- -
.
. -

Joaguim Filipe
Jorge Bernardino

Chgs;egh‘@’ul? Eds

6th International Conference, DATA 2017
Madrid, Spain, July 24-26, 2017
Revised Selected Papers

@ Springer



Communications
in Computer and Information Science 814

Commenced Publication in 2007

Founding and Former Series Editors:

Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Sl@zak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil
Phoebe Chen
La Trobe University, Melbourne, Australia
Joaquim Filipe
Polytechnic Institute of Setubal, Setubal, Portugal
Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia
Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India
Takashi Washio
Osaka University, Osaka, Japan
Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA
Lizhu Zhou
Tsinghua University, Beijing, China



More information about this series at http://www.springer.com/series/7899



Joaquim Filipe - Jorge Bernardino
Christoph Quix (Eds.)

Data Management
Technologies

and Applications
6th International Conference, DATA 2017

Madrid, Spain, July 24-26, 2017
Revised Selected Papers

@ Springer



Editors

Joaquim Filipe Christoph Quix

INSTICC RWTH Aachen University
Polytechnic Institute of Setubal Aachen

Setubal Germany

Portugal

Jorge Bernardino
University of Coimbra

Coimbra

Portugal

ISSN 1865-0929 ISSN 1865-0937  (electronic)
Communications in Computer and Information Science

ISBN 978-3-319-94808-9 ISBN 978-3-319-94809-6 (eBook)

https://doi.org/10.1007/978-3-319-94809-6
Library of Congress Control Number: 2018947371

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The present book includes extended and revised versions of a set of selected papers
from the 6th International Conference on Data Science, Technology and Applications
(DATA 2017), held in Madrid, Spain, during July 24-26.

We received 66 paper submissions from 28 countries, of which 18% are included in
this book. The papers were selected by the event chairs and their selection is based on a
number of criteria that include the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, and also the program
chairs’ global view of all papers included in the technical program. The authors of
selected papers were then invited to submit a revised and extended version of their
papers having at least 30% innovative material.

The purpose of the DATA 2017 was to bring together researchers, engineers, and
practitioners interested in databases, big data, data mining, data management, data
security, and other aspects of information systems and technology involving advanced
applications of data.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on data science, technology, and applications,
including four papers addressing the hot topic of business analytics, focusing on data
mining, machine learning, and other approaches to understanding the semantics and
formulating models that can be used to better solve problems in areas such as natural
language understanding and e-Business; another five papers focused on data man-
agement and quality, with applications as varied as rail automation, cultural heritage
preservation, learning management systems, e-sports, and cloud storage; finally, three
papers approached the important aspect of data security and privacy, including graph
database versioning, avoiding access credentials theft using server side database
credentials, and improving privacy using personalized anonymization of database
query results.

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

July 2017 Joaquim Filipe
Jorge Bernardino
Christoph Quix
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An Overview of Transfer Learning
Focused on Asymmetric Heterogeneous
Approaches

Magda Friedjungovd®™) and Marcel Jifina

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic
{magda.friedjungova,marcel. jirina}@fit.cvut.cz

Abstract. In practice we often encounter classification tasks. In order
to solve these tasks, we need a sufficient amount of quality data for the
construction of an accurate classification model. However, in some cases,
the collection of quality data poses a demanding challenge in terms of
time and finances. For example in the medical area, we encounter lack
of data about patients. Transfer learning introduces the idea that a pos-
sible solution can be combining data from different domains represented
by different feature spaces relating to the same task. We can also trans-
fer knowledge from a different but related task that has been learned
already. This overview focuses on the current progress in the novel area
of asymmetric heterogeneous transfer learning. We discuss approaches
and methods for solving these types of transfer learning tasks. Further-
more, we mention the most used metrics and the possibility of using
metric or similarity learning.

Keywords: Asymmetric heterogeneous transfer learning
Different feature space - Domain adaptation - Survey - Data mining
Metric learning

1 Introduction

Classification tasks are part of data mining and machine learning. A classifica-
tion task lies in answering the question how to suitably classify data using a
constructed classification model. This classification model is constructed using
a set of data which contains enough records and reaches quality corresponding
to the chosen model. Using this data we are able to construct a classification
model with high accuracy and subsequently a high probability of it being the
correct solution for our classification task. However, in real-world applications
we encounter data that is not of high quality - it may contain missing values
(individual instances or even whole attributes missing), contain noise or it can
be corrupted in some way. In some cases we can even have lack of data and it
might not be possible to gather more. Collecting data is often very demanding

© Springer International Publishing AG, part of Springer Nature 2018
J. Filipe et al. (Eds.): DATA 2017, CCIS 814, pp. 3-26, 2018.
https://doi.org/10.1007/978-3-319-94809-6_1
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in terms of time and finances. A satisfying solution can be to make use of data
from different but related domains. These different data are represented by dif-
ferent feature spaces which relate to the same domains as the task being solved.
Different feature spaces are two spaces, which are represented by different fea-
tures (also known as attributes). These spaces can originate from other domains.
We can divide them into source (usually contains data used for the training of
the model) and target feature spaces (contains data used for the testing of the
model). These spaces can represent the source and target domains to distinguish
where the data comes from. This overview is an extended version of [1] which
was presented at the DATA 2017 conference.

As an example, we can imagine object classification as a typical task which
could be solved using transfer learning. Our domain in this case is represented by
several pictures. Two images of the same object may be of different dimensions
of features because of different resolution, illumination or tilt. The feature space
can also be represented using text labels. A combination of pictures and text
is also possible. We have to solve feature differences while solving the task of
object classification. Another example of a feature problem can be cross-lingual
document classification. Labeled English documents are widely available, but
labeled Russian documents are much harder to obtain. These documents, English
and Russian, do not share the same feature representation. Transfer learning
can use natural correspondences between feature spaces in order to create an
automated learner for Russian documents.

Methods of transfer learning have proven to be very useful in the above cases.
Transfer learning enables us to transfer data between domains in such a way that
does not require us to have specialised knowledge of either domain. Furthermore,
transfer learning increases usability of poor data, which would be unusable on its
own. This is thanks to the possibility of combining data from different domains.
Transfer of data or their combination would be possible using manual mapping
methods. However, such a solution is both time and human resources consum-
ing. Transfer learning saves us time, work, increases the automatisation of the
mapping process and enables us to employ data represented by different feature
spaces [2].

A general overview of transfer learning is given in [3] and the newest sur-
vey was introduced in [4]. Many terms exist for transfer learning, within this
work you can also come across a related term - domain adaptation [3]. Domain
adaptation is focused on the development of learning algorithms, which can be
easily transferred from one domain to another [5]. The main difference to transfer
learning is that domain adaptation works for the same categories with different
distributions. Transfer learning works across different categories with different
distributions. Transfer learning can also be seen as a set of methods which fall
into the category of semantic-meaning based methods for cross-domain data
fusion. Data fusion consists of techniques for integration of knowledge from var-
ious data in a machine learning and data mining task [2]. Transfer learning
concerns itself with knowledge fusion rather than schema mapping and data
merging, which are more specific to traditional data fusion and data integration
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being pursued by the database community [2,6]. For better orientation, we bring
an overview of basic definitions crucial to understanding transfer learning.

1.1 Definitions

In this subsection we introduce basic definitions of transfer learning terms. Def-
initions of “domain”, “task” and “transfer learning” are provided by [3], where
a general overview of transfer learning is given. Helpful definitions can also be
found in [7,8].

Definition 1 (Domain). A domain D is a two-tuple (X, P(X)), where X is the
feature space of D and P(X) is the marginal probability distribution where X =
L1,y .oy Ty € X.

In our survey we consider one source domain Dg and one target domain Dr.
If these domains are different, then the domains have different feature spaces Xg
and Xp or different marginal probability distributions P(Xg) and P(Xr) or a
combination of both.

Definition 2 (Task). A task T is a two-tuple (Y, f()) for some given domain
D. Y is the label space of D and f() is an objective predictive function for D. f()
is sometimes written as a conditional probability distribution P(y|z).

Function f() is not given, but can be learned from the training data. The
training data consists of pairs x;,y;, where z; € X and y; € Y.

Definition 3 (Transfer Learning). Given a set of source domains Dg = Dy, ,
..., Ds,, where n > 0, a target domain, Dr, a set of source tasks Tg =T, , ... T,
where T, € Ts corresponds with Ds, € Dg, and a target task T which corre-
sponds to Dr, transfer learning enable us to learn the target predictive function
fr() in Dp with the information gained from Dg and Ts where Dy # Dg and
Tr #Ts.

This definition of transfer learning allows transfer learning from multiple
source domains. The condition Dg # D7 and Ts # T also implies that either
Xs # Xt or P(Xg) # P(Xr). For example in cross-lingual document classi-
fication this means that different features exist between source document set
and target document set, because each set is represented by a different language
(for example English versus Russian) or the marginal distributions between sets
are different (for example each set is focused on a different topic). For transfer
learning to be possible another requirement must be fulfiled - there must exist
a relationship between the source and target feature spaces, the domains must
be related in some way.

In this survey we focus on the diversity of data from different feature spaces
of source and target domains. We search for suitable mappings between this
data, which will maintain or decrease the error of the predictive or classification
model. In practice, the mapping of data is often solved manually, but in some
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cases this approach poses a combinatorial problem and almost always requires
the presence of a domain expert. In the ideal case it would be beneficial to find
such an automatic mapping, which would enable us to map the data between
source and target feature spaces in both directions. This research area is called
heterogeneous transfer learning. Heterogeneous transfer learning is proposed to
handle cases where the task is the same, but the source and target feature spaces
are different [3].

Definition 4 (Heterogeneous Transfer Learning). Given a set of source domains
Dg = Dy, ..., D, where n > 0, a target domain, Dr, a set of source tasks
Ts =T, ... Ts, where Ty, € T corresponds to Dy, € Dg, and a target task
Tr which corresponds to D, transfer learning enable us the learn the target
predictive function fr() in D with the information gained from Dg and Ts
where X7 ((Xs, U - Xs,,) = 0.

Heterogeneous transfer learning can be perceived as a type of transductive learn-
ing [3]. Transductive learning assumes that the source and target domains are dif-
ferent. Transductive learning also assumes that we have labeled source data and
unlabeled target data. In practice it is sometimes difficult to fulfil this assump-
tion, we often encounter a lack of labeled source data. A low amount of labeled
source data can have negative impact on classification model accuracy. This
problem can be solved by using heterogeneous transfer learning which is able
to work with different combinations of labeled and unlabeled data. We focus
on feature-based heterogeneous transfer learning, which also operates with the
assumption that feature spaces between domains are different. By difference, we
understand different distributions, representations and dimensionality of data.
Heterogeneous transfer learning is a relatively new field of research and finds
an application in such domains as text classification, image recognition, activity
recognition, defect prediction etc. Various types of transfer learning can be seen
in Fig. 1 (altered figure from [1]).

As far as we know, a lot of work has been done on transfer learning in the
machine learning field [3,4]. During our research we determined that asymmet-
ric heterogeneous transfer learning methods are a very interesting, yet seldom
explored topic. In this survey article we bring an overview of the basic methods
used to unite different feature spaces using asymmetric heterogeneous transfer
learning. In this survey we do not give an experimental comparison of individual
methods and algorithms. Unfortunately, most approaches are domain or task
specific, they reach the best results only on specific datasets. Thus it makes it
impossible to carry out a quality comparative analysis. We have also encountered
the problem that some methods are not publicly accessible (as open-source repos-
itories). However, we hope to provide a useful survey for the machine learning
and data mining communities.

The survey is organized as follows. In Sect. 2 we bring an explanation of the
heterogeneous transfer learning problem along with prerequisites for the problem
of transfer learning between different feature spaces. Section 2.1 briefly describes
solutions based on transformation of features to a common feature space. In
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Sect. 2.1 we introduce an asymmetric approach. We designate a separate Sect. 3
for the description of individual asymmetric methods, which contains subsections
describing methods applied in specific fields. In Sect. 4 we introduce the reader
to the most used feature mappings in the field of transfer learning. In the last
Sect. 5 we bring a brief summary of this survey and in Sect. 5.1 we discuss possible
challenges, which we would like to address in the future.

2 Heterogeneous Transfer Learning

Transfer learning can be categorized into two settings: homogeneous and hetero-
geneous (Fig. 1). They both depend on the task being solved and feature spaces.
The homogeneous transfer learning setting means that the source and target
task differ, but the source and target feature input spaces are the same. The
heterogeneous transfer learning setting assumes that the source and target task
are the same, while the source and target feature spaces are different. We are
interested in the heterogeneous transfer learning setting. Heterogeneous transfer
learning includes two situations:

1. The feature spaces between the source and target domains are different, Xg #
Xr.

2. The feature spaces between the source and target domains are the same,
Xgs = Xp, but the marginal probability distributions of the input data are
different, P(Xgs) # P(X7r).

Heterogeneous transfer learning can be divided into two categories according
to what we transfer. The first category is transfer learning through instances,
also known as instance-based. Instance-based transfer assumes that a certain
part of the data in the source domain can be reused for learning in the target
domain. The main methods are instance re-weighting and importance sampling.
The second category is transfer learning based on features. The main idea is to
learn or find a satisfactory feature representation for the target domain [3]. In
the remaining part of this paper we will concern ourselves with feature-based
methods, because, as we know, they are more novel and less researched. In this
paper there is a whole section dedicated to feature mapping methods (Sect. 4).

In Fig. 2 (altered figure from [1,4]) we can see two ways of transforming data
on a feature-based level, which are addressed by different feature spaces. By
transformation we understand operations (e.g. translation, scaling, etc.) which
have to be done to map different feature spaces. One of these is symmetric
transformation (Fig.2a). Symmetric transformation transforms the source and
target feature spaces into a common latent feature space in order to unify the
input spaces of the domains. The second approach is asymmetric transforma-
tion (Fig.2b), which transforms the source feature space to the target feature
space [3]. Some methods presented in Sect. 3 perform the transformation in the
opposite direction, from the target domain to the source domain. Some proposed
methods are usable in both directions. All presented approaches in Sect.3 are
based on features.
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Fig. 2. (a) Symmetric transformation mapping Mg and My of the source Ds and
target D domains into a common latent feature space. (b) Asymmetric transformation
mapping Mg of the source domain Dg to the target domain D or vice versa from the
target Dr to the source Dg domain.

We consider two datasets as a running example in this paper (shown in
Fig.2). The data in these datasets originate from different source and target
domains represented by different feature spaces. The datasets can consist of
different feature representation, distribution, scale, and density of data. One
of the assumptions is that the source and target domains must be related in
some way. Thanks to this there exist some relations between source and target
feature spaces. These relations can be called correspondences among features.
The discovery of as much common information as possible from these different
datasets is one of the problems in data mining research. The following sections
concern themselves with the individual approaches in more detail.

2.1 Symmetric Feature-Based Approach

Most existing heterogeneous transfer learning methods assume that both source
and target data can be represented by a common feature space, called latent
feature space. Thus, we are looking for transformation mappings Mg and Mt to
transform source domain data Dg and target domain data Dp to a new common
latent feature space D¢ as is shown in Fig.2 [9-12]. The whole process of the
usage of data in a classification model is described in Fig. 3. Firstly, we have to
find a transformation to a common latent feature space D¢ for both source Dg
and target Dy domain data. We are then able to train and test a model for this
D¢ space.

There exist a lot of tasks in the natural language processing area. [13] intro-
duce the structural correspondence learning (SCL) algorithm, which extends [14],
to automatically induce correspondences among features from different domains.
SCL is based on the correlation between certain pivot features. Pivot features
are features which behave in the same way for discriminative learning (e.g. clas-
sification) in both domains. These features have the same semantic meaning in
both domains and are used to learn a mapping from the different feature spaces
to a common latent feature space. In [15] they learn a common latent feature
space with low dimensionality. The space is learned using a new dimensionality
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Step 1 "

Transformation of source feature

space and target feature space to

common latent feature space
Source Feature Space Target Feature Space
Dataset A Dataset B
Step 2 Common Feature Space
> DatasetC [«
l Training and
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N
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Fig. 3. The symmetric approach is made up of two steps. Step 1 consists of mapping
dataset A and dataset B to a common latent feature space. Step 2 consists of training
and testing the model based on data from the common feature space.

reduction method called Maximum Mean Discrepancy Embedding [15]. Data
from related but different domains is projected onto the common latent feature
space. [5] transform the source and target features into a higher dimensional
representation with source, target and common components. They also intro-
duce an extension to this method which also works for unlabeled data [16]. [9]
propose the Heterogeneous Spectral Mapping (HeMap) method. The main idea
of HeMap is to find a common latent feature space for two heterogeneous tasks.
A spectral mapping of the source and target feature spaces into a common latent
feature space is designed. Spectral mapping is designed as an optimization task
that maintains the original structure of the data while minimizing the differ-
ence between the two domains. This mapping adopts linear approaches such
as rotation, scaling, permutation of row vectors, column vectors etc. to find a
common latent feature space. [15] introduce Transfer Component Analysis for
dimensionality reduction of features in a common latent space. A kernel-based
feature mapping method has been introduced by [17]. This method maps the
marginal distribution of data from different source and target domains into a
common kernel space.

In this section we mentioned a few symmetric methods of solving hetero-
geneous transfer learning problems, but there exist more. We are not going to
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concern ourselves with them any further in this work, as our main focus is
on asymmetric approaches. We recommend [4] for readers interested in a more
extensive overview.

2.2 Asymmetric Feature-Based Approach

Asymmetric transformation is perceived as a new and unique approach alternative
to symmetric transformation. It consists of finding transformations Mg, enabling
us to map source domain data Dg to target domain data Dy with different fea-
ture spaces [18,19]. In practice we mostly encounter the following version of the
problem: we have data from a source domain, which we map to data from a tar-
get domain using various techniques. After that we train a model (Fig. 4a - altered
figure from [1]). We can also encounter a scenario where we have source and target
data from the same domain, on which we trained a very good model. This model
is successfully applied in production, e.g. deployed by the customer. However, due
to various reasons, the target feature space changed and our model became unable
to react to new data. In the case that we are not able to modify the model, we have
to find an ideal mapping of target data to source while making sure that the error
of the model doesn’t change (Fig. 4b - altered figure from [1]). This approach poses
a big challenge in the research area and as far as we know there are not many sat-
isfying solutions, which would be fully automatic and domain independent. This
article focuses on asymmetric heterogeneous approaches. All of Sect. 3 is dedicated
to an overview of available methods.

3 Overview of Presented Solutions Using Asymmetric
Approach

Asymmetric heterogeneous transfer learning finds application in several practical
domains, where mainly methods of machine learning are employed. In this section
we will introduce several basic research approaches to solving tasks related to
a few areas which we indentified as the most popular for transfer learning. We
start with the assumption that we have different source and target feature spaces,
but the same task, as shown in Fig. 4. However, if we also had a different task,
we would first make use of the methods of transfer between feature spaces fol-
lowed by methods of homogeneous transfer learning for the transfer of knowledge
between tasks (domains). For better orientation, all methods discussed in this
section are described in Table 1.

We would like to make readers aware that the individual methods are clas-
sified into four main domains: Image Classification (Sect.3.1), Cross-Language
Classification (Sect. 3.2), Cross-Project Defect Prediction (Sect.3.3) and Activ-
ity Recognition (Sect.3.4). Methods described within these domains are inde-
pendent of each other and were not evaluated against each other on data sets.
Mainly due to the fact that some methods are not publicly accessible (as open-
source repositories). We can find a comparison of the individual methods to some
extent in [4].
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Fig. 4. There are two approaches to asymmetric transfer learning shown in (a) and
(b). (a): Step 1 consists of mapping dataset A to dataset B using mapping methods.
Step 2 consists of training the model based on data from the transformed dataset A,
step 3 contains the phase where we test the model on dataset B from target feature
space. (b): Step 1 consists of the training of the model based on data from dataset A
from source feature space. In Step 2 we are looking for a mapping from dataset B to
dataset A. Step 3 shows the testing of the model based on the transformed dataset B.
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Table 1. Asymmetric heterogeneous transfer learning approaches discussed in Sect. 3.

Method Source data | Target data Transfer direction | Type of task

ARC-t Labeled Limited labels |S — T Image classification

MOMAP Labeled Limited labels |S — T Activity recognition

SHFR Labeled Limited labels | S < T Cross-language
classification

HHTL Labeled Unlabeled ST Cross-language
classification

van Kasteren’s | Labeled Unlabeled S—T Activity recognition

method

MHTL Labeled Unlabeled S—T Activity recognition

FSR Labeled Limited labels | S « T Activity recognition,
cross-language
classification

TLRisk Labeled Unlabeled S—T Cross-language
classification, image
classification

HDP Labeled Unlabeled S—T Defect prediction

HMM Labeled Also unlabeled | S — T Activity recognition

3.1 Image Classification

Image classification is very popular in the machine learning field. However it
encounters many difficulties. An example of such difficulties can be labeling new
images (requires a lot of human labor), ambiguous objects in images or objects
having ambiguous explanations. Each image can also have different exposition,
brightness, intensity, coloring or angle of view. Some of these problems can be
solved by using transfer learning methods as will be shown below.

[18] solved the problem of domain adaptation for transferring object mod-
els from one dataset to another by introducing a novel approach in computer
vision. The main idea is to learn an asymmetric non-linear transformation that
maps data from one domain to another domain using supervised data from both
domains. There is a requirement that the source data along with a part of the
target data have to be labeled. The input consists of pairs of inter-domain exam-
ples that are known to be semantically similar or dissimilar. This approach can
also be used in the case that some classes in the target domain have missing
labels. [18] aims to generalize the model of [20] in his paper, which makes use of
symmetric transformations. The new approach of [18] is called Asymmetric Reg-
ularized Cross-domain transformation, shortly ARC-t. ARC-t shows how a gen-
eral formulation for the transfer learning problem can be applied in kernel space,
resulting in non-linear transformations. The transformation matrix is learned in
a non-linear Gaussian RBF kernel space. The resulting algorithm is based on
squared Frobenius regularization [21] and similarity constraints. Similarity con-
straints are created for all pairs of data in the same class by using a similarity
function. It helps us decide which pairs of data are similar and dissimilar. The
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ARC-t method was tested using two experiments. The first experiment included
31 image classes in the source and target training data. In the second experiment
only 16 image classes were included in the target training data and all 31 image
classes were represented in the source training data. Within Kernel Canonical
Correlation Analysis [22] the source and target domains were projected into
common latent space using symmetric transformation. This preprocessing step
is needed because the method needs to bring the source and target domains
together to test against other baseline approaches. During testing the method
showed certain advantages compared to existing baseline approaches such as
k-nearest neighbors, SVM, domain and cross-domain metric learnings and the
feature augmentation method proposed by [5]. The main idea of feature augmen-
tation is to duplicate features in order to capture differences among domains.
This method is briefly discussed in Sect. 2.1.

3.2 Cross-Language Classification

Another typical task in transfer learning is language transformation between
multilingual documents or web pages, specifically the transformation from one
language to another. This task can be solved using automatic translators men-
tioned in [23]. Transfer learning is aiming to solve the task without these tools,
only using the transfer of knowledge between related feature spaces. Most meth-
ods learn a feature mapping between source and target domains based on data
correspondences [18,19]. Correspondence means that there exist some relation-
ships between data from different feature spaces.

[24] present a hybrid heterogeneous transfer learning (HHTL) framework.
The method expects plenty of labeled source data and plenty of unlabeled tar-
get data. At first [24] learned an asymmetric transformation from the target to
source domain. As a second step the common latent feature space using trans-
formed data from the first step is discovered. Lastly, HHTL consists of deep
learning which learns a feature mapping from the target domain to the source
domain. HHTL simultaneously corrects the data bias on the mapped feature
space. This framework was tested on multilingual text mining tasks and also in
the application of text sentiment classification.

[19] propose to learn feature mapping based on the construction of feature
correspondences between different feature spaces. This construction is called
translator in [19]. In this work the language model is used. The language model
is a probability distribution over sequences of words [25]. The language model
links the class labels to the features in the source spaces and maps their trans-
lation to features in the target spaces. This novel framework is called translated
learning (TLRisk), where training data and test data can come from totally
different feature spaces. The main idea of translated learning is to translate
all the data from source feature space into a target feature space. We assume
there is no correspondence between instances in these different feature spaces.
The language model proposed by [19] consists of feature translation and near-
est neighbor learning. We can imagine this model as a chain of links which is
modeled using a Markov chain and risk minimization. For the development of
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a translator we need some co-occurrence data across source and target spaces.
Performance of the TLRisk framework was shown on text-aided image classifica-
tion and on cross-language classification (English to German classification). It is
important to note that [19] interprets translated learning as a learning strategy
different from transfer learning (other strategies: self-taught learning, multi-view
learning, supervised learning etc.). There exist some similarities between trans-
fer learning strategies and translated learning strategies [26], however translated
learning is focused on more general and difficult problems than transfer learn-
ing. This is caused mainly by the representation of feature spaces - translated
learning is looking for a translator between totally different spaces, for example
the source feature space can be represented by a labeled text corpus and the
target feature space by unlabeled images.

[27] proposed a domain adaptation method where data originates from het-
erogeneous feature spaces of different dimensions. The method includes a trans-
formation matrix to map the weight vector of classifiers learned from the source
domain to the target domain. This method works if the following requirements
are met: sparse feature representation and class-invariant transformation. Sparse
feature representation means that a feature in one domain can be represented
by only several features in a different domain. The feature mapping across these
domains is linear. Class-invariant transformation means that the feature map-
ping of some feature is invariant to different classes. To make the learning of a
heterogeneous domain possible, the transformation matrix has to learn the sim-
ilarity between source and target domain data. This data can be transformed
from source feature space to target feature space and equivalently vice versa.
[27] used the scheme - the Error Correcting Output Codes (ECOC) to gener-
ate binary classifiers for the multi-class classification problem [28]. With ECOC,
their solution, called Sparse Heterogeneous Feature Representation (SHFR), can
learn a transformation matrix. Part of the learning process of the transformation
matrix is the adoption of a multi-task learning method based on [29]. Multi-task
learning is based on learning more tasks simultaneously [3]. The SHFR method
(also in combination with ECOC) was tested against DAMA [19], ARC-t [18]
and HFA [12]. SVM classifier was used as a baseline method. The proposed
method (SHFR) performed best for all tests.

3.3 Cross-Project Defect Prediction

Software defect prediction is another important application area in transfer
learning and software engineering. There is a possibility to build a prediction
model with defect data collected from a software project and predict defects for
new projects (cross-project defect prediction - CPDP) [30-33]. However, projects
must have the same metric set with identical meanings between projects.

[34] introduce heterogeneous defect prediction (HDP) which allows heteroge-
neous metric sets across projects. We consider one source and one target dataset,
with heterogeneous metric sets. Each column and row represents a metric and an
instance, the last column represents instance labels. Metric sets are not identical,
each one contains different feature spaces. At first [34] apply feature selection
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techniques to the source data. For feature selection they used various feature
selection approaches widely used in defect prediction such as gain ratio, chi-
square, relief-F, and attribute significance evaluation. After that, metrics based
on the similarity such as correlation or distribution between the source and tar-
get metrics were matched up. With the final source dataset, heterogeneous defect
prediction builds a model and predicts the labels of target instances. To match
source and target metrics, [34] measure the similarity of each source and target
metric pair by using several existing methods such as percentiles, Kolmogorov-
Smirnov Test and Spearman’s correlation. The key idea is computing matching
scores for all pairs between the source and target metrics. Figure5 (figure orig-
inally from [34]) shows the usage of a simple sample matching. There are two
source metrics (X and X5) and two target metrics (Y7 and Y53). Thus, there are
four possible matching pairs, (X3, Y1), (X3, Y2), (X2, Y1), and (X, Y3). From
all pairs between the source and target metrics, we remove poorly matched met-
rics whose matching score is not greater than a specific cutoff threshold. In this
case the threshold is 0.3, so the X7, Y5 pair is not possible. After applying the
cutoff threshold, they used the maximum weighted bipartite matching technique
to select a group of matched metrics, whose sum of matching scores is the high-
est, without duplicates. The sum of matching scores in the first group is 1.3
(=0.8 4+ 0.5) and that of the second group is 0.4. Thus, we select the first match-
ing group as the set of matched metrics. When mapping is finished, a model for
target labels prediction is built using the mapped data. The HDP method uses
logistic regression as the base learner. [34] used 5 groups with 28 datasets from
the field of software defect prediction for their experiments.

0.8

Fig. 5. The figure introduced in [34] shows the use of a simple sample matching between
two source metrics (X1 and X2) and two target metrics (Y1 and Y3).

3.4 Activity Recognition

We are further going to state several examples from the activity recognition
area where heterogeneous transfer learning finds numerous applications. In this
area the activities of daily living are monitored through diverse sensors. This
monitoring is crucial for the future of elderly care. There is motivation to use
existing data from other houses (each house has different dispositions, uses dif-
ferent sensors etc.) in order to learn the parameters of a model for a new house.
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The reason is that activity recognition models often rely on labeled examples of
activities for learning, which are missing in a new house (this problem is known
as the cold-start problem). Activity recognition and discovery models usually
include information based on structural, temporal and also spatial features of
the activities [7,35].

[35] also map sensors from source to target domain based on location or func-
tion. Their method is called Multi Home Transfer Learning (MHTL). MHTL
composes of 3 phases - activity extraction, mapping and label assignment. The
activity model consists of various features from sensors, such as structural, spa-
tial and temporal. Their method is a good example of the utilization of meta-
features. Meta-features are common for all data. It is a kind of mapping allowing
us to have a single common feature space that can be used for all houses [36].
In [35] meta-features are first manually introduced into the feature space (for
every source-target pair). Meta-features are features that describe properties of
the actual features. This feature space is then automatically mapped from the
source to target domain. Other works using meta-features are [36,37].

[36] use manual mapping strategies to group sensors based on their location
or function. They proposed a method for applying transfer learning to time series
data using a generative model. During training they are able to use both labeled
and unlabeled data. Each sensor is described using one or more meta-features,
for example the sensor on the washing machine might have one meta-feature
specifying that the sensor is located in the bathroom, and another that the sensor
is attached to the water pipes. The mapping of features occurs while learning the
prior distribution, and using it to learn the target model parameters. [36] uses
the Hidden Markov model to recognize activities and the EM algorithm to learn
the model parameters of the target house. For the evaluation of the performance
of the method they used three real world activity recognition datasets.

[38] designed a Multiple Outlook Mapping algorithm (MOMAP). MOMAP
computes optimal affine mappings from different source feature spaces (in their
terminology outlooks) to a target feature space by matching moments of empiri-
cal distributions. These spaces are not related through corresponding instances,
but only through the common task. The optimal affine mapping is a function of
geometric projection which maps the points lying on the same line onto one com-
mon point or to the same number of other points. Affine mapping preserves the
division ratio [39]. In the MOMAP algorithm affine mapping is represented by
translation and rotation. The mapping is done by matching moments of empirical
distributions. The empirical distribution function is associated with an empirical
measure of samples. Empirical measure means random measure realization of a
sequence of random variables. The moments are quantiles from the empirical dis-
tribution function [40]. Before mapping in the MOMARP algorithm, the scaling of
features of all spaces is required. The scaling aims to normalize the features of all
spaces to the same range. Then mapping is performed by translating the means
of each class to zero. Next, the rotation of the classes to fit each other is done
using a rotation matrix. Finally, we have to translate the means of the mapped
space to the final space. The framework performance is demonstrated on activity
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recognition data taken from wearable sensors. The task consists of the classifi-
cation of 5 different activities, where the source domain contains different but
related sensor readings as compared to the target. The method was compared
against a baseline method (SVM). MOMAP outperforms SVM in every test.

[8] propose a novel heterogeneous transfer learning technique called Feature-
Space Remapping (FSR). FSR can handle the different feature spaces without
the use of co-occurrence data (correlated data), as is shown for example in [19].
FSR maps the data to a different feature space using part of the labeled data
from the target domain to infer relations to the source domain. FSR requires a
one time manual specification of meta-features and then can be applied to map
multiple source and target domains. [8] map the features from target feature
space to a different source feature space. To achieve feature mapping, they learn
a mapping from each dimension in the target feature space to a correspond-
ing dimension in the source feature space. FSR computes the average similarity
between the source and target meta-feature values for each pair between fea-
tures from source and target feature spaces. The similarity is calculated between
two meta-features as the absolute value of the difference between meta-feature
values divided by the maximum possible difference between the meta-features.
As a product we get many-to-one mapping. [8] evaluated the performance of
FSR and its extensions in the activity recognition domain and in the docu-
ment classification domain. By extensions they mean informed and uninformed
FSR based on the availability of labeled data in the target domain. They eval-
uated 18 datasets from different smart apartments. A prerequisite were feature-
rich datasets. Baseline comparison was provided by manual mapping and no
mapping.

A lot of transfer learning methods solve situations where the difference
between the source and target domains is caused mainly by differences in the
marginal probability distributions of the domains [13,35,41]. By marginal prob-
ability distribution we mean probability distribution of the features contained
in the subset of a collection of random features.

4 Feature Mappings

If we consider heterogeneous transfer learning, one of the main operations of
transfer learning approaches is the mapping of features. These features can orig-
inate from different feature spaces. We can map the features into a common
latent feature space (e.g. symmetric approach) or we can look for a mapping
from one feature space to another (e.g. asymmetric approach). Finding an opti-
mal mapping is a significant problem in the machine learning community. By
mapping we mean a type of feature transformation (or combination of different
types of transformations) which maps features from one feature space to another.
The used transformation depends on the extent of the dissimilarity between
mapped features. Standard types of transformation are translation or rotation.
We have to also consider standard preprocessing methods between two differ-
ent feature spaces such as data type conversion, normalisation or discretization.
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We face many problems while mapping one feature space onto another: different
number of features (e.g. different dimensionality of each feature space), different
probability distribution, different data representation etc. In practice mapping
of features is often done manually. However the number of possible mappings
between source and target spaces grows exponentially as the number of features
increases. In a lot of cases, manual mapping of features is impossible. We may
also encounter the need to involve a domain expert. We can imagine a task from
the medicine field where we would like to map two different datasets which come
from different measurements of patient data from different machines. In these
cases it is almost impossible to solve the mapping without the involvement of a
domain expert. This requires both financial and human resources. The feature
mapping method also depends on the existence of co-occurence data. If there is
co-occurence data in our features space, there exist a lot of techniques of how to
manage the mapping, see [42]. In the heterogeneous transfer learning field, no
co-occurence data is common and no universal tool for their mapping is known.
The selection of a suitable mapping depends on the type of data - numerical
(each data instance is a numerical feature vector) or structured (each instance is
a structured object such as a string, a tree etc.), and on the specific problem. We
can also look for the mapping of each feature independently. We can distinguish
data types as numerical and nominal. Nominal features are represented by labels
or names and there is no ordering or distance measure among these values. Nom-
inal features are represented by a finite number of categories. Numeric features
are represented by real numbers.

If the number of feature combinations does not pose a combinatorial problem,
it is possible to realize feature mapping in a manual way. [43] try to map activ-
ity sensors from two different flats (activity recognition task). They proposed
a number of manual mapping strategies: intersect, duplicate, union. Intersect
means that for each function group of sensors, they match similar sensors and
sensors which have nothing in common are disregarded. Duplicate means that a
matching of similar sensors is performed for each function group. Sensors that
have no comparable sensor in the other house use any other sensor that exists
in the same function group. Union means that the union of all the sensors in
each function group is taken resulting in one sensor output per group per house.
[43] They then experimentally determine which mapping strategy works best.
However manual mapping can be domain dependent as is shown in [43]. And as
we stated above, manual mapping is often combinatorically impossible.

State-of-art of feature mapping consists of preprocessing, dimensionality
reduction and feature selection methods. There exist works which concern them-
selves with dimensionality reduction [13,15,44,45] and feature selection [46]. We
can also encounter feature weighting methods. But a wide spectrum of the meth-
ods covers the preprocessing phase. In this work several mapping approaches
used within transfer learning are presented. We can divide them into statistic
and metric methods. Statistic methods are represented primarily by the Spear-
man’s correlation coefficient, Kolmogorov-Smirnov test, Kullback-Leibler diver-
gence etc. We will focus more on pairwise metrics which are based on measuring
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the distance or similarity between data. As stated above, each problem per-
tains to a specific domain which has its own semantic notion of data similarity.
This data similarity can be difficult to express through standard metrics such as
Minkowski metrics [47]. The solution seems to be learning the metric from data.
This approach is called metric learning or similarity learning [21,47,48].

4.1 Metrics

There exist a lot of metrics, which can be used (tested) during the mapping of
features. By metric we mean pairwise metric [47]. Pairwise metric is a way of
measuring distance between objects. By distance we can also understand sim-
ilarity. A fundamental method is the family of Minkowski distances including
FEuclidean, Manhattan and Chebyshev distances. We can also use cosine similar-
ity to measure the cosine of the angle between two instances. It is widely used in
data mining (e.g. bag-of-words or for sparse vectors). One of the most popular
methods for comparing structured data is standard (Levenshtein) edit distance
and its mutations (e.g. Specific Cost Matrix, tree or stochastic edit distance),
where we search for the smallest number of transformations (insertion, deletion
or substitution of symbols) needed to transform one string to another [47]. Many
metrics exist as well as some good surveys [21,47], describing the individual met-
rics is out of the scope of this paper. Finding the correct metric basically solves
the whole problem. There exist a lot of algorithms that rely on distances or sim-
ilarities, for example k-Nearest Neighbors, Support Vector Machine, k-Means,
information retrieval etc. However, finding a suitable metric can be a problem.
Learning the metric from data seems to be a viable solution. This field is called
similarity or metric learning.

4.2 Similarity and Metric Learning

Similarity learning is a subfield of supervised learning and its task is to discover
a similarity function from an example that measures similarity between two
objects. It is closely related to metric distance learning, which finds a distance
function between data. These two areas are closely connected to transfer learning
or domain adaptation, where we search for suitable methods of comparing the
similarity of these features during the mapping of individual features between
domains. We can then perform mapping based on these similarities which is
represented by different transformations. The common process of metric learning
can be seen in Fig. 6 (altered figure from [47]).

1 Metric .
Underlying 5 Metric-Based S
Distribution 2 kl?;rrrl‘llt?rgn —>  Algothm >  Prediction

Fig. 6. Common process of metric learning.
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We distinguish between linear (e.g. Mahalanobis distance learning and linear
similarity learning) and nonlinear (e.g. kernelization of linear methods) metric
learning [20,49]. The following survey on metric learning by [21,47,48] can serve
for more details. Even though metric learning is a hot topic and is successfully
used for problems in computer vision and other fields (e.g. [50-52]) as far as we
know it is rarely used in the field of transfer learning and domain adaptation.
Metric learning methods can also be divided into supervised and unsupervised
according to the approach to learning. For supervised metric learning, a low-
dimensional subspace is learned to preserve the geometrical information of the
samples. For unsupervised metric learning, a discriminative distance metric is
learned to maximize the separability of samples from different classes [53].

We can find one of few applications in the symmetric approach by [20] who
present a method that adapts object models to new imaging conditions by super-
vised learning of transformations which minimizes the effect of domain-induced
changes in the feature distribution. Supervised learning is used for learning of
transformations and can be applied to categories which have no labeled examples
in the new domain. This trend is similar to symmetric heterogeneous learning.
However if a model is trained on one domain and then tested on another domain,
it often results in poor performance [20]. One approach to this problem can be the
generalization of the metric learning problem [18]. The idea is to learn a trans-
formation A that maps the data from one domain to the other, thus leading to
the inner product. This approach can be applied even when the dimensionalities
of the two domains are different [21].

[52] presented a general discriminative method for learning similarity metrics.
They propose a convolutional network for mapping data from source feature
space to target feature space. Their method produces a non-linear mapping
that can map any input vector of features to its corresponding version in lower
dimension. It is also important that meta-features are learned from data and
do not stem from prior knowledge about the task. The method can be used for
recognition or verification applications where the number of categories is very
large and not known during training, and where the number of training samples
for a single category is very small [52].

[49] propose a novel metric algorithm to transfer knowledge from source
to target feature space in metric settings called Cross-Domain Metric Learn-
ing (CDML). This method consists of three steps: (1) minimizing the distance
between different distributions, (2) constructing two Gaussian distributions, one
based on Mahalanobis distance to be learnt, second based on the information
geometry [54] of target domain data, (3) constructing two more Gaussian dis-
tributions, one based on Mahalanobis distance again, the second one based on
the labels and the geometry of source domain data. The results of these steps
are combined into the unified loss function of CDML and by this combination
the discriminating power gained from the labeled source domain data to the
unlabeled target domain data is transferred.

Another usage of metric learning can be in unsupervised domain adaptation,
where labeled source data and unlabeled target data are available for learning.
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The aim is to unify source and target distributions. The solution can be the
usage of a non-parametric way of measuring the distribution difference between
the source and target samples called Maximum Mean Discrepancy (MMD) [47].
This is used by [55] in a domain adaptation metric learning (DAML) algorithm.
Further we encounter a transfer metric learning (TML) approach by [56], where
the metric and the task covariances between the source and target tasks are
learnt under a unified convex formulation. Their work is based on multi-task
metric learning with transfer learning settings.

5 Conclusion

Numerous transfer learning methods have been introduced in the past decade.
In this survey we focused on heterogeneous transfer learning. Heterogeneous
transfer learning can be divided into feature-based and instance-based methods
according to what is being transferred. The feature-based methods gain more
attention in the field, because the tasks are more complicated and pressing, with
unclear solutions. The majority of feature-based approaches transform source
and target feature spaces to a common latent feature space. This approach is
called symmetric (see Sect.2.1). The minority of works concern themselves with
finding ideal mapping methods of source feature space to target feature space
or vice-versa. This approach is called asymmetric (see Sect.3). The asymmetric
approach is significantly more demanding because we are looking for an optimal
mapping between two different (but somehow related) feature spaces. We can
consider a mappping which is possible in both directions (between source and
target feature space and vice-versa) as optimal.

5.1 Challenges

The main contribution of this paper is to provide a summary of available up-to-
date approaches and methods in the area of heterogeneous transfer learning. We
also aim to emphasize some of the open challenges within this area. One basic for-
mulation of the problem is: can the labeled data from other related sources help
predict the target task, even if they have different feature spaces (e.g., image vs.
text data) or different data distributions, or even different output spaces? Unfor-
tunately as was described above, it depends on a lot of circumstances. A lot of
the discussed methods are domain specific and the generalization of mapping
transformations poses a challenge. In some cases generalization is impossible.
Another challenge is constructing an automatic mapping of features between
different feature spaces. Mapping is done manually in many cases and it is very
time a human resources consuming. Automatic mapping will also have to face
a challenge - there are two ways of automatic feature mapping: trying multiple
mappings or mapping by analogy. This is often computationally very demand-
ing. There are also some complications connected to the lack of overlap between
feature spaces and different dimensionality. We also have to consider, whether
there is any correspondence between features. One of the remaining questions
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is the negative transfer within asymmetric heterogeneous transfer learning and
varying data [57]. Negative transfer represents a decision when transfer learn-
ing is still beneficial and when its use can have negative effects (e.g. is more
demanding than manual mapping, model results have low accuracy etc.). The
adaptation of metrics to varying data (e.g. lifelong learning, detection of concept
drifts) may also pose a challenge.

Our future work will consist of finding suitable feature mappings between
different source and target spaces. We would like to use these mapped features,
more precisely the data, in machine learning models which were learnt on data
not mapped and evaluate their relative performance. This paper forms a base
for future work in the field of asymmetric heterogeneous transfer learning using
methods of metric learning - this combination is not very common as far as we
know and it is one of the main challenges which could bring an automatized and
generalized solution for asymmetric heterogeneous transfer learning problems.
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