
Online Interval Scheduling to Maximize
Total Satisfaction

Koji M. Kobayashi(B)

The University of Tokyo, Tokyo, Japan
kojikoba@mi.u-tokyo.ac.jp

Abstract. The interval scheduling problem is one variant of the schedul-
ing problem. In this paper, we propose a novel variant of the interval
scheduling problem, whose definition is as follows: given jobs are speci-
fied by their release times, deadlines and profits. An algorithm must start
a job at its release time on one of m identical machines, and continue
processing until its deadline on the machine to complete the job. All the
jobs must be completed and the algorithm can obtain the profit of a
completed job as a user’s satisfaction. It is possible to process more than
one job at a time on one machine. The profit of a job is distributed uni-
formly between its release time and deadline, that is its interval, and the
profit gained from a subinterval of a job decreases in reverse proportion
to the number of jobs whose intervals intersect with the subinterval on
the same machine. The objective of our variant is to maximize the total
profit of completed jobs.

This formulation is naturally motivated by best-effort requests and
responses to them, which appear in many situations. In best-effort
requests and responses, the total amount of available resources for users
is always invariant and the resources are equally shared with every user.
We study online algorithms for this problem. Specifically, we show that
for the case where the profits of jobs are arbitrary, there does not exist
an algorithm whose competitive ratio is bounded. Then, we consider the
case in which the profit of each job is equal to its length, that is, the
time interval between its release time and deadline. For this case, we
prove that for m = 2 and m ≥ 3, the competitive ratios of a greedy algo-
rithm are at most 4/3 and at most 3, respectively. Also, for each m ≥ 2,
we show a lower bound on the competitive ratio of any deterministic
algorithm.

1 Introduction

The interval scheduling problem is one of the variants of the scheduling problem,
which has been widely studied. One of the most basic definitions is as follows:
We have m ≥ 1 identical machines and jobs are given. A job is characterized by
the release time, deadline and weight (or value). To complete a job, we must start
to process it at its release time on a machine of the m machines, and continue
processing it until its deadline on that machine. That is, the processing time (or
length) of the job is the time interval between its release time and deadline. The
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 108–119, 2018.
https://doi.org/10.1007/978-3-319-94776-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_10&domain=pdf

Online Interval Scheduling to Maximize Total Satisfaction 109

number of jobs which can be processed on one machine at a time is at most
one. The objective of an algorithm is to maximize the total weight of completed
jobs. There are many applications of the interval scheduling problem, such as
bandwidth allocation and vehicle assignment (see e.g., [13,14]). Many variants of
this problem have been proposed and extensively studied. Furthermore, research
on online settings has also been considered. In an online variant of the interval
scheduling problem, a job arrives at its release time and an online algorithm must
decide whether it processes the job before the next job arrives. The performance
of online algorithms is evaluated using competitive analysis [3,19]. For any input,
if the total weight gained by an optimal offline algorithm is at most c times that
gained by an online algorithm, the online algorithm is c-competitive.

In this paper, we introduce a novel variant of the interval scheduling prob-
lem. In many existing variants of the interval scheduling problem, jobs (or
users) require resources for an algorithm, and the algorithm assigns the required
resources of a machine to the job. Thus, the number of jobs assigned to one
machine at a time is subject to the maximum amount of resources of the machine.
The amount is generally one; that is, at most one job can be processed at a time
on one machine in most variants. Therefore, we can regard such existing variants
as formulating resource reservation requests by users, who designate the amount
of resources they want to use in advance and the responses to them. However,
it is not always possible for users to designate the amount of resources they
want when they issue requests. Additionally, there are not necessarily sufficient
resources of a machine to meet users’ requests. Thus, we focus on a best-effort
method to manage situations, which is often considered paired with resource
reservation methods. In this method, the amount of resources of a machine is
always invariant and the resources are equally shared by users who want to use
the resources at the same time. Then, we formulate best-effort requests and
responses to them as a variant of the interval scheduling problem. Specifically,
we remove the capacity constraints from machines in our variant, which makes
it possible to assign jobs unlimitedly on one machine at a time. To the best
of our knowledge, this is the first such formulation of the interval scheduling
problem. Consider a given job as a user’s request. If a machine processes the
request using sufficient resources, the user is sufficiently satisfied with the result
obtained from the process. Conversely, if there are not sufficient resources to
process the request, the user is less satisfied with the result than usual. Then,
the objective of our variant is to maximize the total satisfaction gained by users.
Bandwidth allocation in networks is one of the most suitable examples for best-
effort requests and responses. In this example, the total bandwidth which may
be supplied to users on the same communication link is fixed in advance, and
all users share the bandwidth. Hence, the fewer users which use the communi-
cation link at a time, the greater the bandwidth which each one can use, which
means that the effective speed of the communication link is higher for the users.
Conversely, the more people there are using link simultaneously, the lower the
effective speed for each user. As a result, if the bandwidth for a user is high,
then the user’s satisfaction is high. Otherwise, it is low. Best-effort requests and

110 K. M. Kobayashi

responses such as bandwidth allocation could happen in many cases, for example,
the use of facilities, such as swimming pools and gyms, passenger trains without
reservations, and buffet style meals. Therefore, we have sufficient incentives to
study our variant.

Our Results. In this paper, we propose and analyze a novel variant of the inter-
val scheduling problem. We study online algorithms for this problem. Specifically,
in the case where the profits of jobs are arbitrary; that is, the profits are not
relevant to the lengths of jobs, we show that the competitive ratio of any deter-
ministic algorithm is unbounded. Then, we introduce the profits of jobs are equal
to their lengths, which is a more natural case, called the uniform profit case. In
this case, the total amount of time during which at least one job is scheduled on
a machine is equal to the total amount of the satisfaction gained on the machine.
That is, the objective of this case can be regarded as maximizing the working
hours of all the machines. We analyze the performance of a greedy algorithm GR
in this case. Since GR is a significant algorithm from a practical point of view,
it is worthwhile to evaluate its performance. When m = 2 and m ≥ 3, we show
that the competitive ratios of GR are at most 4/3 and at most 3, respectively.
When m = 2, we prove that a lower bound on the competitive ratio of GR is
4/3. That is, for m = 2, our analysis of GR is tight. Also, we show lower bounds
of any deterministic online algorithms for each m ≥ 2, which are summarized in
Tables 1 and 2 in Sect. 5.

Table 1. Our results

m Upper bound Lower bound

2 4/3 ≤ 1.334 (10 − √
2)/7 ≥ 1.226

3 3 7/6 ≥ 1.166

4 (22 − 2
√

2)/17 ≥ 1.127

5 (420 − 15
√

7)/333 ≥ 1.142

6 (51 − 6
√

2)/41 ≥ 1.140

∞ (48 − 2
√

2)/41 ≥ 1.101

Related Results. Much research on the interval scheduling problem has been
conducted. Arkin and Silverberg [1] and Bouzina and Emmons [4] provided poly-
nomial time algorithms to solve the interval scheduling problem.

There is also much research on online interval scheduling problems. If an
online algorithm aborts a job J which was placed on a machine, then we say
that the algorithm preempts J . In the case in which preemption is allowed, Faigle
and Nawijn [9] designed a 1-competitive algorithm to maximize the number of
completed jobs. This algorithm was independently discovered by Carlisle and
Lloyd [6] but used only for the offline setting. Moreover, for the variant in which
the objective is to maximize the total weight of completed jobs, Woeginger [20]

Online Interval Scheduling to Maximize Total Satisfaction 111

showed that no any competitive deterministic algorithm exists (even) for m = 1.
Canetti and Irani [5] provided a randomized online algorithm whose competitive
ratio is O(log Δ) and proved that a lower bound on the competitive ratio of
any randomized algorithm is Ω(

√
log Δ/ log log Δ), where Δ is the ratio of the

longest length to the shortest length. This result indicates that the competitive
ratio of an online algorithm may become worse depending on a given input
even if it is supported by randomization. Additionally, the setting in which the
jobs are unit length has been extensively studied. For the one machine setting,
Woeginger [20] designed a deterministic algorithm whose competitive ratio is at
most 4 and showed that this is the best possible ratio. There has also been much
work regarding randomized algorithms (e.g. [8,10–12,16,18]). When m = 1, the
current best upper and lower bounds on the competitive ratios of randomized
algorithms are 2 by Fung et al. [12] and 1+ln 2 ≥ 1.693 by Epstein and Levin [8],
respectively. For m ≥ 2, Fung et al. [11] proved that, if m is even, an upper bound
is 2, and otherwise 2 + 2/(2m − 1). However, for m = 2, the current best lower
bound is 2 by Fung et al. [10]. When each m ≥ 3, Fung et al. [11] indicated
that we can obtain a lower bound of 1 + ln 2 ≥ 1.693 in a similar manner to
the lower bound of Epstein and Levin [8]. If preemption is not allowed, Lipton
and Tomkins [15] proposed a randomized algorithm whose competitive ratio is
O((log Δ)1+ε) and proved that a lower bound of any randomized algorithms is
Ω(log Δ).

For a job given in the interval scheduling problem, its length is equal to the
length of the time between its release time and deadline. On the other hand, a
variant in which the job length is generalized has also been studied. Specifically,
a parameter slack ε > 0 is introduced, whose value is known to an algorithm
in advance, and the length of a job is at most x times as long as the length of
the time between its release time and deadline, in which x = 1/(1 + ε). In this
variant, preemption is allowed and to complete a job, an algorithm must process
it during its length by its deadline after its release time. For several m, optimal
online algorithms were designed [2,7,17], whose competitive ratios are 1 + 1/ε.

2 Model Description

We have m(≥ 2) identical machines. A list consisting of n(≥ 1) jobs is provided
as an input. A job J is specified by a triplet (r, d, v), where r(J) is the release
time of J , d(J) is the deadline of J , and v(J) is the profit of J . An algorithm ALG
must place each job onto one of the m machines. It is possible to place more than
one job at a time on one machine. The profit of a job is distributed uniformly
between its release time and deadline, that is its interval, and the profit gained
from a subinterval of a job decreases in reverse proportion to the number of jobs
whose intervals intersect with the subinterval on the same machine. Specifically,
the profit from the subinterval is defined as follows: For an algorithm ALG, if the
numbers of jobs placed at any two points in an interval (x, y) (x < y) are equal
on ALG’s a(∈ [1,m])th machine and (x, y) does not contain any endpoint of the
interval of a job placed on the machine after processing of the input, then we call

112 K. M. Kobayashi

the interval a P -interval on ALG’s ath machine. Also, let kALG(a, x, y) denote
the number of the jobs. If an algorithm ALG places a job J onto the ath machine,
then we define mALG(J) = a. For an algorithm ALG and a job J , suppose that
the interval (r(J), d(J)) consists of b(≥ 1) P -intervals (xi, xi+1) (i = 1, . . . , b−1)
on ALG’s mALG(J)th machine such that r(J) = x1 < x2 < · · · < xb = d(J).
Then, we define the satisfaction (profit) which is yielded from [xi, xi+1] of J and
ALG gains as

VALG(J, i) =
xi+1 − xi

d(J) − r(J)
v(J)

kALG(mALG(J), xi, xi+1)
.

We define the satisfaction (profit) of J gained by ALG as

VALG(J) =
b−1∑

i=1

VALG(J, i).

The profit of ALG for an input σ is defined as

VALG(σ) =
∑

J∈L
VALG(J),

where L is a list consisting of the n given jobs. The objective is to maximize the
total satisfaction of the n jobs.

In this paper, we consider an online variant of this problem. Specifically, n
jobs are given one by one. The jobs are not necessarily given in order of release
time. An online algorithm must place a given job to a machine before the next
job is given. Once a job is placed on a machine, it cannot be removed later. That
is, preemption is not allowed. The total number n of given jobs is not known
to the online algorithm, and it does not require this information until after all
the jobs arrive. We say that the competitive ratio of an online algorithm A is
at most c or A is c-competitive if, for any input, the profit gained by an offline
optimal algorithm OPT is at most c times the profit gained by A.

3 General Profit Case

Due to page limitations, we omit almost all of the proofs in this paper. The full
version of this paper is available at https://arxiv.org/abs/1805.05436.

In this section, we consider the case in which the profits of jobs are arbitrary.
First, we consider the case m = 2 for better understanding of any m ≥ 3.

Theorem 1. When m = 2, there does not exist any deterministic online algo-
rithm whose competitive ratio is bounded.

Theorem 2. For any m, there does not exist a competitive deterministic algo-
rithm.

https://arxiv.org/abs/1805.05436

Online Interval Scheduling to Maximize Total Satisfaction 113

4 Upper Bounds for Uniform Profit Case

In this section, we consider the uniform profit case, that is, the case in which
the profit of a job is equal to its length. In this case, the total amount of time
during which at least one job is scheduled on a machine is equal to the total
amount of the satisfaction gained on the machine. That is, the objective of this
case can be regarded as maximizing the working hours of all the machines.

4.1 Preliminaries

After the end of the input, we need to evaluate the profit from each job by OPT
using the profits yielded from intervals of jobs scheduled by GR to analyze the
performance of GR. Then, we classify intervals (or points) in a job J by GR or
OPT into the following four categories depending on the behaviors of GR and
OPT for J .

For any two intervals I = [t1, t2] and I ′ = [t′1, t
′
2], we say that I intersects

with I ′ if t′1 < t2 and t1 < t′2. For any job J , we call the interval [r(J), d(J)] the
interval of J . If an algorithm ALG places two jobs onto the same machine and
they intersect, then we say that they overlap. For any interval I = [t, t′], we call
the value of t′ − t the length of I, written as |I|.

We give the definition of a greedy algorithm GR and analyze its performance
in this section. GR places a given job J onto the machine on which GR gains
the largest profit from J . The tie-breaking rule selects the minimum indexed
machine.

For ease of analyzing, we introduce the following idea. Suppose that two jobs
J1 and J2 are placed onto the same machine, and they overlap in an interval I.
Also, suppose that J1 is the first job placed in I on the machine. Then, pretend
that the profits from I of J1 and J2 are |I| and zero, respectively. That is, we
pretend that a job which is placed chronologically first in an interval on a machine
monopolizes the machine power in the interval. Note that in the uniform profit
case, the total profit gained from an interval of jobs placed on a machine depends
not on how large the number of the jobs in the interval is but on whether there
exists at least one job placed in the interval. That is why this assumption does
not affect the profit of any algorithm.

4.2 Overview of Analysis

To evaluate the performance of GR, that is, its competitive ratio, we bound
the profit of OPT at the end of the input using that of GR. Then, we classify
intervals of jobs placed by either GR or OPT into four categories.

For any job J and any interval I ⊆ [r(J), d(J)], if the profit gained from I
of J by GR is zero and that by OPT is |I|, then we call I of J an OPT extra
interval of J (denoted as an oe-interval, for short). Also, if the profit gained
from I of J by OPT is zero and that by GR is |I|, then we call I of J a GR
extra interval of J (a ge-interval, for short). If the profits gained from I of J by
GR and OPT are both |I|, we call I of J a common interval of J (a c-interval,

114 K. M. Kobayashi

for short). For ease of presentation, we call an interval which is a c-interval or a
ge-interval a profit interval (a p-interval, for short). If the profits gained from I
of J by GR and OPT are both zero, we call I of J a non-profit interval of J (an
n-interval, for short). Further, we call a point in an oe-interval (a ge-interval,
a c-interval, and a p-interval, respectively) of J an oe-fraction (a ge-fraction, a
c-fraction, and a p-fraction, respectively) of J .

We evaluate the competitive ratio of GR by “assigning” p-fractions (i.e., p-
intervals) to all oe-fractions (i.e., oe-intervals) according to a routine, which is
defined later. This “assignment” is realized by some functions. Let Voe(σ) be
the total length of oe-intervals to which c-intervals are assigned. Let Voe′(σ) be
the total length of oe-intervals to which ge-intervals are assigned. Also, let Vc(σ)
be the total length of c-intervals and Vge(σ) be the total length of ge-intervals.
Then, we have by definition,

VGR(σ) = Vc(σ) + Vge(σ) (1)

and
VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ). (2)

We will show the following three properties of the assignments by the routine:

1. Each oe-fraction is assigned a p-fraction,
2. a c-fraction of a job given to GR is assigned at most twice, and
3. a ge-fraction is assigned at most three times.

To show these, we will construct sequentially three functions M1,M2 and M3

from oe-intervals to p-intervals satisfying the following properties: Initially, for
any oe-fraction f and any i ∈ {1, 2, 3}, Mi(f) = ∅. At the end of the input, for
any oe-fraction f , M1(f)∪M2(f)∪M3(f) �= ∅. There exists a p-fraction f ′ such
that M1(f) = f ′ if M1(f) �= ∅. There exists a ge-fraction f ′ such that M2(f) =
f ′ if M2(f) �= ∅. There exists a p-fraction f ′ such that M3(f) = f ′ if M3(f) �= ∅.
For any oe-fractions f and f ′(�= f) and any i ∈ {1, 2, 3}, Mi(f) ∩ Mi(f ′) = ∅.
Then, we have by these functions,

Voe(σ) ≤ 2Vc(σ) (3)

and
Voe′(σ) ≤ 3Vge(σ). (4)

By Eq. (2), we have

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ)
≤ Vc(σ) + 2Vc(σ) + 3Vge(σ) (by Eqs. (3) and (4))
= 3(Vc(σ) + Vge(σ)) = 3VGR(σ), (by Eq. (1))

which leads to the following theorem:

Theorem 3. For any m ≥ 2, the competitive ratio of GR is at most three.

Online Interval Scheduling to Maximize Total Satisfaction 115

4.3 Analysis of GR

For any job J and any point t ∈ [r(J), d(J)], let E(J, t) denote the total length
of oe-intervals of J in the interval [r(J), t]. For any job J , any job J ′ given
before J , any interval [t1, t2] and any a(∈ [1,m]), let Pa(J, J ′, t1, t2) denote the
total length of p-intervals of GR’s jobs placed on the ath machine which are
in [t1, t2] immediately after J is placed and are not intersecting with any n-
interval of J ′. For any a(∈ [1,m]), any job J , any job J ′ given before J , and
any point t ∈ [r(J ′), d(J ′)], define ha(J, J ′, t) = t′ in which t′ is the point such
that Pa(J, J ′, r(J ′), t′) = E(J ′, t) and t′ ∈ [r(J ′), d(J ′)] immediately after J
is placed onto the machine. (t′ exists by Lemma 1, which is shown later.) For
any i ∈ {1, 2, 3} and any p-fraction f ′, define M−1

i (f ′) = {f | Mi(f) = f ′}.
We say that a c-fraction f ′ such that M−1

1 (f ′) = ∅ is 1-assignable. We say
that a ge-fraction f ′ such that M−1

2 (f ′) = ∅ is 2-assignable. We say that
a ge-fraction f ′ such that M−1

2 (f ′) �= ∅ and M−1
1 (f ′) = ∅ is 1-assignable.

If a p-fraction is 1-assignable or 2-assignable, we say that it is assignable.
Now we give the definition of the routine mentioned in the previous section.

AssignmentRoutine

Consider a moment immediately after the jth job Jj is placed. J := (the set of
Jj plus each job Jj′ (j′ ≤ j − 1) whose interval intersects with the interval of
Jj). For any oe-fraction f of each J ∈ J , execute the following.
Step 1: For each i ∈ {1, 2, 3}, Mi(f) := ∅. t1 := h1(Jj , J, t), in which f exists
at a point t.
Step 2: Execute one of the following two cases.
Case 2.1 (An assignable p-fraction f1 exists at t1): If f1 is 1-assignable,

M1(f) := f1. Otherwise, if f1 is 2-assignable, M2(f) := f1.
Case 2.2 (No assignable p-fraction exists at t1): By Lemma 2, there

exists a p-fraction fa at the point ta on some a(∈ {1,m})th machine such that
M−1

3 (fa) = ∅, in which ta = ha(Jj , J, t). (For any a′ ∈ {1,m}, there exists ta′

by Lemma 1.)

In the following, we first show the existence of ta in Case 2.2. Next, we show
that there exists pa in Case 2.2. That is, we prove that the routine can assign a
p-fraction to each oe-fraction.

Lemma 1. For any a(∈ [1,m]), any job J , any job J ′ which is given before J ,
and any point t ∈ [r(J ′), d(J ′)], there exists the point t′ such that ha(J, J ′, t) = t′

and t′ ∈ [r(J ′), d(J ′)] immediately after J is placed.

Lemma 2. Case 2.2 is executable. That is, when Case 2.2 is executed for an oe-
fraction f , f can be assigned a p-fraction fa such that M−1

3 (fa) = ∅ immediately
before executing Case 2.2.

116 K. M. Kobayashi

4.4 Upper Bound for m = 2

When m = 2, we also evaluate the competitive ratio of GR by assigning p-
fractions to all oe-fractions. In this case, we obtain a better upper bound on
the competitive ratio of GR than one for general m by implementing more
detailed assignments. If the routine assigns one ge-fraction to one oe-fraction,
we say that the routine ge-assigns the ge-fraction to the oe-fraction. Also, if
the routine assigns three p-fractions to one oe-fraction, we say that the routine
3p-assigns each of the p-fractions to the oe-fraction. We will show the following
three properties by the assignments according to the routine defined later:

1. Each oe-fraction is ge-assigned or 3p-assigned,
2. a c-fraction of a job given to GR is 3p-assigned at most once, and
3. a ge-fraction is ge-assigned at most once and is 3p-assigned at most once.

We will show them by sequentially constructing two functions N1 and N2 from
oe-intervals to p-intervals satisfying the following properties: Initially, for any
oe-fraction f and any i ∈ {1, 2}, Ni(f) = ∅. At the end of the input, for any
oe-fraction f , N1(f) ∪ N2(f) �= ∅. There exist three distinct p-fractions f1, f2
and f3 such that N1(f) = {f1, f2, f3} if N1(f) �= ∅. There exists a ge-fraction
f ′ such that N2(f) = f ′ if N2(f) �= ∅. For any oe-fractions f and f ′(�= f) and
any i ∈ {1, 2}, Ni(f) ∩ Ni(f ′) = ∅. Let Voe(σ) denote the total length of oe-
intervals to which the routine 3p-assigns, and let Voe′(σ) denote the total length
of oe-intervals to which the routine ge-assigns. Thus,

Voe(σ) ≤ VGR(σ)/3

and
Voe′(σ) ≤ Vge(σ).

Then, using these inequalities, we have

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ)

≤ Vc(σ) + VGR(σ)/3 + Vge(σ) =
4
3
VGR(σ).

Therefore, we have the following theorem:

Theorem 4. When m = 2, the competitive ratio of GR is at most 4/3.

For any i ∈ {1, 2} and any p-fraction f ′, define N−1
i (f ′) = {f | Ni(f) =

f ′}. We say that a p-fraction f ′ is 1-assignable if N−1
1 (f ′) = ∅. Also,

we say that a ge-fraction f ′ is 2-assignable if N−1
2 (f ′) = ∅. Now we

give the definition of the routine to construct the above two functions.

AssignmentRoutine2

Consider a moment immediately after a job J is placed. For any oe-fraction f
of J , execute the following.
Step 1: m2 := mGR(J) and m1 := {1, 2} \ {m2}. t1 := hm1(J, J, t), in which f

Online Interval Scheduling to Maximize Total Satisfaction 117

exists at a point t.
Step 2: Let f ′ be the p-fraction at t on the m2th machine (f ′ exists by the
definition of oe-fractions). Execute one of the following two cases.
Case 2.1 (f ′ is 2-assignable): N2(f) := f ′.
Case 2.2 (Otherwise): N1(f) := {f ′, f1, f2}, in which f1 is the p-fraction at

t1 on GR’s m1th machine (f1 exists by Lemma 1), and f2 is the p-fraction at t1
on GR’s m2th machine (f2 exists because the interval of J contains t1 by the
definition of hm1). (By Lemma 3, f ′, f1 and f2 are 1-assignable.)

Lemma 3. Case 2.2 is executable. That is, when Case 2.2 is executed for an
oe-fraction f , f can be assigned 3 p-fractions (i.e., 3p-assigned) each of which
is 1-assignable immediately before executing Case 2.2.

We show that our analysis of GR for m = 2 is tight in the following theorem.

Theorem 5. When m = 2, for any ε > 0, the competitive ratio of GR is at
least 4/3 − ε.

5 Lower Bounds for Uniform Profit Case

In this section, we show lower bounds on the competitive ratios of online algo-
rithms for the uniform profit case. For better understanding, we first consider
the case of m = 2.

Theorem 6. When m = 2, the competitive ratio of any deterministic online
algorithm is at least (10 − √

2)/7 ≥ 1.226.

Proof. Consider an online algorithm ON . The first given job is J1 such that
r(J1) = 0 and d(J1) = 1. The second job is J2 such that r(J2) = 1 + x and
d(J2) = 2 + x. Note that x is set later. Without loss of generality, we may
assume that both ON and OPT place J1 onto the first machine.

In the following, we use two inputs. First, we consider the case where ON
places J1 and J2 on two different machines. That is, suppose that ON places
J2 on the second machine. Then, the third job J3 such that r(J3) = 0 and
d(J3) = 2 + x is given, and no further job arrives. We call this input σ1. If ON
places J3 onto the first machine, we have VON (σ1) = 2+x+1 = 3+x. ON also
gains the same profit if ON places J3 onto the second machine. On the other
hand, the machine onto which OPT places both J1 and J2 is different from that
onto which J3 is placed. Thus, VOPT (σ1) = 2 + 2 + x = 4 + x. By the above
argument,

VOPT (σ1)
VON (σ1)

=
4 + x

3 + x
. (5)

Second, we consider the case where ON places J1 and J2 onto the first
machine. The third job J ′

1 such that r(J ′
1) = 1 − y and d(J ′

1) = 1 + x and the

118 K. M. Kobayashi

fourth job J ′
2 such that r(J ′

2) = 1 and d(J ′
2) = 1 + x + y are given, where y is

fixed later. No further job is given; we call this input σ2. We first consider the
case where ON places J ′

1 and J ′
2 on different machines. If J ′

1 is placed onto the
first machine, on which J1 and J2 are placed,

VON (σ2) = 1 + x + 1 + x + y = 2 + 2x + y. (6)

ON gains the same profit if J ′
2 is placed onto the first machine. Next, we consider

the case in which ON places J ′
1 and J ′

2 onto the machine. If the machine is the
second one, then it is clear that ON gains larger profits than it does in the other
case. Hence,

VON (σ2) = 2 + x + 2y. (7)

Now, set y = x and we have VON (σ2) = 2+3x by Eqs. (6) and (7). On the other
hand, OPT places both J1 and J ′

2 onto the first machine and both J2 and J ′
1

onto the second machine. Thus, VOPT (σ2) = 2(1+x+y) = 2+4x. By the above
argument,

VOPT (σ2)
VON (σ2)

=
2 + 4x
2 + 3x

. (8)

Therefore, by Eqs. (5) and (8),

VOPT (σ)
VON (σ)

≥ min
{

4 + x

3 + x
,
2 + 4x
2 + 3x

}
=

4 +
√

2
3 +

√
2

=
10 − √

2
7

,

where we choose x =
√

2.

The following theorem provides lower bounds for m ≥ 3 by generalizing the
input used to prove Theorem 6.

Theorem 7. The competitive ratio of any deterministic algorithm is at least
1.101. It is better for fixed m and then refer to Table 2 for details.

Table 2. Lower bounds for each m(≥ 3).

m Lower bound m Lower bound m Lower bound

3 7/6 ≥ 1.166 6 51−6
√
2

41
≥ 1.140 9 9/8 ≥ 1.125

4 22−2
√
2

17
≥ 1.127 7 280−70

√
11

227
≥ 1.158 10 290−15

√
2

239
≥ 1.124

5 420−15
√
7

333
≥ 1.142 8 28/25 ≥ 1.12 ∞ 48−2

√
2

41
≥ 1.101

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
26730008.

Online Interval Scheduling to Maximize Total Satisfaction 119

References

1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times.
Discrete Appl. Math. 18(1), 1–8 (1987)

2. Baruah, S.K., Haritsa, J.R.: Scheduling for overload in real-time systems. IEEE
Trans. Comput. 46(9), 1034–1039 (1997)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Bouzina, K.I., Emmons, H.: Interval scheduling on identical machines. J. Global
Optim. 9(3–4), 379–393 (1996)

5. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM J. Comput. 27(4), 993–1015 (1998)

6. Carlisle, M.C., Lloyd, E.L.: On the k-coloring of intervals. Discrete Appl. Math.
59(3), 225–235 (1995)

7. DasGupta, B., Palis, M.A.: Online real-time preemptive scheduling of jobs with
deadlines on multiple machines. J. Sched. 4(6), 297–312 (2001)

8. Epstein, L., Levin, A.: Improved randomized results for the interval selection prob-
lem. Theoret. Comput. Sci. 411(34–36), 3129–3135 (2010)

9. Faigle, U., Nawijn, W.M.: Note on scheduling intervals on-line. Discrete Appl.
Math. 58(1), 13–17 (1995)

10. Fung, S.P.Y., Poon, C.K., Zheng, F.: Online interval scheduling: randomized and
multiprocessor cases. J. Comb. Optim. 16(3), 248–262 (2008)

11. Fung, S.P.Y., Poon, C.K., Yung, D.K.W.: On-line scheduling of equal-length inter-
vals on parallel machines. Inf. Process. Lett. 112(10), 376–379 (2012)

12. Fung, S.P.Y., Poon, C.K., Zheng, F.: Improved randomized online scheduling of
intervals and jobs. Theor. Comput. Syst. 55(1), 202–228 (2014)

13. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval
scheduling: a survey. Naval Res. Logist. 54(5), 530–543 (2007)

14. Kovalyov, M.Y., Ng, C.T., Cheng, T.C.E.: Fixed interval scheduling: models, appli-
cations, computational complexity and algorithms. Eur. J. Oper. Res. 178(2), 331–
342 (2007)

15. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 302–311 (1994)

16. Miyazawa, H., Erlebach, T.: An improved randomized on-line algorithm for a
weighted interval selection problem. J. Sched. 7(4), 293–311 (2004)

17. Sankowski, P., Zaroliagis, C.: The power of migration for online slack scheduling.
In: Proceedings of the 24th Annual European Symposium on Algorithms, pp. 75:1–
75:17 (2016)

18. Seiden, S.S.: Randomized online interval scheduling. Oper. Res. Lett. 22(4–5),
171–177 (1998)

19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

20. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theoret.
Comput. Sci. 130(1), 5–16 (1994)

	Online Interval Scheduling to Maximize Total Satisfaction
	1 Introduction
	2 Model Description
	3 General Profit Case
	4 Upper Bounds for Uniform Profit Case
	4.1 Preliminaries
	4.2 Overview of Analysis
	4.3 Analysis of GR
	4.4 Upper Bound for m = 2

	5 Lower Bounds for Uniform Profit Case
	References

