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Abstract. In this paper a new architecture of convolutional neural net-
works is proposed. It is a fully-convolutional architecture which allows
to keep the size of the processed image constant. This, in consequence,
allows to apply it for image segmentation tasks where for a given image
a mask representing sought regions should be produced. An additional
advantage of this architecture is its ability to learn from smaller images
which reduces the amount of data that must be propagated through the
network. The trained network can be still applied to images of any size.
The proposed method was used for automatic localization of demyeli-
nating plaques in head MRI sequences. This work was possible, which
should be emphasized, only thanks to the manually outlined plaques pro-
vided by radiologist. To present characteristic of the considered approach
three architectures and three result evaluation methods were discussed
and compared.
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1 Introduction

In recent years, thanks to the technological progress (computations with GPU)
and growing access to large amount of labeled data, convolutional neural net-
works (CNN) achieved outstanding success in automatic analysis of the images
containing scenes from the surrounding world. However, in the case of special-
ized, e.g. medical, images the advance is not that evident. The main reason is
the lack of sufficiently large annotated training sets. Gathering of such data is
hard because the group of domain experts able to annotate images is relatively
small and the amount of data that must be analyzed may be bigger than it is
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in the case of traditional images (e.g. 3D sequences). It is even harder in case
of image segmentation task where every structure needs to be described with
details which makes this process extremely time-consuming [1,2]. That is why
it must be emphasized that research presented in this paper was only possible
thanks to the hard work of radiologist who precisely outlined the regions of
interest, demyelinating plaques, on every slice of head MRI sequence.

A typical application of CNNs is the whole image content classification task.
In the case of image segmentation two basic approaches can be found in the
literature. First one is a modified sliding window technique where CNN is used
as a part of the classifier. In this case, however, the label is not assigned to the
whole image but to the selected regions of that image (in particular to the regions
representing neighbourhood of a given pixel). Consequently also to train such
a classifier smaller image fragments, cut from the images manually annotated
by an expert, are taken. Such a method was used, for example, in segmentation
of anatomical regions in MRI images [3]. The second approach is so-called fully
convolutional approach [4]. Here, the whole image constitutes the network input
and as an output the mask, of the same size as an input image, describing
object localization is expected. To gain such a result some modification must be
made in CNN structure. Typical architecture contains convolutional and pooling
layers which reduce the size of the intermediate results. That is why some new,
upscaling (deconvolutional) layers need to be added to restore the original image
size. And although this approach requires CNN modifications its advantage is
fact that it can be trained using whole input images and expected masks without
the need of cutting them into smaller fragments. This kind of approach was
successfully used in e.g. analysis of transmitted light microscopy images [5] and
MRI prostate examinations [6]. The latter approach is particularly interesting
since it considers 3D convolution and the 3D MRI sequence is processed by CNN
as a whole.

The solution proposed in this work to some extent possesses features of both
above approaches. On the one hand, it tries to train CNN to act as a non-
linear filter capable of indicating areas of interest. Consequently the output is
the image of the same size as the input. In this case, however, no upscaling
(deconvolutional) layers are required. On the other hand, it allows to train such
a network using smaller image fragments without the necessity of processing as
large amount of data as needed for the training based on the whole images.

The paper is organized as follows: the second section describes the consid-
ered dataset and medical background justifying the importance of demyelinating
plaques localization, in the third section the proposed method is discussed and
in the fourth and the fifth section the obtained results and their analysis are
presented. Finally, the last section contains a short summary of the conducted
research.

2 Medical Background

Multiple sclerosis (MS) is a common, chronic disease involving the central
nervous system and leading progressively to different degrees of neurological
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disability. In multiple sclerosis cells of the human immune system attack myelin
sheaths of the nerve fibres which represent white matter in the brain and spinal
cord. The consequence of the myelin damage is inflammation in the affected areas
and then creating scar tissue. This process is known as demyelination and the
afflicted areas within the nerves’ sheathes are called demyelinating plaques. To
diagnose MS the combination of clinical symptoms, typical history, cerebrospinal
fluid examination and magnetic resonance imaging (MRI) of the central nervous
system is required. MRI plays an important role in diagnosing MS as it enables
not only to confirm the diagnosis and defining its pattern but also to assess the
progress of the disease and the response to treatment. It is essential to know
which areas of the brain are affected because the process of demyelination as
well as some other lesions in the white matter could also be present in different
neurological disorders. White matter lesions in MS occur in some characteris-
tic locations. Thus most of the lesions appear typically in juxtacortical regions
(that is close to the brain cortex), periventricularly (that is around the ventri-
cles and these lesions tend to lay perpendicularly to the long axis of the lateral
ventricles), in corpus callosum, cerebellum (within hemispheres and cerebellar
peduncles) and peripherally in brainstem (that is in cerebral peduncles, pons
and medulla oblongata).

T2-weighted images (T2WI) are MR scans which are the most sensitive in
showing the white matter lesions that are presented as areas of a high signal
(that means they are hyperintense and appear white on the images) in regard
to normal white matter. More sensitive than conventional T2WI in detecting
juxtacortical and periventricular lesions are FLAIR (fluid-attenuated inversion
recovery) sequences because they suppress the signal of fluid, including cere-
brospinal fluid which fills the ventricles and subarachnoidal space. As a result
the cerebrospinal fluid has a low signal and appears black on the scans obtained in
FLAIR technique, as compared to the white matter abnormalities which remain
hyperintense. On conventional T2WI cerebrospinal fluid presents high signal like
demyelinating lesions in the white matter thus it may be difficult to recognize
plaques localized in the vicinity of the ventricles and juxtacortical areas. On the
FLAIR images the contrast between cerebrospinal fluid and the white matter
lesions disposed in its proximity is more clearer and makes the plaques can be
better detected.

The present study is based on indicating demyelinating lesions in the white
matter on head MR images. All MR scans chosen to the study were performed
in FLAIR sequences, in axial plane, with 3 to 5 mm slices using 1,5 Tesla scan-
ner. The study comprised a hundred patients with confirmed diagnosis of MS,
including fifty men and fifty women in the age range between 19 and 66 years old
and in various stages of the disease. All noticeable changes of the signal intensity
within the white matter were considered as demyelinating lesions.

3 Method

Convolutional neural networks are biologically inspired [7] machine learning tech-
niques, where the input has a form of a finite-dimensional linear space range.
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They can be treated as a modification of multi-layer perceptron (MLP) with
weights sharing and reduced connections between layers. As opposed to MLP,
where the permutation of inputs does not influence the training process, in CNN
the structure of input data is important and remains unaffected while process-
ing. This and proper weights sharing cause that processing in CNN is translation
invariant. Typically in CNN as an input images are given after optional initial
preprocessing (scaling, normalization, etc.) [8]. The outputs of the hidden layes
are called feature maps [9,10] since they the describe actual localization of some
image features.

An usual application area of CNN is image classification. A typical approach
assumes that CNN performs some reduction of input image size which gives
image representation that is later processed by some general-purpose classifier -
MLP is preferred here since the whole CNN+MLP architecture can be trained
at the same time using gradient based optimization methods [10]. Many of the
winning solutions in ImageNet Large Scale Visual Recognition Challenge [11]
are based on such architectures [8,12,13]. Some of those solutions were later
successfully applied for other image recognition tasks [14]. And although classi-
fication is a typical application, there are also research works where CNN acts
as a feature extractor [15] or is used directly for object localization [16,17].

Fig. 1. Structure of the convolutional layer. Sample input matrices A1, A2, A3 are pro-
cessed with 2 groups of Fi,j filters (3 filters in each group). The results produced by
each filter group are summed up constituting separate output matrices: M1,M2. Image
originally published in [18].

Taking into account structure of feature maps, it is possible to define object
localization as a task of generating a specific feature map. It requires, however,
pure convolutional architecture without a classifier, since it destroys information
about spatial structure. Moreover, to obtain such a feature map, which can be
easily interpreted as an object localization mask, it must be ensured that input
and output dimensions are the same. That is why the approach proposed in this
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work, instead of reducing the size of feature maps, keeps their dimensions con-
stant. The details and consequences of that approach are described in Sect. 3.2.
Thanks to the normalization of the CNN output (e.g. using unipolar sigmoid
function), a fuzzy mask is created where the value assigned to each point can
be interpreted as a probability of its belonging to the object. Further processing
(noise removal, thresholding) leads to a binary mask which is useful in some
applications. Our approach to thresholding is described in Sect. 3.3.

3.1 Formal Description

To describe a convolutional layer, the basic unit of CNN, let us denote the input
data as a tuple of matrices A1 . . . Ap of a fixed na × ma size (for the first layer
it could be for example a multi-channel digital image). The key element of the
layer are q filter groups where each group is a tuple of p matrices of nf ×mf size
(Fi,j for i = 1 . . . p, j = 1 . . . q). The output is a tuple of feature maps M1 . . .Mq

where for each i = 1 . . . q

Mi = Zi +

⎛
⎝

p∑
j=1

⎞
⎠Aj ∗ Fi,j .

The Zi used in the formula above is a bias matrix of the same size as Mi. Matrix
convolution Aj ∗ Fi,j is a matrix of elements (Aj ∗ Fi,j)r,c for r = 1 . . . (na)−(nf )
+ 1, c = 1 . . . (ma) − (mf ) + 1 such that

(Aj ∗ Fi,j)r,c =

⎛
⎝

nf−1∑
dn=0

⎞
⎠

⎛
⎝

mf−1∑
dm=0

⎞
⎠ (Fi,j)(nf−dn),(mf−dm) · (Aj)(r+dn),(c+dm).

The resulting Mi matrices size is na − nf + 1 × ma − mf + 1 (Fig. 1).
Since the output is a tuple of matrices it can be processed by the next convo-

lutional layer. However, since the matric convolution with a fixed Fi,j is a linear
transformation, it is recommended to apply some non-linear activation func-
tion between those layers for every element of the output matrices. Although
the sigmoid-like functions are known to work here, it is recommended to use
ReLU (rectified linear unit) [8] or PReLU (parametrized extension of ReLU)
[19] functions. Additionally, in typical applications, the maximum- or average-
pooling layers are used between the convolutional layers. This reduces the matrix
dimensions by a certain factor [9]. In our task this would be counterproductive,
and that is why such pooling layers are not used.

If the size of filters is other than 1 × 1, Aj matrices have different size than
Mi. To overcome that problem we add zero-padding to the Aj to increase the
input size to (na +nf −1) × (ma +mf −1). This, of course, does not lead to
any information loss since using padding of the proposed size makes it possible
to construct the identity operator (Fi,j of odd dimensions with 1 in a central
element and 0 everywhere else). Moreover, the padding size (adding (nf − 1)
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rows and (mf − 1) columns) is independent from the input size – it is related
only to the filter size.

Each element of convolutional layer output is a result of processing some
nf × mf rectangle taken from each Aj . For the first feature map, nf × mf is a
size of visual field [7]. For further layers, the size of visual fields can be easily
calculated by tracking down the range of CNN input pixels affecting each output
element. Should the network consist of convolutional layers and element-wise
operations only, the visual field size would be nz × mz where nz = (nf1 + . . . +
nft) − t + 1 and mz = (mf1 + . . . + mft) − t + 1. In these formulas t denotes
a number of convolutional layers and nfw × mfw is w-th layer filter size for
w = 1 . . . t.

3.2 Detector Training and Usage

The proposed CNN architecture is a superposition of: zero-padding (of a size
which will keep the feature map size constant) [20], convolutional layers and
element-wise activation functions. Such a network can be trained to associate
inputs A1 . . . Ap with the resulting maps representing object localization binary
masks. Naturally, to obtain satisfactory training results, the neighboring pix-
els that represent the context of the analysed regions must be also taken into
account.

Thanks to the translation invariance of CNN, if the object location on the
image changes and context remains sufficient, the proposed solution guarantees
that output will be translated as well. It makes application of CNN easier, than
it would be for a naive solution which would require techniques such as sliding
window.

The advantage of the described approach goes even further than that. Con-
sider image B1 . . . Bp, similar to A1 . . . Ap but of different size. For example
B1 . . . Bp could be a bigger image including some objects to be detected. If it is
used as an input of it can be remarked that still:

– padding and convolution layer keep the image size unchanged, since no param-
eters depend on input size;

– convolution is possible to calculate as long as feature maps are larger than
filters (which is automatically satisfied if Bj are larger than Aj);

– element-wise functions are independent of the map sizes.

Consequently, the output map would still show the proper mask of a detected
object [17]. In other words, without any additional utilities – after training on
the small samples (which is remarkably faster than processing a big image with
a small object) we get an object detector with support of any greater input size,
as it is shown in Fig. 2. Detecting multiple objects works out of the box as well.
If there is some space between the objects to detect, so the visual fields do not
intersect, the process becomes equivalent to the detection of a single object.

Using some context around the object in the training images already pre-
vents CNN from picking any points of the included background, but it leaves
the network unprepared for any phenomena that occur only in greater distance
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Fig. 2. For each additional row/column of input matrices, you get one more
row/column of the output: (a) - the original configuration, (b) - the extended input.
In (b) for a rectangle of the same size as Aj matrices results are similar to (a) configu-
ration (it would work in this way for the white pixels of Bj and M ′

i). Image originally
published in [18].

from the detected objects. In order to avoid such problems with input regions
appearing in the bigger image but not present in smaller training samples, the
training set should include negative samples as it is described in Sect. 4.1.

3.3 Evaluation

As mentioned above, the size of the feature maps is kept constant from layer
to layer in the proposed neural network. We also do not use MLP layers at the
output and the goal of the training is regression instead of, as it would be typical
for CNNs, image classification. The raw MR scans are put on the CNN input,
and we expect the output to take a form of the same-sized image, clearly marking
the MS lesions as white regions, surrounded by black, neutral background. In
practice, however, the output image will not be truly black-and-white, and the
intensity of a given output pixel may be interpreted in terms of the probability
that it is a part of a lesion. Therefore, we have to apply thresholding in order
to make the final decision and to obtain a black-and-white result that may be
directly compared to the expert-generated ground-truth mask.

The value of the threshold T ∈ [0, 1], used for this purpose, determines the
standard evaluation measures of a binary classifier: precision and recall. Low
threshold means that many brighter regions of the output image will be inter-
preted as sufficiently bright to represent demyelinating lesions, thus increasing
the recall. For the lowest possible threshold value, T = 0, the whole image will be
regarded as a brain tissue lesion, and hence every actual ground-truth lesion will
be marked as properly detected (100% recall). The precision of this detection,
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however, will be very low. On the other hand, using high value of T will result
in the opposite: only the most outstanding regions will be detected as lesions,
yielding high precision, but many actual lesions will not have sufficient intensity
and they will remain undetected, yielding low recall. Therefore, the frequently
applied “balanced” measure of classification efficacy is to compute the harmonic
mean of precision and recall, known as the F-measure.

In our approach the F-measure is used to find the optimal value of the thresh-
old T . After the training is finished, we threshold the output images (obtained
for the input images from the training set) with several values of T , record-
ing the resulting F-measure values. The value of T maximizing the F-measure
then becomes the final threshold, which we subsequently use to compute the
classification results on a separate set of images (the testing set).

However, it should be noted that the exact method of computation of pre-
cision and recall may be defined in various ways. Below we will present 3
approaches that were used in the present study to obtain different evaluations
of the classification results.

Per-Pixel Evaluation (PPE). In the first evaluation method we measure the
coincidence between the regions detected by the network and the ground-truth
annotations by means of simple raw pixel count. For this purpose, we define
three sets of pixels – the true positive pixels (TP), the false positive pixels (FP)
and the false negative pixels (FN). The pixel at coordinates (x, y) belongs to one
of these sets under one of the following conditions:

TP : (Ithres(x, y) = 1) ∧ (Itarg(x, y) = 1),
FP : (Ithres(x, y) = 1) ∧ (Itarg(x, y) = 0),
FN : (Ithres(x, y) = 0) ∧ (Itarg(x, y) = 1),

where Ithres and Itarg denote the image obtained at the network output (sub-
jected to thresholding) and the target ground-truth image provided by the
human expert, respectively. Having computed the number of pixels in each set,
the precision and the recall are defined as:

precision =
|TP|

|TP| + |FP| =
|TP|
|P| ,

recall =
|TP|

|TP| + |FN| =
|TP|
|T| ,

where |X| denotes the cardinality of the set X. The precision is hence defined
as the proportion of the number of TP pixels (correctly reported within the
lesion areas) to all of the actually detected pixels (positive pixels, P). Similarly,
the recall is the proportion of TP to all the pixels that should be reported (true
pixels, T) [18].
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Connected Component Evaluation (CCE). The pixel-based approach
described above is straightforward and unambiguous. However, it tends to under-
estimate the results, even when all the lesions have been properly found, in the
case of significant mismatch of their shape or size. Counting pixels seems a bit
simplistic here. It is also counterintuitive – we typically want to give more prior-
ity to finding the lesions than to marking their exact shape, especially when we
consider the limited precision of the manually generated annotations. The con-
ducted experiments revealed that the lesions marked in the output images were
often much smaller than expected, due to relatively high values of the thresh-
old T . Naturally, lowering the threshold would make them bigger – and closer
in size to the corresponding annotations – but on the cost of generating many
false-positive lesions, which would eventually decrease the precision significantly.

Therefore, in order to concentrate more on the number of detected lesions,
instead of on the number of pixels, we decided to construct a different evaluation
measure on the basis of the connected components (CC) representing regions
identified in the thresholded output image and in the target image. Similarly
to the pixel-based approach, we define several sets (of connected components in
this case) and we compute the proportions of their respective sizes. Four sets are
necessary here: the set of all true CCs in the ground-truth image (T), the set of
all positive CCs in the thresholded output image (P), the set of all “matched”
true CCs (MT) and the set of all “matched” positive CCs (MP), where the latter
two are defined as:

MT = {cc0 ∈ T : ∃(cc1 ∈ P) cc0 ∩ cc1 �= ∅},
MP = {cc0 ∈ P : ∃(cc1 ∈ T) cc0 ∩ cc1 �= ∅}.

In other words, the output region is matched if it contains at least one pixel
coincident to a lesion region in the ground truth image and similarly for the
matched regions in the target image. It should be noted that we need the dis-
tinction between MP and MT, because several different CCs in the target image
may be matched by a single connected component in the thresholded output
image and vice versa. The precision and recall are then defined as:

precision =
|MP|
|P| ,

recall =
|MT|
|T| .

Region-of-Interest Evaluation (RIE). The CCE approach, as defined above,
operates on a higher level of image representation (connected components instead
of the pixels). Matching the lesions irrespective of their size and shape seems
appealing, but it also has some drawbacks, unfortunately. The problem is that
even the smallest regions, including single isolated pixels appearing in the thresh-
olded output image are now considered separate CCs, having equal importance
to bigger “visually relevant” regions. This often leads to a significant, yet quite
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“artificial” increase of the number of the positive regions (P) followed by the
drop of the precision value.

In order to overcome this and to make our evaluation more intuitive, we
decided to introduce the third evaluation, based on post-processing of the thresh-
olded output images. We aim at defining regions of interest (ROI) within them, so
that a single ROI may cover several nearby connected components. This is done
in several steps. First, we draw a bounding rectangle around every connected
component found in the thresholded output image. Every bounding box is then
padded (enlarged) by 10 pixels from all the four sides and this enlarged rectangle
is filled with foreground (white) pixels. After that, it is possible, that individ-
ual nearby CCs got merged, so we repeat the search of connected components
obtaining the final set of detected regions. On this “second-level” representation
we compute the standard evaluation measures (precision, recall and F-measure)
in the same way as in the CCE approach.

Additionally – for visualization purposes – we draw the bounding rectangle
around every of those enlarged and merged “second-level” regions. In this way
we obtain a very practical and useful outcome, that may be directly used by a
specialist to immediately spot the regions of interest, potentially containing the
demyelinating lesions in the MRI scan (Fig. 3).

4 Experiments

4.1 Dataset Preparation

The initial data set consisted of 100 scans from different patients. In order to
guarantee the consistent image format, with fixed image resolutions and number
of scan levels for each patient, data from 4 scans was discarded. The processed
data was split into the set used for training and validation purposes (77 patients)
and the test set (19 patients). This means that the evaluation on the test set

Fig. 3. Illustration of Region-of-Interest Evaluation. From left to right: an input image
with the detected regions marked by the bounding rectangles (i), the target ground-
truth image (ii), the raw output of the network (before thresholding) with the detected
regions marked by the bounding rectangles (iii) and the filled rectangles of the indi-
vidual connected components (iv).
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is based only on the patients that were not known during the stages of weights
adaptation and model selection. MR scans taken from the patients were con-
verted to sets digital images, 448 × 512 pixels each. The scans that contained
demyelinating plaques were used in the further processing. This yielded 982
training-and-validation images and 242 test images.

The 982 images selected for training and validation purposes were further
processed in order to provide the training set where a significant part of surface
consists of the plaques of demyelination. Instead of the whole images, selected
50 × 50 pixel tiles were used. The objective of this step was to reduce the com-
putational complexity of training when compared to the full-resolution images,
since the tile surface is 90 times smaller that the surface of the whole image.
What is more, selecting tiles where the demyelinating plaques were overrep-
resented was intended to prevent the stochastic gradient-based training from
reaching the local minima of parameters that yielded “all-zero” results, erro-
neously indicating that every analyzed scan is completely free of MS symptoms.
The initial approach was to use only tiles with centered occurrences of demyeli-
nating plaques. The initial attempts to create the working solution revealed that
this method of building the training set does not cover all the phenomena visible
in the MRI scans. In the result, bright objects that were underrepresented in the
training set, such as skull bones, adipose body of the orbit and paranasal sinuses
resulted in falsely-positive labeling of the MS lesions. In order to provide the
model that recognizes such cases, additional tiles from the other regions of the
scans were included in the training set as well (Figs. 4 and 5).

The selected data sets can be summarized in the following way:

– Training set – 7856 tiles of 50 × 50 size picked from the 982 training-and-
validation images. Tiles were selected in a pseudo-random way, but areas with
high average brightness or contrast were preferred. Approximately one tile
out of three contained only healthy tissues, without demyelinating plaques.
In case of MS lesions that were positioned close to the image boundaries,
the image was extended appropriately. This data set is used for the weights
adaptation in the presented neural networks.

– “Quasi-validation set” – 982 full-sized (448 × 512) images. This set serves
similar purpose to the typical validation set, but due to limited amount of
labeled data, it is not separate from the training set. It must be emphasized,
however, that this set contains remarkably more data than the training set.
The quasi-validation set is used for monitoring the learning progress and
selection of additional parameters of the final solution, such as threshold
level.

– Test set – 242 full-sized (448×512) images, separate from all the other data
sets not only in terms of images extracted from MRI scans, but in terms of
the set of patients that were examined. This set is used only for the final
benchmarks of the selected models.
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Fig. 4. Example of the MRI scan used in the test set (left) and the corresponding
reference demyelinating plaques mask (right).

4.2 CNN Architecture

The structure of the network, i.e. the number of layers, the number of neurons,
the size of the receptive fields and the non-linearity types as well as different
training procedures were the subject of intensive experiments in the presented
study. Three selected solutions are described below.

All the experiments were done with Caffe deep learning framework on a
cluster node with Tesla K80M GPU accelerator. The training set of 7856 50×50
tiles was fed to the network in mini-batches of 199 tiles each. The proposed
solution is a CNN composed of convolutional layers only (no MLP layers), which
makes it behave like an image filter, which accepts input images of any size,
without any changes to the architecture or the weights. This mechanism was
explained in detail in Sect. 3.2. This property makes it possible to calculate mean
square error (Euclidean loss) between the network outputs and the ground-truth
masks achieved for the full-sized scans (“quasi-validation set”). This error value
was used as the indicator of the training progress. The “quasi-validation set” set
contained 982 images of 448 × 512 size from which training tiles were cut.

Basic Architecture. In order to provide a full description of the neural net-
work architecture and the training process, a vast number of parameters needs
to be decided manually. The series of trial-and-error attempts lead us to some
general remarks about the optimal values of certain parameters. Six convolu-
tional layers make the neural network deep enough to recognize complex objects
and allow the back-propagation training to adapt all the weights in the network.
Greater amount of consequent layers would make it difficult to train the filters
of the initial layers (closer to the data input) because of the vanishing gradi-
ent. Standard momentum rate od 0.9 and the learning rate of 0.00001 seem to
provide stable and effective training for the selected architecture. Images were
processed by the neural network in batches, each containing 199 images to be
processed simultaneously.

The specific architecture of the “basic” experiment is illustrated in the dia-
gram 6. The standard approach involved using PReLU (parametric rectified
linear units) activation functions between the layers and the unipolar sigmoid
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Fig. 5. Example of tiles cut from the training-and validation set (top) with the cor-
responding lesion masks (bottom). Both tiles and the masks were cut from the full-
resolution images of the same format as it was illustrated in Fig. 4. Note, that tiles (i),
(iv), (viii) do not contain the lesions. Tiles (i) and (iv), however, present some of the
great number of possible big, bright structures that are likely to cause false positives
when detecting the lesions.

Fig. 6. The sequence of layers used in the convolutional neural network used in the
basic architecture.

activation function on the output of the final convolutional layer. The final layer
yields a single matrix, which can be later compared to the expected mask with
marked demyelinating plaques.

The slow, but stable convergence in terms of mean squared error on quasi-
validation set is presented in the top plot of Fig. 7. For as long as 24 millions of
image propagations in the training process, the error on the quasi-validation set
clearly decreases. The network learns to detect lesions on the training tiles, and
the result is general enough to apply to the full-sized images. The minimum of
mean squared error is 199.0.

In order to provide a practical verification of the network effectiveness, the
network output was thresholded to obtain the binary image, which can be com-
pared directly to the target mask. The value of the threshold selected in order to
maximize the F-measure, as described in Sect. 3.3. It should be noted, however,
that the characteristics of the training set, which was composed of small tiles,
were so different from the testing set containing the full scans. The appropriate
way to select the most useful threshold was to maximize the F-measure on the
quasi-validation set.
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Fig. 7. Training of the basic architecture without dropout. Top: learning curve
(Euclidean loss) on quasi-validation set; bottom: F-measure on the quasi-validation
set and the testing set. The unit on the horizontal axis corresponds to 106 tiles, which
were grouped in batches of 199 images.

The maximum F-measure value on the test set is 0.551, but we have no formal
way of selecting that exact model. The best F-measure on the quasi-validation
set is 0.622, but the corresponding model is visibly overtrained and yields onle
0.496 on the test set. Following the lowest mean squared error would result in
selecting a model that yields F-measure values of 0.617 on the quasi-validation
set and 0.545 on the test set.

The per-pixel F-measure value observed on the quasi-validation set keeps
growing as well, as we can see int he bottom plot of Fig. 7. The second curve
presented in that plot, however, describes the dynamics of F-measure on the test
set. This result starts decreasing much earlier than the MSE from the top plot –
the generalization error becomes visible after processing 14 millions images. The
network is apparently getting overtrained, as the result keeps losing its general
properties. It must be emphasized, however, that this effect happens only after
the whole training set was iterated over for almost 1800 times, which corresponds
to ca. 26 h of training.

Basic Architecture with Dropout. The proposed extension to the archi-
tecture from the previous section involves a basic application of the dropout
mechanism [21]. As it is presented in Fig. 8, the additional layer with p = 50%
dropout probability was added directly before the final convolutional layer.
In order to compensate for the reduced amount of data in the training phase
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Fig. 8. The sequence of layers used in the convolutional neural network used in the
basic architecture with dropout mechanism.

(half of the input values for Conv6 layer were replaced with zeros), the number of
filters in Conv5 layer was increased twofold. The change involved only one level
of the network, so the resulting training speed decrease amounted for only 15%
when compared to the basic architecture.

As we can see in the plots from Fig. 9, the effects of network overtraining
in the architecture with dropout are remarkably less intense than in the basic
architecture. The minimum of minimal square error on the quasi-validation set
occurred after ca. 24 millions of image propagations, which is similar to the pre-
vious experiment. The rate of error increase in the overtraining stage, however,
is much lower than it was without dropout. Similar remark can be observed in
the bottom plots of Figs. 7 and 9. The F-measure on the quasi-validation has
similar dynamics in both cases. The F-measure on the test set, however, reaches
the minimum notably later in case of the model with dropout (after 20 million
images instead od 15 million), and does not start to drop as rapidly as it did in
the previous experiment. The minimum of mean squared error is 195.7, which
is slightly lower than it was without dropout.

In order to compare the F-measure values to the previous model, we use
the model that minimizes the mean square error again. This model, when used
with the optimal threshold, generates F-measure values of 0.620 on the quasi-
validation set and 0.539 on the test set, which is comparable to the previous
experiment.

Improved Architecture. After the series of experiments on Tesla K80M GPU
accelerator, the CNN architecture presented in Fig. 10 was proposed. The specific
design of this architecture is supposed to take advantage from the fact that larger
filters are easier to adapt when they are closer to the network output, because of
the vanishing gradient making it difficult to adapt the convolutional layers close
th the network input. Similar remark was a reason for increasing the number of
filters in the first convolutional layer – since the filters are small and difficult
to adapt, using the increased number of randomly-initialized filters is intuitively
desirable. What is more, the dropout mechanism was used even more extensively
than in the “basic architecture with dropout” – there were two levels of layers
where some of the data (30% and 50%, respectively) was dropped out. The
architecture with multiple dropouts means increased amount of necessary time



178 B. Stasiak et al.

Fig. 9. Training of the basic architecture with dropout. Top: learning curve (Euclidean
loss) on quasi-validation set; bottom: F-measure on the quasi-validation set and the
testing set. The unit on the horizontal axis corresponds to 106 tiles, which were grouped
in batches of 199 images.

Fig. 10. The sequence of layers used in the convolutional neural network used in the
new, improved architecture.

per processed image, which makes the training of this model almost 35% slower
than the basic architecture.

The plots presented in Fig. 11, indicate that the general properties are similar
to the basic architecture with dropout – the overtraining effects are not nearly
as intense as in the basic architecture without dropout, but occur nonetheless.
The number of processed images related to the mean square loss and F-measure
optima is similar to the basic architecture with dropout as well. The achieved
minimum of the mean squared error function, however, is the best amongst the
three models, assuming value of 189.5.

In order to compare the F-measure values to the previous model, we use
the model that minimizes the mean square error again. This model, when
used with the optimal threshold, generates F-measure values of 0.620 on the
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Fig. 11. Training of the improved architecture. Top: learning curve (Euclidean loss)
on quasi-validation set; bottom: F-measure on the quasi-validation set and the testing
set. The unit on the horizontal axis corresponds to 106 tiles, which were grouped in
batches of 199 images.

quasi-validation set and 0.542 on the test set. This is apparently slightly bet-
ter than the basic architecture with dropout, but not necessarily than the basic
architecture. The three proposed solutions, despite of the differences, yielded
vastly similar F-measure values.

4.3 Threshold Selection

Obtaining the final classification results required thresholding of the raw net-
work output images, as described in Sect. 3.3. The threshold selection was based
on the results obtained on the quasi-validation set, which in turn depended both
on the network model (basic, basic with dropout, improved) and on the evalua-
tion measure (PPE, CCE, RIE). This generated 9 possible experiment settings,
and the threshold was computed for each of them individually. The obtained
thresholds were quite similar, although some differences were evident between
the pixel-based evaluation scheme and CC-based evaluation scheme (including
also RIE). The representative plots are presented in Figs. 12 and 13.

As may be observed, the obtained threshold was higher for the measure based
on the connected-components. This may easily be explained, if we consider that
in the case of the CCE even a single pixel is enough to have the corresponding
ground-truth lesion “matched“. We may therefore increase the threshold, remov-
ing more pixels (which in the case of the PPE approach would be punished),
reducing also the number of false positive regions and boosting the precision in
this way.
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Fig. 12. Threshold selection for the PPE measure.

Fig. 13. Threshold selection for the CCE measure.

4.4 Sample Results

The results reported hereby have been obtained on the test set, with the three
presented network models (basic, basic with dropout, improved), and the three
evaluation methods (PPE, CCE and RIE). The threshold value was computed
individually for each of the nine experiment settings on the quasi-validation set,
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as described above. Table 1 presents the precision, recall and F-measure values
for all the three network architectures and the PPE evaluation scheme. Similarly,
Tables 2 and 3 show the results for the connected-component-based approaches.
It should be noted the reported numbers of pixels and regions are counted across
the whole test dataset (292 images).

Table 1. Experiment 1 (PPE) – the results.

Model Threshold T P TP Precision
(TP/P)

Recall
(TP/T)

F-measure

Basic 0.46 143207 150444 80045 0.5321 0.5589 0.5452

Basic + Dropout 0.54 143207 148367 78595 0.5297 0.5488 0.5391

Improved 0.51 143207 156686 81362 0.5193 0.5681 0.5426

The results are generally quite similar, in terms of the obtained F-measure
values. Interestingly, the evaluation scheme involving the connected components
introduces only very small improvement over the pixel-based approach, although
it is based on completely different assumptions. Only the region-based method is
quite significantly better, exceeding 60%, probably due to the additional enlarge-
ment and merging of the connected components.

Table 2. Experiment 2 (CCE) – the results.

Model Threshold T P MT MP Precision
(MP/P)

Recall
(MT/T)

F-measure

Basic 0.71 1022 1319 605 711 0.5390 0.5920 0.5643

Basic + Dropout 0.77 1022 1341 620 704 0.5250 0.6067 0.5629

Improved 0.74 1022 1416 615 709 0.5008 0.6018 0.5466

Table 3. Experiment 3 (RIE) – the results.

Model Threshold T P MT MP Precision
(MP/P)

Recall
(MT/T)

F-measure

Basic 0.71 1022 912 675 514 0.5636 0.6605 0.6082

Basic + Dropout 0.78 1022 910 664 501 0.5505 0.6497 0.5960

Improved 0.75 1022 976 666 504 0.5164 0.6517 0.5762

Example images where the quality of lesion detection was remarkably good
(Table 5), remarkably poor (Table 7) and acceptably successful (Table 4) were
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presented in the tables that consist of: the input image, the demyelinating
plaques mask (ground-truth annotations), and the results of all the three neu-
ral networks presented in this paper. Additionally, the successful image, which
can be considered easy in terms of lesion labeling, is used to demonstrate that
the presented methods need to be intelligent even in order to solve the simplest
tasks. Simple thresholding can be considered as an alternate method of marking
“bright, important points” in the image. However, when compared to the neural
network, such a simplistic attitude is likely to act remarkably poor, as it is shown
in Table 6.

Table 4. Example image: acceptable detection of multiple small demyelination plaques.

Input Target Basic Basic+Drop Improved

Table 5. Example image: remarkably successful detection in case of all models.

Input Target Basic Basic+Drop Improved
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Table 6. Successful detection compared to simple thresholding.

Target Improved Threshold 50% Threshold 55% Threshold 60%

Table 7. Example image: selected difficult case.

Input Target Basic Basic+Drop Improved

5 Analysis

The sample results shown in the previous section are intended to demonstrate
the general possibilities of CNNs application for the image detection task. The
detection of typical demyelinating lesions was successful often enough to consider
the achieved results promising. It must be emphasized that the ability to detect
the demyelinating plaques is not only based on their intensity, but on their
shape and the characteristics of the surrounding tissue as well. This property
can be illustrated by the comparison of the results from Tables 5 and 6, where the
same sample is processed with the proposed neural network and with a simple
threshold operator.

It can be observed that the threshold of 50% is too low to detect only the
lesions, as it marks some other points between the cerebral hemispheres as well.
Higher threshold values, however, result in heavily reducing (55%) or totally
omitting (60%) one of the lesions. At the same time, even the threshold level of
60% is not sufficient to ignore the skull. Convolutional neural networks, however,
have no problem with labeling all of the demyelinating lesions contained in this
sample and with ignoring the skull. This specific sample is, apparently, easy
enough to process by all the proposed models.
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The general result of F-measure remaining around the range of 55%–60%
even in the most optimal of the presented solutions is sufficient to be considered
useful, yet far from the perfect outcome. The reasons for this can be investigated
in more detail in order to formulate possible ways to improve this result.

One of the problems is related to the structures such as bones and meninges
being the sources of false positives. As it was described in Sect. 4.1, the problem
can be partially addressed by extending the training set with additional samples
where no demyelinating plaques are present, and the average brightness and
contrast are relatively high. As it was shown in Tables 5 and 4, omitting the
skull is a simple problem. Structures such as eyes, which are present only in
some of the scans, are more likely to cause problems. Scans close to the top of
the skull are difficult to process as well, as the bones of the calvaria are not
perpendicular to the projection plane. This special case makes the bones appear
too thick to be properly recognized as unrelated to the lesions – example of this
phenomenon is visible in Fig. 5.

One of the possible solutions is to increase the number of training samples
containing such structures, in order to make the network train directly to solve
the task of recognizing them. Another remedy worth considering would be to
increase the size of tiles. The 50×50 images that are included in the training set
are insufficient to contain some of the brain tissues with enough context to train
the CNN to ignore the bright regions of great surface, such as eyes. Both sug-
gested solutions lead to increase of the overall area of training data unrelated to
the lesions. This property is, however, undesirable – it makes the network more
likely to learn to generate plain black output images. The “all-zero” outputs are
usually related to the local minimum of the cost function used in the learning
process. The greater the percentage of black points in the reference output is,
the more difficult it is to force the network to do anything else. More promising
direction is therefore to use some external tools to remove the irrelevant parts of
the input MR scans. Some automatic or semi-automatic solution can be applied
prior to the training and testing with CNN-based solutions. Such an approach
would make the whole solution less universal, but it would let the CNN concen-
trate on the cerebral tissue only – and that is where we are expected to find MS
lesions.

Another problem that has proven to have negative influence on the obtained
results is the quality and quantity of the collected scans. The training set is
small, and in order to use as much data as possible, the quasi-validation set was
not separate from the training set. Greater number of patients in the database
would be likely to improve not only the result, but the overall possibility to
use the most proper experimental methods as well. The remark on quality of
the data set is related to the visibility of some of the lesions. While the most
of the demyelinating plaques are clearly visible in the scans, there are many
small or very faint lesions present in the scans as well. Lesions like that are
likely to pose problems in the task of unequivocal identification as MS plaques.
The problems with overtraining and generalization, indicated in Figs. 7, 8, 9, 10
and 11 suggests that it would be advantageous to use a significantly bigger set
of the training images. More consistent standards of image annotation, perhaps
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involving several independent specialists, would undoubtedly improve the quality
of the data set as well.

Yet another issue worth mentioning is related to the precision of defining the
actual shape of the lesions by human annotators. It must be emphasized, that
in terms of per-pixel F-measure, even if all the lesions were properly detected in
the output image, the size and shape provided by the neural network is likely
to differ from the ground-truth mask. This issue was partially solved by the
connected component-based approach presented in this paper. The suggested
approach to splitting/joining of adjacent lesions is still dependent on the size of
the plaques suggested by the human annotator, but it is a notable step towards
the more credible quality measure of the suggested solutions.

6 Conclusions and Future Work

Diagnosis of the MS requires careful and time-consuming analysis of the brain
MRI scans. The final interpretation and decision about the treatment always
belongs to the human expert with appropriate medical knowledge. This process,
however, can be assisted with an automatic tool which is prepared with the tech-
niques of machine learning. The phenomenon of “demyelinating plaques” that
are visible in the MRI scans is precisely defined and well known to the radiol-
ogy specialists, but it is difficult to imagine any explicit, concise mathematical
formula that describes a plaque. The presented work is intended to provide the
best possible suggestions that can be obtained with the convolutional neural
networks.

The data set used in this paper consisted of MRI scans of 100 patients. The
groups was intended to be representative, so it included patients from different
age groups. Multiple slices from each MRI scans were stored in digital images of
relatively high resolution, which is 448× 512 pixels. Images of that size were cut
into 50 × 50 for the purpose of CNN training. Multiple neural network models
proposed in this paper were trained from scratch, starting with randomly initial-
ized filter contents. Due to the specific architecture which was based solely on
convolutional layers, the solution was able to process images of different sizes, as
it was described in Sect. 3.2. This means that the network trained with 50 × 50
tiles could be used for full-resolution 448 × 512 images without any changes to
the architecture or the weights that were achieved through the network training.

One of the goals of this paper was to analyse alternative methods of eval-
uation of the classification results. In addition to the approach used in pre-
vious works [18], based on counting individual pixels, two additional methods
have been tested in the present study. Analysis of the connected components
brought about a very moderate increase of the reported results, while defin-
ing the regions of interest from the enlarged and merged connected components
enabled to present the detected areas of demyelination in a potentially useful
and visually appealing way.

The best results in terms of per-pixel F-measure were close to the 55% on
the test set. While this result is not perfect, it can be considered as sufficient
to get the general location of the most of the plaques, which is already useful
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when the task of diagnosis assistance is considered. The expected masks used
in both training and evaluation of the neural networks consisted of polygons,
which were marked approximately by the medical specialists. Repeating the
same polygon shapes is virtually impossible – either for the neural network or for
another expert. Some of the significant sources of errors were related to the large
bright areas resulting in the false positives. This includes temporal bones and
optic nerves. Another common source of errors was related to the small regions
of noise that were erroneously detected as demyelinating plaques. Additional
consideration was devoted to the points that were detected in a general area
of the MS lesions – the proposed modifications to the measure of the object
detection quality provides us with some deeper insight into the results analysis.

The obtained result is promising, but the further room for improvement
remains apparent. The crucial room for improvement is related to the data set
size – greater number of training samples, covering better variety of cases, would
be likely to improve the result. The selected size of the training samples, which
is 50 × 50, is another parameter that might require further discussion. Larger
tile size would make it easier to include the whole temporal bones and optic
nerves in the training samples. Greater tile size, however, makes the training
additionally difficult, because generating plain black outputs becomes a remark-
able local minimum of the neural network cost function. This problem can be
addressed either by cost function modification or manual region growing on the
expected outputs that would increase the number of white points. Alternatively,
the irrelevant parts of the input images – namely, everything but the cerebral
tissue – can be removed manually by the separate tool.

The general field of the CNNs application for the medical image process-
ing is usually affected by the difficulty with collecting the sufficient data sets.
Unsurprisingly, this problem is visibly present in our work as well. Our analysis,
however, can be considered as an initial step towards even more efficient solu-
tions. Object localization based solely on convolutional layers, dynamic threshold
selection, and detailed description of the results involving F-measure and con-
nected components are some ideas, that – when used together – form an elegant
solution that can be applied to the great diversity of object localization problems.

Another way to improve the proposed method is to involve some well-known
pretrained CNN models instead of starting from the random weights. Neural
networks such as AlexNet [8] or VGG [22] consist of carefully trained weights that
are known to be useful in detection and classification of multiple normal, real life
objects. The mentioned networks are usually used as classifiers, but application
to the scale-preserving object localization solution is possible as well. Using
parts of the network with maximum-pooling layers is not necessarily impossible
in this task – the problem of restoring original resolution can be addressed with
techniques such as deconvolutional neural networks [12].
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