ∈ L }. In order to obtain an NNFA accepting the reverse of a
language L accepted by a DFA A = (Q,Σ, δ, s, F) one reverses all transitions
and swaps the role of initial and accepting states. This results in an NNFA that
accepts the language LR. More formally, this automaton can be described as
AR = (Q,Σ, δR, F, {s}), where δR(p, a) = { q ∈ Q | δ(q, a) = p }. Finally, we
obtain the DFA D(AR) for the language LR, which provides the upper bound 2n

on the state complexity of the reversal operation on complete DFAs. In [13] it
was shown that this bound is tight for languages over an alphabet of at least two
letters. This alphabet size is optimal since the reverse of every unary language
is the same language, hence n is a tight upper bound for the ordinary state
complexity of the reversal operation. Moreover, every value from log n to 2n can
be obtained as the state complexity of LR if the state complexity of L is n [14].

Before we consider the accepting state complexity of the reversal operation
we take a closer look on the automaton D(AR). Observe, that the state s is
the single accepting state of the NNFA AR. Therefore the accepting subsets of
the corresponding subset automaton D(AR) are those containing the state s.
Moreover, if A is a DFA without unreachable states, then the subset automa-
ton D(AR) does not have equivalent states [12, Proposition 3]. Now we are ready
to consider accepting state complexity of reversal in general.

Lemma 8. Let n ≥ 1. Then for every α with α ≥ 1 there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for L(AR)
has α accepting states.

206 M. Hospodár and M. Holzer

Proof. Let A = ([1, α + n], {a, b}, δ, 1, F), where F = [α + 1, α + n], and

δ(i, a) =

{
i if i = 1 or i = α + 1;
i − 1 otherwise,

δ(i, b) =

{
α + n if i = 1;
α if i = α + 1.

The DFA A is shown in Fig. 2. Two rejecting states are distinguished by a word
in a∗b and two accepting states by a word in a∗baα−1b. Hence A is minimal.

Fig. 2. The witness DFA A for the reversal operation with n, α ≥ 1.

We construct the NNFA AR = ([1, α + n], {a, b}, δR, F, {1}) from the DFA A
by reversing all the transitions, and by swapping the roles of the initial and
accepting states. The subset automaton D(AR) has the initial state F and the
following transitions:

1. → F
a−→ F

b−→ {1} a−→ [1, 2] a−→ [1, 3] a−→ · · · a−→ [1, α] a−→ [1, α] b−→ {α + 1} and
2. {α + 1} a−→ [α + 1, α + 2] a−→ [α + 1, α + 3] a−→ · · · a−→ [α + 1, α + n − 1] a−→ F .

Since every other transition from these reachable states goes to the empty set,
no more states are reachable. Since only the subsets containing 1 are accept-
ing, there are α reachable accepting subsets. By [12, Proposition 3], the subset
automaton D(AR) does not have equivalent states, and the theorem follows. ��

Taking into account that the only language with accepting state complexity 0
is the empty language ∅, and for nonempty languages Lemma 8 applies, we
obtain the next result. Moreover, since the reverse of a unary language is the
same language, we immediately get the result on the accepting state complexity
of reversal for unary regular languages, too.

Theorem 9. We have

gascR (n) =

{
{0} if n = 0;
N otherwise.

For unary regular languages, we have gasc,uR (n) = {n}, if n ≥ 0. ��

3.5 Permutation on Finite Languages

The permutation of a language L is defined as per(L) =
⋃

w∈L per(w), where
per(w) = {u ∈ Σ∗ | ψ(u) = ψ(w) } with ψ(v) = (|v|a1 , |v|a2 , . . . , |v|ak

), the

The Ranges of Accepting State Complexities of Languages 207

Parikh vector of a word v over the alphabet Σ = {a1, a2, . . . , ak}. Here |v|a refers
to the number of occurrences of the letter a in v. It is known that the permutation
operation is not regular on infinite languages. For example, per({ab}∗) = {w ∈
{a, b}∗ | |w|a = |w|b } is not regular. On the other hand, permutation of a finite
language is always finite, and every finite language is regular. So permutation is a
regular operation on finite languages. Moreover, note that every unary language
is a permutation of itself, thus one may consider the ordinary state as well
as the accepting state complexity of permutation on binary finite languages.
Ordinary deterministic state complexity was considered in [1], where an upper
bound of n2−n+2

2 states for the permutation of a finite binary language with state
complexity n was shown. This was slightly improved for permutations of chain
DFAs where a matching upper and lower bound was obtained. To our knowledge
the magic number problem for state complexity of permutation on (binary) finite
languages was not considered so far. For the accepting state complexity we can
prove the following three lemmata:

Lemma 10. Let n ≥ 1. Then for every α with α ≥ n there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for per(L(A))
has α accepting states.

Proof. Define the finite language L = { biabj | 0 ≤ i ≤ α − n and 0 ≤ j ≤ n − 1 }.
Since L =

⋃
0≤j≤n−1[abj], where [abj] is the Myhill-Nerode equivalence class

with [abj] = { biabj | 0 ≤ i ≤ α − n }, it is accepted by a minimal DFA
with n accepting states. Observe, that every word w in L satisfies |w|a = 1 and
0 ≤ |w|b ≤ α−1. Thus, per(L) = {w ∈ {a, b}∗ | |w|a = 1 and 0 ≤ |w|b ≤ α − 1 }.
Hence, per(L) =

⋃
0≤i≤α−1[abi], where [abi] is now the Myhill-Nerode equiva-

lence class [abi] = {w ∈ {a, b}∗ | |w|a = 1 and |w|b = i }. Therefore, we deduce
that per(L) has accepting state complexity α. ��

The next lemma follows from [4, Lemma 1].

Lemma 11. Let n ≥ 2. Let L be a finite language accepted by a minimal DFA
with n accepting states. Then the minimal DFA for per(L) has at least 2 accepting
states. ��

The magic status of numbers from 2 to n is considered next.

Lemma 12. Let n ≥ 2. Then for every α with 2 ≤ α ≤ n there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for per(L(A))
has α accepting states.

Proof. We prove a slightly stronger statement, namely: let m ≥ 1. Then for
every α with α ≥ 2 there is a minimal binary DFA A with 2m +(α−1) accepting
states such that the minimal DFA for per(L(A)) has α accepting states. The
idea for the construction is as follows: for a word w ∈ {a, b}m let xw refer to the
length m word bm−|w|aam−|w|b . Then define the finite language

L = {wxw ∈ {a, b}∗ | |w| = m }
∪ {wxwwRy ∈ {a, b}∗ | |w| = m and 0 ≤ |y| ≤ α − 2 }.

208 M. Hospodár and M. Holzer

By construction every word of the form wxw, for w ∈ {a, b}m, has the Parikh
vector (m,m). Moreover, the Parikh vector of every word of the form wxwwR,
for w ∈ {a, b}m, lies in the set { (m + i, 2m − i) | 0 ≤ i ≤ m }. By considering
the Myhill-Nerode equivalence classes for the words in L one deduces that the
accepting state complexity of L is 2m + (α − 1).

The automaton B accepting per(L) is constructed according to [1,
Lemma 3.1]. Thus, the DFA B has a grid like structure (with a truncated lower
right) where the b-transitions connect neighboring columns and the a-transitions
neighboring rows and every state can be identified with a Parikh vector. A
schematic drawing is given on the left of Fig. 3. The states in B that correspond
to a Parikh vector of a word in L are marked accepting. Since every word wxw,
for w ∈ {a, b}m, has the Parikh vector (m,m), the corresponding state is marked
accepting—see the accepting state in the middle of the schematic drawing on the
left of Fig. 3. The words of the form wxwwR, for w ∈ {a, b}m, which Parikh vec-
tor lies in the set { (m+i, 2m−i) | 0 ≤ i ≤ m } induce the topmost anti-diagonal
of accepting states. This anti-diagonal is followed by α−2 further anti-diagonals
of accepting states, since every word wxwwR can be extended by any word of
length at most α−2. Again, see the left of Fig. 3. A close inspection reveals that
this automaton is not minimal, because all states in a fixed anti-diagonal are
equivalent. A schematic drawing of the minimal DFA accepting the permutation
of the finite language L is shown on the right of Fig. 3. The tedious details of
the construction are left to the reader.

Fig. 3. A schematic drawing of the grid like DFA B (left) accepting per(L(A)) and its
minimal DFA (right) obtained from B by identifying accepting states that are connect
by dotted lines.

In order to decrease the accepting state complexity of L one removes all
words with prefix wxw, for some words w ∈ {a, b}m. Let L′ refer to the resulting
language. In order to keep the construction working as described above, one must
ensure that all accepting states in the topmost anti-diagonal can be reached. This
requirement is fulfilled if the Parikh vectors of all words wxwwR with wxw ∈ L′

The Ranges of Accepting State Complexities of Languages 209

form the set { (m+ i, 2m− i) | 0 ≤ i ≤ m }, which can always be achieved. Thus,
at least m+1 words of the form wxw, for w ∈ {a, b}∗, must belong to L′. Finally,
this allows us to set the accepting state complexity of L′ to n by choosing the
parameter m appropriately, which proves the original statement. ��

Taking into account Lemmata 10, 11, and 12, we get the following result.

Theorem 13. We have

gascper(n) = gasc,fper (n) =

⎧
⎪⎨

⎪⎩

{0} if n = 0;
N if n = 1;
N \ {1} if n ≥ 2.

For unary regular languages, we have gasc,uper (n) = {n} if n ≥ 0. ��

References

1. Cho, D.-J., Goč, D., Han, Y.-S., Ko, S.-K., Palioudakis, A., Salomaa, K.: State
complexity of permutation on finite languages over a binary alphabet. Theoret.
Comput. Sci. 682, 67–78 (2017)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

3. Dassow, J.: On the number of accepting states of finite automata. J. Autom. Lang.
Comb. 21(1–2), 55–67 (2016)

4. Dassow, J.: Descriptional complexity and operations – two non-classical cases. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 33–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 3

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput.
205(11), 1652–1670 (2007)

6. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

7. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: DCFS 2005, pp. 170–181 (2005)

8. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states
of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237(1–2),
485–494 (2000)

9. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α
deterministic states. Theoret. Comput. Sci. 301(1–3), 451–462 (2003)

10. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput.
Sci. 22(2), 331–344 (2011)

11. Jirásková, G.: Personal communication (2017)
12. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.

Sci. 449, 85–92 (2012)
13. Leiss, E.: Succinct representation of regular languages by Boolean automata. The-

oret. Comput. Sci. 13, 323–330 (1981)
14. Šebej, J.: Reversal on regular languages and descriptional complexity. In:

Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265–276. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5 25

https://doi.org/10.1007/978-3-319-60252-3_3
https://doi.org/10.1007/978-3-642-39310-5_25

210 M. Hospodár and M. Holzer

15. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5

16. Yu, S., Zhuang, Q.: On the state complexity of intersection of regular languages.
SIGACT News 22(3), 52–54 (1991)

17. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5

Semilinearity of Families of Languages

Oscar H. Ibarra1(B) and Ian McQuillan2

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science, University of Saskatchewan,

Saskatoon S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. Techniques are developed for creating new and general lan-
guage families of only semilinear languages, and for showing families
only contain semilinear languages. It is shown that for language fami-
lies L that are semilinear full trios, the smallest full AFL containing the
languages obtained by intersecting languages in L with languages in NCM
(where NCM is the family of languages accepted by NFAs augmented with
reversal-bounded counters), is also semilinear. If these closure properties
are effective, this also immediately implies decidability of membership,
emptiness, and infiniteness for these general families. From the general
techniques, new grammar systems are given that are extensions of well-
known families of semilinear full trios, whereby it is implied that these
extensions must only describe semilinear languages. This also implies
positive decidability properties for the new systems. Some characteriza-
tions of the new families are also given.

1 Introduction

One-way nondeterministic reversal-bounded multicounter machines (NCM) oper-
ate like NFAs with λ transitions, where there are some number of stores that
each can contain some non-negative integer. The transition function can detect
whether each counter is zero or non-zero, and optionally increment or decrement
each counter; however, there is a bound on the number of changes each counter
can make between non-decreasing and non-increasing. These machines have been
extensively studied in the literature, for example in [15], where it was shown that
NCMs only accept semilinear languages (defined in Sect. 2). As the semilinear
property is effective for NCM (in that, the proof consists of an algorithm for con-
structing a finite representation of the semilinear sets), this implies that NCMs
have decidable membership, emptiness, and infiniteness properties, as emptiness
and infiniteness can be decided easily on semilinear sets (and membership follows
from emptiness by effective closure under intersection with regular languages).

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 211–222, 2018.
https://doi.org/10.1007/978-3-319-94812-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_18&domain=pdf

212 O. H. Ibarra and I. McQuillan

NCM machines have been applied extensively in the literature, for example, to
model checking and verification [16,17,21,22], often using the positive decidabil-
ity properties of the family.

More general machine models have been studied with an unrestricted
pushdown store augmented by some number of reversal-bounded counters
(NPCM, [15]). Despite the unrestricted pushdown, the languages accepted are
all semilinear, implying they have the same decidable properties. This family
too has been applied to several verification problems [4,18], including model
checking recursive programs with numeric data types [10], synchronization- and
reversal-bounded analysis of multithreaded programs [8], for showing decidable
properties of models of integer-manipulating programs with recursive parallelism
[9], and for decidability of problems on commutativity [19]. In these papers, the
positive decidability properties—the result of the semilinearity—plus the use of
the main store (the pushdown), plus the counters, played a key role. Hence,
(effective) semilinearity is a crucial property for families of languages.

The ability to augment a machine model with reversal-bounded counters and
to only accept semilinear languages is not unique to pushdown automata; in [11],
it was found that many classes of machines M accepting semilinear languages
could be augmented with reversal-bounded counters, and the resulting family
Mc would also only accept semilinear languages. This includes models such as
Turing machines with a one-way read-only input tape and a finite-crossing1 work-
tape. However, a precise formulation of which classes of machines this pertains
to was not given.

Here, a precise formulation of families of languages that can be “augmented”
with counters will be examined in terms of closure properties rather than machine
models. This allows for application to families described by machine models,
or grammatical models. It is shown that for any full trio (a family closed
under homomorphism, inverse homomorphism, and intersection with regular
languages) of semilinear languages L0, then the smallest full AFL L (a full trio
also closed under union, concatenation, and Kleene-*) containing all languages
obtained from intersecting a language in L0 with a language in NCM, must only
contain semilinear languages. Furthermore, if the closure properties and semilin-
earity are effective in L0, this implies a decidable membership, emptiness, and
infiniteness problem in L. Hence, this provides a new method for creating general
families of languages with positive decidability properties.

Several specific models are created by adding counters. For example, indexed
grammars are a well-studied general grammatical model like context-free gram-
mars except where nonterminals keep stacks of “indices”. Although this system
can generate non-semilinear languages, linear indexed grammars (indexed gram-
mars with at most one nonterminal in the right hand side of every production)
generate only semilinear languages [5]. Here, we define linear indexed grammars
with counters, akin to linear indexed grammars, where every sentential form con-
tains the usual sentential form, plus k counter values; each production operates as

1 A worktape is finite-crossing if there is a bound on the number of times the boundary
of all neighboring cells on the worktape are crossed.

Semilinearity of Families of Languages 213

usual and can also optionally increase each counter by some amount; and a termi-
nal word can be generated only if it can be produced with all counter values equal.
It is shown that the family of languages generated must be semilinear since it is
contained in the smallest full AFL containing the intersection of linear indexed
languages and NCM languages. A characterization is also shown: linear indexed
grammars with counters generate exactly those languages obtained by intersect-
ing a linear indexed language with an NCM and then applying a homomorphism.
Furthermore, it is shown that right linear indexed grammars (where terminals
only appear to the left of nonterminals in productions) with counters coincide
exactly with the machine model NPCM. Therefore, linear indexed grammars with
counters are a natural generalization of NPCM containing only semilinear lan-
guages. This model is generalized once again as follows: an indexed grammar is
uncontrolled finite-index if, there is a value k such that, for every derivation in
the grammar, there are at most k occurrences of nonterminals in every sentential
form. It is known that every uncontrolled finite-index indexed grammar generates
only semilinear languages [3,25]. It is shown here that uncontrolled finite-index
indexed grammars with counters generate only semilinear languages, which is
also a natural generalization of both linear indexed grammars with counters
and NPCM. This immediately shows decidability of membership, emptiness, and
infiniteness for this family.

Lastly, the closure property theoretic method of adding counters is found
to often be more helpful than the machine model method of [11] in terms of
determining whether the resulting family is semilinear, as here a machine model
M is constructed such that the language family accepted by M is a semilinear
full trio, but adding counters to the model to create Mc accepts non-semilinear
languages. This implies from our earlier results, that Mc can accept languages
that cannot be obtained by intersecting a language accepted by a machine in M
with a NCM and then applying any of the full AFL properties.

This paper therefore contains useful new techniques for creating new lan-
guage families, and for showing existing language families only contain semilinear
languages, which can then be used to immediately obtain decidable emptiness,
membership, and infiniteness problems. Such families can perhaps also be applied
to various areas, such as to verification, similarly to the use of NPCM.

All proofs are omitted due to space constraints.

2 Preliminaries

In this section, preliminary background and notation is given.
Let N0 be the set of non-negative integers, and let N

k
0 be the set of all

k-tuples of non-negative integers. A set Q ⊆ N
k
0 is linear if there exists vectors

v0,v1, . . . ,vl ∈ N
k
0 such that Q = {v0 + i1v1 + · · · + ilvl | i1, . . . , il ∈ N0}. Here,

v0 is called the constant, and v1, . . . ,vl are called the periods. A set Q is called
semilinear if it is a finite union of linear sets.

Introductory knowledge of formal language and automata theory is assumed
such as nondeterministic finite automata (NFAs), pushdown automata (NPDAs),

214 O. H. Ibarra and I. McQuillan

Turing machines, and closure properties. [14]. An alphabet Σ is a finite set of
symbols, a word w over Σ is a finite sequence of symbols from Σ, and Σ∗ is the
set of all words over Σ which includes the empty word λ. A language L over Σ
is any L ⊆ Σ∗. The complement of a language L ⊆ Σ∗, denoted by L, is Σ∗ −L.

Given a word w ∈ Σ∗, the length of w is denoted by |w|. For a ∈ Σ,
the number of a’s in w is denoted by |w|a. Given a word w over an alphabet
Σ = {a1, . . . , ak}, the Parikh map of w, ψ(w) = (|w|a1 , . . . , |w|ak

), and the
Parikh map of a language L is {ψ(w) | w ∈ L}. The commutative closure of a
language L is the language comm(L) = {w ∈ Σ∗ | ψ(w) = ψ(v), v ∈ L}. Two
languages are letter-equivalent if ψ(L1) = ψ(L2).

A language L is semilinear if ψ(L) is a semilinear set. Equivalently, a language
is semilinear if and only if it is letter-equivalent to some regular language [12].
A family of languages is semilinear if all languages in it are semilinear, and it
is said that it is effectively semilinear if there is an algorithm to construct the
constant and periods for each linear set from a representation of each language
in the family. For example, it is well-known that all context-free languages are
effectively semilinear [23].

Notation from AFL (abstract families of languages) theory is used from [6].
A full trio is any family of languages closed under homomorphism, inverse homo-
morphism, and intersection with regular languages. Furthermore, a full AFL is
a full trio closed under union, concatenation, and Kleene-*. Given a language
family L, the smallest family containing L that is closed under arbitrary homo-
morphism is denoted by Ĥ(L), the smallest full trio containing L is denoted
by M̂(L), and the smallest full AFL containing L is denoted by F̂(L). Given
families L1 and L2, let L1 ∧ L2 = {L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2}.

We will only define NCM and NPCM informally here, and refer to [15] for a
formal definition. A one-way nondeterministic counter machine can be defined
equivalently to a one-way nondeterministic pushdown automaton [14] with only
a bottom-of-pushdown marker plus one other symbol. Hence, the machine can
add to the counter (by pushing), subtract from the counter (by popping), and can
detect emptiness and non-emptiness of the pushdown. A k-counter machine has k
independent counters. A k-counter machine M is l-reversal-bounded, if M makes
at most l changes between non-decreasing and non-increasing of each counter in
every accepting computation. Let NCM be the class of one-way nondeterminis-
tic l-reversal-bounded k-counter machines, for some k, l (DCM for deterministic
machines). Let NPCM be the class of machines with one unrestricted pushdown
plus some number of reversal-bounded counters. By a slight abuse of notation,
we also use these names for the family of languages they accept.

3 Full AFLs Containing Counter Languages

This section will start by showing that for every semilinear full trio L, the small-
est full AFL containing L ∧ NCM is a semilinear full AFL. First, the following
intermediate result is required.

Semilinearity of Families of Languages 215

Lemma 1. If L is a semilinear full trio, then M̂(L ∧ NCM) = Ĥ(L ∧ NCM) is
a semilinear full trio.

The next result is relatively straightforward from results in [6,7], however we
have not seen it explicitly stated as we have done. From Corollary 2, Sect. 3.4
of [6], for any full trio L, the smallest full AFL containing L is the substitution
of the regular languages into L. And from [7], the substitution closure of one
semilinear family into another is semilinear. Therefore, we obtain:

Lemma 2. If L is a semilinear full trio, then the smallest full AFL containing
L is semilinear.

From these, it is immediate that for semilinear full trios L, the smallest full
AFL containing intersections of languages in L with NCM is semilinear.

Theorem 3. If L is a semilinear full trio L, then F̂(L ∧ NCM) is semilinear.

It is worth noting that this procedure can be iterated, as therefore
F̂(F̂(L ∧ NCM) ∧ NCM) must also be a semilinear full AFL, etc. for additional
levels, but it is not clear whether this can increase the capacity or not.

Many acceptors and grammar systems are known to be semilinear full trios,
such as finite-index ET0L systems [24], indexed grammars with a bound on
the number of variables appearing in every sentential form (called uncontrolled
finite-index) [3], multi-push-down machines (which have k pushdowns that can
simultaneously be written to, but they can only pop from the first non-empty
pushdown) [2], a Turing machine variant with one finite-crossing worktape [11],
and pushdown machines that can flip their pushdown up to k times [13].

Corollary 4. Let L be any of the following families:

– languages generated by context-free grammars,
– languages generated by finite-index ETOL,
– languages generated by uncontrolled finite-index indexed languages,
– languages accepted by one-way multi-push-down machine languages,
– languages accepted by one-way read-only input nondeterministic Turing

machines with a two-way finite-crossing read/write worktape,
– languages accepted by one-way k-flip pushdown automata.

Then the smallest full AFL containing L ∧ NCM is a semilinear full AFL.

A simplified analogue to this result is known for certain types of machines
[11], although the new result here is defined entirely using closure properties
rather than machines. Furthermore, the results in [11] do not allow Kleene-* type
closure as part of the full AFL properties. For the machine models M above, it is
an easy exercise to show that augmenting them with reversal-bounded counters
to produce Mc, the languages accepted by Mc are a subset of the smallest full
AFL containing intersections of languages in M with NCM. Hence, these models
augmented by counters only accept semilinear languages. Similarly, this type of
technique also works for grammar systems, as seen in Sect. 5.

216 O. H. Ibarra and I. McQuillan

In addition, in [7], it was shown that if L is a semilinear family, then the
smallest AFL containing the commutative closure of L is a semilinear AFL. It
is known that the commutative closure of every semilinear language is in NCM
[19], and we know now that if we have a semilinear full trio L, then the smallest
full AFL containing L is also semilinear. So, we obtain an alternate proof that
is an immediate corollary since we know that the smallest full AFL containing
NCM is a semilinear full AFL.

For any semilinear full trio L where the semilinearity and the intersection
with regular language properties are effective, the membership and emptiness
problems in L are decidable. Indeed, to decide emptiness, it suffices to check if
the semilinear set is empty. And to decide if a word w is in L, one constructs
the language L ∩ {w}, then emptiness is decided.

Corollary 5. For any semilinear full trio L where the semilinearity and
intersection with regular language properties are effective, then the membership,
emptiness, and infiniteness problems are decidable for languages in F̂(L∧NCM).
In these cases, F̂(L ∧ NCM) are a strict subset of the recursive languages.

As membership is decidable, the family must only contain recursive languages,
and the inclusion must be strict as the recursive languages are not closed under
homomorphism.

The next property on commutative closure also follows.

Proposition 6. Let L be a semilinear full trio, where these properties are
effective. Then, the problem, for L1, L2 ∈ F̂(L ∧ NCM) is L1 ⊆ comm(L2),
is decidable. Furthermore, the problem, is L1 ∩ comm(L2) = ∅ is decidable.

Next, we provide an interesting decomposition theorem of semilinear
languages into linear parts. Consider any semilinear language L, where its
Parikh image is a finite union of linear sets A1, . . . , Ak, and the constant and
periods for each linear set can be constructed. Then we can effectively create
languages in perhaps another semilinear full trio separately accepting those
words in Li = {w ∈ L | ψ(w) ∈ Ai}, for each 1 ≤ i ≤ k.

Corollary 7. Let L be a semilinear full trio, where semilinearity is effective.
Then, given L ∈ L, we can determine that the Parikh map of L is A = A1 ∪
· · · ∪ Ak, A1, . . . , Ak are linear sets, and we can effectively construct languages
L1, . . . , Lk in the semilinear full trio M̂(L ∧ NCM) such that Li = {w ∈ L |
ψ(w) ∈ Ai}.
Proof. Since semilinearity is effective, we can construct a representation of linear
sets A1, . . . , Ak. An NCM Mi can be created to accept ψ−1(Ai), for each i,
1 ≤ i ≤ k. Then, Li = L ∩ L(Mi) ∈ M̂(L ∧ NCM), for each i, 1 ≤ i ≤ k. 	

4 Application to General Multi-store Machine Models

In [6], a generalized type of multitape automata was studied, called multitape
abstract families of automata (multitape AFAs). We will not define the notation

Semilinearity of Families of Languages 217

used there, but in Theorem 4.6.1 (and Exercise 4.6.3), it is shown that if we
have two types of automata M1 and M2 (defined using the AFA formalism),
accepting language families L1 and L2 respectively, then the languages accepted
by automata combining together the stores of M1 and M2, accepts exactly the
family Ĥ(L1 ∧ L2). This is shown for machines accepting full AFLs in Theorem
4.6.1 of [6], and for union-closed full trios mentioned in Exercise 4.6.3. We will
show that this is tightly coupled with this precise definition of AFAs, as we
will define a simple type of multitape automata where this is not the case,
but each type still satisfies the same closure properties. This result uses the
characterization of Theorem 3.

A checking stack automaton (NCSA) M is a one-way NFA with a store tape,
called a stack. At each move, M pushes a string (possibly λ) on the stack, but M
cannot pop. And, M can enter and read from the inside of the stack in two-way
read-only fashion. But once the machine enters the stack, it can no longer change
the contents. The checking stack automaton is said to be restricted (or no-read
using the terminology of [20]), if it does not read from the inside of the stack
until the end of the input. We denote by RNCSA the family of machines, as well
as the family of languages described by the machines above, with RDCSA being
the deterministic version. Let RNCSAc (RDCSAc) be the family of machines and
languages in RNCSA (RDCSA) augmented with reversal-bounded counters. A
preliminary investigation of RNCSAc and RDCSAc was done in [20].

Here, we will show the following:

1. RNCSA is a full trio of semilinear languages,
2. F̂(RNCSA ∧ NCM) is a semilinear full AFL,
3. every language in RNCSA ∧ NCM is accepted by some machine in RNCSAc,
4. there are non-semilinear languages accepted by machines in RNCSAc.

Therefore, RNCSAc contains some languages not in the smallest full AFL
containing RNCSA ∧ NCM, and the multitape automata and results from [6,11]
do not apply to this type of automata.

Proposition 8. RNCSA accepts exactly the regular languages, which is a full
trio of semilinear languages.

From Theorem 3, the following is true:

Corollary 9. F̂(RNCSA ∧ NCM) is a semilinear full AFL.

Since RNCSA accepts the regular languages, and NCM is closed
under intersection with regular languages, the following is true:

Proposition 10. RNCSA ∧ NCM = NCM ⊆ RNCSAc.

Proposition 11. The non-semilinear L = {aibj | i, j ≥ 1, j is divisible by i}
can be accepted by an RDCSAc M with one counter that makes only one reversal.

It is concluded that RNCSAc contains some languages not in RNCSA∧NCM =
NCM, since NCM is semilinear [15]. Moreover, F̂(RNCSA ∧ NCM) is semilinear

218 O. H. Ibarra and I. McQuillan

as well, so it does not contain all languages of RNCSAc. Then it is clear that
combining together the stores of RNCSA and NCM accepts significantly more
than Ĥ(RNCSA∧NCM) as is the case for multitape AFA [6]. The reason for the
discrepancy between this result and Ginsburg’s result is that the definition of
multitape AFA allows for reading the input while performing instructions (like
operating in two-way read-only mode in the stack). In contrast, RNCSA does
not allow this behavior. And if this behavior is added into the definition, the full
capability of checking stack automata is achieved which accepts non-semilinear
languages, and not regular languages.

A similar analysis can be done using the method developed in [11] for
augmenting the machine models with counters. Let M be a family of one-way
acceptors with some type of store structure X. For example, if the storage X is a
pushdown stack, then M is the family of nondeterministic pushdown automata
(NPDAs). Let the machines in M be augmented with reversal-bounded coun-
ters, and call the resulting family Mc. In [11], the following was shown for many
families M:

(*) If M is a semilinear family (i.e., the languages accepted by the machines in
M have semilinear Parikh map), then Mc is also a semilinear family.

It was not clear in [11] whether the result above is true for all types of one-way
acceptors, in general. However, the family RNCSA is semilinear (Proposition 8),
but RDCSAc is not semilinear (Proposition 11).

5 Applications to Indexed Grammars with Counters

In this section, we describe some new types of grammars obtained from existing
grammars generating a semilinear language family L, by adding counters. The
languages generated by these new grammars are then shown to be contained
in F̂(L ∧ NCM), and by an application of Theorem 3, are all semilinear with
positive decidability properties.

We need the definition of an indexed grammar introduced in [1] by following
the notation of [14], Sect. 14.3.

Definition 12. An indexed grammar is a 5-tuple G = (V,Σ, I, P, S), where
V,Σ, I are finite pairwise disjoint sets: the set of nonterminals, terminals, and
indices, respectively, S is the start nonterminal, and P is a finite set of produc-
tions, each of the form either

(1) A → ν, (2) A → Bf, or (3) Af → ν,

where A,B ∈ V, f ∈ I and ν ∈ (V ∪ Σ)∗.

Let ν be an arbitrary sentential form of G, which is of the form

ν = u1A1α1u2A2α2 · · · ukAkαkuk+1,

where Ai ∈ V, αi ∈ I∗, ui ∈ Σ∗, 1 ≤ i ≤ k, uk+1 ∈ Σ∗. For a sentential form
ν′ ∈ (V I∗ ∪Σ)∗, we write ν ⇒G ν′ if one of the following three conditions holds:

Semilinearity of Families of Languages 219

1. There exists a production in P of the form (1) A → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ Σ∗, and there exists i with 1 ≤ i ≤ k, Ai = A and

ν′ = u1A1α1 · · · ui(w1C1αi · · · w�C�αiw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

2. There exists a production in P of the form (2) A → Bf and there exists i, 1 ≤
i ≤ k, Ai = A and ν′ = u1A1α1 · · · ui(Bfαi)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

3. There exists a production in P of the form (3) Af → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ Σ∗, and an i, 1 ≤ i ≤ k, Ai = A, αi = fα′

i, α
′
i ∈ I∗, with

ν′ = u1A1α1 · · · ui(w1C1α
′
i · · · w�C�α

′
iw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

Then, ⇒∗
G denotes the reflexive and transitive closure of ⇒G. The language L(G)

generated by G is the set L(G) = {u ∈ Σ∗ | S ⇒∗
G u}.

This type of grammar can be generalized to include counters as follows:

Definition 13. An indexed grammar with k counters is defined as in indexed
grammars, except where rules (1), (2), (3) above are modified so that a rule
α → β now becomes:

α → (β, c1, . . . , ck), (1)

where ci ≥ 0, 1 ≤ i ≤ k. Sentential forms are of the form (ν, n1, . . . , nk), and
⇒G operates as do indexed grammars on ν, and for a production in Eq. 1, adds
ci to ni, for 1 ≤ i ≤ k. The language generated by G with terminal alpha-
bet Σ and start nonterminal S is, L(G) = {w | w ∈ Σ∗, (S, 0, . . . , 0) ⇒∗

G

(w, n1, . . . , nk), n1 = · · · = nk}.
Given an indexed grammar with counters, the underlying grammar is

the indexed grammar obtained by removing the counter components from
productions.

Although indexed grammars generate non-semilinear languages, restrictions
will be studied that only generate semilinear languages.

An indexed grammar G is linear [5] if the right side of every production of
G has at most one variable. Furthermore, G is right linear if it is linear, and
terminals can only appear to the left of a nonterminal in productions. Let L-IND
be the family of languages generated by linear indexed grammars, and let RL-IND
be the family of languages generated by right linear indexed grammars.

Similarly, indexed grammars with counters can be restricted to be linear.
An indexed grammar with k-counters is said to be linear indexed (resp. right
linear) with k counters, if the underlying grammar is linear (resp. right linear).
Let L-INDc (resp. RL-INDc) be the family of languages generated by linear (resp.
right linear) indexed grammars with counters.

Example 14. Consider the language L = {v$w | v, w ∈ {a, b, c}∗, |v|a = |v|b =
|v|c, |w|a = |w|b = |w|c} which can be generated by a linear indexed grammar
with counters G = (V,Σ, I, P, S) where P contains

S → (S, 1, 1, 1, 0, 0, 0) | (S, 0, 0, 0, 1, 1, 1) | (T, 0, 0, 0, 0, 0, 0)

T → (aT, 1, 0, 0, 0, 0, 0) | (bT, 0, 1, 0, 0, 0, 0) | (cT, 0, 0, 1, 0, 0, 0) | ($R, 0, 0, 0, 0, 0, 0)

R → (aR, 0, 0, 0, 1, 0, 0) | (bR, 0, 0, 0, 0, 1, 0) | (cR, 0, 0, 0, 0, 0, 1) | (λ, 0, 0, 0, 0, 0, 0).

This language cannot be generated by a linear indexed grammar [3].

220 O. H. Ibarra and I. McQuillan

The following is a characterization of languages generated by these grammars.

Proposition 15. L ∈ L-INDc if and only if there is a homomorphism h, L1 ∈
L-IND, and L2 ∈ NCM such that L = h(L1 ∩ L2).

Implied from the above result and Theorem 3 and since L-IND is an effectively
semilinear trio [5] is that L-INDc ⊆ F̂(L-IND ∧ NCM), and therefore L-INDc is
effectively semilinear.

Corollary 16. The languages generated by linear indexed grammar with
counters are effectively semilinear, with decidable emptiness, membership, and
infiniteness problems.

Next, a machine model characterization of right linear indexed grammars
with counters will be provided. Recall that an NPCM is a pushdown automaton
augmented by reversal-bounded counters. The proof uses the fact that every
context-free language can be generated by a right-linear indexed grammar [5].

Theorem 17. RL-INDc = NPCM.

We conjecture that the family of languages generated by right-linear indexed
grammars with counters (the family of NPCM languages) is properly contained
in the family of languages generated by linear indexed grammars with counters.
Candidate witness languages are L = {w$w | w ∈ {a, b, c}∗, |w|a + |w|b = |w|c}
and L′ = {w$w | w ∈ {a, b}∗}. It is known that L′ is generated by a linear
indexed grammar [5], and hence L can be generated by such a grammar with
two counters. But, both L′ and L seem unlikely to be accepted by any NPCM.
Therefore, indexed grammars with counters form quite a general semilinear fam-
ily as it seems likely to be more general than NPCM.

Next, another subfamily of indexed languages is studied that are even more
expressive than linear indexed grammars but only generate semilinear languages.

An indexed grammar G = (V,Σ, I, P, S) is said to be uncontrolled index-r if,
every sentential form in every successful derivation has at most r nonterminals.
G is uncontrolled finite-index if G is uncontrolled index-r, for some r. Let U-IND
be the languages generated by uncontrolled finite-index indexed grammars.

Uncontrolled finite-index indexed grammars have also been studied under
the name of breadth-bounded indexed grammars in [3,25], where it was shown
that the languages generated by these grammars are a semilinear full trio.

This concept can then be carried over to indexed grammars with counters.

Definition 18. An indexed grammar with k-counters is uncontrolled index-r
(resp. uncontrolled finite-index) if the underlying grammar is uncontrolled
index-r (resp. uncontrolled finite-index). Let U-INDc be the languages generated
by uncontrolled finite-index indexed grammar with k-counters, for some k.

One can easily verify that Proposition 15 also applies to uncontrolled
finite-index indexed grammars with counters. Hence, we have:

Semilinearity of Families of Languages 221

Proposition 19. L ∈ U-INDc if and only if there is a homomorphism h, L1 ∈
U-IND, L2 ∈ NCM such that L = h(L1 ∩ L2).

Implied from the above Proposition and Theorem 3 also is that these new
languages are all semilinear.

Corollary 20. U-INDc is effectively semilinear, with decidable emptiness,
membership, and infiniteness problems.

Hence, RL-INDc ⊆ L-INDc ⊆ U-INDc. We conjecture that both containments
are strict; the first was discussed previously, and the second is likely true since
L-IND � U-IND [3]. Hence, U-INDc forms quite a general semilinear family, con-
taining NPCM with positive decidability properties.

References

1. Aho, A.V.: Indexed grammars–an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

2. Breveglieri, L., Cherubini, A., Citrini, C., Reghizzi, S.: Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci. 7(3), 253–291 (1996)

3. D’Alessandro, F., Ibarra, O.H., McQuillan, I.: On finite-index indexed grammars
and their restrictions. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 287–298. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 21

4. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability
analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722167 9

5. Duske, J., Parchmann, R.: Linear indexed languages. Theoret. Comput. Sci. 32(1–
2), 47–60 (1984)

6. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland Publishing Company, Amsterdam (1975)

7. Ginsburg, S., Spanier, E.H.: AFL with the semilinear property. J. Comput. Syst.
Sci. 5(4), 365–396 (1971)

8. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 260–276. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7 22

9. Hague, M., Lin, A.W.: Decidable models of integer-manipulating programs with
recursive parallelism. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 148–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 11

10. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 60

11. Harju, T., Ibarra, O.H., Karhumäki, J., Salomaa, A.: Some decision problems
concerning semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294
(2002)

12. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley Series in
Computer Science. Addison-Wesley Pub. Co., Boston (1978)

https://doi.org/10.1007/978-3-319-53733-7_21
https://doi.org/10.1007/978-3-319-53733-7_21
https://doi.org/10.1007/10722167_9
https://doi.org/10.1007/10722167_9
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-319-45994-3_11
https://doi.org/10.1007/978-3-319-45994-3_11
https://doi.org/10.1007/978-3-642-22110-1_60

222 O. H. Ibarra and I. McQuillan

13. Holzer, M., Kutrib, M.: Flip-pushdown automata: nondeterminism is better than
determinism. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 361–372.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6 29

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

15. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

16. Ibarra, O.H., Bultan, T., Su, J.: Reachability analysis for some models of infinite-
state transition systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877,
pp. 183–198. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-
4 15

17. Ibarra, O.H., Bultan, T., Su, J.: On reachability and safety in infinite-state systems.
Int. J. Found. Comput. Sci. 12(6), 821–836 (2001)

18. Ibarra, O.H., Dang, Z.: Eliminating the storage tape in reachability constructions.
Theoret. Comput. Sci. 299(1–3), 687–706 (2003)

19. Ibarra, O.H., McQuillan, I.: The effect of end-markers on counter machines and
commutativity. Theoret. Comput. Sci. 627, 71–81 (2016)

20. Ibarra, O.H., McQuillan, I.: Variations of checking stack automata: obtaining unex-
pected decidability properties. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017.
LNCS, vol. 10396, pp. 235–246. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62809-7 17

21. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.: Counter machines and
verification problems. Theoret. Comput. Sci. 289(1), 165–189 (2002)

22. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.: Counter machines: decid-
able properties and applications to verification problems. In: Nielsen, M., Rovan,
B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 426–435. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44612-5 38

23. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
24. Rozenberg, G., Vermeir, D.: On ET0L systems of finite index. Inf. Control 38,

103–133 (1978)
25. Zetzsche, G.: An approach to computing downward closures. In: Halldórsson, M.M.,

Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp.
440–451. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-
6 35

https://doi.org/10.1007/3-540-45007-6_29
https://doi.org/10.1007/3-540-44618-4_15
https://doi.org/10.1007/3-540-44618-4_15
https://doi.org/10.1007/978-3-319-62809-7_17
https://doi.org/10.1007/978-3-319-62809-7_17
https://doi.org/10.1007/3-540-44612-5_38
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.1007/978-3-662-47666-6_35

The Exact Complexity
of Star-Complement-Star

Jozef Jirásek1 and Galina Jirásková2(B)

1 Institute of Computer Science, Faculty of Science,
P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

jozef.jirasek@upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We show that the state complexity of the star-complement-
star operation is given by 3

2
f(n − 1) + 2f(n − 2) + 2n − 5, where

f(2) = 2 and f(n) =
∑n−2

i=1

(
n
i

)
f(n − i) + 2. The function f(n) counts the

number of distinct resistances possible for n arbitrary resistors each con-
nected in series or parallel with previous ones, or the number of labeled
threshold graphs on n vertices, and f(n) ∼ n!(1 − ln 2)/(ln 2)n+1 =
2n logn−0.91n+o(n). Our witness language is defined over a quaternary
alphabet, and we strongly conjecture that the size of the alphabet can-
not be decreased.

1 Introduction

The Kuratowski 14-theorem states that applying the operations of closure and
complementation to a set in a topological space in any order and any number
of times results in at most 14 distinct sets. The Kuratowski algebras in the
settings of formal languages have been investigated by Brzozowski et al. [3].
They showed that at most 14 distinct languages may be produced by applying
the star and complementation operations to a given language. Moreover, every
such language can be expressed, up to inclusion of the empty string, as one of
the following 5 languages and their complements: L,L+, Lc+, L+c+, and L+c+c;
here Lc denotes the complement and L+ denotes the positive closure of L, and
we use an exponent notation as follows: L+c = (L+)c, L+c+ = ((L+)c)+, etc.

While a language and its complement have the same complexity, and the
complexity of L+ is known to be 3

42n − 1 since 70’s [6], the only language in this
chain which could possibly have a double-exponential state complexity was L+c+.
Surprisingly, as shown in [4], its state complexity is in 2Θ(n log n), and lower bound

J. Jirásek—Research supported by VEGA grant 1/0056/18 and grant APVV-15-
0091.
G. Jirásková—Research supported by VEGA grant 2/0084/15 and grant APVV-15-
0091.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 223–235, 2018.
https://doi.org/10.1007/978-3-319-94812-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_19&domain=pdf

224 J. Jirásek and G. Jirásková

example has been defined over a seven-letter alphabet. Nevertheless, since Θ is
in the exponent, the gap between lower and upper bound remained large.

In this paper, we continue this research by a careful inspection of reachable
and unreachable states in the resulting automaton, and we get the exact state
complexity of the star-complement-star operation.

This complexity is given by 3
2f(n − 1) + 2f(n − 2) + 2n − 5, where the

function f(n) counts, for example, the number of distinct resistances possible for
n arbitrary resistors each connected in series or parallel with previous ones [1,12],
or the number of labeled threshold graphs on n vertices [2], and f(n) ∼ n!(1 −
ln 2)/(ln 2)n+1. Our witness language is defined over a quaternary alphabet, and
we strongly conjecture that the size of alphabet is optimal.

2 Preliminaries

Let Σ be a finite non-empty alphabet of symbols. Then Σ∗ denotes the set of
strings over Σ including the empty string ε. A language is any subset of Σ∗. For
a language L over Σ, the complement of L is the language Lc = Σ∗ \ L. The
(Kleene) star of a language L is the language L∗ =

⋃
i≥0 Li where L0 = {ε}

and Li = LLi−1. The positive closure of L is the language L+ =
⋃

i≥1 Li.
A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, I, F),

where Q is a finite non-empty set of states, Σ is a finite non-empty input alpha-
bet, the function · is the transition function that maps Q × Σ to 2Q, I ⊆ Q is
the set of initial states, and F ⊆ Q is the set of final (or accepting) states [9].
We say that (p, a, q) is a transition in the NFA A if q ∈ p · a. The transition
function is extended to the domain 2Q × Σ∗ in the natural way. The language
accepted by the NFA A is the set of strings L(A) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.

An NFA A is a (complete) deterministic finite automaton (DFA) if |I| = 1
and for each state p and each input symbol a, the set p·a has exactly one element.
In such a case, we write p · a = q instead of p · a = {q}. We also use p

a−→ q to
denote that p · a = q. A DFA A = (Q,Σ, ·, s, F) is minimal if all its states are
reachable from the initial state, and every two distinct states are distinguishable.

The state complexity of a regular language L, sc(L), is the number of
states of the minimal DFA recognizing the language L. The state complex-
ity of the star-complement-star operation is the function from N to N defined
as n 	→ max{sc(L∗c∗) | sc(L) ≤ n}.

The transitions on symbol a in a DFA A perform a transformation a : Q → Q
defined by qa = q · a. For a subset S of Q, we denote Sa = {qa | q ∈ S} and
aS = {q ∈ Q | qa ∈ S}. We say that a acts as a permutation on S ⊆ Q if Sa = S;
in such a case, for each q ∈ S the set aq = {p ∈ Q | pa = q} is nonempty.

A cyclic permutation of a set {q1, q2, . . . , qk} ⊆ Q is a permutation a such
that qia = qi+1 if 1 ≤ i ≤ k − 1, qka = q1, and qa = q if q ∈ Q \ {q1, q2, . . . , qk}.
We denote such a permutation as a : (q1, q2, . . . , qk). For two states p and q,
we use (p → q) to denote the transformation that maps p to q and fixes every
state different from p. Each input string u also performs a transformation on Q
given by the composition of its input symbols, that is, if w = av with a ∈ Σ

The Exact Complexity of Star-Complement-Star 225

and v ∈ Σ∗, then w : Q → Q is given by qw = qav = (q · a) · v. For S ⊆ Q
and w ∈ Σ∗, we denote Sw = {qw | q ∈ S} and wS = {q ∈ Q | qw ∈ S}.

Every NFA A = (Q,Σ, ·, I, F) can be converted to an equivalent deterministic
automaton D(A) = (2Q, Σ, ·, I, {S ∈ 2Q | S ∩ F �= ∅}) [8]. The DFA D(A) is
called the subset automaton of the NFA A.

In what follows we use [i, j] to denote the set of integers {� | i ≤ � ≤ j} and
we set Qn = [0, n − 1].

3 Constructions of Automata for Plus-Complement-Plus

Let a language L be accepted by a DFA A = (Qn, Σ, ·, 0, F). Let F c = Qn \ F .
Let us construct the following automata.

• NFA A+ for L+ is constructed from the DFA A by adding the transi-
tion (q, a, 0) whenever q · a ∈ F . The set of final states of A+ is F .

• DFA B for L+ is the subset automaton D(A+) restricted to reachable states.
Thus, states of B are subsets of Qn, its initial state is {0}, and its state S
is final if S ∩ F �= ∅. Moreover, if a state of B contains a final state of A,
then it also contains the state 0 since A+ always has the transition (q, a, 0) if
q · a ∈ F .

• DFA C for L+c is constructed from the DFA B by interchanging the final and
non-final states. Thus, states of C are subsets of Qn, its initial state is {0},
and its state S is final if S ⊆ F c, and it is non-final if S � F c in which case
it also must contain the initial state 0 of A.

• NFA C+ for L+c+ is constructed from the DFA C by adding the transi-
tion (S, a, {0}) whenever S · a is final, that is, whenever S · a ⊆ F c.

Then, the subset automaton D(C+) is a DFA for (L(A))+c+, and we are
interested in the number of its reachable and distinguishable states. A DFA
for L∗c∗ may require one more state to accept the empty string.
It follows from the constructions above that in the subset automaton D(C+):

– each state T = {T1, T2, . . . , Tk} with Ti ⊆ Qn is a set of subsets of Qn;
– if some Ti ⊆ F c, then {0} ∈ T;
– otherwise, for each i, we have Ti � F c and 0 ∈ Ti;
– the transitions are given by

T
a−→

⋃

T∈T
T ·a⊆Fc

{T · a, {0}} ∪
⋃

T∈T
T ·a�Fc

{T · a ∪ {0}}.

It is known that each state of D(C+) is equivalent to an antichain of subsets
of Qn [4, Lemma 1]; recall that a set of subsets of Qn is an antichain if every
two distinct elements in it are incomparable with respect to the set inclusion.
This means that each final state of D(C+) is equivalent to an antichain T =
{{0}, T2, . . . , Tk} with k ≥ 2 and all Ti ⊆ F c (2 ≤ i ≤ k), while each its non-final
state is equivalent to an antichain T = {T1, T2, . . . , Tk} with k ≥ 1, Ti � F c

226 J. Jirásek and G. Jirásková

and 0 ∈ Ti (1 ≤ i ≤ k). Thus, the upper bound on the number of reachable and
pairwise distinguishable states of D(C+) is given by the number of antichains of
subsets of an n-element set, known as the Dedekind number; see, for example, [5].
This number still grows double-exponentially. The next two propositions show
that all these antichains can be distinguished using a growing alphabet.

Proposition 1. Every two distinct antichains differ in a set S such that S is
in one of them, and no subset of S is in the other one.

Proof. Let S and T be two distinct antichains. Then without loss of generality,
there is a set S with S ∈ S \ T. If no subset of S is in T, then S is the desired
set. Otherwise, T contains some subset T of S. Since S is an antichain, it cannot
contain T and it cannot contain any of its subsets. Then T is the desired set. �
Proposition 2. There exists an n-state DFA A defined over an alphabet of
size 2n such that all the antichains are pairwise distinguishable in the subset
automaton D(C+).

Proof. Define an n-state DFA A = (Qn, {bS | S ⊆ Qn}, ·, 0, {0, 1}) where for
each q ∈ Qn and S ⊆ Qn, we have q · bS = 2 if q ∈ S, and q · bS = 0 otherwise.
Let S and T be two distinct antichains. By Proposition 1, we may assume that
there is a set S in S\T such that no subset of S is in T. Then by bS , the antichain S

is sent to a final antichain containing {2}, while T is sent to a non-final antichain
since each of its components is sent to a set containing the state 0. �

Hence, all the antichains can be distinguished, and the question about
how many of them are reachable was partially answered in [4]. It has been
shown that each reachable state of D(C+) is equivalent to some antichain
T = {T1, T2, . . . , Tk} which satisfies (1) 1 ≤ k ≤ n; (2) Ti = {qi} ∪ Si where
S1 ⊆ S2 ⊆ · · · ⊆ Sk and q1, q2, . . . , qk are pairwise distinct states in Qn \ Sk [4,
Lemma 2].

This reduced the number of reachable antichains from a double-exponential
to at most

∑n
k=1

(
n
k

)
k!(k+1)n−k ∈ 2O(n log n). Moreover, a language over a seven-

letter alphabet was described in [4, Proof of Corollary 2] such that every DFA
for its star-complement-star has at least �n

2 �n−�n
2 � ∈ 2Ω(n log n) states. Thus the

state complexity of the star-complement-star operation is in 2Θ(n log n). However,
since Θ is in an exponent, the gap between the lower and upper bound is large.

In what follows we aim to get the exact state complexity of this combined
operation. We call an antichain valid if it satisfies the above mentioned two
conditions, and we count the number of valid antichains in the next section.

4 The Number of Valid Antichains

The aim of this section is to count all the valid antichains. After giving their
explicit definition, we first get the number of the valid antichains such that
each element occurs in their union. Then we use this number to count all valid
antichains. Recall that we denote by [i, j] the set of integers {� | i ≤ � ≤ j}.

The Exact Complexity of Star-Complement-Star 227

Definition 3. An antichain T = {T1, T2, . . . , Tk} of subsets of [1, n] is valid if

(1) 1 ≤ k ≤ n;
(2) for each i, we have Ti = {qi} ∪ Si where

• S1 ⊆ S2 ⊆ · · · ⊆ Sk,
• q1, q2, . . . , qk are pairwise distinct states in [1, n] \ Sk.

For an antichain T = {T1, T2, . . . , Tk}, let ∪T =
⋃k

i=1 Ti and ∩T =
⋂k

i=1 Ti.

Lemma 4. Let n ≥ 2 and f(n) denote the number of valid antichains T of
subsets of [1, n] such that ∪T = [1, n]. Then

f(2) = 2 and f(n) =
n−2∑

i=1

(
n

i

)

f(n − i) + 2 if n ≥ 3. (1)

Proof. Denote by f1(n) the number of valid antichains such that ∪T = [1, n]
and {i} ∈ T for some i. Next, denote by f2(n) the number of valid antichains
with ∪T = [1, n] and i ∈ ∩T for some i; notice that if T does not contain any
singleton set, than ∩T �= ∅. A valid antichain with ∪T = [1, n] and containing
a singleton set may contain either exactly one singleton set, or exactly two
singleton sets, etc. Therefore,

f1(n) =
n−2∑

i=1

(
n

i

)

f2(n − i) + 1; (2)

notice that we cannot have exactly n − 1 one-element sets in an antichain. Sim-
ilarly, if a valid antichain with ∪T = [1, n] does not contain any singleton set,
then ∩T may have exactly one element, or exactly two elements, etc. Therefore,

f2(n) =
n−2∑

i=1

(
n

i

)

f1(n − i) + 1; (3)

First, let us prove that f1(n) = f2(n). The proof is by induction on
n. The basis, n = 2, holds true since f1(2) = 1 because of the unique
antichain {{1}, {2}}, and f2(2) = 1 because of {{1, 2}}. Assume that n ≥ 3
and that f1(i) = f2(i) if 2 ≤ i ≤ n − 1. Then f1(n) = f2(n) follows from (2) and
(3).

Next, consider all valid antichains T of subsets of [1, n] with ∪T = [1, n],
and denote the number of such antichains by f(n). Notice that every such valid
antichain either contains a singleton set or the intersection ∩T is non-empty.
Therefore, f(n) = f1(n) + f2(n), and we get

f(n) =
n−2∑

i=1

(
n

i

)

(f1(n − i) + f2(n − i)) + 2 =
n−2∑

i=1

(
n

i

)

f(n − i) + 2,

which concludes the proof. �

228 J. Jirásek and G. Jirásková

Remark 5. The function f(n) defines Sloane’s sequence A005840 [10,11], and
it counts the number of distinct resistances possible for n arbitrary resistors
each connected in series or parallel with previous ones [1,12]. It also counts
the number of labeled threshold graphs on n vertices [2]. The table of f(n)
for n ≤ 100 can be found in [7]. These numbers are the coefficients of the
generating function (1 − x)ex/(2 − ex) [2], and

f(n) ∼ n!(1 − ln 2)/(ln 2)n+1∈ 2n log n−n(log ln 2+log e)+o(n) =̇ 2n log n−0.9139n+o(n).

Theorem 6. Let V (n) be the number of valid antichains of subsets of [1, n].
Then V (n) = 2f(n) + n − 2, where f(n) is the function defined by (1).

Proof. In ∪T, nothing may be missing, or exactly one element may be missing,
or exactly two elements may be missing, etc. Therefore,

V (n) = f(n) +
n−2∑

i=1

(
n

i

)

f(n − i) + n,

where n is the number of antichains {{i}} in which n − 1 elements are missing
in ∪T. Hence V (n) = 2f(n) + n − 2, and the theorem follows. �

5 Upper Bound

Our first aim is to show that some valid antichains are always unreachable. Recall
that for an antichain T = {T1, T2, . . . , Tk}, ∪T =

⋃k
i=1 Ti and ∩T =

⋂k
i=1 Ti.

Lemma 7 (Unreachable Antichains). Let n ≥ 4 and A = (Qn, Σ, ·, 0, F)
be a DFA with |F | ≥ 1. Let T be a valid antichain as defined in Definition 3. If

{0, j} ∈ T forsome j in Qn \ {0}, and ∪ T = Qn, (4)

then T is unreachable in the subset automaton D(C+).

Proof. Let T = (T1, T2, . . . , Tk) be a valid antichain satisfying (4). Then k ≥ 2.
Assume that T can be reached from a reachable antichain S by reading a symbol
a in Σ. Our aim is to show that S satisfies (4) as well. Then, the lemma follows.

Denote by Im(a) = {qa | q ∈ Qn}. Since each state is in ∪T, each state,
with a possible exception of the state 0, must be in Im(a). Thus 0 ∈ Im(a)
implies that a performs a permutation on Qn, and in such a case, we must
have {a1, a2, . . . , a(n − 1)} ⊆ ∪S. If 0 /∈ Im(a), then there is exactly one state r
in Qn \ {0} such that r = pa = qa and p �= q. Consider three cases:

(a) {0, j} is reached from a state S in S with |S| ≥ 3. Let p, q, r be three distinct
states in S. Since we can have neither pa = qa = ra nor pa = qa = 0, we
must have pa = 0 and qa = ra = j. This is a contradiction since 0 ∈ Im(a)
implies that a is a permutation.

The Exact Complexity of Star-Complement-Star 229

(b) {0, j} is reached from a state in a final antichain S. Then we have ∪S ⊆
(Qn \F)∪{0}, so |∪S| ≤ n−1. If |F | ≥ 2, then |∪S| ≤ n−2, and therefore

| ∪ T| ≤ |(∪S)a| ≤ n − 1,

a contradiction. If |F | = 1, then we must have 0a ∈ F to get a set {0, 0a} in T

from the set {0} in S. However, then the unique final state 0a cannot be in
any other component of the antichain T. Since k ≥ 2, we must have 0 ∈ Im(a)
and a0 ∈ ∪S. However, then a is a permutation and {a1, a2, . . . , a(n−1)} ⊆
∪S. This is a contradiction since we have |∪S| ≤ n−1. Notice that this case
covers the reachability of {0, j} from one-element sets, or from two-element
sets {p, q} with p �= 0 and q �= 0.

(c) {0, j} is reached from a two-element state {0, q} in S where q �= 0. Then S is
a non-final antichain of size at least 2, and therefore the state 0 is in each of
its components. If 0a = j, then we would have j in each component of T, so
T would not be an antichain, a contradiction. Therefore 0a = 0 and qa = j.
This means that 0 ∈ Im(a), so a is a permutation, and {a1, a2, . . . , a(n −
1)} ⊆ ∪S. Since a0 = 0 and 0 ∈ ∪S, we get ∪S = Qn, so S satisfies (4). �

Our next result provides an upper bound on the state complexity of star-
complement-star. We discuss all possible choices of the final states in a given
DFA, and show that the number of reachable valid antichains in the subset
automaton for plus-complement-plus is maximal if the initial state of the given
DFA is final, and if there is exactly one non-initial final state.

Theorem 8 (Star-Complement-Star: Upper Bound). Let n ≥ 4 and A =
(Qn, Σ, ·, 0, F) be an n-state DFA. Then the language L(A)∗c∗ is accepted by a
DFA of at most 3

2f(n−1)+2f(n−2)+2n−5 states, where f(n) is the function
defined by (1).

Proof. Recall that we denoted the number of valid antichains of subsets of [1, n]
by V (n), and V (n) = 2f(n) + n − 2 by Theorem 6. We now discuss possible
choices of the set of final states F of the DFA A. If F = ∅ then L(A) = ∅
and L(A)∗c∗ = Σ∗. If F = {0}, then L(A) = L(A)∗, so L(A)∗c = L(A)c. Thus the
state complexity of L(A)∗c is n, and therefore the state complexity of (L(A))∗c∗

is at most 3
42n [6,13], which is less than 3

2f(n − 1) + 2f(n − 2) + 2n − 5 if n ≥ 4.
Let |F ∩ [1, n − 1]| = k where k ≥ 1. By Lemma 7, the antichains contain-

ing {0, j} for some j and with ∪T = Qn are always unreachable in D(C+), and
there are f1(n−1) = f(n−1)/2 of them. Next, only the following valid antichains
may be reachable in D(C+):

(i) the initial antichain {{0}};
(ii) the final antichains {{0}, T2, T3, . . . , Tk} with k ≥ 2 and Ti ⊆ [1, n − 1] \ F ;
(iii) the non-final antichains {T1, T2, . . . , Tk} with k ≥ 1 and Ti ∩F �= ∅, except

for those containing {0, j} for some j and with ∪T = Qn.

Notice that in case (ii), the antichain {T2, T3, . . . , Tk} is a valid antichain of
subsets of [1, n − 1] \ F , and that there are V (n − 1 − k) such valid antichains.

230 J. Jirásek and G. Jirásková

Now consider antichains in case (iii). Since each Ti contains a final state of A,
it also must contain the state 0, because in the construction of A+ we added the
transition (p, a, 0) whenever p · a ∈ F in A.

If 0 ∈ F , then each subset containing 0, is final in B, so non-final in C+,
so every antichain of the form {{0} ∪ T1, {0} ∪ T2, . . . , {0} ∪ Tk} with k ≥ 1
and Ti ⊆ [1, n − 1] (1 ≤ i ≤ k) may possibly be reachable, except for those
containing {0, j} for some j and with ∪T = Qn. The number of such valid
antichains is V (n − 1) − f(n − 1)/2.

However, if 0 /∈ F and there is a state q ∈ [1, n−1]\F , then the state {0, f} is
final in C+, and therefore, in D(C+) it only may be reached together with the ini-
tial state {0} since in the construction of C+, we added the transition (S, a, {0})
whenever S · a ⊆ F c. Thus the antichain {{0, f}} considered in case (iii) is
unreachable in this case. So the only way how to reach V (n − 1) − f(n − 1)/2
antichains in (iii) with 0 /∈ F is to have F = [1, n − 1]. However, in such a case,
we do not have any final antichain.

Hence to get V (n − 1) − f(n − 1)/2 antichains in (iii) and at least one final
antichain, we must have 0 ∈ F . Finally, to get the maximal number of final
antichains, we must have k = 1.

It follows that the number of reachable antichains in D(C+) is maximal
if 0 ∈ F and |F ∩ [1, n − 1]| = 1. In such a case, this number is equal to
1 + V (n − 2) + V (n − 1) − f(n − 1)/2 = (3/2)f(n − 1) + 2f(n − 2) + 2n − 6.
Finally, to get a DFA for L∗c∗, a new initial and final state may be required to
accept the empty string. Our proof is complete. �

6 Matching Lower Bound

Our next aim is to define a quaternary language such that the state complexity
of its star-complement-star meets our upper bound given in Theorem 8. Recall
that [i, j] = {� | i ≤ � ≤ j} and Qn = [0, n − 1].

Definition 9 (Quaternary Witness Language). Let n ≥ 4. Define an n-
state DFA A = (Qn, {a, b, c, d}, ·, 0, {0, 1}), where a : (0, 1, 2), b : (1, 2, . . . , n−1),
c : (2, 3, . . . , n − 1), and d : (0 → 2). The DFA A is shown in Fig. 1.

Fig. 1. A quaternary witness for star-complement-star meeting the upper bound
3
2
f(n − 1) + 2f(n − 2) + 2n − 5, where f(n) =

∑n−2
i=1

(
n
i

)
f(n − i) + 2 and f(2) = 2.

The Exact Complexity of Star-Complement-Star 231

Lemma 10. Let n ≥ 4 and A be an n-state DFA described in Definition 9.
Let C+ be the NFA for L(A)+c+ described in Sect. 3. Let T = {T1, T2, . . . , Tk}
be an antichain of subsets of Qn such that

(i) 1 ≤ k ≤ n;
(ii) Ti = {qi} ∪ Si (1 ≤ i ≤ k), where S1 ⊆ S2 ⊆ · · · ⊆ Sk and q1, q2, . . . , qk are

pairwise distinct states in Qn \ Sk;
(iii) either T1 = {0} and Ti ⊆ [2, n − 1] if 2 ≤ i ≤ k, or 0 ∈ Ti for each i;
(iv) if {0, j} ∈ T for some j ≥ 1, then there is q in [1, n − 1] such that q /∈ ∪T.

Then T is reachable in the subset automaton D(C+). All these antichains are
pairwise distinguishable, and there are 3

2f(n − 1) + 2f(n − 2) + 2n − 6 of them.

Proof. To simplify the notation let us set m := n − 1. The proof is by induction
on the size of an antichain T = {T1, T2, . . . , Tk}. Let k = 1, so T = {T}. Then T
must be a non-final state of the NFA C+. This means that 0 ∈ T . Let us show by
induction on |T | that the state {T} is reachable in the subset automaton D(C+).
The set {{0}} is the initial state of D(C+). Let T ⊆ Qn and 0 ∈ T . Let j =
min(T \ {0}). Then T \ {0, j} ⊆ [j + 1,m], bj−1(T \ {0, j}) ⊆ [2,m], and

{{0} ∪ abj−1(T \ {0, j})} a−→{{0, 1} ∪ bj−1(T \ {0, j})} bj−1

−−−→
{{0, j} ∪ (T \ {0, j})} = {T},

where the starting set is reachable by the induction assumption; notice that
(0, a, 0) and (0, b, 0) are transitions in the NFA A+, so while reading any string
over {a, b}, the NFA C+ is always in a state containing 0, that is, in a rejecting
state, therefore the initial state {0} of C+ cannot be added while reading such
a string.

Now let 2 ≤ k ≤ n and assume that each antichain satisfying (i)–(iv) of
size k − 1 is reachable. Let T = {T1, T2, . . . , Tk} be an antichain odd size k
satisfying (i)–(iv).

To simplify the exposition, let us use q + S to denote the set {q} ∪ S, where
q ∈ Qn and S ⊆ Qn. Then by (ii), Ti = qi + Si where S1 ⊆ S2 ⊆ · · · ⊆ Sk, and
q1, q2, . . . , qk are pairwise distinct states in Qn \ Sk. Consider several cases:

(1) Let T1 = {0}. Then Ti ⊆ [2,m] if 2 ≤ i ≤ k, so 1 /∈ ∪T.
(a) First, let T2 = {j} for some j in [2,m]. Let u be a string in c∗ such that

uj = 2. Let T ′ = {{0}, uT3, . . . , uTk}. Then T ′ is an antichain of size
k − 1 which satisfies (i)−(iv). Therefore, T ′ is reachable by the induction
assumption. Since

T ′ = {{0}, uT3, . . . , uTk} d−→{{0}, {2 = uj}, uT3, . . . , uTk} u−→
{{0}, {j}, T3, . . . , Tk} = T,

the antichain T is reachable.

232 J. Jirásek and G. Jirásková

(b) Now let |T2| ≥ 2, so there is a state j ∈ [2,m] such that j ∈ ∩T. Let
u be a string in c∗ such that uj = 2, and therefore 2 ∈ ∩uT. Let T ′ =
{0+uT2, 0+uT3, . . . , 0+uTk}. Then 1 /∈ ∪T ′, so T ′ is an antichain of size
k − 1 satisfying (i)−(iv), and therefore it is reachable by the induction
assumption. Since

T ′ = {0 + uT2, 0 + uT3, . . . , 0 + uTk} d−→{{0}, uT2, uT3, . . . , uTk} u−→
{{0}, T2, T3, . . . , Tk} = T,

the antichain T is reachable.
(2) Let T1 = {0, 1}. Then 0 ∈ Ti and 1 /∈ Ti if 2 ≤ i ≤ k. By (iv), there is a

state q in [2,m] such that q /∈ ∪T. Let u be the string in c∗ such that uq = 2.
Let T ′

i = Ti \ {0}. Then

{{0}, uq + uT ′
2, . . . , uq + uT ′

k} a−→{{0, 1}, 0 + uT ′
2, . . . , 0 + uT ′

k} u−→
{{0, 1}, T2, . . . , Tk} = T,

where the starting antichain satisfies (i)–(iv) and it is considered in case
(1).

(3) Let T1 = {0, j} and j ≥ 2. Then 0 ∈ Ti and j /∈ Ti if 2 ≤ i ≤ k. By (iv),
there is a state q in [1,m] and q �= j such that q /∈ ∪T. Let u be a string
in b∗ such that uj = 1. Then uq �= 1 and uq /∈ ∪uT. Next,

{{0, 1}, uT2, . . . , uTk} u−→ {{0, j}, T2, . . . , Tk},

where the starting antichain satisfies (i)–(iv), and it is considered in case (2).
(4) Let |T1| ≥ 3. We prove this case by induction on |T1|. First, let |T1| = 3.

Then 0 ∈ ∩T and there is a state q ∈ T1 \ {0} such that q ∈ ∩T. Let u be
a string in b∗ such that uq = 1 and let T ′

i = Ti \ {0, q}. Then uT ′
i ⊆ [2,m].

Therefore,

{0 + auT ′
1, 0 + auT ′

2, . . . , 0 + auT ′
k} a−→

{{0, 1} ∪ uT ′
1, {0, 1} ∪ uT ′

2, . . . , {0, 1} ∪ uT ′
k} u−→ T

since 0u = 0 and 1u = uqu = q. The starting antichain is considered in
cases (2)–(3). The induction step is exactly the same, except that the start-
ing set is reachable by induction on |T1|.

To prove distinguishability, let S and T be two distinct antichains. By Propo-
sition 1, we may assume that there is a set S ∈ S\T such that no subset of S is in
T. Notice that the set S must be different from [0,m] because otherwise it is not
true that no subset of [0,m] is in T. We also must have S �= [1,m] since 1 ∈ S
implies 0 ∈ S. Then S may be send to S′ with 1 /∈ S′ using a string u in b∗;
while still no subset of S′ is in Tu. Thus, we may assume that 1 /∈ S.

First, let S and T be two final antichains. Then S ⊆ [2,m]. Let i ∈ [2,m] \ S.
Then the string ui = cn−1−ibci−2 sends each state of S to itself, and the state i

The Exact Complexity of Star-Complement-Star 233

to the state 1 in the DFA A. It follows that for each subset S of [2,m], there is a
string uS ∈ {b, c}∗ (equal to the concatenation of strings ui for i /∈ S) by which S
is sent to itself, while each set containing a state in [2,m] \ S is sent to a set
containing {0, 1} in the NFA C+; recall that 0·c = 0·b = 0 and 1·c = 1. It follows
that the antichain S is send to a final antichain containing the state S by uS .
On the other hand, the antichain T is send to a non-final antichain equivalent
to {{0}} since {{0}} remains in itself upon reading uS ∈ {b, c}∗, while any other
set in T is sent to a superset of {0, 1} since it is not a subset of S.

If S and T are non-final, let S′ = S \ {0}. Then S is sent to an antichain
containing the set S by uS′ , while each set in T is sent to a superset of {0, 1}. Now
we use the symbol d. Then SuS′d is a final antichain containing the set S′ ∪{2},
while TuS′d is a non-final antichain of supersets of {0, 1}. �
Theorem 11 (Star-Complement-Star: Lower Bound; |Σ| = 4). Let n ≥ 4
and A be an n-state DFA from Definition 9. Then every DFA for the lan-
guage L(A)∗c∗ has at least 3

2f(n − 1) + 2f(n − 2) + 2n − 5 states where f(n) is
the function defined in (1).

Proof. First, notice that we have L(A)∗c∗ = L(A)+c+ ∪ {ε}. To get an NFA C∗

for L(A)∗c∗, we add a new initial and final state q0 to the NFA C+ for L(A)+c+.
Thus C∗ has two initial states, namely, q0 and {0}, so the initial state of D(C∗)
is {q0, {0}}, and it is final. It is also the unique state of D(C∗) which contains
the state q0. By reading c it is sent to the initial state {{0}} of the subset
automaton D(C+), which has 3

2f(n − 1) + 2f(n − 2) + 2n − 6 reachable and
pairwise distinguishable antichains by Lemma10.

Let us show that the final state {q0, {0}} is distinguishable from any final
antichain. To this aim, let T = {{0}, T2, . . . , Tk} be a final antichain where k ≥ 2
and each Ti is a non-empty subset of [2, n − 1]. Then, by c, the antichain T

is sent to a final antichain, while {q0, {0}} is sent to the non-final antichain
{{0}}. �

The next theorem summarizes our results.

Theorem 12 (State Complexity of Star-Complement-Star). Let n ≥
4 and L be a language accepted by an n-state DFA. Then the language
L∗c∗ is accepted by a DFA with 3

2f(n − 1) + 2f(n − 2) + 2n − 5 states,
where f(2) = 2 and f(n) =

∑n−2
i=1

(
n
i

)
f(n − i) + 2, and f(n) ∼ n!(1 −

ln 2)/(ln 2)n+1 =̇ 2n log n−0.91n+o(n). This upper bound is tight, and it is met
by the quaternary language recognized by the DFA A = ({0, 1, . . . , n −
1}, {a, b, c, d}, ·, 0, {0, 1}) where a : (0, 1, 2), b : (1, 2, . . . , n−1), c : (2, 3, . . . , n−1),
d : (0 → 2). �

7 Conclusions

We proved that the exact state complexity of the star-complement-star operation
is given by 3

2f(n − 1) + 2f(n − 2) + 2n − 5 where f(n) is the function that

234 J. Jirásek and G. Jirásková

counts, for example, the number of distinct resistances possible for n arbitrary
resistors, each connected in series or parallel with previous ones, or the number
of labeled threshold graphs on n vertices. It defines Sloane’s sequence A005840.
These numbers are the coefficients of the generating function (1−x)ex/(2− ex),
and f(n) ∼ n!(1 − ln 2)/(ln 2)n+1.

Our witness language is defined over a quaternary alphabet, we are most
likely able to show that at least three symbols are necessary. Our computations,
summarized in Table 1, show that the upper bound cannot be met by any ternary
language if n ≥ 5, but to prove this seems to be a challenging problem. A lower
bound in the binary case is of interest too. On the other hand, the unary case is
easy since L∗c∗ equals {ε} if a ∈ L, and it equals a∗ otherwise.

Table 1. Computations—the state complexity of plus-complement-plus: the binary
and ternary case; lower bound from [4] with a witness over a seven-letter alphabet; the
exact complexity with a quaternary lower bound example; the upper bound from [4].

n |Σ| = 2 |Σ| = 3 �n
2
�n−� n

2 � State complexity of
L �→ L+c+ with a
quaternary witness

∑n
k=1

(
n
k

)
k!(k + 1)n−k

4 11 18 4 18 260

5 29 77 9 89 2 300

6 134 468 27 596 24 342

7 826 64 4 983 300 454

8 256 49 294 4 238 152

9 625 560 533 67 255 272

10 3 125 7 194 216 1 185 860 330

Acknowledgement. We would like to thank Jeffrey Shallit for proposing such an
interesting problem. The work on finding its solution was really funny for both of us,
and it helped us to almost forget that our children eventually left our place.

References

1. Amengual, A.: The intriguing properties of the equivalent resistances of n equal
resistors combined in series and in parallel. Am. J. Phys. 68(2), 175–179 (2000).
https://doi.org/10.1119/1.19396

2. Beissinger, J.S., Peled, U.N.: Enumeration of labelled threshold graphs and a the-
orem of Frobenius involving Eulerian polynomials. Graph. Comb. 3(1), 213–219
(1987). https://doi.org/10.1007/BF01788543

3. Brzozowski, J.A., Grant, E., Shallit, J.: Closures in formal languages and Kura-
towski’s theorem. Int. J. Found. Comput. Sci. 22(2), 301–321 (2011). https://doi.
org/10.1142/S0129054111008052

https://doi.org/10.1119/1.19396
https://doi.org/10.1007/BF01788543
https://doi.org/10.1142/S0129054111008052
https://doi.org/10.1142/S0129054111008052

The Exact Complexity of Star-Complement-Star 235

4. Jirásková, G., Shallit, J.: The state complexity of star-complement-star. In: Yen,
H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 380–391. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1 34

5. Kleitman, D., Markowsky, G.: On Dedekind’s problem: the number of isotone
boolean functions. II. Trans. Amer. Math. Soc. 213, 373–390 (1975)

6. Maslov, A.N.: Estimates of the number of states of finite automata. Sov. Math.
Dokl. 11(5), 1373–1375 (1970)

7. Noe, T.D.: Table of f(n) for n = 0..100 (2018). https://oeis.org/A005840/b005840.
txt

8. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

9. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Flo-
rence (2012). https://doi.org/10.1016/S0304-3975(81)80005-9

10. Sloane, N.J.A.: Online encyclopedia of integer sequences (2018). http://oeis.org
11. Sloane, N.J.A., Plouffe, S.: The Encyclopedia of Integer Sequences. Academic

Press, San Diego (1995)
12. Weisstein, E.W.: “Resistor network.” from mathworld-a wolfram web resource

(2018). http://mathworld.wolfram.com/ResistorNetwork.html
13. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1007/978-3-642-31653-1_34
https://oeis.org/A005840/b005840.txt
https://oeis.org/A005840/b005840.txt
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/S0304-3975(81)80005-9
http://oeis.org
http://mathworld.wolfram.com/ResistorNetwork.html
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Parametrizing String Assembling Systems

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. String assembling systems are biologically inspired mecha-
nisms that generate strings from copies out of finite sets of assembly
units. The underlying mechanism is based on piecewise assembly of a
double-stranded sequence of symbols, where the upper and lower strand
have to match. The generation is additionally controlled by the require-
ment that the first symbol of a unit has to be the same as the last
symbol of the strand generated so far, as well as by the distinction of
assembly units that may appear at the beginning, during, and at the
end of the assembling process. We investigate the power of these model-
inherent control mechanisms by considering variants where one or more
of these mechanisms are relaxed. Additionally, we study the case where
the length of the substrings in the assembly units is bounded. The gen-
erative capacities and the relative power of the variants are our main
interest.

1 Introduction

In 1965 Gordon E. Moore predicted that the number of components per inte-
grated circuit will double every year [7]. Up to now this forecast that is also
known as Moore’s Law became more or less reality. Nevertheless, there are many
real world problems requiring such a huge computational complexity that they
cannot be solved for an appropriate size of the instance in this day and age, and
also will not be solvable under the assumption of Moore’s Law in a thousand
years unless new computing techniques are developed. This motivated the advent
of investigations of devices and operations that are inspired by the study of bio-
logical processes, and the growing interest in nature-based problems modeled in
formal systems. Among the realms of string generating mechanisms examples
are Lindenmayer systems [11], splicing systems and sticker systems [10]. The
latter two types of devices model operations on DNA molecules and are there-
fore based upon double stranded strings as raw material of the string generation
process, where corresponding symbols are uniquely related. Sticker systems were
introduced in [3] in their basic one-way variant. Basically, they consist of domi-
noes that can be seen as double stranded molecules. The dominoes are sticked
together in a derivation process until a complete double strand is derived. Dif-
ferent variants especially of two-way systems have been investigated in [2,9,10].
A main feature of sticker systems is that the upper and lower fragment of the
dominoes are glued together. So, when a domino is added to a double strand
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 236–247, 2018.
https://doi.org/10.1007/978-3-319-94812-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_20&domain=pdf

Parametrizing String Assembling Systems 237

the length difference of upper and the lower strand derived is the same as the
length difference between the upper and the lower fragment of the domino. This
implies that many variants of sticker systems are at most as powerful as lin-
ear context-free grammars [10]. String assembling systems, introduced in [4],
are another string generating mechanism based on double strands. The idea of
string assembling systems [1,4,5] is basically motivated by the mechanisms of the
Post’s Correspondence Problem. In particular, the basic assembly units are pairs
of substrings that have to be connected to the upper and lower string generated
so far synchronously. In comparison to sticker systems, the substrings are not
connected. This property enables the possibility to increase the length difference
between the two strands arbitrarily and, moreover, to compare positions that are
an arbitrarily far from each other in a given input word. Thus, it is possible to
generate non-context-free languages. Apart from the double strand, essentially,
derivations in string assembling systems are controlled by the requirement that
the first symbol of a string to be assembled has to match the last symbol of
the strand generated so far, as well as by the distinction of assembly units that
may appear at the beginning, during, and at the end of the assembling process.
Moreover, the lengths of the strings in the assembly units are not limited.

Here we investigate the power of these model-inherent control mechanisms by
considering variants where one or more of these mechanisms are relaxed. Addi-
tionally, we study the case where the length of the substrings in the assembly
units is bounded. It turns out that the generative capacities and the relative
power gained in the different control mechanisms may yield strictly more pow-
erful systems and incomparable capacities. Special attention is paid to unary
languages and non-context-free languages. The relative power of the systems is
summarized in Fig. 1. The last section studies the impact of the lengths of the
assembling fragments. It is shown that increasing the lengths gives strictly more
capacity, that is, an infinite and tight hierarchy follows.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words (strings) over the finite alphabet Σ. The
empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is
denoted by wR and for the length of w we write |w|. Generally, for a singleton
set {a} we also simply write a. We use ⊆ for inclusions and ⊂ for strict inclusions.
In order to avoid technical overloading in writing, two languages L and L′ are
considered to be equal, if they differ at most by the empty word, that is, L\{λ} =
L′\{λ}.

A string assembling system generates a double-stranded string by assembling
units. Each unit consists of two substrings, the first one is connected to the upper
and the second one to the lower strand. The corresponding symbols of the upper
and lower strand have to be equal. In the general form as studied in [4], the first
symbols of the substrings have to match the last symbols of the current strands.
In this case the matching symbols are glued together on at the top of the other.
The generation has to begin with a unit from the set of initial units. Then it

238 M. Kutrib and M. Wendlandt

may continue with units from a different set. When a unit from a third set of
ending units is applied the process necessarily stops. The generation is said to
be successful if and only if both strands are identical when the process stops.
More precisely:

A string assembling system (SAS) is a quadruple 〈Σ,A, T,E〉, where Σ is
the finite, nonempty set of symbols or letters, A ⊂ Σ+ × Σ+ is the finite set of
axioms of the forms (uv, u) or (u, uv), where u ∈ Σ+ and v ∈ Σ∗, T ⊂ Σ+ ×Σ+

is the finite set of assembly units, and E ⊂ Σ+ × Σ+ is the finite set of ending
assembly units of the forms (vu, u) or (u, vu), where u ∈ Σ+ and v ∈ Σ∗,

The derivation relation ⇒ is defined on specific subsets of Σ+ × Σ+ by

1. (uv, u) ⇒ (uvx, uy) if
(i) uv = ta, u = sb, and (ax, by) ∈ T ∪ E, for a, b ∈ Σ, x, y, s, t ∈ Σ∗, and
(ii) vx = yz or vxz = y, for z ∈ Σ∗.

2. (u, uv) ⇒ (uy, uvx) if
(i) uv = ta, u = sb, and (by, ax) ∈ T ∪ E, for a, b ∈ Σ, x, y, s, t ∈ Σ∗, and
(ii) vx = yz or vxz = y, for z ∈ Σ∗.

A derivation is said to be successful if it initially starts with an axiom from A,
continues with assembling units from T , and ends with assembling an ending unit
from E. The process necessarily stops when an ending assembly unit is added.
The sets A, T , and E are not necessarily disjoint.

The language L(S) generated by S is defined to be the set

L(S) = {w ∈ Σ+ | (p, q) ⇒∗ (w,w) is a successful derivation},

where ⇒∗ refers to the reflexive, transitive closure of the derivation relation ⇒.
In order to illustrate the definitions we continue with meaningful examples.

Example 1 ([4]). The non-context-free language {anbncn | n ≥ 1} is generated
by the SAS S = 〈{a, b, c}, A, T,E〉, where the units are defined as follows.

1. (a, a) ∈ A
2. (aa, a) ∈ T
3. (ab, a) ∈ T

4. (bb, aa) ∈ T
5. (bc, ab) ∈ T
6. (cc, bb) ∈ T

7. (c, bc) ∈ T
8. (c, cc) ∈ T
9. (c, c) ∈ E

The units (2) and (3) are used to generate the prefixes anb. Initially, only the
unit (aa, a) is applicable repeatedly. Then only (ab, a) can be used to generate
the upper string anb and the lower string a. After that the unit (bb, aa) has to
be used exactly as many times as the unit (aa, a) has been applied before. Then
an application of unit (bc, ab) is the sole possibility. This generates the upper
string anbnc and the lower string anb. For the last part the units (6) and (7)
are used. Similarly as before, repeated applications of (cc, bb) yield to the upper
string anbncn and the lower string anbn. So, it remains to complement the c’s
in the lower string. This is done by the units (c, bc), which can be applied only
once, and (c, cc) which can be applied arbitrarily often. However, the derivation
is successful only if the number of c’s in the upper and lower string match when
the unit from E is applied. �
Example 2. The regular language {ambna� | m,n, � ≥ 1} is generated by an SAS.

Parametrizing String Assembling Systems 239

3 SAS with Less Derivation Control

The derivation of an SAS allows two control mechanisms. On the one hand, the
units are arranged in three sets, such that initial units have to be taken from one
set, ending units from another, and in between only units from the third set are
allowed. On the other hand, whenever the current strands are extended, the last
symbol is glued on top of the first symbol of the extending substring. This section
is devoted to study the generative capacity gained from these mechanisms.

3.1 Free String Assembling Systems

The first restricted variant are so-called free assembling systems, where the con-
trol mechanism derived from the fact that the assembled substrings have to
overlap the last symbol of the current strand is relaxed.

An SAS S = 〈Σ,A, T,E〉 is said to be free, if A, T,E ⊂ Σ∗ × Σ∗, and its

units are assembled according to the derivation relation
f⇒ by

1. (uv, u)
f⇒ (uvx, uy) if

(i) (x, y) ∈ T ∪ E, for x, y ∈ Σ∗, and
(ii) vx = yz or vxz = y, for z ∈ Σ∗.

2. (u, uv)
f⇒ (uy, uvx) if

(i) (y, x) ∈ T ∪ E, for x, y ∈ Σ∗, and
(ii) vx = yz or vxz = y, for z ∈ Σ∗.

Example 3. Let h : {a1, b1} → {a2, b2} be a homomorphism with h(a1) = a2 and
h(b1) = b2. The language {$0w1$1h(w1)$2 | w1 ∈ {a1, b1}+} is not context free
but generated by the free SAS S = 〈{a1, a2, b1, b2, $0, $1, $2}, A, T,E〉, where all
following units are defined for all x, y, z ∈ {a, b}.

1. ($0x1, λ) ∈ A
2. (x1y1, λ) ∈ T
3. ($1, $0) ∈ T
4. (x1$1, $0) ∈ T

5. (x2y2, x1y1) ∈ T
6. (x2$2, x1$1z2) ∈ T
7. (x2y2$2, x1y1$1z2) ∈ T
8. (λ, x2y2) ∈ T

9. (λ, $2) ∈ E
10. (λ, x2$2) ∈ E

There are three basic ideas of the construction of S. First, the axiom (1) has
an empty lower string. This ensures that subsequently only units (2) can be
assembled until the derivation of the upper strand $0w1$1 is completed by one
of the units (3) or (4). Second, since the concluding $2 in the lower strand is only
defined in the ending units (9) and (10), it is impossible to generate anything
after $2. Third, the units assembling the upper w1 extend the current strand
at even positions and have length two, while units assembling w1 in the lower
strand extend the current strand at odd positions. Thus, they overlap, which
ensures that the format of the generated words is correct, and that there are no
symbols of {a1, b1} and {a2, b2} mixed up. These ideas are similarly applied to
the construction of the units generating the substring w2 between the symbols $1

240 M. Kutrib and M. Wendlandt

and $2. Here the units in the upper strand start at an odd position of w2 and at
an even position in w2 in the lower strand.

The units (6) and (7) complete the derivation of the upper strand. Both
place $1 in the lower strand, which ensures the equality of h(w1) and w2. The
generation of the lower strand and the whole derivation is completed by the
units (8) and (9) or (10). �

In order to show that the loss of the control mechanism that requires over-
lapping may weaken the generative capacity of SAS, we first show that witness
languages cannot be generated by free string assembling systems.

Lemma 4. Neither the language L = {anbn$am | m,n ≥ 1} nor its iterated
version L+ = {a}L∗

0 with L0 = {an−1bn$am | m,n ≥ 1} can be generated by any
free SAS.

Proof. In contrast to the assertion assume that L or L+ is generated by some
free SAS S = 〈{a, b, $}, A, T,E〉. First, it is shown that there must exist units of
both forms (ai, aj), i > j ≥ 0 and (ai′

, aj′
), j′ > i′ ≥ 0, or a unit of the form

(al, al), l ≥ 1.
Consider the derivation of a word w = ab$am with m large enough. At some

point in the derivation the generated strands must have the form (u, v), where
one of the two strands, say u, is of the form ab$ap. If v is of the form ab$aq

as well, we may assume that p ≥ q. In order to extend p and q to the large m,
both strands can be extended by applying units of the form (al, al), l ≥ 1, or
units of both forms (ai, aj), i > j ≥ 0 and (ai′

, aj′
), j′ > i′ ≥ 0, can be used.

Now assume that |v| < 3. Then a unit of the form (ai, λ), i ≥ 1 can be applied
which yields generated strands of the same form (u, v), or units (ai, x), i ≥ 0,
|x| ≥ 1, can be applied at most three times. Afterwards the generated strands
are again of the same form (u, v). It follows that there must exist units of both
forms (ai, aj), i > j ≥ 0 and (ai′

, aj′
), j′ > i′ ≥ 0, or a unit of the form (al, al),

l ≥ 1.
Next, consider the derivation of a word w = anbn$am with m,n large enough.

After an appropriate axiom has been chosen, the generated strands are of the
form (u, v) with u, v ∈ {a}∗. Applying the unit (al, al), l ≥ 1, shows that
an+lbn$am is generated by S as well, a contradiction. The same contradiction
is obtained when units (al, al) do not exist but units of both forms (ai, aj),
i > j ≥ 0 and (ai′

, aj′
), j′ > i′ ≥ 0. In this case applying j′ − i′ times the unit

(ai, aj) and i − j times the unit (ai′
, aj′

) shows that an+(i−j)(j′−i′)bn$am is also
generated. So, we conclude that neither L nor L+ can be generated by any free
SAS. ��

The proof of the next theorem uses the witness language L+ from Lemma 4.

Theorem 5. There is a language generated by some SAS that cannot be gener-
ated by any free SAS.

It is currently an open problem whether there is a strict inclusion or incom-
parability between the language families generated by free SAS and SAS. How-
ever, the differences in the generative capacities disappear for unary languages.

Parametrizing String Assembling Systems 241

In order to show that SAS and free SAS are equally powerful with respect to
unary languages the next lemma is useful.

Lemma 6. For each unary free SAS an equivalent free SAS can be constructed
whose sole ending unit is (λ, λ).

Proposition 7. A unary language can be generated by an SAS if and only if it
can be generated by a free SAS.

Proof. First, we show how a free SAS can simulate a given unary SAS S =
〈{a}, A, T,E〉. To this end, a free SAS S′ = 〈{a}, A, T ′, E′〉 is constructed as
follows. For every unit (ai, aj) ∈ T , i, j ≥ 1 the unit (ai−1, aj−1) ∈ T ′ is defined,
and similarly for E and E′. In this way, clearly, each derivation step (au, av) ⇒
(au+i−1, av+j−1) in S using the unit (ai, aj) from T or E is simulated by a

derivation step (au, av)
f⇒ (au+i−1, av+j−1) in S′ using the unit (ai−1, aj−1)

from T ′ or E′, and vice versa.
Second, it has to be shown how an SAS can simulate a given unary free SAS

S = 〈{a}, A, T,E〉. By Lemma 6 we may assume that E = {(λ, λ)}. Now, an SAS
S′ = 〈{a}, A′, T ′, E′〉 is constructed as follows. In order to overcome the problem
that the units in A may have empty substrings but the units in A′ may not, some
units have to be merged. This can be done, since unary units always fit to the
current double strand. The set of axioms is defined as A′ = A′

0∪A′
1∪A′

2∪A′
3∪A′

4,
where

A′
0 = {(ai, aj) | (ai, aj) ∈ A, for i, j ≥ 1},

A′
1 = {(ai1+i2 , aj) | (ai1 , λ) ∈ A and (ai2 , aj) ∈ T, for i1, j ≥ 1},

A′
2 = {(ai, aj1+j2) | (λ, aj1) ∈ A and (ai, aj2) ∈ T, for i, j1 ≥ 1},

A′
3 = {(ai, aj) | (λ, λ) ∈ A and (ai, aj) ∈ T, for i, j ≥ 1},

A′
4 = {(ai, aj) | (λ, λ) ∈ A and (ai, λ) ∈ T, (λ, aj) ∈ T, for i, j ≥ 1}.

So, any axiom in A that have at least one empty substring is replaced by an axiom
without empty substrings (unless the axiom does not appear in any successful
derivation and is useless). The set of ending units is defined as E′ = {(a, a)},
and the set T ′ as T ′ = {(ai+1, aj+1) | (ai, aj) ∈ T}.

Now, for a successful derivation generating a non-empty word in S that starts
with axiom u0, assembles the units u1, u2, . . . , ux, and ends with the sole ending
unit (λ, λ) there is a successful derivation in S′ as follows. If u0 does not contain
an empty substring then the derivation starting with axiom u′

0 = u0 ∈ A′
0,

assembling the units u′
1, u

′
2, . . . , u

′
x, where u′

k = (ai+1, aj+1) if ui = (ai, aj),
1 ≤ k ≤ x, and ending with (a, a) ∈ E′ generates the same word in S′, and vice
versa.

If u0 contains one or two empty substrings then there is one unit or there are
two units in the sequence such that the empty substring is or the empty sub-
strings are extended, say there is one unit ul. Now the derivation starting with the
axiom that merges u0 and ul, assembling the units u′

1, u
′
2, . . . , u

′
l−1, u

′
l+1, . . . , u

′
x

and ending with (a, a) ∈ E′ generates the same word in S′, and vice versa. So,
we conclude that S and S′ generate the same unary language. ��

242 M. Kutrib and M. Wendlandt

3.2 One-Set String Assembling Systems

The second restricted variant are so-called one-set string assembling systems,
where the control mechanism derived from the fact that the units are arranged
in the three sets of axioms, assembling units, and ending units is relaxed. So, in
particular, a derivation can end at any point in a possibly infinite derivation. On
the other hand, if there is no unit whose strings overlap with the last symbols
of the current strands, then the derivation necessarily ends.

A string assembling system is said to be one set, if the sets A, T , and E
are merged into one set T ⊂ Σ+ × Σ+. Accordingly we write S = 〈Σ,T 〉. The
units are assembled according to the derivation relation ⇒. Now every derivation
that begins with a single unit from T and ends with both strands identical is
successful, and the language L(S) generated by S is as before defined to be the
set L(S) = {w ∈ Σ+ | (p, q) ⇒∗ (w,w) is a successful derivation}.

Example 8. The language L = {ambn | m + n ≥ 2} is generated by the one-set
SAS S = 〈{a, b}, T 〉, where the units are defined as follows.

1. (aa, aa) ∈ T 2. (ab, ab) ∈ T 3. (bb, bb) ∈ T �

The next lemma is helpful for showing that certain languages cannot be
generated by one-set SAS.

Lemma 9. Let S be a one-set SAS with symbols from Σ, w1, w2 ∈ Σ∗, and
x ∈ Σ. If w1x and xw2 are generated by S then w1xw2 is generated by S as well.

Theorem 10. The family of languages generated by one-set SAS is strictly
included in the family of languages generated by SAS.

Proof. A one-set SAS 〈Σ,T 〉 can directly be simulated by an SAS 〈Σ,A, T,E〉,
where A = T and E = T . Therefore, the family of languages generated by one-set
SAS is included in the family of languages generated by SAS.

By Example 2 the language L = {ambna� | m,n, � ≥ 1} is generated by some
SAS. Assume that it is also generated by some one-set SAS. The words aba
and aaba do belong to L. So, Lemma 9 implies that abaaba belongs to L as well,
a contradiction. ��

In order to study the unary case we first utilize the fact that in one-set SAS
there are no explicit ending units. This allows to characterize the unary one-set
SAS languages. A unary language L is said to be expanded from language L0 by
z ≥ 1 if L = {an | n = z · m + 1, for am ∈ L0}.

The proof of the following proposition relies on a useful fact which is related
to number theory and Frobenius numbers (see, for example, [12] for a survey).

Proposition 11. Every unary language generated by a one-set SAS is either
empty or {a} or expanded from a cofinite language.

Parametrizing String Assembling Systems 243

The converse of Proposition 11 does not hold. For example, the language
{an | n ∈ {2, 3} or n ≥ 42} cannot be generated by any one-set SAS but is
expanded from the cofinite language {an | n ∈ {1, 2} or n ≥ 41} by z = 1.

Proposition 11 reveals that, for example, the finite singleton language {aa}
can not be generated by any one-set SAS. On the other hand they are able to
generate infinite languages.

Corollary 12. The family of finite languages and the family of languages gen-
erated by one-set SAS are incomparable.

It turns out that the two possibilities to relax one of the two control mecha-
nisms studied and to keep the other yields incomparable generative capacities.

Theorem 13. The families of languages generated by free SAS and by one-set
SAS are incomparable.

Proof. By Proposition 11 the singleton language {aa} can not be generated by
any one-set SAS. On the other hand, it is generated by the free SAS

〈{a}, {(aa, aa)}, {(λ, λ)}, {(λ, λ)}〉.

Conversely, Lemma 4 shows that the language

L+ = {a}L∗
0 with L0 = {an−1bn$am | m,n ≥ 1}

cannot be generated by any free SAS. On the other hand, the SAS generating L+

constructed in the proof of Theorem 5 is actually a one-set SAS. The axiom
(a, a) can safely be removed since any successful derivation has to continue with
unit (2) or unit (3). The ending unit (a, a) just terminates the derivation without
extending the strands. ��

3.3 Pure String Assembling Systems

The last restriction considered in this section is a combination of the both restric-
tions studied above. For so-called pure string assembling systems neither the
control mechanism derived from the fact that the assembled substrings have to
overlap the last symbol of the current strand nor the mechanism derived from
the fact that the units are arranged in the three sets of axioms, assembling units,
and ending units is available.

A one-set SAS S = 〈Σ,T 〉 is said to be pure if T ⊂ Σ∗ × Σ∗ and its units

are assembled according to the derivation relation
f⇒.

Example 14. Let S = 〈{a, b, ā, b̄}, T 〉 be the pure SAS where the following units
are defined for the homomorphism h(a) = ā and h(b) = b̄ and all x ∈ {a, b}.

244 M. Kutrib and M. Wendlandt

1. (x, λ) ∈ T 2. (h(x), x) ∈ T 3. (λ, h(x)) ∈ T .

Since the context-free languages are closed under intersection with regular sets,
and the intersection L(S)∩{a, b}+{h(a), h(b)}+ is the non-context-free language
{wh(w) | w ∈ {a, b}+}, the language L(S) is not context free.

In order to generate words from L(S)∩{a, b}+{h(a), h(b)}+ the derivation has
to start with units (1). After assembling repeatedly units (1), the only possibility
to obtain a matching lower string is to continue with a unit (2). Since the word
generated has to belong to the regular set {a, b}+{h(a), h(b)}+, units (2) have to
be assembled until strands of the form (wh(w), w) are derived. Again, the only
possibility to obtain a matching lower string is to continue with units (3) until
a word of the desired form is derived. �

In general, we obtain the following property of pure SAS languages.

Proposition 15. Every language L generated by a pure SAS is Kleene plus
closed, that is, L = L+.

For unary languages, the difference between one-set SAS and pure SAS is
subtle. Following [6] a unary language L is said to be stretched from language L0

by z ≥ 1 if L = {an | n = z · m, for am ∈ L0}. So, the difference between the
properties of being expanded and being stretched is the addition of one to the
word lengths for expanded languages.

Proposition 16. Every unary language generated by a pure SAS is either empty
or a stretched cofinite language.

As for Proposition 11, the converse of Proposition 16 does not hold.

Corollary 17. The family of finite languages and the family of languages gen-
erated by pure SAS are incomparable.

In particular, the subtle difference between being stretched or being expanded
from a cofinite language makes both language families incomparable.

Theorem 18. The families of languages generated by (unary) one-set SAS and
(unary) pure SAS are incomparable.

Proof. The unary language Le = {an | n ≥ 2 and n even} is generated by the
pure SAS 〈{a}, {(aa, aa)}〉. Assume Le is generated by some one-set SAS S.
Since a2x and a2y belong to Le for some x, y ≥ 1, the fact that S is one-set
yields that a2x+2y−1 is generated by S as well. But a2x+2y−1 does not belong
to Le.

Conversely, the unary language Lo = {an | n ≥ 3 and n odd} is generated
by the one-set SAS 〈{a}, {(aaa, aaa)}〉. Assume Lo is generated by some pure
SAS S′. Since a2x+1 and a2y+1 belong to Lo for some x, y ≥ 1, the fact that S′

is pure yields that a2x+2y+2 is generated by S′ as well. But a2x+2y+2 does not
belong to Lo. ��

Parametrizing String Assembling Systems 245

On the other hand, the family of languages generated by pure SAS are strictly
included in the family of languages generated by free SAS.

Theorem 19. The family of languages generated by pure SAS is strictly
included in the family of languages generated by free SAS.

The relations between the variants of string assembling systems studied so
far are summarized in Fig. 1. We conclude the section by the relations with the
language families of the Chomsky hierarchy. While string assembling systems
where the units are arranged in three sets, that is SAS and free SAS, can generate
all finite languages by using corresponding axioms and a trivial ending unit, the
absence of this control mechanism yields incomparability with the family of finite
languages (see Corollaries 12 and 17).

Fig. 1. Inclusion structure of the language families. A single arrow means strict inclu-
sion, a double arrow means incomparability, and the dashed line together with the
adjacent solid line indicates the open problem whether there is a strict inclusion or
incomparability.

Proposition 20. The families of languages generated by SAS, free SAS, one-set
SAS, and pure SAS are incomparable with the families of regular and (determin-
istic) (linear) context-free languages.

Proof. The unary regular language {a} ∪ {a2n | n ≥ 2} is not generated by any
SAS [4]. So, from the results above we conclude that it is not generated by any
of the three remaining variants of SAS.

On the other hand, non-context-free languages generated by SAS, free SAS,
and pure SAS are given in Examples 1, 3, and 14. A slight modification of the
construction of Example 14 shows that one-set SAS can generate non-context-
free languages as well. ��

A result in [4] reveals that any unary language generated by some SAS is
semilinear and, thus, regular. So, in the unary case the families of languages
generated by SAS, free SAS, one-set SAS, and pure SAS are strict subsets of the
regular languages.

246 M. Kutrib and M. Wendlandt

Another result in [4] shows the strict inclusion of the family of languages
generated by SAS in the complexity class NL. Since, in turn, NL is strictly
included in NSPACE(n) (see, for example, [8]), which is equal to the family of
context-sensitive languages, we obtain the following corollary.

Corollary 21. The families of languages generated by SAS, free SAS, one-set
SAS, and pure SAS are strictly included in NL and, thus, in the family of context-
sensitive languages.

4 Length-Restricted SAS

In this section we turn to a structural limitation of string assembling systems.
Since the length difference of the subwords in units can be seen as a very basic
kind of memory, we consider SAS where the length of the subwords in units are
restricted.

Now we turn to SAS where the lengths of the subwords in units is limited
by a constant and explore the generative capacity gained in the lengths of the
subwords.

Let k ≥ 1 be an integer. An SAS S = 〈Σ,A, T,E〉 is said to be k-length-
restricted, if |u|, |v| ≤ k for each unit (u, v) ∈ A ∪ T ∪ E.

First we consider unary languages and assume that the words are ordered
according to their lengths. The question is, how large can the gaps between two
consecutive words be if the language is generated by some k-length-restricted
SAS. The following example gives a quadratic lower bound.

Example 22. Let k ≥ 1 be an integer. The language Lk = a(a(k−1)2)∗ is gener-
ated by the k-length-restricted string assembling system S = 〈{a}, A, T,E〉 with
the following units.

1. (a, a) ∈ A 2. (ak, a) ∈ T 3. (a2, ak) ∈ T 4. (a, a) ∈ E

Assembling the sole axiom and the sole ending unit results in the word a. So,
the assembling of units from T has to result in equally long upper and lower
strands. The length difference between upper and lower substring is k − 1 in
unit (2) and k − 2 in unit (3). Since for k ≥ 3 the numbers k − 1 and k − 2 are
relatively prime, each k −1 units (3) and k −2 units (2) have to be assembled in
order to obtain equally long upper and lower strands. Assembling k−1 units (3)
extends the upper strand by k−1 and the lower strand by (k−1)(k−1) symbols.
Assembling k − 2 units (2) extends the upper strand by (k − 2)(k − 1) and the
lower strand by 0 symbols. So, the current strands can be extended by blocks of
length (k − 1) + (k − 2)(k − 1) or equivalently (k − 1)(k − 1). Adding the initial
symbol a shows that S generates Lk, for k ≥ 3. For k = 1, unit (2) does not
extend the current strands and, thus, unit (3) cannot contribute to a successful
derivation. Therefore, the initial word a is the only one that can be derived.
Since L1 = {a}, the SAS S generates Lk for k = 1 as well. Finally, if k = 2
then unit (3) extends the current strands by 1, which shows that a+ = L2 is
generated. �

Parametrizing String Assembling Systems 247

The next lemma shows that the lower bound for the gaps presented in Exam-
ple 22 is tight.

Lemma 23. Let k ≥ 1 and L be a unary language generated by some k-length-
restricted SAS. Assume the words of L are ordered according to their lengths.
Then the length difference between two consecutive words is at most (k − 1)2.

The previous Lemma and Example 22 yield an infinite and tight hierarchy
dependent on the length restrictions.

Theorem 24. Let k ≥ 1 be an integer. The family of languages generated by
k-length-restricted string assembling systems is strictly included in the family of
languages generated by (k + 1)-length-restricted string assembling systems.

Proof. By definition a k-length-restricted SAS is a (k+1)-length-restricted SAS.
Thus it remains to be shown that the inclusion is strict.

Example 22 shows that the language Lk+1 = a(a(k)2)∗ is generated by a
(k + 1)-length-restricted SAS. But by Lemma 23 it can not be generated by any
k-length-restricted SAS. ��

References

1. Bordihn, H., Kutrib, M., Wendlandt, M.: Nonterminal controlled string assembling
systems. J. Autom. Lang. Comb. 19, 33–44 (2014)

2. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Bidirectional sticker systems.
In: Pacific Symposium on Biocomputing (PSB 1998), pp. 535–546. World Scientific,
Singapore (1998)

3. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker
systems, and universality. Acta Inform. 35, 401–420 (1998)

4. Kutrib, M., Wendlandt, M.: String assembling systems. RAIRO Inform. Théor.
46, 593–613 (2012)

5. Kutrib, M., Wendlandt, M.: Bidirectional string assembling systems. RAIRO
Inform. Théor. 48, 39–59 (2014)

6. Kutrib, M., Wendlandt, M.: Expressive capacity of subregular expressions. In: Bor-
dihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) Non-Classical Models of Automata
and Applications (NCMA 2016), books@ocg.at, vol. 321, pp. 227–242. Austrian
Computer Society (2016).

7. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38,
114–117 (1965)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
9. Păun, G., Rozenberg, G.: Sticker systems. Theoret. Comput. Sci. 204, 183–203

(1998)
10. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing

Paradigms. Texts in Theoretical Computer Science. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-3-662-03563-4

11. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, New York (1980)

12. Shallit, J.: The Frobenius problem and its generalizations. In: Ito, M., Toyama, M.
(eds.) DLT 2008. LNCS, vol. 5257, pp. 72–83. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85780-8 5

https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-540-85780-8_5
https://doi.org/10.1007/978-3-540-85780-8_5

Two Routes to Automata Minimization
and the Ways to Reach It Efficiently

Sylvain Lombardy1(B) and Jacques Sakarovitch2

1 LaBRI - UMR 5800 - Bordeaux INP - Bordeaux University - CNRS,
Bordeaux, France

Sylvain.Lombardy@labri.fr
2 IRIF - UMR 8243 - CNRS/Paris Diderot University and Telecom ParisTech,

Paris, France

Abstract. This paper reports on the work done for the implementation
of the algorithms for the computation of the minimal quotient of an
automaton in the Awali platform. In the case of non-deterministic or of
weighted automata, the minimal quotient of an automaton is obtained
by merging all states in bisimulation. Two strategies are explored for the
computation of the coarsest bisimulation equivalence. The first one is an
extension of the Moore algorithm for the computation of the minimal
quotient of a DFA; the second one is inspired by the Hopcroft algorithm
for the same problem. These two strategies yield algorithms with the
same quadratic complexity and we study the cases where the second
strategy can be improved in order to achieve a complexity similar to the
one of Hopcroft algorithm.

1 Introduction

This paper reports on the work done for the implementation of the algorithms
for the computation of the minimal quotient of an automaton in the Awali
platform [12]. It amounts to a thorough analysis of procedures that perform an
iterative partition refinement and the ways to implement them.

The existence of a minimal deterministic finite automaton, canonically asso-
ciated with every regular language is one of the basic and fundamental results
in the theory of finite automata [7]. The problem of the computation of this
minimal (deterministic) automaton has given rise to an extensive literature, due
to the importance of the problem, from both a theoretical and practical point of
view. A rich account of it is to be found in the chapter written by Jean Berstel
and his colleagues for the yet unpublished Handbook on Automata [3].

In contrast, the problem of the definition and the computation of the mini-
mal quotient of nondeterministic Boolean, or of weighted, automata is much less
documented. It can be nevertheless considered as folklore or common knowledge
that such a minimal quotient is obtained by merging states that are in bisim-
ulation and that, exactly as in the case of deterministic Boolan automata, the
coarsest bisimulation relation is obtained by partition refinements.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 248–260, 2018.
https://doi.org/10.1007/978-3-319-94812-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_21&domain=pdf

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 249

An algorithm for computing the coarsest bisimulation relation then goes as
follows: at a given step of the procedure, a partition P of the state set Q of
an automaton, and a class I of P are considered. Then there are two possible
strategies for determining a refinement of P. In the first one, the class I itself
is split, by considering the labels of the outgoing transitions from the different
states in I. This is an extension of the Moore algorithm for the computation of
the minimal quotient of a deterministic automaton and we call it the ‘Forward
Algorithm’. The second policy is an adaptation of the algorithm due to Hopcroft
for the same problem. The class I determines the splitting of classes that contain
the origins of the transitions incoming to the states of I and we call it the
‘Backward Algorithm’.

Although the two strategies yield distinct orderings in the splitting of classes,
the two algorithms have many similarities that we describe in this paper. Not
only do they have the same time complexity, in O(nm), where n is the number
of states of the automaton and m its number of transitions, but the criterium
for distinguishing states — the splitting process — is based on the same state
function that we call signature. And in both cases, achieving the above mentioned
complexity implies that signatures are managed through the same efficient data
structure that implements a weak sort.

It is also well-known that the Hopcroft algorithm achieves a better time com-
plexity than the Moore algorithm, in O(n log n). Our analysis allows to describe
a condition — which we call simplifiable signatures — under which an analogous
handling of the partition refinement yields a time complexity in O(m log n) (in
complete DFAs, m = αn, where α is the size of the alphabet).

The paper is organized as follows: after a few words on the implementation of
automata at Sect. 2, we recall at Sect. 3 the definition and the characterization
of the minimal quotient of a finite automaton, in full generality, nondeterminis-
tic Boolean automata, or weighted automata. At Sect. 4, we describe a general
procedure for the partition refinement, the signature, and the way to implement
weak sort. Sect. 5 details the Forward Algorithm and its complexity, Sect. 6 the
Backward Algorithm and its complexity. Some experiments presented at Sect. 8
show that the algorithms behave with their theoretical complexity. Some more
experiments, and the detailed algorithms are given in the appendix for sake of
completeness.

2 Implementation of Weighted Automata

In this paper, we deal with (finite) automata over a free monoid A∗ with weight
in a semiring K, also called K-automata. Classical automata are B-automata
where B is the Boolean semiring.

Indeed, all what follows will apply as well to automata over a monoid M
which is non necessarily free, for instance to transducers that are automata
over A∗ ×B∗. Such automata are considered as automata over a free monoid C∗,
where C is the set of labels on the transitions of the automaton. Remark that
there exists no theory of quotient that takes into account non trivial relations
between labels.

250 S. Lombardy and J. Sakarovitch

We essentially follow the definitions and notation of [10]. The model of
weighted automaton used in this paper is more restricted though, for both theo-
retical and computational efficiency. An automaton A is a directed graph whose
transitions are labelled by a letter in A and a weight in K, together with an
initial function and a final function. The states in the support of the initial
function are called initial states, those in the support of the final function are
called final states. Figure 1(a) shows such an automaton A1.

Fig. 1. Two representations of the same automaton

An automaton A with set of states Q is denoted by a triple A = 〈 I, E, T 〉
where I and T are vectors of dimension Q that denote the initial function and
the final functions and E is the incidence matrix of the graph, that is, a Q × Q-
matrix whose (p, q) entry is the sum of the weighted labels of the transitions
from p to q. We say that Q is the dimension of A and we denote by E(p, a, q)
the weight of the transition labeled by a that go form p to q.

In order to deal computationally in the same way with the initial and final
functions and with the transitions, it is convenient to consider that the alpha-
bet A is equipped with a supplementary letter $, which will be used as a left
and right marker, and that A is equiped with two supplementary states i and t
and with transitions that go from i to every initial state p with label $ and with
weight Ip and transitions that go from every final state q to t with label $ and
with weight Tq. We write A$ for A$ = A ∪ {$} and A$ for this augmented
automaton over A∗

$. Finally, the only initial state of A$ is i, with weight 1K, and
its only final state is t, also with weight 1K.

If w is in A∗, there is a 1–1 correspondence between the successful computa-
tions with label w in A and the computations with label $w $ in A$, hence they
are given the same weight by the two automata.

Example 1. The incidence matrix of the Z-automaton A1 $ is shown on Fig. 1(b).
It is interpreted as follows. For instance, on line q and column r, 2b means that
there is a transition from q to r with label b and weight 2, hence, if E1 is the
transition function of A1 $, E1(q, b, r) = 2; likewise, E1(q, a, r) = 1; in contrast,
there is no transition from r to q with label b: E1(r, b, q) = 0. There is no column i

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 251

nor row t in the table for there is no transitions incoming to i nor transitions
outgoing from t.

We write A$ = 〈 Q, i, E$, t 〉 if A = 〈 I, E, T 〉 is a K-automaton of dimen-
sion Q, and more often, simply A = 〈 Q, i, E, t 〉 when it is clear by the context
that we deal with an augmented automaton.

3 The Minimal Quotient of a (Weighted) Automaton

A K-automaton B = 〈 J, F, U 〉 is a quotient of a K-automaton A = 〈 I, E, T 〉
if there exists a surjective map ϕ : Q → R which is a morphism. In [10] or [2],
we have defined mophisms — Out-morphisms to be more precise — via the
notion of conjugacy of (K-)automata. What makes a map ϕ an Out-morphism
are conditions on the map equivalence of ϕ which we can take as definition
of an Out-morphism. We first take some definitions and notation to deal with
equivalences. An equivalence on a set Q is a partition of Q, that is, a set of
disjoint nonempty subsets of Q, called classes, whose union is equal to Q. If P
is an equivalence on Q, for every pair (p, q) of elements of Q, we denote p P q if
and only if there exists a class C in P such that both p and q belong to C.

Definition 1. Let A = 〈 Q, i, E, t 〉 be a K-automaton. An equivalence P on Q
is an Out-morphism, also called congruence on A, if:

{i} ∈ P , {t} ∈ P , and (1)

∀p, q p P q =⇒ ∀a ∈ A$, ∀C ∈ P
∑

r∈C

E(p, a, r) =
∑

r∈C

E(q, a, r). (2)

It is a classical result that two states p and q in the same class of a congruence
are in bisimulation: for every word w, the K-automaton behaves identically when
it reads w from state p or from state q.

If P is a congruence, then equivalent states can be merged and this merging
defines the quotient automaton AP = 〈 P, i, EP , t 〉 where EP is defined by:

∀C,D ∈ P , ∀a ∈ A$, ∀p ∈ C EP(C, a,D) =
∑

q∈D

E(p, a, q). (3)

It follows from (2) that the sum in (3) is independent from the choice of p in C
and from Definition 1 that AP is equivalent to A.

An equivalence R is coarser than an equivalence P if, for every C in P,
there exists D in R such that C ⊆ D. The equivalences on a set Q, ordered by
this inclusion relation, form a lattice, with the identity — where every class is
a singleton — at the top and the universal relation — with only one class that
contains all elements of Q — at the bottom.

The proof of the existence of a coarsest congruence goes downward, so to
speak, whereas the computation of the coarsest congruence goes upward.

252 S. Lombardy and J. Sakarovitch

Proposition 1. Every automaton A admits a unique coarsest congruence.

The coarsest congruence is an extension of the Myhill-Nerode equivalence.

Definition 2. The quotient of a K-automaton A by its coarsest congruence is
the minimal quotient of A.

The minimal quotient of A is not necessary the smallest K-automaton equiv-
alent to A nor a canonical automaton associated with the series realized by A.

4 The Common Trunk

Both Forward and Backward algorithms that compute partition refinements are
instantiation of a common general procedure, which we call a proto-algorithm.
For efficiency, both algorithms use weak sort, which is a method to gather similar
values in linear time.

4.1 The Proto-Algorithm

The computation of the coarsest congruence of an automaton A = 〈 Q, i, E, t 〉
goes upward. It starts with P0 =

{{i}, Q, {t}}, the coarsest possible equivalence.
Every step of the algorithm splits some classes of the current partition, yielding
an equivalence which is higher in the lattice of equivalences of Q ∪ {i, t}.

In order to split classes, we use a criterion on states of A, which we call
signature, and which, given a partition, tells if two states in a same class should
be separated in a congruence of A. It has been used in [1] for the minimization
of incomplete DFAs, the ‘first’ example for which the classical minimization
algorithms for complete DFA have to be adapted.

Definition 3. The signature of a state p of a K-automaton A = 〈 Q, i, E, t 〉
with respect to a subset D of Q is the map from A$ to K, defined by:

sig[p,D](a) =
∑

q∈D

E(p, a, q).

It follows from (2) that a partition P is a congruence if and only if

∀C ∈ P , ∀p, q ∈ C , ∀D ∈ P sig[p,D] = sig[q,D].

Thus P is a congruence if and only if, for every pair (C,D) of classes of P,
all states p in C have the same signature with respect to D.A pair (C,D) for
which this property is not satisfied is called a splitting pair. The equivalence
on C induced by the signature with respect to D, called the split of C by D and
denoted by split[C,D], can be computed:

∀p, q ∈ C split[C,D](p) = split[C,D](q) ⇐⇒ sig[p,D] = sig[q,D].

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 253

The split of the class C by the class D of P leads to a new equivalence on Q:
P ∧ split[C,D], and the proto-algorithm runs as follows:

P := P0

while there exists a splitting pair (C,D) in P
P := P ∧ split[C,D]

When there are no more splitting pairs, the current equivalence is a congru-
ence; it is an invariant of the algorithm that the current equivalence is coarser
than any congruence, hence the final equivalence is the coarsest congruence.

This procedure is not a true algorithm, in particular, it does not tell how to
find a splitting pair, nor how to implement split to make it efficient. The main
difference between Forward and Backward algorithms is the classes partition P
they split when then iterate over the classes of that partition:

– the Forward Algorithm iterates over classes C and computes how C can be
split with respect to the signatures of its states, that is, with respect to the
classes that can be reached by transitions outgoing from states of C.

– the Backward Algorithm iterates over classes D and computes which classes
are split with respect to D, that is, classes that contain states that are the
origin of transitions incoming to states in D.

4.2 The Weak Sort

A key to efficient implementation is avoiding to sort letters or states, as every
sort would have a logarithmic overhead on top of the cost of other operations.
Nevertheless, the computation of signatures requires that the transitions arriv-
ing in the same class are gathered. Moreover, comparing signatures of states
(implemented as lists) in linear time requires that the signatures are described
by the same lists. This is allowed by the weak sort introduced in [8].

Let f be a function from a set X to a set Y . We say that a list of elements of X
are weakly sorted (with respect to f) if the elements with the same image by f
are contiguous. An algorithm that weakly sorts elements of X readily improves to
directly return classes of equivalent elements (under the map equivalence of f).

Both Forward and Backward algorithms are based on a weak sort of signature
lists. In a first step, and for every state, transitions outgoing from that state with
the same label and destinations in the same class must be gathered. Moreover,
for two states with the same signature, the list of pairs (label, weight) that form
the signature must appear in the same ordering, in such a way the equality test
is made efficient. In a second step, the weak sort is used to gather states with
the same signature and to form the new classes.

A bucket sort algorithm realizes a weak sort with linear complexity. Once
the values in Y are coded by integers, an ‘enhanced’ array indexed by integers
can be used: for every n, a pointer to the sublist of elements with value n is
stored in the array element of index n. The size of the array hence depends
on the maximal value of f(X). Under the assumption that memory allocation

254 S. Lombardy and J. Sakarovitch

without initialization can be made with constant complexity, sparse lists allow
to implement the weak sort in linear time. However, hash maps are more suitable
than sparse lists to deal with the blowing up of memory due to this maximal
value. Since we need to efficiently iterate over the elements of f(X), we use linked
hash maps, that is, hash maps where keys are stored in a linked list.

5 Forward Algorithm

The Forward Algorithm is an extension of the Moore algorithm for the minimiza-
tion of DFAs. At each iteration, a class C is considered; the global signature of
all states p in C is computed and C is split accordingly. The global signature of
a state p is the aggregation of all signatures of p:

GSig[p](a) =
⋃

D class of ϕ, sig[p,D](a) �=0K

(sig[p,D](a),D).

In this algorithm, a partition is an array class of lists of states, so a class is
an index in this array. A queue contains all classes that can potentially be split.

The signature GSig[p] of p in the current class C is a list of triples (a, k,D);
such a triple means that the sum of the weights of all transitions with label a
that go from p to some state in D is equal to k. This signature is weakly sorted:
if the signatures of two states contain the same set of triples, the triples appear
in the same ordering. The computation of GSig[p] requires two steps.

First, for every state p and for every transition p
a|k−→ q, the pair (p, k) is

inserted in a list meet[a,D], where D is the class of q. This insertion is special in
the case where meet[a,D] is not empty and its last element is a pair (p′, k′) with
p′ = p: k′ is then updated to k′ + k; if k′ + k is zero, the pair is removed from
the list. The second step iterates over the keys of meet, and for every (p, k) in
meet[a,D], inserts (a, k,D) into GSig[p].

The split of a class with respect to a signature is a weak sort. At each round,
the states in the same subclass with a signature that begins with the same triple
are gathered and this triple is removed from the signature.

When the class with index C is split, the first subclass inherits the index,
the other ones are indexed with fresh integers. Singletons are not inserted in the
queue (they can not be split).

Example 2. On the automaton A1, the equivalence is initialized with D0 = {i},
D1 = {t}, D2 = {p, q, r}. Class D2 is put in the queue (the other classes are
singletons and cannot be split). The signature of states in D2 is computed as
follows. For every state of D2, every outgoing transition is considered to fill the
meet table, then the GSig table is filed based on the meet table.

meet : a,D2 �→ (p,−1)(q, 2)(r, 2) GSig : p �→ (a,−1,D2)(b, 1,D2)
b,D2 �→ (p, 1)(q, 1)(r, 1) q �→ (a, 2,D2)(b, 1,D2)($, 1,D1)
$,D1 �→ (q, 1)(r, 1) r �→ (a, 2,D2)(b, 1,D2)($, 1,D1)

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 255

State p differs from q and r on the first triple of the signature; hence p is
separated from q and r; q and r coincide on the second and the third triple, thus
they stay in the same class. The class D2 is then split and the new partition is
{{i}, {t}, {p}, {q, r}}. The new class which is not a singleton is put in the queue.

Building the new classes from the signature can be computed in linear time
in the size of the signature (that is the number of triples which appear in the
signatures of all the states of the current part), which is at most as large as the
number of transitions outgoing from states of the current class.

If a class is not split, it must be reinserted in the queue because it may be split
later if a class which contains some successors is split. To ensure termination of
the algorithm, some rounds are defined. A round ends when all classes that were
in the queue at the beginning of the round have been dequeued. If no split has
occurred during the round, the algorithm has actually checked that the current
equivalence is a congruence and stops; otherwise, a new round begins.

Complexity. The evaluation of the complexity is made under the assumption
that operations in the semiring (addition, comparison to 0) can be performed
in constant time and that there exists a constant time hash function on the
semiring in order to weakly sort states with respect to their signatures. If these
conditions are not met, a more refined evaluation should be made.

For every class C, the computation of GSig[p] for all states in C is in
O(|C| + mC), where |C| is the number of states in C and mC is the maximal
number of transitions outgoing from a state of this class. The total number of
triples in the signature is at most mC .

The complexity of the computation of the new classes is in O(|C| + mC), as
well as the insertion of classes in the queue. Moreover, at the beginning of each
round, the queue contains a subset of a partition of Q, hence, the global cost of
the computation of GSig and class splitting is in O(n + m) at each round, where
n is the number of states of the automaton and m is the number of transitions.
At each round (except the last one), the partition is refined. It can only be
refined at most n times, hence the following statement.

Theorem 1. The Forward Algorithm computes the minimal quotient of a K-
automaton with n states and m transitions in time O(n(m + n)).

6 Backward Algorithm

The Backward Algorithm is inspired by the Hopcroft algorithm for the mini-
mization of DFAs. At each iteration, a class D is considered and for every prede-
cessor p of some state of D, sig[p,D] is computed; then all the classes containing
some predecessors of D are split according to the computed signatures.

256 S. Lombardy and J. Sakarovitch

The computation of sig[p,D] is similar to the computation of the signature

in the Forward Algorithm. For each q in D, for every transition p
a|k−→ q, (p, k)

is inserted in a list meet[a]. Then, for every key a of meet, for every (p, k) in
meet[a], (a, k) is inserted in sigD[p] with the same special insertion used in the
Forward Algorithm.

Example 3. On the automaton A1, the equivalence is initialized with D0 = {i},
D1 = {t}, D2 = {p, q, r}. Classes D1 and D2 are put in the queue (i has no
predecessor, thus D0 can not split any class). Assume that D2 is considered
first. The signature of predecessors of states in D2 is computed as follows. For
every state of D2, every incoming transition is considered to fill the meet table,
then the sigD table is filled, based on the meet table.

meet : $ �→ (i, 2)(i, 1) sigD : i �→ ($, 3)
a �→ (p,−1)(q, 1)(r, 1)(r, 1)(q, 1) p �→ (a,−1)(b, 1)
b �→ (p,−1)(q,−1)(p, 2)(q, 2)(r, 1) q �→ (a, 2)(b, 1)

r �→ (a, 2)(b, 1)

In fact, i is not considered since D0 is a singleton. State p differs from q and r
on the first pair of the signature; hence p is separated from q and r; q and r also
coincide on the second pair, thus they stay in the same class. Class D2 is then
broken and the new partition is {{i}, {t}, {p}, {q, r}}. The new classes are put
in the queue.

The computation of the new classes requires some care in order to keep it
linear in the number of the incoming transitions on the splitting part, and not in
the sum of the sizes of the split parts (which may be larger). In particular, each
class is implemented as a list, and the location of a state in the class is recorded
in an array in order to remove a state from a class in constant time. And when
a class C is split with respect to a class D, if there are states in C which are not
predecessors of D, all the predecessors of D are removed from C to form new
classes. The cost of this operation is independant from the size of C.

After considering class D as splitter, D is not reinserted in the queue. Classes
are inserted in the queue only when they are split (and when their identifier is
not already in the queue).

Complexity. The computation of sigD is in O(|D| + m′
D), where m′

D is the num-
ber of transitions incoming to states of D. The total number of triples in the
signature is at most m′

D. The complexity of gathering states with the same sig-
nature is in O(m′

D), as well as the creation of new classes and the insertion of
these classes in the queue.

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 257

If in the course of the computation, a state p belongs to a class D1 and then
to a class D2, then D2 derives from a split of D1. Hence, any state p appears at
most n times in class[D] along all iterations, and it holds:

Theorem 2. The Backward Algorithm computes the minimal quotient of a K-
automaton with n states and m transitions in time O(n(m + n)).

7 The Fast Backward Algorithm

Hopcroft’s algorithm can be seen as an improvement of the Backward Algorithm
for complete DFA. Its time complexity is O(αn log n) (cf. for instance [4,6]),
where α is the size of the alphabet (for complete DFA, m = αn); this algorithm
has been extended to incomplete DFA [1,11] with complexity O(m log n).

The strategy: “All but the largest”, introduced in [9], can be applied to
improve the Backward Algorithm in some cases that we now study.

The signatures are equipped with the pointwise addition: for every a in A$,(
sig[p,D]+ sig[p,D′]

)
(a) = sig[p,D](a)+ sig[p,D′](a) , and if D is a subset of Q

and ψ a partition of D, then it holds:

sig[p,D] =
∑

D′ class of ψ

sig[p,D′].

We say that an automaton has simplifiable signatures if, for every subset D
and every C subset of D, and for every pair of states p, q, it holds

sig[p,D] = sig[q,D] and sig[p,C] = sig[q, C] =⇒ sig[p,D \ C] = sig[q,D \ C].

If the additive monoid (K,+) is a cancellative monoid, that is, for every a, b,
and c in K, a+ b = a+ c implies b = c, then every K-automaton has simplifiable
signatures. This is in particular the case when K is a ring.

For other weight semirings, the simplifiability of signatures depends on the
automaton. If A is a deterministic1 K-automaton, that is, if for every state p
and every letter a, there is at most one transition outgoing from p with label a,
then the signatures are simplifiable, independantly of K, since it holds:

∀p ∈ Q , ∀a ∈ A$ sig[p,D \ C](a) =

{
sig[p,D](a) if sig[p,C](a) = 0K,
0K otherwise.

Fig. 2. The NFA A2

Example 4. Assume K is the Boolean semiring.
Let A2 be the NFA of Fig. 2. It holds:

sig[p, {r, s}](a) = 1 sig[q, {r, s}](a) = 1
sig[p, {s}](a) = 1 sig[q, {s}](a) = 1
sig[p, {r}](a) = 1 sig[q, {r}](a) = 0.

1 Called sequential in [10].

258 S. Lombardy and J. Sakarovitch

Hence, A2 has not simplifiable signatures.
Let A be an automaton with simplifiable signatures. In this case, the algo-

rithm can be modified in the following way: for every class C which is split with
respect to a partition ψ, if C is not already in the queue, all the classes in ψ
except one of the largest are put in the queue.

Actually, since C is not in the queue, the splitting of classes with respect
to C has already be considered: for every D in the current partition, sig[p,C] is
the same for all p in D. Let C1 be some subclass of C; if (D,C1) is a splitting
pair for some class D, then, since signatures are simplifiable, there exists some
other class C2 in ψ such that (D,C2) is also a splitting pair.

Let c(k) be the maximal number of times that a state p which belongs to
a class D of size k that is removed from the queue will appear again in classes
removed from the queue. A class D′ containing p will be inserted only if D′

results from a split of D. If D is split into r subclasses, since one of the largest
class is not inserted, the size of D′ is at most (k−r+2)/2 (if all the other classes
but the largest have size 1). Finally c(k) � 1+c(k/2), and, since a singleton class
will not be split, c(1) = 0; therefore c(k) is in O(log k). Thus, the complexity
of the algorithm is in O((m + n) log n) which is the complexity of the Hopcroft
algorithm.

Theorem 3. If A is a K-automaton with simplifiable signatures, the Fast Back-
ward algorithm computes the minimal quotient of A in time O((m + n) log n).

If the signatures of A are not simplifiable, for instance for NFA or automata
over a (min,+)-semiring, the Backward Algorithm cannot be improved in this
way, and it is an open problem to know whether there exists an algorithm
in O(m log n).

8 Benchmarks

The Forward, Backward and Fast Backward algorithms are implemented in the
Awali library [12]. We present here a few benchmarks to compare their respec-
tive performances and to check that their execution time is consistent with their
asserted complexity. Benchmarks have been run on an iMac Intel Core i5 3,4GHz,
compiled with Clang 9.0.0.

The first family of automata is an adaptation of a family used in [5] to show
that the Hopcroft algorithm requires Θ(n log n) operations.

Let ϕ be the morphism defined on {a, b}∗ by ϕ(a) = ab and ϕ(b) = a; for
instance ϕ(abaab) = abaababa. The k-th Fibonacci word is ϕk(a); its length
is equal to the k-th Fibonacci number Fk, hence it is in Θ

((
1+

√
5

2

)k
)
. Let Fk

be the automaton with one initial state and a simple circuit around this initial
state with label ϕk(a) (all states are final).

We observe on the benchmarks of Table 1 that the running time of the For-
ward Algorithm is quadratic, while the running time of both the Backward and
the Fast Backward algorithms are in Θ(kFk) (i.e. Θ(Fk log Fk), where Fk is the
number of states).

Two Routes to Automata Minimization and the Ways to Reach It Efficiently 259

Table 1. Minimization of Fk

k 14 17 20 23 26 30

Fk 987 4181 17711 75025 317811 2178309

Forward t (s) 0.42 7.37 139

10−7t/F 2
k 4.3 4.2 4.4

Backward t (s) 0.010 0.045 0.257 1.36 73 257

10−7t/kFk 7.2 6.3 7.3 7.6 6.7 7.5

Fast t (s) 0.006 0.025 0.140 0.70 41 139

Backward 10−7t/kFk 4.2 3.5 3.9 3.8 3.5 3.7

Fig. 3. A railroad Z-automaton

The second family is an exam-
ple where the Backward and the Fast
Backward algorithms have not the
same complexity. Notice that these
automata are acyclic and there may
exist faster algorithms (cf. [3] for spe-
cific algorithms for acyclic DFA), but
this is out of the scope of this paper.
Table 2 shows the minimization of the
“railroad” automaton with states in [1; 2n]: state 1 is initial, states n − 1 and n
are final, and for every p in [1;n − 1], the transitions are described by Fig. 3. In
the minimization, every pair of states (2p + 1, 2p + 2) is merged.

Table 2. Minimization of Railroad(n)

n 210 212 213 214 215 222

Forward t (s) 3.29 53.2 214

10−6t/n2 3.1 3.2 3.2

Backward t (s) 0.31 4.92 20.5 86.1 346

10−7t/n2 3.0 2.9 3.1 3.2 3.2

Fast t (s) 0.008 0.030 0.061 0.12 0.24 30.8

Backward 10−6t/n 7.8 7.3 7.4 7.3 7.3 7.3

Analysis. On these railroad automata, if a temporary class contains all states
between 1 and 2k, it is split into one class [1; 2k − 2] and one class {2k − 1, 2k}:
the size of the classes lowers slowly. On these examples, Forward and Backward
algorithms are therefore quadratic. In the Fast Backward algorithm, when this
splitting occur, the largest class ([1; 2k − 2]) is not put in the queue for further
splittings; therefore, except at the first round, all splitters are pairs of states and
the algorithm is linear.

260 S. Lombardy and J. Sakarovitch

References

1. Béal, M.P., Crochemore, M.: Minimizing incomplete automata. In: Finite-State
Methods and Natural Language Processing FSMNLP 2008, pp. 9–16 (2008)

2. Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted
automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A.
(eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006). https://
doi.org/10.1007/11753728 9

3. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Minimization of automata.
In: Pin, J.E. (ed.) Automata: From Mathematics to Applications (to appear).
arXiv:1010.5318v3

4. Berstel, J., Carton, O.: On the complexity of Hopcroft’s state minimization algo-
rithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004.
LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-30500-2 4

5. Castiglione, G., Restivo, A., Sciortino, M.: On extremal cases of Hopcroft’s algo-
rithm. Theor. Comput. Sci. 411(38–39), 3414–3422 (2010)

6. Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2, 97–109 (1973)
7. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,

Languages and Computation, 3rd edn. Addison-Wesley, Boston (2006)
8. Paige, R.: Efficient translation of external input in a dynamically typed language.

In: Technology and Foundations - Information Processing IFIP 1994, IFIP Trans-
actions, vol. A-51, pp. 603–608. North-Holland (1994)

9. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

10. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

11. Valmari, A., Lehtinen, P.: Efficient minimization of DFAs with partial transition.
In: STACS 2008, LIPIcs, vol. 1, pp. 645–656. Schloss Dagstuhl (2008)

12. Awali: Another Weighted Automata LIbrary. vaucanson-project.org/AWALI

https://doi.org/10.1007/11753728_9
https://doi.org/10.1007/11753728_9
http://arxiv.org/abs/1010.5318v3
https://doi.org/10.1007/978-3-540-30500-2_4
https://doi.org/10.1007/978-3-540-30500-2_4
http://www.vaucanson-project.org/AWALI

Towards the Algorithmic Molecular
Self-assembly of Fractals

by Cotranscriptional Folding

Yusei Masuda, Shinnosuke Seki(B), and Yuki Ubukata

Department of Computer and Network Engineering,
The University of Electro-Communications, 1-5-1, Chofugaoka,

Chofu, Tokyo 1828585, Japan
s.seki@uec.ac.jp

Abstract. RNA cotranscriptional folding has been just experimentally
proven capable of self-assembling a rectangular tile at nanoscale in vivo
(RNA origami). We initiate the theoretical study on the algorithmic
self-assembly of shapes by cotranscriptional folding using a novel com-
putational model called the oritatami system. We propose an oritatami
system that folds into an arbitrary finite portion of the Heighway dragon
fractal, also-known as the paperfolding sequence P = RRLRRLLR · · · .
The i-th element of P can be obtained by feeding i in binary to a 4-
state DFA with output (DFAO). We implement this DFAO and a bit-
sequence bifurcator as modules of oritatami system. Combining them
with a known binary counter yields the proposed system.

1 Introduction

An RNA sequence, over nucleotides of four kinds A, C, G, U, is synthesized (tran-
scribed) from its template DNA sequence over A, C, G, T nucleotide by nucleotide
by an RNA polymerase (RNAP) enzyme according to the one-to-one mapping
A → U, C → G, G → C, and T → A (for details, see, e.g., [2]). The yield, called
transcript, starts folding immediately after it emerges from RNAP. This is the
cotranscriptional folding (see Fig. 1). Geary, Rothemund, and Andersen have
recently demonstrated the capability of cotranscriptional folding to self-assemble
an RNA molecule of an intended shape at nano-scale [7]. They actually proposed
an architecture of a DNA sequence whose transcript folds cotranscriptionally into
an RNA tile of specific rectangular shape highly likely in vitro.

Algorithms and computation are fundamental to molecular self-assembly as
illustrated in an enormous success of their use in DNA tile self-assembly (see, e.g.,
[4,12,15] and references therein). Finite portions of the Sierpinski triangle fractal

This work is in part supported by JST Program to Disseminate Tenure Tracking
System, MEXT, Japan, No. 6F36, by JSPS KAKENHI Grant-in-Aid for Young
Scientists (A) No. 16H05854, and by JSPS and NRF under the Japan-Korea Basic
Scientific Cooperation Program No. YB29004.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 261–273, 2018.
https://doi.org/10.1007/978-3-319-94812-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_22&domain=pdf

262 Y. Masuda et al.

Fig. 1. RNA cotranscriptional folding. An RNA polymerase attaches to a template
DNA sequence (double-spiral), scans it through, and synthesizes its RNA copy. The
RNA sequence begins to fold upon itself immediately as it emerges from polymerase.

was algorithmically self-assembled even in vitro from coalescence of DNA tiles
that compute XOR [13]. Cotranscriptional folding exhibits highly sophisticated
computational and algorithmic behaviors as well. Indeed, fluoride riboswitches
in Bacillus cereus bacteria cotranscriptionally fold into a terminator stem or
do not, in order to regulate gene expression [14]. This is just one example but
should be enough to signify both the context-sensitivity of cotranscriptional
folding and shapes thus self-assembled. Geary et al. have proved the capability
of context-sensitivity to count in binary using a novel mathematical model of
cotranscriptional folding called oritatami system (abbreviated as OS) [6].

q0/R q1/R

q2/L

q3/R

0

1
0

1

0, 1

0, 1

Fig. 2. (Left) DFAO to output the direction (L/R) of i-th turn of the Heighway dragon
given i ≥ 0 in binary from the LSB. (Right) The first 210−1 turns of the dragon.

We shall initiate theoretical study on algorithmic self-assembly of shapes by
cotranscriptional folding using oritatami system. Sierpinski triangle would allow
our study to borrow rich insights from the DNA tile self-assembly. However, in
order to cut directly to the heart of algorithmic self-assembly by cotranscrip-
tional folding, shapes of choice should be traversable somehow algorithmically.
One such way is to feed a turtle program (see [1]) with an automatic sequence
as commands (drawing a line segment, rotation, etc.), whose i-th bit can be
obtained by giving i in binary from the least significant bit (LSB) to one DFA
with output (DFAO) [3]. Shapes thus describable include the Heighway dragon
[3] and von Koch curve [10]. A DFAO for the Heighway dragon is illustrated in

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 263

Fig. 2. It outputs the following sequence, given i = 0, 1, 2, . . . in binary:

P = RRLRRLLRRRLLRLLRRRLRRLLLRRLLRLL · · · .

(The notation P is after its appellative paperfolding sequence [3].) For instance,
given i = 2 in binary from the LSB as 01, the DFAO transitions as q0 → q1 → q2
and hence P [2] = L. A turtle should interpret an L (resp. R) as “move forward
by unit distance and turn left (resp. right) 90 degrees.” Any portion of the
dragon can be represented by a factor of P ; for instance, Fig. 2 (Right) depicts
the portion P [0..1022], i.e., the first 210 − 1 turns of the dragon.

Fig. 3. The portion P [0..62] of the Heigh-
way dragon folded by the proposed OS.

In this paper, we propose a generic
design of oritatami system for the algo-
rithmic cotranscriptional folding of an
arbitrary finite portion of the Heigh-
way dragon. Figure 3 shows the por-
tion P [0..62] thus folded (the dragon
is slanted but this is because the OS
operates on the triangular grid rather
than on the square grid). The OS tran-
scribes three modules: counter module,
DFAO module, and turning module,
in this order repeatedly. The counter
module is a technical modification of

the binary counter proposed in [6] so that it increments a given count i exactly
by 1 while folding into a line segment. At the end of the segment comes a DFAO
module, which computes the turn direction P [i] and propagates it along with
the count i to the next module for turn. An L-shaped block is the turning mod-
ule. It is a concatenation of three bit-sequence bifurcators, each of which folds
into a rhombus, bifurcates i leftward as well as rightward, and guides further
folding according to the turning direction. The next counter module then again
increments one of the bifurcated i and folds into the next line segment, and so
on.

The generic design proves the next theorem (for terminologies, see Sect. 2).

Theorem 1. For any finite portion P [i..j] of the Heighway dragon, there exist
a scaling factor c ∈ N

+ and a cyclic deterministic oritatami system of delay 3
and arity 3 that weakly folds into the c-rhombus scaling of P [i..j].

A JavaScript program to run this OS is available at https://wolves13.github.io.

2 Preliminaries

Let Σ be a set of types of abstract molecules, or beads, and Σ∗ be the set
of finite sequences of beads. A bead of type a ∈ Σ is called an a-bead. Let
w = b1b2 · · · bn ∈ Σ∗ be a string of length n for some integer n and bead types
b1, . . . , bn ∈ Σ. The length of w is denoted by |w|, that is, |w| = n. For two indices
i, j with 1 ≤ i ≤ j ≤ n, we let w[i..j] refer to the subsequence bibi+1 · · · bj−1bj ;
if i = j, then we simplify w[i..i] as w[i]. For k ≥ 1, w[1..k] is called a prefix of w.

https://wolves13.github.io

264 Y. Masuda et al.

Fig. 4. Triangular grid graph T

with the (x, y)-coordinate and
the origin.

Oritatami systems fold their transcript, a
sequence of beads, over the triangular grid graph
T = (V,E) (see Figs. 4 and 5) cotranscrip-
tionally based on hydrogen-bond-based interac-
tions (h-interactions for short) which the system
allow for between adjacent beads of particular
types. When beads form an h-interaction, infor-
mally we say they are bound. For two points
p1 = (x1, y1), p2 = (x2, y2) ∈ V , {p1, p2} ∈ E

if |x1 − x2| = 1 and y1 = y2 or x1 = x2 and |y1 − y2| = 1. A directed path
P = p1p2 · · · pn in T is a sequence of pairwise-distinct points p1, p2, . . . , pn ∈ V
such that {pi, pi+1} ∈ E for all 1 ≤ i < n. Its i-th point is referred to as P [i].
A conformation C is a triple (P,w,H) of a directed path P in T, w ∈ Σ∗ of
the same length as P , and a set of h-interactions H ⊆ {{i, j} | 1 ≤ i, i + 2 ≤
j, {P [i], P [j]} ∈ E}. This is to be interpreted as the sequence w being folded
in such a manner that its i-th bead w[i] is placed on the i-th point P [i] along
the path and the i-th and j-th beads are bound if and only if {i, j} ∈ H. The
condition i + 2 ≤ j represents the topological restriction that two consecutive
beads along the path cannot be bound. A rule set H ⊆ Σ × Σ is a symmetric
relation over the set of pairs of bead types, that is, for all bead types a, b ∈ Σ,
(a, b) ∈ H implies (b, a) ∈ H. An h-interaction {i, j} ∈ H is valid with respect to
H, or simply H-valid, if (w[i], w[j]) ∈ H. This conformation C is H-valid if all of
its h-interactions are H-valid. For an integer α ≥ 1, C is of arity α if it contains
a bead that forms α h-interactions and no bead of C forms more. By C≤α, we
denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their
own rule set. Given a rule set H and an H-valid finite conformation C1 =
(P,w,H), we say that another conformation C2 is an elongation of C1

by a bead b ∈ Σ, written as C1
H−→b C2, if C2 = (Pp,wb,H ∪ H ′)

for some point p not along the path P and set of h-interactions H ′ ⊆{{i, |w| + 1} ∣
∣ 1 ≤ i < |w|, {P [i], p} ∈ E, (w[i], b) ∈ H}

, which can be empty.
Note that C2 is also H-valid. This operation is recursively extended to the elon-
gation by a finite sequence of beads as: for any conformation C, C

H−→
∗
λ C; and

for a finite sequence of beads w ∈ Σ∗ and a bead b ∈ Σ, a conformation C1

is elongated to a conformation C2 by wb, written as C1
H−→

∗
wb C2, if there is a

conformation C ′ that satisfies C1
H−→

∗
w C ′ and C ′ H−→b C2.

A finite oritatami system (OS) is a 5-tuple Ξ = (H, α, δ, σ, w), where H is
a rule set, α is an arity, δ ≥ 1 is a parameter called the delay, σ is an initial
H-valid conformation of arity α called the seed, upon which its finite transcript
w ∈ Σ∗ is to be folded by stabilizing beads of w one at a time so as to minimize
energy collaboratively with the succeeding δ − 1 nascent beads. The energy of
a conformation C = (P,w,H), denoted by ΔG(C), is defined to be −|H|; the
more h-interactions a conformation has, the more stable it gets. The set F(Ξ) of
conformations foldable by this system is recursively defined as: the seed σ is in

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 265

F(Ξ); and provided that an elongation Ci of σ by the prefix w[1..i] be foldable
(i.e., C0 = σ), its further elongation Ci+1 by the next bead w[i+ 1] is foldable if

Ci+1 ∈ arg min
C∈C≤αs.t.

Ci
H−→w[i+1]C

min
{

ΔG(C ′) | C
H−→

∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

We say that the bead w[i + 1] and the h-interactions it forms are stabilized
according to Ci+1. Note that an arity-α OS cannot fold any conformation of
arity larger than α. A conformation foldable by Ξ is terminal if none of its
elongations is foldable by Ξ. The OS Ξ is deterministic if for all i ≥ 0, there
exists at most one Ci+1 that satisfies (1). The deterministic OS is abbreviated as
DOS. Thus, a DOS folds into a unique terminal conformation. An OS is cyclic if
its transcript is of the form uiup for some i ≥ 2 and a prefix up of u. The cyclic
OS is considered to be one of the practical classes of OS because a periodic RNA
transcript is likely to be transcribed out of a circular DNA sequence [5].

a

b′ b

a′ a

b′ b

a′ a

b′ b

a′ a

b′ b

a′
a

b′
a

b′a

b′

a

b′ b

b b

a

b′

b

b

b′

b

a

b′ b

a′

Fig. 5. Progression of a glider by distance 1.

Let us provide an exam-
ple of cyclic DOS that folds
into a useful glider motif.
Consider a delay-3 OS whose
transcript w is a repetition
of a • b′b • a′ and whose rule
set is H = {(a, a′), (b, b′)},
making •-beads inert. Its
seed, bold in Fig. 5 (left), can
be elongated by the first three beads w[1..3] = a•b′ in various ways, only three of
which are shown as a dashed arrow. Only w[3] = b′ can form a new h-interaction
(dotted line), with the b in the seed (according to H, the first a is also capable of
binding, with a′, but the sole a′ around is just “too close”). For the b−b′ binding,
w[1..3] must be folded as the bold dashed arrow. According to this most stable
“bolded” elongation, the bead w[1] = a is stabilized to the east of the previous
bead. Then w[4] = b is transcribed. We can easily check that no matter how
w[2..4] is folded, b′-beads around are either too far or too close for w[4] to bind
to. Hence, w[4] cannot override the previous “decision” so that w[2] is stabilized
as bolded. w[5] cannot override it, either, simply because it is inert. It is easily
induced inductively that gliders of arbitrary “flight distance” can be folded.

Gliders also provide a medium to propagate 1-bit arbitrarily far as the posi-
tion of their last beads, which is determined by the height (top or bottom) of the
first bead and a propagating distance. For instance, the glider in Fig. 5 launches
top and thus its last bead (the a′) also comes top after traveling the distance 2.
The OS we shall propose exploits this information-carrying capability.

Assume the (x, y)-coordinate over T = (V,E) as shown in Fig. 4. A shape
S is a set of points in V . For an integer c ≥ 1, let Rhombc = {(x, y) ∈ V |
x, y ≤ c}. Let S′ = {(cx, cy) | (x, y) ∈ S}. The c-rhombus scaling of S, denoted
by ♦c(S), is the union over all p ∈ S′ of sets of points Rhombc + p = {v ∈
V | v = r + p for some r ∈ Rhombc}. We say that an OS Ξ weakly folds (or

266 Y. Masuda et al.

“self-assembles”) ♦c(S) if every terminal assembly of Ξ puts at least one bead
in Rhombc + p for all p ∈ S′ and no bead in Rhombc + q for all q 	∈ S′.

3 Folding the n-bit Heighway Dragon

We propose a generic design of DOS that allows us to fold an arbitrary finite
portion P [j1..j2] of the slanted Heighway dragon. Independently of j1, j2, both
delay and arity are set to 3 and 567 bead types1 1, 2, . . . , 567 with a fixed
rule set H are employed. The design also challenges to make the resulting DOS
cyclic. Otherwise, one could simply implement left and right-turn modules and
concatenate their copies according to the (non-periodic) sequence P . However, it
is highly unlikely that an OS for the infinite Heighway dragon, if any, could adopt
this approach in order to be describable by a finite mean. Such a “hardcoding”
also runs counter to the spirit of algorithmic self-assembly.

Seed

C
ounter

C

i
if carried

Dv Turning module T

Counter C
i if carried

Dh

Turning module T

(i = j1, no carry) in (2)

i in (3)

(i, A) in (4)

(i, O) in (4)

(i, carry) in (2)

i in (3)

(i, O) in (5)

(i, A) in (5)

(i, carry) in (2)

Fig. 6. Module automaton for the Heighway dragon P [j1..j2]. Transitions are labeled
with the information propagated with its format.

Modularization is a semantic factorization of transcript into functional units.
Functions of modules and transitions from one module to another are described
in the form of module automaton. The generic design employs the module
automaton in Fig. 6. This automaton yields the periodic transcript which repeats
six modules of the following four types as CDvTCDhT :

– C is a counter module; it increments the count i (index of P), which is “ini-
tialized” to j1 on the seed, by 1 and propagates it;

– Dv and Dh are a DFAO module; they compute P [i] and interpret it properly
(this issue of interpretation shall be discussed shortly);

1 Some of the bead types might be saved but not easily due to the NP-hardness of
minimizing the number of bead types without changing the behavior [8].

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 267

– T is a turning module; it makes a turn according to the interpretation.

The first C and Dv modules fold into a vertical line segment, while the second
C and Dh fold into the next line segment, which is guaranteed to be horizontal
since vertical and horizontal segments alternate on the Heighway dragon. The
DFAO modules Dv,Dh differ from each other only in their way to interpret their
intermediate outcome P [i]. The slanted Heighway dragon involves two types of
left turn as well as two types of right turn: acute and obtuse. Observe that after
(slanted) vertical line segments, the dragon turns left obtusely and right acutely,
whereas after horizontal ones, it turns left acutely and right obtusely. Therefore,
it suffices for Dv and Dh to compute P [i] ∈ {L,R} in the same way and Dv

interprets L as O and R as A, while Dh interprets L as A and R as O.
One issue intrinsic to the folding by OS rises when the dragon makes a turn

where it has already turned before. The OS is, by definition, not allowed to put
a bead anywhere occupied by another bead. Hence, the dragon must be scaled-
up somehow. We employ the c-rhombus scaling for c so large that a rhombus
corresponding to a point affords two turning modules, which otherwise collide,
as long as they fold into an L-shape (see Figs. 3, 6, and 7). The turning module

Fig. 7. Folding of one segment plus turn of the Heighway dragon, flow of information
through it, and the two ways of collision avoidance between two turns.

268 Y. Masuda et al.

consists of three copies of a functional subunit that bifurcates i while folding
into a c/3 × c/3 rhombus and guides the further folding in a way specified by
the A/O signal fed by the previous DFAO module; acutely by A or obtusely by
O as shown in Fig. 7 (also refer Figs. 11 and 14).

Having outlined the generic design, now we explain how the design imple-
ments an OS for a specific target portion P [j1..j2], or more precisely, how the
modules C,Dv,Dh, T and their submodules are implemented, interlocked with
each other, and collaborate. Let n = min{m | j2 < 2m}. Each of the mod-
ules consists of submodules which are small, say, with several dozens of beads.
Submodules implement various “functions” each of which is “called” in proper
environments, i.e., the beads already placed around the tip of the transcript
acting as the memory in the computation. The conformation that a submodule
folds deterministically in a “valid” environment corresponds to the function to be
called then. These “functional” conformations are called bricks, upon which the
whole folding is built. Brick automata describe the OS’ behavior at submodule
level by enumerating all the pairs of an environment to be encountered and the
brick to be folded there as well as transitions among them. Once verified, all the
brick automata for C (resp. Dv, Dh, and T) guarantee that the module outputs
in the expected format (3) (resp. (4), (5), and (2)), and hence we can say that
the DOS behaves as described in the module automaton and folds into P [j1..j2].
Using a simulator developed for [9], we have verified all the brick automata. This
amounts to the proof of Theorem 1.

Fig. 8. The seed for the 3-bit Heighway dragon that starts at j1 = 1002.

Seed (Fig. 8) encodes the initial count i = j1 in its binary representation
bnbn−1 · · · b1 as the following sequence of bead types:

499→500→501→506→507→⊙2
k=n(wt,bk→350→351→(356→357→)6)wt,b1

(2)
where wt,0 = 338→339→344→345 and wt,1 = 346→347→348→349.

Counter module C is borrowed from [6] with technical modification to let it oper-
ate in the dynamics (1), which is more prevailing [8,9,11] though less tractable.
It takes the current count i formatted as (2), which is fed by the seed or by the
previous turning module, increments the count by 1 unless it is preceded by the
seed, and outputs the resulting count in its binary representation anan−1 · · · a1

in the following format:

44→45→46→51→52→⊙2
k=n(wc,ak→(75→76→)551→52→)wc,a1 (3)

where wc,0 = 57→58→63→64→69→70 and wc,1 = 65→66→67→68→69→70.

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 269

DFAO modules Dv,Dh receive the current count i in the format (3) from the
previous counter module, compute P [i], and interpret it as A or O properly. The
modules Dv and Dh then output the interpretation along with the count i in
the following formats, respectively:

⊙2
k=n(wd,ak→(52→51→)7)wd,a1→52→51→200→199→wdv,P[i] (4)

⊙2
k=n(wd,ak→(52→51→)7)wd,a1→52→51→311→310→wdh,P[i] (5)

where wdv,L = 198→197, wdv,R = 194→193, wdh,L = 305→304, and
wdh,R = 309→308.

Fig. 9. Submodule-level abstraction of the folding of DFAO module.

What the DFAO in Fig. 2 really does for computing P [i] is to search for
the first 0 from the LSB and check if it is followed by 0 (P [i] = R) or by 1
(P [i] = L). See Fig. 9. Dv (resp. Dh) employs the six submodules: Dzig1, Dzag1,
Dzig2, Dzag2, PFS, and AOv (resp. AOh), which are interleaved by spacers, as well
as those that guide the transcript into two zigzags and one more zig (throughout
the paper, zigs are to go leftward while zags are to go rightward). The first zigzag
is for the search, the second is for the check and computation of P [i], and the
third zig is for the interpretation of P [i] as A/O. While performing these tasks,
these zigs and zags also propagate the count i to the next turning module.

In the first zig, n copies of Dzig1 detect the first 0 collaboratively in two
phases. See Fig. 10 for all the bricks of Dzig1 with the corresponding environ-
ments. Phase 1 is to copy all the 1’s prior to the first 0 and Phase 2 is to copy all
the bits after the 0. Dzig1 knows which phase it is in by the relative position to
start folding to the input above (top in Phase 1, bottom in Phase 2). In Phase 1,
Dzig1s certainly fold into the brick Dzig1-1. At the first 0, a Dzig1 rather folds
into Dzig1-f0 brick, ending at the top in order to transition to Phase 2. Each
of the remaining Dzig1 folds into either Dzig1-20 or Dzig1-21, copying all the
remaining bits. Interleaving spacers are implemented as a glider (see Sect. 2),
hence capable of propagating 1bit (top/bottom) on which phase the system is
in. In the first zag, n copies of Dzag1 reformat and propagate 0’s, 1’s, and the
first 0 using three bricks.

270 Y. Masuda et al.

Fig. 10. The four bricks of Dzig1: (top) Dzig1-1 and Dzig1-
f0; (bottom) Dzig1-20 and Dzig1-21.

In the second zig,
n copies of Dzig2
check whether the first
0 is followed (being
read from LSB) by
0 or 1, in a sim-
ilar manner to the
search in the first
zig. They usually take
one of the two bricks
Dzig2-0 and Dzig2-1
to copy 1’s and 0’s,
which start and end
at the bottom. At the
encounter to the first
0, a Dzig2 folds into a special brick Dzig2-f0 and ends rather at the top. The
next Dzig2, if any, starts folding at the top so that it takes the special brick
Dzig2-1f0 if it is followed by 1 or Dzig2-0f0 otherwise. Recall the reading 1 here
is a necessary and sufficient condition for P [i] = L. Dzig2-1f0 exposes a marker q2
downward. These bricks end at the bottom so that the remaining bits are copied
by the ordinary bricks Dzig2-0 and -1. The second zag starts at the bottom and
copy 0’s and 1’s by two bricks of Dzag2 until a Dzag2 encounters the 1 marked
by q2, if any. At the encounter, the Dzag2 folds into the special brick Dzag2-T1
and changes the ending position to the top, letting the remaining Dzag2 rather
fold into the bricks Dzag2-L0 and -L1 for copying, which end at the top. As such,
the second zag can feed P [i] to PFS as the position of its first bead.

Fig. 11. The two bricks of PFS above and the corresponding two bricks of (left) AOv
and (right) those of AOh.

At the beginning of the third zig, Dv employs AOv to convert P [i] into wdv,P[i]
while Dh employs rather AOh to convert P [i] into wdh,P[i]. The turning module
interprets wdv,L and wdh,R as turning obtusely while wdv,R and wdh,L as turning
acutely. As a part of effort to save bead types, the submodule AOv is also diverted
in order for both Dv and Dh to propagate i in the rest of this zig.

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 271

Fig. 12. The two bricks of turn-rgp.

Turning module T consists of 3
copies of the pair of two func-
tional units called bit-bifurcator
and steering arm. See Fig. 13. The
bit-bifurcator forks the count i =
anan−1 · · · a1 left and rightward
while folding into zigzags. It con-
sists of 10 submodules, which han-
dle the following tasks:

1. Propagate 1-bit vertically: body-rpx1, body-rpx2, body-lpx1, body-lpx2;
2. Let 1-bit propagating vertically cross another 1-bit propagating horizontally:

body-gx1, body-gx2;
3. Fork 1-bit vertically and horizontally: body-rgy, body-lgy;
4. Undergo transition between a zig and a zag and exposes 1-bit outside:

turn-rgp, turn-lgp.

Submodules to handle the first two types of tasks have already been implemented
(see, e.g., [9]). The submodule body-rgy is implemented by recycling the first
half of Dzag2. Starting from the bottom, it can take two conformations that end
at different heights and expose sequences bead types distinct enough downward.
The 1-bit thus forked transfers till the end of a zag and is converted into a
sequence of bead types by turn-rgp (Fig. 12). The submodules body-lgy and
turn-lgp are the zig-counterparts of them.

The bifurcator also propagates the 1-bit A/O signal, output by the previous
DFAO module, to let the steering arm know which way to go. Specifically, the
signal has the change-route submodule of the steering arm take one of the
two bricks shown in Fig. 14, guiding the rest of the arm towards the specified
direction. The rest of the arm is a catenation of move submodules, which is
capable of letting the bifurcated bit sequence through. Note that the turning
module does not have to bifurcate the A/O signal. Indeed, the second and third
pairs of bifurcator and steering arm are supposed to turn in the same manner
as the first. It hence suffices to append A and O to the bifurcated bit sequences
on the acute and obtuse sides, respectively.

272 Y. Masuda et al.

Fig. 13. Submodule-level abstraction of the whole folding of the pair of a bifurcator
and steering arm. All the white submodules are spacers, some of which are implemented
in the shape of parallelogram instead of glider.

Fig. 14. The two bricks of change-route.

4 Conclusion

In this paper, we proposed a generic design of oritatami systems for an arbitrary
finite portion of Heighway dragon. One down side is that the scaling factor
depends on the length of the portion, though just logarithmically. It is hence of
significant interest whether the dependency is necessary. Should it not be, we
could implement an OS that folds into the real (infinite) Heighway dragon.

Acknowledgements. We would like to thank Hwee Kim for valuable discussions.

Algorithmic Self-assembly of Fractals by Cotranscriptional Folding 273

References

1. Abelson, H., diSessa, A.: Turtle Geometry The Computer as a Medium for Explor-
ing Mathematics. The MIT Press, London (1981)

2. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.:
Molecular Biology of the Cell, 6th edn. Garland Science, New York and Abingdon
(2014)

3. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

4. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88
(2012)

5. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami
structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp.
1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 1

6. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: MFCS2016, pp. 43:1–43:14. LIPIcs 58 (2016)

7. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014)

8. Han, Y.-S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. In:
Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 33–45. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66799-7 3

9. Han, Y.-S., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami systems
and hardness of testing their equivalence. In: Rondelez, Y., Woods, D. (eds.) DNA
2016. LNCS, vol. 9818, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43994-5 2

10. Ma, J., Holdener, J.: When Thue-Morse meets Koch. Fractals 13, 191–206 (2005)
11. Ota, M., Seki, S.: Ruleset design problems for oritatami systems. Theor. Comput.

Sci. 671, 26–35 (2017)
12. Patitz, M.J.: Self-assembly of fractals. In: Kao, M.Y. (ed.) Encyclopedia of Algo-

rithms, pp. 1918–1922. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-642-27848-8

13. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangle. PLoS Biol. 2(12), e424 (2004)

14. Watters, K.E., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional
folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12),
1124–1133 (2016)

15. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

https://doi.org/10.1007/978-3-319-11295-4_1
https://doi.org/10.1007/978-3-319-66799-7_3
https://doi.org/10.1007/978-3-319-43994-5_2
https://doi.org/10.1007/978-3-319-43994-5_2
https://doi.org/10.1007/978-3-642-27848-8
https://doi.org/10.1007/978-3-642-27848-8

On the Values for Factor Complexity

Birzhan Moldagaliyev1, Ludwig Staiger2, and Frank Stephan1,3(B)

1 Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, Singapore 119076, Republic of Singapore

birzhanm@gmail.com
2 Martin-Luther-Universität Institut für Informatik, Von-Seckendorff-Platz 1,

06120 Halle, Federal Republic of Germany
ludwig.staiger@informatik.uni-halle.de

3 School of Computing, National University of Singapore,
Singapore 117417, Republic of Singapore

fstephan@comp.nus.edu.sg

Abstract. In this paper, we consider factor complexity/topological
entropy of infinite binary sequences. In particular, we show that for any
real number α with 0 � α � 1, there is a subset of the Cantor space with
Hausdorff dimension α, such that each one of its elements has factor
complexity α. This result partially generalises to the multidimensional
case where sequences are replaced by their d-dimensional analogs.

1 Introduction

There are many connections between computability, automata theory and sym-
bolic dynamics. For example, Hochman and Meyerovitch [11] have shown that
a real number is in the range of a multidimensional shift of finite type if and
only if it is recursively enumerable from the right, that is, has a descending
approximation by a recursive sequence of rational numbers. Another example
of such interplay is the work of Simpson [22], where it was shown that topolog-
ical entropy, Hausdorff dimension and effective dimension coincide in the case
of subshifts under some conditions. Staiger [24] showed, in the one-dimensional
case, the corresponding result for subsets of the Cantor space definable by finite
automata. There are also investigations on connections between subshifts and
appropriate topologies for Cantor Space [12]. As for the multidimensional set-
ting, Frisch and Tamuz [8] have shown that for any real α with 0 � α � log2(|Σ|)
there is a weakly mixing subshift of AG with entropy α. The methods employed
in the given paper are said to be nonconstructive, and the objects under consid-
eration are shifts, rather than single sequences.

In this paper we provide an algorithm for direct construction of sequences
of the given factor complexity. In the case of dimension one, for any α with

This work is partially supported by the Singapore Ministry of Education Aca-
demic Research Fund Tier 2 Grant MOE2016-T2-1-019/R146-000-234-112 (PI Frank
Stephan).

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 274–285, 2018.
https://doi.org/10.1007/978-3-319-94812-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_23&domain=pdf

On the Values for Factor Complexity 275

0 � α � 1, we present an algorithmic procedure, which uses α as oracle, to
construct a subset of the Cantor space A satisfying the following conditions:

– The classical Hausdorff dimension of A is α;
– The constructive Hausdorff dimension of A relative to α is α;
– For any ξ ∈ A, the factor complexity of ξ equals to α;
– There is ξ ∈ A such that the constructive dimension of ξ relative to α is α.

As for the multidimensional case with dimension d, for every α with 0 � α � 1,
we present an algorithmic procedure using α as an oracle to construct a nonempty
collection of d-dimensional sequences, each having factor complexity α.

2 Background

Since this work covers multiple domains, it might be worthwhile to provide a
brief overview of the ingredients that make up the final results. For this purpose,
this section offers a brief overview of the factor complexity, classical and con-
structive Hausdorff dimensions. We refer the readers to the textbooks of Calude
[1], Downey and Hirschfeldt [4], Hopcroft et al. [13], Li and Vitányi [14] and Nies
[19] for more complete introductions to the given topics.

2.1 Factor Complexity

We work in a multidimensional case with dimension d, as the usual one-
dimensional version of factor complexity follows from it. Let Σ be a finite alpha-
bet, which is assumed to be binary throughout the paper, that is, Σ = {0, 1}.
Consider a d-dimensional sequence of symbols from Σ, which can be viewed as
a function ξ : Nd → Σ.

The collection of such sequences form a space denoted as Cd. It can be given
a metric similar to the original Cantor Space, with the exception that intervals
starting at 0 are replaced with d-dimensional hypercubes starting at 0d. A d-
dimensional hypercube of size n can be viewed as a function: x : {0, . . . , n −
1}d → Σ. Let us denote the domain {0, . . . , n−1}d of x as Bn, the d-dimensional
grid of size n. A term volume of Bn refers to its cardinality as a set, i.e. nd. A
hypercube x is said to be a factor or a subword of d-dimensional sequence ξ if ξ
contains x. More formally,

∃p ∈ N
d ∀q ∈ Bn [ξ(p + q) = x(q)].

Let Fn(ξ) denote the collection of factors of ξ with size n. Consider the quantity

τn(ξ) =
log2(|Fn(ξ)|)

nd

and its limit is then the factor complexity of ξ:

τ(ξ) = lim
n

τn(ξ).

276 B. Moldagaliyev et al.

The above limit is known to exist [22]. The above limiting value is known as fac-
tor complexity or subword complexity in automata theory and topological entropy
in symbolic dynamics. One studies both this limit number [22–24] and the order
of growth of the above function Fn itself [2,3,5,6]. The intuition behind fac-
tor complexity in dimension one can be described as follows. Given an infinite
sequence, we can study the language of its finite factors. Intuitively, we expect
that “simple” sequences will also have a “simple” language of factors. One way
to quantify this is to just count factors of each length. In doing so, we associate
a function with the infinite sequence which counts the number of factors per
length. This function was introduced in 1938 by Morse and Hedlund [18] under
the name block growth, as a tool to study symbolic dynamics. The name sub-
word complexity, as the one-dimensional version of factor complexity, was given
in 1975 by Ehrenfeucht et al. [5].

2.2 Hausdorff Dimension

Given any metric space X, Hausdorff [10] introduced a notion of dimension of
a subset Y of X which is now known as its Hausdorff dimension, dimH(Y);
Falconer [7] provides an overview and introduction to this now widely studied
dimension. In the case of the Cantor space C = {0, 1}ω, Lutz [15] has found an
equivalent definition of Hausdorff dimension via generalisations of martingales.
By imposing some algorithmic conditions on these generalised martingales, it
is then possible to define the constructive Hausdorff dimension, cdim(X). Fur-
thermore, by allowing access to an oracle, say ζ, one could define the relative
constructive dimension, cdim(X|ζ), with respect to the given oracle. Ryabko
and also Lutz have observed that the constructive Hausdorff dimension of a
class is the supremum of the constructive Hausdorff dimension of its members
[15,20,21]. Zvonkin and Levin [29, Theorem 3.4] provide a convenient formula
for computing the constructive dimension of sequences, see also Mayordomo [17]
or Staiger [25],

cdim(ξ) = lim inf
n

K(ξ[n])
n

. (1)

Here K stands for the prefix-free Kolmogorov complexity and ξ[n] denotes a
prefix of ξ of length n. The above formula can be relativised given any sequence
ζ as an oracle. So one has following relativised version

cdim(ξ|ζ) = lim inf
n

K(ξ[n]|ζ)
n

. (2)

We refer the interested reader also to [26,28] for more details on this connection
and the historic background and use the above formulas of Zvonkin and Levin
as a definition for constructive Hausdorff dimension.

2.3 Computing the Hausdorff Dimension

Even in the case of the Cantor space, computing the Hausdorff dimension of an
arbitrary subset of the Cantor space is rather difficult. This is mainly due to

On the Values for Factor Complexity 277

the hardness of providing accurate lower bounds for the Hausdorff dimension.
However, there is a convenient formula for computing the Hausdorff dimension
for subsets generated by special kinds of infinite trees. Let us then introduce
some terminology for working with trees. Given a binary tree T , let Tn denote
the nodes located at a distance n from the tree’s root. Given a sequence of {Tn}
one could define lower and upper growth rates

grT = lim inf
n→∞ |Tn| 1

n and grT = lim sup
n→∞

|Tn| 1
n .

If these two quantities coincide, then they give us the growth rate

grT = lim
n→∞ |Tn| 1

n .

Another important notion is that of a branching number for trees. Let λ � 1,
and assume that T is such that every finite branch can be extended to an infinite
branch. A flow through T is a measure on the set of all infinite branches of T such
that for every node x on T of length n, the measure of the sequences extending
x is at most λ−n. Here we say that a sequence ξ is an infinite branch of T if
for all n, ξ[n] ∈ T ; for simplicity we ignore finite branches and therefore call the
infinite branches just branches. The collection of all branches of the tree T is
called the class generated by T , and denoted ∂T . In the case of the full binary
tree, for any λ � 2, such a flow exists. However, as soon as λ > 2, there is no
flow for this λ. This idea gives rise to the following definition of the branching
number of T :

brT = sup{λ | There is a flow on T for λ}.

Furstenberg [9] has shown that brT = exp(dimH(∂T)). This result gives us a link
between brT and the Hausdorff dimension of the class generated by T . When it
comes to spherically symmetric trees, we have the following well-known property,
given as an exercise by Lyons and Peres [16].

Proposition 1. If T is an infinite spherically symmetric tree, then

brT = grT.

Recall that a tree is called spherically symmetric if for any n, the out-degree of
the elements of Tn are equal. Combining it with the result by Furstenberg, for a
spherically symmetric tree T we have

2(dimH(∂T)) = grT. (3)

This relation gives us a convenient mechanism for computing the Hausdorff
dimension of boundaries of spherically symmetric trees. We are going to use
this formula for computing the Hausdorff dimension of corresponding classes in
the one-dimensional case.

278 B. Moldagaliyev et al.

3 The One-Dimensional Case

In this section, we consider the usual one-dimensional sequences. The following
theorem solves an open problem which was mentioned recently in [27].

Theorem 2. For any real number α with 0 � α � 1 there is an algorithm using
α as an oracle which constructs a subset A of C such that the following conditions
hold:

– dimH(A) = cdim(A) = cdim(A|α) = α;
– For all ξ ∈ A, τ(ξ) = α;
– There is x ∈ A such that cdim({x}|α) = α.

Proof. Let us address the cases α ∈ {0, 1} first. If α = 0, then take A = {0ω}.
The given choice of A ensures that the above conditions are satisfied. For the
case α = 1, let A = MLR, the collection of Martin-Löf random sequences. Since
the Lebesgue measure of MLR is 1, we have dimH(A) = cdim(A) = 1. Since
each Martin-Löf random sequence contains any word as a factor, τ(ξ) = 1 for all
ξ ∈ A. Finally, for any Martin-Löf random ξ, K(ξ[n]) � n − c for some c. Using
Eq. (1) we have that cdim({ξ}) = 1 for any ξ ∈ MLR. Thus, all conditions are
satisfied. Next we consider the main case where 0 < α < 1.

Basic Idea. The idea is to construct a spherically symmetric infinite binary
tree T such that dimH(∂T) = α and for any ξ ∈ ∂T , τ(ξ) = α. Then one
could exhibit an existence of a branch x ∈ ∂T such that cdim({x}|α) = α. The
construction of T proceeds in a step-by-step fashion. At each stage k, we build a
finite spherically symmetric tree Tk of depth nk so that T is a limit of the trees
Tk. For the Hausdorff dimension and the factor complexity, convergence to α is
reached from above. Let {qn}∞

n=0 be a strictly decreasing sequence of rational
numbers below 1 which converges to α from above and which furthermore can
be computed using the oracle α. Given this approximating sequence {qn}, the
construction ensures that

qk � zk =
log2(|Xk|)

nk
� qk−1 for all k � 1, where Xk denotes the leaves of Tk.

The whole construction can be carried out recursively relative to the oracle α.
All recursion-theoretic notions involved are to be interpreted relative to α. For
simplicity we are going to omit dependence to α so that K(ξ|α) and cdim(ξ|α)
become K(ξ) and cdim(ξ), respectively. Let us now proceed to the construction
itself.

Stage 0. Let T0 be a tree of depth 1 containing both strings of unit length.
Clearly, T0 is spherically symmetric.

On the Values for Factor Complexity 279

Stage k+1. Given a finite tree Tk we are going to construct a tree Tk+1. Let r(Tk)
denote the number of branching levels in Tk out of nk levels it has. Letting Xk

denote the set of leaves of Tk, one has |Xk| = 2r(Tk). Our construction ensures
that

zk =
log2(|Xk|)

nk
=

r(Tk)
nk

� qk.

Observe that this condition holds for k = 0, since the left-hand side is sim-
ply 1. Let ηk denote the concatenation of elements of Xk in some order, say
lexicographic. It is possible then to choose natural numbers i and j so that

qk+1 � r(Tk) · i

nk · i + |ηk| · j
< qk.

To clarify how these i, j could be chosen, one could start by dividing both numer-
ator and denominator of the above fraction by i, obtaining

r(Tk)
nk + |ηk|(j/i)

.

Now consider φ defined as

φ(x) =
r(Tk)

nk + |ηk|x
which maps non-negative reals to non-negative reals. Clearly this function is
continuous, φ(0) = zk and limx→∞ φ(x) = 0. By the intermediate value theorem,
there is x ∈ R such that qk+1 < φ(x) < qk. By the density of rational numbers
and continuity of φ, there is q ∈ Q with qk+1 � φ(q) < qk. The numbers j and i
can be taken as the numerator and the denominator of q. Let Γk = (Tk)i · (ηk)j ;
this tree extends Tk. Here a product of finite trees T1 and T2 correspond to
gluing the root of a copy of T2 to each of the leaves of T1. Furthermore, for a
finite tree T , Tω corresponds to an infinite product of T with itself. Clearly, Γk

is still spherically symmetric. Let Yk denote the collection of leaves of Γk and
mk denote the depth of Γk. We can now estimate the desired quantity log2(·)

|·| as
follows:

qk+1 � log2(|Yk|)
mk

=
r(Tk) · i

nk · i + |ηk| · j
< qk.

The tree Γk serves as an intermediate step in construction of Tk+1. Consider a
tree Γω

k and one of its branches, say ξ. Since ξ contains all elements of Xk, we
have

τnk
(ξ) � log2(|Xk|)

nk
� qk � α.

This inequality gives us a lower bound. As for a meaningful upper bound, τnk
(ξ)

will not work because of possible overlaps and emergence of new factors. The
idea is that if we consider much longer factors, then the relative ratio of overlaps
will go to zero. Formally, let nk+1 = lmk and consider factors of length lmk.

280 B. Moldagaliyev et al.

Since ξ ∈ Γω
k such factors can be fully characterised by a word in Γ l+1

k and an
initial position p with 0 � p < mk. Thus, |Flmk

(ξ)| � |YK |l+1 × mk. So we have

τlmk
(ξ) =

log2(Flmk
(ξ))

lmk
≤

(
l + 1

l

)
log2(|Yk|)

mk
+

log2(mk)
lmk

.

By choosing large enough l one can ensure that the above expression is strictly
less than qk. We finally let Tk+1 = (Γk)l.

Finalisation. Let T =
⋂

k Tω
k and A = ∂T . We claim that the given class A

satisfies all required conditions. Let us go through the conditions one by one.
Prior to that, however, we need to show that A is nonempty. In other words,
we need to show that T is a valid infinite binary tree. Firstly, T is a binary
tree being an intersection of binary trees. Furthermore, the construction ensures
that the elements at level nk will no longer change after stage k + 1. This shows
that at each level T has a member, which shows that T is an infinite tree. Thus,
nonemptiness of A follows.

Hausdorff Dimension. Given the final tree T , let rn(T) denote the number of
branching levels in T up to the level n. By the construction, T and Tk coincide
up to the level nk. Thus, we have rn(T) = rn(Tk), for all n � nk. Furthermore,
the construction ensures that for any tree Tk used in the construction, rn(Tk) �
αn for all n ≤ nk. These two facts imply that

∀n [rn(T) � αn].

As T ⊆ Tω
k , for all n which are multiples of nk, we have rn(T)

n � qk−1. Com-
bining these facts we conclude that lim infn

rn(T)
n = α. Using the formula for

computing the Hausdorff dimension Eq. (3) one arrives at dimH(∂T) = α. As
for the constructive dimension relative to α, by default we have α = dimH(A) �
cdim(A|α) � cdim(A). The other inequality cdim(A) � α follows from

cdim(A) � sup{τ(ξ) : ξ ∈ A}

(cf. Staiger [24,26]) and τ(ξ) = α, for ξ ∈ A, which will be proven next.

Factor Complexities. Since it is known that limn τn(ξ) = τ(ξ) for all ξ, it suffices
to exhibit a strictly increasing subsequence {tk}∞

k=0 such that for any ξ ∈ A, we
have limk τtk(ξ) = α. Set tk = nk for the nk used in the construction and observe
that for any ξ ∈ A, ξ ∈ ∂Tω

k+1 for any k. From the construction, it is known that

– τnk
(ξ) � α;

– τnk+1(ξ) � qk.

Combining the above inequalities, one concludes that limk τnk
(ξ) = α. Thus, the

factor complexity of each element of A is exactly α.

On the Values for Factor Complexity 281

Existence of an Element of Given Constructive Dimension. In order to show
the existence of an element of a given relative constructive dimension, we use an
argument based on the encoding of a Martin-Löf random sequence as a branch
of T ; this method is also known as dilution [15,24,28]. Let us take a Martin-
Löf random sequence ζ relative to α. We wish to encode this sequence into a
branch of T . Each level of tree T is either branching or nonbranching. It is pos-
sible to encode ζ as the branching directions in T . As for the nonbranching lev-
els of T they are already taken by some fixed symbols. Let χ(T) denote a {0, 1}-
valued sequence corresponding to the branching behaviour of T , where 1 denotes a
branching level and 0 denotes a nonbranching level. Furthermore, let ρ(T) denote
a sequence consisting of symbols located at nonbranching levels of T with brack-
ets located at the branching levels. For instance, χ(T) and ρ(T) might look like
χ(T) = 1011000 . . . and ρ(T) = []0[][]101 . . . and one could then place bits of ζ
into the positions corresponding to the bracket symbols in ρ(T). This operation of
placement can be viewed as a transformation of one infinite sequence to another.
More formally, we consider a map φ : C → C such that it places bits of an input
sequence ξ into the bracket positions in ρ(T). For example, taking the above ρ(T)
and ξ = 010 . . ., then 0010101 . . . is the resulting sequence φ(ξ). Since the tree T
is recursive in α, both φ and its inverse can be viewed as partial functions recursive
in α. Now we let x = φ(ζ) and observe that knowledge of x up to length n ensures
knowledge of ζ up to length at least αn, as we have verified in the paragraph on the
Hausdorff dimension above that rn(T) � α ·n for all n. Thus K(x[n]|α) � α ·n−c
for some fixed c and for all n. This ensures that x ∈ ∂T and cdim(x) � α using
the relativised version Eq. (2). As cdim(A) � α, it follows that cdim(x) = α by
the result of Ryabko [20,21] and Lutz [15, Theorem 4.1]. �	

4 The Higher Dimensional Case

Here we state the partial generalisation of Theorem 2 to the multidimensional
case.

Theorem 3. For every real number α with 0 � α � 1, there is an algorithm
using α as an oracle which constructs a nonempty subset A of Cd such that for
all ξ ∈ A, τ(ξ) = α.

Proof. The boundary cases of α ∈ {0, 1} are considered first. If α = 0, then
the d-dimensional sequence consisting of a single symbol 0 fulfills the condition.
In the case of α = 1, any standard d-dimensional arrangement of a Martin-Löf
random sequence meets the criterion. For values α with 0 < α < 1, we present
the construction based on the ideas used in the proof of the one-dimensional
case.

Basic Idea. The main feature of this construction is manipulations with hyper-
cubes, rather than strings. Let {qn}∞

n=0 be a strictly decreasing sequence of ratio-
nal numbers below 1 which converge to α from above. We choose the sequence
such that the map n
→ qn is recursive relative to α. The construction proceeds

282 B. Moldagaliyev et al.

in stages so that at each stage k we construct a collection Xk of hypercubes of
size nk such that

qk � zk =
log2(|Xk|)

nd
k

� qk−1.

Since the limit limn→∞ τn(ξ) = τ(ξ) exists, it suffices to show that limk τnk
(ξ) =

α for some strictly increasing sequence {nk}, given any ξ ∈ A. Let us now
proceed to the actual construction.

Stage 0. We let n0 = 1 and X0 = Σ (so that X0 represents a set of hypercubes
of size 1). Observe that the induction hypothesis holds, namely q0 � log2(|X0|)

nd
0

.

Stage k +1. Given a collection Xk of hypercubes of size nk we need to construct
a subsequent collection Xk+1 of hypercubes. Recall that in the one-dimensional
case we have constructed Xk+1 = Y l

k , where Yk = Xi
k · ηj

k with ηk being the
concatenation of elements of Xk and the constants i, j, l were chosen to satisfy
the corresponding inequalities. In the d-dimensional case a simple product Xi

k is
going to be replaced with a grid product and the ηj

k part is going to be replaced
with an operation of periodic filling. Let us elaborate on these terms.

Grid Products. Given some d-dimensional grid Br ⊂ N
d of size r and the collection

of hypercubes Xk, each being of size nk, XBr

k denotes the collection of all hyper-
cubes of size rnk obtained by placing elements of Xk on the nodes of the grid Br.
Observe that the cardinality of XBr

k as a set can be computed as |XBr

k | = |Xk|rd

.
Furthermore, one could also allow the underlying grid to be infinite. In particular,
XN

d

k refers to the grid product of Xk over the infinite grid N
d.

Periodic Fillings. Suppose that we are given a finite grid F ⊂ N
d of cardinality or

volume at least |Xk|. Note that F is not necessarily a regular grid, it might have
any kind of shape and be disconnected. There are many possible ways to place
elements of Xk into the nodes F so that each element of Xk appears at least once.
However, we wish to define some canonical way of placing elements of Xk along
any finite subset F . Moreover, it is desirable for such a procedure to be effective
and well-defined. Note that there is an effective procedure that allows enumeration
of elements of F given by the map h(F) : F → {0, . . . , |F |−1}. By composing this
map with a modulo by |Xk|, we obtain a surjective map from F to {0, . . . , |Xk|−1}.
Let g(Xk) : {0, . . . , |Xk|−1} → Xk be a bijective enumeration of elements of Xk.
Finally, by composing the earlier map with g(XK), we obtain an effective periodic
filling map fk(F) : F → Xk. This map allows us to fill any finite subset of sufficient
size with elements of Xk so that each element of Xk appears. Furthermore the
above map is well-defined and effective in the algorithmic sense.

Construction of New Hypercubes. Let a hypercube Bn serve as a grid for place-
ment of elements of Xk. The hypercube Bn is then divided into two parts, the
first of which is used for the grid product operation, while the second one is
periodically filled with elements of Xk. The first part is a subgrid of size i with

On the Values for Factor Complexity 283

1 < i < n nearest to the origin. The complement of the first part constitutes
the second part. Observe that the first part has a volume of id, while the second
part has a volume of nd − id. The second part could be periodically filled with
the elements of Xk whenever |Xk| � nd − id. Given an arbitrary pair (n, i), the
given inequality can always be achieved by multiplying both n and i by some
large enough constant c. Let Yk denote the collection of hypercubes obtained by
applying the operation of grid product over the first part of Bn and the oper-
ation of periodic filling over the second part of Bn. Observe that each element
of Yk has size mk = nnk, while the cardinality of Yk as a set is |Xk|id . We now
compute the desired quantity log2(·)

|·| using the following formula:

log2(|Yk|)
(mk)d

=
(

i

n

)d log2(|Xk|)
nd

k

. (4)

Observe that the above expression is invariant under multiplications of n and
i with a constant, i.e. it does not change by multiplying both n and i with a
positive constant c. We claim that one could choose a pair (n, i) so that the
value of Eq. (4) lies in the open interval from qk+1 to qk. This condition can be
written as

qk+1 <

(
i

n

)d

zk < qk which is equivalent to
qk+1

zk
<

(
i

n

)d

<
qk

zk
.

Recall that by the induction hypothesis qk � zk � qk−1 and thus 0 < qk+1
zk

<
qk
zk

� 1. As the function x → xd is continuous and increasing, and maps 0 to 0
and 1 to 1, and as the rationals are dense in the reals, one can find a rational i

n

with 1 � i � n such that (i
n)d lies inside the given open interval. By multiplying

the resulting pair (n, i) with a large enough integer c, we can ensure that the
second part of Bn has a large enough volume. Consider a grid product Y N

d

k

and its arbitrary element ξ. Since ξ contains all elements of Xk as factors, we
conclude that

τnk
(ξ) =

log2(Fnk
(ξ))

nd
k

� qk � α.

Having a lower bound to work with, we now look for meaningful upper bounds.
As in the one-dimensional case, factors of size nk will not work because of possible
overlaps. The idea is to consider much larger factors so that the relative ratio
of overlaps goes to zero. Formally, let nk+1 = lmk and consider factors of size
lmk. For any ξ ∈ Y N

d

k , its factors of a given size can be fully characterised
by a hypercube in Y

Bl+1
k and some initial position p ∈ Bmk

. Thus, Flmk
(ξ) �

|Yk|(l+1)d × md
k. So we have

τlmk
(ξ) � log2(md

k|Yk|(l+1)d)
(lmk)d

=
(

(l + 1)
l

)d log2(|Yk|)
md

k

+
d log2(mk)

ldmd
k

.

By choosing l large enough, one could ensure that the above quantity is strictly
less than qk. Finally, let Xk+1 = Y Bl

k .

284 B. Moldagaliyev et al.

Finalisation. Observe that for any k, XN
d

k+1 is a compact subset of XN
d

k . This
means that A =

⋂
k XN

d

k is nonempty and compact. For every ξ ∈ A and every
k, it holds that ξ ∈ XN

d

k+1, τnk
(ξ) � α and τnk+1(ξ) � qk. Combining the last two

inequalities, we conclude that limk τnk
(ξ) = α. As limn τn(ξ) exists for every ξ

[22], limn τn(ξ)[3] = α. �

5 Conclusion

This paper explored an interplay between different notions such as factor com-
plexity, Hausdorff dimension and relative constructive dimension. In the one-
dimensional case, for any real α with 0 � α � 1, we have constructed a subset
of the Cantor space consisting of sequences with factor complexity α such that
both Hausdorff and constructive dimension of this subset is α. Moreover, the
same subset contains a sequence of constructive dimension α. This provides a
positive answer to a question which was raised e.g. in the talk “Finite automata
and randomness” [27]. As for the multidimensional case, we have constructed
a nonempty subset of the d-dimensional Cantor space consisting of elements of
factor complexity α.

If one views sequences over an alphabet of size 2k as k-tuples of binary
sequences, then our results generalise to all α with 0 � α � k in a natural way;
however, if one views such sequences as 2k-ary presentations of single reals, then
one would have to introduce some corrective terms in above equations which
would again restrict the values of α to the interval from 0 to 1 [24,26,28].

Acknowledgments. The authors would like to thank the anonyomous referees of
CIAA 2018 and Hugh Anderson for very helpful comments on the mathematics and
the English of this paper.

References

1. Calude, C.S.: Information and Randomness - An Algorithmic Perspective, 2nd
(edn.). Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04978-5

2. Cassaigne, J.: Special factors of sequences with linear subword complexity. In:
Developments in Language Theory, DLT 1995, pp. 25–34. World Scientific Pub-
lishing, Singapore (1996)

3. Cassaigne, J., Frid, A.E., Puzynina, S., Zamboni, L.Q.: Subword complexity and
decomposition of the set of factors. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik,
Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 147–158. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44522-8 13

4. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity.
Springer, New York (2010). https://doi.org/10.1007/978-0-387-68441-3

5. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes
of deterministic developmental languages without interactions. Theor. Comput.
Sci. 1, 59–75 (1975)

6. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of square-free D0L
languages. Theor. Comput. Sci. 16, 25–32 (1981)

https://doi.org/10.1007/978-3-662-04978-5
https://doi.org/10.1007/978-3-662-44522-8_13
https://doi.org/10.1007/978-0-387-68441-3

On the Values for Factor Complexity 285

7. Falconer, K.: Fractal Geometry - Mathematical Foundations and Applications, 2nd
edn. Wiley, Hoboken (2003)

8. Frisch, J., Tamuz, O.: Symbolic dynamics on amenable groups: the entropy of
generic shifts. Ergodic Theory Dyn. Syst. 37(4), 1187–1210 (2017)

9. Furstenberg, H.: Intersections of cantor sets and transversality of semigroups. In:
Problems in Analysis: a Symposium in Honor of Salomon Bochner, pp. 41–59
(1970)

10. Hausdorff, F.: Dimension und äußeres Maß (Dimension and outer measure). Math-
ematische Annalen 79(1–2), 157–179 (1919)

11. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimen-
sional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010)

12. Hoffmann, S., Schwarz, S., Staiger, L.: Shift-invariant topologies for the Cantor
Space Xω. Theor. Comput. Sci. 679, 145–161 (2017)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications,
3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-49820-1

15. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187,
49–79 (2003)

16. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge
(2017)

17. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

18. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866
(1938)

19. Nies, A.: Computability and Randomness. Oxford University Press, New York
(2009)

20. Ryabko, B.Ya.: Coding of combinatorial sources and Hausdorff dimension. Soviet
Mathematics - Doklady 30(1), 219–222 (1984)

21. Ryabko, B.Ya.: Noiseless coding of combinatorial sources, Hausdorff dimension and
Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)

22. Simpson, S.G.: Symbolic dynamics: Entropy = Dimension = Complexity. Theory
Comput. Syst. 56(3), 527–543 (2015)

23. Sinai, Y.G.: On the notion of entropy of a dynamical system. Doklady Russ. Acad.
Sci. 124, 768–771 (1959)

24. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103(2),
159–194 (1993)

25. Staiger, L.: Constructive dimension equals Kolmogorov complexity. Inf. Process.
Lett. 93(3), 149–153 (2005)

26. Staiger, L.: The Kolmogorov complexity of infinite words. Theor. Comput. Sci.
381(1–3), 187–199 (2007)

27. Staiger, L.: Finite automata and randomness. Invited Talk (without proceedings)
at Jewels of Automata: from Mathematics to Applications, Leipzig, 6–9 May 2015.
http://www.automatha.uni-leipzig.de/

28. Staiger, L.: Exact constructive and computable dimensions. Theory Comput. Syst.
61(4), 1288–1314 (2017)

29. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms.
Russ. Math. Surv. 25, 83–124 (1970)

https://doi.org/10.1007/978-0-387-49820-1
http://www.automatha.uni-leipzig.de/

Enumeration of Cryptarithms
Using Deterministic Finite Automata

Yuki Nozaki, Diptarama Hendrian, Ryo Yoshinaka(B), and Ayumi Shinohara

Graduate School of Information Sciences,
Tohoku University, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan

yuki nozaki@shino.ecei.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. A cryptarithm is a mathematical puzzle where given an
arithmetic equation written with letters rather than numerals, a player
must discover an assignment of numerals on letters that makes the equa-
tion hold true. In this paper, we propose a method to construct a DFA
that accepts cryptarithms that admit (unique) solutions for each base.
We implemented the method and constructed a DFA for bases k ≤ 7.
Those DFAs can be used as complete catalogues of cryptarithms, whose
applications include enumeration of and counting the exact numbers
Gk(n) of cryptarithm instances with n digits that admit base-k solu-
tions. Moreover, explicit formulas for G2(n) and G3(n) are given.

Keywords: Cryptartihms · Alphametics · Automaton · DFA
Enumeration

1 Introduction

A cryptarithm is a mathematical puzzle where a given arithmetic formula con-
sisting of letters rather than numerals, players try to find an injective substitu-
tion of numerals for letters that makes the formula hold true. Figure 1 shows a
well-known example of a cryptarithm and its solution. To solve a cryptarithm
is, in principle, not quite hard. One can find a solution (if any) by trying at
most 10! assignments of numerals on letters, i.e., cryptarithms are solvable by
brute force in linear time. Nevertheless, cryptarithms have been an interesting
topic of computer science [7] and different methods for solving cryptarithms
have been proposed [1,8] including a number of online solvers on the web [2,9].
In fact, although cryptarithms can be solved in linear time under the decimal
system, Eppstein [6] showed that to decide whether a given cryptarithm has a
solution under the base-k system is strongly NP-complete when k is not fixed.
His discussions involve only arithmetic formulas with just one addition, like the
one in Fig. 1. Following Eppstein, this paper focuses on such formulas only. A
cryptarithm example that has a binary solution but no decimal solution is shown
in Fig. 2.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 286–298, 2018.
https://doi.org/10.1007/978-3-319-94812-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_24&domain=pdf

Enumeration of Cryptarithms Using DFAs 287

s e n d

+ m o r e

m o n e y

9 5 6 7
+ 1 0 8 5
1 0 6 5 2

Fig. 1. Example of a cryptarithm and
its solution [3]

P

+ P

P A

1
+ 1
1 0

Fig. 2. Cryptarithm solvable under the
binary system

Our goal is not only to provide a cryptarithm solver but to propose a method
to enumerate cryptarithms for different base systems. Towards the same goal,
Endoh et al. [5] presented a method for constructing a deterministic finite
automaton (DFA) that accepts cryptarithms solvable under the k-base system
for k = 2, 3, 4. Their method constructs the goal DFA as the product of several
auxiliary DFAs corresponding to different conditions that solvable cryptarithms
must satisfy. On the other hand, our proposed method constructs the objective
DFA directly. This approach enabled us to construct the goal DFAs for k ≤ 7.

Those DFAs can be seen as complete catalogues of cryptarithms for dif-
ferent bases. Once the cryptarithm DFA for base-k arithmetics is constructed,
this can be used as a cryptarithm solver using the information added to its
states that runs in linear time in the size of the input with no huge coefficient.
Moreover, different types of analyses on cryptarithms are possible with stan-
dard techniques on edge-labeled graphs. For example, one can enumerate all the
solvable cryptarithms one by one in the length-lexicographic order. It is also
possible to compute the mth solvable cryptarithm quickly without enumerating
the first m − 1 cryptarithms. Counting the number of solvable cryptarithms of
n digits is also easy. In particular, we derived explicit formulas for the number
Gk(n) of cryptarithms of n digits solvable under the base-k system for k = 2, 3
as G2(n) = 6 × 4n−2 − 3 × 2n−2 and G3(n) = 4 × 9n−1 − 2 × 5n−1 − 3n−1,
respectively.

2 Preliminaries

For an alphabet Σ, Σ∗ and Σ+ denote the sets of strings and non-empty strings,
respectively. For a map θ from an alphabet Σ to another Δ, its homomorphic
extension from Σ∗ to Δ∗ is denoted by θ̂. For a string or a tuple of strings w
over Δ, Σ�w denotes the subset of Σ consisting of letters occurring in w. An
extension of a function f : A → B is a function g : A′ → B′ such that A ⊆ A′

and g(x) = f(x) for all x ∈ A. The cardinality of a set A is denoted by |A|. The
length of a string w is also denoted by |w|. We let Nk denote the alphabet of
numerals 0, . . . , k − 1.

2.1 Cryptarithms

A cryptarithm is a triple w = 〈w1, w2, w3〉 of non-empty strings over an
alphabet Σ. Each wi is called the ith term. The size of w is defined to

288 Y. Nozaki et al.

be max{|w1|, |w2|, |w3|}. Any injection from Σ�w to Nk is called a base-k
assignment for w. Moreover it is a base-k solution if it makes the equation
θ̂(w1) + θ̂(w2) = θ̂(w3) true when interpreting strings over Nk as numerals
in the base-k system: that is, for wi = wi,|wi| . . . wi,1 with wi,j ∈ Σ, it holds
∑|w1|

j=1 θ(w1,j)kj−1 +
∑|w2|

j=1 θ(w2,j)kj−1 =
∑|w3|

j=1 θ(w3,j)kj−1 and θ(wi,|wi|) �= 0
for each i = 1, 2, 3. A cryptarithm that admits a solution is said to be base-k
solvable.

Following Endoh et al. [5], in order for DFAs to treat cryptarithms, we convert
cryptarithms into single strings over Σ ∪ {$} with $ /∈ Σ by

ψ(〈w1, w2, w3〉) = w1,1w2,1w3,1 w1,2w2,2w3,2 . . . w1,nw2,nw3,n $$$

where wi = wi,|wi| . . . wi,1, n = max{|w1|, |w2|, |w3|}, and wi,j = $ for |wi| < j ≤
n. Such a string ψ(w) is called a cryptarithm sequence.

Example 1. Let w = 〈send, more, money〉. This admits a unique base-10 solution
θ = {d
→ 7, e
→ 5, y
→ 2, n
→ 6, r
→ 8, o
→ 0, s
→ 9, m
→ 1}. The sequential
form of w is ψ(w) = dey nre eon smo $$m $$$.1

We say that two instances w and v are equivalent if there is a bijection γ from
Σ�w to Σ�v such that γ̂(w) = v. In such a case, an injection θ : Σ�v → Nk is
a k-base solution for v if and only if so is θ ◦ γ for w. Fixing the alphabet to be
Σk = {a1, . . . , ak}, we define the canonical form among equivalent instances. A
base-k cryptarithm w ∈ (Σ∗

k)3 is said to be canonical if

– wherever ai+1 occurs in the sequential form ψ(w) of w, it is after the first
occurrence of ai for any i ≥ 1.

Identifying a cryptarithm and its sequential form, we adapt terminology on
cryptarithms for cryptarithm sequences as well. For example, the sequential form
of a canonical cryptarithm is also called canonical. A solution of a cryptarithm
instance is also said to be a solution of its sequential form.

For the ease of presentation, we use Latin letters a, b, c, . . . instead of
a1, a2, a3, . . . when k is relatively small: k ≤ 26.

Example 2. The cryptarithm w = 〈send, more, money〉 in Example 1 is not
canonical. Its canonical form is v = 〈gbda, hfeb, hfdbc〉, whose sequential form
is ψ(v) = abc deb bfd ghf $$h $$$.

3 Cryptarithm DFAs

3.1 Naive Cryptarithm DFA

We will define a DFA Mk that accepts all and only canonical cryptarithms that
admit solutions. Our DFA is slightly different from the standard ones. First,
each edge is labeled by a trigram so that letters belonging to the same place
1 For readability a small space is inserted in every three letters.

Enumeration of Cryptarithms Using DFAs 289

will be read at once. Second, it has two distinguishable accepting states f1 and
f2 where cryptarithm sequences with unique and multiple solutions shall be
accepted at f1 and at f2, respectively. Accordingly, our DFA is a sextuple Mk =
〈Q,Σk, δ, q0, f1, f2〉 where Qk is the state set, δ : Q × (Σk ∪ {$})3 ⇀ Q is the
transition partial function, and f1 and f2 are accepting states, which define two
languages

Lk,uniq = {w ∈ (Σk ∪ {$})+ | δ̂(q0, w) = f1 }
= {ψ(w) ∈ (Σk ∪ {$})+ | w admits exactly one solution } , (1)

Lk,multi = {w ∈ (Σk ∪ {$})+ | δ̂(q0, w) = f2 }
= {ψ(w) ∈ (Σk ∪ {$})+ | w admits at least two solutions } , (2)

where δ̂ is the usual extension of δ for domain ((Σk ∪ {$})3)∗. We call a string
w ∈ ((Σk ∪{$})3)∗ valid if it is a prefix of some canonical cryptarithm sequence
with at least one solution. We say that an assignment θ : Σk�w → Nk is consistent
with w if there is an extension of θ which is a solution of a cryptarithm sequence
of which w is a prefix. When Σk�w = Σk−1, each consistent assignment on Σk−1

has just one trivial proper extension injection with domain Σk. Therefore, we
“promote” consistent assignments on Σk−1 to their extensions on Σk. We let
Θ(w) denote the set of consistent assignments, possibly with promotion:

Θ(w) =

{
{ θ : Σk → Nk | θ is consistent with w } ifΣk�w = Σk−1,

{ θ : Σk�w → Nk | θ is consistent with w } otherwise.

For a valid sequence w, one can characterize succeeding sequences v that will
make wv a solvable canonical cryptarithm sequence with Θ(w) and other param-
eters. The parameters the DFA Mk maintains in its states have the form
〈d1, d2,
, P 〉, which we will call a configuration. Every state except accepting
ones has a unique configuration. Among those parameters, d1, d2 ∈ {0, 1} are
used to ensure that a sequence may be extended to a cryptarithm sequence
and
 ∈ {1, . . . , k} is used to ensure that a sequence may be extended to a
canonical one. The last parameter P is a non-empty set that remembers pos-
sible assignments on letters together with auxiliary information. Suppose that
the configuration of the state q reached from q0 by reading a valid sequence w
in Mk is 〈d1, d2,
, P 〉 and let w = w′x1x2x3 with x1, x2, x3 ∈ Σk ∪ {$} and
ψ−1(w) = 〈w1, w2, w3〉. Then,

– di = 1 if xi = $ and di = 0 otherwise for i = 1, 2,
–
 = min{k, |Σ�w| + 1},
– P consists of [θ, c, b1, b2] ∈ Θ(w) × {0, 1}3 where

• θ ∈ Θ(w),
• θ̂(w1) + θ̂(w2) = θ̂(w3) + ck|w3|,
• bi = 0 if xi �= $ and θ(xi) = 0, and bi = 1 otherwise, for i = 1, 2.

One can see P as a function from Θ(w) to {0, 1}3. For [θ, c, b1, b2] ∈ P , when
c = 1, we have a carry under the assignment θ. When bi = 0, the ith term must

290 Y. Nozaki et al.

be extended to have a more significant digit since the current most significant
digit is 0 under θ.

Now let us define Mk = 〈Q,Σk, δ, q0, f1, f2〉 so that Mk satisfies the above.
We identify a state and its configuration, since no distinct states have the same
configuration: in case two states happen to have the same configuration, they
must be merged. The initial state is the configuration 〈0, 0, 1, {[∅, 0, 0, 0]}〉, where
∅ is the empty assignment.

The transition function δ is defined as follows. For x1, x2, x3 ∈ Σk ∪ {$}, let
us write 〈d1, d2,
, P 〉 x1x2x3====⇒ 〈d′

1, d
′
2,

′, P ′〉 if

– x3 = $ implies x1 = x2 = $,
– di = 1 implies xi = $ for i = 1, 2,
– d′

i = 1 if xi = $, and d′
i = 0 otherwise, for i = 1, 2,

– x1 ∈ Σ� ∪ {$}, x2 ∈ Σ�1 ∪ {$}, x3 ∈ Σ�2 ∪ {$}, where
1 =
 if x1 ∈ Σ� and

1 = min{k,
 + 1} otherwise, and
2 is defined from
1 and x2 in the same
manner,

–
′ is defined from
2 and x3 in the same manner,
– P ′ = { p′ | p

x1x2x3−−−−→ p′ for some p ∈ P } is not empty,

where we write [θ, c, b1, b2]
x1x2x3−−−−→ [θ′, c′, b′

1, b
′
2] if

– bi = 0 implies xi �= $ for i = 1, 2,
– θ′ : Σ′ → Nk is an extension of θ where Σ′ = Σk if
′ = k, and Σ′ = Σ�′−1

otherwise,
– c + θ̃′(x1) + θ̃′(x2) = c′k + θ̃′(x3) where θ̃′ extends θ′ by θ̃′($) = 0,
– b′

i = 0 if xi �= $ and θ′(xi) = 0, and b′
i = 1 otherwise, for i = 1, 2.

If x1x2x3 �= $$$, then we define δ(q, x1x2x3) = q′ for q
x1x2x3====⇒ q′. When

x1x2x3 = $$$, this means the end of the input sequence, if it is a cryptarithm
sequence. For q′ = 〈d′

1, d
′
2,

′, P ′〉 with q
$$$==⇒ q′, we define δ(q, $$$) = f1 if

|P ′| = 1, and δ(q, $$$) = f2 if |P ′| ≥ 2.
The state set Q is defined to consist of the states reachable from the initial

state according to δ.

Example 3. Let k = 3. Suppose that a state q in M3 has a configuration
〈d1, d2,
, P 〉 = 〈0, 0, 2, P 〉 with

P = {[{a
→ 0}, c, b1, b2]} = {[{a
→ 0}, 0, 0, 0]} .

In fact, this state is reached by reading aaa from the initial state, where we did
not yet find $ (so d1 = d2 = 0), the second letter b may appear in the nearest
future (so
 = 2), and the only consistent assignment θ maps a to 0 (otherwise
θ(a) + θ(a) �= θ(a)), under which we have no carry (c = 0), but each term must
not finish (b1 = b2 = 0). Therefore, this state q has no outgoing transition edge
labeled with a trigram including $. When reading aaa again from this state, the
situation does not change. So we have δ(q, aaa) = q. If we read abb, where b
is a new letter, we reach a new state q′. Although the last letter c in Σ3 has

Enumeration of Cryptarithms Using DFAs 291

not appeared yet, it is ready to come. The domain of the assignments in the
configuration of q′ is now Σ3. We have two consistent assignments extending the
one {a
→ 0} in q. One maps b to 1 and the other maps b to 2. In both cases,
we have no carry and the second term may finish. Thus, the configuration of q′

is 〈0, 0, 3, P ′〉 with

P ′ = {[{a
→ 0, b
→ 1, c
→ 2}, 0, 0, 1], [{a
→ 0, b
→ 2, c
→ 1}, 0, 0, 1]} .

On the other hand, it is not hard to see that there is no p′′ such that [{a
→
0}, 0, 0, 0] abc−−→ p′′. Hence q has no edge labeled with abc. In this way, we decide
whether a state has an outgoing edge labeled with a trigram over Σk ∪ {$} and
the configuration of the reached state.

We now have established Eqs. (1) and (2). An assignment θ is a solution of
a cryptarithm sequence w$$$ if and only if [θ, 0, 1, 1] ∈ P of the configuration
〈d1, d2,
, P 〉 of the state δ(q0, w). In other words, one can regard our DFA as a
Mealy machine that outputs solutions when reading $$$.

We remark that the constructed DFA is minimum as a Mealy machine but
is not necessarily minimum if we ignore output solutions. For example, let
us consider the states reached by abc$ab and abc$ba from the initial state
in M3. They have different configurations 〈1, 0, 3, P1〉 and 〈1, 0, 3, P2〉 where
Pi = { [{a
→ i, b
→ (3 − i), c
→ 0}, 0, 1, 1] } for i = 1, 2. Those states are not
merged but the strings that will lead us to the accepting state f1 from those states
coincide: namely, they have the form $x1x1 . . . $xnxn$$$ where xi ∈ {a, b, c} for
i < n, xn ∈ {a, b} and n ≥ 0.

The number of states of Mk is bounded by the number of possible configura-
tions. A trivial and loose upper bound on it is 2O(k!). If one is interested only in
cryptarithms with a unique solution, one can remove the state f2. If uniqueness
of a solution does not matter, two accepting states f1 and f2 can be merged.

Figure 3 shows the finally obtained automaton for k = 2. This automaton M2

misses the accepting state f2, because no cryptarithm has two distinct base-2
solutions.

3.2 Compressed Cryptarithm DFA

By observing Fig. 3, one may realize that the DFA has isomorphic substructures.
Namely, the sub-automaton M2

2 whose initial state is set to be 2 is isomorphic
to M15

2 with initial state 15 by swapping a and b on the edge labels. There exist
just 2 base-2 assignments, {a
→ 0, b
→ 1} and {a
→ 1, b
→ 0}. The first trigram
of any cryptarithm sequence uniquely determines one of the two as a consistent
assignment. The former assignment corresponds to M2

2 and the latter to M15
2 .

We say that two configurations 〈d1, d2,
, P 〉 and 〈d′
1, d

′
2,

′, P ′〉 are permutative
variants if d1 = d′

1, d2 = d′
2,
 =
′, and there is a bijection π on Σm with m = k

if
 = k and m =
 − 1 otherwise such that

P ′ = π(P) = {[θ ◦ π, c, b1, b2] | [θ, c, b1, b2] ∈ P} .

292 Y. Nozaki et al.

1

2

34

5

9 101213

67

811

14

15

1617

18

22 232526

1920

2124

27

28

$$$

$ba
$ab

$$a

b$a
a$b

$$a

bba

bab

abb

aaa

$ba

$ab

bba

bab

b$a

abb

aaa

a$b

$bb
$aa

$$$

$bb

$aa b$b

a$a

$$$

b$b

a$a

bba

bab

b$a

abb

aaa

a$b

$ba

$ab

$$a

bbb

baa
aba

aab

$bb

$aa

bbb

baa
aba

aab

b$b

a$a

bbb

baaaba

aab

aab

aba

$$$

$ab
$ba

$$b

a$b
b$a

$$b

aab

aba

baa

bbb

$ab

$ba

aab

aba

a$b

baa

bbb

b$a

$aa
$bb

$$$

$aa

$bb a$a

b$b

$$$

a$a

b$b

aab

aba

a$b

baa

bbb

b$a

$ab

$ba

$$b

aaa

abb
bab

bba

$aa

$bb

aaa

abb
bab

bba

a$a

b$b

aaa

abbbab

bba

aaa

abb

Fig. 3. DFA M2 that accepts base-2 solvable canonical cryptarithm sequences. The
initial state is q0 = 1 and the accepting state is f1 = 28. The other accepting state f2
is missing in M2.

Clearly if the configurations of two states are permutative variants, the subau-
tomata consisting of reachable states from those states are isomorphic under
the permutation. This allows us to reduce the size of the automaton by merg-
ing those states. In our new DFA M̃k, each transition edge has two labels: one
is a trigram as before and the other is a permutation on Σk. After passing a
transition edge labeled with a permutation π, we will follow transition edges by
replacing each letter in accordance with π. Figure 4 shows a fragment of M̃2.

We formally define this new kind of DFAs with edges labeled with a let-
ter and a permutation. A DFA with permutation edges is a sextuple M =
〈Q,Σ, δ, γ, q0, F 〉, where δ and γ are partial functions Q × Σ ⇀ Q and
Q × Σ ⇀ ΠΣ , respectively, where ΠΣ is the set of all permutations over Σ,
such that the domains of δ and γ coincide. For x ∈ Σ, w ∈ Σ∗ and q ∈ Q, define

Enumeration of Cryptarithms Using DFAs 293

1

2

317

18

1920

bba

bab

abb

aaa

bba

bab

abb

aaa

bba

bababb

bbb

baa
aba

aab

aaa

abb
bab

bba

aaa

abbbab

bba

aab

aba

aaa

abb

Fig. 4. Fragment of ˜M2, where boxed trigram labels are with the permutation {a �→ b,
b �→ a}, while the others are with the identity ι. States with the same name in Figs. 3
and 4 have the same configuration.

δ̂ : Q × Σ∗ ⇀ Q and γ̂ : Q × Σ∗ ⇀ ΠΣ by

δ̂(q, ε) = q,

γ̂(q, ε) = ι,

δ̂(q, wx) = δ(δ̂(q, w), γ̂(q, w)(x)),

γ̂(q, wx) = γ(δ̂(q, w), γ̂(q, w)(x)) ◦ γ̂(q, w),

where ι is the identity. The strings that the automaton M accepts are those
w ∈ Σ∗ such that δ̂(q0, w) ∈ F . Mealy machines with permutation edges can
also be defined, where outputs may depend on the current state, permutation
and next input letter.

We modify Mk to M̃k by merging states that are permutative variants and
adding appropriate permutation labels to edges. In our cryptarithm DFAs with
permutation edges, permutation labels are defined on letters in Σk and homo-
morphically extended to trigrams on Σk ∪ {$}, where $ is always mapped to
$ itself. Algorithm 1 shows the pseudo code for constructing M̃k. An assign-
ment θ ◦ γ̂(q0, w) is a solution of a cryptarithm sequence w$$$ if and only if
[θ, 0, 1, 1] ∈ P for the configuration 〈d1, d2,
, P 〉 of the state δ̂(q0, w).

On Line 13 of Algorithm1, we check whether a configuration q′ =
〈d′

1, d
′
2,

′, P ′〉 is a permutative variant of an existing state q′′ ∈ Q. In the actual
implementation, we do not try all the possible combinations of q′′ ∈ Q and
π ∈ Πk. Applying a hash function to q′, we compare it with only configurations
q′′ = 〈d′

1, d
′
2,

′, P ′′〉 ∈ Q such that |P ′
c,b1,b2

| = |P ′′
c,b1,b2

| for all (c, b1, b2) ∈ {0, 1}3
where Pc,b1,b2 is the subset of P whose elements have the form [θ, c, b1, b2] for
some θ. Let [θ, c, b1, b2] and [θi, ci, b1i, b2i] be the first element of P ′′ and the ith

element of P ′, respectively. For each i ∈ {1, . . . , |P ′|}, we compare P ′′ and πi(P ′)
where πi ∈ ΠΣk

satisfies πi(θi) = θ. If P ′′ and πi(P ′) coincide exactly, q′ and q′′

are permutative variants.

294 Y. Nozaki et al.

Algorithm 1. Constructing M̃k

1: let q0 := 〈0, 0, 1, {[∅, 0, 0, 0]}〉 and Q := {q0, f1, f2};
2: push q0 to the stack;
3: while the stack is not empty do
4: pop the top element q from the stack;
5: for each trigram u on Σk ∪ {$} do
6: if there is a configuration q′ such that q

u
=⇒ q′ then

7: if u = $$$ then
8: if q′ = 〈d1, d2, �, P 〉 with |P | = 1 then
9: add an edge from q to f1 with label 〈u, ι〉;
10: else
11: add an edge from q to f2 with label 〈u, ι〉;
12: end if
13: else if there are q′′ ∈ Q and π ∈ ΠΣk such that q′ = π(q′′) then
14: add an edge from q to q′′ with label 〈u, π〉;
15: else
16: add q′ to Q and push q′ to the stack;
17: add an edge from q to q′ with label 〈u, ι〉;
18: end if
19: end if
20: end for
21: end while
22: return 〈Q, Σk, δ, γ, q0, f1, f2〉;

3.3 Comparison of Naive and Compressed Cryptarithm DFAs

Table 1 compares the numbers of states of Mk and M̃k. We succeeded in calculat-
ing the automata for k ≤ 7 but gave up for k ≥ 8 due to the long time calculation
and big memory consumption. For the purpose of reference, we also show the
number of states of min(Mk), the minimized version of Mk. Note that mini-
mization loses the information of possible solutions for cryptarithm sequences
and therefore min(Mk) cannot be used as a solver. Our compression technique
achieves a more compact representation than the classical state minimization
technique for solvable cryptarithm sequences, while keeping the solver function.

Table 1. Number of states and edges of cryptarithm automata

Base k 2 3 4 5 6 7

States Mk 28 110 859 10267 370719 30909627
˜Mk 15 27 163 1061 17805 472518

min(Mk) 27 93 607 6589 248192 –

Edges Mk 112 1032 17662 350019 23508141 3017993409
˜Mk 58 233 3860 40042 1214972 48635469

min(Mk) 111 985 16602 330297 22673144 –

Enumeration of Cryptarithms Using DFAs 295

Table 2. Used computational resources for constructing cryptarithm automata

Base k 2 3 4 5 6 7

Time (s) Mk <0.01 <0.01 0.03 0.59 35 s 85min
˜Mk <0.01 <0.01 0.01 0.18 23 s 264min

Space (MB) Mk <2 2.1 4.5 18 1.0GB 90GB
˜Mk <2 <2 2.8 6.5 92MB 3.7GB

Table 2 compares the time and space used to construct Mk and M̃k. Our
implementation was compiled with Go 1.10 on Ubuntu 14.04 LTS with CPU
Xeon E5-2609 2.4 GHz and 256 GB memory. To construct M̃k was quicker than
Mk for k ≤ 6 but it was reversed for k = 7. Nonetheless, M̃k requires much
smaller memory than Mk for all k.

3.4 Cryptarithms with Limited Number of Letters

As we have observed in the previous subsection, we were unable to compute
Mk and M̃k for k ≥ 8. On the other hand, there are many interesting base-10
cryptarithms in the real world that do not involve all the 10 numerals. It is still
interesting to construct a DFA M̃k,s that accepts all and only base-k solvable
cryptarithm sequences over Σs for s ≤ k. This can be achieved by a slight
modification on Algorithm 1, where we refrain from making transition edges
whose label includes forbidden letters not in Σs. In addition, when s = k−1, we
need to give up “promotion” of an assignment with domain Σk−1 to its extension
with domain Σk. This results actually in a simpler construction algorithm.

Tables 3 and 4 show the numbers of states and the computation times of the
construction of M̃k,s for 8 ≤ k ≤ 10 and 2 ≤ s ≤ 5.

Table 3. Number of states of ˜Mk,s

k \ s 2 3 4 5

8 23 302 5623 133385

9 20 313 6688 220255

10 19 320 7507 328959

Table 4. Construction time of ˜Mk,s

(sec. except for s = 5)

k \ s 2 3 4 5

8 <0.01 0.01 1.6 10min

9 <0.01 0.01 2.3 34min

10 <0.01 0.01 2.6 76min

4 Analysis of Cryptarithms

Cryptarithm automata Mk, M̃k and M̃k,s can be used as cryptarithm puzzle
solvers as we have described in the previous section. Moreover, they can be used
as complete catalogues of solvable cryptarithms. For example, one can count the
number of base-k solvable cryptarithms of size n and one can enumerate the
base-k solvable cryptarithm sequences by the length-lexicographic order.

296 Y. Nozaki et al.

4.1 Counting Solvable Cryptarithms

The number Fk(n) of base-k uniquely solvable cryptarithms of size n is the num-
ber of the paths of length n + 1 from the initial states to the accepting state f1
in M̃k. The number Gk(n) of (not necessarily uniquely) solvable cryptarithms is
obtained by adding the number of paths to the accepting state f2 to this num-
ber. Those numbers can be calculated by the standard technique using the adja-
cency matrix Ak of the automaton in O(m3

k log n) time, where mk is the number
of states of the automaton (i.e., mk is the number of rows (columns) of Ak).
Table 5 summarizes the numbers of uniquely and not necessarily uniquely solv-
able cryptarithms. Although we have computed M̃7, we were unable to calculate
F7(n) and G7(n) even for small numbers n by multiplying the adjacency matrices
due to the size of the matrices. Moreover, for k = 2, 3, we obtain Fk(n) and Gk(n)
as explicit formulas of n using MathematicaTM. Unfortunately, MathematicaTM

returned no answers for bigger k ≥ 4 within 3 days on our environment.

Table 5. The numbers Fk(n) and Gk(n) of uniquely and not necessarily uniquely
solvable cryptarithms, respectively. Among those, numbers shown with bold figures
were not known in [4].

4.2 Enumerating and Indexing Cryptarithms

By depth-first search on a cryptarithm automaton, one can enumerate all the
base-k (uniquely) solvable cryptarithm sequences by length-lexicographic order.
Moreover, from an index number i, one can efficiently give the ith (uniquely)
solvable cryptarithm sequence. This can be computed in O(m3

kn log n) time,
where n is the length of the ith cryptarithm, using powers of the adjacency
matrix Ak. Conversely, from a solvable cryptarithm of length n, the indexing
number of it can be computed in O(m3

kn log n) time as well. As examples, the
first 30 base-3 solvable cryptarithm sequences are given below.

Enumeration of Cryptarithms Using DFAs 297

aab$$$, aaabbc$$$, aab$$b$$$, aab$aa$$$, aab$ba$$$,
aab$bb$$$, aaba$a$$$, aabaab$$$, aabb$a$$$, aabb$b$$$,
aba$aa$$$, aba$cc$$$, abaaac$$$, abacca$$$, abbb$b$$$,
abbbbc$$$, abbc$c$$$, abbccb$$$, abc$$a$$$, abc$$b$$$,
abc$ab$$$, abc$ba$$$, abca$b$$$, abcb$a$$$, aaaaaabbc$$$,

aaaabbb$b$$$, aaaabbbbc$$$, aaaabbc$c$$$, aaaabbccb$$$, aaabab$bb$$$,

5 Conclusions and Discussions

This paper proposed an algorithm to construct a DFA that accepts solv-
able cryptarithms under the base-k numeral system. Our construction method
involves a technique to reduce the number of states more significantly than the
classical minimization of DFAs by enriching transition edge labels. Using those
automata, we demonstrated that the numbers of base-k solvable cryptarithms
of n digits are computable for 2 ≤ k ≤ 6.

Our compression technique is based on the symmetry among assignments.
We could not define a canonical representative among permutative variants. If
one could efficiently compute such a canonical form, the computation time would
be shortened. Another type of symmetry is found between the first and second
summand terms. It is future work to take advantage of this type of symmetry to
reduce the size of cryptarithm DFAs. We are also interested in applying our DFAs
for generating alphametics, which are cryptarithms with meaningful words.

Acknowledgments. We thank to Kaizaburo Chubachi for assisting us in some of the
experiments. We also appreciate anonymous reviewers’ helpful comments. The work is
supported in part by KAKENHI 15H05706.

References

1. Abbasian, R., Mazloom, M.: Solving cryptarithmetic problems using parallel genetic
algorithm. In: Second International Conference on Computer and Electrical Engi-
neering, pp. 308–312 (2009)

2. Collins, T.: Alphametic puzzle solver. http://www.tkcs-collins.com/truman/
alphamet/alpha solve.shtml. Accessed 01 May 2018

3. Dudeney, H.E.: Strand Magazine, vol. 68, pp. 97–214. George Newnes, London
(1924)

4. Endoh, H.: Automata-theoretic approaches to puzzle analysis. Master’s thesis, Grad-
uate School of Information Sciences, Tohoku University (2013). (in Japanese)

5. Endoh, H., Narisawa, K., Shinohara, A.: An automaton theory approach for ana-
lyzing alphametic. In: Proceedings of the 16th Game Programming Workshop, pp.
54–61 (2011). (in Japanese)

6. Eppstein, D.: On the NP-completeness of cryptarithms. ACM SIGACT News 18(3),
38–40 (1987)

7. Knuth, D.E.: The Art of Computer Programming, vol. 4A. Addison-Wesley, Reading
(2017)

http://www.tkcs-collins.com/truman/alphamet/alpha_solve.shtml
http://www.tkcs-collins.com/truman/alphamet/alpha_solve.shtml

298 Y. Nozaki et al.

8. Luoma, K.: Cryptarithms: a non-programming approach using excel. Spreadsh.
Educ. (eJSiE) 9(2), 6 (2016)

9. Tamura, N.: Cryptarithmetic puzzle solver. http://bach.istc.kobe-u.ac.jp/llp/crypt.
html. Accessed 01 May 2018

http://bach.istc.kobe-u.ac.jp/llp/crypt.html
http://bach.istc.kobe-u.ac.jp/llp/crypt.html

One-Counter Automata for Parsing
and Language Approximation

Alexander Sakharov(B)

Synstretch, Framingham, MA, USA
mail@sakharov.net

Abstract. A grammar characterization of partially blind one-counter
languages is presented. One-counter automata are used to build parse
trees of the respective grammars. One-counter automata are also used
to find the most probable derivations for the stochastic versions of these
grammars. Both these tasks are executed in quadratic time in the size of
the input. Regular expressions are extended with one-counter language
capabilities. Context-free languages are approximated with one-counter
languages.

1 Introduction

The time complexity of parsing context-free (CF) languages is cubic in the size of
the input in a general case, which includes the majority of ambiguous languages.
See the CYK and Earley algorithms [1]. This time complexity is prohibitive
for some applications. Sub-cubic parsing algorithms do exist but they are not
practical [2].

CF grammars are often ambiguous. Natural language grammars are almost
always ambiguous [1]. Ambiguous grammars are widely used in bioinformatics
[3]. Selecting better derivations is an additional parsing challenge for these lan-
guages. Stochastic (aka probabilistic) grammars are an instrument for dealing
with ambiguity. They associate probabilities with productions. Stochastic pars-
ing amounts to finding the most probable derivations for given input strings [1].
Due to grammar splitting methods, stochastic parsing can be highly accurate,
including natural language parsing [4].

Finding the most probable derivation is solved by dynamic programming
algorithms such as the CYK algorithm for stochastic CF grammars [1]. The
stochastic CYK algorithm also has a cubic time complexity in the size of the
input. Enhanced algorithms for parsing stochastic CF languages execute much
faster than the CYK algorithm in practice, but still exhibit a cubic asymptotic
time complexity [5].

As opposed to CF languages, regular languages can be parsed in linear time
by finite automata (FA). The task of finding the most probable derivation can
be solved in linear time of the size of the input by the Viterbi algorithm [1].
The Viterbi algorithm finds the most probable sequence of automaton transi-
tions (path) accepting the input for stochastic FAs. It can be applied to the
c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 299–311, 2018.
https://doi.org/10.1007/978-3-319-94812-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_25&domain=pdf

300 A. Sakharov

automata recognizing right-linear, i.e. regular, grammars. The most probable
path is also the most probable derivation in the respective right-linear grammar.
Its time complexity makes the Viterbi algorithm the tool of choice for numerous
applications, since many of them require a real-time result. Unfortunately, regu-
lar languages constitute a very limited subclass of CF languages. Having faster
parsing algorithms for supersets of regular languages including algorithms for
finding the most probable derivations is crucial.

One-counter (OC) automata are FAs extended with a non-negative counter
[6]. The languages recognized by OC automata are a proper subset of CF lan-
guages and a proper superset of regular languages. OC automata have plenty
of applications [7,8], and so do stochastic OC automata [9,10]. Stochastic OC
automata are equivalent to discrete-time quasi-birth death processes [11].

Partially blind one-counter (PBOC) automata are OC automata without
counter tests [12]. They are also known as restricted one-counter automata [13]
and one-counter nets [14]. PBOC automata are equivalent to B-automata [15].
The languages recognized by PBOC automata are a proper superset of regular
languages and a proper subset of OC languages. The properties of OC and PBOC
languages have been extensively studied [6,13,14,16].

OC automata, including stochastic ones, have not been used much for pars-
ing. Grammar characterization of OC and PBOC languages has been an open
issue for decades [6,8]. We specify a class of grammars characterizing PBOC
languages. We describe how to build matching PBOC automata from these
grammars and vice versa. The time complexity of parsing the characterizing
languages, including stochastic parsing, is quadratic in the size of the input. We
augment regular expressions (RE) with OC capabilities. These extended REs
give another characterization of PBOC languages.

The approximation of CF languages has recently caught much attention. CF
languages are usually approximated with regular languages [17]. Fast parsing is
one of the reasons of this approximation. Some advanced approximation methods
have been developed [18].

We introduce a technique for approximating CF languages by OC automata.
OC automata are more adequate for handling parenthesis constructs than FAs.
This technique enables the generation of approximate parse trees. The languages
accepted by the approximating automata include the source CF languages. We
present a sufficient decidable condition for a CF grammar to be recognizable by a
OC automaton. We describe a method for approximating automaton transition
probabilities from grammar production probabilities.

2 One-Counter Automata

Definition 1. A (nondeterministic) OC automaton is a tuple (S,R, s, F, T)
where S is a finite set of states, R is a set of input symbols (alphabet), s ∈ S
is the start state, F ⊂ S is a set of final states, T is a set of transitions. The
transitions have the form: s, t, c → r, n where s and r are states, t is an input
symbol, c ∈ {0,+} is a counter test, n ∈ {+1,−1, 0} is a counter operation.

One-Counter Automata for Parsing and Language Approximation 301

Transitions with c = 0 apply when the counter is zero, and transitions with
c = + apply when the counter is positive. The transition adds n to the counter
value. Transitions with c = 0 and n = −1 are disallowed. The value of the
counter is zero at the start. An input is accepted if the automaton is in a final
state and the counter is zero. Transitions are classified as incrementing (n = +1),
decrementing (n = −1), and internal (n = 0).

Some definitions of OC automata allow ε-transitions, i.e. transitions with-
out input symbols. Alternatively, OC automata can be defined as pushdown
automata with a single stack symbol and a special bottom symbol [11].

Definition 2. A transition sequence is called balanced if the counter value at
the beginning equals its value at the end, and the counter value at other states is
not less than that.

In the case of stochastic OC automata, probability p is associated with every
transition [11]. It is assumed that transition probabilities satisfy the following
conditions for any non-final state s:

∑

t,r,n

p(s, t, 0 → r, n) = 1
∑

t,r,n

p(s, t,+ → r, n) = 1

For any final state, these sums are less than one by the final state probability.
Some definitions of stochastic OC automata include start state probabilities.

The probability of an automaton path is defined as the product of the proba-
bilities of its transitions. The Viterbi algorithm from [19] outputs the most prob-
able path accepting the input of a stochastic OC automaton. Its time complexity
is quadratic in the size of the input. This algorithm can be used to output accep-
tance paths for non-stochastic OC automata if we assign p(s, t, c → r, n) = 1
instead of probabilities for all transitions.

Trees can be generated from acceptance paths of OC automata [19]. These
trees play the role of parse trees. Input symbols are leaf nodes of these trees.
The source states of incrementing and internal transitions label non-leaf nodes.
The source states of decrementing transitions could be leaf nodes, or these states
could have one child. Both interpretations are based on the intuitive assumption
that any incrementing transition opens a construct, and a matching decrement-
ing transition closes it.

In order to build a tree, we iterate over transitions in an acceptance path
and maintain the stack of states. For any transition A, u, c → B, 0, u and B are
the children of A. For any transition A, u, c → B,+1, u and B are the first two
children of A. A is pushed onto the stack. For any transition C, v,+ → D,−1,
the top state is popped from the stack. Under the first interpretation, C has no
child nodes, v and D are added as children of the node popped from the stack.
Under the second interpretation, v becomes the sole child of C, and D is added
as a child of the node popped from the stack.

Definition 3. A OC automaton is called PBOC if the following holds for any
s, t, r, h: the automaton has transition s, t, 0 → r, h iff it has transition s, t,+ →
r, h (cf. [12]).

302 A. Sakharov

Usually, PBOC automata are defined by transitions without the counter test,
and the automata halt when the counter becomes negative. Following this tradi-
tion, we drop the counter test from the notation of PBOC automaton transitions.
PBOC automata can also be defined as pushdown automata with a single stack
symbol and without bottom symbol transitions [13].

3 Counting Regular Expressions

REs are regarded as a simpler notation than CF grammars. REs are also more
widely used [20]. The notion of a counter can be incorporated into REs without
affecting their simplicity but enhancing the expressiveness. OC automata can
be used to parse these extended REs, which will be called counting regular
expressions (CRE), and to generate trees. Let L denote the language defined by
a RE, grammar, or automaton.

CREs are defined as REs in which some terminals may be annotated with
plus or minus, for instance, a+ or a− for terminal a. A string matches a CRE if
the following three conditions are met. First, the string matches this CRE with
the annotations ignored. Second, the number of input symbols matching the plus
terminals should be greater or equal to the number of input symbols matching
the minus terminals for any partial input, i.e. for any substring n1...nk of input
n1...nm. Third, these two numbers should be equal for the entire input.

For example, the following CRE specifies additive expressions (terminals are
underlined, terminal id represents identifiers):

((+)∗ id ()−)∗ ((+ | −) ((+)∗ id ()−)∗)∗

Theorem 1. The sets of languages defined by CREs and PBOC automata are
identical.

Proof. We can view any CRE X as a RE in which a, a+, a− are treated as dis-
tinct terminals even though they match the same input. Let us convert this RE
to its recognizing nondeterministic FA without ε-transitions X ′ [21]. Now we can
transform X ′ transitions into transitions of PBOC automaton X ′′ as follows:

s, x → t ⇒ s, x → t, 0
s, x+ → t ⇒ s, x → t,+1
s, x− → t ⇒ s, x → t,−1

The start and final states remain unchanged. Any string s ∈ L(X) is accepted
by X ′. Using the above rules, we can transform any X ′ acceptance path into a
X ′′ path. It is also an acceptance path for X ′′ because it is balanced, and the
counter is zero at the end. Now suppose string u is accepted by X ′′. It is also
accepted by X ′. Since the input symbols matching annotated terminals of X
satisfy the CRE conditions, u ∈ L(X).

These transformations can be reverted to transform any PBOC automaton
to a FA with annotated terminals. Any FA can be transformed to an equivalent
RE. Annotations are carried from the FA to this RE which is treated as a CRE.
We can use the same arguments as before to show that this CRE and the source
PBOC automaton define the same language. ��

One-Counter Automata for Parsing and Language Approximation 303

Using the Viterbi algorithm for OC automata and the first interpretation of
acceptance paths, we can build parse trees for the strings matching CRE.

4 Compartmentalized Grammars

Without loss of generality, we can assume that CF grammar productions are
in the quadratic Greibach normal form (QGNF), i.e. every production is A →
bB1...Bk where 0 ≤ k ≤ 2 [6]. As usual, =>∗ denotes grammar derivation.
Let R(A) be the set consisting of nonterminal A and all such nonterminals
B that A =>∗ αB where α is a string of terminals and/or nonterminals. A
simple iterative procedure can calculate R(A) for all nonterminals A of any CF
grammar. Let I be the set of nonterminals D such that there is production
A → bB1B2, and D ∈ R(B1).

Consider a OC automaton whose states are grammar nonterminals. Addition-
ally, there is one and only final state Z that does not map to any nonterminal.
Start nonterminal S is the start state. Transitions are constructed as follows:

For every production A → bB1:
A, b, 0 → B1, 0 if A ∈ R(S)
A, b,+ → B1, 0 if A ∈ I

For every production A → bB1B2:
A, b, 0 → B1,+1 if A ∈ R(S)
A, b,+ → B1,+1 if A ∈ I

For every production A → bB1B2 and production D → d such that D ∈ R(B1):
D, d,+ → B2,−1

For every production D → d such that D ∈ R(S):
D, d, 0 → Z, 0

Theorem 2. If OC automaton Ω is built by the above rules from CF grammar
Γ in QGNF, then L(Γ) ⊆ L(Ω).

Proof. Consider the parse tree of an input string from L(Γ). Let us traverse this
parse tree in pre-order. Nonterminals and terminals alternate in the traversal
sequence. Every triple A, b, C in the sequence (where b is a terminal) corresponds
to a transition of the automaton generated from the grammar. Triples originating
from productions A → tB map to transitions A, t, n → B, 0 where n = 0 or
n = + depending on the counter value. Productions A → uBC are the source of
transitions A, u, n → B,+1. Along with productions D → c where D ∈ R(B),
they are also the source of transitions D, c,+ → C,−1. In both cases, A ∈ R(S)
if n = 0, and A ∈ I if n > 0.

The destination state of every transition in the traversal sequence equals to
the source state of the next one. Incrementing and decrementing transitions are
paired according to parse tree nodes for productions A → uBC. Therefore, the
counter value is always non-negative and equals zero at the end. The counter is
always positive at the source states of decrementing transitions. If A, b is the last
pair in the traversal sequence, then A ∈ R(S), and this pair maps to transition
A, b, 0 → Z, 0. Therefore, the input is accepted by Ω. ��

304 A. Sakharov

We also can construct a PBOC automaton from productions of any grammar
in QGNF. Let both A, u, 0 → B, h and A, u,+ → B, h be generated regardless
of whether A ∈ R(S), A ∈ I, or not. Clearly, Theorem 2 holds after this change.

Definition 4. Grammar Γ in QGNF is called compartmentalized quadratic
Greibach (CQG) if for any two productions A → bBC and E → fFG,
R(B) ∩ R(F) = ∅. If for any such productions, either R(B) ∩ R(F) = ∅ or
the grammar includes productions A → bBG and E → fFC as well, then Γ is
called semi-compartmentalized (SCQG).

For example, the following grammar is CQG:
S → id S → id S S → (SR R →) R →)S

Here is the PBOC automaton constructed from this grammar:
S, id → S, 0 R,) → S, 0 S, (→ S,+1
S, id → R,−1 R,) → R,−1 S, id → Z, 0 R,) → Z, 0

Theorem 3. If OC automaton Ω is built by the above rules from SCQG gram-
mar Γ , then L(Γ) = L(Ω).

Proof. Let
←−
t and

−→
t denote the source and destination state of transition t,

respectively. We prove by induction on the number of incrementing transitions
that if t1...tn is a balanced sequence of transitions of Ω for input string s1...sn

and
−→
tn = Z, then

←−
t1 ⇒∗ s1...sn

−→
tn is a valid derivation in Γ , and

−→
tn ∈ R(

←−
t1).

Base: Clearly, this proposition holds for balanced sequences without incre-
menting transitions.

Induction step: Suppose the proposition holds for sequences with not more
than m incrementing transitions. Consider the first incrementing transition ti
in sequence t1...tn with m + 1 incrementing transitions. Let tj be its balancing
decrementing transition.

Suppose ti corresponds to production A → siB1B2, and tj corresponds to
production pair E → sj , C → dD1D2 such that E ∈ R(D1). By the induc-
tion assumption, transition sequence ti+1...tj−1 maps to derivation B1 ⇒∗

si+1...sj−1E, and E ∈ R(B1). Since E ∈ R(D1), Γ contains production
A → siB1D2 as well. Transition ti is identical to the transition generated from
production A → siB1D2, and tj is identical to the transition generated from
production pair E → sj , A → siB1D2, and hence, A ⇒∗ si...sjD2.

By the induction assumption, D2 ⇒∗ sj+1...sn
−→
tn is a valid derivation, and−→

tn ∈ R(D2). Transitions s1...si−1 are all internal, and thus,
←−
t1 ⇒∗ s1...si−1A,

A ∈ R(
←−
t1). Combining the three derivations, we get

←−
t1 ⇒∗ s1...sn

−→
tn , and

−→
tn ∈

R(
←−
t1).
If t1...tk is an acceptance path, then t1...tk−1 is balanced, S ⇒∗ s1...sk−1

−−→
tk−1

is a valid derivation in Γ , and
−−→
tk−1 ∈ R(S). Γ has production

−−→
tk−1 → sk because−→

tk = Z. Hence, S ⇒∗ s1...sk. ��
Theorem 3 also holds for the PBOC automata built from SCQG grammars.

Using the second interpretation of OC automaton acceptance paths, we can build

One-Counter Automata for Parsing and Language Approximation 305

trees from acceptance paths for the OC automata built from CF grammars in
QGNF. These trees contain relevant syntactic information even if they do not
exactly match productions of the source grammar. As the proof of Theorem 3
shows, the trees constructed from acceptance paths can be converted to the parse
trees of the source SCQG grammars.

5 Stochastic Parsing

Any proper CQG grammar has no more than one distinct production A → bBC
for any triple A, b,B. For any production D → c from a CQG grammar, there
is no more than one such production A → bBC that D ∈ R(B).

Transition probabilities of the OC automata built from stochastic CQG gram-
mars are expressed via grammar production probabilities:

p(A, b, 0 → B, 0) = p(A, b,+ → B, 0) = p(A → bB)
p(A, b, 0 → B,+1) = p(A, b,+ → B,+1) = p(A → bBC)
p(A, b,+ → B,−1) = p(A → b) p(A, b, 0 → Z, 0) = p(A → b)

In stochastic grammars, the sum of probabilities of the productions A → ...
equals one for every nonterminal A [1]. For every state A except Z, the sum
of p(A, b,+ → B,n) for all b,B, n equals one because the sum of the respec-
tive production probabilities equals one. The same is true about the sum of
p(A, b, 0 → B,n) for all b,B, n.

If a grammar undergoes a transformation, then the probabilities of new pro-
ductions usually cannot be expressed via the probabilities of original productions.
The following theorem guarantees that the Viterbi algorithm from [19] can be
used to find the most probable derivations for stochastic CQG grammars.

Theorem 4. Suppose stochastic OC automaton Ω is built from stochastic CQG
grammar Γ , and their probabilities satisfy the above equations. A derivation in
Γ is the most probable iff the respective Ω acceptance path is the most probable.

Proof. The probability of a grammar derivation is calculated as the product of
the probabilities of the productions in the respective parse tree. The probabil-
ity of an acceptance path is the product of the probabilities of its transitions.
There is one-to-one mapping between nonterminal nodes of Γ parse trees and
transitions of Ω acceptance paths. The probabilities of the Γ productions asso-
ciated with parse tree nodes and the probabilities of the respective Ω transitions
equal each other. The most probable derivations corresponds to the most prob-
able acceptance paths for CQG grammars and their counterpart stochastic OC
automata because the probabilities of the derivations and acceptance paths are
calculated as the products of the same values. ��

6 Grammar Characterization

We can transform any PBOC automaton into a CF grammar. Let us
assign a unique positive number (identifier) to every distinct transition pair

306 A. Sakharov

(A, b → B,+1, D, c → C,−1). We define nonterminal [B, r] for every state B
and every transition pair identifier r. Also, we define nonterminal [B, 0] for every
state B where 0 is a dummy identifier. If S is the start state, then [S, 0] is the
start nonterminal. The following rules define grammar productions. ε denotes
the empty string.

1. [A, r] → b [B, r] for every transition A, b → B, 0 and every identifier r
2. [A, r] → b [B, u] c [C, r] for every identifier u = (A, b → B,+1, D, c → C,−1)

and every identifier r
3. [D,u] → ε for every identifier u = (A, b → B,+1, D, c → C,−1)
4. [A, 0] → ε for every final state A

Lemma 1. If grammar Γ is built from PBOC automaton Ω by the above rules,
then L(Γ) = L(Ω).

Proof. 1. L(Γ) ⊆ L(Ω)
Consider an arbitrary parse tree for Γ and traverse it in pre-order. Every

triple [A, r], b, [B, r] in the traversal string corresponding to production [A, r] →
b [B, r] has source transition A, b → B, 0. Let [A, r], b, [B, u] and [E, v], c, [C, r] be
the first and the last triple corresponding to production [A, r] → b [B, u] c [C, r] in
the parse tree. This production is induced by transition pair u = (A, b → B,+1,
D, c → C,−1). u = v because [E, v] ∈ R([B, u]), and all elements of R([B, u])
share the same identifier. Hence, E = D.

Every triple maps to an Ω transition. The destination state of every transition
in the traversal sequence equals to the source state of the next one. Increment-
ing and decrementing transitions are paired according to parse tree nodes for
productions [A, r] → b [B, u] c [C, r]. Therefore, the counter value is always non-
negative, and it equals zero at the end. The counter value is always positive at
nodes [D,u] corresponding to the source states of decrementing transitions. If
[C, s] is the last node in the traversal sequence, then s = 0, and hence, C is a
final state. Therefore, the sequence of triples from the traversal maps to an Ω
acceptance path.

2. L(Ω) ⊆ L(Γ)
We can prove by induction on the number of incrementing transitions that

if t1...tn is a balanced sequence of transitions of Ω for input string s1...sn, and r
is an identifier, then [

←−
t1 , r] ⇒∗ s1...sn[

−→
tn , r] is a valid derivation in Γ . The fact

that the input string of any Ω acceptance path is derivable in Γ is a corollary
of that because the last state is final, and we can pick r = 0.

The proof is similar to the proof of Theorem 3. The difference is the following.
If ti is the first incrementing transition, and tj is its balancing decrementing
transition, then production [

←−
tj , u] → ε is generated for transition pair u = (ti, tj).

Productions [
←−
ti , v] → si [

←−−
ti+1, u] sj [

−→
tj , v] are generated for u = (ti, tj) and for

every v. Combining these productions with derivation [
←−−
ti+1, u] ⇒∗ si+1...sj−1

[
−−→
tj−1, u], we get [

←−
ti , v] ⇒∗ si...sj [

−→
tj , v]. ��

One-Counter Automata for Parsing and Language Approximation 307

Theorem 5. The sets of languages defined by CQG grammars, SCQG gram-
mars, and PBOC automata are identical.

Proof. The Theorems 2 and 3 reformulated for PBOC automata show that an
equivalent PBOC automaton, i.e. defining the same language, can be constructed
for any SCQG grammar. Lemma 1 shows that an equivalent CF grammar can be
constructed for any PBOC automaton. Consider any two productions [A, r] →
b [B, u] c [C, r] and [E, s] → f [F, v] g [G, s] of the grammar built from a PBOC
automaton. If u = v, then these productions are identical. If the two productions
are distinct, then R([B, u])∩R([F, v]) = ∅ because all elements of R([X, z]) share
the same identifier z.

The grammars built from PBOC automata can be easily transformed into
equivalent grammars in QGNF. First, every production A → bBcC is trans-
formed into pair A → bBC ′, C ′ → cC where C ′ is a new nonterminal. Second,
productions A → b and A → bB are added in lieu of productions D → ε. These
additional productions are the result of removing D from the right-hand sides of
productions. The resulting grammar defines the same language, it is CQG, and
thus, SCQG as well. ��

Any CQG grammar can be converted to an equivalent PBOC automaton
and vice versa. The same is true about CREs and PBOC automata. Hence, any
CRE can be converted to an equivalent CQG grammar and vice versa.

7 Approximation of Context-Free Languages

Theorem 3 gives an indication that OC automata better approximate grammars
with fewer productions A → bB1B2. We call them long productions. For instance,
grammars having one long production are recognizable by OC automata.

Definition 5. Nonterminal A from a CF grammar in QGNF is called regular
if no E ∈ R(A) has long productions or if all nonterminals from the right-hand
side of every A production are regular.

Regular nonterminals can be effectively identified. If the start nonterminal
is regular, then the grammar is regular. The following grammar transformation
may boost the accuracy of the approximation by OC automata.

If B1 is a regular nonterminal, then productions A → bB1B2 can be elimi-
nated at the expense of newly introduced nonterminals and productions of the
form C → dD. Let us start with such B1 that no D ∈ R(B1) has long produc-
tions. First, we replicate all these D along with all their productions and replace
all replicas E → c with productions E → cB2. Second, we replace A → bB1B2

with A → bB′ where B′ is the replica of B1. By applying the above transfor-
mation iteratively, we eliminate all long productions with regular nonterminals
B1. This transformation does not introduce new long productions and does not
change the language defined by the grammar.

Any proper CF grammar can be effectively converted to QGNF [6]. After
that, the aforementioned transformation can be applied. Finally, we check if the

308 A. Sakharov

transformed grammar is SCQG. Therefore, we have a sufficient condition for
CF languages to be recognizable by PBOC automata. This condition can be
effectively verified for an arbitrary CF grammar, and the recognizing automaton
can be built when the condition is met.

Now we outline an approach to approximating transition probabilities of
stochastic OC automata generated from stochastic CF grammars in QGNF.
The transition probabilities can be learned from grammar production proba-
bilities. Describing implementation details and estimating the accuracy of this
approximation is beyond the scope of this paper.

A training set can be easily created. Strings belonging to the language are
generated by constructing random derivations from the start nonterminal. For
this purpose, productions are randomly applied by taking into account their
probabilities. We calculate the probabilities of the generated strings from their
parse trees. We generate acceptance paths of the approximating OC automaton
from the parse trees as it is done in the proof of Theorem 2.

Let us build a model for the approximation of the probabilities of transitions.
wi will denote the probability of transition i. If there is only one transition t
for source state a and counter test c, then wt = 1. Otherwise, let us pick one
transition among all transitions for given a and c. Note that a is not final. Let
X be the set of these picked transitions, Y be its complement, and C(i) denote
the set of complementary transitions for transition i ∈ X. The probabilities of
transitions from Y are model parameters.

The model equation is:

z =
∏

i∈Y

wmi
i

∏

i∈X

(1 −
∑

j∈C(i)

wj)mi

where mi is the number of occurrences of transition i in the acceptance path, z
is the probability of the corresponding grammar derivation. This model also has
the following box constraints: 0 ≤ wi ≤ 1 for i ∈ Y .

We can symbolically calculate ∂z
∂wi

for i ∈ Y . Therefore, the model parameters
wi can be learned by gradient descent methods, e.g. stochastic gradient descent
with square loss or another loss function [22]. Projections onto sets defined by
box constraints are trivial. It is well-known that stochastic gradient descent gives
robust results for a variety of optimization problems like this [22].

8 Related Work

The author is unaware of any previous work investigating the relationship
between OC automata and grammars except for XML grammars. PBOC
automata are used to validate XML documents against certain recursive DTDs
in [8].

Recursive REs aim to incorporate CF features into REs [20]. They extend
and complicate the notation of REs. Recursive REs disallow backtracking within
recursive calls [20], i.e. recursive REs are not declarative unlike REs and CF
grammars. Our extension, i.e. CREs, is less ambitious, but it adds the power of

One-Counter Automata for Parsing and Language Approximation 309

OC languages while preserving the simplicity of REs and retaining their declar-
ative nature.

RE parsers usually produce parse trees on the basis of the structure of a
given RE [23]. CRE parsing employs annotated terminals as opening and closing
markers for parse tree nodes.

Regular approximation of CF languages usually leads to the loss of syntactic
information. A grammar defining arithmetic expressions is used as an illustrat-
ing example in [17]. Its approximating FA has only two states, and thus, its
acceptance paths do not carry much syntactic information.

It is claimed in [17] that the approximating FAs can be used for parsing,
but the parse trees reconstructed from acceptance paths of the approximating
automaton differ from the parse trees of the source language. Another method for
reconstructing parse trees from acceptance paths of the approximating automata
was proposed in [24]. The problem with this method is that the reconstruction
requires cubic time, which defeats the purpose of language approximation.

A method of learning transitions probabilities of stochastic FAs was proposed
in [25]. This method works only for unambiguous FAs, while stochastic automata
and grammars are expected to be ambiguous. In general, unambiguous automata
do not need stochastic methods.

9 Conclusion

The characterization of PBOC languages by CREs and CQG grammars is an
indication of relevance of PBOC automata to parsing. However, the approxi-
mation of CF languages could potentially be more accurate if it involves all OC
automata. CQG languages is a new addition to the sparse collection of subclasses
of ambiguous or stochastic CF languages that can be parsed in quadratic time
or faster.

The approximation of CF languages by OC automata has the potential to
be more realistic than the approximation by regular languages. The latter is
inhibited by the limitations of regular languages. Our approximation applies to
stochastic CF grammars as well. Language approximation makes more sense for
stochastic languages because stochastic parsing is inherently approximate.

References

1. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice-
Hall Inc., Upper Saddle River (2009)

2. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002)

3. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic context-free
grammars for RNA secondary structure prediction. BMC Bioinformatics 5(1), 71
(2004)

4. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics, pp. 433–440 (2006)

310 A. Sakharov

5. Klein, D., Manning, C.D.: A* parsing: fast exact Viterbi parse selection. In: Pro-
ceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology - Volume 1, pp.
40–47 (2003)

6. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and push-down
automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages.
Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5 3

7. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. Formal Methods Syst. Des. 38(2), 158–192 (2011)

8. Chitic, C., Rosu, D.: On validation of XML streams using finite state machines.
In: Proceedings of the 7th International Workshop on the Web and Databases, pp.
85–90 (2004)

9. Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter
Markov decision processes. In: Proceedings of the 21st Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 863–874 (2010)

10. Brázdil, T., Brozek, V., Etessami, K.: One-counter stochastic games. In: IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, pp. 108–119 (2010)

11. Etessami, K., Wojtczak, D., Yannakakis, M.: Quasi-birth-death processes, tree-like
QBDs, probabilistic 1-counter automata, and pushdown systems. In: 5th Interna-
tional Conference on the Quantitative Evaluation of Systems, pp. 243–253 (2008)

12. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter
machines. Theoret. Comput. Sci. 7, 311–324 (1978)

13. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten
Mathematik und Mechanik. Teubner (1979)

14. Czerwinski, W., Lasota, S.: Regular separability of one counter automata. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 1–12 (2017)

15. Render, E., Kambites, M.: Polycyclic and bicyclic valence automata. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 464–475.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 42

16. Brandenburg, F.J.: On the intersection of stacks and queues. Theoret. Comput.
Sci. 58(1), 69–80 (1988)

17. Mohri, M., Nederhof, M.J.: Regular approximation of context-free grammars
through transformation. In: Junqua, J.C., van Noord, G. (eds.) Robustness in Lan-
guage and Speech Technology. Text, Speech and Language Technology, pp. 153–
163. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9719-7 6

18. Eğecioğlu, Ö.: Strongly regular grammars and regular approximation of context-
free languages. In: Developments in Language Theory: 13th International Confer-
ence, pp. 207–220 (2009)

19. Sakharov, A., Sakharov, T.: The Viterbi algorithm for subsets of stochastic context-
free languages. Inf. Process. Lett. 135, 68–72 (2018)

20. Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly & Associates Inc.,
Sebastopol (2002)

21. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expressions into small
ε-free nondeterministic finite automata. J. Comput. Syst. Sci. 62(4), 565–588
(2001)

22. Cotter, A., Gupta, M.R., Pfeifer, J.: A light touch for heavily constrained SGD.
In: Proceedings of the 29th Conference on Learning Theory, pp. 729–771 (2016)

23. Grathwohl, N.B.B., Henglein, F., Rasmussen, U.T.: Optimally streaming greedy
regular expression parsing. In: International Conference on Theoretical Aspects of
Computing, pp. 224–240 (2014)

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-540-88282-4_42
https://doi.org/10.1007/978-94-015-9719-7_6

One-Counter Automata for Parsing and Language Approximation 311

24. Nederhof, M.J.: Context-free parsing through regular approximation. In: Proceed-
ings of the International Workshop on Finite State Methods in Natural Language
Processing, pp. 13–24 (1998)

25. Nederhof, M.J.: A general technique to train language models on language models.
Comput. Linguist. 31(2), 173–186 (2005)

On Syntactic Complexity of Circular
Semi-flower Automata

Shubh N. Singh1 and K. V. Krishna2(B)

1 Central University of South Bihar, Patna, India
shubh@cub.ac.in

2 Indian Institute of Technology Guwahati, Guwahati, India
kvk@iitg.ac.in

Abstract. We investigate the syntactic complexity of a class of circular
semi-flower automata (CSFA) classified by their bpi(s) – branch point(s)
going in. In this work we obtain the syntactic complexity of CSFA with
at most two bpis. In particular, we show that the syntactic complexity of
the class of n-state CSFA with a unique bpi is linear. Further, for n ≥ 3,
we prove that the syntactic complexity of the class of n-state CSFA with
two bpis over a binary alphabet is 2n(n + 1).

Keywords: Syntactic complexity · Transition monoids
Semi-flower automata

1 Introduction

The syntactic complexity of a recognizable language is the cardinality of its
syntactic monoid. Further, the syntactic complexity of a class of recognizable
languages is the maximal syntactic complexity of languages in that class, taken
as a function of the state complexity of the languages. The syntactic complexity
of a class of automata is considered to be the syntactic complexity of the class
of languages accepted by the automata in that class.

Investigation on syntactic complexity of recognizable languages has received
more attention in recent years. While Brzozowski et al. have pioneering con-
tributions in obtaining syntactic complexity of various classes of recognizable
languages (cf. [4–8]), syntactic complexity has been a topic of interest for many
others (e.g., see [1,13,19,20]).

In [16], Maslov observed that nn is the tight upper bound on the size of the
transition monoid of n-state automata. Holzer and König [12] studied the unary
and binary recognizable languages. For instance, they showed that the syntactic
complexity of unary recognizable languages is linear. If the size of alphabet is at
least three, they proved that the syntactic complexity is reached to the maximal
size nn. It turns out that the most crucial case is to determine the syntactic
complexity of binary recognizable languages. Krawetz et al. [14], also studied
the unary and binary recognizable languages.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 312–323, 2018.
https://doi.org/10.1007/978-3-319-94812-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_26&domain=pdf

On Syntactic Complexity of Circular Semi-flower Automata 313

This paper investigates the syntactic complexity of certain classes of sub-
monoids accepted by circular semi-flower automata (in short, CSFA). We con-
sider CSFA classified by their bpi(s) – branch point(s) going in. Circular
automata have been studied in various contexts. The Černý conjecture has been
verified for synchronizing circular automata [9,17]. Semi-flower automata have
been introduced to study the finitely generated submonoids of a free monoid
[10,21]. Using semi-flower automata, the rank and intersection problem of cer-
tain submonoids of a free monoid have been investigated [11,22,24]. Semi-flower
automata with at most one bpi are exactly automata of Huffman codes, and
their synchronization properties were studied in [3]. Semi-flower automata have
also been studied in various contexts [18,23].

In the next section, we present various fundamental notions and state a num-
ber of facts that are required in this paper. In Sect. 3, we obtain some necessary
properties of CSFA and determine the syntactic complexity of the class of CSFA
with a unique bpi. The syntactic complexity of CSFA with two bpis is determined
in Sect. 4.

2 Preliminaries

This section provides necessary background material from [2,15,21]. Let P and
Q be nonempty finite sets. The cardinality of P is denoted by |P |. By P \ Q,
we mean the set of elements of P which are not in Q. Let α be an arbitrary
function on P . We use pα to denote the image of p ∈ P under α. The image
set of α is denoted by im(α). The rank of α, denoted by rank(α), is defined as
rank(α) = |im(α)|. A composition of functions on P is read from left to right: for
example, pαβ = (pα)β. The set of all functions on P forms a monoid under the
composition of functions. For n ∈ N, the function αn denotes the composition of
α with itself for n times. A function α is called an idempotent if α2 = α. In fact,
α is an idempotent if and only if its restriction to im(α) is the identity. The set of
all idempotents in a monoid M is denoted by E(M). Let P = {p1, p2, . . . , pm};
we say that α is circular permutation if there is an ordering, say pi1 , . . . , pim , of
elements in P such that pijα = pij+1 for 1 ≤ j < m, and pimα = pi1 .

An alphabet is a nonempty finite set, whose elements are called symbols.
The free monoid over an alphabet A is denoted by A∗. The elements of A∗ are
called words, and ε denotes empty word – the identity element of A∗. A language
is a subset of A∗. An automaton A is a quintuple (Q,A, δ, q0, F), where Q is a
nonempty finite set of states, A is an alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is a nonempty set of final states, and δ is a transition function δ : Q × A → Q.
The domain of δ can be extended from Q×A to Q×A∗. Let x ∈ A∗ and q ∈ Q;
we write qx instead of δ(q, x). Clearly, by denoting the states as vertices and
the transitions as labeled edges, an automaton can be represented by a digraph
in which the initial state and final states shall be distinguished appropriately.
A path in an automaton is a path in its digraph. For pi ∈ Q (0 ≤ i ≤ k) and
aj ∈ A (1 ≤ j ≤ k), let p0

a1−→ p1
a2−→ · · · pk−1

ak−→ pk be a path in A. The
word a1 · · · ak ∈ A∗ is called the label of the path. A null path is a path from

314 S. N. Singh and K. V. Krishna

a state to itself labeled by ε. A path that starts and ends at the same state is
called a cycle, if it is not a null path. A state q is called a branch point going
in (in short, bpi) if the indegree of q in the digraph of A is at least two. We
denote by BPI(A) the set of all bpis of A. A state q is accessible (respectively,
coaccessible) if there is a path from q0 to q (respectively, a path from q to a final
state). An automaton is called a semi-flower automaton (in short, SFA) if its
set of final states is {q0}, every state is accessible as well as coaccessible, and all
cycles in the automaton visit the initial-final state q0.

Let A be an automaton. A is called minimal if its each state is accessible
and the equivalence relation on Q given by p ≡ q if and only if ∀x ∈ A∗(px ∈
F ⇐⇒ qx ∈ F) is diagonal. The language accepted by A, denoted L(A), is
the set of words that are labels of paths from q0 to a final state. A language
L is recognizable if L = L(A) for some automaton A. The state complexity
of a recognizable language is the number of states in the minimal automaton
accepting the language. For x ∈ A∗, there is a function x : Q → Q defined as
qx = qx for all q ∈ Q. An automaton is called circular if there is a symbol which
induces a circular permutation on its state set. The set M(A) = {x | x ∈ A∗}
forms a monoid under the composition of functions, called the transition monoid
of A. Clearly, M(A) is generated by functions induced by the symbols of A, and
xy = x y for all x, y ∈ A∗.

The syntactic monoid of a language L is the quotient monoid A∗/∼L
, where

the congruence ∼L is given by u ∼L v if and only if ∀x, y ∈ A∗(xuy ∈ L ⇐⇒
xvy ∈ L). The syntactic complexity of a recognizable language is the size of its
syntactic monoid. Further, the syntactic complexity of a class of recognizable
languages is defined as the maximal syntactic complexity of languages in that
class, taken as a function of state complexity of these languages. It is known that
the syntactic complexity of a recognizable language is the same as the cardinality
of the transition monoid of the minimal automaton accepting the language. Thus,
in order to determine the syntactic complexity of a recognizable language, it is
convenient to consider the transition monoid of its minimal automaton.

The group of units of a finite monoid M is the subgroup of M containing
all invertible elements in M . Let G be a finite group with identity e and X a
nonempty finite set. An action of G on X is a function X × G → X denoted
(x, g) �→ xg such that (xg)g′ = x(gg′), and xe = x for all x ∈ X and g, g′ ∈ G.
Given an action of G on X, the orbit of an element x ∈ X, denoted as O(x), is
the equivalence class containing x of the equivalence relation ∼ on X defined as
y ∼ x if and only if y = xg for some g ∈ G. Note that the orbits partition X.
The stabilizer of an element x ∈ X is the subgroup Gx = {g ∈ G | xg = x} of

G. Clearly, |O(x)| =
|G|
|Gx| .

3 Circular Semi-flower Automata

In this section we prove certain properties of circular semi-flower automata (in
short, CSFA) which are useful in determining its syntactic complexity. We also

On Syntactic Complexity of Circular Semi-flower Automata 315

determine the syntactic complexity of the class of CSFA with a unique bpi. We
first recall the necessary results from [23].

Theorem 1. ([23]). Let A be an SFA.

(i) For a ∈ A, if a is a permutation, then a is a circular permutation.
(ii) For a, b ∈ A, if a and b are permutations, then a = b.
(iii) BPI(A) = ∅ if and only if |A| = 1.

Unless otherwise stated, in what follows, A denotes an n-state CSFA. In view
of Theorem 1, there is a unique circular permutation induced by symbols. For
the rest of paper, we fix the following regarding A. Assume that the symbol
a ∈ A induces the circular permutation a, and accordingly q0, q1, . . . , qn−1 is the
cyclic ordering of Q with respect to a.

Theorem 2. ([23]). If |BPI(A)| = k for some integer k ≥ 1, then

(i) q0 ∈ BPI(A), and
(ii) any non-permutation in M(A) has rank at most k.

Hence, if k = 1, then Qb = {q0} for all b ∈ A \ {a}.
We denote by G the cyclic subgroup of M(A) generated by a. Clearly, |G| =

n. Moreover, G is the group of units of M(A). For instance, for x ∈ A∗, let
x ∈ M(A) be a permutation. Then

x = a1a2 · · · am = a1a2 · · · am,

where x = a1a2 · · · am, ai ∈ A(1 ≤ i ≤ m). Since x is permutation, each ai is
a permutation. By Theorem1(ii), we get a = ai for all i (1 ≤ i ≤ m). Hence,
x = am so that x ∈ G.

Remark 1. For any two states p and q of A, there exists x ∈ G such that px = q.
Indeed, if p = qi and q = qj for some integers i, j (0 ≤ i ≤ j < n), then x = aj−i

will serve the purpose.

Proposition 1. A is a minimal automaton.

Proof. Since every state of A is accessible, it is sufficient to prove that the
relation ≡ on Q is diagonal. Let p and q be arbitrary states such that p ≡ q. By
Remark 1, there exists x ∈ G such that px = q0. Since p ≡ q, we get qx = q0.
Now

px = q0 = qx =⇒ px = qx =⇒ p = q (since x ∈ G).

Hence the relation ≡ is diagonal. �
Since the function M(A) × G → M(A), defined by the composition of func-

tions, is a group action, M(A) is the union of disjoint orbits. Thus, in view of
the following proposition, we focus on counting the number of disjoint orbits in
M(A) to determine the syntactic complexity of A.

316 S. N. Singh and K. V. Krishna

Lemma 1. |O(x)| = n for all x ∈ M(A).

Proof. Since |O(x)| = |G|
|Gx| for all x ∈ M(A) and |G| = n, it is sufficient to prove

that Gx = {ε}. Let y ∈ Gx be arbitrary. Then

x y = x =⇒ q(x y) = qx for all q ∈ Q =⇒ (qx)y = qx.

Let p ∈ Q be arbitrary. By Remark 1, there exists z ∈ G such that p = (qx)z.
Now

p = (qx)z =⇒ py = ((qx)z)y =⇒ py = ((qx)y)z (since y, z ∈ G)
=⇒ py = (qx)z (since (qx)y = qx) =⇒ py = p (since p = (qx)z).

Therefore y = ε, as required. �
We now determine the syntactic complexity of the class of n-state CSFA

with a unique bpi. By Theorem 1(iii), we have |A| ≥ 2. If n = 1, then all the
functions induced by symbols are constant and equal, and therefore its syntactic
complexity is n = 1. For n ≥ 2, we find its syntactic complexity in the following
theorem.

Theorem 3. For n ≥ 2, the syntactic complexity of the class of n-state CSFA
with a unique bpi is 2n.

Proof. Let A be an n-state CSFA with a unique bpi. By Theorem2, we have
Qb = {q0} for all b ∈ A \ {a}. Then b = c for all b, c ∈ A \ {a}. Let b ∈ A \ {a}
be arbitrary. Notice that O(b) = {bai | 0 ≤ i < n}.

We claim that O(b) = M(A)\G. Clearly O(b) ⊆ M(A)\G. Let x ∈ M(A)\G
be arbitrary. By Theorem2(ii), we get Qx = {qk} for some k (0 ≤ k < n). Also
Qbak = {qk}. Therefore x = bak ∈ O(b).

Thus, there are exactly two distinct orbits O(a) = G and O(b) = M(A) \ G.
By Lemma 1, we get |M(A)| = 2n. Since A is arbitrary, the syntactic complexity
of the class of n-state CSFA with a unique bpi is 2n. �

4 CSFA with Two Bpis

In this section we determine the syntactic complexity of the class of n-state CSFA
with two bpis over a binary alphabet. If n = 2, then its syntactic complexity is
n = 2. For n ≥ 3, we prove the following main theorem.

Theorem 4. For n ≥ 3, the syntactic complexity of the class of n-state CSFA
with two bpis over a binary alphabet is 2n(n + 1).

We fix the following notation for the rest of this section. For n ≥ 3, let A
be an n-state CSFA with two bpis over the alphabet A = {a, b}. As earlier, a
is the circular permutation. Notice that Qb = BPI(A) for non-permutation b.
By Theorem 2(i), the state q0 is a bpi. Let qm (1 ≤ m < n) be the other bpi of
A, and so Qb = BPI(A) = {q0, qm}. We now establish some results for proving
Theorem 4 in the following subsections.

On Syntactic Complexity of Circular Semi-flower Automata 317

4.1 Idempotents in M(A)

In this subsection we obtain idempotents in M(A) which will be useful to give
a representation of functions in M(A). In view of Theorem2(ii), notice that
rank(x) ∈ {1, 2, n} for all x ∈ M(A). The identity is only function of rank n
in E(M(A)). Each function of rank one is in E(M(A)), provided that it exists.
We now estimate the functions of rank two in E(M(A)). For that we prove the
following results.

Remark 2. If x ∈ E(M(A)), then aixan−i ∈ E(M(A)) for all integer i (1 ≤ i ≤
n). For instance, (aixan−i)2 = (aixan−i)(aixan−i) = aix2an−i = aixan−i.

Proposition 2. If n,m, t are nonnegative integers such that t < m < n, then
there exists a positive integer k such that m ≤ t + k(n − m) < n.

Proof. Since n−m > 0, there exists an increasing sequence {t+i(n−m)}i=1,2,....
Let k be the least integer such that m ≤ t+k(n−m). We show that t+k(n−m) <
n. Since k is the least integer, it follows that

t + (k − 1)(n − m) < m =⇒ t + (k − 1)n − km < 0
=⇒ t + (k − 1)n − km + n < n =⇒ t + k(n − m) < n.

Hence m ≤ t + k(n − m) < n. �
Lemma 2. There exists an integer r (1 ≤ r < n) such that arb is an idempotent
of rank two in M(A).

Proof. Note that qmb = q0 and Qaib = {q0, qm} for i ∈ N. Since qm ∈ BPI(A),
we get some integer j (0 ≤ j < m) such that qjb = qm. Let t (0 ≤ t < m) be the
least integer such that qtb = qm. Then q0atb = qm, and so

qman−m+tb = (qman−m)atb = q0atb = qm.

If q0an−m+tb = q0, then choose integer r = n − m + t which will serve the
purpose. Otherwise q0an−m+tb = qm. Then

qma2(n−m)+tb = (qman−m)a(n−m)+tb = q0a(n−m)+tb = qm.

If q0a2(n−m)+tb = q0, then choose integer r = 2(n − m) + t which will serve
the purpose. Otherwise q0a2(n−m)+tb = qm. Then

qma3(n−m)+tb = (qman−m)a2(n−m)+tb = q0a2(n−m)+tb = qm.

As long as we continue this process, we get qmai(n−m)+tb = qm at each ith

step. By Proposition 2, there exists an integer k such that m ≤ k(n−m)+ t < n.
If above process terminates before kth step, then we are through. Otherwise
qmak(n−m)+tb = qm at the kth step.

Since m ≤ k(n − m) + t < n, we have q0ak(n−m)+tb = q0. Therefore, choose
r = k(n − m) + t, and consequently arb is an idempotent of rank two in M(A).

�

318 S. N. Singh and K. V. Krishna

Notation 5. We denote by κ the integer k(n − m) + t obtained in Lemma 2.

Lemma 3. (i) If q0b = qm, then b2 is an idempotent of rank two in M(A).
(ii) If q0b = q0, then there exists an integer t (1 ≤ t < m) such that (atb)2 is an

idempotent of rank two in M(A).

Proof. Note that qmb = q0.

(i) Given q0b = qm. Consider Qb2 = (Qb)b = {q0, qm}b = {q0, qm}. Also
q0b2 = (q0b)b = qmb = q0, and qmb2 = (qmb)b = q0b = qm. Hence b2 is
an idempotent of rank two in M(A).

(ii) Since qm is a bpi, there exists an integer j (1 ≤ j < m) such that qjb = qm.
Let t be the least integer such that qtb = qm. Then q0atb = (q0at)b = qtb =
qm. We claim that qmatb = q0.

On the contrary, let us assume that qmatb = qm. Then there is cycle from
qm to qm labeled by the word atb. Since A is SFA, the cycle labeled by the
word atb should pass through q0. Now q0b = q0, there exist integers t1 and
t2 (1 ≤ t1, t2 < t) with t1 + t2 = t such that qmat1 = q0 and q0at2b = qm.
But q0at2b = qt2b = qm. This contradicts the choice of t, as t2 < t. Therefore
qmatb = q0. Now note that

Q(atb)2 = (Qatb)atb = {q0, qm}atb = {q0, qm}.

Also q0(atb)2 = (q0atb)atb = qmatb = q0, and qm(atb)2 = (qmatb)atb = q0atb =
qm. Hence (atb)2 is an idempotent of rank two in M(A). �
Notation 6. We denote by τ the least integer obtained in Lemma 3(ii). That
is, if q0b = q0 and τ (1 ≤ τ < m) is the least integer such that qτ b = qm, then
(aτ b)2 is an idempotent of rank two in M(A).

In view of Remark 2, we obtain the following corollary of Lemmas 2 and 3.

Corollary 1. For each integer i (1 ≤ i ≤ n), the following are idempotents of
rank two in M(A).

(i) ai(aκb)an−i

(ii) If q0b = qm, then aib2an−i.
(iii) If q0b = q0, then ai(aτ b)2an−i.

Definition 1. We call the following list of 2(n+1) idempotents in M(A), if they
exist, as the basic idempotents. We denote by B the set of all basic idempotents.

(i) The identity function ε.
(ii) The constant function whose image set is {q0}, denoted by ν.
(iii) For each integer i (1 ≤ i ≤ n), the idempotent ai(aκb)an−i.
(iv) For each integer i (1 ≤ i ≤ n), if q0b �= q0, then the idempotent aib2an−i;

else, the idempotent ai(aτ b)2an−i.

On Syntactic Complexity of Circular Semi-flower Automata 319

Remark 3. |B| ≤ 2(n + 1). �������	
������q0

a

��
��

��
��

��
�

b

��

�������	q3

a

�����������

b
��

�������	q1

a
����
��
��
��
�

b���������	q2

a

�����������

b

		

The following example shows that the cardinal-
ity of B is not necessarily 2(n + 1).

Example 1. Consider the 4-state CSFA A over the
binary alphabet A = {a, b} given in the righthand
side. Here BPI(A) = {q0, q2}. We observe that the
transition monoid M(A) does not contain any con-
stant functions. Hence |B| < 10 (=2(4+1)).

4.2 Functions of Rank Two in M(A)

In this subsection we obtain a representation of functions of rank two in M(A).
We recall the definition of the complement of a function of rank two from [14].

Definition 2. Let X be a nonempty finite set and α : X → X a function such
that Xα = {i, j}. The complement of α is the function α# : X → X defined by,
for k ∈ X,

kα# =

{
i if kα = j;
j if kα = i.

The following lemma is useful in the sequel.

Lemma 4. (i) If q0b = qm, then b
#

= b2.
(ii) If q0b = q0, then b

#
= baτ b.

Proof. Recall that qmb = q0 and Qb = {q0, qm}. Let q ∈ Q be arbitrary. Then
either qb = q0 or qb = qm.

(i) Given q0b = qm. If qb = q0, then qb2 = (qb)b = q0b = qm. Otherwise qb = qm.
Then qb2 = (qb)b = qmb = q0. Hence b

#
= b2.

(ii) Given q0b = q0. If qb = q0, then qbaτ b = (qb)aτ b = q0aτ b = qm. Otherwise
qb = qm. Then qbaτ b = (qb)aτ b = qmaτ b = q0. Hence b

#
= baτ b.

�
Theorem 7. Every function of rank two in M(A) has one of the following
forms. For i, j ∈ {1, . . . , n},
(β) aibaj

(γ) aib2aj

(δ) aibaτ baj

Proof. Let w ∈ M(A) be an arbitrary function of rank two. Then

w = ai1bai2b . . . baik−1baik ,

where it ≥ 0 (t ∈ {1, . . . , k}). Write w = ai1bubaik , where u = ai2b . . . baik−1 .
Notice that bub has rank two with its image set {q0, qm}. We consider the fol-
lowing two possibilities separately.

320 S. N. Singh and K. V. Krishna

Case (bub = b). Then w = ai1bubaik = ai1baik , which is of the form (β).
Case (bub �= b). We first show that bub = b

#
. Since bub �= b, there exists p ∈ Q

such that pbub �= pb. We proceed by considering the following two subcases.
Subcase (pb = q0). Since pbub �= pb, we have pbub = qm. This gives (pb)ub =

qm =⇒ q0ub = qm. Now rank(bub) = 2, it follows that qmub = q0.
Let q ∈ Q be arbitrary. Then either qb = q0 or qb = qm. If qb = q0, then
qbub = (qb)ub = q0ub = qm. Otherwise qb = qm. Then qbub = (qb)ub =
qmub = q0. Hence bub = b

#
.

Subcase (pb = qm). Since pbub �= pb, we have pbub = q0. This gives (pb)ub =
q0 =⇒ qmub = q0. Now rank(bub) = 2, it follows that q0ub = qm.
Let q ∈ Q be arbitrary. Then either qb = q0 or qb = qm. If qb = q0, then
qbub = (qb)ub = q0ub = qm. Otherwise qb = qm. Then qbub = (qb)ub =
qmub = q0. Hence bub = b

#
.

Now we know that either q0b = qm or q0b = q0. If q0b = qm, then by Lemma 4(i),
we have b

#
= b2 and therefore w = ai1bubaik = ai1b2aik , which is of the form

(γ). If q0b = q0, then by Lemma 4(ii), we have b
#

= baτ b and therefore w =
ai1bubaik = ai1baτ baik , which is of the form (δ). �

4.3 Representation of M(A)

In this subsection we give a canonical representation of the elements in M(A)
in terms of basic idempotents and permutations.

Theorem 8. Every element in M(A) can be written as a composition of a basic
idempotent and a permutation, i.e.,

M(A) = BG =
{
e g

∣∣ e ∈ B and g ∈ G
}
.

Proof. By Theorem 2(ii), we have rank(x) ∈ {1, 2, n} for all x ∈ M(A).

Case (rank(x) = 1). Then Qx = {qk} for some integer k (0 ≤ k ≤ n− 1). Also
Qνak = (Qν)ak = {q0}ak = {qk}. Hence x = νak ∈ BG.

Case (rank(x) = n). Then x ∈ G, and so x = ε x ∈ BG.
Case (rank(x) = 2). By Theorem 7, either x = aibaj or x = aib2aj or x =

aibaτ baj for some integers i, j ∈ {1, . . . , n}. In this case, we find the required
in the following three subcases.

Subcase (x = aibaj). Then x can be written as x = ai−κ(aκb)aj =
ai−κ(aκb)an−(i−κ) aj+(i−κ) = ai′(aκb)an−i′ aj′ ∈ BG, where i′ and j′

are, respectively, residues of (i − κ) and (j + i − κ) mod n.
Subcase (x = aib2aj). Then x can be written as x = aib2an−i aj−(n−i) =

aib2an−i aj′ ∈ BG, where j′ is residue of (j + i − n) mod n.
Subcase (x = aibaτ baj). Then x can be written as x = ai−τ (aτ b)2aj =

ai−τ (aτ b)2an−(i−τ) aj−n+(i−τ) = ai′(aτ b)2an−i′ aj′ ∈ BG, where i′ and
j′ are, respectively, residues of (i − τ) and (j + i − τ − n) mod n.

Thus, in all cases, each function in M(A) can be written as a composition of a
basic idempotent and a permutation, and consequently M(A) = BG. �

On Syntactic Complexity of Circular Semi-flower Automata 321

4.4 An Example

For n ≥ 3, let us consider the n-state CSFA A = (Q, {a, b}, δ, 1, {1}), where
Q = {1, 2, 3, . . . , n} and δ is given in the following transition table.

δ 1 2 3 · · · n − 1 n
a 2 3 4 · · · n 1
b 2 1 1 · · · 1 1

Clearly BPI(A) = {1, 2} and the functions a and b, written in two-row notation,
are as follows.

a =
(

1 2 3 · · · n − 1 n
2 3 4 · · · n 1

)
, b =

(
1 2 3 · · · n − 1 n
2 1 1 · · · 1 1

)
.

Note that bab = ν and arb �= b for any integer r (1 ≤ r < n). Further, we observe
κ = n − 1, and the following distinct functions are idempotents of rank two.

b2 =
(

1 2 3 · · · n − 1 n
1 2 2 · · · 2 2

)
, aκb =

(
1 2 3 · · · n − 1 n
1 2 1 · · · 1 1

)
.

By Remark 2, for any integer i (1 ≤ i ≤ n), the functions aib2an−i and
ai(aκb)an−i are basic idempotents of rank two in M(A). For integer r (1 ≤
r < n), notice that arb2 �= b2 and arb2 �= aκb, where

arb2 =
(

1 2 · · · n − r n − r + 1 n − r + 2 · · · n − 1 n
2 2 · · · 2 1 2 · · · 2 2

)
.

We now claim that the orbits of any two basic idempotents of rank two are
disjoint. We prove our claim in three cases.
Case-1. Suppose that O(aib2an−i) ∩ O(ajb2an−j) �= ∅ for some integers i, j
(1 ≤ j < i ≤ n). Then

ajb2an−j at = aib2an−i =⇒ b2ai−j+t = ai−jb2

for some integer t (1 ≤ t ≤ n). If i− j + t �= 0(mod n), then Qb2ai−j+t �= {1, 2}.
This is a contradiction since Qai−jb2 = {1, 2}. Otherwise i − j + t = 0(mod n).
Recall that arb2 �= b2 for any integer r (1 ≤ r < n). It follows that ai−jb2 �= b2,
a contradiction. Hence O(aib2an−i) ∩ O(ajb2an−j) = ∅ for i, j (1 ≤ j < i ≤ n).
Case-2. Suppose that O(ai(aκb)an−i) ∩ O(aj(aκb)an−j) �= ∅ for some integers
i, j (1 ≤ j < i ≤ n). Then

aj(aκb)an−j at = ai(aκb)an−i =⇒ (aκb)ai−j+t = ai−j(aκb)

for some integer t (1 ≤ t ≤ n). If i − j + t �= 0(mod n), then Q(aκb)ai−j+t �=
{1, 2}, which is a contradiction since Qai−j(aκb) = {1, 2}. Otherwise i − j +
t = 0(mod n). Note that arb �= b for any integer r (1 ≤ r < n). This gives

322 S. N. Singh and K. V. Krishna

ai−j(aκb) �= (aκb), a contradiction. Hence O(ai(aκb)an−i)∩O(aj(aκb)an−j) = ∅

for i, j (1 ≤ j < i ≤ n).
Case-3. Suppose that O(aib2an−i) ∩ O(aj(aκb)an−j) �= ∅ for some integers i, j
(1 ≤ j < i ≤ n). Then

aj(aκb)an−j at = aib2an−i =⇒ (aκb)ai−j+t = ai−jb2

for some integer t (1 ≤ t ≤ n). If i − j + t �= 0(mod n), then Q(aκb)ai−j+t �=
{1, 2}, which gives a contradiction since Qai−jb2 = {1, 2}. Otherwise i − j + t =
0(mod n). Since aκb �= arb2 for any integer r (1 ≤ r < n), aκb �= ai−jb2, a
contradiction. Hence, for i, j (1 ≤ j < i ≤ n), O(aib2an−i)∩O(aj(aκb)an−j) = ∅.

Thus, the orbits of basic idempotents of rank two are disjoint. Therefore the
basic idempotents of rank two are distinct, and consequently |B| = 2(n + 1).
Hence the syntactic complexity of A is |M(A)| = |BG| = 2n(n + 1).

4.5 Proof of Theorem8

We now summarize the proof of the main result in the following: We know that

M(A) =
⋃

x∈M(A)

O(x) =
⋃

x∈BG

O(x) by using Theorem 8

=
⋃

x∈B

O(x).

Therefore, by Lemma 1 and Remark 3,

|M(A)| ≤ |B||O(x)| ≤ 2n(n + 1).

Thus, the sizes of syntactic monoids of the languages accepted by n-state CSFA
with two bpis are bounded by 2n(n + 1). Since the syntactic monoid size of the
n-state CSFA that is presented in Subsect. 4.4 is exactly 2n(n+1), the syntactic
complexity of the class of n-state CSFA with two bpis is 2n(n + 1).

References

1. Beaudry, M., Holzer, M.: On the size of inverse semigroups given by generators.
Theor. Comput. Sci. 412(8–10), 765–772 (2011)

2. Berstel, J., Perrin, D.: Theory of Codes. Pure and Applied Mathematics, vol. 117.
Academic Press Inc., Orlando (1985)

3. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes.
Theor. Comput. Sci. 410(38–40), 3925–3941 (2009)

4. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 11

5. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular languages. Theor. Comput. Sci. 449, 37–53 (2012)

https://doi.org/10.1007/978-3-642-22321-1_11

On Syntactic Complexity of Circular Semi-flower Automata 323

6. Brzozowski, J., Li, B., Liu, D.: Syntactic complexities of six classes of star-free
languages. J. Autom. Lang. Comb. 17(2–4), 83–105 (2012)

7. Brzozowski, J., Li, B.: Syntactic complexity of R- and J-trivial regular languages.
Int. J. Found. Comput. Sci. 25(7), 807–821 (2014)

8. Brzozowski, J., Szykula, M., Ye, Y.: Syntactic complexity of regular ideals (2015).
http://arxiv.org/abs/1509.06032

9. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform.
Théor. Appl. 32(1–3), 21–34 (1998)

10. Giambruno, L.: Automata-theoretic methods in free monoids and free groups.
Ph.D. thesis, Università degli Studi di Palermo, Palermo, Italy (2007)

11. Giambruno, L., Restivo, A.: An automata-theoretic approach to the study of the
intersection of two submonoids of a free monoid. Theor. Inform. Appl. 42(3), 503–
524 (2008)

12. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theor. Comput. Sci. 327(3), 319–347 (2004)

13. Iván, S., Nagy-György, J.: On nonpermutational transformation semigroups with
an application to syntactic complexity. Acta Cybernet. 22(3), 687–701 (2016)

14. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of trans-
formations of a finite set. Int. J. Found. Comput. Sci. 16(3), 547–563 (2005)

15. Lawson, M.V.: Finite Automata. Chapman & Hall/CRC, Boca Raton (2004)
16. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.

Nauk SSSR 194, 1266–1268 (1970)
17. Pin, J.E.: Sur un cas particulier de la conjecture de Černý. In: Ausiello, G., Böhm,

C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978).
https://doi.org/10.1007/3-540-08860-1 25

18. Pribavkina, E.V.: Slowly synchronizing automata with zero and noncomplete sets.
Math. Notes 90, 411–417 (2011)

19. Rigo, M., Vandomme, É.: Syntactic complexity of ultimately periodic sets of inte-
gers. In: LATA, pp. 477–488 (2011)

20. Lacroix, A., Rampersad, N., Rigo, M., Vandomme, É.: Syntactic complexity of ulti-
mately periodic sets of integers and application to a decision procedure. Fundam.
Inform. 116(1–4), 175–187 (2012)

21. Singh, S.N.: Semi-flower automata. Ph.D. thesis, IIT Guwahati, India (2012)
22. Singh, S.N., Krishna, K.V.: The rank and Hanna Neumann property of some sub-

monoids of a free monoid. Ann. Math. Inform. 40, 113–123 (2012)
23. Singh, S.N., Krishna, K.V.: The holonomy decomposition of some circular semi-

flower automata. Acta Cybernet. 22, 791–805 (2016)
24. Singh, S.N., Krishna, K.V.: A sufficient condition for the Hanna Neumann property

of submonoids of a free monoid. Semigroup Forum 86(3), 537–554 (2013)

http://arxiv.org/abs/1509.06032
https://doi.org/10.1007/3-540-08860-1_25

Complexity of Proper Suffix-Convex
Regular Languages

Corwin Sinnamon(B)

David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada

sinncore@gmail.com

Abstract. A language L is suffix-convex if for any words u, v, w, when-
ever w and uvw are in L, vw is in L as well. Suffix-convex languages
include left ideals, suffix-closed languages, and suffix-free languages,
which were studied previously. In this paper, we concentrate on suffix-
convex languages that do not belong to any one of these classes; we
call such languages proper. In order to study this language class, we
define a structure called a suffix-convex triple system that characterizes
the automata recognizing suffix-convex languages. We find tight upper
bounds for reversal, star, product, and boolean operations of proper
suffix-convex languages, and we conjecture on the size of the largest syn-
tactic semigroup. We also prove that three witness streams are required
to meet all these bounds.

Keywords: Atom · Most complex · Suffix-convex · Proper
Quotient complexity · Regular language · State complexity
Syntactic semigroup

1 Introduction

Suffix-Convex Languages: Convex languages were introduced in 1973 by
Thierrin [18], and revisited in 2009 by Ang and Brzozowski [1]. Convexity can
be defined with respect to several binary relations on words, but in this paper
we concentrate only on suffix-convex regular languages. If a word w ∈ Σ∗ can be
written as w = xy for x, y ∈ Σ∗, then y is a suffix of w. A language L is suffix-
convex if whenever w and uvw are in L, then vw is also in L, for all u, v, w ∈ Σ∗.
The class of suffix-convex languages includes three well-known subclasses: left
ideals, suffix-closed languages, and suffix-free languages.

A language L over an alphabet Σ is a left ideal if it is non-empty and L =
Σ∗L. In other words, if L contains a word w ∈ Σ∗, then it also contains every
word in Σ∗ that has w as a suffix. Left ideals play a role in pattern matching: If

This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871, NSERC Discovery grant No. 8237-2012, and the
Canada Research Chairs Program.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 324–338, 2018.
https://doi.org/10.1007/978-3-319-94812-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94812-6_27&domain=pdf

Complexity of Proper Suffix-Convex Languages 325

one is searching for all words ending with words in some language L in a given
text, then one is looking for words in Σ∗L. Left ideals also constitute a basic
concept in semigroup theory.

A language L is suffix-closed if every suffix of every word in L is also in L.
The complement of every suffix-closed language (other than Σ∗) is a left ideal.

A language is suffix-free if no word in the language is a suffix of another word
in the language. Suffix-free languages are suffix codes (with the exception of {ε},
where ε is the empty word). They play an important role in coding theory and
have been studied extensively; see [2] for example.

Contributions: In this paper, we focus on the remaining suffix-languages that
do not fall into any of these subclasses; we call these languages proper. These
languages are wide-ranging in structure and appearance, and difficult to reason
about using conventional methods. In order to approach the complexity proper-
ties of proper languages, we develop a theory of suffix-convex regular languages
based on a new object we call a suffix-convex triple system. We use this the-
ory to discover and prove tight upper bounds for reversal, star, product, and
boolean operations of proper languages. We describe a proper language that we
conjecture to have the largest possible syntactic semigroup. Finally, we prove
that three different language streams are required to meet all of these bounds.

Omitted proofs can be found in [17].

2 Background

Quotient/State Complexity: If L is a language over an alphabet Σ∗, such
that every letter of Σ appears in a word of L, then the (left) quotient of L by
a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and only if
the set of distinct quotients is finite. For this reason the number of quotients of
L is a natural measure of complexity for L; this number is called the quotient
complexity [3] of L. A equivalent concept is the state complexity [19] of L, which
is the number of states in a complete minimal deterministic finite automaton
(DFA) over alphabet Σ recognizing L. We refer to quotient/state complexity
simply as complexity and we denote it by κ(L).

If ◦ is a unary operation on languages, then the quotient/state complexity of
◦ is the maximal value of κ(L◦

n), expressed as a function of n, as Ln ranges over all
regular languages of complexity n or less. Similarly, if ◦ is a binary operation on
languages, then the quotient/state complexity of ◦ is the maximal value of κ(L′

m◦
Ln), expressed as a function of m and n, as L′

m and Ln range over all regular
languages of complexity m and n, respectively. We assume in this paper that
L′
m and Ln are over a common alphabet Σ, however the unrestricted complexity

of binary operations, where the two languages may use different alphabets, has
recently been studied as well [5,10]. The complexity of an operation gives a
worst-case bound on the time and space complexity of the operation, and it has
been studied extensively (see [3,4,11,12,19]).

Witness Streams: To find the complexity of a unary operation one proves
an upper bound on this complexity and then exhibits languages that meet this

326 C. Sinnamon

bound. Since a bound is given as a function of n, we require a sequence of lan-
guages (Lk, Lk+1, . . .) called a language stream; here k is usually a small integer
because the bound may not hold for a few small values of n. Usually the languages
in a stream have the same basic structure and differ only in the parameter n.
For example, ((an)∗ | n � 2) is a stream. Two streams are required for a binary
operation. Sometimes the same stream can be used for both arguments, however
this is not the case in general.

Dialects: It has been shown in [4] that for all common binary operations on
regular languages the second stream can be a “dialect” of the first. Let Σ =
{a1, . . . , ak} be an alphabet ordered as shown; if L ⊆ Σ∗, we denote it by
L(a1, . . . , ak). A dialect of L is obtained by changing or deleting letters of Σ in
the words of L. More precisely, if Σ′ is an alphabet, a dialect of L(a1, . . . , ak) is
obtained from an injective partial map π : Σ �→ Σ′ by replacing each letter a ∈ Σ
by π(a) in every word of L, or deleting the word entirely if π(a) is undefined.
We write L(π(a1), . . . , π(ak)) to denote the dialect of L(a1, . . . , ak) given by π,
and we denote undefined values of π by “−”. Undefined values for letters at the
end of the alphabet are omitted; for example, L(a, c,−,−) is written as L(a, c).

Automata: A deterministic finite automaton (DFA) is a quintuple D =
(Q,Σ, δ, q0, F), where Q is a finite non-empty set of states, Σ is a finite non-
empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the ini-
tial state, and F ⊆ Q is the set of final states. We extend δ to a function
δ : Q × Σ∗ → Q as usual. A DFA D accepts a word w ∈ Σ∗ if and only if
δ(q0, w) ∈ F . The language of all words accepted by D is denoted L(D). If q
is a state of D, then the language of q is the language accepted by the DFA
(Q,Σ, δ, q, F). The language of q is a quotient of L(D), and we often denote it
Kq. A state is empty or a sink state if its language is empty. Two states p and
q of D are equivalent if Kp = Kq; otherwise they are distinguishable. A state q
is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal
if all of its states are reachable and no two states are equivalent. Usually DFAs
are used to establish upper bounds on the complexity of operations and also as
witnesses that meet these bounds. For convenience, say that a DFA is (proper)
suffix-convex if the language it accepts is (proper) suffix-convex.

A nondeterministic finite automaton (NFA) is a quintuple D =
(Q,Σ, δ, I, F), where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q

is the transition function, and I ⊆ Q is the set of initial states. An ε-NFA is an
NFA in which transitions under the empty word ε are also permitted.

Transformations: Without loss of generality we take Qn = {0, . . . , n−1} to be
the states set of every DFA with n states. A transformation of Qn is a function
t : Qn → Qn. We treat a transformation t as an operator acting on Qn from the
right, so that qt denotes the image of q ∈ Qn under t. If s, t are transformations of
Qn, their composition is denoted by s◦ t, or more commonly just st, and defined
by q(st) = (qs)t. In any DFA, each letter a ∈ Σ induces a transformation δa of
the set Qn defined by qδa = δ(q, a). By a slight abuse of notation, we use the
letter a to denote the transformation it induces; thus we write qa instead of qδa.

Complexity of Proper Suffix-Convex Languages 327

We also extend the notation to sets of states: if P ⊆ Qn, then Pa = {pa | p ∈ P}.
Alternatively, we write P

a−→ P ′ to indicate that the image of P under a is P ′.
For k � 2, a transformation t of a set P = {q0, q1, . . . , qk−1} ⊆ Qn is called

a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0, and we denote
such a cycle by (q0, q1, . . . , qk−1). A 2-cycle (q0, q1) is called a transposition. A
transformation is a called a permutation if it is bijective, or equivalently, if it can
be written as a composition of cycles. A transformation that sends all the states
of P to q and acts as the identity on the remaining states is denoted by (P → q).
If P = {p} we write p → q for ({p} → q). The identity transformation is denoted
by 1. The notation (ji q → q + 1) denotes a transformation that sends q to q + 1
for i � q � j and acts as the identity for the remaining states. The notation
(ji q → q − 1) is defined similarly. Using composition, the notation introduced
here lets us succinctly describe many different transformations.

Semigroups: Let D = (Qn, Σ, δ, q0, F) be a DFA. For each word w ∈ Σ∗, the
transition function induces a transformation δw of Qn by w: for all q ∈ Qn,
qδw = δ(q, w). The set TD of all such transformations by non-empty words
forms a semigroup of transformations called the transition semigroup of D [16].
Conversely, we may define δ by describing δa for each a ∈ Σ. We write a : t,
where t is a transformation of Q, to mean that the transformation δa induced
by a is t.

The Myhill congruence [15] ≈L of a language L ⊆ Σ∗ is defined on Σ+ as
follows: For x, y ∈ Σ+, x≈Ly if and only if wxz ∈ L ⇐⇒ wyz ∈ L for all
w, z ∈ Σ∗. This relation is also known as the syntactic congruence of L. The
quotient set Σ+/≈L of equivalence classes of the relation ≈L is a semigroup
called the syntactic semigroup of L. If D is a minimal DFA for L, then TD is
isomorphic to the syntactic semigroup TL of L [16], and we represent elements
of TL by transformations in TD. The syntactic complexity of a language is the
size of its syntactic semigroup [4,9,13].

Atoms: Atoms are defined by the congruence in which two words x and y are
equivalent if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. In other words,
x and y are equivalent if x ∈ u−1L if and only if y ∈ u−1L. An equivalence
class of this congruence is called an atom of L [8]. Thus, an atom is a non-empty
intersection of complemented and uncomplemented quotients of L, written AS =⋂

i∈S Ki ∩ ⋂
i�∈S Ki for S ⊆ Qn, where K0,K1, . . . ,Kn−1 are the quotients of

L. The number of atoms and the complexities of the atoms were suggested as
measures of complexity of regular languages [4]. For more information about
atoms and their complexity, see [7,8,14].

3 Suffix-Convex Triple Systems

Suffix-convex languages are difficult to reason about through the common repre-
sentations of regular languages. To alleviate this, we introduce a structure called
a suffix-convex triple system (or just “triple system”). A triple system is a set of
3-tuples of states in Qn that satisfy some structural conditions. For every triple

328 C. Sinnamon

system, there is a nonempty family of DFAs on the state set Qn that are said to
respect the system. Triple systems have the following properties:

1. Every DFA that respects any triple system is suffix-convex.
2. For every suffix-convex DFA, there is at least one triple system that it

respects.
3. For any triple system, among the transition semigroups of DFAs that respect

the system, there is a unique maximal semigroup that contains all others.

Through properties 1 and 2, triple systems effectively characterize suffix-convex
regular languages. However, as suggested by 2, the correspondence between
triple systems and suffix-convex DFAs is not a bijection; most suffix-convex
DFAs respect a number of different triple systems, and most triple systems are
respected by many different DFAs. Property 3 helps to identify DFAs of suffix-
convex languages whose transition semigroups are particularly complex, which is
useful both for discovering and reasoning about complex suffix-convex languages.

The inspiration for the triple system framework lies in the following reformu-
lation of the definition of suffix-convexity. A regular language L is suffix-convex
if and only if, for all u, v, w ∈ Σ∗,

w−1L ∩ (uvw)−1L ⊆ (vw)−1L.

This statement is more usefully expressed in terms of the states of a DFA. Let
D = (Qn, Σ, δ, 0, F) be a DFA, and let Kq denote the language accepted by
(Qn, Σ, δ, q, F). Setting p = 0w, q = 0uvw, and r = 0vw, the statement above
becomes Kp ∩ Kq ⊆ Kr. This relationship between quotients satisfies some nice
properties: If p, q, r, s ∈ Qn, then

– Kp ∩ Kq ⊆ Kp,
– Kp ∩ Kq ⊆ Kr ⇐⇒ Kq ∩ Kp ⊆ Kr,
– Kp ∩ Kq ⊆ Kr and Kq ∩ Kr ⊆ Ks =⇒ Kp ∩ Kq ⊆ Ks, and
– Kp ∩ Kq ⊆ Kr and p, q ∈ F =⇒ r ∈ F .

All four properties are trivial to prove, yet it turns out that they capture the
essential character of suffix-convex DFAs. We can now make a formal definition,
in which these four properties appear in a more abstract way.

Definition 1. A suffix-convex triple system is a tuple S = (Q, q0, F,R), where
q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and R ⊆ Q × Q × Q
is a relation such that, for all p, q, r, s ∈ Q,

(A) (p, q, p) ∈ R,
(B) (p, q, r) ∈ R ⇐⇒ (q, p, r) ∈ R,
(C) (p, q, r) ∈ R and (q, r, s) ∈ R =⇒ (p, q, s) ∈ R, and
(D) (p, q, r) ∈ R and p, q ∈ F =⇒ r ∈ F .

Definition 2. A DFA D = (Q,Σ, δ, q0, F) is said to respect a triple system
S = (Q, q0, F,R) if, for all transformations t ∈ TD and states p, q, r ∈ Q, it
satisfies both

Complexity of Proper Suffix-Convex Languages 329

Condition 1: (p, q, r) ∈ R =⇒ (pt, qt, rt) ∈ R.
Condition 2: (q0, q, r) ∈ R =⇒ (q0, qt, rt) ∈ R.

Also say a transformation t : Q → Q respects S if it satisfies Conditions 1 and
2 for S.

We frequently refer back to these definitions. Henceforth, let (A), (B), (C),
(D), Condition 1, and Condition 2 denote the properties in these two definitions.

Notice that if a DFA D respects a triple system S, then they must have the
same state set, initial state, and final states. As shorthand, we sometimes refer to
a triple system S = (Q, q0, F,R) only by R when the other parameters are clear
from context. In particular, it suffices to say that a DFA D = (Q,Σ, δ, q0, F)
respects R, since the other pieces of the triple system must be Q, q0, and F .
In all future DFAs and triple systems, we use Qn as the state set and 0 as the
initial state.

Although the motivation for the triples in R are those satisfying Kp ∩ Kq ⊆
Kr in some DFA that respects the system, it is not generally the case that
(p, q, r) ∈ R ⇐⇒ Kp ∩ Kq ⊆ Kr. We can only guarantee that (p, q, r) ∈ R =⇒
Kp ∩ Kq ⊆ Kr; the proof of this is an easy exercise using (D) and Condition 1.
Let us now prove the essential properties of triple systems that we mentioned at
the beginning of this section.

Proposition 1. If a DFA D = (Qn, Σ, δ, 0, F) respects a triple system R then
D is suffix-convex.

Proof. Let u, v, w ∈ Σ∗ such that w, uvw ∈ L(D). To prove suffix-convexity, we
show that vw ∈ L(D). Observe the following:

– (0, 0u, 0) ∈ R by (A),
– (0, 0uv, 0v) ∈ R by Condition 2,
– (0w, 0uvw, 0vw) ∈ R by Condition 1,
– 0w, 0uvw ∈ F since w, uvw ∈ L(D),
– 0vw ∈ F by (D).

Hence vw ∈ L(D). ��
Proposition 2. If a minimal DFA D = (Qn, Σ, δ, 0, F) is suffix-convex, then it
respects the triple system (Qn, 0, F,R) where

R = {(p, q, r) | Kp ∩ Kq ⊆ Kr}.

Proof. It is easy to verify that (Qn, 0, F,R) is a triple system when D is mini-
mal. We must check that every transformation in TD satisfies Condition 1 and
Condition 2.

Condition 1: Let t ∈ TD and suppose (p, q, r) ∈ R. We wish to show that
(pt, qt, rt) ∈ R, or equivalently, Kpt ∩ Kqt ⊆ Krt. Choose a word w ∈ Σ∗ that
induces t in D. Since Kp ∩ Kq ⊆ Kr, we have w−1(Kp ∩ Kq) ⊆ w−1Kr. Notice

330 C. Sinnamon

w−1(Kp ∩ Kq) = w−1Kp ∩ w−1Kq = Kpt ∩ Kqt and w−1Kr = Krt. Therefore
Kpt ∩ Kqt ⊆ Krt.

Condition 2: Let t ∈ TD and suppose (0, q, r) ∈ R. Then K0 ∩ Kq ⊆ Kr, and
we wish to show K0∩Kqt ⊆ Krt. To a contradiction, suppose there exists a word
w ∈ (K0 ∩ Kqt) \ Krt. Choose words u, v ∈ Σ∗ such that 0u = q and v induces
t in D. Since w ∈ K0 ∩ Kpt, both w and uvw must be in L. But by Condition
1, K0t ∩ Kqt ⊆ Krt, and since w ∈ Kqt and w ∈ Krt, it follows that w ∈ K0t.
As K0t = K0v = v−1L, we have vw ∈ L, contradicting the suffix-convexity of
L(D). ��
Proposition 3. Let S = (Qn, 0, F,R) be a triple system and define

T ∗ := {t : Qn → Qn | t respectsS}.

If a DFA D respects S then TD ⊆ T ∗. Moreover, there is a DFA D′ respecting
S with TD′ = T ∗.

Proof. The first claim is obvious, since every transformation in TD must respect
S. For the second claim, we may simply choose D′ = (Qn, Σ, δ, 0, F) where Σ
and δ are defined by Σ = {at | t ∈ T ∗} and δ(p, at) = pt for all t ∈ T ∗. Since T ∗

is a semigroup under composition, TD′ = T ∗. ��
While a triple system gives a ternary relation between states, it also yields

an interesting binary relation that is very useful in describing triple systems and
reasoning about them. As suggested by the asymmetry in Condition 2, the initial
state q0 plays a special role in a triple system.

Definition 3. Given a triple system S = (Q, q0, F,R), define �R, a binary
relation on Q, by

p �R q ⇐⇒ (q0, p, q) ∈ R.

When R is clear from context, we will simply write � instead of �R. It turns
out that � is a kind of order relation called a preorder (also called a quasiorder).

Proposition 4. For any triple system S = (Qn, 0, F,R), �R is a preorder on
Qn; that is, it satisfies

1. p �R p, (Reflexivity)
2. p �R q and q �R r =⇒ p �R r. (Transitivity)

Proof. Reflexivity follows by (A) and (B). To prove transitivity, suppose p �R q
and q �R r. Then

– (0, p, q) ∈ R by assumption,
– (p, 0, q) ∈ R by (B),
– (0, q, r) ∈ R by assumption,

Complexity of Proper Suffix-Convex Languages 331

– (p, 0, r) ∈ R by (C),
– (0, p, r) ∈ R by (B).

Hence p �R r. ��
A preorder is similar to a partial order, except that it does not require the
antisymmetry property (p � q and q � p =⇒ p = q). It is not true that � is
always a partial order, since there may be states p and q where p � q and q � p,
but p = q; such elements are called symmetric and we write p ∼ q. We also write
p � q to indicate p � q but q � p.

We will find � useful because triple systems can be complicated and varied,
whereas � has a more restricted structure. Besides being a preorder, � has the
interesting property that p � 0 for all p ∈ Qn (since (0, p, 0) ∈ R for all p ∈ Qn

by (A)). Thus, 0 is always a maximum element of �. Note that there could
be other elements, symmetric with 0, which are also maximum elements with
respect to �.

The most pleasing feature of � is that it gives us an intuitive way of restating
Condition 2.

Condition 2: t is monotone with respect to �.

In this context, t being monotone means that p � q =⇒ pt � qt. We frequently
use this property and the structure of � as an entry point to reasoning about
triple systems. It is sometimes sufficient to consider only � in proofs, ignoring
the finer details of the triple system entirely. As demonstrated by the next the-
orem, when � is a partial order we can effectively ignore the rest of the triple
system because every monotone transformation can be included in the transition
semigroup without breaking suffix-convexity. Since it is never harmful to have
a larger semigroup for proving complexity properties, the cases where � is a
partial order are the simplest and most natural.

Theorem 1. Fix any partial order � on Qn in which 0 is the maximum element.
Let f ∈ Qn and consider the triple system S = (Qn, 0, {f},R), where

R = {(p, q, r) | p � r � q or q � r � p}.

There exists a minimal suffix-convex DFA D = (Qn, Σ, δ, 0, F) respecting S such
that

TD = {t : Qn → Qn | t is monotone with respect to �}.
Furthermore, �R=�, i.e. p �R q if and only if p � q.

Proof. It is easy to check that S satisfies (A), (B), (C), and (D). By construction,
(0, p, q) ∈ R if and only if p � q � 0. Since 0 is the maximum element in �, this
implies �R=�. We construct a minimal DFA respecting S with every monotone
function in its transition semigroup.

Let M denote the set of monotone transformations on Qn with respect
to �. Since monotonicity is preserved under composition, M is a semigroup
under composition. Let D = (Qn, Σ, δ, 0, {f}) where Σ = {at | t ∈ M} and

332 C. Sinnamon

δ(p, at) = pt for all t ∈ M (in other words, include a dedicated letter in Σ for
each monotone transformation). Clearly TD = M.

It is easy to show that D is minimal: State p is reached by the transformation
(Qn → p), and two states p and q, q � p, are distinguished by the monotone
transformation t defined by

rt =

{
f if r � p, and
0 otherwise.

To prove suffix-convexity, we show that every transformation in M respects
S. Condition 2 is trivial, since �=�R. For Condition 1, observe that if p � r � q
then pt � rt � qt for all t ∈ M. Hence (p, q, r) ∈ R implies (pt, qt, rt) ∈ R for
all t ∈ M. ��
Remark 1. The set of final states in Theorem 1 need not be a singleton. We only
require that ∅ � F � Qn and that F is convex with respect to �; that is, there
cannot be states f � g � h where f, h ∈ F and g ∈ F .

4 Star, Product, and Boolean Operations

This section has our first application of the triple system framework. We present
a proper suffix-convex witness stream (Ln | n � 3) that meets the regular
language upper bound for (Kleene) star. With a dialect stream, it also meets
the regular language upper bound for product and boolean operations. Upper
bounds for all of these operations on regular languages are well known (e.g.
[4,19]): If L′ and L are regular languages of complexity m and n, respectively,
then κ(L∗) � 2n−1 + 2n−2, κ(L′L) � (m − 1)2n + 2n−1, and κ(L′ ◦ L) � mn for
◦ ∈ {∪,⊕, \,∩}.

The witness DFA we introduce respects a triple system such that �R is a
total order on Qn. We define the triple system such that 0 � 1 � · · · � n − 2 � n − 1
(Fig. 1).

Definition 4. For n � 3, define Sn = (Qn, 0, {n − 2},Rn) where

Rn = {(p, q, r) | p � r � q or q � r � p}.

Note that Rn is exactly the triple system from Theorem 1 if “�” is replaced
with “�”. Therefore, by Theorem 1, any monotone transformation can be
included in the transition semigroup of the witness DFA without violating suffix-
convexity. For simplicity, we use a small alphabet that generates a non-maximal
semigroup since it is sufficient for our purposes (Fig. 2).

Definition 5. For n � 3, let Ln(Σ) be the language recognized by the DFA
Dn = (Qn, Σ, δn, 0, {n − 2}), where Σ = {a, b, c, d, e, f} and δn is given by the
transformations a : (n−2

0 i → i+1), b : (n−1
1 i → i−1), c : ({n−3, n−2} → n−1),

d : (n − 2 → n − 1), and e = f = 1.

Complexity of Proper Suffix-Convex Languages 333

0
1

2

n 2
n 1

Fig. 1. The order relation �Rn of Definition 4 used in the complex witness stream for
star and product.

0 1 2 n 3 n 2 n 1

a a a a a a, c, d

b b b b b b

c

b, c, d, e, f c, d, e, f c, d, e, f d, e, f e, f a, c, d, e, f

Fig. 2. DFA Dn of Definition 5.

Proposition 5. For n � 3, Ln(Σ) of Definition 5 is proper and κ(Ln) = n.

Theorem 2. The language stream (Ln(a, b, c, d) | n � 3) of Definition 5 meets
the upper bound for star. That is, for n � 3, κ(L∗

n) = 2n−1 + 2n−2.

One may wonder what is required of a suffix-convex language to meet the
bound for star. It turns out that the triple system it respects must be somewhat
similar to that of Definition 4.

Lemma 1. Suppose L is a suffix-convex language with κ(L) = n � 3 and
κ(L∗) = 2n−1 + 2n−2. Let D = (Qn, Σ, δ, 0, F) be a minimal DFA for L and
assume that D respects a triple system R. Then �R must admit a comparison
between every pair of states in Qn, i.e. for all p, q ∈ Qn, either p � q or q � p.

This lemma does not imply that � must be a total order on the states because
it could have symmetric elements.

Theorem 3. The dialect streams (Lm(a, b, c,−, e, f) | m � 3) and
(Ln(e, f,−,−, a, b) | n � 3) of Definition 5 meet the upper bound
for product of proper suffix-convex languages. Specifically, for m,n � 3,
κ(Lm(a, b, c,−, e, f)Ln(e, f,−,−, a, b)) = (m − 1)2n + 2n−1.

Theorem 4. The dialect streams (Lm(a, b,−,−, e, f) | m � 3) and
(Ln(e, f,−,−, a, b) | n � 3) of Definition 5 meet the upper bounds for boolean
operations on proper suffix-convex languages. Specifically, for m,n � 3 and
◦ ∈ {∪,⊕, \,∩}, κ(Lm(a, b,−,−, e, f) ◦ Ln(e, f,−,−, a, b)) = mn.

334 C. Sinnamon

5 Reversal

We first prove an upper bound for the complexity of reversal in suffix-convex
languages (not necessarily proper), and then give a proper suffix-convex witness
stream that meets the bound for n � 3.

Theorem 5. If L is a suffix-convex language with κ(L) = n, then κ(LR) �
2n − 2n−3.

The proof of Theorem5 actually tells us a great deal about what a complex
witness must look like. Extending the proof slightly, we obtain an important
corollary.

Corollary 1. Suppose L is a suffix-convex language with κ(L) = n � 3 and
κ(LR) = 2n − 2n−3. Let D = (Qn, Σ, δ, 0, F) be a minimal DFA for L and
assume that D respects a triple system R. Then there are exactly two non-zero
states p and q such that p �R q. Furthermore, �R is a partial order, i.e. no
states are symmetric with respect to �R.

Simply put, this corollary says that the triple system of a witness for reversal
must look something like Fig. 3. We use this triple system to create our witness
for reversal.

Definition 6. For n � 3, define Sn = (Qn, 0, {1},Rn) where

Rn = {(p, q, p) | p, q ∈ Qn} ∪ {(p, q, q) | p, q ∈ Qn} ∪ {(0, 2, 1), (2, 0, 1)}.

0

1

2

3 4 n 2 n 1

Fig. 3. The order relation �Rn of Definition 6 used in the complex witness stream for
reversal.

Notice that �Rn
is a partial order and Rn is the relation defined in The-

orem 1. Hence there exists a DFA respecting Sn whose transition semigroup
contains every transformation of Qn that is monotone with respect to �Rn

.
However, the DFA defined in that theorem has an enormous alphabet, with one
letter for each monotone function. Instead, we define a trimmed-down version
with a smaller transition semigroup to be our witness for reversal (Fig. 4).

Complexity of Proper Suffix-Convex Languages 335

Definition 7. For n � 3, let Ln(Σ) be the language recognized by the DFA
Dn = (Qn, Σ, δn, 0, {1}), where Σ = {a, b, c, d, e, f, g, h} and δn is given by the
transformations

a : (3, 4, . . . , n − 1) e : (1 → 2)
b : (3 → 1) f : (2 → 1)
c : (3 → 2) g : (Qn → 3)
d : (1 → 0) h : (Qn \ {0} → 2)(0 → 1)

0

1

2

3 4 n 1
a a a

a

ef

b

c

d

Fig. 4. DFA Dn of Definition 7. Missing transitions are self-loops. Letters g and h not
shown.

Proposition 6. For n � 3, Ln(Σ) of Definition 7 is proper suffix-convex and
κ(Ln) = n.

Theorem 6. The language stream (Ln(Σ) | n � 3) of Definition 7 meets the
upper bound for reversal of proper suffix-convex languages. That is, for n � 3,
κ(LR

n) = 2n − 2n−3.

6 Syntactic Semigroup

The final complexity measure we consider is syntactic complexity, the size of
the syntactic semigroup. The size and nature of the most complex semigroup in
the class of proper suffix-convex languages is an interesting and difficult open
question. We describe a stream that we conjecture to be maximal in this respect
(Fig. 5).

Definition 8. For n � 3, define Sn = (Qn, 0, {n − 2},Rn) where

Rn = {(p, q, p) | p, q ∈ Qn} ∪ {(p, q, q) | p, q ∈ Qn}
∪{(0, p, q) | 0 � p, q � n − 2} ∪ {(p, 0, q) | 0 � p, q � n − 2}
∪{(0, n − 1, q) | q � n − 2} ∪ {(n − 1, 0, q) | q � n − 2}.

336 C. Sinnamon

0 1 2 n 3 n 2

n 1

Fig. 5. The order relation �R used in the conjectured witness for syntactic semigroup.

We can compute a bound on the number of transformations that respect Rn.
Observe that:

1. If 0 is fixed by t, then pt = n − 1 for all p � n − 2 by monotonicity.
2. If 0t ∈ {1, 2, . . . , n − 2} then {1, 2, . . . , n − 2}t = 0t since (0t, 0t, pt) must be

in R for all p ∈ Qn \ {n − 1}, and this fails unless pt = 0t.
3. If 0t = n − 1 then Qnt = n − 1 by monotonicity.

By 1, the number of transformations satisfying 0t = 0 is at most n(n − 1)n−2.
By 2, the number of transformations satisfying 0t ∈ {1, 2, . . . , n − 2} is at most
n(n−2). By 3, there is only one transformation where 0t = n−1. Thus, the size of
the transition semigroup is at most n(n−1)n−2+(n−1)2. A more careful analysis
reveals that every transformation counted by this argument satisfies Conditions
1 and 2, and thus they all may be added to the transition semigroup.1 There is
a fairly simple DFA that respects S and has this semigroup:

Definition 9. For n � 3, let Ln(Σ) be the language recognized by the DFA
Dn = (Qn, Σ, δn, 0, {n − 2}), where Σ = {a, b, c, d, e, f, g, h} and δn is given by
the transformations

a : (1, . . . n − 2), e : (Qn \ {n − 1} → 1),
b : (1, 2), f : (n − 1 → 0),
c : (n − 2 → 1), g : (n − 1 → 1),
d : (n − 2 → 0), h : (Qn → n − 1).

The transition semigroup of Dn contains every transformation satisfying Con-
dition 1 and Condition 2 with respect to Sn of Definition 9. Hence the size of the
syntactic semigroup of Ln is n(n − 1)n−2 + (n − 1)2. We conjecture that this is
optimal.

Conjecture 1. For n � 3, the syntactic complexity of any proper suffix-convex
language of complexity at most n is at most n(n − 1)n−2 + (n − 1)2.

Note that the conjectured bound does not hold for general suffix-convex lan-
guages, as there is a left ideal stream with syntactic complexity nn−1 +n−1 [9].

1 This fact is offered without proof, but it is not difficult to verify.

Complexity of Proper Suffix-Convex Languages 337

This witness is known to have maximal syntactic complexity among left ide-
als and suffix-closed languages. If Conjecture 1 holds, it would imply that the
left ideal witness has the largest syntactic complexity over all suffix-convex
languages, since suffix-free languages are known to have smaller syntactic
complexity [6].

7 Most Complex Streams

A most complex language stream is required to meet all the operational bounds
for reversal, star, product, and boolean operations, as well as the bound for
syntactic complexity.2 Using results already stated in this paper, we can easily
show that there is no most complex proper stream.

Lemma 2. For n � 4, there does not exist a proper suffix-convex language of
complexity n that meets the complexity bounds for both reversal and star.

Proof. Suppose L is a proper suffix-convex language of complexity n with
κ(LR) = 2n − 2n−3 and κ(L∗) = 2n−1 + 2n−2. Let D = (Qn, Σ, δ, 0, F) be a
minimal DFA for L. By Corollary 1, any triple system R respected by D must
have only two states (besides 0) that are comparable by �R. Yet by Lemma 1,
every pair of states (p, q) must have some comparison in �R (either p � q or
q � p). This is impossible for n � 4. ��

Surprisingly, even though the true upper bound for syntactic complexity is
not known with certainty, we can still prove that a third stream, different from
those for reversal and star, is needed to meet this bound. Thus, at least three
streams are needed to meet all the bounds.

Theorem 7. For n � 4, there does not exist a proper suffix-convex language
of complexity n that meets the upper bounds for any two of reversal, star, and
syntactic complexity.

8 Conclusion

We have exhibited several new tight upper bounds for proper suffix-convex lan-
guages, some of which apply to all suffix-convex languages. The introduction of
triple systems was an essential tool in this endeavour, so perhaps variant triple
systems can be developed for other difficult classes of regular languages. The
question of determining the maximal syntactic complexity of proper languages
remains open. A more involved argument using triple systems may be required.

2 Additionally, it is usually required that the atoms of the language are as complex as
possible [4], but this measure is not discussed here.

338 C. Sinnamon

References

1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybernet. 19(2), 445–464 (2009)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of
Mathematics and its Applications). Cambridge University Press, New York (2010)

3. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb.
15(1/2), 71–89 (2010)

4. Brzozowski, J.: In search of the most complex regular languages. Int. J. Found.
Comput. Sci. 24(6), 691–708 (2013)

5. Brzozowski, J.: Unrestricted state complexity of binary operations on regular
languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS,
vol. 9777, pp. 60–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41114-9 5

6. Brzozowski, J., Szyku�la, M.: Complexity of suffix-free regular languages. In:
Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 146–159.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22177-9 12

7. Brzozowski, J., Tamm, H.: Quotient complexities of atoms of regular languages.
Int. J. Found. Comput. Sci. 24(7), 1009–1027 (2013)

8. Brzozowski, J., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014)

9. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 11

10. Brzozowski, J.A., Sinnamon, C.: Complexity of left-ideal, suffix-closed and suffix-
free regular languages. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 171–182. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 12

11. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21(4), 251–310 (2016)

12. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata-a survey. Inf. Comput. 209(3), 456–470 (2011)

13. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theor. Comput. Sci. 327(3), 319–347 (2004)

14. Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116(5), 356–
360 (2016)

15. Myhill, J.: Finite automata and representation of events. Wright Air Development
Center Technical report 57–624 (1957)

16. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, vol. 1: Word, Language, Grammar, pp. 679–746. Springer,
New York (1997)

17. Sinnamon, C.: Complexity of proper suffix-convex regular languages (2018). http://
arxiv.org/abs/1805.03375

18. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and
Programming, pp. 481–492. North-Holland (1973)

19. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

https://doi.org/10.1007/978-3-319-41114-9_5
https://doi.org/10.1007/978-3-319-41114-9_5
https://doi.org/10.1007/978-3-319-22177-9_12
https://doi.org/10.1007/978-3-642-22321-1_11
https://doi.org/10.1007/978-3-319-53733-7_12
https://doi.org/10.1007/978-3-319-53733-7_12
http://arxiv.org/abs/1805.03375
http://arxiv.org/abs/1805.03375

Author Index

Allauzen, Cyril 46
Attou, Samira 59

Bartholdi, Laurent 71
Berlinkov, Mikhail V. 84
Björklund, Johanna 97
Brzozowski, Janusz A. 109

Chiang, David 146
Cognetta, Marco 121
Condon, Anne 1

Davies, Sylvie 133
DeBenedetto, Justin 146
Di Stasio, Antonio 159
Drewes, Frank 97

Gerdjikov, Stefan 173
Godin, Thibault 71
Guillon, Bruno 186

Han, Yo-Sub 121
Hendrian, Diptarama 286
Holzer, Markus 198
Hospodár, Michal 198

Ibarra, Oscar H. 211

Jirásek, Jozef 223
Jirásková, Galina 223
Jonsson, Anna 97

Kari, Lila 109
Klimann, Ines 71
Konstantinidis, Stavros 4
Krishna, K. V. 312
Kutrib, Martin 28, 236

Li, Bai 109
Lombardy, Sylvain 41, 248

Malcher, Andreas 28
Masuda, Yusei 261
McQuillan, Ian 211
Mignot, Ludovic 59
Moldagaliyev, Birzhan 274
Moreira, Nelma 4
Murano, Aniello 159

Nicaud, Cyril 84
Nozaki, Yuki 286

Picantin, Matthieu 71
Pighizzini, Giovanni 186
Prigioniero, Luca 186

Reis, Rogério 4
Riley, Michael D. 46

Sakarovitch, Jacques 41, 248
Sakharov, Alexander 299
Seki, Shinnosuke 261
Shinohara, Ayumi 286
Singh, Shubh N. 312
Sinnamon, Corwin 324
Staiger, Ludwig 274
Stephan, Frank 274
Szykuła, Marek 109

Ubukata, Yuki 261

Vardi, Moshe Y. 159

Wendlandt, Matthias 28, 236

Yoshinaka, Ryo 286
Young, Joshua 4

Ziadi, Djelloul 59

	Preface
	Organization
	Contents
	On Design and Analysis of Chemical Reaction Network Algorithms
	References

	Regular Expressions and Transducers over Alphabet-Invariant and User-Defined Labels
	1 Introduction
	2 Terminology and Alphabets of Non-fixed Size
	3 Set Specifications and Pairing Specifications
	4 Label Sets and Their Behaviours
	5 Labelled Graphs, Automata, Transducers
	6 Regular Expressions over Label Sets
	6.1 Regular Expressions with Set Specifications

	7 Label Operations and the Product Construction
	8 Automata and Transducers with Set Specifications
	9 Composition of Transducers with Set Specifications
	10 Transducer Identity and Functionality
	11 Transducers and Independent Languages
	12 Concluding Remarks
	References

	Boosting Pushdown and Queue Machines by Preprocessing
	1 Introduction
	2 Definitions and Preliminaries
	3 Boosting Input-Driven Machines
	4 Boosting Reversible Machines
	References

	The Validity of Weighted Automata
	References

	Algorithms for Weighted Finite Automata with Failure Transitions
	1 Introduction
	2 Preliminaries
	2.1 Semirings
	2.2 Weighted Automata
	2.3 Weighted Automata with or Transitions
	2.4 -Removed Automata

	3 Algorithms
	3.1 Intersection
	3.2 -Removal
	3.3 Trimming
	3.4 Shortest Distance

	4 Discussion
	References

	The Bottom-Up Position Tree Automaton and Its Compact Version
	1 Introduction
	2 Preliminaries
	3 Position Functions
	4 Bottom-Up Position Automaton
	5 Compressed Bottom-Up Position Automaton
	6 Web Application
	7 Conclusion and Perspectives
	References

	A New Hierarchy for Automaton Semigroups
	1 Introduction
	2 Notions from Automata and Graph Theory
	2.1 Mealy Transducers

	3 An Activity-Based Hierarchy for FEnd(*)
	4 Structural Characterization of the Activity Norm
	5 The Orbit Signalizer Graph and the Order Problem
	References

	Synchronizing Random Almost-Group Automata
	1 Introduction
	2 Basic Definitions and Notations
	3 Synchronization of Almost-Group Automata
	4 Counting Non-synchronizing Almost-Group Automata
	4.1 Strong-Connectivity
	4.2 Non-synchronizing Almost-Group Automata: A Lower Bound
	4.3 Non-synchronizing Almost-Group Automata: An Upper Bound
	4.4 Main Result and Conclusions

	References

	A Comparison of Two N-Best Extraction Methods for Weighted Tree Automata
	1 Introduction
	2 Preliminaries
	3 Previous Work
	4 Experiments
	4.1 Data
	4.2 Running Time of BEST TREES
	4.3 Comparison of BEST TREES and FILTERED RUNS
	4.4 Discussion

	5 Conclusion
	References

	State Complexity of Overlap Assembly
	1 Introduction
	2 Overlap Assembly
	3 An -NFA for Overlap Assembly
	4 Tight Upper Bound for Overlap Assembly
	5 Conclusions
	References

	Online Stochastic Pattern Matching
	1 Introduction
	2 Preliminaries
	2.1 Weighted Automata
	2.2 Probabilistic Finite Automata

	3 Online Stochastic Pattern Matching
	3.1 Weighted Automaton Construction
	3.2 Algorithm Structure
	3.3 OSPM with DPFAs

	4 Heuristic Speedup
	5 Experimental Results
	6 Application
	7 Conclusions
	References

	State Complexity of Reversals of Deterministic Finite Automata with Output
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusions
	References

	Algorithms and Training for Weighted Multiset Automata and Regular Expressions
	1 Introduction
	2 Definitions
	2.1 Preliminaries
	2.2 Weighted Multiset Automata
	2.3 Weighted Multiset Regular Expressions

	3 Matching Regular Expressions
	3.1 NP-Completeness
	3.2 Conversion to Multiset Automata
	3.3 Related Work

	4 Learning Weights
	4.1 Regular Expressions
	4.2 Finite Automata

	5 Computing Inside Weights
	5.1 Unary Languages
	5.2 Digression: Binary Languages and Beyond
	5.3 Regular Expressions

	6 Conclusion
	References

	Solving Parity Games: Explicit vs Symbolic
	1 Introduction
	2 Explicit and Symbolic Parity Games
	3 Solving Parity Games: Explicit vs Symbolic Algorithms
	3.1 Explicit Algorithms
	3.2 Symbolic Algorithms

	4 Experimental Evaluations: Methodology and Results
	4.1 Experimental Results

	5 Concluding Remarks
	References

	Generalised Twinning Property
	1 Introduction
	2 Preliminaries
	3 Classes of Monoids
	3.1 MGE Monoids with LSL- and GCLF-axioms
	3.2 Sequentialisation Axioms

	4 Sequentialisation
	4.1 Sequentialisation Construction
	4.2 Squared Automaton and Twinning Property
	4.3 Twinning Property Sequentialisation Algorithm Halts

	5 Conclusion
	References

	Non-self-embedding Grammars, Constant-Height Pushdown Automata, and Limited Automata
	1 Introduction
	2 Preliminaries
	3 NSE Grammars Versus h-PDAs
	3.1 From NSE Grammars to h-PDAs
	3.2 From h-PDAs to NSE Grammars

	4 NSE Grammars versus 1-LAs
	4.1 From NSE Grammars to 1-LAs
	4.2 From 2DFAs to PDAs: An Exponential Gap

	References

	The Ranges of Accepting State Complexities of Languages Resulting From Some Operations
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Intersection
	3.2 Symmetric Difference
	3.3 Right and Left Quotients
	3.4 Reversal
	3.5 Permutation on Finite Languages

	References

	Semilinearity of Families of Languages
	1 Introduction
	2 Preliminaries
	3 Full AFLs Containing Counter Languages
	4 Application to General Multi-store Machine Models
	5 Applications to Indexed Grammars with Counters
	References

	The Exact Complexity of Star-Complement-Star
	1 Introduction
	2 Preliminaries
	3 Constructions of Automata for Plus-Complement-Plus
	4 The Number of Valid Antichains
	5 Upper Bound
	6 Matching Lower Bound
	7 Conclusions
	References

	Parametrizing String Assembling Systems
	1 Introduction
	2 Preliminaries and Definitions
	3 SAS with Less Derivation Control
	3.1 Free String Assembling Systems
	3.2 One-Set String Assembling Systems
	3.3 Pure String Assembling Systems

	4 Length-Restricted SAS
	References

	Two Routes to Automata Minimization and the Ways to Reach It Efficiently
	1 Introduction
	2 Implementation of Weighted Automata
	3 The Minimal Quotient of a (Weighted) Automaton
	4 The Common Trunk
	4.1 The Proto-Algorithm
	4.2 The Weak Sort

	5 Forward Algorithm
	6 Backward Algorithm
	7 The Fast Backward Algorithm
	8 Benchmarks
	References

	Towards the Algorithmic Molecular Self-assembly of Fractals by Cotranscriptional Folding
	1 Introduction
	2 Preliminaries
	3 Folding the n-bit Heighway Dragon
	4 Conclusion
	References

	On the Values for Factor Complexity
	1 Introduction
	2 Background
	2.1 Factor Complexity
	2.2 Hausdorff Dimension
	2.3 Computing the Hausdorff Dimension

	3 The One-Dimensional Case
	4 The Higher Dimensional Case
	5 Conclusion
	References

	Enumeration of Cryptarithms Using Deterministic Finite Automata
	1 Introduction
	2 Preliminaries
	2.1 Cryptarithms

	3 Cryptarithm DFAs
	3.1 Naive Cryptarithm DFA
	3.2 Compressed Cryptarithm DFA
	3.3 Comparison of Naive and Compressed Cryptarithm DFAs
	3.4 Cryptarithms with Limited Number of Letters

	4 Analysis of Cryptarithms
	4.1 Counting Solvable Cryptarithms
	4.2 Enumerating and Indexing Cryptarithms

	5 Conclusions and Discussions
	References

	One-Counter Automata for Parsing and Language Approximation
	1 Introduction
	2 One-Counter Automata
	3 Counting Regular Expressions
	4 Compartmentalized Grammars
	5 Stochastic Parsing
	6 Grammar Characterization
	7 Approximation of Context-Free Languages
	8 Related Work
	9 Conclusion
	References

	On Syntactic Complexity of Circular Semi-flower Automata
	1 Introduction
	2 Preliminaries
	3 Circular Semi-flower Automata
	4 CSFA with Two Bpis
	4.1 Idempotents in M(A)
	4.2 Functions of Rank Two in M(A)
	4.3 Representation of M(A)
	4.4 An Example
	4.5 Proof of Theorem8

	References

	Complexity of Proper Suffix-Convex Regular Languages
	1 Introduction
	2 Background
	3 Suffix-Convex Triple Systems
	4 Star, Product, and Boolean Operations
	5 Reversal
	6 Syntactic Semigroup
	7 Most Complex Streams
	8 Conclusion
	References

	Author Index

