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Abstract. Automatic detection and segmentation of neurons from
microscopy acquisition is essential for statistically characterizing neuron
morphology that can be related to their functional role. In this paper, we
propose a combined pipeline that starts from the automatic detection of
the soma through a new multiscale blob enhancement filtering. Then, a
precise segmentation of the detected cell body is obtained by an active
contour approach. The resulted segmentation is used as initial seed for
the second part of the approach that proposes a dendrite arborization
tracing method.

1 Introduction

Thanks to the great advances in microscopy technologies and cellular imaging,
we have many tools and techniques allowing to address fundamental questions in
neuron studies. We can capture high-resolution images of single cells or neuron
population that enable neurobiologists to investigate the neuronal structure and
morphological development associated to neurological disorders.

Recent studies [1] claim that the morphology (i.e., size, shape and dendritic
arborization) of a neuron is a key discriminant of its functional role. With differ-
ent morphological features and different functional tasks, distinct neurons have
diverse soma shapes and dendrite arborizations. Developmental abnormalities
might lead to neuron malfunction and can be early signals for variety of neu-
ropathies and neurological disorders.

To support neuroscientists in this study, fully automated tools for neuron
detection and segmentation are required. Different approaches have been pro-
posed [2,3], however still to date, the state of the art is not still satisfactory
given the complexity of the problem. For example, the manual interaction that
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some tools require [4] is time consuming, expensive and extremely subjective as
it depends on the user expertise and diligence.

Moreover the task is quite complex for different reasons. First of all, neu-
ronal samples are highly heterogeneous across different acquisitions. Images can
be characterized by high cell density and shape variety and usually there is a low
contrast at the neuron boundaries. Indeed, the fluorescence expressed is com-
monly non-uniform: it might present high intensity variability between soma, its
border and the processes, leading to bad morphological segmentation of cell and
significant fragmentation in dendrite appearance.

Traditional segmentation approaches that use basic method such as thresh-
olding and morphological operators are not precise enough for the task at hand
and lead to wrong segmentations. Learning approaches, nowadays broadly used
in object segmentation also thanks to Deep Learning, are not suitable for these
images because they require a huge amount of hand-labeled neuron samples for
training [5].

Among deformable models, active contour models have demonstrated good
performance in segmentation also in correspondence of challenging data [6,7].
Their main issue is the high sensitivity to the initialization, which often requires
user setting. To this aim, recent active contour models trying an hybrid approach
to automate the initial mask have been introduced [8,9].

Skeletonization is a global technique that extract the binary skeleton from
a given neuronal structure [10,11]. The key idea of these methods is an itera-
tive erasure of voxels from the volume of the segmented object preserving the
topology of the contained structure. Minimal path based tracing are other global
approaches which aim at linking seed points through an optimization problem
[12] or through Fast Marching algorithm [13]. Minimum Spanning Tree (MST)
tracing deals with the link between detected points into a tree representation [14].

In our work, we present a combined and fully automatic approach in order
to detect and segment the whole neuron. The first part [15] starts with soma
detection using a multiscale blob enhancement filtering. Then, neuron bodies are
segmented by an high performance active contour model. The resulting segmen-
tation is used to initialize the second part of the method, concerning dendrite
tree segmentation by hessian-phase based level set model.

The remainder of the paper is organized as follows. In Sect. 2 details on the
adopted dataset are provided. We present the combined method in Sect. 3: for
the detection and segmentation of cell bodies see Sect. 3.1 and for the dendritic
tracing see Sect. 3.2. In Sect. 4 results are presented and conclusions are provided
in Sect. 5.

2 Materials

In this work, we use two different datasets: Mouse Retina [15] and Larva
Drosophila [16]. Mouse Retina dataset shows populations of Retinal Ganglion
Cells (RGCs) which play a central role into the complex and stratified struc-
ture of the retina. Retina samples were imaged using Leica SP5 upright confocal
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Im3 (Calretinin) Im4 (Calretinin) Im5 (Thy1-EYFP)

Detail of Im3 Detail of Im4 Detail of Im5

Fig. 1. Some images containing Retinal Ganglion Cells (RGCs) used for testing the
proposed method [15]. The images show high variability across samples. In the bottom
line, there is some magnified crops of the upper images, showing the complexity of
images, where the analyzed structures are mixed with background and other structures.

microscope. Images were acquired at (sub)cellular resolution and at high aver-
aging number to reduce the noise level due to the limitation of light penetra-
tion in deep layers of the tissue where RGCs are located. A total of 5 images
(2048 × 2048 and 1024 × 1024 pixels), showing some hundreds of cells each,
were selected from 3 distinct retina samples including: (i) three images obtained
from samples with genetic fluorescence expression, (i.e., Im1 from PV-EYFP
and Im2 and Im5 images from Thy1-EYFP staining), and (ii) two images from
samples with immunofluorescence staining using the Calretinin calcium-binding
protein (Im3 and Im4) (Figs. 1, 2 and 3). The samples were selected to best cap-
ture the variability in terms of fluorescence expression, cell and axonal bundle
density and background.

Larva Drosophila dataset is acquired on some sensory neurons in wild-type
larva Drosophila [16] studied over different development phases. This dataset
shows single neurons including both cell body and dendritic tree. In our case,
we study the 2D maximum projection value on xy plane across slices. Figure 2
shows some 2D maximum projection of the considered volumes.
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Sample#2 Sample #4 Sample #7

Detail of Sample #2 Detail of Sample #4 Detail of Sample #7

Fig. 2. Some samples from the second dataset imaged single neurons. Images shows,
also for this dataset, the heterogeneity across samples and across microscopic acquisi-
tions. In the bottom line there are some details of the correspondent top line images.

3 Method

To automatically study neuron morphology, we need to detect and segment
the cell body(i.e. the soma) and trace its dendritic arborization. In this work,
we describe the sequence of methods we used to solve the soma detection and
segmentation task and the dendrite tracing.

3.1 Soma Detection and Segmentation

The pipeline for cells detection and segmentation is composed of three main
steps. As shown in Fig. 3 a Blob-based Filtering (second column) is followed by
an Active Contour (third column) and a Watershed Transform (last column).

The Multiscale Blob Enhancement Filtering is used to identify regions where
neuronal cells are likely located. After the blob filtering approach, blob-shapes
objects are binarized and used as initial ROIs for a Localizing Region-Based
Active Contour [17] that traces cell borders. Due to the fuzzy cell boundaries
and occlusions, multiple cells can be segmented all together as a unique entity.
To cope this issue, we apply a watershed transform.
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Fig. 3. Pipeline applied to two examples (from the top, Im1 (PV-EYFP) and Im2
(Thy1-EYFP)) with a crop in the central row, showing the difficulties caused by
contiguous cells [15]. In column, starting from the left side: Original Fluorescent
Microscopy Images; Results of the multiscale blob filter binarization; Results of the
active contour segmentation in blue transparency over the original image for getting
the suitable qualitative performance; Results of the watershed transform and of the
final threshold. (Color figure online)

Blob-Based Filtering. The Multiscale Blob Enhancement Filtering improves
the intensity profile of cell bodies and reduces the contribution of dendritic and
axonal structures. The eigenspace of the Hessian matrix H is analyzed at mul-
tiscale to determine the local likelihood that a pixel belongs to a cell, i.e. to
a blob profile. The proposed approach is inspired by the work of Frangi et al.
[18] that defines a multiscale vessel enhancement filtering. The Frangi filter basi-
cally depends on the orientational difference or anisotropic distribution of the
second-order derivatives to delineate tubular and filament-like structures.

For 2D images, the formulation of Frangi is defined as follows:
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2 are the eigenvalues of the Hessian matrix at point xo and
at scale s, β and γ are two thresholds which controls the sensitivity of the line
filter and S is defined as Λ = ‖H‖F =
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j , where D is the dimension of
the image. This measure is used for differing the structures from the background.

Starting from Frangi’s idea, we modify the filtering to filter-out line-like pat-
terns in favor of blob-like structures (as [19]).
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Instead of a vesselness measure, we define a blobness measure as follows [15]:

Bs(xo) =
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where λxo,s
1 and λxo,s

2 are the eigenvalues of the Hessian matrix at point xo and
at scale s. β is a threshold which controls the sensitivity of the blob filter. In
our experiments, both β and the Hessian scale have been selected as the average
neuron radius. Equation (2) computes the blobness in the case of bright objects
over dark background. In case of dark structures, system conditions should be
reversed.

The filter is computed at a multiscale level. The response of the blob filter
would be maximum at scale s that is more suited to the diameter of the blob to
detect. Our blob enhencement filtering is said multiscale because we combine the
blob measure at different scales to obtain a final blobness estimation defined as:

B(xo) = max
smin≤s≤smax

Bs(xo) (3)

where smin and smax are the minimum and maximum scales where we expect
to find structures.

Active Contour. Within active contour models, we exploited Localizing
region-based active contour [17], an improved version of traditional ones [6,7].
The advantage of the proposed model is that objects characterized by hetero-
geneous statistics can be successfully segmented thanks to localized energies,
where, instead, the corresponding global AC would fail. This approach allows to
remove the assumption that foreground and background regions are distinguish-
able based on their global statistics. Indeed the improving hypothesis is that
interior and exterior areas of objects are locally different. Within this frame-
work, the energies are constructed locally at each point along the curve in order
to analyze local regions. The localization radius is chosen following the size range
of the objects to be segmented. In our case, for each image, we defined a radius
equal to the average soma radius, depending on the image size and on the micro-
scope lens used for the acquisition.

Thanks to this efficient technique, we obtain a segmentation mask which
tightly fits real cell bodies.

Watershed Transform and Size Filter. Active contour can fail to sepa-
rate groups of overlapping or contiguous cells. So, we exploit the simplicity and
computational speed of the watershed transform, introduced by Beucher and
Lantuéjoul [20], to split cells englomerates into groups of cells.

As a final step, we delete components which are too small or too large for
being cell bodies (a given example is in Fig. 3, first line) applying a size filter to
remove structures with size outside an acceptable range of soma dimensions. It
is possible to fix this range by a statistical analysis of the dimensions removing
the tails of the distribution.
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Crop of Im5

Resulted Crop Segmentation

Fig. 4. Some cells are not easily visible to the human eye just visualizing the retina
images, but they are discovered and segmented by our algorithm (for example, in this
cropped figure, pink and blue cells were hardly detectable). Adding contrast to the
image makes these somata clearer but it increases noise and cell heterogeneity [15].
(Color figure online)

3.2 Dendrite Segmentation

To reconstruct the dendrites, we exploit the soma segmentation as initialization
seed to start a level set propagation with local phase and with hessian eigenspace
information. The main idea is that local phase is extracted using quadrature
filters and this allows to distinguish lines and edges in a image [21,22]. In our
case study, a dendrite can appear locally as a line or as an edge pair; then a
multiple scale integration is used for capturing information about dendrites of
varying width and contrast. Our novel idea is weighting this filter by the Hessian
eigenspace that guarantees that only pixel belonging to filamentous structures
contributes [18]. In particular we modify Eq. (4) in [21] weighting the evolution
term with the first eigenvalue. The new evolving equation becomes:

∂Φ
∂t

= −|λ1| Re(q̂(σ)) |∇Φ| + αk|∇Φ| (4)

where λ1 is the first eigenvalue computed in each pixel by the Hessian Matrix, q̂
is the normalized phase function, α is a regularizer and k is the mean curvature.
With this contribution, the background signal is omitted and λ1 drives the level
set only where the pixels belong to a structure. The result is a “local” filter
which can drive a contour towards the dendrite arborization (see Fig. 7).



128 S. Baglietto et al.

Fig. 5. Some example images from Larva Drosophila dataset. In column, from the left
side: 2D projection of the original volume; soma detection and segmentation applying
the first part of the proposed approach; whole neuron segmentation including dendrites.

4 Results and Discussion

For the evaluation of soma detection and segmentation, we applied our pipeline
to two different datasets, Mouse Retina [15] and Larva Drosophila [16]. For the
evaluation of dendrite segmentation, we use Larva Drosophila dataset because
only this one contains images with the complete dendritic tree labeled for each
neuron. As previously described in Sect. 2, the first dataset, Mouse Retina, is
composed of 5 different retinal images representative of possible variations on
the retinal samples, such as brightness, intensity, size and number of cells, pres-
ence of axonal structures and processes, strong background signals, etc. These
samples show images at the network scale of many dozens of RGCs with higher
fluorescence expression into the soma. We generated the ground truth manually
segmenting all cells in each image (around 280 cells in total). The second dataset,
Larva Drosophila contains images made of 11 single neurons representative of
spatially inhomogeneous signal-to-noise ratios. Also in this case, we manually
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segmented all the neurons (both soma and dendrites). For the gold dendritic
tracing, we adopted Simple Neurite Tracer [4].

4.1 Soma Detection and Segmentation Results

To give a qualitative evaluation, we report different examples of Mouse Retina
in Figs. 3 and 4 and of Larva Drosophila in Fig. 5 (central column) where it is
possible to see that our approach works in different sample conditions.

To quantify the performance of our method, we adopt the Dice Coefficient
(DC), a widely used overlapped metric for comparing two segmentation. DC is
defined as follows:

DC =
2(A ∩ B)
(A + B)

,

where A is the binary ground truth mask and B is the binary segmentation
result. The DC value ranges between 0 (absence of agreement) and 1 (perfect
agreement). A DC higher than 0.70 usually corresponds to a satisfactory seg-
mentation [23].

Table 1 shows the quantitative results on our Mouse Retina samples. We
compute the DC for each of the three steps in the pipeline (Blob-based Filtering,
Active Contour and Watershed Transform). Each stage clearly improves the
segmentation, reaching satisfactory results for all images. In Im3 (Fig. 1), the
fluorescence is mainly expressed by the body cells; for this reason, we reach
good scores right after the first two steps. The weaker DC values on images Im2
and Im5 are due to a strong presence of axonal structures which can be hardly
removed. As an additional index of performance at the network scale, we also
present the percentage of detected cells for each Mouse Retina image. Figure 6

Fig. 6. Variation of the % of detected cells in Mouse Retina dataset as a function of the
% threshold of overlap between detected cell and the corresponding annotated ground
truth [15].
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Table 1. Results for soma segmentation on Mouse Retina samples [15]. Dice Coeffi-
cient is computed for all steps in the pipeline (Blob Filter, Active Contour and Water-
shed Transform) and it shows improvements after each step. For the final stage of the
pipeline, there is also the percentage of detected cells computed assuming as detected
a cell with minimum overlap 50% with ground truth fixed at 50%.

Image # of cells Blob filter Active contour Final

DC DC DC Detected cells

Im1 (PV-EYFP) 95 0.60 0.69 0.81 86.32%

Im2 (Thy1-EYFP) 37 0.43 0.58 0.64 89.19%

Im3 (Calretinin) 64 0.62 0.82 0.83 75.00%

Im4 (Calretinin) 29 0.57 0.71 0.79 82.76%

Im5 (Thy1-EYFP) 48 0.51 0.62 0.70 85.42%

shows the variation of the percentage of detected cells at different thresholds
of overlapping between computer-aided segmentation with the ground truth to
count a cell as detected. It can be observed that 50% threshold is a good trade
off between the certainty of a cell detection and a satisfactory retrieval. So, in
Table 1, we consider a cell as detected if it is correctly segmented for more than
50% of its total area, comparing the segmentation mask to the ground truth for
each annotated RGC.

Table 2 reports the quantitative evaluation on the Larva Drosophila dataset.
Worst values are obtained for Sample #4 (see Fig. 2, middle column) and #6,
where background noise is strong and leads to confusing borders. In general,
however, the values are significantly high with an average reaching 0.88.

Table 2. Soma segmentation results on Larva Drosophila dataset. Dice Coefficient has
been computed for each segmented soma.

Image #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Average

DC 0.89 0.95 0.97 0.74 0.94 0.69 0.93 0.91 0.83 0.89 0.92 0.88

4.2 Dendrite Segmentation Results

A qualitative evaluation of the dendrite segmentation starting from seed soma
is shown in Fig. 7 (bottom right) and in Fig. 5. In particular Fig. 7 shows an
example of level set initialization, evolution and result; Fig. 5 proposes some

Table 3. Dice Coefficient has been computed comparing our segmentation and Tuff
segmentation with manual segmentation done by Simple Neurite Tracer [4].

Volume

DC #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Average

Our method 0.82 0.71 0.78 0.71 0.80 0.91 0.86 0.86 0.88 0.83 0.85 0.82

Tuff 0.51 0.39 0.40 0.33 0.32 0.77 0.79 0.80 0.71 0.76 0.76 0.56
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Soma detection and segmentation Level Set evolution

Level Set evolution Level Set evolution

Level Set evolution Final neuron segmentation

Fig. 7. An example of the level set evolution starting from the soma segmentation as
seed point in the Sample #1. The level set is shown at different evolution steps.
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Larva Drosophila image results after the first part of the segmentation process
(middle column) and at the final segmentation (column on the right side).

To quantitatively evaluate our neuron segmentation, we compare our method
with a recent state-of-the-art automated approach proposed in [24], Tubularity
Flow Field (Tuff ). Tuff is a technique for automatic neuron segmentation that
performs directional regional growing guided by the tubularity direction of neu-
rites. We compute the DC on Larva Drosophila results for both methods and it
can be observed that our method significantly outperform Tuff (Table 3).

5 Conclusion

We have presented a new approach for whole neuron segmentation in challeng-
ing fluorescent microscopy images. Our method is comprehensive of two main
steps: soma detection and dendrite segmentation. In the first stage cell bod-
ies are detected by a new blob filtering approach and segmented by an active
contour model and a watershed transform. Then, a novel hessian-phase based
level set has been developed allowing to segment the whole neuron morphology.
Tests have been performed on large scale and single scale images. We obtained
high results for both detection and segmentation of the soma and for the whole
neuron reconstruction. Thanks to its generality and automation, this framework
could be applied to similar images and it is easily reproducible for the full net-
work reconstruction at the population level. Moreover, we could easily extend
the method to 3D dimensions since our theoretical model adopted a general
dimension formulation. Finally, it also opens new perspectives for the analysis
and the characterization of neuronal cells.

Acknowledgements. The research received financial support from the 7th Frame-
work Programme for Research of the European Commision, Grant agreement no.
600847: RENVISION project of the Future and Emerging Technologies (FET) pro-
gramme.

References

1. Baden, T., Berens, P., Franke, K., Rosón, M.R., Bethge, M., Euler, T.: The func-
tional diversity of retinal ganglion cells in the mouse. Nature 529(7586), 345–350
(2016)

2. Meijering, E.: Neuron tracing in perspective. Cytom. Part A 77(7), 693–704 (2010)
3. Basu, S., Aksel, A., Condron, B., Acton, S.T.: Tree2Tree: neuron segmentation for

generation of neuronal morphology. In: 2010 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pp. 548–551. IEEE (2010)

4. Longair, M.H., Baker, D.A., Armstrong, J.D.: Simple neurite tracer: open source
software for reconstruction, visualization and analysis of neuronal processes. Bioin-
formatics 27(17), 2453–2454 (2011)

5. Zheng, Z., Hong, P.: Incorporate deep-transfer-learning into automatic 3D neuron
tracing. In: The First International Conference on Neuroscience and Cognitive
Brain Information, BRAININFO 2016 (2016)

6. Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Image
Process. 10, 266–277 (2001)



Automatic Segmentation of Neurons from Fluorescent Microscopy Imaging 133

7. Yezzi, A., Tsai, A., Willsky, A.: A fully global approach to image segmentation
via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13(1),
195–216 (2002)

8. Ge, Q., Li, C., Shao, W., Li, H.: A hybrid active contour model with structured
feature for image segmentation. Signal Process. 108, 147–158 (2015)

9. Wu, P., Yi, J., Zhao, G., Huang, Z., Qiu, B., Gao, D.: Active contour-based cell
segmentation during freezing and its application in cryopreservation. IEEE Trans.
Biomed. Eng. 62(1), 284–295 (2015)

10. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial
surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6),
462–478 (1994)

11. Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting
medial lines. Pattern Recognit. Lett. 19(7), 613–627 (1998)

12. Meijering, E.H., Jacob, M., Sarria, J.C.F., Unser, M.: A novel approach to neurite
tracing in fluorescence microscopy images. In: SIP, pp. 491–495 (2003)

13. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal
path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210
(2011)
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