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Abstract. We study the impact of the network topology on various
market parameters (volatility, liquidity and efficiency) when three popu-
lations or artificial trades interact (Noise, Informed and Social Traders).
We show, using an agent-based set of simulations that choosing a Regu-
lar, a Erdös-Rényi or a scale free network and locating on each vertex one
Noise, Informed or Social Trader, substantially modifies the dynamics of
the market. The overall level of volatility, the liquidity and the resulting
efficiency are impacted by this initial choice in various ways which also
depends upon the proportion of Informed vs. Noise Traders.

1 Introduction

Financial markets have a central role in modern economies and receive from both
the academic and the politic world an important amount of interest. Among oth-
ers, some technical aspects in their behaviour are still discussed and scrutinized:
for example, volatility is presented as a normal outcome of their behaviour,
mainly (but not uniquely) driven by the “real world” stochastic they reflect.
Another important aspect is their liquidity, which, at coarse grain, determines
the ability of an investor to resell (to short) immediately or at very short notice
one of his positions. Other technical parameters are observed, while they more
or less all pertain to the same central hypothesis, the efficient market hypothesis
(see [1,7,8]). If market are efficient, they reflect a certain degree of the available
information regarding the economy. As such, they allow money to be allocated
where it is needed and appropriately rewarded.

However, the social nature of Financial Markets, the fact they are made of
human beings connected by networks (even if they seem to fade behind more-
and-more automated processes) has been taken into account relatively recently
for adding an extra layer of complexity in the analysis was not recognized as
necessary.

In this paper we tackle this complexity (following in that other researchers
like, for example, [11] or [4]) and propose a set of analysis geared at under-
standing their role, if any, in relation to a set of market parameters. As such,
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our research question is the one of a possible effect of the underlying network
topology of financial markets in the emergence of price motions and beyond, mar-
ket regimes. We thus follow a line that recognizes the centrality of information
contagion (and reputation) in the behaviour of stock markets.

The strength of our approach derives from the agent-based philosophy we
adopt, which is more and more common in computational economics (see for
example [10,12,13], or [2]). Studying such a complicated set of questions can
be done efficiently using an agent-based artificial market (see, in an other con-
text [5]), for this latter is designed so to mimic some essential features of the
real world (experiments over several days but with access to an intra-day infor-
mation, populations of agents but heterogeneity within this population, social
spacialization etc. . . ).

The paper is organized as follows: in a first section, we describe the overall
architecture of our financial market. The second section is dedicated to the agent
behaviour description. The third section presents our empirical strategy and our
initial results.

2 The Model

We study a simplified Economy populated with a large number of atomistic
traders where only two assets can be traded: a risk-free one and a risky one A,
respectively yielding a rate of return rf and paying a random dividend. Instead
of interacting uniquely through the price system, as usually proposed in the
literature, these are placed within a social network and as such are embedded
in a social neighbourhood. The topology of the social network can either be a
regular network (RN), such a ring for example (Fig. 1a, a Barabasi-Albert [3]
(BA) scale-free network (Fig. 1b) or a Erdös-Rényi random network (ER, see 1c,
see [6]), with a given level of connectedness. The characteristics of these net-
works blatantly differ: the RN is constructed such as all agents have exactly the
same number of neighbours. In the BA case, some agents can be seen as “hubs”
(with lots of neighbours), while others have a very limited social neighbourhood.
Finally, for the ER case, agents do have different amounts of neighbours, but
by opposition with the BA case, we cannot guaranty the connectedness of the
network. Through these topologies, they can share some information regarding
the dividend linked to the risky asset. During the trading process, each trader
receives a piece of information allowing to estimate the level of the dividend with
a certain level of accuracy. Part of the simulation will consist in observing how
this information can be refined through social exchanges and how communication
can affect the efficiency of the market. In addition, each trader is granted a level
of trust by her/his direct neighbours which may evolve regarding the accuracy
of their predictions regarding the value of this asset. These aspect are described
further in Subsects. 2.1 and 2.2.
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2.1 Assets, Portfolio of Assets

In our artificial world, time is discretized into “periods” and “ticks”. Periods can
be analysed as “days”, and within each of these periods, ticks can be seen as a
measure of intra-day time.

Fig. 1. Three social networks structuring our OTC market

The random dividend paid to the traders allows to compute a fundamental
value for the asset. For doing so, we refer to a modified version of the Gordon-
Shapiro model [9]: let pt be the price of the risky asset A; pt can be modelled
as the sum of further dividends that will be paid over time till infinity: pt=0 =∑+∞

t=1
dt

(1+ke)t , with ke the required rate of return for the risky asset at time t

(see for example [1]).
We introduce some volatility in the dividend process: d̃t = dt−1 × (1 + Gt),

with Gt ∼ N(μ, γ). In addition, we impose that ke > Gt∀t.
In doing so we preserve the intuition behind the GS model: on average, divi-

dends grow at a fixed rate, this rate being above the required rate of return ke.
Gt is not observable by the agents and is never common knowledge to anyone in
the economy. However these can access to an approximation of Gt, denominated
gt ∈ [gt, gt] allowing them to perform the computation of an estimate of pt. The
framing imposed by gt around Gt creates some level of uncertainty around Gt,
the latter being ruled by a parameter in further simulations.

pt ∈
[d0

(
1 + gt

)

ke − gt
;
d0

(
1 + gt

)

ke − gt

]
=

[
pt; pt

]
(1)

So far, each investor has his own representation of the current price of the
risky asset pt and the possible next dividend through a set of information Ωt. As
we will see later, this representation may be more or less accurate, depending
upon the category of agents and the information search made by each of these.
In the population of artificial traders, each agent i is initially endowed with
arbitrary quantities of both assets, QA,i ≥ 0 and Qrf ,i ≥ 0.
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Portfolio Construction: At the beginning of each period, agents want to maxi-
mize their expected utility in choosing θ, the proportion of risky asset A in their
portfolio, so to have the highest possible value for their expected utility

E(U(w(1 + rf ) + θε̃))with w the financial wealth (2)

Let λi be the Arrow-Pratt absolute risk aversion coefficient, we fall in the
classical case where the solution to the optimisation problem is

θ∗ =
μ

λiσ2
i

(3)

In Eq. 3, μ and σ respectively denote the expected returns and the volatility
of the risky asset. Knowing pt and using gt, investors can compute the possible
boundaries for their return in one period of time conditional to the information
they get. The return for the risky part of their investment:

rA,t ∈
[
log

( pt

pt−1

)
; log

( pt
pt−1

)]
=

[
rt; rt

]
(4)

As such, they can equally compute the expected return and, henceforth, the
volatility σ of the risky asset conditional to their estimate of Gt (see Eq. 5); if
we replace the population of possible returns for the asset A in t rA,t by X:

μ(X) =
∫

x f(x) dx V ar(X) = σ2(X) =
∫

x2 f(x) dx − μ2 (5)

with f(x) the probability density function for x. For the sake of simplicity, we
use in this research a uniform PDF.1 As such we have:

μ(rt) =
1
2
(rt + rt) V ar(rt) =

1
12

(rt − rt)2 (6)

2.2 Agents Behaviour, Reputation and Trust

Three categories of traders co-evolve within this framework:

– “Noise Traders” (henceforth NT). NT only rely on a public signal ps char-
acterized by the widest framing around Gt.

– “Informed Traders” (similarly “IT”) who differ from the preceding NT in
receiving a narrower estimate of Gt. So to speak, they receive a signal isi =
N(μ, ρi) allowing them to observe the true value of the risky asset with a
reduced level of variance. By definition ρi < σPS , with σPS the standard
deviation of the public signal.

1 Notice that if gt, which stands for the approximation of Gt follows a Normal distri-
bution, it only allows agents to determine a framing for the possible price. As such,
these latter must choose a “target” between the upper and the lower boundaries.
This is the reason why they rely on a Uniform PDF for doing so.
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– “Social Traders” (similarly “ST”) who receive exactly the same signal as NT
but can screen within their network environment, at a social distance equal
to 1, if another trader, whatever his type, has a reputation large enough
to be trusted in his own estimate of Gt. Said differently, ST can receive a
(possibly) noisy information from their neighbours in addition to the public
signal ssi = N(μ, (σPS + φt) with φt ∈] − σPS ,+∞[. The information they
receive can either reduce the variance of the price estimate because it contains
at least a piece truth φt ∈] − σPS , 0], or it does not include anything instead
of noise φt ∈]0,+∞[. Of crucial importance here is the way ST select these
information in their neighbourhood. For doing so, ST synthesize the latter
following these steps:
1. Collect and archive the estimate of each neighbour in terms of possible

deviation csi,t =
{

σPS , ρj,j �=i, φj,j �=i

}

t
; note that using the reverse rela-

tions coming from Eq. 6, ST can reconstruct te boundaries within which
their neighbours believed the next dividend will be. In addition, each ST
is endowed with a limited memory of k item: csi,t=1,..,k.

2. Make a choice in terms of information structure to use; in every case,
the information chosen in the set derives from the strategy of the ST; we
focus here on a single strategy where the decision is made with respect to
the confidence or trust the agent has established with his/her N neigh-
bours in time: Ti,j �=i =

{
Ti,1, Ti,2, . . . , Ti,N

}

t
. One could imagine that the

information in the neighbourhood is averaged, or any other aggregation
technique.

3. Once the choice of information is made, the agent computes the optimal
quantity of risky asset to hold θ∗ and the upper and lower bounds for
the price of the risky asset using the reverse relations coming from Eq. 6.
The agent will then send a limit order to buy or to sell rA in choosing
respectively the upper and the lower bound as reservation prices.

4. Trust is updated at each tick, according to the appropriateness of the
information transmitted by the neighbour. For doing so, the agent com-
pares the actual dividend dt perceived at date t and the expectations of
is neighbours concerning this dividend at time t − 1. Let [a, b]i,t be the
interval proposed by neighbour i at date t − 1. mt,i = a+b

2 is the mid-
point in this interval. The variation of trust linked to this information is
equal to:

ΔTi =
1

(dt − mt,i)2
×

{
−1 if dt − a < 0 ∨ b − dt < 0,

1 if dt − a > 0 ∧ b − dt > 0.
(7)

3 Empirical Settings and Results

In this section we present the way experiments have been designed, the nature
of the collected data and we present our results.
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3.1 Experiments

Since we are interested in understanding the role of the topology of the social
network structuring the relationships among traders, we explore several network
settings. The other elements of the simulations are described below:

– The total population of agents is set at N = 500.
– Each experiment is developed over 30 artificial days, which means that 30

dividend signals are generated and used by the agents so to decide the optimal
composition of their portfolio.

– Within each day, agents are allowed to express their orders 20 times, but
once by round-table cycle. Said differently, the scheduling system is such that
agents are allowed to speak one time per round, 20 rounds in a day being
organized. This generates pseudo intra-day prices and quotes.

– The Preferential-Attachment algorithm generates scale-free networks; the
number of edges in the network is equal to 2 × N , N being the number
of vertices.

– Our Erdos-Renyi and Regular Networks are generated so to have the same
average number of edges per vertex (i.e.): as such, the connectedness rate cr
of a ER network for a given population of N agents is equal to rc = 2

N . The
RN is, in this particular case, a circle.

– Concerning the way information is disclosed and processed:
• NT receive a signal around the next (unknown) dividend with boundaries

set at ±50%.
• IT have a better accuracy with regard to the dividend: their boundaries

are set to ±10%
• ST receive the same information as NT but they select an information in

their social neighbourhood with respect to the highest level of the trader’s
reputation at a social distance of 1. For each network setting, we run 12
experiments and we collect prices, quotes, and the trading volumes. All
these information are linked to a time stamp.

For each network setting, we run 12 experiments and we collect prices, quotes,
an the trading volumes. All these information are linked to a time stamp.

A “typical” experiment produces market motions that are qualitatively real-
istic (see Fig. 2).

3.2 Results

We are not interested in the mean return observed in our various experimental
settings: this parameter should not be affected by the set of initial parame-
ters but by the random process driving the dividend. However, the first step in
our data analysis process consists in transforming observed prices pt to returns
rt = ln(pt) − ln(pt−1) at a tick-by-tick level (each time a new price is observed
in the market). We do not consider the return produced by a new signal emis-
sion (end-of-the day effect) so to neutralize the volatility it may trigger: we are
not interested in the volatility provoked by the dividend process but rather by
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Fig. 2. Prices and quotes observed over a couple of seconds within the same day
(i) Green line: best bid, (ii) Blue line: best ask, (iii) Purple triangles: prices (Color
figure online)

the knowledge of each artificial agent and the one that is spread in its direct
neighbourhood.

More interesting are the parameters that are used to gauge the efficiency of
the market at the intra-day level:

Volatility – σ: we compute the average volatility of the market within each
day using the standard deviation of the returns. We expect a higher volatility
when the proportion of NT is important and when the impact of ST might be
limited by the nature of the Network over which they behave (for example,
in the RN setting where full connectedness is not granted).

Liquidity – λ: is simply in this case the average of stocks that are traded within
a day. If a new estimate of the next dividend has little impact on the agents,
whatever the reason, the exchanged volume should be relatively low compared
to one observed if this information deeply modifies the composition of their
optimal portfolio.

Efficiency – Ω: is the average of the absolute value of the deviation of prices
with regards to the fundamental value. The lower this metric, the more effi-
cient the market.

We first propose some graphical illustrations of our results.
In Figs. 3, 5 and 7, three matrix are nested, one for each network setting (the

order is systematically the same (i): ER, (ii): PA and (iii): RN) these matrix
represent using a colour (associated to a given level reported on the gauge at
the right side of the matrix) one of the parameters we study (σ, λ, Ω).

For these matrix, rows are organized by mix of NT vs. IT. The total pro-
portion of these sub-populations is always equal to 80% of the total population,
but their proportions vary from 80% to 0%. ST always account for 20% of the
population. All these figures have been chosen arbitrarily and may be discussed
and challenged in an other study.

Columns simply report the values obtained during each run of the same
experiment (e.g. 12 columns). We also provide an aggregate appreciation of the
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results obtained over all the experimental rounds (in Figs. 3, 6 and 8, statistical
tests not being displayed in this paper).

Volatility. We first observe how volatility seems linked to the nature of the
network over which the information diffusion occurs and to the proportion of
NT/IT. All results are presented in Fig. 3. Not surprisingly, the higher the
proportion of IT the lower the volatility (remember that Ask and Bids are
constrained by the boundaries around the estimate of the dividend: since IT
have a narrower estimate, prices should vary less when they populate the mar-
ket). Figure 4 summarized these values in calculating the average value observed
within each network setting row by row (over 12 runs). Overall, the ER set-
ting generates the highest average level of volatility 8.926% (all population mix
and runs considered). By decreasing order of volatility come respectively the
RN (8.463%) and the Preferential Attachment Network (8.328%). This may be
linked to a better information diffusion in the PA network, provided at least
some ST are located on vertice with a high degree of connectivity. However, as
we can see in Fig. 4, this appears to be particularly true when the proportion of
NT becomes relatively important (30% and more). One can imagine that in this
case, IT become less determinant in the price emergence and that the nature
of the Network tends to play a more important role in the diffusion of the best
price estimate.

(i) Erdos−Reinyi, (ii) Regular, (iii) Pref. Attach.
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Fig. 3. Level of volatility over 20 days per experiment and mix of NT vs. IT (20% IT in
any case) (i) By ranking orders, the overall highest level of volatility: (1) Erdös-Rényi,
(2) Regular and (3) Preferential attachment networks (ii) Volatility is a monotonic
function of the proportion of NT (iii) A similar threshold of 30% NT emerges whatever
the network structure

Liquidity. The liquidity of the market is, on average, higher for the RN and
the PA (resp. 471 and 464) than for the ER (446). Here again we observe a
quasi linear effect: when the number of NT decreases, the liquidity of the market
increases (see Fig. 5). The increase in the market liquidity is nonetheless different
for each network setting: it requires 60% of IT for establishing a monotonic
relationship for the ER, 50% for the RN, and 40% for the PA (see Fig. 6). Here
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again, if the proportion of IT vs. NT appears to have an impact of this parameter,
the Network structure also seems to play a role in establishing different levels of
liquidity.
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Fig. 4. Average level of volatility over all 12 experiments per mix of NT vs. IT (20%
IT in any case) – The rate at which volatility increases the most can be observed for
the RN case when the proportion of NT > 20%

(i) Erdos−Reinyi, (ii) Regular, (iii) Pref. Attach.
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Fig. 5. Level of liquidity over 20 days per experiment and mix of NT vs. IT (20% IT in
any case) (i) By ranking orders, the overall highest level of liquidity: (1) Regular and
(2) Preferential Attachment and (3) Erdös-Rényi networks (ii) Liquidity decreases with
higher proportions of NT (iii) The higher the availability of information, the higher
the liquidity of the market

Efficiency. When it comes to efficiency, the best network structure is clearly
the RN (Ω = 143) while PA and RN obtain respectively values for Ω equal to
150 and 157. The overall impression in analysing Fig. 7 is that if some aggregate
difference can be noticed, this seems not to be linked monotonically to the agent
population mix as it was clearly the case for λ and σ. This result, although
it must be confirmed and observed on larger experiments involving hundred of
runs, would indicate that the single factor at play in the efficiency level (as we
compute it her), would be the nature of the Network over which our artificial
traders behave. This impression is also confirmed in Fig. 8.
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IT in any case) – The rate at which liquidity increases monotonically varies among
network settings

(i) Erdos−Reinyi, (ii) Regular, (iii) Pref. Attach.
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the other settings where monotonicity cannot be identified
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4 Conclusion

Considering that a huge proportion of financial transactions occur in OTC mar-
kets, we propose an investigation of the topology of the underlying social network
over which they operate. Actually, we do not mimic a real OTC market but only
focus on what we believe to be an essential feature of their nature: the under-
lying network. We thus address the question of the impact of this network over
three essential parameters that are considered as essential for gauging market
dynamics: liquidity, volatility and efficiency.

For doing so, we study how information is spread over market participants
using a social-influence mechanism between three categories of agents (Noise,
Informed and Social Traders). In this simplified world, traders reputation is a
public signal allowing agents to estimate the reliability of the information located
in their social neighbourhood, and eventually to prefer this latter to the one they
own themselves. As such, the market network topology, in relation with the mix
of traders populations and the signals they receive create an artificial framework
geared at analysing information propagation and its subsequent, possible effects
on prices, returns, and exchanged volumes.

Although simplified, this framework cannot be studied without a powerful
multi-agent system. We do adopt this approach and show that, at least at some
level, choosing a Regular, a Erdös-Rényi or a scale free network and locating
on each node one Noise, Informed or Social Trader, substantially modifies the
dynamics of the market. The overall level of volatility, the liquidity and the
resulting efficiency are impacted by this initial choice in various ways which also
depends upon the proportion of Informed vs. Noise Traders.

We believe these preliminary results could be explored and extended further,
notably in addressing the way reputation, which is one main characteristics of
the information propagation, actually evolves at fine grain and precisely modifies
the dynamics within the network.
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