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Abstract. In recommendation systems, it has been an increasing
emphasis on recommending potentially novel and interesting items in
addition to currently confirmed attractive ones. In this paper, we pro-
pose a contextual bandit algorithm for web page recommendation in the
dependent click model (DCM), which takes user and web page features
into consideration and automatically balances between exploration and
exploitation. In addition, unlike many previous contextual bandit algo-
rithms which assume that the click through rate is a linear function of
features, we enhance the representability by adopting the generalized lin-
ear models, which include both linear and logistic regressions and have
exhibited stronger performance in many binary-reward applications. We
prove an upper bound of O(d\/ﬁ) on the regret of the proposed algorithm.
Experiments are conducted on both synthetic and real-world data, and
the results demonstrate significant advantages of our algorithm.

1 Introduction

Given a search query, a web page recommendation algorithm recommends a list
of related web pages based on a certain model of past user behavior and page
information [1]. An online learning algorithm for personalized recommender sys-
tems aims at learning user preferences and incorporating the user feedback at
each time step, while maintaining a high Click-Through Rate (CTR) over a
long period of time. Earlier recommendation algorithms mostly focus on recom-
mending the currently confirmed attractive items, and put less emphasis on the
potentially valuable items in the future, e.g., the Logistic Regression (LR) [2]
and the Factorizations Machines (FM) [3]. It was observed that such algorithms
usually lead to suboptimal recommendations in a long term [4]. Besides, though
accuracy is a typical target for recommendation, the diversity and the long-
term user satisfactory of a recommender system have shown more and more
importance [1]. Therefore, special attention should be paid to a balance between
exploiting immediate yet suboptimal rewards (exploitation) and exploring uncer-
tain but potentially interesting items which may produce large benefits later
(exploration).

Multi-armed bandit (MAB) is a general framework of sequential decision
problems, in which a balance between exploration and exploitation is needed [5].
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In the basic stochastic setting, we have a number of arms each with an unknown
reward distribution. At each time step, we need to select one of them, receiving
the reward randomly drawn from the corresponding distribution. The goal is
to maximize the total reward over the time, or equivalently, to minimize the
regret, which is the difference between our cumulative reward and the reward of
always pulling the best arm. Numerous algorithms have been proposed for MAB
and they have been successfully applied in many scenarios, such as personalized
recommendation [6], clinical trials [7], etc.

The Cascade Model (CM) is a widely used click model in which the rec-
ommended web pages are listed in a sequence and the user examines the list
from top to bottom until she finds a satisfactory one [8]. This model is partic-
ularly suitable for characterizing the user browsing behavior on mobile devices.
A number of bandit algorithms were developed and have exhibited prominent
effectiveness in cascade model [9-11]. One limit of the model is its assumption
that the user clicks at most one of the recommended items, and a natural exten-
sion to allowing multiple clicks is the dependent click model (DCM), where the
user may click more than one items before finding a satisfactory one [12].

In the DCM bandit setting, at each time step ¢, the learning agent displays
an ordered list of K items out of L ground items to the user. The user examines
the items in the displayed order and clicks on the attracted items. After an item
is clicked, the user may either be satisfied and leave, or unsatisfied and proceed
to the next item. The user leaves if all K items have been examined, regardless
of whether the user has found any satisfactory item or not. If the user leaves with
satisfaction, then the learning agent receives a reward of 1; otherwise the reward
is 0. However, this reward is not observed by the learning agent, as the agent
cannot distinguish between the user leaving with satisfaction or leaving because
she has exhausted all items. All the feedback the learning agent receives is the
clicking pattern such as 0100110000, in which case the learning agent knows
that the user is attracted by the 2nd, 5th and 6th items, but not by the 1st, 3rd
and 4th items. However, whether the user is attracted by the rest (the 7th and
beyond) remains unknown to the learning agent.

In many modern personalized news/apps/ads recommendation systems, cer-
tain features of users are available through registration or historical behaviors,
which can be exploited to provide more accurate recommendations [1]. In the
bandit setting, these features are usually called the context, modeled as a d-
dimensional vector that contains information of users or items. In previous
studies on contextual bandit in the cascade model, the attraction weight is
assumed to be the inner product of the vector of the contextual vector and
a fixed but unknown vector 6 [6,11,13], i.e. a linear function of the contextual
vector (thereby the name linear bandit). However, the reward function in real-
world applications can be complicated and hardly confined to being linear. With
an increasing amount of historical data, stronger models may be preferred for
better representability. Besides, logistic regression (LR) has exhibited empirical
improvements over the linear model in news recommendation [14]. In this paper,
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we go beyond the linear reward model and consider the more general exponential
family distributions, which include LR as a special case.

Our work has four main contributions. First, we incorporate contextual infor-
mation into DCM bandit model, and strengthen the linear model by including
exponential family distributions. Second, we present a computationally efficient
version of our algorithm which may be valuable for practical use. Third, we prove
an upper bound of O(dy/n) on the regret. Fourth, experiments are conducted on
both synthetic and real world data, which demonstrate the substantial advan-
tage of our algorithm compared to the typical LR algorithm and the one without
utilizing contextual information.

2 Problem Formulation

In this paper, we consider the contextual DCM bandit problem with the gener-
alized linear payoff for list recommendation. Let n be the total number of time
steps. Suppose that we have a set F = {1,...,L} = [L] of ground items. At
each time step ¢, the learning agent receives a user query. Combining the user
query and each arm ¢ gives a contextual vector z;; € R known to the learning
agent, whose action is to recommend an ordered list A; = (al,...,a%) of K
distinct items from E to the user.! We say that such an action has length K,
and denote by ITx(E) the feasible action set of all ordered lists of K distinct
items from FE. The user checks the list of items one by one from top to bottom.
For each item a, the user is attracted with probability w,(a) € [0, 1], and we will
use wi(a) € {0,1} to denote the attraction weight, a Bernoulli random variable
with mean w;(a) indicating whether the user is attracted by a or not. Denote by
w; € {0,1}¥ the random vector of these indicators, and by P, the distribution
of w;. We assume that the attraction vectors are independent across time steps
and items, namely {w;}? ; are i.i.d. drawn from a probability distribution P,,.

If the user is attracted by the k-th item aj in the recommended list, i.e.
wi(ax) = 1, then she clicks it and examines the item. The user may be satisfied
and leave, which happens with probability o,(k) and then the learning agent
receives a reward of 1. The user may also find the item unsatisfactory (which
happens with probability 1 — v;(k), and then continues to check the next item.
If all items have been checked and the user has not found any satisfactory item,
then the user leaves and the learning agent receives reward 0. The termination
weight vi¢(k) € {0,1} is the Bernoulli random variable with mean o;(k). We
denote by v; € {0,1}¥ the random vector of the termination weights, by P, its
distribution, and assume {v;}{_; to be i.i.d. drawn from P,.

The above process defines a random {0, 1} reward, but note that this reward
is not revealed to the learning agent, as the user just leaves after checking some
items and does not report whether she finds the item she wants. Indeed, the
search engine does not even know when the user leaves. All the feedback that the
search engine receives is a sequence of k click indicators (w1, ..., w’ ). Note that
w) may not be the same as w; as. For example, if the sequence is 0100110000, it

! Here and throughout the paper, we use bold letters for random variables.
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may be the case that the user leaves at the sixth item with satisfaction. Another
case is that the user checks all items without finding anyone satisfactory, but
has to leave at the end. This feedback is too limited to admit any good learn-
ing algorithm. Therefore, we adopt the same assumption as in [15] that the
order 7(¥) of o = (9(1),...,0(K)) is known to the agent, where the order =
is a permutation satisfying that o(m(1)) > ... > 9(n(K)). This assumption is
practically reasonable as in many cases, though we may not have a precise esti-
mation of each value ©(k), we do know their relative comparison. (For instance,
for typical search engines it may well be the case that 7 is identity, namely
(1) > ... > 1:(K).) Under this assumption, it can be easily shown that the
expected reward is maximized when the items are listed in the decreasing order
of their attractiveness.

To give a more formal treatment of the award, consider the reward function
f I (E) x [0,1)F x [0,1]% — [0,1] defined by

K
fAvw) =1-T[(1 = v(k)w(ar)), (1)

k=1
where A = (ai,...,ax). In this notation, the reward in time step ¢ is r; =

f (A4, v, wy). Due to the assumed independence of all {v;} and {w;}, it is easily
seen that for any fixed action A, the expected reward is f(A, ¥, W;).

The performance of the learning agent is evaluated by the pseudo-regret, the
difference of cumulative reward of the optimal actions and that of the actions of
the agent:

R(n) = B[ 3 (F(47,500) — F(A @) (2)
t=1
where
Ar = argmaerHK(E)f(A, ’l_)t, ’LZ)t)

is the optimal list that maximizes the expected reward in step t.

We adopt the standard assumption that in contextual bandits that all contex-
tual vectors z;, € R? are assumed to have bounded norm |z¢,all, < 1. Besides,
we assume that the attraction weight w;(a) satisfies the generalized linear model
(GLM), a flexible extension of the ordinary linear model that previous cascading
bandit studies assumed. More precisely, assume that

wi(a) = E[wi(a)|He] = (0, 24.0), (3)

where {H;}}_, represents the history containing clicks and features up to time
t, and 6, is a fixed but unknown vector 8, € R?. The inverse link function u is
chosen such that 0 < p(0]z;,) <1 for any a and t. This GLM admits a wider
range of nonlinear distributions such as Gaussian, binomial, Poisson, gamma
distributions, etc. In particular, when the feedback is binary or count variables,
the logistic or Poisson regression can be used. Especially in the present DCM
setting, the logistic regression fits the web page recommendation better than the
linear model [14].
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3 Algorithm and Results

3.1 Algorithm

To maximize user satisfaction, two sets of parameters, w; and v; need to be esti-
mated. We assume that the order of the expected termination weight is known to
the agent, which in practice can be easily estimated using historical click data.
The problem then reduces to the estimation of the mean and variance of the
expected attraction weight. Due to the limited feedback, it is unclear whether
the user is attracted by the item of the last click position, which is denoted by
C: € {0,1,...,K}, where C; = 0 means no item has been clicked. The algo-
rithm therefore simply uses the feedback before C; for updates. As introduced
before, the random variable w;(a) satisfies Eq. (3) with the inverse link function
1 assumed to be twice continuously differentiable and strictly increasing. We fur-
ther assume that 4 is a k,-Lipschitz function (namely, the first order derivative
of y1 is upper bounded by k), and that ¢, := inf )z, <1,)j9—6+|]2<1} W (@Tx) > 0.
For logistic regression, u(xz) = 1/(1 + e~7) and it is easily verified that ¢, =
0.1, k, = 0.25 suffice for the requirements. Given the historical information
{(xs.0,Ws(a})) : s € [t],a € E, k € [Ci]}, where (x5, w,) € Hs, the estimator 6
can be efficiently obtained by solving the following equation:

t Cs
Z (ws(ay) — (0", as)) Zsaz = 0. (4)

s=1k=1

For logistic regression, this step can be computed by Newton method. Next,
we design an upper confidence bound of the expected attraction weight. Define
V., = A+ Ei:l Zi‘;l x57a2x;r’az, we have the following fact by Lemma 3 in [16].

Lemma 1. For any d € [1/n,1), with probability at least 1—0, for all1 <t <mn,
we have

16, — 0.lv, < ca\/g log(1+t/(A\d)) + log(1/9). (5)

Here the lo-norm of = based on a positive definite matrix A is defined by ||z||4 =
VT Az. Building on this, we can bound (0, 2.4 ) — (0. 1.4 )| by first applying
the definition of k,-Lipschitz of function y and then using the Cauchy-Schwartz
inequality.

|M(étT33t,a) - M(ajxt,aﬂ < kulé;xt,a - ejxt,a| < kuHét - G*HVt ||37t,a||V;1

< kuo

d
- \/ 5 log(1 +t/(Ad)) +log(1/0)[[zt.ally,
m

Let p(t) = k}” 2log(1+t/(Ad)) +log(1/5), and define the upper confi-
dence bound of the expected attraction weight for item a at time ¢ by

Us(a) = min{u(6,_100) + p(t = Dllweally 1 1}, (6)
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where the first term of U(a) is for exploitation and the second term for explo-
ration. Choosing an item with the maximum U, (a) balances the exploration and
exploitation. Based on the above discussion, we propose an algorithm given in
box Algorithm 1. Firstly, for each item in the ground item set, an upper con-
fidence bound U; € [0,1]F for the expected attraction weight is calculated.
Then the agent uses any v; that has the same order as v, gets a maximizer
A, = argmax ¢y, (g)f (A, 0, Up), and recommends the list. After user exam-
ines the list, the agent observes the last click position C;, and w(al), k € [Ci]
(Here we adopt the notation that [0] = ()). The estimator 6, of 6, is then updated
based on new feedback. Finally, the related statistics are updated for the next
time step.

Algorithm 1. Contextual DCM Bandits with Generalized Linear Payoff (GL-
CDCM)
1: Parameters : 6 = ﬁ; A>K

2: Initialization : 0o = 0, p(0) = 1, Vo = Al

3: for t =1 ton do

4: Obtain context z;, for all a € E

5. Va € E, compute
Ui(a) = min{u(@;[lxt,a) + p(t - Uth‘a”V;,ll 71}

6: Ay — argmax . (g f(A4, 0, Us)

Play A} and observe C;, wi(ak), k € [Ci]

8: Solve 6; from
22:1 2%:1(“’6(32) - N(Gg—xs,ai))xs,az =0

9 ViV, 1+ Zi;l It,a}ca?zatk

10: end for

=

3.2 Results

The result on the upper bound on the regret for the proposed contextual DCM
bandits is presented in this section. Denote p, = maxi<;<, max;=1, . x(0:(i) —
(4 + 1)) by the maximal difference of expected termination weights between
two consecutive positions over all time. The main theorem on the regret is stated
as follows.

Theorem 1. For n > 1, and the reward function f(A,v,w) =1 — HkK:1(1 —
v(k)w(ag)), the pseudo-regret R(n) of Algorithm 1 has the following bound

R(n) < ‘M’W\/nfﬂog (””Md)> log(1+ Kn/(\)).  (7)

Cu 1)

The theorem shows a O(d\/ﬁ) pseudo-regret bound, which is independent of
L, and improves the previous regret bound of [17] by a y/log(n) term, though
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our result is under the combinatorial setting. With an additional assumption on
item generating process, the result may be further improved by a v/d-order while
sacrificing an increase on order of log(n) by using Theorem 1 of [16].

Proof. To begin with, we bound the one-step regret at time ¢, denoted by R; =
f(AZ(7 Vi, Wt) - f(Ata Vi, Wt)a then

E[R:|H:) = f(A], U, W) — f(Ay, Ty, Wy)

|
IS
—
I
E
S
~
=
S
ol
Tz
|
|
S
—
=
=z
g
o~
Py
[+¥)
?T‘K“-
Tz
—
o0
X

i=1 k=1
K 7
< Py Z (wt(aZ) — Wy (afc)), (9)
=1 k=1

where T;(i + 1) = 0. The inequality (8) is because of the definition of A} and f,
while (9) is by definition of the p,. We can observe that the problem has reduced
to the cascading problem of bounding Zzzl(wt(a,t) — wy(a},), which is equal to
22:1 u(&l—xt,a;) . ,u(G;'—xt’az). We need the following Lemma2 to bound this
cascade difference.

Lemma 2. Lett > 1 and A; = (a},...,al), i € [K], we have:

L ay
%

S 0T 2107) — 10T Trag)) <237 plt = Dllrag lly -
k=1 k=1

Proof. Let Af = (a},...,a%). By the definition of A;, which is set of items
with the largest UCBs placed to the most terminating position, we have
Yooy Ui(ag) <>, Ug(al), i = [K], that is,

lel N(eTxt,az) +p(t — 1)”557541,*; v
< Dkt 10T 2y 0) + p(t = Dot Iy - (10)

Then

Z N(ijt,ag) - N(ajxt,a;)
k=1

= Z #(a;rft,a;) - ,U(éTJUt,a;) + N(éTﬁﬂt,a;) - M(éTﬂft,a;) +

3
< p(t—1) Z lotazllvo, + (I2eag o, = lotagllvos, ) + l2ea -, (1)
=1
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1
= p(t - 1) Z ||It,a2 ||V177117
k=1

where Eq.(11) is obtained by applying (10). Our next step is to bound
Zi:l Yot Hxs,ai Hf/—l by Lemma 4.4 in [11], when A > K,
Lemma 3. If A > K, then

t i

2
Do sl

s=1 k=1

Kt
< 2dlog(l+ —).
< 2dlog( +>\d)

Building upon the previous discussion, we have:

n

> E[E[R:|H,]

i

<y
2
I

(wy(a}) — wt(a@)] (12)
<p) E lz 20(t = 1)|[1.09 Vll
< 2p(n vaE ZZ’xtak 1 (13)

i=1 k=1

where Eq. (12) is due to the tower rule and the inequality (13) holds since p(¥)
increases with ¢t. Applying the Cauchy-Schwarz inequality on the current result,
we can derive that:

2

)]

Substituting p(n) back and applying Lemma 3 back yields our claimed result.

R(n) < 2p(n)p,E h/(” >y Yk 1 ) (Zt DY) S H H

3.3 Computationally Efficient Updates

Though our proposed GL-CDCM enjoys good theoretical properties, the com-
putational cost may be high in some applications. The inverse of a d X d matrix
is computed at each time step while the MLE is calculated using samples up to
the current time step, which is increased linearly over time. We provide an
iterative optimization solution for GL-CDCM for the logistic regression where
w(x) =1/(1 + exp(—z)), denoted by GL-CDCM (SGD).

Instead of solving Eq. (4), we use the stochastic logistic gradient at time ¢

Ce

g = (W0 20) — Wilal)) pag. (14)

k=1
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and we can update on 6, by
ét = ét—l — Ngt, (15)

where 7 is the learning rate.

Let C; € R%*4 he the matrix whose rows are the feature vectors of the
observed items at time ¢. Then V, = V,_1 + C:Ct. Let G, =1 + CtV;IC:,
based on the Woodbury matrix identity [18], V;* can be calculated efficiently
using

Vil =V - VGGGV, (16)
in time O(Kd?).

Therefore, the burden of computing the inverse of a d x d matrix of is reduced
to computing the inverse of a square matrix of dimension at most K, which is
always smaller than d and can be much smaller in practice.

4 Experiments

4.1 Synthetic Data

In this section, we compare our algorithms (GL-CDCM) with the demKL-UCB
algorithm proposed in [15] (denoted as KL-DCM in our comparisons) and the
logistic regression (LR) on the synthetic data. Here LR means for each time
step t, it conducts logistic regression on all historical data and uses the obtained
parameters to choose the current items, which corresponds to selecting arms
by values of (6, ,2.4), instead of Uy(a) (which has an additional exploration
term) in Line 5-6 for our Algorithm 1.

We simulate a scenario of web search as follows. First, we randomly select
the model parameter 6,. Then at each time step ¢, randomly select contextual
vectors x¢ , for each item a and expected termination weights v;. Then according
to Eq. (3), the expected attraction weight w, is computed by the given 6,. Both
attraction weights w; and termination weights v; are then drawn from Bernoulli
distribution with the respective mean. The sigmoid function p(z) = 1/(1 +
exp(—x)) serves as the inverse link function. The evaluation criterion is the
cumulative pseudo-regret defined in Eq. (2).

The curves of the cumulative regrets for these algorithms, i.e. GL-CDCM,
GL-CDCM (SGD), LR, LR (SGD) and KL-DCM, under n = 10* are shown
in Fig.1(a). To further demonstrate the estimation ability of GL-CDCM and

6] 6.
6¢]l2116 12
and shown in Fig.1(b), where the value 0 indicates that the learning agent
correctly estimates 6*. We do not show KL-DCM in Fig. 1(b) since it does not
estimate the parameter 6.. As depicted in Fig.1(a), KL-DCM has the largest
regret since it ignores the contextual information. For both GL-CDCM and LR,
the SGD version generally has higher regret, which is a price to pay for efficiency.
Compared to the LR algorithm, the bandit algorithm balances the exploitation
and exploration and therefore has a better performance. Furthermore, the error
curve shows that the GL-CDCM converges more quickly than LR.

LR, the cosine distances between 6, and 6,, i.e., 1 — are calculated
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Fig. 1. Experimental results of different recommendation algorithms on synthetic data.

4.2 Web Page Recommendation

In this section, we test our algorithms on the Yandex Personalized Web Search
dataset [19], which contains 35 million search sessions. Let M be the number of
users and L be the number of web pages. We use top 3 most frequent queries
for evaluation. Each query corresponds to one DCM which is estimated using
PyClick library [8]. In all the algorithms, we assume that the higher positions
have higher expected termination weight. In order to derive the feature vectors
for web pages, we first construct a sparse matrix A € ZM*L where A(i,j) € Z
denotes the number that user ¢ clicked on web page j. Then the feature vector
is obtained through the SVD decomposition of A, i.e. A = USVT. We use
V = [v1;...;vr] € REX? as the contextual information for the L web pages.
We set d = 200, K = 10, and L = 100. The cumulative pseudo-regret over 5000
rounds for our proposed GL-CDCM, GL-CDCM (SGD), LR, LR (SGD) and KL-
DCM are shown in Fig. 2. To incorporate the user features, we concatenate user
and item features as the contextual information. Let U = [uy;...;uy] € RM*4,
then z; ; = [u;,v;] € R2? for user i and web page j. The features derived from
outer product where z; ; = u; ® v; are also tested, but the performance is not
as good as z; ; = [u;,v;]. At each time step, a user is randomly selected. Follow
the previous setting of the parameters, the results are displayed in Fig. 2(b).
For the setting that only the item features are used, after 5000 rounds, the
proposed GL-CDCM obtains a regret of 32.28, which is much lower than 59.08
for LR and 99.09 for KL-DCM. Furthermore, the curve for KL-CDCM forms
a stair-step pattern since the ground item set is changing and the algorithm
needs to learn from the cold start from time to time. In contrast, GL-CDCM
and LR make use of the contextual information, and therefore achieve a better
estimation. Compared with LR, which is always exploiting, GL-CDCM explores
more and achieves a lower cumulative pseudo-regret. The SGD versions generally
have a higher regret for both GL-CDCM and LR, 81.71 for GL-CDCM (SGD)
and 114.96 for LR (SGD), but the time complexity reduces significantly. In
addition, the proposed GL-CDCM (SGD) still outperforms LR (SGD) because
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Fig.2. Experimental results of different recommendation algorithms on Yandex
dataset.

of exploration. A similar pattern is also observed in the setting of involving
both user and item features, where more useful information are provided and
the regrets of GL-CDCM and LR decrease to 28.51 and 46.00, respectively. The
experimental results are consistent with our previous discussions and show that
our proposed algorithm has better performance even for practical problems,
where the assumptions might be violated.

5 Conclusion

In this paper, we present a bandit algorithm (and SGD variant) for web page
recommendation that automatically balances the exploration and exploitation.
We formulate the problem of DCM bandits with contextual information. The
dependent click model (DCM) covers the scenario of multiple clicks and is a
popular click model in web search. The contextual information is incorporated
in our work to better estimate the expected attraction weight. Under a reason-
able assumption on knowing the order of the expected termination weight, we
prove a regret bound of O(d\/ﬁ) for the algorithm. A computationally efficient
version is also given by removing the expensive step of computing the MLE on a
linearly increasing sample set, and reducing the cost of inverting a d X d matrix.
Experimental results confirm the value of exploring, utilizing the contextual
information and adopting a generalized linear model.
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