
Solving the Gene Duplication Feasibility
Problem in Linear Time

Alexey Markin, Venkata Sai Krishna Teja Vadali, and Oliver Eulenstein(B)

Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{amarkin,vvadali,oeulenst}@iastate.edu

Abstract. The gene duplication model, which has been pioneered by
Goodman et al. nearly 40 years ago, is widely-used for resolving the dis-
cordance between the evolutionary history of a gene family (gene tree),
and the species tree through which this family has evolved. This dis-
cordance is explained by reconciling the gene tree with postulated gene
duplications that have occurred while the gene tree has evolved along the
edges of the species tree, such that the reconciled tree can be embedded
into the species tree. Today, for many gene families lower bounds on the
number of gene duplications that have occurred along each edge in the
species tree can be derived, for example, from known genome duplica-
tions. Here, we augment the gene duplication model by using a species
tree for the reconciliation whose edges are decorated with such lower
bounds, called a (duplication) scenario. A scenario is feasible for a gene
family under consideration if there exists a reconciled gene tree for this
family whose embedding into the species tree satisfies the lower bounds
of the scenario. Non-feasibility of a credible scenario for a gene family can
provide a strong indication that this family might not be well-resolved,
and identifying well-resolved gene families is a challenging task in evo-
lutionary biology. Here, we provide a linear time algorithm that decides
whether a scenario is not feasible when provided a gene family.

1 Introduction

Tree reconciliation is a fundamental approach for analyzing discordant evolu-
tionary relationships among the family histories of genes when contemplated
with the histories of the species in which they have evolved. This approach has
become common practice in many biological oriented research disciplines, such as
molecular biology, microbiology, and biotechnology [16]. For example, gene tree
reconciliation is one of the most comprehensive ways to describe the dynamics
of gene family evolution [8,15], and it is also a widely-used approach to differ-
entiate between orthologous and paralogous genes [1,2], an elementary task in
the functional determination of genes [14]. Tree reconciliation can be performed
using different biological models under which discordant relationships can be
explained. Here we focus on the gene duplication model that has been pioneered
by Goodman et al. nearly 40 years ago [12] and has laid the groundwork for tree
reconciliation [7,9].
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 378–390, 2018.
https://doi.org/10.1007/978-3-319-94776-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_32&domain=pdf

Solving the Gene Duplication Feasibility Problem in Linear Time 379

Fig. 1. An example of a gene tree - species tree reconciliation with inferred gene dupli-
cation events. The reconciliation is based on the least common ancestor mapping – it
is not difficult to note that gene tree nodes x and y map to the root node of the species
tree based on LCAs; hence, the duplication is at the root edge. (Color figure online)

The gene duplication model takes the following pair of rooted and full binary
trees: (i) a gene (family) tree that represents the family history of a set of
genes, and (ii) its (corresponding) species tree that is the evolutionary history of
the species hosting these genes. Discordance between a gene tree and a species
tree is often caused by complex histories of gene duplication events [16,18],
but can also originate from other evolutionary events like deep coalescence or
lateral transfer [17]. The gene duplication model is reconciling the gene tree with
its species tree under the assumption that discordance is only caused by gene
duplication events. Following the parsimony principle, the reconciliation process
under the gene duplication model seeks an embedding, called reconciliation, of
the gene tree into the species tree that infers the minimum number of duplication
events. The resulting embedding is the reconciled (gene) tree that can reveal
complex histories of gene duplication events, elucidating the evolution of function
and discriminating between orthologous and paralogous genes. Figure 1 depicts
an example for such a reconciliation. For a more detailed treatment of the gene
duplication model, the interested reader is referred to [7,9].

A gene tree - species tree reconciliation infers a duplication scenario on the
species tree, which can be characterized as the number of gene duplications that
occurred along each edge of the species tree (note that we consider species trees
to be planted, i.e., having an auxiliary edge connected to the root node). For-
mally, we define a duplication scenario as a function that maps each species tree
edge to an integer that specifies the lower bound on the number duplications
that occurred along that edge for the given gene family. While the exact num-
ber of duplications might be a more natural choice, the lower bounds are much
easier to obtain in practice, for example, using histories of whole genome dupli-
cations [5,19]. The phylogenetic inference of gene trees has never been subjected

380 A. Markin et al.

Fig. 2. An example of a duplication scenario (in the center). The duplication lower
bounds are shown as edge annotations. Observe that edges going into nodes X and
Y in S have duplication lower bounds of 1, which requires that a proper gene tree
reconciliation will show at least 1 duplication occurring at each of these edges. On the
left hand side there are given two gene families, namely, {a, b, c, d} and {a, a, b, c, d},
which belong to the respective capital letter species. There does not exist any gene tree
for the first family that will induce the required reconciliation. On the other hand, the
second gene family allows to build the gene tree G2 that satisfies the given duplication
scenario. (Color figure online)

to known duplication scenarios, which in turn could lead to the inference of more
biologically informed and accurate trees.

Here, we set out to reveal the space of feasible duplication scenarios for a
specified species tree topology and a gene family. We call a duplication scenario
feasible, if there exists a gene family tree and a corresponding reconciliation
(under the Goodman et al. duplication model) that satisfies the provided lower
bounds on the number of duplications. Figure 2 demonstrates an example of a
duplication scenario. Note that satisfiability of the lower bounds depends on the
gene family provided (namely, the number of gene copies for each leaf species).
Consequently, we introduce the Feasibility of a Duplication Scenario (FDS) prob-
lem that decides whether a duplication scenario is feasible, and describe a linear
time algorithm for this problem. In addition, the augmentation of this algorithm
provides a smallest (most parsimonious) gene tree satisfying the duplication sce-
nario. Software implementing the FDS algorithm is freely available from the
web-page http://genome.cs.iastate.edu/ComBio/software.htm.

Related Work. Gene duplication is a major and frequently occurring evolution-
ary process that is known to cause discordance between gene trees themselves
and gene trees and their corresponding species trees [18]. An efficient approach to
identify such discordance is the gene duplication model from Goodman et al. [12].
This approach takes a gene tree and its corresponding species tree (both of them

http://genome.cs.iastate.edu/ComBio/software.htm

Solving the Gene Duplication Feasibility Problem in Linear Time 381

are rooted and full binary), and is essentially embedding the gene tree into the
species tree by possibly introducing gene duplication events. The left side of
Fig. 1, depicts an example of discordance between gene tree G and species tree
S. To explain this discordance in the absence of phylogenetic inference error let
us temporarily direct our attention only to the species tree S. The right side of
the figure depicts one out of infinitely many scenarios of how a gene tree evolves
within the species tree S using blue edges (solid and dashed). Initially, gene x,
represented by a red circle, duplicates into two copies that are each represented
by a red square. Then, each of these copies evolves along the topology of the
species tree by speciation events and losses (lost gene lineages are displayed as
dashed blue arrows). The resulting gene tree scenario is inferred from species
tree S using exactly one duplication event. As shown in Fig. 1, gene tree G can
be embedded (solid blue edges) into the gene tree scenario (solid and dashed
blue edges). Thus, the gene tree scenario reconciles gene tree G by invoking one
duplication, offering an explanation for the discordance between G and S. How-
ever, there can be infinitely many such scenarios, each of them invoking some
number of gene duplications. Following the parsimony principle, the gene dupli-
cation model explains the incongruence with a smallest scenario, which is unique,
invoking the minimum number of duplications that can be specified through a
mapping that relates each gene in the gene tree to its host species [6,9,10].

The host species in the duplication model are defined based on the least
common ancestor mapping. Formally, M is a function mapping gene tree nodes
to species tree nodes, such that for each gene g that is a leaf M(g) is the leaf
species from which g was sampled. Further, for an internal gene node x with
children y and z, M(x) is defined as the least common ancestor (LCA) of M(y)
and M(z) in the species tree; that is, the furthest from the root node s, which
is the ancestor of both M(y) and M(z).

A gene in the gene tree is a gene duplication when it has a child with the same
host species. Visually, we say that such gene duplication happened on the edge
connecting the host species to its ancestor (see Fig. 1). The mapping and the gene
duplications are linear time computable [20]. There is a rich literature of exten-
sions and variants of the gene duplication model, which can, in most cases, be
efficiently computed [7,9]. While computationally highly complex, probabilistic
models for gene/species tree reconciliation, as well as gene sequence evolution,
have also been developed [1,3].

Contribution. We present a linear time algorithm for solving the Feasibility
of a Duplication Scenario (FDS) problem. The algorithm is based on dynamic
programming that became possible through intrinsic properties of the gene dupli-
cation model formulated and proven in this work. In particular, a simple, but
powerful property is that the caterpillar substructure of a gene tree is a minimum
substructure allowing a gene tree to satisfy a lower bound on duplications in the
given duplication scenario. Further, the majority of our analysis builds on the
here introduced concept of gene forests that proved to be effective for establish-
ing feasibility conditions. The algorithm utilizes the dynamic bottom-up strategy
computing maximum gene forests at each step. Further, an augmentation of this

382 A. Markin et al.

algorithm can be used to produce an example gene tree that satisfies the dupli-
cation scenario. Such gene tree, as we prove, will have the property that it is
smallest in size among all gene trees satisfying the duplication scenario; hence,
it represents the most parsimonious way to “explain” this duplication scenario.

Applying the presented FDS algorithm, practitioners will now be able to
verify the feasibility for various gene families of interest using established dupli-
cation scenarios.

2 Basics and Preliminaries

We only consider full binary rooted trees where each leaf is identified with a
taxon, which we refer to as (phylogenetic) trees. Adhering to the standard nota-
tion, given a tree T , we denote its root, node set, edge set and leaf set by
Rt(T), V (T), E(T), and L(T), respectively. The sibling and the parent of each
non-root node v ∈ V (T) are denoted by Sb(v) and Pa(v), respectively. If a tree
is planted, then the root has a parent node as well. The set of children of each
internal node v ∈ V (T) is denoted by Ch(v). Further, we let T (v) be a subtree
of T rooted at v ∈ V (T) . A set of leaves L(T (v)) is called a cluster of the node
v and is denoted by Cv.

We define a partial order �T on the node set V (T), such that u � v, if v
is a node on the path from u to Rt(T). Additionally, we say u ≺ v, if u � v
and u �= v. The least common ancestor (LCA) of a set of nodes {u1, . . . , uk},
lcaT (u1, . . . , uk), is the furthest from the root node, w, such that ui � w ∀i ∈
{1, . . . , k}. A species tree is a planted tree with leaves referring to species names.
Gene tree, G, is a tree that is defined by a set of species X, such that there exists
a labeling (function) ΛG : L(G) → X.

LCA Mapping. Let S be a species tree, and G be a gene tree over L(S). An
LCA mapping M : V (G) → V (S) is a function such that for each leaf node
g ∈ V (G), M(g) := ΛG(g), and for each internal node g with children u and w,
M(g) := lcaS({M(u),M(w)}). Observe that the mapping function M is mono-
tone, implying that for g1 � g2, M(g1) � M(g2).

A node g with children u and w is a duplication node if either M(g) = M(u)
or M(g) = M(w). For a species tree node s ∈ V (S), ξ(G, s) denotes the number
of duplication nodes g ∈ V (G), such that M(g) = s.

Duplication Scenario. Given a species tree S, a duplication scenario
(described in the introduction) is defined by a function δ : V (S) → N0. We
say that a gene tree G over L(S) satisfies a duplication scenario 〈S, δ〉 if
∀s ∈ V (S) : ξ(G, s) ≥ δ(s). Note that, while in the introduction the dupli-
cation scenario function was defined on edges of a species tree, here for later
convenience we define it on the nodes of a species tree (which is identical, since
each node uniquely defines its ancestral edge, (Pa(v), v), in planted trees).

Solving the Gene Duplication Feasibility Problem in Linear Time 383

Fig. 3. Left : an example of a species leaf s with four gene copies in the provided
gene family (i.e., four genes within the family are hosted by s). G′

s represents the
maximum gene forest (consisting of each gene copy individually) if we are not taking
the duplication scenario into the account. Gene forest Gs represents a maximum gene
forest, when the duplication scenario puts the lower bound δ(s) = 2 on the edge incident
to s. Yellow squares indicate the duplication nodes. Right : an example of a gene forest
construction for an internal species node v with children u and w. Gv is a maximum
gene forest for the node v constructed using Gu and Gw, representing maximum gene
forests of nodes u and w respectively. Observe that the tree satisfying δ(v) = 2 was
assembled from subtrees as a caterpillar (assembly of a profile {G1, T1, G2, T2}). (Color
figure online)

3 Feasibility of Duplication Scenarios

In this section, we analyze the problems of the feasibility of duplication scenarios
as motivated in the introduction.

3.1 General Feasibility

Given a duplication scenario and a gene family, we would like to know whether
there exists a gene tree for the family whose reconciliation is satisfying the
scenario, i.e., the scenario is feasible for the gene family.

A gene family is characterized by the number of gene copies for each extant
species. That is, assume, we are given a species tree, S, and for each leaf-species
we know the number of gene copies, given by a function λ : L(S) → N. We say
that a gene tree G satisfies 〈S, δ, λ〉 if G satisfies 〈S, δ〉, and G contains at most
λ(s) taxa labeled with s for all s ∈ L(S).

Problem FDS. Feasibility of a Duplication Scenario
Instance: Duplication scenario with a gene copy function 〈S, δ, λ〉
Question: Does there exist a gene tree G over L(S), such that G satisfies 〈S, δ, λ〉

384 A. Markin et al.

Informal Solution Description. We consider a bottom up construction of a
gene tree G satisfying 〈S, δ, λ〉 (if one exists). At each node of the tree S we
maintain certain tree structures (parts of future tree G) that jointly satisfy all
the duplication lower bounds, given by δ, below that node. These structures can
be treated as building blocks (subtrees) for G. The algorithm seeks to maximize
the number of such building blocks at each node in order to supply them further
to the parent node and so on. These building blocks are later formally defined as
gene forests. The maximization is of importance, since in case that here are no
available tree structures at the root of S, then G does not exist and the scenario
is not feasible.

At the leaf level of species tree S the number of building blocks available
is simply the number of gene copies for a species. Indeed, if a species taxon s
requires δ(s) > 0 duplications mapped into that node, then we need to use the
available building blocks (gene copies) to generate that mapping. Similarly, for
intermediate nodes. Note that maximizing the number of building blocks at each
node entails minimizing the number of blocks needed to satisfy the duplications
lower bound at that node. An important observation here is that if at node v
the lower bound is δ(v) > 0, then to create a structure (new block) satisfying
that duplication count at least δ(v) + 1 blocks are needed, when v is a leaf, and
δ(v) + 2 blocks are required otherwise. Figure 3 illustrates that observation.

Applying these ideas, Algorithm1 below checks feasibility of a given dupli-
cation scenario.

3.2 Proof of Correctness of Algorithm1

As was mentioned above, we introduce the concept of gene forests. We define G
to be a gene forest over 〈S, λ〉 if the following properties hold.

(F1) G is a set of phylogenetic trees over L(S).

Algorithm 1. Feasibility of Duplication Scenario 〈S, δ, λ〉
1: function MaxForestSize(Node v)
2: if v is a leaf then
3: if δ(v) > 0 then // The scenario requires > 0 duplications mapped to v
4: return max(0, λ(v) − (δ(v) + 1) + 1)
5: else return λ(v)
6: end if
7: else // v has two children
8: l := MaxForestSize(Ch(v).left); r := MaxForestSize(Ch(v).right)
9: if l > 0 and r > 0 then

10: if δ(v) > 0 then return max(0, l + r − (δ(v) + 2) + 1)
11: else return l + r
12: end if
13: end if
14: return 0 // either l or r is 0
15: end if
16: end function
17: return (MaxForestSize(Rt(S)) > 0) // returns TRUE if the scenario is feasible

Solving the Gene Duplication Feasibility Problem in Linear Time 385

(F2) Let Λ−1
G (s) be a set of leaves in G labeled by s, then

∑

G∈G
|Λ−1

G (s)| ≤ λ(s).

(F3)
⋃

G∈G
ΛG(L(G)) = L(S).

We say that a gene forest G satisfies 〈S, δ, λ〉 if G is over 〈S, λ〉 and for all
s ∈ V (S) we have

∑
G∈G ξ(G, s) ≥ δ(s). Further, given a gene forest G, we define

G to be a gene tree obtained by assembling the trees in G into a single tree. While
there could be many ways to assemble the trees from G, we are interested in a
caterpillar structure that will be used later in the analysis.

Definition 1. A gene tree GC represents a caterpillar assembly of a profile
of trees G1, . . . , Gk if it is obtained as follows. First, set GC := G1, then

for i = 2, . . . , k do
join the trees GC and Gi by introducing a new root node vi

and attaching subtrees GC and Gi to vi as children.
Let GC denote the resulting tree.

end for

Given a duplication scenario, 〈S, δ, λ〉, and a node v ∈ V (S), we say that
forest Gv satisfies 〈S, δ, λ〉|v implying that Gv satisfies the duplication-scenario
restricted to subtree S(v), i.e., 〈S(v), δ|V (S(v)), λ|Cv

〉. Let α(v) denote the maxi-
mum size of a gene forest (in terms of a number of trees) that satisfies 〈S, δ, λ〉|v.
The following observation then explains Line 17 of Algorithm1.

Observation 1 (Feasibility for a given gene family). An instance 〈S, δ, λ〉
of FDS is a yes-instance if and only if α(Rt(S)) > 0.

Observation 2 and Lemma 1 summarize the core properties needed for the
proof of correctness. Note that Observation 2 was informally described above.

Observation 2. Consider v ∈ V (S) such that δ(v) > 0.

(I) If v is a leaf, then at least δ(v)+1 gene copies for v are required to construct
a gene tree with δ(v) duplication nodes mapping into v. Note that any binary
tree with δ(v)+1 leaves mapping into v will induce exactly δ(v) duplications
on v (for example, a caterpillar assembly of δ(v) + 1 gene copies – see
Fig. 3).

(II) If v has children u and w, then at least δ(v) + 2 gene trees from maximum
gene forests of u and w are required to construct a gene tree with δ(v) dupli-
cation nodes mapping into v. Further, it is always possible to use exactly
δ(v) + 2 gene trees via a caterpillar assembly (see Fig. 3).

Lemma 1. Let Gv be a maximum gene forest satisfying 〈S, δ, λ〉|v for some v ∈
V (S). Then

(MF4) If Gv contains a tree G with a duplication vertex mapping into v, then
no other tree in the forest can have a node mapping into v. That is, all
duplications for a specific node are localized within the same tree.

386 A. Markin et al.

(MF5) For v �∈ L(V), if δ(v) = 0, then for each tree G ∈ Gv, the root of G maps
below v. That is, M(Rt(G)) ≺ v.

Proof.

(MF4) Let Gv be a maximum gene forest satisfying 〈S, δ, λ〉|v and G be a tree in
that forest with a duplication node mapping into v. For the purpose of
contradiction, assume that Gv also contains another tree G′ with a node
mapping into v. Let G′ be a forest consisting of subtrees of G′ obtained
by removing all internal nodes mapping into v from G′ (this will split
G′ into at least two subtrees). If G′ induced k duplication nodes on v
(k could be 0), then, by Observation 2, G′ will contain at least k + 2
subtrees (or k + 1 if v is a leaf). Let us enumerate any k + 1 trees in G′

as G′
1, G

′
2, . . . , G

′
k, G′

k+1. Consider now an augmentation of G, tree Ga,
obtained by a caterpillar assembly of a profile (G,G′

1, G
′
2, . . . , G

′
k). Note

that Ga induces k more duplications onto v than G. Hence, the gene
forest Gv −{G} ∪ {Ga, G′

k+1} satisfies the duplication scenario 〈S, δ, λ〉|v
and is of size larger than Gv – contradiction.

(MF5) Assume (for contradiction) a maximum forest Gv contains a tree G, such
that M(Rt(G)) = v. Removing the root of G will split it into two subtrees
and increase the size of the gene forest by one (we denote the new gene
forest by G′

v). Since δ(v) = 0, this operation will maintain that G′
v satisfies

〈S, δ, λ〉|v. Hence, Gv is not maximum – contradiction.

Lemma 2 then proves the correctness of Algorithm 1 (the lemma’s proof is
omitted for brevity).

Lemma 2. Function MaxForestSize from Algorithm1 given a node v ∈ V (S)
returns α(v).

3.3 Gene Trees for Feasible Scenarios

Algorithm 1 is designed to solve the feasibility problem. However, in addition,
this algorithm can be modified to construct an example gene tree satisfying
the given duplication scenario (if one exists). This modification would require
maintaining the maximum gene forests themselves, instead of only keeping track
of the number of trees in maximum gene forests. For species tree nodes v with
δ(v) > 0 the algorithm will need to join a subset of the available subtrees in a
caterpillar that would satisfy that lower bound on duplications.

At the root of the species tree the trees in the maximum forest (if it is non-
empty) should be joined together to produce an example gene tree satisfying the
duplication scenario.

Time Complexity. Let m be the size of the gene family, i.e., m =
∑

s∈L(S) λ(s).
Then the complexity of constructing the gene tree as outlined above is Θ(m).
Representing gene forests as linked lists allows us to join two forests in O(1)
time. Further, when assembling trees in a caterpillar, the linked lists will allow

Solving the Gene Duplication Feasibility Problem in Linear Time 387

to use O(1) time per each new node created. Hence, the overall time complexity
is bounded by the size of the gene tree, which is Θ(m).

Minimum Gene Trees. Such gene tree building procedure, while of potential
value on its own, can be further altered to produce a smallest gene tree satis-
fying the given duplication scenario. Such minimality can be achieved by not
employing some of the gene copies present in the family, if it is not necessary.

For a node v ∈ V (S) \ L(S) with δ(v) > 0 and children u and w, let G′
v

denote the forest of available gene trees at v; that is, the union of the maximum
gene forests of the children of v. We will call a gene tree trivial, if it contains
exactly one node; i.e., it represents a single gene copy.

The original algorithm will proceed by assembling δ(v)+2 trees from G′
v in a

caterpillar structure. However, since we are interested in using as few gene copies
as possible, we would like to use as few trivial trees for the caterpillar assembly as
possible. Formally, consider all profiles of trees of the type {G1, G2, . . . , Gδ(v)+2},
such that G1 ∈ Gu, G2 ∈ Gw, G3, . . . , Gδ(v)+2 ∈ Gu ∪Gw (where Gu and Gw are
maximum forests for u and w, respectively). Let P (Gu,Gw) be such a profile
with the minimum number of trivial trees. Then the algorithm for the minimum
gene tree construction will use such a profile for the caterpillar assembly.

This constitutes a greedy strategy for the minimum gene tree construction:
at each step use the minimum number of trivial trees for the caterpillar assembly.
Then let Gp be a maximum gene forest satisfying 〈S, δ, λ〉 constructed that way.

Theorem 1. A minimum (most parsimonious) gene tree is obtained by remov-
ing all the trivial trees from Gp and joining the rest together (e.g., as a caterpil-
lar). The time complexity for constructing a minimum gene tree is O(m). That
is, Algorithm2 constructs a minimum gene tree satisfying 〈S, δ, λ〉 in O(m).

Proof. The proof of correctness is omitted for brevity. Here we argue the time-
complexity. The algorithm can be implemented efficiently by representing gene
forests as two separate linked lists: one list for trivial trees and the other for non-
trivial trees (see Algorithm 2). Then joining two forests (as needed for internal
nodes v with δ(v) = 0) encompasses joining two pairs of linked lists, which can
be done in constant time (by maintaining a link to the last element of each list).
Further, for internal nodes v with δ(v) > 0 and children u and w, the algorithm
has to construct a caterpillar assembly of a minimum profile P (Gu,Gw). Let
Gt

u and Gnt
u denote the linked lists containing trivial and non-trivial trees of Gu

respectively (similarly, for w). Then P (Gu,Gw) can be obtained in O(δ(v)) time
as demonstrated in function MTrivForestSpecial of Algorithm 2.

The caterpillar assembly of the profile also takes O(δ(v)) time and it produces
δ(v) new nodes contributing to the resulting gene tree. Hence, the algorithm
spends constant time per each node created. Finally, observe that for each leaf
node s of the species tree the algorithm spends O(λ(s)) time. Hence, the total
time spent for all leaves is O(m). Overall, the time complexity bounded by O(m).

388 A. Markin et al.

Algorithm 2. Minimum Gene Tree Satisfying 〈S, δ, λ〉
1: function MTrivForestSpecial(Internal node v with δ(v) > 0)
2: Gt

u, Gnt
u :=MTrivForest(Ch(v).left); Gt

w, Gnt
w :=MTrivForest(Ch(v).right)

3: P = () // empty linked list representing P (Gu, Gw)
4: if Gnt

u .size > 0 then
5: P.add(Gnt

u .pop()) // remove the head of Gnt
u and add it to P .

6: else P.add(Gt
u .pop()) // assume .add() adds an element to the end of the list

7: end if
8: if Gnt

w .size > 0 then P.add(Gnt
w .pop())

9: else P.add(Gt
w .pop())

10: end if
11: Gt

v = join(Gt
u, Gt

w); Gnt
v = join(Gnt

u , Gnt
w)

12: while P.size < δ(v) + 2 do // use as many non-trivial trees as possible
13: if Gnt

v .size > 0 then P.add(Gnt
v .pop())

14: else P.add(Gt
v .pop())

15: end if
16: end while
17: Gnt

v .add(P) // add a caterpillar assembly of P to non-trivial trees of v
18: return Gt

v, Gnt
v

19: end function
20: function MTrivForest(Node v)
21: if v is a leaf then
22: Gt

v = (gi : ∀ i ∈ [λ(v)]); Gnt
v = ();

23: if δ(v) > 0 then P := first δ(v)+1 trees from Gt
v; Gnt

v := (P); Gt
v := Gt

v \P ;
24: end if
25: return Gt

v, Gnt
v

26: else // v has two children
27: if δ(v) > 0 then return MTrivForestSpecial(v)
28: else return joined trivial and non-trivial lists from
29: MTrivForest(Ch(v).left) and MTrivForest(Ch(v).right)
30: end if
31: end if
32: end function
33: Call Algorithm 1 to verify that a tree exists. If exists:
34: Gt, Gnt = MTrivForest(Rt(S)); return caterpillar assembly of Gnt.

4 Conclusion and Discussion

Gene trees play a crucial role in the inference of species trees and networks,
in the systematic analysis of protein function, and other related areas [4,13,
15]. Refining the credibility of gene trees is thereof one of the central topics in
phylogenetics for many years.

Here we propose a novel framework, where the evidence of gene duplica-
tions collected throughout an abundance of biological studies can be utilized to
improve on the accuracy of gene trees. In this framework we define a duplication
scenario as an augmentation of the species tree with localized evidence of dupli-
cation events, and introduce a linear time algorithm for determining whether
a duplication scenario is feasible for a particular gene family; that is, whether
there exists an evolutionary history of the gene family whose reconciliation is in
agreement with the postulated duplication events in the species tree. In addi-

Solving the Gene Duplication Feasibility Problem in Linear Time 389

tion, following the phylogenetic parsimony paradigm [11], this algorithm can
construct a smallest gene tree that will satisfy the given duplication scenario.

The presented work is laying the foundation for practitioners to assess, aggre-
gate, and study various duplication scenarios that can be inferred from the exist-
ing studies of gene families and their evolution. Our algorithm has the ability
to support a much broader range of applications beyond the feasibility question,
e.g., pointing out where the additional (lost) gene lineages might have existed
for duplication scenarios failing the most parsimonious duplication model.

References

1. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian
gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. USA
106(14), 5714–5719 (2009)

2. Altenhoff, A.M., Dessimoz, C.: Inferring Orthology and Paralogy, pp. 259–279.
Humana Press, Totowa (2012)

3. Arvestad, L., Berglund, A.C., Lagergren, J., Sennblad, B.: Bayesian gene/species
tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl1),
7–15 (2003)

4. Bininda-Emonds, O.R. (ed.): Phylogenetic Supertrees: Combining Information to
Reveal the Tree of Life. Computational Biology, vol. 4. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-1-4020-2330-9

5. Blanc, G., Wolfe, K.H.: Widespread paleopolyploidy in model plant species inferred
from age distributions of duplicate genes. Plant Cell 16(7), 1667–1678 (2004)

6. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species
tree under the duplication cost model. Theor. Comp. Sci. 347, 36–53 (2005)

7. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplication,
Rearrangement and Reconciliation: A Follow-Up 13 Years Later. In: Chauve, C.,
El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution.
Computational Biology, vol. 19, pp. 47–62. Springer, London (2013). https://doi.
org/10.1007/978-1-4471-5298-9 4

8. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447
(2000)

9. Eulenstein, O., Huzurbazar, S., Liberles, D.: Reconciling phylogenetic trees. In:
Evolution After Gene Duplication. John Wiley (2010)

10. Eulenstein, O.: Vorhersage von Genduplikationen und deren Entwicklung in der
Evolution. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,
Germany (1998)

11. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
12. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fit-

ting the gene lineage into its species lineage, a parsimony strategy illustrated by
cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)

13. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic
networks. Genome Biol. Evol. 3, 23–35 (2011)

14. Ihara, K., Umemura, T., Katagiri, I., Kitajima-Ihara, T., Sugiyama, Y., Kimura,
Y., Mukohata, Y.: Evolution of the archaeal rhodopsins: evolution rate changes by
gene duplication and functional differentiation. J. Mol. Biol. 285(1), 163–74 (1999)

https://doi.org/10.1007/978-1-4020-2330-9
https://doi.org/10.1007/978-1-4471-5298-9_4
https://doi.org/10.1007/978-1-4471-5298-9_4

390 A. Markin et al.

15. Kamneva, O.K., Knight, S.J., Liberles, D.A., Ward, N.L.: Analysis of genome con-
tent evolution in PVC bacterial super-phylum: assessment of candidate genes asso-
ciated with cellular organization and lifestyle. Genome Biol. Evol. 4(12), 1375–1390
(2012)

16. Kamneva, O.K., Ward, N.L.: Reconciliation approaches to determining HGT,
duplications, and losses in gene trees, Chap. 9. In: Michael Goodfellow, I.S., Chun,
J. (eds.) New Approaches to Prokaryotic Systematics, Methods in Microbiology,
vol. 41, pp. 183–199. Academic Press (2014)

17. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)
18. Page, R.D., Cotton, J.: Vertebrate phylogenomics: reconciled trees and gene dupli-

cations. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)
19. Renny-Byfield, S., Wendel, J.F.: Doubling down on genomes: polyploidy and crop

plants. Am. J. Bot. 101(10), 1711–1725 (2014)
20. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-

logenies. J. Comput. Biol. 4(2), 177–187 (1997)

	Solving the Gene Duplication Feasibility Problem in Linear Time
	1 Introduction
	2 Basics and Preliminaries
	3 Feasibility of Duplication Scenarios
	3.1 General Feasibility
	3.2 Proof of Correctness of Algorithm1
	3.3 Gene Trees for Feasible Scenarios

	4 Conclusion and Discussion
	References

