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Preface

This volume contains the papers presented at the 24th International Computing and
Combinatorics Conference (COCOON 2018), held during July 2–4, 2018, in Qing
Dao, China. COCOON 2018 provided a forum for researchers working in the areas of
algorithms, theory of computation, computational complexity, and combinatorics
related to computing.

The technical program of the conference included 62 contributed papers selected by
the Program Committee from 120 full submissions received in response to the call for
papers. All the papers were peer reviewed by at least two (2.83 in average) Program
Committee members or external reviewers. The papers cover various topics, including
algorithms and data structures, complexity theory and computability, algorithmic game
theory, computational learning theory, cryptography, computational biology, compu-
tational geometry and number theory, graph theory, and parallel and distributed
computing. Some of the papers were selected for publication in special issues of
Algorithmica, Theoretical Computer Science (TCS), and Journal of Combinatorial
Optimization (JOCO), with the journal version of the papers being in a more complete
form.

The conference also included three invited presentations, delivered by Michael
Segal (Ben-Gurion University of the Negev), Ming Li (University of Waterloo), and
Russell Schwartz (Carnegie Mellon University). Abstracts of their talks are included in
this volume. We would like to thank all the authors for contributing high-quality
research papers to the conference. We express our sincere thanks to the Program
Committee members and the external reviewers for reviewing the papers. We thank
Springer for publishing the proceedings in the Lecture Notes in Computer Science
series. We thank the Shandong University for hosting COCOON 2018. We are also
grateful to all members of the Organizing Committee and to their supporting staff.
electronic Program Committee meetings, and to assist with the assembly of the
proceedings.

May 2018 Daming Zhu
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Privacy Aspects in Data Querying

Michael Segal

Communication Systems Engineering Department,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

segal@bgu.ac.il

Abstract. Vast amounts of information of all types is collected daily about
people by governments, corporations and individuals. The information is col-
lected, for example, when users register to or use online applications, receive
health related services, use their mobile phones, utilize search engines, or per-
form common daily activities. As a result, there is an enormous quantity of
privately-owned records that describe individuals finances, interests, activities,
and demographics. These records often include sensitive data and may violate
the privacy of the users if published. The common approach to safeguarding
user information, or data in general, is to limit access to the storage (usually a
database) by using and authentication and authorization protocol. This way, only
users with legitimate permissions can access the user data. However, even in
these cases some of the data is required to stay hidden or accessible only to a
specific subset of authorized users. Our talk focuses on possible malicious
behavior by users with both partial and full access to queries over data. We look
at privacy attacks that meant to gather hidden information and show methods
that rely mainly on the underlying data structure, query types and behavior, and
data format of the database. The underlying data structure may vary between
graphs, trees, lists, queues, and so on. Each of these behaves differently with
regard to data storage and querying, allow for different types of attacks, and
require different methods of defense. The data stored in databases can be just
about anything, and may be a combination of many different data types such as
text, discrete numeric values, coordinates, continuous numeric values, times-
tamps, and others. We will show how to identify the potential weaknesses and
attack vectors for each of these combinations of data structures and data types,
and offer defenses against them. This is a joint work with Eyal Nussbaum.



Challenges from Cancer Immunotherapy

Ming Li

School of Computer Science, University of Waterloo
mli@uwaterloo.ca

There are currently two revolutions happening in the scientific world: deep learning and
cancer immunotherapy. The former we have all heard, but I believe it is the latter [1–4]
that is more closely related to the CPM/COCOON community and personally to each
of us.

In principle, cancer immunotherapy is to activate our own defense system to kill
cancer cells. When a cell in our bodies (for all vertebrates) becomes sick beyond repair,
the MHC complex brings fragments of 8-15 amino acids, or (neo)antigens, from the
foreign invader or cancerous proteins, to the surface of the cell inviting the white blood
cells to kill that cell.

Short peptide immunotherapy uses these short sequences (of 8-15 amino acids) as
the vaccine. One key obstacle for this treatment to become a clinical reality is how to
identify and validate these somatic mutation loaded neoantigens (peptides of 8-15
amino acids) that are capable of eliciting effective anti-tumor T-cell responses for each
individual. Currently, to treat a patient, we take a biopsy, do exome sequencing,
perform somatic mutation analysis and MHC binding prediction. This process is a long,
unreliable, and very expensive detour to predicting the neoantigens that are brought to
the cancer cell surface [3, 4]. This process potentially can be validated by mass
spectrometry (MS) [3–5] or even replaced by MS altogether if MS has sufficient
sensitivity to capture the low abundant neoantigens on the cancer cell surface.

There is a promising MS technology called Data-Independent Acquisition
(DIA) [6, 7] that has unbiased fragmentation of all precursor ions within a certain range
of m/z. In this talk we will present our preliminary work [8] on how to find these
mutated peptide sequences (de novo sequencing) from the cancer cell surface using
deep learning and DIA data. We will discuss major open problems.

This is joint work with NH. Tran, R. Qiao, L. Xin, X. Chen, C. Liu, X. Zhang, and B.
Shan. This work is partially supported by China’s National Key R&D Program under
grants 2018YFB1003202 and 2016YFB1000902, Canada’s NSERC OGP0046506,
Canada Research Chair Program, MITACS, and BSI.
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Reconstructing Tumor Evolution
and Progression in Structurally Variant

Cancer Cells

Russell Schwartz

Biological Sciences and Computational Biology, Carnegie Mellon University,
Pittsburg, PA 15213, USA

russells@andrew.cmu.edu

Abstract. Cancer is disease governed by the process of evolution, in which a
process of accelerated genomic diversification and selection leads to the for-
mation of tumors and a process of generally increasing aggressiveness over
time. As a result, computational algorithms for reconstructing evolution have
become a crucial tool for making sense of the immense complexity of tumor
genomic data and the molecular mechanisms that produce them. While cancers
are evolutionary systems, though, they follow very different rules than standard
species evolution. A large body of research known as cancer phylogenetics has
arisen to develop evolutionary tree reconstructions adapted to the peculiar
mechanisms of tumor evolution and the limitations of the data sources available
for studying it. Here, we will explore computational challenges in developing
phylogenetic methods for reconstructing evolution of tumors by copy number
variations (CNVs) and structural variations (SVs). CNVs and SVs are the pri-
mary mechanisms by which tumors functionally adapt during their evolution,
but require very different models and algorithms than are used in traditional
species phylogenetics. We will examine variants of this problem for handling
several forms of tumor genomic data, including particular challenges of working
with various bulk genomic and single-cell technologies for profiling tumor
genetic variation. We will further see how the resulting models can help us
develop new insight into how tumors develop and progress and how we can
predict their future behavior.
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Constructing Independent Spanning
Trees on Bubble-Sort Networks

Shih-Shun Kao1, Jou-Ming Chang1(B), Kung-Jui Pai2, and Ro-Yu Wu3

1 Institute of Information and Decision Sciences,
National Taipei University of Business, Taipei, Taiwan

{10566011,spade}@ntub.edu.tw
2 Department of Industrial Engineering and Management,

Ming Chi University of Technology, New Taipei City, Taiwan
poter@mail.mcut.edu.tw

3 Department of Industrial Management,
Lunghwa University of Science and Technology, Taoyuan, Taiwan

eric@mail.lhu.edu.tw

Abstract. A set of spanning trees in a graph G is called independent
spanning trees (ISTs for short) if they are rooted at the same vertex,
say r, and for each vertex v(�= r) in G, the two paths from v to r in
any two trees share no common vertex except for v and r. Constructing
ISTs has applications on fault-tolerant broadcasting and secure message
distribution in reliable communication networks. Since Cayley graphs
have been used extensively to design interconnection networks, the study
of constructing ISTs on Cayley graphs is very significative. It is well-
known that star networks Sn and bubble-sort network Bn are two of the
most attractive subclasses of Cayley graphs. Although it has been dealt
with about two decades for the construction of ISTs on Sn (which has
been pointed out that there is a flaw and has been corrected recently),
so far the problem of constructing ISTs on Bn has not been dealt with.
In this paper, we present an efficient algorithm to construct n − 1 ISTs
of Bn. It seems that our work is the latest breakthrough on the problem
of ISTs for all subclasses of Cayley graphs except star networks.

Keywords: Independent spanning trees · Bubble-sort networks
Interconnection networks · Cayley graphs

1 Introduction

Let G be a graph with the vertex set V (G) and edge set E(G). A set of spanning
trees in G is called independent spanning trees (ISTs for short) if all the trees
are rooted at the same vertex, say r, and for each vertex v ∈ V (G) \ {r}, the
two paths from v to r in any two trees are internally vertex-disjoint (i.e., there
exists no common vertex in the two paths except the two end vertices v and
r). Constructing multiple ISTs in networks has been studied not only from a

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-319-94776-1_1
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2 S.-S. Kao et al.

theoretical point of view but also for some practical applications, such as fault-
tolerant broadcasting [3,9] and secure message distribution [3,15,22] in reliable
communication networks.

A long-standing conjecture proposed by Zehavi and Itai [23] says that a
k-connected graph G admits k ISTs rooted at an arbitrary vertex of G. This
conjecture has been affirmed for k-connected graphs with k � 4 (see [6,7,9,23],
for k = 2, 3, 4, respectively), but it remains open for k � 5. Afterward, subse-
quent studies tend to favor the construction of ISTs on some restricted classes
of graphs. Especially, those graphs related to interconnection networks (e.g. see
recent papers [4,5] and references quoted therein). Although a lot of research
of ISTs focused on variations of hypercubes, to the best of our knowledge, the
construction of ISTs in the family of Cayley graphs was known only for star
networks, which was proposed by Rescigno [15]. Unfortunately, Ko et al. [11]
recently pointed out that there is a flaw in Rescigno’s algorithm and provided
an amendatory scheme to correct it. In fact, due to more subgraphs being pro-
duced in the recursive decomposition, constructing ISTs on star networks is
harder than that on variations of hypercubes. In this paper, we make a further
investigation of constructing ISTs on another famous subclass of Cayley graphs
called bubble-sort networks.

Let Bn denote the n-dimensional bubble-sort network (defined later in
Sect. 2). The following are known results of Bn. For n � 4, Bn is vertex transi-
tive, but is not edge transitive (see [13]). Bn has connectivity n−1 and diameter
n(n− 1)/2 (see [1,17]). Algorithms for hamiltonian laceability, pancyclicity, and
node-to-node disjoint paths in Bn are obtained in [2,10], and [16,17], respec-
tively. In particular, finding a shortest path between two vertices in Bn can
be accomplished by using the familiar bubble-sort algorithm [1]. Also, research
results related to fault tolerance, diagnosability, and reliability on bubble-sort
networks can be found in [8,14,18–21,24].

The rest of this paper is organized as follows. Section 2 formally gives the
definition of bubble-sort networks and introduces some necessary notations.
Section 3 presents our constructing scheme of ISTs for Bn and provides some
auxiliary example for illustration. Section 4 shows the correctness of our algo-
rithm. The final section contains our concluding remarks.

2 Preliminaries

Let Σn be the set of all permutations on {1, 2, . . . , n}. For a permutation p ∈ Σn

and an integer i ∈ {1, 2, . . . , n}, we use the following notations. The symbol at
the ith position of p is denoted by p(i), and the position where the symbol i
appears in p is denoted by p−1(i). For notational convenience, we also write pi
instead of p(i), so p = p1 · · · pn. A symbol i is said to be at the right position
of p if pi = i. For i ∈ {1, . . . , n − 1}, let p〈i〉 = p1p2 · · · pi−1pi+1pipi+2 · · · pn be
the permutation of Σn obtained from p by swapping two consecutive symbols
at positions i and i + 1. Hence, p〈p−1(i)〉 is a permutation obtained from p by
swapping symbol i and its immediately succeeding symbol. Also, if p ∈ Σn with
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pn = n, we denote by p � {n} the permutation of Σn−1 that removes the last
symbol of p. By contrast, if p ∈ Σn−1, we denote by p ⊕ {n} the permutation of
Σn that is obtained from p by adding n as its last symbol.

The n-bubble-sort network, denoted by Bn, is an undirected graph consisting
of the vertex set V (Bn) = Σn and edge set E(Bn) = {(v, v〈i〉) : v ∈ Σn, 1 � i �
n − 1}, where the edge (v, v〈i〉) is called an i-edge of Bn. Thus, Bn is a Cayley
graph generated by the transposition set {(i, i + 1): 1 � i � n − 1}, which is
specified by an n-path Pn = (1, 2, . . . , n) as its transposition graph [1,13]. For
example, Fig. 1(a) depicts B3 and B4, where each edge is labeled by a number i
to indicate that it is an i-edge, and (b) shows the transposition graph Pn. Clearly,
for Bn, the transposition graph Pn contains only two subgraphs isomorphic to
an (n − 1)-path: one is (1, 2, . . . , n − 2) and the other is (2, 3, . . . , n − 1). Thus,
for n � 3, there are exactly two ways to decompose Bn into n disjoint subgraphs
that are isomorphic to Bn−1. Let Bi

n denote the graph obtained from Bn by
removing the set of all i-edges. Then, both B1

n and Bn−1
n consist of n disjoint

subgraphs isomorphic to Bn−1.
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33
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321
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312
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1
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n−1 n1 2

(a) (b)

Pn

Fig. 1. (a) Bubble-sort networks B3 and B4; (b) the transposition graph Pn.

3 Constructing ISTs on Bn

In this section, we present an algorithm for constructing n−1 ISTs of Bn. Since
Bn is vertex transitive, without loss of generality, we may choose the identity
1n = 12 · · · n as the common root of all ISTs. Also, since Bn has connectivity
n − 1, the root in every spanning tree has a unique child. For 1 � i � n − 1, if
the root of a spanning tree takes 1n〈i〉 = 12 · · · (i − 1)(i + 1)i(i + 2) · · · n as its
unique child, then the spanning tree of Bn is denoted by Tn

i . To describe such
a spanning tree, for each vertex v = v1 · · · vn ∈ V (Bn) except the root 1n, we
denote by Parent(v, i, n) as the parent of v in Tn

i . Since B3 is isomorphic to a
6-cycle, we have
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Parent(v, 1, 3) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

123 if v = 213;

213 if v = 231;

231 if v = 321;

321 if v = 312;

312 if v = 132;

and Parent(v, 2, 3) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

231 if v = 213;

321 if v = 231;

312 if v = 321;

132 if v = 312;

123 if v = 132.

That is, the two paths

T 3
1 = (132, 312, 321, 231, 213, 123) and T 3

2 = (213, 231, 321, 312, 132, 123)

are ISTs of B3 that take 13 = 123 as the common root. In general, for Bn

with n � 4, we define the function α(v, i, n) for each v ∈ V (Bn) \ {14} and
i ∈ {1, 2, . . . , n − 1} as follows:

α(v, i, n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n if i = 1;

n − 3 if i = n − 1 and vn−3 �= n − 3;

n − 2 if i = n − 2 and vn−3 �= n − 3;

α(v, i − 1, n − 1) if vn−3 = n − 3;

i − 1 otherwise.

Then, the construction of ISTs of Bn can be accomplished by using the function
Parent(v, i, n) (see Fig. 2) to determine the parent of each vertex (except the
root) in every spanning tree.

Function Parent(v, i, n)
if vn = n then

(1) if i �= n − 1 then p = Parent(v � {n}, i, n − 1) ⊕ {n} ;
(2) else p = v〈n − 1〉 ;

else
if vn = n − 1, vn−1 = n, and v〈n − 1〉 �= 1n then

(3) if i = 1 or vn−2 = n − 2 then p = v〈v−1(α(v, i, n))〉 ;
(4) else p = v〈v−1(i − 1)〉 ;

else
(5) if vn = i then p = v〈v−1(n)〉 ;
(6) else p = v〈v−1(i)〉 ;

return p;

Fig. 2. The function Parent(v, i, n).

For example, in Table 1, we calculate the parent of every vertex v ∈ V (B4) \
{14} in T 4

i for i ∈ {1, 2, 3}. In this table, the column ‘Rule’ indicates which
rule is used for computing the parent p. For example, we consider v = 2143 and
i = 2. Since v4 = 3, v3 = 4 and v〈3〉 = 2134 �= 14, it follows from Rule (4) that
p = v〈v−1(1)〉 = v〈2〉 = 2413. Also, we consider v = 3214 and i = 1. Since v4 = 4
and i �= 3, it follows from Rule (2) that p = Parent(321, 1, 3) ⊕ {4} = 2314. As
a consequence, three ISTs rooted at vertex 14 for B4 are shown in Fig. 3.
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Table 1. Computing the parent of every vertex v ∈ V (B4)\{14} in T 4
i for i ∈ {1, 2, 3}.

v i vn v〈n − 1〉 Rule p v i vn v〈n − 1〉 Rule p

1234 - - - - - 3124 1 4 3142 (1) 3214

2 (1) 1324

3 (2) 3142

1243 1 3 1234 (6) 2143 3142 1 2 3124 (6) 3412

2 (6) 1423 2 (5) 3124

3 (5) 1234 3 (6) 1342

1324 1 4 1342 (1) 3124 3214 1 4 3241 (1) 2314

2 (1) 1234 2 (1) 3124

3 (2) 1342 3 (2) 3241

1342 1 2 1324 (6) 3142 3241 1 1 3214 (5) 3214

2 (5) 1324 2 (6) 3421

3 (6) 1432 3 (6) 2341

1423 1 3 1432 (6) 4123 3412 1 2 3421 (6) 3421

2 (6) 1432 2 (5) 3142

3 (5) 1243 3 (6) 4312

1432 1 2 1423 (6) 4132 3421 1 1 3412 (5) 3241

2 (5) 1342 2 (6) 3412

3 (6) 1423 3 (6) 4321

2134 1 4 2143 (1) 1234 4123 1 3 4132 (6) 4213

2 (1) 2314 2 (6) 4132

3 (2) 2143 3 (5) 1423

2143 1 3 2134 (3) 2134 4132 1 2 4123 (6) 4312

2 (4) 2413 2 (5) 1432

3 (4) 1243 3 (6) 4123

2314 1 4 2341 (1) 2134 4213 1 3 4231 (6) 4231

2 (1) 3214 2 (6) 4123

3 (2) 2341 3 (5) 2413

2341 1 1 2314 (5) 2314 4231 1 1 4213 (5) 2431

2 (6) 3241 2 (6) 4321

3 (6) 2431 3 (6) 4213

2413 1 3 2431 (6) 2431 4312 1 2 4321 (6) 4321

2 (6) 4213 2 (5) 3412

3 (5) 2143 3 (6) 4132

2431 1 1 2413 (5) 2341 4321 1 1 4312 (5) 3421

2 (6) 4231 2 (6) 4312

3 (6) 2413 3 (6) 4231
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4 Correctness

In this section, we show the correctness of the algorithm. If P and Q are two paths
with a common end vertex in a graph, we denote by P ∪ Q the concatenation
of P and Q. If T is a tree and u, v ∈ V (T ), we use T [u, v] to denote the unique
path joining u and v in T . For two spanning trees T and T ′ with the common
root r in a graph G, if v ∈ V (G) \ {r}, we use T [v, r] // T ′[v, r] to mean that
T [v, r] and T ′[v, r] are internally vertex-disjoint.

Lemma 1. T 4
1 , T 4

2 and T 4
3 are three ISTs of B4.

Proof. From Table 1 and Fig. 3, we assure that the function Parent(v, i, n) can
construct three spanning trees rooted at 14(= 1234) for B4. So, the independency
of the three spanning trees can be verified by a brute-force checking. 	


T 4
2

2134

3124

4132

4123

1423

2413

4213

2143

1243

1324

2314

3214

1432

2431

4231

3412

43123142

1342

2341

4321

3421

3241

1234

T 4
3T 4

1

1324

3214

4231

4213

2413

1423

4123 21341243

2314

2143

3124

2431

1432

4132

3421

43213241

2341

1342

4312

3412

3142

1234

4321

3421

2431

4231

2413

4213

2314

3214

2341

3241

4312

3412

1432

4132

1423

4123

1324

3124

1342

3142

1243

2143

1234

2134

Fig. 3. A set of three ISTs of B4.

Theorem 1. For n � 4, Tn
1 , Tn

2 , . . . , Tn
n−1 are n − 1 ISTs of Bn.

Proof. The proof is by induction on n. Lemma 1 establishes the validity of the
base case with n = 4. Suppose that n � 5 and the result is true for all n < 5.
Let r = 1n(= 12 · · · n). The proof is by showing the existence of a unique path
from any vertex v(= v1v2 · · · vn) ∈ V (Bn) \ {r} to r, and thereby proving the
independence. Consider the following three cases:

Case 1: vn = n. If i ∈ {1, 2, . . . , n− 2}, by Rule (1) in the function Parent(),
we have v = u ⊕ {n} where u is a vertex (except the root) obtained from
Tn−1
i . By induction hypotheses, we know that Tn−1

i [u,1n−1] // Tn−1
j [u,1n−1]

for i, j ∈ {1, 2, . . . , n − 2} with i �= j, and thus it immediately follows that
Tn
i [v, r] // Tn

j [v, r]. On the other hand, if i = n − 1, by Rule (2), v is adjacent
to its parent, say p(= p1p2 · · · pn), by using an (n − 1)-edge in Tn

n−1 (see Fig. 4,



Constructing Independent Spanning Trees on Bubble-Sort Networks 7

where v is a leaf represented by a circle with label n in Tn
n−1). If vn−1 = pn = k

for 1 � k � n−2, we can show later in Case 2 that there exists a path Tn
n−1[p, r]

such that (v, p)∪Tn
n−1[p, r] contains internal vertices with the last symbol either

k or n−1 (see the bold line of Tn
n−1 in Fig. 4). If vn−1 = pn = n−1, we can show

later in Case 3 that there exists a path Tn
n−1[p, r] such that (v, p) ∪ Tn

n−1[p, r]
contains internal vertices with the last symbol n−1 (see the dashed line of Tn

n−1

in Fig. 4). Since every vertex in the path Tn
i [v, r] for i ∈ {1, 2, . . . , n− 2} has the

last symbol n(�= k), this shows that Tn
i [v, r] // (v, p) ∪ Tn

n−1[p, r].

r = 12 · · ·n r = 12 · · ·n
Tn
1 Tn

2
Tn
n−2 Tn

n−1

r = 12 · · ·n

n n n

n n n

n

n−1

n−12 3

1 1 1 2 2 2 n−2 n−2 n−2

1 3 n−1 1 n−3 n−1

1 2 n−2

v v

v

r = 12 · · ·n

n − 1

n − 1

p

v p

v

Fig. 4. The structure of n − 1 ISTs of Bn. For i = 1, 2, . . . , n − 1, a subtree with a
label k ∈ {1, 2, . . . , n − 1} in Tn

i means that every vertex in the subtree has the last
symbol k. In particular, a subtree with label n covered by shadows as well as the root
r(= 12 · · · n) in Tn

i for 1 � i � n − 2 forms a tree isomorphic to Tn−1
i . A circle labeled

by k ∈ {n− 1, n} means a vertex with the last symbol k. Bold lines and an dashed line
indicate the paths described in the proof of Case 1 Theorem 1.

Case 2: vn = j and 1 � j � n − 2. For i ∈ {1, 2 . . . , n − 1}, if i = j (resp.,
i �= j), by Rule (5) (resp., Rule (6)) the parent of v in Tn

i is a vertex obtained
from v by swapping symbol n (resp., symbol i) and its immediately succeeding
symbol. Let p(= p1p2 · · · pn) be the parent of v in Tn

i . If pn �= n (resp., pn �= i),
we can obtain the parent of a vertex by using Rule (5) (resp., Rule (6)) repeatedly
until a vertex u(i)(= u

(i)
1 u

(i)
2 · · · u(i)

n ) with u
(i)
n−1 = j and u

(i)
n = n (resp., with

u
(i)
n−1 = j and u

(i)
n = i) is reached. Thus, we obtain the path Tn

i [v, u(i)]. Note
that every internal vertex in the path Tn

i [v, u(i)] for i ∈ {1, 2 . . . , n−1} takes j as
the last symbol. For distinct paths, since exchanges of symbols start at different
positions and are operated in a sequence, they can only share a common vertex
v. That is, Tn

i [v, u(i)]∩Tn
i′ [v, u(i′)] = {v} for i, i′ ∈ {1, 2 . . . , n−1} with i �= i′. In

addition, if i �= j, since u
(i)
n = i, a similar argument shows that, using Rule (5)

repeatedly until a vertex w(i)(= w
(i)
1 w

(i)
2 · · · w(i)

n ) with w
(i)
n−1 = i and w

(i)
n = n

being reached, we can derive a path Tn
i [u(i), w(i)] such that every internal vertex

has the last symbol i. In particular, if i = n − 1, we can show later in Case 3
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that w(n−1) = r. Also, since w
(i)
n = n for i ∈ {1, 2, . . . , n−2}\{j} (resp. u

(i)
n = n

for i = j), from Case 1 we know that there exists a path Tn
i [w(i), r] (resp. a

path Tn
j [u(j), r]) such that every vertex in these paths takes n as the last symbol.

Therefore, we obtain the following paths in all spanning trees (see bold lines in
Fig. 5 for an illustration of these paths described in Eq. (1)):

Tn
i [v, r]

=

⎧
⎪⎨

⎪⎩

Tn
i [v, u(i)] ∪ Tn

i [u(i), w(i)] ∪ Tn
i [w(i), r] if i ∈ {1, 2, . . . , n − 2} \ {j};

Tn
i [v, u(i)] ∪ Tn

i [u(i), r] if i = j;
Tn
i [v, u(i)] ∪ Tn

i [u(i), r(= w(n−1))] if i = n − 1.

(1)

We now verify the independence of the above paths. For each i ∈ {1, 2, . . . , n−
2} \ {j}, we observe that the change of labels for vertices in the path Tn

i [w(i), r]
have the following recursive structure. Firstly, w(i) has the symbol i at position
n − 1 and the symbol n at the right position. Then, for each k from n − 1 down
to 2, vertices along the path keep the symbol i at position k until a vertex with
the symbol i at position k − 1 and the symbol k at the right position is reached
(e.g., consider the path

T 5
1 [43215,15] = (43215, 34215, 32415, 32145, 23145, 21345, 12345),

where the symbols with underscore are at positions k−1 and k. In fact, the path
T 5
1 [43215,15] is constructed from the path

T 4
1 [4321,14] = (4321, 3421, 3241, 3214, 2314, 2134, 1234)

in Fig. 3). Accordingly, it guarantees that Tn
i [w(i), r] ∩ Tn

i′ [w
(i′), r] = {r} for

i, i′ ∈ {1, 2, . . . , n−2}\{j} with i �= i′. Since the path Tn
j [u(j), r] has the similar

structure, it follows that Tn
j [u(j), r] ∩ Tn

i [w(i), r] = {r} for i ∈ {1, 2, . . . , n −
2} \ {j}. Consequently, for all paths described in Eq. (1), the independence not
mentioned above can be verified by checking the last symbol of every vertex in
each subpath.

Case 3: vn = n − 1. Let p(= p1p2 · · · pn) be the parent of v in Tn
i . Consider

the following subcases.
Case 3.1: i = 1. There are three situations as follows:
Case 3.1.1: vn−1 = n and v〈n−1〉 �= r. By Rule (3), p = v〈v−1(α(v, 1, n))〉 =

v〈v−1(n)〉. Thus, pn = vn−1 = n. From Case 1, there is a path Tn
1 [p, r] such

that every internal vertex has the last symbol n. Thus, Tn
1 [v, r] = (v, p)∪Tn

1 [p, r]
(see Fig. 6, where the path is drawn by a dashed line in Tn

1 ).
Case 3.1.2: vn−1 = n and v〈n−1〉 = r. By Rule (6), we have p = v〈v−1(1)〉 =

213 · · · (n − 2)n(n − 1). Since pn = n − 1, pn−1 = n and p〈n − 1〉 �= r, p is at
a status that matches the condition of Rule (3). Thus, v is a child of a vertex
described in Case 3.1.1 (see Fig. 6, where v is a leaf represented by a circle with
label n − 1 in Tn

1 ).
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r = 12 · · ·n r = 12 · · ·n
Tn
1 Tn

2
Tn
n−2 Tn

n−1

r = 12 · · · n

n n n

n n n

n

n−1

n−12 3

1 1 1 2 2 2 n−2 n−2 n−2

1 3 n−1 1 n−3 n−1

1 2 n−2

v

v v

u(n−1)

u(1)

u(2)
w(1)

r = 12 · · ·n

v

n − 1

n − 1

Fig. 5. The bold lines indicate the paths defined by Eq. (1) in the proof of Case 2 of
Theorem 1 when j = 2.

Case 3.1.3: vn−1 �= n. By Rule (6), we have p = v〈v−1(1)〉. In this case, an
argument similar to Case 2 shows that Tn

1 [v, r] can be constructed like the first
description of Eq. (1) such that it contains vertices with the last symbol n − 1,
1 or n (see Fig. 6, where the path is drawn by a bold line in Tn

1 ).
Case 3.2: i = n − 1. If vn−1 �= n or v〈n − 1〉 = r, since vn = n − 1 = i,

by Rule (5) we have p = v〈v−1(n)〉. Moreover, if vn−1 �= n, we can obtain the
parent of a vertex by using Rule (5) repeatedly until the path reaches a vertex
u(= u1u2 · · · un) with un−1 = n. In particular, if u〈n−1〉 = r (resp., v〈n−1〉 = r),
then u (resp., v) is the child of the root in Tn

n−1. Otherwise (i.e., vn−1 = n and
v〈n − 1〉 �= r), there are three situations as follows: (i) if vn−2 �= n − 2, by
Rule (4) we have p = v〈v−1(n − 2)〉; (ii) if vn−2 = n − 2 and vn−3 �= n − 3,
by Rule (3) we have p = v〈v−1(α(v, n − 1, n))〉 = v〈v−1(n − 3)〉; and (iii) if
vn−2 = n−2 and vn−3 = n−3, by Rule (3) we have p = v〈v−1(α(v, n−1, n))〉 =
v〈v−1(α(v, n − 2, n − 1))〉. That is, the rules first make the symbols n − 2 and
n − 3 to be at the right positions, and then recursively make the symbol k to
be at the right position for all k from n − 4 down to 1. Accordingly, we can
construct a path that starts from v and reaches a vertex u with u〈n − 1〉 = r,
i.e., the child of the root in Tn

n−1. Note that all internal vertices in the above
constructed path take n − 1 as their last symbol (see Fig. 6, where the path is
drawn by a bold line in Tn

n−1).
Case 3.3: i = n − 2. If vn−1 �= n or v〈n − 1〉 = r, since vn �= i, by Rule (6)

we have p = v〈v−1(n − 2)〉. Moreover, if vn−1 �= n, we can obtain the parent
of a vertex by using Rule (6) repeatedly until the path reaches a vertex u(=
u1u2 · · · un) with un = n − 2. Also, if v〈n − 1〉 = r, then p = 12 · · · (n − 3)n(n −
2)(n − 1). Since pn−1 �= n, it follows that there exists a path (v, p) ∪ Tn

n−2[p, u]
where u is a vertex with un = n − 2 (e.g., consider the path (v = 12354, p =
12534, u = 12543) in T 5

3 ). On the other hand (i.e., vn−1 = n and v〈n − 1〉 �= r),
there are three situations as follows: (i) if vn−2 �= n − 2, by Rule (4) we have
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p = v〈v−1(n − 3)〉; (ii) if vn−2 = n − 2 and vn−3 �= n − 3, by Rule (3) we
have p = v〈v−1(α(v, n − 2, n))〉 = v〈v−1(n − 2)〉; and (iii) if vn−2 = n − 2 and
vn−3 = n − 3, by Rule (3) we have p = v〈v−1(α(v, n − 2, n))〉 = v〈v−1(α(v, n −
3, n − 1))〉. For all situations, using Rule (3) or Rule (4) repeatedly, we can
construct a path that starts from v and reaches a vertex w(= w1w2 · · · wn)
with wn−1 �= n. Note that the path constructed by situation (iii) is similar
to that of the Case 3.2. Since wn−1 �= n, it follows that there exists a path
Tn
n−2[v, w] ∪ Tn

n−2[w, u] where u is a vertex with un = n − 2 (e.g., consider the
path (v = 23154, 32154, 31254, w = 31524, 13524, 15324, 15234, u = 15243) in T 5

3

for situation (i), and the path (v = 21354, w = 21534, u = 21543) in T 5
3 for

situation (ii)). From Case 2, we have known that there is a path Tn
n−2[u, r].

Thus, Tn
n−2[v, r] = Tn

n−2[v, u] ∪ Tn
n−2[u, r]. Note that all internal vertices in the

above constructed path take n−1 or n−2 as their last symbol (see Fig. 6, where
the path is drawn by a bold line in Tn

n−2).
Case 3.4: i /∈ {1, n − 1, n − 2}. Clearly, vn = n − 1 �= i. If vn−1 �= n, by

Rule (6) we have p = v〈v−1(i)〉. Thus, we can obtain the parent of a vertex by
using Rule (6) repeatedly until the path reaches a vertex u(= u1u2 · · · un) with
un = i. If vn−1 = n and v〈n − 1〉 �= r, there are three situations as follows: (i) if
vn−2 �= n − 2, by Rule (4) we have p = v〈v−1(i − 1)〉; (ii) if vn−2 = n − 2 and
vn−3 �= n−3, by Rule (3) we have p = v〈v−1(α(v, i, n))〉 = v〈v−1(i−1)〉; and (iii)
if vn−2 = n − 2 and vn−3 = n − 3, by Rule (3) we have p = v〈v−1(α(v, i, n))〉 =
v〈v−1(α(v, i−1, n−1))〉. For all situations, using Rule (3) or Rule (4) repeatedly,
we can construct a path that starts from v and reaches a vertex w(= w1w2 · · · wn)
with wn−1 �= n. Note that the path constructed by situation (iii) is similar
to that of the Case 3.2. Since wn−1 �= n, it follows that there exists a path
Tn
n−2[v, w] ∪ Tn

n−2[w, u] where u is a vertex with un = i (e.g., consider the path
(v = 13254, 31254, 32154, w = 32514, 35214, 35124, u = 35142) in T 5

3 for situation
(i), and the path (v = 21354, 23154, w = 23514, 32514, 35214, 35124, u = 35142)
in T 5

3 for situation (ii)). Finally, if v〈n − 1〉 = r, by Rule (6) we have p =
v〈v−1(i)〉. Thus, we have pn = vn = n − 1, pn−1 = vn−1 = n and p〈n − 1〉 �= r.
Since p is at a position described as before, it follows that there exists a path
Tn
i [v, u] = (v, p) ∪ Tn

n−2[p, u] where u is a vertex with un = i. From Case 2, we
have known that there is a path Tn

i [u, r]. Thus, Tn
i [v, r] = Tn

i [v, u] ∪ Tn
i [u, r].

Note that all internal vertices in the above constructed path take n − 1 or i as
their last symbol (see Fig. 6, where the path drawn by a bold line in Tn

2 is an
example).

From the paths described above, we only need to inspect vertices with last
symbol n or n − 1 in the trees for verifying the independence. For the vertices
with the last symbol n, the proof is exactly the same as Case 2. For the ver-
tices with the last symbol n − 1, the proof is similar to Case 2 except that the
last symbol of vertices we concerned is n − 1 instead of j. This completes the
proof. 	
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Fig. 6. An illustration of the paths described in the proof of Case 3 of Theorem 1.

The height of a rooted tree T , denoted by h(T ), is number of edges from the
root to a farthest leaf. To analyze the height of our constructed ISTs for Bn,
we define Hn = max

i�i�n−1
h(Tn

i ). Clearly, H3 = 5 and H4 = 9. From the recursive

function Parent(v, i, n), it is easy to prove that Hn = n(n+1)/2−1 by induction.
Since the construction includes n−1 ISTS, each IST contains n! vertices, and the
algorithm requires n−1 recursions, the total complexity is obviously in O(n2n!)
time. According to Theorem 1 and the above discussion, we have the following
corollary.

Corollary 1. For bubble-sort network Bn, using the function Parent(v, i, n),
the algorithm can correctly construct n − 1 ISTs of Bn with height at most
n(n + 1)/2 − 1 in O(n2n!) time.

5 Concluding Remarks

In this paper, we study the problem of constructing ISTs on bubble-sort net-
works. To the best of our knowledge, it seems that our work is the latest break-
through on the problem of ISTs for all subclasses of Cayley graphs except star
networks. Since Bn is vertex transitive, with a slight modification, we can easily
derive a set of n − 1 ISTs with a common root at arbitrary vertex of Bn. Also,
since Bn is a regular graph with connectivity n − 1, the number of constructed
ISTs reaches the upper limit. In addition, for providing a full instance of ISTs
of B5 and the detail of our implementation, a website is now available on [12].

One interesting open problem remaining from our work is whether our algo-
rithm can be improved to determine the parent of every vertex in each spanning
tree directly (i.e., the computation requires no recursion and can be done only
by referring the label of a vertex and the index of a tree). The advantage of such
an improved algorithm is that it can easily be parallelized.
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Abstract. For a given graph G with non-negative integral edge length,
a pair of distinct vertices s and t, and a given positive integer δ, the k
partial edge-disjoint shortest path (kPESP) problem aims to compute
k shortest st-paths among which there are at most δ edges shared by
at least two paths. In this paper, we first present an exact algorithm
with a runtime O(mn log(1+m/n) n + δn2) for kPESP with k = 2. Then
observing the algorithm can not be extended for general k, we propose
another algorithm with a runtime O(δ2knk+1) in DAGs based on graph
transformation. In addition, we show the algorithm can be extended to
kPESP with an extra edge congestion constraint that each edge can be
shared by at most C paths for a given integer C ≤ k.

Keywords: Partial edge-disjoint path · Exact algorithm
Directed acyclic graph · Restricted shortest path

1 Introduction

Network congestion is an important issue arising in networks when some nodes
or links are overloaded, resulting in possibly data packet loss and failure of new
connections. Although many techniques (like exponential backoff in CSMA/CA
in 802.11 and CSMA/CD in the original Ethernet, window reduction in TCP,
etc.) were developed to ease the consequences, it remains a long standing open
challenge to eradicate network congestion. The fundamental reason causing con-
gestion is that, data transmission in networks is mainly based on single path
approaches which use a single optimal path (i.e. a path with minimum cost
or delay) for transferring data. In the context, the transferred data is likely
to concentrate on those links with less cost or delay, causing congestion when
the quantity of data over the links exceeds its capacity. So network congestion
is likely to exist as long as the single path approaches are employed for data
transmission.
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Disjoint path routing, the routing technique simultaneously using multiple
disjoint paths instead of a single optimal path, is considered as an ultimate
approach to settle the challenge against network congestion. In the scenario,
the data transmission would be carried out over a set of disjoint paths, such
that no nodes or links will be overloaded. However, the disjoint path routing
has not yet been widely deployed in practice, mainly because the requirement
of completely disjointness is not necessary for many practical applications while
being resource-consuming. Therefore, we propose the following generalization of
the edge-disjoint path problem, with a tunable disjointness degree:

Definition 1. (The k Partial Edge-disjoint Shortest Path problem, kPESP).
For a digraph G = (V, E) with a non-negative integral length on each edge, a
pair of distinct vertices s, t ∈ V as the source and the destination, and an integer
δ > 0 as the disjointness factor, the problem aims to compute k paths connecting
s and t, such that among the k paths there are at most δ edges shared by at least
two paths and the length sum is minimized.

Moreover, for the sake of further reducing congestion, many network applications
further require each edge to be shared by at most C ≤ k paths. This brings the
kPESP problem with congestion (kPESPwC ). Note that the δ-Vertex shared
k Edge-Disjoint Shortest Path (δV-kEDSP) problem [21], aiming to compute 2
edge-disjoint paths sharing at most δ common vertices, is similar to the vertex
version of kPESP but further requires the computed paths to be edge-disjoint.

1.1 Related Work

To the best of our knowledge, this paper is the first formally addressing kPESP
and kPESPwC. Although the two problems are new, when δ = 0 both of them
reduce to the min-sum edge-disjoint path problem of computing completely
edge-disjoint shortest st-paths, which was well studied by scientists from the
community of computer science and networking. For any fixed integer k > 0,
the reduced problem is known solvable in O(n2 log n) time [18], which was
improved to O

(
m log(1+m/n) n

)
later in [17]. These algorithms have attracted

many research interests and were used in parallel and distributed systems. In
[13], an distributed algorithm was developed to construct a pair of disjoint paths
of minimum total cost from every vertex to a destination with communication
complexity O

(
mn + n2D

)
and time complexity O (nD), where D is the depth

of the shortest-path spanning tree. Then, Sidhu et al. [16] devised a distributed
distance vector algorithm which found more paths than the algorithm in [13].
Other than the min-sum problem, some other network applications require to
minimize the length of the shorter path among the disjoint paths, which brings
the min-min problem. The vertex-disjoint version and the directed edge-disjoint
version of the min-min problem were shown NP-complete by Xu et al. in [20].
Then, Guo and Shen showed the NP-completeness for the edge-disjoint min-
min problem in undirected graphs in [8] as a complementary to the work of
Xu et al. in [20], and proved that the edge-disjoint min-min problem remains
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NP-complete in planar digraph in [7]. Opposite to the min-min problem, the
min-max problem is to minimize the length of the longer path among the dis-
joint paths. The problem was shown strongly NP-complete in both directed and
undirected graphs in [12], while admits pseudo polynomial-time algorithms in
directed acyclic graphs (DAGs). For kPESPwC, there exists literature on close
related problems. The Edge-Disjoint Path problem with Congestion (EDPwC )
is similar to kPESPwC, except that it is with a different aim of maximizing
the number of disjoint paths that are respectively connecting k given pairs of
vertices, say s1t1, . . . , siti, . . . , sktk, and without the bound of shared edges. The
most recent results on EDPwC can be found in [1,2].

There also exists literature on problems similar to but not exactly the vertex-
disjoint version of kPESP. The δ-Vertex shared k Edge-Disjoint Shortest Path
problem (δV-kEDSP), aiming to compute a pair of edge-disjoint st-paths with
bounded shared vertices, was shown solvable in time O(mn2+n3 log n) when k =
2 by Yallouz et al. in [21]. Recently, the runtime was improved to O(δm+n log n)
by Guo et al. in [5], where δ is the bound on the number of shared vertices.
However, for general k it remains open whether δV-kEDSP is in P.

Our algorithm will solve kPESP via computing restricted shortest path
(RSP). We note that general RSP was shown NP-complete in [4], and
Joksch [10] was the first formally solving RSP in pseudo-polynomial time
via dynamic programming technique. Later, Hassin [9] gave another pseudo-
polynomial algorithm that consequently results in an FPTAS with a run-
time O

(
m(n2

ε ) + log(n
ε )

)
, which was then improved by Lorena and Raz to

O (mn (log log n + 1/ε)), where ε > 0 is any fixed real number. Recently, there
were increasing research interest on k disjoint RSP instead of a single RSP,
namely the k-edge (vertex) disjoint restricted shortest paths (kRSP) problem
which combines RSP and disjoint paths, because using kRSP in many nowaday
applications would compare favorably to using a single RSP subject to QoS con-
straint. Orda and Sprintson [14] gave an interesting approximation algorithm of a
ratio (1+r, 1+ 1

r ), r > 0, for 2RSP to find two disjoint paths satisfying the given
QoS constraints at minimum cost, which was then improved to a polynomial-
time approximation algorithm with an improved bifactor approximation ratio
(1 + ε, 2 + ε) for general k in [6].

1.2 Our Results

In this paper, we first propose an exact algorithm for kPESP with a runtime
O(nm log(1+m/n) n + δn2) when k = 2, via constructing an auxiliary graph.
The main observation is that, 2PESP is feasible subjected to δ if and only
if there exists an st-path with a new cost bounded by δ in the constructed
auxiliary graph, where the new cost is to capture the number of shared edges.
Consequently, our algorithm needs only to solve a special case of RSP in the
auxiliary graph, which can be done in polynomial time.

Observing the algorithm for 2PESP is not applicable to kPESP, we pro-
pose an algorithm for kPESP in DAGs by constructing another auxiliary graph
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which reduces kPESP to a special case of RSP in a different way. We show
the algorithm runs in O(δ2knk+1) time and solves kPESP optimally. Note that
our algorithm grants the new ability of computing partial edge disjoint paths
in DAGs to the elegant algorithm by Perl and Shilaoch in [15], which com-
putes a pair of disjoint paths in DAGs by finding a single path in the proposed
multi-dimensional graph1. Moreover, in DAGs, our algorithm for kPESP can be
extended to solve kPESPwC, a generalization of kPESP in which the number
of paths sharing an identical common edge is bounded by a given parameter,
say C ≤ k. It remains open whether kPESP admits polynomial algorithms for
general k in either general graphs or DAGs.

2 An Exact Algorithm to the 2PESP problem

In this section, we will present an exact polynomial-time algorithm for the
2PESP problem. The algorithm is inspired by the famous 2-approximation for
the minimum Steiner tree problem, known as the Kou-Markowsky-Berman algo-
rithm [11], which constructs a metric closure induced by the terminals and then
computes a spanning tree therein, and also the algorithm for solving the δ-Vertex
shared k Edge-Disjoint Shortest Path (δV-kEDSP) problem [21]. Similarly, our
algorithm is composed by two phases: Firstly, construct the promising auxiliary
graph G′ which is an enhanced version of the metric closure; Secondly, find a
shortest st-path with cost bounded by δ in G′, which equivalently solves 2PESP.
For briefness, we define the Binary Restricted Shortest Path (BRSP) problem
as follows:

Definition 2 (Binary Restricted Shortest Path, BRSP). For a digraph G =
(V, E) with a pair of distinct vertices s, t ∈ V , a length function l: E →Z+

0 and
a Boolean function c: E →{0, 1} over the edges, the BRSP problem is to compute
an st-path in G, such that

∑
e∈E l (e) is minimized subject to

∑
e∈E c (e) ≤ δ,

where δ ∈ Z is the given cost constraint.

Apparently, the BRSP problem is a special case of the restricted shortest
path (RSP) problem since each edge therein is with a cost of 0 or 1. Following
Joksch’s algorithm [10], we can immediately obtain a polynomial algorithm for
BRSP :

Proposition 3 [10]. The BRSP problem can be solved in time O(δ|E|).
Hence, the second task of computing a shortest path with at most δ common

edges in the auxiliary graph can be done within time O(δ|E|). So it remains only
to construct the auxiliary graph G′.

The main observation for the construction is that, an optimal solution of
2PESP is composed by a set of edge-disjoint path pairs alongside a set of shared
edges (of G), with the path pairs connecting the common edges.
1 Note that the algorithm was previously extended to solve many other related prob-

lems including [3,19].
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Lemma 4. Let {P1, P2} be an optimal solution to 2PESP. Let E(P1 ∩ P2) =
{e1, e2, · · · , eδ}, ei = (ui, vi), be the set of common edges. Then we have:

1. Each edge of E(P1 ∩ P2) separates s and t;
2. Let P = {{Pi,j | j = 1, 2} | i = 1, . . . , δ + 1} be the set of components

resulting from (P1 ∪ P2) \ E(P1 ∩ P2), where Pi, 1 and Pi, 2 connects vi−1 to
ui. Then Pi, 1 and Pi, 2 are edge disjoint for any i ∈ [δ + 1]+ 2. Moreover, for
any i �= j, Pi,1 ∪ Pi,2 and Pj,1 ∪ Pj,2 shares no common edges.

Proof. Omitted due to space limit. �	
Following the main observation as in Lemma4, the auxiliary graph G′ is mainly
composed by two parts of edges. The first part of edges compose a complete
graph G (the metric closure), in which each edge (u, v) represents a pair of
shortest edge-disjoint paths from u to v; the second part contains the edges of
the original graph G, which are actually possibly shared edges.

By employing Suurballe and Tarjan’s algorithm [17], we can find a pair of
shortest edge-disjoint paths from u to v in O(m log(1+m/n) n) time. So the first
part G can be constructed in polynomial time since it has O(n(n − 1)) edges.
Then, the length of each e ∈ G is set to the length of the shortest edge-disjoint
paths pair it represents, while the length of the edges of the second part, say
e ∈ G′ \G, remains the same as in G. Moreover, we set the cost of each edge of G
to 0 and each e ∈ G′ \G to 1 because each edge in e ∈ G′ \G is a possibly shared
edge. Note that G′ can be a multigraph. The detailed construction is formally
as in Algorithm 1.

Then we need only to solve BRSP wrt G′ to find an optimal solution to
2PESP by the following Lemma:

Lemma 5. There exists a solution {P1, P2} against an instance of 2PESP in
G iff there exists a shortest st-path Q with c(Q) ≤ δ and l(Q) = l(P1 ∪ P2) in
the corresponding auxiliary graph G′ = (V ′, E′) output by Algorithm1, where
δ ∈ Z

+
0 is the bound on the number of shared edges.

Proof. Omitted due to space constraint. �	

Lemma 6. The above algorithm runs in time O(mn log(1+m/n) n + δn2).

Proof. The algorithm takes O(m log(1+m/n) n) time to run Suurballe and Tar-
jan’s Algorithm to compute a pair of edge-disjoint paths from a vertex to every
other vertex in graph G [17]. Since there are O(n) vertices, the algorithm takes
O(mn log(1+m/n) n) time to construct the auxiliary graph G′, which has O(n2)
edges. Then, the algorithm calls Joksch’s algorithm to solve BRSP with a run-
time O(δn2) [10]. Therefore, the total runtime is O(mn log(1+m/n) n + δn2). �	
Combining Lemmas 5 and 6, we immediately have the following theorem:

2 Following the tradition in mathematics, the notation [n]+ denotes the set {1, . . . , n}.
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Algorithm 1. The construction of auxiliary graph G′

Input: A digraph G = (V, E), a specified vertices s and t, a length function l (e) and
an upper bound δ ∈ Z+ for the number of common edges;

Output: An auxiliary graph G′ = (V ′, E′).
1: Initially set G′ := ∅;
2: For each pair of u, v ∈ V (u �= v) do /*Construct G. */
3: Find a pair of edge-disjoint shortest paths (P ∗

1 , P ∗
2 ) from u to v using Suurballe

and Tarjan’s Algorithm [17];
4: If (P ∗

1 , P ∗
2 ) exists then

5: Set E′ := E′ ∪ {e′(u, v)}; /*e′(u, v) represents (P ∗
1 , P ∗

2 ). */
6: l (e′(u, v)) := l(P ∗

1 (u, v)) + l(P ∗
2 (u, v)) and c(e′(u, v)) := 0;

7: Endif
8: Endfor
9: For each e(u, v) ∈ G do /*Add the possibly shared edges to G′. */

10: Set G′ := G′ ∪ {e(u, v)}, c(e(u, v)) := 1 and l(e(u, v)) equal to e(u, v) ∈ G;
11: Endfor

Theorem 7. 2PESP problem can be optimally solved within time complexity
O(mn log(1+m/n) n + δn2).

Although the above algorithm can efficiently solve the 2PESP, it can not be
easily extended to solve kPESP for general k. The reason is that, when k ≥ 3
we can not construct the auxiliary graph G′ by Algorithm 1 via using the cost
function to capture the number of shared edges. So we will propose another
method to solve kPESP for general k but only in DAGs.

3 Exact Algorithms for kPESP in DAGs

In this section, we will present an algorithm for the kPESP problem in DAGs
mainly based on graph transformation, in which we construct a k-dimensional
auxiliary graph Gk wrt G, such that kPESP in G is transformed to BRSP in Gk.
That is, the key idea is to reduce the aimed k partial disjoint paths to a single
path in the auxiliary graph, extending the technique in [15,19].

3.1 An Exact Algorithm for 2PESP

To accomplish the reduction, each node in Gk is assigned with k dimensions which
actually represent k vertices in the original graph, and consequently an edge
between two k-dimensional nodes is added if it can possibly correspond to part
of a feasible solution to kPESP. For briefness, we will first present our algorithm
for 2PESP, and then show how to extend to both kPESP and kPESPwC for
general k.

The construction of the auxiliary graph G2 is composed by two phases: Firstly,
add all the 2-dimensional nodes to G2, n2 nodes in total; Secondly, repeatly add
edges each of which with a length and a cost, where the cost is to capture the
number of shared edges and hence its sum must be bounded by δ.
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Algorithm 2. Construction of G2

Input: A simple DAG G = (V, E), distinct source s and destination t, the common
edges upper bound δ ∈ Z+, a length function l (e);

Output: A 2-dimensional auxiliary graph G2 = (N2, E2).
1: Label vertices in V (G) with numbers {1,2,· · · ,|V |} in a way that (u, v) ∈ E (G)

only if u < v; /*W.l.o.g. assume that s = 1 and t = |V |.*/
2: Set N2 := {〈u, v〉| u, v ∈ V (G)}, E2 := ∅, and S := {〈s, s〉} being a queue;
3: While S �= ∅ do
4: Select a node N = 〈u, v〉 from the top of the queue S, and set S := S \ {N};
5: If u < v then
6: For each (u,u′) ∈ E (G) do
7: Set S := S ∪ 〈u′,v〉;
8: Set edge e := (N, 〈u′,v〉), E2 := E2 ∪ {e}, l(e) := l(u,u′) and c(e) := 0;
9: Endfor

10: Endif
11: If u > v then
12: For each (v,v′) ∈ E (G) do
13: Set S := S ∪ 〈u,v′〉;
14: Set edge e := (N, 〈u,v′〉), E2 := E2 ∪ {e}, l(e) := l(v,v′) and c(e) := 0;
15: Endfor
16: Endif
17: If u = v then
18: For each pair of u′ and v′ that (u,u′) and (v,v′) both in E (G) do
19: Set S := S ∪ 〈u′,v′〉;
20: Set edge e := (N, 〈u′,v′〉), E2 := E2 ∪ {e};
21: If u′ �= v′ then
22: Set c(e) := 0 and l(e) := l(u,u′) + l(v,v′);
23: Else c(e) := 1 and l(e) := l(u,u′);
24: Endfor
25: Endif
26: Endwhile
27: Return G2 := (N2, E2).

For any given DAG G = (V,E) with a source s and a destination t, our
algorithm relabels the vertices with number 1 to |V |, such that s = 1, t = |V |,
and u has a path to v iff u < v. Then the auxiliary graph G2 = (N2,E2) can be
obtained from G as follows. First, we set N2 = {〈u,v〉 |u,v ∈ V } , where u = v is
allowed. Then the set of edges of G2 is as below:

E2 = {〈u,v〉 → 〈u,z〉 |(v,z) ∈ E and v < u}
∪ {〈v,u〉 → 〈z,u〉 |(v,z) ∈ E and v < u}
∪ {〈u,u〉 → 〈v,z〉 |(u,v),(u,z) ∈ E and v �= z}
∪ {〈u,u〉 → 〈v,v〉 |(u,v) ∈ E}

Note that edges in form of 〈u,u〉 → 〈v,v〉 of E2 correspond to common edges
in a solution against 2PESP, while the other edges correspond to non-common
edges. Accordingly, the lengths and costs to edges in E2 are as follows:
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l(〈u,v〉 → 〈u,z〉) = l(v,z), c(〈u,v〉 → 〈u,z〉) = 0
l(〈v,u〉 → 〈z,u〉) = l(v,z), c(〈v,u〉 → 〈z,u〉) = 0

l(〈u,u〉 → 〈v,z〉) = l(u,v) + l(u,z), c(〈u,u〉 → 〈v,z〉) = 0
l (〈u,u〉 → 〈v,v〉) = l(u,v), c(〈u,u〉 → 〈v,v〉) = 1

Although N2 contains O(n2) nodes, many of them are unreachable from 〈s, s〉
in G2, i.e. have no path from 〈s, s〉. Hence, when constructing E2, our algorithm
will actually add only the edges reachable from 〈s, s〉. Similar to Dijkstra’s algo-
rithm for the shortest path problem [11], our construction conducts a broad first
search (BFS ) traversal over all the nodes reachable from 〈s, s〉, via maintaining
a queue S which is initially S := 〈s, s〉. In the traversal, we repeatly add all the
edges leaving the current visiting node to E2 until S is empty. The detailed layout
of the algorithm is as in Algorithm 2 (An example executing the construction is
as depicted in Fig. 1).

For clearance, we say G2 is full if it contains both edges reachable and
unreachable from 〈s, s〉, and is reduced if it contains only edges reachable from
〈s, s〉 (like the graph resulting from Algorithm2). Clearly, full G2 and reduced G2

contain exactly the same set of ST -paths, because reduced G2 already contains
all the edges reachable from 〈s, s〉. So it suffices to show the correctness for full
G2, which can be obtained from the lemma below:

Fig. 1. An example executing Algorithm 2: (a) The original DAG G; (b) The 2-
dimensional auxiliary graph G2, in which the edges of different colors correspond to
the four different types of edges in E2, the blue dotted nodes are the reducible nodes,
and the path (1,1) → (2,3) → (3,3) → (4,4) → (5,6) → (6,6) corresponds to an optimal
solution to 2PESP subject to δ = 1 in G. (Color figure online)
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Algorithm 3. An exact algorithm for 2PESP
Input: A DAG G = (V, E), a pair of specified vertices s and t, a length function l (e)

and a common edge upper bound δ ∈ Z+;
Output: Two shortest st-paths with at most δ common edges.
1: Construct a 2-dimensional auxiliary graph G2 wrt G by Algorithm 2;
2: Find a shortest path P in G2 such that c(P ) ≤ δ by employing Joksch’s algorithm

for BRSP [10];
3 Decompose P into 2 paths {P1, P2} where Pi goes through the vertex sequence in

the ith dimension of P;
4: Return P1 and P2.

Lemma 8. There exists in full G2 a path P from 〈u, v〉 to 〈u′, v′〉, u �= u′ and
v �= v′, with a cost bounded by σ iff there exist in G a pair of paths P1 and P2,
respectively connecting u, u′ and v, v′ and sharing at most σ edges.

Proof. Omitted due to the length limit. �	
From Lemma 8, by setting u = v = s and u′ = v′ = t (note that s �= t), we
immediately have the correctness of Algorithm 2:

Theorem 9. There exists an ST -path with cost bounded by δ in G2 iff there
exists a pair of st-paths that share at most δ edges.

Lemma 10. Algorithm2 runs in time O(n3), and constructs a graph G2 with at
most O(n2) nodes and O(n3) edges.

Proof. Let m = |E(G)| and n = |V (G)|. Step 2 in Algorithm 2 brings at most
O(n2) nodes to G2. Then let Ndg =| u ∈ V (G), we will count the edges by
summing up firstly the number of edges leaving nodes in Ndg and secondly those
that are not. For the first, from each node in Ndg there can leave O(n2) edges,
because as in Steps 18–24, there are O(n2) pairs of u′ and v′ that (u,u′) ∈ E (G)
and (v,v′) ∈ E (G) both hold for u = v. Then, since |Ndg| = O(n), there are
O(n3) edges leaves the nodes of Ndg. For the second, there are at most O(n2)
nodes in N2 \ Ndg, from each of which there leave at most O(n) edges. So there
are at most O(n3) edges leaving the nodes of N2 \Ndg. Summing up both parts,
we have |E(G)| = O(n3). Note that the time complexity is actually equal to the
size of the graph, so the runtime of Algorithm 2 is O(n3). �	
By constructing G2 (N2, E2), 2PESP is reduced to BRSP of finding a shortest
ST -path in G2 with cost at most δ to capture the number of shared edges. The
formal layout of the whole algorithm is as in Algorithm3.

Lemma 11. Algorithm3 runs in time O(δn3) and correctly produces an optimal
solution to 2PESP.

Proof. For the correctness, following Theorem 9, a shortest ST -path P with cost
bounded by δ in G2 is clearly corresponding to a minimum length solution to
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2PESP ; since otherwise, there exists a solution to 2PESP with less length, indi-
cating the existence of an ST -path with cost bounded by δ but of less length
than P, which contradicts with the minimality of P.

For the runtime, from Lemma10, Step 1 takes O(n3) time to run Algorithm 2,
which constructs the 2-dimensional auxiliary graph G2 with |E(G2)| = O(n3).
In step 2, the algorithm for BRSP runs in O(δ|E(G2)|) = O(δn3) following
Proposition 3. Other steps obviously take relatively trivial time. Therefore, the
total runtime of Algorithm 3 is O(δn3). �	

3.2 Extension to kPESP for k ≥ 3 in DAGs

The key idea of solving kPESP with general k in DAGs is similar to 2PESP,
except that the algorithm will construct a k-dimensional auxiliary graph Gk

instead of G2. However, there are still some tricky differences in details between
constructing Gk and G2. Since constructing a reduced Gk is similar to Algorithm 2,
we will only give the construction of full Gk for the sake of briefness.

1. Construction of Nk:
Similar to G2, the k-dimensional auxiliary graphs Gk has |V |k nodes that
Nk = {〈v1, . . . , vi, . . . , vk〉| v1, . . . , vk ∈ V (G)}.

2. Construction of Ek:
For each node N = 〈v1, . . . , vi1 , . . . , vi2 , . . . , vil , . . . , vk〉 in Nk, where vi1 =
vi2 = · · · = vil and vi1 < u, ∀u ∈ {v1, . . . vk} \ {vi1 , . . . , vil}, if there exists an
edge (vi1 , vi′

j
) ∈ E(G) for ∀j ∈ [l]+, then add an edge e to Ek:

e = 〈v1, . . . , vi1 , . . . , vil , . . . , vk〉 →
〈
v1, . . . , vi′

1
, . . . , vi′

l
, . . . , vk

〉
.

It remains to set the cost and length for each edge in Ek. Assume that the
vertices vi′

1
, . . . , vi′

l
after vi1 = vi2 = · · · = vil (according to e) contain q different

vertices, among which there are q′ ≤ q vertices appearing at least two times. That
is, edge e contains exactly q′ different shared edges, so we set the cost of each
edge as c(e) := q′. Let U be the set of different vertices in {vi′

1
, . . . , vi′

l
}. Then

{(vi1 , u)|u ∈ U} is the set of different edges leaving vi1 , so l(e) equals the length
sum of the edges in {(vi1 , u) | u ∈ U}, i.e. l(e) =

∑
u∈U l(vi1 , u). Eventually,

similar to Lemma 10, we have the size of full Gk:

Lemma 12. The graph full Gk resulted from the above construction has O(nk)
nodes and O(2knk+1) edges.

Proof. The case for the nodes is obvious. It remains to count the number of the
edges. For a node N = 〈v1, . . . , vi1 , . . . , vi2 , . . . , vil , . . . , vk〉 with vi1 = vi2 =

· · · = vil , there are
(

k
l

)
combinations for selecting l dimensions from the k

dimensions to place the vertices vi1 , . . . , vil . For the other k− l dimensions, each
dimension is apparently free to choose a vertex from the other n − 1 vertices
except vi1 , and hence O((n − 1)k−l) combinations. Because vi1 = vi2 = · · · = vil
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can be any vertex of V (G), there are O(n) choices for vi1 . So there are at most

O

((
k
l

)
nk−l+1

)
different combinations for a node N with a fixed l. Moreover,

there are at most nl edges leaving N according to the construction. Therefore, the

total number of different edges in full Gk for a fixed l is
(

k
l

)
·O(nk−l+1) ·O(nl).

So by summing up all ls, we have
∑k

l=1

(
k
l

)
· O(nk−l+1) · O(nl) = O(2knk+1).

�	
Similar to Theorem9, we have the following theorem for the correctness of

the construction:

Theorem 13. There exists an ST -path with cost bounded by δ in Gk iff there
exist k paths connecting s to t and sharing at most δ edges.

Because there are in total O(2knk+1) edges in Gk, following Proposition 3 we
have:

Corollary 14. The kPESP problem admits an exact algorithm with a runtime
O(δ2knk+1).

It is worth noting that our algorithm can be easily extended to solve kPESPwC,
observing that the only difference between kPESPwC and kPESP is in kPE-
SPwC an edge can be shared by at most C paths among P1, P2, · · · , Pk. The
extension needs only to remove from Ek every edge e that corresponds to an
edge shared for more than C times. That is, it needs only to prune out e =
〈v1, . . . , vi1 , . . . , vi2 , . . . , vil , . . . , vk〉 →

〈
v1, . . . , vi′

1
, . . . , vi′

2
, . . . , vi′

l
, . . . , vk

〉

with vi1 = vi2 = · · · = vil in which there exists a vertex appearing in
{vi′

1
, . . . , vi′

l
} more than C times.

4 Conclusion

In this paper, we studied the problem of finding k shortest st-paths with a
bounded number of common edges, namely kPESP. We first proposed an exact
algorithm for 2PESP with a runtime O(mn log(1+m/n) n+δn2), where m, n and
δ are respectively the number of edges, vertices, and shared edges. Because the
algorithm can not be easily extended for general k, we proposed a different exact
algorithm with a runtime O(δ2knk+1) by graph transformation, which can solve
kPESP with general k but only in DAGs. Our technique can be easily extended
to solve kPESPwC for any fixed integer k ≥ 2 in DAGs, in which an edge is
allowed to be shared by at most C ≤ k paths. We are currently investigating
how to efficiently solve kPESP with k > 2 in general graphs.
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Abstract. Comparing genomes in terms of gene order is a classical com-
binatorial optimization problem in computational biology. Some of the
popular distances include translocation, reversal, and double-cut-and-
join (abbreviated as DCJ), which have been extensively used while com-
paring two genomes. Let dx, x ∈ {translocation, reversal, DCJ}, be the
distance between two genomes such that one can be sorted/converted
into the other using the minimum number of x-operations. All these
problems are NP-hard when the genomes are unsigned. Computing dx,
x ∈ {translocation, reversal, DCJ}, between two unsigned genomes
involves computing a proper alternating cycle decomposition of its break-
point graph, which becomes the bottleneck for computing the genomic
distance under almost all types of genome rearrangement operations and
prohibits to obtain approximation factors better than 1.375 in polyno-
mial time. In this paper, we devise an FPT (fixed-parameter tractable)
approximation algorithm for computing the DCJ and translocation dis-
tances with an approximation factor 4/3+ε, and the running time is
O∗(2d∗

), where d∗ represents the optimal DCJ or translocation distance.
The algorithm is randomized and it succeeds with a high probability. This
technique is based on a new randomized method to generate approximate
maximum alternating cycle decomposition.

1 Introduction

Computing genomic distance on gene order is a fundamental problem in compu-
tational biology. In the last two decades, a variety of biological operations, such as
reversals, translocations, fusions, fissions, transpositions and block-interchanges,
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have been proposed to handle gene order. The double-cut-and-join operation,
introduced by Yancopoulos et al. [22], unifies all the classical operations. In
the past, the rearrangement distance for signed genomes is well studied by
single operations (like reversals) [15], combinations of operations (reversals,
translocations, fusions and fissions) [16] and universal operations (double-cut-
and-join) [2,22].

Unfortunately, as for unsigned genomes, almost all these problems are NP-
hard. Then people resort to approximation algorithms. Christie devised a factor-
1.5 approximation algorithm for sorting unsigned genomes by reversals [8], and
the approximation factor was improved to 1.375 by Berman et al. in 2002 [4].
Cui et al. investigated the problem of sorting by unsigned translocations and
proposed an algorithm with an approximation factor 1.5+ε [9]. This bound was
improved to 1.408+ε [17] and recently further to 1.375 [21]. The problem of Sort-
ing by Transpositions was first studied by Bafna and Pevzner [1], who devised
an 1.5-approximation algorithm which runs in quadratic time. The bound was
improved to 1.375 by Elias and Hartman in 2006 [11]. As far as we know, the best
polynomial-time approximation algorithms for the unsigned DCJ distance prob-
lem has a factor 1.408 + ε [7]. Among almost all these problems, a bottleneck to
break the 1.375 barrier seems to be on decomposing the breakpoint graph (to be
defined formally) into maximum (edge-disjoint) alternating-cycles. We make fun-
damental contributions in this paper on using FPT approximation algorithms.
The design of FPT algorithms for genome rearrangement problems was started
very recently. With the help of weak kernels, sorting unsigned genomes by either
reversals, translocations or DCJs admits small weak kernels, hence are in FPT
with a running time O∗(4k), where k is the solution value [18,19]. However, this
algorithm is only practical for k bounded from above by around 20 to 25.

In this paper, we devise a new randomized algorithm for maximum
alternating-cycle decomposition. Consequently, we design an FPT approxima-
tion algorithm for sorting unsigned genomes by DCJ operations (resp. by translo-
cations), the approximation factor reaches 4/3+ε, and the running time is
O∗(2d∗

), where d∗ represents the optimal DCJ distance (resp. translocation dis-
tance). The algorithm is randomized and it succeeds with a high probability.

2 Preliminaries

We first define the basics regarding gene, chromosome and genome. An unsigned
gene is a sequence of DNA, which is denoted by a positive integer. A chromosome
can be viewed as a sequence of genes and denoted by a permutation, while a
genome is a set of chromosomes. A gene that lies at the end of some linear chro-
mosome is called an ending-gene. Gene gi and gj form an adjacency if they are
consecutive in some chromosome. An adjacency (gi, gi+1) is trivial if it satisfies
|gi+1 − gi| = 1. A chromosome is trivial if every adjacency is trivial. A genome
is trivial if all its chromosomes are trivial.

In the context of sorting genomes, the comparative order of the genes in the
same chromosome does matter, but not the order of chromosomes and the direc-
tion of a whole chromosome, which implies that each chromosome can be viewed
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in both directions. In the case of signed genomes, a chromosome 〈gi, gi+1, · · · , gj〉
is equivalent to 〈−gj , · · · ,−gi+1,−gi〉; and in the case of unsigned genomes, a
chromosome 〈gi, gi+1, · · · , gj〉 is equivalent to 〈gj , · · · , gi+1, gi〉.

2.1 Breakpoint Graph of Signed and Unsigned Genomes

Now, we recall the well-known tool for computing the genomic rearrangement
distance, the Breakpoint Graph. Given signed genomes X and Y over the same
set of genes (WLOG, assume that Y is trivial), the breakpoint graph Gs(X,Y )
can be obtained as follows: for each chromosome S = [x1, x2, . . . , xni

] of X,
replace each xi with an ordered pair (l(xi), r(xi)) of vertices. If xi is positive,
then (l(xi), r(xi)) = (xt

i, x
h
i ); and if xi is negative, then (l(xi), r(xi)) = (xh

i , xt
i).

If the genes xi and xi+1 are adjacent in X, then we connect r(xi) and l(xi+1)
by a black edge in Gs(X,Y ). If the genes xi and xi+1 are adjacent in Y , then we
connect r(xi) and l(xi+1) by a gray edge in Gs(X,Y ). Every vertex (except the
ones at the two ends of a chromosome) in Gs(X,Y ) is incident to one black and
one gray edge. Therefore, Gs(X,Y ) can be uniquely decomposed into cycles, on
which the black edges and gray edges appear consecutively. A cycle containing
exactly i black (gray) edges is called an i-cycle.

As for unsigned genomes, the breakpoint graph is a bit different. Given two
unsigned genomes X and Y on the same set of n genes, the Breakpoint Graph
Gu(X,Y ) = (V,Eb ∪ Eg), where |V | = n and each vertex in V corresponds to a
gene, every adjacency in X forms a black edge belonging to Eb and every adja-
cency in Y forms a gray edge belonging to Eg. The breakpoint graph Gu(X,Y )
can be decomposed into a set of edge-disjoint cycles, denoted as D, and on each
cycle, the black edges and gray edges appear alternatively.

2.2 The Signed DCJ Distance Formula

Let b (resp. c) be the number of black edges (resp. cycles) in Gs(X,Y ). Yan-
copoulos et al. proved the following theorem [22].

Theorem 1. Let ds(X,Y ) be the (optimal) signed DCJ distance between X and
Y . Then ds(X,Y ) = b − c.

2.3 The UDCJ Problem

The Double-Cut-and-Join Operations. The Double-Cut-and-Join opera-
tion (abbreviated as DCJ) unifies all the traditional genome rearrangement oper-
ations such as reversal, translocation, fusion, fission, transposition and block-
interchange, as well as excision, integration, circularization and linearization.
The formal definition of the DCJ operation on the breakpoint graph (for both
signed and unsigned genomes) is as follows.

Definition 1. The Double-Cut-and-Join operation acts on the Breakpoint
Graph in the following four ways (Fig. 1):
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Fig. 1. The DCJ Operation.

1. For two black edges b1 = (gi, gi+1) and b2 = (gj , gj+1), cut them, and either
form two new black edges b′

1 = (gi, gj+1) and b′
2 = (gj , gi+1) or form two new

black edges b′
1 = (gi, gj) and b′

2 = (gi+1, gj+1).
2. For a black edge b = (gi, gi+1) and an end-gene gj, cut the black edge, and

either form a new black edge b′ = (gi, gj) and a new end-gene gi+1 or form a
new black edge b′ = (gj , gi+1) and a new end-gene gi.

3. For two end-genes gi and gj, join them with a black edge (gi, gj).
4. For a black edge b = (gi, gi+1), cut it into two end-genes gi and gi+1.

We now formally formulate the problem to be investigated in this paper.
Sorting Unsigned Genomes by the DCJs (UDCJ):
Input: Two unsigned linear genomes X and Y , Y is trivial, and an integer k.
Question: Can X be converted into Y by a series of k DCJs ρ1, ρ2, · · · , ρk.

The minimum k is the unsigned DCJ distance between X and Y .
Throughout this paper, we assume that the ending-gene sets of X and Y are

the same, since the details to handle genomes with different ending-gene sets is
not the main purpose of this paper.

Coming back to the technical details, since each ending-gene of X and Y is
incident to only one black edge and one gray edge; and each of the rest genes is
incident to exactly two black edges and two gray edges, the ways to decompose
Gu(X,Y ) into cycles might not be unique. Caprara showed that computing a
maximum alternating-cycle decomposition (MAX-ACD) of the breakpoint graph
is NP-hard [5], which implies that UDCJ is also NP-hard. We comment that the
best polynomial-time approximation for MAX-ACD only has a factor 1.4193+ ε
[20].

2.4 Converting Unsigned Genomes into Signed Ones

A natural way to solve UDCJ is to convert the unsigned genome into a signed
one, then resort to the algorithm for computing the signed DCJ distance. But,
how to convert an unsigned genome into a ‘good’ signed genome, which would
result in a smaller DCJ distance? Once we have a cycle-decomposition D of
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Gu(X,Y ), we can obtain two signed genomes X̄ and Ȳ by assigning a sign to
each gene in X and Y such that Gs(X̄, Ȳ ) = D.

As Y is trivial, we arrange all its chromosomes monotonously increasing, then
assign all its genes positive. Therefore, all gray edges in Gs(X̄, Ȳ ) have the form
((xi)h, (xi + 1)t).

Next, we show how to assign a proper sign to each gene in X (to obtain
X̄). An ending-gene is positive if it lies at the same (i.e., both left or both
right) ends of some chromosome in X and some chromosome in Y ; otherwise,
it is negative in X. For a non-ending gene xi, according to the two gray edges,
((xi)h, (xi + 1)t) and ((xi − 1)h, (xi)t) in the cycle decomposition, we assign xi

positive if ((xi − 1)h, l(xi)) is a gray edge in the given cycle decomposition; if
((xi − 1)h, r(xi)) is a gray edge in the given cycle decomposition, then xi is
assigned a negative sign. See Fig. 2 for an example.

Fig. 2. (a) The breakpoint graph Gs(X̄, Ȳ ) for the signed case, where
X̄={[1, −3, −2, 4], [5, −7, −8, 6, 9]} and Ȳ ={[1,2,3,4], [5,6,7,8,9]}. (b) The breakpoint
graph G(X, Y ) for the unsigned case, where X={[1,3,2,4], [5,7,8,6,9]} and Y ={[1,2,3,4],
[5,6,7,8,9]}. (a) is a cycle decomposition of (b).

Finally, a fixed-parameter tractable (FPT) algorithm for a decision prob-
lem Π with solution value k is an algorithm which solves the problem in
O(f(k)nO(1)) = O∗(f(k)) time, where f is any function only on k, n is the
input size. FPT also stands for the set of problems which admit such an algo-
rithm [10,12].

In summary, to solve UDCJ efficiently, we need to find a proper cycle decom-
position of the breakpoint graph. We handle this NP-hard problem by designing
an FPT approximation algorithm. This is the main content in the next section.

3 An FPT-time Approximation Algorithm

In this section, we present a factor-(4/3 + ε) FPT-approximation algorithm for
UDCJ, which runs in O∗(2d∗

) time, where d∗ is the optimal DCJ distance. We
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try to decompose the breakpoint graph into enough number of small cycles (i.e.,
cycles containing 1, 2, and 3 black edges, formally called 1-cycles, 2-cycles and 3-
cycles henceforth), with a new randomized method. The algorithm is randomized
and it succeeds with a high probability.

3.1 General Sketch

Jiang et al. [19] showed that all the possible 1-cycles could be kept in the cycle
decomposition by the following lemma.

Lemma 1. There exists some optimal cycle decomposition containing all the
existing 1-cycles.

Hence, our cycle-decomposition will keep all the 1-cycles, and is always compared
with an optimal cycle-decomposition which also keeps all the 1-cycles.

Let c∗
i be the number of i-cycles in some optimal cycle-decomposition, from

the signed DCJ distance formula ds(X,Y ) = b − ∑
i≥1 c∗

i . Since b =
∑

i≥1 i ∗ c∗
i ,

we have
∑

i≥3 c∗
i ≤ 1

3 (b−c∗
1 −2c∗

2), that results in, ds(X,Y ) ≥ b−c∗
1 −c∗

2 − 1
3 (b−

c∗
1 − 2c∗

2) = 2
3 (b − c∗

1) − 1
3c∗

2 = 2
3 (b − c∗

1 − 1
2c∗

2), which implies that, to achieve an
approximation factor of 1.5, it is sufficient to find a half number of 2-cycles of
the optimal cycle-decomposition.

Moreover, if we can find an α portion of 2-cycles and a β portion of 2-cycles
and 3-cycles, then use the bound, ds(X,Y ) = b − ∑

i≥1 c∗
i ≥ b − c∗

1 − c∗
2 −

c∗
3 − 1

4 (b − c∗
1 − 2c∗

2 − 3c∗
3), together with the conditions c2 ≥ α ∗ c∗

2, c2 + c3 ≥
β ∗ (c∗

2 + c∗
3), and dalg(X,Y ) ≤ b − c∗

1 − c2 − c3, the approximation factor could
become max{ 4

3 , 2 − α, 3−β
2 , 3α−β−αβ

2α−β } [6].
Our idea is to find an α portion of 2-cycles, and a β portion of 2-cycles as

well as a γ portion of 3-cycles. We will show that, ignoring some small constant
ε, α ≥ 5

6 , β ≥ 3
5 , and γ ≥ 3

5 ∗ 57
64 , which leads to an approximation 4/3.

Now we give the details of our algorithm. By cycle decomposition, we aim at
finding small cycles, but searching cycles directly from the breakpoint graph will
not guarantee enough number, that is because cycles in the breakpoint graph
could possibly share some edges, and it is necessary to compute an independent
set from them. Our main idea is to fix the sign of some genes, then find cycles
from the partly decomposed breakpoint graph, so that we can obtain more cycles.

3.2 Finding 2-Cycles

Let V2 be the set of vertices, each of which is involved in at least two 2-cycles in
the breakpoint graph. (Following [6], the intersection graph of the 2-cycles has
a maximum degree of 6. By the following random selection procedure, together
with the enumeration of the signs of the selected vertices, we show that the
intersection graph of these ‘partial’ 2-cycles has a maximum degree of 3.) We
randomly choose |V2|/2 vertices and enumerate all possible combinations of signs
for them. Under each combination of sign assignment, the breakpoint graph
could be partly decomposed. A candidate 2-cycle is a 2-cycle which could exist
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subject to the current sign assignment, and at least one vertex has a sign fixed.
Nonetheless, in the partly decomposed breakpoint graph, some of the candidate
2-cycles could share edges and could not co-exist in any cycle decomposition. Let
Cc2 be the set of candidate 2-cycles. Construct a conflict graph Gc2 = (Cc2, Ec2),
where each 2-cycle of Cc2 corresponds to a vertex, and there is an edge between
two vertices if and only if their corresponding 2-cycles share edges in the partly
decomposed breakpoint graph. Thus, an independent set of Gc2 represents the
conflict-free 2-cycles we find.

Algorithm 1. Finding 2-cycles
1: Identify vertices of V2.
2: Choose |V2|/2 vertices randomly.
3: for each combination of sign assignment for these chosen vertices do
4: Construct the conflict graph Gc2.
5: Compute an approximate independent set Ic2 of Gc2.
6: end for
7: Keep the 2-cycles corresponding to the maximum Ic2.

Lemma 2. There exists an approximation algorithm with ratio 5
r+3 −ε, for any

ε > 0, for the maximum independent set problem on a graph with maximum
degree r (see reference [3]).

3.3 Finding 2,3-Cycles

Let a 2,3-cycle be either a 2-cycle or a 3-cycle in the breakpoint graph. Let V23

be the set of vertices, each of which is involved in at least two 2,3-cycles in the
breakpoint graph. We randomly choose |V23|/2 vertices, enumerate all possible
combinations of signs for them. Under each combination of sign assignment, the
breakpoint graph has been partly decomposed. A candidate 2,3-cycle is a 2-cycle
or a 3-cycle which could exist under the current sign assignment, and at least two
vertices have their signs fixed. In the partly decomposed breakpoint graph, some
of the 2-cycles and candidate 3-cycles could share edges and could not co-exist
in any cycle decomposition. Each 2-cycle and candidate 3-cycles is composed of
paths, where each path is composed of black edges, or gray edges, or composed
of black edges and gray edges appearing alternatively. A candidate 2,3-cycles is
composed of at most four such paths. We view paths as elements, and candidate
2,3-cycles as sets of elements. We can construct a set packing system Sc23, whose
basic elements are the paths and each candidate 2,3-cycles is a subset of at most
four elements. Thus, a set packing could be the 2,3-cycles we find.

Lemma 3. There is a ratio 3
p+1 −ε approximation algorithm, for any ε > 0, for

the maximum set packing problem with set size at most p and set degree bounded
(see reference [13]).
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Algorithm 2. Finding 2,3-cycles
1: Identify vertices of V23.
2: Choose |V23|/2 vertices randomly.
3: for each combination of sign assignment for these chosen vertices do
4: Construct the set packing system Sc23.
5: Compute an approximate set packing Pc23.
6: end for
7: Keep the 2,3-cycles corresponding to the maximum Pc23.

Algorithm 3. UDCJ-Final
1: Run Algorithm 1 n times, among the computed Ic2’s, pick the largest one Imax

c2 .
2: Run Algorithm 2 n times, among the computed Pc23’s, pick the largest one Pmax

c23 .
3: If |Imax

c2 | ≥ |Pmax
c23 |, then keep the 2-cycles corresponding to Imax

c2 ,
4: Otherwise, keep the 2,3-cycles corresponding to Pmax

c23 .
5: Arbitrarily assign signs to the rest of genes so that every gene has a sign.
6: Compute the DCJ distance between the signed genomes.
7: Simulate the signed DCJ sorting process to the original unsigned genomes.

4 Performance Analysis

4.1 The Approximation Factor

As aforementioned, the approximation factor performance is determined by the
number of 2-cycles and 3-cycles we have found.

Lemma 4. Gc2 is a graph with maximum degree 3.

Proof. Omitted due to space constraint. �	
Corollary 1. Ic2 is an 5

6 − ε approximation for the maximum independent set
of Gc2.

Lemma 5. Sc23 is a set packing system with set size at most 4 and set degree
bounded.

Proof. Each 3-cycle has exactly 6 vertices, since at least two of them have a fixed
sign, each fixed-sign vertex brings a fixed connection of a black edge and a gray
edge. Then each 3-cycle has at most four undetermined connections, i.e., it is
composed of at most four paths.

Now we show that each path can be shared by at most 4 such 2,3-cycles.
Note that if three paths of such a 3-cycle are fixed, then the 2,3-cycle is obtained.
Standing on an ending vertex of a path, we have at most two choices. After any
choice, the path is extended, i.e., two paths are connected together. To form
2,3-cycles, we have twice opportunities to make choices, which would result in
at most four 2,3-cycles. Thus, each subset could share elements with at most
4×(4 − 1)=12 other subsets. The set degree is bounded. �	
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Corollary 2. Pc23 is an 3
5 − ε approximation for the maximum set packing of

Sc23.

Next, we bound the number of vertices in Gc2 and the number of subsets in
Sc23. Let c∗

i be the number of i-cycles in the optimal cycle decomposition.

Lemma 6. With probability 1− 1
eO(n) , the maximum independent set of one Gc2

at Step 1 in Algorithm 3 has a size greater than (1 − δ)1516c∗
2 for any 0 < δ < 1.

Proof. We show that each 2-cycle of the optimal cycle decomposition has a
probability of 15

16 to fall into Gc2. If the 2-cycle has a vertex with a fixed sign,
then it will surely become a candidate 2-cycle. If all its vertices do not have a
fixed sign, then they are all in V2. The probability that none of them is chosen

is
C

|v2|/2
|v2|−4

C
|v2|/2
|v2|

≤ 1
16 . Hence, we can conclude that, with probability 15

16 , we have 15
16

portion of 2-cycles of the optimal cycle decomposition in Gc2; moreover, they
form an independent set of Gc2. If we view Xi as a random variable to put a
2-cycle of the optimal cycle decomposition into Gc2 and define X =

∑
i Xi, then

E[X] = μ = 15
16c∗

2.
By Chernoff bounds, for any 0 < δ < 1,

P [X ≤ (1 − δ)μ] ≤ e− δ2μ
2 ,

which means P [X ≤ (1−δ)μ] ≤ 1
eO(1) when μ is only a constant. For Algorithm 3,

as we repeat Algorithm 1 n times, the probablity that the MIS of all the n Gc2’s
has a size at most (1 − δ) 1516c∗

2 is at most ( 1
eO(1) )n = 1

eO(n) .
Therefore, with probability 1 − 1

eO(n) , the MIS of one of the Gc2 at Step 1 in
Algorithm 3, has a size greater than (1 − δ)1516c∗

2 for any 0 < δ < 1. �	
As δ could be arbitrarily small, we would use this size as 15

16c∗
2 in the proof of

Theorem 2.

Lemma 7. With probability 1 − 1
eO(n) , the maximum set packing of one of the

Sc23 at Step 2 in Algorithm 3 has a size greater than (1 − δ)(c∗
2 + 57

64c∗
3) for any

0 < δ < 1.

Proof. We show that each 3-cycle of the optimal cycle decomposition has a
probability of 57

64 to be a candidate 3-cycle. If the 3-cycle has two vertices whose
signs are fixed, then it will surely become a candidate 3-cycle. If the 3-cycle
has exactly one vertex whose sign is fixed, then the other five vertices do not
have a fixed sign, so they are all in V23. The probability that none of them is

chosen is
C

|v23|/2
|v23|−5

C
|v23|/2
|v23|

≤ 1
32 . If all its vertices do not have a fixed sign, then they

are all in V23. The probability that none of them is chosen is
C

|v23|/2
|v23|−6

C
|v23|/2
|v23|

≤ 1
64 . The

probability that exact one of them is chosen is 6 × C
|v23|/2
|v23|−6

C
|v23|/2
|v23|

≤ 6
64 . Hence, we can
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conclude that an expected 1 − 1
64 − 6

64 = 57
64 portion of 3-cycles of the optimal

cycle decomposition are in Sc23; moreover, together with the c∗
2 2-cycles of the

optimal cycle decomposition, they form a set packing of Sc23. Note that a 2-cycle
has only 4 edges, by Lemma 5, all of the c∗

2 2-cycles will be in the set packing
solution.

By an argument similar to Lemma 6, we conclude that, with probability
1 − 1

eO(n) , the maximum set packing one of the Sc23’s at Step 2 of Algorithm 3,
has size greater than (1 − δ)(c∗

2 + 57
64c∗

3) for any 0 < δ < 1. �	
Again, as δ could be arbitrarily small, we would use this size as c∗

2 + 57
64c∗

3 in the
proof of Theorem 2.

Theorem 2. With probability 1 − 1
eO(n) , Algorithm 3 approximates the DCJ

distance within a factor 4/3+ε.

Proof. Let ci be the number of i-cycles computed by Algorithm 3, c∗
i be the

number of i-cycles in the optimal cycle decomposition. Let d∗ and d be the
optimal DCJ distance and approximated DCJ distance respectively. Let the
approximation factor be ρ, where 4

3 ≤ ρ ≤ 3
2 .

We have, d∗ = b−c∗
1−c∗

2−c∗
3−∑

i≥4 c∗
i Since,

∑
i≥4 c∗

i ≤ (b−c∗
1−2c∗

2−3c∗
3)/4,

and b − c∗
1 ≥ 2c∗

2 + 3c∗
3, then,

d∗ ≥ b − c∗
1 − c∗

2 − c∗
3 − (b − c∗

1 − 2c∗
2 − 3c∗

3)/4

=
3
4
(b − c∗

1) − 1
2
c∗
2 − 1

4
c∗
3

=
1
ρ
((b − c∗

1) + (
3
4
ρ − 1)(b − c∗

1) − 1
2
ρc∗

2 − 1
4
ρc∗

3)

≥ 1
ρ
((b − c∗

1) + (
3
4
ρ − 1)(2c∗

2 + 3c∗
3) − 1

2
ρc∗

2 − 1
4
ρc∗

3)

=
1
ρ
(b − c∗

1 − (2 − ρ)c∗
2 − (3 − 2ρ)c∗

3) (1)

This implies that, if the number of cycles we found satisfy c2 ≥ (2 − ρ)c∗
2 and

c3 ≥ (3−2ρ)c∗
3, then the approximated DCJ distance computed by our algorithm

satisfies d ≤ b−c∗
1 −c2−c3; consequently, the approximation factor reaches to ρ.

From Corollary 1 and Lemma 6, with high probability, we have

|Imax
c2 | ≥ (

5
6

− ε) × 15
16

c∗
2. (2)

From Corollary 2 and Lemma 7, with high probability, we have

|Pmax
c23 | ≥ (

3
5

− ε′) × (c∗
2 +

57
64

c∗
3). (3)

Now we show that, by a balanced analysis, at least one of |Imax
c2 | and |Pmax

c23 |
are greater than (2 − ρ)c∗

2 + (3 − 2ρ)c∗
3.
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We have two cases: either (I) ( 56 − ε) × 15
16c∗

2 ≥ ( 35 − ε′) × (c∗
2 + 57

64c∗
3) or (II)

not.
In case (I): ( 56 −ε)× 15

16c∗
2 ≥ ( 35 −ε′)×(c∗

2+ 57
64c∗

3). Since ε and ε′ are very small
comparing with the other constants, for the sake of computation simplification,
we ignore them here. Then, (2532 − 3

5 )c∗
2 ≥ 3

5 × 57
64c∗

3; that is, c∗
2 ≥ 171

58 c∗
3. Therefore,

if 25
32c∗

2 ≥ (2 − ρ)c∗
2 + (3 − 2ρ)c∗

3, we are done. Solving this inequality,

(2 − ρ)c∗
2 + (3 − 2ρ)c∗

3 ≤ (2 − ρ)c∗
2 + (3 − 2ρ) × 58

171
c∗
2 ≤ 25

32
c∗
2,

it holds provided that ρ ≥ 1.332. Together with the constraint that ρ ≥ 4
3 , we

choose ρ = 4
3 .

In case (II): ( 56 − ε) × 15
16c∗

2 < ( 35 − ε′) × (c∗
2 + 57

64c∗
3). Similarly, we have

c∗
2 < 171

58 c∗
3. If 3

5 × (c∗
2 + 57

64c∗
3) ≥ (2 − ρ)c∗

2 + (3 − 2ρ)c∗
3, then we are done. Hence

we need to prove,

(
3
5

× 57
64

− 3 + 2ρ)c∗
3 ≥ (2 − 3

5
− ρ)c∗

2.

Again, this inequality holds when ρ ≥ 1.332. Together with the constraint that
ρ ≥ 4

3 , we have ρ = 4
3 . �	

4.2 The Time Complexity

Theorem 3. The time complexity of Algorithm 3 is O∗(2d∗
), where d∗ is the

optimal DCJ distance.

Proof. The most time-consuming parts are enumerating all possible sign com-
bination of V2 and V23. d∗ ≥ b − c∗

1 − c∗
2 − c∗

3 and c∗
2 + c∗

3 ≤ (b − c∗
1)/2, then,

d∗ ≥ (b − c∗
1)/2. Each vertex of V2 or V23 is connected to two black edges, while

each black edge has at most two unsigned genes as its endpoints, which means
that the number of unsigned genes of V2 or V23 is smaller than that of black
edges, e.g., |V2| ≤ b − c∗

1 ≤ 2d∗ and |V23| ≤ b − c∗
1 ≤ 2d∗.

Hence while we choose a half of |V2| vertices or a half of |V23| vertices,
and enumerating all their combination of signs, the time complexity is at most
O∗(2d∗

). �	
In fact, we could extend our method to Sorting by Translocations [9,14,17,21].
We summarize the result as follows. The details will be given in the full version.

Theorem 4. With probability 1 − 1
eO(n) , there is an FPT algorithm which

approximates the translocation distance within a factor α = 4/3 + ε.

5 Concluding Remarks

We design a factor 4/3 + ε FPT-approximation algorithm for the DCJ distance,
improving the previous (polynomial-time approximation) factor of 1.408+ε. The
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algorithm is randomized and it succeeds with a high probability. The running
time is bounded by O∗(2k); in fact, by O∗(2x) where x ≤ k, which makes it
practical for k at least as large as 40–50. The exact FPT algorithm for the
same problem takes O∗(4k) time, which is only practical for k bounded by
20–25 from above. Our algorithm involves a new randomized method to decom-
pose the breakpoint graph into the maximum number of alternating-cycles and
can be used to improve the approximation factor for Sorting by Translocations
— again in a similar FPT time, which admits a factor-1.375 (polynomial-time)
approximation and uses maximum alternating-cycle decomposition as a subrou-
tine.

For Sorting by Reversals, note that special care must be taken as in the
optimal solution the 1-cycles might not be all kept. For instance, for the sequence
S = 〈3, 4, 1, 2〉, if we keep the 1-cycles (3,4) and (1,2) then three reversals are
needed to sort S into 〈1, 2, 3, 4〉. On the other hand we could sort S = 〈3, 4, 1, 2〉
into 〈1, 2, 3, 4〉 using two reversals: 〈3, 4, 1, 2〉 → 〈3, 2, 1, 4〉 → 〈1, 2, 3, 4〉.

A related open question is whether one can design an FPT-approximation
algorithm with a factor better than 1.375 for the problem of Sorting by Trans-
positions. Note that the technique of giving signs to some genes does not seem
to work for this problem.
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Abstract. In recommendation systems, it has been an increasing
emphasis on recommending potentially novel and interesting items in
addition to currently confirmed attractive ones. In this paper, we pro-
pose a contextual bandit algorithm for web page recommendation in the
dependent click model (DCM), which takes user and web page features
into consideration and automatically balances between exploration and
exploitation. In addition, unlike many previous contextual bandit algo-
rithms which assume that the click through rate is a linear function of
features, we enhance the representability by adopting the generalized lin-
ear models, which include both linear and logistic regressions and have
exhibited stronger performance in many binary-reward applications. We
prove an upper bound of Õ(d

√
n) on the regret of the proposed algorithm.

Experiments are conducted on both synthetic and real-world data, and
the results demonstrate significant advantages of our algorithm.

1 Introduction

Given a search query, a web page recommendation algorithm recommends a list
of related web pages based on a certain model of past user behavior and page
information [1]. An online learning algorithm for personalized recommender sys-
tems aims at learning user preferences and incorporating the user feedback at
each time step, while maintaining a high Click-Through Rate (CTR) over a
long period of time. Earlier recommendation algorithms mostly focus on recom-
mending the currently confirmed attractive items, and put less emphasis on the
potentially valuable items in the future, e.g., the Logistic Regression (LR) [2]
and the Factorizations Machines (FM) [3]. It was observed that such algorithms
usually lead to suboptimal recommendations in a long term [4]. Besides, though
accuracy is a typical target for recommendation, the diversity and the long-
term user satisfactory of a recommender system have shown more and more
importance [1]. Therefore, special attention should be paid to a balance between
exploiting immediate yet suboptimal rewards (exploitation) and exploring uncer-
tain but potentially interesting items which may produce large benefits later
(exploration).

Multi-armed bandit (MAB) is a general framework of sequential decision
problems, in which a balance between exploration and exploitation is needed [5].
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 39–50, 2018.
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In the basic stochastic setting, we have a number of arms each with an unknown
reward distribution. At each time step, we need to select one of them, receiving
the reward randomly drawn from the corresponding distribution. The goal is
to maximize the total reward over the time, or equivalently, to minimize the
regret, which is the difference between our cumulative reward and the reward of
always pulling the best arm. Numerous algorithms have been proposed for MAB
and they have been successfully applied in many scenarios, such as personalized
recommendation [6], clinical trials [7], etc.

The Cascade Model (CM) is a widely used click model in which the rec-
ommended web pages are listed in a sequence and the user examines the list
from top to bottom until she finds a satisfactory one [8]. This model is partic-
ularly suitable for characterizing the user browsing behavior on mobile devices.
A number of bandit algorithms were developed and have exhibited prominent
effectiveness in cascade model [9–11]. One limit of the model is its assumption
that the user clicks at most one of the recommended items, and a natural exten-
sion to allowing multiple clicks is the dependent click model (DCM), where the
user may click more than one items before finding a satisfactory one [12].

In the DCM bandit setting, at each time step t, the learning agent displays
an ordered list of K items out of L ground items to the user. The user examines
the items in the displayed order and clicks on the attracted items. After an item
is clicked, the user may either be satisfied and leave, or unsatisfied and proceed
to the next item. The user leaves if all K items have been examined, regardless
of whether the user has found any satisfactory item or not. If the user leaves with
satisfaction, then the learning agent receives a reward of 1; otherwise the reward
is 0. However, this reward is not observed by the learning agent, as the agent
cannot distinguish between the user leaving with satisfaction or leaving because
she has exhausted all items. All the feedback the learning agent receives is the
clicking pattern such as 0100110000, in which case the learning agent knows
that the user is attracted by the 2nd, 5th and 6th items, but not by the 1st, 3rd
and 4th items. However, whether the user is attracted by the rest (the 7th and
beyond) remains unknown to the learning agent.

In many modern personalized news/apps/ads recommendation systems, cer-
tain features of users are available through registration or historical behaviors,
which can be exploited to provide more accurate recommendations [1]. In the
bandit setting, these features are usually called the context, modeled as a d-
dimensional vector that contains information of users or items. In previous
studies on contextual bandit in the cascade model, the attraction weight is
assumed to be the inner product of the vector of the contextual vector and
a fixed but unknown vector θ [6,11,13], i.e. a linear function of the contextual
vector (thereby the name linear bandit). However, the reward function in real-
world applications can be complicated and hardly confined to being linear. With
an increasing amount of historical data, stronger models may be preferred for
better representability. Besides, logistic regression (LR) has exhibited empirical
improvements over the linear model in news recommendation [14]. In this paper,
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we go beyond the linear reward model and consider the more general exponential
family distributions, which include LR as a special case.

Our work has four main contributions. First, we incorporate contextual infor-
mation into DCM bandit model, and strengthen the linear model by including
exponential family distributions. Second, we present a computationally efficient
version of our algorithm which may be valuable for practical use. Third, we prove
an upper bound of Õ(d

√
n) on the regret. Fourth, experiments are conducted on

both synthetic and real world data, which demonstrate the substantial advan-
tage of our algorithm compared to the typical LR algorithm and the one without
utilizing contextual information.

2 Problem Formulation

In this paper, we consider the contextual DCM bandit problem with the gener-
alized linear payoff for list recommendation. Let n be the total number of time
steps. Suppose that we have a set E = {1, . . . , L} = [L] of ground items. At
each time step t, the learning agent receives a user query. Combining the user
query and each arm i gives a contextual vector xi,t ∈ R known to the learning
agent, whose action is to recommend an ordered list At = (at

1, . . . ,a
t
K) of K

distinct items from E to the user.1 We say that such an action has length K,
and denote by ΠK(E) the feasible action set of all ordered lists of K distinct
items from E. The user checks the list of items one by one from top to bottom.
For each item a, the user is attracted with probability w̄t(a) ∈ [0, 1], and we will
use wt(a) ∈ {0, 1} to denote the attraction weight, a Bernoulli random variable
with mean w̄t(a) indicating whether the user is attracted by a or not. Denote by
wt ∈ {0, 1}E the random vector of these indicators, and by Pw the distribution
of wt. We assume that the attraction vectors are independent across time steps
and items, namely {wt}n

t=1 are i.i.d. drawn from a probability distribution Pw.
If the user is attracted by the k-th item ak in the recommended list, i.e.

wt(ak) = 1, then she clicks it and examines the item. The user may be satisfied
and leave, which happens with probability v̄t(k) and then the learning agent
receives a reward of 1. The user may also find the item unsatisfactory (which
happens with probability 1 − v̄t(k), and then continues to check the next item.
If all items have been checked and the user has not found any satisfactory item,
then the user leaves and the learning agent receives reward 0. The termination
weight vt(k) ∈ {0, 1} is the Bernoulli random variable with mean v̄t(k). We
denote by vt ∈ {0, 1}K the random vector of the termination weights, by Pv its
distribution, and assume {vt}n

t=1 to be i.i.d. drawn from Pv.
The above process defines a random {0, 1} reward, but note that this reward

is not revealed to the learning agent, as the user just leaves after checking some
items and does not report whether she finds the item she wants. Indeed, the
search engine does not even know when the user leaves. All the feedback that the
search engine receives is a sequence of k click indicators (w′

1, . . . ,w
′
K). Note that

w′
i may not be the same as wi as. For example, if the sequence is 0100110000, it

1 Here and throughout the paper, we use bold letters for random variables.
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may be the case that the user leaves at the sixth item with satisfaction. Another
case is that the user checks all items without finding anyone satisfactory, but
has to leave at the end. This feedback is too limited to admit any good learn-
ing algorithm. Therefore, we adopt the same assumption as in [15] that the
order π(v̄) of v̄ = (v̄(1), . . . , v̄(K)) is known to the agent, where the order π
is a permutation satisfying that v̄(π(1)) ≥ . . . ≥ v̄(π(K)). This assumption is
practically reasonable as in many cases, though we may not have a precise esti-
mation of each value v̄(k), we do know their relative comparison. (For instance,
for typical search engines it may well be the case that π is identity, namely
v̄t(1) ≥ . . . ≥ v̄t(K).) Under this assumption, it can be easily shown that the
expected reward is maximized when the items are listed in the decreasing order
of their attractiveness.

To give a more formal treatment of the award, consider the reward function
f : Πk(E) × [0, 1]E × [0, 1]K → [0, 1] defined by

f(A, v, w) = 1 −
K∏

k=1

(1 − v(k)w(ak)), (1)

where A = (a1, . . . , aK). In this notation, the reward in time step t is rt =
f(At,vt,wt). Due to the assumed independence of all {vt} and {wt}, it is easily
seen that for any fixed action A, the expected reward is f(A, v̄t, w̄t).

The performance of the learning agent is evaluated by the pseudo-regret, the
difference of cumulative reward of the optimal actions and that of the actions of
the agent:

R(n) = E

[ n∑

t=1

(
f(A∗

t , v̄t, w̄t) − f(At, v̄t, w̄t)
)]

, (2)

where
A∗

t = argmaxA∈ΠK(E)f(A, v̄t, w̄t)

is the optimal list that maximizes the expected reward in step t.
We adopt the standard assumption that in contextual bandits that all contex-

tual vectors xt,a ∈ R
d are assumed to have bounded norm ‖xt,a‖2 ≤ 1. Besides,

we assume that the attraction weight wt(a) satisfies the generalized linear model
(GLM), a flexible extension of the ordinary linear model that previous cascading
bandit studies assumed. More precisely, assume that

w̄t(a) = E[wt(a)|Ht] = μ(θ�
∗ xt,a), (3)

where {Ht}n
t=1 represents the history containing clicks and features up to time

t, and θ∗ is a fixed but unknown vector θ∗ ∈ R
d. The inverse link function μ is

chosen such that 0 ≤ μ(θ�
∗ xt,a) ≤ 1 for any a and t. This GLM admits a wider

range of nonlinear distributions such as Gaussian, binomial, Poisson, gamma
distributions, etc. In particular, when the feedback is binary or count variables,
the logistic or Poisson regression can be used. Especially in the present DCM
setting, the logistic regression fits the web page recommendation better than the
linear model [14].
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3 Algorithm and Results

3.1 Algorithm

To maximize user satisfaction, two sets of parameters, w̄t and v̄t need to be esti-
mated. We assume that the order of the expected termination weight is known to
the agent, which in practice can be easily estimated using historical click data.
The problem then reduces to the estimation of the mean and variance of the
expected attraction weight. Due to the limited feedback, it is unclear whether
the user is attracted by the item of the last click position, which is denoted by
Ct ∈ {0, 1, . . . ,K}, where Ct = 0 means no item has been clicked. The algo-
rithm therefore simply uses the feedback before Ct for updates. As introduced
before, the random variable wt(a) satisfies Eq. (3) with the inverse link function
μ assumed to be twice continuously differentiable and strictly increasing. We fur-
ther assume that μ is a kμ-Lipschitz function (namely, the first order derivative
of μ is upper bounded by kμ), and that cμ := inf{‖x‖2≤1,‖θ−θ∗‖2≤1} μ′(θ�x) > 0.
For logistic regression, μ(x) = 1/(1 + e−x) and it is easily verified that cμ =
0.1, kμ = 0.25 suffice for the requirements. Given the historical information
{(xs,a,ws(as

k)) : s ∈ [t], a ∈ E, k ∈ [Cs]}, where (xs,ws) ∈ Hs, the estimator θ̂t

can be efficiently obtained by solving the following equation:

t∑

s=1

Cs∑

k=1

(
ws(as

k) − μ(θ�xs,as
k
)
)
xs,as

k
= 0. (4)

For logistic regression, this step can be computed by Newton method. Next,
we design an upper confidence bound of the expected attraction weight. Define
Vt = λI +

∑t
s=1

∑Cs

k=1 xs,as
k
x�

s,as
k
, we have the following fact by Lemma 3 in [16].

Lemma 1. For any δ ∈ [1/n, 1), with probability at least 1−δ, for all 1 ≤ t ≤ n,
we have

‖θ̂t − θ∗‖Vt
≤ σ

cμ

√
d

2
log(1 + t/(λd)) + log(1/δ). (5)

Here the l2-norm of x based on a positive definite matrix A is defined by ‖x‖A =√
x�Ax. Building on this, we can bound |μ(θ̂�

t xt,a)−μ(θ�
∗ xt,a)| by first applying

the definition of kμ-Lipschitz of function μ and then using the Cauchy-Schwartz
inequality.

|μ(θ̂�
t xt,a) − μ(θ�

∗ xt,a)| ≤ kμ|θ̂�
t xt,a − θ�

∗ xt,a| ≤ kμ‖θ̂t − θ∗‖Vt
‖xt,a‖V−1

t

≤ kμσ

cμ

√
d

2
log(1 + t/(λd)) + log(1/δ)‖xt,a‖V−1

t

Let ρ(t) = kµσ
cµ

√
d
2 log(1 + t/(λd)) + log(1/δ), and define the upper confi-

dence bound of the expected attraction weight for item a at time t by

Ut(a) = min{μ(θ̂�
t−1xt,a) + ρ(t − 1)‖xt,a‖V−1

t−1
, 1}, (6)
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where the first term of Ut(a) is for exploitation and the second term for explo-
ration. Choosing an item with the maximum Ut(a) balances the exploration and
exploitation. Based on the above discussion, we propose an algorithm given in
box Algorithm 1. Firstly, for each item in the ground item set, an upper con-
fidence bound Ut ∈ [0, 1]E for the expected attraction weight is calculated.
Then the agent uses any ṽt that has the same order as v̄t, gets a maximizer
At = argmaxA∈ΠK(E)f(A, ṽt,Ut), and recommends the list. After user exam-
ines the list, the agent observes the last click position Ct, and wt(at

k), k ∈ [Ct]
(Here we adopt the notation that [0] = ∅). The estimator θ̂t of θ∗ is then updated
based on new feedback. Finally, the related statistics are updated for the next
time step.

Algorithm 1. Contextual DCM Bandits with Generalized Linear Payoff (GL-
CDCM)
1: Parameters : δ = 1√

n
; λ ≥ K

2: Initialization : θ̂0 = 0, ρ(0) = 1, V0 = λI
3: for t = 1 to n do
4: Obtain context xt,a for all a ∈ E
5: ∀a ∈ E, compute

Ut(a) = min{μ(θ̂�
t−1xt,a) + ρ(t − 1)‖xt,a‖V−1

t−1
,1}

6: At ← argmaxA∈ΠK(E)f(A, ṽt,Ut)

7: Play At and observe Ct, wt(a
t
k), k ∈ [Ct]

8: Solve θ̂t from∑t
s=1

∑Cs
k=1(ws(a

s
k) − μ(θ�

t xs,as
k
))xs,as

k
= 0

9: Vt ← Vt−1 +
∑Ct

k=1 xt,at
k
x�

t,at
k

10: end for

3.2 Results

The result on the upper bound on the regret for the proposed contextual DCM
bandits is presented in this section. Denote pv = max1≤t≤n maxi=1,...,K(v̄t(i) −
v̄t(i + 1)) by the maximal difference of expected termination weights between
two consecutive positions over all time. The main theorem on the regret is stated
as follows.

Theorem 1. For n ≥ 1, and the reward function f(A, v, w) = 1 − ∏K
k=1(1 −

v(k)w(ak)), the pseudo-regret R(n) of Algorithm1 has the following bound

R(n) ≤ 4dKpvkμσ

cμ

√

nK log
(

1 + n/(λd)
δ

)
log(1 + Kn/(λd)). (7)

The theorem shows a Õ(d
√

n) pseudo-regret bound, which is independent of
L, and improves the previous regret bound of [17] by a

√
log(n) term, though
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our result is under the combinatorial setting. With an additional assumption on
item generating process, the result may be further improved by a

√
d-order while

sacrificing an increase on order of log(n) by using Theorem 1 of [16].

Proof. To begin with, we bound the one-step regret at time t, denoted by Rt =
f(A∗

t ,vt,wt) − f(At,vt,wt), then

E[Rt|Ht] = f(A∗
t , v̄t, w̄t) − f(At, v̄t, w̄t)

≤
K∑

k=1

v̄t(k)w̄t(a∗
k) −

K∑

k=1

v̄t(k)w̄t(at
k) (8)

=
K∑

i=1

(v̄t(i) − v̄t(i + 1))
i∑

k=1

(w̄t(a∗
k) − w̄t(at

k))

≤ pv

K∑

i=1

i∑

k=1

(w̄t(a∗
k) − w̄t(at

k)), (9)

where v̄t(i + 1) = 0. The inequality (8) is because of the definition of A∗
t and f ,

while (9) is by definition of the pv. We can observe that the problem has reduced
to the cascading problem of bounding

∑i
k=1(w̄t(a∗

k) − w̄t(at
k), which is equal to∑i

k=1 μ(θ�
∗ xt,a∗

k
) − μ(θ�

∗ xt,at
k
). We need the following Lemma 2 to bound this

cascade difference.

Lemma 2. Let t ≥ 1 and At = (at
1, ...,a

t
i), i ∈ [K], we have:

i∑

k=1

(μ(θ�
∗ xt,a∗

k
) − μ(θ�

∗ xt,at
k
)) ≤ 2

i∑

k=1

ρ(t − 1)‖xt,at
k
‖V−1

t−1
.

Proof. Let A∗
t = (a∗

1, . . . , a
∗
K). By the definition of At, which is set of items

with the largest UCBs placed to the most terminating position, we have∑i
k=1 Ut(a∗

k) ≤ ∑i
k=1 Ut(at

k), i = [K], that is,
∑i

k=1 μ(θ̂�xt,a∗
k
) + ρ(t − 1)‖xt,a∗

k
‖V−1

t−1

≤ ∑i
k=1 μ(θ̂�xt,at

k
) + ρ(t − 1)‖xt,at

k
‖V−1

t−1
. (10)

Then
i∑

k=1

μ(θ�
∗ xt,a∗

k
) − μ(θ�

∗ xt,at
k
)

=
i∑

k=1

μ(θ�
∗ xt,a∗

k
) − μ(θ̂�xt,a∗

k
) + μ(θ̂�xt,a∗

k
) − μ(θ̂�xt,at

k
) +

μ(θ̂�xt,at
k
) − μ(θ�

∗ xt,at
k
)

≤ ρ(t − 1)
i∑

k=1

‖xt,a∗
k
‖V−1

t−1
+

(
‖xt,at

k
‖V−1

t−1
− ‖xt,a∗

k
‖V−1

t−1

)
+ ‖xt,at

k
‖V−1

t−1
(11)
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= 2ρ(t − 1)
i∑

k=1

‖xt,at
k
‖V−1

t−1
,

where Eq. (11) is obtained by applying (10). Our next step is to bound∑t
s=1

∑i
k=1

∥∥xs,as
k

∥∥2

V −1
t

by Lemma 4.4 in [11], when λ ≥ K,

Lemma 3. If λ ≥ K, then

t∑

s=1

i∑

k=1

∥∥xs,as
k

∥∥2

V −1
t

≤ 2d log(1 +
Kt

λd
).

Building upon the previous discussion, we have:

R(n) =
n∑

t=1

E[E[Rt|Ht]]

≤ pv

n∑

t=1

E

[
K∑

i=1

i∑

k=1

(w̄t(a∗
k) − w̄t(at

k))

]
(12)

≤ pv

n∑

t=1

E

[
K∑

i=1

i∑

k=1

2ρ(t − 1)
∥∥∥xt,at

k

∥∥∥
V−1

t

]

≤ 2ρ(n)pv

n∑

t=1

E

[
K∑

i=1

i∑

k=1

∥∥∥xt,at
k

∥∥∥
V−1

t

]
. (13)

where Eq. (12) is due to the tower rule and the inequality (13) holds since ρ(t)
increases with t. Applying the Cauchy-Schwarz inequality on the current result,
we can derive that:

R(n) ≤ 2ρ(n)pvE

[√(
n

∑K
i=1

∑i
k=1 12

) (∑n
t=1

∑K
i=1

∑i
k=1

∥∥∥xt,at
k

∥∥∥
2

V−1
t

)]
.

Substituting ρ(n) back and applying Lemma3 back yields our claimed result.

3.3 Computationally Efficient Updates

Though our proposed GL-CDCM enjoys good theoretical properties, the com-
putational cost may be high in some applications. The inverse of a d × d matrix
is computed at each time step while the MLE is calculated using samples up to
the current time step, which is increased linearly over time. We provide an
iterative optimization solution for GL-CDCM for the logistic regression where
μ(x) = 1/(1 + exp(−x)), denoted by GL-CDCM (SGD).

Instead of solving Eq. (4), we use the stochastic logistic gradient at time t

gt =
Ct∑

k=1

(
μ(θ̂�

t xt,at
k
) − wt(at

k)
)

xt,at
k
, (14)
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and we can update on θ̂t by

θ̂t = θ̂t−1 − ηgt, (15)

where η is the learning rate.
Let Ct ∈ R

Ct×d be the matrix whose rows are the feature vectors of the
observed items at time t. Then Vt = Vt−1 + C�

t Ct. Let Gt = I + CtV−1
t C�

t ,
based on the Woodbury matrix identity [18], V−1

t can be calculated efficiently
using

V−1
t = V−1

t−1 − V−1
t−1C

�
t G−1

t CtV−1
t−1, (16)

in time O(Kd2).
Therefore, the burden of computing the inverse of a d×d matrix of is reduced

to computing the inverse of a square matrix of dimension at most K, which is
always smaller than d and can be much smaller in practice.

4 Experiments

4.1 Synthetic Data

In this section, we compare our algorithms (GL-CDCM) with the dcmKL-UCB
algorithm proposed in [15] (denoted as KL-DCM in our comparisons) and the
logistic regression (LR) on the synthetic data. Here LR means for each time
step t, it conducts logistic regression on all historical data and uses the obtained
parameters to choose the current items, which corresponds to selecting arms
by values of μ(θ̂�

t−1xt,a), instead of Ut(a) (which has an additional exploration
term) in Line 5-6 for our Algorithm1.

We simulate a scenario of web search as follows. First, we randomly select
the model parameter θ∗. Then at each time step t, randomly select contextual
vectors xt,a for each item a and expected termination weights v̄t. Then according
to Eq. (3), the expected attraction weight w̄t is computed by the given θ∗. Both
attraction weights wt and termination weights vt are then drawn from Bernoulli
distribution with the respective mean. The sigmoid function μ(x) = 1/(1 +
exp(−x)) serves as the inverse link function. The evaluation criterion is the
cumulative pseudo-regret defined in Eq. (2).

The curves of the cumulative regrets for these algorithms, i.e. GL-CDCM,
GL-CDCM (SGD), LR, LR (SGD) and KL-DCM, under n = 104 are shown
in Fig. 1(a). To further demonstrate the estimation ability of GL-CDCM and

LR, the cosine distances between θ̂t and θ∗, i.e., 1 − θ̂�
t θ∗

‖θ̂t‖2‖θ∗‖2
, are calculated

and shown in Fig. 1(b), where the value 0 indicates that the learning agent
correctly estimates θ∗. We do not show KL-DCM in Fig. 1(b) since it does not
estimate the parameter θ∗. As depicted in Fig. 1(a), KL-DCM has the largest
regret since it ignores the contextual information. For both GL-CDCM and LR,
the SGD version generally has higher regret, which is a price to pay for efficiency.
Compared to the LR algorithm, the bandit algorithm balances the exploitation
and exploration and therefore has a better performance. Furthermore, the error
curve shows that the GL-CDCM converges more quickly than LR.
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Fig. 1. Experimental results of different recommendation algorithms on synthetic data.

4.2 Web Page Recommendation

In this section, we test our algorithms on the Yandex Personalized Web Search
dataset [19], which contains 35 million search sessions. Let M be the number of
users and L be the number of web pages. We use top 3 most frequent queries
for evaluation. Each query corresponds to one DCM which is estimated using
PyClick library [8]. In all the algorithms, we assume that the higher positions
have higher expected termination weight. In order to derive the feature vectors
for web pages, we first construct a sparse matrix A ∈ Z

M×L where A(i, j) ∈ Z

denotes the number that user i clicked on web page j. Then the feature vector
is obtained through the SVD decomposition of A, i.e. A = USV �. We use
V = [v1; . . . ; vL] ∈ R

L×d as the contextual information for the L web pages.
We set d = 200, K = 10, and L = 100. The cumulative pseudo-regret over 5000
rounds for our proposed GL-CDCM, GL-CDCM (SGD), LR, LR (SGD) and KL-
DCM are shown in Fig. 2. To incorporate the user features, we concatenate user
and item features as the contextual information. Let U = [u1; . . . ;uM ] ∈ R

M×d,
then xi,j = [ui, vj ] ∈ R

2d for user i and web page j. The features derived from
outer product where xi,j = ui ⊗ vj are also tested, but the performance is not
as good as xi,j = [ui, vj ]. At each time step, a user is randomly selected. Follow
the previous setting of the parameters, the results are displayed in Fig. 2(b).

For the setting that only the item features are used, after 5000 rounds, the
proposed GL-CDCM obtains a regret of 32.28, which is much lower than 59.08
for LR and 99.09 for KL-DCM. Furthermore, the curve for KL-CDCM forms
a stair-step pattern since the ground item set is changing and the algorithm
needs to learn from the cold start from time to time. In contrast, GL-CDCM
and LR make use of the contextual information, and therefore achieve a better
estimation. Compared with LR, which is always exploiting, GL-CDCM explores
more and achieves a lower cumulative pseudo-regret. The SGD versions generally
have a higher regret for both GL-CDCM and LR, 81.71 for GL-CDCM (SGD)
and 114.96 for LR (SGD), but the time complexity reduces significantly. In
addition, the proposed GL-CDCM (SGD) still outperforms LR (SGD) because
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Fig. 2. Experimental results of different recommendation algorithms on Yandex
dataset.

of exploration. A similar pattern is also observed in the setting of involving
both user and item features, where more useful information are provided and
the regrets of GL-CDCM and LR decrease to 28.51 and 46.00, respectively. The
experimental results are consistent with our previous discussions and show that
our proposed algorithm has better performance even for practical problems,
where the assumptions might be violated.

5 Conclusion

In this paper, we present a bandit algorithm (and SGD variant) for web page
recommendation that automatically balances the exploration and exploitation.
We formulate the problem of DCM bandits with contextual information. The
dependent click model (DCM) covers the scenario of multiple clicks and is a
popular click model in web search. The contextual information is incorporated
in our work to better estimate the expected attraction weight. Under a reason-
able assumption on knowing the order of the expected termination weight, we
prove a regret bound of Õ(d

√
n) for the algorithm. A computationally efficient

version is also given by removing the expensive step of computing the MLE on a
linearly increasing sample set, and reducing the cost of inverting a d× d matrix.
Experimental results confirm the value of exploring, utilizing the contextual
information and adopting a generalized linear model.
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Abstract. Correlation clustering is an approach for clustering a set of
objects from given pairwise information. In this approach, the given pair-
wise information is usually represented by an undirected graph with
nodes corresponding to the objects, where each edge in the graph is
assigned a nonnegative weight, and either the positive or negative label.
Then, a clustering is obtained by solving an optimization problem of
finding a partition of the node set that minimizes the disagreement or
maximizes the agreement with the pairwise information. In this paper,
we extend correlation clustering with disagreement minimization to deal
with higher-order relationships represented by hypergraphs. We give two
pivoting algorithms based on a linear programming relaxation of the
problem. One achieves an O(k log n)-approximation, where n is the num-
ber of nodes and k is the maximum size of hyperedges with the nega-
tive labels. This algorithm can be applied to any hyperedges with arbi-
trary weights. The other is an O(r)-approximation for complete r-partite
hypergraphs with uniform weights. This type of hypergraphs arise from
the coclustering setting of correlation clustering.

1 Introduction

Problem Formulation. In this paper, we consider approximation algorithms for
the hypergraph correlation clustering. In the hypergraph correlation clustering, a
problem instance consists of an undirected hypergraph G = (V,E) with the node
set V and the hyperedge set E, and the label and the weight of each hyperedge
in E. The label on a hyperedge is either positive or negative. We call a hyperedge
positive if it is assigned the positive label, and negative otherwise. The sets of
positive and negative hyperedges are denoted by E+ and E−, respectively (i.e.,
E is the disjoint union of E+ and E−). The weight of each hyperedge e is a
nonnegative real number, denoted by w(e).

The hypergraph correlation clustering is an optimization problem of finding
a clustering of the given hypergraph G = (V,E). A clustering C of G is defined
as a partition of V into nonempty subsets. Each node set in C is called a cluster.
A hyperedge e in G is defined to disagree with a clustering C if either of the
following statements is true:

– e is a positive hyperedge, and some two end nodes of it belong to different
clusters of C;

c© Springer International Publishing AG, part of Springer Nature 2018
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– e is a negative hyperedge, and all of its end nodes belong to the same cluster
of C.

Then, the objective of the problem is to find a clustering minimizing the total
weight of hyperedges that disagree with the clustering.

In a part of this paper, we focus on a special type of hypergraphs called com-
plete r-partite hypergraphs. A hypergraph is called r-partite if its node set can be
divided into disjoint r subsets V1, . . . , Vr so that each hyperedge includes exactly
one node from Vj for each j = 1, . . . , r. An r-partite hypergraph is complete if
each tuple {v1, . . . , vr} ∈ V1 × · · · × Vr is included as a hyperedge. We refer to
the set of instances with complete r-partite hypergraphs and uniform hyperedge
weights as coclustering setting ; the reason for this name will be explained below.

Motivation. Correlation clustering is originally an approach for computing a
clustering from given pairwise information. It was introduced by Bansal et al. [3].
They proposed representing the pairwise information as a graph with nodes
corresponding to the objects to be clustered. As in the hypergraph correlation
clustering, each edge in the graph is associated with a nonnegative weight and
the positive or negative label. A positive edge indicates that its two end nodes
should belong to the same cluster, while a negative edge indicates that the end
nodes should belong to different clusters. Informations represented by the edge
labels are possibly inconsistent due to existence of noise or observation errors.
The weight of each edge represents the reliability of the information represented
by it. The purpose of correlation clustering is to find a clustering matching the
pairwise information to the greatest degree possible. This purpose presents two
optimization problems defined on the graph naturally; one seeks a clustering that
minimizes the disagreement, and the other seeks a clustering that maximizes the
agreement. Since these problems are NP-hard, several approximation algorithms
have been proposed for them, and have been successfully applied to numerous
applications in machine learning and computational biology [4,11,15,23]. We
will review these previous studies briefly in Sect. 2.

In several applications, pairwise information does not give enough informa-
tion for the extraction of precise clusterings, and hence it is motivated to study
clustering from higher-order information, which is modeled as the hypergraph
correlation clustering. Even in the hypergraph correlation clustering, we can
consider both the disagreement minimization and the agreement maximization.
However, since this paper discusses only the disagreement minimization, we gave
the disagreement minimization formulation above. A straightforward idea for
the hypergraph correlation clustering is to reduce the problem to the graph cor-
relation clustering by expanding each hyperedge to some graphs like cliques.
However, this idea does not give efficient algorithms as we will see in Sect. 3.2.

Study on the hypergraph correlation clustering was initiated by
Kim et al. [20] for an application to the image segmentation. Subsequently
Kappes et al. [19] and Kim et al. [21] also considered the same problem. All
of these studies are similar in that:
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– they proposed linear programming (LP) relaxations for the hypergraph cor-
relation clustering (with the disagreement minimization objective), and pre-
sented algorithms using LP solvers or tailored cutting-plane algorithms;

– when the solution output by the algorithms is not integer, they round it by
a simple procedure of rounding up an arbitrary non-zero variable into an
integer;

– they empirically showed that introducing higher-order relationships into cor-
relation clustering improves the quality of image segmentation.

These observations indicate that efficient algorithms for the hypergraph correla-
tion are useful in practice. On the other hand, to the best of our knowledge, no
approximation algorithm with a provable performance guarantee is known for
the problem. Motivated by this fact, our aim is to present performance guarantee
of approximation algorithms for the hypergraph correlation clustering.

In addition to the general case of the hypergraph correlation clustering, we
will study the coclustering setting of the problem. Coclustering denotes the task
of clustering the objects which are categorized into two or more classes, and
relationships of objects from different classes are considered. For example, this
setting arises when we find a clustering of documents and words from word
occurrences in documents. It is also known to be useful for clustering of gene
expression data. To distinguish clustering from pairwise relationships and higher-
order relationships, in this paper, we call the former by biclustering, and the
latter by coclustering.

In correlation clustering, the biclustering setting implies that the given infor-
mation is represented by bipartite graphs. This setting has been studied exten-
sively [1,2,8]. These previous studies show that the disagreement minimiza-
tion problem with complete bipartite graphs and uniform edge weights admits
constant-factor approximation algorithms. In contrast, the coclustering setting
has not been studied in the context of correlation clustering although it seems
useful; for example, consider clustering users, search key words, and goods from
purchase records in an E-commerce website; if a user i purchased a good j after
searching with a key word s, then the category of i, j, and s are likely same, and
hence solving the hypergraph correlation clustering defined from these order-3
relationships gives a more precise clustering rather than computing from pairwise
relationships. We note that the hypergraph defined in this situation is 3-partite.

Contributions. We present two approximation algorithms with approximation
guarantees for the hypergraph correlation clustering. One of the algorithms is for
general hypergraphs. It has an O(k log n)-approximation guarantee (Theorem1),
where n is the number of nodes and k is the maximum size of hyperedges assigned
the negative label. In other words, for any instance of the hypergraph correlation
clustering, our algorithm outputs a clustering the objective function value of
which is within a factor of O(k log n) from the optimal. The other algorithm
is for the coclustering setting (the given hypergraph is complete r-partite and
hyperedge weights are uniform). It achieves an O(r)-approximation guarantee
(Theorem 2). Note that this approximation factor is a constant when r is a
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constant, and hence it extends the constant-approximation guarantees of [1,2,8]
for the disagreement minimization problem with complete bipartite graphs and
uniform edge weights.

Our algorithms are so-called pivoting algorithms. The pivoting algorithms are
those computing a clustering by repeating the following operations: (i) choose a
pivoting node v; (ii) let the cluster including v be the set of nodes near to v in
a metric; (iii) remove the nodes in the cluster from the graph (or hypergraph).
Most of the known approximation algorithms for correlation clustering are this
type of algorithms. Selection of the pivoting node v in Step (i) and the precise
definition of the cluster including v in Step (ii) are tailored for each variation.

In our algorithms, Steps (i) and (ii) are based on an LP relaxation of the
problem. Our LP relaxation has decision variables that represent metrics on the
nodes of the given hypergraph. The metrics are then optimized such that two
nodes are located closer to each other if they share more hyperedges assigned the
positive label, and they are located further from each other if they share more
hyperedges assigned the negative label. This LP is a straightforward extension
of the one considered in [6,8,12] for the disagreement minimization problem
with graphs. Moreover, it is almost same as or simpler than those used in the
previous studies [19–21] on the hypergraph correlation clustering. Indeed, our
algorithm works even with the LP relaxations considered in [19–21], and hence
it can replace the rounding algorithms therein.

In our O(k log n)-approximation algorithm, we use the region-growing idea
to define the cluster including a chosen pivoting node. Indeed, our algorithm
generalizes the O(log n)-approximation algorithms in [6,12] for graphs. On the
other hand, our O(r)-approximation algorithm for the coclustering setting is
based on a new idea. When r = 2, the coclustering setting is equivalent to the
disagreement minimization on complete bipartite graphs with uniform weights.
Although several constant-factor approximation algorithms are known for this
case [1,2,8], it seems difficult to extend them to r ≥ 3 because they crucially
relies on a structure of graphs representing inconsistent informations. Hence we
design a new algorithm from scratch. It achieved a slightly worse approximation
factor for r = 2 compared with the previous studies on the complete bipartite
graphs.

Organization. The rest of this paper is organized as follows. Section 2 surveys
related previous studies. Section 3 introduces notations, the LP relaxation used
in our algorithms, and an outline of our algorithms. Section 3 also explains that
reducing the hypergraph correlation problem to the graph correlation clustering
is not efficient. Section 4 presents our O(k log n)-approximation algorithm, and
Sect. 5 gives our O(r)-approximation algorithm for the correlation clustering
setting. Section 6 concludes the paper.

2 Related Work

Correlation Clustering. Both of the agreement maximization and the disagree-
ment minimization formulations of correlation clustering were introduced by
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Bansal et al. [3]. Charikar et al. [6] gave a factor 0.7664 approximation algo-
rithm for the agreement maximization. For the disagreement minimization,
Charikar et al. [6] and Demaine et al. [12] gave factor O(log n) approximations.
Demaine et al. also proved that the disagreement minimization is equivalent
to the minimum multicut problem. This equivalence indicates that obtaining
a constant-factor approximation for the disagreement minimization is unique-
games hard because of the hardness result on the minimum multicut problem
given in [7].

Several special cases of the disagreement minimization also have been stud-
ied well. For example, Amit [2], Ailon et al. [1], and Chawla et al. [8] considered
the case where the graph is complete bipartite and weights are uniform. They
gave constant-factor approximation algorithms for this case, and the current best
approximate factor among them is 3 due to Chawla et al. [8]. Chawla et al. also
considered complete graphs, and presented a 2.06-approximation algorithm for
uniform weights, and 1.5-approximation algorithm for weights satisfying the tri-
angle inequality.

Note that the above studies on correlation clustering all consider graphs.
To the best of our knowledge, the correlation clustering over hypergraphs have
been studied only in [19–21], and no algorithm with a performance guarantee is
known.

Coclustering. Biclustering of data represented by a matrix has been studied
since the 1970s [16]. There has been a huge number of algorithms proposed so
far, and we name a few of them [14,26,27]. These algorithms have been suc-
cessfully applied to numerous unsupervised learning tasks [9,29]. In particular,
clustering on gene expression data [10,22] and document classification [5,13,18]
are studied actively. Compared with biclustering, coclustering of higher-order
relational data has not been extensively studied so far. Zhao and Zaki [28] pro-
posed a graph-based algorithm for coclustering. Hatano et al. [17] proposed a
coclustering algorithm based on sampling hypergraph multicuts. Other previous
studies [24,25] depend on an algebraic approach known as tensor rank decom-
position.

3 Preliminaries

3.1 Notations

Let G = (V,E) be a hypergraph with the node set V and the hyperedge set E.
Throughout this paper, we let n denote the cardinality of V (i.e., n = |V |). The
cardinality of a hyperedge e is called the rank of e, and the rank of a hypergraph
G is defined as the maximum rank of hyperedges in G. Note that a hyperedge
of rank 2 and a hypergraph of rank 2 are an edge and a graph, respectively. For
U ⊆ V and H ⊆ E, let δ(U ;H) denote the set of hyperedges in H that include
nodes both in U and V \ U , and H[U ] denote the set of hyperedges in H that
include no nodes from V \ U . G[U ] denotes the sub-hypergraph of G induced by
U (i.e., hypergraph with the node set U and the hyperedge set E[U ]).
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3.2 Reduction to the Graph Correlation Clustering

A natural approach for solving the hypergraph correlation clustering is to apply
an existing algorithm for the graph correlation clustering to the graph obtained
by transforming the given hypergraph. However, the transformation of a hyper-
graph into a graph may change the structure of the problem drastically. To see
this, suppose that a positive hyperedge of rank k′ is replaced by a clique that
consists of

(
k′

2

)
positive edges. In the original hypergraph, the weight of a positive

hyperedge is counted in the disagreement only once if the nodes in the hyperedge
belong to more than one cluster. In contrast, in the corresponding graph, the
contribution of the edges in the clique to the measured disagreement depends on
how the clique is divided. For example, if all but one of the nodes in the clique
belong to the same cluster, the weights of k′ − 1 edges are counted, whereas if
the nodes are all divided into different clusters, the weights of

(
k′

2

)
edges are

counted. Thus, the contributions are very different when the clique is divided
into two clusters and when it is divided into k′ clusters. Because of this fact,
applying the best-known graph correlation clustering algorithm to the obtained
graph only gives an O(k′ log n)-approximation even if all negative hyperedges in
the given hypergraph are order-2, while our algorithm given in Sect. 4 attains
an O(log n)-approximation in this case. It seems hard to avoid this phenomenon
even if we consider other ways of transformation. When the given hypergraph
includes a negative hyperedge of order larger than 3, it seems difficult to bound
the approximation factor given by the above approach; even if a clustering parti-
tions a negative hyperedge into at least two clusters (and hence it incurs no cost
from the hyperedge), an edge generated by transforming the negative hyperedge
belongs to the same cluster in the clustering (and it incurs a positive cost).

3.3 Overview of Our Algorithms

In this subsection, we introduce our algorithms for the hypergraph correlation
clustering. Our algorithms are based on an LP obtained by relaxing an inte-
ger programming (IP) formulation of the problem. We first introduce this IP
formulation.

This formulation optimizes the following variables, which take numbers in
{0, 1}:

– A variable xuv for each pair of nodes u, v ∈ V ; it is 0 if u and v belong to the
same cluster, and it is 1 otherwise;

– A variable xe for each hyperedge e; it is 0 if all nodes in e are included in a
cluster, and it is 1 otherwise.

If a positive hyperedge e ∈ E+ is included in a cluster, this implies that
any two nodes u and v included in e belong to the same cluster. The following
constraint formulates this condition:

xuv ≤ xe, ∀e ∈ E+,∀{u, v} ⊆ e. (1)
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If a negative hyperedge e = {v1, . . . , vr} ∈ E− intersects more than one
cluster, then a node v1 and some of the other nodes v2, . . . , vr belong to different
clusters. This is represented by

xe ≤
r−1∑

i=1

xvivi+1 , ∀e = {v1, . . . , vr} ∈ E−. (2)

Here, the ordering of nodes included in e is fixed arbitrarily.
If two nodes u and v belong to the same cluster, and if v and z also do,

then all of these three nodes belong to the same cluster. This means that if
xuv = xvz = 0, then xuz = 0 must hold. Thus, the variables satisfy the following
triangle inequalities:

xuz ≤ xuv + xvz, ∀u, v, z ∈ V. (3)

Our IP formulation optimizes over these constraints. The disagreement objective
function is

∑
e∈E+

w(e)xe +
∑

e∈E− w(e)(1 − xe). The LP relaxation is obtained
from the IP formulation by relaxing the range of each variable to [0, 1]. Specifi-
cally, it is described as follows:

minimize
∑

e∈E+

w(e)xe +
∑

e∈E−

w(e)(1 − xe)

subject to (1), (2), (3),
xuv ∈ [0, 1], ∀u, v ∈ V,
xe ∈ [0, 1], ∀e ∈ E.

(4)

For convenience, we let xvv = 0 for all v ∈ V in the rest of this paper although
these variables do not appear in LP (4).

Our algorithms first compute an optimal solution x for the LP relaxation (4).
Then they construct a clustering from x by repeating the three steps described
in Sect. 1. Let U denote the set of nodes that belong to no cluster yet at the
beginning of a certain iteration. In this iteration, the pivoting node v is chosen
from U . The cluster containing v is defined as Bx,v,U (ξ) := {u ∈ U : xuv < ξ}
from some radius ξ ∈ [0, 1]. Selection of v and the definition of ξ are customized
in two variations of our algorithms. Roughly speaking, we optimize them so
that the ratio of weights of disagreed hyperedges incident to Bx,v,U (ξ) to the
fractional weights of hyperedges incident to Bx,v,U (ξ) is minimized. Refer to
Sects. 4 and 5 for the details. The algorithms are described in Algorithm 1.

4 O(k logn)-Approximation for General Hypergraphs

In this section, we discuss general hypergraphs with arbitrary hyperedge weights.
First, let us introduce several notations. We let x and L refer to an optimal
solution for (4) and its objective value. For a hyperedge e and a node v, let d(e, v)
and d′(e, v) denote minu∈e xvu and maxu∈e xvu, respectively. For ξ ∈ [0, 1], we
define Fv,x,E(ξ) and Cv,x,E(ξ) by
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Algorithm 1. LP-based pivoting algorithm for hypergraph correlation clustering

Input: a hypergraph G = (V, E) with E = E+ ∪ E− and a nonnegative weight w(e)
for each e ∈ E

Output: a clustering C of V ,
1: C ←− ∅, U ←− V
2: compute an optimal solution x of (4)
3: while U �= ∅ do
4: compute v ∈ U and ξ ∈ [1, 0] (details are described in Sects. 4 and 5)
5: C ←− C ∪ {Bx,v,U (ξ)}, U ←− U \ Bx,v,U (ξ)
6: remove all hyperedges intersecting Bx,v,U (ξ) from E
7: end while
8: output C

Fv,x,E(ξ) :=
L

n
+

∑

e∈E+[Bx,v,U (ξ)]

w(e)xe +
∑

e′∈δ(Bx,v,U (ξ);E+)

w(e′)xe′
ξ − d(e′, v)

d′(e′, v) − d(e′, v)

and
Cv,x,E(ξ) :=

∑

e∈δ(Bx,v,U (ξ);E+)

w(e),

where Cv,x,E(ξ) is defined to be +∞ if δ(Bx,v,U (ξ);E+) = ∅. We note that if e′ ∈
δ(Bx,v,U (ξ);E+), then d(e′, v) ≤ ξ ≤ d′(e′, v) holds, and hence the third term
in Fv,x,E(ξ) is at most

∑
e′∈δ(Bv,x,U (ξ);E) w(e′)xe′ . Below, we omit the subscripts

of Bx,v,U (ξ), Fv,x,E(ξ), and Cv,x,E(ξ) when they are clear from the context.
Roughly speaking, the second and the third terms of F (ξ) represent how much
the objective value of x in (4) is reduced when the plus hyperedges incident
to B(ξ) are removed from the hypergraph, and C(ξ) represents how much the
disagreement of the positive hyperedges is increased when B(ξ) is added as a
cluster to a clustering.

Now, we are ready to describe details of our algorithm for general hyper-
graphs. In this variation, the pivoting node v is chosen arbitrarily from U . The
radius ξ defining the cluster B(ξ) including v is chosen from [0, 1/(2k)] so that
C(ξ)/F (ξ) is minimized. Although this is a continuous optimization problem, it
can be done in O(n) evaluations of the objective because of the following rea-
son. Call the nodes in U by u1, . . . , u|U | so that xvu1 ≤ xvu2 · · · ≤ xvu|U| holds.
Let i ∈ {1, . . . , |U | − 1}. For any ξ′, ξ′′ ∈ (xvui

, xvui+1 ] with ξ′ ≤ ξ′′, we have
B(ξ′) = B(ξ′′), from which F (ξ′) ≤ F (ξ′′) and C(ξ′) = C(ξ′′) follow. These two
relationships indicate C(ξ′)/F (ξ′) ≥ C(ξ′′)/F (ξ′′). Therefore, the radius ξ min-
imizing C(ξ)/F (ξ) can be found from {0, 1/(2k)} ∪ {xvu : u ∈ U, xvu ≤ 1/(2k)},
the size of which is O(|U |) = O(n).

The approximation performance of our algorithm depends on C(ξ)/F (ξ);
if C(ξ)/F (ξ) ≤ α for any iterations, it achieves 2max{k, α}-approximation.
Lemma 1 guarantees that there always exists a radius ξ ∈ [0, 1/(2k)] such that
C(ξ)/F (ξ) ≤ 2k log(n + 1).

Lemma 1. For any v ∈ U , there exists ξ ∈ [0, 1/(2k)] such that Cv,x,E(ξ) ≤
2k log(n + 1)Fv,x,E(ξ).
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Theorem 1. If the radius ξ is defined as in Lemma 1, the approximation factor
of Algorithm1 is 4k log(n + 1).

As mentioned in Sect. 2, for the disagreement minimization on graphs, the
best known approximation factor is O(log n) [6,12], and the approximation factor
of our algorithm matches it up to a constant when the problem is restricted to
graphs. It is an obvious open problem to improve this factor, even for graphs. It
is unique-games hard to obtain a constant-factor approximation algorithm for
graphs [12]. Since hypergraphs include graphs, the same hardness result applied
to the hypergraph correlation clustering.

5 O(r)-Approximation for the Coclustering Setting

In this section, we consider the coclustering setting. In other words, the node set
of the input hypergraph is the disjoint union of V1, . . . , Vr, the set of hyperedges
coincides with V1 × V2 × · · · × Vr, and each hyperedge is associated with a unit
weight. The task is to find a partition C of

⋃k
i=1 Vi that minimizes |{e ∈ E+ : e ∈

δ(C)}| + |{e ∈ E− : e ∈ E(C)}|.
In our pivoting algorithm for this case, the pivoting node v is chosen from

U ∩ V1 in a certain way whenever U ∩ V1 �= ∅, and the radius ξ is set to
1/

√
2(r − 1)(2r − 1). When U ∩ V1 = ∅, the clustering of the remaining nodes

in U makes no effect on the objective value of the solution because no hyper-
edge remains in the hypergraph. Hence the algorithm stops the iterations and
terminates after adding an arbitrary clustering of the remaining nodes to the
solution.

To describe the choice of the pivoting node, let us introduce notations. Let
1 be the indicator function for events; if an even E happens, then 1(E) = 1, and
1(E) = 0 otherwise. In what follows, we rewrite the radius ξ as 1/θ for notational
convenience, and assume that θ is a fixed parameter; later, we show that θ =√

2(r − 1)(2r − 1) minimizes the approximation factor. In each iteration, for a
node v ∈ U and a remaining hyperedge e, we define two costs Lv(e) and Av(e)
as follows:

Lv(e) =

{
xe · 1(B(v, 1/θ) ∩ e �= ∅) if e ∈ E+,

(1 − xe) · 1(B(v, 1/θ) ∩ e �= ∅) if e ∈ E−,

Av(e)=

{
1(B(v, 1/θ) ∩ e �=∅ �=e \ B(v, 1/θ)) if e ∈ E+,

1(e ⊆ B(v, 1/θ)) if e ∈ E−.

If v is chosen as a pivoting node in this iteration, the cost of the LP solution
is decreased by

∑
e∈E+∪E− Lv(e), and the cost of the solution is increased by∑

e∈E+∪E− Av(e). In our algorithm, in each iteration, we choose a node v ∈ V1∩U

minimizing
∑

e∈E+∪E− Av(e)/
∑

e∈E+∪E− Lv(e) as the pivoting node.
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If the pivoting node v satisfies
∑

e∈E+∪E− Av(e)/
∑

e∈E+∪E− Lv(e) ≤ α for
some α ≥ 1 in each iteration, then it can be proven that the algorithm achieves
α-approximation. Below, we prove that the condition is satisfied with

α =
2r − 2

√
2(r − 1)(2r − 1) − 2r + 2

− 2r − 1
√

2(r − 1)(2r − 1) − 2r + 1

= 2
√

2(r − 1)(2r − 1) + 4r − 3 (5)

when θ =
√

2(r − 1)(2r − 1). Indeed, we prove that
∑

v∈V1∩U

∑

e∈E+∪E−

Av(e) ≤ α
∑

v∈V1∩U

∑

e∈E+∪E−

Lv(e) (6)

holds with α satisfying (5). Notice that this implies that the node chosen as the
pivoting node satisfies the required condition.

In the rest of this section, we prove (6) under an assumption that U = V ; if
U ⊂ V , (6) is proven by applying the following discussion to the sub-hypergraph
induced by U . First, we bound

∑
v∈V1

∑
e∈E− Av(e) in the following lemma.

Lemma 2.
∑

v∈V1

∑
e∈E− Av(e) ≤ θ

θ−2r+2

∑
v∈V1

∑
e∈E− Lv(e).

Next, we bound
∑

v∈V1

∑
e∈E+

Av(e). We introduce a parameter β that
satisfies 0 ≤ β ≤ 1/θ. Let us remark that 1 − 1/θ − (r − 1)β ≥ 0 holds
because 1/θ ≤ (1 − 1/θ)/(r − 1) follows from θ ≥ 2r − 2 ≥ r. We first bound∑

v∈V1

∑
e∈E+:x(e)≥β Av(e).

Lemma 3.
∑

v∈V1

∑
e∈E+:x(e)≥β Av(e) ≤ 1

β

∑
v∈V1

∑
e∈E+

Lv(e).

Lemma 4.
∑

v∈V1

∑
e∈E+:x(e)<β Av(e) ≤ θ

1−θβ

∑
v∈V1

∑
e∈E+∪E− Lv(e).

From Lemmas 2, 3, and 4, we obtain the following inequality:

∑

v∈V1

∑

e∈E+∪E−

Av(e) ≤
(

max
{

θ

θ − 2r + 2
,
1
β

}
+

θ

1 − θβ

) ∑

v∈V1

∑

e∈E+∪E−

Lv(e).

Hence, (6) is satisfied when α is the minimum value of max
{
θ/(θ−2r+2), 1/β

}
+

θ/(1 − θβ) subject to θ ≥ 2r − 2 and 0 ≤ β ≤ 1/θ. This minimum value is equal
to the right-hand side of (5), which is attained by θ =

√
2(r − 1)(2r − 1) and

β = 1 − √
2(r − 1)/(2r − 1).

Theorem 2. If ξ = 1/
√

2(r − 1)(2r − 1) and the pivoting node v is the one in
U ∩ V1 minimizing

∑
e∈E+∪E− Av(e)/

∑
e∈E+∪E− Lv(e), then the approximation

factor of Algorithm1 is 2
√

2(r − 1)(2r − 1) + 4r − 3 for the coclustering setting.
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6 Conclusion

We considered the hypergraph correlation clustering, and gave two approxima-
tion guarantees for the LP-based pivoting algorithms. One is an O(k log n)-
approximation guarantee, and the other is an O(r)-approximation guarantee.
In practice, the former guarantee is more useful because it deals with arbitrary
weights while the latter is restricted to coclustering setting. Nevertheless, the
latter guarantee is interesting in relationship with previous studies on the dis-
agreement minimization with bipartite graphs [1,2,8].
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Abstract. We consider a natural generalization of the knapsack prob-
lem and the multiple knapsack problem, which has two phases of packing
decisions. In this problem, we have a set of items, several small knapsacks
called boxes, and a large knapsack called container. Each item has a size
and profit, each box has a size and the container has a capacity. The first
phase is to select some items to pack into the boxes, and the second phase
is to select the boxes (each includes some packed items) to pack into the
container. The total profit of the problem is determined by the items that
are selected and packed into the container within some packed box, and
the objective is to maximize the total profit. This problem is motivated
by various practical applications, e.g., in logistics. It is a generalization
of the multiple knapsack problem, and hence is strongly NP-hard. We
mainly propose three approximation algorithms for it. Particularly, the
first one is a 1

4
-approximation algorithm based on its linear program-

ming relaxation; the second one is based on applying the algorithms for
the multiple knapsack problem and the knapsack problem, and has an
approximation ratio 1

3
− ε for any small enough ε > 0. We finally provide

a polynomial time approximation scheme for this problem.

Keywords: Knapsack · Multiple knapsack
Approximation algorithms · Polynomial time approximation scheme

1 Introduction

The knapsack problem and its generalizations are fundamental and well-studied
problems in combinatorial optimization. Given a knapsack with capacity W and
a set of n items, each item j has a profit pj and a size wj , the classic 0–1 knapsack
problem (KP for short) is to find a subset of items that can be packed into the
knapsack and has a maximum total profit. The multiple knapsack problem (MKP
for short) is a generalization of KP, in which there are m knapsacks, and each
knapsack has a size si. Each item can be packed into at most one knapsack, and
the objective is also to pack the items into the knapsacks with maximum total
profit. In this research, we consider a variant of KP and MKP which is naturally
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motivated in some practical fields such as logistics and storage. In our problem,
there are m small knapsacks and a large knapsack, as well as a set of n items.
Each item has also a profit and a size, and can only be packed into the small
knapsack. Each small knapsack has a size, and can be packed into the large
knapsack which has a certain capacity. Throughout this paper, we will call a
small knapsack “box” and a large knapsack “container” for clarity. The decision
maker is facing a two-phase packing decisions, the first phase is to pack the items
into the boxes, and the second phase is to pack the boxes (each includes some
packed items) into the container, such that the size of each packed box and the
capacity of the container are not violated. The total profit is gained from the
items that are successfully packed into some box and then the container, and
the goal is to find the packing of items and boxes with maximum total profit.
We call this problem a two-phase knapsack problem (2-PKP for short).

The 2-PKP problem naturally arises in various practical areas of knapsack
problem and multiple knapsack problem. Consider such a scenario in logistic,
the goods to be transported are usually packed into some boxes or cartons, and
then these boxes are packed into a large container, such as a truck or a cargo
ship, and the total profit depends on how many (or how much) goods that are
packed. In many applications, it is common that the goods are indivisible and
can be packed into at most one box. Therefore, each different box probably
has distinct unused space while packing items, depending on its own size. The
unused spaces and the selection of boxes determine which items can be selected
and packed, and thus has a serious impact on the total profit (we will see some
concrete examples in the following sections). Similar instances can be found in
the fields such as storage management, transportation and production, where
knapsack problem and multiple knapsack problem have a lot of applications [1].

The 2-PKP problem can be viewed as a generalization of KP and MKP,
since it reduces to MKP when the capacity of the container is at least the total
size of all the boxes, and further reduces to KP when there is only one box.
In addition, the 2-PKP problem can be viewed as a combination of MKP and
KP, in the sense that each knapsack of a multiple knapsack problem (packing
the items into the boxes) is also an item of another knapsack problem (packing
the boxes into the container). For more details about the combination of two
combinatorial optimization problems, readers can refer to [2–6].

It is well-known that KP is NP-hard [7], and MKP is strongly NP-hard if m
is an input of the instance and does not admit a fully polynomial time approx-
imation schemes (FPTAS) even for the case with two identical knapsacks [8].
Therefore, the 2-PKP problem is also strongly NP-hard and is unlikely to admit
an FPTAS unless P = NP. As a result, we mainly focus on designing approxi-
mation algorithms (see, e.g., [9]) for the problem. For KP, a natural strategy is
to greedily pack the items in an non-increasing order of their profit-to-size ratio
pj/wj . It can be shown that the greedy algorithm is a 1

2 -approximation algo-
rithm, if it returns the maximum among the above result and the largest profit
item. Moreover, it is known that FPTAS exists for KP [10,11]. For MKP, Chekuri
and Khanna [8] proposed the first PTAS with running time nO(log(1/ε)/ε8) for any
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ε > 0, and later Jansen [12] proposed an efficient polynomial time approxima-
tion scheme (EPTAS) with running time 2O(log4(1/ε)/ε) + nO(1). Furthermore,
KP and MKP are the special cases of the generalized assignment problem (GAP
for short), where both the profit pij and the size of an item wij are a function
of the knapsack. Shmoys and Tardos [13] proposed a linear programming (LP)
rounding algorithm for the minimum version of GAP, and Chekuri and Khanna
[8] applied it to obtain a 1

2 -approximation algorithm for MKP and GAP. The
approximation ratio for GAP is subsequently improved to 1 − 1

e − ε based on
different LP techniques [14,15] for any small enough ε > 0. For more results
about the knapsack problem and its generalizations, readers can refer to [1].

There is a wide literature on the variants of knapsack problem. Perhaps
the most similar problems with the 2-PKP problem are the nested knapsack
problem [16,17] and the knapsack problems with shelf divisions [18]. In the nested
knapsack problem in [17] and decomposed knapsack problem in [16] (which can
be seen as a special case with two stages of nested knapsack problem), there are
multiple stage of knapsacks. Each lower stage i contains several small knapsacks,
and each small knapsack is associated with one (and one only) large knapsack
in the upper stage i + 1. The objective is to select the most profitable subset of
items, such that for each stage i, these items can be packed into some knapsacks,
and the items packed into each small knapsack, can also be packed into its
associated large knapsack in the next stage i+1. The existed studies are mainly
focused on the integer programming and branch-and-bound approaches [16,17].
In the knapsack problems with shelf divisions, besides the items, there are some
shelf divisors with identical sizes that are required to be packed into a knapsack,
and divide the packed items into groups each has total size within a certain range
[δ,Δ]. The problem does not admit any approximation algorithm in general, and
has a PTAS when δ = 0 [18]. The key difference is that, in these problems, the
objects packed into the larger knapsack are still the items, whereas in our 2-
PKP problem, the objects packed into the larger knapsack (the container) are
the smaller knapsacks (the boxes), instead of the items themselves (see Fig. 1
for an illustration). Other related work on the variants of KP and MKP include
the multiperiod knapsack problem [16,19], in which there are m periods, and
the cumulative capacity of knapsack in each period i cannot be exceeded by
items chosen from period 1 to i. The two stage knapsack problem [20,21] is
a stochastic knapsack problem with random sizes, where in the first stage the
items are selected without knowing their sizes, then in the second stage the sizes
are revealed and some items can be added or removed with some payments.
The bi-level knapsack problem [22–24] usually has two decision makers called a
leader and a follower. One classic problem is, the leader decides the capacity of
the knapsack, and where the follower decides which items are packed into the
knapsack [22]. The problem of packing groups of items into multiple knapsacks
[25] have multiple knapsack and a set of items which are partitioned into groups
in advance, and the profit of a group can be gained if all items are packed. To the
best of our knowledge, we are not aware of the study about the approximation
algorithms for the 2-PKP problem in the literature.
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2-PKP:

2-NKP:

SKP: d d d d

Fig. 1. An illustration of 2-PKP problem, two-stage nested knapsack/decomposed
knapsack (2-NKP) problem and knapsack problem with shelf divisions (SKP)

In this paper, we introduce the 2-PKP problem and discuss its approxima-
bility. First, we observe that when the number of distinct size values of boxes
is a fixed constant, then 2-PKP problem can be solved by applying any MKP
algorithms, and thus admits a PTAS. Then we propose three approximation
algorithms for the general case of the 2-PKP problem. The first two approx-
imation algorithms are based on packing the largest size boxes. The first one
is a 1

4 -approximation algorithm with O(n2 log n) time, which is based on the

LP rounding algorithm for GAP [13]. The second one is a 1/
(

2
rMKP

+ 1
rKP

)
-

approximation algorithm, where rMKP and rKP are the performance ratios of
the MKP algorithm and the KP algorithm, respectively. This algorithm has best
possible approximation ratio 1

3 − ε, when the PTAS of MKP and the FPTAS of
KP are applied. Finally, we propose a PTAS, by extending several ideas from
the PTAS for the MKP [8] to guess the boxes that are packed.

The remainder is organized as follows: In Sect. 2, we formally state the 2-PKP
problem studied in this paper. We then present an approximation algorithm
based on LP rounding in Sect. 3.1, and an approximation algorithm based on
applying the MKP and KP algorithms in Sect. 3.2. In Sect. 4, we propose a
PTAS. Finally, we provide some concluding remarks in Sect. 5.

2 Problem Description

First, we introduce the formal definition of the two-phase knapsack problem.

Definition 1 (2-PKP problem). There are n items J = {1, . . . , n}, m boxes
B = {1, . . . , m} and a container. Each item j has profit pj and size wj, each
box i has size si, and the container has capacity W . The goal of the two-phase
knapsack (2-PKP) problem is to find a subset of items J ′ ⊂ J and boxes B′ ⊂ B,
and a packing in which the total size of items packed into each box i is at most
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its size si, and the total size of boxes packed into the container is at most its
capacity W , such that the total profit of items (included in some packed box)
packed into the container is maximized.

Without loss of generality, we assume that wj ≤ maxi=1,...,m si for all j =
1, . . . , n and si ≤ W for all i = 1, . . . ,m. Moreover, we first sort the items and
the boxes such that p1/w1 ≥ p2/w2 ≥ · · · ≥ pn/wn, and s1 ≥ · · · ≥ sm. If
the total size of all the boxes is no more than W , then it is trivial to select
all the boxes and the problem is reduced to MKP. Therefore, we assume that∑m

i=1 si > W in the rest of the discussion.
A natural idea to solve the 2-PKP problem, is to first pack the items into

the boxes by some MKP algorithm, then take the profit of each box as the total
profit of items inside it, and finally pack the boxes into the container by a KP
algorithm. However, it is not hard to find such an example that, even though we
can optimally solve the two problems, the obtained solution could be far away
from the optimal solution, see e.g., the example shown in Fig. 2. Let n be a
sufficiently large number, and ε be a sufficiently small value in (0, 1

2 ). Obviously,
the unique optimal solution to MKP between the items and the boxes, is to pack
all the items. However, it gains total profit at most 1+ ε to the 2-PKP problem.
Indeed, we can pack each profit 1 item (which has size 1

2 + ε) solely into a size
1 box (although it is suboptimal to MKP in the first phase), and pack all these
boxes into the container, which has total profit n. The approximation ratio can
be arbitrary closed to 0 as n grows up.

Items

Profits
1
2 + ε×n

1

1 ×n

ε
n

n − 1
2 − ε ×n

ε

Boxes: 1 ×n n ×n

OPT of MKP: 1 ×n 1
2 + ε n − 1

2 − ε ×n

Solution of 2-PKP: 1
2 + ε n − 1

2 − ε

n

Total Profit = 1 + ε

A better solution: 1
2 + ε 1

2 + ε

1 1

Total Profit = n· · ·

Fig. 2. A bad example for the 2-PKP problem

Suppose we know which boxes are used in an optimal solution, then the 2-
PKP problem is simply reduced to MKP, and hence can be solved by any MKP
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algorithm. As a corollary, when the number of distinct size of boxes is a fixed
constant K, we can first guess all the boxes packed in an optimal solution in
O(mK) time (there are at most m boxes for each size of boxes), which is a
polynomial in the input size. Therefore, we can conclude that 2-PKP problem
has a PTAS in this case, by applying the PTAS of MKP [8].

Theorem 1. If the number of distinct size values of boxes is fixed, then 2-PKP
problem can be reduced to the MKP in polynomial time, and thus has a PTAS.

3 Approximation Algorithms Using the Largest Size
Boxes

From the previous section, the main difficulty to deal with the 2-PKP problem
is to consider which boxes should be packed into the container. In this section,
we present two approximation algorithms. Both of them pack the boxes into the
container one by one in a non-increasing order of their sizes, and compare the
solution with the one using the right next box that cannot be packed.

3.1 A 1
4
-Approximation LP Rounding Algorithm

The 2-PKP problem can be formulated as an integer programming problem:

max
m∑

i=1

n∑
j=1

pjxij (IP)

s.t.
n∑

j=1

wjxij ≤ siyi ∀i = 1, . . . , m

m∑
i=1

xij ≤ 1 ∀j = 1, . . . , n

m∑
i=1

siyi ≤ W

xij , yi ∈ {0, 1} ∀i = 1, . . . ,m, j = 1, . . . , n.

Consider the LP relaxation which is analogous to that for the generalized
assignment problem (GAP) in [13]:

max
m∑

i=1

n∑
j=1

pjxij (LPR)

s.t.
n∑

j=1

wjxij ≤ siyi, ∀i = 1, . . . , m (LPR1)
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m∑
i=1

xij ≤ 1 ∀j = 1, . . . , n (LPR2)

m∑
i=1

siyi ≤ W (LPR3)

xij ≥ 0, 0 ≤ yi ≤ 1 ∀i = 1, . . . ,m, j = 1, . . . , n (LPR4)
xij = 0, if wj > si ∀i = 1, . . . ,m, j = 1, . . . , n. (LPR5)

First, we show that there exists an optimal solution to (LPR), which packs
the largest size boxes 1, 2, ... (the last box is possibly packed fractionally).

Lemma 1. There exists an optimal solution to (LPR) with y1 = · · · = yb−1 = 1,

and yb = W−∑b−1
l=1 sl

sb
, where b = min

{
k ∈ B

∣∣∣∑k
l=1 sl > W

}
, yi = 0 otherwise.

The proofs of this and all subsequent lemmas/theorems are omitted, and will be
provided in the full version. Given Lemma1, we can find the optimal solution to
(LPR) by considering only the b-largest size boxes, which leads to a LP relaxation
of GAP:

max
b∑

i=1

n∑
j=1

pjxij (LPRb)

s.t.
n∑

j=1

wjxij ≤ si, ∀i = 1, . . . , b − 1 (LPRb1)

n∑
j=1

wjxbj ≤ sbyb, (LPRb2)

b∑
i=1

xij ≤ 1 ∀j = 1, . . . , n (LPRb3)

xij ≥ 0 ∀i = 1, . . . , b, j = 1, . . . , n (LPRb4)
xij = 0, if wj > si ∀i = 1, . . . , b, j = 1, . . . , n. (LPRb5)

In other words, let OPTLPR and OPTLPRb
be the optimal values to (LPR) and

(LPRb) respectively, Lemma 1 implies that OPTLPR = OPTLPRb
. Furthermore,

the optimal solution to (LPRb) can be efficiently obtained in O(n log n) time
instead of solving a linear program, as shown in Lemma2.

Lemma 2. The optimal solution to (LPRb) can be found in O(n log n) time.

Given an optimal solution to (LPRb), we next apply Shmoys and Tardos [8,
13]’s LP rounding procedure for GAP to obtain an integral solution. Altogether,
we can obtain an algorithm for the 2-PKP problem, which is summarized in
Algorithm 1.

Theorem 2. Algorithm1 returns a 1
4 -approximate solution for the 2-PKP prob-

lem in O(n2 log n) time, and the bound is tight.
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Algorithm 1. A LP rounding based 1
4 -approximation algorithm

1: Let b = min{k ∈ B| ∑k
l=1 sl > W}, y1 = y2 = · · · = yb−1 = 1, and

yb =
W−∑b−1

l=1 sl

sb
, yi = 0 otherwise

2: Find the optimal solution to (LPRb), and apply Shmoys and Tardos’s round-
ing procedure [13] to obtain a packing of items into boxes 1, ..., b

3: Pack the items and boxes 1, ..., b − 1 obtained in Step 2 into the container.
Denote P1 as the total profit of this solution

4: Pack the items of J which have size wj ≤ sb into box b, according to the
non-increasing order of their profit-to-size ratios. Pack these items and box
b into the container. Denote P2 as the total profit of this solution

5: Let ibmax be the single item which has highest profit among those can be
packed into box b, select ibmax and box b. Denote P3 as its total profit

6: Return the solution with highest total profit among P1, P2, P3

3.2 Approximation Algorithm Based on MKP and KP Algorithms

Recall that in Algorithm 1, we first select the largest b boxes (where b is the box
that adding it would violate the capacity of the container) that fits in the con-
tainer, and then pack the items by the 2-approximation LP rounding algorithm
for GAP and the greedy algorithm for KP. A natural question is, can we obtain
a better performance if we use algorithms with better ratio? We summarize the
idea in Algorithm 2. Let rMKP , rKP be the performance ratios of the used MKP
and KP algorithms, and TMKP , TKP be their running times, respectively.

Algorithm 2. An approximation algorithm based on MKP and KP algorithms
1: Let b = min{k ∈ B| ∑k

l=1 sl > W}, y1 = y2 = · · · = yb−1 = 1, and

yb =
W−∑b−1

l=1 sl

sb
, yi = 0 otherwise

2: Pack the items of J into the boxes 1, ..., b − 1 by any MKP algorithm, and
these boxes into the container. Denote PMKP as its total profit.

3: Pack the items of J into the box b by any KP algorithm, and the box b into
the container. Denote PKP as its total profit.

4: Return the solution with highest total profit among PMKP , PKP .

Theorem 3. Algorithm2 returns a 1/
(

2
rMKP

+ 1
rKP

)
-approximate solution for

the 2-PKP problem in O(TMKP + TKP ) time.

It is known that MKP has a PTAS [8] and KP has a FPTAS [10], thus the
best possible performance ratio that Algorithm2 can attain is 1

3 − ε.
Finally, it is worthwhile to notice that, the performance ratio obtained by

Theorem 3 is 1
6 if we simply apply Shmoys and Tardos’s algorithm for MKP

and the greedy algorithm for KP to Algorithm2 (both are 1
2 -approximation

algorithms). However, from the previous discussion in Sect. 3.1, we have already
seen that by more careful implementation and analysis, this approach actually
admits a 1

4 -approximation algorithm and the bound is tight.
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4 A Polynomial Time Approximation Scheme

In this section, we present a PTAS for the 2-PKP problem. It adapts several
ideas and the framework from the PTAS proposed by Chekuri and Khanna [8]
for MKP, except for quite a few details.

Let ε be a constant in (0, 3/4). During the process, we might use an O(ε)
times of additional boxes to pack the items, but we will eliminate these boxes at
the end and maintain a solution with total size of boxes at most W and losing
at most O(ε) fractional of total profit. Given a set of items J ′ ⊂ J and boxes
B′ ⊂ B, we denote P (J ′) as the total profit of J ′, S(J ′) and S(B′) as the total
size of J ′ and B′ respectively. As in [8], we start with an instance in which items
have nice structures and can be packed into the container within some boxes.

Lemma 3. Given an instance for the 2-PKP problem, we can obtain in nO(1/ε3)

time an instance consists of the items J ′ ⊂ J which have at most O(ε−1 ln n)
distinct profit values and O(ε−2 ln n) distinct size values, and, J ′ can be packed
into some boxes B′ ⊂ B with S(B′) ≤ W , and P (J ′) ≥ (1 − O(ε)) OPT .

Next we describe how to partition the boxes into groups, which is a bit more
involved than the PTAS of MKP. In [8], the groups are simply divided as small
and large according to the number of boxes. But in our problem, we do not
know in advance the number of boxes can be used in an optimal solution for
each group. Therefore, we need to do some guess for the boxes that are packed
in an optimal solution. Let W̃ be a guess for S∗(which will be precisely specified
in Lemma 4), where S∗ is the total size of boxes packed in an optimal solution.
Then we order the boxes in non-decreasing order of their sizes and group them
into groups B0, B1, . . . , Bl. Note that we temporarily ignore B0, which consists
of all boxes with size less than ε6W̃

m , and guess the total size of boxes packed in
the optimal solution for each other group.

Lemma 4. Let Bi be the set of boxes each has size in
[

ε6W̃
m (1 + ε)i,

ε6W̃
m (1 + ε)i+1

)
, and S∗(Bi) be the total size of boxes from group Bi that are

packed in the optimal solution, ∀i = 1, . . . , l, where l = 2
⌈
ε−1 ln m

ε6

⌉
. We

can guess the values S̃(B1), . . . , S̃(Bl) in polynomial time mO(1/ε3), such that
S̃(Bi) ≥ S∗(Bi) for each i, and if S̃(Bi) ≥ εW̃

l , then S̃(Bi) ≥ S∗(Bi) ≥
(1 − O(ε))S̃(Bi).

Given a guess of the total size of boxes packed in an optimal solution for
B1, . . . , Bl, we are now able to classify the groups of boxes. Suppose now we are
in a certain iteration of the guesses. We call the group Bi small group if S̃(Bi) ≤
ε3W̃
m (1 + ε)i+1, and a group Bi large group if S̃(Bi) > ε3W̃

m (1 + ε)i+1. Denote
by small, large the sets of small and large groups respectively. Note that by
definition the number of boxes in each small group is still a fixed number, since
each item in Bi has size at least ε6W̃

m (1+ε)i, and |Bi| ≤ S∗(Bi)/
(

ε6W̃
m (1 + ε)i

)
≤
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S̃(Bi)/
(

ε6W̃
m (1 + ε)i

)
≤ 1+ε

ε3 if Bi is in small. If large is empty, then by
Lemma 6 stated later, we only need to focus on the small groups. The packing
of the boxes hence can be enumerated in polynomial time, and then a PTAS
is obtained by simply solving the MKP. Therefore, we assume that large is
nonempty in the rest of this section. Similar to [8], it is sufficient to remain a
fixed number of small groups.

Lemma 5 (Lemma 2.8, [8]). Let J be the set of items that can be packed in
the boxes from small. There exists a set J ′ ⊆ J such that J ′ can be packed
into the boxes from the largest 1/ε + �4ε−1 ln 1/ε	 + 1 groups in small, and
P (J ′) ≥ (1 − ε)P (J).

Furthermore, we show that it is insignificant to ignore the boxes in B0, since
we can pack all the items in J ′ (which we guessed in Lemma 4) by a few additional
number of boxes in the small and large.

Lemma 6. Suppose that we have a feasible packing for the item set J ′, then
there exists a packing that can pack all the items in J ′, and uses boxes only
from small and large. Moreover, if the total size of boxes exceed W , then the
exceeded part consists of at most O(ε) times of additional boxes from large.

For the rest of the discussion, when we say guessing the optimal solution, we
implicitly refer to the packing that only uses boxes from small and large groups,
and a fixed number of small groups (by Lemmas 5 and 6). Now we guess for each
box in small, whether it is selected in the knapsack, as well as the 1/ε most
profitable items that are packed in the box in the optimal solution. In total, the

total number of guess is O

(
2

∑
Bk∈small |Bk|

n
O

(
1
ε

∑
Bk∈small |Bk|

))
= nO( ln(1/ε)

ε5 ).

Note that by the previous discussion, there must be an enumeration that all the
boxes from small in the optimal solution (with S∗(Bi) ≤ ε3W̃

m (1 + ε)i+1) are
correctly selected, since the total number of such boxes is a fixed number.

Next we deal with the groups with S∗(Bi) > ε3W̃
m (1 + ε)i+1. Similar to [8],

if the size of an item is at least ε times the capacity of the box to which it is
packed, then we say that it is packed as large, otherwise it is packed as small.

Lemma 7 ([8]). In polynomial time, we can guess all the items that are packed
as large and also to which groups they are packed.

By Lemma 7, at least one enumeration can correctly pack the items to the
groups that they are packed as large, and now our goal is to finding a feasi-
ble packing for these items within each group. Let Ji be the items that are
guessed to be packed in group Bi as large. The group Bi consists of several
boxes with sizes

[
ε6W̃
m (1 + ε)i, ε6W̃

m (1 + ε)i+1
)
, and each item in Ji has size in[

ε7W̃
m (1 + ε)i, ε6W̃

m (1 + ε)i+1
)
. The main idea is to adapt the shifting technique

and the configuration integer program for the variable size bin packing problem
[26], which is different from the PTAS of MKP in [8], as it uses the APTAS for
the identical size bin packing problem [27].
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Lemma 8. Let Ji and Bi defined as above. There is a polynomial time algorithm
that either decides that there is no feasible packing for the items or returns a
feasible packing using at most (1 + O(ε))S∗(Bi) total size of boxes.

Observe that at this stage we have correctly guessed all the boxes that are
from the small groups in the optimal solution (i.e., with S∗(Bi) ≤ ε3W̃

m (1+ε)i+1),
and have packed some boxes from some large groups in the optimal solution with
total size at most (1+O(ε))S∗(Bi). Now we consider to fill the remaining capacity
of the container by some boxes, and then pack the remaining items. The idea is
to use the LP rounding algorithm in Sect. 3.1.

Lemma 9. The remaining items can be packed by applying a LP rounding pro-
cedure, which uses at most O(ε) times of additional boxes from large, and a
fixed number of additional boxes from small.

We finally discard O(ε) fractional of boxes with small total profit and obtain
a feasible packing that does not violate the capacity of the knapsack. Altogether,
we obtain a PTAS for the 2-PKP problem.

Theorem 4. There is a PTAS for the 2-PKP problem.

5 Conclusions

In this paper, we considered a two-phase knapsack problem, which packs the
items into the boxes, and packs the boxes into a container. We proposed several
approximation algorithms for this problem. There are several future directions
for research. For the 2-PKP problem itself, theoretically, it would be interesting
to see if there is EPTAS for the problem, as the MKP problem admits an EPTAS
[12]. Moreover, it would also be interesting to find some efficient approximation
algorithms with performance ratio better than 1

4 and 1
3 − ε, or some practical

algorithms for the 2-PKP problem.
There are several interesting extensions of the 2-PKP problem, such as when

each box has a cost, or the weight of the box in the second phase (packing
into container) is independent to the first phase (the size of the box), or the
knapsack problem with multiple phases. One can also consider other packing
problems under this scenario.
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11371216.

References

1. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24777-7

2. Wang, Z., Cui, Z.: Combination of parallel machine scheduling and vertex cover.
Theoret. Comput. Sci. 460, 10–15 (2012)

https://doi.org/10.1007/978-3-540-24777-7


74 K. Nip and Z. Wang

3. Nip, K., Wang, Z.: Combination of two-machine flow shop scheduling and short-
est path problems. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol.
7936, pp. 680–687. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38768-5 60

4. Nip, K., Wang, Z., Xing, W.: Combinations of some shop scheduling problems and
the shortest path problem: complexity and approximation algorithms. In: Xu, D.,
Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 97–108. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21398-9 8

5. Nip, K., Wang, Z., Talla Nobibon, F., Leus, R.: A combination of flow shop schedul-
ing and the shortest path problem. J. Comb. Optim. 29(1), 36–52 (2015)

6. Nip, K., Wang, Z., Xing, W.: A study on several combination problems of classic
shop scheduling and shortest path. Theoret. Comput. Sci. 654, 175–187 (2016)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

8. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple
knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

9. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, New York (2011)

10. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

11. Lawler, E.L.: Fast approximation algorithms for knapsack problems. Math. Oper.
Res. 4(4), 339–356 (1979)

12. Jansen, K.: Parameterized approximation scheme for the multiple knapsack prob-
lem. SIAM J. Comput. 39(4), 1392–1412 (2010)

13. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62(3), 461–474 (1993)

14. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: improv-
ing the factor of 1 − 1/e. In: FOCS 2006, pp. 667–676 (2006)

15. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3),
416–431 (2011)
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Abstract. In this paper, we consider the problem of enumerating span-
ning subgraphs with high edge-connectivity of an input graph. Such sub-
graphs ensure multiple routes between two vertices. We first present an
algorithm that enumerates all the 2-edge-connected spanning subgraphs
of a given plane graph with n vertices. The algorithm generates each
2-edge-connected spanning subgraph of the input graph in O(n) time.
We next present an algorithm that enumerates all the k-edge-connected
spanning subgraphs of a given general graph with m edges. The algo-
rithm generates each k-edge-connected spanning subgraph of the input
graph in O(mT ) time, where T is the running time to check the k-edge-
connectivity of a graph.

1 Introduction

Evacuation route planning in a road network requires at least one route from
any point to a shelter. For example, a spanning tree of a network gives one
evacuation route for each point. However, in time of disaster, it is easy to imagine
that a lot of roads are broken. In the situation that we know only one route
between the current place to a shelter, nobody can ensure that the route can be
passed through in safety. Hence, we are required to ensure “multiple” evacuation
routes to a shelter from every place. Moreover, to avoid traffic congestion at the
time of evacuation, we need some evacuation routes. From these points of view,
finding spanning subgraphs with high edge-connectivity is important, since such
graphs ensure multiple routes between two points. In this paper, we consider the
problem of enumerating spanning subgraphs with high edge-connectivity. From
the enumerated subgraphs, we can choose good spanning subgraphs for various
criteria. These can be used as candidates of suitable evacuation route planning.

Enumerating designated subgraphs is a fundamental and important prob-
lem. The subgraph enumeration is one of the strong and appealing strategies
to discover valuable knowledge from enormous graph data in various research
areas such as data mining, bioinformatics, and artificial intelligence. To discover
valuable knowledge from practical graphs, enumeration algorithms for subgraphs
with some properties are studied, such as paths [2,11], cycles [2,11], subtrees [15],
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spanning trees [11,12,14], cliques [5,8], pseudo cliques [13], k-degenerate sub-
graphs [4], matchings [7,14], connected induced subgraphs [1,9], and so on.

In this paper, we focus on the problem of enumerating spanning subgraphs in
a graph. Khachiyan et al. [6] studied the problem of enumerating all the minimal
2-vertex-connected spanning subgraphs. This enumeration problem is a natural
extension of the well-known spanning tree enumeration problem. Boros et al. [3]
proposed an algorithm that enumerates all the k-vertex-connected spanning sub-
graphs. Both papers focused on the vertex-connectivity of spanning subgraphs.
It is well known that the vertex-connectivity is one of the most fundamental
concepts in network reliability. On the other hands, edge-connectivity is also
the well-known fundamental measure of network reliability. To the best of our
knowledge, there is no result for the problem of enumerating k-edge-connected
spanning subgraphs. In this paper, we present algorithms for the problem.

In this paper, we present the following two enumeration algorithms for span-
ning subgraphs using reverse search method by Avis and Fukuda [1]. We first
present an algorithm that enumerates all the 2-edge-connected spanning sub-
graphs of a given plane graph with n vertices. The algorithm generates each
2-edge-connected spanning subgraph of the input graph in O(n) time. We
next present an algorithm that enumerates all the k-edge-connected spanning
subgraphs of a given general graph with n vertices and m edges. The algo-
rithm generates each k-edge-connected spanning subgraph of the input graph in
O(mT ) time, where T is the running time to check the k-edge-connectivity of a
graph. From the result by Nagamochi and Ibaraki [10], it can be observed that
T = O(m + min {kn2, nm + n2 log n}) holds.

2 Preliminary

Let G = (V (G), E(G)) be an undirected unweighted graph with vertex set V (G)
and edge set E(G). We always denote |V (G)| and |E(G)| by n and m, respec-
tively. A graph G is simple if G has no multi-edge and no self-loop. Throughout
this paper, we suppose that graphs are simple unless otherwise noted. A graph
G is k-edge-connected if the removal of any k − 1 edges in E(G) does not discon-
nect G. Let us remark that, for k = 1, a 1-edge-connected graph is a just con-
nected graph. A graph H = (V (H), E(H)) is a subgraph of G if V (H) ⊆ V (G)
and E(H) ⊆ E(G) hold. A subgraph H = (V (H), E(H)) of G is spanning if
V (H) = V (G) and E(H) ⊆ E(G) hold. Throughout this paper, we assume that
the edges in E(G) are labeled such as E = {e1, e2, . . . , em}. Let ei and ej , i < j,
be two edges in G. We say that ei is smaller than ej , denoted by ei ≺ ej . Let e
be an edge of G. For a subgraph H of G, we denote by H −e the graph obtained
from H by removing e. We denote by H + e the graph obtained from H by
inserting e.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed planar embedding. A plane graph
divides the plane into connected regions called faces. The contour of a face is
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the list of edges on the boundary of the face. Let e be an edge in a plane
graph G. From the definition of plane graphs, e is shared by the two faces. We
denote the two faces by f1(e) and f2(e). The dual graph D = (V (D), E(D)) of
a plane graph G is a multi-graph where V (D) is the set of the faces of G and
E(D) = {{f, g} | The contours of f and g share an edge}. If two faces f and g
share two or more edges, then the dual graph has multi-edges between f and g.

3 Enumerating All Spanning Subgraphs

In this section, we first present an algorithm that enumerates all the 2-edge-
connected spanning subgraphs of a given plane graph. We then present an algo-
rithm that enumerates all the k-edge-connected spanning subgraphs of a given
general graph.

3.1 2-Edge-Connected Spanning Subgraphs in Plane Graphs

Let G = (V (G), E(G)) be a plane graph. In this section, we give an algorithm
that enumerates all the 2-edge-connected spanning subgraphs of G. If G is not
2-edge-connected, then there is no 2-edge-connected spanning subgraph of G.
Hence, without loss of generality, we suppose that G is 2-edge-connected. We
first define a tree structure among the set of all the 2-edge-connected spanning
subgraphs of G. Our algorithm based on the reverse search [1] traverses the
tree structure in depth-first manner and enumerates all the 2-edge-connected
spanning subgraphs.

We denote by S2(G) the set of 2-edge-connected spanning subgraphs of G.
Note that G itself is in S2(G). To define a tree structure, we define the parent
for each 2-edge-connected spanning subgraph of G except G. Let H be a 2-edge-
connected spanning subgraph in S2(G) \ {G}. Let sm(H) be the smallest edge
in E(G) \ E(H). Then, we define par(H) := H + sm(H). From the definition,
it is easy to observe that par(H) is also 2-edge-connected spanning subgraph
of G. By repeatedly finding the parents starting from H, we obtain a sequence
H, par(H), par(par(H)), ... of 2-edge-connected spanning subgraphs. We call such
a sequence the appending sequence of H. The sequence starts with H and ends
with G. We have the following lemma.

Lemma 1. Let H �= G be a 2-edge-connected spanning subgraph of a plane graph
G. Then, the appending sequence of H always ends up with G.

Proof. Let us define a potential function φ for a subgraph H as φ(H) := |E(H)|.
Then, from the definition of the parent, par(H) is 2-edge-connected spanning
subgraph and φ(par(H)) = φ(H) + 1. Since the parent is defined for every 2-
edge-connected spanning subgraph except G, we finally have G in the appending
sequence. ��

Now, we are ready to define a tree structure. By merging all the appending
sequences for all the subgraphs in S2(G), we have a rooted tree structure, called
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the family tree, such that (1) its root corresponds to G, (2) each vertex in the tree
corresponds to a 2-edge-connected spanning subgraph of G, and (3) each edge
in the tree corresponds to a parent-child relation. Figure 1 shows an example of
the family tree.

Fig. 1. The family tree of the input graph.

It is easy to see that, if we can traverse the family tree, we can enumerate
all the 2-edge-connected spanning subgraphs of G, since the family tree contains
all the 2-edge-connected spanning subgraphs of G. To traverse it, we design
an algorithm that enumerates all the children of a given subgraph in S2(G).
By recursively applying the child-enumeration algorithm from the root, we can
traverse the family tree with depth-first manner.

Now, let us give a condition to be a child of a given 2-edge-connected spanning
subgraph. Let H be a 2-edge-connected spanning subgraph in S2(G). If an edge
e is removed from H, then we may obtain a child. However, if H − e is not 2-
edge-connected, then such H − e is not a child. Similarly, if e is not the smallest
edge in E(G) \ E(H − e), that is e �= sm(H − e), then such H − e is not a child
either. From the observations above, we have the following lemma.

Lemma 2. Let H be a 2-edge-connected spanning subgraph in a plane graph G,
and let e be an edge of H. Then, H − e is a child of H if and only if e ≺ sm(H)
holds and H − e is 2-edge-connected.
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From the lemma above, we have the algorithm shown in Algorithm1. In the
for-loop of the algorithm, we choose only the edges with e = sm(H − e). For
each such edge, we check 2-edge-connectivity of H − e. The algorithm has no
explicit condition of the property for spanning, since H − e is always a spanning
subgraph if H is 2-edge-connected.

Algorithm 1. Find-Children-2-Connected(H)
1 /* G is an input plane graph and is stored in a global memory. H is

a 2-edge-connected spanning subgraph of G. */

2 Output H.
3 foreach e ∈ E(H) with e ≺ sm(H) do
4 if H − e is 2-edge-connected spanning subgraph of G then
5 Find-Children-2-Connected(H − e)

Now, let us estimate the running time of Algorithm1. We estimate the run-
ning time to be required for a vertex in a family tree. In the worst case, We
check 2-edge-connectivity for each edge. For each edge e, 2-edge-connectivity of
the graph H − e can be checked in O(m) time using depth first search. Hence,
we need O(m2) time in total. Since for a plane graph m ≤ 3n − 6 holds, the
following theorem is obtained.

Theorem 1. Let G be a plane graph. One can generate each 2-edge-connected
spanning subgraph of G in O(n2) time for each.

Now, let us improve the running time of our algorithm. The bottleneck of
Algorithm 1 is the running time to check 2-edge-connectivity when an edge is
removed. To check the connectivity more efficiently, we introduce an observation
and a data structure.

Lemma 3. Let H be a 2-edge-connected plane graph, and let e be an edge of H.
Then, H − e is 2-edge-connected if and only if f1(e) and f2(e) share only the
edge e in H (recall that f1(e) and f2(e) are the two faces sharing e).

Proof. (→) We assume for a contradiction that f1(e) and f2(e) share two or
more edges in H. Let e′ be an edge shared by f1(e) and f2(e) except e. Then e′

is a bridge in H − e, which is a contradiction.
(←) The removal of e combines f1(e) and f2(e) into a face. Let f be the face

in H − e obtained by removing e. Then, any edge in H − e is included in at least
one cycle. Hence, H − e is still 2-edge-connected. ��

We can use the lemma above to check the 2-edge-connectivity of H − e. Our
algorithm maintains the dual graph of G as an adjacency matrix representation,
where each element for two faces f and g in the matrix stores the number of
edges shared by f and g. Using the matrix of the dual graph, we can know the
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number of edges shared by any two faces. Hence, we can decide whether or not
H −e is 2-edge-connected. This check can be done in constant time. To generate
a child, an edge e is removed. When e is removed, f1(e) and f2(e) are merged
into a face, say f ′. The face f ′ is adjacent to the faces adjacent to f1(e) or f2(e)
except f1(e) and f2(e). This update is reflected to the matrix in O(n) time.
Therefore, we have the following theorem.

Algorithm 2. Find-Children-k-Connected(H)
1 /* G is an input graph and stored in a global variable. H is a

k-edge-connected spanning subgraph of G. */

2 Output H.
3 foreach e ∈ E(H) with e ≺ sm(H) do
4 if H − e is k-edge-connected spanning subgraph of G then
5 Find-Children-k-Connected(H − e)

Theorem 2. Let G be a plane graph with n vertices. One can enumerate every
2-edge-connected spanning subgraph of G in O(n) time for each.

Proof. Let us estimate the running time required for a subgraph H ∈ S2(G) in
the family tree. When H is generated from its parent par(H), the dual graph
is updated. This takes O(n) time. To generate a child of H, for each edge e in
H with e ≺ sm(H), we check 2-edge-connectivity of H − e. Recall that, from
Lemma 3, it is sufficient to check the number of edges shared by the correspond-
ing two faces in the dual graph of H. Hence, this check can be done in O(1) time
for each and O(m) time in total. Since m < 3n holds, the total running time for
H is O(n) time. ��

3.2 k-Edge-Connected Spanning Subgraphs in General Graphs

The discussion in the previous subsection can be applied to a general cases:
we are given a general graph G and are required to enumerate all the k-edge-
connected spanning subgraphs of G. This section shows that Algorithm 1 can be
applied to the problem with a slight modification.

Let G be an input graph. We denote by Sk(G) the set of all the k-edge-
connected spanning subgraphs of G. If G is not k-edge-connected, then G has
no k-edge-connected spanning subgraph. Thus, we assume that G is k-edge-
connected.

In a similar way, we define a family tree among the set of k-edge-connected
spanning subgraphs of G, as follows. Let H be a k-edge-connected spanning
subgraph in Sk(G). Then, we define par(H) := H+sm(H). By repeatedly finding
the parents starting from H, we obtain a sequence of subgraphs in Sk(G). By
merging all the sequences for all the subgraphs in Sk(G), we have a rooted tree
structure, called the family tree, among Sk(G) such that (1) its root corresponds
to G, (2) each vertex in the tree corresponds to a spanning subgraph in Sk(G),
and (3) each edge in the tree corresponds to a parent-child relation.
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Now, let us consider how to traverse the family tree. The algorithm is
almost same to our first algorithm. For the self-containment of this section,
we show the pseudo-code in Algorithm 2 which enumerates k-edge-connected
spanning subgraph of a given graph G. The difference is how to check edge-
connectivity when a child is generated. Let H be a k-edge-connected spanning
subgraph of G. For each edge e of H, H − e is a child of H if and only if
H = par(H − e) holds. More precisely, the condition is equivalent to the fol-
lowing two conditions: (1) H − e is k-edge-connected and (2) e is the smallest
edge in E(G) \ E(H − e), that is e = sm(H − e). The condition (1) can be
checked using the Nagamochi and Ibaraki’s algorithm [10] in O(T ) time, where
T = O(m + min {kn2, nm + n2 log n}).

The condition (2) can be checked in O(1) time by maintaining a sorted list
of edges in E(G) \E(H). (It is sufficient to compare an edge e with the smallest
element in the list.) Besides, the list can be updated in O(1) time. (If the con-
ditions are satisfied, we update the sorted list by inserting an edge e as the first
element.) Hence, we can check whether or not H −e is a child of H in O(T ) time.
To enumerate all the children of H, we check the edge-connectivity of H − e for
each edge e in E(G) \ E(H). Therefore, we have the following theorem.

Theorem 3. Let G be a graph. One can generate each k-edge-connected span-
ning subgraph of G in O(mT ) time for each, where O(T ) is the running time to
check whether a graph is k-edge-connected.

If k = 1, we check whether or not H − e is connected for each edge e in
E(G)\E(H). This connectivity can be checked in O(m) time using a depth-first
search on H − e.

Corollary 1. Let G be a graph. One can generate each connected spanning sub-
graph of G in O(m2) time for each.

4 Conclusions

We have designed two algorithms for enumerating spanning subgraphs with edge-
connectivity at least k. Our first algorithm enumerates all the 2-edge-connected
spanning subgraphs of a given plane graph with n vertices in O(n) time for each.
The second algorithm enumerates all the k-edge-connected spanning subgraphs
of a given general graph with m edges in O(mT ) time for each, where T is the
running time to check the k-edge-connectivity of a graph.

Future works include improving the running time of our algorithms. Can we
enumerate all the 2-edge-connected spanning subgraphs of a given plane graph
in constant time for each? Our algorithm enumerates “all” the k-edge-connected
spanning subgraphs of a given graph. Can we enumerate only all the “minimal”
k-edge-connected spanning subgraphs efficiently?
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Abstract. A knot in a directed graph G is a strongly connected sub-
graph Q of G with size at least two, such that no vertex in V (Q) is
an in-neighbor of a vertex in V (G) \ V (Q). Knots are a very important
graph structure in the networked computation field, because they char-
acterize deadlock occurrences into a classical distributed computation
model, the so-called OR-model. Given a directed graph G and a positive
integer k, in this paper we present a parameterized complexity analysis
of the Knot-Free Vertex Deletion (KFVD) problem, which consists
of determining whether G has a subset S ⊆ V (G) of size at most k such
that G[V \ S] contains no knot. KFVD is a graph problem with natural
applications in deadlock resolution, and it is closely related to Directed
Feedback Vertex Set. It is known that KFVD is NP-complete on pla-
nar graphs with bounded degree, but it is polynomial time solvable on
subcubic graphs. In this paper we prove that: KFVD is W[1]-hard when
parameterized by the size of the solution; it can be solved in 2k log ϕnO(1)

time, but assuming SETH it cannot be solved in (2 − ε)k log ϕnO(1) time,
where ϕ is the size of the largest strongly connected subgraph of G; it
can be solved in 2φnO(1) time, but assuming ETH it cannot be solved
in 2o(φ)nO(1) time, where φ is the number of vertices with out-degree at
most k; unless PH = Σ3

p , KFVD does not admit polynomial kernel even
when ϕ = 2 and k is the parameter.

Keywords: Knot · Deadlock resolution · FPT · W[1]-hard · ETH

1 Introduction

Distributed computations are usually represented by directed graphs called wait-
for graphs. In a wait-for graph G = (V,E), the vertex set V represents processes,
and the set E of directed arcs represents wait conditions [2]. An arc exists in
E directed away from vi ∈ V towards vj ∈ V if vi is blocked waiting a signal
from vj . The graph G changes dynamically according to a set of prescribed rules
(the deadlock model or dependency model), as the computation progresses. In
essence, the deadlock model governs how processes should behave throughout
computation, i.e., the deadlock model specifies rules for vertices that are not
c© Springer International Publishing AG, part of Springer Nature 2018
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sinks in G to become sinks [1]. The classical deadlock models related to our
work are presented below.

OR-model – In this model, for a process vi to become a sink, it suffices to
receive a signal from at least one of the processes from which it is waiting a
signal.
AND-model – In this model, a process vi can only become a sink when it
receives a signal from all the processes from which it is waiting a signal.

The study of deadlocks is fundamental in computer science and it can be
divided into four fields: prevention, avoidance, detection, and resolution (or
recovery). Whenever the prevention and avoidance techniques are not applied,
and deadlocks are detected, they must be broken through some intervention such
as aborting one or more processes to break the circular wait condition causing
the deadlock.

In this paper, we consider a scenario where deadlock was detected in a sys-
tem and some minimum cost deadlock-breaking set must be found and removed
from the system. Distributed computations are dynamic, however, as deadlock
is a stable property, whenever we refer to G we mean the wait-for graph that
corresponds to a snapshot of the distributed computation in the usual sense of
a consistent global state [7].

The deadlock resolution as an optimization problem differs according to the
considered deadlock model, i.e. according to the graph structure that charac-
terizes the deadlock situation. Although prevention, avoidance, and detection of
deadlocks have been widely studied in the literature, only few studies have been
dedicated to deadlock resolution [6,12,21,24], most of them considering only the
AND model. The characterization of a deadlock occurrence in each model and
the corresponding decision problem is defined below.

Deadlock in the OR-model – the occurrence of deadlocks in wait-for graphs
G working according to the OR-model are characterized by the existence of
knots in G [3,17]. A knot in a directed graph G is a strongly connected sub-
graph Q of G, such that |V (Q)| ≥ 2 and no vertex in V (Q) is an in-neighbour
of a vertex in V (G) \ V (Q). Given a graph G and a positive integer k, the
Knot-Free Vertex Deletion (KFVD) problem consists of determining
whether there exists a subset S ⊆ V (G) of size at most k such that G[V \ S]
is knot-free. This problem was proved to be NP-hard in [5].
Deadlock in the AND-model – the occurrence of deadlocks in wait-for graphs
G working according to the AND-model is characterized by the existence of
cycles in G [1,3]. Thus, given a graph G and a positive integer k, the problem
of determining whether there exists a subset S ⊆ V (G) of size at most k such
that G[V \ S] is cycle-free is the well-known Directed Feedback Vertex
Set (DFVS) problem, proved to be NP-hard in the seminal paper of Karp [20],
and proved to be fixed-parameter tractable in [8].

In this work we mainly consider the Knot-Free Vertex Deletion prob-
lem. The KFVD problem is closed related to DFVS problem not only because
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of their relation with deadlocks, but some structural similarities between them:
the goal of DFVS is to obtain a direct acyclic graph (DAG) via vertex deletion
(in such graphs all maximal directed paths end into a sink); the goal of KFVD
is to obtain a knot-free graph, and in such graphs for every vertex v there exists
at least one maximal path containing v that ends into a sink. Finally, every
directed feedback vertex set is a knot-free vertex deletion set; thus, the size of a
minimum directed feedback vertex set is an upper bound for KFVD.

In [5], Carneiro et al. present a polynomial-time algorithm for KFVD on
graphs with maximum degree three. They also show that the problem is NP-
complete even restricted to planar bipartite graphs G with maximum degree
equal to four (Δ(G) = 4) and maximum out-degree equal to two (Δ+(G) = 2).

The remainder of this work is organized as follows. In Sect. 2 we give the main
definitions and concepts used during the work. In Sect. 3 we show that KFVD
is W[1]-hard when parametered by k, the size of the solution. In Sect. 4 we
present two FPT-algorithms for KFVD considering different parameters as well
as tight lower bounds based on SETH and ETH, and some proofs of infeasibility
of polynomial kernelization.

2 Preliminaries

Graphs. We use standard graph-theoretic notation and concepts, and any unde-
fined notation can be found in [4]. A directed graph G = (V,E) consists of a set
of vertices V with n = |V | and a set of direct edges E with m = |E|. Let G[X]
denote the subgraph of G induced by the vertices in X ⊆ V . For vi ∈ V (G), let
Di denote the set of descendants of vi in G (nodes that are reachable from vi,
including itself). Let Ai denote the set of ancestors of vi in G (nodes that reach
vi, including itself). Let Oi ⊆ Di be the set of immediate descendants of vi ∈ G
(descendants that are one arc away from vi). The out-degree (resp., in-degree)
of a vertex v is denoted by deg+(v) (resp., deg−(v)). In addition, δ+(G) (resp.,
δ−(G)) denotes the minimum out-degree (resp., in-degree) of a vertex in G.

Parameterized Complexity. Basic concepts, notation, and definitions on
parameterized complexity can be found in [11,14,15,23].

A parameterized problem Π is called Fixed Parameter Treatable (FPT) if
there is an algorithm A (called FPT-algorithm) that computes every instance I =
(χ, k) correctly and decides if I is a yes- or no- instance in time f(k).|χ|O(1) for
some computable function f . Thus, if k is set to a small value, the growth of the
function in relation to χ is relatively small. Kernelization is a powerful technique
commonly used to give FPT-algorithms for parameterized problems that mainly
consist of, in polynomial time, transforming an instance input I into a new
instance I ′ in such way that the size of I is somehow bounded by the parameter
k. In order to show lower bounds on the kernel size we use a parameterized
polynomial transformation (called PPT-reduction). Such reduction is defined
next.
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Definition 1 PPT-reduction: Let Π(k) and Π ′(k′) be parameterized prob-
lems where k′ ≤ g(k) for some polynomial function g : N → N. An FPT-
reduction from Π(k) to Π ′(k′) is a reduction R such that: (i) for all χ, we have
x ∈ Π(χ) if and only if R(χ) ∈ Π ′(k′); (ii) R is computable in polynomial time
(in relation to k).

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH)
and its strong variant, the Strong Exponential Time Hypothesis (SETH), are
well-known and accepted conjectures that first appeared in [18] and are com-
monly used to proof lower bounds in parameterized computation. In the litera-
ture, several lower bounds have been found to many well-known problems, under
such conjectures [11].

Conjecture 1. [19,22]
Exponential Time Hypothesis (ETH): There is a positive real c such that
3-CNF-Sat cannot be solved in time 2cn(n + m)O(1), where n is the number of
variables, and m is the number of clauses. In particular, 3-CNF-Sat cannot be
solved in 2o(n)(n + m)O(1) time.

Conjecture 1 is commonly used together with the Sparsification Lemma [19],
meaning that 3-CNF-Sat cannot be solved in 2o(n+m)(n + m)O(1) time. In this
work, without loss of generality, whenever we refer to ETH we mean to the latter
version of the hypothesis.

Conjecture 2. [19,22]
A consequence of the Strong Exponential Time Hypothesis (SETH):
CNF-Sat cannot be solved in time (2 − ε)n(n + m)O(1), where n is the number
of variables, and m is the number of clauses.

Conjecture 2 is an immediate consequence of the Strong Exponential Time
Hypothesis (SETH), whose formal definition is omitted due to space constraints.

Additional Concepts and Notation. Sinks are vertices with out-degree zero
and sources are vertices with in-degree zero. We use PH to denote the polynomial
hierarchy, and Σ3

p to denote its third level.

3 W[1]-Hardness

Let k-KFVD stand for the parameterized version of KFVD, where it is asked
whether there is a set S with at most k vertices such that G[V (G) \ S] is knot-
free. We show next that unless FPT = W [1], there is no FPT-algorithm for
k-KFVD.

Theorem 1. The k-KFVD problem is W[1]-hard.

Proof. The proof is based on an FPT-reduction from Multicolored
Independent Set, a well-known W[1]-complete problem [9]. Let (G′, k′) be
an instance of Multicolored Independent Set, and let V 1, V 2, . . . , V k′

be
the color classes of G′. We construct an instance (G, k) of Knot-Free Vertex
Deletion as follows (see Fig. 1):
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w1 w2 w3 w4 wm

G’

G
C1 C2 C3 Ck

Fig. 1. Instance (G′, k′) of Multicolored Independent Set and instance (G, k) of
k-KFVD. (Color figure online)

1. for each vertex v′ in G′, create a vertex v in G;
2. for a color class V i in G′, create a direct cycle Ci with its corresponding

vertices in G;
3. for each edge ej = (u′, v′) in G′ create a strongly connected component (scc)

Wj with two artificial vertices, uw
j and vw

j ;
4. for each artificial vertex vw

j , create an edge from vw
j towards v in G.

5. finally, set k = k′.

Suppose that S′ is a k-independent set with exactly one vertex of each set
V i of G′. By construction, G has k knots, one for each color class V i in G′.
Thus, at least k vertex removals are necessary to make G free of knots. We set
S = {v | v′ ∈ S′}. Next, we show that G[V \ S] is knot-free. Each knot Ci is an
induced cycle of G, and it is associated to a color class V i of G′. As S′ has one
vertex of each color class V i, all induced cycles Ci will become a directed path
after the removal of S. Now, it only remains to show that no new knots appear
after the removal of S. Notice that S′ is a k-independent set of G′; thus, each
scc Wj in G is adjacent to at least one vertex that is not in S. Hence, each scc
Wj will have at least one of its exits preserved, i.e., no new knots are created.

Conversely, suppose that G has a set of vertices S of size k such that G[V \S]
is knot-free. Note that G have k knots. Then, exactly one vertex of each cycle
Ci is in S. By deleting S, each cycle Ci related to V i will be turned into a path,
and no new knots are created after the deletion of S; thus, every scc Wj will
have at least one of its exits preserved. We set S′ = {v′ | v ∈ S}. Since each
scc Wj corresponds to an edge of G′, and at least one vertex of each edge of
G′ is not in S′ (otherwise G[V \ S] is not knot-free), S′ has no pair of adjacent
vertices; moreover, S′ is composed by one vertex of each Ci. Therefore S′ is a
multicolored independent set of G′. ��
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Corollary 2. Assuming ETH, there is no f(k)no(k) time algorithm for KFVD
for any computable function f .

Proof. It is known that Multicolored Independent Set does not admit
a f(k)no(k) time algorithm, unless ETH fails (see [11]). As the parameterized
reduction present in Theorem 1 have linear parameter dependence, we obtain
the tight lower bound for KFVD. ��

4 Additional Parameters

In this section we present two FPT-algorithms for the KFVD problem. The
first algorithm takes into account the size of a largest scc and the size k of the
solution as aggregated parameters. The second algorithm uses the number of
vertices with maximum out-degree at most k as parameters.

4.1 The Size of the Largest Strongly Connected Component
as a Parameter

In this section we consider the size of the largest scc of the input as an additional
parameter. The choice of the size of a largest scc as a parameter is mainly inspired
by the reductions presented in [5] that prove the NP-hardness of KFVD (even
for restricted graph classes). Such reductions result in graphs with scc’s of size
at most three, and planar graphs with scc’s of size at most six.

From the W[1]-hardness of k-KFVD, and the NP-completeness of KFVD on
graphs having only scc’s of small size, the following question arises: “What is
the complexity of k-KFVD restricted to graphs G having only scc’s of bounded
size?”. That question motivates the following parameterized problem:

[k, ϕ]–KFVD
Instance: A directed graph G = (V,E), and a positive integer k;
Parameter: k and ϕ (the size of a largest scc of G);
Goal: Determine if G has a set S ⊂ V (G) such that |S| ≤ k and G[V \ S] are
knot-free.

We first describe a 2k log ϕnO(1) time algorithm for [k, ϕ]–KFVD.

Lemma 3. [k, ϕ]–KFVD can be solved in 2k log ϕnO(1) time.

Proof. Algorithm 1 produces a bounded search tree to solve [k, ϕ]–KFVD in
2k log ϕnO(1) time. In each node of the search tree all possible vertices to be
removed of the smallest knot of the current graph are analyzed (their number
is bounded by ϕ). Next, for each possibility, one selected vertex is removed
generating a new branch, where the previous steps will be recursively applied
until obtaining a directed graph free of knots, or removing exactly k vertices.
Since any knot has at most ϕ vertices and the branching is bounded by k,
Algorithm 1 is performed in 2k log ϕnO(1) time.

It is easy to see that Algorithm 1 is correct due to the following observations:
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Algorithm 1. KFVD(G, k)

Result: true if G has a knot-free vertex deletion set of size k, and false
otherwise.

1 if G is knot-free then
2 return true;
3 else
4 if k = 0 then
5 return false;
6 end if

7 end if
8 answer := false;
9 Q ← set of vertices of the smallest knot in G;

10 foreach vi ∈ Q do
11 if G − vi is knot-free then
12 return “true”;
13 else
14 answer := answer ∧ KFVD(G − vi, k − 1, ϕ);
15 end if
16 return answer;

17 end foreach

(i) Algorithm 1 effectively checks all possible sets of size at most k that produce
a solution;

(ii) all knots in a direct graph can be found and enumerated in linear time with
a depth-first search [10];

(iii) the deletion of a vertex cannot increase the size of a largest scc;
(iv) any knot of a directed graph must have at least one vertex removed. ��

Lower Bounds Based on SETH
Now, we show that [k, ϕ]–KFVD cannot be solved in (2 − ε)k log ϕnO(1) time,

unless SETH fails. To show this lower bound we present a SERF-reduction from
CNF-Sat to KFVD.

Theorem 4. Assuming SETH, there is no (2− ε)k log ϕnO(1) time algorithm for
KFVD for any ε > 0, where ϕ is the size of a largest strongly connected subgraph
of the input.

Proof. Let F be an instance of CNF-Sat [16] with n variables and m clauses.
From F we build a graph GF = (V,E) which will contain a set S ⊆ V (G) of
size k = n such that G[V \S] is knot-free if and only if F is satisfiable. The
construction of GF is described below:

1. For each variable xi in F , create a directed cycle with two vertices (“variable
cycle”), txi

and fxi
, in GF .

2. For each clause Cj in F create a directed cycle with two vertices (“clause
cycle”), 	1cj and 	2cj , in GF .

3. for each literal xi (resp. x̄i) in a clause Cj , create an arc from 	1cj to txi

(resp. fxi
) (Fig. 2).
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tx1

C1

C1 = X1 V X2 V X3 C2 = X1 V X2 V X3 C3 = X1

______

fx1 tx2 fx2 tx3 fx3

C2 C3

Fig. 2. The resulting graph G = (V, E) from a formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨
x3) ∧ (x1) where |V | = O(n + m), |E| = O(n + m) and ϕ = 2.

At this point it is easy to see that F has a truth assignment if and only if
GF has a set S of vertices containing exactly one vertex of each knot of GF ,
such that the removal of S from GF creates n sinks, for which any clause cycle
reaches at least one of them.

Notice that the construction of GF can be done in polynomial time, ϕ = 2
and k = n. Therefore, if KFVD can be solved in (2 − ε)k log ϕ|V (GF )|O(1) time
for ε > 0, then we can solve CNF-Sat in (2 − ε)n(n + m)O(1) time, i.e., SETH
fails. ��

Lower Bound on the Kernelization
Now, we present some lower bounds on the size of a kernel to [k, ϕ]–KFVD

and k-KFVD.

Theorem 5. Unless PH = Σ3
p , k-KFVD does not admit a polynomial kernel,

even when a largest scc of the input graph G has size 2.

Proof. In Red-Blue Dominating Set (RBDS) we are given a bipartite graph
G = (B ∪ R,E) and an integer k and asked whether there exists a vertex set
R′ ⊂ R of size at most k such that every vertex in B has at least one neighbor
in R′. RBDS parameterized by (|B|, k) is equivalent to Small Universe Set
Cover, and RBDS parameterized by (|R|, k) is equivalent to Small Universe
Hitting Set. Both problems were shown to have no polynomial kernel (see
[13]), unless PH = Σ3

p .
The proof is a PPT-reduction from RBDS parameterized by (|R|, k). Let

(G, k) be an instance of RBDS parameterized by (|R|, k). We build an instance
(G′, k′) of Knot-Free Vertex Deletion as follows (see Fig. 3):

1. for each vertex vi in R, create in G′ a weakly connected component Ci as
follows:
(a) create two directed cycles of size two, (c1i , c

2
i ) and (c3i , c

4
i );
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(b) create an edge from c3i towards c2i .
2. for each vertex uj in B create a set Wj = {C1

j , C2
j , . . . , Ck′+1

j }, were each Cz
j

is a directed cycle of size two;
3. for each edge (ui, uj) in G, create one directed edge from a vertex of each

Cz
j ∈ Wj to the vertex c2i .

4. finally, set k′ = |R| + k.

w1

Wj

1

w2 wk’+1

C

vi

uj

i

2C i

3Ci

4C i

Fig. 3. PPT-reduction from RBDS parameterized by (|R|, k) to k-KFVD with ϕ = 2.
(Color figure online)

Suppose that S is a red/blue dominating set of G with size k. We build from
S a knot-free vertex deletion set S′ of G′ with size |R| + k as follows: for each
vertex vi ∈ R we add c1i to S′ if vi /∈ S, and add c2i and c3i to S′ if vi ∈ S. Since
S is a red/blue dominating set of G, every cycle in each Wj will have an arc
pointing to one sink c1i in G′[V \ S′]. In addition, all other vertices have either
turned into sinks or reach a sink in G′[V \ S′]. Therefore G′[V \ S′] is knot-free,
and |S′| = |R| + k.

Conversely, suppose that G′ has a set S′ of size k′ = |R| + k such that
G′[V \ S′] is knot-free. We build from S′ a red/blue dominating set S of G with
size at most k as follows: add vertex vi in S if c1i /∈ S′. Now, we show that S is a
red/blue dominating set of G. First observe that G′ has |R| knots, and for each
vi ∈ R, {c1i , c

2
i } induces a knot of G′; then either c1i ∈ S′ or c2i ∈ S′. In addition,

for any vi ∈ R the removal of c2i creates another knot induced by {c3i , c
4
i }; thus

c1i /∈ S′ ⇒ c2i ∈ S′ ⇒ {c3i , c
4
i } ∩ S′ = ∅. Therefore, as G′ has |R| knots and

|S′| = |R| + k, it follows that |S| ≤ k. Since each Wj has |R| + k + 1 cycles,
without loss of generality we can assume that no vertex in Wj is in S′, and as
G′[V \ S′] is knot-free, any vertex in Wj (representing a blue vertex) reaches
a sink in G′[V \ S′], which by construction is a vertex c1i (representing a red
vertex). Then S is a set of red vertices with size at most k that dominates all
blue vertices of G. ��
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Corollary 6. Unless PH = Σ3
p , [k, ϕ]–KFVD does not admit a kernel of size

kf(ϕ).

Proof. This follows from Theorem 5 and the fact that a kernel of size kf(ϕ) for
[k, ϕ]–KFVD, would be a polynomial kernel for k–KFVD when a largest scc of
the input graph G has size 2.

4.2 Number of Vertices with Few Out-Edges as a Parameter

An interesting property related to the degree of the vertices is that if we are
interested in removing a set S with k vertices to obtain a knot-free graph, then
the out-neighbors of the vertices that will be turned into sinks are contained in
S. Thus, if we look for only k removals to obtain a knot-free graph then the
candidate vertices to become sinks are the vertices with out-degree at most k.
At this point, we consider the number of vertices with out-degree at most k as
a parameter.

φ-KFVD
Instance: A directed graph G = (V,E), and a positive integer k;
Parameter: φ (the number of vertices v ∈ G with deg+(v) ≤ k);
Goal: Determine if G has a set S ⊂ V (G) such that |S| ≤ k and G[V \ S] are
knot-free.

Lemma 7. φ-KFVD can be solved in 2φnO(1) time. In addition, it cannot be
solved in 2o(φ)nO(1) time, unless ETH fails.

Proof. Let L be a set of vertices with deg+(vi) ≤ k of an input graph G. To
solve φ-KFVD in 2φnO(1) time, it is only needed to try the deletion of all out-
neighbors of the subsets of L, checking if the deletion does not exceed k vertices
and if the resulting graph is knot-free.

In order to show a lower bound based on ETH to φ-KFVD, we can transform
an instance F of 3-CNF-Sat to an instance GF of KFVD using the SERF-
reduction presented in Theorem4, obtaining in polynomial time a graph with
φ = O(n + m). ��
Corollary 8. Unless PH = Σ3

p , KFVD does not admit polynomial kernel when
parameterized by k and φ.

Proof. We start by making the same transformation as in Theorem 5, obtaining
a graph G. Now, for each scc associated with a blue vertex, we add k auxiliary
vertices, and add edges in order to transform the component into a complete
directed subgraph with k +2 vertices and (k +2)(k +1) arcs. Now, the resulting
graph G has φ = 4|R|, and the rest of the proof follows as in Theorem 5. ��
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5 Conclusions

In this work we study the Knot-Free Vertex Deletion problem from a
parameterized complexity point of view. We proved that KFVD with the nat-
ural parameter k is W[1]-hard through a FPT-reduction from Knot-Free
Vertex Deletion, a well-known W[1]-complete problem [9]. Next we proposed
two FPT-algorithms, each exploring a different additional parameter. The first
parameter, ϕ, is the maximum size of a scc of the input graph. We show that
KFVD can be solved in 2k log ϕnO(1) time and unless SETH fails it cannot be
solved in (2 − ε)(k log ϕ)nO(1) time. Using a PPT-reduction from RBDS param-
eterized by (|R|, k) we show that k-KFVD has no polynomial kernel even if the
input graph has only scc’s with size bounded by 2. The second algorithm runs
in 2φnO(1) time and it is appropriate for graphs where there are few vertices,
φ, with small out-degree. In addition, assuming ETH, we show that it cannot
be done in 2o(φ)nO(1) time. We also show that KFVD has no polynomial kernel
when the number of vertices with out-degree at most k is a parameter.

Table 1 summarizes the results presented in this work.

Table 1. Fine-grained parameterized complexity of Knot-Free Vertex Deletion.

Parameter Complexity Running time Lower bounds assuming (S)ETH

k W[1]-hard nk no f(k)× no(k) alg.

k, ϕ FPT 2k log ϕ × nO(1) no (2− ε)k log ϕ × nO(1) alg.

φ FPT 2φ × nO(1) no 2o(φ) × nO(1) alg.

Recall that knots characterize the presence of deadlock. The algorithms pre-
sented in this work have also practical value. The most common approach to
deal with deadlock is to forbid the formation of cycles in the direct graph as
the computation proceeds. This approach, although simple and easy to imple-
ment, is very restrictive. Having an algorithm that breaks the knots of a graph
(therefore removing deadlocks) in exponential time, but over a controlled char-
acteristic, allows the construction of a more permissive deadlock prevention. For
example, as Algorithm 1 is FPT with respect to k and the size of a largest scc,
it is possible to forbid only the formation of large knots, rather than cycles.

References

1. Barbosa, V.C.: The combinatorics of resource sharing. In: Corrêa, R., Dutra, I.,
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Abstract. The problem of truth discovery arises in many areas such
as database, data mining, data crowdsourcing and machine learning. It
seeks trustworthy information from possibly conflicting data provided by
multiple sources. Due to its practical importance, the problem has been
studied extensively in recent years. Two competing models were pro-
posed for truth discovery, weight-based model and probabilistic model.
While (1+ ε)-approximations have already been obtained for the weight-
based model, no quality guaranteed solution has been discovered yet
for the probabilistic model. In this paper, we focus on the probabilistic
model and formulate it as a geometric optimization problem. Based on
a sampling technique and a few other ideas, we achieve the first (1 + ε)-
approximation solution. The general technique we developed has the
potential to be used to solve other geometric optimization problems.

Keywords: Geometric optimization · Truth discovery
High-dimension · Data mining

1 Introduction

Truth discovery has received a great deal of attention in recent years in databases,
data crowdsourcing, machine learning and data mining [9,10,13,14,16]. It
emerges from various practical scenarios such as copying detection [5], data
fusion [3] and conflicting information resolving on the web [16]. In a typical
scenario, the unknown truth for one or multiple objects can be viewed as a
vector in a high-dimension space. The information about the truth vector may
come from multiple sources. Those sources may be inaccurate, conflicting or even
biased from the beginning if they come from subjective evaluation. Our goal is
to infer the truth vector from these noisy information.

A naive method for this problem is to take the average of all the vectors
from sources as the ground truth (for coordinates correspondent to categorical
data, take the majority vote). However, this approach, which inherently treats all
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sources as equally important, is vulnerable to unreliable and malicious sources.
Such sources can provide information that pulls the average away from the truth.
A more robust type of approaches is to give weights to sources to indicate their
reliability and use the weighted average or weighted majority as the ground truth.
However, since the weights are often unknown, the goal of finding the ground
truth is coupled with the task of reliability estimation. This type of approaches
is referred as a truth discovery approach. Among all, there are two competing
and sometimes complementary frameworks that are widely accepted and used
for different data types.

Weight-Based Truth Discovery. In this framework, both the truth and the
weights are treated as variables. An objective function is defined on these vari-
ables [10]. Then an alternating minimization algorithm can be used to solve the
problem. In each iteration, the algorithm fixes one set of variables (either the
truth variables, or the weight variables) and optimizes the other. This procedure
continues until a stable solution is reached. Many existing methods [4,7,11,16]
follow this framework and justify themselves by experimenting with different
types of real-world datasets. However, none of these methods provides any the-
oretical guarantee regarding the quality of solution. Recently, Ding et al. [2]
gave the first algorithm that achieves a theoretical guarantee (i.e., a (1 + ε)-
approximation) for a well-known weight-based model of truth discovery intro-
duced in [10]. Later, Huang et al. [19] further improved the running time to near
quadratic.

Probabilistic Truth Discovery. Probabilistic models lie in a different cate-
gory of models for truth discovery. They were also studied extensively in the
literature [12,15,17,18]. Instead of giving weights to indicate the reliability of
all sources, these models assume that the information for each source is gener-
ated independently from some distribution that depends on the truth and the
reliability of the source. Then the goal under these models is to find the truth
that maximizes the likelihood of the generated information from all sources. The
probabilistic models have been shown to outperform the weight-based methods
on numerical data [17]. They also prevail other models in the case where sources
come from subjective evaluation [13]. For the qualify of the optimization, [15]
gave an iterative algorithm with guaranteed fast convergence to a local optimum.

1.1 Our Results

We propose a probabilistic truth discovery model, reformulate it as an optimiza-
tion problem and give a PTAS (Polynomial-Time Approximation Scheme) to
solve it. We assume that each observation of a source is generated around the
truth vector with variance corresponding to the reliability of the source. Then,
the goal of finding the truth vector with the maximum likelihood can be formu-
lated as an optimization problem. Instead of directly solving the optimization
problem, we convert it to the following more general geometric optimization
problem:
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Given {p1, p2, · · · , pn} ⊂ R
d, find x ∈ R

d to minimize
n∑

i=1

f(‖x − pi‖),

where f is a function satisfying some reasonable properties.
This general problem encloses as special cases the classic 1-median and 1-

mean problems, and the more general problem of minimizing p-th power of
distances. Moreover, by considering the corresponding functions with an upper-
threshold, i.e, f(�) = min{�,B}, f(�) = min{�2, B} and f(�) = min{�p, B}, one
can capture the outlier versions of all these problems.

We give a sampling-based method that solves the above optimization problem
up to a factor of 1+ ε for any ε > 0 in quadratic running time. Thus, it not only
solves our truth discovery problem but also gives a unified approach to solve all
the above problems under this framework.

1.2 Our Techniques

One property that we do not impose on the function f is convexity. Requiring f
to be convex will make our problem too restrictive. For example, the cost function
ftruth(defined later) is non-convex in our truth discovery problem. The threshold
functions that are used to model the outlier versions of the 1-center problems
are also non-convex. Without the convexity property, iterative approaches such
as gradient descent and EM do not guarantee the global optimality. General
coreset technique (such as the one in [6]) which reduces the size of the problem
will not work, either. The dimensionality is not reduced by those techniques so
that the problem is still hard even for the coreset.

Instead of using methods in continuous optimization or general sampling
technique, our algorithm is based on the elegant method Badoiu, Har-Peled
and Indyk developed to give fast algorithms for many clustering problems [1,8].
Roughly speaking, [1] showed that a small set of sample points X can guarantee
that the affine subspace span(X) contains a (1 + ε) approximate solution for
these clustering problems. Therefore both the size and the dimensionality can
be reduced.

Directly applying [1] does not work for non-convex cost function. In this
paper, we extend [1] to a more general family of cost functions, including the
non-convex cost function for our truth discovery problem. We will elaborate the
challenges in Sect. 3.2.

2 Problem Formulation and Main Results

2.1 Probabilistic Truth Discovery

We first set the stage for the problem. The unknown truth can be represented as
a d dimensional vector p∗, as justified in [10]. There are n sources, and the obser-
vation/evaluation made by the i-th source is denoted as pi which also lies in the d
dimensional space Rd. In our model, we assume that each observation/evaluation
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is a random variable following a multi-variate Gaussian distribution centered at
the truth p∗ with covariance σ2

i Id.1 Each unknown parameter σi ≥ 0 represents
the reliability of the source; the smaller the variance, the more reliable the source
is.

We formulate the problem as finding the (p∗, σ = (σi)i∈[n]) that maximizes
the likelihood of the random procedure generating p∗. We impose a hyper-
parameter σ0 > 0 and require σi ≥ σ0 for every i ∈ [n]. It is naturally interpreted
as an upper bound of the reliability of all sources, but there is another interpre-
tation that we will discuss later.

Given the set of observation P = {pi}n
i=1 ⊂ R

d under this probabilistic model
and a hyper-parameter σ0, we need to find a point x that maximizes the following
likelihood function:

n∏

i=1

N (pi | x, σ2
i Id) =

n∏

i=1

(
1√

2πσi

)d

exp
[
−‖pi − x‖2

2σ2
i

]
.

Taking negative logarithm and optimizing the quantity over all valid vectors
σ = (σi)i∈[n], we obtain the following optimization problem:

min
x∈Rd,σ

{
nd

2
ln (2π) +

n∑

i=1

(
d ln σi +

‖pi − x‖2
2σ2

i

)}
, s.t. σi ≥ σ0,∀i ∈ [n].

(1)

Lemma 1. For a fixed x ∈ R
d, the following vector σ minimizes the objective

function in (1):

σi = max
{

σ0, ‖pi − x‖/
√

d
}

, ∀i ∈ [n].

Applying Lemma 1, the optimization problem now only depends on the point
x ∈ R

d:

min
x∈Rd

{
nd

2
ln (2π) +

∑

‖pi−x‖<σ0
√

d

(‖pi − x‖2
2σ2

0

+ d ln σ0

)

+
∑

‖pi−x‖≥σ0
√

d

(d

2
+ d ln

‖pi − x‖√
d

)}
.

Notice that scaling x, σ0 and all points pi by a fact of c only changes the value of
the function by a constant additive term (nd ln c). For simplicity, we will apply

1 For categorical data, the Gaussian distribution may cause fractional answers, which
can be viewed as a probability distribution over possible truths. In practice, variance
for different coordinates of the truth vector may be different and there might be
some non-zero covariance between different coordinates; however, up to a linear
transformation, we may assume the covariance matrix is σ2

i Id.
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a scaling to the triple (x, σ0, {pi}n
i=1) �→ (x′, σ′

0.{p′
i}n

i=1) so that σ′
0 = 1/

√
d and

drop the prime symbol if there is not ambiguity. The objective function becomes:

min
x∈Rd

{
nd

2
ln (2π) +

∑

‖pi−x‖<1

(d‖pi − x‖2
2

− d ln d

2

)

+
∑

‖pi−x‖≥1

(
d

(
1
2

+ ln ‖pi − x‖
)

− d ln d

2

) }
.

Moreover, we can drop the constant term nd
2 ln (2π) − nd

2 ln d, and then divide
the whole function by d/2, the final optimization problem becomes:

min
x∈Rd

n∑

i=1

ftruth(‖x − pi‖) where ftruth(�) =

{
�2 0 ≤ � < 1
1 + ln �2 � ≥ 1

. (2)

This objective function can be seen as the summation of costs from each indi-
vidual point. The cost function f for each pi is quadratic when its distance to
the variable p is close, and it grows logarithmically when pi is far away.

The function
∑n

i=1 ftruth(‖x − pi‖) can be served as an alternative way of
evaluating the solution’s quality other than the negative log-likelihood since:
(1) It has non-negative objective function value so that multiplicative approxi-
mation factor can be properly defined, which serves as a criterion of the solution’s
quality.
(2) The (1 + ε) approximation of

∑
ftruth gives the following guarantee. Let

Q0 =
(

1√
2πσ0

)d

be the maximum possible likelihood for the optimum solution
of any instance with n points and d dimensions. Let Q∗ be the likelihood for
the optimum solution to the given instance. If Q∗ = Q0e

−t, then we shall give a
solution with likelihood at least Q0e

−(1+ε)t.

Interpretation of the Parameter σ0. σ0 in our model is introduced to reflect
the overall reliability of the dataset. If each σi is unconstrained, or in other words
σ0 = 0, then quantity (1) can tend to −∞ by letting pi = x and σi → 0 for some
i ∈ [n]. At this point, it may seem that the introduction of the parameter σ0 is
a little bit unnatural. However, we argue that this issue caused by the singular
solutions does not only exist in our model; it comes with the truth discovery
problem itself. If one does not impose any assumption on the reliability of the
sources, then a solution (in any model) can be: one source is 100% reliable, all
the other sources are not reliable at all and the truth is the data given by the
reliable source. Such a model will not be general enough. Any meaningful model
needs to be able to capture more than this type of solutions.

With the understanding that σ0 gives an upper bound on the reliability of
the sources, we can discuss how σ0 affects the optimum solution of our problem.
In one extreme, σ0 is very small, meaning that any source can be very reliable.
Then in our final optimization problem (2), the points pi’s are far away from
each other. (Recall that to obtain (2), we scaled the original pi �→ p′

i = pi√
dσ0

.)
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Then for a typical center point x, most pi’s will have large ‖pi − x‖. For these
points, the f values are logarithmic in their distances to the center and thus are
very insensitive to the location of the center. In this case, the optimum solution
x will be very close to some input point pi.

Consider the other extreme where σ0 is very large. Then, the points pi are
close to each other. In this case, the cost function will be distance square when
x is close to all points. The problem then becomes the classic 1-mean problem.
This coincides with our intention of setting the “overall confidence” σ0: σ0 being
very large indicates that all sources are unreliable when considered alone, and it
is wiser to take the average than to favor a particular source.

It might seem unreasonable to set a hyper parameter in “truth discovery”
problem because “truth” is usually assumed to be invariant to some hyper-
parameter we select in our model. Indeed, the truth should be invariant if it is
a numerical fact such as the height of a mountain or today’s weather forecast at
some location. But if we are talking about the rating of a movie or evaluation
of an instructor, it is presumptuous to suggest that there exists some “truth
discovery” model which can somehow “calculate” such truth exactly or approx-
imately. In such setting, the best we can guarantee is providing a model that
can rule out some outliers for the users. The hyper-parameter is provided for the
users to decide how much portion of the sources are outliers to him/her.

Here we present our main result for probabilistic truth-discovery problem. It
is directly implied by our main theorem, Theorem 3.

Theorem 1. Let 0 < ε ≤ 1. Let P be a set of n points in R
d and G(x) =∑

p∈P ftruth(‖x − p‖). A (1 + ε)-approximate solution can be obtained in time

O(2(1/ε)O(1)
d + n2d).

3 Solution for General 1-Center Optimization Problem

3.1 General Description of the Algorithm

The following notations are used throughout this section. Given the point set
P ⊂ R

d, a cost function f : R≥0 → R, let G(x) =
∑

p∈P f(‖x − p‖) denote the
objective function. We reuse the variable popt as the optimizer of G(x).

We show in advance the following three properties that a general cost function
f need to satisfy in order to apply our extended sampling method.

Property 1. (Regularity) f is a continuous, non-negative, monotonically
increasing function.

Property 2. (Sub-proportionality)2 ∃α ≥ 1 : f(kx) ≤ kαf(x) for any k ≥ 1,
x ≥ 0. We say α is the proportional degree of f if it is the smallest α satisfies
such property.

2 Also referred as polynomial growing function or Log-Log Lipschitz function in liter-
ature.
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Property 3. The function f can be computed in polynomial time with respect to
the size of the input. The inverse of f , defined as f−1(y) = supx{x : f(x) = y},
should also be able to calculate in polynomial time w.r.t to the size of x when
y ≤ 2f(x).

Remark 1. The only place Property 3 is used is in Theorem 3. It is imposed to
ensure a polynomial running time in arithmetic calculation.

Remark 2. Continuity can be implied by Property 2 by taking k → 1. Also, by
taking x = 0 in Property 2, one can infer that f(0) ≥ 0. With the fact that f is
non-decreasing, one can also infer that f is non-negative.

Thus essentially the first two properties are (i) monotonically increasing, which
is a common assumption when a function is referred as a “cost” function; (ii)
sub-proportionality, which can be roughly thought of as requiring the function
not growing exponentially. Intuitively speaking, an equivalent statement is that
for every a > 0, the graph of the unique function g(x) = Cxα going through
(0, 0) and (a, f(a)) is completely above (can overlap) the graph of f(x) when
x ≥ a.

From now on, these three properties are always assumed for a cost function
f unless stated otherwise.

To approximate the optimizer popt of G(x), we generalize an existing result
from Bādoiu, et al. [1] (for convex functions) to our problem where the function
can be non-convex. The key idea is to sample a core-set X from the input points
P such that the affine subspace span(X) contains a (1+ε)-approximate solution.
We summarize the method in a general way in the following procedures:

1. The value L is chosen so that the following two things can both happen:
(a) It’s possible to sample a few points and guarantee that with constant

probability, the Euclidean distance from one of the sample is close enough
to the optimizer popt, i.e. ‖si − popt‖ ≤ L for some sample si.

(b) If the distance from p′ to popt is O(εL) for sufficiently small constant in
this big O notation, p′ is guaranteed to be (1 + ε) approximate solution.

2. Continue the sampling in batches so that for each batch of samples, either
the (1 + ε)-approximate solution is already in the affine subspace spanned by
the sampled points, or the subspace becomes closer to popt by a factor about
1 + ε. It is also required that the size of each batch is poly(1/ε).

3. Repeat step 2 until the distance from span(X) to popt is smaller than O(εL),
where X is the set of sampled points.

4. Inside span(X), draw a grid around each point in X. The radius of the grid
is 2L and the side length is εL. Then there is an (1+ ε) approximate solution
in these grid points.

Remark 3. To be able to shorten from the initial gap L to the desired gap O(εL),
the number of batches required on average is bounded by poly(1/ε), which means
it only depends on the approximation factor. Since each batch contains poly(1/ε)
many samples, in total the sample set X is of size poly(1/ε).
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Remark 4. Notice that in Step 4 we need to approximately know the value L to
perform the actual algorithm. This is guaranteed in our algorithm for general
cost function f , as we showed in the next section.

3.2 The Choice of L

Let us first focus on the choice of L for a general cost function f . Denote AVG =
G(popt)/n. If f(x) = x, L can be chosen to be 2G(popt)/n in Step 1, as shown in
[1]. We can think of this L as the average cost contributed from points in P . So
for condition (b), it is trivial that εL/2 is the necessary distance from p′ to popt

to make p′ a (1 + ε)-approximated solution. At the same time, L is also roughly
the “average” of Euclidean distance from each point in P to popt since the cost
function f is an identity function. So for condition (a), a point s ∈ P such that
‖s − popt‖ ≤ L can be regarded as an “average” case. An average case is easy to
approximate using sampling.

However, such coincidence will not happen for general f . If f is a slowly
growing function (e.g. log(x), 1 − 1/x) and L is chosen like above, condition (b)
still holds but L is far from the “average” of Euclidean distances to popt in some
of worse cases. To compromise, we do not require L to be “average”. We only
require roughly εn points in P satisfying that the distance from them to popt is
less than L. Then on average, we can obtain such point after O(1/ε) samples.
Consequently, condition (a) and (b) can both be satisfied again. The following
lemma shows the exact choice of the value L, the unknown variables A and B
will be removed later:
Lemma 2. Let 0 < ε ≤ 1. Let P ⊂ R

d and |P | = n, G(x) =
∑

p∈P f(‖x − p‖)
with α as the proportion degree of f . Suppose p̃ is the εn�-th closest point to
the optimal solution popt among the points in P . Choose L accordingly if the
following two cases apply:
(i) If we know a value A such that f(‖p̃ − popt‖) ∈ [A, (1 + ε/3)A), choose
L = f−1((1 + ε)A).
(ii) If f(‖p̃ − popt‖) ≤ εAVG/B for some constant B ≥ 3, choose a value L ∈
[f−1(εAVG/B), f−1(εAVG/3)].
Then p′ is a (1 + ε)−approximate solution of G if ‖p′ − popt‖ ≤ εL/(4α).

Proof. We prove case (i) first. Let P = {p1, p2, · · · , pn} so that ‖p1 − popt‖ ≤
‖p2 − popt‖ ≤ · · · ≤ ‖pn − popt‖. Then i ≥ εn/4� implies f(‖pi − popt‖) ≥ A
since f is non-decreasing. By Markov’s inequality the value A can not be greater
than AVG/(1 − ε/4). This is a fact we are going to use in the following argument
and later in Lemma 5. Now assume p′ is a point satisfies ‖p′ − popt‖ ≤ εL/(4α).
For pi with i < εn/4�, the total increase of cost by moving popt to p′ is at most

∑

i<	εn/4

f(‖pi − p′‖) ≤ ε

n

4
f(L +

Lε

4α
)

≤ ε
n

4
(1 +

ε

4α
)αf(L) ≤ ε

n

4
(1 +

ε

3
)(1 + ε/3)A

≤ ε
n

4
(1 +

ε

3
)(1 + ε/3)

AVG

(1 − ε/4)
<

16
27

εG(popt)
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The second inequality comes from the sub-proportionality of f . For the remaining
points, If ‖pi − popt‖ < L − εL/(4α) but ‖pi − popt‖ ≥ ‖p̃ − popt‖, then

f(‖pi − p′‖) ≤ f(‖pi − popt‖ + ‖popt − p′‖) ≤ f(L) = (1 + ε/3)A

With the fact that f(‖pi − popt‖) ≥ A, we have

f(‖pi − p′‖) − f(‖pi − popt‖) ≤ ε

3
A ≤ ε

3
f(‖pi − popt‖)

If ‖pi − popt‖ ≥ L − εL/(4α), the cost from moving popt to p′ is increased by a
factor of at most (1 + 11ε/27):

f(‖pi − p′‖) ≤ f(‖pi − popt‖ + ‖popt − p′‖) ≤ f(‖pi − popt‖ +
εL

4α
)

≤ (1 +
ε

4α − ε
)αf(‖pi − popt‖) ≤ eε/3f(‖pi − popt‖)

≤ (1 +
11
27

ε)f(‖pi − popt‖)

In sum, the total difference between G(p′) =
∑

i f(‖pi − p′‖) and G(popt) is at
most εG(popt), therefore p′ is a (1 + ε)-approximate solution of G.

For case (ii), for i < �εn/4�, in other words, ‖pi − p′‖ ≤ ‖p̃ − p′‖, the total
increase of cost by moving popt to p′ is at most:

∑

i<	εn/4

f(‖pi − p′‖) ≤ε

n

4
(1 +

ε

4α
)αf(L) ≤ ε

n

4
(1 +

ε

3
)
εAVG

3
<

1
9
εG(popt)

When ‖p̃ − popt‖ ≤ ‖pi − popt‖ < L − εL/(4α) we have:

f(‖pi − p′‖) ≤ f(‖pi − popt‖ + ‖popt − p′‖) ≤ f(L) = εAVG/3

Lastly, if ‖pi = popt‖ ≥ L − εL/(4α), the argument is the same as in case(i):

f(‖pi − p′‖) ≤ (1 +
11
27

ε)f(‖pi − popt‖)

In sum, the total difference between G(p′) and G(popt) is < εG(popt). So p′ is a
(1 + ε)-approximate solution of G. ��
The above lemma shows that if we choose L in this way, condition (b) of Step
1 is satisfied. Furthermore, the following lemma indicates that condition (a) can
also be achieved.

Lemma 3. Let ε, P , G, f , p̃, L be defined as in Lemma 2. By uniformly sam-
pling |X| = O(1/ε) points in P , there will be a point s ∈ X satisfying inequality
‖s − popt‖ ≤ L with constant probability.

Proof. Since for both case(i) and case(ii) there are at least �εn� points in P
having ‖pi − popt‖ ≤ ‖p̃ − popt‖ ≤ L, after 2/ε samples there will be at least
one point falling in this set of points with probability ≥ 1/2 by Markov’s
inequality. ��
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3.3 Main Result

In this subsection, we omit the details of most of the proofs due to the space
limit. First we present the theorem which guarantees the correctness of Step 2.
For a set of points X ⊂ R

d, we denote by span(X) the affine subspace spanned
by the set of points in X.

Theorem 2 (Core-set). Let 0 < ε < 1. Let P be a point set in R
d. G(x) =∑

p∈P f(‖x − p‖) with α as the proportion degree of f . L is chosen as in Lemma
2. If X is a set of points obtained from sampling O(log (1/ε)

/
ε3+α) points in P ,

then with constant probability, the following two events happen: (i) The distance
from the affine subspace span(X) to the optimizer popt is at most εL/(8α), and
(ii) X contains a point in distance ≤ L from popt.

The above theorem gives the existence of a (1 + ε)-approximate solution in
the affine subspace of a small sample. To actually find the solution is the final
issue. We provide one of the possible approaches in the following.

The lemma below shows that we know a value t = Θ(AVG). It also shows that
trust the best source alone gives a constant approximate factor solution.

Lemma 4 (a 2α− approximated solution). Let P be a set of n points in R
d

and G(x) =
∑

p∈P f‖x − p‖ with α as the proportion degree of f . We can try
every point in P to achieve a 2α-approximate solution for the function G, and
the total running time is O(n2d).

Proof. Let p′ ∈ P be the one closest to the optimal point popt. Then

G(p′) =
∑

p∈P

f(‖p − p′‖) ≤
∑

p∈P

f(‖p − popt‖ + ‖p′ − popt‖)

≤
∑

p∈P

f(2‖p − popt‖) ≤ 2α · G(popt).

The last inequality comes from the sub-proportionality of f . The minimum
among G(p1), G(p2), · · · , G(pn) must be less than G(p′). The function G can
be evaluated in O(nd) time. Therefore, the 2α−approximate solution can be
found in O(n2d) time. ��

There are more efficient ways to bound the value of AVG for special f . For
example, when f(x) = x, it is shown [8] that AVG can be approximated in linear
time.

Now we settle the unknown variables A and B in Lemma 2. We will show that
if choosing B properly, A is approximately bounded in the way that A = Θε(AVG).
Thus the search of the value A takes at most poly(1/ε) time. The effect on the
whole algorithm is a multiplicative factor of poly(1/ε), which is small comparing
to the time for drawing grid points.

Lemma 5. Let ε,P ,G,f be defined as in Lemma 2. Let p̃ be the εn�-th closest
point to the optimal solution popt among the points in P . There exists a set L of
size O(log(1/ε)/ε) such that for every possible values of f(‖p̃ − popt‖), there is a
member L ∈ L such that it satisfies condition (a) and (b) in Step 1.
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The next theorem summarizes the complete algorithm.

Theorem 3. Let 0 < ε ≤ 1. Let P be a set of n points in R
d and G(x) =∑

p∈P f(‖x − p‖) with α as the proportion degree of f . Let X be a set of random
samples from P of size O(log(1/ε)/ε3+α). We can construct a set of grid points
Y of size O(2(1/ε)O(1)

) such that with constant probability there is at least one
point p′ in Y being a (1 + ε)-approximate solution of G. The time complexity is
O(2(1/ε)O(1)

d + n2d) for the construction of Y .

Synopsis of the Proof: For each L ∈ L, denote YL as the union of the grid
points around each x ∈ X, where the diameter of the grid is 4L and the side
length is roughly O(εL). Let Y = ∪L∈LYL. Then Theorem 2 guarantees the
desired result.
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Abstract. The interval scheduling problem is one variant of the schedul-
ing problem. In this paper, we propose a novel variant of the interval
scheduling problem, whose definition is as follows: given jobs are speci-
fied by their release times, deadlines and profits. An algorithm must start
a job at its release time on one of m identical machines, and continue
processing until its deadline on the machine to complete the job. All the
jobs must be completed and the algorithm can obtain the profit of a
completed job as a user’s satisfaction. It is possible to process more than
one job at a time on one machine. The profit of a job is distributed uni-
formly between its release time and deadline, that is its interval, and the
profit gained from a subinterval of a job decreases in reverse proportion
to the number of jobs whose intervals intersect with the subinterval on
the same machine. The objective of our variant is to maximize the total
profit of completed jobs.

This formulation is naturally motivated by best-effort requests and
responses to them, which appear in many situations. In best-effort
requests and responses, the total amount of available resources for users
is always invariant and the resources are equally shared with every user.
We study online algorithms for this problem. Specifically, we show that
for the case where the profits of jobs are arbitrary, there does not exist
an algorithm whose competitive ratio is bounded. Then, we consider the
case in which the profit of each job is equal to its length, that is, the
time interval between its release time and deadline. For this case, we
prove that for m = 2 and m ≥ 3, the competitive ratios of a greedy algo-
rithm are at most 4/3 and at most 3, respectively. Also, for each m ≥ 2,
we show a lower bound on the competitive ratio of any deterministic
algorithm.

1 Introduction

The interval scheduling problem is one of the variants of the scheduling problem,
which has been widely studied. One of the most basic definitions is as follows:
We have m ≥ 1 identical machines and jobs are given. A job is characterized by
the release time, deadline and weight (or value). To complete a job, we must start
to process it at its release time on a machine of the m machines, and continue
processing it until its deadline on that machine. That is, the processing time (or
length) of the job is the time interval between its release time and deadline. The
c© Springer International Publishing AG, part of Springer Nature 2018
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number of jobs which can be processed on one machine at a time is at most
one. The objective of an algorithm is to maximize the total weight of completed
jobs. There are many applications of the interval scheduling problem, such as
bandwidth allocation and vehicle assignment (see e.g., [13,14]). Many variants of
this problem have been proposed and extensively studied. Furthermore, research
on online settings has also been considered. In an online variant of the interval
scheduling problem, a job arrives at its release time and an online algorithm must
decide whether it processes the job before the next job arrives. The performance
of online algorithms is evaluated using competitive analysis [3,19]. For any input,
if the total weight gained by an optimal offline algorithm is at most c times that
gained by an online algorithm, the online algorithm is c-competitive.

In this paper, we introduce a novel variant of the interval scheduling prob-
lem. In many existing variants of the interval scheduling problem, jobs (or
users) require resources for an algorithm, and the algorithm assigns the required
resources of a machine to the job. Thus, the number of jobs assigned to one
machine at a time is subject to the maximum amount of resources of the machine.
The amount is generally one; that is, at most one job can be processed at a time
on one machine in most variants. Therefore, we can regard such existing variants
as formulating resource reservation requests by users, who designate the amount
of resources they want to use in advance and the responses to them. However,
it is not always possible for users to designate the amount of resources they
want when they issue requests. Additionally, there are not necessarily sufficient
resources of a machine to meet users’ requests. Thus, we focus on a best-effort
method to manage situations, which is often considered paired with resource
reservation methods. In this method, the amount of resources of a machine is
always invariant and the resources are equally shared by users who want to use
the resources at the same time. Then, we formulate best-effort requests and
responses to them as a variant of the interval scheduling problem. Specifically,
we remove the capacity constraints from machines in our variant, which makes
it possible to assign jobs unlimitedly on one machine at a time. To the best
of our knowledge, this is the first such formulation of the interval scheduling
problem. Consider a given job as a user’s request. If a machine processes the
request using sufficient resources, the user is sufficiently satisfied with the result
obtained from the process. Conversely, if there are not sufficient resources to
process the request, the user is less satisfied with the result than usual. Then,
the objective of our variant is to maximize the total satisfaction gained by users.
Bandwidth allocation in networks is one of the most suitable examples for best-
effort requests and responses. In this example, the total bandwidth which may
be supplied to users on the same communication link is fixed in advance, and
all users share the bandwidth. Hence, the fewer users which use the communi-
cation link at a time, the greater the bandwidth which each one can use, which
means that the effective speed of the communication link is higher for the users.
Conversely, the more people there are using link simultaneously, the lower the
effective speed for each user. As a result, if the bandwidth for a user is high,
then the user’s satisfaction is high. Otherwise, it is low. Best-effort requests and



110 K. M. Kobayashi

responses such as bandwidth allocation could happen in many cases, for example,
the use of facilities, such as swimming pools and gyms, passenger trains without
reservations, and buffet style meals. Therefore, we have sufficient incentives to
study our variant.

Our Results. In this paper, we propose and analyze a novel variant of the inter-
val scheduling problem. We study online algorithms for this problem. Specifically,
in the case where the profits of jobs are arbitrary; that is, the profits are not
relevant to the lengths of jobs, we show that the competitive ratio of any deter-
ministic algorithm is unbounded. Then, we introduce the profits of jobs are equal
to their lengths, which is a more natural case, called the uniform profit case. In
this case, the total amount of time during which at least one job is scheduled on
a machine is equal to the total amount of the satisfaction gained on the machine.
That is, the objective of this case can be regarded as maximizing the working
hours of all the machines. We analyze the performance of a greedy algorithm GR
in this case. Since GR is a significant algorithm from a practical point of view,
it is worthwhile to evaluate its performance. When m = 2 and m ≥ 3, we show
that the competitive ratios of GR are at most 4/3 and at most 3, respectively.
When m = 2, we prove that a lower bound on the competitive ratio of GR is
4/3. That is, for m = 2, our analysis of GR is tight. Also, we show lower bounds
of any deterministic online algorithms for each m ≥ 2, which are summarized in
Tables 1 and 2 in Sect. 5.

Table 1. Our results

m Upper bound Lower bound

2 4/3 ≤ 1.334 (10 − √
2)/7 ≥ 1.226

3 3 7/6 ≥ 1.166

4 (22 − 2
√

2)/17 ≥ 1.127

5 (420 − 15
√

7)/333 ≥ 1.142

6 (51 − 6
√

2)/41 ≥ 1.140

∞ (48 − 2
√

2)/41 ≥ 1.101

Related Results. Much research on the interval scheduling problem has been
conducted. Arkin and Silverberg [1] and Bouzina and Emmons [4] provided poly-
nomial time algorithms to solve the interval scheduling problem.

There is also much research on online interval scheduling problems. If an
online algorithm aborts a job J which was placed on a machine, then we say
that the algorithm preempts J . In the case in which preemption is allowed, Faigle
and Nawijn [9] designed a 1-competitive algorithm to maximize the number of
completed jobs. This algorithm was independently discovered by Carlisle and
Lloyd [6] but used only for the offline setting. Moreover, for the variant in which
the objective is to maximize the total weight of completed jobs, Woeginger [20]
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showed that no any competitive deterministic algorithm exists (even) for m = 1.
Canetti and Irani [5] provided a randomized online algorithm whose competitive
ratio is O(log Δ) and proved that a lower bound on the competitive ratio of
any randomized algorithm is Ω(

√
log Δ/ log log Δ), where Δ is the ratio of the

longest length to the shortest length. This result indicates that the competitive
ratio of an online algorithm may become worse depending on a given input
even if it is supported by randomization. Additionally, the setting in which the
jobs are unit length has been extensively studied. For the one machine setting,
Woeginger [20] designed a deterministic algorithm whose competitive ratio is at
most 4 and showed that this is the best possible ratio. There has also been much
work regarding randomized algorithms (e.g. [8,10–12,16,18]). When m = 1, the
current best upper and lower bounds on the competitive ratios of randomized
algorithms are 2 by Fung et al. [12] and 1+ln 2 ≥ 1.693 by Epstein and Levin [8],
respectively. For m ≥ 2, Fung et al. [11] proved that, if m is even, an upper bound
is 2, and otherwise 2 + 2/(2m − 1). However, for m = 2, the current best lower
bound is 2 by Fung et al. [10]. When each m ≥ 3, Fung et al. [11] indicated
that we can obtain a lower bound of 1 + ln 2 ≥ 1.693 in a similar manner to
the lower bound of Epstein and Levin [8]. If preemption is not allowed, Lipton
and Tomkins [15] proposed a randomized algorithm whose competitive ratio is
O((log Δ)1+ε) and proved that a lower bound of any randomized algorithms is
Ω(log Δ).

For a job given in the interval scheduling problem, its length is equal to the
length of the time between its release time and deadline. On the other hand, a
variant in which the job length is generalized has also been studied. Specifically,
a parameter slack ε > 0 is introduced, whose value is known to an algorithm
in advance, and the length of a job is at most x times as long as the length of
the time between its release time and deadline, in which x = 1/(1 + ε). In this
variant, preemption is allowed and to complete a job, an algorithm must process
it during its length by its deadline after its release time. For several m, optimal
online algorithms were designed [2,7,17], whose competitive ratios are 1 + 1/ε.

2 Model Description

We have m(≥ 2) identical machines. A list consisting of n(≥ 1) jobs is provided
as an input. A job J is specified by a triplet (r, d, v), where r(J) is the release
time of J , d(J) is the deadline of J , and v(J) is the profit of J . An algorithm ALG
must place each job onto one of the m machines. It is possible to place more than
one job at a time on one machine. The profit of a job is distributed uniformly
between its release time and deadline, that is its interval, and the profit gained
from a subinterval of a job decreases in reverse proportion to the number of jobs
whose intervals intersect with the subinterval on the same machine. Specifically,
the profit from the subinterval is defined as follows: For an algorithm ALG, if the
numbers of jobs placed at any two points in an interval (x, y) (x < y) are equal
on ALG’s a(∈ [1,m])th machine and (x, y) does not contain any endpoint of the
interval of a job placed on the machine after processing of the input, then we call



112 K. M. Kobayashi

the interval a P -interval on ALG’s ath machine. Also, let kALG(a, x, y) denote
the number of the jobs. If an algorithm ALG places a job J onto the ath machine,
then we define mALG(J) = a. For an algorithm ALG and a job J , suppose that
the interval (r(J), d(J)) consists of b(≥ 1) P -intervals (xi, xi+1) (i = 1, . . . , b−1)
on ALG’s mALG(J)th machine such that r(J) = x1 < x2 < · · · < xb = d(J).
Then, we define the satisfaction (profit) which is yielded from [xi, xi+1] of J and
ALG gains as

VALG(J, i) =
xi+1 − xi

d(J) − r(J)
v(J)

kALG(mALG(J), xi, xi+1)
.

We define the satisfaction (profit) of J gained by ALG as

VALG(J) =
b−1∑

i=1

VALG(J, i).

The profit of ALG for an input σ is defined as

VALG(σ) =
∑

J∈L
VALG(J),

where L is a list consisting of the n given jobs. The objective is to maximize the
total satisfaction of the n jobs.

In this paper, we consider an online variant of this problem. Specifically, n
jobs are given one by one. The jobs are not necessarily given in order of release
time. An online algorithm must place a given job to a machine before the next
job is given. Once a job is placed on a machine, it cannot be removed later. That
is, preemption is not allowed. The total number n of given jobs is not known
to the online algorithm, and it does not require this information until after all
the jobs arrive. We say that the competitive ratio of an online algorithm A is
at most c or A is c-competitive if, for any input, the profit gained by an offline
optimal algorithm OPT is at most c times the profit gained by A.

3 General Profit Case

Due to page limitations, we omit almost all of the proofs in this paper. The full
version of this paper is available at https://arxiv.org/abs/1805.05436.

In this section, we consider the case in which the profits of jobs are arbitrary.
First, we consider the case m = 2 for better understanding of any m ≥ 3.

Theorem 1. When m = 2, there does not exist any deterministic online algo-
rithm whose competitive ratio is bounded.

Theorem 2. For any m, there does not exist a competitive deterministic algo-
rithm.

https://arxiv.org/abs/1805.05436
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4 Upper Bounds for Uniform Profit Case

In this section, we consider the uniform profit case, that is, the case in which
the profit of a job is equal to its length. In this case, the total amount of time
during which at least one job is scheduled on a machine is equal to the total
amount of the satisfaction gained on the machine. That is, the objective of this
case can be regarded as maximizing the working hours of all the machines.

4.1 Preliminaries

After the end of the input, we need to evaluate the profit from each job by OPT
using the profits yielded from intervals of jobs scheduled by GR to analyze the
performance of GR. Then, we classify intervals (or points) in a job J by GR or
OPT into the following four categories depending on the behaviors of GR and
OPT for J .

For any two intervals I = [t1, t2] and I ′ = [t′1, t
′
2], we say that I intersects

with I ′ if t′1 < t2 and t1 < t′2. For any job J , we call the interval [r(J), d(J)] the
interval of J . If an algorithm ALG places two jobs onto the same machine and
they intersect, then we say that they overlap. For any interval I = [t, t′], we call
the value of t′ − t the length of I, written as |I|.

We give the definition of a greedy algorithm GR and analyze its performance
in this section. GR places a given job J onto the machine on which GR gains
the largest profit from J . The tie-breaking rule selects the minimum indexed
machine.

For ease of analyzing, we introduce the following idea. Suppose that two jobs
J1 and J2 are placed onto the same machine, and they overlap in an interval I.
Also, suppose that J1 is the first job placed in I on the machine. Then, pretend
that the profits from I of J1 and J2 are |I| and zero, respectively. That is, we
pretend that a job which is placed chronologically first in an interval on a machine
monopolizes the machine power in the interval. Note that in the uniform profit
case, the total profit gained from an interval of jobs placed on a machine depends
not on how large the number of the jobs in the interval is but on whether there
exists at least one job placed in the interval. That is why this assumption does
not affect the profit of any algorithm.

4.2 Overview of Analysis

To evaluate the performance of GR, that is, its competitive ratio, we bound
the profit of OPT at the end of the input using that of GR. Then, we classify
intervals of jobs placed by either GR or OPT into four categories.

For any job J and any interval I ⊆ [r(J), d(J)], if the profit gained from I
of J by GR is zero and that by OPT is |I|, then we call I of J an OPT extra
interval of J (denoted as an oe-interval, for short). Also, if the profit gained
from I of J by OPT is zero and that by GR is |I|, then we call I of J a GR
extra interval of J (a ge-interval, for short). If the profits gained from I of J by
GR and OPT are both |I|, we call I of J a common interval of J (a c-interval,
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for short). For ease of presentation, we call an interval which is a c-interval or a
ge-interval a profit interval (a p-interval, for short). If the profits gained from I
of J by GR and OPT are both zero, we call I of J a non-profit interval of J (an
n-interval, for short). Further, we call a point in an oe-interval (a ge-interval,
a c-interval, and a p-interval, respectively) of J an oe-fraction (a ge-fraction, a
c-fraction, and a p-fraction, respectively) of J .

We evaluate the competitive ratio of GR by “assigning” p-fractions (i.e., p-
intervals) to all oe-fractions (i.e., oe-intervals) according to a routine, which is
defined later. This “assignment” is realized by some functions. Let Voe(σ) be
the total length of oe-intervals to which c-intervals are assigned. Let Voe′(σ) be
the total length of oe-intervals to which ge-intervals are assigned. Also, let Vc(σ)
be the total length of c-intervals and Vge(σ) be the total length of ge-intervals.
Then, we have by definition,

VGR(σ) = Vc(σ) + Vge(σ) (1)

and
VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ). (2)

We will show the following three properties of the assignments by the routine:

1. Each oe-fraction is assigned a p-fraction,
2. a c-fraction of a job given to GR is assigned at most twice, and
3. a ge-fraction is assigned at most three times.

To show these, we will construct sequentially three functions M1,M2 and M3

from oe-intervals to p-intervals satisfying the following properties: Initially, for
any oe-fraction f and any i ∈ {1, 2, 3}, Mi(f) = ∅. At the end of the input, for
any oe-fraction f , M1(f)∪M2(f)∪M3(f) �= ∅. There exists a p-fraction f ′ such
that M1(f) = f ′ if M1(f) �= ∅. There exists a ge-fraction f ′ such that M2(f) =
f ′ if M2(f) �= ∅. There exists a p-fraction f ′ such that M3(f) = f ′ if M3(f) �= ∅.
For any oe-fractions f and f ′(�= f) and any i ∈ {1, 2, 3}, Mi(f) ∩ Mi(f ′) = ∅.
Then, we have by these functions,

Voe(σ) ≤ 2Vc(σ) (3)

and
Voe′(σ) ≤ 3Vge(σ). (4)

By Eq. (2), we have

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ)
≤ Vc(σ) + 2Vc(σ) + 3Vge(σ) (by Eqs. (3) and (4))
= 3(Vc(σ) + Vge(σ)) = 3VGR(σ), (by Eq. (1))

which leads to the following theorem:

Theorem 3. For any m ≥ 2, the competitive ratio of GR is at most three.
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4.3 Analysis of GR

For any job J and any point t ∈ [r(J), d(J)], let E(J, t) denote the total length
of oe-intervals of J in the interval [r(J), t]. For any job J , any job J ′ given
before J , any interval [t1, t2] and any a(∈ [1,m]), let Pa(J, J ′, t1, t2) denote the
total length of p-intervals of GR’s jobs placed on the ath machine which are
in [t1, t2] immediately after J is placed and are not intersecting with any n-
interval of J ′. For any a(∈ [1,m]), any job J , any job J ′ given before J , and
any point t ∈ [r(J ′), d(J ′)], define ha(J, J ′, t) = t′ in which t′ is the point such
that Pa(J, J ′, r(J ′), t′) = E(J ′, t) and t′ ∈ [r(J ′), d(J ′)] immediately after J
is placed onto the machine. (t′ exists by Lemma 1, which is shown later.) For
any i ∈ {1, 2, 3} and any p-fraction f ′, define M−1

i (f ′) = {f | Mi(f) = f ′}.
We say that a c-fraction f ′ such that M−1

1 (f ′) = ∅ is 1-assignable. We say
that a ge-fraction f ′ such that M−1

2 (f ′) = ∅ is 2-assignable. We say that
a ge-fraction f ′ such that M−1

2 (f ′) �= ∅ and M−1
1 (f ′) = ∅ is 1-assignable.

If a p-fraction is 1-assignable or 2-assignable, we say that it is assignable.
Now we give the definition of the routine mentioned in the previous section.

AssignmentRoutine

Consider a moment immediately after the jth job Jj is placed. J := (the set of
Jj plus each job Jj′ (j′ ≤ j − 1) whose interval intersects with the interval of
Jj). For any oe-fraction f of each J ∈ J , execute the following.
Step 1: For each i ∈ {1, 2, 3}, Mi(f) := ∅. t1 := h1(Jj , J, t), in which f exists
at a point t.
Step 2: Execute one of the following two cases.
Case 2.1 (An assignable p-fraction f1 exists at t1): If f1 is 1-assignable,

M1(f) := f1. Otherwise, if f1 is 2-assignable, M2(f) := f1.
Case 2.2 (No assignable p-fraction exists at t1): By Lemma 2, there

exists a p-fraction fa at the point ta on some a(∈ {1,m})th machine such that
M−1

3 (fa) = ∅, in which ta = ha(Jj , J, t). (For any a′ ∈ {1,m}, there exists ta′

by Lemma 1.)

In the following, we first show the existence of ta in Case 2.2. Next, we show
that there exists pa in Case 2.2. That is, we prove that the routine can assign a
p-fraction to each oe-fraction.

Lemma 1. For any a(∈ [1,m]), any job J , any job J ′ which is given before J ,
and any point t ∈ [r(J ′), d(J ′)], there exists the point t′ such that ha(J, J ′, t) = t′

and t′ ∈ [r(J ′), d(J ′)] immediately after J is placed.

Lemma 2. Case 2.2 is executable. That is, when Case 2.2 is executed for an oe-
fraction f , f can be assigned a p-fraction fa such that M−1

3 (fa) = ∅ immediately
before executing Case 2.2.
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4.4 Upper Bound for m = 2

When m = 2, we also evaluate the competitive ratio of GR by assigning p-
fractions to all oe-fractions. In this case, we obtain a better upper bound on
the competitive ratio of GR than one for general m by implementing more
detailed assignments. If the routine assigns one ge-fraction to one oe-fraction,
we say that the routine ge-assigns the ge-fraction to the oe-fraction. Also, if
the routine assigns three p-fractions to one oe-fraction, we say that the routine
3p-assigns each of the p-fractions to the oe-fraction. We will show the following
three properties by the assignments according to the routine defined later:

1. Each oe-fraction is ge-assigned or 3p-assigned,
2. a c-fraction of a job given to GR is 3p-assigned at most once, and
3. a ge-fraction is ge-assigned at most once and is 3p-assigned at most once.

We will show them by sequentially constructing two functions N1 and N2 from
oe-intervals to p-intervals satisfying the following properties: Initially, for any
oe-fraction f and any i ∈ {1, 2}, Ni(f) = ∅. At the end of the input, for any
oe-fraction f , N1(f) ∪ N2(f) �= ∅. There exist three distinct p-fractions f1, f2
and f3 such that N1(f) = {f1, f2, f3} if N1(f) �= ∅. There exists a ge-fraction
f ′ such that N2(f) = f ′ if N2(f) �= ∅. For any oe-fractions f and f ′(�= f) and
any i ∈ {1, 2}, Ni(f) ∩ Ni(f ′) = ∅. Let Voe(σ) denote the total length of oe-
intervals to which the routine 3p-assigns, and let Voe′(σ) denote the total length
of oe-intervals to which the routine ge-assigns. Thus,

Voe(σ) ≤ VGR(σ)/3

and
Voe′(σ) ≤ Vge(σ).

Then, using these inequalities, we have

VOPT (σ) = Vc(σ) + Voe(σ) + Voe′(σ)

≤ Vc(σ) + VGR(σ)/3 + Vge(σ) =
4
3
VGR(σ).

Therefore, we have the following theorem:

Theorem 4. When m = 2, the competitive ratio of GR is at most 4/3.

For any i ∈ {1, 2} and any p-fraction f ′, define N−1
i (f ′) = {f | Ni(f) =

f ′}. We say that a p-fraction f ′ is 1-assignable if N−1
1 (f ′) = ∅. Also,

we say that a ge-fraction f ′ is 2-assignable if N−1
2 (f ′) = ∅. Now we

give the definition of the routine to construct the above two functions.

AssignmentRoutine2

Consider a moment immediately after a job J is placed. For any oe-fraction f
of J , execute the following.
Step 1: m2 := mGR(J) and m1 := {1, 2} \ {m2}. t1 := hm1(J, J, t), in which f
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exists at a point t.
Step 2: Let f ′ be the p-fraction at t on the m2th machine (f ′ exists by the
definition of oe-fractions). Execute one of the following two cases.
Case 2.1 (f ′ is 2-assignable): N2(f) := f ′.
Case 2.2 (Otherwise): N1(f) := {f ′, f1, f2}, in which f1 is the p-fraction at

t1 on GR’s m1th machine (f1 exists by Lemma 1), and f2 is the p-fraction at t1
on GR’s m2th machine (f2 exists because the interval of J contains t1 by the
definition of hm1). (By Lemma 3, f ′, f1 and f2 are 1-assignable.)

Lemma 3. Case 2.2 is executable. That is, when Case 2.2 is executed for an
oe-fraction f , f can be assigned 3 p-fractions (i.e., 3p-assigned) each of which
is 1-assignable immediately before executing Case 2.2.

We show that our analysis of GR for m = 2 is tight in the following theorem.

Theorem 5. When m = 2, for any ε > 0, the competitive ratio of GR is at
least 4/3 − ε.

5 Lower Bounds for Uniform Profit Case

In this section, we show lower bounds on the competitive ratios of online algo-
rithms for the uniform profit case. For better understanding, we first consider
the case of m = 2.

Theorem 6. When m = 2, the competitive ratio of any deterministic online
algorithm is at least (10 − √

2)/7 ≥ 1.226.

Proof. Consider an online algorithm ON . The first given job is J1 such that
r(J1) = 0 and d(J1) = 1. The second job is J2 such that r(J2) = 1 + x and
d(J2) = 2 + x. Note that x is set later. Without loss of generality, we may
assume that both ON and OPT place J1 onto the first machine.

In the following, we use two inputs. First, we consider the case where ON
places J1 and J2 on two different machines. That is, suppose that ON places
J2 on the second machine. Then, the third job J3 such that r(J3) = 0 and
d(J3) = 2 + x is given, and no further job arrives. We call this input σ1. If ON
places J3 onto the first machine, we have VON (σ1) = 2+x+1 = 3+x. ON also
gains the same profit if ON places J3 onto the second machine. On the other
hand, the machine onto which OPT places both J1 and J2 is different from that
onto which J3 is placed. Thus, VOPT (σ1) = 2 + 2 + x = 4 + x. By the above
argument,

VOPT (σ1)
VON (σ1)

=
4 + x

3 + x
. (5)

Second, we consider the case where ON places J1 and J2 onto the first
machine. The third job J ′

1 such that r(J ′
1) = 1 − y and d(J ′

1) = 1 + x and the
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fourth job J ′
2 such that r(J ′

2) = 1 and d(J ′
2) = 1 + x + y are given, where y is

fixed later. No further job is given; we call this input σ2. We first consider the
case where ON places J ′

1 and J ′
2 on different machines. If J ′

1 is placed onto the
first machine, on which J1 and J2 are placed,

VON (σ2) = 1 + x + 1 + x + y = 2 + 2x + y. (6)

ON gains the same profit if J ′
2 is placed onto the first machine. Next, we consider

the case in which ON places J ′
1 and J ′

2 onto the machine. If the machine is the
second one, then it is clear that ON gains larger profits than it does in the other
case. Hence,

VON (σ2) = 2 + x + 2y. (7)

Now, set y = x and we have VON (σ2) = 2+3x by Eqs. (6) and (7). On the other
hand, OPT places both J1 and J ′

2 onto the first machine and both J2 and J ′
1

onto the second machine. Thus, VOPT (σ2) = 2(1+x+y) = 2+4x. By the above
argument,

VOPT (σ2)
VON (σ2)

=
2 + 4x
2 + 3x

. (8)

Therefore, by Eqs. (5) and (8),

VOPT (σ)
VON (σ)

≥ min
{

4 + x

3 + x
,
2 + 4x
2 + 3x

}
=

4 +
√

2
3 +

√
2

=
10 − √

2
7

,

where we choose x =
√

2.

The following theorem provides lower bounds for m ≥ 3 by generalizing the
input used to prove Theorem 6.

Theorem 7. The competitive ratio of any deterministic algorithm is at least
1.101. It is better for fixed m and then refer to Table 2 for details.

Table 2. Lower bounds for each m(≥ 3).

m Lower bound m Lower bound m Lower bound

3 7/6 ≥ 1.166 6 51−6
√
2

41
≥ 1.140 9 9/8 ≥ 1.125

4 22−2
√
2

17
≥ 1.127 7 280−70

√
11

227
≥ 1.158 10 290−15

√
2

239
≥ 1.124

5 420−15
√
7

333
≥ 1.142 8 28/25 ≥ 1.12 ∞ 48−2

√
2

41
≥ 1.101
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Properties of Minimal-Perimeter
Polyominoes
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Abstract. A polyomino is a set of connected squares on a grid. In this
paper we address the class of polyominoes with minimal perimeter for
their area, and we show a bijection between minimal-perimeter polyomi-
noes of certain areas.

Keywords: Polyominoes · Lattice animals · Perimeter

1 Introduction

A polyomino is an edge-connected set of cells on the square lattice. The area of a
polyomino is the number of cells it contains. The problem of counting polyomi-
noes dates back to the 1950s when it was studied in parallel in the fields of com-
binatorics [8] and statistical physics [6]. Let A(n) denote the number of polyomi-
noes of area n. A general formula for A(n) is still unknown. Klarner [10] showed
the existence of the growth rate of A(n), denoting it by λ := limn→∞ n

√
A(n).

The exact value of λ is also unknown yet, and its best estimate, 4.06, is by
Jensen [9]. The current best lower and upper bounds on λ are 4.0025 [3] and
4.6496 [11], respectively. Several works provide enumeration by area of special
classes of polyominoes, such as column-convex [7], convex [5], and directed [4]
polyominoes.

The perimeter of a polyomino is the set of empty cells that are adjacent
to at least one polyomino cell, where, as above, two cells are adjacent if thy
share a common edge of the lattice. Although less explored than the area, some
works studied the perimeter of polyominoes. Asinowski et al. [2] showed that
2n + 2 is the maximum possible perimeter size for a polyomino of area n, and
provided a few formulae for the numbers of polyominoes with area n and perime-
ter 2n+2−k, for some small values of k. In this paper, we shed some light on the
opposite aspect of this type of polyominoes, namely, polyominoes with the mini-
mal perimeter for their area. Closely related works are by Altshuler et al. [1] and
by Sieben [13], both providing a formula for the maximum area of a polyomino
with a certain perimeter size. Sieben [13] also gave a formula for the minimum
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(a) Polyomino Q (b) I(Q) (c) D(Q)

Fig. 1. A polyomino Q, its inflated polyomino, and its deflated polyomino. The gray
cells are the polyomino cells, while the white cells are the perimeter. Border cells are
marked with crosses.

perimeter of a polyomino of area n. Both works also characterized all the poly-
ominoes that have the maximum area for a given perimeter size. Ranjan and
Zubair [12] showed a similar result about the minimum perimeter of a directed
graph on an infinite grid. In this paper, we study the number of polyominoes
which have the minimum perimeter for their area. We define the operation of
inflating a polyomino as the extension of a polyomino by all its perimeter cells,
and show the following: (1) All minimal-perimeter polyominoes of some area n
are inflated into polyominoes of the same area n′. (Polyominoes of the same
area, which are not minimal perimeter, may be inflated into polyominoes of dif-
ferent areas.) (2) The inflation operation induces a bijection between the sets
of minimal-perimeter polyominoes of area n and the set of minimal-perimeter
polyominoes of area n′.

In Sect. 2 we define the notions used throughout this paper. In Sect. 3 we
discuss some properties of polyominoes through an analysis of the patterns that
may appear in the perimeter. Section 4 is where we reach our main result, prov-
ing that the inflating operation induces a bijection between sets of minimal-
perimeter polyominoes. We end in Sect. 5 with some concluding remarks.

2 Preliminaries

Let Q be a polyomino, and let P(Q) be the perimeter of Q. Define B(Q), the
border of Q, to be the set of cells of Q that have at least one empty neighboring
cell. Given a polyomino Q, its inflated polyomino, I(Q), is defined as I(Q) =
Q ∪ P(Q). Notice that the border of I(Q) is a subset of the perimeter of Q.
Analogously, the deflated polyomino, D(Q), is defined as D(Q) = Q \ B(Q),
which is obtained by “shaving” the outer layer, i.e., the border cells from the
polyomino. Notice that the perimeter of D(Q) is a subset of the border of Q.
Also note that D(Q) is not necessarily a valid polyomino since the removal of
the border of Q may break it into disconnected pieces. Figure 1 demonstrates all
the above definitions.

Following the notation of Sieben [13], we denote by ε(n) the minimum size
of the perimeter of all polyominoes of area n. Sieben showed that ε(n) =
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⌈
2 +

√
8n − 4

⌉
. A polyomino Q of area n will be called a minimal-perimeter

polyomino if |P(Q)| = ε(n).

3 Border, Perimeter, and Excess

In this section, we express the size of the perimeter of a polyomino, |P(Q)|, as
a function of the border size, |B(Q)|, and the number of excess cells as defined
below. The excess of a perimeter cell [2] is defined as the number of polyomino
cells that are adjacent to it minus one, and the total excess of a polyomino Q, eP ,
is defined as the sum of excess over all the cells of the perimeter of Q. Similarly,
the excess of a border cell is defined as the number of perimeter cells adjacent
to it minus one, and the border excess, denoted by eB , is defined as the sum of
excess over all the border cells. Let π = |P(Q)| and β = |B(Q)|.
Observation 1. The following holds for any polyomino: π + eP = β + eB.
Equivalently,

π = β + eB − eP . (1)

(a) (b) (c) (d) (w) (x) (y) (z)

Fig. 2. All possible patterns of excess cells. The gray cells are polyomino cells, while
the white cells are perimeter cells. Patterns (a–d) exhibit excess border cells and their
surrounding perimeter cells, while Patterns (w–z) exhibit excess perimeter cells and
their surrounding polyomino cells.

d

b

a

x w

y

z

Fig. 3. A sample
polyomino with
marked patterns.

Equation (1) holds since both π + eP and β + eB

are equal to the total length of the polygons forming the
boundary of the polyomino. This quantity can be calcu-
lated either by summing up over the perimeter cells, where
each cell contributes 1 plus its excess for a total of π + eP ,
or by summing up over the border cells for a total of β+eB .
Figure 2 shows all possible patterns of border and perime-
ter excess cells, while Fig. 3 shows a sample polyomino
with some cells tagged with the corresponding patterns.

Let #� be the number of excess cells of a certain type
in a polyomino as classified in the figure, where ‘�’ is one
of the symbols a–d or w–z, as in Fig. 2. Counting eP and eB as functions of the
different patterns of excess cells, we see that eB = #a + 2#b + 3#c + #d and
eP = #w + 2#x + 3#y + #z. Substituting eB and eP in Eq. (1), we obtain

π = β + #a + 2#b + 3#c + #d − #w − 2#x − 3#y − #z.
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Since Pattern (c) is a singleton cell, we can ignore it in the general formula.
Thus, we have

π = β + #a + 2#b + #d − #w − 2#x − 3#y − #z.

3.1 Properties of Minimal-Perimeter Polyominoes

We now discuss the relation between the perimeter and the border of minimal-
perimeter polyominoes.

Lemma 1. Any minimal-perimeter polyomino is simply connected (that is, it
does not contain holes).

Proof. The sequence ε(n) is monotone increasing in the wide sense1 [13]. Assume
that there exists a minimal-perimeter polyomino Q with a hole. Consider the
polyomino Q′ that is obtained by filling this hole. The area of Q′ is clearly larger
than the area of Q, and its perimeter size is smaller since we eliminated the
perimeter cells inside the hole and did not introduce new perimeter cells. This
is a contradiction to ε(n) being monotone increasing. ��
Lemma 2. For a simply connected polyomino, we have #a + 2#b − #w −
2#x = 4.

Proof. The boundary of a polyomino without holes is a simple polygon, thus,
the sum of its internal angles is (180(v − 2))◦, where v is the complexity of
the polygon. Notice that Pattern (a) (resp., (b)) adds one (resp., two) 90◦-
vertex to the polygon. Similarly, Pattern (w) (resp. (x)) adds one (resp., two)
270◦-vertex. All other patterns do not involve vertices. Let L = #a + 2#b
and R = #w + 2#x. Then, the sum of angles of the boundary polygon implies
that L · 90◦ + R · 270◦ = (L + R − 2) · 180◦, that is, L − R = 4. The claim
follows. ��
Theorem 2. (Stepping Theorem) For a minimal-perimeter polyomino (except
the singleton cell), we have that π = β + 4.

Proof. Lemma 2 tells us that π = β + 4 + #d − #z. We will show that any
minimal-perimeter polyomino contains neither Pattern (d) nor Pattern (z).

Let Q be a minimal-perimeter polyomino. For the sake of contradiction,
assume first that there is a cell f ∈ P(Q) as part of Pattern (z). Assume w.l.o.g.
that the two adjacent polyomino cells are to the left and to the right of f .
These two cells must be connected, thus, the area below (or above) f must
be bounded by polyomino cells. Let, then, Q′ be the polyomino with the area
below f , and the cell f itself, filled with polyomino cells. The cell directly above f
becomes a perimeter cell, the cell f ceases to be a perimeter cell, and at least
one perimeter cell in the area filled below f is eliminated, thus, |P(Q′)| < |P(Q)|
and |Q′| > |Q|, which is a contradiction to the sequence ε(n) being monotone



124 G. Barequet and G. Ben-Shachar

f f

f

(a) Q (b) Q′ (c) Q (d) Q′

Fig. 4. Examples for the first and second parts of the proof of Theorem 2.

increasing. Therefore, the polyomino Q does not contain perimeter cells that fit
Pattern (z). Figures 4(a, b) demonstrate this argument.

Now assume for contradiction that Q contains a cell f , forming Pattern (d).
Let Q′ be the polyomino obtained from Q by removing f and then “pushing”
together the two cells adjacent to f . This is always possible since Q is of minimal
perimeter, hence, by Lemma 1, it is simply connected, and thus, removing f
breaks Q into two separate polyominoes. Any two separated polyominoes can be
shifted by one cell without colliding, thus, the transformation described above
is valid. The area of Q′ is one less than the area of Q, and the perimeter of Q′ is
smaller by at least two than the perimeter of Q, since the perimeter cells below
and above f cease to be part of the perimeter, and connecting the two parts
does not create new perimeter cells. From the formula of ε(n) we know that
ε(n)−ε(n−1) ≤ 1 for n ≥ 3, but |Q|− |Q′| = 1 and |P(Q)|− |P(Q′)| = 2, hence,
Q is not a minimal-perimeter polyomino, which contradicts our assumption.
Thus, there are no cells in Q that fit Pattern (d). Figures 4(c, d) demonstrate
this argument. This completes the proof. ��

4 Inflating a Minimal-Perimeter Polyomino

In this section we reach our main results. First, we show that inflating a minimal-
perimeter polyomino results in a minimal-perimeter polyomino as well. Second,
we show that if any minimal-perimeter polyomino of a certain area n′ is cre-
ated by inflating a minimal-perimeter polyomino of area n, then all minimal-
perimeter polyominoes of area n′ are created by inflating polyominoes of area n.
Furthermore, inflating different minimal-perimeter polyominoes of area n results
in different minimal-perimeter polyominoes of area n′, and so, this operation
induces a bijection between the two sets.

Lemma 3. If Q is a minimal-perimeter polyomino, then I(Q) is simply con-
nected.

Proof. Let Q be a minimal-perimeter polyomino, and assume that I(Q) is not
simply connected, i.e., it contains a hole. Let Q′ be the polyomino obtained

1 In the sequel we simply say “monotone increasing.”.



Properties of Minimal-Perimeter Polyominoes 125

by filling the holes of Q by polyomino cells. Notice that this operation only
eliminates border cells of I(Q), and does not create any new border cells, thus,
B(Q′) ⊂ B(I(Q)). Let us now compare the polyomino D(Q′) to the original
polyomino Q. On the one hand, by the way Q′ is constructed, |Q′| > |I(Q)|,
and since B(Q′) ⊂ B(I(Q)), we have that |D(Q′)| > |D(I(Q))|. Using the fact
that the border of an inflated polyomino is a subset of the perimeter of the
original polyomino, we have that B(I(Q)) ⊂ P(Q), thus, |D(I(Q))| ≥ |Q|, and,
hence, |D(Q′)| > |Q|. On the other hand, we have that |P(D(Q′))| ≤ |B(Q′)|
since the perimeter of a deflated polyomino is a subset of the border of the
original polyomino, and we have already established that |B(Q′)| < |B(I(Q))| ≤
|P(Q)|, thus, |P(D(Q′))| < |P(Q)|. But we have shown above that |D(Q′)| > |Q|,
which is in contradiction to ε(n) being an increasing sequence. ��
Lemma 4. If Q is a minimal-perimeter polyomino, then |P(I(Q))| ≤ |P(Q)| + 4.

Proof. By Lemma 3 we have that I(Q) is simply connected. Thus, by Lemma 2,
we have that |P(I(Q))| = |B(I(Q))| + 4 + #d − #z. Since |B(I(Q))| ≤ |P(Q)|,
all that remains to show is that Pattern (d) does not occur in I(Q). Assume
to the contrary that there is a cell f forming Pattern (d) in I(Q). This cell is
a “bridge” in the polyomino. Since I(Q) is simply connected, removing f will
break it into exactly two pieces, denoted by Q1 and Q2. Both Q1 and Q2 must
contain cells of the original Q since any cell in I(Q) either belongs to Q or is
adjacent to a cell of Q. However, this implies that Q is not connected, which is
a contradiction. Hence, Q cannot contain a pattern of type (d), as required. ��
Theorem 3. (Inheritance Theorem) If Q is a minimal-perimeter polyomino,
then I(Q) is a minimal-perimeter polyomino as well.

Proof. Let Q be a minimal-perimeter polyomino. Assume to the contrary
that I(Q) is not a minimal-perimeter polyomino, i.e., there exists a polyomino Q′

with the same area as I(Q), such that |P(Q′)| < |P(I(Q))|. From Lemma 4 we
know that |P(I(Q))| ≤ |P(Q)|+4, thus, the perimeter of Q′ is at most |P(Q)|+3,
and since Q′ is a minimal-perimeter polyomino, we know by Theorem 2 that the
size of its border is at most |P(Q)| − 1. Consider now the polyomino D(Q′).
The area of Q′ is |Q| + |P(Q)|, thus, the size of D(Q′) is at least |Q| + 1, and
its perimeter size is at most ε(n) − 1 (since the perimeter of D(Q′) is a subset
of the border of Q′). This is a contradiction to the fact that the sequence ε(n)
is monotone increasing. Hence, the polyomino Q′ cannot exist, and I(Q) is a
minimal-perimeter polyomino. Figure 5 demonstrates this theorem. It shows a
minimal-perimeter polyomino Q of area 6 and the two minimal-perimeter poly-
ominoes of areas 15 and 28 obtained by inflating Q twice. ��

Corollary 1. The minimum perimeter size of a polyomino of area n + kε(n) +
2k(k − 1) (for n 
= 1 and any k ∈ N) is ε(n) + 4k.

Proof. The claim follows from repeatedly applying Theorem 3 to a minimal-
perimeter polyomino of area n. Indeed, inflating once a minimal-perimeter poly-
omino Q of area n increases the area by ε(n), and the new border size is ε(n).
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(a) Q = 6 (b) (Q) = 15 (c) I(I(Q)) = 28

Fig. 5. A demonstration of Theorem 3.

Thus, by Theorem 2, the perimeter size increases by 4, becoming ε(n)+4. Inflat-
ing the new polyomino again increases the area by ε(n) + 4, forming yet a new
polyomino with perimeter ε(n) + 8. Thus, by induction, the kth inflation of
the polyomino increases the area by ε(n) + 4(k − 1), forming a polyomino with
perimeter size ε(n) + 4k. As to the area, summing up the contributions in all
steps yields

∑k
i=1(ε(n) + 4(i − 1)) = kε(n) + 2k(k − 1), implying the claim. ��

Lemma 5. Let Q be a minimal-perimeter polyomino of area n + ε(n) (for n ≥
3). Then, D(Q) is a valid (connected) polyomino.

Proof. Assume to the contrary that D(Q) is not connected and that it is com-
posed of at least two parts. Assume first that D(Q) is composed of exactly
two parts, Q1 and Q2. Define the joint perimeter of the two parts, P(Q1, Q2), to
be P(Q1)∪P(Q2). Since Q is a minimal-perimeter polyomino of area n+ε(n), we
know that its perimeter size is ε(n)+4 and its border size is ε(n), by Corollary 1
and Theorem 2, respectively. Thus, the size of D(Q) is exactly n regardless of
whether or not D(Q) is connected. Since Q1 and Q2 are the result of deflating Q,
the polyomino Q must have an (either horizontal, vertical, or diagonal) “bridge”
of border cells which disappeared in the deflation. The width of the bridge is at
most 2, thus, |P(Q1) ∩ P(Q2)| ≤ 2. Hence, |P(Q1)|+ |P(Q2)|−2 ≤ |P(Q1, Q2)|.
Since P(Q1, Q2) is a subset of B(Q), we have that |P(Q1, Q2)| ≤ ε(n). Therefore,

ε(|Q1|) + ε(|Q2|) − 2 ≤ ε(n). (2)

Recall that |Q1| + |Q2| = n. It is easy to observe that ε(|Q1|) + ε(|Q2|) is
minimized when |Q1| = 1 and |Q2| = n−1 (or vice versa). Had the function ε(n)
(shown in Fig. 6) been 2+

√
8n − 4 (without rounding up), this would be obvious.

But since ε(n) =
⌈
2 +

√
8n − 4

⌉
, it is a step function (with an infinite number

of intervals), where the gap between all successive steps is exactly 1, except the
gap between the two leftmost steps which is 2. This guarantees that despite the
rounding, the minimum of ε(|Q1|) + ε(|Q2|) occurs as claimed. Substituting this
into Eq. (2), and using the fact that ε(1) = 4, we see that ε(n − 1) + 2 ≤ ε(n).
However, we know [13] that ε(n)−ε(n−1) ≤ 1 for n ≥ 3, which is a contradiction.
Thus, D(Q) cannot split into two parts unless it splits into two singleton cells,
which is indeed the case for a minimal-perimeter polyomino of size 8.
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Fig. 6. Values of ε(n).

The same method can be used to show that D(Q) cannot be composed of
more then two parts. Note that this proof does not hold for polyominoes of area
which is not of the form n + ε(n), but it suffices for the proof of Theorem 4
below. ��
Lemma 6. Let Q1, Q2 be two different minimal-perimeter polyominoes. Then,
regardless of whether or not Q1, Q2 have the same area, the polyominoes I(Q1)
and I(Q2) are different as well.

Proof. Assume to the contrary that Q = I(Q1) = I(Q2). By definition, this
means that Q = Q1 ∪ P(Q1) = Q2 ∪ P(Q2). Furthermore, since Q1 
= Q2, and
since a cell can belong to either a polyomino or to its perimeter, but not to both,
it must be that P(Q1) 
= P(Q2). The border of Q is a subset of both P(Q1)
and P(Q2), that is, B(Q) ⊂ P(Q1) ∩ P(Q2). Since P(Q1) 
= P(Q2), we have
that either |B(Q)| < |P(Q1)| or |B(Q)| < |P(Q2)|; assume w.l.o.g. the former
case. Now consider the polyomino D(Q). Its area is |Q| − |B(Q)|. The area of Q
is |Q1| + |P(Q1)|, thus, |D(Q)| > |Q1|, and since the perimeter of D(Q) is a
subset of the border of Q, we conclude that |P(D(Q))| < |P(Q1)|. However,
Q1 is a minimal-perimeter polyomino, which is a contradiction to ε(n) being
monotone increasing. ��
Theorem 4. (Chain Theorem) Let Mn be the set of minimal-perimeter poly-
ominoes of area n. Then, for n ≥ 3, we have that |Mn| =

∣∣Mn+ε(n)

∣∣.

Proof. By Theorem 3, if Q ∈ Mn, then I(Q) ∈ Mn+ε(n), and hence, by Lemma 6,
we have that |Mn| ≤ ∣∣Mn+ε(n)

∣∣. Let us now show the opposite relation, namely,
that |Mn| ≥ ∣∣Mn+ε(n)

∣∣. The combination of the two relations will imply the
claim.

Let I(Mn) = {I(Q) | Q ∈ Mn}. For a polyomino Q ∈ Mn+ε(n), our goal is to
show that Q ∈ I(Mn). Since Q ∈ Mn+ε(n), we have by Corollary 1 that |P(Q)| =
ε(n)+4. Moreover, by Theorem 2, we have that |B(Q)| = ε(n), thus, |D(Q)| = n
and |P(D(Q))| ≥ ε(n). Since the perimeter of D(Q) is a subset of the border
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of Q, and |B(Q)| = ε(n), we conclude that the perimeter of D(Q) and the border
of Q are the same set of cells. Thus, I(D(Q)) = Q. Since |P(D(Q))| = ε(n), we
have that D(Q) is a minimal-perimeter polyomino, thus, Q ∈ I(Mn) as required.
Hence, Mn+ε(n) ⊆ I(Mn), implying that

∣∣Mn+ε(n)

∣∣ ≤ |I(Mn)| = |Mn|.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. A demonstration of Theorem 4.

Figure 7 shows, for example, all minimal-perimeter polyominoes of area 7.
When they are inflated, they become the entire set of minimal-perimeter poly-
ominoes of area 17. ��
Corollary 2. For n ≥ 3 and any k ∈ N, we have that |Mn| =∣
∣Mn+kε(n)+2k(k−1)

∣
∣.

Proof. The claim follows from applying Theorem 4 repeatedly on Mn. ��

5 Conclusion

We have shown that inflating a set of minimal-perimeter polyominoes of a certain
area creates a new set, of the same cardinality, of minimal-perimeter polyominoes
of some other area. This creates chains of sets of minimal-perimeter polyominoes
of the same area.

In the future, we would like to characterize the roots of these chains and
to determine how many minimal-perimeter polyominoes the sets of each chain
contains. One may take an algorithmic approach in order to calculate the num-
ber of minimal-perimeter polyominoes of a certain area. It seems to be feasible
to calculate efficiently the number of minimal-perimeter polyominoes of some
area using dynamic programing, utilizing the constraints induced by the special
geometric structures of such polyominoes.
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Abstract. We provide efficient algorithms for computing compact rep-
resentations of Voronoi diagrams using a convex-straight-skeleton (i.e.,
convex polygon offset) distance function when sites are line segments or
convex polygons.
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1 Introduction

Voronoi diagrams (VD) are well-studied in a variety of fields, including, of course,
computational geometry, but also ecology, biology, astro-physics, robot motion
planning, and medical diagnosis (e.g., see [3,5]). Given a collection of disjoint
geometric objects, such as points, segments, or polygons, which are called sites,
a Voronoi diagram is a subdivision of the plane into cells such that all the points
in a given cell have the same nearest site according to some distance metric.

There are many different types of distance functions that can be used to
determine such nearest sites (e.g., see [5,15,19,20]), depending on the appli-
cation, with one of particular interest for this paper being based on offsets of
a convex polygon. Conceptually, this distance function is measured by locally
translating the edges of an underlying convex polygon by some amount, either
inwardly or outwardly. Such offset distance functions are motivated by applica-
tions in three-dimensional modeling and folding (e.g., see [1,7,8]) and are related
to a structure known as the straight skeleton [2,10,13]. For this reason, we refer
to such functions as convex-straight-skeleton distance functions.
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Assuming that sites are line segments or convex polygons, the combinatorial
complexities of convex-straight-skeleton Voronoi diagrams are given in a recent
paper by Barequet and De [6], but they do not give efficient algorithms for com-
puting such structures. Our interest in the present paper is the study of such effi-
cient algorithms, for computing a compact representation of a convex-straight-
skeleton Voronoi diagram for segments or convex polygons (where Voronoi edges
comprising polygonal chains are represented implicitly).

1.1 Related Work

The Voronoi diagram of point sites is extensively studied in the literature (e.g.,
see [3,5]). Using the Euclidean metric, the combinatorial complexity for the
Voronoi diagram is O(n), where the sites are n points [12], or n disjoint line
segments [4,18]. These diagrams can be constructed in O(n log n) time, which
is worst-case optimal. For a set of n disjoint convex polygonal sites, each with
complexity k, the Voronoi Diagram in the Euclidean metric for this set of sites
has combinatorial complexity O(kn) [14,16,20].

McAllister et al. [17] introduced the concept of a compact representation
of a Voronoi diagram of convex polygonal sites, with distance defined either
by the standard Euclidean metric or by scaling a convex polygon (which is
related to but nevertheless different from the offset-polygon distance functions
we study in this paper). They represent chains of piecewise-algebraic curves
as single segments and they show that their compact representation can be
used to quickly answer nearest-site queries and that, given a compact Voronoi
diagram representation, one can compute the original Voronoi diagram in time
proportionate to its combinatorial complexity. They show that such a compact
Voronoi diagram can be constructed to have total size O(n), where n is the
total number of sites. They provide an algorithm running in time O(n(log n +
log k) log m + m) for constructing such a compact Voronoi diagram of n convex
polygons, each of size k, using a scaled distance function based on a convex
m-gon.

Recently, Cheong et al. [11] showed that in the Euclidean metric, the farthest-
site counterpart to the compact Voronoi diagram also has combinatorial com-
plexity O(n), and it can be computed in O(n log3 n) time. On a related note,
Bohler et al. [9] recently introduced the related notion of an abstract higher-order
Voronoi diagram and studied its combinatorial complexity.

With respect to convex polygon-offset distance functions, the combinatorial
complexity of the convex-straight-skeleton Voronoi diagram of a set of n point
sites is shown by Barequet et al. [7] to be O(nm), where m is the combinatorial
complexity of the underlying convex polygon defining distance. Furthermore,
they show that compact representations of such diagrams can be computed in
O(n(log n+log2 m)+m) time. Recently, Barequet and De [6] show that the com-
binatorial complexity of a convex-straight-skeleton Voronoi diagram is O(nm)
for n line-segment sites and O(n(m+k)) for n convex polygons having at most k
sides each. We are not aware of any previous results for efficient algorithms for
computing a compact representation for a convex-straight-skeleton Voronoi dia-
gram for line-segment or convex-polygon sites, however.
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1.2 Our Contributions

In this paper, we show that it is possible to compute a compact representation
of a convex-straight-skeleton Voronoi diagram of n line segments in O(n(log n +
log2 m)+m2) time and of n convex polygon sites, each of complexity at most k,
in O(n(log n + log k log2 m) + m2) time.

Our algorithms are based on new insights into the geometry of convex-
straight-skeleton distance functions with line segment and convex polygon sites,
which allow us to show how to compute a number of geometric primitives effi-
ciently for segments and convex polygons when the distance is defined by a
convex offset-polygon distance function. For instance, we present an O(log m)-
time algorithm for computing the distance, DP(z, s), between a point, z, and
a line segment, s, using an offset distance defined by the polygon, P. We also
present an O(log2 m)-time algorithm for computing another elementary query,
vertex(s1, s2, s3): Given three line segments s1, s2, and s3, find the point which
is equidistant from them. Our data structures for answering both of these types
of queries require O(m2) preprocessing time. For convex polygon sites, we show
that the elementary query operation, DP(z, q), can be answered in O(log k log m)
time, where z is a point and q is a convex polygon with at most k sides. We also
show that the primitive, vertex(q1, q2, q3), can be answered in O(log k log2 m)
time, where z is a point and the qi’s are convex polygons with at most k sides.
Both of these results use data structures having O(m2) preprocessing time.

2 Preliminaries

P −P

(a) (b)

Fig. 1. (a) Offsets of a convex poly-
gon, P, along its straight skeleton
(which is the same as its medial axis
inside P). (b) Offsets of the convex
polygon (−P), including its straight
skeleton.

Let us borrow a few definitions from ear-
lier papers [6,7]. Given a convex polygon, P,
described by the intersection of m closed half-
planes, {Hi}, an offset copy of P, denoted
as OP,ε, is defined as the intersection of the
closed half-planes {Hi(ε)}, where Hi(ε) is the
half-plane parallel to Hi with bounding line
translated by ε. Depending on whether the
value of ε is positive or negative, the trans-
lation is respectively done outward or inward
of P . See Fig. 1(a). Let ε0 < 0 be the value for
which OP,ε0 degenerates into a single point c
(or a line segment s). We call the value, ε0,
the negative radius of P, and the point c (or any point on s) the center of P.

Using the above concept, the polygon-offset distance function DP from one
point to another point [7] and to an object [6] are defined as follows.

Definition 1 (Point to point distance [7]). Let z1 and z2 be two points
in R

2 and OP,ε be an offset of P such that a translated copy of OP,ε, cen-
tered at z1, contains z2 on its boundary. The offset distance is defined as

DP(z1, z2) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.
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�1

�2

(a) (b) (c)

Fig. 2. (a) Three different positions of the offset polygons from where both line seg-
ments are equidistant; (b) The bisector (colored with blue) of two line segments accord-
ing to the definition used in [7]; and (c) The bisector (colored with blue) according to
our definition. (Color figure online)

Note that this distance function is not a metric since it is not symmetric. On
the other hand, observe that DP(z1, z2) = D(−P)(z2, z1), where (−P) = {−z|z ∈
P} is a “centrally-mirrored” copy of P. See Fig. 1(b). This fact is widely used to
compute the Voronoi diagram for point sites in [7].

Definition 2 (Point to object distance [6]). Let z be any point, and let o
be any object in R

2. The offset distance DP(z, o) is defined as DP(z, o) =
min
z′∈o

DP(z, z′).

2.1 Convex-Straight-Skeleton Voronoi Diagrams

Under the convex polygon offset distance function, the bisector of two points (as
defined originally [7]) can be 2-dimensional instead of 1-dimensional (see Fig. 2
for an illustration). This makes the Voronoi diagram of points unnecessarily
complicated. To make it simple, as is also done by Klein and Woods [15], the
bisector and Voronoi diagram with respect to the offset distance function DP is
defined as follows [6].

Let z be a point, and Σ = {σi} a set of objects in the plane. In order to
avoid 2-dimensional bisectors between two objects in Σ, we define the index of
the objects as the “tie breaker” for the relation ‘≺’ between distances from z
to the sites. That is, DP(z, σi) ≺ DP(z, σj), if DP(z, σi) < DP(z, σj) or, in
case DP(z, σi) = DP(z, σj), if i < j. Note that the relation ‘≺’ does not allow
equality if i �= j. Therefore, the definition below uses the closure of portions of
the plane in order to have proper boundaries between the regions of the diagram.

Definition 3 (Convex-Straight-Skeleton Voronoi diagram). Let Σ =
{σ1, σ2, . . . , σn} be a set of n sites in R

2. For any σi, σj ∈ Σ, we define the
region of σi with respect to σj as NV

σj

P (σi) = {z ∈ R
2|DP(z, σi) ≺ DP(z, σj)}.

The bisecting curve BP(σi, σj) is defined as NV
σj

P (σi) ∩ NV σi

P (σj), where X is
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the closure of X. The region of a site σi in the convex straight-skeleton Voronoi
diagram of Σ is defined as

NVP(σi) = {z ∈ R
2 |DP(z, σi) ≺ DP(z, σj) ∀j �= i}.

The nearest-site convex straight-skeleton Voronoi diagram is the union of the
regions

NVDP(Σ) =
⋃

i

NVP(σi).

In other words, the diagram NVDP(Σ) is a partition of the plane, such that
if a point p ∈ R

2 has more than one closest site, then it belongs to the region
of the site with the smallest index. The bisectors between regions are defined by
taking the closures of the open regions.

3 Tools for Constructing Convex Straight-Skeleton
Voronoi Diagrams

Let us generalize our distance function to object-to-point distance as follows.

Definition 4 (Object-to-point distance). Let z be any point, and let o be any
object in R

2. The offset distance DP(o, z) is defined as DP(o, z) = min
z′∈o

DP(z′, z).

The following lemma is crucial for the correctness of our algorithms.

Lemma 5. DP(z, o) = D(−P)(o, z).

3.1 Tools for Line Segments

(−P)s

u1,ε

u2,ε

�1,ε

�2,ε

(a) (b)

Fig. 3. (a) A convex polygon (−P)s (marked
with red), and O(−P)s,ε for different values of
ε; the extruded medial axis of (−P)s is marked
with blue; and (b) The medial axis of (−P)s

(marked with blue). (Color figure online)

In [7], the strong relationship
between the continuous change
of O(−P),ε (as a function of ε)
and the medial axis of (−P) was
observed. The medial axis, which is
also the straight skeleton of the con-
vex polygon (−P) is defined as the
set of points inside (−P) that have
more than one closest point among
the points of ∂(−P). It was noticed
that if we change the value of ε con-
tinuously by fixing the center, then
the vertices of O(−P),ε slide along
the edges of the medial axis. Out-
side the polygon, the medial axis
and straight skeleton differ in that
the straight skeleton extends out-
ward as bisectors of edge offsets, whereas the medial axis extends “rounded”
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edges from vertices. This information was widely used to efficiently com-
pute DP(z1, z2) for any two points z1 and z2 in R

2. As a result, the prepro-
cessing of the medial axis of (−P) in a tree-like data structure was sufficient to
answer DP(z1, z2) queries in O(log m) time, for any two points z1 and z2 in R

2.

Lemma 6 [7, Theorem 10]. Allowing O(m) time preprocessing of the poly-
gon (−P), the distance function DP(z1, z2) can be computed in O(log m) time,
where z1 and z2 are two points.

For our purposes, we would like to preprocess the underlying polygon and
compute a similar data structure which will enable us to answer DP(z, s) queries
efficiently, for any point z and line segment s in R

2.

z

z′
q∗

z1

z2

Fig. 4. The extruded medial
axis of (−P)s: The medial
region and parallel region
are colored with light green
and light blue, respectively;
two common boundaries are
marked with red. (Color figure
online)

Let (−P)s be the convex polygon obtained
by taking the union of all the translated copies
of (−P) centered at all the points in the line seg-
ment s. Similarly, we define O(−P)s,ε as the con-
vex polygon obtained by taking the union of all
the translated copies of O(−P),ε centered at all
the points in the line segment s. Note that (−P)s

(resp., O(−P)s,ε) is the convex-hull of two trans-
lated copies of (−P) (resp., O(−P),ε) centered
at the two endpoints of s. Note that when ε
takes the value ε0, which is the negative radius
of (−P), then O(−P)s,ε0 degenerates into the line
segment s. We refer to the line segment s as
the center of O(−P)s,ε, for ε ≥ ε0. Note that
even in the worst case, the complexity of (−P)s

is not twice the complexity of P, but simply
|(−P)s| = |P| + 2. We define the extruded medial
axis of (−P)s as the set of points inside (−P)s such that if we change the value
of ε continuously by fixing the center at s, then the vertices of O(−P)s,ε slide
along the edges of the extruded medial axis (see Fig. 3(a)). Also note that the
extruded medial axis of (−P)s may not be the same as the medial axis of (−P)s

(see Figs. 3(a–b) for a comparison).
We define the following distance function.

Definition 7 (D(−P)s(s, z)). Let z be any point and s be any line segment in R
2,

and O(−P)s,ε be an offset of (−P)s (centered at s) such that O(−P)s,ε contains z
on its boundary. The offset distance D(−P)s(s, z) is defined as D(−P)s(s, z) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.
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Lemma 8. D(−P)(s, z) = D(−P)s(s, z).

Combining Lemmata 5 and 8, we have the following.

Lemma 9. DP(z, s) = D(−P)s(s, z).

Let us now show how to compute efficiently the distance DP(z, s) for any
point z and line segment s in R

2. Following Lemma 9, we know that it is
sufficient to compute D(−P)s(s, z). Provided that the extruded medial axis
of (−P)s is computed in a preprocessing step, D(−P)s(s, z) can be computed
as in Lemma 6 [7]. Note that DP(z, s) is a primitive operation for the computa-
tion of the compact Voronoi diagram. Thus, simply preprocessing the extruded
medial axis of (−P)s for every segment s ∈ S would result in increased pre-
processing space (i.e., O(nm) space). However, we prove here that even with
preprocessing only the medial axis of (−P), we can compute DP(z, s) with the
same query time as that of computing DP(zj , z�), zj , z� ∈ R

2.
Let us now illustrate the properties of the extruded medial axis of (−P)s.

Place two translated copies T1,ε and T2,ε of the offset polygon O(−P),ε, centered
at two endpoints z1 and z2 of the line segment s (see Fig. 3(a)). Let u1,ε and
u2,ε be the two vertices of the upper tangent1 of the convex-hull joining T1,ε

and T2,ε. Observe that u1,ε and u2,ε are the same vertex of the offset polygon
O(−P),ε. Similarly, let �1,ε and �2,ε be the two vertices of the lower tangent of the
convex-hull joining T1,ε and T2,ε. Note that if we change the value of ε, then both
ui,ε and �i,ε change along the medial axis of Ti,ε, i ∈ {1, 2}, and the upper (resp.,
lower) tangent moves and is always parallel to s. Thus, the extruded medial axis
of (−P)s is a subset of the union of the medial axes of T1,ε and T2,ε. Specifically,
the portion of the medial axis of Ti,ε, that lies between ui,ε and �i,ε and whose
end vertices are in the convex-hull, are in the extruded medial axis of (−P)s.
We refer to this part of the medial axis of Ti,ε as the medial region with respect
to the line segment s. We define the parallel region as the part of the polygon
(−P)s that does not have dominating edges from the medial region (see Fig. 4
for an illustration). For a point z which belongs to the parallel region of (−P)s,
let z′ be the projection of z on the common boundary of the medial region of Ti,
i ∈ {1, 2} and the parallel region (see Fig. 4). Then, DP(z, s) can be calculated
by simply computing DP(z′, zi).

Lemma 10. Allowing O(m2) time preprocessing of the polygon (−P), DP(z, s)
can be computed in O(log m) time, where z is a point and s is a line segment.
Along with that, a point q∗ ∈ s satisfying DP(z, q∗) = DP(z, s) can be reported
in the same amount of time.

1 If s is vertical, then we arbitrarily choose the left tangent as the upper.
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Proof. We keep two copies, T1 and T2, of the processed medial axis of (−P) as
required by Lemma 6. In addition, we preprocess (−P) such that both traversing
and binary searching is possible along any vertex-to-center path of (−P). Since
there are m vertices, there are m such paths. By simply storing each path as a
list, we need a total of O(m2) space and time to preprocess this data structure2.

To answer the query DP(z, s), we do the following:

Step 1. Compute the upper and lower tangents of the two translated copies T1

and T2, centered at z1 and z2, respectively, where z1 and z2 are the endpoints
of the line segment s. Let ui and �i be the points in which the upper and
lower tangents Ti, i ∈ {1, 2}, touch the two polygons.

Step 2.1. If z is in the relevant region of Ti with respect to s, then answer
DP(z, s), return the point q∗ by evoking DP(z, zi), and stop.

Step 2.2. Otherwise (if z is in the parallel region), we answer a ray-shooting
query on the common boundary Bi between the medial region of Ti and the
parallel region of (−P)s to find z′, the projection of z on Bi (see Fig. 4). We
obtain DP(z, s) by computing DP(z′, zi). We can then find the point q∗ by
translating the point zi by d(z, z′) along the line segment s, where d(z, z′) is
the Euclidean distance between z and z′.

Step 1 takes O(log m) time, assuming that (−P) is available as a cyclic list
of vertices. Step 2.1 can be done in O(log m) time as in Lemma 6. Since Bi is
a path from a vertex of (−P) to its center along the medial axis where we can
perform a binary search, we can find z′ in O(log m) time. Hence, Step 2.2 takes
O(log m) time. In total, the query time complexity is O(log m). �	

Another primitive operation is finding the Voronoi vertex v∗ where the
Voronoi cells with respect to the polygon-offset distance DP for sites s1, s2, s3
occur in counterclockwise order around v∗. Applying the tentative prune-and-
search paradigm, we can find v∗ similarly to the method in [7]. The only dif-
ference is that here, three different polygons (−P)s1 , (−P)s2 , and (−P)s3 come
into the picture instead of three identical copies of (−P). Thus, we have the
following:

Lemma 11. Given three line segments s1, s2, s3 in the plane, and a convex poly-
gon P of m sides, a Voronoi vertex v∗, where the Voronoi cells with respect to
the polygon-offset distance DP for sites s1, s2, s3 occur in counterclockwise order
around v∗, can be computed in O(log2 m) time (allowing O(m2) time for prepro-
cessing).

2 This preprocessing step can probably be implemented in a more efficient way, but
since it’s not the bottleneck of the algorithm, such an improvement will not affect
the total running time of the algorithm for computing DP(z, s).
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3.2 Tools for Convex Polygonal Sites

z

q∗

z′
zi

(a) (b)

Fig. 5. (a) (−P)q: The polygon q is colored gray.
Translated copies of (−P), centered at the vertices of
q, are shown with dotted lines. The extruded medial
axis of (−P)q is marked with blue. (b) The medial
region and parallel region are colored light green and
light blue, respectively. (Color figure online)

Here, we generalize the for-
merly described tool of line
segments for convex poly-
gons. Let q be a convex
polygon with k sides, and
∂q be the boundary of q.
Let (−P)q be the convex
polygon obtained by unit-
ing all the translated copies
of (−P) centered at all
the points z ∈ q. Sim-
ilarly, we define an offset
copy O(−P)q,ε as the convex
polygon obtained by uniting
all the translated copies of
O(−P),ε centered at all the
points z ∈ q. Note that
(−P)q (resp., O(−P)q,ε) is the convex-hull of k translated copies of (−P) (resp.,
O(−P),ε) centered at the k vertices of the polygon q. Note that when ε takes the
value ε0, which is the negative radius of (−P), then O(−P)q,ε0 degenerates into
the polygon q. We refer to the polygon q as the center of O(−P)q,ε, for ε ≥ ε0.
The complexity of (−P)q is |(−P)q| = |P| + k because each side of (−P) can
appear at most once along the boundary of (−P)q, and there are exactly k tan-
gents. We define the extruded medial axis of (−P)q as the set of points inside
(−P)q such that if we change the value of ε ≥ ε0 continuously by fixing the
center at q, then the vertices of O(−P)q,ε slide along the edges of the extruded
medial axis (see Fig. 5). Similarly to the previous section, the extruded medial
axis of (−P)q may differ from the medial axis of (−P)q.

We define the following distance function.

Definition 12 (D(−P)q (q, z)). Let z be any point and q be any convex polygon
with k sides in R

2, and O(−P)q,ε be an offset copy of (−P)q (centered at q) such
that O(−P)q,ε contains z on its boundary. The offset distance D(−P)q (q, z) is

defined as D(−P)q (q, z) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.

Lemma 13. D(−P)(q, z) = D(−P)q (q, z).

Proof. The proof is similar to the proof of Lemma 8. �	
Combining Lemmata 5 and 13, we have the following.

Lemma 14. DP(z, q) = D(−P)q (q, z).

Let us illustrate the properties of the extruded medial axis of (−P)q. Place
k translated copies Ti,ε, i ∈ {1, . . . , k}, of the offset polygon O(−P),ε centered
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at the k vertices {zi}, i ∈ {1, . . . , k}, of the polygon q (see Fig. 5(a)). Here Ti,ε

and Ti+1,ε are two clockwise consecutive copies, and let ti be the outer common
tangent of Ti,ε and Ti+1,ε, where the addition of subtraction of the index i are
modulo k. Let ui1,ε and ui2,ε be the two vertices of the outer tangent of the
convex-hull joining Ti,ε and Ti+1,ε. Observe that ui1,ε and ui2,ε are the same
vertex of the offset polygon O(−P),ε. Note that if we change the value of ε, then
all vertices uij ,ε move along the medial axis of Ti,ε, i ∈ {1, 2, . . . , k}, j ∈ {1, 2},
and all k outer tangents move parallel to themselves. Thus, the extruded medial
axis of (−P)q is a subset of the union of medial axes of Ti,ε, i ∈ {1, 2, . . . , k} (see
Fig. 5(b)). Specifically, the portion of the medial axis of Ti,ε that lies between
u(i−1)2,ε and ui1,ε and whose end vertices appear in O(−P)q,ε are in the extruded
medial axis of (−P)q. We refer to this part of the medial axis of Ti,ε as the medial
region of Ti,ε with respect to the polygon q. We define the ith parallel region
as the part of the polygon O(−P)q,ε that does not have dominating edges from
the medial region and lies between Ti,ε and Ti+1,ε (see Fig. 5(b)). For a point z
which belongs to the ith parallel region of O(−P)q,ε, let z′ be the projection of z
on the common boundary of the medial region of Ti and the ith parallel region.
Then, DP(z, q) can be found by simply computing DP(z′, zi).

Lemma 15. Allowing O(m2) time and space for preprocessing of the polygon
P, the function DP(z, q) can be computed in O(log k log m) time, where z is a
point, and q is a convex polygon with at most k sides.

Proof. We keep three copies Tj , j ∈ {−1, 0, 1} of the processed medial axis of
(−P) as required by Lemma 6. In addition, we preprocess (−P) such that both
traversing and binary searching are possible along each vertex-to-center path of
(−P). Since there are m vertices, there are m such paths. By simply storing each
path as a list, we need a total of O(m2) space and time to preprocess this data
structure (See footnote 2).

To answer the query DP(z, s), we perform a binary search along the cyclic
list of vertices of the polygon q. At each step of the binary search, we select, say,
zi, the ith vertex of q, and decide whether either (i) z is in the medial region;
(ii) z is in the parallel region of the corresponding translated copy of (−P); or
(iii) z is in the left or right side of zi in the cyclic order list of vertices of q.

To decide whether z is in the medial region or in the parallel region of the
corresponding translated copy of (−P), centered at the ith vertex, we do the
following:

Step 1. Place three copies Tj , j ∈ {−1, 0, 1} at the (i − 1)st, ith, and (i + 1)st
vertices of q. Let zi be the ith vertex of q.

Step 2. Find the outer common tangents of T−1, T0 and of T0, T1. This will
allow us to detect the medial region and parallel region of T0 with respect
to q.

Step 3.1. If z is in the medial region of T0, then we can answer DP(z, q) and
report the point q∗ by invoking DP(z, zi). We stop after reporting.

Step 3.2. Else, if z is in the parallel region (see Fig. 5(b)), we perform ray-
shooting on the common boundary Bi between the medial region and the
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parallel region of Ti to find z′, the projection of z on Bi. We obtain DP(z, s)
by computing DP(z′, zi). We can find the point q∗ by translating the point zi

by d(z, z′) along the line segment s, where d(z, z′) is the Euclidean distance
between z and z′.

Step 3.3. Otherwise, determine the side where z lies with respect to zi in the
cyclic list of vertices of q.

Step 1 takes constant time, Step 2 takes O(log m) time assuming that the
polygon (−P) is available as a cyclic list of vertices. Step 3.1 can be done in
O(log m) time as in Lemma 6. Since Bi is a path from a vertex of (−P) to its
center along the medial axis where we can do binary search, we can find z′ in
O(log m) time. Therefore, Step 3.2 takes O(log m) time. Step 3.3 needs constant
time. Thus, at each step of the binary search, we need O(log m) time. In total,
the query time complexity is O(log k log m). �	

The other primitive operation is to find the Voronoi vertex v∗, where the
Voronoi cells, with respect to the polygon-offset distance DP for three polygonal
sites q1, q2, q3, occur in counterclockwise order around v∗. Applying the tentative
prune-and-search paradigm, we can find v∗ similarly to the method used in [7].
The main difference is that here, three different polygons (−P)q1 , (−P)q2 and
(−P)q3 come into the picture instead of three identical copies of (−P). On the
other hand, each O(log m)-time distance evaluation function is replaced by an
O(log k log m)-time operation for evaluating DP(z, q) (by Lemma 15). Thus, we
have the following:

Lemma 16. Given three polygons p1, p2, p3 in the plane, each having at most
k sides, and a convex polygon P with m sides, the point v∗, equidistant from
p1, p2, p3 with respect to the polygon-offset distance DP , can be computed in
O(log k log2 m) time (allowing O(m2) time for preprocessing).

4 Computing a Compact Convex Straight-Skeleton
Voronoi Diagram

As mentioned above, McAllister et al. [17] presented an algorithm for computing
a compact representation of the nearest-site Voronoi diagram of a set of convex
polygonal sites with respect to a convex (scaled) distance function. Here, we show
how to adapt their method to obtain a compact representation of NV DP(Q),
where Q = {q1, q2, . . . , qn} is a set of n convex polygonal sites, each having at
most k sides, and NVDP(Q) is the nearest-site convex-straight-skeleton Voronoi
diagram of these sites, with respect to the convex polygon-offset distance function
DP , where P is an m-sided convex polygon.

For any point z and a polygonal site q, spoke(z, q) is defined as a line segment
z, z∗, such that DP(z, z∗) = min

z′∈q
DP(z, z′). Here, z∗ is referred to as the attach-

ment point of the spoke. Note that spoke(z, q) can be computed in O(log k log m)
time (with O(m2) preprocessing time), where the polygon q has k vertices/edges
(Lemma 15).
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For three sites q1, q2, q3, vertex(q1, q2, q3) is defined as the point v equidistant
from q1, q2, q3 with respect to the polygon-offset distance function DP . From
Lemma 16 we know that vertex(q1, q2, q3) can be computed in O(log k log2 m)
time (with O(m2) preprocessing time).

The compact Voronoi diagram is a simplified version of the full Voronoi
diagram. Here, we maintain a set of spokes from the Voronoi vertices around the
cell, and each polygonal site q is replaced by its core, where a core is the convex
hull of the attachment points that lie on the boundary of q (see [17, Fig. 4]). As
a result, we obtain a compact representation whose combinatorial complexity is
O(n). Note that the combinatorial complexity of NV DP(Q) is O(n(m+ k)) [6],
which is higher than the combinatorial complexity of the compact representation.

Note that each cell of this compact diagram is actually composed of portions
of two cells of the full Voronoi diagram. Thus, we can do the point location
as follows. Given a point z, we can obtain the compact cell and the two corre-
sponding candidate sites qi and qj in O(log n) time. Then, spending additional
O(log k log m) time to compare DP(z, qi) and DP(z, qj), we can determine the
identity of the cell of the full Voronoi diagram in which the point is located.

As observed in [7, Sect. 4], the geometric properties of the compact Voronoi
diagram are preserved when we use a convex polygon-offset distance function
instead of a convex distance function. Hence, we can apply Theorem 3.10 of
[17], which states that the compact representation of the Voronoi diagram can
be computed in O(n(log n + Tv)) time, where Tv is the time needed for per-
forming primitive operations like spoke(z, q) and vertex(q1, q2, q3). For con-
vex polygonal sites, Tv is O(log k log2 m) (this follows from Lemmata 15 and
16). Thus, we can compute a compact Voronoi diagram for NV DP(Q) in
O(n(log n + log k log2 m) + m2) time, where Q is a set of n disjoint convex
polygonal sites, each having at most k sides.

Theorem 17. For a set Q of n convex polygonal sites, each having at most
k sides, the compact representation of the Voronoi diagram NV DP(Q) can be
computed in expected O(n(log n + log k log2 m) + m2) time, where m is the
number of sides of the underlying convex polygon P.

Following the same arguments as in the proof of Theorem 17, we have the
following result.

Theorem 18. For a set S of n line segments, the compact representation of
the nearest-site Voronoi diagram NV DP(S ) can be computed in O(n(log n +
log2 m) + m2) time, where m is the number of sides of the underlying convex
polygon P.
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Abstract. We study the following range searching problem: Preprocess
a set P of n points in the plane with respect to a set O of k orientations
in the plane so that given an O-oriented convex polygon Q as a query,
the convex hull of P ∩ Q, and its perimeter and area, can be reported
efficiently, where an O-oriented polygon is a polygon whose edges have
orientations in O. We present a data structure with O(nk3 log2 n) space
and O(nk3 log2 n) construction time, and a query algorithm to compute
the perimeter or area of the convex hull of P ∩ Q in O(s log2 n) time
for any query O-oriented convex s-gon Q. For reporting the convex hull,
O(h) is added to the running times of query algorithms, where h is the
complexity of the convex hull.

1 Introduction

Range searching is one of the most thoroughly studied problems in computational
geometry for decades from 1970s. Range trees and kd-trees were proposed as data
structures for orthogonal range searching, and their sizes and query times had
been improved over the years. The most efficient data structures for orthogonal
range searching for points in the plane [6] and in higher dimensions [7] are due
to Chazelle.

There are variants of the range searching problem that allow other types of
query ranges, such as circles or triangles. Many of them can be solved using par-
tition trees or a combination of partition trees and cutting trees. The simplex
range searching problem, which is a higher dimensional analogue of the trian-
gular range searching, has gained much attention in computational geometry
as many other problems with more general ranges can be reduced to them. As
an application, it can be used to solve the hidden surface removal in computer
graphics [4,11].
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The polygon range searching is a generalization of the simplex range search-
ing in which the search domain is a convex polygon. Willard [18] gave a data
structure, called the polygon tree, with O(n) space and an O(n0.77)-time algo-
rithm for counting the number of points lying inside an arbitrary query polygon
of constant complexity. The query time was improved later by Edelsbrunner
and Welzl [13] to O(n0.695). By using the stabbing numbers of spanning trees,
Chazelle and Welzl [8] gave a data structure of size O(n log n) that counts the
number of points lying inside a query convex k-gon in O(

√
kn log n) time for

arbitrary values of k with k ≤ n. When k is fixed for all queries, the size of the
data structure drops to O(n). Quite a few heuristic techniques and frameworks
have been proposed to process polygon range queries on large-scale spatial data
in a parallel and distributed manner on top of MapReduce [12]. For overviews
of results on range searching, see the survey by Agarwal and Erickson [2].

In this paper, we consider the following polygon range searching problem:
Preprocess a set P of n points with respect to a set O of k orientations in the
plane so that given an O-oriented convex polygon Q as a query, the convex
hull of P ∩ Q, and its perimeter and area, can be reported efficiently, where an
O-oriented polygon is a polygon whose edges have orientations in O.

Whereas orthogonal and simplex range queries can be carried out efficiently,
it is quite expensive for queries of arbitrary polygons in general. This is a phe-
nomenon that occurs in many other geometry problems. In an effort to overcome
such inefficiency and provide robust computation, there have been quite a few
works on “finite orientation geometry”, for instance, computing distances [17]
in fixed orientations, finding the contour of the union of a collection of polygons
with edges of restricted orientations [16], and constructing Voronoi diagrams [3,9]
using a distance metric induced by a convex k-gon. In the line of this research,
we suggests the polygon queries whose edges have orientations from a fixed set of
orientations. Such a polygon query, as an approximation of an arbitrary polygon,
can be used in appropriate areas of application, for instance, in VLSI-design, and
possibly takes advantages of the restricted number of orientations and robustness
in computation.

Previous Works. Brass et al. [5] gave a data structure on P for a query range
Q and a few geometric extent measures, including the convex hull of P ∩ Q and
its perimeter or area. For any axis-parallel query rectangle Q, they gave a data
structure with O(n log2 n) space and O(n log3 n) construction time that reports
the convex hull of P ∩ Q in O(log5 n + h) time and its perimeter or area in
O(log5 n) time, where h is the complexity of the convex hull.

Both the data structure and query algorithm for reporting the convex hull
of P ∩ Q were improved by Modiu et al. [14]. They gave a data structure with
O(n log n) space and O(n log n) construction time that given a query axis-parallel
rectangle Q, reports the convex hull of P ∩ Q in O(log2 n + h) time.

For computing the perimeter of the convex hull of P ∩ Q, the running
time of the query algorithm by Brass et al. was improved by Abrahamsen
et al. [1]. For a query axis-parallel rectangle Q, their data structure supports
O(log3 n) query time. Also, they presented a data structure of size O(n log3 n) for
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supporting O(log4 n) query time for a 5-gon whose edges have three predeter-
mined orientations.

Our Result. Let O be a set of k orientations in the plane, and P be a set of n
points in the plane.

– We present a data structure on P that allows us to compute the perimeter
or area of the convex hull of points of P contained in any query O-oriented
convex s-gon in O(s log2 n) time. We can construct the data structure with
O(nk3 log2 n) space in O(nk3 log2 n) time. Note that s is at most 2k because
Q is convex. When the query polygon has a constant complexity, as for the
case of O-oriented triangle queries, the query time is only O(log2 n).

– For queries of reporting the convex hull of the points contained in a query
O-oriented convex s-gon, the query algorithm takes O(h) time in addition to
the query times for the perimeter or area cases, without increasing the size
and construction time for the data structure, where h is the complexity of
the convex hull.

– For k = 2, we can construct the data structure with O(n log n) space in
O(n log n) time whose query time is O(log2 n) for computing the perimeter
or area of the convex hull of P ∩Q and O(log2 n+h) for reporting the convex
hull.

– Our data structure can be used to speed up the O(n log4 n)-time algorithm by
Abrahamsen et al. [1] for computing the minimum perimeter-sum bipartition
of P . Their data structure requires O(n log3 n) space and allows to compute
the perimeter of the convex hull of points of P contained in a 5-gon whose
edges have three predetermined orientations. If we replace their data structure
with ours, we can obtain an O(n log2 n)-time algorithm for their problem
using O(n log2 n) space.

In the following sections, we give descriptions on the case of computing the
perimeter of the convex hull of points of P contained in a query polygon. The
description for the cases of computing the area and reporting the convex hull of
points in a query polygon and all missing proofs can be found in the full version
of this paper.

2 Axis-Parallel Rectangle Queries for Convex Hulls

We first consider axis-parallel rectangle queries. Given a set P of n points in the
plane, Modiu et al. [14] gave a data structure on P with O(n log n) space that
reports the convex hull of P ∩Q in O(log2 n+h) time for any query axis-parallel
rectangle Q, where h is the complexity of the convex hull. We show that their
data structure with a modification allows us to compute the perimeter of the
convex hull of P ∩ Q in O(log2 n) time.
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2.1 Two-Layer Grid-Like Range Tree

The data structure given by Modiu et al. is a two-layer grid-like range tree on
P , a variant of the two-layer standard range tree on P . The two-layer standard
range tree on P is a two-level balanced binary search tree [10]. The level-1 tree
is a balanced binary search tree Tx on the points of P with respect to their
x-coordinates. Each node α in Tx corresponds to a vertical slab I(α). The node
α has a balanced binary search tree on the points of P ∩ I(α) with respect to
their y-coordinates as its level-2 tree. In this way, each node v in a level-2 tree
corresponds to an axis-parallel rectangle B(v).

For any axis-parallel rectangle Q, there is a set V of O(log2 n) nodes of the
level-2 trees such that the rectangles B(v) of v ∈ V are pairwise interior disjoint,
Q ∩ B(v) �= ∅ for every v ∈ V, and

⋃
v∈V(P ∩ B(v)) = P ∩ Q. For v ∈ V, we call

B(v) a canonical cell for Q. One drawback of this structure is that the canonical
cells for Q are not aligned with respect to their horizontal sides in general.

To overcome this drawback, Modiu et al. [14] gave the two-layer grid-like
range tree so that the canonical cells for any query axis-parallel rectangle Q are
aligned across all nodes α in the level-1 tree with I(α) ∩ Q �= ∅. The two-layer
grid-like range tree is also a two-level tree whose level-1 tree is a balanced binary
search tree Tx on the points of P with respect to their x-coordinates. Each node
α of Tx is associated with the level-2 tree Ty(α) which is a binary search tree on
the points of P∩I(α). But, unlike the standard range tree, Ty(α) is obtained from
Ty by removing the subtrees rooted at all nodes whose corresponding rectangles
do not have any point in P ∩ I(α) and by contracting all nodes which have
only one child, where Ty is a balanced binary search tree on the points of P
with respect to their y-coordinates. Therefore, Ty(α) is not balanced but a full
binary tree of height O(log n), and it is called a contracted tree on P ∩ I(α). By
construction, the canonical cells for any axis-parallel rectangle Q are aligned.

Lemma 1 ([14]). The two-layer grid-like range tree on a set of n points in the
plane can be computed in O(n log n) time. Moreover, its size is O(n log n).

Information Stored on Each Node. To compute the perimeter of the convex
hull of P ∩Q for a query axis-parallel rectangle Q efficiently, we store additional
information on each node v of the level-2 trees as follows. It has two children in
the level-2 tree that v belongs to. Let u1 and u2 be the two children of v such
that B(u1) lies above B(u2). By construction, B(v) is partitioned into B(u1)
and B(u2).

Consider the convex hull ch(v) of B(v) ∩ P and the convex hull ch(ui) of
B(ui) ∩ P for i = 1, 2. There are at most two edges of ch(v) that appear on
neither ch(u1) nor ch(u2). We call such an edge a bridge of ch(v) with respect
to ch(u1) and ch(u2), or simply a bridge of ch(v). Note that a bridge of ch(v)
has one endpoint on ch(u1) and the other endpoint on ch(u2).

For each node v of the level-2 trees, we store the two bridges of ch(v) and
the length of each polygonal chain of ch(v) lying between the two bridges. In
addition, we store the length of each polygonal chain connecting an endpoint e of
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a bridge of ch(v) and an endpoint e′ of a bridge of ch(p(v)) for the parent node
p(v) of v with e, e′ ∈ B(v) along the boundary of ch(v). We do this for every
pair of the endpoints of the bridges of ch(v) and ch(p(v)) that are contained
in B(v). Since only a constant number of bridges are involved, the information
stored at v is also of constant size. Each bridge can be computed in time linear
to the number of vertices of ch(u) which do not appear on ch(v) for a child u
of v. The lengths of each polygonal chain we store for v can also be computed in
this time. Notice that a vertex of ch(u) which do not appear on ch(v) does not
appear again on ch(v′) for any ancestor v′ of v. Therefore, the total running time
for computing the bridges is linear in the total number of points corresponding
to the leaf nodes of the level-2 trees, which is O(n log2 n).

Lemma 2. Given a node v of a level-2 tree and two vertices x, y of ch(v), we
can compute the length of the part of the boundary of ch(v) from x to y in
clockwise order along the boundary of ch(v) in O(log n) time.

2.2 Query Algorithm

Let Q be an axis-parallel rectangle. We present an algorithm for computing the
perimeter of the convex hull of P ∩ Q in O(log2 n) time. We call the part of the
convex hull from its topmost vertex to its rightmost vertex in clockwise order
along its boundary the urc-hull of P ∩Q. In the following, we compute the length
of the urc-hull γ of P ∩ Q in O(log2 n) time. The lengths of the other parts of
the convex hull of P ∩ Q can be computed analogously.

We use the algorithm by Overmars and van Leeuwen [15] for computing the
outer tangents between any two convex polygons.

Lemma 3 ([15]). Given any two convex polygons stored in two binary search
trees of height O(log n), we can compute the outer tangents between them in
O(log n) time, where n is the total complexity of the convex hulls.

We compute the set V of the canonical cells for Q in O(log2 n) time. Recall
that the size of V is O(log2 n). We consider the cells of V as grid cells of a grid
with O(log n) rows and O(log n) columns. We use C(i, j) to denote the grid cell
of the ith row and jth column such that the leftmost cell in the topmost row is
C(1, 1). Notice that a grid cell C(i, j) might not be contained in V.

Recall that we want to compute the urc-hull of P ∩Q. To do this, we compute
the point px with largest x-coordinate and the point py with largest y-coordinate
from P ∩ Q in O(log n) time using the range tree [10]. Then we find the cells of
V containing each of them in the same time. Let C(i1, j1) and C(i2, j2) be the
cells of V containing py and px, respectively.

We traverse the cells of V starting from C(i1, j1) until we reach C(i2, j2) as
follows. We find every cell C(i, j) ∈ V with i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 such
that no cell C(i′, j′) with i < i′ and j > j′ is in V. There are O(log n) such cells,
and we call them extreme cells. We can compute all extreme cells in O(log2 n)
time. Note that the urc-hull of P ∩ Q is the urc-hull of points contained in the
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extreme cells. To compute the urc-hull of P ∩ Q, we traverse the extreme cells
in the lexicographical order with respect to the first index and then the second
index.

During the traversal, we maintain the urc-hull of the points contained in the
cells we visited so far using a binary search tree of height O(log n). Imagine that
we have just visited a cell C ∈ V in the traversal. Let δ1 and δ2 denote the
urc-hulls of the points contained in the cells we visit before and after the visit
to C in the traversal, respectively. Due to the data structure we maintained, we
have a binary search tree of height O(log n) for the convex hull ch of the points
contained in C. Moreover, we have a binary search tree of height O(log n) for δ1
from the traversal to the cells we visited so far. Therefore, we compute the outer
tangents (bridges) between them in O(log n) time by Lemma 3. The urc-hull δ2
is the concatenation of three polygonal curves: a part of ch, the bridge, and a
part of δ1. Thus we can represent δ2 using a binary search tree of height one
plus the maximum of the heights of the binary search trees for ch and δ1.

Since we traverse O(log n) cells in total, we obtain a binary search tree of
height O(log n) representing the urc-hull of P ∩Q after the traversal. The traver-
sal takes O(log2 n) time. Notice that the urc-hull consists of O(log n) polygonal
curves that are parts from the convex hulls stored in cells of V and O(log n)
bridges connecting them. We can compute the length of the polygonal curve in
O(log2 n) time in total by Lemma 2.

Theorem 1. Given a set P of n points in the plane, we can construct a data
structure with O(n log n) space in O(n log n)-time preprocessing that allows us
to compute the perimeter of the convex hull of P ∩ Q in O(log2 n) time for any
query axis-parallel rectangle Q.

Since the data structure with its construction and the query algorithm can
be used for any pair orientations which are not necessarily orthogonal through
an affine transformation, they work for any pair of orientations with the same
space and time complexities.

Corollary 1. Given a set P of n points and a set O of two orientations in the
plane, we can construct a data structure with O(n log n) space in O(n log n)-time
preprocessing that allows us to compute the perimeter of the convex hull of P ∩Q
in O(log2 n) time for any query O-oriented rectangle Q.

3 O-oriented Triangle Queries for Convex Hulls

In this section, we are given a set P of n points and a set O of k distinct
orientations in the plane. We preprocess the two sets so that we can compute
the perimeter of P ∩Q for any O-oriented triangle Q in the plane efficiently. We
construct a three-layer grid-like range tree on P with respect to every 3-tuple
(o1, o2, o3) of the orientations in O, which is a generalization of the two-layer grid-
like range tree described in Sect. 2.1. A straightforward query algorithm takes
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O(log3 n) time since there are O(log2 n) canonical cells for a query {o1, o2, o3}-
oriented triangle Q. However, it is unclear how to obtain a faster query algorithm
as the query algorithm described in Sect. 2 does not generalize to this problem
directly. A main reason is that a canonical cell for any query {o1, o2, o3}-oriented
triangle is a {o1, o2, o3}-polygon, not a parallelogram. This makes it unclear how
to apply the approach in Sect. 2 to this case.

In this section, we present an O(log2 n)-time query algorithm for this prob-
lem. Our algorithm improves this straightforward algorithm by a factor of log n.
To do this, we classify canonical cells for Q into two types. We can handle the
cells of the first type as we do in Sect. 2 and compute the convex hull of the
points of P contained in them. Then we handle the cells of the second type by
defining a specific ordering to these cells so that we can compute the convex hull
of the points of P contained in them efficiently. Then we merge the two convex
hulls to obtain the convex hull of P ∩ Q.

3.1 Three-Layer Grid-Like Range Tree

We construct a three-layer grid-like range tree on P with respect to every 3-tuple
of the orientations in O. Let (o1, o2, o3) be a 3-tuple of the orientations in O.
For an index i = 1, 2, 3, we call the projection of a point in the plane onto a
line orthogonal to oi the oi-projection of the point. Let Ti be a balanced binary
search tree on the oi-projections of the points of P for i = 1, 2, 3.

The level-1 tree of the grid-like range tree is T1. Each node of T1 corresponds
to a slab of orientation o1. For each node of the level-1 tree, we construct the
contracted tree of the o2-projections of the points contained in the slab corre-
sponding to the node with respect to T2. A node of a level-2 tree corresponds to
an {o1, o2}-oriented parallelogram. For each node of a level-2 trees, we construct
the contracted tree of the o3-projections of the points contained in the {o1, o2}-
oriented parallelogram corresponding to the node with respect to T3. A node
v of a level-3 tree corresponds to an {o1, o2, o3}-oriented polygon B(v) with at
most six vertices.

Information Stored on Each Node. Without loss of generality, we assume
o3 is parallel to the x-axis. To compute the perimeter of P ∩ Q for a query
O-oriented triangle Q, we store additional information on each node v of the
level-3 trees as follows. The node v has two children u1 and u2 in the level-3
tree that v belongs to such that B(u1) lies above B(u2). By construction, B(v)
is partitioned into B(u1) and B(u2).

Consider the convex hull ch(v) of P ∩ B(v) and the convex hull ch(ui) of
P ∩ B(ui) for i = 1, 2. There are at most two edges of ch(v) that appear on
neither ch(u1) nor ch(u2). We call such an edge a bridge of ch(v) with respect
to ch(u1) and ch(u2), or simply a bridge of ch(v). Note that a bridge of ch(v)
has one endpoint on ch(u1) and the other endpoint on ch(u2). As we do in
Sect. 2, for each node v of the level-3 trees, we store two bridges of ch(v) and
the length of each polygonal chain of ch(v) lying between the two bridges. Also,
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we store the length of each polygonal chain connecting an endpoint of a bridge
of ch(v) and an endpoint of a bridge of ch(p(v)) for the parent p(v) of v along
the boundary of ch(v) if the two endpoints appear on ch(v). We can prove the
following lemma in a similar way to Lemma 2.

Lemma 4. Given a node v of a level-3 tree and two vertices x, y of ch(v), we
can compute the length of the part of the boundary of ch(v) from x to y in
clockwise order along the boundary of ch(v) in O(log n) time.

3.2 Query Algorithm

In this subsection, we present an O(log2 n)-time query algorithm for computing
the perimeter of the convex hull of P ∩Q for a query {o1, o2, o3}-oriented triangle
Q. Let T be the three-layer grid-like range tree constructed with respect to
(o1, o2, o3).

Canonical Cells. We obtain O(log2 n) cells of T , called canonical cells of Q,
such that the union of P ∩ C coincides with P ∩ Q for all the canonical cells C
as follows. We first search the level-1 tree of T along the endpoints of the o1-
projection of Q. Then we obtain O(log n) nodes such that the union of the slabs
corresponding to the nodes contains Q. Then we search the level-2 tree associated
with each such node along the endpoints of the o2-projection of Q. Then we
obtain O(log2 n) nodes in total such that the union of the {o1, o2}-parallelograms
corresponding to the nodes contains Q. We discard all {o1, o2}-parallelograms
not intersecting Q. Some of the remaining {o1, o2}-parallelograms are contained
in Q, but the others intersect the boundary of Q in their interiors. For the nodes
corresponding to the {o1, o2}-parallelograms intersecting the boundary of Q, we
search their level-3 trees along the o3-projection of Q.

As a result, we obtain {o1, o2}-parallelograms from level-2 trees and
{o1, o2, o3}-polygons from level-3 trees of size O(log2 n) in total. See Fig. 1(a).
We call them the canonical cells of Q and denote the set of them by V. Also, we
use Vp and Vh to denote the subsets of V consisting of {o1, o2}-parallelograms
from level-2 trees and {o1, o2, o3}-polygons from level-3 trees, respectively. We
can compute them in O(log2 n) time.

Computing Convex Hulls for Each Subset. We first compute the convex
hull chp for Vp and the convex hull chh for Vh. Then we merge them into the
convex hull of P ∩ Q in Sect. 3.2. We can compute the convex hull chp of the
points contained in the cells of Vp in O(log2 n) time due to Corollary 1. This is
because the cells are aligned with respect to two axes which are parallel to o1
and o2 each. Then we obtain a binary search tree of height O(log n) representing
the convex hull chp. Thus in the following, we focus on compute chh.

Without loss of generality, assume that Q lies above the x-axis. Let � be the
side of Q of orientation o3. We assign a pair of indices to each cell of Vh, which
consists of a row index and a column index as follows. The cells of Vh come
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C(5, 1)

C(7, 3)

C(5, 2)
C(5, 3)

C(7, 4)

(a) (c)

(b)

Fig. 1. (a) Canonical cells for a triangle. Four {o1, o2}-oriented parallelogram cells from
level-2 trees and 26 {o1, o2, o3}-oriented polygon cells from level-3 trees. (b) It is not
sufficient to choose the only cells C(i, j) such that there is no cell C(i′, j′) ∈ V with
i < i′ and j > j′ since the urc-hull might have its vertices in such a cell. (c) Similarly,
it is not sufficient to choose the only cells C(i, j) such that there is no cell C(i′, j′) ∈ V
with i < i′ and j < j′.

from O(log n) level-3 trees of the range tree. This means that each cell of Vh

is contained in the cell corresponding to the root of one of such level-3 trees.
These root cells are pairwise interior disjoint and intersect �. For each cell v of
Vh contained in the ith leftmost root cell along �, we assign i to it as the row
index of v. The bottom side of a cell of Vh is parallel to the x-axis. Consider the
y-coordinates of all bottom sides of the cells of Vh. By construction, there are
O(log n) distinct y-coordinates although the size of Vh is O(log2 n). We assign
an index j to the cells of Vh whose bottom side has the jth largest y-coordinates
as their column indices. Thus, each cell of Vh has an index (i, j), where i is its
row index and j is its column index. Any two distinct cells of Vh have distinct
indices. We let C(i, j) be the cell of Vh with index (i, j).

Due to the indices we assigned, we can apply a procedure similar to Graham’s
scan algorithm for computing chh. We show how to compute the urc-hull of chh

only. The other parts of the boundary of chh can be computed analogously. To
do this, we choose O(log n) cells as follows. Note that a cell of Vh is a polygon
with at most 6 vertices. A trapezoid cell C(i, j) of Vh is called an extreme cell
if there is no cell C(i′, j′) ∈ Vh such that i < i′ and j > j′, or if there is no
cell C(i′, j′) ∈ Vh such that i < i′ and j < j′. Here, we need the disjunction.
Otherwise, we cannot find some trapezoidal cell containing a vertex of the urc-
hull. See Fig. 1(b, c). There are O(log n) extreme cells of Vh. In addition to these
extreme cells, we choose every cell of Vh which are not trapezoids, that is, convex
t-gons with t = 3, 5, 6. Note that there are O(log n) such cells because such cells
are incident to the corners of the cells of Vp. In this way, we choose O(log n) cells
of Vh in total.

Lemma 5. A cell of Vh containing a vertex of the urc-hull of chh is an extreme
cell of Vh if it is a trapezoid.
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By Lemma 5, the convex hull chh coincides with the convex hull of the convex
hulls of points in the cells chosen by the previous procedure. For each column
j, we consider the cells with column index j chosen by the previous procedure
one by one in increasing order with respect to their row indices, and compute
the convex hull of points contained in those cells. Then we consider the column
indices one by one in increasing order, and compute the convex hull of the convex
hulls for column indices. This takes O(log2 n) time in total as we do in Sect. 2.2.

In this way, we can obtain a binary search tree of height O(log n) representing
the urc-hull of chh. The urc-hull consists of O(log n) polygonal curves that are
parts of the boundaries of the convex hulls stored in cells of Vh and O(log n)
bridges connecting them. Therefore, we can compute the lengths of the polygonal
curves in O(log2 n) time in total.

Merging the Two Convex Hulls. The convex hull ch of P ∩Q coincides with
the convex hull of chp and chh. To compute it, we need the following lemma.

Lemma 6. The boundary of chp intersects the boundary of chh at most
O(log n) times. We can compute the intersection points in O(log2 n) time
in total.

We first compute the intersection points of the boundaries of chp and chh

in O(log2 n) time by Lemma 6, and then sort them along the boundary of their
convex hull in clockwise order in O(log n log log n) time. Note that this order is
the same as the clockwise order along the boundary of chp (and chh). Then we
locate each intersection point on the boundary of each convex hull with respect
to the bridges in O(log n) time in total.

There are O(log n) edges of the convex hull ch of chp and chh that do not
appear on the boundaries of chp and chh. To distinguish them with the bridges
on the boundaries of chp and chh, we call the edges on the boundary of ch
appearing neither chp nor chh the hull-bridges. Also we call the bridges on chp

and chh with endpoints in two distinct cells of V the node-bridges.
The boundary of the convex hull of chp and chh consists of O(log n) hull-

bridges and O(log n) polygonal curves each of which connects two hull-bridges
along chp or chh. We compute all hull-bridges in O(log2 n) time.

Lemma 7. All hull-bridges can be computed in O(log2 n) time in total.

As a result, we obtain a binary search tree of height O(log n) representing
the convex hull ch of P ∩Q. We can compute the length of each polygonal curve
connecting two hull-bridge in O(log n) time by Lemma 2 and the fact that there
are O(log n) node-bridges lying on ch. Therefore, we have the following theorem.

Theorem 2. Given a set P of n points and a set O of k orientations in the plane,
we can construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time
that allows us to compute the perimeter of P ∩Q in O(log2 n) time for any query
O-oriented triangle Q.



Polygon Queries for Convex Hulls of Points 153

4 O-oriented Polygon Queries for Convex Hulls

The data structure in Sect. 3 can be used for more general queries. We are given
a set P of n points in the plane and a set O of k orientations. Let Q be a query
O-oriented convex s-gon. Since Q is convex, s is at most 2k. Assume that we are
given the three-layer grid-like range tree on P with respect to the set O including
the axis-parallel orientations. We want to compute the perimeter of the convex
hull of P ∩ Q in O(s log2 n) time.

We draw vertical line segments through the vertices of Q to subdivide Q into
at most 2k trapezoids. We subdivide each trapezoid further using the horizontal
lines passing through its vertices into at most three triangles. The edges of each
triangle � has orientations in the set O including the axis-parallel orientations.
Thus, we can compute the convex hull of �∩P in O(log2 n) time and represent it
using a binary search tree of height O(log n). By Lemma 3, we can compute the
convex hull of the points contained in each trapezoid in O(s log2 n) time in total
and represent them using balanced binary search trees of height O(log n).

Let A1, . . . , At be the trapezoids from the leftmost one to the rightmost one
for t ≤ k. We consider the trapezoids one by one from A1 to At. Assume that we
have just handled the trapezoid Ai and we want to handle Ai+1. Assume further
that we already have the convex hull chi of the points contained in Aj for all
j ≤ i. Since the convex hull of the points in Ai+1 is disjoint from chi, we can
compute chi+1 in O(log n) time using Lemma 3. In this way, we can compute
the convex hull of P ∩ Q in O(s log2 n) time in total. Moreover, we can compute
its perimeter in the same time as we did before. If s is a constant as for the case
of O-oriented triangle queries, it takes only O(log2 n) time.

Theorem 3. Given a set P of n points in the plane and a set O of k orientations,
we can construct a data structure with O(nk3 log2 n) space in O(nk3 log2 n) time
that allows us to compute the perimeter of the convex hull of P ∩Q in O(s log2 n)
time for any O-oriented convex s-gon.

As mentioned in Introduction, our data structure can be used to improve
the algorithm and space requirement by Abrahamsen et al. [1]. They considered
the following problem: Given a set P of n points in the plane, partition P into
two subsets P1 and P2 that minimizes the sum of the perimeters of ch(P1)
and ch(P2), where ch(A) is the convex hull of a point set A. They gave an
O(n log4 n)-time algorithm for this problem using O(n log3 n) space. Using our
data structure, we can improve their running time to O(n log2 n) and their space
complexity to O(n log2 n).

Corollary 2. Given a set P of n points in the plane, we can compute a mini-
mum perimeter-sum bipartition of P in O(n log2 n) time using O(n log2 n) space.

We also have the following results for the cases of computing the area and report-
ing the convex hull of points in a query polygon.

Theorem 4. Given a set P of n points and a set O of k orientations in
the plane, we can construct a data structure with O(nk3 log2 n) space in
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O(nk3 log2 n) time that allows us to compute the area of P ∩ Q in O(s log2 n)
time for any O-oriented convex s-gon.

Theorem 5. Given a set P of n points and a set O of k orientations in
the plane, we can construct a data structure with O(nk3 log2 n) space in
O(nk3 log2 n) time that allows us to report all edges of the convex hull of P ∩ Q
in O(s log2 n + h) time for any O-oriented convex s-gon, where h is the number
of edges of the convex hull.
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Abstract. We describe and analyze the first adaptive algorithm for
merging k convex hulls in the plane. This merging algorithm in turn
yields a synergistic algorithm to compute the convex hull of a set of pla-
nar points, taking advantage both of the positions of the points and their
order in the input. This synergistic algorithm asymptotically outperforms
all previous solutions for computing the convex hull in the plane.
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1 Introduction

One way to close the gap between practical performance and the worst case
complexity over instances of fixed input size is to refine the latter, considering
smaller classes of instances defined via difficulty measures. The computation of
the Convex Hull of a set of n points in the plane is a good example of the vari-
ety of such techniques. The Gift Wrapping algorithm proposed by Chand and
Kapur [6] in 1970 is adaptive to the size h of the Convex Hull output, with a
running time within O(nh) ⊆ O(n2). In 1973, Graham [8] described an algorithm
known as Graham’s scan, running in time within O(n log n). On instances where
the output is small (h ∈ o(log n)), Gift Wrapping asymptotically outperforms
Graham’s scan, while the reverse is true on other instances.

In 1986 (13 years later!), Kirkpatrick and Seidel [9] described an algorithm
computing the Convex Hull of size h in time within O(n log h), which asymp-
totically outperforms both Gift Wrapping and Graham’s scan. This was fur-
ther improved when Afshani et al. [1] observed that a minor variant of Kirk-
patrick and Seidel’s algorithm [9] takes optimal advantage of the positions of
the points, and proved its instance optimality among algorithms ignoring the
order of the input, in a decision tree model where the tests involve only multilin-
ear functions with a constant number of arguments. They showed that the time
complexity of this variant is within O(n(1 + H(n1, . . . , nh))) ⊆ O(n(1 + log h)),
where n1, . . . , nh are the sizes of a partition of the points by enclosing triangles,
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such that every triangle is completely below the upper hull of the points, with
the minimum possible value for H(n1, . . . , nh) =

∑h
i=1

ni

n log n
ni

≤ log h.
Levcopoulos et al. [10] described in 2002 an algorithm to compute the convex

hull of a set of planar points that do consider the order of the input, and thus
could break Afshani et al.’s lower bound [1]. The algorithm uses a decomposition
of the points into simple polygonal chains. A polygonal chain is specified by
a sequence of points, and consists of the line segments connecting the pairs
of consecutive points. A polygonal chain is simple if it does not have a self-
intersection. They prove that the time complexity of this algorithm is within
O(n(1+ log κ)), where κ is the minimum number of simple subchains into which
the sequence of n points can be partitioned. Note that κ depends only of the
input order: by reordering the points, one can always reduce it to one, or increase
it to within Θ(n).

A dovetailing combination1 of the algorithms described by Kirkpatrick and
Seidel [9] and Levcopoulos et al. [10] takes advantage of the order in which
the points are given while maintaining (input order oblivious) instance optimal-
ity. But this solution is inefficient: many operations will be repeated, and some
opportunities to quickly solve the instance are lost due to this lack of commu-
nication between the two parallel branches of the algorithm. To address this
problem, we describe an algorithm for computing the Convex Hull of a set of
planar points that takes advantage both of the positions of the points and their
order in the input, synergistically, in the sense that it never performs asymp-
totically worse than the algorithms described by Kirkpatrick and Seidel [9] and
Levcopoulos et al. [10], and on large classes of instances asymptotically outper-
forms both by more than a constant factor (see Example 1 in Sect. 3.2).

In order to yield a synergistic algorithm, we obtain several new results. (1)
We generalize Demaine et al.’s algorithm and corresponding analysis [7] from
the Merging of Multisets to the Merging of Convex Hulls, in Sect. 2
(this is the most technical part of this work). (2) We present an algorithm to
partition a sequence of points into simple subchains, which is faster than the
one described by Levcopoulos et al. [10], and (3) we refine Levcopoulos et al.’s
measure of difficulty and analysis, in Sect. 3.1. (4) We combine those results into
a synergistic algorithm to compute the Convex Hull in the plane, and (5) we
prove that in large classes of instances this algorithm asymptotically outperforms
the best previous solutions [1,10], and never asymptotically performs worse than
them, in Sect. 3.2.

2 Computing the Union of Upper Hulls

The computation of convex hulls in the plane reduces to the computation of
upper hulls [9]. Given ρ upper hulls in the plane, where the points in each
upper hull are given sorted by their x-coordinates, the Union of Upper Hull
problem consists in computing the upper hull of the union of the ρ upper hulls.
1 A dovetailing combination of k algorithms executes the k algorithms in parallel and

stops as soon as one of the algorithms finishes.
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Algorithm 1. Quick Union Hull
Input: A set U1, . . . , Uρ of ρ upper hulls
Output: The upper hull of the union of U1, . . . , Uρ

1: Compute the median μ of the slopes of the middle edges of the ρ upper hulls;
2: Identify the “pivot” point p in the input that has a supporting line of slope μ;
3: Partition the ρ upper hulls by the vertical line through p;
4: For each upper hull V, compute the (at most) two tangents of V through p: the

ones to the left and right of p, and discard the blocks of consecutive points below
the line segments determined by the points of tangency;

5: Output a block of points in the upper hull U containing p that forms part of the
union, by computing common tangents between U and the other upper hulls;

6: Discard all points that lie below the line segments determined by the points in the
common tangents between U and the other upper hulls;

7: Recurse on the resulting upper hulls to the left and to the right of p.

We describe the algorithm Quick Union Hull, that solves the Union of Upper
Hull problem, in Sect. 2.1, and we analyze its time complexity in Sect. 2.2. This
algorithm is inspired by the algorithms Simplified Ultimate Planar Convex
Hull described by Chan et al. [5], and Quick Synergy Sort described by Barbay
et al. [3]. The Quick Union Hull algorithm is an essential building block towards
the synergistic algorithm for computing the convex hull of a set of planar points,
described and analyzed in Sect. 3.

2.1 Description of the Algorithm Quick Union Hull

In the context of the Union of Upper Hull problem, in each upper hull
the points are given sorted by their x-coordinates, and the slopes of the edges
monotonically decrease from left to right. The algorithm Quick Union Hull
takes advantage of these facts: its pseudocode is described in Algorithm 1. For
each upper hull, the algorithm identifies blocks of consecutive points that form
part of the output and blocks of consecutive points that lie underneath the
upper hull of the union. The algorithm uses a divide-and-conquer approach to
take advantage of the positions of the points.

We next define some key concepts that are used in the description of the
algorithm. Let S be a finite set of planar points. A supporting line of S is a
straight line that contains a point p of S and that leaves all the points of S in
the same half-plane (i.e., p is a vertex of the convex hull of S). Let μ be the
slope of a supporting line passing through a point q in the upper hull U of S.
If there is a pair of points of S to the left of q such that the line through the
pair has slope less than μ, then the rightmost point in the pair cannot be part
of U . A symmetric situation arises if the pair of points is to the right of q and
the slope of the line through the pair is greater than μ: the leftmost point in
the pair cannot be part of U . If the points in S are paired, a good candidate to
discard points that cannot be part of U is the point p that has a supporting line
whose slope is the median of the slopes of the lines passing through the pairs.
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�

p

Fig. 1. An instance of the Union of Upper Hulls problem. The middle edges of
the upper hulls are marked by thick dashed segments, and the one whose slope is the
median μ of the slopes of the middle edges has been extended into a line. The straight
line � is the supporting line of slope μ. The line � passes through the “pivot” vertex p.

Once the points have been discarded, the choice of p guarantees that at most a
constant fraction of the points in S remains on each side of p [5].

In the Union of Upper Hulls problem, in each upper hull, the slopes of
the edges monotonically decrease from left to right. So, in each upper hull V,
the edge at the middle position is the one whose slope is the median among
the slopes of the edges of V. We show that the point that has a supporting line
whose slope is the median of the slopes of the middle edges of the upper hulls is
also a good candidate to discard points that cannot be part of the upper hull of
the union. Note that the time complexity of computing the median of the slopes
of the middle edges of the upper hulls is linear in the number ρ of upper hulls,
but that the time complexity of pairing the points and computing the median of
the slopes of the lines through the pairs is linear in the number n of points [5].

The algorithm Quick Union Hull identifies a “pivot” vertex p of the upper
hull of the union, and uses p to discard blocks of consecutive points that cannot
be part of the output. It computes the median μ of the slopes of the middle
edges of the upper hulls, and identifies p as the point that has a supporting line
� of slope μ. Note that p is the extreme point in the direction orthogonal to �.
Taking advantage that in each upper hull V the slopes of the edges are sorted,
the algorithm identifies the extreme point in the direction orthogonal to � by
performing a doubling search2 for the value μ in the list of slopes of the edges
of V. (See Fig. 1 for a graphical representation of these steps.)

To know which points are to the left and which ones are to the right of p, the
algorithm partitions the points in the upper hulls by the vertical line x = px,
where px is the x-coordinate of the point p, by performing doubling searches for
the value px in the x-coordinates of the points in the upper hulls.

For each upper hull V, the algorithm then computes the (at most) two tan-
gents of V through p: the one passing through a point to the left of p in V,
and the one passing through a point to the right of p in V. In V, the algorithm
discards the blocks of consecutive points below the line segments determined by
the points of tangency. It computes all the tangents via doubling searches [2].

Before the recursive step, in the upper hull U containing p, the algorithm
identifies a block B of consecutive points that forms part of the output (p is
2 Doubling search is a technique for searching sorted unbounded arrays in which an

element of rank k is found by performing 2 log k comparisons [4].
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p
B

q

r
τλU

Fig. 2. The state of the algorithm Quick Union Hull during an execution of the step
that computes the block B that forms part of the upper hull of the union. The upper
hull U contains the point p. λ marks the tangent of maximum slope between p and the
upper hulls to the right of p. τ marks the common tangent between the portion of U
above λ and one of the upper hulls below λ passing through the point nearest to p in
U . The points q and r lie in τ .

included in B). The algorithm certifies that B forms part of the output by com-
puting common tangents between a portion of U and the other upper hulls.
Computing a common tangent between two upper hulls could be costly, but if
there is a line separating them, then the time complexity is logarithmic [2]. The
algorithm takes advantage of this fact by using as separating lines two tangents
through p computed in the previous step (i.e., ignoring the portion of U in the
same half plane as the other upper hulls). The block B is determined by the
common tangents passing through the points nearest to p in U (one point to
the left of p and the other one to the right). To avoid the computation of all
common tangents, the algorithm interweaves the different tangent computations
(similarly to how Demaine et al.’s algorithm [7] interweaves doubling searches
to compute the intersection of sorted sets). We devote the rest of the section to
describe this step in more details.

We describe how to identify the part of B to the right of p (the left counterpart
is symmetric). Let λ be the tangent of maximum slope between p and the upper
hulls to the right of p (i.e., the tangent of maximum slope among those computed
in the previous step of the algorithm). Let U ′ be the portion of the upper hull U
containing p above λ. The tangent λ separates U ′ from the upper hulls below λ.
Among the common tangents between U ′ and the upper hulls below λ, let τ be
the one passing through the nearest point to p in U ′. Let q and r be the points
that lie in τ , such that q belongs to U ′ and r belongs to one of the upper hulls
below of λ. The point q determines the end of the right portion of B (see Fig. 2
for a graphical representation of these definitions).

Given two upper hulls A and B separated by a vertical line, Barbay and
Chen [2] described an algorithm that computes the common tangent τ between
them, in time within O(log a + log b), where a and b are the ranks of the points
that lie in τ in the sequences of points representing A and B, respectively. At
each step this algorithm considers two points: one from A and the other one
from B, and in at least one upper hull, it can certify, in constant time, if the
point that lies in τ is to the right or to the left of the point considered. A minor
variant manages the case where the separating line is not vertical: as the first
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V2[b2] V3[b3]

�

Fig. 3. Example of arguments: (a) an eliminator argument formed by 3 blocks and (b)
a convex argument formed by 4 blocks.

step, in each upper hull, the algorithm computes the supporting line of slope
equal to the slope of the separating line, by performing doubling searches.

To compute the point q that determines the right portion of B, the algo-
rithm Quick Union Hull executes several instances of the algorithm described
by Barbay and Chen [2] for computing the common tangents between U ′ and the
upper hulls below λ, always considering the same point u in U ′. Once all deci-
sions about the point u are reached, the upper hulls below λ can be divided into
two sets: (i) those whose common tangents pass through a point to the left of u
in U ′, and (ii) those whose common tangents pass through a point to the right
of u in U ′. If the set (i) is not empty, then the algorithm stops the computation
in the set (ii). For each upper hull V in the set (ii), the algorithm discards the
block of points in V to the left of the penultimate point considered. This step
continues until there is just one instance running, and computes the tangent τ
in this instance. The algorithm discards all points to the left of r (i.e., all points
that lie below the arc of the output that leaves U clockwise and follows τ).

After identifying the block B of the output, the algorithm recurses on the
resulting upper hulls to the left and right of p.

2.2 Complexity Analysis of the Quick Union Hull Algorithm

Each algorithm that solves the Union of Upper Hulls problem needs to cer-
tify that some blocks of points in the upper hulls cannot participate in the upper
hull of the union, and that some other blocks are indeed in the upper hull of the
union. In the following, we formalize the notion of partition certificate, which
can be used to check the correctness of the output in less time than to recom-
pute the output itself. A partition certificate of an instance is a partition of the
points of the upper hulls into regions so that, in each region, it is “easy” to cer-
tify whether the points form part of the output or not. This notion of partition
certificate yields a measure of the difficulty of an instance (“short” partition cer-
tificates characterize “easy” instances, while “long” partition certificates suggest
“difficult” instances). We define a language of basic arguments for such parti-
tion certificates: eliminator arguments discard points from the input and convex
arguments justify the presence of points in the output. A partition certificate is
formed by eliminator and convex arguments and will be verified by checking each
of its arguments. See Fig. 3 for a graphical representation of such arguments.
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Fig. 4. A partition certificate of size 7 of an instance of the Union of Upper Hull
problem. The thick black lines mark the division between the 7 regions.

Definition 1. Consider the upper hulls U , V, and W. Let � be the straight line
through the points U [a] and V[b]. 〈U [a],V[b] ⊃ W[c..d..e]〉 is an Eliminator Argu-
ment if the points of the block W[c..e] are between the vertical lines through U [a]
and V[b], the slope of � is between the slopes of the two edges in W that precede
and follow the point W[d], and the point W[d] lies below �.

If 〈U [a],V[b] ⊃ W[c..d..e]〉 is an eliminator argument, then the points of the
block W[c..e] cannot contribute to the upper hull of the union. Several blocks
that are “eliminated” by the same pair of points can be combined into a single
argument. These eliminator arguments are the ones used in the Steps 4 and 6 of
the algorithm Quick Union Hull.

It is not enough to discard some points that do not contribute to the output.
Certifying still requires additional work: a correct algorithm must justify the
exactness of its output. To this end we define convex arguments.

Definition 2. Consider the upper hulls U ,V1, . . . ,Vt. 〈U [a] � V1[b1], . . . ,Vt[bt]〉
is a Convex Argument if there is a straight line � through U [a] such that the
slope of � is between the slopes of the edges that precede and follow the points
V1[b1], . . . ,Vt[bt], respectively, and the points V1[b1], . . . ,Vt[bt] lie below �.

If 〈U [a] � V1[b1], . . . ,Vt[bt]〉 is a convex argument, then the point U [a] is a
vertex of the upper hull of the union of U ,V1, . . . ,Vt. Blocks of points can also
be “easily” certified as part of the output using similar arguments: when the first
and last points p and q, respectively, in such blocks are vertices of the output,
and all other points in the instance lie below the line through p and q. These
convex arguments are the ones used in Step 5 of Quick Union Hull.

Those arguments are a two-dimensional generalization of the arguments from
Demaine et al. [7] for computing the Union of Sorted Sets, and are inspired
by the ones introduced by Barbay and Chen [2] for the binary Union of Upper
Hulls. Those atomic arguments combine into a general definition of partition
certificate that any correct algorithm for solving the Union of Upper Hulls
problem in the algebraic decision tree model can be modified to output (see
Fig. 4 for an example of such a partition certificate).

Definition 3. Given an instance I of the Union of Upper Hull problem, a
Partition Certificate of I is a partition of the points into regions, so that in each
region, the points of I that belong to the output can be decided using a constant
number of eliminator and convex arguments. The Size of I is the number of
regions which compose it.
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The algorithm Quick Union Hull partitions the upper hulls into blocks of
consecutive points, where each block is either discarded or output. A block is
discarded if it is underneath the upper hull of the union, or is output if it forms
part of the upper hull of the union. Each of such blocks forms part of an argument
of the partition certificate computed by the algorithm. We separate the analysis
of the steps that discard or output blocks of points (i.e., Steps 2, 3, 4, 5, and
6)3 from the steps that compute the medians of the slopes of the middle edges
(i.e., Step 1). The following lemma states that the asymptotic time complexity
for discarding a block s is logarithmic in the number of points in s.

Lemma 1. Given an upper hull U , the cumulated time complexity of the steps
that discard blocks of points of the algorithm Quick Union Hull considering
only points of U is within O(

∑β
j=1 log sj), where s1, . . . , sβ are the sizes of the

β blocks into which the whole algorithm partitions U .

We state the following lemmas in function of the partition certificate com-
puted by the algorithm. The blocks that are discarded in each execution of the
Steps 4 and 6 are certified using a single eliminator argument. In the same way,
the block that is output in Step 5 is certified using a single convex argument.

Lemma 2. Given a block B that forms part of the output, the time complexity of
the step that outputs B of the algorithm Quick Union Hull is within O(w log s),
where s is the size of B and w is the number of arguments in the convex argument
used by the algorithm to certify that B forms part of the output.

This is a consequence of the w searches for the common tangent in Step 5.
The amount of arguments in the partition certificate and the number of blocks
in each of the arguments are related to the time complexity of Step 1.

Lemma 3. Given ρ upper hulls, the cumulated time complexity of the steps that
compute the medians of the slopes of the middle edges of the algorithm Quick

Union Hull is within O(
∑δ

i=1 log
(

ρ
mi

)
), where δ is the size of the partition cer-

tificate C computed by the algorithm, and m1, . . . ,mδ is a sequence where mi is
the number of blocks in the i-th argument of C.

We describe an analysis of the algorithm Quick Union Hull in function of
the smallest possible size δ of a partition certificate for a particular instance.

Theorem 1. Given ρ upper hulls of sizes r1, . . . , rρ such that the upper hull
of their union admits a partition certificate of size δ, there is an algorithm that
computes the upper hull of their union in time within O(ρδ log h

δ +δ
∑ρ

i=1 log ri

δ ),
where h is the number of points in the upper hull of their union.

Proof. The size of the partition certificate C computed by the algorithm Quick
Union Hull in an instance I is a constant factor of the size δ of a partition

3 Even though the Steps 2 and 3 do not discard or output blocks of points by them-
selves we include them in the same analysis as the Steps 4 and 6.
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certificate P of minimal size for I, such that in each region there is just one
block that forms part of the output, and this block can be certified using a
single convex argument. Indeed, if a region R of P contains a block B that
forms part of the upper hull U of the union, then the algorithm Quick Union
Hull can certify that B forms part of U using a constant number of arguments.
This is a consequence of the step that computes the blocks that form part of
the output. This step computes the block of maximum size (p included) that
can be certified that forms part of the output using a single convex argument.
In addition, the algorithm partitions each upper hull in at most a constant
factor of δ blocks. Combining the results from Lemmas 1, 2, and 3 with the
concavity of the logarithm function, we obtain that the time complexity is within
O(

∑ρ
i=1

∑δ
j=1 sij +

∑δ
k=1 wk log nk) ⊆ O(δ

∑ρ
i=1 log ri

δ + ρδ log h
δ ), where sij is

the size of the j-th block of the i-th upper hull, wk is the number of arguments
in the k-th convex argument, and nk is the size of the k-th block of U . 	


In the following section, we combine the union algorithm with an algorithm
that partitions the sequence of points into “easy” instances, to obtain a syner-
gistic algorithm that computes the convex hull of a set of planar points.

3 Synergistic Computation of Convex Hulls

We describe a synergistic algorithm for computing the convex hull of a set of
planar points. It is synergistic in the sense that it takes advantage of both the
order of the points and their positions at once, whereas all previous solutions
take advantage only of one of those. As a consequence, this algorithm outper-
forms the best previous solutions [1,10], as well as any dovetailing combination
of them. This algorithm decomposes first the input sequence of points into sim-
ple subchains (Sect. 3.1), computes their convex hulls [10], and then merges their
convex hulls (Sect. 2). There are two noteworthy advantages to this approach:
(1) the algorithm decomposes the points into “easy” instances (these “easy”
instances are determined by the order in which the points are given), and com-
putes their convex hulls, both steps in time linear in the number of points; and
(2) when merging the resulting convex hulls it takes advantage of the number of
convex hulls, that the points in the convex hulls are given in sorted order, and
the positions of the points (analyzed in Sect. 3.2).

3.1 Linear Time Partitioning Algorithm

A polygonal chain is a curve specified by a sequence of points p1, . . . , pn. The
curve itself consists of the line segments connecting the pairs of consecutive
points. A polygonal chain is simple if it does not have a self-intersection.
Levcopoulos et al. [10] described an algorithm to compute the convex hull of
n points in the plane in time within O(n(1 + log κ)), where κ is the minimum
number of simple subchains into which the input sequence of points can be par-
titioned. The algorithm tests if the polygonal chain P given as input is simple:
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Algorithm 2. Doubling Search Partition
Input: A sequence of n planar points p1, . . . , pn

Output: A sequence of simple polygonal chains
1: Initialize i to 1;
2: for t = 1, 2, . . . do
3: if i + 2t − 1 > n or the chain pi, . . . , pi+2t−1 is not simple then
4: Output the chain pi, . . . , pi+2t−1−1

5: Update i ← i + 2t−1 and t ← 1

if P is simple, it computes the convex hull of P in time linear in the size of P.
Otherwise, if P is not simple, it partitions P into two subchains, whose sizes
differ at most by one; recurses on each of them; and merges the resulting convex
hulls. The time complexity of the partitioning and merging steps are both within
Θ(n(1 + log κ)).

We describe an improved partitioning algorithm running in time linear in the
size of the input, which is key to the synergistic result. The Doubling Search
Partition algorithm searches one by one for the largest integer t such that the
subchain formed by the first 2t points is simple. It identifies this subchain as
simple and restarts the computation in the rest of the sequence. Its pseudocode
is described in Algorithm 2. This algorithm identifies a simple subchain of size k
in time within O(k), because the sizes of the tested subchains form a geometric
progression of ratio 2. The time complexity of this partitioning algorithm is
linear in the number n of points in the sequence, but we prove that the entropy
H(r1, . . . , rk) =

∑k
i=1

ri

n log n
ri

of the sizes r1, . . . , rk of the resulting k simple
subchains is a constant factor of the entropy of the sizes of any partition of the
sequence of n points into the minimum possible number κ of simple subchains:

Theorem 2. Given a sequence S of n planar points, the algorithm Doubling

Search Partition computes in linear time a partition of S into k simple sub-
chains of sizes r1, . . . , rk, such that n(1+H(r1, . . . , rk)) ∈ O(n(1+α)), where α
is the minimum value for the entropy function H(s1, . . . , sκ) of any partition of
S into κ simple subchains, of respective sizes s1, . . . , sκ.

Proof. Consider a partition π of S into κ simple subchains of sizes s1, . . . , sκ.
Fix the subchain ci of size si. The subchain ci contributes si

n log n
si

to the value
of H(s1, . . . , sκ). The algorithm Doubling Search Partition partitions ci into
simple subchains. One of such subchains is at least of size si

2 , and in the worst
case, the sizes of the rest of them form a decreasing geometric progression of
ratio 1

2 . Hence, the subchains into which the algorithm partitions ci contribute
O(

∑∞
i=1

si

2i log 2in
si

) = O(si + si

n log n
si

) to the entropy of the partition obtained
by the algorithm. The result follows. 	


Given the convex hulls of the subchains obtained by the algorithm Doubling
Search Partition, an algorithm that merges two by two the shortest ones takes
advantage of the potential disequilibrium in the distribution of their sizes, a
result that improves upon the algorithm described by Levcopoulos et al. [10]:
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Corollary 1. Given a sequence S of n planar points that can be partitioned
into κ simple subchains of respective sizes r1, . . . , rκ, there is an algorithm
that computes the convex hull of S in time within O(n(1 + H(r1, . . . , rκ))) ⊆
O(n(1+ log κ)).

3.2 Synergistic Algorithm to Compute the Convex Hull

Given a set S of planar points, the algorithm Quick Synergy Hull computes
the upper hull of S. It proceeds in two phases. It first partitions S into sim-
ple subchains using the algorithm Doubling Search Partition (described in
Sect. 3.1), and computes the upper hulls of the simple subchains [10], both steps
in time linear in the number of points in S. Then it merges those upper hulls
using the algorithm Quick Union Hull (described in Sect. 2).

The algorithm Quick Synergy Hull outperforms both the algorithm
described by Levcopoulos et al. [10] and the one described by Kirkpatrick and
Seidel [9] (even when analyzed by Afshani et al. [1]), as well as any dovetailing
combination of them. We prove this more formally in the following theorem:

Theorem 3. Consider a sequence S of n planar points that can be partitioned
into κ simple subchains of sizes r1, . . . , rκ (such that

∑κ
i=1 ri = n); and also

can be partitioned into h sets of sizes n1, . . . , nh (such that
∑h

i=1 ni = n), where
each set can be enclosed by a triangle completely below the upper hull of S.
There is an algorithm that computes the upper hull of S in time within O(n +
∑δ

j=1 wj log sj +
∑δ

i=1 log
(

κ
mi

)
) ⊆ O(n(1 + min(H(r1, . . . , rκ),H(n1, . . . , nh))))

⊆ O(n(1 + min(log κ, log h))) ⊆ O(n log n), where the union of the upper hulls
of the simple subchains admits a partition certificate C of minimum size δ (such
that δ ≤ h), m1, . . . ,mδ is a sequence where mi is the number of blocks in the i-th
argument of C (such that mi ≤ κ for i ∈ [1..δ]), wj is the number of arguments in
the j-th convex argument of C, and sj is the size of the j-th block of the output.

Proof. This result is a consequence of Theorems 1 and 2. For example, if the
simple subchains obtained by the partitioning algorithm are all of constant size
(i.e., the algorithm cannot take advantage of the order of the points), then the
time complexity of the algorithm Quick Synergy Hull and the one described by
Kirkpatrick and Seidel [9] (as analyzed by Afshani et al. [1]) are asymptotically
the same. This algorithm also takes advantage of the positions of the points to
improve upon the algorithm described in Corollary 1. 	


Example 1. Consider for example the family of instances depicted in Fig. 5: on
such instances, the time complexity of the algorithm described by Kirkpatrick
and Seidel [9], as refined by Afshani et al. [1], is within O(n + h log n) (all the
points in the sequences 1, 2 and 3 can be enclosed by a triangle completely below
the upper hull of the points, hence n1 = · · · = nh−1 = 1 and nh = n − h + 1 in
the formula O(n(1+H(n1, . . . , nh))), where h− 1 is the number of points in the
sequence 4). The time complexity on such instances of the algorithm described
by Levcopoulos et al. [10], as refined in Sect. 3.1, is within O(n + κ log n) (the
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1
2

3

4

Fig. 5. A sequence of points and its decomposition into κ = 4 simple subchains. The
numbers indicate the order in which the sequence of points are given: each from left to
right internally, and mark the simple subchains.

whole sequence of points can be partitioned into κ simple subchains, suppose
that the sizes of the simple subchains labeled 1 to κ−1 are a constant c and that
the size of the simple subchain labeled κ is n−(κ−1)c, then r1 = · · · = rκ−1 = c
and rκ = n − (κ − 1)c in the formula O(n(1 + H(r1, . . . , rκ)))). On the other
hand, the time complexity on such instances of the algorithm Quick Synergy
Hull is within O(n): once it computes the first vertex of the output, it discards
all the points except the points in the upper hull labeled 4. If h ∈ Θ(n) and
κ ∈ Θ(n), then the algorithm Quick Synergy Hull is faster than the previous
algorithms [1,10] by a factor logarithmic in the size of the input.
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Abstract. Tree metrics that compare pairs of trees are an elementary
tool for analyzing phylogenetic trees. The cophenetic distance is a classic
vector-based tree metric introduced by Cardona et al. that originates
from the pioneering work of Sokal and Rohlf more than 50 years ago.
However, when faced with phylogenetic analyses where sets of large-
scale trees are compared, the quadratic runtime of the current best-
known (näıve) algorithm to compute the cophenetic distance becomes
prohibitive. Here we describe an algorithmic framework that computes
the cophenetic distance under the L1-norm in O(n log2 n) time, where
n is the size of the compared pair of trees. Based on the work from
Sokal and Rohlf, we introduce a natural class of cophenetic distances
and show that our algorithmic framework can compute each member
of this class in O(n log2 n) time. In addition, we present a modification
of this framework for computing these distances under the L2-norm in
O(n log n) time. Finally, we demonstrate the scalability of our algorithm.

Keywords: Phylogenetic tree · Distance · Metric · Cophenetic metric

1 Introduction

Phylogenetic trees depict the evolutionary relationships among a set of genes,
genomes, or species, and thus provide a fundamental understanding of how enti-
ties have evolved over time the way they are today. Analyzing phylogenetic trees
benefits a vast variety of fundamental research areas including biology, ecology,
epidemiology, conservation biology, and linguistic [12,14,25].

Studying phylogenetic trees typically requires the comparative evaluation of
their similarities and differences that has become an elementary task in compu-
tational phylogenetics [11,18]. A large variety of tree metrics has been proposed
and analyzed that measure the distance in evolutionary terms between pairs of
phylogenetic trees [4,19,21,27,29].

The cophenetic distance [6] is a popular tree metric that has been established
based on the notions from the pioneering work of Sokal and Rohlf more than
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 168–179, 2018.
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50 years ago [28]. This distance is defined between a pair of rooted phylogenetic
trees over the same taxon set and based on their representation as cophenetic
vectors. The cophenetic vector for a rooted tree specifies a value for each pair of
the tree’s taxa; that is, the depth of the least common ancestor of the taxon pair
in the given tree. An example is depicted in Fig. 1. Cophenetic vectors equiva-
lently encode their corresponding trees, and consequently, the distance between
a pair of trees can be measured in the cophenetic vector space [6]. Therefore, the
cophenetic distance can be formulated under various vector norms. Most natural
are the L1-norm and the L2-norm that have received considerable attention in
the literature [5,6,20,23], and consequently, are the focus of this paper.

Fig. 1. Examples from the class of cophenetic distances under the L1-norm. Given trees
T and T ′, the matrices represent the differences between the cophenetic vectors defined
by the depths, subtree heights, and subtree size with respect to the least common
ancestors. The distance is the sum of the elements of the corresponding matrix. For
example, in the matrix Subtree Height the entry for 〈a, d〉 is 1 = |2 − 3|, since the
height of the least common ancestor of a and d in T is 2, while in T ′ it equals 3.

Unlike most other popular tree metrics, such as the widely-used Robinson-
Foulds metric [3,24], the triplet/quartet metric [26], and the nearest neighbor
interchange metric [7,9,22], which only apply to phylogenetic trees without edge
lengths, the cophenetic distance also applies to trees with edge lengths. Com-
paring trees with edge lengths often allows for a much more refined analysis, in
particular when similar tree topologies are compared [21].

The cophenetic distance has been well-researched. The distribution of this
distance under the uniform model is positively skewed and has a low-rank corre-
lation with the Robinson-Foulds metric and the path-difference metric [6]. Fur-
ther the diameter of the cophenetic distance under the Lp norm for trees with
n taxa is O(n(p+2)/p), where p ∈ {1, 2} [6]. While the cophenetic distance is a
vector-based metric, it does not share many similarities with other such metrics,
like the family of path-difference metrics [29,30]. Perhaps, as experiments have
demonstrated, most closely related to the cophenetic distance are the gene tree
parsimony measures that are based on biological models. This may be in parts
because all of these measures rely primarily on least common ancestors [6,10,13].

Given the reputation of the cophenetic distance, there has been an increased
interest by practitioners to use this distance for large-scale phylogenetic analy-
ses [20,23]. For example, recently, the cophenetic distance has been used to infer
credible species trees from a collection of input trees by estimating their median
tree under this distance [23]. Despite these promising results, the best-known
(näıve) approaches for computing the cophenetic distance under the L1-norm
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and the L2-norm requires quadratic time. In the face of large-scale phylogenetic
studies, where trees with tens of thousands of taxa are compared or synthesized,
this quadratic runtime becomes prohibitive.

Here, we first describe an algorithmic framework that computes the cophe-
netic distance for a pair of trees with n taxa under the L1-norm in O(n log2 n)
time. Then we present a modification of this framework that computes the cophe-
netic distance under the L2-norm in O(n log n) time. In addition, similar to Car-
dona et al. [6], we introduce a novel class of cophenetic distances based on the
groundwork laid by Sokal and Rohlf [28]. Like the original cophenetic distance,
each metric in this class is encoding a phylogenetic tree as a cophenetic vector
that is primarily based on the least common ancestors of taxa pairs. Unlike the
original cophenetic vector that lists as values the depth of least common ances-
tors in the input tree, these values can be defined in various other ways suitable
for comparing trees, such as the size of the subtrees of the encoded tree rooted
at the least common ancestors, or the height of these subtrees (see Fig. 1 for
an example). Note that if ultrametric trees are compared, then the cophenetic
vector defined by the heights of the subtrees is equivalent to what has been
originally proposed by Sokal and Rohlf [28]. Considering all types of distances
that relate to least common ancestors by satisfying a particular monotonicity
property, the metrics corresponding to these distances define our new class of
cophenetic distances, which contains the original cophenetic distance. We show
that our algorithmic frameworks can compute each member of the cophenetic
distance class in the same time that is needed to compute the original cophenetic
distance under the L1-norm and the L2-norm. Finally, using a scalability study,
we demonstrate the performance of our algorithmic frameworks.

Related Work. Today’s, phylogenetic tree databases host an unprecedented
wealth of trees that have been estimated using various inference methods and
different data sets. As a consequence, such trees often represent conflicting evo-
lutionary relationships for the same set of taxa [11]. It is an important part of
phylogenetic analyses to study such conflicts, and therefore, a large variety of
metrics have been proposed to quantify the differences and similarities between a
pair of trees [4,19,21,27]. For example, metrics originating from tree edit oper-
ations assess the difference between a pair of trees by counting the minimum
number of such operations that transform the trees into each other, such as
the nearest neighbor interchange distance [22], the subtree prune and regraft
distance [1,2,15], and tree bisection and reconnection distance [1]. Computing
these distances is an NP-hard problem [1,8,16,17]. Other metrics assess the dis-
tance between encodings of the compared pair of trees. When the encodings of
the trees are sets, e.g., the set of clusters or triplets induced by the tree, then
the distance between a pair of trees is the cardinality of the symmetric differ-
ence of their encodings. Metrics corresponding to cluster and triplet encodings
are the widely-used Robinson-Foulds metric [3,24] and the triplet metric [7],
respectively. Another classic encoding of a tree is a vector that contains a value
related to the tree for every pair of taxa. Then the trees can be compared in
the corresponding vector space using different norms, like the L1-, L2-, or L∞-
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norm. Such metrics include the path-difference distance and the cophenetic dis-
tance. Unlike the metrics originating from edit distances, the presented metrics
using encodings are efficiently computable. However, large-scale phylogenetic
analyses require near-linear time runtime solutions in practice. Addressing this
challenge, recent algorithmic advances provided such solutions for the standard
path-difference metric for unrooted trees under any Lp-norm. For a more detailed
treatment of tree metrics, the reader is referred to [11,19].

Contribution. We introduce a natural class of cophenetic distances that includes
the original cophenetic distance for rooted pairs of trees over n taxa and show
that these distances can be computed under the L1-norm in O(n log2 n) time,
and under the L2-norm in O(n log n) time.

For computing the cophenetic distances we present a divide and conquer
framework, which we briefly overview. First, we describe a procedure that iden-
tifies a median node in a given rooted tree that divides it into two subtrees of
sizes between n

4 and 3n
4 + 1. Our framework divides the input trees by using

median nodes and then performs four recursive calls to compute partial dis-
tances between all pairs of the subtrees. To incorporate the remaining pairs of
leaves, we distinguish two cases whose difficulty depends on the location of the
leaves. We show that the first case can be handled in O(n) time for both the L1-
and L2-norms, while the second case requires O(n log n) time for the L1-norm
and O(n) time for the L2-norm. Then, we solve the recurrences and prove the
resulting O(n log2 n) and O(n log n) time complexities of our divide and conquer
frameworks for the L1 and L2 cophenetic metrics respectively.

The paper is organized the way that the results for the more complex L1-
norm are described first and later the related results for the L2-norm are derived
from that. In more detail, given two trees, we show how to compute the distance
that is defined as the sum of (|ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y))|)p over all pairs
of taxa 〈x, y〉 present in the input trees (note that x and y can be the same
element), where lca refers to the least common ancestor function, and ξ (and ξ′)
define the contribution of a node in T (and T ′). The only assumption is that
the contribution mapping is path-monotonic, i.e., every path that starts in the
root induces a monotonic sequence of ξ values. We define all metrics that can
be computed this way as the class of cophenetic distances.

In conclusion, using the cophenetic distances under the L1-norm as an exam-
ple, we demonstrate that an implementation of our divide and conquer frame-
work significantly outperforms the runtime of the (best-known) quadratic algo-
rithm when pairs of trees with more than roughly 1800 taxa are compared.

2 Definitions

Let T = 〈VT , ET 〉 be a rooted binary tree and v, w be nodes in T . By root(T )
we denote the root of T . The least common ancestor of v and w in T is denoted
by lcaT (v, w). By v � w we denote that w is on the path between v and the root
of T . Note that v ≺ w is equivalent to v � w and v �= w. A node v is a branch
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if it is strictly internal in T , i.e., v is neither a leaf nor the root. In algorithms,
for a non-root node v, v.parent and v.sibling denotes the parent and the sibling
of v, respectively. The set of leaves in T is denoted by LT . By |T | we denote the
number of leaves in T . Similarly, by Lv we denote the set of leaves visible from
v, and by |v| the size of Lv. A weighted (time-annotated) tree T is an extension
of a rooted binary tree with an edge weight function e : ET → R+.

We say that a function ξ : VT → R is path-monotonic, if for every v and w such
that v � w, ξ(v) ≥ ξ(w) (descending) or for every v and w such that v � w,
ξ(w) ≤ ξ(v) (ascending). In this article, we study three natural contribution
functions ξdepth, ξheight and ξsize such that ξdepth(v) [6] is the depth of a node
v (depth is defined as the number of edges on the path from v to root(T ) for
unweighted trees; and as the sum of edge weights on that path for weighted
trees), ξheight(v) is the height of the subtree rooted at v, and ξsize(v) = |Lv|. Note
that ξdepth is descending, while ξheight and ξsize are ascending functions.

Given two trees T , T ′ having the same set of leaves and two path-monotonic
contribution functions ξ : VT → R and ξ′ : VT ′ → R, both ascending or both
descending, let (x1, x2, . . . , xn) be a fixed ordering of leaves of T and T ′. A
cophenetic vector of T is defined as φ(T, ξ) := [ξ(lcaT (xi, xj))]i≤j (similarly
for T ′). Then a (generalized) cophenetic distance with respect to contribution
functions ξ and ξ′ is defined for p > 0 as follows:

d(T, T ′) := ||φ(T, ξ) − φ(T ′, ξ′)||p.
That is, d is an Lp norm of the difference between two cophenetic vectors induced
by ξ and ξ′. For this work we define the Lp cophenetic distance as the cophenetic
distance under the Lp-norm, for p ∈ {1, 2}. It should be clear that d is a metric [6]
as long as both ξ and ξ′ are the same functions. Figure 1 depicts an example.

3 Results

In this section, we present details of our algorithms for computing Lp cophenetic
distances. We begin with the existence of a median node in a rooted tree. Then,
we classify pairs of taxa depending on their location in the parts of divided rooted
trees. Further, focusing on the L1 cophenetic distance, we show three types of
computing partial distances. Next, we solve the recurrence proving O(n log2 n)
time complexity of the algorithm for the L1 cophenetic distance. Finally, we
demonstrate how the algorithm can be adapted to obtain the O(n log n) algo-
rithm for computing the L2 cophenetic distance. We omit some proofs for brevity.

3.1 Median Node in a Rooted Tree

A node t of a rooted tree T divides a tree into two parts: the subtree of T rooted
at t, denoted Tt and called the lower tree with respect to t, and the tree T t,
called the upper tree, obtained from T by replacing Tt with a leaf. Node t from
the next lemma is called a median node and is O(n) time computable.

Lemma 1 (The existence of a median node). For every rooted tree T of
size n ≥ 2 there is a node t such that n

2 ≤ |T t| ≤ 3n
4 + 1 and n

4 ≤ |Tt| ≤ n
2 .
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3.2 Classification of Taxa Pairs

From now on we assume that T and T ′ are two trees with the same set of leaves,
where t and t′ are fixed median nodes of T and T ′, respectively. We also assume
that ξ and ξ′ are the contribution functions of T and T ′, respectively. Without
loss of generality, we assume that all contribution functions are descending, i.e.,
if for every v and w such that v � w, ξ(v) ≥ ξ(w).

The path connecting the median node with the root will be called a median
path. By A and B we denote the set of leaves (excluding the median node) in
the upper tree and the lower tree of T respectively, and, similarly, we denote A′

and B′ for T ′. Note that |A|+ |B| = |A′|+ |B′| = n. Then, we have four variants
for a pair of leaves 〈x, y〉 (note that x can be equal to y) from T depending on
their location: AA - if both leaves are located in the upper tree (i.e., x, y ∈ A),
BB - if x, y ∈ B, AB - if x ∈ A and y ∈ B, and BA - if x ∈ B and y ∈ A. Note
that types AB and BA are identical due to symmetry.

When considering 〈x, y〉 in both trees, we have 16 possible types of locations
(disregarding the symmetry) denoted in the form XY |X ′Y ′ where X,Y ∈ {A,B}
and X ′, Y ′ ∈ {A′, B′}. We say that 〈x, y〉 ∈ LT × LT ′ has type XY |X ′Y ′ if
x ∈ X ∩ X ′ and y ∈ Y ∩ Y ′. To compute d(T, T ′) for the L1-norm we show, for
every type XY |X ′Y ′ such that X,Y ∈ {A,B} and X ′, Y ′ ∈ {A′, B′}, how to
compute the partial distances

dXY |X′Y ′ =
∑

x∈X∩X′

∑

y∈Y ∩Y ′
|ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y)|.

3.3 The Partial Distance of Non-mixed Types

There are four non-mixed types: AA|A′A′, AA|B′B′, BB|A′A′, and BB|B′B′.
To compute the partial distance for a non-mixed type, we first contract the trees
T and T ′ to a set of leaves present in pairs determined by a given type. For
example, for BB|A′A′, T and T ′ are contracted to B∩A′. Next, we compute the
distance d recursively for such trees. If f(n) is the complexity of the algorithm
for computing the distance between trees of the size n, then, the computation
of these four partial distances requires

∑4
i=1 f(ci) time, where c1 = |A ∩ A′|,

c2 = |A ∩ B′|, c3 = |B ∩ A′| and c4 = |B ∩ B′|. Note, that
∑

i ci = n.

3.4 The Partial Distance of Double Mixed Types

Accounting for symmetry, there are the two double-mixed types AB|A′B′ and
AB|B′A′. The type AB|A′B′ denotes pairs 〈x, y〉 when x is in upper trees and
y is in lower trees of T and T ′. In this case, the lca of 〈x, y〉 is located on the
median path in both trees. Moreover, lcaT (x, y) equals lcaT (x, t). Similarly, we
have lcaT ′(x, y) = lcaT ′(x, t′). Thus, the partial distance dAB|A′B′ equals

∑

x∈A∩A′
|ξ(lcaT (x, t)) − ξ′(lcaT ′(x, t′))| · |B ∩ B′|, (1)
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Algorithm 1. The contribution of type AB|B′A′

1: Input: T and T ′ with median nodes t and t′, resp. Output: dAB|B′A′ (T, T ′).
2: Function GetCntr(G, g, X) where g is a median node of G
3: For every v on the median path of G: v.c := 0.
4: For every leaf l in X: lcaG(g, l).c += 1.
5: γ := []. # the empty sequence (a list)
6: For every node v on the median path:
7: For i = 1 to v.c: append ξ(v) to γ. # insert ξ(v) in γ v.c times
8: Return γ.
9: Function SeqPrd(α1, α2, . . . , αk, β1, β2, . . . , βm):
10: i := j := 1; If αk > βm Then swap α and β
11: While j ≤ m:
12: If i ≤ k and αi ≤ βj Then σj += αi; λj += 1; i += 1
13: Else j += 1; σj := σj−1; λj = λj−1

14: Return m(Σk
i=1αi) + Σm

j=12λjβj − 2σj − kβj

15: Return SeqPrd(α, β) where α = GetCntr(T, t, A ∩ B′), β = GetCntr(T ′, t′, B ∩ A′).

which can be computed in O(n) time.
For AB|B′A′ the näıve approach requires Θ(n2) steps. Below, we show an

O(n) time solution. We begin with the following problem.

Problem 1 (SeqProduct). Given two sequences of numbers: α1 ≤ α2 ≤ · · · ≤ αk

and β1 ≤ β2 ≤ · · · ≤ βm. Compute:
∑

i,j |αi − βj |.

Lemma 2. SeqPrd from Algorithm1 computes
∑

i,j |αi −βj | in O(m+k) time.

Proof. We have that λj is the number of elements from α that are smaller or
equal to βj , and σj =

∑λj

i=1 αi, i.e., it is the sum of all elements from α that
are smaller or equal to βj . Then, for a fixed j,

∑k
i=1 |αi − βj | = (λjβj − σj) +

((
∑

i αi) − σj) − (k − λj)βj). Easy transformations are left to the reader. �
Now, dAB|B′A′ is computed by calling SeqPrd(α, β), where α is the sequences

of contributions of lcaT (x, t)’s for x in A∩B and β is the sequence of contributions
of lcaT ′(y, t′)’s for y in B ∩ A′. Such sequences are inferred in O(n) steps by the
function GetCntr in Algorithm 1.

Lemma 3. Algorithm1 computes dAB|B′A′ in O(n) time.

Proof. Note, that the call of function GetCntr(G, g,X) returns the ordered
sequence of all ξ(lcaG(x, g))’s for x ∈ X. It is clear that the time complexity
of such a call is O(|G|). Now, by Lemma 2, the rest follows easily. �

3.5 The Partial Distance of Single Mixed Types

Accounting for symmetry, there are four single mixed variants AA|A′B′,
AB|A′A′, BB|A′B′ and AB|B′B′. These variants can be solved similarly. Thus,
for brevity, we only show the solution for the first variant. Let us assume that
〈x, y〉 has type AA|A′B′, that is, x ∈ A ∩ A′ and y ∈ A ∩ B′. Then, lcaT (x, y) is
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Algorithm 2. The contribution of AA|A′B′

1: Input: T and T ′ with median nodes t and t′, resp. Output: dAA|A′B′(T, T ′).
2: For every v in the upper tree of T : v.δ := v.σ+ := v.σ− := 〈0, 0〉; v.κ := 0.
3: For x ∈ A ∩ A′: # The preprocessing loop
4: β = ξ′(lcaT ′(x, t′)).
5: If β ≤ ξ(x) Then ωx := arg minw{ξ(w)|x � w and β ≤ ξ(w)}; ωx.δ += 〈β, 1〉
6: If β ≤ ξ(x.parent) Then x.σ+ := 〈β, 1〉 Else x.σ− := 〈β, 1〉
7: For every non-root v in the upper tree of T in postfix order: # The main loop
8: v.σ+ := v.lft.σ+ + v.rgh.σ+ − v.δ; v.σ− := v.lft.σ− + v.rgh.σ− + v.δ
9: v.κ := |A ∩ B′ ∩ L(v.sibling)| · (ξ(v.parent) · (v.σ+

2 − v.σ−
2 ) + v.σ−

1 − v.σ+
1 )

10: Return
∑

v∈T v.κ.

a node from the upper tree of T , while lcaT ′(x, y) is located on the median path
of T ′. If v is a non-leaf node, then its right child is denoted by v.rgh and its left
child by v.lft. While the proof of the next lemma is omitted for brevity, please
see the example in Fig. 2.

Lemma 4. If v is a branch in T , then after the main loop of Algorithm2 we
have

v.κ =
∑

x∈A∩A′∩L(v)

∑

y∈A∩B′∩L(v.sibling)

|ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y)|. (2)

Lemma 5. Algorithm2 computes dAA|A′B′ in O(n log n) time.

Proof. Correctness: Let I be the set of non-root nodes from the upper tree
of T . Then, every pair of leaves 〈x, y〉 of type AA|A′B′ uniquely determines a
node v ∈ I such that lcaT (x, y) = v.parent and x ∈ L(v). It also follows that
y ∈ L(v.sibling). Let x ⊕ y denote such node v. For a given v, A ∩ A′ ∩ L(v) ×
A ∩ B′ ∩ L(v.sibling) is the set of all pairs 〈x, y〉 such that x ⊕ y = v. Hence,

dAA′|B′A′ =
∑

v∈I

∑

x∈A∩A′∩L(v)

∑

y∈A∩B′∩L(v.sibling)

|ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y))|.

By Lemma 4 the above sum equals the value returned in the last line of Algo-
rithm2.

The crucial line for the complexity is line 5. We show that ω can be found
by a binary search in O(log n) time, that seeks for the value in an ordered array
composed of nodes on the path connecting a given leaf x with the root of T . Such
an array can be constructed by an infix traversal of T . Then, a node is inserted
into the array when it is visited for the first time. When a node is visited for
the last time, it is removed from the array. Thanks to the monotonic ordering
of paths, the array is always sorted, and its size is limited by n. �

3.6 Time Complexity

Let f(n) be the worst-case time complexity of the algorithm. By Sect. 3.3, the
computation of partial distances of non-mixed types requires f(c1) + f(c2) +
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f(c3) + f(c4) + O(n) time where
∑

ci = n and 0 ≤ ci ≤ .75n + 1 for each i
(by Lemma 1), while the computation of mixed types requires O(n log n) time.
Therefore, for some k ≥ 1 we can write that, f(n) = 1 if n ≤ 5 and f(n) =
kn log n + max0≤ci≤.75n+1 f(c1) + f(c2) + f(c3) + f(c4), otherwise.

Theorem 1. The time complexity of the D&C algorithm is O(n log2 n).

Proof. We show that there are constants b ≥ 1 and d > 0 such that for every n >
0, f(n) ≤ dn log2 n+b. The proof is by induction on n. For n ≤ 5 we have f(n) =
1 and the inequality is satisfied. For n > 5, f(n) = kn log n + max

∑
i f(ci) ≤

kn log n + 4b + d max
∑

i ci log2 ci ≤ kn log n + 4b + dn log2(.75n + 1).
Let d = −bk/ log 11

12 ≈ bk7.966. Then, for n > 5, log(.75+ 1
n ) ≤ log(.75+ 1

6 ) =
log 11

12 . Hence, d(log2(.75n + 1) − log2 n) = d log(.75 + 1
n ) log((.75n + 1)n) ≤

−bk log((.75n + 1)n) ≤ −bk log n − bk. Finally, for n > 5, f(n) − dn log2 n − b ≤
kn log n + 3b + dn(log2(.75n + 1) − log2 n) ≤ (1 − b)kn log n + 3b − nbk < 0. �

Fig. 2. An example of two trees T and T ′ with attributes from Algorithm 2 with
dAA|A′B′ = 118. Here the contribution function is based on the depth. Stars denote
the median nodes t and t′. Leaves marked by green circles are from A ∩ A′ while black
circles denote the elements of A ∩ B′. For example, the contribution of the parent of t
is 48 (κ), which is computed from the product of two green leaves (g, h) and four black
leaves from its sibling (k, l, m, n), that is, 48 = ((6 − 0) + (6 − 0)) · 4. (Color figure
online)

3.7 Partial Distances Under the L2 Cophenetic Distance

The above algorithm results are derived for computation of the L1 cophenetic
metric. We demonstrate that they can be applied to compute the L2 cophenetic
distance as well. Using the same notation for locations of a pair of leaves 〈x, y〉 ∈
L(T ) × L(T ), the (square) partial distance for an XY |X ′Y ′ type under the L2-
norm is as follows:

dXY |X′Y ′ :=
∑

x∈X∩X′

∑

y∈Y ∩Y ′
(ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y))2.

Observe, the non-mixed types can be computed using the recursive calls the
same way as in Sect. 3.3. Next, we demonstrate how the key representatives from
the double and single mixed types can be computed for the L2 norm.
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Double Mixed AB|A′B′. Adopting Eq. 1 we have a linear time computable
dAB|A′B′ =

∑

x∈A∩A′
(ξ(lcaT (x, t)) − ξ′(lcaT ′(x, t′)))2 · |B ∩ B′|.

Double Mixed AB|B′A′. The difference with Sect. 3.4 lies within function SeqPrd,
which has to be adopted for the L2-norm. Given two non-decreasing sequences
α and β of sizes m and k respectively, let Sp(β) :=

∑k
j=1 βp

j for some p > 0.
Then SeqPrd can be computed for the L2-norm as follows:

SeqPrd(α, β) =
m∑

i=1

k∑

j=1

(αi − βj)2 =
m∑

i=1

(
kα2

i − 2αiS
1(β) + S2(β)

)
.

This sum can be computed in O(m+k) time by precomputing S1(β) and S2(β).

Single Mixed AA|A′B′. The key value computed on each step of the main loop
of Algorithm 2 is v.κ. Adopting v.κ definition for the L2 case, we show how it
can be efficiently computed.

v.κ :=
∑

x∈A∩A′∩L(v)

∑

y∈A∩B′∩L(v.sibling)

(
ξ(lcaT (x, y)) − ξ′(lcaT ′(x, y))

)2
.

Lemma 6. Values v.κ can be computed for all non-root nodes v in the upper
tree of T in O(n) time overall.

The partial distance dAA|A′B′ then can be computed in linear time as a sum
of v.κ over all nodes in the upper tree of T . Similarly, for other single mixed
types.

Time Complexity. Besides four recursive calls, the algorithm spends O(n) time
for the partial distances of mixed types. It is not difficult to adapt the proof
of Theorem 1 to show that this leads to an O(n log n) algorithm for the L2

cophenetic distance.

4 Scalability Analysis

Here we study the scalability of our algorithm by comparing its runtime to the
runtime of the previously best-known algorithm on different pairs of trees.

Experimental Setting. The near linear time algorithm for computing the L1

cophenetic distance as well as the näıve (quadratic) algorithm were implemented
using Java 1.8. The runtimes for both algorithms were evaluated using randomly
generated pairs of binary trees varying in size from 200 taxa to 10000 taxa with
the step of 200. Each algorithm was executed on each pair of trees 20 times. The
experiment was carried out on an Intel Core i7 2.5 GHz CPU under Windows 7.

Results. We compared the median runtimes among 20 runs for each pair of
trees. We observed that the näıve solution outperforms our algorithm for pairs
of trees containing less than 1800 leaves; beyond that point the quadratic solution
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becomes drastically less efficient as compared to our algorithm. For example, at
the extreme, on 10000 taxa the quadratic algorithm took around 15 s to complete
on average, while our method took less than 2 s to compute the distance. These
observations suggest a cutoff for the divide-and-conquer strategy, i.e., an efficient
implementation will use the quadratic solution for the recursive calls with trees
containing less than ≈ 1800 leaves.

5 Conclusion

In the age of high-throughput next-generation sequencing, practitioners are chal-
lenged to perform large-scale studies that compare phylogenetic trees having tens
of thousands of taxa. Tree metrics that do not allow for near-linear time solutions
thereof become infeasible for such studies, while they are of potential theoretical
and practical importance. Prior to this work, the popular cophenetic distance
remained one of such computationally prohibitive metrics.

Here, we presented a novel algorithmic framework for computing the L1

cophenetic distance in O(n log2 n) time, while the previously best-known (näıve)
algorithm requires Θ(n2) time. Moreover, our modification of this framework
can compute the L2 cophenetic distance in only O(n log n) time. These signifi-
cantly improved runtimes make the cophenetic distance much more applicable
for today’s large-scale phylogenetic comparative studies and species tree infer-
ences.

The framework has a largely broader application, as it is generalized to met-
rics satisfying the path-monotonic property. We refer to the set of such metrics
as the class of cophenetic distances. While this class includes the original (depth)
cophenetic distance, it also contains many other metrics that can be of interest to
practitioners, perhaps most notable are the height and size cophenetic distances
that in parts relate closely to tree measures introduced by Sokal and Rohlf [28].

Finally, we demonstrated the scalability of our algorithmic framework on an
example of the more involved L1-norm algorithm. This algorithm significantly
outperforms the previously best-known quadratic solution for pairs of large trees.
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13. Górecki, P., Eulenstein, O., Tiuryn, J.: Unrooted tree reconciliation: a unified app-

roach. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 522–536 (2013)
14. Harris, S., et al.: Whole-genome sequencing for analysis of an outbreak of meticillin-

resistant staphylococcus aureus: a descriptive study. Lancet. Infect. Dis. 13(2),
130–136 (2013)

15. Hein, J.: Reconstructing evolution of sequences subject to recombination using
parsimony. Math. Biosci. 98(2), 185–200 (1990)

16. Hein, J., et al.: On the complexity of comparing evolutionary trees. Discrete Appl.
Math. 71(1–3), 153–169 (1996)

17. Hickey, G., et al.: SPR distance computation for unrooted trees. Evol. Bioinform.
online 4, 17–27 (2008)

18. Hoef-Emden, K.: Molecular phylogenetic analyses and real-life data. Comput. Sci.
Eng. 7(3), 86–91 (2005)

19. Katherine, S.J.: Review paper: the shape of phylogenetic treespace. Syst. Biol.
66(1), e83–e94 (2017)

20. Kendall, M., Colijn, C.: Mapping phylogenetic trees to reveal distinct patterns of
evolution. Mol. Biol. Evol. 33(10), 2735–2743 (2016)

21. Kuhner, M.K., Yamato, J.: Practical performance of tree comparison metrics. Syst.
Biol. 64(2), 205–214 (2015)

22. Li, M., Tromp, J., Zhang, L.: On the nearest neighbour interchange distance
between evolutionary trees. J. Theor. Biol. 182(4), 463–467 (1996)

23. Markin, A., Eulenstein, O.: Cophenetic median trees under the manhattan dis-
tance. In: ACM-BCB 2017, pp. 194–202. ACM, New York (2017)

24. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci.
53(1–2), 131–147 (1981)

25. Roux, J., et al.: Resolving the native provenance of invasive fireweed (Senecio
madagascariensis Poir.) in the Hawaiian Islands as inferred Poir.) in the Hawaiian
Islands as inferred from phylogenetic analysis. Div. Distr. 12, 694–702 (2006)

26. Sand, A., et al.: Algorithms for computing the triplet and quartet distances for
binary and general trees. Biology 2(4), 1189–1209 (2013)

27. Semple, C., Steel, M.A.: Phylogenetics. University Press, Oxford (2003)
28. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods.

Taxon 11(2), 33–40 (1962)
29. Steel, M.A., Penny, D.: Distributions of tree comparison metrics. Syst. Biol. 42(2),

126–141 (1993)
30. Williams, W., Clifford, H.: On the comparison of two classifications of the same

set of elements. Taxon 20(4), 519–522 (1971)



Computing Coverage Kernels Under
Restricted Settings
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Abstract. We consider the Minimum Coverage Kernel problem:
given a set B of d-dimensional boxes, find a subset of B of minimum
size covering the same region as B. This problem is NP-hard, but as
for many NP-hard problems on graphs, the problem becomes solvable in
polynomial time under restrictions on the graph induced by B. We con-
sider various classes of graphs, show that Minimum Coverage Kernel
remains NP-hard even for severely restricted instances, and provide two
polynomial time approximation algorithms for this problem.

1 Introduction

Given a set P of n points, and a set B of m boxes (i.e. axis-aligned closed
hyper-rectangles) in d-dimensional space, the Box Cover problem consists in
finding a set C ⊆ B of minimum size such that C covers P . A special case is the
Orthogonal Polygon Covering problem: given an orthogonal polygon P
with n edges, find a set of boxes C of minimum size whose union covers P. Both
problems are NP-hard [8,11], but their known approximabilities in polynomial
time are different: while Box Cover can be approximated up to a factor within
O(log OPT), where OPT is the size of an optimal solution [5,7]; Orthogonal
Polygon Covering can be approximated up to a factor within O(

√
log n) [14].

In an attempt to better understand what makes these problems hard, and why
there is such a gap in their approximabilities, we introduce the notion of coverage
kernels and study its computational complexity.

Given a set B of n d-dimensional boxes, a coverage kernel of B is a subset
K ⊆ B covering the same region as B, and a minimum coverage kernel of B is a
coverage kernel of minimum size. The computation of a minimum coverage kernel
(namely, the Minimum Coverage Kernel problem) is intermediate between
the Orthogonal Polygon Covering and the Box Cover problems. This
problem has found applications (under distinct names, and slight variations) in
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the compression of access control lists in networks [9], and in obtaining concise
descriptions of structured sets in databases [15,18]. Since Orthogonal Poly-
gon Covering is NP-hard, the same holds for the Minimum Coverage Ker-
nel problem. We are interested in the exact computation and approximability
of Minimum Coverage Kernel in various restricted settings:

1. Under which restrictions is the exact computation of Minimum
Coverage Kernel still NP-hard?

2. How precisely can one approximate a Minimum Coverage Kernel
in polynomial time?

When the interactions between the boxes in a set B are simple (e.g., when all
the boxes are disjoint), a minimum coverage kernel of B can be computed effi-
ciently. A natural way to capture the complexity of these interactions is through
the intersection graph. The intersection graph of B is the un-directed graph
with a vertex for each box, and in which two vertices are adjacent if and only
the respective boxes intersect. When the intersection graph is a tree, for instance,
each box of B is either completely covered by another, or present in any coverage
kernel of B, and thus a minimum coverage kernel can be computed efficiently.
For problem on graphs, a common approach to understand when does an NP-
hard problem become easy is to study distinct restricted classes of graphs, in
the hope to define some form of “boundary classes” of inputs separating “easy”
from “hard” instances [2]. Based on this, we study the hardness of the problem
under restricted classes of the intersection graph of the input.

Our Results. We study the Minimum Coverage Kernel problem under three
restrictions of the intersection graph, commonly considered for other prob-
lems [2]: planarity of the graph, bounded clique-number, and bounded vertex-
degree. We show that the problem remains NP-hard even when the intersection
graph of the boxes has clique-number at most 4, and the maximum degree is at
most 8. For the Box Cover problem we show that it remains NP-hard even
under the severely restricted setting where the intersection graph of the boxes
is planar, its clique-number is at most 2 (i.e., the graph is triangle-free), the
maximum degree is at most 3, and every point is contained in at most two
boxes.

We complement these hardness results with two approximation algorithms
for the Minimum Coverage Kernel problem running in polynomial time.
We describe a O(log n)-approximation algorithm which runs in time within
O(OPT · n

d
2+1 log2 n); and a randomized algorithm computing a O(log OPT)-

approximation in expected time within O(OPT·n d+1
2 log2 n), with high probability

(at least 1 − 1
nΩ(1) ). Our main contribution in this matter is not the existence of

polynomial time approximation algorithms (which can be inferred from results
on Box Cover), but a new data structure which allows to significantly improve
the running time of finding those approximations (when compared to the approx-
imation algorithms for Box Cover). This is relevant in applications where a
minimum coverage kernel needs to be computed repeatedly [1,9,15,18].
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Fig. 1. (a) An orthogonal polygon P. (b) A set of boxes B = {b1, b2, b3, b4} covering
exactly P, and such that in any cover of P with boxes, every box is either in B, or fully
covered by a box in B. (c) A set of points D(B) = {p1, p2, p3, p4, p5} such that any subset
of B covering D(B), covers also P. (d) The subset {b1, b2, b4} is an optimal solution for
the Orthogonal Polygon Cover problem on P, the Minimum Coverage Kernel
problem on B, and the Box Cover problem on D(B), B.

In the next section we review the reductions between the three problems
we consider, and introduce some basic concepts. We then present the hardness
results in Sect. 3, and describe in Sect. 4 the two approximation algorithms. We
conclude in Sect. 5 with a discussion on the results and future work.

2 Preliminaries

To better understand the relation between the Orthogonal Polygon Cov-
ering, the Box Cover and the Minimum Coverage Kernel problems, we
briefly review the reductions between them. We describe them in the Cartesian
plane, as the generalization to higher dimensions is straightforward.

Let P be an orthogonal polygon with n horizontal/vertical edges. Consider
the grid formed by drawing infinitely long lines through each edge of P (see
Fig. 1a for an illustration), and let G be the set of O(n2) points of this grid lying
on the intersection of two lines. Create a set B of boxes as follows: for each pair of
points in G, if the box having those two points as opposed vertices is completely
inside P, then add it to B (see Fig. 1b) Let C be any set of boxes covering P. Note
that for any box c ∈ C, either the vertices of c are in G, or c can be extended
horizontally and/or vertically (keeping c inside P) until this property is met.
Hence, there is at least one box in B that covers each c ∈ C, respectively, and thus
there is a subset B′ ⊆ B covering P with |B′| ≤ |C|. Therefore, any minimum
coverage kernel of B is also an optimal covering of P (and thus, transferring
the NP-hardness of the Orthogonal Polygon Covering problem [8] to the
Minimum Coverage Kernel problem).

Now, let B be a set of n boxes, and consider the grid formed by drawing
infinite lines through the edges of each box in B. This grid has within O(n2) cells
(O(nd) when generalized to d dimensions). Create a point-set D(B) as follows:
for each cell c which is completely inside a box in B we add to D(B) the middle
point of c (see Fig. 1c for an illustration). We call such a point-set a coverage
discretization of B, and denote it as D(B). Note that a set C ⊆ B covers D(B) if
and only if C covers the same region as B (namely, C is a coverage kernel of B).
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Therefore, the Minimum Coverage Kernel problem is a special case of the
Box Cover problem.

The relation between the Box Cover and the Minimum Coverage Ker-
nel problems has two main implications. Firstly, hardness results for the Mini-
mum Coverage Kernel problem can be transferred to the Box Cover prob-
lem. In fact, we do this in Sect. 3, where we show that Minimum Coverage
Kernel remains NP-hard under severely restricted settings, and extend this
result to the Box Cover problem under even more restricted settings. The other
main implication is that polynomial-time approximation algorithms for the Box
Cover problem can also be used for Minimum Coverage Kernel. However,
in scenarios where the boxes in B represent high dimensional data [9,15,18] and
Coverage Kernels need to be computed repeatedly [1], using approximation
algorithms for Box Cover can be unpractical. This is because constructing
D(B) requires time and space within Θ(nd). We deal with this in Sect. 4, where
we introduce a data structure to index D(B) without constructing it explicitly.
Then, we show how to improve two existing approximation algorithms [5,16] for
the Box Cover problem by using this index, making possible to use them for
the Minimum Coverage Kernel problem in the scenarios commented on.

3 Hardness Under Restricted Settings

We prove that Minimum Coverage Kernel remains NP-hard for restricted
classes of the intersection graph of the input set of boxes. We consider three
main restrictions: when the graph is planar, when the size of its largest clique
(namely the clique-number of the graph) is bounded by a constant, and when
the degree of a vertex with maximum degree (namely the vertex-degree of the
graph) is bounded by a constant.

Consider the k-Coverage Kernel problem: given a set B of n boxes, find
whether there are k boxes in B covering the same region as the entire set. Prov-
ing that k-Coverage Kernel is NP-complete under restricted settings yields
theNP-hardness of MinimumCoverageKernel under the same conditions. To
prove that k-Coverage Kernel is NP-hard under restricted settings we reduce
instances of the Planar 3-SAT problem (a classical NP-complete problem [17])
to restricted instances of k-CoverageKernel. In the Planar 3-SAT problem,
given a boolean formula in 3-CNF whose incidence graph1 is planar, the goal is
to find whether there is an assignment which satisfies the formula. The (planar)
incidence graph of any planar 3-SAT formula ϕ can be represented in the plane
as illustrated in Fig. 2 for an example, where all variables lie on a horizontal line,
and all clauses are represented by non-intersecting three-legged combs [13]. We
refer to such a representation of ϕ as the planar embedding of ϕ. Based on this
planar embedding we proof the results in Theorem 1. Although our arguments
are described in two dimensions, they extend trivially to higher dimensions.
1 The incidence graph of a 3-SAT formula is a bipartite graph with a vertex for each

variable and each clause, and an edge between a variable vertex and a clause vertex
for each occurrence of a variable in a clause.
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Fig. 2. Planar embedding of the formula ϕ = (v1 ∨ v2 ∨ v3) ∧ (v3 ∨ v4 ∨ v5) ∧ (v1 ∨ v3 ∨
v5) ∧ (v1 ∨ v2 ∨ v4) ∧ (v2 ∨ v3 ∨ v4) ∧ (v4 ∨ v5 ∨ v6) ∧ (v1 ∨ v5 ∨ v6). The crosses and dots
at the end of the clause legs indicate that the connected variable appears in the clause
negated or not, respectively.

Theorem 1. Let B be a set of n boxes in the plane and let G be the intersection
graph of B. Solving k-Coverage Kernel over B is NP-complete even if G has
clique-number at most 4, and vertex-degree at most 8.

Due to space restrictions, we provide a brief intuition of the proof here, and
defer the details to the extended version [4]. Given any set B of n boxes in R

d, and
any subset K of B, certifying that K covers the same region as B can be done in
time within O(nd/2) using Chan’s algorithm [6] for computing the volume of the
union of the boxes in B. Therefore, k-Coverage Kernel is in NP. To prove that
it is NP-complete we construct, given a planar 3-SAT formula ϕ with n variables
and m clauses, a set B of O(n + m) boxes which has a coverage kernel of size
31m + 3n if and only if there is an assignment of the variables satisfying ϕ. We
use the planar embedding of ϕ as a starting point, and replace the components
corresponding to variables and clauses, respectively, by gadgets composed of
several boxes. Figure 3 illustrates the general layout of such construction for the
formula ϕ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v3 ∨ v4). This construction
can be obtained in polynomial time, and thus any polynomial time solution to
k-Coverage Kernel yields a polynomial time solution for Planar 3-SAT.

Fig. 3. Variable and clause gadgets for ϕ = (v1 ∨v2 ∨v3)∧ (v1 ∨v2 ∨v4)∧ (v1 ∨v3 ∨v4).
The bold lines highlight one side of each rectangle, and the dashed lines delimit the
regions of the variable and clause components in the planar embedding of ϕ. Finding the
minimum subset of rectangles covering the non-white regions answers the satisfiability
of ϕ.
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To complete the proof we show that the instance of the construction meets all
the restrictions of Theorem 1.

Since the Minimum Coverage Kernel problem is a special case of the Box
Cover problem, the result of Theorem 1 also applies to the Box Cover prob-
lem. However, in Theorem 2 we show that this problem remains hard under even
more restricted settings (the proof is deferred to the the extended version [4]).

Theorem 2. Let P , B be a set of m points and n boxes in the plane, respectively,
and let G be the intersection graph of B. Solving Box Cover over B and P is
NP-complete even if every point in P is covered by at most two boxes of B, and
G is planar, has clique-number at most 2, and vertex-degree at most 4.

In the next section, we complement these hardness results with two approx-
imation algorithms for the Minimum Coverage Kernel problem.

4 Efficient Approximation of Minimum Coverage Kernels

Let B be a set of n boxes in R
d, and let D(B) be a coverage discretization of B

(as defined in Sect. 2). A weight index for D(B) is a data structure which can
perform the following operations:

– Initialization: Assign an initial unitary weight to every point in D(B);
– Query: Given a box b ∈ B, find the total weight of the points in b.
– Update: Given a box b ∈ B, multiply the weights of all the points within b by

a given value α ≥ 0;

We assume that the weights are small enough so that arithmetic operations over
the weights can be performed in constant time. There is a trivial implementation
of a weight index with initialization and update time within O(nd), and with
constant query time. In this section we describe a weight index for D(B) which
can be initialized in time within O(n

d+1
2 ), and with query and update time within

O(n
d−1
2 log n). We combine this data structure with two existing approximation

algorithms for the Box Cover problem [5,16] and obtain improved approx-
imation algorithms (in the running time sense) for the Minimum Coverage
Kernel problem.

A Weight Index for a Set of Intervals. Consider first the case of a set I of n
intervals. A trivial weight index which explicitly saves the weights of each point
in D(I) can be initialized in time within O(n log n), has linear update time, and
constant query time. We show that by sacrificing query time (by a factor within
O(log n)) one can improve update time to within O(log n). The main idea is to
maintain the weights of each point of D(I) indirectly using a tree.

Consider a balanced binary tree whose leafs are in one-to-one correspondence
with the values in D(I) (from left to right in a non-decreasing order). Let pv

denote the point corresponding to a leaf node v of the tree. In order to represent
the weights of the points in D(I), we store a value μ(v) at each node v of the tree
subject to the following invariant: for each leaf v, the weight of the point pv equals
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the product of the values μ(u) of all the ancestors u of v (including v itself). The
μ values allow to increase the weights of many points with only a few changes. For
instance, if we want to double the weights of all the points we simply multiply by
2 the value μ(r) of the root r of the tree. Besides the μ values, to allow efficient
query time we also store at each node v three values min(v),max(v), ω(v): the
values min(v) and max(v) are the minimum and maximum pu, respectively, such
that u is a leaf of the tree rooted at v; the value ω(v) is the sum of the weights
of all pu such that u is a leaf of the tree rooted at v.

Initially, all the μ values are set to one. Besides, for every leaf l of the tree ω(l)
is set to one, while min(l) and max(l) are set to pl. The min, max and ω values
of every internal node v with children l, r, are initialized in a bottom-up fashion
as follows: min(v) = min{min(l),min(r)}; max(v) = max{max(l),max(r)};
ω(v) = μ(v) · (ω(l) + ω(r)). It is simple to verify that after this initialization, the
tree meets all the invariants mentioned above. We show in Theorem 3 that this
tree can be used as a weight index for D(I).

Theorem 3. Let I be a set of n intervals in R. There exists a weight index
for D(I) which can be initialized in time within O(n log n), and with query and
update time within O(log n).

Proof. Since intervals have linear union complexity, D(I) has within O(n) points,
and it can be computed in linear time after sorting, for a total time within
O(n log n). We store the points in the tree described above. Its initialization
can be done in linear time since the tree has within O(n) nodes, and when
implemented in a bottom-up fashion, the initialization of the μ, ω,min, and
max values, respectively, cost constant time per node.

To analyze the query time, let totalWeight(a, b, t) denote the procedure which
finds the total weight of the points corresponding to leafs of the tree rooted at
t that are in the interval [a, b]. This procedure can be implemented as follows:

1. if [a, b] is disjoint to [min(t),max(t)] return 0;
2. if [a, b] completely contains [min(t),max(t)] return ω(r);
3. if both conditions fail (leafs must meet either 1. or 2.), let l, r be the left and

right child of t, respectively;
4. if a > max(l) return μ(t) · totalWeight(a, b, r);
5. if b < min(r) return μ(t) · totalWeight(a, b, l);
6. otherwise return μ(t)(totalWeight(a,∞, l) + totalWeight(−∞, b, r)).

Due to the invariants to which the min and max values are subjected, every leaf
l of t corresponding to a point in [a, b] has an ancestor (including l itself) which
is visited during the call to totalWeight and which meets the condition in step 2.
For this, and because of the invariants to which the ω and μ values are subjected,
the procedure totalWeight is correct. Note that the number of nodes visited is
at most 4 times the height h of the tree: when both children need to be visited,
one of the endpoints of the interval to query is replaced by ±∞, which ensures
that in subsequent calls at least one of the children is completely covered by the
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query interval. Since h ∈ O(log n), and the operations at each node consume
constant time, the running time of totalWeight is within O(log n).

Similarly, to analyze the update time, let updateWeights(a, b, t, α) denote the
procedure which multiplies by a value α the weights of the points in the interval
[a, b] stored in leafs descending from t. This can be implemented as follows:

1. if [a, b] is disjoint to [min(t),max(t)], finish;
2. if [a, b] completely contains [min(t),max(t)] set μ(r) = α · μ(r), set ω(r) =

α · ω(r), and finish;
3. if both conditions fail, let l, r be the left and right child of t, respectively;
4. if a > max(l), call updateWeights(a, b, r, α);
5. else if b < min(r), call updateWeights(a, b, l, α);
6. otherwise, call updateWeights(a,∞, l, α), and updateWeights(−∞, b, r, α);
7. finally, after the recursive calls set ω(t) = μ(t) · (ω(l) + ω(r)), and finish.

Note that, for every point pv in [a, b] corresponding to a leaf v descending from
t, the μ value of exactly one of the ancestors of u changes (by a factor of α): at
least one changes because of the invariants to which the min and max values
are subjected (as analyzed for totalWeight); and no more than one can change
because once μ is assigned for the first time to some ancestor u of v, the procedure
finishes leaving the descendants of v untouched. The analysis of the running time
is analogous to that of totalWeight, and thus within O(log n). 
�

A weight index for a set of intervals can be used to obtain an index for d-
dimensional sets of boxes. The main idea is to split the space into cells such
that, within each cell, the weights of the points in the cell can be represented by
combining d one dimensional weight indexes. This space partition is stored in a
binary tree where each node represents a cell of the space. We state this result
in Theorem 4, and due to space restrictions we defer the proof to the extended
version [4].

Theorem 4. Let B be a set of n d-dimensional boxes. There is a weight index
for D(B) which can be initialized in time within O(n

d+1
2 ), and with query and

update time within O(n
d−1
2 log n).

Approximating the Minimum Coverage Kernel of a set B of boxes via
approximation algorithms for the Box Cover problem requires that D(B) is
explicitly constructed. However, the weight index described in the proof of The-
orem 4 can be used to significantly improve the running time of these algorithms.
We describe below two examples.

Practical Approximation Algorithms. The first algorithm we consider is the
greedy O(log n)-approximation algorithm by Lovász [16]. The greedy strategy
applies naturally to the Minimum Coverage Kernel problem: iteratively pick
the box which covers the most yet uncovered points of D(B), until there are no
points of D(B) left to cover. To avoid the explicit construction of D(B) three
operations most be simulated: (i.) find how many uncovered points are within a
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given a box b ∈ B; (ii.) delete the points that are covered by a box b ∈ B; and
(iii.) find whether a subset B′ of B covers all the points of D(B).

For the first two we use the weight index described in the proof of Theorem4:
to delete the points within a given box b ∈ B we simply multiply the weights of all
the points of D(B) within b by α = 0; and finding the number of uncovered points
within a box b is equivalent to finding the total weight of the points of D(B)
within b. For the last of the three operations we use the following observation:

Observation 1. Let B be a set of d-dimensional boxes, and let B′ be a subset
of B. The volume of the region covered by B′ equals that of B if and only if B′

and B cover the exact same region.

Let OPT denote the size of a minimum coverage kernel of B, and let N denote the
size of D(B) (N ∈ O(nd)). The greedy algorithm of Lovász [16], when run over
the sets B and D(B) works in O(OPT log N) steps; and at each stage a box is added
to the solution. The size of the output is within O(OPT log N) ⊆ O(OPT log n).
This algorithm can be modified to achieve the following running time, while
achieving the same approximation ratio:

Theorem 5. Let B be a set of n boxes in R
d with a minimum coverage kernel

of size OPT. Then, a Coverage Kernel of B of size within O(OPT log n) can
be computed in time within O(OPT · n

d
2+1 log2 n).

Proof. We initialize a weight index as in Theorem4, which can be done in time
O(n

d+1
2 ), and compute the volume of the region covered by B, which can be

done in time within O(nd/2) [6]. Let C be an empty set. At each stage of the
algorithm, for every box b ∈ B \ C we compute the total weight of the points
inside b (which can be done in time within n

d−1
2 log n using the weight index).

We add to C the box with the highest total weight, and update the weights of
all the points within this box to zero (by multiplying their weights by α = 0)
in time within n

d−1
2 log n. If the volume of the region covered by C (which can

be computed in O(nd/2)-time [6]) is the same as that of B, then we stop and
return C as the approximated solution. The total running time of each stage
is within O(n

d+1
2 log n). This, and the fact that the number of stages is within

O(OPT log n) yield the result of the theorem. 
�
Now, we show how to improve Brönnimann and Goodrich’s O(log OPT)

approximation algorithm [5] via a weight index. First, we describe their main
idea. Let w : D(B) → R be a weight function for the points of D(B), and for a
subset P ⊆ D(B) let w(P ) denote the total weight of the points in P. A point
p is said to be ε-heavy, for a value ε ∈ (0, 1], if w(p) ≥ εw(D(B)), and ε-light
otherwise. A subset B′ ⊆ B is said to be an ε-net with respect to w if for every
ε-heavy point p ∈ D(B) there is a box in B′ which contains p. Let OPT denote
the size of a minimum coverage kernel of B, and let k be an integer such that
k/2 ≤ OPT < k. The algorithm initializes the weight of each point in D(B) to
1, and repeats the following weight-doubling step until every range is 1

2k -heavy:
find a 1

2k -light point p and double the weights of all the points within every box
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b ∈ B. When this process stops, it returns a 1
2k -net C with respect to the final

weights as the approximated solution.
Since each point in D(B) is 1

2k -heavy, C covers all the points of D(B). Hence,
if a 1

2k -net of size O(kg(k)) can be computed efficiently, this algorithm computes
a solution of size O(kg(k)). Besides, Brönnimann and Goodrich [5] showed that
for a given k, if more than μk = 4k log(n/k) weight-doubling steps are performed,
then OPT > 2k. This allows to guess the correct k via exponential search, and to
bound the maximum weight of any point by n4/k3 (which allows to represent
the weights with O(log n) bits). See Brönnimann and Goodrich’s article [5] for
the complete details of their approach.

We simulate the operations over the weights of D(B) again using a weight
index, this time with a minor variation to that of Theorem4: in every node of the
space partition tree, besides the ω, μ values, we also store the minimum weight of
the points within the cell corresponding to the node. During the initialization and
update operations of the weight index this value can be maintained as follows:
for a node v with children l, r, the minimum weight minω(v) of a point in the cell
of v can be computed as minω(v) = ω(v) · min{minω(l),minω(r)}. This value
allows to efficiently detect whether there are 1

2k -light points, and to find one in
the case of existence by tracing down, in the partition tree, the path from which
that value comes.

To compute a 1
2k -net, we choose a sample of B by performing at least

(16k log 16k) random independent draws from B. We then check whether it is
effectively a 1

2k -net, and if not, we repeat the process, up to a maximum of
O(log n) times. Haussler and Welzl [12] showed that such a sample is a 1

2k -net
with probability at least 1/2. Thus, the expected number of samples needed to
obtain a 1

2k -net is constant, and since we repeat the process up to O(log n) times,
the probability of effectively finding one is at least 1 − 1

nΩ(1) . We analyze the
running time of this approach in the following theorem.

Theorem 6. Let B be a set of n boxes in R
d with a minimum coverage kernel of

size OPT. A coverage kernel of B of size within O(OPT log OPT) can be computed
in O(OPTn

d+1
2 log2 n)-expected time, with probability at least 1 − 1

nΩ(1) .

Proof. The algorithm performs several stages guessing the value of k. Within
each stage we initialize a weight index in time within O(n

d+1
2 ). Finding whether

there is a 1
2k -light point can be done in constant time: the root of the partition

tree stores both w(D(B)) and the minimum weight of any point in the ω and
minω values, respectively. For every light point, the weight-doubling steps con-
sume time within O

(
n ×

(
n

d−1
2 log n

))
⊆ O(n

d+1
2 log n) (by Theorem 4). Since

at each stage at most 4k log(n/k) weight-doubling steps are performed, the total
running time of each stage is within O(kn

d+1
2 log n log n

k ) ⊆ O(kn
d+1
2 log2 n).

Given that k increases geometrically while guessing its right value, and since
the running time of each stage is a polynomial function, the sum of the running
times of all the stages is asymptotically dominated by that of the last stage, for
which we have that k ≤ OPT ≤ 2k. Thus the result of the theorem follows. 
�
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Compared to the algorithm of Theorem5, this last approach obtains a better
approximation factor on instances with small Coverage Kernels (O(log n)
vs. O(log OPT)), but the improvement comes with a sacrifice, not only in the
running time, but in the probability of finding such a good approximation. In
two and three dimensions, weight indexes might also help to obtain practical
O(log log OPT) approximation algorithms for the Minimum Coverage Prob-
lem. We discuss this, and other future directions of research in the next section.

5 Discussion

Whether it is possible to close the gap between the factors of approximation of
Box Cover and Orthogonal Polygon Covering has been a long standing
open question [14]. The Minimum Coverage Kernel problem, intermediate
between those two, has the potential of yielding answers in that direction, and
has natural applications of its own [9,15,18]. Trying to understand the differences
in hardness between these problems, we studied distinct restricted settings. We
show that while Minimum Coverage Kernel remains NP-hard under severely
restricted settings, the same can be said for the Box Cover problem under even
more extreme settings; and show that while the Box Cover and Minimum
Coverage Kernel can be approximated by at least the same factors, the
running time of obtaining some of those approximations can be significantly
improved for the Minimum Coverage Kernel problem.

Another approach to understand what makes a problem hard is Parameter-
ized Complexity [10], where the hardness of a problem is analyzed with respect
to multiple parameters of the input, with the hope of finding measures grad-
ually separating “easy” instances form the “hard” ones. The hardness results
described in Sect. 3 show that for the Minimum Coverage Kernel and Box
Cover problems, the vertex-degree and clique-number of the underlaying graph
are not good candidates of such kind of measures, opposed to what happens for
other related problems [2].

In two and three dimensions, the Box Cover problem can be approximated
up to O(log log OPT) [3]. We do not know whether the running time of this
algorithm can be also improved for the case of Minimum Coverage Kernel
via a weight index. We omit this analysis since the approach described in Sect. 4
is relevant when the dimension of the boxes is high (while still constant), as in
distinct applications [9,15,18] of the Minimum Coverage Kernel problem.

Acknowledgments. We thank an anonymous reviewer for carefully reading our
manuscript, and providing many insightful comments and suggestions.
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Abstract. Glaßer et al. (SIAMJCOMP 2008 and TCS 2009 (The two
papers have slightly different sets of authors)) proved existence of two
sparse sets A and B in EXP, where A is 3-tt (truth-table) polynomial-
time autoreducible but not weakly polynomial-time Turing mitotic and B
is polynomial-time 2-tt autoreducible but not weakly polynomial-time 2-
tt mitotic. We unify and strengthen both of those results by showing that
there is a sparse set in EXP that is polynomial-time 2-tt autoreducible
but not even weakly polynomial-time Turing mitotic. All these results
indicate that polynomial-time autoreducibilities in general do not imply
polynomial-time mitoticity at all with the only exceptions of the many-
one and 1-tt reductions. On the other hand, however, we proved that
every autoreducible set for the polynomial-time bounded disjunctive or
conjunctive tt reductions is weakly mitotic for the polynomial-time tt
reduction that makes logarithmically many queries only. This shows that
autoreducible sets for reductions making more than one query could still
be mitotic in some way if they possess certain special properties.

1 Introduction

Let r be a reduction between two languages as defined in computational com-
plexity such as the common many-one and Turing reductions. We say that a
language L is r-autoreducible if L is reducible to itself via the reduction r where
the reduction does not query on the same string as the input. In case that r is the
many-one reduction, we require that r outputs a string different from the input
in order to be an autoreduction. Researchers started investigating on autore-
ducibility as early as 1970’s [12] although much of the work done then was in
the recursive setting. Ambos-Spies [1] translated the notion of autoreducibility
to the polynomial-time setting, and Yao [13] considered autoreducibility in the
probabilistic polynomial-time setting, which he called coherence.

More recently polynomial-time autoreducibilities, which correspond to
polynomial-time reductions, gained attention due to its candidacy as a struc-
tural property that can be used in the “Post’s program for complexity theory”
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[3] that aims at finding a structural/computational property that complete sets
of two complexity classes don’t share, hereby separating the two complexity
classes. Autoreducibility is believed to be possibly one of such properties that
will lead to new separation results in the future [2]. We refer the reader to Glaßer
et al. [7] and Glaßer et al. [6] for recent surveys along this line of research.

In this paper we continue to study the relation between the two seemingly
different notions, autoreducibility and mitoticity. Glaßer et al. [9] proved that
among polynomial-time reductions, autoreducibility coincides with polynomial-
time mitoticity for the many-one and 1-tt reductions, but not for the 3-tt reduc-
tion or any reduction weaker than 3-tt. In a subsequent paper Glaßer et al. [4]
further proved that 2-tt autoreducibility does not coincide with 2-tt mitoticity.
However, the set they construct is weakly 5-tt mitotic. So the technical question
remained open whether one can construct a language that is 2-tt autoreducible
but not weakly Turing-mitotic. We solve this problem in the positive way. More
precisely, we proved that there exists a sparse set in EXP that is 2-tt autore-
ducible but not even weakly Turing-mitotic. This result unifies and strengthens
both of the previous results.

In attempting to strengthen our results further we asked the question whether
one can even construct a language that is r-autoreducible but not weakly Turing-
mitotic for any reduction r that is weaker than the 1-tt reduction but stronger
than 2-tt reduction such as 2-dtt and 2-ctt reductions. We proved that any
language that is k-dtt or k-ctt autoreducible is also weakly kO(2c log( c−1)n)-tt
mitotic for any integers k, c ≥ 2. Glaßer et al. [9] and Glaßer et al. [5] showed that
k-dtt and/or k-ctt complete set for many common complexity classes including
NP, PH, PSPACE and NEXP are k-dtt and/or k-ctt autoreducible, respectively.
In light of that we have the interesting corollary that k-dtt and/or k-ctt complete
sets of those complexity classes are weakly dtt- and/or ctt-mitotic, respectively.

We give definitions and notations needed to present our results in Sect. 2
below. We then describe our main results in more details in Sect. 3. Due to
space limit we have to omit the proofs for Lemma 1, Theorems 4, and 5 in this
proceeding paper. Those proofs will be available upon request and in the journal
version of the paper.

2 Definitions and Notations

We assume familiarity with basic notions in complexity theory and particu-
larly, common complexity classes such as P, NP, PH, PSPACE and EXP, and
polynomial-time reductions including many-one (≤p

m), truth-table (≤p
tt) and

Turing reductions (≤p
T ) [10,11]. Without loss of generality, we use the alpha-

bet Σ = {0, 1} and all sets we referred to in this paper are either languages over
Σ or sets of integers. Let N denote the set of natural numbers and N

+ denote
N\{0}. We use a pairing function 〈·, ·〉 that satisfies 〈x, y〉 > x + y. For every
string/integer x, we use |x|/abs(x) to denote the length/absolute value of x. For
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every function f , we use f (i)(x) to denote f(f(· · · f
︸ ︷︷ ︸

i

(x))) for every i ∈ N, where

f (0)(x) = x.
Throughout the paper, we use the two terms Turing machines and algorithms

interchangeably. Following Glaßer et al. [9], we define a non-trivial set to be a
set L where both L| and L contain at least two distinct elements. This allows
us present our results in a simple and concise way. All reductions used in this
paper are polynomial-time computable unless otherwise specified. A language L
is complete for a complexity class C for a reduction r if every language in C is
reducible to L via r. For any algorithm or Turing machine A, we use A(x) to
denote both the execution and output of A on input x, i.e., “A(x) accepts” has
the same meaning as “A(x) = accept”. We use AB(x) or Ag(x) to denote the
same for algorithm/Turing machine A that has oracle access to a set B or a
function g. Also L(A) ( L(AB) or L(Ag)) denotes the language accepted by A
(AB or Ag).

We provide detailed definitions for the most relevant reductions considered
in this paper below.

Definition 1. Define a language A to be polynomial-time truth-table reducible
(≤p

tt) to a language B, if there exists a polynomial-time algorithm A that accepts
A with oracle access to B. In addition, there exists a polynomial-time computable
function g that on input x outputs all queries A(x) makes to B.

Truth-table reductions are also called nonadaptive Turing reductions in the
sense that they are the same as the general Turing reductions except that all
queries the reductions make can be computed from the input in polynomial time
without knowing the answer to any query.

Definition 2. For any positive integer k, define a language A to be polynomial-
time k-tt reducible (≤p

k-tt) to a language B, if there exists a polynomial-time
truth-table reduction r from A to B that makes at most k queries on every input
x. If in addition the k queries q0, q1, · · · , qk−1 that r makes are such that x ∈ A if
and only if some/every qi ∈ B, then r is called a disjunctive/conjunctive truth-
table reduction and A is said to be disjunctive/conjunctive truth-table reducible
(≤p

k-dtt/≤p
k-ctt) to B.

Now we define autoreducible and mitotic languages formally.

Definition 3. Given any reduction r, a language is autoreducible for r or r-
autoreducible, if the language is reducible to itself via r that does not query on
the input.

Definition 4. Given any reduction r, a language L is weakly mitotic for r or
weakly r-mitotic, if there exists another language S, where L, S ∩ L and S are
all equivalent under the reduction r, i.e., L ≡r S ∩ L ≡r S ∩ L. If in addition
S ∈ P, then we say that L is mitotic for r or r-mitotic.
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The proof of our second result uses log derivative sequences based on log-
distance functions. We define both concepts below.

Let sgn denote the common sign function defined on integers, i.e., for every
z ∈ Z, sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 otherwise.

Definition 5. For every pair of integers or strings x and y, we define the fol-
lowing log-distance function, logD, as follows.

logD(x, y) =
{

sgn(y − x)	log |y − x|
 if x �= y and ∞ �∈ {x, y}
∞ otherwise.

In case where x and y are strings, y − x is defined to be their lexicographical
difference.

The above function is the same as the “distance function” defined by Glaßer et
al. [9], except that we define logD(x, y) = ∞ instead of 0 when x = y, or either
x or y is ∞.

Definition 6. Let X = {xj}j≥0 be a sequence of strings or integers, where xj

denotes the j-th element in X. Define the i-th log derivative sequence of X,
written X(i) as follows:

– X(0) = X, and
– For i ≥ 1, X(i) = {x

(i)
j }, where x

(i)
j = logD(x(i−1)

j , x
(i−1)
j+1 ).

In case X is a finite sequence {xj}s≤j≤t, where s, t ∈ N and s ≤ t, then X(i) =
{x

(i)
j }s≤j≤t−i for every i ∈ [0, t − s]. For every i ≥ 2, we say that X(i) is a

higher-order log derivative of X.

3 Results

Our first main result is that there exists a sparse set in EXP that is 2-tt autore-
ducible but not weakly mitotic even for the polynomial-time Turing reduction,
the most general polynomial-time reduction.

Overall the proof of our first main result follows the approach of the proof by
Glaßer et al. [4] that there exists a sparse set in EXP that is 2-tt autoreducible
but not 2-tt mitotic. The proof is in general a diagonalization against all possible
partitions of a constructed language L into L1 and L2, as well as all possible
polynomial-time oracle Turing machines Mi and Mj , where L≤p

2-ttL1 via Mi

and L≤p
2-ttL2 via Mj . The construction of L proceeds in stages, where in each

stage, only polynomially many strings of a particular length are added to L.
The gaps between lengths of strings added to L in different stages are made
super-exponential so that strings added to L in later stages won’t affect the
computations of considered Turing machines on strings added to L in previous
stages. In light of the fact that the set constructed as described above is actually
weakly 5-tt mitotic [4], it was assumed that a straightforward adaption of the
above construction won’t be sufficient for proving a stronger result that there
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exists a sparse set in EXP that is 2-tt autoreduction but not weakly Turing
mitotic.

However, something overlooked here is that the aforementioned proof actually
proved a stronger statement than stated - The proof actually shows that there
is a set L, where for every partition {L1, L2} of L, either L �≤p

2-ttL1 or L �≤p
2-ttL2.

In order to prove that L is not 2-tt mitotic we only need to show L �≤p
2-ttL1,

L1 �≤p
2-ttL2 or L2 �≤p

2-ttL. The latter is clearly a weaker statement. In light of
this observation, we adapt the previous proof by considering three oracle Turing
machines Mi, Mj and Mk instead for the purpose of diagonalization in each
stage of constructing the language L. It turns out that this is critical for the
proof to go through.

We now state our first main result in detail below.

Theorem 1. There exists L ∈ SPARSE ∩ EXP such that

– L is 2-tt-autoreducible, but
– L is not weakly Turing-mitotic.

Theorem 1 indicates that 2-tt autoreducibility does not imply weak mitotic-
ity even for the Turing reduction, the most general polynomial-time reduction.
This shows that in general autoreducibility does not even imply the weakest
form of mitoticity in the polynomial-time setting among reductions making more
than one query, despite that autoreducibility and mitoticity are equivalent for
the many one and 1-tt reductions. A further question that is natural to ask
is whether autoreducibility implies any form of mitoticity at all for reductions
that lie between the 2-tt reduction and 1-tt reduction, or reductions with special
properties that are incomparable to 2-tt and/or 1-tt reductions, such as honest
and positive reductions.

Here we consider bounded disjunctive and conjunctive truth-table reductions.
We prove that if a language is k-dtt or k-ctt autoreducible for some integer k ≥ 2,
then the language is weakly truth-table mitotic. In addition, the reduction can
be made to query on at most kO(2c log(c−1) n) strings for every integer c ≥ 2.
Our proof adapts and generalizes in a significant way the proof strategy used by
Glaßer et al. [9], where they showed that every nontrivial language is many-one
or 1-tt autoreducible if and only if the language is many-one or 1-tt mitotic,
respectively. We review their proof strategy below at a higher level and then
describe the changes needed in order to establish the weak mitoticity of any
k-dtt or k-ctt autoreducible sets.

Let L be a nontrivial many-one (≤p
m) autoreducible set, where there exists

a polynomial-time computable function f such that f(x) �= x and f(x) ∈ L if
and only if x ∈ L for every x ∈ Σ∗. It is sufficient to prove that there exists a
polynomial-time decidable set S and a function f ′, where for every x ∈ Σ∗,

(i) f ′(x) ∈ L if and only if x ∈ L, and
(ii) f ′(x) ∈ S if and only if x ∈ S.

The idea of finding a function f ′ that satisfies conditions (i) and (ii) as stated
above is to define f ′(x) = f (i)(x) for an appropriate i ≤ p(|x|), where p is a
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polynomial. Since f(x) is an autoreduction, it is obvious that f ′ defined in this
way satisfies condition (i). Now we need to construct a set S where for each x
we can find a correct i so that Condition (ii) also holds, i.e., f ′(x) = f (i)(x) ∈ S
if and only if x ∈ S.

To construct such set S we consider the sequence x, f(x), f(f(x)), . . . , called
trajectory of x in Glaßer et al. [9]. Note that every string on the trajectory of
x has the same membership in L as x and also that every two consecutive
strings on the trajectory are unequal to each other. We first partition Σ∗ into
a sequence of segments, each of which contains all strings of some consecutive
lengths. In addition, those segments are assigned to S and S in an alternate way,
i.e., the i-th segment is assigned to S if and only if the (i + 1)-st is assigned to
S. Then we look for changes of monotonicity in the trajectory of x and assign
x to S or S accordingly. For instance, assign x to S if x < f(x) > f(f(x)) and
to S if x > f(x) < f(f(x)). Clearly if we can find more than one change in
monotonicity along the trajectory of x within polynomially many strings, then
we will find a string y where y �∈ S if and only if x ∈ S. Otherwise, we can find
a strictly monotonic sub-trajectory within the trajectory of x. If within that
sub-trajectory, f increases or decreases fast enough, i.e., leading to a change in
length, then we can find strings on the trajectory of x that are polynomially
many strings from x but belong to different segments and hence have different
memberships of S by x.

The most difficult case arises when the trajectory of x is a strictly monotonic
but does not increase or decrease fast enough so that trajectory can reach a
neighboring segment from the segment containing x within polynomially many
strings away from x. Glaßer et al. [9] dealt with this case essentially by dividing
each segment into smaller segments of increasing sizes based on a log distance
function applied on strings on the trajectory of x. This way the trajectory will
contain strings in neighboring segments of the same size depending on how fast
the autoreduction function increases or decreases. Then we can find a y in a
neighboring segment from x on the trajectory, where y ∈ S if and only x ∈ S.

The above strategy obviously does not apply to reductions making more than
one queries as it is. We, however, found a way to adapt the strategy to apply it
on bounded dtt or ctt reductions and prove the weak tt mitoticity of bounded
dtt or ctt autoreducible sets.

Consider a k-dtt autoreducible set L for some integer k ≥ 2. Then there
exists a polynomial-time computable function f , where for every x ∈ Σ∗, f(x) =
〈y0, y1, · · · , yk−1〉 such that

(i) yj �= x for every j ∈ [0, k − 1], and
(ii) f(x) ∈ L if and only if yj ∈ L for some j ∈ [0, k − 1].

Now define a function g where g(x) is the lexicographically least string in f(x)
that has the same membership of L as x. Then it is clear that g(x) �= x and
g(x) ∈ L if and only if x ∈ L. We can apply Glaßer et al.’s construction [9] as
described above on g and establish the tt mitoticity of any k-dtt autoreducible
set. The problem with this approach is, however, that the function g might not
be polynomial-time computable. We circumvented this problem by considering
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all possible values of g(x) for every x, i.e., any of the k values in f(x), This
means that we will look for a y �= x where y ∈ S if and only if x �∈ S, along all
possible trajectories from x. Hence, we no longer can afford traversing along a
trajectory from x for polynomially many strings before we can find the desired y
since there could be exponentially many possible trajectories. Instead, we need
another way to construct the set S so that there exists a y on the g-trajectory
that is at most O(log n) strings away from x, where x ∈ S if and only if y �∈ S.

We solve this problem by considering higher-order log derivatives, defined
in Sect. 2, of the sequence consisting of strings on the trajectory of x, i.e., X =
{xj = g(j)}j≥1. The log-distance function used by Glaßer et al. [9] can be viewed
as the first-order log derivative of the sequence X. We will attempt to find
changes of monotonicity in X, the 1st-order log derivative of X, the 2nd-order
log derivative of X and so on until the c-th order log derivative for some integer
c ≥ 2, in that order, and then assign x to either S or S accordingly. If we don’t
find enough changes of monotonicity among all those high-order log derivative
sequences of X, then we will show that the function g increases fast enough
already so that for some j ∈ [1, O(log|x|), g(j)(x) belongs to the next segment
after the one containing x. Hence, g(j)(x) will be assigned to S if and only if x
is assigned to S. We now provide the detailed proof for our main theorem.

We first need the following lemma that was essentially proved in Glaßer et
al. [9].

Lemma 1 [9]. Let {xj}0≤j≤2 be a strictly monotonic sequence of integers, where
there exists some d ∈ Z such that logD(xj , xj+1) = d for 0 ≤ j ≤ 1. Then the
set X = {	 xj

2abs(d)+1 
 | 0 ≤ j ≤ 2} contains at least one even number and one odd
number.

Theorem 2. Let g be a polynomially-bounded function and g(x) �= x for every
x ∈ Σ∗. Then for every positive integer c ≥ 2, there is a polynomial-time algo-
rithm Sc with oracle access to function g, and a polynomial r, where for every
x ∈ Σ∗ an integer jx ∈ [1, 2c log(c−1) |x|�] exists such that

(i) for each j ∈ [0, jx], |gj(x)| ≤ r(|x|),
(ii) for each j ∈ [0, jx − 1], Sg

c accepts x if and only if Sg
c accepts g(j)(x), and

(iii) Sg
c accepts x if and only if Sg

c rejects g(jx)(x).

Proof. Let g be an (nl + l)-bounded function for some l ∈ N
+ as given in the

premise. Let t be a tower function defined by t(0) = 0 and t(i + 1) = t(i)l + l
for i ∈ N. Define the inverse tower function as t−1(n) = min{i | t(i) ≥ n}. Note
that t−1 is polynomial-time computable. Now consider the algorithm Sg

c given
below (Algorithm 1).

Let m = 2c log(c−1) |x|�. We first observe that Algorithm Sg
c queries on

strings g(j)(x) for 1 ≤ j ≤ c + 2 only, each of which is polynomially bounded
since g is a polynomially bounded function. Hence, Sg

c runs in polynomial time
assuming the value of g(j)(u) for any u queried on can be obtained instantly.

We now turn to the proof for conditions (i)–(iii) of Theorem2. Let x be an
arbitrary input string and let X denote the sequence {xj = g(j)(x)}0≤j≤m. The
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Input : An arbitrary string w ∈ {0, 1}∗, where |w| = n
Output : ACCEPT or REJECT

1 m ← k�log n�;
2 D[0, 0] ← x, D[0, 1] ← g(x);
3 if t−1(|D[0, 0]|) < t−1(|D[0, 1]|) then
4 ACCEPT iff t−1(|D[0, 0]|) is odd
5 end
6 D[1, 0] ← logD(D[0, 0], D[0, 1]);
7

8 // Compute the log derivatives of X at x0 = x, x1 = g(x) and x2 = g(g(x));
9 for i ← 0 to k do

10

11 // Compute the i-th order log derivatives;
12 for j ← i + 2 to 0 do
13 if j = i + 2 then
14 D[0, j] ← g(D[0, j − 1]);
15 if t−1(D[0, j − 1])) < t−1(|D[0, j]|) then
16 ACCEPT iff t−1(|D[0, j − 1]|) is even
17 end

18 end
19 else
20 D[i + 2 − j, j] ← logD(D[i + 1 − j, j + 1], D[i + 1 − j, j])
21 end

22 end
23

24 // Accept or reject x based on the computed log derivatives;

25 // Here D[i, 0] = x
(i)
0 , D[i, 1] = x

(i)
1 , D[i, 2] = x

(i)
2 ;

26 u ← D[i, 0], v ← D[i, 1], w ← D[i, 2];
27 if u = v = w then

28 ACCEPT iff �D[i−1,0]

2abs(u) � is odd

29 end
30 if u < v ≥ w or u = v > w then ACCEPT;
31 if u > v ≤ w or u = v < w then REJECT;

32 end
33

34 ACCEPT iff isEvenStage ;

Algorithm 1. The Splitting Algorithm Sg
c based on log-derivative

sequence.

algorithm Sg
c uses an array D to compute and store the log derivatives of the

sequence X. More precisely, every time the execution of the algorithm Sg
c reaches

Line 26, D[p, q] will contain the value of x
(p)
q , the p-th order log derivative of X

at xq, for each p ∈ [0, i] and q ∈ [0, i + 2], where p + q ≤ i + 2. In particular,
D[i, 0], D[i, 1] and D[i, 2] will store the values of x

(i)
0 , x

(i)
1 and x

(i)
2 , in that order.
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We consider the following cases in that order so that the proof for Case e
assumes that none of the cases 1, 2, · · · , e−1 holds. We also assume that t−1(|x|)
is even.

Case 1: There exists j1 ∈ [1,m − 1], where t−1(|xj1 |) < t−1(|xj1+1|). Let j1 be
the smallest such number. Then Sg

c accepts xj1 = x
(0)
j1

at Line 4 if and only if
t−1(|xj1 |) is odd.

Subcase 1(a): t−1(|xj1−1|) ≥ t−1(|xj1 |). In this subcase Sg
c accepts xj1−1 =

x
(0)
j1−1 at Line 16 if and only if t−1(|xj1 |) is even. It follows that Sg

c accepts xj1−1

if and only if Sg
c rejects xj1 .

Subcase 1(b): t−1(|xj1−1|) < t−1(|xj1 |). In this subcase, Sg
c accepts xj1−1 =

x
(0)
j1−1 at Line 4 if and only if t−1(|xj1−1|) is odd. Note that for each j ∈ [1,m],

it holds that

|x(0)
j | = |xj | ≤ |xj−1|l + l = |x(0)

j−1|l + l

since xj = g(xj−1). This implies that t−1(|xj |) ≤ t−1(|xj−1|) + 1 for each j ∈
[1,m]. Hence, it follows from the hypothesis of this subcase that t−1(|xj1−1| =
t−1(|xj1 |) − 1. Then we derive again in this case that Sg

c accepts xj1−1 if and
only if Sg

c rejects xj1 .
Let j2 = j1 − 1. Then we have shown in both subcases (a) and (b) of Case 1

that Sg
c accepts xj2 if and only if Sg

c rejects xj1 , where {j1, j2} ⊆ [0,m].
If Case 1 does not hold, then

∀j ∈ [1,m − 1], t−1(|xj |) ≥ t−1(|xj+1|) (1)
∀j ∈ [0,m], t−1(|xj |) ≤ t−1(|x1|) ≤ t−1(|x|) + 1 (2)

We assume that statements (1) and (2) is true for all the subsequent cases.

Case 2.i: For each i ∈ [0, c], we consider Case 2.i in the increasing order of i,
which consists of the following subcases 2.i(a − d).

If i = 0, let Z0 be X(0)\{x} = X\{x}, which is a consecutive subsequence
of X(0) = X with start index s0 = 1 and ending index t0 = m, respectively.
Otherwise, Zi is a consecutive subsequence of X(i) constructed in Case 2.(i−1)(c)
or 2.(i − 1)(d) if applicable, with start index si and ending index ti. Note the
following statement:

Statement 3. If Cases 2.i needs to be considered, then Sc does not accept or
reject any string xj, where si ≤ j ≤ ti − 2, before the i-th iteration of the outer
loop.

Statement 3 is true for i = 0 in light of Case 1: We will consider Case 2.0
only if Sg

c does not accept any xj = x
(0)
j for 1 ≤ j ≤ m−2 at Line 4. We will see

that Statement 3 holds true through all cases 2.i until the smallest i where Sg
c

makes output during the i-th iteration of the outer loop on xj = x
(0)
j for some

j ∈ [si, ti − 2]. In addition, if the execution of Sg
c reaches Line 26 during the i-th
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iteration, then none of the elements u = x
(i)
0 , v = x

(i)
1 , and w = x

(i)
2 is ∞, for

otherwise two elements among {x
(i−1)
j | 0 ≤ j ≤ 3} must equal each other since

x
(i)
j = logD(x(i−1)

j+1 , x
(i−1)
j ) for every j ∈ [0,mi − i]. That will make Sg

c halt in
the (i − 1)-st iteration of the outer loop already, at lines 29–31.

Subcase 2.i(a): Zi contains 5 consecutive equal elements {x
(i)
j }a≤j≤a+4, where

a ∈ [si, ti − 4]. Then for a ≤ j ≤ a + 2, Sg
c accepts xj at Line 29 if and only if

	 x
(i−1)
j

2abs(d)+1 
 is odd.
Define

Ei =

{

	 x
(i−1)
j

2abs(d)+1


}

r≤j≤r+2

, where d = x(i)
r .

Note that x
(i)
j = logD(x(i−1)

j+1 , x
(i−1)
j ) for each j ∈ [a, a+2]. Then by Lemma 1,

Ei contains at least one even number and one odd number. Therefore, Sg
c accepts

at least one string xj1 and rejects at least one string xj2 , where j1, j2 ∈ [a, a+2].
Now we assume that there don’t exist 5 consecutive equal strings in Zi.

Subcase 2.i(b): The sequence Zi contains two elements x
(i)
j1

and x
(i)
j2

, where
{j1, j2} ⊆ [si, ti − 2] and

– x
(i)
j1

< x
(i)
j1+1 ≥ x

(i)
j1+2 or x

(i)
j1

= x
(i)
j1+1 < x

(i)
j1+2, and

– x
(i)
j2

> x
(i)
j2+1 ≤ x

(i)
j2+2 or x

(i)
j2

= x
(i)
j2+1 > x

(i)
j2+2.

In this subcase Algorithm Sg
c accepts xj1 at Line 30 and rejects xj2 at Line

31.

Subcase 2.i(c): There does not exist j1 ∈ [si, ti − 2] as required by Subcase
2.i(b), then both of the following hold for each string j ∈ [si, ti − 2]:

– If x
(i)
j < x

(i)
j+1, then x

(i)
j+2 < x

(i)
j+1.

– If x
(i)
j = x

(i)
j+1, then x

(i)
j+2 ≥ x

(i)
j+1.

This shows that Zi is of the following forms, where si ≤ s′
i ≤ t′i ≤ ti:

x(i)
si < x

(i)
si+1 < · · · < x

(i)
s′
i

= x
(i)
s′
i+1 · · · = x

(i)
t′
i

< x
(i)
t′
i+1 < · · · < x

(i)
ti (3)

Hence, both Yi1 = {x
(i)
si , x

(i)
si+1, · · · , x

(i)
s′
i
} and Yi2 = {x

(i)
t′
i
, x

(i)
t′
i+1, · · · < x

(i)
ti } are

strictly monotonic consecutive subsequences of Zi. We set Yi = Yi1 if |Yi1 | ≥ |Yi2 |
and Yi = Yi2 otherwise. Note that Yi is a consecutive subsequence of Y

(1)
i−1, the

log derivative sequence of Yi−1.
If i = 0, Subcase 2.i(a) does not apply since xj �= xj−1 for every j ∈ [1,m].

Consequently |Y0| ≥ m0 = m/2�. Otherwise, t′i − s′
i ≤ 4 due to Subcase 2.i(a)

and Eq. (3). Assume |Yi−1| ≥ mi−1. Then |Zi| = |Yi−1| − 1. Hence, |Yi| ≥ mi =
((mi−1 − 1) − 3)/2� = mi−1/2� − 2.
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Subcase 2.i(d): There does not exist j2 ∈ [0,mi − 2] as required by Subcase
2.i(b). This subcase is symmetric to Subcase 2.i(c). We again obtain a strictly
monotonic consecutive subsequence Yi of length at least mi within Zi. We let Yi

be that subsequence with starting index si and ending index ti. Again, Yi is a
subsequence of the log derivative sequence of Yi−1.

For both subcases 2.i(c) and 2.i(d) we define Zi+1 = Y
(1)
i and proceed to

Case 2.(i + 1). Clearly Zi+1 is a consecutive subsequence of X(i+1) since Yi is
a consecutive subsequence of X(i). Also, the start and ending indices of Zi+1

are si+1 = si and ti+1 = s′
i − 1, or si+1 = t′i and ti+1 = ti − 1, respectively,

depending on how Yi is formed in Case 2.i(c) or Case 2.i(d).

Summary of Case 2.i: In Case 2.i, we either find {j1, j2} ⊆ [0,m − 2], where
Sg
c accepts xj1 if and only if Sg

c rejects xj2 (subcases 2.i(a) and 2.i(b)) or we
obtain a strictly monotonic and consecutive subsequence Yi of both X(i) and
Yi−1, where |Yi| ≥ mi.

If none of the subcases 2.i(a) and 2.i(b) apply for all 0 ≤ i ≤ c, then we
arrive at a set of sequences Yi, where

– Y0 is a strictly monotonic and consecutive subsequence of X(0) with |Y0| ≥
m0 = m/2�, and

– for each i ∈ [1, c], Yi is a strictly monotonic and consecutive subsequence of
both X(i) and Y

(1)
i−1 with |Yi| ≥ mi = mi−1/2� − 2

Note that the length of each string in X(0) = X is at most nl+ l due to Eq. 2.
Hence, every element in Y1 has an absolute value no more than log(2·2(nl+l+1)) =
O(nl) for sufficiently large n. This in turn implies that every element in Y2 has
an absolute value no more than O(log n) using the same argument. Continuing
applying this argument on Y3, Y4,... through Yc, we obtain that every element
in Yc for c ≥ 2 should have an absolute value no more than O(log(c−1) n).

However, a simple induction proof shows that mc = Ω(log(c) n). The maximal
absolute value of elements in Yc is no less than mc/2 = Ω(log(c) n), since Yc

is a strictly monotonic sequence of integers of length at least mc. This is a
contradiction to the argument above that every element in Yc for c ≥ 2 should
have an absolute value no more than O(log(c−1) n). Hence, either subcase 2.i(a)
or 2.i(b) must hold for some i ∈ [0, c] if Case 1 does not hold. This will ensure
that Sg

c accepts xj1 = g(j1)(x) if and only if Sg
c rejects xj2 = g(j2)(x) for some

{j1, j2} ⊆ [0,m]. This proves (ii) and (iii) of Theorem2.
Regarding Condition (i) of the theorem, we observe that if Case 1 applies

then jx ≤ j1, where j1 is the smallest number j ∈ [1,m−1] such that t−1(|xj |) <
t−1(|xj+1|). This implies that t−1(|xj |) ≤ t−1(|x1|), for each j ∈ [1, j1]. Hence,
it follows that |xj | ≤ |x1|l + l for each j ∈ [1, jx]. Note that |x1| ≤ |x|l + l since
x1 = g(x0) = g(x). So for each j ∈ [0, jx], |g(j)(x)| ≤ |x|l + l.

Now assume that Case 1 does not apply. Then by Eq. (2), for each j ∈ [0,m],
it holds that t−1(|xj |) ≤ t−1(|x1|) ≤ t−1(|x|) + 1, or equivalently, |g(j)(x)| =
|xj | ≤ (|x|l + l)l + l ≤ 2|x|2l. Therefore, Condition (i) holds for r(n) = 2n2l.

This finishes the proof of Theorem 2. ��
With Theorem 2 we can now establish the rest of our main results.
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Theorem 4. For every k ∈ N
+ and positive integer c ≥ 2, if a non-trivial

language L is ≤p
k-dtt -autoreducible, then L is weakly ≤p

kO(2c log(c−1) n)-tt -mitotic.

Proof. We assume that k ≥ 2 since it is already known that a non-trivial lan-
guage is ≤p

1-tt autoreducible if and only if it is ≤p
1-tt mitotic [9].

Let L be a non-trivial and ≤p
k-dtt -autoreducible language. Then there exists

a polynomial-time computable function f , where f(w) = 〈u0, u1, . . . , uk−1〉 for
each x ∈ Σ∗ such that

– for each i ∈ [0, k − 1], x �= ui, and
– x ∈ L if and only if ∃i ∈ [0, k − 1], ui ∈ L.

When there is no confusion we also use f(x) to denote the set
{u0, u1, . . . , uk−1}. For a set of strings W , let lex − min (W ) denote the lex-
icographically least string in W .

Now define

g(w) =
{

lex-min (f(x)) if x �∈ L
lex-min (f(x) ∩ L) if x ∈ L

It’s clear that function g is polynomial bounded and for every x ∈ Σ∗, g(x) �=
x. Hence we can apply Theorem 2 on function g and any positive integer c ≥ 2
to obtain an algorithm Sg

c and a polynomial r that satisfies all the conditions as
stated in Theorem 2. Let S = L(Sg

c ). Then one can argue that S can be used to
show that

S ∩ L ≡p
kO(c)-tt L ≡p

kO(2c log(c−1) n)-tt S ∩ L.

��
Using a similar argument we prove the same result for k-ctt autoreducible

sets:

Theorem 5. For every k ∈ N
+ and integer c ≥ 2, if a non-trivial language L is

≤p
k-ctt -autoreducible, then L is weakly ≤p

kO(2c log(c−1) n)-tt -mitotic.

In light that the k-dtt complete sets of many common complexity classes
have been proven to be k-dtt autoreducible for k ≥ 2 [5,8] we have the following
corollary providing a better understanding of (weak) mitoticity of complete sets
in complexity theory.

Corollary 1. For every integer k ≥ 2 and c ≥ 2, every k-dtt complete set for
the following classes is weakly kO(2c log(c−1) n)-dtt mitotic:

– PSPACE,
– the levels ΣP

h , ΠP
h and ΠP

h of the polynomial-time hierarchy for h ≥ 2
– 1NP,
– the levels of the Boolean hierarchy over NP,
– the levels of the MODPH hierarchy, and
– NEXP.
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Proof. Glaßer et al. [8] showed that all k-dtt complete sets of the complexity
classes listed above except NEXP are k-dtt autoreducible. In addition, Glaßer
et al. [5] recently showed that any k-dtt complete set for NEXP is k-dtt autore-
ducible. The corollary follows immediately by applying Theorem4.

��
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Abstract. Path cover is a well-known intractable problem whose goal
is to find a minimum number of vertex disjoint paths in a given graph to
cover all the vertices. We show that a variant, where the objective func-
tion is not the number of paths but the number of length-0 paths (that is,
isolated vertices), turns out to be polynomial-time solvable. We further
show that another variant, where the objective function is the total num-
ber of length-0 and length-1 paths, is also polynomial-time solvable. Both
variants find applications in approximating the two-machine flow-shop
scheduling problem in which job processing constraints are formulated as
a conflict graph. For the unit jobs, we present a 4/3-approximation algo-
rithm for the scheduling problem with an arbitrary conflict graph, based
on the exact algorithm for the variants of the path cover problem. For
arbitrary jobs where the conflict graph is the union of two disjoint cliques
(i.e., all the jobs can be partitioned into two groups such that the jobs in
a group are pairwise conflicting), we present a simple 3/2-approximation
algorithm.

Keywords: Flow-shop scheduling · Conflict graph · b-matching
Path cover · Approximation algorithm

1 Introduction

Scheduling is a well established research area that finds numerous applications
in modern manufacturing industries and in operations research at large. All
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scheduling problems modeling real-life applications have at least two compo-
nents: the machines and the jobs. One intensively studied problem focuses on
scheduling constraints are imposed between a machine and a job, such as a time
interval during which the job is allowed to be processed nonpreemptively on the
machine, while the machines are considered as independent from each other, so
are the jobs. For example, the parallel machine scheduling (the multiprocessor
scheduling in [15]) is one of the first studied problems, denoted as Pm || Cmax in
the three-field notation [20], in which a set of jobs each needs to be processed by
one of the m given identical machines, with the goal to minimize the maximum
job completion time (called the makespan); the m-machine flow-shop scheduling
(the flow-shop scheduling in [15]) is another early-studied problem, denoted as
Fm || Cmax, in which a set of jobs each needs to be processed by all the m given
machines in the same sequential order, with the goal to minimize the makespan.

In another category of scheduling problems, additional but limited resources
are required for the machines to process the jobs [13]. The resources are renew-
able but normally non-sharable in practice; the jobs competing for the same
resource have to be processed at different time if their total demand for a cer-
tain resource exceeds the supply. Scheduling with resource constraints [13,14] or
scheduling with conflicts (SwC) [11] also finds numerous applications [3,9,22]
and has attracted as much attention as the non-constrained counterpart. In this
paper, we use SwC to refer to nonpreemptive scheduling problems with addi-
tional constraints or conflicting relationships among the jobs to disallow them to
be processed concurrently on different machines. We note that SwC is also pre-
sented as the scheduling with agreements (SwA), in which a subset of jobs can be
processed concurrently on different machines if and only if they agree with each
other [4,5]. While in the most general scenario a conflict could involve multiple
jobs, in this paper we consider only those conflicts each involves two jobs and
consequently all the conflicts under consideration can be presented as a conflict
graph G = (V,E), where V is the set of jobs and an edge e = (Jj1 , Jj2) ∈ E rep-
resents a conflicting pair such that the two jobs Jj1 and Jj2 cannot be processed
concurrently on different machines in any feasible schedule.

Extending the three-field notation [20], the parallel machine SwC with a
conflict graph G = (V,E) (also abbreviated as SCI in the literature) [11] is
denoted as Pm | G = (V,E), pj | Cmax, where the first field Pm tells that
there are m parallel identical machines, the second field describes the conflict
graph G = (V,E) over the set V of all the jobs, where the job Jj requires a
non-preemptive processing time of pj on any machine, and the last field specifies
the objective function to minimize the makespan Cmax. One clearly sees when
E = ∅, Pm | G = (V,E), pj | Cmax reduces to the classical multiprocessor
scheduling Pm || Cmax, which is already NP-hard for m ≥ 2 [15]. Indeed, with
m either a given constant or part of input, Pm | G = (V,E), pj | Cmax is
more difficult to approximate than the classical multiprocessor scheduling, as
P3 | G = (V,E), pj = 1 | Cmax and P2 | G = (V,E), pj ∈ {1, 2, 3, 4} | Cmax

are APX-hard [11,26]. There is a rich line of research to consider the unit jobs
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(that is, pj = 1) and/or to consider certain special classes of conflict graphs. The
interested reader might see [11] and the references therein.

In the general m-machine (also called m-stage) flow-shop [15] denoted as
Fm || Cmax, there are m ≥ 2 machines M1,M2, . . . ,Mm, a set V of jobs each
job Jj needs to be processed through M1,M2, . . . ,Mm sequentially with pro-
cessing times p1j , p2j , . . . , pmj respectively. When m = 2, the two-machine flow-
shop problem is polynomial time solvable, by Johnson’s algorithm [23]; the m-
machine flow-shop problem, when m ≥ 3, is strongly NP-hard [16]. After several
efforts [10,16,19,23], Hall presented a polynomial-time approximation scheme
(PTAS) for the m-machine flow-shop problem, for any fixed integer m ≥ 3 [21].
When m is part of input (i.e., an arbitrary integer), there is no known constant
ratio approximation algorithm, and the problem cannot be approximated within
1.25, unless P = NP [33].

The m-machine flow-shop SwC was first studied in 1980’s. Blazewicz et al. [8]
considered multiple resource characteristics including the number of resource
types, resource availabilities and resource requirements; they expanded the mid-
dle field of the three-field notation to express these resource characteristics, for
which the conflict relationships are modeled by complex structures such as hyper-
graphs. At the end, they proved complexity results for several variants in which
either the conflict relationships are simple enough or only the unit jobs are con-
sidered. Further studies on more variants can be found in [6,7,28–30]. In this
paper, we consider those conflicts each involves only two jobs such that all the
conflicts under consideration can be presented as a conflict graph G = (V,E).
The m-machine flow-shop scheduling with a conflict graph G = (V,E) is denoted
as Fm | G = (V,E), pij | Cmax. We remark that our notation is slightly different
from the one introduced by Blazewicz et al. [8], which uses a prefix “res” in the
middle field for describing the resource characteristics.

Several applications of the m-machine flow-shop scheduling with a conflict
graph have been mentioned in the literature. In a typical example of scheduling
medical tests in an outpatient health care facility where each patient (the job)
needs to do a sequence of m tests (the machines), a patient must be accompanied
by their doctor during a test, so two patients under the care of the same doctor
cannot go for tests simultaneously. That is, two patients of the same doctor are
conflicting to each other, and all the conflicts can be effectively described as a
graph G = (V,E), where V is the set of all the patients and an edge represents
a conflicting pair of patients.

In two recent papers [31,32], Tellache and Boudhar studied the prob-
lem F2 | G = (V,E), pij | Cmax, which they denote as FSC. In [32], the
authors summarized and proved several complexity results; to name a few,
F2 | G = (V,E), pij | Cmax is strongly NP-hard when G = (V,E) is the com-
plement of a complete split graph [8,32] (that is, G is the union of a clique
and an independent set), F2 | G = (V,E), pij | Cmax is weakly NP-hard when
G = (V,E) is the complement of a complete bipartite graph [32] (that is, G is
the union of two disjoint cliques), and for an arbitrary conflict graph G = (V,E),
F2 | G = (V,E), pij = 1 | Cmax is strongly NP-hard [32]. In [31], the authors
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proposed three mixed-integer linear programming models and a branch and
bound algorithm to solve the last variant F2 | G = (V,E), pij = 1 | Cmax

exactly; their empirical study shows that the branch and bound algorithm out-
performs and can solve instances of up to 20, 000 jobs.

In this paper, we pursue approximation algorithms with provable perfor-
mance for the NP-hard variants of the two-machine flow-shop scheduling with
a conflict graph. In Sect. 2, we present a 4/3-approximation algorithm for the
strongly NP-hard problem F2 | G = (V,E), pij = 1 | Cmax for the unit jobs with
an arbitrary conflict graph. In Sect. 3, we present a simple 3/2-approximation
algorithm for the weakly NP-hard problem F2 | G = K� ∪ Kn−�, pij | Cmax

for arbitrary jobs with a conflict graph that is the union of two disjoint cliques.
Some concluding remarks are provided in Sect. 4.

2 Approximating F2 | G = (V, E), pij = 1 | Cmax

Tellache and Boudhar proved that F2 | G = (V,E), pij = 1 | Cmax is
strongly NP-hard by a reduction from the well known Hamiltonian path prob-
lem, which is strongly NP-complete [15]. Furthermore, they remarked that
F2 | G = (V,E), pij = 1 | Cmax has a feasible schedule of makespan Cmax = n+k
if and only if the complement G of the conflict graph G, called the agreement
graph, has a path cover of size k (that is, a collection of k vertex-disjoint paths
that covers all the vertices of the graph G), where n is the number of jobs (or ver-
tices) in the instance. This way, F2 | G = (V,E), pij = 1 | Cmax is polynomially
equivalent to the Path Cover problem, which is NP-hard even on some special
classes of graphs including planar graphs [17], bipartite graphs [18], chordal
graphs [18], chordal bipartite graphs [24] and strongly chordal graphs [24].
In terms of approximability, to the best of our knowledge there is no o(n)-
approximation algorithm for the Path Cover problem.

We begin with some terminologies. The conflict graphs considered in this
paper are all simple graphs. All paths and cycles in a graph are also simple. The
number of edges on a path/cycle defines the length of the path/cycle. A length-k
path/cycle is also called a k-path/cycle for short. Note that a single vertex is
regarded as a 0-path, while a cycle has length at least 3. For an integer b ≥ 1, a
b-matching of a graph is a spanning subgraph in which every vertex has degree
no greater than b; a maximum b-matching is a b-matching that contains the
maximum number of edges. A maximum b-matching of a graph can be computed
in O(m2 log n log b)-time, where n and m are the number of vertices and the
number of edges in the graph, respectively [12]. Clearly, a graph could have
multiple distinct maximum b-matchings.

Given a graph, a path cover is a collection of vertex-disjoint paths in the
graph that covers all the vertices, and the size of the path cover is the number
of paths therein. The Path Cover problem is to find a path cover of a given
graph of the minimum size, and the well known Hamiltonian path problem is
to decide whether a given graph has a path cover of size 1. Many variants of
the Path Cover problem have been studied in the literature [1,2,25,27]. We
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mentioned earlier that Tellache and Boudhar proved that F2 | G = (V,E), pij =
1 | Cmax is polynomially equivalent to the Path Cover problem, but to the
best of our knowledge there is no approximation algorithm designed for F2 |
G = (V,E), pij = 1 | Cmax. Nevertheless, one easily sees that, since F2 | G =
(V,E), pij = 1 | Cmax has a feasible schedule of makespan Cmax = n + k if and
only if the complement G of the conflict graph G has a path cover of size k, a
trivial algorithm simply processing the jobs one by one (each on the first machine
M1 and then on the second machine M2) produces a schedule of makespan
Cmax = 2n, and thus is a 2-approximation algorithm.

In this section, we will design two approximation algorithms with improved
performance ratios for F2 | G = (V,E), pij = 1 | Cmax. These two approximation
algorithms are based on our polynomial time exact algorithms for two variants
of the Path Cover problem, respectively. We start with the first variant called
the Path Cover with the minimum number of 0-paths, in which we are given a
graph and we aim to find a path cover that contains the minimum number of
0-paths. In the second variant called the Path Cover with the minimum number
of {0, 1}-paths, we aim to find a path cover that contains the minimum total
number of 0-paths and 1-paths. We remark that in both variants, we do not care
about the size of the path cover.

2.1 Path Cover with the Minimum Number of 0-Paths

Recall that in this variant of the Path Cover problem, given a graph, we
aim to find a path cover that contains the minimum number of 0-paths. The
given graph is the complement G = (V,E) of the conflict graph G = (V,E) in
F2 | G = (V,E), pij = 1 | Cmax. We next present a polynomial time algorithm
that finds for G a path cover that contains the minimum number of 0-paths.

In the first step, we apply any polynomial time algorithm to find a maximum
2-matching in G, denoted as M ; recall that this can be done in O(m2 log n)-
time, where n = |V | and m = |E|. M is a collection of vertex-disjoint paths and
cycles; let P0 (P1, P2, P≥3, C, respectively) denote the sub-collection of 0-paths
(1-paths, 2-paths, paths of length at least 3, cycles, respectively) in M . That is,
M = P0 ∪ P1 ∪ P2 ∪ P≥3 ∪ C.

Clearly, if P0 = ∅, then we have a path cover containing no 0-paths after
removing one edge per cycle in C. In the following discussion we assume the
existence of a 0-path, which is often called a singleton. We also call an ending
vertex of a k-path with k ≥ 1 as an endpoint for simplicity. The following lemma
is trivial due to the edge maximality of M .

Lemma 1. All the singletons and endpoints in the maximum 2-matching M are
pairwise non-adjacent to each other in the underlying graph G.

Let v0 be a singleton. If v0 is adjacent to a vertex v1 on a cycle of C in the
underlying graph G, then we may delete a cycle-edge incident at v1 from M while
add the edge (v0, v1) to M to achieve another maximum 2-matching with one
less singleton. Similarly, if v0 is adjacent to a vertex v1 on a path of P≥3 (note
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that v1 has to be an internal vertex on the path by Lemma1) in the underlying
graph G, then we may delete a certain path-edge incident at v1 from M while
add the edge (v0, v1) to M to achieve another maximum 2-matching with one
less singleton. In either of the above two cases, assume the edge deleted from M
is (v1, v2); then we say the alternating path v0-v1-v2 saves the singleton v0.

In the general setting, in the underlying graph G, v0 is adjacent to the middle
vertex v1 of a 2-path P1, one endpoint v2 of P1 is adjacent to the middle vertex
v3 of another 2-path P2, one endpoint v4 of P2 is adjacent to the middle vertex
v5 of another 2-path P3, and so on, one endpoint v2i−2 of Pi−1 is adjacent to
the middle vertex v2i−1 of another 2-path Pi, one endpoint v2i of Pi is adjacent
to a vertex v2i+1 of a cycle of C or a path of P≥3 (see an illustration in Fig. 1),
on which the edge (v2i+1, v2i+2) is to be deleted. Then we may delete the edges
{(v2j+1, v2j+2) | j = 0, 1, . . . , i} from M while add the edges {(v2j , v2j+1) |
j = 0, 1, . . . , i} to M to achieve another maximum 2-matching with one less
singleton; and we say the alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 saves the
singleton v0.

Fig. 1. An alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 that saves the singleton v0,
where the last two vertices are on a path of P≥3 or a cycle. In the figure, solid edges
are in and dashed edges are outside of the maximum 2-matching M .

Fig. 2. A high-level description of Algorithm A for computing a path cover in the
agreement graph G = (V,E).

The second step of the algorithm is to iteratively find a simple alternating
path to save a singleton; it terminates when no alternating path is found. The
resulting maximum 2-matching is still denoted as M .
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In the last step, we break the cycles in M by deleting one edge per cycle
to produce a path cover. Denote our algorithm as Algorithm A, of which a
high-level description is provided in Fig. 2. We will prove in the next theorem
that the path cover produced by Algorithm A contains the minimum number
of 0-paths.

Theorem 1. Algorithm A is an O(m2 log n)-time algorithm for computing a
path cover with the minimum number of 0-paths in the agreement graph G.

2.2 Path Cover with the Minimum Number of {0, 1}-Paths

In this variant of the Path Cover problem, given a graph, we aim to find a path
cover that contains the minimum total number of 0-paths and 1-paths. Again,
the given graph is the complement G = (V,E) of the conflict graph G = (V,E)
in F2 | G = (V,E), pij = 1 | Cmax. We next present a polynomial time algorithm
called Algorithm B that finds for G such a path cover.

Recall that in Algorithm A for computing a path cover that contains the
minimum number of 0-paths, an alternating path saving a singleton v0 starts
from the singleton v0 and reaches a vertex v2i+1 on a path of P≥3 or on a cycle
of C (see Fig. 1). If v2i+1 is on a cycle, then the last vertex v2i+2 can be any one
of the two neighbors of v2i+1 on the cycle. If v2i+1 is on a k-path, then the last
vertex v2i+2 is a non-endpoint neighbor of v2i+1 on the path (the existence is
guaranteed by k ≥ 3); and the reason why v2i+2 cannot be an endpoint is obvious
since otherwise v2i+2 would be left as a new singleton after the edge swapping.
In the current variant we want to minimize the total number of 0-paths and 1-
paths; clearly v2i+2 cannot be an endpoint either and cannot even be the vertex
adjacent to an endpoint, for the latter case because the edge swapping saves v0
but leaves a new 1-path. To guarantee the existence of such vertex v2i+2, the
k-path must have k ≥ 4, and if k = 4 then v2i+1 cannot be the middle vertex of
the 4-path.

Algorithm B is in spirit similar to but in practice slightly more complex
than Algorithm A, mostly because the definition of an alternating path saving
a singleton or a 1-path is different, and slightly more complex.

In the first step of Algorithm B, we apply any polynomial time algorithm
to find a maximum 2-matching M in G. Let P0 (P1, P2, P3, P4, P≥5, C, respec-
tively) denote the sub-collection of 0-paths (1-paths, 2-paths, 3-paths, 4-paths,
paths of length at least 5, cycles, respectively) in M . We also let P0,1 = P0 ∪ P1

denote the collection of all 0-paths (called singletons) and 1-paths in M .
Let e0 = (v0, u0) be an edge in M . In the sequel when we say e0 is adjacent

to a vertex v1 in the graph G, we mean v1 is a different vertex (from v0 and u0)
and at least one of v0 and u0 is adjacent to v1; if both v0 and u0 are adjacent
to v1, then pick one (often arbitrarily) for the subsequent purposes. This way,
we unify our treatment on singletons and 1-paths, for the reasons to be seen in
the following. For ease of presentation, we use an object to refer to a vertex or
an edge. Like in the last subsection, an ending vertex of a k-path with k ≥ 1 or
an ending edge of a k-path with k ≥ 2 is called an end-object for simplicity.
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Let v0 be a singleton or e0 = (v0, u0) be a 1-path in M . In the underlying
graph G, if v0 is adjacent to a vertex v1 on a cycle of C, or on a path of P≥5, or
on a 4-path such that v1 is not the middle vertex, then we may delete a certain
edge incident at v1 from M while add the edge (v0, v1) to M to achieve another
maximum 2-matching with one less singleton if v0 is a singleton or with one less
1-path. In either of the three cases, assume the edge deleted from M is (v1, v2);
then we say the alternating path v0-v1-v2 saves the singleton v0 or the 1-path
e0 = (v0, u0).

Analogously as in the last subsection, in the general setting, in the underlying
graph G, v0 is adjacent to a vertex v1 of a path P1 ∈ P2,3,4 (if P1 is a 4-path then
v1 has to be the middle vertex). Note that this vertex v1 basically separates the
two end-objects of the path P1 — an analogue to the role of the middle vertex of
a 2-path that separates the two endpoints of the 2-path. We say “an end-object
of P1 is adjacent to v1 via v2”, to mean that if the end-object is a vertex then
it is v2, or if the end-object is an edge, then it is (v2, u2), with the edge (v1, v2)
on the path P1 either way (see an illustration in Fig. 3).

Fig. 3. An alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 that saves the singleton v0 or
the 1-path e0 = (v0, u0), where the last two vertices are on a cycle of C, or on a path of
P≥5, or on a 4-path such that v2i+1 is not the middle vertex. In the figure, solid edges
are in the maximum 2-matching M , dashed edges are outside of M , and a dotted circle
contains an object which is either a vertex or an edge.

Suppose one end-object of P1, which is adjacent to v1 via v2, is adjacent to a
vertex v3 of another P2 ∈ P2,3,4 (the same, if P2 is a 4-path then v3 has to be the
middle vertex); one end-object of P2, which is adjacent to v3 via v4, is adjacent
to a vertex v5 of another P3 ∈ P2,3,4 (the same, if P3 is a 4-path then v5 has to
be the middle vertex); and so on; one end-object of Pi−1, which is adjacent to
v2i−3 via v2i−2, is adjacent to a vertex v2i−1 of another Pi ∈ P2,3,4 (the same,
if Pi is a 4-path then v2i−1 has to be the middle vertex); one end-object of Pi,
which is adjacent to v2i−1 via v2i, is adjacent to a vertex v2i+1 of a cycle of C,
or of a path of P≥5, or of a 4-path such that v2i+1 is not the middle vertex (see
an illustration in Fig. 3), on which a certain edge (v2i+1, v2i+2) is to be deleted.
Then we may delete the edges {(v2j+1, v2j+2) | j = 0, 1, . . . , i} from M while
add the edges {(v2j , v2j+1) | j = 0, 1, . . . , i} to M to achieve another maximum
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2-matching with one less singleton if v0 is a singleton or with one less 1-path. We
say the alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 saves the singleton v0 or the
1-path e0 = (v0, u0). It is important to note that in this alternating path, the
vertex v2 “represents” the end-object of P1, meaning that when the end-object
is an edge, it is treated very the same as the vertex v2.

The second step of the algorithm is to iteratively find a simple alternating
path to save an object of P0,1; it terminates when no alternating path is found.
The resulting maximum 2-matching is still denoted as M .

In the last step, we break the cycles in M by deleting one edge per cycle to
produce a path cover. A high-level description of Algorithm B is similar to
the one for Algorithm A shown in Fig. 2, replacing a singleton by an object of
P0,1. We will prove in Theorem2 that the path cover produced by Algorithm
B contains the minimum total number of 0-paths and 1-paths.

Theorem 2. Algorithm B is an O(m2 log n)-time algorithm for computing a
path cover with the minimum total number of 0-paths and 1-paths in the agree-
ment graph G = (V,E).

Remark 1. The path cover produced by Algorithm B has the minimum total
number of 0-paths and 1-paths in the agreement graph G = (V,E). One may
run Algorithm A at the end of the second step of Algorithm B to achieve
a path cover with the minimum total number of 0-paths and 1-paths, and with
the minimum number of 0-paths. During the execution of Algorithm A, a
singleton trades for a 1-path.

2.3 Approximation Algorithms for F2 | G = (V, E), pij = 1 | Cmax

Given an instance of the problem F2 | G = (V,E), pij = 1 | Cmax, where there
are n unit jobs V = {J1, J2, . . . , Jn} to be processed on the two-machine flow-
shop, with their conflict graph G = (V,E), we want to find a schedule with a
provable makespan.

For a k-path in the agreement graph G = (V,E), where k ≥ 0, for example
P = J1-J2-. . .-Jk-Jk+1, we compose a sub-schedule πP in which the machine
M1 continuously processes the jobs J1, J2, . . . , Jk+1 in order, and the machine
M2 in one unit of time after M1 continuously processes these jobs in the same
order. The sub-makespan for the flow-shop to complete these k + 1 jobs is thus
k + 2 (units of time). Let M = {P1, P2, . . . , P�} be a path cover of size � in
the agreement graph G. For each path Pi we use |Pi| to denote its length and
construct the sub-schedule πPi

as above that has a sub-makespan of |Pi| + 2.
We then concatenating these � sub-schedules (in an arbitrary order) into a full
schedule π, which clearly has a makespan Cπ

max =
∑�

i=1(|Pi| + 2) = n + �.
On the other hand, given a schedule π, if two jobs Jj1 and Jj2 are processed

concurrently on the two machines, then they have to be agreeing to each other
and thus adjacent in the agreement graph G; we select this edge (Jj1 , Jj2). Note
that one job can be processed concurrently with at most two other jobs as there
are only two machines. Therefore, all the selected edges form into a number of
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vertex-disjoint paths in G (due to the flow-shop, no cycle is formed); these paths
together with the vertices outside of the paths, which are the 0-paths, form a
path cover for G. Assuming without loss of generality that two machines cannot
both idle at any time point, the makespan of the schedule is exactly. the sum of
the number of jobs and the number of paths.

We state this relationship between a feasible schedule and a path cover in
the agreement graph G into the following lemma.

Lemma 2 [32]. A feasible schedule π for the problem F2 | G = (V,E), pij =
1 | Cmax one-to-one corresponds to a path cover M in the agreement graph G,
and Cπ

max = n + |M |, where n is the number of jobs in the instance.

Theorem 3. The problem F2 | G = (V,E), pij = 1 | Cmax admits an
O(m2 log n)-time 4/3-approximation algorithm, where n = |V | and m = |E|.
Remark 2. If Algorithm A is used in the proof of Theorem3 to compute a
path cover with the minimum number of 0-paths and subsequently to construct
a schedule π, then we have Cπ

max ≤ 3
2C∗

max. That is, we have an O(m2 log n)-time
3/2-approximation algorithm based on Algorithm A.

When the agreement graph G consists of k vertex-disjoint triangles such that
a vertex of the i-th triangle is adjacent to a vertex of the (i + 1)-st triangle, for
i = 1, 2, . . . , k−1, and the maximum degree is 3, Algorithm B could produce a
path cover containing k 2-paths, while there is a Hamiltonian path in the graph.
This suggests that the approximation ratio 4/3 is asymptotically tight.

3 Approximating F2 | G = K� ∪ Kn−�, pij | Cmax

In this section, we present a 3/2-approximation algorithm for the weakly NP-
hard problem F2 | G = K� ∪ Kn−�, pij | Cmax for arbitrary jobs with a con-
flict graph that is the union of two disjoint cliques. Note that the agreement
graph G = K�,n−� is a complete bipartite graph. Without loss of general-
ity, let the job set of K� be A = {J1, J2, . . . , J�} and the job set of Kn−� be
B = {J�+1, J�+2, . . . , Jn}.

For the job set A, we merge all its jobs (in the sequential order with increasing
indices) to become a single “aggregated” job denoted as JA, with its processing
time on the machine M1 being P 1

A =
∑�

j=1 p1j and its processing time on the

machine M2 being P 2
A =

∑�
j=1 p2j . Likewise, for the job set B, we merge all its

jobs (in the sequential order with increasing indices) to become a single aggre-
gated job denoted as JB , with its two processing times being P 1

B =
∑n

j=�+1 p1j

and P 2
B =

∑n
j=�+1 p2j . We now have an instance of the classical two-machine

flow-shop scheduling problem consisting of only two aggregated jobs JA and
JB , and we may apply Johnson’s algorithm [23] to obtain a schedule denoted
as π. From π we obtain a schedule for the original instance of the problem
F2 | G = K� ∪ Kn−�, pij | Cmax, which is also denoted as π as there is no major
difference. We call this algorithm as Algorithm C.
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Theorem 4. Algorithm C is an O(m)-time 3/2-approximation algorithm for
the problem F2 | G = K� ∪ Kn−�, pij | Cmax, where m is the number of edges in
the conflict graph G.

In the schedule produced by Algorithm C, one sees that when the jobs of
A are processed on the machine M1, the other machine M2 is left idle. This is
certainly disadvantageous. For instance, when the jobs are all unit jobs and |A| =
|B| = 1

2n, the makespan of the produced schedule is 3
2n, while the agreement

graph is Hamiltonian and thus the optimal makespan is only n + 1. This huge
gap suggests that one could probably design a better approximation algorithm
and we leave it as an open question.

4 Concluding Remarks

In this paper, we investigated approximation algorithms for the two-machine
flow-shop scheduling problem with a conflict graph. In particular, we considered
two special cases of all unit jobs and of a conflict graph that is the union of
two disjoint cliques, that is, F2 | G = (V,E), pij = 1 | Cmax and F2 | G =
K� ∪ Kn−�, pij | Cmax. For the first problem we studied the graph theoretical
problem of finding a path cover with the minimum total number of 0-paths and
1-paths, and presented a polynomial time exact algorithm. This exact algorithm
leads to a 4/3-approximation algorithm for the problem F2 | G = (V,E), pij =
1 | Cmax. We also showed that the performance ratio 4/3 is asymptotically tight.
For the second problem F2 | G = K� ∪ Kn−�, pij | Cmax, we presented a 3/2-
approximation algorithm.

Designing approximation algorithms for F2 | G = (V,E), pij = 1 | Cmax

with a performance ratio better than 4/3 is challenging, since one way or the
other, one has to deal with longer paths in a path cover or has to deal with the
original Path Cover problem. Nevertheless, better approximation algorithms
for F2 | G = K� ∪ Kn−�, pij | Cmax can be expected.
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Abstract. Prior work on contact representations of planar graphs deals
with undirected graphs only. We introduce a notion of point-side contact
representations for directed planar graphs. We show every outerplanar
digraph of out-degree at most three to enjoy a point-side triangle con-
tact representation. The result is generalized to outerplanar digraphs of
out-degree at most n, which are shown to have convex n-gon (i.e., n-
sided polygon) point-side contact representations. Our result is tight is
the sense that there exists a 2-outerplanar digraph that does not have
a point-side triangle contact representation. For maximal outerplanar
digraphs of out-degree at most three, an efficient constructive procedure
is designed to yield their point-side triangle contact representations. For
general planar digraphs of degree d, they are shown to admit 2d-gon
point-side contact representations.

1 Introduction

With potential applications to floorplanning, cartography, and more, the study
of contact representations of graphs from an algorithmic viewpoint has received
increasing attention in computational geometry. A contact graph representation
refers to a drawing style in which vertices are represented by interior-disjoint
geometric objects with edges corresponding to contacts between those objects. A
classical example of a contact graph representation is illustrated in Koebe’s circle
packing theorem [9], saying that every planar graph can be drawn as touching
circles. By altering the contact style (point vs. side contact, for instance) and the
object shape (circle, triangle, . . . , etc), a wide variety of contact representations
have been proposed and studied over the years.

As triangles represent the simplest form of convex polygons, much work along
the line of contact representations of graphs has focused on representing vertices
by triangles, and edges by point- or side-contacts of triangles. For instance, [6,8]
studied a drawing style called a proper touching triangle graph (proper-TTG)
representation, which is a side-contact representation that forms a triangular
tiling of a triangle. Touching triangle representations without boundary con-
straints can be found in [7]. For contact representations of graphs using poly-
gons, the reader is referred to, e.g., [1,3,5]. In particular, it was shown in [1]
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Fig. 1. (Left) A directed planar graph G; (Right) A point-side triangle contact repre-
sentation of G.

that any planar graph can be represented by touching hexagons, and there are
planar graphs that cannot be represented by pentagons.

To our knowledge, all the previous work in the literature on contact repre-
sentations of graphs deals with undirected graphs. In this paper, we propose for
the first time contact representations for directed graphs (i.e., digraphs) based
on the notion of point-side contacts. In our setting, a planar digraph G = (V,E)
is displayed in a way that each vertex v ∈ V is drawn as a polygon, and each
directed edge e = (v, u) ∈ E corresponds to a contact of a side of the polygon
associated with u and a point of the polygon associated with v. Figure 1 displays
an example of a point-side contact representation of a planar digraph. It is worth
noting that the conventional notion of a point-contact in, e.g., [2], is in fact a
contact between a point and an edge; however, such a point-side contact applies
to an edge with no direction (i.e., an edge in an undirected graph).

We first show that every outerplanar digraph of out-degree at most 3 admits
a point-side triangle contact representation. Our result is tight in the sense that
there exists a 2-outerplanar digraph of out-degree at most 3 that does not have
a point-side triangle contact representation. For maximal outerplanar digraphs
of out-degree at most 3, we are able to come up with a procedure to construct
point-side triangle contact representations in linear time. As a natural extension
from triangles to general polygons, we also study the use of n-gons (i.e., n-sided
polygons) to represent vertices. Using a strategy that parallels the triangular
case, we show every outerplanar digraph of out-degree at most n to admit a point-
side convex n-gon contact representation. Finally, for general planar digraphs of
degree (in-degree + out-degree) d, they are shown to admit 2d-gon point-side
contact representations.

2 Preliminaries

A graph is planar iff it can be drawn in the Euclidean plane without crossings. A
plane graph is a planar graph with a fixed combinatorial embedding and a desig-
nated outer face. An outerplanar graph is a graph for which there exists a planar
embedding with all vertices of the graph belonging to the outer face. We call
such an embedding of an outerplanar graph an outerplanar embedding. We define
a k-outerplanar embedding recursively as follows. If k equals 1, a 1-outerplanar
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embedding of a graph is just the outerplanar embedding. A k-outerplanar embed-
ding, k > 1, is that the removal of the vertices on the outer face results in a (k−1)-
outerplanar embedding. A graph exhibiting a k-outerplaner embedding is said to
be k-outerplanar. Directed outerplanar graphs (DOPGs, for short) are directed
versions of outerplanar graphs. Directed k-outerplanar graphs (k-DOPGs, for
short) can be defined similarly. We write DOPGd (d ≥ 1) to denote the class of
DOPGs, for which each vertex v of the graph has out-degree deg+(v) ≤ d.

A point-side triangle contact representation (psTCR, for short) of a planer
digraph G = (V,E) is a drawing meeting the following conditions:

1. each vertex v ∈ V is drawn as a triangle, and
2. each directed edge e = (v, u) ∈ E corresponds to a contact of a side of the

triangle associated with u and a point of the triangle associated with v.

Throughout this paper, we assume that for G = (V,E), if (v, u) ∈ E, then
(u, v) �∈ E; otherwise, it is obvious that G has no psTCR. See Fig. 1 for an
example of a psTCR corresponding to a planar digraph.

Fig. 2. A contact system of pseudo-segments with extremal points marked in red.
(Color figure online)

One of our main results shows that every graph in DOPG3 admits a psTCR.
To show this result, we require the notion and results of the so-called contact
systems of pseudo-segments [4]. A contact system of pseudo-segments (or a con-
tact system, for short) is a set of non-crossing Jordan arcs where any two of them
intersect in at most one point, and each intersecting point is internal to at most
one arc. If a contact system is stretchable, then there exists a homeomorphism
transforming the contact system into a drawing where each arc is a straight
line. Stretchable contact systems were characterized in [4] based on the notion
of extremal points. A point p is an extremal point of a contact system S if the
following three conditions are satisfied:

1. p is an endpoint of a pseudo-segment in S,
2. p is not interior to any pseudo-segment in S, and
3. p is incident to the unbounded region of S.

Figure 2 displays an example of a contact system. The following result charac-
terizes necessary and sufficient conditions for a contact system to be stretchable,
based on extremal points. Throughout the rest of this paper, we let ext(S) denote
the number of extremal points of a contact system S.
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Theorem 1 (Theorem 38 in [4]). A contact system S of pseudo-segments is
stretchable iff each of its subsystems S′ of cardinality greater than 1 has at least
3 extremal points (i.e., ext(S′) ≥ 3).

3 Point-Side Contact Representations of Outerplanar
Digraphs

To prove our main result, we associate outerplanar embeddings of graphs in
DOPG3 with a special class of contact systems of pseudo-segments called trinity
contact systems of pseudo-segments (TCSs, for short), showing that a psTCR of
an outerplanar graph in DOPG3 is exactly a TCS that is stretched. Thus, if all
graphs in DOPG3 have stretchable TCSs, then DOPG3 enjoys having psTCRs.
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Fig. 3. (a) A minimal TCS; (b) A TCS that is not minimal.

TCSs are defined based on the so-called unit of pseudo-segments (or simply
unit, for short). For convenience of representation, we write s = {a, a′} to denote
that pseudo-segment s has end points a and a′. A set of pseudo-segments U is
a unit if U contains exactly three pseudo-segments s1 = {a1, a2}, s2 = {a2, a3},
and s3 = {a3, a1}, for some a1, a2, and a3. The set of the three end points
associated with a unit U is denoted by PU .

A TCS S is a set of pseudo-segments which can be partitioned into units
such that for each pair of units U1, U2 in S,

1. U1 ∩ U2 = ∅ and PU1 ∩ PU2 = ∅.
2. U1 and U2 intersect in at most one point in S, and each intersecting point is

internal to at most one segment.

A end point x in a unit U is a free point if x is not a touching point between U
and a segment of another unit. For example, c2 in Fig. 3(a) is a free point.

Our strategy of showing that every graph G in DOPG3 has a psTCR relies
on relating G to a TCS S, and then showing S to be stretchable. To this end,
we take advantage of the following well-known result in graph theory:
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Theorem 2 (Koebe’s circle packing theorem [9]). Every connected simple
planar graph G has a circle packing in the plane whose intersection graph is
isomorphic to G.

A TCS S is said to correspond to a planar digraph G = (V,E) in DOPG3 if
there is a 1-to-1 correspondence between S and G such that:

1. each vertex v ∈ V maps to a unit Uv in S, and
2. if there exists a directed edge e = (v, u) ∈ E, then one of the end point

p ∈ PUv
must touch one of the segments s ∈ Uu.

Note that a graph in DOPG3 might correspond to several TCSs, as shown in
Fig. 3. As Theorem 1 suggests, the number of extremal points in a contact system
plays a key role as to whether the system is stretchable or not. In other words, if
a graph has several corresponding TCSs, it is beneficial, as far as stretchability
is concerned, to consider the one with the possibly maximal number of extremal
points, i.e., keeping the internal points as few as possible. A point in a contact
system is said to be internal if it is not along the outer boundary of the drawing.
A TCS is said to be minimal (called an mTCS) if none of its points can be
relocated to form another TCS corresponding to the same graph but with fewer
internal points. Figure 3(b) is not minimal as b1 and c2 can be moved to the
outer boundary as displayed in Fig. 3(a) which is minimal.

Lemma 1. Every graph G in DOPG3 has an mTCS.

Proof. (Sketch) First apply Theorem 2 to yield a circle packing of G. Then
divide the circumference of each circle into three segments in the following way.
If (v, u) ∈ E, the touching point between the circles associated with v and u
becomes an end point of the unit associated with v. Finally, for a circle with
fewer than 3 end points, add the remaining end points, if necessary, to the outer
boundary of that circle. �	

Lemma 1 shows a transformation from a graph G in DOPG3 to an mTCS S.
To show G to have a psTCR, it remains to show S to be stretchable. Lemma 2,
which leads to the main result, is the key statement in this section. The lemma
is proved by induction, based on the fact that every outerplanar graph has
degeneracy at most two.

A k-degenerate graph is an undirected graph in which every subgraph has
a vertex of degree at most k, i.e., some vertex in the subgraph has k or fewer
incident edges in the subgraph. The degeneracy of a graph is the smallest value of
k for which it is k-degenerate. Take the class of outerplanar graphs for example.
It is known that outerplanar graphs are of degeneracy 2. As a result, given an
outerplanar graph G = (V,E), there exists an ordering v1, v2, ..., vn of V such
that deleting vertices of V in the above order requires the removal of no more
than two edges in each step.
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Lemma 2. Let G be a graph in DOPG3. Every mTCS S of G is stretchable.

Proof. Based on Theorem 1, the lemma is proved by induction on the number
of vertices of G.

First, the base case (i.e., a graph with one vertex and zero edge) is trivial. Now
assume that all the mTPSs corresponding to an arbitrary outerplanar digraph
with n or fewer vertices are stretchable. Now consider a graph G = (V,E) in
DOPG3 with |V | = n+1. Let v be a vertex of G with one or two incident edges,
guaranteed by the fact that G has degeneracy at most two. The case when v has
one incident edge is simpler, and is omitted here. Let G′ be the graph resulting
from removing v and its incident edges from G. Clearly G′ is in DOPG3.

Let S be a mTCS of G. Based on our earlier discussion, v corresponds to a
unit of segments U in S. Let S′ be the TCS obtained from S by removing U
Clearly, S′ is an mTCS of G′. Also note that among the three segments in U ,
only one segment (say r) touches S′ at two points, say a and b. Let the other
two segments of U be r′ and r′′.

a b a b

a b

(1) (2)

(3)

r r

r
a b

(4)

r’ r’’

Fig. 4. Some cases of segments of U touching S1. (Color figure online)

For any subsystem S1 of S, let S1 − U = S′
1. Figures 4(1)–(4) display some

cases in which r (r′ and r′′) of U touches S′
1. The red (resp., blue) dots are

points belonging to U (resp., S′
1) and the arrows indicate the directions of the

directed edges in the original graph. We show in the following that ext(S1) ≥ 3.
Consider the following three cases:

– (Case 1): none of the extremal points of S′
1 vanishes. In this case, ext(S1) ≥

ext(S′
1) ≥ 3.

– (Case 2): the number of regions of S1 is the same as that of S′
1. In this case, if

a segment r̄ ∈ (S1 ∩ U) cancels an extremal point of S′
1, then a new extremal

point must be introduced in S1. See Figs. 4(1) and (2). In Fig. 4(1), the two
blue points are extremal points of S′

1 canceled in S1 (because of r). However,
S1 has two additional extremal points (i.e., the two red points). The case in
Fig. 4(2) is similar, in which one extremal point of S′

1 is canceled but a new
one is introduced in S1. Note that in Figs. 4(3) and (4), none of the extremal
points disappears. Hence, ext(S1) ≥ ext(S′

1) ≥ 3 holds.
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– (Case 3): some extremal points of S′
1 disappear because of becoming internal

in S1. We call such points as changing points. In this case, the introduction
of one or more segments of U forms a new internal face (called R) enclosing
those changing points. First note that none of the changing points could lie
on a segment of U , otherwise, the degree of v is at least 3 – a contradiction.
See Fig. 6(2). Now we add to S′

1 all the segments of S′ in region R, and
call the resulting system S′′

1 . See Figs. 5(1) and (2). It is easy to see that
those changing points cannot be free points in S′′

1 ; otherwise, they are also
free (internal) points in S′ contradicting the fact that the underlying TCS
is minimal (see point x in Fig. 6(1)). As S′′

1 contains at least three extremal
points and none of which comes from points in region R, S′

1 must have at
least three extremal points excluding those changing points.
Now the only way that one of more of the above three extremal points could
disappear due to the insertion of U ∩ S1 is shown in Figs. 4(1) and (2). In
both cases, additional extremal points belonging to U ∩ S1 will be provided
so that ext(S1) ≥ 3 remains true.

In view of the above, S is stretchable. �	

r

(2)(1)

R

Fig. 5. (1) A subsystem S1 of S. S′
1 is obtained by removing the two red segments

(which belong to U); (2) Subsystem S′′
1 resulting from filling out missing segments in

R. (Color figure online)

(1) (2)

x
x

Fig. 6. (1) A TCS that is not minimal; (2) the corresponding graph is not in DOPG3.



On Contact Representations of Directed Planar Graphs 225

Lemmas 1 and 2, in conjunction with the fact that stretching the three seg-
ments in a unit of an mTPS forms a triangle, give rise to the following result.

Theorem 3. Every outerplanar digraph in DOPG3 admits a point-side triangle
contact representation.

x y

z

Fig. 7. Graph G, a maximal planar as well as a 2-outerplanar digraph, has no psTCR.

As our next result shows, the stretchability property may not hold as we go
beyond the class DOPG3.

Lemma 3. There exists a 2-outerplanar digraph (which is also maximal) of
maximal out-degree at most 3 that does not admit a psTCR.

It is not known whether those triangles used in the psTCR of Theorem 3
are homothetic or not. For trees of out-degree at most 3 (which are trivially
outerplanar), we have the following result:

Theorem 4. Every directed tree with out-degree at most 3 admits an equilateral
triangle contact representation such that the ratio between the lengths of edges
of a child triangle and its parent triangle is bounded by min{1

8 , 1
2d}, where d is

the in-degree of the parent node w.r.t. its children.

4 A Linear-Time Procedure for Constructing psTCRs
of Maximal Outerplanar Diagraphs

In Sect. 3, every outerplanar graph in DOPG3 was shown to admit a psTCR. The
proof, based on relating the problem to stretchable contact systems of pseudo-
segments, is in a sense not a typical constructive approach. In this section, we
show that if the underlying outerplanar graph is also maximal, i.e., no more
edges can be added to the graph while preserving outerplanarity, then a con-
structive procedure for yielding the psTCR is available, and the procedure runs
in linear time. We write mDOPG3 to denote the class of outerplanar graphs in
DOPG3 which are also maximal. Notice that every maximal outerplanar graph
is biconnected.
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As each of the simple cycles in a maximal outerplanar graph G = (V,E)
is a triangle, our procedure takes advantage of the existence of an ordering
π = v1, v2, ..., vn of V such that (v1, v2) ∈ E and for all 3 ≤ i ≤ n, with respect
to the subgraph induced by v1, v2, ..., vi−1, vi is connected to exactly two vertices
vj , vk, 1 ≤ j < k ≤ i − 1 and (vj , vk) ∈ E.

A vertex p of a triangle in a psTCR of an outerplanar graph is said to be
external if p is located on the outer boundary of the psTCR, and p is not a
contact point with other triangle; otherwise, p is called internal. For instance,
in the left figure of Fig. 8, p1, ..., p7 are external, while the rest are internal. Let
p1, p2, ..., pk be a clock-wise ordering of external points of a psTCR R. R is said
to form a convex group if the k-sided polygon with endpoints p1, p2, ..., pk is
convex and no three points are co-linear. In our subsequent discussion, we let
I(px, py) denote the internal region enclosed by pxpy and the edges of psTCR,
where px and py are external points. The left figure of Fig. 8 is a convex group
in which I(p1, p2) is the internal region enclosed in the region specified by p1,
p2 and p′. Notice that I(p1, p2) might be empty if pxpy is an edge of a triangle.
The right figure of Fig. 8, on the other hand, is not a convex group.

Fig. 8. (Left): A convex group; (Right): A non-convex group

Theorem 5. Given a plane graph G = (V,E) in mDOPG3, there is an algo-
rithm which can construct a psTCR of G in linear time.

Proof. Given any planar embedding of G = (V,E) in mDOPG3, let π = v1, v2,
..., vn be an ordering of V mentioned in the beginning of this section. We con-
struct a psTCR T of G in a greedy fashion in the order specified by π. Let ti
denote the triangle corresponding to vi in T , Gi denote the subgraph induced by
v1, v2, ..., vi, and Ti denote the psTCR with respect to subgraph Gi. As we shall
see later, in each step i of the algorithm, psTCR Ti is always a convex group.

(Initial step). We start with a psTCR corresponding to a subgraph induced by
v1 and v2. If (v1, v2) ∈ E, then a corner of t1 touches an edge of t2; otherwise,
a corner of t2 touches an edge of t1. The convexity of T2 is easy to enforce.

(Iteration steps). From i = 3 to |V |, we add a triangle ti to Ti−1 and keep the
psTCR Ti a convex group. Since vi is connected to exactly two neighboring
vertices among v1, ..., vi−1, there are three cases to be considered.
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(a) (vi has two out-going edges) See Fig. 9.
A Ti can be formed by placing the external point p′

j of ti in region O (exclud-
ing the boundary, see Fig. 9), and the two internal points in I(pj , pj+1) touch-
ing the edges of the two triangles corresponding to vi’s two neighbors. Recall
that in a convex group, no three points are co-linear, and hence, region O is
not empty.

Fig. 9. Region O is enclosed by edge b, and the extensions of edges a and c.

(b) (vi has two incoming edges) See Fig. 10.
A Ti can be formed by placing two external points p′

j and p′
j+2 of ti in a way

shown in the figure (i.e., edge p′
jp

′
j+2 extends pjpj+1). The third external

point p′
j+1 is placed in region O to form a triangle {p′

j , p
′
j+1, p

′
j+2}. It is

not hard to see that the new region {p1, ..., pj−1, p
′
j , p

′
j+1, p

′
j+2, ..., pk} is a

convex polygon, for some k.
(c) (vi has one incoming edge and one outgoing edge) See Fig. 11.

A Ti can be formed by placing an edge p′
jq in a way shown in the figure,

with the external point p′
j lying outside the boundary, and an internal point

q in I(pj , pj+1) such that p′
jq goes through point pj (serving as a touch-

ing point of an incoming edge) and touches an edge of a triangle captur-
ing an outgoing edge connecting to a triangle t′ at point q. Notice that
the figure only shows a case of t′; the rest are similar. Then we place the
last point p′

j+1 in region O to form a triangle {p′
j , q, p

′
j+1}. The new region

{p1, ..., pj−1, p
′
j , p

′
j+1, pj+1, ..., pk} is a convex polygon, for some k.

Fig. 10. (Left): The original convex group of Ti−1, where red edges denote the bound-
ary; (Right): After the new triangle’s edge p′

jp
′
j+2 is added to Ti−1, the originally

external points pj and pj+1 become internal. (Color figure online)

Finally, it is easy to see that the procedure runs in time linear in the size of
the given graph. �	
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Fig. 11. (Left): The original convex group of Ti−1, where red edges denote the bound-
ary; (Right): After the new triangle’s edge p′

jq is added to Ti−1, the originally external
point pj becomes internal. (Color figure online)

Recall that in graph theory, a bridge e in a connected graph G is an edge
which is not along any cycle of the graph (i.e., the removal of e disconnects G).
Graph G is 2-edge-connected if it has no bridges. A 2-edge-connected component
of G is a maximal subgraph which is 2-edge-connected. We let bcDOPG3 be
the class of graphs in DOPG3 such that each 2-edge-connected component of a
graph is in mDOPG3, i.e., graphs formed by connecting maximal outerplanar
graphs by bridges. We have the following result:

Theorem 6. Given a plane graph G = (V,E) in bcDOPG3, there is an algo-
rithm which can construct a psTCR of G in linear time.

5 Contact Representations of Planar Digraphs Using
n-gons

To deal with digraphs of out-degree greater than 3, we extend the definition
of a psTCR to a point-side n-gon contact representation (psCRn, for short) as
follows. A psCRn of a planar digraph G = (V,E) is a drawing meeting the
following conditions: (1) each vertex v ∈ V is drawn as an n-side polygon, and
(2) each directed edge e = (v, u) ∈ E corresponds to a contact of a side of the
polygon associated with u and a point of the polygon associated with v.

In Sect. 3, we show that every outerplanar digraph of out-degree at most 3
admits a psTCR. Following a proof that parallels that of Theorem 3 based on
contact systems of pseudo-segments, we are able to establish the following result:

Theorem 7. Every outerplanar digraph in DOPGn admits a convex psCRn.

Recall from Lemma 3 that there is a 2-outerplanar graph that does not
have a psTCR. If one examines Fig. 7 (i.e., a witnessing example) carefully, the
three units (or triangles) associated with nodes x, y and z (of out-degrees 1, 3,
and 3, resp.) along the outer boundary could have at most 2 extremal points
(corresponding to the two “free corners” of x). It is therefore natural to ask
whether allowing the number of “corners” of a polygon to exceed its out-degree,
it is possible to have a contact representation for every planar digraph. The
following theorem answers the above affirmatively.

Theorem 8. Every planar digraph of degree (i.e., in-degree + out-degree) d
admits a psCR2d.
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Abstract. There is a plethora of route planning techniques which work
remarkably well on real-world road networks. To explain their good per-
formance, theoretical bounds in dependency of road network parameters
as the highway dimension h or the skeleton dimension k were investi-
gated. For example, for the hub label technique, query times in the order
of O(p log D) and a space consumption of O(np log D) were proven for
both p = h and p = k, with D denoting the graph diameter and n the
number of nodes in the network. But these bounds are only meaningful
when the dimension values h or k are known. While it was conjectured
that h and k grow polylogarithmically in n, their true nature was not
thoroughly investigated before – primarily because of a lack of efficient
algorithms for their computation. For the highway dimension, this is
especially challenging as it is NP-hard to decide whether a network has
highway dimension at most h. We describe the first efficient algorithms
to lower bound the highway dimension and to compute the skeleton
dimension exactly, even in huge networks. This allows us to formulate
new conjectures about their growth behavior. Somewhat surprisingly, our
results imply that h and k scale very differently. While k turns out to
be a constant, we expect h to grow superpolylogarithmically in n. These
observations have implications for the future design and analysis of route
planning techniques.

1 Introduction

To accelerate the computation of shortest paths in road networks, several pre-
processing-based techniques have been developed, as contraction hierarchies
(CH) [11], transit node routing (TN) [4] or hub labels (HL) [2]. While shortest
path planning with Dijkstra’s algorithm takes seconds on large road networks,
these acceleration techniques allow for query answering in the order of mil-
liseconds or even microseconds. Furthermore, the preprocessing time and space
consumption is usually moderate. The empirical justification stems from the
investigation of real-world road networks, e.g. extracted from OpenStreetMap
(Germany about 20 million, Europe 174 million nodes) or TIGER data (USA
24 million nodes).

But for all listed acceleration techniques, one can construct artificial input
networks on which they perform unsatisfactorily. This inspired the question what
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 230–241, 2018.
https://doi.org/10.1007/978-3-319-94776-1_20
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characteristics of real road networks enable their great performance. As a result,
new parameters were designed which try to capture the essence of road networks:
In [3], it was conjectured that road networks exhibit a low highway dimension h
and h-dependent bounds for CH, TN and HL were proven. In [12], the skeleton
dimension k was suggested as an alternative network parameter for the analysis
of HL. While both h and k are assumed to grow at most polylogarithmically in
the size n of the network, grid instances with h, k ∈ Θ(

√
n) are known. As grid

substructures are ubiquitous in real-world road networks, computing h and k on
multiple instances is necessary to gain insights in their real dependency on n.

In this paper, we devise algorithms that are efficient enough to compute
(lower bounds for) the highway dimension and the skeleton dimension in road
networks with millions of nodes and edges. This enables the first practical study
of their growth behavior.

1.1 Related Work

The treewidth t – a classical network parameter – was also investigated for
theoretical analyses of shortest path planning techniques. For CH, query times
in O(t log n) and a space consumption of O(nt log n) were proven [5]. It is NP-
complete to decide whether a network has treewidth at most t. Nevertheless, the
recent Parameterized Algorithms and Computational Experiments Challenge
(PACE ’17) focused on the search for practical algorithms that compute t [6].
The approach presented in the winning paper [13] was able to compute the
exact treewidth for over 100 different benchmark networks. Upper bounds of t
for selected road networks were reported in [8], e.g. t ≤ 479 for the network of
Europe. In [5], it was proven that for a given network G, there exist edge lengths
such that h(G) ≥ (pw(G)−1)/(log3/2 n+2) where pw(G) denotes the pathwidth
of G. As pw(G) ≥ t(G), this inequality also relates h and t.

For graphs with bounded maximum degree, k ∈ O(h) was proven [12]. Fur-
thermore, in a carefully weighted grid graph, it was shown that there can be an
exponential gap between the highway and the skeleton dimension (h ∈ Ω(

√
n)

and k ∈ O(log n)). In other grid networks, though, the skeleton dimension is
also in Ω(

√
n). Hence it is not a priori clear how these two parameters behave

with respect to each other in road networks. Preliminary results for h and k on
real networks are available for New York (which contains about 200,000 nodes).
There h > 173 and k = 73 holds [12]. But these results were obtained using naive
algorithms which unfortunately are impractical for larger networks with respect
to running time or solution quality (as will be shown in our experiments).

1.2 Contributions

On the theoretical side, we establish the first relationship between the skeleton
dimension and the pathwidth of a network.

On the practical side, we first discuss a new approach to lower bound the
highway dimension h in real-world road networks by combining a greedy algo-
rithm and an ILP relaxation. In addition, we describe a new multi-phase algo-
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rithm for computing the exact skeleton dimension k which leverages contraction
hierarchies and transit node routing. Equipped with these new algorithms, we
compute h∗ ≤ h and k in real-world road networks with up to 24 million nodes,
cut from Germany and the US. Based on the respective results, we conjecture
that the highway dimension grows worse in the size n of the network than pre-
viously thought, while the value of the skeleton dimension seems not to depend
on n but instead on the densest region within the network. We support our new
conjectures with additional experiments. These results provide new insights in
the structure of road networks. They also imply that the theoretical running
time bounds in dependency of k are much stronger than the ones for h. As at
the moment such bounds are only available for HL, this motivates to look for
bounds depending on k also for CH, TN and other graph algorithms.

2 Preliminaries

Throughout the paper, we consider a weighted, undirected graph G(V,E) which
represents a road network. We assume that the shortest path between any two
nodes is unique in G (which can be enforced e.g. by symbolic perturbation). The
distance of the shortest path from s ∈ V to t ∈ V is denoted by ds(t).

2.1 Road Network Dimensions

For a node v let Br(v) = {w ∈ V | dv(w) ≤ r} be the ball around v with radius
r, and let Sr(v) be the set of all shortest paths which intersect Br(v) and have
a length in the range (r/2, r]. The highway dimension [1] is the smallest h ∈ N

such that for all r and for all v ∈ V , there exists a hitting set H for S2r(v) of
size at most h (i.e. H ⊆ V and for every path P ∈ S2r(v), we have H ∩ P �= ∅).

Let Ts be the shortest path tree of a node s and let T̃s be its geometric
realization, i.e. every edge is seen as infinitely many nodes of degree two that
are incident to infinitely small edges. The distance of a node v to its furthest
descendant in T̃s is denoted by Reachs(v). The skeleton T ∗

s is defined as the
subtree of T̃s induced by all nodes v satisfying ds(v) ≤ 2 · Reachs(v) from s.
Intuitively, we obtain T ∗

s by cutting every branch of Ts at two thirds of its
length. The width of T ∗

s is the maximum over all Cutr(T ∗
s ) where Cutr(T ∗

s )
denotes the number of nodes in T ∗

s at distance r from s. The skeleton dimension
k of G is defined as the maximum width of all skeletons T ∗

v in G [12].

2.2 Contraction Hierarchies

The idea behind CH is to augment the road network with so called shortcut
edges, which allow to reduce the number of necessary edge relaxations in a
Dijkstra run significantly.

The CH graph construction relies on the node contraction operation. Here,
a node v is removed from the graph, and shortcut edges are inserted between
the neighbors of v if they are necessary to preserve their pairwise shortest path
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distances. The preprocessing phase of CH consists of contracting all nodes one-
by-one until the graph is gone. In the end, a new graph G+(V,E ∪ E+) is con-
structed, with E+ being the set of shortcut edges that were inserted during the
contraction process.

The position of a node in the order of contraction is called rank(v). An edge
e = (u, v) is called upwards from u if rank(u) < rank(v) and downwards other-
wise. A path is called upwards/downwards if it consists of upwards/downwards
edges only. The graph induced by all upwards paths emerging from a node v is
referred to as G↑(v). For answering an s-t-query, a bidirectional Dijkstra run is
used but restricted to G↑(s) and G↑(t). It was proven that both runs will settle
the node that was contracted last on the original shortest path from s to t in G.
Hence identifying p such that ds(p) + dt(p) is minimized leads to correct query
answering [11]. As the graphs G↑(s) and G↑(t) are usually concise, a bidirec-
tional Dijkstra run in these graphs is several orders of magnitudes faster than in
the original graph.

2.3 Transit Node Routing

The TN algorithm [4] relies on the observation that all shortest paths from some
small region to faraway destinations (for some notion of far) pass through a small
set of so-called access nodes (e.g. on-ramps or important crossings). The union
of all these access nodes then forms the transit node set T . For all pairs of nodes
in T , the shortest path distance is precomputed and stored in a look-up table.
Additionally, for every node v ∈ V the set of access nodes AN(v) together with
the respective shortest path distances are stored.

A ‘long’ shortest path is defined as one that contains an access node from s
and one of t. The distance of such a shortest path can be determined by looking
up the distances from s to all nodes in AN(s), the distances from AN(s) to the
nodes in AN(t) and the distances from AN(t) to t, and keeping track of the
shortest concatenated path. As all of the considered distances are precomputed,
the query time is |AN(s)| · |AN(t)|. On real road networks, a transit node set
T of size ≈ √

n can be chosen such that the access node sizes are less than
10 on average, allowing for very fast query answering (order of microseconds).
For ‘short’ queries, however, the transit node approach might report a too long
distance. In that case, a (local) Dijkstra run is used as backup.

3 Skeleton Dimension and Pathwidth

Bauer et al. showed that for any unweighted graph G there exist edge weights
such that the highway dimension is at least (pw(G) − 1)/(log3/2 n + 2) where
pw(G) is the pathwidth of G [5]. With a slight adaptation of their proof we can
show that there is a similar relation for the skeleton dimension.

We consider the edge weights that maximize the skeleton dimension of a
given unweighted graph G. We first show that G can be decomposed into smaller
graphs by recursively removing at most k nodes.
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Lemma 1. Let G be a unweighted connected graph, let k be the maximum skele-
ton dimension of G over all possible edge weights and let G′ be a connected sub-
graph of G with n′ ≥ 2k + 2 nodes. Then G′ can be separated into at least two
connected components of size at most �n′/2 by removing at most k nodes.

This can be used to show the following theorem (similar to [5]).

Theorem 1. Let G be an undirected graph. There exist edge weights on G such
that for the skeleton dimension k and the pathwidth pw of G we have k ≥ (pw −
1)/(log2 n + 2).

4 Lower Bounds for the Highway Dimension

Deciding whether a network exhibits a highway dimension of at most h is NP-
hard [10]. Also, computing h exactly seems to be hardly possible in large net-
works, as this would require to extract and solve for each v ∈ V and for each
r ∈ [1,D] the respective hitting set instance on S2r(v). Even just the extraction
of the instances – requiring Dijkstra computations from all w ∈ B2r(v) and stor-
ing all shortest paths in S2r(v) – is too demanding for larger r to be practical.
But we observe that for any node v ∈ V , for any r, and for any subcollection S of
the paths in S2r(v), any lower bound on the hitting set (HS) size for these paths
is also a lower bound for h. Solving the relaxation of the respective standard
HS-ILP gives a lower bound for the HS instance. Based on this observation, we
propose the following algorithm to lower bound the highway dimension.

With h∗ we denote the best lower bound for h found so far. Initially, we have
h∗ = 0. For a source node s, chosen randomly from a dense region of the graph,
we consider a subset S ⊆ S2r(v) that is constructed as follows. We compute the
shortest path tree of s up to a distance of 3r, backtrack the paths of all leaves
up to a distance of r (provided they are not too close to s) and add them to S.
This is supposed to select paths that intersect B2r(s) only in a few nodes. Then
we select a fixed number of nodes from B2r(s) (we use 500 in our experiments)
and run Dijkstra computations up to a radius of r + δ from them, where δ is
the maximum length of all edges incident to the root. Again we backtrack leave
paths of sufficient lengths and add them to S.

Then we first run the standard greedy algorithm for HS. If the greedy solu-
tion does not exceed h∗, we discard the instance S, otherwise we consider the
respective ILP. To reduce the size of the ILP (as otherwise a practical solution
would be too time-consuming), we let Pi be the set of paths hit by node i selected
in the greedy algorithm, and choose at most 100 paths from each Pi. With exam-
ples from each Pi considered in the ILP, we hope to preserve the essence of the
instance. If the solution of the ILP relaxation exceeds h∗, we choose more nodes
from B2r(s), perform Dijktra runs with radius r + δ from them and add the
resulting paths to the ILP, still considering at most 100 paths from each Pi. We
iterate this process as long as the solution of the extended ILP relaxation exceeds
the previous solution. If the last solution exceeds h∗, we update h∗ accordingly.
Then we proceed and choose a new source s.
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To choose the radius r in the experiments, we first apply the above described
algorithm for a small number of selected source nodes and for a variety of radii
in every network. We then select the radius that led to the largest lower bound
for h in this test set for each network individually. For the source nodes that
resulted in the best bounds in every network, we tried to improve h∗ further by
choosing different radii.

5 Skeleton Dimension Computation

In contrast to t and h, the skeleton dimension k can be computed in polynomial
time by determining the skeleton of all shortest path trees in G and the maximum
width therein. But for large networks, computing all shortest path trees is far
too time consuming. We will now propose a significantly more efficient approach
for determining k which takes the structure of road networks into account.

5.1 Computing the Width of a Tree

The width of a given rooted tree T can be computed by iterating over the nodes
by increasing distance r from the root and storing the target nodes of the edges
cut at radius r in a priority queue. In every step we pop all nodes from the
priority queue that have the same distance label as the top element and push
their direct descendants. The width of the tree is the maximal size of the priority
queue during this process, which takes O(n log n) time for n = |T |.

5.2 Naive Algorithm

Naively, one would simply run Dijkstra’s algorithm from every node, determine
the distance to the furthest successor in every resulting shortest path tree for
every contained node and construct the skeletons by pruning nodes whose fur-
thest descendant is too close. As the skeleton is based on the geometric realiza-
tion, it might also be required to insert an additional node w̃ at the end of every
branch that satisfies dv(w̃) = 2Reachv(w̃). Then the widths can be computed.
In order to compute for every node v the distance to its furthest descendant in
a shortest path tree T , one can iterate over the nodes of T in reverse topological
order and propagate the distance of the furthest descendant of every node to its
predecessor. But as running a one-to-all Dijkstra computation alone is already
expensive on large networks (order of multiple seconds), and the computation of
the furthest descendants adds on that, one cannot afford to repeat this procedure
for millions of nodes.

5.3 Faster Processing with PHAST

To perform efficient one-to-all shortest path computations we use the PHAST
algorithm [7]. It requires a CH data structure G+. To determine the shortest
path distances from a node s to all other nodes, it executes a Dijkstra run in
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the CH upwards graph G↑(s) before iterating over all edges of G+ in the inverse
contraction order of the source nodes. Whenever a shorter path to some node
is discovered during this edge sweep, its distance and predecessor labels are
updated. Eventually, every node is labeled with the correct distance. The prede-
cessor labels correspond however only to a shortest path tree in the CH graph
(which includes shortcuts) and the algorithm does not construct any explicit
topological order. This disables the naive propagation of furthest descendant
distance labels as described above.

But as every resulting shortest path is unimodal (i.e., it consists of a sequence
of upwards edges followed by a sequence of downwards edges) , we can compute
Reachs(v) for every node v as follows. After running a PHAST query, we iterate
over all nodes in contraction order (i.e. nodes of low rank first) and propagate
the distance of the furthest descendant of every node to its predecessor. When
this step is finished, every node v is labeled with the distance to the furthest
descendant x, for which the path from v to x consists only of downwards edges.
In the next step, we iterate over the nodes in G↑(s) in reverse topological order
and propagate the descendant labels again to the predecessors. Now, every node
is labeled with the distance of its furthest descendant in the shortest path tree
in the CH graph. To propagate the correct value also to the nodes, that are
shortcut on the shortest path from the root to their furthest descendant, we
sweep over all edges of G+ as in the PHAST query. For every edge (v, w) we
check if it is contained in the actual shortest path tree, which is the case if
ds(v) + �(v, w) = ds(w) where �(v, w) denotes the edge cost. If this holds, we
propagate the descendant label of v to w. With this approach, we can compute
the value Reachs(v) for every node v wrt some root s in the time required for
one Dijkstra run in the upwards graph and two linear sweeps over the edges in
the CH graph (creating only a mild overhead of one edge sweep over PHAST).
But as each PHAST run still requires about 1 s on a continental-sized network
(without using SSE instructions, GPUs, or further advanced optimization) [7],
we now describe multiple steps which allow to spare a lot computations.

5.4 Upper Bounds

We observe that given a supergraph T ′ of a tree T , the width of T ′ is an upper
bound on the width of T . To compute small supergraphs of the shortest path
tree skeletons in G and hence to obtain good upper bounds on the skeleton
dimension, we make use of the following lemma.

Lemma 2. Let v be a descendant of u in the shortest path tree of s. Then we
have Reachs(v) ≤ Reachu(v).

Assume now that for some nodes a1, . . . , a� the distances Reachai
(u) are

already known for all i ∈ {1, . . . , �} and all u ∈ V . Then we can compute a
supergraph of the skeleton T ∗

s by performing a Dijkstra search from s and keeping
track of the first ai encountered on every branch of the search tree. Whenever we
scan a node v such that ds(v) > 2 · Reachai

(v) for the corresponding preceding
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ai, it follows from Lemma 2 that no descendant of v is contained in T ∗
s an we

can prune the current branch. When the algorithm terminates, it has explored
a supergraph of the skeleton.

But if none of the nodes a1, . . . , a� was encountered on some branch, it has
been explored entirely and can still be pruned. Therefore, we iterate over all
nodes v in such a branch in reverse topological order and determine the value
Reachs(v) before discarding all nodes v with ds(v) > 2 · Reachs(v) and adding
boundary nodes ṽ that satisfy ds(ṽ) = 2 ·Reachs(ṽ). After this step, we obtain a
smaller supergraph of T ∗

s and compute its width k̂(s), which is an upper bound
on the width k(s) of T ∗

s .

5.5 Exploiting Transit Nodes

The idea of our algorithm is to compute a transit node set of the given network
and to use the access nodes AN(v) as the nodes a1, . . . , a� of every node v.
Usually, for every node v ∈ V there is a whole set of nodes v1, . . . , vc that
satisfy AN(v) = AN(vi) for i = 1, . . . , c. We call such a set {v1, . . . , vc} also a
cell. For every cell {v1, . . . , vc} and every access node aj ∈ AN(v1), we need to
compute Reachaj

(u) only once in order to compute k̂(vi) for all vi ∈ {v1, . . . , vc}
as described previously. The whole network is processed by iterating over all cells
via a depth-first search. As adjacent cells are very likely to share some of their
access nodes, we store the computed values for Reachaj

(u) for the most recent
access nodes in a least recently used cache, where the values of the least recently
considered access node gets evicted when the cache is full. By doing so we can
avoid computing the values of Reachaj

(u) several times for some access nodes.

5.6 Pruning

During the computation some nodes can further be pruned based on the following
lemma.

Lemma 3. A path v1, . . . , vp is called a chain with end nodes v1 and vp, if
v2, . . . , vp−1 have degree 2 and v1, vn do not. Let v1, . . . , vp be a chain. Then it
yields:

i. We have k(v1) ≤ k(vn) if deg(v1) = 1.
ii. For all i ∈ {2, . . . , p − 1} we have k(vi) ≤ max{2, k(vn)} if deg(v1) = 1.
iii. For all i ∈ {2, . . . , p − 1} we have k(vi) ≤ k(v1) + k(vn).

Note that replacing k(v1) and k(vn) on the right hand side of the inequalities
by some upper bound k̂(v1) and k̂(vn) does not invalidate the same. Provided
that the network contains some node of degree at least 3 (which implies k ≥ 3),
we can therefore skip all nodes of degree 1 or less in our algorithm (isolated
nodes do not contribute to the skeleton dimension at all). Consider now a node
u with deg(u) = 2 that lies on a chain with end nodes v and v′. Then we
can simply choose k̂(u) = max{2, k̂(v)} if deg(v′) = 1, k̂(u) = max{2, k̂(v′)}
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if deg(v) = 1 and k̂(u) = k̂(v) + k̂(v′) otherwise. This requires however that
k̂(v) and k̂(v′) are already known. In every cell we consider therefore all non
degree 2 nodes before processing the degree 2 nodes. It may however happen
that the bound k̂(u) = k̂(v) + k̂(v′) is not very tight. At the beginning of our
algorithm we compute therefore a lower bound ǩ on the skeleton dimension k by
computing the width of a few skeletons and choosing ǩ as the maximum of this
widths. Then we use the bound k̂(u) ≤ k̂(v) + k̂(v′) for a degree 2 node u only
if k̂(v) + k̂(v′) ≤ ǩ, otherwise we compute a better bound based on the access
nodes of u.

5.7 Computing Exact Values

When all cells have been processed, we have an upper bound k̂(u) on the width
of every skeleton T ∗

u . In order to compute the exact value of k, we iterate over
all nodes u sorted descending by k̂(u) and compute the actual skeleton T ∗

u and
its width. During this process we keep updating the lower bound ǩ, the maxi-
mum width of all skeletons computed so far. If at some point for the currently
considered node u we have k̂(u) ≤ ǩ, it follows that k = ǩ. Provided that the
bounds k̂(u) are not too bad, this last step involves considerably fewer complete
one-to-all shortest path computations than the naive approach.

6 Experiments

We implemented the proposed algorithms for computing bounds on the highway
dimension and the skeleton dimension in C++. We used the GNU C++ compiler
5.4.0 with optimization level 3. Experiments were conducted on a AMD Ryzen
Threadripper 1950X CPU (16 cores and 32 threads; clocked at 2.2 GHz) with
128 GB main memory, running Ubuntu 16.04.3 (kernel 4.13.0).

Experiments were executed on the OSM road network of Germany (22.9 mil-
lion nodes; 24.6 million undirected edges) and the TIGER/Line data of the US
(24.3 million nodes; 29.5 million undirected edges). Shortest paths were com-
puted wrt travel time. For the TIGER/Line data, the travel time is the spatial
distance divided by a factor between 0.4 and 1.0 depending on the road category.

We applied our algorithms for computing (bounds on) the highway and skele-
ton dimension to the aforementioned networks and several subnetworks. Some
of the results are shown in Table 1. Note that the computed values are slightly
implementation-dependent, as in the considered networks some shortest paths
are ambiguous.

We observe that the skeleton dimension is significantly smaller than the high-
way dimension for all considered networks. For the highway dimension, it seems
safe to assume that due to the nature of our lower bound construction the
obtained results are far from being tight (and the more so the larger the net-
work). Still, there seems to be a clear correlation between the size of the network
and the highway dimension (cf. Fig. 1). For the complete US (24 million nodes)
we computed a lower bound of 512, whereas for Michigan (739,000 nodes) and
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Table 1. Highway and skeleton dimensions of different networks and the corresponding
radii r in seconds/time units.

√
n and log2(n) are provided for comparison.

Network n
√

n log2(n) h r k r

Germany 22,919,324 4,787 24 ≥512 1,000 114 186

US 24,278,285 4,927 25 ≥562 2,826 92 650

Michigan 673,534 821 19 ≥321 22,829 92 650

Washington, D.C. 9,559 98 13 ≥156 17,806 42 8,903

Washington, D.C. (10,000 nodes) we obtained h ≥ 321 and h ≥ 156, respec-
tively. Taking the looseness of our bounds into account, the results suggest that
the dependency between h and n might be even superlogarithmic (cf. Table 1).
But of course, the model h ≤ a · logb n can not be declared void based on our
results as there might be suitable choices of a and b that also hold for larger
networks. For more conclusive results, better lower bound techniques (in terms
of running time and solution quality) need to be investigated in future work.

Computing the exact skeleton dimension was possible on all benchmark net-
works. For the US, the computation required 10 days runtime (using 18 threads
on average) and 110 GB RAM. We used 50

√
n transit nodes and dedicated 50 GB

memory to simultaneously store the results of 1,200 PHAST runs. In the last
step slightly less than one million exact computations were required to close the
gap between upper and lower bounds. More than 99% of the degree 2 nodes could
be pruned. On these instances we estimated that the naive algorithm based on
Dijkstra computations would have required more than 6 years CPU time, and
simply using CPU-based PHAST runs followed by computing the distances to
the furthest descendants without our improvements and pruning strategies a bit
less than 3 years.

We observe for k that the radius where the maximum width in the skeleton
is assumed is small in most considered networks. For the network of Germany
we obtained k = 114. This value is assumed at a radius of only 186 s; for larger
radii the skeleton width drops significantly (cf. Fig. 2). The relevant part of the
network which contains a skeleton of width 114 has only about 16,000 nodes (cf.
Fig. 3). This indicates that the value of k is indeed not dependent on the total size
of the network but rather on the densest cluster therein (e.g. the largest city).
This is also reflected in our results on the networks of the whole US and its indi-
vidual states. There we have k < 100 for all instances (cf. Fig. 1) and the whole
US induces the same skeleton dimension value as Michigan (cf. Table 1). More-
over, the maximum skeleton width is almost always assumed within a metropo-
lis. But the shape and the distribution of cities within the network also have an
influence on the road network dimensions and the respective radii.

In [12], bounds of O(k log D) and O(kn log D) were proven for the search
spaces and space consumption of hub labels, respectively. Our results imply that
search spaces are in O(log D) and the space consumption in O(n log D).
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Fig. 1. Distribution of the highway dimension
h and the skeleton dimension k in dependency
of the road network size for all states of the US.

Fig. 2. The skeleton width in dependency of the
radius in the road network of Germany

Fig. 3. A skeleton of width 114
(green), the 114 shortest paths cut
at a radius of 186 s (yellow) and the
relevant ball of radius 279 s (blue)
(Color figure online)

7 Conclusions and Future Work

We showed that computing the exact skeleton dimension of large road networks
is possible when applying suitable speed-up schemes and pruning techniques.
The obtained experimental results strongly imply that the skeleton dimension
depends on the local graph density rather than the network size. As the computed
values are small for all considered benchmark networks, the skeleton dimension
seems to be an excellent parameter for conducting practically useful theoretical
analyses.

The highway dimension turned out to be larger than the skeleton dimension
in all networks, and the more the bigger the network. The growth is at least
logarithmic in the size of the network but possibly way larger. Besides the listed
route planning techniques, also many other algorithms have been analyzed based
on the assumption that the highway dimension of road networks is small, see
e.g. [9,10]. It might be worthwhile to investigate whether the bounds obtained
in these analyses also hold when replacing h with k, as the respective results
would be much stronger.
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Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp.
469–480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-
7 38

11. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

12. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using
tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1462–1478. SIAM (2017)

13. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. In: Pro-
ceedings of the 25th Annual European Symposium on Algorithms (ESA), LIPIcs,
vol. 87, pp. 68:1–68:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

https://doi.org/10.1007/978-3-642-39206-1_9
https://doi.org/10.1007/978-3-642-39206-1_9
https://doi.org/10.1007/978-3-662-47672-7_38
https://doi.org/10.1007/978-3-662-47672-7_38


Car-Sharing Between Two Locations:
Online Scheduling with Flexible Advance

Bookings

Kelin Luo1,2(B), Thomas Erlebach2(B), and Yinfeng Xu1

1 School of Management, Xi’an Jiaotong University, Xi’an, China
luokelin@stu.xjtu.edu.cn

2 Department of Informatics, University of Leicester, Leicester, UK
te17@leicester.ac.uk

Abstract. We study an on-line scheduling problem that is motivated
by applications such as car-sharing. Users submit ride requests, and the
scheduler aims to accept requests of maximum total profit using a single
server (car). Each ride request specifies the pick-up time and the pick-up
location (among two locations, with the other location being the desti-
nation). The scheduler has to decide whether or not to accept a request
immediately at the time when the request is submitted (booking time).
We consider two variants of the problem with respect to constraints on
the booking time: In the fixed booking time variant, a request must be
submitted a fixed amount of time before the pick-up time. In the variable
booking time variant, a request can be submitted at any time during a
certain time interval that precedes the pick-up time. We present lower
bounds on the competitive ratio for both variants and propose a greedy
algorithm that achieves the best possible competitive ratio.

1 Introduction

In a car-sharing system, a company offers cars to customers for a period of time.
Customers can pick up a car in one location, drive it to another location, and
return it there. Car booking requests arrive on-line, and the goal is to maxi-
mize the profit obtained from satisfied requests. We consider a setting where all
driving routes go between two fixed locations, but can be in either direction. For
example, the two locations could be a residential area and a nearby shopping mall
or central business district. Other applications that provide motivation for the
problems we study include taxi dispatching and boat rental for river crossings.

In real life, customer requests for car bookings usually arrive over time, and
the decision about each request must be made immediately, without knowledge
of future requests. This gives rise to an on-line problem that bears some resem-
blance to interval scheduling, but in which additionally the pick-up and drop-off
locations play an important role: The server that serves a request must be at
the pick-up location at the start time of the request and will be located at the
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L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 242–254, 2018.
https://doi.org/10.1007/978-3-319-94776-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_21&domain=pdf


Car-Sharing Between Two Locations 243

drop-off location at the end time of the request. A server can serve two con-
secutive requests only if the drop-off location of the first request is the same as
the pick-up location of the second request, or if there is enough time to travel
between the two locations otherwise. (We allow ‘empty movements’ that allow
a server to be moved from one location to another while not serving a request.
Such empty movements could be implemented by having company staff drive a
car from one location to another, or in the future by self-driving cars.)

An important aspect of the problem is the relation between the booking time,
i.e., the time when the request is submitted, and the start time of the request,
i.e., the time when the customer picks up the car at the pick-up location. Con-
straints on the booking time (also called the reservation window in the context
of advance reservation systems) can affect the performance of a system [7]. There
are generally two types of bookings, current and advance. Current bookings are
requests that are released and must be served immediately. Advance bookings
are requests that are released before the start time. In this paper we consider
advance bookings. More specifically, we study two variants of advance bookings:
In the fixed booking time variant, the amount of time between the booking time
of a request and its start time is a fixed value, independent of the request. In the
variable booking time variant, the booking time of a request must lie in a certain
time interval (called the booking horizon) before the start time of the request.

We assume that every request is associated with a profit that is obtained if
the request is accepted. When a server moves from one location to another while
not serving a request, a certain cost is incurred. The goal is to maximize the
total profit, which is the sum of the profits of the accepted requests minus the
costs incurred for moving servers while not serving a request. In this paper, we
focus on the special case of a single server.

1.1 Related Work

The car sharing problem considered in this paper belongs to the class of dynamic
pickup and delivery problems surveyed by Berbeglia et al. [2]. The problem that
is closest to our setting is the on-line dial-a-ride problem (OLDARP) that has
been studied widely. In OLDARP, transportation requests between locations
in a metric space arrive over time, but typically it is assumed that requests
want to be served ‘as soon as possible’ rather than at a specific time as in
our problem. Known results for OLDARP include on-line algorithms for mini-
mizing the makespan [1,3] or the maximum flow time [8]. Work on versions of
OLDARP where not all requests can be served includes competitive algorithms
for requests with deadlines where each request must be served before its dead-
line or rejected [9], and for settings with a given time limit where the goal is to
maximize the revenue from requests served before the time limit [6]. In contrast
to existing work on OLDARP, in this paper we consider requests that need to
be served at a specific time that is specified by the request when it is released.

Off-line versions of car-sharing problems are studied by Böhmová et al. [4].
They show that if all customer requests for car bookings are known in advance,
the problem of maximizing the number of accepted requests can be solved in
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polynomial time using a minimum-cost network flow algorithm. Furthermore,
they consider the problem variant with two locations where each customer
requests two rides (in opposite directions) and the scheduler must accept either
both or neither of the two. They prove that this variant is NP-hard and APX-
hard. In contrast to their work, we consider the on-line version of the problem.

1.2 Problem Description and Preliminaries

We consider a setting with only two locations (denoted by 0 and 1) and a single
server. The travel time from 0 to 1 is the same as the travel time from 1 to 0 and
is denoted by t. Let R denote a sequence of requests that are released over time.
The i-th request is denoted by ri = (t̃ri , tri , pri) and is specified by the booking
time or release time t̃ri , the start time tri , and the pick-up location pri ∈ {0, 1}.
Requests with the same release time arrive one by one in arbitrary order, and
each request must be processed by the algorithm before the next request arrives.
If ri is accepted, the server must pick up the customer at pri at time tri and
drop off the customer at location ṗri = 1 − pri at time ṫri = tri + t, the end
time of the request. We say that the request ri starts at time tri . For an interval
[b, d), we say that ri starts in the interval if tri ∈ [b, d).

The server can only serve one request at a time. Serving a request yields
profit r > 0. The server is initially located at location 0. If the pick-up location
pri of a request ri is different from the current location of the server and if at
least t time units remain before the start time of ri, the server can move from its
current location to pri . We refer to such moves (which do not serve a request) as
empty moves. An empty move takes time t and incurs a cost of c, 0 ≤ c ≤ r, and
we say that ri is accepted with cost in this case. If the server is already located
at pri , we say that ri is accepted without cost. We forbid ‘unprompted’ moves,
i.e., the algorithm is allowed to make an empty move to the other location only
if it does so in order to serve a request that was accepted before the current
time and whose pick-up location is the other location. If two requests are such
that they cannot both be served by one server, we say that the requests are in
conflict.

We denote the requests accepted by an algorithm by R′, and the i-th request
in R′, in order of request start times, is denoted by r′

i. We say that request r′
i is

accepted without cost if i = 1 and pr′
i
= 0 or if i > 1 and pr′

i
= ṗr′

i−1
. Otherwise,

r′
i is accepted with cost. We denote the profit of serving the requests in R′ by

PR′ . If R′
c denotes the subset of R′ consisting of the requests that are accepted

with cost, we have PR′ = r · |R′| − c · |R′
c|.

The goal is to accept a set of requests R′ that maximizes the profit PR′ . The
problem for one server and two locations for the fixed booking time variant in
which tri − t̃ri = a for all requests ri, where a ≥ 0 is a constant, is called the
1S2L-F problem. For the variable booking time variant, the booking time t̃ri of
any request ri must satisfy tri −bu ≤ t̃ri ≤ tri −bl, where bl and bu are constants,
with bl ≤ bu, that specify the minimum and maximum length, respectively, of the
time interval between booking time and start time. The problem for one server
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and two locations for the variable booking time variant is called the 1S2L-V
problem. If bl = bu, the 1S2L-V problem turns into the 1S2L-F problem.

The performance of an algorithm for 1S2L-F or 1S2L-V is measured using
competitive analysis (see [5]). For any request sequence R, let PRA denote the
objective value produced by an on-line algorithm A, and PR∗ that obtained by
an optimal scheduler OPT that has full information about the request sequence
in advance. Like for the algorithm, we also require that OPT does not make
unprompted moves, i.e., OPT is allowed to make an empty move starting at
time t0 only if there is an accepted request ri with t̃ri ≤ t0 and tri ≥ t0 + t
whose pick-up location is the other location. Without this restriction on OPT ,
it would not be possible to achieve finite competitive ratio in cases where a
request can be booked less than t units of time before its starting time.

The competitive ratio of A is defined as ρA = supR
PR∗
PRA

. We say that A is
ρ-competitive if PR∗ ≤ ρ · PRA

for all request sequences R. Let ON be the set
of all on-line algorithms for a problem. A value β is a lower bound on the best
possible competitive ratio if ρA ≥ β for all A in ON . We say that an algorithm
A is optimal if there is a lower bound β with ρA = β.

1.3 Paper Outline

In Sect. 2, we study the 1S2L-F problem. We give lower bounds and propose a
greedy algorithm that achieves the best possible competitive ratio. In Sect. 3,
we study the 1S2L-V problem. Although variable booking times provide much
greater flexibility to customers, we show that our greedy algorithm is still opti-
mal. Some proofs are omitted due to space restrictions. An overview of our
results is shown in Table 1.

Table 1. Lower and upper bounds for the car sharing problem

0 ≤ c < r c = r

Problem Booking constraint LB UB LB UB

1S2L-F 0 ≤ a < t 1 1 1 1

1S2L-F t ≤ a 2r
r−c

2r
r−c

1 1

1S2L-V 0 < bu < t 3 3 3 3

1S2L-V bu = t max{ 2r
r−c

, 3} max{ 2r
r−c

, 3} 3 3

1S2L-V t < bu
3r−c
r−c

3r−c
r−c

1 + 2� bu−bl
2t

� 1 + 2� bu−bl
2t

�

2 Car Sharing with Fixed Booking Times

In this section, we study the 1S2L-F problem. First, we present a lower bound.
We use ALG to denote any on-line algorithm and OPT to denote an optimal
scheduler. We refer to the server of ALG and OPT as s′ and s∗, respectively.
The set of requests accepted by ALG is referred to as R′, and the set of requests
accepted by OPT as R∗.
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Theorem 1. For 0 ≤ c < r and a ≥ t, no deterministic on-line algorithm for
1S2L-F can achieve competitive ratio smaller than 2r

r−c .

Proof. Initially, the adversary releases a request r1 = (0, a, 1). We distinguish
two cases.

Case 1 : ALG accepts r1 (with cost). The adversary releases requests r2 =
(ε, a + ε, 0) and r3 = (ε + t, a + ε + t, 1), where 0 < ε < t. OPT accepts r2 and
r3 without cost, but ALG cannot accept either of these requests as they are in
conflict with r1. We have PR∗ = 2r and PR′ = r − c, and hence PR∗

PR′ = 2r
r−c .

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1 and
we have PR∗ = r − c and PR′ = 0, and hence PR∗

PR′ = ∞. ��

Algorithm 1. Greedy Algorithm (GA)
Input : one server, requests arrive over time.
Step: When request ri arrives, accept ri if ri is acceptable and PRGA

i ∪{ri}−PRGA
i

> 0;

Note 1. RGA
i is the set of requests accepted by GA before ri is released.

Note 2. ri is acceptable if and only if ∀r′
j ∈ RGA

i , |tri − tr′
j
| ≥ 2t if pri = pr′

j
, and

|tri − tr′
j
| ≥ t if pri �= pr′

j
, and tri − t̃ri ≥ t if s′ is at location ps′ ∈ {0, 1} at time t̃ri

and pri = 1 − ps′ .

We propose a Greedy Algorithm (GA) for the 1S2L-F problem, shown in
Algorithm 1. For an arbitrary request sequence R = {r1, r2, r3, . . . , rn}, note
that we have tri ≤ tri+1 for 1 ≤ i < n because tri − t̃ri = a is fixed. Denote the
requests accepted by OPT by R∗ = {r∗

1 , r
∗
2 , . . . , r

∗
k∗} and the requests accepted

by GA by R′ = {r′
1, r

′
2, . . . , r

′
k} indexed in order of non-decreasing start times.

Theorem 2. Algorithm GA is 1-competitive for 1S2L-F if c = r, or if 0 ≤ c < r
and 0 ≤ a < t.

Proof. If 0 ≤ c < r and 0 ≤ a < t, GA and OPT only accept requests without
cost because the release time of a request is too late for the server to be able to
serve it with cost (recall that we forbid unprompted moves by OPT ). Observe
that this means that both GA and OPT accept requests with alternating pick-up
location, starting with a request with pick-up location 0.

We claim that R∗ can be transformed into R′ without reducing its profit,
thus showing that PR∗ = PR′ . As GA accepts the first request rj with prj = 0,
it is clear that tr′

1
≤ tr∗

1
. If r′

1 �= r∗
1 , we can replace r∗

1 by r′
1 in R∗, and R∗ is still

a valid solution with the same profit. Now assume, that R′ and R∗ are identical
with respect to the first i requests, and that s′ and s∗ are at location p ∈ {0, 1}
at time ṫr′

i
. If there is a request r∗

i+1, there must also be a request r′
i+1 with

tr′
i+1

≤ tr∗
i+1

, as GA could accept r∗
i+1. We can replace r∗

i+1 by r′
i+1 in R∗. The

claim thus follows by induction.
If c = r, accepting a request with cost yields profit r − c = 0. Without loss of

generality, we can therefore assume that both GA and OPT only accept requests
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without cost. The arguments of the previous paragraph can then be applied to
this case as well. ��
Theorem 3. Algorithm GA is 2r

r−c -competitive for 1S2L-F if 0 ≤ c < r and
a ≥ t.

Proof. We partition the time horizon [0,∞) into intervals (periods) that can
be analyzed independently. Period i, for 1 < i < k, is the interval [tr′

i
, tr′

i+1
).

Period 1 is [0, tr′
2
), and period k is [tr′

k
,∞). (If k = 1, there is only a single

period [0,∞).) Exactly one request in R′, namely r′
i, starts in period i, for

1 ≤ i ≤ k. We define R′
i = {r′

i} for 1 ≤ i ≤ k. Let R∗
i denote the set of requests

accepted by OPT that start in period i, for 1 ≤ i ≤ k.
For 1 < i ≤ k, r′

i starts at time tr′
i

and the first request of R∗
i starts during

the interval [tr′
i
, tr′

i+1
) (or the interval [tr′

k
,∞) if i = k). Furthermore, r′

1 is the
first acceptable request in R, and so the first request of R∗

1 cannot start before
r′
1. Hence, for all 1 ≤ i ≤ k, the first request in R∗

i cannot start before the
request r′

i.
We bound the competitive ratio of GA by analyzing each period indepen-

dently. As R′ =
⋃

i R
′
i and R∗ =

⋃
i R

∗
i , it is clear that PR∗/PR′ ≤ α follows if

we can show that PR∗
i
/PR′

i
≤ α for all i, 1 ≤ i ≤ k.

For all 1 ≤ i ≤ k, as R′
i = {ri}, we have PR′

i
∈ {r, r − c}. It suffices to

show PR∗
i
/PR′

i
≤ 2r/(r − c) to prove the theorem. We claim that R∗

i contains
at most two requests. Assume that R∗

i contains at least three requests. Let rj
be the third request (in order of start time) in R∗

i . As the first request in R∗
i

does not start before tr′
i
, we have trj ≥ tr′

i
+ 2t. This means that rj would be

acceptable to GA after it has accepted r′
i. Therefore, GA accepts either rj or

another request starting before trj , and that request becomes r′
i+1. Hence, there

cannot be such a request rj that starts in period i.
As we have shown that R∗

i contains at most two requests, we get that PR∗
i

≤
2r. Since PR′

i
≥ r − c, we have PR∗

i
/PR′

i
≤ 2r/(r − c). The theorem follows. ��

3 Car Sharing with Variable Booking Times

In this section, we study the 1S2L-V problem. Recall that the booking time of
a request ri must satisfy tri − bu ≤ t̃ri ≤ tri − bl. First, we present three lower
bound results, one for the case c = r and two for the case c < r.

Theorem 4. No deterministic algorithm for 1S2L-V can have competitive ratio
smaller than 1 + 2	 bu−bl

2t 
 if c = r. In particular, the lower bound is 3 if 0 <
bu < t.

Proof. Let ALG be an arbitrary on-line algorithm, and let OPT be an optimal
scheduler. We distinguish two cases based on the value of bu − bl.

Case 1 : 0 < bu − bl ≤ 2t. We need to show that the competitive ratio
is at least 3. Define four requests as follows: r1 = ( bu+bl

2 + t, bu + bl + t, 0),
r2 = (2bu+bl

3 + t, bl + 2bu+bl
3 + t, 0), r3 = (2bu+bl

3 + 2t, bl + 2bu+bl
3 + 2t, 1), r4 =
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( 2bu+bl
3 + 3t, bl + 2bu+bl

3 + 3t, 0). Note that a server can accept either r1, or all
of r2, r3, r4. Furthermore, r2 is released after r1 but starts earlier.

Initially, the adversary releases r1. There are two sub-cases.
Case 1.1 : ALG accepts r1. The adversary releases r2, r3 and r4. OPT accepts

r2, r3, r4 without cost, so we have PR∗ = 3r and PR′ = r, showing that
PR∗/PR′ = 3.

Case 1.2 : ALG does not accept request r1. OPT accepts r1. We have PR∗ = r
and PR′ = 0, and hence PR∗/PR′ = ∞.

The lower bound of 3 follows.
Case 2 : 2t < bu − bl. Let n = 	 bu−bl

2t 
 − 1. Choose values εi for 1 ≤ i ≤ n + 2
satisfying 0 ≤ ε1 < ε2 < · · · < εn+1 < εn+2 < min{t, bu − bl − 2tn}.

Initially, the adversary releases the request sequence R1 consisting of the
following requests: r1 = (ε1, bl + εn+2 + t, 1), r2 = (ε2, bl + εn+2 + 3t, 1), . . . , ri =
(εi, bl + εn+2 + (2i − 1)t, 1), . . . , rn = (εn, bl + εn+2 + (2n − 1)t, 1) and rn+1 =
(εn+1, bu + εn+1, 0). Note that bl ≤ bl + εn+2 + (2i − 1)t ≤ bu for all 1 ≤ i ≤ n.
There are three sub-cases.

Case 2.1 : ALG rejects all the requests of R1. In this case, OPT accepts the
request rn+1. We have PR∗ = r and PR′ = 0, yielding PR∗/PR′ = ∞.

Case 2.2 : The first request accepted by ALG is ri for some i with 1 ≤ i ≤ n.
In this case, the adversary does not release the remaining requests of R1. Instead,
it releases only one final request rf = (εi+1, bl + (2i − 1)t, 0). ALG cannot
accept rf as it is in conflict with ri. OPT accepts rf . We have PR∗ = r and
PR′ = r − c = 0, hence PR∗/PR′ = ∞.

Case 2.3 : The first request accepted by ALG is rn+1. The adversary then
releases the request sequence R2 consisting of the following requests: rn+1+1 =
(εn+2, bl + εn+2, 0), rn+1+2 = (εn+2, bl + εn+2 + 2t, 0), . . ., rn+1+i = (εn+2, bl +
εn+2 + 2(i − 1)t, 0), . . ., rn+1+n = (εn+2, bl + εn+2 + 2(n − 1)t, 0). After this, the
adversary releases the request sequence R3 consisting of three more requests:
r2n+1+1 = (εn+2, bu, 0), r2n+1+2 = (εn+2 + t, bu + t, 1), r2n+1+3 = (εn+2 +
2t, bu + 2t, 0). ALG cannot accept any requests of R3 as they all conflict with
rn+1. ALG can accept any number of requests of R2, but since they all have
pick-up location 0 (as does rn+1), its total profit will be PR′ = r. OPT accepts
all requests of R1 except rn+1, and all requests of R2 and R3. We have PR∗ =
(2n + 3)r = (2	 bu−bl

2t 
 + 1)r. Hence, PR∗/PR′ = 1 + 2	 bu−bl
2t 
.

The claimed lower bound of 1 + 2	 bu−bl
2t 
 follows. ��

Theorem 5. No deterministic algorithm for 1S2L-V can have competitive ratio
smaller than 3r−c

r−c if 0 ≤ c < r and bu > t.

Proof. Initially, the adversary releases the request r1 = (0, bu, 1). We distinguish
two cases.

Case 1 : ALG accepts r1 (with cost). The adversary releases requests r2 =
(ε, tr1 − ε, 1), r3 = (ε + t, tr2 + t, 0) and r4 = (ε + 2t, tr3 + t, 1), where 0 <
ε < min{t, bu−bl

2 }. OPT accepts r2, r3 and r4. As they are in conflict with r1,
ALG cannot accept any of them, see also Fig. 1. We have PR∗ = 3r − c and
PR′ = r − c. Hence, PR∗/PR′ = 3r−c

r−c .
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Fig. 1. Case 1:
PR∗
PR′ = 3r−c

r−c

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1. We
have PR∗ = r − c, PR′ = 0, and hence PR∗/PR′ = ∞. ��
Theorem 6. No deterministic algorithm for 1S2L-V can have competitive ratio
smaller than 3 if 0 ≤ c < r and bu ≤ t.

Proof. Initially, the adversary releases the request r1 = (0, bu, 0). We distinguish
two cases.

Case 1 : ALG accepts r1 (without cost). The adversary releases requests
r2 = (ε, tr1 − ε, 0), r3 = (ε + t, tr2 + t, 1) and r4 = (ε + 2t, tr3 + t, 0), where
0 < ε < min{t, bu−bl

2 }. OPT accepts r2, r3 and r4. As they are in conflict with
r1, ALG cannot accept any of them. We have PR∗ = 3r and PR′ = r. Hence,
PR∗/PR′ = 3.

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1. We
have PR∗ = r, PR′ = 0, and hence PR∗/PR′ = ∞. ��

From Theorems 1 and 6 we can conclude that no deterministic algorithm for
1S2L-V can have competitive ratio smaller than max{ 2r

r−c , 3} if 0 ≤ c < r and
bu = t.

We now turn to upper bounds and analyze Algorithm GA (which was pre-
sented as Algorithm 1 in Sect. 2) for the 1S2L-V problem. Denote the set of
requests accepted by OPT by R∗ and the set of requests accepted by GA as
R′. The server of OPT is referred to as s∗, and the server of GA as s′. Let
R′ = {r′

1, . . . , r
′
k}, with the requests indexed in order of increasing start time.

For 1 ≤ i ≤ k, let R′
i = {r′

i}. We partition the time horizon [0,∞) into intervals
(periods) that can be analyzed independently. The partition differs for GA and
OPT , so we refer to GA periods and OPT periods. GA period i is the inter-
val [0, tr′

2
) if i = 1, the interval [tr′

k
,∞) if i = k, and the interval [tr′

i
, tr′

i+1
) if

1 < i < k. Note that R′
i consists of the only request in R′ that starts in GA

period i.
For 1 ≤ i ≤ k, define t̂r′

i
to be the first time when the optimal server s∗ is

at location ṗr′
i

at or after time ṫr′
i
, or ∞ if s∗ never reaches ṗr′

i
from time ṫr′

i

onward. Now, define OPT period i to be the interval [0, t̂r′
1
) if i = 1, the interval

[t̂k−1,∞) if i = k, and the interval [t̂r′
i−1

, t̂r′
i
) if 1 < i < k. For 1 ≤ i ≤ k, let

R∗
i be the set of requests accepted by OPT that start during OPT period i. If

t̂r′
i
≤ t̂r′

i−1
, OPT period i is empty and R∗

i = ∅. The jth (in order of start times)
request of R∗

i is denoted by R∗
i (j).
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We will compare the profit PR′
i

that GA accrues in GA period i with the
profit PR∗

i
that OPT accrues in OPT period i. We can again analyze each

period independently: If we can show that PR∗
i
/PR′

i
≤ α for all i, this implies

that PR∗/PR′ ≤ α. We first state two observations.

Observation 1. For all i, s′ is at ṗr′
i
at time ṫr′

i
, and s∗ is at ṗr′

i
at time t̂r′

i
,

and t̂r′
i
≥ ṫr′

i
.

Observation 2. If c = r, by definition of Algorithm GA (Algorithm 1), for
1 < i ≤ k we have that t̃r′

i−1
≤ t̃r′

i
(otherwise, PRGA

i ∪{r′
i} − PRGA

i
= 0 and r′

i

would be rejected).

Theorem 7. Algorithm GA is 3-competitive for 1S2L-V if 0 < bu < t and
0 ≤ c < r.

Proof. Due to 0 < bu < t, all requests of R∗
i and R′

i must be accepted without
cost because the request arrival is too late to serve a request with cost (recall
that we forbid unprompted moves by OPT ).

First, consider period i = 1. OPT cannot accept any request that is released
during the time interval [0, t̃r′

1
), because otherwise such a request accepted by

OPT could be accepted by GA instead of r′
1. Thus t̃R∗

1(1)
≥ t̃r′

1
, and hence

tR∗
1(1)

≥ t̃r′
1

≥ tr′
1

− bu. By Observation 1 and because OPT does not accept
any request with cost, ṗR∗

i (1)
= ṗr′

1
, ṗR∗

1(2)
= pr′

1
, and ṗR∗

1(3)
= ṗr′

1
. Hence, s∗

is at ṗr′
1

at time ṫR∗
i (3)

, which is not before ṫr′
1

(because tR∗
1(3)

≥ tR∗
1(1)

+ 2t ≥
tr′

1
− bu + 2t > tr′

1
+ t). Therefore, |R∗

1| ≤ 3. Thus, PR∗
1
/PR′

1
≤ 3.

For 1 < i ≤ k, we distinguish the following cases in order to bound PR∗
i
/PR′

i
.

As R′
i = {r′

i}, PR′
i
= r. We need to show that PR∗

i
≤ 3r.

Case 1 : t̂r′
i−1

< t̂r′
i

and t̂r′
i−1

< tr′
i
. Assume that |R∗

i | ≥ 3. (Otherwise, there
is nothing to show.) By Observation 1 and because OPT does not accept any
request with cost, ṗR∗

i (1)
= ṗr′

i
, ṗR∗

i (2)
= pr′

i
, and ṗR∗

i (3)
= ṗr′

i
. If tR∗

i (1)
≥ tr′

i
,

we have t̂r′
i

= ṫR∗
i (1)

and thus |R∗
i | = 1. Therefore, we must have tR∗

i (1)
< tr′

i
.

Observe that OPT can only accept requests with pick-up location pr′
i

that start
before tr′

i
if they start after tr′

i
−bu > tr′

i
− t. Otherwise, such a request accepted

by OPT would arrive before r′
i and so it would be accepted by GA instead of

r′
i. So we have ṫR∗

i (3)
≥ tR∗

i (1)
+ 3t ≥ tr′

i
− bu + 3t > ṫr′

i
. When OPT finishes

serving the third request of R∗
i , s∗ is at ṗr′

i
, and this happens at a time after

ṫr′
i

(see Fig. 2 for an illustration). Therefore, this time is t̂r′
i

and thus the end of
OPT period i, and R∗

i cannot contain any further requests. (If i = k, the end
of OPT period i is ∞, but any further request accepted by OPT could also be
accepted by GA, a contradiction.) We have shown |R∗

i | ≤ 3, as required. Hence
PR∗

i
/PR′

i
≤ 3.

Case 2 : t̂r′
i−1

< t̂r′
i

and t̂r′
i−1

≥ tr′
i
. We claim that |R∗

i | ≤ 1 and argue
as follows. Because t̂r′

i−1
≥ tr′

i
, OPT can accept at most one request in OPT

period i: When s∗ finishes serving the first request in R∗
i , s∗ is located at ṗr′

i
, and

the time when this happens becomes t̂r′
i

and thus the end of OPT period i. (If
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Fig. 2. Example configuration for R∗
i and R′

i in Case 1

i = k, we can argue as in Case 1 that OPT cannot accept any further requests.)
Hence, PR∗

i
/PR′

i
≤ 1 < 3.

Case 3 : t̂r′
i−1

≥ t̂r′
i
. As OPT period i is empty by definition, we have R∗

i = ∅
and hence PR∗

i
= 0. Thus, PR∗

i
/PR′

i
< 3.

Because PR∗
i
/PR′

i
≤ 3 holds for all 1 ≤ i ≤ k, we have PR∗/PR′ ≤ 3. This

proves the theorem. ��
Theorem 8. Algorithm GA is max{ 2r

r−c , 3}-competitive for 1S2L-V if 0 ≤ c < r
and bu = t.

Theorem 9. Algorithm GA is 3r−c
r−c -competitive for 1S2L-V if 0 ≤ c < r and

bu > t.

The proofs of Theorems 8 and 9 are omitted due to space restrictions.

Theorem 10. Algorithm GA has competitive ratio at most 1 + 2	 bu−bl
2t 
 for

1S2L-V if c = r. In particular, it is 3-competitive if 0 < bu < t.

Proof. We prove the theorem by induction over the size of R′.
Base Case: |R′| = 1. We can show that |R∗| ≤ 1 + 2 · 	 bu−bl

2t 
. As PR′ = r

and PR∗ = |R∗| · r, we get PR∗/PR′ ≤ 1 + 2	 bu−bl
2t 
. The arguments are similar

to those used in the Induction Step below and are omitted here.
Induction Step: We assume that PR∗

PR′ ≤ 1+2	 bu−bl
2t 
 holds for all instances

with |R′| ≤ i and show that then PR∗
PR′ ≤ 1 + 2	 bu−bl

2t 
 also holds for all instances
with |R′| = i + 1.

Consider an instance of 1S2L-V given by a request sequence R where GA
accepts i + 1 requests. As GA accepts requests in order of increasing arrival
time by Observation 2, GA accepts i requests before time t̃r′

i+1
. Let R̄ be the

sub-instance of R that contains all requests in R except r′
i+1 and all requests

that are released after r′
i+1 (i.e., released at time t̃r′

i+1
and processed after r′

i+1,
or released after time t̃r′

i+1
) and that GA could accept instead of r′

i+1. By the
inductive hypothesis, OPT can achieve profit at most i · (1 + 2	 bu−bl

2t 
) · r on
the request sequence R̄. The increase in profit that OPT can achieve on request
sequence R compared to R̄ must be due to requests accepted without cost that
start in the interval [t̃r′

i+1
+bl,∞) as all requests that start earlier were presented

before time t̃r′
i+1

and are thus contained in R̄. Let Q be a largest set of requests
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in R \ R̄ with start times in [t̃r′
i+1

+ bl,∞) that can be accepted without cost by
OPT . Clearly, PR∗ ≤ PR̄∗ + r · |Q|, where R̄∗ denotes the requests accepted by
an optimal solution for the instance R̄.

We claim that the first request in Q must have pick-up location pr′
i+1

as
otherwise that request would have to be contained in R̄, a contradiction to Q
being a subset of R \ R̄. To see this, assume that the request with earliest start
time after t̃r′

i+1
+ bl in Q has pick-up location ṗr′

i+1
. Denote that request by rj .

If rj was presented before r′
i+1, it is clearly contained in R̄. If rj was presented

after r′
i+1, it is also contained in R̄ because GA cannot accept it instead of r′

i+1

(as s′ is at location pr′
i+1

after serving r′
i and GA accepts requests in order of

increasing start times by Observation 2).
Before time t̃r′

i+1
, OPT can accept requests with pick-up location ṗr′

i+1
that

start no later than t̃r′
i+1

+ bu. After time t̃r′
i+1

, OPT can only accept requests
with pick-up location ṗr′

i+1
that start strictly before tr′

i+1
+ t, because s′ arrives

at ṗr′
i+1

at time tr′
i+1

+ t and could serve any request with pick-up location ṗr′
i+1

from that time onward.
First, consider the case that t̃r′

i+1
+ bu ≥ tr′

i+1
+ t. The last request that

OPT can accept with pick-up location ṗr′
i+1

starts no later than t̃r′
i+1

+ bu.
After that request, OPT can accept at most one more request with pick-up
location pr′

i+1
. To bound the size of Q, we bound the maximum number of pairs

of requests (one with pick-up location 0 and the next with pick-up location 1)
that OPT can accept. As the last request with pick-up location ṗr′

i+1
that OPT

can accept has start time at most t̃r′
i+1

+ bu, the start time of the first request
of the last pair that OPT accepts is at most t̃r′

i+1
+ bu − t. As the start times

of consecutive pairs differ by at least 2t, the number of pairs is bounded by
1 + �((t̃r′

i+1
+ bu − t) − (t̃r′

i+1
+ bl))/2t = 1 + �(bu − bl − t)/2t. If bu − bl − t

is a multiple of 2t, this bound is equal to 1 + (bu − bl − t)/2t = 	(bu − bl)/2t
.
Otherwise, the bound is equal to 	(bu − bl − t)/2t
 ≤ 	(bu − bl)/2t
. After the
last pair, OPT can accept at most one more request with pick-up location pr′

i+1
.

Therefore, |Q| ≤ 1 + 2 · 	 bu−bl
2t 
.

Now, consider the case that t̃r′
i+1

+ bu < tr′
i+1

+ t. Again, we consider the
maximum number of pairs of requests (one with pick-up location pr′

i+1
and the

next with pick-up location ṗr′
i+1

) that OPT can accept. As the last request with
pick-up location ṗr′

i+1
that OPT can accept must have start time strictly smaller

than tr′
i+1

+t ≤ t̃r′
i+1

+bu+t, the start time of the first request of the last pair that
OPT accepts is strictly smaller than t̃r′

i+1
+ bu. The start times of consecutive

pairs differ by at least 2t. If bu − bl is a multiple of 2t, the number of pairs is
bounded by ((t̃r′

i+1
+bu)−(t̃r′

i+1
+bl))/2t = (bu−bl)/2t = 	(bu−bl)/2t
. If bu−bl

is not a multiple of 2t, the number of pairs is bounded by 1 + �(bu − bl)/2t =
	(bu−bl)/2t
. In any case, the number of pairs is at most 	(bu−bl)/2t
. After the
last pair, OPT can accept at most one more request with pick-up location pr′

i+1
.

Therefore, |Q| ≤ 1 + 2 · 	 bu−bl
2t 
.
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In either case, |Q| ≤ 1 + 2	 bu−bl
2t 
. Thus, PR∗ ≤ PR̄∗ + r · |Q| ≤ i(1 +

2	 bu−bl
2t 
)r + (1 + 2	 bu−bl

2t 
)r = (i + 1)(1 + 2	 bu−bl
2t 
)r. As PR′ = (i + 1)r, we get

PR∗/PR′ ≤ 1 + 2	 bu−bl
2t 
. ��

4 Conclusion

We have studied an on-line problem with one server and two locations that is
motivated by applications such as car sharing and taxi dispatching. In partic-
ular, we have analyzed the effects of different constraints on the booking time
of requests on the competitive ratio that can be achieved. For all variants of
booking time constraints and costs for empty server movements we have given
matching lower and upper bounds on the competitive ratio. The upper bounds
are all achieved by the same greedy algorithm (GA). Interestingly, the size of
the booking horizon does not affect the competitive ratio if 0 ≤ c < r, but the
competitive ratio increases as bu − bl increases if c = r.

A number of directions for future work arise from this work. In particular, it
would be interesting to extend our results to the case of more than one server
and more than two locations. It would be interesting to determine how the
constraints on the booking time affect the competitive ratio for the general car-
sharing problem with k servers and m locations.
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Abstract. In this paper we consider the directed path-width and
directed tree-width of directed co-graphs. As an important combinatorial
tool, we show how the directed path-width and the directed tree-width
can be computed for the disjoint union, series composition, and order
composition of two directed graphs. These results imply the equality of
directed path-width and directed tree-width for directed co-graphs and a
linear-time solution for computing the directed path-width and directed
tree-width of directed co-graphs, which generalizes the known results for
undirected co-graphs of Bodlaender and Möhring.

Keywords: Directed path-width · Directed tree-width
Directed co-graphs

1 Introduction

Tree-width is a well-known graph parameter [20]. Many NP-hard graph prob-
lems admit polynomial-time solutions when restricted to graphs of bounded
tree-width using the tree-decomposition. The same holds for path-width since a
path-decomposition can be regarded as a special case of a tree-decomposition.
Computing both parameters is hard even for bipartite graphs and complements
of bipartite graphs [1], while for co-graphs it has been shown [6,7] that the
path-width equals the tree-width and how to compute this value in linear time.

During the last years, width parameters for directed graphs have received a
lot of attention [11]. Among these are directed path-width and directed tree-
width [16]. We show useful properties of directed path-decompositions and
directed tree-decompositions, such as bidirectional complete subdigraph and
bidirectional complete bipartite subdigraph lemmas. These results allow us to
show how the directed path-width and directed tree-width can be computed for
the disjoint union, series composition, and order composition of two directed
graphs. Our proofs are constructive, i.e. a directed path-decomposition and a
directed tree-decomposition can be computed from a di-co-tree. We show that the
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directed path-width and directed tree-width are equal for directed co-graphs and
give a linear-time solution for computing this value of directed co-graphs. Since
for complete bioriented digraphs the directed path-width equals the (undirected)
path-width of the corresponding underlying undirected graph and the directed
tree-width equals the (undirected) tree-width of the corresponding underlying
undirected graph our results generalize the known results from [6,7].

2 Preliminaries

Co-graphs have been introduced in the 1970s by a number of authors under
different notations. Co-graphs can be characterized as the set of graphs without
an induced path with four vertices [8]. From an algorithmic point of view a
recursive definition based on the following operations is very useful.

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint graphs.

– The disjoint union of G1, . . . , Gk, denoted by G1 ∪ . . .∪Gk, is the graph with
vertex set V1 ∪ . . . ∪ Vk and edge set E1 ∪ . . . ∪ Ek.

– The join composition of G1, . . . , Gk, denoted by G1 × . . . × Gk, is defined by
their disjoint union plus all possible edges between vertices of Gi and Gj for
all 1 ≤ i, j ≤ k, i �= j.

Definition 1 (Co-graphs). The class of co-graphs is recursively defined as
follows.

(i) Every graph on a single vertex ({v}, ∅), denoted by •, is a co-graph.
(ii) If G1, . . . , Gk are vertex-disjoint co-graphs, then

(a) the disjoint union G1 ∪ . . . ∪ Gk and
(b) the join composition G1 × . . . × Gk are co-graphs.

By this definition every co-graph can be represented by a tree structure,
denoted as co-tree. The leaves of the co-tree represent the vertices of the graph
and the inner nodes of the co-tree correspond to the operations applied on the
subexpressions defined by the subtrees. For every graph G one can decide in
linear time, whether G is a co-graph and in the case of a positive answer construct
a co-tree for G, see [14]. Using the co-tree a lot of hard problems have been shown
to be solvable in polynomial time when restricted to co-graphs. Such problems
are clique, independent set, partition into independent sets (chromatic number),
partition into cliques, hamiltonian cycle, isomorphism [8].

We recall the definition of directed co-graphs from [9]. The following opera-
tions have already been considered in [3]. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek)
be k vertex-disjoint digraphs.

– The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ . . . ⊕ Gk, is the digraph
with vertex set V1 ∪ . . . ∪ Vk and arc set E1 ∪ . . . ∪ Ek.

– The series composition of G1, . . . , Gk, denoted by G1 ⊗ . . . ⊗ Gk, is defined
by their disjoint union plus all possible arcs between vertices of Gi and Gj

for all 1 ≤ i, j ≤ k, i �= j.
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– The order composition of G1, . . . , Gk, denoted by G1 � . . .�Gk, is defined by
their disjoint union plus all possible arcs from vertices of Gi to vertices of Gj

for all 1 ≤ i < j ≤ k.

Definition 2 (Directed co-graphs, [9]). The class of directed co-graphs is
recursively defined as follows.

(i) Every digraph on a single vertex ({v}, ∅), denoted by •, is a directed co-
graph.

(ii) If G1, . . . , Gk are vertex-disjoint directed co-graphs, then
(a) the disjoint union G1 ⊕ . . . ⊕ Gk,
(b) the series composition G1 ⊗ . . . ⊗ Gk, and
(c) the order composition G1 � . . . � Gk are directed co-graphs.

By the definition we conclude that for every directed co-graph G = (V,E)
the underlying undirected graph u(G), which is defined by u(G) = (V,Eu),
Eu = {{u, v} | (u, v) ∈ E or (v, u) ∈ E} is a co-graph, but not vice versa.

Similar as undirected co-graphs by the P4, also directed co-graphs can be
characterized by excluding eight forbidden induced subdigraphs [9].

Obviously for every directed co-graph we can define a tree structure, denoted
as di-co-tree. The leaves of the di-co-tree represent the vertices of the graph and
the inner nodes of the di-co-tree correspond to the operations applied on the
subexpressions defined by the subtrees. For every directed co-graph one can
construct a di-co-tree in linear time, see [9]. The following lemma shows that it
suffices to consider binary di-co-trees.

Lemma 1 (�1). Every di-co-tree T can be transformed into an equivalent
binary di-co-tree T ′, such that every inner vertex in T ′ has exactly two sons.

In [12] the relation of directed co-graphs to the set of graphs of directed
NLC-width 1 and to the set of graphs of directed clique-width 2 is analyzed.

3 Directed Path-Width of Directed Co-graphs

According to Barát [2], the notation of directed path-width was introduced by
Reed, Seymour, and Thomas around 1995 and relates to directed tree-width
introduced by Johnson et al. in [16].

Definition 3 (directed path-width). A directed path-decomposition of a
digraph G = (V,E) is a sequence (X1, . . . , Xr) of subsets of V , called bags,
such that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪ Xr = V .
(dpw-2) For each (u, v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj.
(dpw-3) If u ∈ Xi and u ∈ Xj for some u ∈ V and two indices i, j with i ≤ j,

then u ∈ X� for all indices � with i ≤ � ≤ j.
1 The proofs of the results marked with a � are omitted due to space restrictions.
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The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

The directed path-width of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition of G of width w.

Lemma 2 ([22]). Let G be some digraph, then d-pw(G) ≤ pw(u(G)).

Lemma 3 ([2]). Let G be some complete bioriented digraph, then d-pw(G) =
pw(u(G)).

Determining whether the (undirected) path-width of some given (undirected)
graph is at most some given value w is NP-complete even for bipartite graphs,
complements of bipartite graphs [1], chordal graphs [13], and planar graphs with
maximum vertex degree 3 [18]. Lemma 3 implies that determining whether the
directed path-width of some given digraph is at most some given value w is
NP-complete even for digraphs whose underlying graphs lie in the mentioned
classes. On the other hand, determining whether the (undirected) path-width of
some given (undirected) graph is at most some given value w is polynomial for
permutation graphs [5], circular arc graphs [21], and co-graphs [7].

While undirected path-width can be solved by an FPT-algorithm [4], the
existence of such an algorithm for directed path-width is still open. The directed
path-width of a digraph G = (V,E) can be computed in time O( |E|·|V |2d-pw(G)

(d-pw(G)−1)! ) by
[17]. This leads to an XP-algorithm for directed path-width w.r.t. the standard
parameter and implies that for each constant w, it is decidable in polynomial
time whether a given digraph has directed path-width at most w.

In order to prove our main results we show some properties of directed path-
decompositions. Similar results are known for undirected path-decompositions
and are useful within several places.

Lemma 4 ([22]). Let G be some digraph and H be an induced subdigraph of G,
then d-pw(H) ≤ d-pw(G).

Lemma 5 (�, Bidirectional complete subdigraph). Let G = (V,E) be
some digraph, G′ = (V ′, E′) with V ′ ⊆ V be a bidirectional complete subdigraph,
and (X1, . . . , Xr) a directed path-decomposition of G. Then there is some i, 1 ≤
i ≤ r, such that V ′ ⊆ Xi.

Lemma 6 (�). Let G = (V,E) be a digraph and (X1, . . . , Xr) a directed path-
decomposition of G. Further let A,B ⊆ V , A ∩ B = ∅, and {(u, v), (v, u) | u ∈
A, v ∈ B} ⊆ E. Then there is some i, 1 ≤ i ≤ r, such that A ⊆ Xi or B ⊆ Xi.

Lemma 7 (�). Let X = (X1, . . . , Xr) be a directed path-decomposition of some
digraph G = (V,E). Further let A,B ⊆ V , A ∩ B = ∅, and {(u, v), (v, u) | u ∈
A, v ∈ B} ⊆ E. If there is some i, 1 ≤ i ≤ r, such that A ⊆ Xi then there are
1 ≤ i1 ≤ i2 ≤ r such that
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1. for all i, i1 ≤ i ≤ i2 is A ⊆ Xi,
2. B ⊆ ∪i2

i=i1
Xi, and

3. X ′ = (X ′
i1

, . . . , X ′
i2

) where X ′
i = Xi ∩(A∪B) is a directed path-decomposition

of the digraph induced by A ∪ B.

Theorem 1. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. d-pw(G ⊕ H) = max{d-pw(G), d-pw(H)}
2. d-pw(G � H) = max{d-pw(G), d-pw(H)}
3. d-pw(G ⊗ H) = min{d-pw(G) + |VH |, d-pw(H) + |VG|}
Proof. 1. In order to show d-pw(G ⊕ H) ≤ max{d-pw(G),d-pw(H)} we con-

sider a directed path-decomposition (X1, . . . , Xr) for G and a directed path-
decomposition (Y1, . . . , Ys) for H. Then (X1, . . . , Xr, Y1, . . . , Ys) leads to a
directed path-decomposition of G ⊕ H.
Since G and H are induced subdigraphs of G ⊕ H, by Lemma 4 the directed
path-width of both digraphs leads to a lower bound on the directed path-
width for the combined graph.

2. By the same arguments as used for (1.).
3. In order to show d-pw(G ⊗ H) ≤ d-pw(G) + |VH | let (X1, . . . , Xr) be a

directed path-decomposition of G. Then we obtain by (X1 ∪ VH , . . . , Xr ∪
VH) a directed path-decomposition of G ⊗ H. In the same way a directed
path-decomposition of H leads to a directed path-decomposition of G ⊗ H
which implies that d-pw(G ⊗ H) ≤ d-pw(H) + |VG|. Thus d-pw(G ⊗ H) ≤
min{d-pw(G) + |VH |,d-pw(H) + |VG|}.

For the reverse direction let X = (X1, . . . , Xr) be a directed path-decom-
position of G ⊗ H. By Lemma 6 we know that there is some i, 1 ≤ i ≤ r,
such that VG ⊆ Xi or VH ⊆ Xi. We assume that VG ⊆ Xi. We apply Lemma
7 using G ⊗ H as digraph, A = VG and B = VH in order to obtain a directed
path-decomposition X ′ = (X ′

i1
, . . . , X ′

i2
) for G ⊗ H where for all i, i1 ≤ i ≤ i2,

it holds VG ⊆ Xi and VH ⊆ ∪i2
i=i1

Xi. Further X ′′ = (X ′′
i1

, . . . , X ′′
i2

), where
X ′′

i = X ′
i∩VH leads to a directed path-decomposition of H. Thus there is some

i, i1 ≤ i ≤ i2, such that |Xi ∩ VH | ≥ d-pw(H) + 1. Since VG ⊆ Xi, we know
that |Xi ∩ VH | = |Xi| − |VG| and thus |Xi| ≥ |VG| + d-pw(H) + 1. Thus the
width of directed path-decomposition (X1, . . . , Xr) is at least d-pw(H)+|VG|.
If we assume that VH ⊆ Xi it follows that the width of directed path-
decomposition (X1, . . . , Xr) is at least d-pw(G) + |VH |. �

Lemma 8 (�). Let G and H be two directed co-graphs, then pw(u(G � H)) >
d-pw(G � H).

Corollary 1 (�). Let G be some directed co-graph, then d-pw(G) = pw(u(G))
if and only if there is an expression for G without any order operation. Further
d-pw(G) = 0 if and only if there is an expression for G without any series
operation.
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4 Directed Tree-Width of Directed Co-graphs

An acyclic digraph (DAG for short) is a digraph without any cycles as subdi-
graph. An out-tree is a digraph with a distinguished root such that all arcs are
directed away from the root. For two vertices u, v of an out-tree T the notation
u ≤ v means that there is a directed path on ≥ 0 arcs from u to v and u < v
means that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be some digraph and Z ⊆ V . A vertex set S ⊆ V is Z-
normal, if there is no directed walk in G−Z with first and last vertices in S that
uses a vertex of G − (Z ∪ S). That is, a set S ⊆ V is Z-normal, if every directed
walk which leaves and again enters S must contain only vertices from Z ∪ S.2

Definition 4 (directed tree-width, [16]). A (arboreal) tree-decomposition of
a digraph G = (VG, EG) is a triple (T,X ,W). Here T = (VT , ET ) is an out-tree,
X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of subsets of VG, such that
the following two conditions hold true.

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into nonempty subsets.3

(dtw-2) For every (u, v) ∈ ET the set
⋃{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

The width of a (arboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃

e∼r

Xe| − 1.

Here e ∼ r means that r is one of the two vertices of arc e. The directed tree-
width of G, d-tw(G) for short, is the smallest integer k such that there is a
(arboreal) tree-decomposition (T,X ,W) of G of width k.

Lemma 9 ([16]). Let G be some digraph, then d-tw(G) ≤ tw(u(G)).

Lemma 10 ([16]). Let G be some complete bioriented digraph, then d-tw(G) =
tw(u(G)).

Determining whether the (undirected) tree-width of some given (undirected)
graph is at most some given value w is NP-complete even for bipartite graphs
and complements of bipartite graphs [1]. Lemma 10 implies that determining
whether the directed tree-width of some given digraph is at most some given
value w is NP-complete even for digraphs whose underlying graphs lie in the
mentioned classes.

The results of [16] lead to an XP-algorithm for directed tree-width w.r.t. the
standard parameter which implies that for each constant w, it is decidable in
polynomial time whether a given digraph has directed tree-width at most w.

In order to show our main results we show some properties of directed tree-
decompositions.
2 Please note that our definition of Z-normality differs slightly from the definition in

[16] but this trivially makes no difference for the directed tree-width.
3 A remarkable difference to the undirected tree-width [20] is that the sets Wr have

to be disjoint and non-empty.
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Lemma 11 ([16]). Let G be some digraph and H be an induced subdigraph of
G, then d-tw(H) ≤ d-tw(G).

Lemma 12 (�). Let G be some digraph, then d-tw(G) ≤ d-pw(G).

Lemma 13 (�, Bidirectional complete subdigraph). Let (T,X ,W), T =
(VT , ET ), where rT is the root of T , be a directed tree-decomposition of some
digraph G = (V,E) and G′ = (V ′, E′) with V ′ ⊆ V be a bidirectional complete
subdigraph. Then V ′ ⊆ WrT

or there is some (r, s) ∈ ET , such that V ′ ⊆ Ws ∪
X(r,s).

Lemma 14 (�). Let G = (V,E) be some digraph, (T,X ,W), T = (VT , ET ),
where rT is the root of T , be a directed tree-decomposition of G. Further let
A,B ⊆ V , A ∩ B = ∅, and {(u, v), (v, u) | u ∈ A, v ∈ B} ⊆ E. Then A ∪ B ⊆
WrT

or there is some (r, s) ∈ ET , such that A ⊆ Ws ∪X(r,s) or B ⊆ Ws ∪X(r,s).

Lemma 15. Let G be a digraph of directed tree-width at most k. Then there is
a directed tree-decomposition (T,X ,W), T = (VT , ET ), of width at most k for
G such that |Wr| = 1 for every r ∈ VT .

Proof. Let G = (V,E) be a digraph and (T,X ,W), T = (VT , ET ), be a
directed tree-decomposition of G. Let r ∈ VT such that Wr = {v1, . . . , vk}
for some k > 1. Further let p be the predecessor of r in T and s1, . . . , s�

be the successors of r in T . Let (T ′,X ′,W ′) be defined by the following
modifications of (T,X ,W): We replace vertex r in T by the directed path
P (r) = ({r1, . . . , rk}, {(r1, r2), . . . , (rk−1, rk)}) and replace arc (p, r) by (p, r1)
and the � arcs (r, sj), 1 ≤ j ≤ �, by the � arcs (rk, sj), 1 ≤ j ≤ � in T ′. We define
the sets W ′

rj
= {vj} for 1 ≤ j ≤ k. Further we define the sets X ′

(p,r1)
= X(p,r),

X(rk,sj) = X(r,sj), 1 ≤ j ≤ �, and X ′
(rj ,rj+1)

= X(p,r)∪{r1, . . . , rj}, 1 ≤ j ≤ k−1.
By our definition W ′ leads to a partition of V into nonempty subsets. Further

for every new arc (ri−1, ri), 1 < i ≤ k, the set
⋃{W ′

r′ | r′ ∈ VT ′ , ri ≤ r′} is
X ′

(ri−1,ri)
-normal since

⋃{Wr′ | r′ ∈ VT , r ≤ r′} is X(p,r)-normal and X ′
(ri−1,ri)

=
X(p,r)∪{r1, . . . , ri−1}. The property is fulfilled for arc (p, r1) and (vk, sj), 1 ≤ j ≤
� since the considered vertex sets of G did not change. Thus triple (T ′,X ′,W ′)
is a directed tree-decomposition of G.

The width of (T ′,X ′,W ′) is at most the width of (T,X ,W) since for every
rj , 1 ≤ j ≤ k, the following holds: |W ′

rj
∪ ⋃

e∼rj
X ′

e| ≤ |Wr ∪ ⋃
e∼r Xe|.

If we perform this transformation for every r ∈ VT such that |Wr| > 1, we
obtain a directed tree-decomposition of G which fulfills the properties of the
lemma. �
Lemma 16. Let G = (V,E) be a digraph of directed tree-width at most k, such
that V1 ∪ V2 = V , V1 ∩ V2 = ∅, and {(u, v), (v, u) | u ∈ V1, v ∈ V2} ⊆ E. Then
there is a directed tree-decomposition (T,X ,W), T = (VT , ET ), of width at most
k for G such that for every e ∈ ET holds V1 ⊆ Xe or for every e ∈ ET holds
V2 ⊆ Xe.
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Proof. Let G = (V,E) be a digraph of directed tree-width at most k and
(T,X ,W), T = (VT , ET ), be a directed tree-decomposition of width at most
k for G. By Lemma 15 we can assume that holds: |Wr| = 1 for every r ∈ VT .

We show the claim by traversing T in a bottom-up order. Let t′ be a leaf
of T , t be the predecessor of t′ in T and Wt′ = {v} for some v ∈ V1. Then the
following holds: V2 ⊆ X(t,t′) since (v, v′) ∈ E and (v′, v) ∈ E for every v′ ∈ V2.

If t′ is a non-leaf of T and there is a successor t′′ of t′ in T such that V1 ⊆
X(t′,t′′) and there is a successor t′′′ of t′ in T such that V2 ⊆ X(t′,t′′′). Then the
width of (T,X ,W) is |V1| + |V2| − 1 which allows us to insert V1 into every set
Xe as well as V2 into every set Xe.

Otherwise let t′ be a non-leaf of T and V2 ⊆ X(t′,t′′) for every successor t′′ of
t′. Let t be the predecessor of t′ and s be the predecessor of t in T . We distinguish
the following two cases.

– Let V1 ⊆ ∪t′≤t̃Wt̃. We replace X(t,t′) by X(t,t′)∪V2 in order to meet our claim
for edge (t, t′).
We have to show that this does not increase the width of the obtained directed
tree-decomposition at vertex t′ and at vertex t.
The value of |Wt′ ∪ ⋃

e∼t′ Xe| does not change, since V2 ⊆ X(t′,t′′) by induction
hypothesis and (t′, t′′) ∼ t′.
Since V1 ⊆ ∪t≤t̃Wt̃ by (dtw-2) we can assume that V1 ∩ X(s,t) = ∅. Since all
Wr have size one we know that |Wt ∪ ⋃

e∼t Xe| ≤ |Wt′ ∪ ⋃
e∼t′ Xe|.

– Let V1 �⊆ ∪t′≤t̃Wt̃. We distinguish the following two cases.
• Let V2 ∩ ∪t′≤t̃Wt̃ = ∅, then Wt′ = {v} for some v ∈ V1 and thus V2 ⊆

X(t,t′) since (v, v′) ∈ E and (v′, v) ∈ E for every v′ ∈ V2.
• Let V2 ∩ ∪t′≤t̃Wt̃ �= ∅. Since {(u, v), (v, u) | u ∈ V1, v ∈ V2} ⊆ E the

following is true:

V −
⋃

t′≤t̃

Wt̃ = (V1 ∪ V2) −
⋃

t′≤t̃

Wt̃ ⊆ X(t,t′). (1)

That is, all vertices of G which are not of one of the sets Wt̃ for all
successors t̃ of t′ are in set X(t,t′).
We define X(t,t′) = (V −∪t′≤t̃Wt̃)∪V2 in order to meet our claim for edge
(t, t′).
We have to show that this does not increase the width of the obtained
directed tree-decomposition at vertex t′ and and vertex t.
The value of |Wt′ ∪ ⋃

e∼t′ Xe| does not change, since V2 ⊆ X(t′,t′′) by
induction hypothesis and (t′, t′′) ∼ t′ and by (1).
Further (1) implies that X(s,t) ⊆ X(t,t′) and thus |Wt ∪ ⋃

e∼t Xe| ≤
|Wt′ ∪ ⋃

e∼t′ Xe|.
Thus if T has a leaf t′ such that Wt′ = {v} for some v ∈ V1 we obtain a

directed tree-decomposition (T,X ,W), T = (VT , ET ), such that V2 ⊆ Xe for
every e ∈ ET . And if T has a leaf t′ such that Wt′ = {v} for some v ∈ V2

we obtain a directed tree-decomposition (T,X ,W), T = (VT , ET ), such that
V1 ⊆ Xe for every e ∈ ET . �
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Theorem 2. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. d-tw(G ⊕ H) = max{d-tw(G), d-tw(H)}
2. d-tw(G � H) = max{d-tw(G), d-tw(H)}
3. d-tw(G ⊗ H) = min{d-tw(G) + |VH |, d-tw(H) + |VG|}
Proof. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint digraphs.
Further let (TG,XG,WG) be a directed tree-decomposition of G such that rG is
the root of TG = (VTG

, ETG
) and (TH ,XH ,WH) be a directed tree-decomposition

of H such that rH is the root of TH = (VTH
, ETH

).

1. We define a directed tree-decomposition (TJ ,XJ ,WJ ) for J = G ⊕ H. Let �G

be a leaf of TG. Let TJ be the disjoint union of TG and TH with an additional
arc (�G, rH). Further let XJ = XG ∪XH ∪{X(�G,rH)}, where X(�G,rH) = ∅ and
WJ = WG ∪ WH . Triple (TJ ,XJ ,WJ ) satisfies (dtw-1) since the combined
decompositions satisfy (dtw-1). Further (TJ ,XJ ,WJ ) satisfies (dtw-2) since
additionally in J there is no arc from a vertex of H to a vertex of G. This shows
that d-tw(G ⊕ H) ≤ max{d-tw(G),d-tw(H)}. Since G and H are induced
subdigraphs of G ⊕ H, by Lemma 11 the directed tree-width of both leads to
a lower bound on the directed tree-width for the combined graph.

2. The same arguments lead to d-tw(G � H) = max{d-tw(G),d-tw(H)}.
3. In order to show d-tw(G ⊗ H) ≤ d-tw(G) + |VH | let TJ be the disjoint union

of a new root rJ and TG with an additional arc (rJ , rG). Further let XJ =
X ′

G ∪ {X(rJ ,rG)}, where X ′
G = {Xe ∪ VH | e ∈ ETG

} and X(rJ ,rG) = VH and
WJ = WG ∪ {WrH

}, where WrJ
= VH . Then we obtain by (TJ ,XJ ,WJ )

a directed tree-decomposition of width at most d-tw(G) + |VH | for G ⊗ H.
In the same way a new root rJ and TH with an additional arc (rJ , rH),
X ′

H = {Xe ∪ VG | e ∈ ETH
}, X(rJ ,rH) = VG, WrJ

= VG lead to a directed
tree-decomposition of width at most d-tw(H)+|VG| for G ⊗ H. Thus d-tw(G ⊗
H) ≤ min{d-tw(G) + |VH |,d-tw(H) + |VG|}.
For the reverse direction let (TJ ,XJ ,WJ ), TJ = (VT , ET ), be a directed tree-
decomposition of minimal width for G ⊗ H. By Lemma 16 we can assume
that VG ⊆ Xe for every e ∈ ET or VH ⊆ Xe for every e ∈ ET . Further by
Lemma 15 we can assume that |Wt| = 1 for every t ∈ VT .
We assume that VG ⊆ Xe for every e ∈ ET . We define (T ′

J ,X ′
J ,W ′

J ), T ′
J =

(V ′
T , E′

T ), by X ′
e = Xe ∩ VH and W ′

s = Ws ∩ VH . Whenever this leads to
an empty set W ′

s where t is the predecessor of s in T ′
J we remove vertex

s from T ′
J and replace every arc (s, t′) by (t, t′) with the corresponding set

X(t,t′) = X(s,t′) ∩ VH .
Then (T ′

J ,X ′
J ,W ′

J ) is a directed tree-decomposition of H as follows.
– W ′

J is a partition of VH into nonempty sets.
– Let e be an arc in T ′

J which is also in TJ . Since e ∼ s implies Ws = W ′
s =

{v} for some v ∈ VH normality condition remains true.
Arcs (t, t′) in T ′

J which are not in TJ are obtained by two arcs (t, s)
and (s, t′) from TJ . If ∪{Wr | r ∈ VT , t′ ≤ r} is X(s,t′)-normal, then
∪{Wr | r ∈ V ′

T , t′ ≤ r} is X(t,t′)-normal since X(t,t′) = X(s,t′) ∩ VH .
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The width of (T ′
J ,X ′

J ,W ′
J ) is at most d-tw(G ⊗ H) − |VG| as follows.

– Let s be a vertex in T ′
J such that Wt ∩ VH �= ∅ for all (s, t) in TJ .

|W ′
s ∪ ⋃

e∼s X ′
e| = |(Ws ∩ VH) ∪ ⋃

e∼s(Xe ∩ VH)| by definition
= |(Ws ∪ ⋃

e∼s Xe) ∩ VH | factor out VH

= |Ws ∪ ⋃
e∼s Xe| − |VG| since VG ⊆ Xe

– Let s be a vertex in T ′
J such that there is (s, t) in TJ with Wt ∩ VH = ∅.

|W ′
s ∪

⋃

e∼s

X ′
e| = |(Ws ∩ VH) ∪ (

X(t′′,s) ∩ VH

) ∪
⋃

(s,t)∈ET

Wt∩VH=∅

(
X(t,t′) ∩ VH

)

∪
⋃

(s,t)∈ET

Wt∩VH 	=∅

(
X(s,t) ∩ VH

) | (2)

In order to bound this value we observe that for Wt ∩ VH = ∅ the following
is true: Wt = {v} for v ∈ VG. Then X(s,t) = ((VG ∪VH)−∪t≤t̃Wt̃)∪VG by
Lemma 16. That is, X(s,t) consists of all vertices from VG and all vertices
which are not of one of the sets Wt̃ for all successors t̃ of t. Applying this
argument to X(t,t′) we only can have v as an additional vertex. But since
v ∈ VG we know that v ∈ X(s,t) by our assumption. This implies

X(t,t′) ⊆ X(s,t) for all arcs (s, t) in TJ such that Wt ∩ VH = ∅ (3)

which allows the following estimations:

|W ′
s ∪ ⋃

e∼s X ′
e| = |(Ws ∩ VH) ∪ ⋃

e∼s(Xe ∩ VH)| by (2) and (3)
= |(Ws ∪ ⋃

e∼s Xe) ∩ VH | factor out VH

= |Ws ∪ ⋃
e∼s Xe| − |VG| since VG ⊆ Xe

Thus the width of (T ′
J ,X ′

J ,W ′
J ) is at most d-tw(G ⊗ H) − |VG| and since

(T ′
J ,X ′

J ,W ′
J ) is a directed tree-decomposition of H it follows d-tw(H) ≤

d-tw(G ⊗ H) − |VG|
If we assume that VH ⊆ Xe for every e ∈ ET it follows that d-tw(G) ≤
d-tw(G ⊗ H) − |VH |. �
The proof of Theorem 2 even shows that for any directed co-graph there is

a tree-decomposition (T,X ,W) of minimal width such that T is a path.
Similar to the path-width results, we conclude the following results.

Corollary 2. Let G be some directed co-graph, then d-tw(G) = tw(u(G)) if
and only if there is an expression for G without any order operation. Further
d-tw(G) = 0 if and only if there is an expression for G without any series
operation.
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5 Directed Tree-Width and Directed Path-Width

Theorem 3. For every directed co-graph G, it holds that d-pw(G) = d-tw(G).

Proof. Let G = (V,E) be some directed co-graph. We show the result by induc-
tion on the number of vertices |V |. If |V | = 1, then d-pw(G) = d-tw(G) = 0. If
G = G1 ⊕ G2, then by Theorems 1 and 2 follows:

d-pw(G) = max{d-pw(G1),d-pw(G2)} = max{d-tw(G1),d-tw(G2)} = d-tw(G).

For the other two operations a similar relation holds. �
By Lemmas 3 and 10 our results generalize the known results from [6,7] but

can not be obtained by the known results.

Theorem 4. For every directed co-graph G = (V,E) which is given by a binary
di-co-tree the directed path-width and directed tree-width can be computed in time
O(|V |).
Proof. The statement follows by the algorithm given in Fig. 1, Theorems 1 and
2. The necessary sizes of the subdigraphs defined by subtrees of di-co-tree TG

can be precomputed in time O(|V |). �

Algorithm Directed Path-width(v)

if v is a leaf of di-co-tree TG

then d-pw(G[Tv]) = 0
else {

Directed Path-width(v ) v is the left successor of v
Directed Path-width(vr) vr is the right successor of v
if v corresponds to a ⊕ or a operation

then d-pw(G[Tv]) = max{d-pw(G[Tv ]),d-pw(G[Tvr ])}
else d-pw(G[Tv]) = min{d-pw(G[Tv ]) + |VG[Tvr ]|, d-pw(G[Tvr ]) + |VG[Tv ]|}

}

Fig. 1. Computing the directed path-width of G for every vertex of a di-co-tree TG.

For general digraphs d-pw(G) leads to a lower bound for pw(u(G)) and
d-tw(G) leads to a lower bound for tw(u(G)), see [2,16]. For directed co-graphs
we obtain a closer relation as follows.

Corollary 3 (�). Let G be a directed co-graph and ←→ω (G) be the size of a
largest bioriented clique of G. It then holds that

←→ω (G) = d-pw(G)−1 = d-tw(G)−1 ≤ pw(u(G))−1 = tw(u(G))−1 = ω(u(G)).

All values are equal if and only if G is a complete bioriented digraph.
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6 Conclusion and Outlook

In this paper we could generalize the equivalence of path-width and tree-width
of co-graphs which is known from [6,7] to directed graphs. Our results also hold
for more general directed tree-width definitions such as allowing empty sets Wr

in [15].
Related definitions given in [19] using sets Wr of size one only for the leaves

of T and in [10, Chap. 6] using strong components within (dtw-2) should be
considered in future work. Further research directions should extend the shown
results to larger classes as well as consider related width parameters.
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Abstract. We investigate pure Nash equilibria in generalized graph k-
coloring games where we are given an edge-weighted undirected graph
together with a set of k colors. Nodes represent players and edges cap-
ture their mutual interests. The strategy set of each player consists of k
colors. The utility of a player v in a given state or coloring is given by
the sum of the weights of edges {v, u} incident to v such that the color
chosen by v is different than the one chosen by u, plus the profit gained
by using the chosen color. Such games form some of the basic payoff
structures in game theory, model lots of real-world scenarios with selfish
players and extend or are related to several fundamental class of games.

We first show that generalized graph k-coloring games are poten-
tial games. In particular, they are convergent and thus Nash Equilibria
always exist. We then evaluate their performance by means of the widely
used notions of price of anarchy and price of stability and provide tight
bounds for two natural and widely used social welfare, i.e., utilitarian
and egalitarian social welfare.

1 Introduction

We consider generalized graph k-coloring games. These are played on edge-
weighted undirected graphs where nodes correspond to players and edges identify
social connections or relations between players. The strategy set of each player
is a set of k available colors (we assume that the colors are the same for each
player). When players select a color they induce a k-coloring or simply a coloring.
Each player has a profit function that expresses how much a player likes a color.
Given a coloring, the utility (or payoff ) of a player v colored i is the sum of the
weights of edges {v, u} incident to v, such that the color chosen by v is different
than the one chosen by u, plus the profit deriving from choosing color i. This
class of games forms some of the basic payoff structures in game theory, and can
model lots of real-life scenarios. Consider, for example, a set of companies that
have to decide which product to produce in order to maximize their revenue.
Each company has its own competitors (for example the ones that are in its
same region), and it is reasonable to assume that each company wants to mini-
mize the number of competitors that produce the same product. However, this is
not their only concern. Indeed, different products may guarantee different profits
c© Springer International Publishing AG, part of Springer Nature 2018
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to a company according to many economic factors like the expected profit, the
sponsorship revenue, and so on and so forth. Another possible scenario is the
one with miners deciding which land to drill for resources. To a miner it is surely
important to choose the land in which the number of rivals is minimized, but also
the land itself is important: maybe there is a land with no miners that is very
poor in resources, while another land that has been chosen by many miners may
be very rich in resources. Thus, for a player is important to find a compromise
between her neighbors’ decisions and her own strategy choice. Other interesting
applications can be found in [13,18,21].

Since players are assumed to be selfish, a well-known solution concept for this
kind of setting is the Nash Equilibrium. Formally, a coloring is a (pure) Nash
equilibrium if no player can improve her utility by unilaterally deviating from
her actual strategy. We stress that in our setting it is not required that edges
are properly colored, that is, in a Nash equilibrium, we can have edges whose
two endpoints use the same color.

Nash equilibrium is one of the most important concepts in game theory and it
provides a stable solution that is robust to deviations of single players. However,
selfishness may cause loss of social welfare, that is, a stable solution is not always
good with respect to the well-being of the society. We consider two natural and
widely used notions of welfare. Given a coloring, the utilitarian social welfare
is defined as the sum of the utilities of the players in the coloring, while the
egalitarian social welfare is defined as the minimum utility among all the players
in the coloring. Two used way of measuring the goodness of a Nash equilibrium
with respect to a social welfare are the price of anarchy [20] and the price of
stability [3]. We adopt such measures and study the quality of the worst (resp.
best) Nash stable outcome and refer to the ratio of its social welfare to the one
of the socially optimum one as to the price of anarchy (resp. stability). Roughly
speaking, the price of anarchy says, in the worst case, how the efficiency of a
system degrades due to selfish behavior of its players, while the price of stability
has a natural meaning of stability, since it is the optimal solution among the
ones which can be accepted by selfish players.

Our aim is to study the existence and the performance of Nash equilibria in
generalized graph k-coloring games. We focus only on undirected graphs since
for directed graphs even the problem of deciding whether an instance admits a
Nash equilibria is an hard problem, and there exist instances for which a Nash
equilibrium does not exist at all [21] (see Sect. 6 for further discussion about
directed graphs).

Our Results. We first show that generalized graph k-coloring games are poten-
tial games. In particular, they are convergent games and thus Nash Equilibria
always exist. Moreover, if the graph is unweighted then it is possible to compute a
Nash equilibrium in polynomial time. This is different from weighted undirected
graph, for which the problem of computing a Nash equilibrium is PLS-complete
even for k = 2 [25], since the max cut game is a special case of our game.
We then evaluate the goodness of Nash equilibria by means of the widely used
notions of price of anarchy and price of stability and show tight bounds for two
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natural and widely used social welfare, i.e., utilitarian and egalitarian social wel-
fare. Moreover, we provide tight results for the egalitarian social welfare related
to the case in which players have no personal preference on colors, that is, all
color profits are set to 0. Our results are illustrated in Table 1 (our original results
are marked with an ∗). Due to space constraints some proofs have been omitted.

Table 1. Overview of the results about the graph k-coloring games. New results are
marked with a “*”, while the other ones are obtained from [21].

Utilitarian SW Egalitarian SW

PoA PoS PoA PoS

Graph k-coloring without profits k
k− 1

1 k
k− 1

k
k− 1

*

Generalized graph k-coloring 2 * 3
2

* 2 * 2 *

Related Work. The graph k-coloring games (also called Max k-Cut games
and anticoordination games), that is the special case of the generalized graph
k-coloring games where the colors profits are set to zero, have been studied
in [18,21]. They consider the game applied to both undirected and directed
graphs (in the last case, each player is interested only in her outgoing neighbors).
They show that the graph k-coloring game is a potential game [22] in case of
undirected graphs and therefore a Nash equilibrium always exists. They only
consider the utilitarian social welfare and give a tight bound for the price of
anarchy, which is k

k − 1 , and show that any optimum is a Nash equilibrium (i.e.,
the price of stability is 1). Conversely, they show that even deciding whether
an unweighted directed graph admits a Nash equilibrium is NP-Hard, for any
number of colors k ≥ 2. As far as concerns graph k-coloring games in edge-
weighted undirected graphs, computing a Nash equilibrium is PLS-Complete
[25], while for unweighted undirected graphs the problem becomes polynomially
solvable.

A more complex payoff function is considered in [19], where the utility of a
player is equal to the sum of the distance of her color to the color of each of her
neighbors, applying a non-negative, real-valued, concave function.

Apt et al. [4] consider a coordination game in which, given a graph, players are
nodes and each player has to select a color so that the number of neighbors with
her same color is maximized. Here, each player has her own set of colors. When
the graph is undirected, the game converges to a Nash equilibria in polynomial
time. Instead, for directed graphs computing a Nash equilibria is NP-Complete
[5]. Feldman and Friedler [15] study the strong price of anarchy [2] of graph
k-coloring games, that is, the ratio of the social optimum to the worst strong
equilibrium [6], which is a Nash equilibrium resilient to deviations by group of
players.

To the best of our knowledge there is no paper that considers the price of
anarchy and stability for the graph k-coloring games under the egalitarian social
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welfare. However, we stress that the egalitarian social welfare has been studied
in many other settings, like e.g., congestion games [14], hedonic games [7], and
fair division problems [23].

The graph k-coloring games are strictly related to many fundamental games
in the scientific literature. For instance, they are strictly related to the unfriendly
partition problem [1,9]. Moreover, they can be seen as a particular hedonic game
(see [8] for an introduction to the topic), in which nodes with the same color
belong to the same coalition, and the utility of each player is equal to her degree
minus the number of neighbors that are in her own coalition. Nash equilibria in
hedonic games have been largely investigated [11,12,16,17] (just to cite a few).

Finally, there are other related games on graphs that involve coloring. In [24]
the authors study a game in which players are nodes of a graph. Each player has
to choose a color among k available ones, and her utility is defined as follows: if
no neighbor has chosen her same color then her utility is equal to the number
of players (not in her neighborhood) that have chosen her same color, otherwise
it is zero. They prove that this is a potential game and a Nash equilibria can be
found in polynomial time. Moreover, they show that any pure equilibrium is a
proper coloring.

2 Preliminaries

We are given an undirected simple graph G = (V,E,w), where |V | = n, |E| = m,
and w : E → R≥0 is the edge-weight function that associates a positive weight
to each edge. When weights are omitted they are assumed to be 1. We denote
by δv(G) =

∑
u∈V :{v,u}∈E w({v, u}) the sum of the weights of all the edges inci-

dent to v. The set of nodes with which a node v has an edge in common is
called v’s neighborhood. We will omit to specify (G) when clear from the con-
text. An instance of the generalized graph k-coloring game is a tuple (G,K,P ).
G = (V,E,w) is an undirected weighted graph without self loops, in which each
node v ∈ V is a selfish player (in the following we will use node and player
interchangeably). K is a set of k available colors (we assume that k ≥ 2). The
strategy set of each player is given by the k available colors, that is, the players
have the same set of actions. We denote with P : V × K → R≥0, the color profit
function, that defines how much a player likes a color, that is, if player v chooses
to use color i, then she gains Pv(i). For each player v, we define PM

v as the
greatest profit that v can gain from a color, namely, PM

v = maxi=1,...,kPv(i).
When Pv(i) = 0 ∀v ∈ V and ∀i ∈ k, that is the case without profits for the
chosen color, then the game is equivalent to the one analysed in [18,21], and
we refer to it as graph k-coloring game. A state of the game c = {c1, . . . , cn}
is a k-coloring, or simply a coloring, where cv is the color (i.e., a number from
1 to k) chosen by player v. In a certain coloring c, the payoff (or the utility)
of a player v is the sum of the weights of edges {v, u} incident to v, such that
the color chosen by v is different than the one chosen by u, plus the profit
gained by using the chosen color. Formally, for a coloring c, a player v’s payoff
μc(v) =

∑
u∈V :{v,u}∈E∧cv �=cu

w({v, u}) + Pv(cv). From now on, when an edge
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{v, u} provides utility to its endpoints in a coloring c, that is, when cv �= cu we
say that such edge is proper. We also say that an edge {v, u} is monochromatic
in a coloring c when cv = cu.

Let (c−v, c′
v) denote the coloring obtained from c by changing the strategy of

player v from cv to c′
v. Given a coloring c = {c1, . . . , cn}, an improving move of

player v in the coloring c is a strategy c′
v such that μ(c−v,c′

v)
(v) > μc(v). A state of

the game is a pure Nash or stable equilibrium if and only if no player can perform
an improving move. Formally, c = {c1, . . . , cn} is a NE if μc(v) ≥ μ(c−v,c′

v)
(v) for

any possible color c′
v and for any player v ∈ V . An improving dynamics (shortly

dynamics) is a sequence of improving moves. A game is said to be convergent
if, given any initial state c, any sequence of improving moves leads to a Nash
equilibrium.

Given a coloring c, we define the utilitarian social welfare function (denoted
with SWUT (c)) and the egalitarian social welfare (denoted with SWEG(c)) as
follows:

SWUT (c) =
∑

v∈V

μc(v) =
∑

v∈V

Pv(cv) +
∑

{v,u}∈E:cv �=cu

2w({v, u}) (1)

SWEG(c) = min
v∈V

μc(v) (2)

Let us denote C the set of all the possible colorings, and let Q be the set of all
the stable colorings. Given a social welfare function SW , we define the Price of
Anarchy (PoA) of the generalized graph k-coloring game as the ratio of the max-
imum social welfare among all the possible colorings over the minimum social
welfare among all the possible stable colorings. Formally, PoA = maxc∈CSW (c)

minc′∈QSW (c′) .
We further define the Price of Stability (PoS) of the generalized graph k-coloring
game as the ratio of the maximum social welfare among all the possible colorings
over the maximum social welfare among all the possible stable colorings. For-
mally, PoS = maxc∈CSW (c)

maxc′∈QSW (c′) . Intuitively, the PoA (resp. PoS) says us how much
worse is the social welfare at a worst (resp. best) Nash equilibrium, relative to
the social welfare of a centralized enforced optimum. We refer to the utilitar-
ian price of anarchy and the egalitarian price of anarchy when we are dealing
with utilitarian social welfare and egalitarian social welfare, respectively, and
likewise the same is for the utilitarian price of stability and the egalitarian price
of stability.

3 Existence of Nash Equilibria

We first show that the generalized graph k-coloring game is convergent, and
therefore, the Nash equilibria always exists. In fact for each coloring c we define
the potential function Φ(c) as the sum of the weights of proper colored edges
plus the profits that each player v gains for using color cv. Formally:

Φ(c) =
∑

{v,u}∈E:cv �=cu

w({v, u}) +
∑

v∈V

Pv(cv) (3)
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Proposition 1. For all k, any finite generalized graph k-coloring game
(G,K,P ) is convergent.

We notice that, on the one hand, if the graph is unweighted the dynamics
starting from the coloring in which each player v selects the color giving her the
maximum possible profit, that is, the color i such that Pv(i) = PM

v , converges
to a Nash equilibrium in at most |E| improving moves. On the other hand, if the
graph is weighted, computing a Nash Equilibrium is PLS-complete. It follows
from the fact that, when k = 2, our game is a generalization of the Cut Games
that is one of the first problem proved to be PLS-complete [25].

4 Utilitarian Social Welfare

In this section we focus on the utilitarian social welfare. We show tight bounds
both for utilitarian price of anarchy and stability.

4.1 Price of Anarchy

We recall that in the case with no color profits, the utilitarian price of anarchy
is exactly k

k − 1 [21]. Here we prove that for generalized graph k-coloring games
the utilitarian price of anarchy is equal to 2, that is, it is independent from the
number of colors. We start by showing that the utilitarian price of anarchy is at
most 2.

Theorem 2. The utilitarian price of anarchy of the generalized graph k-coloring
games is at most 2.

Proof. It is easy to see that, for any possible coloring, the utility of any player
v ∈ V cannot exceed PM

v + δv. Let c∗ be the coloring that maximizes the social
welfare, and c a stable coloring. We notice that, a player v, in any equilibrium,
has utility at least max{k − 1

k δv, PM
v }. In fact, on the one hand, by the Pigeonhole

principle, there always exists a color i such that,
∑

u:cu=i w({v, u}) ≤ 1
k δv. On

the other hand, player v can always select the color that maximizes her profit
function. We now consider the two following cases:

Case 1: PM
v ≥ δv

In this case it holds that:

μc∗(v)
μc(v)

≤ PM
v + δv

PM
v

≤ 2PM
v

PM
v

= 2 (4)

Case 2: PM
v < δv

Let PM
v = δv − x, where 0 < x ≤ δv. Let Yv(c) be the set of v’s neighbors

whose color in c is different from the one, say i, that maximizes the color profit
of v, namely u ∈ Yv(c) if u is a neighbor of v and cu �= i, where i ∈ K and
Pv(i) = PM

v . Let y =
∑

u∈Yv(c)
w({v, u}). Thus, in any Nash equilibrium the v’s
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payoff is at least max{PM
v +y, δv −y}. Therefore, both the following inequalities

hold:

μc∗(v)
μc(v)

≤ PM
v + δv

δv − x + y
=

2δv − x

δv − x + y
(5)

μc∗(v)
μc(v)

≤ PM
v + δv

δv − y
=

2δv − x

δv − y
(6)

Inequality (5) is true because, if v chooses color i, then she earns at least PM
v

(that is equal to δv − x) plus all the edges that are proper (and they are exactly
y). Inequality (6) holds because if v chooses any other color than i, she earns at
least δv − y. Notice that the ratio is upper-bounded by the minimum between
these two values, namely:

μc∗(v)
μc(v)

≤ min

{
2δv − x

δv − x + y
,
2δv − x

δv − y

}

, (7)

and thus it is maximized when 2δv−x
δv−x+y = 2δv−x

δv−y , that is, when x = 2y.
By applying it to inequality (5), we obtain:

μc∗(v)
μc(v)

≤ 2δv − 2y

δv − 2y + y
=

2 (δv − y)
δv − y

= 2

Therefore, we have that for any player v, μc∗ (v)
μc(v)

≤ 2. By summing over all the
players, the theorem follows. 	

We now show that the utilitarian price of anarchy is at least 2 even for the
special case of unweighted star graphs.

Theorem 3. The utilitarian price of anarchy of the generalized graph k-coloring
games is at least 2, even for the special case of unweighted star graphs.

4.2 Price of Stability

We now turn our attention to the utilitarian price of stability. We recall that in
the case with no color profits, the utilitarian price of stability is 1 [21]. Here we
start by showing that the utilitarian price of stability for the generalized graph
k-coloring games is at least 3

2 − ε, for any ε > 0, even for the special case of
unweighted star graphs.

Theorem 4. The utilitarian price of stability of the generalized graph k-coloring
games is at least 3

2 − ε, for any ε > 0, even for the special case of unweighted
star graphs.

We now show that the utilitarian price of stability for the generalized graph
k-coloring games is at most 3

2 .

Theorem 5. The utilitarian price of stability of the generalized graph k-coloring
games is at most 3

2 .
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Proof. In order to prove the upper bound for the utilitarian price of stability we
first need some preliminary definitions. Given a coloring c we define the following
two variables: let A(c) =

∑
v∈V Pv(cv) be the sum of the color profits gained

by the players in the coloring c, and let B(c) =
∑

{v,u}∈E:cv �=cu
w({v, u}) be the

sum of the weights of the properly colored edges in c. Thus, we can rewrite the
Eqs. (1) and (3) for the utilitarian social welfare and the potential function with
respect to a given coloring c as SWUT (c) = A(c)+2B(c) and Φ(c) = A(c)+B(c),
respectively.

Let c∗ be the coloring that maximizes the social welfare, and let N be the
Nash equilibrium that is reached by a dynamics starting from c∗. By the potential
function argument, since every improving move increases the potential value, it
must hold that:

A(N) + B(N) > A(c∗) + B(c∗) (8)

On the other hand, since c∗ is the coloring that maximizes the social welfare, it
holds that:

A(c∗) + 2B(c∗) ≥ A(N) + 2B(N) (9)

In order to prove that PoS ≤ 3
2 it is sufficient to show that the ratio between

SWUT (c∗) and SWUT (N) is less or equal than 3
2 . In fact, if such inequality

holds then, if N∗ is the best Nash equilibrium, SWUT (N) ≤ SWUT (N∗) and,
consequently, SWUT (c∗)

SWUT (N∗) ≤ SWUT (c∗)
SWUT (N) ≤ 3

2 .
We want to prove that:

SWUT (c∗)
SWUT (N)

≤ 3
2

(10)

and, by using the above defined A(c) and B(c), we get that this is true if and
only if:

A(c∗) + 2B(c∗) ≤ 3
2
A(N) + 3B(N) (11)

For the remainder of the proof we are going to show that:

B(c∗) ≤ 1
2
A(N) + 2B(N). (12)

Indeed, if inequality (12) holds, then by summing it with inequality (8) we get
that (11) holds, and this ends the proof.

Given N , for every player v, let Bv(N) =
∑

u∈V :Nv �=Nu
w({v, u}) be the

sum of the weights of properly colored edges incident to v. Thus, B(N) =
1
2

∑
v∈V Bv(N). Similarly, let B̄v(N) =

∑
u∈V :Nv=Nu

w({v, u}) = δv − Bv(N)
be the sum of the weights of monochromatic edges incident to v, and let
B̄(N) =

∑
v∈V δv − B(N) = 1

2

∑
v∈V B̄v(N) be the sum of the weights of all

monochromatic edges. Since N is a Nash equilibrium, it must hold that

Pv(N(v)) + Bv(N) ≥ B̄v(N) ∀v ∈ V, (13)



276 R. Carosi and G. Monaco

otherwise, player v could switch to any other color, thus improving her utility.
We can calculate A(N) as follows:

A(N) =
∑

v∈V

Pv(N(v)) ≥
∑

v∈V

(
B̄v(N) − Bv(N)

)
(14)

=
∑

v∈V

(
B̄v(N) − Bv(N)

)
+ 2B(N) − 2B(N) (15)

= 2B(N) +
∑

v∈V

B̄v(N) −
∑

v∈V

Bv(N) − 2B(N) (16)

= 2
∑

v∈V

δv − 2B(N) − 2B(N) = 2
∑

v∈V

δv − 4B(N)

In (14) we apply inequality (13), then in (15) we add and remove 2B(N). Since
each edge is either proper or monochromatic, it appears in only one of the two
summations in (16). Moreover, each edge is counted exactly twice in a summation
(one for endpoint), that is,

∑
v∈V B̄v(N) = 2B̄(N) and

∑
v∈V Bv(N) = 2B(N).

By summing 2B̄(N) and 2B(N), we get 2
∑

v∈V δv. Thus, A(N) ≥ 2
∑

v∈V δv −
4B(N), that is, A(N) + 4B(N) ≥ 2

∑
v∈V δv ≥ 2B(c∗). Dividing by 2, we get

that inequality (12) holds, and this concludes the proof. 	


5 Egalitarian Social Welfare

In this section we focus on the egalitarian social welfare. We show tight bounds
both for egalitarian price of anarchy and stability.

5.1 Price of Anarchy

For the graph k-coloring game (i.e., without color profits), a lower bound on
the egalitarian price of anarchy is provided by the instance in [21] (Sect. 3,
Proposition 2). In such instance, the optimal solution is such that each player
v has utility equal to her degree δv, however there exists a stable coloring in
which each player v has utility equal to k − 1

k δv, for any number of colors k ≥ 2.
This result together with the fact that by the pigeonhole principle, in any stable
coloring each player v achieves utility at least k − 1

k δv, imply that the egalitarian
price of anarchy is exactly k

k − 1 for the graph k-coloring games.
Therefore, we now consider the generalized graph k-coloring games. We first

notice that the instance defined in Theorem 3 gives us a lover bound of 2 to
the egalitarian price of anarchy. In fact, in the optimal coloring the minimum
utility is 2, and there exists a stable coloring in which the minimum utility is 1.
Moreover, we point out that the proof of Theorem 2 basically shows that for any
player i, her utility in any stable outcome is at least half the payoff that she has
in the optimum. Therefore we easily get the following theorem which says that
the egalitarian price of anarchy of the generalized graph k-coloring games is 2.

Theorem 6. The egalitarian price of anarchy of the generalized graph k-
coloring games is 2.
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5.2 Price of Stability

We now turn our attention to the egalitarian price of stability. We start by
showing that for the graph k-coloring games (i.e., without color profits), the
egalitarian price of stability is exactly k

k − 1 .

Fig. 1. Instance used in Theorem 7.

Theorem 7. The egalitarian price of stability of the graph k-coloring games is
k

k − 1 .

Proof. Consider the weighted graph of Fig. 1 with k ≥ 2 colors, where Kk−1

stands for a clique of size k − 1, and the bold arrows indicate that there is
complete incidence between the two adjacent subgraphs, i.e., there is an edge of
weight 1 between any node of the clique Kk−1 and node 2, and any node of the
clique Kk−1 and node 3. Moreover, there is an edge from 2 to 3 of weight M ,
where M is an integer greater or equal than 2k. The only way to get a coloring
that maximizes the egalitarian social welfare is the following: nodes 2 and 3 pick
the same color, the nodes in the clique choose the remaining k − 1 colors, one
per vertex, and players 1 and 4 pick any color different from the one chosen by 2
and 3. By coloring the nodes in this way, the resulting egalitarian social welfare
is equal to k. We notice that this is the unique possible optimal coloring, since
the maximum possible utility that each node in the clique Kk−1 can achieve is
exactly k, and the only way to get it is by assigning the same color to nodes 2
and 3. However, this coloring is not stable, since player 2 or 3 can switch to a
different available color in order to improve her utility, passing from 2k − 1 to
an utility of at least M . Indeed, it is easy to see that in any Nash equilibrium
nodes 2 and 3 must choose different colors, and by doing in this way there is at
least a node in the clique, say i, that has the same color as 2 or 3, thus achieving
an utility of at most k − 1. Moreover, player i cannot increase her utility by
changing color because she has exactly one neighbor colored h, for each color
h = 1, . . . , k. Thus, we get that the egalitarian price of stability of the graph
k-coloring games is at least k

k − 1 .
The theorem follows from the fact that the egalitarian price of anarchy in

the graph k-coloring games is at most k
k − 1 . 	


We now consider the egalitarian price of stability of the generalized graph
k-coloring games and show a tight bound of 2.

Theorem 8. The egalitarian price of stability of the generalized graph k-
coloring games is 2.
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6 Future Work

A possible future research direction is the study of other types of equilibria for
the generalized graph k-coloring game. For instance, Feldman and Friedler [15]
prove that, when strong Nash equilibria exist, the strong price of anarchy in the
graph k-coloring game without profits depends on the number of colors and its
maximum value is 3

2 when k = 2. It would be interesting to study how much
worse the strong price of anarchy gets for the generalized graph k-coloring games.

We also believe that questions related to the computational complexity of
(approximate) Nash equilibria for the generalized graph k-coloring games deserve
investigation. Indeed,already forgraphk-coloringgames, if thegraph isunweighted
and directed the problem of deciding whether an instance admits a Nash equilibria
is NP-hard, and there exist instances for which a Nash equilibrium does not exist
at all [21]. Moreover, for the case of weighted undirected graphs, even if Nash
equilibria always exist, computing them is PLS-complete [25] even for k = 2, since
the max cut game is a special case. A γ-Nash equilibrium is a coloring such that no
player can improve her payoff by a (multiplicative) factor of γ by changing color.
To the best of our knowledge, there are few papers which deal with the problem
of computing approximate Nash equilibria for graph k-coloring games. In [10],
the authors show that it is possible to compute in polynomial time a (3 + ε)-Nash
equilibrium, for any ε > 0, for max cut games, while in [13] the authors present
a randomized polynomial time algorithm that computes a constant approximate
Nash equilibrium for a large class of directed unweighted graphs.
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Abstract. We consider colorful bin packing games in which a set of
items, each one controlled by a selfish player, are to be packed into a
minimum number of unit capacity bins. Each item has one of m ≥ 2
colors and no items of the same color may be adjacent in a bin. All bins
have the same unitary cost which is shared among the items it contains,
so that players are interested in selecting a bin of minimum shared cost.
We adopt two standard cost sharing functions, i.e., the egalitarian and
the proportional ones. Although, under both cost functions, these games
do not converge in general to a (pure) Nash equilibrium, we show that
Nash equilibria are guaranteed to exist. We also provide a complete char-
acterization of the efficiency of Nash equilibria under both cost functions
for general games, by showing that the prices of anarchy and stability
are unbounded when m ≥ 3, while they are equal to 3 when m = 2. We
finally focus on the subcase of games with uniform sizes (i.e., all items
have the same size). We show a tight characterization of the efficiency of
Nash equilibria and design an algorithm which returns Nash equilibria
with best achievable performance.

1 Introduction

A classical problem in combinatorial optimization is the one-dimensional bin
packing problem, in which items with different sizes in [0, 1] have to be packed
into the smallest possible number of unit capacity bins. This problem is known to
be NP-hard (see [8] for a survey). The study of bin packing in a game theoretical
context has been introduced in [4]. In such a setting, items are handled by selfish
players and the unitary cost of each bin is shared among the items it contains.
In the literature, two natural cost sharing functions have been considered: the
egalitarian cost function, which equally shares the cost of a bin among the items
it contains (see [9,18]), and the proportional cost function, where the cost of a
bin is split among the items proportionally to their sizes. Namely, each player
is charged with a cost according to the fraction of the used bin space her item
requires (see [4,10]). We stress that for games with uniform sizes, where all the
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items have the same size s, the two cost functions coincide. Each player would
prefer to choose a strategy that minimizes her own cost, where the strategy is the
bin chosen by the player. Pure Nash equilibria, i.e. packings in which no player
can lower her cost by changing the selected bin in favor of a different one, are
mainly considered as natural stable outcomes for these games. The social cost
function that we aim to minimize is the number of open bins (a bin is open if it
stores at least one item). Bin packing games can model many practical scenarios,
like bandwidth allocations problems, packet scheduling problems (see [4,13]).

In this paper we consider colorful bin packing games, a generalization of the
bin packing games where we are given a set of n selfish players, a set of m ≥ 2
colors, and a set of n unit capacity bins. The special case of games with two
colors is called black and white bin packing games. Each player controls an indi-
visible colored item of size in [0, 1]. Each item needs to be packed into a bin
without exceeding its capacity and in such a way that no item is misplaced, that
is no item is adjacent to another one of the same color in the bin. We use both
the egalitarian and the proportional cost functions, where we set the cost of any
misplaced item as infinite, and adopt Nash equilibria as stable outcomes of the
games. We notice that in any Nash equilibrium no player can be charged with
an infinite cost since any player can move to an empty bin and getting cost 1.
We notice that, if all the items have different colors, these games correspond to
the bin packing ones. However, when there are items with the same color, the
stable outcomes of the games are structurally different than bin packing ones.
In fact, we show that in our games, Nash equilibria perform very differently
than in bin packing ones. Colorful bin packing games can model many practical
scenarios (see [5,6,11]) like television and radio stations which schedule a set
of programs of various genre on different channels, or displays on websites that
alternate between different types of information and advertisements, or a soft-
ware which renders user-generated content and assigns it to columns which are
to be displayed.

Our Contribution. We first focus on the existence of Nash equilibria. We show
that colorful bin packing games may not converge to Nash equilibria even for
special cases in which games have only two colors and uniform sizes (Proposi-
tion 1). However, in Theorems 1 and 2, we show that, under both cost functions,
if one allows the players to perform only improving deviations towards bins in
which no item is misplaced, then any game possesses the finite improving path
property and therefore Nash equilibria are guaranteed to exist under both cost
functions. We also show a very natural and simple algorithm, Algorithm1 (a
similar approach was already considered in [10]), that computes a Nash equilib-
rium whose running time is polynomial under the egalitarian cost function and
pseudo-polynomial for a constant number of colors under the proportional one
(Theorem 5). We then measure the quality of Nash equilibria using the standard
notions of PoA (price of anarchy) and PoS (price of stability), that are defined as
the worst/best case ratio between the social cost of a Nash equilibrium and the
cost of a social optimum, which corresponds to the minimum number of open bin
needed to feasibly pack all colored items. We provide a complete characterization
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of the efficiency of Nash equilibria by showing that, under both cost functions,
the PoA and the PoS are unbounded (we consider the absolute approximation
ratio), when m ≥ 3 (Theorems 3 and 4), while they are equal to 3 when m = 2
(Theorems 6, 7, 8). We also consider the basic setting in which all items have
the same size s and again provide a complete picture of the efficiency of Nash
equilibria which happens to depend on the parity of the number κ = �1/s� of
items that can be packed into a bin without exceeding its capacity. In partic-
ular, we show that, when κ is even, the price of stability is 2 for any m ≥ 2
(Theorems 9 and 10), while the price of anarchy is 2 for m = 2 (Theorem 13),
and unbounded for m ≥ 3 (Theorem 11). When κ is odd, the price of stability
is 1 for any m ≥ 2 (Theorem 10), while the price of anarchy is 3 for m = 2
(Theorems 6 and 12), and unbounded for m ≥ 3 (Theorem 11). We also design
an algorithm (Algorithm 2) which returns a Nash equilibrium which is socially
optimal when κ is odd and 2-approximates the social optimal when κ is even.

Due to space constraints, some proofs have been omitted.

Related Work. The classical one-dimensional bin packing problem has been
widely studied (see [8] for a general survey). Bin packing games under the propor-
tional cost function have been introduced in [4]. The author proved the existence
of Nash equilibria by showing that the best-response dynamics converge in finite
time. He also established that there is always a Nash equilibrium with minimal
number of bins, i.e., the PoS is 1, but that finding such a good equilibrium is NP-
hard. Finally, he presented constant upper and lower bounds on the PoA. Nearly
tight bounds on the PoA have been later shown in [13]. Yu and Zhang [19] have
designed a polynomial time algorithm which returns a Nash equilibrium. Bin
packing games under the egalitarian cost function were considered in [18]. They
showed constant tight bounds on the PoA and the PoS and design a polynomial
time algorithm for computing a Nash equilibrium. In [9], the authors provided
tight bounds on the exact worst-case number of steps needed to reach a Nash
equilibrium. Other types of equilibria (like for instance strong equilibria) and
other bin packing games were also considered in [1,7,10,12–14,16]. The offline
version of the black and white bin packing problem was considered in [3]. Most
of the literature on colorful bin packing is about the online version of the prob-
lem. Competitive algorithms for the online colorful bin packing problem were
presented in [11]. The special case black and white was considered in [2], while,
the one where all items have size 0, was considered in [5]. All such results on the
online version of the problem were improved in [6]. Related colorful bin packing
problems have been also considered. For instance, in the bin coloring [17], the
problem is to pack colored items into bins, such that the maximum number of
different colors per bin is minimized. The bin coloring games were considered in
[15], where each player controls a colored item and aims at packing its item into
a bin with as few different colors as possible. To the best of our knowledge, this
is the first paper dealing with Nash equilibria in colorful bin packing games.
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2 Model and Preliminaries

In a colorful bin packing game G = (N,C,B, (si)i∈N , (ci)i∈N ) we have a set of
n players N = {1, . . . , n}, a set of m ≥ 2 colors C = {1, . . . , m} and a set of n
unit capacity bins B = {B1 . . . , Bn}. Each player i ∈ N controls an indivisible
item, denoted for convenience as xi (i.e., we denote by X = {x1, . . . , xn} the
set of items), having size si ∈ [0, 1] and color ci ∈ C which needs to be packed
into one bin in B without exceeding its capacity. Game G has uniform sizes if
si = sj for every i, j ∈ N . The special case in which G has m = 2 colors is called
the black and white bin packing game; we shall define color 1 as black, color 2 as
white and denote by #B and #W the number of black and white items in G,
respectively.

A strategy profile is modeled by an n-tuple σ = (σ1, . . . , σn) such that, for
each i ∈ N , σi ∈ B is the bin chosen by player i. We denote by Bj(σ) = {xi ∈
X : σi = Bj} the set of items packed into Bj according to the strategy profile σ.
Similarly, we also write σi(σ) = {xl ∈ X : σl = σi} to indicate the set of items
packed in the same bin as xi (i.e., the bin chosen by player i), according to σ.
Given any bin Bj , we assume to pack the items in a fixed internal order, going
from bottom to top, that is the sequential order in which players have chosen the
bin Bj as strategy. This is what basically happens in queue systems. Namely,
for any pair of items xi and xl in Bj(σ), we say that xi precedes xl inside
the bin Bj , and we write xi ≺σ xl, if player i chose bin Bj before l. Formally,
given any strategy profile σ, each item xi occupies a precise position pi in the
sequential order of items in bin σi, counting from bottom to top, computed as
pi(σ) = 1+ |{xl ∈ σi(σ) : xl ≺σ xi}|. We notice that with such packing, the last
player (say i), choosing the bin σi, occupies the top position in σi.

Denoted by �Bj
(σ) =

∑
xi∈Bj(σ) si the total size of items packed into Bj(σ),

we always assume that �Bj
(σ) ≤ 1, so that every strategy profile induces a

packing of items in B and vice versa. We say that an item xi is misplaced if there
exists an item xl with ci = cl such that σi = σl and |pi − pl| = 1, that is, xi

is adjacent to an item of the same color in the bin. A bin is feasible if it stores
no misplaced items. In particular, an empty bin is feasible. A strategy profile is
feasible if so are all of its bins. For games with uniform sizes si = s for every
i ∈ N , we denote by κ =

⌊
1
s

⌋
the maximum number of items that can be packed

into any (even non-feasible) bin. We only consider the cases in which κ > 1 as,
otherwise, the game is trivial.

We shall denote by costi(σ) the cost that player i ∈ N pays in the strategy
profile σ and each player aims at minimizing it. We consider two different cost
functions: the egalitarian cost function and the proportional cost function. We
have costi(σ) = ∞ under both cost functions when xi is a misplaced item,
while, for non-misplaced ones, we have costi(σ) = 1

|σi(σ)| under the egalitarian
cost function and costi(σ) = si

�σi
(σ) under the proportional one. Note that, for

games with uniform sizes, the two cost functions coincide. For a fixed strategy
profile σ, we say that a bin is a singleton bin if it stores only one item. Moreover,
when considering the egalitarian (resp. proportional) cost function, we denote
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by Bσ the bin storing the maximum number of items (resp. the fullest bin) in
the packing corresponding to σ, breaking ties arbitrarily.

A deviation for a player i in a strategy profile σ is the action of changing the
selected bin σi in favor of another bin, say Bj , such that �Bj

(σ)+si ≤ 1. We shall
denote as (σ−i, Bj) the strategy profile realized after the deviation. Formally,
σ′ = (σ−i, Bj) = (σ′

1, , . . . , σ
′
n) is defined as follows: σ′

i = Bj and σ′
l = σl for each

player l 	= i. In this paper, we consider deviations of the following form: xi is
removed from σi and packed on top of Bj , consistently with the sequential order
of items in a bin. An improving deviation for a player i in a strategy profile
σ is a deviation towards a bin Bj such that costi(σ−i, Bj) < costi(σ). Fix a
feasible strategy profile σ. Under the egalitarian cost function, player i admits
an improving deviation in σ if there exists a bin Bj ∈ B \ {σi} such that (i)
the item on top of Bj has a color different than ci and (ii) |σi(σ)| ≤ |Bj(σ)|.
Under the proportional cost function, player i admits an improving deviation in
σ if there exists a bin Bj ∈ B \ {σi} such that (i) the item on top of Bj has a
color different than ci and (ii) �σi

(σ) < �Bj
(σ)+si. Conversely, when a strategy

profile σ is unfeasible, under both cost functions, a player controlling a misplaced
item x always possesses an improving deviation, for instance, by moving x to an
empty bin which is always guaranteed to exist as there are n items, n bins and
the bin storing x is non-singleton. We note that, as a side-effect of an improving
deviation, (σ−i, Bj) may be unfeasible even if σ is feasible: this happens when
xi separates two items of the same color. We say that an improving deviation is
valid whenever the destination bin is feasible before the deviation.

A strategy profile σ is a (pure) Nash equilibrium if costi(σ) ≤ costi(σ−i, Bj)
for each i ∈ N and Bj ∈ B, that is, no player has an improving deviation in
σ. Let NE(G) denote the set of Nash equilibria of game G. It is easy to see
that any Nash equilibrium is a feasible strategy profile. This implies that m = 1
would force each item to be packed into a different bin: this justifies our choice
of m ≥ 2. A game G has the finite improvement path property if it does not
admit an infinite sequence of improving deviations. Clearly, if G enjoys the finite
improvement path property, it follows that NE(G) 	= ∅. Given a strategy profile
σ, let B̄(σ) ⊆ B be the set of open bins in σ, where a bin is open if it stores at
least one item. Let F(σ) be the number of open bins in σ, i.e., F(σ) = |B̄(σ)|.
We shall denote with σ∗(G) the social optimum, that is, any strategy profile
minimizing function F. It is easy to see that any social optimum is a feasible
strategy profile.

The price of anarchy of G is defined as PoA(G) = maxσ∈NE(G)
F(σ)

F(σ∗(G)) , while

the price of stability of G is defined as PoS(G) = minσ∈NE(G)
F(σ)

F(σ∗(G)) . Given a
class of colorful bin packing games C, the prices of anarchy and stability of C
are defined as PoA(C) = supG∈C PoA(G) and PoS(C) = supG∈C PoS(G). Let Gm

denote the set of all colorful bin packing games with m colors and Uodd
m (resp.

Ueven
m ) denote the set of all colorful bin packing games with m colors and uniform

sizes for which κ is odd (resp. even). Finally, denote Um = Ueven
m ∪ Uodd

m .



On Colorful Bin Packing Games 285

3 Existence and Efficiency of Nash Equilibria
in General Games

In this section, we first show that, without any particular restriction on the type
of improving deviations performed by the players, even games with uniform
sizes and only two colors may not admit the finite improvement path property
(Proposition 1). However, if one allows the players to perform only valid improv-
ing deviations, then any game possesses the finite improving path property under
both cost functions (Theorems 1 and 2). These two theorems, together with the
fact that in any strategy profile which is not a Nash equilibrium there always
exists a valid improving deviation, imply the existence of Nash equilibria for
colorful bin packing games under both cost functions.

Proposition 1. There exists a black and white bin packing game with uniform
sizes not possessing the finite improvement path property.

Theorem 1. If players are restricted to perform only valid improving devia-
tions, then each colorful bin packing game under the egalitarian cost function
admits the finite improvement path property.

Proof. To prove the claim, we define a suitable potential function which strictly
increases each time a player performs a valid improving deviation. Given a strat-
egy profile σ, consider the potential function

Φ(σ) =
∑

Bj∈B̄(σ):Bj is feasible

|Bj(σ)||Bj(σ)|

and assume that a player i performs a valid improving deviation by moving xi

onto bin Bj 	= σi. We distinguish between two cases.
If bin σi is not feasible since both Bj(σ) and Bj(σ−i, Bj) are feasible, we

obtain Φ(σ−i, Bj) − Φ(σ) ≥ (|Bj(σ)| + 1)|Bj(σ)|+1 − |Bj(σ)||Bj(σ)| > 0 when
Bj(σ) is open and Φ(σ−i, Bj) − Φ(σ) ≥ 11 − 0 > 0 otherwise.

If σi is feasible, under the egalitarian cost function, this implies that
|Bj(σ)| ≥ |σi(σ)|. Observe that, since σi is feasible, costi(σ) ≤ 1, which implies
that it must be |Bj(σ)| ≥ 1. For the ease of notation, set |σi(σ)| = α and
|Bj(σ)| = β, so that β ≥ α and β ≥ 1; we get Φ(σ−i, Bj)−Φ(σ) ≥ (β +1)β+1 −
αα −ββ = (β+1)(β+1)β −αα −ββ ≥ 2(β+1)β −αα −ββ ≥ 2(β+1)β −2ββ > 0,
where the second inequality comes from β ≥ 1 and the third one comes from
β ≥ α. Thus, in any case, Φ(σ−i, Bj) > Φ(σ) which, since the number of possible
strategy profiles is finite, implies the claim. �

The next proof uses a different function than the one used above.

Theorem 2. If players are restricted to perform only valid improving devia-
tions, then each colorful bin packing game under the proportional cost function
admits the finite improvement path property.
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In the following we give a tight characterization of the efficiency of Nash
equilibria in colorful bin packing games under both cost functions. For games
with at least three colors, Theorems 3 and 4 show that, under both cost functions,
the PoS can be unbounded, thus, in the worst-case, no efficient Nash equilibria
are guaranteed to exist.

Theorem 3. Under the egalitarian cost function, PoS(Gm) is unbounded for
each m ≥ 3.

Theorem 4. Under the proportional cost function, PoS(Gm) is unbounded for
each m ≥ 3.

We conclude the section by presenting a simple algorithm, namely Algo-
rithm1, for computing a Nash equilibrium in colorful bin packing games under
both cost functions. In particular, we shall prove that its running time is polyno-
mial for the egalitarian cost function and pseudo-polynomial for the proportional
one for the special case of constant number of colors. Algorithm 1 is based on
the computation of a solution for the following two optimization problems.
Max Cardinality Colorful Packing: Given a set of items X = {x1, . . . , xn}, where
each item xi has size si ∈ [0, 1] and color ci, compute a set of items of maximum
cardinality which can be packed into a feasible bin without exceeding its capacity.
Colorful Subset Sum: Given a set of items X = {x1, . . . , xn}, where each item xi

has size si ∈ [0, 1] and color ci, compute a set of items, of maximum total size,
which can be packed into a feasible bin without exceeding its capacity.

Algorithm 1. It takes as input a colorful bin packing game G

1: X ← {x1, . . . , xn}
2: while (X �= ∅) do
3: if (G is defined under the egalitarian cost function) then
4: Let B be a solution to Max Cardinality Colorful Packing(X)
5: else
6: Let B be a solution to Colorful Subset Sum(X)
7: end if
8: Open a new bin and assign it the set of items B
9: X ← X \ B

10: end while
11: return the strategy profile induced by the set of open bins

Next lemma shows the correctness of the algorithm.

Lemma 1. Algorithm1 computes a Nash equilibrium for any colorful bin pack-
ing game G.

Lemma 2. Max Cardinality Colorful Packing can be solved in polynomial time.

Lemma 3. Colorful Subset Sum can be solved in pseudo-polynomial time as long
as the number of colors is constant.
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As a consequence of Lemmas 1, 2 and 3, we obtain the following result.

Theorem 5. A Nash equilibrium for colorful bin packing games can be computed
in polynomial time under the egalitarian cost function and in pseudo-polynomial
time for a constant number of colors under the proportional one.

4 Efficiency of Nash Equilibria in Black
and White Games

For black and white bin packing games, things get much more interesting, as we
show an upper bound of 3 on the PoA and a corresponding lower bound on the
PoS. To address this particular case, given a black and white bin packing game
G, we make use of the following additional notation. Given a strategy profile σ,
we denote by Sb(σ) the set of singleton bins storing a black item, by Sw(σ) the
set of singleton bins storing a white item, by Mb(σ) the set of non-singleton bins
having a black item on top, and by Mw(σ) the set of non-singleton bins having
a white item on top.

The following lemma relates the set of open bins of a feasible strategy profile
with that of a social optimum.

Lemma 4. Fix a feasible strategy profile σ and a social optimum σ∗ for a black
and white bin packing game G. Then, |Sb(σ)| − |Sw(σ)| − |Mw(σ)| ≤ F(σ∗).

The following theorem gives an upper bound on the PoA of black and white
bin packing games under both cost functions.

Theorem 6. Under both cost functions, PoA(G2) ≤ 3.

Proof. Given a black and white bin packing game G under a certain cost func-
tion, fix a Nash equilibrium σ and a social optimum σ∗. Let S =

∑
i∈N si be

the sum of the sizes of all the items. Notice that F(σ∗) ≥ �S�. Assume without
loss of generality that |Sb(σ)| ≥ |Sw(σ)| (if this is not the case, we simply swap
the two colors).

Let P be the set of pairs of bins constructed as follows: each bin in Sw(σ) is
paired with a bin in Sb(σ), each remaining bin in Sb(σ) is paired with a bin in
Mw(σ), finally, all the remaining bins in Mw(σ) and all the bins in Mb(σ) are
joined into pairs until possible. It is easy to check that, for each created pair of
bins (Bj , Bk), it must be

�Bj
(σ) + �Bk

(σ) > 1 (1)

under both cost functions, otherwise the hypothesis that σ is a Nash equilibrium
would be contradicted. Moreover, by (1), it follows that S > |P | which implies
that F(σ∗) ≥ �S� ≥ |P | + 1.
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Now two cases may occur:

• no bin in Sb(σ) is left unmatched by P , which implies that |Sb(σ)|+|Sw(σ)|+
|Mb(σ)|+|Mw(σ)| ≤ 2|P |+1, as at most one bin from the set Mw(σ)∪Mb(σ)
may remain unmatched. Thus, we obtain

F(σ) = |Sb(σ)| + |Sw(σ)| + |Mb(σ)| + |Mw(σ)| ≤ 2|P | + 1 < 2F(σ∗);

• at least one bin in Sb(σ) is unmatched by P , which implies that |Sb(σ)| +
|Sw(σ)|+ |Mb(σ)|+ |Mw(σ)| ≤ 2|P |+1+ |Sb(σ)|− |Sw(σ)|− |Mw(σ)|. Thus,
we obtain

F(σ) = |Sb(σ)| + |Sw(σ)| + |Mb(σ)| + |Mw(σ)|
≤ 2|P | + 1 + |Sb(σ)| − |Sw(σ)| − |Mw(σ)|
≤ 2|P | + 1 + F(σ∗) < 2F(σ∗) + F(σ∗) = 3F(σ∗),

where the second inequality comes from Lemma 4. �
In the next two theorems, we show a matching lower bound on the PoS of

black and white bin packing games under both cost functions.

Theorem 7. Under the egalitarian cost function, PoS(G2) ≥ 3.

Theorem 8. Under the proportional cost function, PoS(G2) ≥ 3.

5 Efficiency of Nash Equilibria in Games with
Uniform Sizes

In this section, we provide a complete picture of the efficiency of Nash equilib-
ria for games with uniform sizes. We remind the reader that, in this setting,
the egalitarian and proportional cost functions are equivalent. For the sake of
simplicity, we say that a bin is full if it contains κ items.

First, we give a lower bound of 2 on the PoS for games with any number of
colors under the hypothesis that κ is an even number.

Theorem 9. For each m ≥ 2, PoS(Ueven
m ) ≥ 2.

We show that, unlike the case of general games considered in the previ-
ous section, under the hypothesis of uniform sizes, efficient Nash equilibria are
always guaranteed to exist for any number of colors. In particular, we design
an algorithm which, given a colorful bin packing game G with uniform sizes,
returns a Nash equilibrium σ such that F(σ) ≤ 2F(σ∗(G)) when κ is even and
F(σ) = F(σ∗(G)) when κ is odd. Given the result on the price of stability of
Theorem 9, these are the best achievable performance.

Theorem 10. For each m ≥ 2, PoS(Ueven
m ) ≤ 2 and PoS(Uodd

m ) = 1. Moreover,
for any game G ∈ Um, a Nash equilibrium σ such that F(σ) ≤ 2F(σ∗(G)) if
G ∈ Ueven

m and such that F(σ) = F(σ∗(G)) if G ∈ Uodd
m can be computed in

pseudo-polynomial time.
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Algorithm 2. It takes as input a colorful bin packing game with uniform sizes G

1: X ← {x1, . . . , xn}
2: i ← 1
3: cold ← 0
4: while (X �= ∅) do
5: if (|Bi| < κ) && (∃xj ∈ X s.t. cj �= cold)) then
6: c ← most frequent color among the items in X having color other than cold
7: Select an item xj of color c
8: X ← X \ {xj}
9: cold ← c

10: σj ← Bi

11: else
12: i ← i + 1
13: cold ← 0
14: end if
15: end while
16: return σ

Proof. Fix an integer m ≥ 2 and a game G ∈ Um. We prove the claim by
showing that Algorithm 2 computes a Nash equilibrium σ for G such that F(σ) ≤
2F(σ∗(G)) if G ∈ Ueven

m and such that F(σ) = F(σ∗(G)) if G ∈ Uodd
m .

We start by showing that the strategy profile σ returned by Algorithm2 is
a Nash equilibrium for G. Let us partition σ into three sets, namely Γ,Δ,Θ,
where Γ contains all the full bins, Δ contains all the non-full and non-singleton
bins and Θ contains all the singleton bins. It is not difficult to see that, by the
definition of Algorithm2, Δ and Θ are such that (i) Δ is either empty or contains
only one bin, (ii) all items stored into bins belonging to Θ have the same color,
denoted as cΘ, (iii) the item on top of the bin in Δ (if any) has color cΘ.

Now assume, by way of contradiction, that there exists a player j possessing
an improving deviation in σ towards a bin Bi. Clearly, this can only be possible
if xj is packed into a singleton bin and Bi ∈ Δ ∪ Θ, but properties (ii) and (iii)
above imply a contradiction. So, σ is a Nash equilibrium.

Let nz(c) be the number of items of color c belonging to X at the zth iteration
of Algorithm 2.

Lemma 5. If either |Θ| ≥ 2 or |Δ| = |Θ| = 1, then the color of each item
occupying an odd position in a bin belonging to Γ ∪ Δ is cΘ.

By the previous lemma, we get the following corollary which gives us the
number of items of color cΘ and the number of items of color different that cΘ.

Corollary 1. If either |Θ| ≥ 2 or |Δ| = |Θ| = 1, then each bin in Bj ∈ B̄(σ)
contains �|Bj(σ)|/2� items of color cΘ.

Let #cΘ be the number of items having color cΘ. We conclude by showing
that F(σ) ≤ 2F(σ∗(G)) when κ is even and that F(σ) = F(σ∗(G)) when κ is
odd. Towards this end, we use Corollary 1 together with the simple basic fact.
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Fact 1. 2#cΘ ≤ n + F(σ∗(G)).

Let us start with the cases not covered by Corollary 1, that is, |Θ| = 0 and
|Θ| = 1∧ |Δ| = 0. In both cases, we have F(σ) = F(σ∗(G)) independently of the
parity of κ, as B̄(σ) contains at most one non-full bin. Thus, in the remaining
of the proof, we can assume that Corollary 1 holds. Let δ ∈ {0, . . . , κ − 1} be
the number of items stored into the bin belonging to Δ (δ = 0 models the case
in which this bin does not exist).

For the case in which κ is odd, by Corollary 1, we have #cΘ = |Γ |κ+1
2 +

⌈
δ
2

⌉
+

|Θ| and n = |Γ |κ + δ + |Θ|. Assume, by way of contradiction, that F(σ∗(G)) <
F(σ), that is, F(σ∗(G)) ≤ |Γ | + |Δ| + |Θ| − 1. By Fact 1, we obtain

2
⌈

δ

2

⌉

≤ δ + |Δ| − 1. (2)

Now observe that, for |Δ| = 0, which implies δ = 0, (2) is not satisfied. Hence,
it must be |Δ| = 1 which, as |Θ| ≥ 1 (recall that we are under the hypothesis in
which Corollary 1 holds), implies that δ > 1. Now, if δ is even, by Corollary 1, the
item on top of the unique bin in Δ has color different than cΘ. This means that
a player controlling an item packed into any bin in Θ has an improving deviation
by migrating to the unique bin in Δ, thus contradicting the fact that σ is a Nash
equilibrium. Thus, under the hypothesis of |Δ| = 1 and δ odd, (2) is again not
satisfied, thus rising a contradiction. Hence, it follows that F(σ∗(G)) = F(σ).

For the case in which κ is even, by Corollary 1, we have #cΘ = |Γ |κ
2+

⌈
δ
2

⌉
+|Θ|

and n = |Γ |κ + δ + |Θ|. As F(σ∗(G)) ≥ |Γ | + |Δ|, if |Γ | ≥ |Θ|, it follows
F(σ) = |Γ | + |Δ| + |Θ| ≤ 2|Γ | + |Δ| ≤ 2F(σ∗(G)). Thus, in the remaining of
the proof, we assume that |Θ| > |Γ |. Assume now, by way of contradiction, that
F(σ∗(G)) < F(σ)/2, which implies F(σ∗(G)) ≤ |Γ |+|Δ|+|Θ|

2 − 1
2 . By Fact 1, we

obtain

2
⌈

δ

2

⌉

+
|Θ|
2

≤ δ +
|Γ | + |Δ| − 1

2
. (3)

Using the hypothesis that |Θ| > |Γ | within (3), we obtain

2
⌈

δ

2

⌉

≤ δ +
|Δ|
2

− 1 (4)

which is never satisfied, thus rising a contradiction. Hence, it follows that F(σ) ≤
2F(σ∗(G)).

We now argue the complexity of Algorithm 2. We first notice that, for uni-
form sizes, the compact representation of the input has size Ω(m+log n). More-
over, it is easy to see that Algorithm 2 has complexity O(n). It turns out that
when, for instance, m = Ω(n

1
h ), for some constant h, the algorithm has polyno-

mial time complexity. However, when m = O(log n), the complexity is pseudo-
polynomial. �
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Theorems 9 and 10 completely characterize the PoS of colorful bin packing
games with uniform sizes. For what concerns the PoA, we also obtain a complete
picture by means of the following results.

For the case of at least three colors, the PoA can be arbitrarily high.

Theorem 11. For each m ≥ 3, both PoA(Uodd
m ) and PoA(Ueven

m ) are unbounded.

For the case of black and white bin packing games, we show a lower bound of
3 on the PoA of games for which κ is an odd number, thus matching the upper
bound showed in Theorem 6 which holds for general sizes.

Theorem 12. PoA(Uodd
2 ) ≥ 3.

For the leftover case of black and white bin packing games for which κ is
even, we show that the upper bound on the PoA drops to 2 which matches the
lower bound given in Theorem 9 for the PoS.

Theorem 13. PoA(Ueven
2 ) ≤ 2.
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Abstract. The Dulmage-Mendelsohn decomposition is a classical canon-
ical decomposition in matching theory applicable for bipartite graphs and
is famous not only for its application in the field of matrix computation,
but also for providing a prototypal structure in matroidal optimization
theory. The Dulmage-Mendelsohn decomposition is stated and proved
using the two color classes of a bipartite graph, and therefore gener-
alizing this decomposition for nonbipartite graphs has been a difficult
task. In this paper, we obtain a new canonical decomposition that is a
generalization of the Dulmage-Mendelsohn decomposition for arbitrary
graphs using a recently introduced tool in matching theory, the basilica
decomposition. Our result enables us to understand all known canonical
decompositions in a unified way. Furthermore, we apply our result to
derive a new theorem regarding barriers. The duality theorem for the
maximum matching problem is the celebrated Berge formula, in which
dual optimizers are known as barriers. Several results regarding maximal
barriers have been derived by known canonical decompositions; however,
no characterization has been known for general graphs. In this paper, we
provide a characterization of the family of maximal barriers in general
graphs, in which the known results are developed and unified.

1 Introduction

We establish the Dulmage-Mendelsohn decomposition for general graphs. The
Dulmage-Mendelsohn decomposition [2–4], or the DM decomposition in short, is
a classical canonical decomposition in matching theory [17] applicable for bipar-
tite graphs. This decomposition is famous for its application for combinatorial
matrix theory, especially for providing an efficient solution for a system of linear
equations [1,4] and is also important in matroidal optimization theory.

Canonical decompositions of a graph are fundamental tools in matching the-
ory [17]. A canonical decomposition partitions a given graph in a way uniquely
determined for the graph and describes the structure of maximum matchings
using this partition. The classical canonical decompositions are the Gallai-
Edmonds [5,6] and Kotzig-Lovász decompositions [13–15] in addition to the DM
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decomposition. The DM and Kotzig-Lovász decompositions are applicable for
bipartite graphs and factor-connected graphs, respectively. The Gallai-Edmonds
decomposition partitions an arbitrary graph into three parts: that is, the so-
called D(G), A(G), and C(G) parts. Comparably recently, a new canonical
decomposition was proposed: the basilica decomposition [8–10]. This decompo-
sition is applicable for arbitrary graphs and contains a generalization of the
Kotzig-Lovász decomposition and a refinement the Gallai-Edmonds decomposi-
tion. (The C(G) part can be decomposed nontrivially.)

In this paper, we establish an analogue of the DM decomposition for gen-
eral graphs using the basilica decomposition. Our results accordingly provide a
paradigm that enables us to handle any graph and understand the known canon-
ical decompositions in a unified way. In the original theory of DM decomposition,
the concept of the DM components of a bipartite graph is first defined, and then
it is proved that these components form a poset with respect to a certain binary
relation.

This theory depends heavily on the two color classes of a bipartite graph
and cannot be easily generalized for nonbipartite graphs. In our generalization,
we first define a generalization of the DM components using the basilica decom-
position. To capture the structure formed by these components in nonbipartite
graphs, we introduce a slightly more complex concept: posets with a transitive
forbidden relation. We then prove that the generalized DM components form a
poset with a transitive forbidden relation for certain binary relations. We also
show that this structure can be computed in strongly polynomial time.

Furthermore, we apply our generalized DM decomposition to derive a char-
acterization of the family of maximal barriers in general graphs. The Berge for-
mula is a combinatorial min-max theorem in which maximum matchings are
the optimizers of one hand, and the optimizers of the other hand are known as
barriers [17]. That is, barriers are the dual optimizers of the maximum match-
ings problem. Barriers are heavily employed as a tool for studying matchings.
However, not as much is known about barriers themselves [17]. Aside from sev-
eral observations that are derived rather easily from the Berge formula, several
substantial results about (inclusion-wise) maximal barriers have been provided
by canonical decompositions.

Our result for maximal barriers proves that our generalization of the DM
decomposition has a reasonable consistency with the relationship between each
known canonical decomposition and maximal barriers. Each known canonical
decomposition can be used to state the structure of maximal barriers. The orig-
inal DM decomposition provides a characterization of the family of maximal
barriers in a bipartite graph in terms of ideals in the poset; minimum vertex cov-
ers in bipartite graphs are equivalent to maximal barriers. The Gallai-Edmonds
decomposition derives a characterization of the intersection of all maximal bar-
riers (that is, the A(G) part) [17]; this characterization is known as the Gallai-
Edmonds description. The Kotzig-Lovász decomposition is used for character-
izing the family of maximal barriers in factor-connected graphs [17]; this result
is known as Lovász’s canonical partition theorem [16,17]. The basilica decom-
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position provides the structure of a given maximal barrier in general graphs,
which contains a common generalization of the Gallai-Edmonds description and
Lovász’s canonical partition theorem. Hence, a generalization of the DM decom-
position would be reasonable if it can characterize the family of maximal barri-
ers, and our generalization attains this in a way analogical to the classical DM
decomposition, that is, in terms of ideals in the poset with a transitive forbidden
relation.

Our results imply a new possibility in matroidal optimization theory. Sub-
modular function theory [18] is a systematic field of study that captures many
well-solved problems in terms of submodular functions and generalizations. In
this theory, the bipartite maximum matching problem is an important exem-
plary problem. The DM decomposition is essential in the relationship between
bipartite matchings and submodular functions, because it corresponds to the
structural characterization of the family of minimizers of a submodular function.
The nonbipartite maximum matching problem is also an important well-solved
problem in combinatorial optimization, and is even referred to as the archetype
of well-solved problems [17,18]. However, the nonbipartite maximum matching
problem and its duality shown by the Berge formula are not included in submod-
ular function theory today and nor in any of its generalizations. Our nonbipartite
DM decomposition may provide a clue to a new epoch of submodular function
theory that can be brought in by capturing these concepts.

The remainder of this paper is organized as follows: In Sect. 2, we provide the
basic definitions. In Sect. 3, we present the preliminary results from the basil-
ica decomposition theory. In Sect. 4, we introduce the new concept of posets
with a transitive forbidden relation. In Sect. 5, we provide our main result, the
nonbipartie DM decomposition. In Sect. 6, we use the generalized DM decom-
position to characterize the family of maximal barriers. In Sect. 7, we show how
our results contain the original DM decomposition for bipartite graphs.

2 Basic Preliminaries

2.1 General Definitions

For basic notation for sets, graphs, and algorithms, we mostly follow
Schrijver [18]. In this section, we explain exceptions or nonstandard definitions.
In Sect. 2, unless otherwise stated, let G be a graph. The vertex set and the
edge set of G are denoted by V (G) and E(G), respectively. We treat paths and
circuits as graphs. For a path P and vertices x and y from P , xPy denotes the
subpath of P between x and y. We often treat a graph as the set of its vertices.

In the remainder of this section, let X ⊆ V (G). The subgraph of G induced
by X is denoted by G[X]. The graph G[V (G) \ X] is denoted by G − X. The
contraction of G by X is denoted by G/X. Let F ⊆ E(G). The graph obtained
by deleting F from G without removing vertices is denoted by G − F . Let H be
a subgraph of G. The graph obtained by adding F to H is denoted by H + F .
Regarding these operations, we identify vertices, edges, subgraphs of the newly
created graph with the naturally corresponding items of old graphs.
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A neighbor of X is a vertex from V (G) \ X that is adjacent to some vertex
from X. The neighbor set of X is denoted by NG(X). Let Y ⊆ V (G). The set
of edges joining X and Y is denoted by EG[X,Y ]. The set EG[X,V (G) \ X] is
denoted by δG(X).

A set M ⊆ E(G) is a matching if |δG(v) ∩ M | ≤ 1 holds for each v ∈ V (G).
For a matching M , we say that M covers a vertex v if |δG(v)∩M | = 1; otherwise,
we say that M exposes v. A matching is maximum if it consists of the maximum
number of edges. A matching is perfect if it covers every vertex. A graph is
factorizable if it has a perfect matchings. A graph is factor-critical if, for each
vertex v, G − v is factorizable. A graph with only one vertex is defined to be
factor-critical. The number of edges in a maximum matching is denoted by ν(G).
We define def(G) := |V (G)| − 2ν(G).

Let M ⊆ E(G). A circuit or path is said to be M -alternating if edges in
M and not in M appear alternately. The precise definition is the following: A
circuit C of G is M -alternating if E(C) ∩ M is a perfect matching of C. We
define the three types of M -alternating paths. Let P be a path with ends s and
t. We say that P is M -forwarding from s to t if M ∩ E(P ) is a matching of P
that covers every vertex except for t. A path with exactly one vertex is defined
to be an M -forwarding path. For P with odd number of edges, we say that P is
M -saturated (resp. M -exposed) between s and t if M ∩ E(P ) (resp. E(P ) \ M)
is a perfect matching of P .

A path P with |E(P )| ≥ 1 is an ear relative to X if the internal vertices of P
are disjoint from X, whereas the ends are in X. A circuit C is an ear relative to
X if exactly one vertex of C is in X; for simplicity, we call the vertex in X∩V (C)
the end of the ear C. We call an ear P relative to X an M -ear if δP (X)∩M = ∅
holds and P − X is empty or an M -saturated path.

2.2 Barriers, Gallai-Edmonds Family, and Factor-Components

We now explain the Berge Formula and the definition of barriers. An odd com-
ponent (resp. even component) of a graph is a connected component with an odd
(resp. even) number of vertices. The number of odd components of G − X is

Fig. 1. The factor-components of a graph G: bold lines indicate allowed edges. This
graph has four factor-components G1, . . . , G4.
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denoted by qG(X). The set of vertices from odd components (resp. even compo-
nents) of G − X is denoted by DX (resp. CX).

Theorem 1 (Berge Formula [17]). For a graph G, def(G) is equal to the
maximum value of qG(X) − |X|, where X is taken over all subsets of V (G).

The set of vertices that attains the maximum value in this relation is called
a barrier. That is, a set of vertices X is a barrier if def(G) = qG(X) − |X|.

The set of vertices that can be exposed by maximum matchings is denoted
by D(G). The neighbor set of D(G) is denoted by A(G), and the set V (G) \
D(G) \ A(G) is denoted by C(G). The following statement about D(G), A(G),
and C(G) is the celebrated Gallai-Edmonds structure theorem [5,6,17].

Theorem 2 (Gallai-Edmonds Structure Theorem). For any graph G,

(i) A(G) is a barrier for which DA(G) = D(G) and CA(G) = C(G);
(ii) each odd component of G − A(G) is factor-critical; and,
(iii) any edge in EG[A(G),D(G)] is allowed.

An edge is allowed if it is contained in some maximum matching. Two vertices
are factor-connected if they are connected by a path whose edges are allowed. A
subgraph is factor-connected if any two vertices are factor-connected. A maxi-
mal factor-connected subgraph is called a factor-connected component or factor-
component. A graph consists of its factor-components and edges joining them
that are not allowed. The set of factor-components of G is denoted by G(G).

A factor-component C is inconsistent if V (C) ∩ D(G) �= ∅. Otherwise, C is
said to be consistent. We denote the sets of consistent and inconsistent factor-
components of G by G+(G) and G−(G), respectively. The next property is easily
confirmed from the Gallai-Edmonds structure theorem.

Fact 3. A subgraph C of G is an inconsistent factor-component if and only if C
is a connected component of G[D(G) ∪ A(G)]. Any consistent factor-component
has the vertex set contained in C(G).

That is, the structure of inconsistent factor-components are rather trivial
under the Gallai-Edmonds structure theorem.

3 Basilica Decomposition of Graphs

In this section, we now introduce the basilica decomposition of graphs [9,10].
The theory of basilica decomposition is made up of the three central concepts:
a canonical partial order between factor-components (Theorem 4), the general
Kotzig-Lovász decomposition (Theorem 5), and an interrelationship between the
two (Theorem 6). These theorems can be found in Kita [9,10]. In the following,
let G be a graph unless otherwise stated.



298 N. Kita

Fig. 2. The Hasse diagram of the poset
(G(G), �).

Fig. 3. The general Kotzig-Lovász
decomposition of G: P(G) has 12 mem-
bers S1, . . . , S12.

Definition 1. A set X ⊆ V (G) is said to be separating if there exist
H1, . . . , Hk ∈ G(G), where k ≥ 1, such that X = V (H1) ∪ · · · ∪ V (Hk). For
G1, G2 ∈ G(G), we say G1 � G2 if there exists a separating set X ⊆ V (G) with
V (G1) ∪ V (G2) ⊆ X such that G[X]/G1 is a factor-critical graph.

Theorem 4. For a graph G, the binary relation � is a partial order over G(G).

Definition 2. For u, v ∈ V (G) \ D(G), we say u ∼G v if u and v are identical
or if u and v are factor-connected and satisfy def(G − u − v) > def(G).

Theorem 5. For a graph G, the binary relation ∼G is an equivalence relation.

We denote as P(G) the family of equivalence classes determined by ∼G. This
family is known as the general Kotzig-Lovász decomposition or just the Kotzig-
Lovász decomposition of G. From the definition of ∼G, for each H ∈ G(G), the
family {S ∈ P(G) : S ⊆ V (H)} forms a partition of V (H) \ D(G). We denote
this family by PG(H).

Let H ∈ G(G). The sets of strict and nonstrict upper bounds of H are denoted
by UG(H) and U∗

G(H), respectively. The sets of vertices
⋃{V (I) : I ∈ UG(H)}

and
⋃{V (I) : I ∈ U∗

G(H)} are denoted by UG(H) and U∗
G(H), respectively.

Theorem 6. Let G be a graph, and let H ∈ G(G). Then, for each con-
nected component K of G[UG(H)], there exists S ∈ PG(H) such that NG(K) ∩
V (H) ⊆ S.

Under Theorem 6, for S ∈ PG(H), we denote by UG(S) the set of factor-
components that are contained in a connected component K of G[UG(H)] with
NG(K) ∩ V (H) ⊆ S. The set

⋃{V (I) : I ∈ UG(H)} is denoted by UG(S). We
denote UG(H) \ S \ UG(S) by �UG(S).

Theorem 6 integrates the two structures given by Theorems 4 and 5 into a
structure of graphs that is reminiscent of an architectural building. We call this
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integrated structure the basilica decomposition of a graph. See Figs. 1, 2, and 3
for an example of the basilica decomposition.

Inconsistent factor-components in a graph have a trivial structure regarding
the basilica decomposition. The next statement is easily confirmed from Fact 3
and the Gallai-Edmonds structure theorem.

Fact 7. Let G be a graph. Any inconsistent component is minimal in the poset
(G(G), �). For any H ∈ G−(G), if V (H) ∩ A(G) �= ∅, then PG(H) = {V (H) ∩
A(G)}; otherwise, PG(H) = ∅.

For simplicity, even for H ∈ G−(G) with V (H) ∩ A(G) = ∅, we treat as if
V (H) ∩ A(G) is a member of P(G). That is, we let PG(H) = {V (H) ∩ A(G)}
and �UG(V (H) ∩ A(G)) = �UG(∅) = V (H) ∩ D(G) = V (H). Under Fact 7,
the substantial information provided by the basilica decomposition lies in the
consistent factor-components.

We now present some properties of the basilica decomposition that are used
in later sections. The next lemma can be found in Kita [11].

Lemma 1. Let G be a graph, and let M be a maximum matching of G. Let
H ∈ G+(G), S ∈ PG(H), and s ∈ S.

(i) For any t ∈ S, there is an M -forwarding path from s to t, whose vertices are
contained in S ∪ �UG(S); however, there is no M -saturated path between s
and t.

(ii) For any t ∈ �UG(S), there exists an M -saturated path between s and t whose
vertices are contained in S ∪ �UG(S).

(iii) For any t ∈ UG(S), there is an M -forwarding path from t to s, whereas there
is no M -forwarding path from s to t or M -saturated path between s and t.

The first part of the next lemma is provided in Kita [12], and the second part
can be easily proved from Lemma 1.

Lemma 2. Let G be a graph, and let M be a maximum matching of G. Let
S ∈ P(G). If there is an M -ear relative to S∪�UG(S) that has internal vertices,
then the ends of this ear are contained in S.

4 Poset with Transitive Forbidden Relation

We now introduce the new concept of posets with a transitive forbidden relation,
which serves as a language to describe the nonbipartite DM decomposition.

Definition 3. Let X be a set, and let � be a partial order over X. Let � be a
binary relation over X such that,

(i) for each x, y, z ∈ X, if x � y and y � z hold, then x � z holds (transitivity);
(ii) for each x ∈ X, x � x does not hold (nonreflexivity); and,
(iii) for each x, y ∈ X, if x � y holds, then y � x also holds (symmetry).
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We call this poset endowed with this additional binary relation a poset with
a transitive forbidden relation or TFR poset in short, and denote this by
(X,�,�). We call a pair of two elements x and y with x � y forbidden.

Let (X,�,�) be a TFR poset. For two elements x, y ∈ X with x � y, we
say that x

�
� y if, there is no z ∈ X \ {x, y} with x � z and z � y. We call

such a forbidden pair of x and y immediate. A TFR poset can be visualized in a
similar way to an ordinary posets. We represent � just in the same way as the
Hasse diagrams and depict � by indicating every immediate forbidden pairs.

Definition 4. Let P be a TFR poset (X,�,�). A lower or upper ideal Y of P
is legitimate if no elements x, y ∈ Y satisfy x � y. Otherwise, we say that Y is
illegitimate. Let Y be a consistent lower or upper ideal, and let Z be the subset
of X \ Y such that, for each x ∈ Z, there exists y ∈ Y with x � y. We say that
Y is spanning if Y ∪ Z = X.

5 DM Decomposition for General Graphs

We now provide our new results of the DM decomposition for general graphs. In
this section, unless otherwise stated, let G be a graph.

Definition 5. A Dulmage-Mendelsohn component, or a DM component in
short, is a subgraph of the form G[S ∪ �UG(S)], where S ∈ P(G), endowed with
S as an attribute known as the base. For a DM component C, the base of C is
denoted by π(C). Conversely, for S ∈ P(G), K(S) denotes the DM components
whose base is S. We denote by D(G) the set of DM components of G.

Hence, distinct DM components can be equivalent as a subgraph of G. Each
member from P(G) serves as an identifier of a DM component.

Fig. 4. The nonbipartite Dulmage-Mendelsohn decomposition of G: for each immediate
compatible pair, an arrow points from the lower element to the upper element. The
two elements from each immediate forbidden pair are connected by a gray broken line.
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Definition 6. A DM component C is said to be inconsistent if π(C) ∈ PG(H)
for some H ∈ G−(G); otherwise, C is said to be consistent. The sets of consistent
and inconsistent DM components are denoted by D+(G) and D−(G), respectively.

Definition 7. We define binary relations �◦ and � over D(G) as follows: for
D1,D2 ∈ D(G), we let D1 �◦ D2 if D1 = D2 or if NG(�UG(S1)) ∩ S2 �= ∅;
we let D1 � D2 if there exist C1, . . . , Ck ∈ D(G), where k ≥ 1, such that
π(C1) = π(D1), π(Ck) = π(D2), and Ci �◦ Ci+1 for each i ∈ {1, . . . , k} \ {k}.

Also, we define binary relations �◦ and � over D(G) as follows: for
D1,D2 ∈ D(G), we let D1 �◦ D2 if π(D2) ⊆ V (D1) \ π(D1) holds; we let
D1 � D2 if there exists D′ ∈ D(G) with D1 � D′ and D′ �◦ D2.

In the following, we provide some lemmas and prove that (D(G),�,�) is
a TFR poset in Theorem 8. First, note the next lemma, which can be easily
observed from Facts 3 and 7.

Lemma 3. If C is an inconsistent DM component of a graph G, then there is
no C ′ ∈ D(G) \ {C} with C � C ′ or C � C ′.

Lemma 4. Let G be a graph, let M be a maximum matching of G, and let
D1, . . . , Dk ∈ D(G), where k ≥ 1, be DM components with D1 �◦ · · · �◦ Dk

no two of which share vertices and for which Dk ∈ D+(G) holds. Then, for
any s ∈ π(D1) and any t ∈ π(Dk) (resp. t ∈ V (Dk) \ π(Dk)), there is an
M -forwarding path from s to t (resp. M -saturated path between s and t) whose
vertices are contained in V (D1)∪̇ · · · ∪̇V (Dk).

Proof. A desired path can be obtained by concatenating alternating paths given
by Lemma 1 and edges joining distinct DM components. �
Lemma 5. Let G be a graph, let M be a maximum matching of G, and let
D1, . . . , Dk, where k ≥ 2, be DM components with D1 �◦ · · · �◦ Dk such that
π(Di) �= π(Di+1) for any i ∈ {1, . . . , k − 1}. Then, for any i, j ∈ {1, . . . , k} with
i �= j, V (Di) ∩ V (Dj) = ∅.
Proof. Suppose that the claim fails. Then, there exist p, q ∈ {1, . . . , k − 1}
with p ≤ q such that Dp, . . . , Dq+1 are mutually disjoint except that
V (Dp) ∩ V (Dq+1) �= ∅. Then, Lemma 3 implies Dp, . . . , Dq+1 ∈ D+(G). If
π(Dq+1) ⊆ V (Dp) holds, then let tq+1 ∈ �UG(π(Dq+1)); otherwise, let tq+1 ∈
�UG(π(Dq+1)) ∩ V (Dp). Let tp ∈ �UG(π(Dp)) and sp+1 ∈ π(Dp+1) be vertices
with tpsp+1 ∈ E(G), and let Q be an M -saturated path Q between sp+1 and tq
taken under Lemma 4. Then, tpsp+1+Q+tqsq+1+sq+1Ptq+1 contains an M -ear
relative to Dp one of whose ends is tp. This contradicts Lemma 2. �
Lemma 6. Let G be a graph, and let M be a maximum matching of G. Let
s, t ∈ V (G), and let S and T be the members from P(G) with s ∈ S and t ∈ T ,
respectively. Then, there is an M -saturated path between s and t if and only if
K(S) � K(T ) holds.
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Proof. By combining Lemmas 4 and 5, the necessity is easily proved. For prov-
ing the sufficiency, let P be an M -saturated between s and t. We proceed by
induction on the number of edges in P . Lemma 2 implies that P −E(K(S)) is an
M -exposed path; let x be the end of P −E(K(S)) other than t. Let y ∈ V (P ) be
the vertex with xy ∈ E(P ), and let R ∈ P(G) with y ∈ R. By Lemma 1, we have
K(S) �◦ K(R). The subpath yP t is M -saturated between y and t. Therefore,
the induction hypothesis implies K(R) � K(T ), and proves the claim. �

We are now ready to prove Theorem 8:

Theorem 8. For a graph G, the triple (D(G),�,�) is a TFR poset.

Proof. Lemmas 4 and 5, it is clear that � is a partial order over D(G). Non-
reflexivity and transitivity of � are obvious from the definition. Symmetry is
proved by Lemma 6. �

For a graph G, the TFR poset (D(G),�,�) is uniquely determined and is
denoted by O(G). We call this canonical structure the nonbipartite Dulmage-
Mendelsohn (DM ) decomposition of G. We show in Sect. 7 that this is a gener-
alization of the classical DM decomposition for bipartite graphs.

As mentioned previously, a DM component is identified by its base. There-
fore, the nonbipartite DM decomposition is essentially the relations between the
members of P(G). In Fig. 4, we provide an example of the nonbipartite DM
decomposition for the graph G from Figs. 1, 2, and 3. Our result is distinct from
the result by Iwata [7]. This can also be confirmed from the example graph G
in Fig. 1.

Given a graph G, its basilica decomposition can be computed in O(|V (G)| ·
|E(G)|) time [9,10]. Hence, the next thereom can be stated.

Theorem 9. Given a graph G, the TFR poset O(G) can be computed in
O(|V (G)| · |E(G)|) time.

6 Characterization of Maximal Barriers

In this section, we derive the characterization of the family of maximal barriers in
general graphs using the nonbipartite DM decomposition. A barrier is maximal
if it is inclusion-wise maximal. In this section, unless otherwise stated, let G be
a graph.

Definition 8. For I ⊆ D(G), the normalization of I is the set I ∪ D−(G). A
set I ′ ⊆ D(G) is said to be normalized if I ′ = I ∪ D−(G) for some I ⊆ D(G).

Note that the normalization of an upper ideal is an upper ideal; the normal-
ization of a legitimate upper ideal is legitimate.

We present several known facts to derive Theorem 11.

Proposition 1 (see Lovász and Plummer [17]). Let G be a graph, and let
X ⊆ V (G) be a barrier. Then, X is a maximal barrier if and only if every
connected component of G − X are odd and factor-critical.



Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality 303

The next statements is a generalization of Lovász’s canonical partition theo-
rem [11,16,17].

Theorem 10 (Kita [11]). Let G be a graph and X ⊆ V (G) be a maximal
barrier of G. Then, there exist S1, . . . , Sk ∈ P(G), where k ≥ 1, such that
X = S1∪̇ · · · ∪̇Sk and DX = �UG(S1)∪̇ · · · ∪̇�UG(Sk). The odd components of
G − X are the connected components of G[�UG(Si)], where i is taken over all
{1, . . . , k}.

From Proposition 1 and Theorem 10, the next theorem that characterizes the
family of maximal barriers can be derived rather easily.

Theorem 11. Let G be a graph. A set of vertices X ⊆ V (G) is a maximal
barrier if and only if there exists a spanning legitimate normalized upper ideal I
of the TFR poset O(G) such that X =

⋃{π(C) : C ∈ I}.

7 Original DM Decomposition for Bipartite Graphs

In this section, we explain the original DM decomposition for bipartite graphs,
and prove this from our result in Sect. 5. In the remainder of this section, unless
stated otherwise, let G be a bipartite graph with color classes A and B, and let
W ∈ {A,B}.

Definition 9. The binary relations ≤◦
W and ≤W over G(G) are defined as fol-

lows: for G1, G2 ∈ G(G), let G1 ≤◦
W G2 if G1 = G2 or if EG[W ∩V (G2), V (G1)\

W ] �= ∅; let G1 ≤W G2 if there exist H1, . . . , Hk ∈ G(G), where k ≥ 1, such that
H1 = G1, Hk = G2, and H1 ≤◦

W · · · ≤◦
W Hk.

Note that G1 ≤A G2 holds if and only if G2 ≤B G1 holds.

Theorem 12 (Dulmage and Mendelsohn [2–4,17]). Let G be a bipartite
graph with color classes A and B, and let W ∈ {A,B}. Then, the binary relation
≤W is a partial order over G(G).

We call the poset (G(G),≤W ) proved by Theorem12 the Dulmage-
Mendelsohn decomposition of a bipartite graph G. It is easily confirmed, e.g.,
from the Gallai-Edmonds structure theorem that G−

A (G) ∩ G−
B (G) = ∅ and that

any C ∈ G−
B (G) is minimal with respect to ≤A.

Additionally, bipartite graphs have a trivial structure regarding the basilica
decomposition:

(i) For each H ∈ G+(G), PG(H) = {V (H)∩A, V (H)∩B}. For each H ∈ G−
W (G),

PG(H) = {V (H) ∩ W}.
(ii) For any H1,H2 ∈ G(G) with H1 �= H2, H1 � H2 does not hold.

Under these properties, we define DW (G) as the set {C ∈ D(G) : π(C) ⊆ W}.
Define a mapping fW : G+(G)∪G−

W (G) → DW (G) as fW (C) := K(V (C)∩W )
for C ∈ G+(G). The next statement is now obvious.
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Observation 13. The mapping fW is a bijection; and, for any C1, C2 ∈ G(G),
C1 ≤W C2 holds if and only if f(C1) � f(C2) holds.

According to Theorem 8 and Observation 13, the system (G+(G) ∪ G−
W (G),

≤W ) is a poset. Thus, this proves Theorem 12.
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13. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. I (in Slovak). Math.
Slovaca 9(2), 73–91 (1959)
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The Path Set Packing Problem

Chenyang Xu and Guochuan Zhang(B)

College of Computer Science, Zhejiang University, Hangzhou, China
{xcy1995,zgc}@zju.edu.cn

Abstract. In this paper, we study a variant of set packing, in which
a set P of paths in a graph G = (V,E) is given, the goal is to find a
maximum number of edge-disjoint paths of P . We show that the problem
is NP -hard even if each path in P contains at most three edges, while
it is hard to approximate within O(|E|1/2−ε) for the general case unless
NP = ZPP . In the positive aspect, a parameterized algorithm relying
on the maximum degree and the tree-width of G is derived. For tree
networks, we present a polynomial time optimal algorithm.

1 Introduction

Recent years have witnessed the great development of an emerging network
architecture named Software-Defined Networking (SDN). Different from the tra-
ditional network architecture, SDN is a central network, meaning that the state
of the whole network and the instructions the data plane needs are all managed
by a centralized controller. Actually, the central network [1] was first proposed
in the 1980s. However, at that time, not much research was focused on the study
of this architecture. Until recently the cloud computing becomes more and more
important, more and more attention is paid to studying this architecture since
it is ideal for the high-bandwidth, dynamic nature of today’s computing.

The failure of network nodes or links may cause network service interruptions.
In the SDN architecture, the controller can recompute the network state upon
a failure, but the computation will take a lot of time and incur high processing
delays if a large number of requests are interrupted. Fortunately, computing
edge-disjoint routing paths for each request in the network can often resolve
this problem [2]. Upon arrival of a request, the SDN controller computes two
paths from its source node to its destination node, one is used in the current
network, and the other serves as the backup path. Once a breakdown occurs
and this request is affected, the SDN controller will arrange the backup path for
this request if it fits. Since this method avoids recomputing for a large number
of affected requests, high processing delays will not happen. However, those
backup paths may conflict with each other in links. It means that not all affected
requests can be recovered by using their backup paths. In order to maximize the
throughput of the network, the controller needs to decide whether a request
should be rerouted by its backup path or not.
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c© Springer International Publishing AG, part of Springer Nature 2018
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The scenario motivates the path set packing problem: Given some paths in
a network, our goal is to find as many paths as possible such that those paths
do not conflict with each other in links. Actually, many applications have the
path set packing structure, like wireless network design, VLSI circuits and so
on. Compared with the well-known set packing problem, the path set packing
problem is more closely related to these applications’ structure.

The paper is organized as follows: Sect. 2 provides the basic notations and
related work. In Sect. 3, we show the problem is NP -complete even when each
given path contains at most three edges. In addition, we prove that the problem
is hard to approximate within O(m

1
2−ε) unless NP = ZPP (where m is the

number of edges). In Sect. 4, we consider the case that the given graph G is a
tree, and design a polynomial time algorithm. Section 5 presents a parameterized
algorithm for this problem, which takes the maximum degree and the treewidth
of G as parameters. This paper is concluded in Sect. 6.

2 Basic Notations and Related Work

We shall use some standard graph-theoretic notations throughout the paper.
Considering a graph G, we denote its sets of vertices and edges by V (G) and
E(G), respectively. For a vertex v in G, we use d(v) to represent its degree in G
and let Δ(G) := maxv∈V (G) d(v). A graph is a simple graph if there is at most
one edge between any two vertices and a path is a simple path if any vertex in
the path occurs only once. The graphs and paths mentioned in this paper are
all simple. Let p be a path in G. By Len(p) we denote the length of path p and
by E(p) we denote the set of all edges in path p. A path set packing is a set of
paths P = {p1, . . . , pk} where no two paths have an edge in common.

The Path Set Packing Problem: Given an undirected graph G, a set of
paths P = {pi|i = 1, 2, . . . , L} in G and a non-negative integer k, the goal is to
determine if there exists a path set packing Q ⊆ P, where |Q| ≥ k.

In contrast to the above decision problem, the maximum path set packing
problem is to find a path set packing with the maximum size. The path set
packing problem can be seen as a special case of the set packing problem, which
is one of Karp’s 21 NP -complete problems. The set packing problem is NP -
complete even if the size of the sets in the collection is no more than 3 [3]. In
1996, H̊astad [4] pointed out that the clique problem is hard to approximate
within n1−ε unless NP = ZPP . Thus, the set packing problem has an Ω(m

1
2−ε)

lower bound for any ε > 0 (where m is the size of the fundamental set). Later,
Halldórsson et al. [5] proposed a greedy algorithm which obtains an approxi-
mation near the best possible. Their algorithm simply chooses a set with the
minimum cardinality and then removes the sets that conflict with the selected
set. Repeat this process until all sets have been considered. This algorithm can
approximate the set packing problem within a factor of O(

√
m). Due to the

lower bound mentioned above, this approximation is near the best possible. The
k-set packing problem is also an interesting topic, where all input sets have no
more than k elements. Any maximal solution of this problem is k-approximated.
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To see this, each set in the maximal solution conflicts with at most k sets in an
optimal solution, since each set in the optimal solution must share one or more
common elements with a set in the maximal solution and the cardinality of any
set is no more than k. Halldórsson [6] showed that this approximation can be
improved using local search. By trying to add a constant number of sets to a fea-
sible solution while removing a constant number of conflicting sets, we can obtain
a (k

2 + ε)-approximation algorithm. Hurkens and Schrijver [7] pointed out that
the analysis of such an algorithm is tight. Additionally, Halldórsson [8] gave a
quasipolynomial time algorithm with (k+2

3 )-approximation. In 2013, Cygan et al.
[9] approximated this problem within k+1+ε

3 in quasipolynomial time, success-
fully improving on Halldórsson’s result. In the same year, Sviridenko and Ward
[10] also improved upon Halldórsson’s result. They showed that the k-set pack-
ing problem can be approximated within k+2

3 in polynomial time, using a large
neighborhood local search.

Besides approximation algorithms, the parameterized complexity and param-
eterized algorithms for set packing also attract a lot of attention. Taking the
optimal value s of the set packing problem as a parameter, we can obtain an
O(nsm)-time parameterized algorithm by checking each sub-collections of s sets,
where n is the total number of the given sets. Since this problem parameterized
by its optimal value has been proved W[1]-complete [11], we can not expect a
much better parameterized algorithm. But if the size of each set is bounded by
a constant, this problem has an O(f(s)poly(n))-time algorithm [11]. In other
words, the parameterized k-set packing problem is fixed-parameter tractable if
we take both k and the optimal value s as its parameters. Jia et al. [12] presented
an O(ks(g(k, s)ks + s2k2n))-time algorithm, where g(k, s) is linear in ks. One
year later, Koutis [13] gave an O(2O(ks)nm log m)-time algorithm, improving the
above algorithm. These two papers both first proposed a randomized algorithm
and then did derandomization. Different from this method, Fellows et al. [14]
put forward an O(n+2O(ks))-time kernelization algorithm. They found a kernel
of the parameterized k-set packing problem whose order is O(sk). Their result
was improved by Abu-Khzam [15], where an algorithm that can produce kernels
with order O(sk−1) was proposed.

Our problem is a special case of the set packing problem, therefore, all algo-
rithms designed for set packing can be applied to the path set packing problem.
It is worth mentioning that the approximation of the algorithm proposed in [5]
is also near the best possible in our problem, which we will show in Sect. 3. Dif-
ferent from the set packing problem, there are some features of the input graph
in our problem that can be taken advantage while designing algorithms. We will
show how to make use of this point in Sects. 4 and 5.

3 Hardness

If each path has a length of at most two, the path set packing problem can be
solved in polynomial time. Without loss of generality, assume that no two paths
are identical. Pick up all paths of single edge and remove those of two edges
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which conflict with the selected paths. Now consider the remaining paths of two
edges. It becomes a maximum matching problem since such a path is chosen as
long as its two edges are matched.

However, when paths are allowed to be longer than 2, this problem becomes
hard. In the following, we prove that the path set packing problem is NP -
complete even when the maximum length of the given paths is 3. For simplicity,
denote this special case as the 3-length-path set packing problem. We construct
a reduction from a variant of the 3-dimensional matching problem introduced
in [16].

The variant of the 3-dimensional matching problem (3DM′) is defined as fol-
lowing: Given a positive integer k, three disjoint sets of elements W = {wi, w̄i|i =
1, . . . , 3n}, X = {si, ai|i = 1, . . . , 3n}, Y = {s′

i, bi|i = 1, . . . , 3n}, and two
sets of triples T1 ⊆ {(wi, sj , s

′
j), (w̄i, sj , s

′
j)|wi ∈ W, sj ∈ X, s′

j ∈ Y }, T2 =
{(wi, ai, bi), (w̄i, ai, bζ(i))|i = 1, . . . , 3n} where ζ is defined as ζ(3m+1) = 3m+2,
ζ(3m + 2) = 3m + 3 and ζ(3m + 3) = 3m + 1 for m = 0, . . . , n − 1, the goal is
to determine if there exist at least k triples in T1 ∪ T2 such that no two of them
share an element.

Given an instance I3DM′ of 3DM′, we construct an instance I3PSP of the 3-
length-path set packing problem such that it has a path set packing whose size
is no less than k if and only if I3DM′ has at least k disjoint triples.

Define a node for each element in I3DM′ and add an extra node g. Namely,
we have a node set V = W ∪X ∪Y ∪{g}. The edge set E consists of five kinds of
edges: (1) E1 = {(wi, ai), (w̄i, ai)|i = 1, . . . , 3n}, (2) E2 = {(ai, g)|i = 1, . . . , 3n},
(3) E3 = {(g, bi)|i = 1, . . . , 3n}, (4) E4 = {(ai, sj)|i = 1, . . . , 3n, j = 1, . . . , 3n},
(5) E5 = {(si, s

′
i)|i = 1, . . . , 3n}. Figure 1 illustrates the construction with n = 1.

Fig. 1. An illustration of the first reduction. The left is the given triples and the right
is the graph we constructed.

For each triple (wi(w̄i), sj , s
′
j) in T1, we define a path (wi(w̄i), ai, sj , s

′
j) and

put it into the path set P. For each triple (wi, ai, bi) (or (w̄i, ai, bζ(i))) in T2, we
define a path (wi, ai, g, bi) (or (w̄i, ai, g, bζi)) and put it into P.

Two triples in I3DM′ share wi (or w̄i) if and only if their corresponding paths
in I3PSP have the common edge (wi, ai) (or (w̄i, ai)). They share (si, s

′
i) if and
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only if their corresponding paths share the edge (si, s
′
i). They have the common

element ai (or bi) if and only if their corresponding paths share the edge (ai, g)
(or (g, bi)). So it is easy to see that P has a path set packing whose size is no less
than k if and only if we can choose no less than k disjoint triples from T1 ∪ T2,
which gives the following theorem.

Theorem 1. The path set packing problem is NP -complete even if the length
of any given path is no more than 3.

Now we turn to the general case and prove that the maximum path set
packing problem is hard to approximate within O(|E(G)| 1

2−ε) unless NP =
ZPP (G is the given graph). To this end, we construct a reduction from the
independent set problem. An independent set is a set of vertices in a graph, no
two of which are adjacent. The maximum independent set problem is to find the
largest independent set in a given graph.

Given an instance IIS of the maximum independent set problem, the instance
IPSP of the maximum path set packing problem is constructed as following. Use
G = (V,E) to represent the graph of IIS and G′ = (V ′, E′

1 ∪E′
2) to represent the

graph of IPSP. We index the edges in E. For each edge ei = (u, v) ∈ E, define
two nodes ui, vi ∈ V ′ and an edge e′

i = (ui, vi) ∈ E′
1.

We further define a function f : V ′ → V ′, where f(ui) denotes the other
endpoint of e′

i other than ui. Namely, f(ui) = vi if ei = (u, v) ∈ E. Now, there
exists an edge in E′

1 corresponding to each edge in E, and for each vertex v ∈ V ,
we have d(v) nodes {vk1 , vk2 , . . . , vkd(v)} in V ′ accordingly. Let k1 < k2 < . . . <
kd(v). Connect vki−1 to f(vki) for 2 ≤ i ≤ d(v). The set of edges constructed
in this way is denoted by E′

2. Finally, we construct the given path set: for each
vertex v ∈ V , we can have a path (f(vk1), vk1 , f(vk2), . . . , f(vkd(v)), vkd(v)) in G′.
Let all these paths be the given paths in IPSP.

Take an arbitrary given path p = (f(vk1), vk1 , f(vk2), . . . , f(vkd(v)), vkd(v)) in
IPSP. It is easy to see that any edge in {(vki−1 , f(vki))|i = 2, . . . , d(v)} can not
appear in other paths. If the path p conflicts with some other path p′, assuming
that the edge (f(vki), vki) is their common edge and f(vki) = uki , p′ must
correspond to the vertex u in IIS. The edge (f(vki), vki) suggests that u and
v are adjacent in IIS. If the vertex u and the vertex v are neighbors in IIS,
assuming (u, v) = ej , two paths corresponding to them must contain the edge
e′
j , implying that they can not co-exist in a path set packing. Thus, two paths

share a common edge in IPSP if and only if two nodes corresponding to them in
IIS are adjacent. The size of a maximum independent set in IIS is equal to the
size of a maximum path set packing in IPSP (see Fig. 2 as an illustration).

Due to the inapproximability of Clique proposed in [4], the independent set
problem is hard to approximate within m

1
2−ε unless NP = ZPP , where m is

the number of edges in the graph. We conclude the following theorem.

Theorem 2. The maximum path set packing problem is hard to approximate
within O(m

1
2−ε) unless NP = ZPP .

Additionally, we can obtain a
√

m-approximation algorithm simply applying
the greedy method mentioned in [6].
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Fig. 2. An illustration of the second reduction. The left graph is G and the right is G′,
where E′

1 is drawn by real edges and E′
2 is drawn by dotted edges. We also show how the

function f maps the vertices. u corresponds to the path (v1, u1, w2, u2), v corresponds
to the path (u1, v1, w3, v3), and w corresponds to the path (u2, w2, v3, w3), respectively.

4 The Case of Trees

Although the path set packing problem is NP -complete even when the maximum
length of the given path is 3, we find that if restricted to trees, this problem can
be solved in polynomial time. In this section, we propose a polynomial time
dynamic programming on trees.

Given a tree T , we root T at an arbitrary node r and let T (v) denote the
subtree rooted at v. In addition, for each child u of v, we use T (v\u) to represent
the subgraph if removing the edge (v, u) and T (u) from T (v). For a subgraph
G′ ⊆ T , we denote with P(G′) the set of the paths in P whose edges are all
in G′ and with M(G′) a maximum path set packing in P(G′). Thus, M(T (r))
provides an optimal solution.

Without loss of generality, denote a path p by a sequence of vertices
(w1, . . . , ws, ui, v, uj , w̄1, .., w̄t), where v is the closest vertex to r in p and
s, t ∈ N . ui and uj are children of v (if v is an endpoint of p, p only con-
tains one child of v). w1, . . . , ws are the vertices in T (ui) and w̄1, . . . , w̄t are the
vertices in T (uj). We say a path p is free if

|M(T (ui))| = |M(T (ui \ ws)) ∪ M(T (ws \ ws−1)) ∪ ... ∪ M(T (w1))|

and

|M(T (uj))| = |M(T (uj \ w̄1)) ∪ M(T (w̄1 \ w̄2)) ∪ ... ∪ M(T (w̄t))|.

We compute all M(T (v)) and M(T (v \u)) for each child u of v in a bottom-
to-top way, starting at the leaves of T (r). If v is a leaf, M(T (v)) = 0. If v is not
a leaf, we use Algorithm 1 to compute M(T (v)).



The Path Set Packing Problem 311

Algorithm 1.
1: P and M are initially empty
2: for each path p in P(T (v)) do
3: if p is a free path containing v then
4: add p into P
5: end if
6: end for
7: compute a maximum path set packing P̂ in P /* to be specified later in Theorem

4*/
8: for each path p in P̂ do
9: /* Denote p by (w1, ..., ws, ui, v, uj , w̄1, ..., w̄t), s, t ∈ N */

10: M ← M ∪ M(T (ui \ ws)) ∪ M(T (ws \ ws−1)) ∪ ... ∪ M(T (w1)) ∪ M(T (uj \
w̄1)) ∪ M(T (w̄1 \ w̄2)) ∪ ... ∪ M(T (w̄t))

11: end for
12: for each child u of v do
13: if no path in P̂ contains u then
14: M ← M ∪ M(T (u))
15: end if
16: end for
17: return M ∪ P̂

Theorem 3. The path set returned by Algorithm 1 is a maximum path set pack-
ing in P(T (v)).

Proof. The path set packing M is computed in the subgraph which is obtained
by removing all edges in P̂ , so no path in M conflicts with paths in P̂ , showing
that M ∪ P̂ is a path set packing. Next, we will show that it is actually a
maximum path set packing in P(T (v)).

Consider an arbitrary maximum path set packing P0 in P(T (v)). If it contains
a path p = (w1, . . . , ws, ui, v, uj , w̄1, . . . , w̄t) which is not free but passes v, we
replace this path and paths in P0 ∩ (P(T (ui)) ∪ P(T (uj)) with M(T (ui)) ∪
M(T (uj)) and obtain a new path set packing P ′

0.
Note that

|P0 ∩ (P(T (ui)) ∪ P(T (uj))| ≤ |M(T (ui \ ws)) ∪ M(T (ws \ ws−1))∪
... ∪ M(T (w1)) ∪ M(T (uj \ w̄1)) ∪ M(T (w̄1 \ w̄2)) ∪ ... ∪ M(T (w̄t))|.

(1)

It is easy to see that |P ′
0| ≥ |P0| since p is not free. Thus, this new path set

packing is also a maximum path set packing in P(T (v)).
We do the above until all paths passing v are free. Denote the final path set

packing by P̂0. Let P̂0 = P̂1 ∪ P̂2, where P̂1 is the set of all paths which contain
v and P̂2 is the set of remaining paths. Namely, P̂2 is a path set packing in⋃

∀ child u of v

P(T (u)). Thus,

|P̂2| ≤ |
⋃

∀ child u of v

M(T (u))| = |M |. (2)



312 C. Xu and G. Zhang

Recall P and P̂ computed in Algorithm 1. Since P̂1 is a path set packing in
P , we know

|P̂1| ≤ |P̂ |. (3)

Combining 2 and 3, we have

|P̂0| ≤ |M ∪ P̂ |. (4)

So M ∪ P̂ is a maximum path set packing in P(T (v)).

Theorem 4. Algorithm 1 is a polynomial time algorithm.

Proof. Denote the number of the vertices and edges by n and m, respectively.
The number of the given paths is denoted by L. It takes O(n) time to check if
a path is free. Thus, the first loop costs O(Ln) time.

For any path (..., ui, v, uj , ...) (or (..., ui, v)) in P , it shares common edges
with other paths if and only if they have the common edge (ui, v) or (v, uj) due
to the structure of trees. So when computing P̂ , we can simply use (ui, v, uj) to
represent each path. Namely, computing P̂ is a 2-length-path set packing prob-
lem. Recall that the 2-length-path set packing problem can be solved in polyno-
mial time. This step takes O(

√
mL) time as the maximum matching problem is

solvable in O(
√|V ||E|) time [17].

Because the last two loops combine at most n states, their running time is
O(n). Overall, Algorithm 1 takes O(Ln) time.

It is easy to see that Algorithm 1 can also be used to compute M(T (v \ u))
for each child u of v. The number of states in the whole dynamic programming is
(m+n). Hence, we can solve the maximum path set packing on trees in O(Ln2)
time.

5 A Parameterized Algorithm

Inspired by the parameterization of the maximum independent set problem, we
consider the maximum path set packing problem parameterized by Δ(G) and
t, where t is the treewidth of the given graph G, with which we propose a
parameterized algorithm.

Given a graph G, denote a nice tree decomposition by a pair ({Xi|i ∈ I}, T =
(I, F )). Note that if T is a rooted nice tree decomposition, it has three prop-
erties [18]: (1) each node of T has at most 2 children. (2) if a node i has two
children j and k, then Xi = Xj = Xk and this node is called a join node. (3)
if a node i has one child j, then it is either an introduce node or a forget node,
where i is an introduce node if |Xi| = |Xj |+1 and Xj ⊂ Xi and is a forget node
if |Xi| = |Xj | − 1 and Xi ⊂ Xj . Root T at an arbitrary node r and let T (i)
be the subtree rooted at i. Different from Sect. 4, by Pi we denote the set of all
paths in P that contain one or more nodes in Xi. PT (i) is the set of all paths in
P that contain one or more nodes in

⋃

j∈T (i)

Xj .
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Lemma 1. If node j lies on the i-k path in T , then Pi ∩ Pk ⊆ Pj.

Proof. Assume that there exists a path p ∈ Pi ∩ Pk and p /∈ Pj . Let i′ be the
node closest to j in the i-j path, where p ∈ Pi′ . Analogously, k′ is the node
closest to j in the j-k path, where p ∈ Pk′ . In other words, for any intermediate
h other than i′ and k′ in the i′-k′ path, Ph does not contain p.

Since Xi′ ∩ Xk′ ⊆ Xj , Xi′ and Xk′ can not contain a common node on the
path p. Assume that Xi′ contains vi′ in p and Xk′ contains vk′ in p. Without loss
of generality, any node between vi′ and vk′ in p does not belong to Xi′ or Xk′ . If
(vi′ , vk′) is an edge in G, there must exist an Xh that contains the two nodes vi′

and vk′ . According to the property of the tree decomposition, h has to lie on the
i′-k′ path, which conflicts with the definition of i′ and j′. If (vi′ , vk′) is not an
edge in G, for any Xh that contains the nodes between vi′ and vk′ on p, h must
all lie on either (i′)’s side or (k′)’s side in the tree decomposition. Thus, there
must exist an edge in p that is not included in any node set in X, which conflicts
with the property of the tree decomposition. It implies the non-existence of the
path p.

Lemma 2. For any path set packing P̂i ⊆ Pi and P̂k ⊆ Pk, if node j lies on the
i-k path in T and P̂i ∩ Pj = P̂k ∩ Pj, P̂i ∪ P̂k is a path set packing.

Proof. Assume that there exist two paths p1 ∈ P̂i and p2 ∈ P̂k such that p1 and
p2 share a common edge e. Denote by Xh the set containing e. It is easy to see
that either j lies on the i-h path or j lies on the k-h path. Due to Lemma 1,
Pj contains at least one path in {p1, p2}. Without loss of generality, let p1 ∈ Pj .
Since p1 ∈ P̂i, hence p1 ∈ P̂i ∩ Pj = P̂k ∩ Pj . But if p1 and p2 share a common
edge, they can not co-exist in P̂k, which implies the non-existence of these two
paths.

For any i ∈ I and any path set packing P ⊆ Pi, we denote with M(i, P )
a maximum path set packing in PT (i) such that M(i, P ) ∩ Pi = P . It is easy
to obtain an optimal solution if M(r, P ) is known for each path set packing
P ⊆ Pr. We compute each M(i, P ) in a bottom-to-top way, starting at the
leaves of the nice tree decomposition T (r). If i is a leaf, M(i, P ) = P . If i is
a forget node and has a child j, M(i, P ) = M(j, P ) for any path set packing
P ⊆ Pi. If i is an introduce node and has a child j, it is easy to see that
M(i, P ) = P ∪ M(j, P ∩ Pj) due to Lemma 2. If i is a join node and has two
children j and k, M(i, P ) = M(j, P ) ∪ M(k, P ) holds also because of Lemma
2. Thus, the time of computing an M(i, P ) is O(1). In the following, we count
the total number of states in this dynamic programming.

For simplicity, we use Δ to represent Δ(G) and n to present |V (G)|. Recall
that L is the number of the given paths and t is the treewidth of G. For each
node i ∈ I, the nodes in Xi connect to at most tΔ edges in G. Since each edge
can only be used at most once in a path set packing, the number of path set
packings P ⊆ Pi is at most LtΔ. Thus, the total number of states is O(LtΔn),
which implies that our parameterized algorithm runs in O(LtΔn) time.
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6 Conclusion

In this paper, we have introduced the path set packing problem. This problem
is NP -complete even if the length of each path is at most 3 and it is hard to
approximate within O(m

1
2−ε) unless NP = ZPP . When restricted to trees, this

problem can be solved in polynomial time. In addition, we propose a parame-
terized algorithm for the general case. It is interesting to consider other special
graphs, such as bipartite graphs, grid graphs and so on. Whether this problem
is fixed-parameter tractable on the treewidth is still open. Note that if we con-
sider vertex-disjoint paths instead of edge-disjoint paths, the path set packing
problem in a general graph is exactly the same as the set packing problem. But
for tree networks, this problem can still be solved polynomially with the similar
technique in this paper.
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Abstract. We consider manipulation strategies for the rank-maximal
matching problem. Let G = (A ∪ P, E) be a bipartite graph such that A
denotes a set of applicants and P a set of posts. Each applicant a ∈ A has
a preference list over the set of his neighbours in G, possibly involving
ties. A matching M is any subset of edges from E such that no two
edges of M share an endpoint. A rank-maximal matching is one in which
the maximum number of applicants is matched to their rank one posts,
subject to this condition, the maximum number of applicants is matched
to their rank two posts and so on. A central authority matches applicants
to posts in G using one of rank-maximal matchings. Let a1 be the sole
manipulative applicant, who knows the preference lists of all the other
applicants and wants to falsify his preference list, so that, he has a chance
of getting better posts than if he were truthful, i.e., than if he gave a
true preference list.

We give three manipulation strategies for a1 in this paper. In the first
problem ‘best nonfirst’, the manipulative applicant a1 wants to ensure
that he is never matched to any post worse than the most preferred post
among those of rank greater than one and obtainable, when he is truthful.
In the second strategy ‘min max’ the manipulator wants to construct a
preference list for a1 such that the worst post he can become matched to
by the central authority is best possible or in other words, a1 wants to
minimize the maximal rank of a post he can become matched to. To be
able to carry out strategy ‘best nonfirst’, a1 only needs to know the most
preferred post of each applicant, whereas putting into effect ‘min max’
requires the knowledge of whole preference lists of all applicants. The
last manipulation strategy ‘improve best’ guarantees that a1 is matched
to his most preferred post at least in some rank-maximal matchings.

1 Introduction

We consider manipulation strategies for the rank-maximal matching prob-
lem. In the rank-maximal matching problem, we are given a bipartite graph
G = (A ∪ P, E) where A denotes a set of applicants and P a set of posts. Each
applicant a ∈ A has a preference list over the set of his neighbours in G, possibly
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involving ties. Preference lists are represented by ranks on the edges - an edge
(a, p) has rank i, denoted as rank(a, p) = i, if post p belongs to one of a’s i-th
choices. An applicant a prefers a post p to a post p′ if rank(a, p) < rank(a, p′).
In this case, we say that (a, p) has higher rank than (a, p′). If a is indifferent
between p and p′, then rank(a, p) = rank(a, p′). Posts most preferred by an
applicant a have rank one in his preference list. A matching M is any subset of
edges E such that no two edges of M share an endpoint. A matching is called
a rank-maximal matching if it matches the maximum number of applicants to
their rank one posts and subject to this condition, the maximum number of
applicants to their rank two posts, and so on. A rank-maximal matching can be
computed in O(min(c

√
n, n)m) time, where n is the number of applicants, m the

number of edges and c the maximum rank of an edge in an optimal solution [20].
A central authority matches applicants to posts by using the rank-maximal

matching algorithm. Since there may be more than one rank- maximal matching
of G, we assume that the central authority may choose any one of them arbitrar-
ily. Let a1 be a manipulative applicant, who knows the preference lists of all the
other applicants and wants to falsify his preference list, so that, he has a chance
of getting better posts than if he were truthful, i.e., than if he gave a true pref-
erence list. We can always assume that a1 does not get his most preferred post
in every rank-maximal matching when he is truthful, otherwise, a1 does not have
any incentive to cheat. Also, we can notice that it is usually advantageous for a1

to truncate his preference list. Let Hp denote the graph, in which a1’s preference
list consists of only one post p. Then as long as no rank-maximal matching of Hp

leaves a1 unmatched, he is guaranteed to always get the post p. To cover the worst
case situation for a1, our strategies require a1 to provide a full preference list that
includes every post from P . Also, a1 could make the posts, he does not want to be
matched to, appear very far in his preference list. Thus, we assume that a1 does
not have any gap in his preference list, i.e., it cannot happen that in a1’s preference
list there are a rank i and rank (i + 2) posts but none of rank (i + 1).

Our Contribution: Our contribution consists in developing manipulation
strategies for the rank-maximal matching problem. Given a graph instance with
the true preference list of every applicant, we introduce three manipulation
strategies for a1. We consider the case where a1 is the sole manipulator in G.

Our first manipulation strategy named ‘best nonfirst’ is described in Sect. 3.
The strategy may not provide an optimal improvement for a1, but it is simple
and fast. This strategy guarantees that a1 is never matched to any post worse
than the second best post he can be matched to in a rank-maximal matching,
when he is truthful. In other words, if a1 is matched to a post p when he is
truthful and p is not his most preferred post, then the strategy ‘best nonfirst’
ensures that he is never matched to any post ranked worse than p in any rank-
maximal matching. The advantage of this strategy is that a1 does not need to
know full preference lists of the other applicants. He only needs to know the most
preferred post of each applicant to be able to successfully execute the strategy.

Next, in Sect. 4.2 we propose the strategy ‘min max’. The strategy mini-
mizes the maximal rank of a post a1 can become matched to. Thus it optimally
improves the worst post of a1 that is obtainable from the central authority. What
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is more, the strategy has the property that by using it, a1 always gets matched
to p1, which is the best among worst posts he can be matched to. Moreover, we
prove that there does not exist a strategy that simultaneously guarantees that
a1 never gets a post worse than p1 and sometimes gets a post better than p1.

Last but not least, we have studied the manipulation strategy ‘improve best’.
The previous two manipulation strategies improve the worst post a1 can be
matched to in a rank-maximal matching. Hence, these strategies may not match
a1 to his most preferred post in any rank maximal matching. In this manipulation
strategy, a1 has a different goal - he wants to be matched to his most preferred
post in some rank-maximal matchings. Note that it is not possible for him to
ensure that he always gets his most preferred post. Due to space constraints, we
have included the description of this strategy in the full version of the paper.

Previous and Related Work. The rank-maximal matching problem belongs
to the class of matching problems with preferences. In the problems with one-
sided preferences, the considered graph is bipartite and each vertex of only one
set of the bipartition expresses preferences over the set of its neighbours. Apart
from rank-maximal matchings, other types of matchings from this class include
pareto-optimal [1,5,28], popular [3] and fair [15] matchings among others. In
the problems with two-sided preferences, the underlying graph is also bipartite
but vertices from both sides of the bipartition express preferences over their
neighbours. The most famous example of a matching problem with two-sided
preferences is that of a stable matching known also as the stable marriage prob-
lem. Since the seminal paper by Gale and Shapley [8], it has been studied very
intensively, among others in [12,18,27]. In the non-bipartite matching problems
with preferences each vertex from the graph ranks all of its neighbours. The
stable roommate problem [17] is a counterpart of the stable marriage problem
in the non-bipartite setting.

The rank-maximal matching problem was first introduced by Irving [19]. A
rank-maximal matching can be found via a relatively straightforward reduction
to the maximum weight matching problem. The already mentioned [20] gives a
combinatorial algorithm that runs in O(min(n, c

√
n)m) time. The capacitated

and weighted versions were considered, respectively, in [21,25]. A switching graph
characterization of the set of all rank-maximal matchings is described in [11].
Finally, the dynamic version of the rank-maximal matching problem was con-
sidered in [10,24].

A matching problem with preferences is called strategy-proof if it is in the
best interest of each applicant to provide their true preference list. An example
of a strategy-proof mechanism among matching problems with one-sided pref-
erences is that of a pareto optimal matching. The strategyproofness of a pareto
optimal matching has applications in house allocation [2,16,22,30] and kidney
exchange [4,29]. Regarding the stable matching problem, if a stable matching
algorithm produces a men-optimal stable matching, then it is not possible for
men to gain any advantage by changing or contracting their preference lists and
then the best strategy for them is to keep their true preference lists [7,26].

In the context of matching with preferences cheating strategies were mainly
studied for the stable matching problem. Gale and Sotomayor [9] showed that
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women can shorten their preference lists to force an algorithm, that computes the
men-optimal stable matching, to produce the women-optimal stable matching.
Teo et al. [31] considered a cheating strategy, where women are required to give
a full preference list and one of the women is a manipulator. Huang [13] explored
the versions, in which, men can make coalitions. Manipulation strategy in the
stable roommate problem was also considered by Huang [14]. For a matching
problem with one-sided preferences, Nasre [23] studied manipulation strategies
for the popular matching problem.

2 Background

A matching M is said to be maximum (in a graph G) if, among all matchings of
G, it has the maximum number of edges. A path P is said to be alternating with
respect to matching M or M -alternating if its edges belong alternately to M and
E \ M . A vertex v is unmatched or free in M if it is not incident to any edge
of M . An M -alternating path P such that both its endpoints are unmatched
in M , is said to be M -augmenting (or augmenting with respect to M). It was
proved by Berge [6] that a matching M is maximum if and only if there exists
no M -augmenting path.

We state the following well-known properties of maximum matchings in
bipartite graphs. Let G = (A ∪ P, E) be a bipartite graph and let M be a
maximum matching in G. The matching M defines a partition of the vertex set
A∪P into three disjoint sets. A vertex v ∈ A ∪ P is even (resp. odd) if there is an
even (resp. odd) length alternating path with respect to M from an unmatched
vertex to v. A vertex v is unreachable if there is no alternating path from an
unmatched vertex to v. The even, odd and unreachable vertices are denoted by
E, O and U respectively. The following lemma is well known in matching theory.
The proofs can be found in [20].

Lemma 1. Let E, O and U be the sets of vertices defined as above by a maxi-
mum matching M in G. Then,

1. E, O and U are pairwise disjoint, and independent of the maximum matching
M in G.

2. In any maximum matching of G, every vertex in O is matched with a vertex
in E, and every vertex in U is matched with another vertex in U . The size of
a maximum matching is |O| + |U |/2.

3. G contains no edge between a vertex in E and a vertex in E ∪ U .

2.1 Rank-Maximal Matchings

Next we review an algorithm by Irving et al. [20] for computing a rank-maximal
matching. Let G = (A ∪ P, E) be an instance of the rank-maximal matching
problem. Every edge e = (a, p) has a rank reflecting its position in the preference
list of applicant a. E is the union of disjoint sets Ei , i.e., E = E1 ∪ E2 ∪ E3 . . . ∪ Er,
where Ei denotes the set of edges of rank i and r denotes the lowest rank of an
edge in G.
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Definition 1. The signature of a matching M is defined as an r-tuple ρ(M) =
(x1, . . . , xr) where, for each 1 ≤ i ≤ r, xi is the number of applicants who are
matched to their i-th rank post in M .

Let M and M ′ be two matchings of G, with the signatures sig(M) =
(x1, . . . , xr) and sig(M ′) = (y1, . . . , yr). We say M � M ′ if there exists k such
that xi = yi for each 1 ≤ i < k ≤ r and xk > yk.

Definition 2. A matching M of a graph G is called rank-maximal if and only
if M has the best signature under the ordering � defined above.

Let us denote Gi = (A ∪ P, E1 ∪ E2 ∪ ... ∪ Ei) as a subgraph of G that only
contains edges of rank at most i. We define G′

1 as G1 and G′
i+1 as the subgraph

of Gi+1 occurring at the end of phase i of the algorithm for computing a rank-
maximal matching [20]. G′ is also called the reduced graph of G.

Lemma 2. Let G = (A ∪ P, E) and G′ = (A ∪ P, E ′) be two bipartite graphs with
ranks on the edges. Suppose that E ′ ⊆ E. Also, every edge e ∈ E ′ has the same
rank in G and G′. Then any rank-maximal matching M of G such that M ⊆ E ′

is also a rank-maximal matching of G′.

3 Properties of a Preference List and Strategy
‘best nonfirst’

Here we note down some properties of the preference list of any appli-
cant. Let us assume that the preference list of a1 in G has the form
(P1, P2, P3, . . . , Pi, . . . , Pt), where Pi denotes the set of posts of rank i in
the preference list of a1. G \ {a1} denotes the graph obtained from G after the
removal of the vertex a1 from G. We define an f -post of G in a similar way as
in the popular matching problem [3].

Definition 3. A post is called an f-post of G if and only if it belongs to
O(G1 \ {a1}) or U(G1 \ {a1}), where G1 = (A ∪ P, E1). The remaining posts
of G are called non-f-posts.

Lemma 3. If P1 contains a post that is a non-f-post, then a1 is always matched
to one of such posts in a rank-maximal matching of G and thus to one of his
first choices.

Next lemma shows that if a1 is not matched to a rank one post in some
rank-maximal matching of G, then an f -post may be defined in an alternative
way that takes into account the whole graph G1. This property is needed during
the construction of strategy ‘min max’.

Lemma 4. Let us assume that a1 is not matched to a rank one post in some
rank-maximal matching of G. Then a post is an f-post if and only if it belongs
to O(G1) or U(G1).
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The lemma below characterises the set of potential posts a1 can be matched
to, if he provides his true preference list.

Lemma 5. Let G be a bipartite graph and i be the rank of the highest ranked
non-f-post in the preference list of a1. If a1 is not matched to a rank one post,
then a1 can only be matched to a post of rank i or greater than i in any rank-
maximal matching of G.

Proof. Let M be a rank-maximal matching of G. While computing a rank-
maximal matching of G we start by finding a maximum matching of G1. Since
a1 is not matched to a rank one post in every rank-maximal matching of G,
by Lemma 4, the set of f -posts contains every vertex from O(G1) and U(G1).
Hence, we delete every edge, that has rank bigger than 1, incident to an f -post.
Thus, every edge e = (a1, p) such that p is an f -post and rank(a, p) > 1 gets
deleted after the first iteration of the algorithm. Therefore, no such edge can
belong to a rank-maximal matching and a1 can only be matched to a post of
rank i or worse. �	

The above lemmas provide us with an easy method of manipulation that
guarantee that a1 can always be matched to the best non-f -post in his true
preference list. Lemma 5 shows that the most preferred non-f -post of a1 is ranked
not worse than the second most preferred post he can be matched to, when he
is truthful. We assume that a1 is not matched to a rank one post in every rank-
maximal matching of G. Otherwise, the manipulator has no incentive to cheat.
Let pi ∈ Pi be a highest ranked non-f post in the true preference list of a1.
We put pi as a rank 1 post in the falsified preference list of a1. Next, we fill
the falsified preference list of a1 arbitrarily. This completes the description of
strategy ‘best nonfirst’.

Algorithm 1. Strategy ‘best nonfirst’
1: pi ← a highest ranked non-f -post in the true preference list of a1.
2: pi ← the rank one post in the falsified preference list of a1 in H
3: Fill the rest of the preference list of a1 in an arbitrary order
4: Output H

Theorem 1. The graph H computed by Algorithm1 is a strategy ‘best nonfirst’.

The correctness of Algorithm 1 follows from Lemma 3.

4 Strategy ‘min max’

The strategy ‘best nonfirst’ may not provide an optimal solution. An example
illustrating this fact can be found in the full version of the paper. In this section
we introduce the strategy ‘min max’ that optimizes the worst post a1 can be
matched to in a rank-maximal matching.
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4.1 Critical Rank

The notion that is going to be very useful while constructing a preference list is
that of a critical rank.

Definition 4. Let G = (A ∪ P, E) be a bipartite graph with ranks on the edges
belonging to {1, 2, . . . , r}. Suppose that a ∈ A, p ∈ P and (a, p) does not belong
to E. Let H = (A ∪ P, E ∪ {(a, p)}). We define a critical rank of (a, p) in H as
follows.

If there exists a natural number 1 ≤ i ≤ r such that a ∈ O(G′
i) ∪ U(G′

i)
or p ∈ O(G′

i) ∪ U(G′
i), then the critical rank of (a, p) in H is equal to min{i :

(O(G′
i)∪U(G′

i))∩{a, p} �= ∅}. Otherwise, the critical rank of (a, p) is defined as
r + 1.

The next lemma reveals an interesting property of the critical rank of an
edge (a, p).

Lemma 6. Let G,H and (a, p) be as in Definition 4. Then the critical rank of
(a, p) is c if and only if

1. for every 1 ≤ i < c, the edge (a, p) belongs to every rank-maximal matching
of Hi, in which (a, p) has rank i, and

2. for every c < i ≤ r, the edge (a, p) does not belong to any rank-maximal
matching of Hi, in which (a, p) has rank i, and

3. there exists a rank-maximal matching M of Hc, in which (a, p) has rank c
such that (a, p) is not contained in M .

Corollary 1. The critical rank of an edge incident to an f-post of G is 1 in G.

The next two lemmas explain the change of the critical rank of (a, p) when
we add an f -post p′ as a rank 1 post to the preference list of a.

Lemma 7. Let G be a bipartite graph and a be an applicant. Let p be the only
post in the preference list of a. Suppose that the critical rank of (a, p) is c in G.
Let Ĝ = G ∪ {(a, p′)} where p′ is a rank 1, f-post in the preference list of a.
Then the critical rank of (a, p) is at most c in Ĝ.

Lemma 8. Let G = (A ∪ P, E) be a bipartite graph, in which a has two neigh-
bors p and p′ such that apart from (a, p), each edge has a rank belonging to
{1, 2, . . . , r}. Additionally, p′ is a rank one f-post in the preference list of a. Let
G′ = (A∪P, E \{(a, p)}) and G′′ = (A∪P, E \{(a, p′)}). Suppose that a becomes
unreachable in G′

i and the critical rank of (a, p) is c in G′′. Then the critical
rank of (a, p) in the graph G is equal to, correspondingly:

1. c if c ≤ i,
2. i if c > i.

Proof. We can prove that for every j < i there exists a rank-maximal matching
of G′

j that contains (a, p′) and there exists a rank-maximal matching of G′
j that

does not contain (a, p′).
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Claim. Let us suppose that (a, p) has rank c′ < i in G. Then, the existence of
a rank-maximal matching M of G that does not contain (a, p) implies that the
critical rank of (a, p) in G′′ is at most c′.

Proof. By Lemma 2, M is a rank-maximal matching of G′ and hence, every
rank-maximal matching of G′ is also rank-maximal in G. We know that there
exists a rank-maximal matching M ′ of G′ that does not contain (a, p′). Thus a
is unmatched in M ′. By Fact 2, M ′ is also a rank-maximal matching of G′′. M ′

does not contain (a, p), which shows that the critical rank of (a, p) is at most c′

in G′′. �	
First we assume that c ≤ i. Since G′′ is a subgraph of G, by Lemma 7, the

critical rank of (a, p) ≤ c in G. Suppose the critical rank of (a, p) = c′ < c in G.
Let us consider a graph G, in which (a, p) has rank c′. Since the critical rank of
(a, p) is equal to c′, there exists a rank-maximal matching M of G that does not
contain (a, p). By the above claim, the critical rank of (a, p) in G′′ is at most
c′ < c - a contradiction. We conclude that the critical rank of (a, p) remains c in
G if c ≤ i.

Let us consider now the case when c > i. First we show that the critical
rank of (a, p) ≤ i in G. Let us consider the graph G′. The vertex a becomes
unreachable in G′ after iteration i. We know that G = G′ ∪ {(a, p)}. Hence, the
edge (a, p) is deleted in the graph G if the rank of (a, p) > i in G. Therefore, the
critical rank of (a, p) ≤ i in G.

Next we show that the critical rank of (a, p) = i in G. Suppose the critical
rank of (a, p) equals i′ < i in G. Since the critical rank of (a, p) is equal to i′ < i,
there exists a rank-maximal matching M of G, in which (a, p) has rank i′ that
does not contain (a, p). Again by the claim, the critical rank of (a, p) in G′′ is at
most i′ < c - a contradiction. Therefore we have proved that the critical rank of
(a, p) is equal to i in G. �	
Corollary 2. Let G be a bipartite graph such that p′ is a rank one, f-post in
the preference list of a. Suppose that a becomes unreachable after iteration i. Let
Ĝ = G ∪ {(a, p)} with the rank of the edge (a, p) being c. Then (a, p) is never
matched in a rank- maximal matching of Ĝ, if c > i.

The next lemma is useful while building a falsified preference list of a using
the strategy ‘min max’. This lemma basically combines two short preference lists
of a into a longer preference list.

Lemma 9. Let us consider two bipartite graphs G1 and G2 such that p is a
rank one, f-post in the preference list of a in both graphs. Also a has only two
neighbors in each of the graphs. In G1, a has p1 as a rank i post. In G2, a has p2
as a rank j post. We assume that G3 is the union of graphs G1 and G2. Then a
is matched to p in every rank-maximal matching of both G1 and G2 if and only
if a is matched to p in every rank-maximal matching of G3.

Proof. Assume that a is matched to p1 in a rank-maximal matching M of G3.
M is also a matching in the graph G1. Since G1 is a subgraph of G3, from the



324 P. Ghosal and K. Paluch

fact 2, M is a rank-maximal matching of G1. This means that a is matched to
p1 in some rank-maximal matchings of G1, which is a contradiction.

Conversely, let a be matched to p in every rank-maximal matching of G3.
Let M3 be a rank-maximal matching of G3. Without loss of generality, suppose
that a is matched to p1 in a rank-maximal matching M1 of G1. Since G1 is a
subgraph of G3, from fact 2, M3 is a rank-maximal matching of G1. Thus, M1

and M3 have the same signature. Therefore, M1 is a rank-maximal matching of
G3, which is a contradiction. �	

4.2 Algorithm for Strategy ‘min max’

In this section, we give an algorithm that computes a graph H by using the strat-
egy ‘min max’ for the applicant a1. We recall that strategy ‘min max’ consists
in finding a full preference list for a1 such that the maximal rank of a post he
can obtain is minimized. Since we have assumed that a1 is not always matched
to his first choice when he is truthful and since strategy ‘best nonfirst’ ensures
that a1 always gets the highest ranked non-f -post, it remains to check if it is
possible for a1 to get one of the f -posts in every rank-maximal matching. For
a given f -post p we want to verify if a1 can construct a full preference list that
guarantees that a becomes matched to p in every rank-maximal matching of the
resultant graph. From all such f -posts, we want to choose that of the highest
rank in the true preference list of a1. Below we show that this way we indeed
compute the strategy ‘min max’.

Let p be an f -post that a1 wants to be matched to in every rank-maximal
matching of Hp, where Hp contains a full falsified preference list of a1. How do
we construct such Hp? Let Ĥp denote the graph, in which a1 is incident only
to p and (a1, p) has rank one. By Lemma 9, we know that in order to obtain
Hp, it suffices to find a certain number of graphs Hp,pj

such that p and pj are
the only posts in the preference list of a1, p has rank 1, pj has rank j > 1 and
every rank-maximal matching of Hp,pj

matches a1 to p. Then we can combine
those graphs into one graph Hp. In fact, it suffices to fill the preference list of a1

only till rank k, where k is the rank, when a1 becomes an unreachable vertex in
Ĥ ′

p,i. This follows from Corollary 2, which says that no rank-maximal matching
of Hp,p′ such that (a1, p

′) has rank i > k contains (a1, p
′). Therefore, the ranks

greater than k in the preference list of a1 may be filled with arbitrary posts not
occurring previously.

Suppose that we want to find a “good” post for rank i < k in the preference
list of a1. First, we check if there is any available post p′ such that the critical rank
of (a1, p

′) is smaller than i in Hp,p′ . If we find such a post, then by Lemma 6, the
edge (a1, p

′) never occurs in a rank-maximal matching of Hp,p′ in which (a1, p
′)

has rank i. Therefore, we may add p′ to the preference list of a1 as a rank i
post. Otherwise, we consider a post p′′ with critical rank i in the graph Hp,p′′ .
We verify if p is matched to a1 in every rank-maximal matching, when we add
(a1, p

′′) as a rank i edge to the graph Ĥp. If yes, then we put p′′ as an ith choice
in Hp. If not, we check another post with critical rank i. If we are unable to find
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any post for rank i, Algorithm 2 outputs that there does not exist any preference
list that matches a1 to p in every rank-maximal matching of Hp.

The algorithm that computes a graph Hp, if it exists, is given below as Algo-
rithm2. The thing that still requires explanation is how we verify if (a, p) belongs
to every rank-maximal matching of Hp,p′ . For this, we need the reduced graph of
Hp,p′ from phase r, which we can obtain by either applying the standard rank-
maximal matching algorithm [20] or we can use one of the dynamic algorithms
[10,24] if we want to have a faster algorithm. Once we have access to this reduced
graph of Hp,p′ we can use the following lemma.

Algorithm 2. Construction of Hp

1: Ci ← {p′ ∈ P : the critical rank of (a1, p
′) in Hp,p′ equals i}

2: L ← an empty list - L is the falsified preference list of a1 that is going to have the
form (p1, p2, ..., pn), where pi denotes the rank i post in L.

3: add p to L – this is the rank 1 post in the preference list L of a1

4: k ← the number of phase when a1 becomes unreachable in Ĥp, i.e., a1 ∈ U(Ĥ ′
p,k)

and a1 ∈ E(Ĥ ′
p,i) for every i < k, where Ĥ ′

p,i is the i-th reduced graph of Ĥp.
5: C ← C1

6: for i = 2, . . . , k do
7: if C �= ∅ then (there exists a post p′ in C)
8: add p′ as a rank i post to the falsified preference list L of a1

9: C ← C \ {p′}
10: else (C = ∅)
11: SEARCH ← TRUE
12: while ∃p′ with critical rank of (a, p′) equal to i in Ĥp and SEARCH do
13: if (a, p) belongs to every rank-maximal matching of Hp,p′ (Lemma 10)

then
14: add p′ as a rank i post to the falsified preference list L of a1

15: SEARCH ← FALSE
16: if SEARCH then Break
17: C ← C ∪ Ci

18: if L is a full preference list then
19: return Hp

20: else
21: return p is not a feasible f -post

Lemma 10. Let G be an instance of the rank-maximal matching problem, in
which the maximal rank of an edge is r. Also, we assume that M is a fixed rank-
maximal matching of G that matches an edge (a, p). Let us consider the switching
graph of the matching M in G. Then the edge (a, p) belongs to every rank-
maximal matching of G if there does not exist any switching path or switching
cycle in the switching graph of M that contains the vertex p.

Proof. Let us fix a rank-maximal matching M of G that matches the edge (a, p).
Theorem 1 from [11] states that every rank-maximal matching G can be obtained
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from M by applying some vertex-disjoint switching paths and switching cycles in
the switching graph of M . If there does not exist any switching path or switching
cycle containing the vertex p, p has the same partner in every rank-maximal
matching of G. Therefore, (a, p) is matched in every rank-maximal matching of
G. �	
Definition 5. We say that an f-post p is feasible if there exists a graph Hp

such that every rank-maximal matching of Hp matches a1 to p.

In the lemma below we prove the correctness of Algorithm 2.

Lemma 11. If Algorithm2 outputs a graph Hp, then every rank-maximal
matching of Hp matches a1 to p. Otherwise, there does not exist a graph Hp, in
which a1 gives a full preference list such that every rank-maximal matching of
Hp matches a1 to p.

Theorem 2. Let p be the highest ranked feasible f-post in the true preference
list of a1. Then Hp output by Algorithm2 is a strategy ‘min max’. Moreover, each
graph H that is a strategy ‘min max’ has the property that each rank-maximal
matching of H matches a1 to p.
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Abstract. For any two given graphs, we study the problem of find-
ing isomorphisms that correspond to inclusion-maximal common induced
subgraphs that are connected . While common (induced or not) subgraphs
can be easily listed using some well known reduction and state-of-the-art
algorithms, they are not guaranteed to be connected. To meet the connec-
tivity requirement, we propose an algorithm that revisits the paradigm
of reverse search and guarantees polynomial time per solution (delay)
and linear space, on top of showing good practical performance.

1 Introduction

The problem of finding common subgraphs, as studied in this paper, has been
introduced and investigated in the practical setting of proteins [5,13,14], and
can be employed to mine significant information in many domains, for example
identifying compound similarity and structural relationships between biological
molecules [9]. These patterns find motivation in the increasing amount of struc-
tured data arising from X-ray crystallography and nuclear magnetic resonance.
For these reasons, the bioinformatics community has repeatedly expressed its
interest in the detection of common subgraphs (see for instance [9,12,14,21]).

From a computational point of view, the problem has been studied as one of
the application examples of an algorithmic framework [7] to efficiently enumerate
maximal subgraphs satisfying a given property (e.g. being a clique, a cut, a cycle,
a matching, etc.), also known as set systems [16]. In this paper we are interested
to design efficient algorithms for the following scenario.

For any two given input graphs H and F , a subgraph S of H is in com-
mon with F if S is isomorphic to a subgraph of F : it is maximal if there is
no other common subgraph that strictly contains it, and maximum if it is the
largest. The maximum common subgraph problem asks for the maximum ones,
or simply for their size. The maximal common subgraph (mcs) problem fur-
ther requires discovering all the mcs’s of H and F . The mcs problem can be
constrained to connected and induced subgraphs (mccis) [3,13,14], where the
latter means that all the edges of H between nodes in the mcs are mapped to
edges of F , and vice versa: considering induced subgraphs reduces the search
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 328–340, 2018.
https://doi.org/10.1007/978-3-319-94776-1_28
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Table 1. Comparison of polynomial space algorithms: running time of Koch’s [13]
algorithm vs our bc-enum and its parallel implementation. The first two rows are two
pairs of random Erdos-Renyi graphs, and the last one a pair of graphs representing
proteins from the Protein Data Bank (1ald and 1gox) with a time limit of two hours.
As for the notation, n, m, and σ are the number of nodes, edges, and node labels of
the graphs, ΔH and ΔF their maximum degrees, and q the size of the largest found
mccis.

graph H graph F σ q Koch [13] bc-enum par.bc-enum

n m ΔH n m ΔF time #sol time #sol time #sol

200 235 5 200 234 7 5 12 28 s 6691 0.2 s 6691 0.04 s 6691

100 122 7 100 119 5 4 22 11 s 3654 0.6 s 3654 0.1 s 3654

2763 9488 14 2629 9059 12 12 68 2 h 1998 2 h 33874 2 h 887293

space [3], and their connectivity further alleviates the explosion of the number
of solutions [13,14], as otherwise each permutation of a maximal independent
set corresponds to a different maximal isomorphism.

MCCIS Problem. Given any two graphs H and F , list all (isomorphisms corre-
sponding to) maximal common connected induced subgraphs (mccis’s) between
H and F in polynomial time per solution and total polynomial space.

Actually, mcs and mccis will refer to isomorphisms corresponding to mcs
or mccis. Note that solving the above mccis problem is computationally more
demanding than listing just maximal common induced subgraphs (i.e. relaxing
the connectivity constraint) as we will comment later in the state of the art.

Contributions. We present algorithm bc-enum, which lists the (isomorphisms
corresponding to) mccis’s with polynomial delay and using linear total space.
Given any two graphs H and F , let ΔH and ΔF be their maximum degree,
respectively. For each reported mccis, letting q be its number of nodes, we pay
O(q4Δ2

HΔ2
F ) time using O(q) space: the time complexity gives the delay, which

is the worst-case time between any two consecutively reported mccis’s. Note
that a strength of these bounds is that they are parameterized by the solution
size q and independent of the sizes of H and F (just their maximum degree).

Table 1 reports the running time of a sequential and parallel implementation1

of bc-enum in C++, compared to the state-of-the-art algorithm by Koch [13].
Experiments were executed on a 12-core machine with two Intel Xeon E5-2620
CPUs and 128 gigabytes of RAM, with a time limit of two hours, showing that
on top of giving theoretical guarantees, bc-enum is also fast in practice.

1 Code available at https://github.com/veluca93/parallel enum/tree/bccliques as part
of a parallel enumeration framework.

https://github.com/veluca93/parallel_enum/tree/bccliques
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1 2 3 4

a

b

c

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Fig. 1. An example of mccis ({a, b, c} to {4, 3, 2}, in this order), with the corresponding
bc-clique {a4, b3, c2}. White edges are represented as dashed lines.

Clarification on Maximum vs Maximal Common Subgraphs. As it is
clear, maximal and maximum subgraphs are inherently different problems: list-
ing all maximal ones can potentially find an exponential number of solutions,
while finding the maximum connected ones corresponds to just the single largest
one, and is in practice much faster (e.g. [19]). As pointed out in [5,13,14],
however, a maximum common subgraph does not always contain all the rele-
vant/large common structures, which motivates the mccis problem.

Converting the MCCIS Problem to a Maximal Clique Problem. Clique-
based methods are widely employed on the product graph G, which transforms
common subgraphs of H and F into maximal cliques in G, as proved in [17].

As in [13], we define the product graph between H and F as follows. (i) any
pair of nodes (x, i) ∈ H ×F is a node of G iff they have the same label; (ii) there
is a black edge between (x, i) and (y, j) iff (x, y) ∈ E(H) and (i, j) ∈ E(F );
(iii) there is a white edge between (x, i) and (y, j) iff x �= y, i �= j, (x, y) �∈ E(H)
and (i, j) �∈ E(F ), where E(·) denotes the edge set.

The key property is that mccis’s between H and F correspond to cliques
in G spanned by black edges [13], which we will call bc-cliques. An example is
shown in Fig. 1.

Role of the Reverse Search. Reverse search is a powerful enumeration tech-
nique, introduced by Avis and Fukuda [1], that applies to a wide range of prob-
lems (e.g. [5,18]). If we try to apply it to bc-cliques, a number of obstacles
appear along the road and thus this paper proposes a novel, restructured, way
to use reverse search on bc-cliques: Cao et al. [3] observe that materializing the
product graph G can be memory-wise expensive. bc-enum does not material-
ize G, but navigates the huge solution space of the bc-cliques by navigating G
implicitly using H and F , just requiring O(q) additional space (e.g. for H and
F in the last row of Table 1, G would contain millions of nodes whereas q = 68).
This simultaneously improves memory usage and running time, as detailed in
Sect. 5.
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State of the Art and Related Work. Common subgraphs problems have
been studied for decades [3,10], with the great majority of the results dealing
with maximum common subgraphs, rather than mccis’s as we do. Previous work
can be roughly classified into the following categories: backtracking methods [15],
techniques based on special classes of graphs [11], clique-based methods [10,14,
19], methods which are applications of a generic framework [4], and restricted to
trees [8]. Among of them, Koch [13] considers mccis’s and employs a modified
version of the Bron-Kerbosch algorithm [2] to work on explicit product graphs:
it is still the state of the art [22], greatly used in practice, even in the very
last years (e.g. [23]). Further methods have relaxed the definition of mccis to
improve the practical performance, at the price of loosing some solutions [5].
Unfortunately, the aforementioned algorithms, when applied to listing all the
mccis’s, do not give any guaranteed polynomial bound on space or time per
solution. Interestingly, a couple of other roads can be pursued successfully.

The framework presented in [4] uses the formulation of the reverse search
on restricted problems and introduces new techniques for a class of set systems
satisfying the connected hereditary property. The space is proportional to the
number of solutions found, so it can be exponential, and thus space efficiency is
one of the open problems posed there.

Along these lines, the framework presented in [7] provides new techniques for
the class of set systems called commutable, and requires total polynomial space
independently of the number of solutions found, thus answering to the question
posed in [4].

We observe that bc-cliques can fit both frameworks, with polynomial time per
solution. In this paper, we focus on the latter to provide polynomial bounds on
the delay and space, while the implementation of the former in practice deserves
further investigation in future work to evaluate the impact of the higher space
usage. Compared to the bounds polynomial in the graph size from [7], which
is a general theoretical framework for which bc-cliques are just an instance,
bc-enum aims at specializing and parameterizing these bounds for the mccis
problem, so they are polynomial in the max degree of the graphs (rather than
in the size of the product graph), and at providing practical performance.

2 Using Reverse Search for Finding BC-cliques

As in [13], we reduce the problem of finding mccis’s to finding bc-cliques in the
product graph. Hence, in this section, we focus on the problem of listing bc-
cliques in a graph G, whose edges are colored black or white, where a bc-clique
is a maximal clique whose black edges connect all the nodes. To this aim, we
employ reverse search, which can be successfully used when a suitable parent-
child relationship between solutions is defined (see for instance [1,6,18]). Here
we restructure the technique to deal with the more challenging bc-cliques. We
keep the schema very simple for the sake of description, and hide the technical
complexity in the definition of the parent-child relationship between solutions,
which is the difficult part and it will be described in the following sections.
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Algorithm 1. bc-enum: Enumerate all maximal bc-cliques of G

Function spawn(K)
foreach S ∈ children(K) do

spawn(S);

Output K;

foreach R ∈ roots(G) do
spawn(R)

General Scheme. As is the case of reverse-search algorithms, our algorithm
will implicitly define a rooted forest among all solutions, where some solutions
are the roots, and from each solution we can find all its children in the forest. As
we can identify all the roots and recursively visit the children of each solution,
Algorithm 1 will not miss any solution.

In the following, let P be the parent of a solution S, denoted as p(S), if S
is a child of P in this rooted forest-like structure. Note that every solution has
exactly one parent, except the roots who have none.

Lemma 1. Algorithm 1 lists all maximal bc-cliques when the following condi-
tions are all met.

1. Each solution is either a root, or has exactly one parent.
2. The edges p(S) → S induce a forest Z whose sources are the roots.
3. The generic function children(P ) computes the set {S : p(S) = P}.

The proof of Lemma 1 is straightforward as Algorithm 1 corresponds to a
recursive traversal of the trees composing the forest Z induced by the parent-
child relationship. We will design the latter so that the properties in Lemma1 are
satisfied. We remark that a tree traversal, rather than a graph traversal, does not
require keeping track of visited nodes so far, and can be done without storing any
information other than the current node and the previously visited one. We use
this property to define an equivalent algorithm, which we call “stateless”, that
uses just O(q) space and has the same complexity. We give further discussion in
Sect. 5, and refer the reader to [6].

3 Canonical Representation and Operations

We consider G to have an arbitrary ordering of the nodes 〈v1 . . . vn〉, and we
consider each node vi to have label i. A node vi is smaller than vj if i < j.
For convenience, we call GB the subgraph of G induced by the black edges. We
introduce the representation for bc-cliques in G at the base of our approach.
For a bc-clique K, we call the smallest node in K the head of K, and define the
notion of black-edge distance as follows.

Definition 1 (black-edge distance). The black-edge distance βK(v) of a
node v ∈ K is the distance in the induced subgraph GB [K] between v and the
head of K. If v �∈ K but K ∪ {v} is a bc-clique, βK(v) is similarly defined on
GB [K ∪ {v}].
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Fig. 2. A bc-clique K (left) and its canonical form K0 . . . K3 (right)

When K is clear from the context, we will omit the subscript and just write
β(v). (When v is the head, β(v) = 0.) Moreover, let us define the canonical order
of K.

Definition 2 (canonical order). Given a bc-clique K, the canonical order of
K is 〈k1, . . . , k|K|〉, where elements of K are ordered in increasing lexicographical
order of the pairs (β(ki), ki).

This order is a specialized version of the layer-based canonical order used
in [7], which is the key to bound the running time to parameters of the two
original input graphs H and F , rather than that of the larger G.

We will also refer to Ki as the set of nodes v with β(v) = i. This order
essentially corresponds to the visiting order of a breadth-first search of GB [K],
starting from the head k1, where ties in the distance from k1 are broken by
taking the node with smallest label. As prefixes will be used extensively in our
approach, we define K<ki

as the prefix k1, . . . , ki−1 of K. It can be easily seen
from the above how any prefix of K is a (non maximal) bc-clique.

An example of a bc-clique K in canonical order is shown in Fig. 2 with Ki’s
ordered by node label, where the head is node 1 and, for instance, βK(3) = 2.
When levels are relevant in the context, we represent K as a sequence of sets,
which corresponds to the Ki’s in increasing order: the clique in the example
would be represented as K = {1}, {4, 5}, {3, 6}, {2}. As an example of prefix we
have K<3 = 〈1, 4, 5〉.

We define the lexicographical order on bc-cliques using our canonical form.
For any two pairs of integers (a, b) and (c, d), we write (a, b) < (c, d) if the former
pair is lexicographically smaller than the latter.

Definition 3 (lexicographical order). Given two distinct maximal bc-
cliques K and J , in their canonical orders 〈k1, . . . , k|K|〉 and 〈j1, . . . , j|J|〉, we say
that K is lexicographically smaller than J , denoted as K < J , iff (βK(ki), ki) <
(βJ (ji), ji), where i is the smallest index for which (βK(ki), ki) �= (βJ (ji), ji).

We also define a forced order of K with respect to x ∈ K, which is obtained
by the same process as the canonical ordering, but computing the black-edge
distances β with respect to x rather than the head of K.2 A prefix of K with

2 Thus the forced order of K with respect to its head is indeed the canonical order.
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Algorithm 2. heads, children functions that make Algorithm 1 working
for bc-cliques
1 Function complete(K)
2 while A ← {v ∈ N(K) : v has a black neighbour in K} �= ∅ do
3 add argminx∈A{(βk(x), x)} to K

4 return K

5 Function pi(K)
6 return argmaxv∈K{(β(v), v) : complete(K<v) �= K}
7 Function p(K)
8 v ← pi(K)
9 return complete(K<v)

10 Function roots(G)
11 return {complete(v) : v = min{complete({v})}}
12 Function cand(K)
13 return

⋃

u∈K

NB(u)

14 Function children(K)
15 foreach v ∈ cand(K) do
16 K′

v ← unique maximal bc-clique containing v in GB [K ∩ N(v) ∪ {v}]
17 foreach h ∈ K′

v do
18 K′′

v ← prefix of K′
v with respect to h, truncated at v

19 D ← complete(K′′
v )

20 if K = p(D) ∧ h = min D ∧ v = pi(D) then yield D

respect to x corresponds to a prefix of the forced order of K with respect to x.
Clearly, this kind of prefix also corresponds to a bc-clique.

We now introduce the function complete(), which will be a key compo-
nent as in [6,18]. Given a bc-clique K ′ which may or may not be maximal,
complete(K ′) returns a maximal bc-clique K such that K ′ ⊆ K. This is
achieved by recursively and greedily adding to K ′ the node x �∈ K ′ that mini-
mizes (βK′(x), x), among all x for which K ′ ∪ {x} is a bc-clique. It is important
to notice that the head of K ′ changes (as well as the values of βK′()) whenever
an element with label smaller than the current head is added. The complete
operation is detailed in Algorithm 2. Finally, we remark that the properties of
the complete function defined in [6], that make the reverse search algorithm
work for cliques, are NP-hard to obtain in the context of bc-cliques [7].

4 Main Algorithm

In this section we describe the proposed algorithm bc-enum, using the defini-
tions given in Sect. 3, to obtain the desired reverse search structure described in
Sect. 2.
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Firstly, using the function complete() we can easily identify the solutions
which will be the roots of the forest Z induced by the parent-child relationship.

Definition 4 (root). Let K be a maximal bc-clique and h = min K its head.
Then, K is a root if and only if complete({h}) = K.

This definition implies that the number of roots is at most n, and each can be
identified by performing complete(v) on some node v. We now give definitions
of p and children as detailed in Algorithm 2.

The parent p(K) of K is defined as the result of applying complete to
the longest prefix K<v such that this operation does not yield K. We call the
element v of K that immediately follows this prefix K<v the parent index of K,
pi(K). The definitions of p and root are consistent with Definition 4.

Lemma 2. p(K) = NULL if and only if K ∈ roots.

We give a definition of children, whose correctness will be proven in
Sect. 4.1. Given a bc-clique K, let cand(K) be the set of nodes that do not
belong to K, but are neighbors of some node of K in GB . For each such node v,
we compute the largest bc-clique K ′

v that contains v and is contained in K ∪{v}
(which corresponds to the connected component containing v in GB [K ∩N(v)]).
Then, for each h ∈ K ′

v, we consider the forced order 〈k1, . . . , k|K′
v|〉 with respect

to h (noting that k1 := h), and compute K ′′
v as the prefix k1, . . . , ki of this order

truncated at ki = v.
Finally, we compute D = complete(K ′′

v ) and control if D satisfies the check
at line 20, which is required to ensure that the parent of D is indeed K and that
we did not generate D multiple times from K itself.

4.1 Correctness

In order to prove the correctness of Algorithm 1 using the routines defined in
Algorithm 2, we prove that the conditions listed in Lemma1 are met, recall-
ing that the directed graph Z induced by the parent function p has the arcs
from p(K) to K for each solution K. By definition of p and by Lemma 2 we
get Condition 1. Lemma 3 focuses on Condition 2, and Lemma 4 focuses on
Condition 3.

Lemma 3. The directed graph Z induced by p is a forest rooted in roots.

Lemma 4. If K = p(S), then S ∈ children(K).

Proof. Consider an execution of children(K), referring to its implementation
in Algorithm 2, and let S be an arbitrary maximal bc-clique with p(S) = K.
We need to prove that at some point in the execution Algorithm 2 will choose
v = pi(S) and h = min(S) in lines 15 and 17 respectively, and that this will give
D = S on line 19, which means D is yielded in line 20.

Consider the prefix S<v of S. As K = p(S) = complete(S<v), clearly
S<v ⊂ K and, since S has a parent, it is not a root and so S<v �= ∅. By definition
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of prefix, S<v ∪ {v} is a bc-clique, so there must be a black edge between v and
a node in S<v, and thus to a node in K since S<v ⊂ K, meaning that v ∈ cand
and v is considered on line 15.

Consider now the execution of lines 16–20 when v = pi(S). We have that
S<v ∪{v} must be a subset of K ′

v, the maximal bc-clique in GB [K ∩N(v)∪{v}]
containing v, since S<v∪{v} is a bc-clique containing v and contained in K∪{v}.
Since min(S) ∈ S<v ⊆ K ′

v, h will be chosen as min(S) in some iteration of line
17.

Finally, we need to prove that S<v ∪ {v} is exactly K ′′
v , i.e., a prefix with

respect to h of K ′
v. If this were not the case, let d be the earliest element in K ′

v

(according to the forced ordering with respect to h) that is not in S<v ∪ {v}.
Then S<v ∪ {v, d} is still a bc-clique (as d must have a backwards black edge
and all nodes before d are in S<v); moreover, (βK′

v
(d), d) < (βK′

v
(v), v). Thus d

could be chosen by complete(S<v ∪{v}), and since complete(S<v ∪{v}) = S,
this would mean that d is in S and occurs before v in its canonical ordering,
implying d ∈ S<v, which is a contradiction. �

As a result, we obtain the correctness of bc-enum.

Theorem 1. Algorithm 1 implemented with the methods from Algorithm 2 finds
all and only maximal bc-cliques exactly once.

5 Complexity and Implicit Product Graph

In this section, we give the complexity of bc-enum, taking into account that G
is not a generic graph with white and black edges, but an implicit product graph
between H and F that we do not want to materialize, whose size and features
depend on H and F .

Recall that each node of G corresponds to a mapping between two nodes of
H and F . For any given v ∈ V (G), let these nodes be respectively vH ∈ V (H)
and vF ∈ V (F ). Further recall that ΔH and ΔF are the maximum node degree
in H and F , while ΔB is the maximum degree in GB . By construction of the
product graph we have ΔB ≤ ΔH · ΔF . For brevity, we define Δ as ΔH + ΔF .
These parameters are all significantly smaller than the size of G, which has
|V (H)| · |V (F )| nodes, and O(|V (H)|2 · |V (F )|2) edges, either black or white.

Let X be a bc-clique in G. We denote as XH and XF respectively the set
of nodes of H and F mapped in X. We keep a dictionary between the nodes of
X and those of XH and XF , allowing us to retrieve vH and vF from v, or vice
versa, in O(1) time.3

Lemma 5. Let X be a bc-clique in G and v a node in V (G). Testing whether
X ∪ {v} is a bc-clique takes O(min(|X|,Δ)) time and O(|X|) space.

3 This data structure will be built at the beginning of a complete call. As building
it takes O(|X|) time and space, it will not affect the final complexity.
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Proof. As X is a bc-clique in G, in order to check that X ∪{v} is a bc-clique in
G we need to check that {v} is connected to a node in X through a black edge,
and to all the others through either white or black edges. This can trivially be
done in O(|X|) time by checking adjacency with the nodes of X one by one.

However, a faster solution is possible if we focus on the edges that are not in
G: for a given node x ∈ X, corresponding to a mapping between xH ∈ V (H) and
xF ∈ V (F ), there is no edge in G between v and x if either {vH , xH} ∈ E(H)
and {vF , xF } �∈ E(F ), or {vH , xH} �∈ E(H) and {vF , xF } ∈ E(F ). Otherwise,
there is either a black or white edge between v and x.

To check the presence of missing edges between v and nodes of X we can
simply iterate over all xH ∈ NH(vH)∩XH , and check that each is mapped by X
in a node xF ∈ NF (vF )∩XF . Then, similarly, iterate over all xF ∈ NF (vF )∩XF

and check that they are mapped in some xH ∈ NH(vH) ∩ XF . This can be done
in O(|NH(vH)|+ |NF (vF )|) = O(Δ) time. If no missing edge exists then X ∪{v}
is a clique in G. As a byproduct, this process finds all black edges between v and
X, thus we may check at the same time that there is at least one, and thus that
X ∪ {v} is a bc-clique. �
Lemma 6. For any bc-clique X in G, computing βX(v) for all v ∈ X takes
O(|X| · min(|X|,ΔH ,ΔF )) time and O(|X|) space.

Proof. The values of βX(v) corresponds to their distance from the head x of
X in GB [X]. This can be done via a BFS of GB [X] rooted at x. As GB [X]
has |X| nodes, the trivial bound for this traversal is |X|2. Once again, we can
exploit the fact that G is the product graph of H and F : indeed, each node v
of X corresponds to a mapping of a node vH of H into one node vF of F . For
this reason, while v can have up to ΔB neighbors in GB , vH may have at most
|NH(vH)| neighbors in XH .

We can thus iterate on the neighborhood of v in O(min(ΔH ,ΔF )) time by
iterating on the neighbors of either vH in H or vF in F and then retrieve the cor-
responding nodes in X. In total, we process |X| nodes, each in O(min(ΔH ,ΔF ))
time, or in O(|X|) time using the trivial version of the BFS. The cost follows. �
Lemma 7. complete(X) takes O(q(q + ΔB)Δ) = O(q2Δ + qΔBΔ) time and
O(q) space.

Proof. In order to perform complete(X), we iterate over all nodes that can
be added to X, adding the lexicographically smallest, with respect to X and
its head x, first. For each node v in X (including those that are added during
the procedure), we keep an iterator which will scan in increasing order its black
neighbors. Clearly, each node must be considered after the smallest ones, and
once it is considered it is either added to X or discarded, thus it does not need
to be considered as a candidate anymore.

Given a node c �∈ X, that has a black neighbor in X, we can see that βX(c) =
βX(v) + 1, where v is the black neighbor of c in X that minimizes this value.
Hence, to select the lexicographically smallest node, we must first consider the
black neighbors of the nodes v that minimize βX(v). We thus order the nodes
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in a priority queue by value of βX(v), breaking ties by the value of the smallest
black neighbor yet to consider, so that the first node in the priority queue is the
smallest candidate to consider for addition to X.

As X will contain |X| = O(q) nodes, and we will iterate on the O(ΔB) black
neighbors of each node exactly once, the total cost of this iteration is O(qΔB)
time, and will yield up to qΔB nodes. Since by Lemma 5 testing a candidate
takes O(min(q,Δ)) time, the total cost is O(qΔB min(q,Δ)).

Furthermore, we need to account for the cost of changing heads: after we add
a node x to X, this becomes the new head of X if its label is smaller than that
of the previous head. In this case, we need to update both the values of βX(v),
and the priority queue of candidate nodes. By Lemma 6, this can be done in
O(q min(q,ΔH ,ΔF )) time. We pay this cost at most q times as we add up to q
nodes, for a cost of O(q2 min(q,ΔH ,ΔF )) which is upper bounded by O(q2Δ).

The total cost is thus O(qΔB min(q,Δ) + q2Δ) = O(q2(ΔB + Δ)) time. �
Lemma 8. children(K) takes O(q4ΔB(ΔB + Δ)) = O(q4Δ2

HΔ2
F ) time and

O(q) space.

Proof. The cost of children(K) is bounded by the cost of lines 19 and 20, times
the number of nodes cand(K), times the number of nodes in K ′

v.
Nodes in cand(K) are at most |K|ΔB = O(qΔB) (line 13 of Algorithm 2)

and K ′
v size is bounded by O(q). In the following, we prove that the time cost

of line 20 of Algorithm 2 is O(q(q + ΔB)Δ). Let 〈d1, . . . , d|D|〉 be the canonical
ordering of D. By definition, di = pi(D) is the latest element in the canonical
order of D such that complete(D<di

) �= D. By the proof of Lemma 3, we
have that complete(D<di

) ≤ D and complete(D<dj
) = D for any j > i. To

check that v is indeed the parent index of D, we thus simply need to check that
complete(D<di

) �= D and complete(D<di+1) = D. Furthermore, if this is the
case, complete(D<di

) also gives us the parent p(D) of D. Checking that h is
the node of smallest label in D does not affect the cost, thus the total cost is
that of calling the complete() function twice. As ΔB and Δ are bounded by
ΔH · ΔF , the statement follows. �

Looking at Algorithm 1, we can see that the complexity of bc-enum is
bounded by the cost of the function children(K). Furthermore, as shown in
Lemmas 5, 6, and 7, the space required is always O(q). By turning the recursion
into a stateless iteration (see [6]), no more space is needed as we do not need
to store the recursion stack. We also address the delay of the algorithm, that is,
the maximum elapsed time between two consecutive outputs, by applying the
alternative output technique in [20]: for each recursive call on K in the recursion
tree of Algorithm 1, we output solution K at the beginning of the call if its depth
is even, and at the end if it is odd. In this way, the delay is equal to the cost per
solution. We can thus state the main result.

Theorem 2. Given two graphs H and F , bc-enum lists all their (isomorphisms
corresponding to) mccis’s in O(q4Δ2

HΔ2
F ) delay and O(q) space.
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Abstract. For a collection F of graphs, given a graph G and an integer
k, the F-Contraction problem asks whether we can contract k edges
in G to obtain a graph in F . F-Contraction is well studied and known
to be C-complete for several classes F . Heggerners et al. [Algorithmica
(2014)] were the first to explicitly study contraction problems in the
realm of parameterized complexity. They presented FPT algorithms for
Tree-Contraction and Path-Contraction. In this paper, we study
contraction to a class larger than trees, namely, cactus graphs. We present
an FPT algorithm for Cactus-Contraction that runs in cknO(1) time
for some constant c.

1 Introduction

For a collection F of graphs, F-Modification problem is to determine if an
input graph G can be converted to some graph in F using at most k modifica-
tions. F-Modification is an abstraction of practically well motivated problems
like Vertex Cover, Feedback Vertex Set, Odd Cycle Transversal,
Minimum Fill-In, to name a few. In recent times, there has been increasing
interest in the study of Edge Contraction problems where the modification
operation allowed is edge contraction. These problems generally turn out to be
more difficult compared to their vertex/edge deletion/addition counterparts. For
example, even determining whether a given graph G can be contracted to a path
of length four turns out to be NP-complete [3]. Formally, for a collection F of
graphs, the F-Contraction problem is to determine if an input graph G can
be contracted to some graph in F using at most k edge contractions. For several
choices of F , early papers by Watanabe et al. and Asano and Hirata showed
that F-Edge Contraction is NP-complete even for several simple and well
structured graph classes such as paths, stars, trees [2,3,14,15].

Graph contraction problems have received a lot of attention in parameter-
ized complexity. It turns out that graph contraction problems are harder than
their vertex/edge deletion/addition counterparts even in this setting. One of the

Due to space constraints, the proofs of results marked with � are omitted. These
proof can be found in full version of the paper.
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intuitive reasons is that the classical branching technique does not work even for
graph classes F that have a finite forbidden structure characterization. In case
of vertex deletion or edge deletion/addition operations, to destroy a structure
which forbids the input graph from being in F , one needs to include at least one
vertex (or edge) from that structure into the solution. This is not necessarily true
in the case of contractions. Indeed, a forbidden structure may be destroyed by
contracting edges which are not contained in the structure. Despite this inherent
difficulty, there are several fixed-parameter tractability results known when the
parameter is the solution size, i.e., the maximum number k of edges that can
be contracted. To best of our knowledge, Heggernes et al. [10] were the first to
explicitly study edge contraction problems in the realm of parameterized com-
plexity. They presented a 4knO(1) algorithm for Tree Contraction and a
2k+o(k)nO(1) algorithm for Path Contraction. When F is the set of graphs
whose minimum degree is at least d, F is known to be FPT when parameter-
ized by both k and d [8]. Golovach et al. proved that Planar Contraction
is FPT [7]. Bipartite Contraction has been proved to be FPT by Heggernes
et al. [11] and a faster algorithm was presented by Guillemot and Marx [9]. Cai
and Guo [4] showed that Clique Contraction is FPT. On the negative side,
it is known that F-Contraction is W[2]-hard when F is either the family of
P�+1-free graphs or the family of C�-free cycles for some � ≥ 4 [4,13]. Recently,
Agrawal et al. [1] proved that Split Contraction is W[1]-hard.

In this paper, we present an algorithm for Cactus Contraction, adding
it to the small list of graph classes for which FPT algorithms for contraction
problems are known. A graph is called a cactus if every edge is a part of
at most one simple cycle. Formally, the problem can be stated as follows.

Cactus Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k whose contraction
results in a cactus?

It is easy to verify that the problem is in NP and its NP-completeness follows
from [12]. As a cactus has treewidth at most 2, it follows that if a graph is
k-contractible to a cactus, then its treewidth is at most k + 2. Therefore, the
problem is FPT by the celebrated result of Courcelle [5], as it is expressible in
Monadic Second Order Logic. However, this approach yields an impractical algo-
rithm whose running time involves a large function of k. The main contribution
of this work is a cknO(1) algorithm for Cactus Contraction, where c is a
fixed constant. Our algorithm builds upon ideas presented in [10], but requires
a more involved structural analysis of the graph.

Outline of the Algorithm: We can think of graph contraction problem as
partition problem. The task is to find a partition where each partition, called
witness set, is connected and contracting all witness set to a point leads to
desired graph. The idea is to color the graph with a small number of colors
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to “highlight” certain portions of the graph that contain the desired solution.
This solution is then extracted via the structural properties of the graph. In first
phase, we color V (G) using three colors {1, 2, 3} with the hope that all vertices of
a big witness set (set with at least two vertices) receive the same color and that
two distinct big witness sets with certain properties are “separated”. We then
identify some vertices that are not part of any big witness sets and recolor them
using new colors 4 and 5. For instance, we identify certain induced paths that
do not intersect with any minimal solution and are “adjacent” to only one big
witness set (Lemma 3). The vertices of such paths are colored 4. After this we
identify vertices that are not part of any big witness set and lie on a path between
two big witness sets (Lemma 4) and color them using color 5. This completes
the first phase. In the second phase, we extract the big witness sets from the
components highlighted in the first phase. For this purpose, we define the notion
of a connected core (Definition 4) which can be thought of as generalization
of connected vertex cover. For every monochromatic component colored with
{1, 2, 3} by the first phase, we find connected vertex cover containing certain
boundary vertices. The desired solution is the set of edges of a spanning forest
of the corresponding connected cores.

The paper is organized as follows. In Sect. 2 we review some graph theoretic
preliminaries. We present the properties of solution in Sect. 3 which are used
in proving the correctness of algorithm. Following the approach of [10], we first
give a randomized algorithm for the problem on 2-connected graphs, which is
then used to give an algorithm in general graphs. Algorithm can be divided into
two phases viz coloring phase (Sect. 4) and extracting a solution from colored
graph (Sect. 5). Finally, in Sect. 6 we present overall algorithm and illustrate
how this algorithm can be derandomized via (n, k)-universal sets. We remark
that the main goal of this paper is to provide a cknO(1) algorithm for Cactus
Contraction, where c is a fixed constant. For the sake of simplicity, we have
not attempted to optimize the running time.

2 Preliminaries

For graph theoretic terms and notation which are not explicitly defined here,
we refer the reader to the book by Diestel [6]. An undirected graph is a pair
consisting of a set V of vertices and a set E of edges where E ⊆ V ×V . An edge
uv between vertices u and v is specified as an unordered pair of vertices. For
a graph G, V (G) and E(G) denote the set of vertices and edges, respectively.
Two vertices u, v are said to be adjacent if there is an edge uv in the graph. The
neighbourhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to
v. The degree dG(v) of a vertex v is |NG(v)|. The subscript in the notation for
neighbourhood and degree are omitted if the graph under consideration is clear.
For a set of edges F , V (F ) denotes the set of endpoints of edges in F . For a set
S ⊆ V (G), G − S denotes the graph obtained by deleting S from G and G[S]
denotes the subgraph of G induced on the set S. For sets X,Y ⊆ V (G), E(X,Y )
denotes the set of edges with one endpoint in X and the other endpoint in Y .
Similarly, E(X) denotes the set of edges whose both endpoints are in X.
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A path P = (v1, . . . , vl) is a sequence of distinct vertices in which there is
an edge between any pair of consecutive vertices. The vertex set of P is the set
{v1, . . . , vl} and is denoted by V (P ). The path P is called as a cycle if v1 and
vl are adjacent. An induced path (or cycle) is a path (or a cycle) in which no
two non-consecutive vertices are adjacent. An induced path P = (v1, v2, . . . , v�)
in G with v1 �= v� is called a simple path if NG(vi) = {vi−1, vi+1} for each
2 ≤ i ≤ � − 1. We define the neighborhood of such a path P as the set NG(P ) =
(NG(v1)∪NG(v�))\V (P ). We say that a set X ⊆ V (G) is a simple path if there
is an ordering of vertices in X that is a simple path. A graph is connected if there
is a path between every pair of its vertices and it is disconnected otherwise. A
set S ⊆ V (G) is a connected set of vertices if G[S] is connected. A component
of a disconnected graph G is a maximal connected subgraph of G. A cut-vertex
of a connected graph G is a vertex v such that G − {v} is disconnected. A
connected graph that has no cut-vertex is called 2-connected. The operation of
subdividing an edge uv results in the graph obtained by deleting uv and adding
a new vertex w adjacent to both u and v. The operation of short-circuiting a
degree two vertex v with neighbors u and w results in the graph obtained by
deleting v and then adding the edge uw if it is not already present. A graph is
called a cactus if every edge is a part of at most one cycle. Following properties
of cactus are direct consequence of the definition.

Observation 1 [12]. The following statements hold for a cactus T .

1. The vertices of T can be properly colored using 3 colors.
2. Every vertex of degree at least 3 is a cut-vertex.
3. The graph obtained from T by subdividing any edge is a cactus.
4. The graph obtained from T by short-circuiting any degree 2 vertex is a cactus.

The contraction operation of an edge e = uv in G results in the deletion
of u and v and the addition of a new vertex w adjacent to vertices that were
adjacent to either u or v. The resulting graph is denoted by G/e. Formally,
V (G/e) = V (G) ∪ {w}\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)} ∪ {wx | x ∈ NG(u) ∪ NG(v)}. For a set of edges F ⊆ E(G), G/F denotes
the graph obtained from G by contracting the edges in F (in an arbitrary order).
It is easy to see that G/F is oblivious to the contraction sequence.

A graph G is contractible to a graph T , if T can be obtained from G by a
sequence of edge contractions. For graphs G and T with V (T ) = {t1, . . . , tl}, G
is said to have a T -witness structure W if W is a partition of V (G) into l sets
and there is a bijection W : V (T ) �→ W such that the following properties hold.

– For each ti ∈ V (T ), G[W (ti)] is connected.
– For a pair ti, tj ∈ V (T ), titj ∈ E(T ) if and only if there is an edge between a

vertex in W (ti) and a vertex in W (tj) in G.

The sets W (t1), . . . ,W (tl) in W are called witness sets or bags. The bags W (t)
which contain a single vertex are called small bags, while the bags with more
than one vertex are called big bags. For the sake of brevity, we omit curly brackets
while denoting a singleton set. We associate a set F ⊆ E(G) with a T -witness
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structure W of G, where F is the union of the set of edges of a spanning tree
of the G[W ] for each W ∈ W. Observe that G/F = T and we say that G
is |F |-contractible to T . Note that there is a unique T -witness structure of G
corresponding to a set F of edges. There are at most |F | many big witness sets.
Also the number of vertices which are contained in a big witness set is upper
bounded by |F | + 1.

3 Key Properties of a Solution

In this section, we start with a simplifying assumption that let us concentrate
on 2-connected graphs.

Proposition 1 [12]. A graph is k-contractible to a cactus if and only if each
of its 2-connected components is contractible to a cactus using at most k edges
in total.

Subsequently, we assume that the input graph G is 2-connected.

Observation 2 (�). For a cactus T , let W be a T -witness structure of 2-
connected graph G. If t is a cut-vertex in T , then |W (t)| > 1.

Every big witness set need not be a cut vertex in T . We now define certain
structures (or subgraphs) in T with respect to witness structure W.

Definition 1 (Internal-Cactus). The subgraph TI of T obtained by remov-
ing any vertex which does not lie on a path between two distinct vertices in T
corresponding to big bags is called as internal-cactus of T .

We see that vertices of G which are not contained in witness sets corresponding
to vertices in internal-cactus are easy to identify. For a given cactus T and its
leaf t, if t does not correspond to a big witness set then it can not be part of
its internal cactus. We can say similar thing for cycles in T which have only one
vertex which corresponds to one big witness set.

Definition 2 (Pendant Cycle). A cycle in T is called as pendant cycle if
there is exactly one vertex in cycle for which corresponds to a big witness set.

If t is a unique vertex in cycle which corresponds to a big witness set, we say
that pendant cycle is incident on t. To obtain an internal cactus, we need to
delete all but one vertices in any pendant cycle. By Observation 2, every cut
vertex in T corresponds to a big bag and hence it is a part of internal-cactus.
In following observation, we bound the cardinality of neighborhood of such cut
vertices in internal-cactus.

Observation 3 (�). Let CT be the set of cut-vertices in T . The number of
neighbors of CT in internal-cactus is at most 4|CT |. In other words, the number
of vertices in NT (CT ) that are neither leaves nor part of a pendant cycle is at
most 4|CT |.
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We end this section with following lemma which resolves a special instance
of Cactus Contraction in polynomial time.

Lemma 1 (�). If G is a 2-connected graph such that V (G) can be partitioned
into two simple paths P and Q in G, then we can solve the instance (G, k) of
Cactus Contraction in polynomial time.

4 Phase 1: The Coloring Phase

In coloring phase, we start with assigning uniformly at random one of colors
{1, 2, 3} to vertices of input graph G. Once we have obtained this coloring, we
identify certain vertices of G which are contained in small witness sets. We re-
color them using new colors {4, 5} and move on to Phase 2 of algorithm to
extract a solution from components of G which are colored 1, 2 or 3.

We need notion of compatible coloring to argue the correctness of this coloring
step. Let cactus T can be obtained from graph G by contracting edges F in G.
Also, let W be T -witness structure of graph G. We determine whether a given
coloring is compatible or not with respect to this witness structure. Informally
speaking, for each big bag, a compatible coloring colors every vertex in this big
bag with same color. It separates two big witness sets which shares an edge
among them. If two big witness sets are connected by a path in G than the
coloring gives different color to end points to this path.

Definition 3 (Compatible Coloring). We say φ is compatible with W if
the following three conditions are satisfied.

– For all W (t) ∈ W, W (t) is monochromatic.
– For all tx, ty ∈ V (T ) such that |W (tx)|, |W (ty)| > 1 and there is an edge in

T between tx and ty, we have φ(W (tx)) �= φ(W (ty)).
– For all tx, ty ∈ V (T ), such that |W (tx)|, |W (ty)| > 1 and there exists a simple

path P = (tx, t1, t2, . . . , tq, ty) in T such that |W (ti)| = 1 for all 1 ≤ i ≤ q,
we have φ(W (tx)) �= φ(W (t1)) and φ(W (ty)) �= φ(W (tq)).

We say that φ is compatible with solution F if φ is compatible with the witness
structure W associated with F . We later argue that if (G, k) is an YES instance
of Cactus Contraction than any random 3-coloring is compatible coloring
with respect to an optimum solution with high probability. For this section, we
assume that we are given a 3-coloring φ of G which is compatible with some
optimum solution. Notice that we are not given the optimum solution. It is
possible that same coloring can be compatible with different optimum solutions.
In this section we prune coloring components and re-color them in order to move
closer to obtain one of the optimum solution.

4.1 Properties of Coloring

We derive some structural properties of φ in G and use those properties to
compute a solution. A set X ⊆ V (G) is called a colored component of φ, if
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X is a maximal connected set of vertices that have the same color in φ. Let
X be the set of all components of φ. Since X is a T -compatible partition and
contracting an edge in a cactus graph results in another cactus graph, X is the
witness structure of some cactus. For every color component X in X , either all
vertices of X are in small bags in W or X contains exactly one big witness set
in W (t) ∈ W and the remaining vertices X \ W (t) are in small bags. Given
a coloring φ, we are only interested in finding an optimum solution which is
compatible with this coloring. Hence, for any two components X,Y of φ, no
edge uv in E(X,Y ) is in optimum solution.

We start with simple case when a connected component X in X is simple
path in G. Lemma 2 states that X is either one big witness set or all vertices
in X are singleton sets. The proof of the lemma is based on the observation
that if two adjacent bags have only one edge crossing them then this edge is not
incident vertex which has degree two.

Lemma 2 (�). If colored component X in X is a simple path in G then either
all vertices of X are in small bags or X is a big witness set in W.

4.2 Identifying Vertices in Pendant Cycles and Leaves

We now specify the criteria to identify vertices in G that are contained in pendant
cycles in T or are leaves in T . We can not identify all such vertices in this phase.

Re-coloring I: For any colored component X in X , if G−X contains a vertex or
a simple path as its connected component then recolor vertices in that connected
component with color 4.

The re-coloring signifies that these vertices are part of pendant cycles or they
are leaves in T . Notice that since v is not included in X and it is adjacent with
X, initially vertex v had different color than X. We can say similar things for end
points of path P . We argue that if vertices and simple paths in G are adjacent
to only one colored component then they are either part of pendent cycles or
leaves in T .

Lemma 3 (�). For a colored component X in X , let P be a connected compo-
nent of G − X. If P is a simple path in G whose neighborhood is contained in
X then P is either a part of a pendant cycle or it is a leaf in T .

Notice that above Lemma also holds when P contains only one vertex. For
a colored component X in X , suppose there is an isolated vertex v which is
connected component of G − X. Since φ is compatible with optimum solution,
all big witness sets are monochromatic. This implies v can not be part of any
big witness set and remains as singleton witness set. As it can have path to at
most one big witness set, it is either part of some pendant cycle in T or it is a
leaf.
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4.3 Identifying Vertices in Simple Paths

We now identify vertices in G that correspond to paths in T that are between
two big witness sets. Recall that in simple path no internal vertex is adjacent
to any vertex outside this path. A simple path is maximal if it is not contained
in any other simple path. In other words, in maximal simple path every internal
vertex has degree exactly two and end points have degree strictly greater than
two. We color vertices which are in maximal simple path which has neighbors in
two different colored components.

Re-coloring II: For any two colored component Y,Z in X , if G − (Y ∪ Z)
contains a vertex or a maximal simple path as its connected component then
recolor vertices in that connected component with color 5.

The re-coloring signifies that these vertices are part of simple paths in internal
cactus of T . As in case of Re-coloring-I, a vertex and end points of paths have
different color than either Y or Z. We prove the correctness of this coloring in
following Lemma. We state this lemma when P is maximal simple path but it
holds for a vertex.

Lemma 4 (�). For two colored components Y,Z in X , let P be a connected
component of G− (Y ∪Z). If P is a maximal simple path in G then no optimum
solution contains a solution edge incident on vertices in P . Furthermore, both Y
and Z contain big witness sets.

4.4 Properties of Recoloring

By definition of compatible coloring, every colored component contains at most
one big witness set. Before re-coloring, any colored component may or may not
contain big witness set. In Lemma 5, we argue that after re-coloring, all colored
components colored with {1, 2, 3} must contains a big witness set. We can think
of Lemma 5 as (partial) completeness part for Lemmas 3 and 4. In other words,
in Lemma 3 (in Lemma 4) we argue that vertices in G which satisfy some criteria
are contained in witness sets which are part of pendent cycles or are leaves (in
simple paths) of cactus T . In Lemma 5, we claim that all vertices in colored
component which do not contain a big witness set and are part of pendent
cycles or are leaves (simple paths) of cactus T satisfies the premise of Lemma 3
(Lemma 4).

Lemma 5 (�). If a colored component X in X is monochromatic with color from
{1, 2, 3} after exhaustive application of two re-coloring rules then X contains a
big witness set.

5 Phase 2: Identifying Big Witness Sets

At the start of Phase 2, we have identified colored component which must con-
tains big witness set. For a colored component X in X , let W (t) is a big witness
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set contained in X. Our objective in this section is to find subset X ′ of X which
is at least as good as W (t). Informally speaking, this means we can replace edges
in spanning tree of G[W (t)] by edges in spanning tree of G[X ′] in any optimum
solution F and we get another optimum solution F ′. We examine what proper-
ties W (t) has in graph G[X]. In fact, we consider a superset X̂ of X and examine
the properties of W (t) with respect to graph G[X̂].

Let X̂ be the superset of X which contains vertices in the connected com-
ponents of G − X that are either isolated vertices or a simple path in G whose
neighborhood is contained in X. We now define the notion of connected core.

Definition 4 (Core). A core of a graph G is a set Z ⊆ V (G) such that every
connected component of G−Z is either an isolated vertex or a simple path whose
neighborhood is contained in Z. If a core Z is a connected set in G, then we call
it a connected core of G.

Notice that any superset of a connected-core which induces a connected subgraph
is also a connected core. We postpone discussion on how to find a connected
core of given graph which contains specified vertex set and is of minimum size
to Subsect. 5.1. We claim that W (t) is a connected core of graph G[X̂].

Lemma 6 (�). For a colored component X in X , if W (t) is the big witness set
contained in X then W (t) is a connected core of G[X̂].

We point out that it is possible that there exists a proper superset of W (t)
which is a connected core of G[X̂]. In other words, every vertex in W (t) has at
least one of the two responsibility: it is a part of connected core of G[X] or it
is in W (t) because of external constraints. We introduce Marking Scheme 1 to
mark vertices which are in W (t) because of external constraints. Once we mark
vertices which are present in big witness set because of external constraints,
we can find any connected core of minimum cardinality which contains these
vertices and this connected core is as good as W (t) for our purposes. Marking
scheme is as follows.

Marking Scheme 1. For a colored component X in X ,

1. If there exists y in N(X) such that φ(y) = 5 then mark all the vertices in
N(y) ∩ X.

2. For a colored component X in X which contains a big witness set, mark all
vertices in N(X ′) ∩ X.

We now prove the soundness of this marking scheme. Lemmas 7 and 8 argue
that if X contains a big witness set W (t) then all the vertices marked by marking
scheme are contained in W (t).

Lemma 7 (�). If there exists v in NG(X) such that v is colored 5 then NG(v)∩
X is contained in a big witness set of X.

Lemma 8 (�). Let X,Y be two colored component in X which contain big
witness sets, say, WX and WY , respectively. Then, N(X) ∩ Y ⊆ WY and
N(Y ) ∩ X ⊆ WX .
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In the following Lemma we prove completeness of the marking scheme. We
argue that all vertices which are present in big witness set because of external
constraints has been marked by Marking Scheme 1. It is sufficient to argue that
if t1 is neighbor of t in internal-cactus of TI then all vertices in NG(W (t1)) ∩ X
has been marked. Completeness of Marking Scheme 1.1 and 1.2 follows when
|W (t1)| is one and strictly greater than one, respectively.

Lemma 9 (�). For a colored component X in X let W (t) be the big witness set
contained in X. If t1 is a neighbor of t in the internal cactus TI of T then all
the vertices in NG(W (t1)) ∩ X has been marked by Marking Scheme 1.

We now prove how this marking scheme and connected core help us to identify
a set in X which is as good as W (t).

Pruning Operation: For a given collection of colored component X, consider
another set X ′ obtained by performing following operations. For every colored-
component Y in X of cardinality at least 2, if a vertex in v got recolored to 4 or
5, remove Y from X and add Y \ {v} and {v} to X . For a colored component X
in X which contains a big witness set, let MX be set of marked vertices in X by
Marking Scheme 1. Let ZX be a connected core of G[X̂] of minimum cardinality
which contains set MX . For every colored component X in X , if ZX is proper
subset of X then remove X and add ZX to X . For every vertex v in X̂ \ ZX ,
add a singleton set {v} to X .

We stop the pruning operation when no colored component is replaced in
X . Notice that this pruning operation stops in polynomial time with respect
to number of vertices in graph. As final lemma in this section, we argue that
if we start applying pruning operation on set of colored classes obtained from
compatible coloring φ, we end up with a witness structure corresponding with
an optimum solution. Recall that F is a minimum set of edges such that G/F is
a cactus and W is the G/F witness structure of G. Also, φ is coloring of V (G)
which is compatible coloring with respect to W. Set X is collection of colored
components of φ.

Lemma 10 (�). Let set X ′ be obtained from X by exhaustive application of
Pruning Operations. If F ∗ be a union of spanning trees of graph induced on
colored component in X ∗ then G/F ∗ is a cactus and |F ′| = |F |.

5.1 Finding Connected Cores

Recall that a connected-core of a graph G is subset Z of vertices such that, G[Z]
is connected and each connected component of G−Z is either an isolated vertex
or a simple path whose both end points have neighbors in Z. Here, we present
a simple branching algorithm that determines if G has a connected core of size
at most k or not. We use algorithm for Steiner Tree problem as subroutine.
In Steiner Tree problem, we are given a graph G and set of vertices, called
terminals, and a positive integer �. The goal is to determine whether there is a
tree with at most � edges that connects all the terminals.
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Lemma 11 (�). There is an algorithm that given a connected graph G and a
subset X of its vertices, computes a minimum connected core of G which has at
most k vertices and contains X in O∗(6k) time if one such exists in the graph.

6 Putting It All Together: The Overall Algorithm

The pseudo-code of the algorithm is presented as Algorithm6.1 and Theorem 1
formally states our result.

Algorithm 6.1: Randomized Algorithm for Cactus Contraction
Input: A 2-connected graph G and an integer k
Output: A set F of k edges in G such that G/F is a cactus

1 Generate random coloring φ : V (G) → {1, 2, 3} and construct X .
2 for each X ∈ X do
3 if P is a simple path or a isolated vertex in G − X then
4 for all u ∈ P : set color of u to 4

5 for each pair X1, X2 ∈ X do
6 if P is a simple path or a isolated vertex in G − (X1 ∪ X2) then
7 for all u ∈ P : set color of u to 5

8 for each X ∈ X do
9 Apply Marking Scheme to obtain the set of marked vertices YX ⊆ X

10 ZX ← minimum connected core of (G[X̂], YX)

11 Construct X ∗ from X and {ZX | X ∈ X}.
12 if a spanning forest F ∗ of X ∗ has ≤ k edges then
13 return F ∗

14 else
15 return NO

Theorem 1 (�). There is an one-sided error Monte Carlo algorithm with false
negatives which solves Cactus Contraction in time cknO(1) on 2-connected
graphs. It returns correct answer with constant probability.

We apply the arguments presented in [10] to extend above theorem to solve
Cactus Contraction on general graphs.

Theorem 2 (�). There is an one-sided error Monte Carlo algorithm with false
negatives which solves Cactus Contraction in time cknO(1). It returns cor-
rect answer with constant probability.

We can derandomize our algorithms by constructing a family of coloring
function, that is derived from a perfect hash family. The details of the same are
deferred to the full version of paper. This leads to the following result.
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Theorem 3. Cactus Contraction can be solved in cknO(1) time.
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Abstract. We study the bounded metric uncapacitated facility loca-
tion (bUFL) problem and its two variants, the bounded fault-tolerant
facility location (bFTFL) problem and the bounded fault-tolerant facil-
ity placement (bFTFP) problem. We propose a unified approximation
framework built on the state-of-the-art approximation algorithms for
the three unbounded counterparts, leading to a (2.488+ε)-approximation
algorithm for the bUFL problem in the Euclidean plane, a (1.488+H(n))-
approximation algorithm for the bUFL problem, a (1.725 + H(n))-
approximation algorithm for the bFTFL problem, and a (1.515+H(n))-
approximation algorithm for the bFTFP problem in a general metric
space. We also prove an inapproximability result for all the three bounded
facility location problems in a general metric space.
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1 Introduction

The facility location problem is a classical optimization problem that finds vari-
ous applications in the fields of operations research and management science [20].
In the classical uncapacitated facility location (UFL) problem, we are given a set
of facilities F and a set of clients C. Between each facility i ∈ F and every client
j ∈ C, the non-negative distance dij represents the connection cost for the facil-
ity i serving the client j. Opening the facility i ∈ F incurs a non-negative cost
fi, and only if i is open then it may serve clients and it can serve any number of
clients. The UFL problem is to find a subset of facilities that should be opened,
and to assign every client to an open facility such that the total cost of opening
facilities and connection between clients and open facilities is minimized. Clearly,
once the open facilities are decided, each client is assigned to the nearest open
facility or one such.
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The UFL problem, and its variants, have been studied for decades. The UFL
problem is NP-hard; Hochbaum presented a greedy approximation algorithm
with a performance guarantee of O(log n) [9], where n = |C| is the number of
clients. This O(log n)-approximation is the best possible from the approximabil-
ity perspective for the general UFL problem, unless NP ⊆ DTIME(nlog log n).

If for any quadruple i, i′ ∈ F and j, j′ ∈ C, we have dij ≤ dij′ +di′j′ +di′j , then
we say that the distances satisfy the triangle inequality and refer the problem
to as the metric UFL problem. In the sequel we discuss only the metric versions
of the UFL problem and its variants, without explicitly pointing out “metric”.
Shmoys et al. presented the first constant ratio approximation algorithm for the
UFL problem [23]; the algorithm is based on linear programming followed by
rounding and has a performance ratio of 3.16. Afterwards, a series of improve-
ments were made by multiple groups of researchers [1,3,5,10,11,15,18,19], with
the current best known 1.488-approximation algorithm due to Li [18].

The UFL with penalties (UFLwP) is a variant of the UFL problem, where
we pay a penalty cj for not serving the client j ∈ C, with the objective to
minimize the total cost of opening facilities, connection costs, and penalties.
Charikar et al. gave the first constant ratio approximation algorithm for the
UFLwP problem, with a performance ratio 3 [4]; Jain and Vazirani presented
an improved 2-approximation [12]. The current best known result is a 1.853-
approximation algorithm by Xu and Xu [27].

Among other variants of the UFL problem discussed in the literature, many
real life applications motivate the bounded UFL (bUFL) problem, in which an
open facility can serve only those clients within a certain distance D. For exam-
ple, when an open facility represents a fire department, it is required that the
fire crew must be able to arrive at the point of accident within a pre-specified
time; and thus the distance from the accident point to the fire department has
to be bounded by a given threshold. The goal of the bUFL problem is to open
a subset of facilities and to assign every client to an open facility within a given
distance threshold D, such that the total cost of opening facilities and connection
between clients and open facilities is minimized. We note that we may assume
without loss of generality that every client is within the distance threshold D
to at least one facility, since otherwise no feasible solution would exist. Krysta
and Solis-Oba studied the bUFL problem and presented some bi-criteria approx-
imation algorithms by relaxing the distance constraint [16]; Weng presented a
(6.853 + ε)-approximation algorithm for the bUFL problem in the Euclidean
plane, for any positive ε [26].

In this paper, we study the bUFL problem and we present a (1.488+H(n))-
approximation algorithm, where n = |C| is the number of clients and H(n) is the
n-th harmonic number; when the bUFL problem is in the Euclidean plane, we
present a (2.488+ε)-approximation algorithm, improving the result by Weng [26].

In some applications of the UFL problem, fault-tolerant solutions are required
to safeguard against facility failures. Typically, every client j ∈ C has a positive
integral connection requirement rj ∈ Z

+, and in a fault-tolerant solution the
client j needs to be served by rj open facilities. Two variants of fault-tolerant
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solutions have been studied in the literature: in the (more general) fault-tolerant
facility placement (FTFP) problem multiple copies of a facility i ∈ F can be
open, each costs fi; while in the (more restricted) fault-tolerant facility location
(FTFL) problem at most one facility can be open at each facility site. Both the
FTFP and the FTFL problems seek to find a subset of sites to open facilities,
possibly multiple facilities at the same site in FTFP, and to assign each client
j ∈ C to rj open facilities, such that the total cost of opening facilities and the
connection cost is minimized. Clearly, when rj = 1 for all the clients j ∈ C, both
FTFP and FTFL reduce to the classical UFL problem.

The FTFL problem was first studied by Jain and Vazirani [13], who presented
a primal-dual algorithm achieving a performance guarantee that is logarithmic
in maxj∈C rj—the largest connection requirement. Guha et al. proposed the
first constant factor approximation algorithm with an approximation ratio of
2.408 [8], which was later improved to 2.076 by Swamy and Shmoys [24]. The
current best known result is a 1.725-approximation proposed by Byrka et al. [2].

The FTFP problem was first studied by Xu and Shen [28], and then by Yan
and Chrobak [29] who obtained the first constant factor approximation algorithm
with a performance ratio of 3.16, which was later improved to 1.575 [30]. The
current best known result is a 1.515-approximation proposed by Rybicki and
Byrka [22].

In this paper, we study the bounded FTFL (bFTFL) and the bounded FTFP
(bFTFP) problems, that is, every client has to be served by rj open facilities
within the given distance threshold D, from the approximation algorithm per-
spective. Together with the bUFL problem, we propose a unified approximation
framework for all three bounded problems, built on the best known approxima-
tion algorithms for the unbounded counterparts. This leads to a (1.488+H(n))-
approximation for the bUFL problem, a (1.725 + H(n))-approximation for the
bFTFL problem, and a (1.515 + H(n))-approximation for the bFTFP problem,
where H(n) is the n-th harmonic number and n = |C| is the number of clients.

The rest of the paper is organized as follows. In Sect. 2 we consider the bUFL
problem; we first present a (2.488 + ε)-approximation algorithm for the bUFL
problem in the Euclidean plane, for any positive ε, which improves the best result
by Weng [26]; we then present the unified approximation framework, leading to
a (1.488+H(n))-approximation algorithm for the general metric bUFL problem,
where H(n) is the n-th harmonic number and n = |C| is the number of clients.
In Sect. 3, we present a (1.725 + H(n))-approximation algorithm for the bFTFL
problem and a (1.515+H(n))-approximation algorithm for the bFTFP problem,
respectively. We prove an inapproximability result for all the three bounded
facility location problems in Sect. 4. Lastly, we conclude the paper in Sect. 5.

2 The bUFL Problem

We mentioned in the introduction that the current best known approximation
algorithm for the (metric) UFL problem has a performance ratio of 1.488 and is
due to Li [18]. In fact, the algorithm is based on a combination of the algorithm
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due to Byrka [1] parameterized by γ ∈ [0,∞) and the algorithm proposed by
Jain et al. [11], and 1.488 is the expected ratio as γ is chosen from a probability
distribution. Let yi be the indicator variable denoting whether the facility i ∈ F
is open, and xij be the indicator variable denoting whether the client j ∈ C is
assigned to the facility i ∈ F . The algorithm of Byrka first solves the following
natural linear programming relaxation (LP1) for the UFL problem, then scales
the y-variables up by γ to open facility i with probability γyi, followed by greedily
assigning each client to the closest open facility.

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈C
dijxij (LP1)

subject to
∑

i∈F
xij = 1,∀j ∈ C (1)

yi − xij ≥ 0,∀i ∈ F , j ∈ C (2)
xij ≥ 0, yi ≥ 0, ∀i ∈ F , j ∈ C (3)

In (LP1), basically the constraint group (1) ensures that each client is
assigned to a facility, the constraint group (2) ensures that a facility been
assigned with some client must be open, and the constraint group (3) relaxes
the integral constraints xij , yi ∈ {0, 1} in the UFL problem.

Since we only use the 1.488-approximation algorithm as a black-box to gener-
ate a starting point for the bUFL problem, we refer the interested readers to [18]
for more technical details of the distribution of γ and the performance analysis.
Let {x̂ij , ŷi} denote the (integral) solution for the UFL problem provided by
the 1.488-approximation algorithm, which in general is infeasible to the bUFL
problem, since the following distance constraints (4) could be violated:

xij(D − dij) ≥ 0, ∀i ∈ F , j ∈ C, (4)

that is, if the client j ∈ C is assigned to the facility i ∈ F then the distance dij
must be no greater than D.

We next use {x̂ij , ŷi} to construct a feasible solution to the bUFL problem.
To this purpose, let F1 = {i ∈ F | ŷi = 1} be the subset of open facilities and
Ĉ = {j1, j2, . . . , jq} ⊆ C be the set of clients each is assigned to an open facility
at distance greater than D in the solution {x̂ij , ŷi}. It follows that each client of
Ĉ needs to be re-assigned in order to achieve a feasible solution.

We address first a special case where the bUFL problem is in the Euclidean
plane, that is, the locations of the facilities and the clients are points in the two-
dimensional Euclidean space. We will then deal with the general metric bUFL
problem by presenting a unified approximation framework, which can be used
to construct feasible solutions for the other two variants of the bUFL problem.
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2.1 bUFL in the Euclidean Plane

Previously, Weng presented a (6.853 + ε)-approximation for the bUFL problem
in the Euclidean plane [26], for any positive ε. Their algorithm has two phases. In
the first phase, the algorithm constructs an instance of the weighted dominating
set problem in unit disk graphs (WDS in UDG) in which the ground set is C and
a unit disk is centered at a facility i ∈ F with its weight fi and its radius D; the
algorithm calls the (5 + ε)-approximation due to Dai and Yu [6] for the WDS
in UDG to compute a set F ′ to cover all clients and let Cj be the connection
cost for the client j ∈ C. In the second phase, using the Cj as the penalty for
not serving the client j ∈ C, the algorithm constructs an instance of the UFLwP
problem, and calls the 1.853-approximation due to Xu and Xu [27] to compute
a set F ′′ to serve some clients and pay penalties for the others. The final set of
open facilities is F ′ ∪ F ′′, and each client is assigned to its closest open facility.

Since the optimal objective function values in both the WDS in UDG and the
UFLwP are lower bounds on the optimum in our bUFL problem, this two-phase
algorithm is a (6.853 + ε)-approximation.

We remark that for the WDS in UDG, Li and Jin presented a polynomial time
approximation scheme (PTAS) in 2015 [17], after Weng’s [26]. Therefore, the (5+
ε)-approximation in the first phase can be replaced by a (1+ε)-approximation due
to Li and Jin; this way, Weng’s algorithm becomes a (2.853 + ε)-approximation
for the bUFL problem in the Euclidean plane, for any positive ε.

In our algorithm, we take a different route, by keeping F1 = {i ∈ F | ŷi = 1}
the set of open facilities that can serve the clients of C − Ĉ, and to open some
more facilities to serve the clients of Ĉ. Deciding these new open facilities is done
via a reduction to the WDS in UDG, where similarly a unit disk is centered at a
facility i ∈ F with its weight fi and its radius D, but the ground set is Ĉ not the
whole set of clients C. Using the PTAS due to Li and Jin [17], we find a nearly
optimal subset F2 ⊆ F of open facilities to serve all the clients of Ĉ. The final
set of open facilities in our algorithm is F1 ∪F2, and then each client is assigned
to its nearest open facility. We denote our algorithm as A1, of which a high-level
description is shown in Fig. 1.

Theorem 1. The algorithm A1 is a (2.488+ε)-approximation algorithm for the
bUFL problem in the Euclidean plane, for any ε > 0.

Proof. Let us fix an optimal solution OPT to the bUFL problem, let F∗ be the
set of facilities selected by the optimal solution, and let OPTf =

∑
i∈F∗ fi.

Clearly F∗ is a feasible solution to the constructed instance of the WDS in
UDG; we conclude that the total opening cost of the facilities of F2 is

F2 =
∑

i∈F2

fi ≤ (1 + ε)OPTf ,

for any ε > 0.
Let OPTc denote the connection cost in the optimal solution OPT.
For the solution {x̂ij , ŷi} to the corresponding UFL problem obtained by

the 1.488-approximation, let F1 =
∑

i∈F1
fi and C1 be the connection cost for
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Fig. 1. A high-level description of A1 for the bUFL problem.

assigning all the clients in C to open facilities. Since the optimal solution OPT to
the bUFL problem is a feasible solution to the UFL problem, we have F1 +C1 ≤
1.488(OPTf + OPTc).

Re-assigning the clients in Ĉ to the open facilities of F2 only decreases their
respective connection costs to the open facilities of F1. Therefore, the total
connection cost in the solution by the algorithm A1 is no greater than C1.

Putting these together, the total cost of the open facilities and the connection
cost in the solution by the algorithm A1 is at most

F1+F2+C1 ≤ 1.488(OPTf+OPTc)+(1+ε)OPTf ≤ (2.488+ε)(OPTf+OPTc).

That is, A1 is a (2.488 + ε)-approximation for the bUFL problem. 	


2.2 bUFL in General Metrics

For the bUFL problem in general metrics, we take the same route as in A1, to
keep F1 = {i ∈ F | ŷi = 1} the set of open facilities that can serve the clients
of C − Ĉ, and to open some more facilities to serve the clients of Ĉ. Deciding
these new open facilities in a general metric space is done via a reduction to
the weighted set cover problem. We construct an instance of the weighted set
cover problem as follows: We set the ground set to be Ĉ, and for each facility
i ∈ F−F1, we define a set Si = {j ∈ Ĉ | dij ≤ D} which has a weight w(Si) = fi.
The goal is to find a minimum weight collection of sets to cover all the elements
in the ground set, which corresponds to a minimum total cost of open facilities
in F − F1 to serve all the clients in Ĉ satisfying the distance constraint. By
invoking the well-known greedy H(n)-approximation for the weighted set cover
problem [14], we obtain a subset F2 ⊆ F − F1 of open facilities with a total
opening cost no greater than H(n) times of the minimum, where n = |C|. The
final set of open facilities in our algorithm is F1 ∪ F2, and then each client is
assigned to its nearest open facility. We denote our algorithm as A2, of which a
high-level description is shown in Fig. 2.
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Fig. 2. A high-level description of A2 for the bUFL problem.

Theorem 2. The algorithm A2 is a (1.488 + H(n))-approximation algorithm
for the bUFL problem in general metrics, where H(n) = 1 + 1

2 + 1
3 + . . . + 1

n is
the n-th harmonic number and n = |C| is the number of clients.

Proof. Let us fix an optimal solution OPT to the bUFL problem, let F∗ be the
set of facilities selected by the optimal solution, and let OPTf =

∑
i∈F∗ fi.

Clearly F∗ is a feasible solution to the constructed instance of the weighted
set cover problem; we conclude that the total opening cost of the facilities of F2

is
F2 =

∑

i∈F2

fi ≤ H(n)OPTf .

Let OPTc denote the connection cost in the optimal solution OPT.
For the solution {x̂ij , ŷi} to the corresponding UFL problem obtained by

the 1.488-approximation, let F1 =
∑

i∈F1
fi and C1 be the connection cost for

assigning all the clients in C to open facilities. Since the optimal solution OPT to
the bUFL problem is a feasible solution to the UFL problem, we have F1 +C1 ≤
1.488OPT.

Re-assigning the clients in Ĉ to the open facilities of F2 only decreases their
respective connection costs to the open facilities of F1. Therefore, the total
connection cost in the solution by the algorithm A2 is no greater than C1.

Putting these together, the total cost of the open facilities and the connection
cost in the solution by the algorithm A2 is at most

F1 + F2 + C1 ≤ 1.488OPT + H(n)OPTf ≤ (1.488 + H(n))OPT.

That is, A2 is a (1.488 + H(n))-approximation for the bUFL problem. 	


3 The bFTFL and bFTFP Problems

In this section, we present an approximation algorithm for the bFTFL prob-
lem and the bFTFP problem, respectively. We will adopt the framework of the
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algorithm A2, using the current best known approximation for the unbounded
counterpart in the first phase, and reducing the remainder problem to a variant
of the weighted set cover problem in the second phase, for which we invoke the
current best known H(n)-approximation algorithm.

Recall that in both the bFTFL and the bFTFP problems, each client j ∈ C
is required to be served by rj open facilities within the distance threshold D.
Correspondingly, in the weighted set multi-cover problem, we are given a ground
set U = {u1, u2, . . . , un}, a collection S = {S1, S2, . . . , Sm} of which each set Si

is associated with a weight fi, and the goal is to find a minimum weight sub-
collection of sets such that each element uj ∈ U is covered by rj sets. Including
the set Si in the sub-collection each time incurs a weight fi, whether or not
multiple times are allowed.

For the bFTFL problem, we first invoke the current best known 1.725-
approximation for the FTFL problem, due to Byrka et al. [2], to obtain a solution
denoted as {x̂ij , ŷi}, where xij is a variable recording whether there is a connec-
tion between the client j ∈ C and the facility i ∈ F and yi is a variable recording
whether the facility i ∈ F is open. We then keep F1 = {i ∈ F | ŷi = 1} the set
of open facilities and let Ĉ ⊆ C be the subset of clients each has not yet assigned
to rj open facilities of F1. For each client j ∈ Ĉ, let r′

j denote the remaining
connection requirement, that is, the client j still needs to be served by r′

j open
facilities within the distance threshold D.

In the second phase, we construct an instance of the weighted set multi-
cover problem as follows: We set the ground set to be Ĉ, of which each element
j needs to be covered by at least r′

j sets, and for each facility i ∈ F − F1,
we define a set Si = {j ∈ Ĉ | dij ≤ D} which has a weight w(Si) = fi. The
goal is to find a minimum weight collection of sets to cover each element in
the ground set the required number of times, which corresponds to a minimum
total cost of open facilities in F − F1 to serve all the clients in Ĉ satisfying
the distance constraint and the required connections. We remark that in this
weighted set multi-cover problem, each set Si can be included in the solution at
most once; the problem is also referred to as the constrained weighted set multi-
cover problem and admits an H(n)-approximation [21,25], where n = |Ĉ|. We
thus invoke the H(n)-approximation for the constrained weighted set multi-cover
problem to obtain a subset F2 ⊆ F − F1 of open facilities with a total opening
cost no greater than H(n) times of the minimum. The final set of open facilities
in our algorithm is F1∪F2, and then each client is assigned to its rj nearest open
facilities. We denote our algorithm as A3, of which a high-level description is very
the same as shown in Fig. 2, except that we replace “1.488-approximation for the
UFL problem” by “1.725-approximation for the FTFL problem”, and replace
“instance of the weighted set cover problem” by “instance of the constrained
weighted set multi-cover problem” (where the connection requirement of each
client j ∈ C is changed from 1 to r′

j).
The following theorem can be proved very the same as the proof of Theorem 2,

and we omit its details.
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Theorem 3. The algorithm A3 is a (1.725+H(n))-approximation algorithm for
the bFTFL problem in a general metric space, where H(n) = 1+ 1

2 + 1
3 + . . .+ 1

n
and n = |C| is the number of clients.

In the bFTFP problem, we are allowed to open multiple copies of the facil-
ity at each facility site i ∈ F . We first invoke the current best known 1.515-
approximation for the FTFP problem, due to Rybicki and Byrka [22], to obtain
a solution denoted as {x̂ij , ŷi}, where xij is a variable recording the number of
connections between the client j ∈ C and the facility i ∈ F and yi is a vari-
able recording the number of facility copies open at site i ∈ F . We then keep
F1 = {i ∈ F | ŷi ≥ 1} the set of open facilities as well as their multiple copies,
and let Ĉ ⊆ C be the subset of clients each has not yet assigned to rj open
facilities of F1. For each client j ∈ Ĉ, let r′

j denote the remaining connection
requirement, that is, the client j still needs to be served by r′

j open facilities
within the distance threshold D.

In the second phase, we construct an instance of the weighted set multi-
cover problem as follows: We set the ground set to be Ĉ, of which each element
j needs to be covered by at least r′

j sets, and for each facility i ∈ F , we define
a set Si = {j ∈ Ĉ | dij ≤ D} which has a weight w(Si) = fi. The goal is
to find a minimum weight collection of multi-sets to cover each element in the
ground set the required number of times, which corresponds to a minimum total
cost of open facilities in F to serve all the clients in Ĉ satisfying the distance
constraint and the required connections. We remark that in this weighted set
multi-cover problem, each set Si can be included in the solution however number
of times possible. This version of the weighted set multi-cover problem also
admits an H(n)-approximation [21,25], where n = |Ĉ|. We thus invoke the H(n)-
approximation for the weighted set multi-cover problem to obtain a subset F2 ⊆
F of open facilities with a total opening cost no greater than H(n) times of
the minimum. The final set of open facilities is F1 ∪ F2 and for each facility
i ∈ F1 ∩F2 its total number of open copies is the sum of the number determined
in the solution {x̂ij , ŷi} to the FTFP problem and the number determined in the
solution to the weighted set multi-cover problem. Lastly, each client is assigned
to its rj nearest open facilities. We denote our algorithm as A4, of which a
high-level description is also very the same as shown in Fig. 2.

The following theorem can be proved very the same as the proof of Theorem 2,
and we omit its details.

Theorem 4. The algorithm A4 is a (1.515+H(n))-approximation algorithm for
the bFTFP problem in a general metric space, where H(n) = 1+ 1

2 + 1
3 + . . .+ 1

n
and n = |C| is the number of clients.

4 An Inapproximability Result

In this section, we prove a lower bound on the approximation ratios for
all three bounded facility location problems in general metrics. Recall that
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for the bUFL, bFTFL and bFTFP problems, we have presented a (1.488 +
H(n))-approximation, a (1.725 + H(n))-approximation and a (1.515 + H(n))-
approximation, respectively, where n is the number of clients. All three perfor-
mance ratios are in Θ(ln n) since H(n) ∈ Θ(ln n).

Theorem 5. The metric bUFL problem cannot be approximated within a factor
ρ < (1 − ε) ln n, for any ε > 0, unless P = NP.

Proof. Dinur and Steurer have proved that approximating the set cover problem
within a factor of (1 − ε) ln n is NP-hard, for any ε > 0 [7].

We prove the theorem by contradiction to construct a reduction from the set
cover problem to the bUFL problem, which shows that a ρ-approximation for
bUFL, where ρ < (1 − ε) ln n, implies a (1 − ε) ln n-approximation for the set
cover problem.

Given an instance (U,S) of the set cover problem, in which U is the ground
set and S is a collection of sets, we construct an instance of the bUFL problem
as follows. Suppose n = |U |. Let C = U be the set of clients; for each set Si ∈ S,
there is a facility i with a uniform opening cost fi = n2 ln n; let F be the set of
facilities. Set the distance threshold D = 1. If the element uj ∈ U belongs to a
set Si, then the distance between the client j and the facility i is dij = 2

3 ; if the
element uj ∈ U doesn’t belong to a set Si, then dij = 4

3 . One may verify that
the triangle inequality is satisfied across the board.

Clearly, in any feasible solution to the bUFL problem, each client will be
served by an open facility at distance 2

3 ; therefore, the total connection cost
is always 2n/3. From the fact that every facility has the uniform opening cost
of n2 ln n, we conclude that the quality of a solution depends solely on the
number of open facilities. More precisely, a set cover of cardinality k one-to-one
corresponds to a set of k open facilities that are able to serve all the clients
satisfying the distance constraint, which being a solution to the bUFL problem
has an objective function value kn2 ln n + 2n/3. Let k∗ denote the number of
sets in the minimum set cover. It follows that the objective function value of an
optimal solution to the bUFL problem is k∗n2 ln n + 2n/3.

Next suppose there is a ρ-approximation A for the bUFL problem with ρ <
(1 − ε) ln n, for some positive ε. Running the algorithm A on the constructed
instance of the bUFL problem gives a solution with the objective function value
less than

(1 − ε) ln n(k∗n2 ln n + 2n/3).

We can then estimate the number of open facilities inside the solution to be less
than

(1 − ε) ln n(k∗n2 ln n + 2n/3) − 2n/3
n2 lnn

= ((1 − ε) ln n)k∗ + O(
1
n

).

This implies a (1 − ε) ln n-approximation for the set cover problem, a contradic-
tion. 	

Corollary 1. The metric bFTFL and the metric bFTFP problems cannot be
approximated within a factor ρ < (1 − ε) ln n, for any ε > 0, unless P = NP.
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5 Conclusion

Motivated by the real life applications, we studied the distance bounded version
of three uncapacitated facility location problems, bUFL, bFTFL, and bFTFP.
We proposed a unified approximation framework in which first the current best
known approximation algorithm for their unbounded counterpart [2,18,22] is
invoked to obtain a solution and then to construct an instance of a variant
of the weighted set (multi-)cover problem to take care of the clients not yet
served, subsequently to invoke the current best known approximation algo-
rithm for the variant of the weighted set (multi-)cover problem to open some
more new facilities. This approximation framework, together with the cur-
rent best known approximation algorithms for the various ingredient problems,
gives rise to a (1.488 + H(n))-approximation algorithm for the bUFL prob-
lem, a (1.725 + H(n))-approximation algorithm for the bFTFL problem, and
a (1.515 + H(n))-approximation algorithm for the bFTFP problem, in general
metrics. For a special case of the bUFL problem in the Euclidean plane, we pre-
sented a (2.488 + ε)-approximation algorithm for any positive ε, which improves
the previous best (2.853 + ε)-approximation due to Weng [26]. We also proved
an approximability lower bound of lnn for these three bounded facility location
problems.
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23. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility loca-
tion problems (extended abstract). In: STOC 1997, pp. 265–274 (1997)

24. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. ACM Trans. Algorithms
4, 1–27 (2008)

25. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2003). https://doi.
org/10.1007/978-3-662-04565-7

26. Weng, K.: Approximation algorithm for uniform bounded facility location problem.
J. Comb. Optim. 26, 284–291 (2013)

27. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalties. J. Comb. Optim. 17, 424–436 (2008)

28. Xu, S., Shen, H.: The fault-tolerant facility allocation problem. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 689–698. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 70

29. Yan, L., Chrobak, M.: Approximation algorithms for the fault-tolerant facility
placement problem. Inf. Process. Lett. 111, 545–549 (2011)

30. Yan, L., Chrobak, M.: LP-rounding algorithms for the fault-tolerant facility place-
ment problem. J. Discret. Algorithms 33, 93–114 (2015)

https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/978-3-319-18263-6_6
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-642-10631-6_70


Reconfiguration of Satisfying Assignments
and Subset Sums: Easy to Find,

Hard to Connect

Jean Cardinal1, Erik D. Demaine2, David Eppstein3, Robert A. Hearn4,

and Andrew Winslow5(B)
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Abstract. We consider the computational complexity of reconfigura-
tion problems, in which one is given two combinatorial configurations
satisfying some constraints, and is asked to transform one into the other
using elementary transformations, while satisfying the constraints at all
times. Such problems appear naturally in many contexts, such as model
checking, motion planning, enumeration and sampling, and recreational
mathematics. We provide hardness results for problems in this family, in
which the constraints and operations are particularly simple.

More precisely, we prove the PSPACE-completeness of the following
decision problems:

– Given two satisfying assignments to a planar monotone instance of
Not-All-Equal 3-SAT, can one assignment be transformed into the
other by single variable “flips” (assignment changes), preserving sat-
isfiability at every step?

– Given two subsets of a set S of integers with the same sum, can one
subset be transformed into the other by adding or removing at most
three elements of S at a time, such that the intermediate subsets
also have the same sum?

– Given two points in {0, 1}n contained in a polytope P specified by
a constant number of linear inequalities, is there a path in the n-
hypercube connecting the two points and contained in P?

These problems can be interpreted as reconfiguration analogues of stan-
dard problems in NP. Interestingly, the instances of the NP problems
that appear as input to the reconfiguration problems in our reductions
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can be shown to lie in P. In particular, the elements of S and the coeffi-
cients of the inequalities defining P can be restricted to have logarithmic
bit-length.

Keywords: Boolean satisfiability · Subset sum
Combinatorial reconfiguration · PSPACE-completeness

1 Introduction

Many computational problems consist of deciding the existence of a combina-
torial object subject to constraints expressible in algebraic or logical terms. We
consider reconfiguration problems, in which one is given two objects satisfying
a set of constraints, and the goal is to transform one into the other using sim-
ple reconfiguration moves such that all the constraints remain satisfied at every
intermediate step. Such problems find applications in dynamic environments or
reactive systems, in which solutions are required or designed to evolve, in acces-
sibility problems in model checking, as well as in enumeration and sampling
problems, in which connectivity of the search space plays a major role.

We focus on reconfiguration problems that are naturally derived from stan-
dard NP-complete problems. This line of inquiry seems to have begun with the
Sliding Tokens problem, a reconfiguration version of Independent Set, by Hearn
and Demaine [11], and has gained momentum with publications such as the
extension of Schaefer’s dichotomy to the connectivity of Boolean satisfiability
due to Gopalan et al. [9], and an overview of the complexity of reconfiguration
problems by Ito et al. [16]. In the canonical example of Boolean satisfiability, one
is given two satisfying assignments to connect by a sequence of variable assign-
ment flips, such that the formula remains satisfied at every step. The study of
this type of question also benefits from the interest of puzzle designers and recre-
ational mathematicians; token-sliding problems, for instance, are related to the
famous 15-puzzle, popular in the late 19th century [29]. Combinatorial recon-
figuration now constitutes a quickly developing field with dedicated research
groups and workshops (such as the combinatorial reconfiguration workshop held
in Banff in January 2017). For a more thorough survey and history of this family
of problems, we refer to van den Heuvel [13].

Reconfiguration of independent sets in graphs is among the most studied
problem in this vein (see [4,6,8,14] for recent results) and is relevant to our
findings. In these problems, one is given a graph G and two independent sets
of G of the same size k, and the goal is to transform one into the other using
elementary operations, preserving independence at every step. The operations
consist either of “token slides”, in which a vertex in the independent set is
replaced by one of its neighbors [11], or of vertex additions and removals such
that the size of the independent set is either k or k − 1 [16]. A third, related,
model is that of “token jumping”, in which a vertex is replaced by another, so
that the size remains unchanged [20]. In general, these reconfiguration problems
are known to be PSPACE-complete.
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Reconfiguration problems for graph colorings followed, and have a large dedi-
cated body of results as well [1,3,5,7,17]. Again, many such problems are known
to be PSPACE-complete. Reconfiguration problems for shortest paths [2,19], ver-
tex covers [18], dominating sets [10], and Steiner trees [24] have also been con-
sidered.

As discussed by van den Heuvel [13], the question of the relation between the
complexity of the existence problem (of a satisfying assignment, for instance)
and that of the reconfiguration problem is intriguing. In many early examples,
reconfiguration problems in P are obtained from existence problems that are
in P, and many PSPACE-hardness proofs follows the lines of the NP-hardness
proof of the corresponding satisfiability problem. In the Schaefer-type dichotomy
theorem established by Gopalan et al. [9], all satisfiability problems in P yield
a reconfiguration problem in P as well. In some cases, the satisfiability problem
is NP-complete while the reconfiguration problem is in P. (For example, this is
the case for 1-in-3 SAT, whose reconfiguration problem is trivial.) Examples in
which the existence problem is in P, but the reconfiguration problem is PSPACE-
complete can also be found. Prominent examples are reconfiguration of shortest
paths [2] and reconfiguration of 4-colorings of bipartite and planar graphs [3].
Our results provide further examples of such a situation.

Our Results. We give hardness results for reconfiguration problems involving
solutions of special families of Boolean satisfiability problems, subset sum and
knapsack problems, and, more generally, 0–1 linear programming problems.

In Sect. 2, we prove that the problem of reconfiguring satisfying assignments
to a planar monotone instance of Not-All-Equal 3-SAT by single variable flips is
PSPACE-complete. Interestingly, the planar Not-All-Equal 3-SAT problem is in
P. If we further restrict to monotone instances, the reconfiguration problem is
equivalent to reconfiguration of 2-colorings of 3-uniform hypergraphs with planar
vertex-edge incidence graphs.

In Sect. 3, we consider the Subset Sum reconfiguration problem, that is, recon-
figuration of subsets of a set of integers with the same sum. For this, we need
to be able to perform elementary moves involving three elements of the set. We
show that this problem is again PSPACE-complete.

Finally, in Sect. 4, we prove the PSPACE-completeness of the problem of
finding a path between two points of the hypercube that is constrained to lie
within a polytope. We show that the hardness result holds even if the number
of inequalities defining the polytope is O(1), and the coefficients involved are
polynomial.

2 Planar NAE 3-SAT Reconfiguration

In this section, we give new results on the reconfiguration problems for a variant
of Boolean satisfiability.

Definition 1 (Boolean Satisfiability Reconfiguration Problem). Given
an instance of a Boolean satisfiability problem and two satisfying assignments s
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and t, does there exist a sequence of satisfying assignments s1, s2, . . . , sk such
that s1 = s, sk = t, and for all i ∈ [k − 1], si+1 can be obtained from si by a
single variable flip?

Such problems (also referred to as the s−t-connectivity problems for Boolean
satisfiability) have been considered extensively before [9,22,23,26–28]. Here we
investigate the complexity of the reconfiguration versions of Boolean satisfiability
problems in which the variable-clause incidence graph is planar. The variable-
clause incidence graph of a CNF formula is a bipartite graph in whose set of
vertices is the union of the set of clauses and the set of variables of the formula,
and a variable vertex is adjacent to a clause vertex if the variable appears in
the clause, in either positive or negative form. The planar 3-SAT problem is the
3-SAT problem restricted to instances with a planar variable-clause incidence
graph. It has long been known that planar 3-SAT is NP-complete [21].

In the NAE 3-SAT problem, satisfying assignments are forbidden from con-
taining clauses in which all literals have the same value. Hence in a satisfying
assignment, every clause has exactly two literals with the same value. In an
instance of Monotone NAE 3-SAT, all literals appearing in the clauses are pos-
itive.

Monotone NAE 3-SAT is equivalent to 2-coloring 3-uniform hypergraphs,
and known to be NP-complete from Schaefer’s dichotomy theorem. We consider
instances of Planar NAE 3-SAT, where the variable-clause incidence graph is
planar. In 1988, Moret proved the surprising result that Planar NAE 3-SAT is
in P by reducing the problem to that of finding a maximum cut in a planar
graph [25]. We prove:

Theorem 1. Planar Monotone NAE 3-SAT Reconfiguration is PSPACE-
complete.

It is interesting to observe that the problem is PSPACE-complete despite the
satisfiability problem lying in P. The proof relies on the Nondeterministic Con-
straint Logic framework of Hearn and Demaine [11,12].

Nondeterministic Constraint Logic (NCL). In nondeterministic constraint logic,
a constraint graph is an edge- and node-weighted graph. A configuration of such
a graph is an orientation of its edges, and an orientation is legal provided that
the sum of the weights of edges pointing to a node is at least the weight of
this node. In what follows, we will further restrict to graphs in which all node
weights equal 2, and edges have weights either 1 or 2. The latter are referred
to as red and blue edges, respectively. Furthermore, we only have two types of
nodes: AND nodes with one blue and two red incident edges, and OR nodes
with three blue incident edges. It was proved that the framework retains all of
its expressive power, even under these restrictions [11]. The names of the two
node types come from the interpretation of the incoming weight constraint: a
configuration is legal if and only if (i) for all AND nodes, the blue edge is not
outgoing unless both red edges are incoming, (ii) for all OR nodes, at least one
edge is incoming.
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Fig. 1. Monotone NAE clauses implementing the AND (top) and OR (bottom) nodes
in a constraint graph. Only one of the three versions of the gadget is used, depending
on the encoding used for the edge orientations. (Color figure online)

Definition 2 (C2C Problem). Given a constraint graph and two legal config-
urations C1 and C2, can C2 be obtained from C1 by flipping one edge at a time,
so that all intermediate configurations are also legal?

Theorem 2 ([11]). The C2C problem is PSPACE-complete, even if the con-
straint graph is restricted to be planar.

Sketch of Proof of Theorem 1. As a warmup, we first consider the known reduc-
tion from the planar C2C problem to planar 3-SAT reconfiguration. Given a
planar constraint graph, we define one Boolean variable per edge. When consid-
ering an edge x incident to a node, we denote by xin the literal corresponding
to the orientation of x towards the node, and the opposite literal by xout. For
a given AND node with a blue incident edge x and two red incident edges y
and z, we add the two clauses (xin ∨ yin) and (xin ∨ zin), forcing both yin and
zin to be true whenever xin is false. For a given OR node with three incident
blue edges x, y, and z, we add the single clause (xin ∨ yin ∨ zin). The resulting
variable-clause incidence graph is planar whenever the initial constraint graph
is. This reduction is due to Sarah Eisenstat,1 and is also alluded to by Gopalan
et al. [9].

The hardness proof for the planar monotone NAE 3-SAT reconfiguration
problem is more involved. The AND and OR nodes are also translated into

1 MIT Course 6.890, “Algorithmic Lower Bounds: Fun with Hardness Proofs” (Fall
’14), Lecture 17.
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monotone NAE clauses involving variables representing edges of the constraint
graph, but also other additional variables. Furthermore, the translation may use
different sets of clauses depending on whether the variable representing the edge
corresponds to the incoming or outgoing orientation. The reduction is summa-
rized on Fig. 1. In this figure, triangles represent monotone NAE clauses. The
symbols F and T represent variables whose values have been fixed by a “rigid”
gadget. The complete proof is provided in the full version of the paper on arXiv.

3 Subset Sum Reconfiguration

We now consider the reconfiguration problem for the well-known subset sum
problem.

Definition 3 (Subset Sum Problem). Given an integer x and a set of
integers S = {a1, a2, . . . , an}, does there exist a subset A ⊆ [n] such that∑

i∈A ai = x?

If we restrict our reconfiguration steps to involve only a single element of
S, the reconfiguration problem is trivial, as no single such move can maintain
the same sum. We therefore consider more general reconfiguration steps. We say
that a set of integers A1 can be k-move reconfigured into a second set of integers
A2 whenever the symmetric difference of A1 and A2 has cardinality at most k.

Definition 4 (k-move Subset Sum Reconfiguration Problem). Given two
solutions A1 and A2 to an instance of the subset sum problem, can A2 be obtained
by repeated k-move reconfiguration, beginning with A1, so that all intermediate
subsets are also solutions?

The problem remains trivial for k = 2, since any removed element must be
replaced by itself. For k = 3, we prove the following theorem.

Theorem 3. The 3-move subset sum reconfiguration problem is strongly
PSPACE-complete.

The problem is strongly PSPACE-complete, meaning that it remains PSPACE-
complete when the input integer set is given in unary. The corresponding
instances of the subset sum problem can be solved in polynomial time using
dynamic programming. This is another example of a reconfiguration problem
that is PSPACE-complete, despite the underlying decision problem lying in P.
We first note that the problem is contained in PSPACE. A simple proof can be
found in the full version of the paper on arXiv. As for hardness, the reduction
is done in two steps. First, from the Sliding Tokens problem to the Exact Cover
reconfiguration problem (Lemma 1), then to the 3-move Subset Sum reconfigu-
ration problem (Theorem 3).

Definition 5 (Token Slide Reconfiguration). Given two independent sets
I1, I2 of a graph G = (V,E), I1 can be reconfigured into I2 via a token slide
provided (I1 − I2) ∪ (I2 − I1) = {v1, v2} and {v1, v2} ∈ E.
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Observe that a token slide corresponds to changing the selection of a vertex
v1 ∈ I1 to a neighboring vertex v2 ∈ I2, possible exactly when v1 is the only
vertex in I1 among v1, v2, and their neighbors.

Definition 6 (Sliding Tokens Problem). Given two independent sets I1, I2,
can I1 be reconfigured into I2 via repeated token slides?

An exact cover is a set cover that covers every element exactly once.

Definition 7 (Exact Cover Split and Merge Reconfiguration). Given
a set S of subsets of a set U , and two exact covers C1, C2 ⊆ S, C1 can be
reconfigured into C2 via a split (and C2 can be reconfigured into C1 via a merge)
provided that there exist S1, S2, S3 ⊆ S with C1 − C2 = S1 and C2 − C1 =
{S2, S3}.

Since C1, C2 are exact covers, S1 = S2 ∪ S3 and S2 ∩ S3 = ∅.

Definition 8 (Exact Cover Reconfiguration Problem). Given a set S of
subsets of a set U , can C1 be reconfigured into C2 via repeated splits and merges?

Recall that a set S of subsets of a set U can be considered as a hypergraph
G = (U,S), where each element of U is a vertex and each element of S is a
hyperedge. We say that a hypergraph is k-colorable whenever we can assign one
of k colors to each vertex such that no two vertices in a hyperedge have the same
color.

Lemma 1. The exact cover reconfiguration problem is PSPACE-hard for
instances that are 23-colorable hypergraphs.

Proof. The proof of Theorem 23 of [11] establishes that the sliding tokens prob-
lem is PSPACE-hard on 3-regular graphs (see Sect. 3.2 of [3] for further discus-
sion). A trivial modification of the proof suffices to prove that a labeled vari-
ant of the sliding tokens problem, where each token has a unique label, is also
PSPACE-hard. The reduction is from this variant. The following describes an
input instance of the labeled sliding tokens problem:

– G = (V,E), a 3-regular graph.
– T , a set of labeled tokens.
– p1 : T → V , a function mapping each labeled token to a vertex placement in

the starting configuration.
– p2 : T → V , a function mapping each labeled token to a vertex placement in

the ending configuration.

Also, I1 = {p1(t) : t ∈ T} and I2 = {p2(t) : t ∈ T} are independent sets of size
|T | ≤ |V |.
Output U and S. The output exact cover instance has a set U consisting of
two types of elements: vertices v1, v2, . . . , v|V | and tokens t1, t2, . . . , t|T |. That is,
U = {v1, v2, . . . , v|V |} ∪ {t1, t2, . . . , t|T |}.

For each pair of adjacent vertices vi, vj ∈ V , the set consisting of these two
vertices and their neighbors is called a slide set, denoted Si,j . The output set S
of subsets of U contains the following subsets for every pair of adjacent vertices
vi, vj and token tk:
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– All subsets of Si,j − {vi} and Si,j − {vj}.
– {vi, tk} and {vj , tk}.
– Si,j ∪ {tk}.

Output C1 and C2. The starting configuration C1 is the union of {{vi} : vi ∈
V − I1} and, for every vi ∈ I1, a set {vi, tk} with a distinct tk. Similarly, the
ending configuration C2 is the union of {{vi} : vi ∈ V −I2} and, for every vi ∈ I2,
a set {vi, tk} with a distinct tk.

23-colorability of (U,S). Since G is 3-regular, G3 has degree at most 21. So G can
be 22-colored such that no two vertices of distance at most 3 (i.e. in a common
slide set) have the same color. Such a coloring ensures that no pair of vertices
in a common set in S share a color. Coloring the tokens in T a distinct (23rd)
color then gives a coloring of U such that no pair of elements of a common set
share the same color.

High-level Idea. The subsets containing exactly one vertex and token (e.g.,
{vi, tk}) represent the presence of the token tk on vertex vi. Subsets consisting
of a slide set and token (e.g., Si,j ∪{tk}) represent the presence of a “mid-slide”
token between vi and vj .

Sliding a token tk from vi to vj is simulated by first merging {vi, tk} and
Si,j − {vi} into Si,j ∪ {tk}, and then splitting this set into Si,j − {vj} and
{vj , tk}. This sequence enforces the absence of tokens on neighbors of vi and
vj , and the presence of a token on vi or vj , but not both. Before a merge-split
sequence, additional splits and merges of token-less sets may be needed to obtain
Si,j − {vi}.

Bijection Between Configurations. Call a configuration C of the output Exact
Cover Reconfiguration instance maximally split if every C in C contains exactly
one vertex and up to one token. The following defines a function fred from token
arrangements to maximally split covers:

– Each token-less vertex corresponds to a set {vi} in the cover.
– Each token tk placed at vi corresponds to a set {vj , tk} in the cover.

Notice that fred is a bijection and fred(p1) = C1, fred(p2) = C2.

Reduction Structure. The remainder of the proof is devoted to proving the fol-
lowing claim: a token arrangement p′ is reachable from a token arrangement p
if and only if fred(p′) is reachable from fred(p) via splits and merges.

Both directions are proved inductively. That is, we consider only “adjacent”
configurations. We also assume that the starting token arrangement p : T → V
has {p(t) : t ∈ T} independent.

Sliding tokens reachability ⇒ exact cover reachability. Let p be a token arrange-
ment that can be reconfigured into p′ via a token slide from vi to vj . Then
fred(p′) can be reached from fred(p) via the following sequence of merges and
splits:
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1. Repeatedly merge token-less vertex sets to form Si,j − {vi}.
2. Merge Si,j − {vi} and {vi, tk} into Si,j ∪ {tk}.
3. Split Si,j ∪ {tk} into Si,j − {vj} and {vj , tk}.
4. Repeatedly split the token-less vertex set Si,j − {vj} into single vertex sets.

Exact cover reachability ⇒ sliding tokens reachability. For each exact cover con-
figuration C in the output instance, at least one maximally split configuration is
reachable from C via a sequence of splits. Call the set of all such configurations
the sploot set of C, denoted sploot(C).

Let C, C ′ be maximally split configurations such that C can be reconfigured
into C ′ and Cinter is the first configuration reached such that sploot(Cinter) 
=
{C}. By induction, assume C ′ ∈ sploot(Cinter).

Since splits and token-less merges do not add elements to a sploot set, Cinter

is obtained by merging two sets, one of which contains a token. Since the only
token-containing sets that can be merged are those of the form {vi, tk}, Cinter is
obtained by merging {vi, tk} and Si,j −{vi, tk} to obtain Si,j ∪{tk} for some vi,
vj , and tk. Notice that it may be the case that Si,j = Si′,j′ for other pairs i′, j′.

Such a merge allows two kinds of splits:

– Splitting Si,j into Si,j − {vi, tk} (to obtain the previous configuration, with
sploot set {C}).

– Splitting Si,j into Si′,j′ − {v′
j , tk}, where Si,j = Si′,j′ (to obtain a new con-

figuration with sploot set {C ′}, where C ′ is identical to C, except that C ′

contains {v′
j , tk}, {v′

i} instead of {vi, tk}, {vj}).

Since Si,j −{vi}, {vj , tk} ∈ C, the token arrangement p with fred(p) = C has
no tokens on vertices in Si,j except for token tk on vi. Since Si,j ∪ Si′,j′ = Si,j

contains all neighbors of vi, vj , v′
i, v′

j , the token arrangement obtained by moving
the location of tk in p from vi to vj , v′

i, or v′
j is an independent set.

So all that remains is to prove that there are a sequence of slides moving tk
from vi to v′

j via vertices in {vi, vj , v
′
i, v

′
j}. Since Si,j = Si′,j′ , v′

i, v
′
j ∈ Si,j and

so either vi ∈ {v′
i, v

′
j}, or there is an edge {vi, v

′
i} or {vi, v

′
j} ∈ E. So tk can slide

from vi to either v′
i or v′

j (via 0 or 1 slides), and then from v′
i or v′

j to v′
j (via 0

or 1 slides). ��
We are now ready to prove the main result of this section.

Theorem 3. The 3-move subset sum reconfiguration problem is strongly
PSPACE-complete.

Proof. The reduction is from the Exact Cover reconfiguration problem for
instances that are 23-colorable induced hypergraphs, proved PSPACE-hard by
Lemma 1. Observe that every 3-move subset sum reconfiguration is either a
merge, where ai and aj are replaced by ai + aj , or a split, where ai + aj is
replaced by ai and aj . Each set split or merge will correspond to a 3-move split
or merge, respectively, in the output instance.
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Output Numbers and Sum. A function f : U → N maps each element of the
universe U of the input exact cover reconfiguration problem to a positive integer,
and the numbers in the output 3-move subset sum reconfiguration instance are
{∑

a∈S f(a) : S ∈ S} and the output target sum is
∑

a∈U f(a).
Elements of U are partitioned according to their colors 1, 2, . . . , 23 and (arbi-

trarily) labeled a1, a2, . . . , a|U |. The function f maps a color-j element ai to
i · 2100j�log2(|U |)�. In binary, this mapping consists of the binary encoding of i
followed by by 100jlog2(|U |)� zeros.

Output Size. The output instance consists of |S| numbers, each between 0 and
|U | · 2100·23�log2(|U |)� = O(|U |2). So the output sum is O(|U |3). Thus the output
instance, encoded in unary, has length O(|S||U |2 + |U |3), i.e. polynomial in the
input instance.

Correctness. A reconfiguration in both the exact cover and 3-move subset sum
problems involves splitting or merging elements. Thus it suffices to prove that the
function f yields a one-to-one mapping g : S → N given by g(S) =

∑
a∈S f(a).

Recall that the function f maps each element ai ∈ U to a value based upon
the color of ai. The sums of the outputs of f for all elements of all colors 1 to
j − 1 is at most 2100(j−1)�log2(|U |)� · |U |2 ≤ 2(100j−98)�log2(|U |)� while the output
of f for any element of any color j or larger is at least 2100j�log2(|U |)� ≥ 298 ·
2(100j−98)�log2(|U |)�.

Thus if a pair of sets S1, S2 ⊆ S have S1 
= S2, then their color-j elements
differ, this difference cannot be made up by adding or removing elements of
colors 1 to j − 1 (values too small) or colors j + 1 to 23 (values too large). Thus
if S1 
= S2, then g(S1) 
= g(S2). ��

4 Reconfiguration Problems and Paths in Hypercubes

The n-hypercube is the graph with vertex set {0, 1}n such that two vertices
are adjacent whenever their coordinates differ by exactly one component. In
this section, we consider the following abstraction of reconfiguration problems
involving subsets.

Definition 9 (Constrained Hypercube Path). Given two vertices s, t of
the n-hypercube, both contained in a polytope P := {x ∈ R

n : Ax ≤ b} for some
A = (aij) ∈ Z

d×n and b ∈ Z
d, does there exist a path from s to t in the hypercube,

all vertices of which lie in P?

The constrained hypercube path problem can be seen as a reconfiguration
analogue of the 0–1 integer linear programming (0–1 ILP) satisfiability problem,
which simply asks for the existence of a 0–1 point in the inside P, and is a stan-
dard NP-complete problem from Karp’s list. (Note that this problem is distinct
from the 0–1 ILP Reconfiguration problem defined in Ito et al. [16]: in the latter,
a solution must optimize some objective function, while we are only concerned
with satisfiability.)
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The subset sum problem is the question of the existence of a 0–1 point in
a polytope consisting of a subspace of dimension n − 1, hence defined by two
linear constraints with the same coefficients. Similarly, the knapsack (decision)
problem involves exactly two linear constraints, and the Knapsack reconfigura-
tion problem can be cast as a special case of the constrained hypercube path
problem where d = 2. The definitions are as follows.

Definition 10 (Knapsack Problem.) Given integers � and u and two sets
of integers S = {a1, a2, . . . , an} and W = {w1, w2, . . . , wn}, does there exist a
subset A ⊆ [n] such that

∑
i∈A ai ≥ � and

∑
i∈A wi ≤ u?

Definition 11 (Knapsack Reconfiguration Problem). Given two solutions
A1 and A2 to an instance of the knapsack problem, can A2 be obtained by repeated
1-move reconfiguration, beginning with A1, so that all intermediate subsets are
also solutions?

Demaine and Ito considered the knapsack reconfiguration problem in the
case where S = W [15]. They proved that the problem was NP-hard, and gave
an approximation algorithm for finding a reconfiguration sequence in which the
intermediate steps satisfy one of the constraints only up to some multiplica-
tive factor. Whether the knapsack reconfiguration problem is PSPACE-complete
is a tantalizing open question. Characterizing the complexity of the knapsack
reconfiguration problem implies understanding the complexity of the constrained
hypercube path problem for bounded values of d. We do not settle the former
question, but provide an answer to the latter. The proof of Theorem 4 uses
techniques from the proof of Theorem 3, and can be found in full version of the
paper on arXiv.

Theorem 4. The Constrained Hypercube Path problem is PSPACE-complete,
even when d = O(1).
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Abstract. The gene duplication model, which has been pioneered by
Goodman et al. nearly 40 years ago, is widely-used for resolving the dis-
cordance between the evolutionary history of a gene family (gene tree),
and the species tree through which this family has evolved. This dis-
cordance is explained by reconciling the gene tree with postulated gene
duplications that have occurred while the gene tree has evolved along the
edges of the species tree, such that the reconciled tree can be embedded
into the species tree. Today, for many gene families lower bounds on the
number of gene duplications that have occurred along each edge in the
species tree can be derived, for example, from known genome duplica-
tions. Here, we augment the gene duplication model by using a species
tree for the reconciliation whose edges are decorated with such lower
bounds, called a (duplication) scenario. A scenario is feasible for a gene
family under consideration if there exists a reconciled gene tree for this
family whose embedding into the species tree satisfies the lower bounds
of the scenario. Non-feasibility of a credible scenario for a gene family can
provide a strong indication that this family might not be well-resolved,
and identifying well-resolved gene families is a challenging task in evo-
lutionary biology. Here, we provide a linear time algorithm that decides
whether a scenario is not feasible when provided a gene family.

1 Introduction

Tree reconciliation is a fundamental approach for analyzing discordant evolu-
tionary relationships among the family histories of genes when contemplated
with the histories of the species in which they have evolved. This approach has
become common practice in many biological oriented research disciplines, such as
molecular biology, microbiology, and biotechnology [16]. For example, gene tree
reconciliation is one of the most comprehensive ways to describe the dynamics
of gene family evolution [8,15], and it is also a widely-used approach to differ-
entiate between orthologous and paralogous genes [1,2], an elementary task in
the functional determination of genes [14]. Tree reconciliation can be performed
using different biological models under which discordant relationships can be
explained. Here we focus on the gene duplication model that has been pioneered
by Goodman et al. nearly 40 years ago [12] and has laid the groundwork for tree
reconciliation [7,9].
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. An example of a gene tree - species tree reconciliation with inferred gene dupli-
cation events. The reconciliation is based on the least common ancestor mapping – it
is not difficult to note that gene tree nodes x and y map to the root node of the species
tree based on LCAs; hence, the duplication is at the root edge. (Color figure online)

The gene duplication model takes the following pair of rooted and full binary
trees: (i) a gene (family) tree that represents the family history of a set of
genes, and (ii) its (corresponding) species tree that is the evolutionary history of
the species hosting these genes. Discordance between a gene tree and a species
tree is often caused by complex histories of gene duplication events [16,18],
but can also originate from other evolutionary events like deep coalescence or
lateral transfer [17]. The gene duplication model is reconciling the gene tree with
its species tree under the assumption that discordance is only caused by gene
duplication events. Following the parsimony principle, the reconciliation process
under the gene duplication model seeks an embedding, called reconciliation, of
the gene tree into the species tree that infers the minimum number of duplication
events. The resulting embedding is the reconciled (gene) tree that can reveal
complex histories of gene duplication events, elucidating the evolution of function
and discriminating between orthologous and paralogous genes. Figure 1 depicts
an example for such a reconciliation. For a more detailed treatment of the gene
duplication model, the interested reader is referred to [7,9].

A gene tree - species tree reconciliation infers a duplication scenario on the
species tree, which can be characterized as the number of gene duplications that
occurred along each edge of the species tree (note that we consider species trees
to be planted, i.e., having an auxiliary edge connected to the root node). For-
mally, we define a duplication scenario as a function that maps each species tree
edge to an integer that specifies the lower bound on the number duplications
that occurred along that edge for the given gene family. While the exact num-
ber of duplications might be a more natural choice, the lower bounds are much
easier to obtain in practice, for example, using histories of whole genome dupli-
cations [5,19]. The phylogenetic inference of gene trees has never been subjected
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Fig. 2. An example of a duplication scenario (in the center). The duplication lower
bounds are shown as edge annotations. Observe that edges going into nodes X and
Y in S have duplication lower bounds of 1, which requires that a proper gene tree
reconciliation will show at least 1 duplication occurring at each of these edges. On the
left hand side there are given two gene families, namely, {a, b, c, d} and {a, a, b, c, d},
which belong to the respective capital letter species. There does not exist any gene tree
for the first family that will induce the required reconciliation. On the other hand, the
second gene family allows to build the gene tree G2 that satisfies the given duplication
scenario. (Color figure online)

to known duplication scenarios, which in turn could lead to the inference of more
biologically informed and accurate trees.

Here, we set out to reveal the space of feasible duplication scenarios for a
specified species tree topology and a gene family. We call a duplication scenario
feasible, if there exists a gene family tree and a corresponding reconciliation
(under the Goodman et al. duplication model) that satisfies the provided lower
bounds on the number of duplications. Figure 2 demonstrates an example of a
duplication scenario. Note that satisfiability of the lower bounds depends on the
gene family provided (namely, the number of gene copies for each leaf species).
Consequently, we introduce the Feasibility of a Duplication Scenario (FDS) prob-
lem that decides whether a duplication scenario is feasible, and describe a linear
time algorithm for this problem. In addition, the augmentation of this algorithm
provides a smallest (most parsimonious) gene tree satisfying the duplication sce-
nario. Software implementing the FDS algorithm is freely available from the
web-page http://genome.cs.iastate.edu/ComBio/software.htm.

Related Work. Gene duplication is a major and frequently occurring evolution-
ary process that is known to cause discordance between gene trees themselves
and gene trees and their corresponding species trees [18]. An efficient approach to
identify such discordance is the gene duplication model from Goodman et al. [12].
This approach takes a gene tree and its corresponding species tree (both of them

http://genome.cs.iastate.edu/ComBio/software.htm
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are rooted and full binary), and is essentially embedding the gene tree into the
species tree by possibly introducing gene duplication events. The left side of
Fig. 1, depicts an example of discordance between gene tree G and species tree
S. To explain this discordance in the absence of phylogenetic inference error let
us temporarily direct our attention only to the species tree S. The right side of
the figure depicts one out of infinitely many scenarios of how a gene tree evolves
within the species tree S using blue edges (solid and dashed). Initially, gene x,
represented by a red circle, duplicates into two copies that are each represented
by a red square. Then, each of these copies evolves along the topology of the
species tree by speciation events and losses (lost gene lineages are displayed as
dashed blue arrows). The resulting gene tree scenario is inferred from species
tree S using exactly one duplication event. As shown in Fig. 1, gene tree G can
be embedded (solid blue edges) into the gene tree scenario (solid and dashed
blue edges). Thus, the gene tree scenario reconciles gene tree G by invoking one
duplication, offering an explanation for the discordance between G and S. How-
ever, there can be infinitely many such scenarios, each of them invoking some
number of gene duplications. Following the parsimony principle, the gene dupli-
cation model explains the incongruence with a smallest scenario, which is unique,
invoking the minimum number of duplications that can be specified through a
mapping that relates each gene in the gene tree to its host species [6,9,10].

The host species in the duplication model are defined based on the least
common ancestor mapping. Formally, M is a function mapping gene tree nodes
to species tree nodes, such that for each gene g that is a leaf M(g) is the leaf
species from which g was sampled. Further, for an internal gene node x with
children y and z, M(x) is defined as the least common ancestor (LCA) of M(y)
and M(z) in the species tree; that is, the furthest from the root node s, which
is the ancestor of both M(y) and M(z).

A gene in the gene tree is a gene duplication when it has a child with the same
host species. Visually, we say that such gene duplication happened on the edge
connecting the host species to its ancestor (see Fig. 1). The mapping and the gene
duplications are linear time computable [20]. There is a rich literature of exten-
sions and variants of the gene duplication model, which can, in most cases, be
efficiently computed [7,9]. While computationally highly complex, probabilistic
models for gene/species tree reconciliation, as well as gene sequence evolution,
have also been developed [1,3].

Contribution. We present a linear time algorithm for solving the Feasibility
of a Duplication Scenario (FDS) problem. The algorithm is based on dynamic
programming that became possible through intrinsic properties of the gene dupli-
cation model formulated and proven in this work. In particular, a simple, but
powerful property is that the caterpillar substructure of a gene tree is a minimum
substructure allowing a gene tree to satisfy a lower bound on duplications in the
given duplication scenario. Further, the majority of our analysis builds on the
here introduced concept of gene forests that proved to be effective for establish-
ing feasibility conditions. The algorithm utilizes the dynamic bottom-up strategy
computing maximum gene forests at each step. Further, an augmentation of this
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algorithm can be used to produce an example gene tree that satisfies the dupli-
cation scenario. Such gene tree, as we prove, will have the property that it is
smallest in size among all gene trees satisfying the duplication scenario; hence,
it represents the most parsimonious way to “explain” this duplication scenario.

Applying the presented FDS algorithm, practitioners will now be able to
verify the feasibility for various gene families of interest using established dupli-
cation scenarios.

2 Basics and Preliminaries

We only consider full binary rooted trees where each leaf is identified with a
taxon, which we refer to as (phylogenetic) trees. Adhering to the standard nota-
tion, given a tree T , we denote its root, node set, edge set and leaf set by
Rt(T ), V (T ), E(T ), and L(T ), respectively. The sibling and the parent of each
non-root node v ∈ V (T ) are denoted by Sb(v) and Pa(v), respectively. If a tree
is planted, then the root has a parent node as well. The set of children of each
internal node v ∈ V (T ) is denoted by Ch(v). Further, we let T (v) be a subtree
of T rooted at v ∈ V (T ) . A set of leaves L(T (v)) is called a cluster of the node
v and is denoted by Cv.

We define a partial order �T on the node set V (T ), such that u � v, if v
is a node on the path from u to Rt(T ). Additionally, we say u ≺ v, if u � v
and u �= v. The least common ancestor (LCA) of a set of nodes {u1, . . . , uk},
lcaT (u1, . . . , uk), is the furthest from the root node, w, such that ui � w ∀i ∈
{1, . . . , k}. A species tree is a planted tree with leaves referring to species names.
Gene tree, G, is a tree that is defined by a set of species X, such that there exists
a labeling (function) ΛG : L(G) → X.

LCA Mapping. Let S be a species tree, and G be a gene tree over L(S). An
LCA mapping M : V (G) → V (S) is a function such that for each leaf node
g ∈ V (G), M(g) := ΛG(g), and for each internal node g with children u and w,
M(g) := lcaS({M(u),M(w)}). Observe that the mapping function M is mono-
tone, implying that for g1 � g2, M(g1) � M(g2).

A node g with children u and w is a duplication node if either M(g) = M(u)
or M(g) = M(w). For a species tree node s ∈ V (S), ξ(G, s) denotes the number
of duplication nodes g ∈ V (G), such that M(g) = s.

Duplication Scenario. Given a species tree S, a duplication scenario
(described in the introduction) is defined by a function δ : V (S) → N0. We
say that a gene tree G over L(S) satisfies a duplication scenario 〈S, δ〉 if
∀s ∈ V (S) : ξ(G, s) ≥ δ(s). Note that, while in the introduction the dupli-
cation scenario function was defined on edges of a species tree, here for later
convenience we define it on the nodes of a species tree (which is identical, since
each node uniquely defines its ancestral edge, (Pa(v), v), in planted trees).
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Fig. 3. Left : an example of a species leaf s with four gene copies in the provided
gene family (i.e., four genes within the family are hosted by s). G′

s represents the
maximum gene forest (consisting of each gene copy individually) if we are not taking
the duplication scenario into the account. Gene forest Gs represents a maximum gene
forest, when the duplication scenario puts the lower bound δ(s) = 2 on the edge incident
to s. Yellow squares indicate the duplication nodes. Right : an example of a gene forest
construction for an internal species node v with children u and w. Gv is a maximum
gene forest for the node v constructed using Gu and Gw, representing maximum gene
forests of nodes u and w respectively. Observe that the tree satisfying δ(v) = 2 was
assembled from subtrees as a caterpillar (assembly of a profile {G1, T1, G2, T2}). (Color
figure online)

3 Feasibility of Duplication Scenarios

In this section, we analyze the problems of the feasibility of duplication scenarios
as motivated in the introduction.

3.1 General Feasibility

Given a duplication scenario and a gene family, we would like to know whether
there exists a gene tree for the family whose reconciliation is satisfying the
scenario, i.e., the scenario is feasible for the gene family.

A gene family is characterized by the number of gene copies for each extant
species. That is, assume, we are given a species tree, S, and for each leaf-species
we know the number of gene copies, given by a function λ : L(S) → N. We say
that a gene tree G satisfies 〈S, δ, λ〉 if G satisfies 〈S, δ〉, and G contains at most
λ(s) taxa labeled with s for all s ∈ L(S).

Problem FDS. Feasibility of a Duplication Scenario
Instance: Duplication scenario with a gene copy function 〈S, δ, λ〉
Question: Does there exist a gene tree G over L(S), such that G satisfies 〈S, δ, λ〉
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Informal Solution Description. We consider a bottom up construction of a
gene tree G satisfying 〈S, δ, λ〉 (if one exists). At each node of the tree S we
maintain certain tree structures (parts of future tree G) that jointly satisfy all
the duplication lower bounds, given by δ, below that node. These structures can
be treated as building blocks (subtrees) for G. The algorithm seeks to maximize
the number of such building blocks at each node in order to supply them further
to the parent node and so on. These building blocks are later formally defined as
gene forests. The maximization is of importance, since in case that here are no
available tree structures at the root of S, then G does not exist and the scenario
is not feasible.

At the leaf level of species tree S the number of building blocks available
is simply the number of gene copies for a species. Indeed, if a species taxon s
requires δ(s) > 0 duplications mapped into that node, then we need to use the
available building blocks (gene copies) to generate that mapping. Similarly, for
intermediate nodes. Note that maximizing the number of building blocks at each
node entails minimizing the number of blocks needed to satisfy the duplications
lower bound at that node. An important observation here is that if at node v
the lower bound is δ(v) > 0, then to create a structure (new block) satisfying
that duplication count at least δ(v) + 1 blocks are needed, when v is a leaf, and
δ(v) + 2 blocks are required otherwise. Figure 3 illustrates that observation.

Applying these ideas, Algorithm1 below checks feasibility of a given dupli-
cation scenario.

3.2 Proof of Correctness of Algorithm1

As was mentioned above, we introduce the concept of gene forests. We define G
to be a gene forest over 〈S, λ〉 if the following properties hold.

(F1) G is a set of phylogenetic trees over L(S).

Algorithm 1. Feasibility of Duplication Scenario 〈S, δ, λ〉
1: function MaxForestSize(Node v)
2: if v is a leaf then
3: if δ(v) > 0 then // The scenario requires > 0 duplications mapped to v
4: return max(0, λ(v) − (δ(v) + 1) + 1)
5: else return λ(v)
6: end if
7: else // v has two children
8: l := MaxForestSize(Ch(v).left); r := MaxForestSize(Ch(v).right)
9: if l > 0 and r > 0 then

10: if δ(v) > 0 then return max(0, l + r − (δ(v) + 2) + 1)
11: else return l + r
12: end if
13: end if
14: return 0 // either l or r is 0
15: end if
16: end function
17: return (MaxForestSize(Rt(S)) > 0) // returns TRUE if the scenario is feasible
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(F2) Let Λ−1
G (s) be a set of leaves in G labeled by s, then

∑

G∈G
|Λ−1

G (s)| ≤ λ(s).

(F3)
⋃

G∈G
ΛG(L(G)) = L(S).

We say that a gene forest G satisfies 〈S, δ, λ〉 if G is over 〈S, λ〉 and for all
s ∈ V (S) we have

∑
G∈G ξ(G, s) ≥ δ(s). Further, given a gene forest G, we define

G to be a gene tree obtained by assembling the trees in G into a single tree. While
there could be many ways to assemble the trees from G, we are interested in a
caterpillar structure that will be used later in the analysis.

Definition 1. A gene tree GC represents a caterpillar assembly of a profile
of trees G1, . . . , Gk if it is obtained as follows. First, set GC := G1, then

for i = 2, . . . , k do
join the trees GC and Gi by introducing a new root node vi

and attaching subtrees GC and Gi to vi as children.
Let GC denote the resulting tree.

end for

Given a duplication scenario, 〈S, δ, λ〉, and a node v ∈ V (S), we say that
forest Gv satisfies 〈S, δ, λ〉|v implying that Gv satisfies the duplication-scenario
restricted to subtree S(v), i.e., 〈S(v), δ|V (S(v)), λ|Cv

〉. Let α(v) denote the maxi-
mum size of a gene forest (in terms of a number of trees) that satisfies 〈S, δ, λ〉|v.
The following observation then explains Line 17 of Algorithm1.

Observation 1 (Feasibility for a given gene family). An instance 〈S, δ, λ〉
of FDS is a yes-instance if and only if α(Rt(S)) > 0.

Observation 2 and Lemma 1 summarize the core properties needed for the
proof of correctness. Note that Observation 2 was informally described above.

Observation 2. Consider v ∈ V (S) such that δ(v) > 0.

(I) If v is a leaf, then at least δ(v)+1 gene copies for v are required to construct
a gene tree with δ(v) duplication nodes mapping into v. Note that any binary
tree with δ(v)+1 leaves mapping into v will induce exactly δ(v) duplications
on v (for example, a caterpillar assembly of δ(v) + 1 gene copies – see
Fig. 3).

(II) If v has children u and w, then at least δ(v) + 2 gene trees from maximum
gene forests of u and w are required to construct a gene tree with δ(v) dupli-
cation nodes mapping into v. Further, it is always possible to use exactly
δ(v) + 2 gene trees via a caterpillar assembly (see Fig. 3).

Lemma 1. Let Gv be a maximum gene forest satisfying 〈S, δ, λ〉|v for some v ∈
V (S). Then

(MF4) If Gv contains a tree G with a duplication vertex mapping into v, then
no other tree in the forest can have a node mapping into v. That is, all
duplications for a specific node are localized within the same tree.
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(MF5) For v �∈ L(V ), if δ(v) = 0, then for each tree G ∈ Gv, the root of G maps
below v. That is, M(Rt(G)) ≺ v.

Proof.

(MF4) Let Gv be a maximum gene forest satisfying 〈S, δ, λ〉|v and G be a tree in
that forest with a duplication node mapping into v. For the purpose of
contradiction, assume that Gv also contains another tree G′ with a node
mapping into v. Let G′ be a forest consisting of subtrees of G′ obtained
by removing all internal nodes mapping into v from G′ (this will split
G′ into at least two subtrees). If G′ induced k duplication nodes on v
(k could be 0), then, by Observation 2, G′ will contain at least k + 2
subtrees (or k + 1 if v is a leaf). Let us enumerate any k + 1 trees in G′

as G′
1, G

′
2, . . . , G

′
k, G′

k+1. Consider now an augmentation of G, tree Ga,
obtained by a caterpillar assembly of a profile (G,G′

1, G
′
2, . . . , G

′
k). Note

that Ga induces k more duplications onto v than G. Hence, the gene
forest Gv −{G} ∪ {Ga, G′

k+1} satisfies the duplication scenario 〈S, δ, λ〉|v
and is of size larger than Gv – contradiction.

(MF5) Assume (for contradiction) a maximum forest Gv contains a tree G, such
that M(Rt(G)) = v. Removing the root of G will split it into two subtrees
and increase the size of the gene forest by one (we denote the new gene
forest by G′

v). Since δ(v) = 0, this operation will maintain that G′
v satisfies

〈S, δ, λ〉|v. Hence, Gv is not maximum – contradiction.

Lemma 2 then proves the correctness of Algorithm 1 (the lemma’s proof is
omitted for brevity).

Lemma 2. Function MaxForestSize from Algorithm1 given a node v ∈ V (S)
returns α(v).

3.3 Gene Trees for Feasible Scenarios

Algorithm 1 is designed to solve the feasibility problem. However, in addition,
this algorithm can be modified to construct an example gene tree satisfying
the given duplication scenario (if one exists). This modification would require
maintaining the maximum gene forests themselves, instead of only keeping track
of the number of trees in maximum gene forests. For species tree nodes v with
δ(v) > 0 the algorithm will need to join a subset of the available subtrees in a
caterpillar that would satisfy that lower bound on duplications.

At the root of the species tree the trees in the maximum forest (if it is non-
empty) should be joined together to produce an example gene tree satisfying the
duplication scenario.

Time Complexity. Let m be the size of the gene family, i.e., m =
∑

s∈L(S) λ(s).
Then the complexity of constructing the gene tree as outlined above is Θ(m).
Representing gene forests as linked lists allows us to join two forests in O(1)
time. Further, when assembling trees in a caterpillar, the linked lists will allow
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to use O(1) time per each new node created. Hence, the overall time complexity
is bounded by the size of the gene tree, which is Θ(m).

Minimum Gene Trees. Such gene tree building procedure, while of potential
value on its own, can be further altered to produce a smallest gene tree satis-
fying the given duplication scenario. Such minimality can be achieved by not
employing some of the gene copies present in the family, if it is not necessary.

For a node v ∈ V (S) \ L(S) with δ(v) > 0 and children u and w, let G′
v

denote the forest of available gene trees at v; that is, the union of the maximum
gene forests of the children of v. We will call a gene tree trivial, if it contains
exactly one node; i.e., it represents a single gene copy.

The original algorithm will proceed by assembling δ(v)+2 trees from G′
v in a

caterpillar structure. However, since we are interested in using as few gene copies
as possible, we would like to use as few trivial trees for the caterpillar assembly as
possible. Formally, consider all profiles of trees of the type {G1, G2, . . . , Gδ(v)+2},
such that G1 ∈ Gu, G2 ∈ Gw, G3, . . . , Gδ(v)+2 ∈ Gu ∪Gw (where Gu and Gw are
maximum forests for u and w, respectively). Let P (Gu,Gw) be such a profile
with the minimum number of trivial trees. Then the algorithm for the minimum
gene tree construction will use such a profile for the caterpillar assembly.

This constitutes a greedy strategy for the minimum gene tree construction:
at each step use the minimum number of trivial trees for the caterpillar assembly.
Then let Gp be a maximum gene forest satisfying 〈S, δ, λ〉 constructed that way.

Theorem 1. A minimum (most parsimonious) gene tree is obtained by remov-
ing all the trivial trees from Gp and joining the rest together (e.g., as a caterpil-
lar). The time complexity for constructing a minimum gene tree is O(m). That
is, Algorithm2 constructs a minimum gene tree satisfying 〈S, δ, λ〉 in O(m).

Proof. The proof of correctness is omitted for brevity. Here we argue the time-
complexity. The algorithm can be implemented efficiently by representing gene
forests as two separate linked lists: one list for trivial trees and the other for non-
trivial trees (see Algorithm 2). Then joining two forests (as needed for internal
nodes v with δ(v) = 0) encompasses joining two pairs of linked lists, which can
be done in constant time (by maintaining a link to the last element of each list).
Further, for internal nodes v with δ(v) > 0 and children u and w, the algorithm
has to construct a caterpillar assembly of a minimum profile P (Gu,Gw). Let
Gt

u and Gnt
u denote the linked lists containing trivial and non-trivial trees of Gu

respectively (similarly, for w). Then P (Gu,Gw) can be obtained in O(δ(v)) time
as demonstrated in function MTrivForestSpecial of Algorithm 2.

The caterpillar assembly of the profile also takes O(δ(v)) time and it produces
δ(v) new nodes contributing to the resulting gene tree. Hence, the algorithm
spends constant time per each node created. Finally, observe that for each leaf
node s of the species tree the algorithm spends O(λ(s)) time. Hence, the total
time spent for all leaves is O(m). Overall, the time complexity bounded by O(m).
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Algorithm 2. Minimum Gene Tree Satisfying 〈S, δ, λ〉
1: function MTrivForestSpecial(Internal node v with δ(v) > 0)
2: Gt

u, Gnt
u :=MTrivForest(Ch(v).left); Gt

w, Gnt
w :=MTrivForest(Ch(v).right)

3: P = () // empty linked list representing P (Gu, Gw)
4: if Gnt

u .size > 0 then
5: P.add(Gnt

u .pop()) // remove the head of Gnt
u and add it to P .

6: else P.add(Gt
u .pop()) // assume .add() adds an element to the end of the list

7: end if
8: if Gnt

w .size > 0 then P.add(Gnt
w .pop())

9: else P.add(Gt
w .pop())

10: end if
11: Gt

v = join(Gt
u, Gt

w); Gnt
v = join(Gnt

u , Gnt
w )

12: while P.size < δ(v) + 2 do // use as many non-trivial trees as possible
13: if Gnt

v .size > 0 then P.add(Gnt
v .pop())

14: else P.add(Gt
v .pop())

15: end if
16: end while
17: Gnt

v .add(P ) // add a caterpillar assembly of P to non-trivial trees of v
18: return Gt

v, Gnt
v

19: end function
20: function MTrivForest(Node v)
21: if v is a leaf then
22: Gt

v = (gi : ∀ i ∈ [λ(v)]); Gnt
v = ();

23: if δ(v) > 0 then P := first δ(v)+1 trees from Gt
v; Gnt

v := (P ); Gt
v := Gt

v \P ;
24: end if
25: return Gt

v, Gnt
v

26: else // v has two children
27: if δ(v) > 0 then return MTrivForestSpecial(v)
28: else return joined trivial and non-trivial lists from
29: MTrivForest(Ch(v).left) and MTrivForest(Ch(v).right)
30: end if
31: end if
32: end function
33: Call Algorithm 1 to verify that a tree exists. If exists:
34: Gt, Gnt = MTrivForest(Rt(S)); return caterpillar assembly of Gnt.

4 Conclusion and Discussion

Gene trees play a crucial role in the inference of species trees and networks,
in the systematic analysis of protein function, and other related areas [4,13,
15]. Refining the credibility of gene trees is thereof one of the central topics in
phylogenetics for many years.

Here we propose a novel framework, where the evidence of gene duplica-
tions collected throughout an abundance of biological studies can be utilized to
improve on the accuracy of gene trees. In this framework we define a duplication
scenario as an augmentation of the species tree with localized evidence of dupli-
cation events, and introduce a linear time algorithm for determining whether
a duplication scenario is feasible for a particular gene family; that is, whether
there exists an evolutionary history of the gene family whose reconciliation is in
agreement with the postulated duplication events in the species tree. In addi-
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tion, following the phylogenetic parsimony paradigm [11], this algorithm can
construct a smallest gene tree that will satisfy the given duplication scenario.

The presented work is laying the foundation for practitioners to assess, aggre-
gate, and study various duplication scenarios that can be inferred from the exist-
ing studies of gene families and their evolution. Our algorithm has the ability
to support a much broader range of applications beyond the feasibility question,
e.g., pointing out where the additional (lost) gene lineages might have existed
for duplication scenarios failing the most parsimonious duplication model.
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Abstract. The problem of efficiently characterizing degree sequences
of simple hypergraphs (without repeated hyper-edges) is a fundamental
long-standing open problem in Graph Theory. Several results are known
for restricted versions of this problem. This paper adds to the list of suffi-
cient conditions for a degree sequence to be hypergraphic and proposes a

polynomial time algorithm which correctly identifies at least 2
(n−1)(n−2)

2

hypergraphic sequences. For comparison, the number of hypergraphic
sequences on n vertices is at most 2n·(n−1).

1 Introduction

For a given list of positive integers D = (d1, . . . , dn) ∈ Z
n
+, the graph real-

ization problem asks if there exists a simple graph1 GD on n vertices whose
vertex degrees are given by the list D. If such a graph exists then the degree
sequence D is said to be realizable. A hypergraph is a k-hypergraph if every
edge has k vertices. A k-hypergraph is called as a simple hypergraph if none of
its edges are repeated. Simple graphs can be seen to correspond to the class of
2-hypergraphs. Generally, given a degree sequence and a positive integer k, the
k-Hypergraphic Sequence problem asks if there exists a k-hypergraph realiz-
ing the given sequence. When k = 2, Erdös-Gallai Theorem [11] gives necessary
and sufficient conditions that must be satisfied by D for it to be realizable. For
this case, another criteria in terms of smaller degree sequences were given by
Havel [14] and Hakimi [12]. Further, Hoogeveen and Sierksma [19] listed seven
criteria and gave a unifying proof for them.

Recently, for k ≥ 3, k-Hypergraphic Sequence was shown to be NP-
Complete for any fixed value of k by Deza et al. [9]. In the past, a characteri-
zation was given by Dewdeny [8] for all k ≥ 3. Some sharp sufficient conditions
for realizability of a degree sequence based on a sequence’s length and degree
sum were given in [2]. Colbourn et al. [7] proved that several other problems
related to 3-graphic sequences are NP-Complete. Achuthan et al. [1], Billington
[4] and Choudum [6] gave several necessary conditions for 3-hypergraphs, how-
ever Achuthan et al. [1] also showed that none of these conditions are sufficient.

S. M. Meesum—Supported by the NCN grant number 2015/18/E/ST6/00456. This
work was partially done at the Institute of Mathematical Sciences, HBNI, India.

1 A loopless graph without repeated edges.
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There are many surveys available for this problem [13,17,20–22], for a recent
survey on related problems see [10].

If we give up the restriction on sizes of edges to be k, we get the Hyper-
graphic Sequence problem which, along with its variants, was first considered
by Boonyasombat in [5] . In particular, the Hypergraphic Sequence problem,
given a list of degrees D, asks if there exists a simple hypergraph which is a real-
ization of D. This problem appears to be harder than the class of k-hypergraph
problems in the sense that it is not even known to be in NP. It can be easily
seen to be in PSPACE. Several restricted versions of this problem have been
studied in the past. Bhave et al. [3] gave an Erdös-Gallai type characterization
of degree sequences of loopless linear hypergraphs, where a linear hypergraph
is one in which any two edges have at most one common vertex. In another
direction, characterization for a partial Steiner triple system (PSTS), which is a
linear 3-hypergraph, were given by Keranen et al. [15]. The results in [3] and [15]
were recently generalized by Khan [16] using partial (n, k, λ)-systems. For greedy
based approaches to this problem refer to [18]. This paper provides an efficiently
checkable sufficient condition for a degree sequence to be realizable by a simple
hypergraph.

2 Preliminaries

The set of non-negative integers is denoted using the symbol Z+. The set of
integers {1, . . . , n} is denoted by [n]. An n-tuple L = (�1, �2, . . . , �n), also simply
referred to as a list is an ordered collection of elements. We refer to its ith element
�i as L(i). We index any list or tuple with natural numbers starting with 1. The
notation a×m denotes the tuple (a, . . . , a) consisting of a repeated m times. We
use L1 · L2 to denote the list obtained by the operation of concatenating two
lists L1 and L2. A table T = [L1, L2, . . . , Lm] is a collection of lists of equal size.
Pictorially, the lists L1, . . . , Lm are arranged as columns in the table T . If each
list Li is of size n, then the table T is said to be of size n × m. We refer to the
ith row of a table T using the notation T (i) and to an (i, j)th entry using the
symbol T (i, j).

For ease of notation, the sum of the entries in a list L will be denoted by∑
L =

∑
i∈[|L|] L(i). The sum of L = (�1, . . . , �n) and L′ = (�′

1, . . . , �
′
n), denoted

by L + L′, is the n-tuple (�1 + �′
1, . . . , �n + �′

n).
For k ≥ 0, a permutation π is called as a cyclic permutation of order k, for

each i ∈ [n] it maps i �→ 1 + ((i + k − 1) mod n).
A simple hypergraph H is a pair ([n],F), where F is a family of subsets of

[n]. In general, a hypergraph may have sets repeated in F , in which case F is
a multiset. The degree of a vertex v ∈ [n] is equal to |{F ∈ F : v ∈ F}|.
We will be working with an equivalent version, which can be stated in terms of
co-ordinate wise sum of binary sequences of length n.
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2.1 An Equivalent Version of Hypergraphic Sequences

For a given positive integer n, consider the set Sn = {0, 1}n consisting of all
binary tuples of length n. The binary tuples of length n will be used to encode
the incidence vector of an hyperedge. The elements of Sn will also be referred
to as binary sequences. The set Sn can be seen to be the complete hypergraph,
having all the possible hyperedges in it. Any simple hypergraph is easily seen to
be a subset of Sn. Finally, note that adding together all the incidence vectors
corresponding to hyperedges in a hypergraph S gives us the degree sequence of
hypergraph S. Therefore, the set Hn = {∑

x∈S x : ∅ ⊆ S ⊆ Sn} is the set of all
the hypergraphic sequences. Note that for the empty set ∅ the corresponding
sum

∑
x∈∅

x is defined to be 0×n. By construction, each element of Hn is realized
by some simple hypergraph and the degree sequence of every simple hypergraph
is contained in Hn. Each element of Hn is said to be representable or is said to
admit a representation. Given this setting the realizability problem for simple
hypergraphs can be restated as follows.

Hypergraphic Sequence
Input : A tuple w ∈ Z

n
+ which is provided as a binary input.

Question: Is w ∈ Hn ?

As
∑

Sn = 2n−1
×n , the maximum possible value of any entry in w, for w ∈ Hn,

is 2n−1. Thus, if any entry of w is outside the range {0, . . . , 2n−1}, then it is not a
member of Hn. Even though the number of subsets of Sn is 22

n

, the cardinality
of hypergraphic sequences on n vertices is at most 2n·(n−1) if every vertex is
assumed to appear in at least one hyper-edge.

Table 1. n-Bit-Table for n = 3

× c3,3 c2,3 c1,3

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Our Results: We define a notion of cyclic permutations of the columns of a
binary table (for example see Table 1) and use it to find an efficiently com-
putable sufficient condition for a given degree sequence to be realizable by a
simple hypergraph. In this paper we prove the following.
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1. Firstly, we prove that for any set of cyclic permutations acting individually
on each column of a binary table, the resulting table has all of its 2n rows
distinct.

2. Next, we define a notion of cyclic hyper degrees viz. the degree sequences
which are the sum of contiguous rows in a binary table in which each column
has been permuted by different cyclic permutations. As cyclic permutations
of binary tables have every row distinct, a cyclic hyper degree sequence is
realizable for some simple hypergraph.

3. Exploiting the special structure of the columns of a binary table, we give an
efficient algorithm which checks if a given degree sequence is a cyclic hyper
degree.

4. Finally, we provide a lower bound of 2
(n−1)(n−2)

2 for the number of cyclic
hyper degree sequences. This also gives us a lower bound on the number of
hypergraphic sequences.

3 Cyclically Permuting Binary Tables

In this section, we will be working with binary tables of size 2n × n and study
the action of cyclic permutations on the columns of the table. We first define
the notion of a binary table formally and give its structural properties which
would be used later. For a given number n ∈ Z+, list out the binary expansion
of numbers in increasing order from {0, . . . , 2n − 1} as rows in a table. We pad
the binary expansion with sufficient numbers of zeros on the left to make the
length of each row exactly equal to n. For example, when n = 3, the table is as
given in Table 1.

To state it formally we need the following definitions. Given a number m we
denote the ith bit in its binary representation by bin(m, i). If the most significant
bit in the binary expansion occurs at the sth-position in the binary expansion
of m, then for all values of i > s the value of bin(m, i) is zero. For example,
bin(4, 2) = 1 and bin(4, i) = 0 for every i ≥ 3.

For a given n, we construct n lists c1,n, . . . , cn,n, with each list ci,n having
length equal to 2n. For n = 2, we have c1,2 = (0, 1, 0, 1) and c2,2 = (0, 0, 1, 1). For
n = 3, the lists c1,3, c2,3, c3,3 correspond to the columns of the Table 1. Formally,
the lists are defined as follows.

Definition 1 (n-Bit-Lists). For a given n, we define n-Bit-List to consist of
n lists c1,n, . . . , cn,n. For j ∈ [2n], the value of ci,n(j) is equal to bin(j − 1, i).

Definition 2 (n-Bit-Table). For a positive integer n, the n-Bit-Table Tn is
defined to be a size 2n × n table with Tn = [cn,n, cn−1,n, . . . , c1,n].

The lists c1,n, . . . , cn,n have a nice recursive structure and can be generated
in an alternative way by concatenation. Given a positive integer n, the base case
of n = 1 is one list c1,1 = (0, 1). For n ≥ 2, the tuple cn,n = 0×2n−1 · 1×2n−1 and
for j ∈ [n − 1], the list cj,n is equal to the concatenated list cj,n−1 · cj,n−1. Thus,
we get the following observation about the lists.
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Observation 1. For n ∈ Z+ and i ∈ [n], we have ci,n = (0×2i−1 · 1×2i−1)×2n−i .

Let Cn be the set of all cyclic permutations on an 2n length list. Let Π ⊆
Cn be a multi-set consisting of n arbitrary cyclic permutations π1, . . . , πn. Let
Π(Tn) = [πn(cn,n), . . . , π1(c1,n)] be the new table obtained from Tn. For clarity
we will change the notation slightly, let Π(Tn, i) denote row i of Π(Tn), it is a
length n binary tuple (cn,n(πn(i)), cn−1,n(πn−1(i)), . . . , c1,n(π1(i))), for i ∈ [2n].

We would be looking at the action of cyclic groups on the columns of a binary
table. We next state a general lemma whose proof follows by induction over the
order of a cyclic permutation.

Lemma 1. Let L be a list and π be any cyclic permutation, then

π(L · L) = π(L) · π(L).

Recall that for j ∈ [n − 1], the tuple cj,n consists of two copies of cj,n−1 con-
catenated together. Combining this fact with Lemma 1, we obtain the following.

Corollary 1. Given a positive integer n and a cyclic permutation π ∈ Cn. For
j ∈ [n − 1], the tuple π(cj,n) is equal to π(cj,n−1) · π(cj,n−1).

We next prove that for any set of cyclic permutations Π, any two rows in
Π(Tn) will never become equal. This simple looking invariance property of the
binary table, when combined with the periodic structure of the binary table
columns gives as a way to give short certificates of membership of many degrees
sequences in Hn.

Theorem 1. For any set of n cyclic permutations Π, the rows of Π(Tn) are
pair-wise distinct.

Proof. We prove this by induction on n. For the base case n = 1, the statement is
trivially true. For the rest of the proof, assume that the list of cyclic permutations
is Π = (π1, . . . , πn) and Πn is used to denote the list (π1, . . . , πn−1).

The table Tn can be constructed recursively by taking two copies of Tn−1 and
appending the rows of one below the other, after that we add 0×2n−1 · 1×2n−1 as
the first column. Consider the table

Tn = [cn−1,n, . . . , c1,n]
= [cn−1,n−1 · cn−1,n−1, . . . , c1,n−1 · c1,n−1].

Apply the list of permutations Πn on Tn to get

Πn(Tn) = [πn−1(cn−1,n), . . . , π1(c1,n)]
= [πn−1(cn−1,n−1) · πn−1(cn−1,n−1), . . . , π1(c1,n−1) · π1(c1,n−1)],

where the second equality follows from Corollary 1. By the induction hypothesis,
the first row-wise half of Πn(Tn), which is the same as Πn(Tn−1), consists of
distinct rows. Therefore, the table Πn(Tn) consists of rows which are repeated
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exactly twice. For i < j, the rows Πn(Tn, i) and Πn(Tn, j) are equal when j =
i+2n−1. Therefore, it suffices to prove that the rows Π(Tn, i) and Π(Tn, i+2n−1)
are distinct. Observe that to obtain the table Π(Tn), we need to append πn(cn,n)
as the first column in Πn(Tn). As cn,n is equal to 0×2n−1 · 1×2n−1 , we have
cn,n(i) �= cn,n(i + 2n−1), this implies that cn,n(πn(i)) �= cn,n(πn(i + 2n−1)). �	

Given a binary table, if we sum a sequence of contiguous rows we would get
a hypergraphic sequence. However, the number of such hypergraphic sequences
would be at most O(22n) as there are at most 2n choices for both the starting
row and ending row. The additional operation of permuting the columns allows
for creating a lot of different binary tables with distinct rows. In Sect. 5 we show
that the number of distinct contiguous sums for permuted binary tables is at
least 2(n−1)(n−2)/2. Theorem 1 proved above can also be seen as a way to argue
about the membership certificates of a subset of hypergraphic sequences. We call
that subset as cyclic hyper degrees, which is defined as follows.

Definition 3 (Cyclic Hyper Degree). Let Π be a multi-set of n cyclic per-
mutations. A tuple d ∈ Z

n
+ is said to be a cyclic hyper degree if there exist

i,N ∈ [2n] such that d =
∑N

k=i Π(Tn, k).

As the rows of Π(Tn) are distinct, their contiguous sum is hypergraphic and
is in Hn by definition. Also, any permutation of a hypergraphic sequence is
hypergraphic as well, by a relabelling of the realising hypergraph’s vertices. This
gives us the following theorem.

Theorem 2. If w ∈ Z
n
+ is a cyclic hyper degree and π is a permutation over

[n], then π(w) = (wπ(1), . . . , wπ(n)) ∈ Hn.

We note that (4, 1, 1, 1) is a realizable hypergraph degree sequence but it is
not a cyclic hyper degree sequence. So the reverse direction of the theorem above
is false. If it was true this would have given us a polynomial time algorithm for
the Hypergraphic Sequence problem. In the next section, we will show how
to efficiently check if a given sequence d is a cyclic hyper degree.

4 Efficiently Recognizing Cyclic Hyper Degrees

Observe that the elements in the columns of Tn do not change their relative
position after application of a cyclic permutation when seen as a cyclic list.
Suppose we are given the number of edges N in a hypergraph which realises a
given cyclic hyper degree sequence. If the given input sequence is a cyclic hyper
degree sequence then there must be a set of cyclic permutations Π such that the
first N rows of Π(Tn) sum up to it. As we will see in Theorem 3, we can actually
list out all the possible cyclic hyper degrees having N edges. Using Theorem 3
we can efficiently compute the range of values taken by contiguous sum of N
elements in a list ci,n, for any i. In the second part we will show how to find the
value of N using Theorem 3. Finally, combining it with Lemma 6 we show how
to efficiently check if the input degree sequence is a cyclic hyper degree.



An Efficiently Recognisable Subset of Hypergraphic Sequences 397

Definition 4 (Contiguous Sum). Given a list L of length m, the contiguous
sum of N elements in L starting at the index i ∈ [m] is defined to be

S(L, i,N) :=
N−1∑

j=0

L(1 + ((i + j − 1) mod m)).

The summation above treats the list L as a cyclic list. Next, we prove that
the contiguous sum function is a ‘continuous’ function, this property is very
important as it will allow us to specify the range of sum by stating the minimum
and the maximum value taken by it. Note that if L is a 0-1 list, for any index
� ∈ [m], we have |S(L, �,N) − S(L, � + 1, N)| ∈ {0, 1}. This fact gives us the
following property.

Observation 2 (Continuity of Range). Let L be a size m list having 0–1
entries and N ∈ Z+. If vi = S(L, i,N) and vj = S(L, j,N), for some i, j ∈ [m],
then for every v ∈ Z+ contained between vi and vj there exists a k ∈ [m] such
that S(L, k,N) = v.

As the lists ci,n are over 0–1 we get an easy relation between the maximum
and minimum values taken by the contiguous sum as follows.

Lemma 2. Let j ∈ {0, . . . , n}, i ∈ [n] and N ∈ [2n]. The minimum of the sum
of N contiguous bits in a bit list ci,n is m if and only if its maximum is N − m.

Proof. Let ci,n be the bit list obtained from the list ci,n by flipping each zero to
one and vice versa. Let σ2i−1 be an order 2i−1 cyclic permutation, observe that
ci,n is equal to σ2i−1(ci,n). If the minimum value is obtained at the contiguous
segment which starts at the index j in ci,n, then the value N −m can be obtained
by the contiguous sum starting at index σ2i−1(j). Finally, note that m is the
minimum value if and only if N − m is the maximum value. �	

Combining Observation 2 and Lemma 2 we get the following.

Lemma 3. Let N ∈ [2n] and m = minj∈[2n] S(ci,n, j,N). For every value v in
the range {m, . . . , N − m} there exists a j ∈ [2n] such that S(ci,n, j,N) = v.

The lemma above allows us to find the range of values taken by the contiguous
sum by just finding the minimum value taken by it. Next we prove a simpler
lemma about the range of values taken. Using that, in Theorem 3, we will find
the range of values taken by the contiguous sum of N elements in any list ci,n.

Lemma 4. For j ∈ {0, . . . , n} and i ∈ [n], the sum of 2j contiguous bits in a
bit list ci,n takes the following values.

1. If j ≤ (i − 1), then the range is {0, . . . , 2j}, and
2. If j ≥ i, then the sum is exactly 2j−1.

Proof. By Lemma 3, it suffices to find the minimum value of contiguous sum
function. Notice that we have, ci,n = (0×2i−1 · 1×2i−1)×2n−i , by Observation 1.
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1. When j ≤ (i−1), we can pick a block of 2j zeros giving a total of zero, which
is the minimum possible value.

2. When j ≥ i, let Lk be a list of 2j contiguous bits of ci,n starting at the
index k in ci,n. To prove that

∑
Lk =

∑
Lk+1, it suffices to show that

ci,n(k) = ci,n(k + 2j). Rewriting ci,n = ((0×2i−1 · 1×2i−1)×2j−i)×2n−j shows
that any two indices with difference equal to 2j store the same value. As the
choice of k was arbitrary, the contiguous sum is equal to 2j−1.

�	
Theorem 3. For i ∈ [n], N ∈ [2n] and p = 2i, the sum of N contiguous bits in
a bit list ci,n takes values in the range, range(i,N) �

{⌊N

p

⌋p

2
+ max

(
(N mod p) − p

2
, 0

)
, · · · ,

⌊N

p

⌋p

2
+ min

(
N mod p,

p

2

)}

.

Proof. For a fixed i ∈ [n] consider the list ci,n. Assuming that the minimum
value of the range is as claimed above, by Lemma 3, the maximum value is

max
j∈[2n]

S(ci,n, j,N) = N − min
j∈[2n]

S(ci,n, j,N)

= N −
(⌊N

p

⌋p

2
+ max

(
(N mod p) − p

2
, 0

))

=
⌊N

p

⌋p

2
+ (N mod p) − max

(
(N mod p) − p

2
, 0

)

=
⌊N

p

⌋p

2
+ min

(p

2
, N mod p

)
.

As proved in case 2 of Lemma 4, the sum of �N
p �p contiguous bits is equal

to �N
p �p

2 irrespective of the starting index. Therefore, it suffices to find the
minimum sum of R = (N mod 2i) contiguous bits. Next, we find the starting
index for achieving the minimum possible sum of R values. Let Lk be a list of R
bits occurring contiguously in ci,n starting at index k. If the first bit of Lk is 1,
then

∑
Lk+1 ≤ ∑

Lk. Therefore, we can keep on increasing the value of k until
the first bit is zero, without increasing the value of the contiguous sum. On the
other hand, if ci,n(k − 1) = 0, then

∑
Lk−1 ≤ ∑

Lk. Therefore, we can keep on
decreasing the value of k one at a time until ci,n(k − 1) = 1, without increasing
the value of the contiguous sum. Thus the minimum value of the contiguous sum
is achieved when the index k points to the start of any block 0×2i−1 contained
in ci,n. Thus, the value of minimum is equal to max(R − p

2 , 0), as the ones start
appearing after p

2 indices from the start of the list 0×2i−1 · 1×2i−1 . Adding it to
�N

p �p
2 gives the required minimum value. �	

Theorem 4. A list w = {w1, . . . , wn} ∈ Z
n
+ is a cyclic hyper degree if and only

if there exist N ∈ [2n] and a permutation π over n, such that for each i ∈ [n],
wπ(i) ∈ range(i,N).
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Proof. Forward direction is a direct consequence of Theorem 4.
Using Definition 3 and Theorem 4, we get that there exist numbers

s1, . . . , sn ∈ [2n] such that for each i ∈ [n], we have wπ(i) = S(ci,n, si, N).
Let Π−1 = (σ−1

s1
, . . . , σ−1

sn
) be the list of cyclic permutations, where for each

i ∈ [n], σ−1
si

is the inverse of the cyclic permutation of order si. Consider the
table Π−1(Tn), by Theorem 1, all its rows are distinct. In particular, the first N
rows are distinct and their sum is π(w). Finally, note that w ∈ Hn if and only if
π(w) ∈ Hn. �	

Theorem 3 gives us a way to efficiently find the number of bits in a contiguous
sum of N bits. If we know the number of distinct bit sequences that can sum
up to a given vector w ∈ Z

n
+, then using Theorem 3 we can generate all the

possible ranges of values which can be taken by each coordinate of the sum.
Finally, we need to check if each coordinate of w is contained in different ranges,
this corresponds to finding the permutation π in Theorem 4. In the next lemma,
we will find the number of possible distinct bit-sequences which can sum up to
a given w using cyclic permutations of binary tables, this corresponds to finding
N in Theorem 4.

Lemma 5. If w = {w1, . . . , wn} ∈ Z
n
+ is a cyclic hyper degree, then the number

of bit sequences which sum up to w is an element of the set

Nw � {2wi + j : i ∈ [n], j ∈ {−1, 0, 1}}.

Proof. As one of the coordinates of w, say wk, is the contiguous sum of c1,n, we
need to find the number of bits which sum up to wk. From the structure of c1,n,
it is easily seen that there are just three values viz. 2wk − 1, 2wk, 2wk + 1 which
contain wk in their range of sums. Conversely, for any number x not contained
in {2wi + j : i ∈ [n], j ∈ {−1, 0, 1}}, the sum of x contiguous bits c1,n will not
contain any of wi, for i ∈ [n]. �	
Lemma 6 (Embedding integer sequence in integer intervals). Given
w ∈ Z

n
+ and a list of integer intervals R1, . . . , Rn ⊂ Z

2
+. There exists an algo-

rithm running in time polynomial in n which correctly answers if there exists a
permutation π such that for each i ∈ [n], wπ(i) ∈ Ri.

Proof. Construct a bipartite graph G = (A,B,E) on 2n vertices. Let A = B =
[n] and (i, j) ∈ E if and only if wi ∈ Rj . Using any of the classical polynomial
time algorithms one can find if there exists a perfect matching in G. If there is
a perfect matching then the answer is Yes, otherwise it is No. �	

We note that there is a greedy algorithm which can find the correct permu-
tation π, if it exists. However, our purpose in this paper is to show that this step
can be done efficiently, so we will content ourselves with the simpler to describe
perfect matching algorithm.

Theorem 5. There is a polynomial time algorithm in n which decides if a given
w ∈ Z

n
+ is a cyclic hyper degree.
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Proof. For an element N ∈ Nw given by Lemma 5, for each i ∈ [n] compute
range(i,N) as given by Theorem 3. Now, use Lemma 6 on these ranges of num-
bers and decide if w is a cyclic hyper degree, if it is not then try the next number
from the set Nw. If it succeeds for at least one element of Nw, we answer Yes,
otherwise we answer No. Finally, note that |Nw| ≤ 3n and all the other steps
can be performed in time which is a polynomial function of n. �	

5 Lower Bound on the Number of Cyclic Hyper Degrees

In this section we will lower bound the number of cyclic hyper degrees for a given
value of n. For this, given N we will find the size of range of contiguous sum,
denoted by Ri,N , for each value of i as given by Theorem 3. The number of
distinct cyclic degree sequences which are the sum of N bit sequences is then∏

i∈[n] Ri,N . This is so because we have Ri,N choices for the ith coordinate. We
proceed to find Ri,N , the size of each range, as a corollary of Theorem 3 as
follows.

Corollary 2. For i ∈ [n], N ∈ [2n] and p = 2i, the sum of N contiguous bits in
a bit list ci,n takes 1 + min(N mod p, p − (N mod p)) distinct values.

Proof. The number of values is 1+maxj∈[2n] S(ci,n, j,N)−minj∈[2n] S(ci,n, j,N)

= 1 + N − 2 min
j∈[2n]

S(ci,n, j,N)

= 1 + N −
⌊N

p

⌋
p − 2max

(
(N mod p) − p

2
, 0

)

= 1 + N mod p − 2max
(
(N mod p) − p

2
, 0

)

= 1 + min (N mod p − 2(N mod p) + p,N mod p)
= 1 + min (p − (N mod p), N mod p) .

�	
Lemma 7. For n ∈ Z+, the number of cyclic hyper degrees on n vertices is at
least 2

(n−1)(n−2)
2 .

Proof. Given a fixed number n, we are going to count the number of cyclic
hyper degrees which are the sum of exactly M bit-sequences, where M =
∑�n

2 �
j=0 22j . By Corollary 2, the range of values possible for ith bit is Bi =

1+min(2i−M mod 2i,M mod 2i) = 1+min(2i−∑� i
2 �

j=1 22j ,
∑� i

2 �
j=1 22j). Depend-

ing on whether i is even or odd, it can be broken into two cases, but in both the
cases, for i ≥ 2 we have Bi ≥ 2i−2. The number of representable bit sequences
possible with these ranges of coordinates is

∏

k∈[n]

Bk ≥
n∏

k=2

2k−2 =
n−2∏

k=0

2k = 2
(n−1)(n−2)

2 .

�	
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6 Conclusion

We looked at the Hypergraphic Sequence problem and gave a sufficient
condition for hypergraphic sequences. We proved that for a list w ∈ Z

n
+, there

is an algorithm A, which given w as input, runs in time polynomial in n and
if it answers Yes then w ∈ Hn. If A answers No then w may or may not be
a member of Hn. However, if w /∈ Hn, then the algorithm answers correctly.
It would be interesting to look at the instances of hypergraphic sequences for
which our algorithm fails. These instances may be helpful in finding hardness
reductions for it.
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Abstract. Directed cographs (di-cographs) play a crucial role in the
reconstruction of evolutionary histories of genes based on homology rela-
tions which are binary relations between genes. A variety of methods
based on pairwise sequence comparisons can be used to infer such homol-
ogy relations (e.g. orthology, paralogy, xenology). They are satisfiable if
the relations can be explained by an event-labeled gene tree, i.e., they
can simultaneously co-exist in an evolutionary history of the under-
lying genes. Every gene tree is equivalently interpreted as a so-called
cotree that entirely encodes the structure of a di-cograph. Thus, satisfi-
able homology relations must necessarily form a di-cograph. The inferred
homology relations might not cover each pair of genes and thus, provide
only partial knowledge on the full set of homology relations. Moreover,
for particular pairs of genes, it might be known with a high degree of cer-
tainty that they are not orthologs (resp. paralogs, xenologs) which yields
forbidden pairs of genes. Motivated by this observation, we characterize
(partial) satisfiable homology relations with or without forbidden gene
pairs, provide a quadratic-time algorithm for their recognition and for
the computation of a cotree that explains the given relations.

Keywords: Directed cographs · Partial relations
Forbidden relations · Recognition algorithm · Homology
Orthology · Paralogy · Xenology

1 Introduction

Directed cographs (di-cographs) are a well-studied class of graphs that can
uniquely be represented by an ordered rooted tree (T, t), called cotree, where
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each inner vertex gets a unique label “1”, “
−→
1 ” or “0” [6,8,10,13]. In particu-

lar, di-cographs have been shown to play an important role for the reconstruc-
tion of the evolutionary history of genes or species based on genomic sequence
data [12,18,19,21–23,25]. Genes are the molecular units of heredity holding the
information to build and maintain cells. During evolution, they are mutated,
duplicated, lost and passed to organisms through speciation or horizontal gene
transfer (HGT), which is the exchange of genetic material among co-existing
species. A gene family comprises genes sharing a common origin. Genes within
a gene family are called homologs.

The history of a gene family is equivalent to an event-labeled gene tree,
the leaves correspond to extant genes, internal vertices to ancestral genes and
the label of an internal vertex highlighting the event at the origin of the diver-
gence leading to the offspring, namely speciation-, duplication- or HGT-events
[14]. Equivalently, the history of genes is described by an event-labeled rooted
tree for which each inner vertex gets a unique label “1” (for speciation), “0”
(for duplication) or “

−→
1 ” (for HGT). In other words, any gene tree is also a

cotree. The type of event “1”, “0” and “
−→
1 ” of the lowest common ancestor of

two genes gives rise to one of three distinct homology relations respectively, the
orthology-relation R1, the paralogy-relation R0 and the xenology-relation R−→

1
.

The orthology-relation R1 on a set of genes forms an undirected cograph [18].
In [19] it has been shown that the graph G with arc set E(G) = R1 ∪ R−→

1
must

be a di-cograph (see [20] for a detailed discussion).
In practice, these homology relations are often estimated from sequence sim-

ilarities and synteny information, without requiring any a priori knowledge on
the topology of either the gene tree or the species tree (see e.g. [2–4,7,11,26–
28,31,32,34,35]). The starting point of this contribution is a set of estimated
relations R1, R−→

1
and R0. In particular, we consider so-called partial and forbid-

den relations: In fact, similarity-based homology inference methods often depend
on particular threshold parameters to determine whether a given pair of genes
is in one of R0, R1 or R−→

1
. Gene pairs whose sequence similarity falls below (or

above) a certain threshold cannot be unambiguously identified as belonging to
one of the considered homology relations. Hence, in practice one usually obtains
partial relations only, as only subsets of these relations may be known. Moreover,
different homology inference methods may lead to different predictions. Thus,
instead of a yes or no orthology, paralogy or xenology assignment, a confidence
score can rather be assigned to each relation [12]. A simple way of handling
such weighted gene pairs is to set an upper threshold above which a relation is
predicted, and a lower threshold under which a relation is rejected, leading to
partial relations with forbidden gene pairs, i.e., gene pairs that are not included
in any of the three relations but for which it is additionally known to which
relations they definitely not belong to.

In this contribution, we generalize results established by Lafond and El-
Mabrouk [24] and characterize satisfiable partial relations with and without
forbidden relations. We provide a recursive quadratic-time algorithm testing
whether the considered relations are satisfiable, and if so reconstructing a
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corresponding cotree. This, in turn, allows us to extend satisfiable partial rela-
tions to full relations. Finally, we evaluate the accuracy of the designed algorithm
on large-scaled simulated data sets. As it turns out, it suffices to have only a
very few but correct pairs of relations to recover most of them.

Note, the results established here may also be of interest for a broader scien-
tific community. Di-cographs play an important role in computer science because
many combinatorial optimization problems that are NP-complete for arbitrary
graphs become polynomial-time solvable on di-cographs [6,9,15]. However, the
cograph-editing problem is NP-hard [29]. Thus, an attractive starting point for
heuristics that edit a given graph to a cograph may be the knowledge of satisfiable
parts that eventually lead to partial information of the underlying di-cograph
structure of the graph of interest.

2 Preliminaries

Basics. In what follows, we always consider binary and irreflexive relations R ⊆
V ×
irr := V × V \ {(v, v) | v ∈ V } and we omit to mention it each time. If we have

a non-symmetric relation R, then we denote by Rsym = R ∪ {(x, y) | (y, x) ∈ R}
the symmetric extension of R and by

←−
R the set {(x, y) | (y, x) ∈ R}. For a

subset W ⊆ V and a relation R, we define R[W ] = {(x, y) ∈ R | x, y ∈ W}
as the sub-relation of R that is induced by W . Moreover, for a set of relations
R = {R1, . . . , Rn} we set R[W ] = {R1[W ], . . . , Rn[W ]}.

A directed graph (digraph) G = (V,E) has vertex set V (G) = V and arc set
E(G) = E ⊆ V ×

irr. Given two disjoint digraphs G = (V,E) and H = (W,F ), the
digraphs G ∪ H = (V ∪ W,E ∪ F ), G ⊕ H = (V ∪ W,E ∪ F ∪ {(x, y), (y, x) |
x ∈ V, y ∈ W}) and G � H = (V ∪ W,E ∪ F ∪ {(x, y) | x ∈ V, y ∈ W}) denote
the union, join and directed join of G and H, respectively. For a given subset
W ⊆ V , the induced subgraph G[W ] = (W,F ) of G = (V,E) is the subgraph
for which x, y ∈ W and (x, y) ∈ E implies that (x, y) ∈ F . We call W ⊆ V a
(strongly) connected component of G = (V,E) if G[W ] is a maximal (strongly)
connected subgraph of G.

Given a digraph G = (V,E) and a partition {V1, V2, . . . , Vk} of its vertex
set V , the quotient digraph G/{V1, V2, . . . , Vk} has as vertex set {V1, V2, . . . , Vk}
and two distinct vertices Vi, Vj form an arc (Vi, Vj) in G/{V1, . . . , Vk} if there
are vertices x ∈ Vi and y ∈ Vj with (x, y) ∈ E.

An acyclic digraph is called DAG. It is well-known that the vertices of a DAG
can be topologically ordered, i.e., there is an ordering of the vertices as v1, . . . , vn

such that (vi, vj) ∈ E implies that i < j. To check whether a digraph G contains
no cycles one can equivalently check whether there is a topological order, which
can be done via a depth-first search in O(|V (G)| + |E(G)|) time.

Furthermore, we consider a rooted tree T = (W,E) (on V ) with root ρT ∈ W
and leaf set V ⊆ W such that the root has degree ≥ 2 and each vertex v ∈ W \V
with v 
= ρT has degree ≥ 3. We write x �T y, if x lies on the path from ρT to
y. The children of a vertex x are all adjacent vertices y for which x �T y. Given
two leaves x, y ∈ V , their lowest common ancestor lca(x, y) is the first vertex
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that lies on both paths from x to the root and y to the root. We say that rooted
trees T1, . . . , Tk, k ≥ 2 are joined under a new root in the tree T if T is obtained
by the following procedure: add a new root ρT and all trees T1, . . . , Tk to T and
connect the root ρTi

of each tree Ti to ρT with an edge (ρT , ρTi
).

Di-cographs. Di-cographs generalize the notion of undirected cographs [6,8,
10,13] and are defined recursively as follows: The single vertex graph K1 is a
di-cograph, and if G and H are di-cographs, then G ∪ H, G ⊕ H, and G � H
are di-cographs [8,16]. Each Di-cograph G = (V,E) is associated with a unique
ordered least-resolved tree T = (W,F ) (called cotree) with leaf set L = V and a
labeling function t : W \ L → {0, 1,

−→
1 } defined by

t(lca(x, y)) =

⎧
⎪⎨

⎪⎩

0, if (x, y), (y, x) /∈ E

1, if (x, y), (y, x) ∈ E−→
1 , otherwise.

Since the vertices in the cotree T are ordered, the label
−→
1 on some lca(x, y)

of two distinct leaves x, y ∈ L means that there is an arc (x, y) ∈ E, while
(y, x) /∈ E, whenever x is placed to the left of y in T .

Some important properties of di-cographs that we need for later reference
are given now.

Lemma 1 ([8,16,30]). A digraph G = (V,E) is a di-cograph if and only if each
induced subgraph of G is a di-cograph.

Determining whether a digraph is a di-cograph, and if so, computing the
corresponding cotree can be done in O(|V | + |E|) time.

3 Problem Statement

As argued in the introduction and explained in more detail in [19], the evolution-
ary history of genes is equivalently described by an ordered rooted tree T = (T, t)
where the leaf set of T are genes and t is a map that assigns to each non-leaf
vertex a unique label 0, 1 or

−→
1 . The labels correspond to the classical evolu-

tionary events that act on the genes through evolution, namely speciation (1),
duplication (0) and horizontal gene transfer (HGT) (

−→
1 ). The tree T is ordered

to represent the inherently asymmetric nature of HGT events with their unam-
biguous distinction between the vertically transmitted “original” gene and the
horizontally transmitted “copy”.

Therefore, a given gene tree T = (T, t) is a cotree of some di-cograph G(T) =
(V,E). In particular, T gives rise to the following three well-known homology
relations between genes:

the orthology-relation : R1(T) = {(x, y) | t(lca(x, y)) = 1},
the paralogy-relation : R0(T) = {(x, y) | t(lca(x, y)) = 0}, and

the xenology-relation : R−→
1
(T) = {(x, y) | t(lca(x, y)) =

−→
1 and x is left of y in T}.
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Equivalently, R1(T) =
{
(x, y) | (x, y), (y, x) ∈ E

}
, R0(T) =

{
(x, y) | (x, y), (y, x)

/∈ E
}
, R−→

1
(T) =

{
(x, y) | (x, y) ∈ E, (y, x) /∈ E

}
. By construction, R1(T) and

R0(T) are symmetric relations, while R−→
1
(T) is an anti-symmetric relation.

In practice, however, one often has only empirical estimates R0, R1 and R−→
1

of some “true” relations R0(T), R1(T) and R−→
1
(T), respectively. Moreover, it is

often the case that for two distinct leaves x, y none of the pairs (x, y) and (y, x)
is contained in the estimates R0, R1 and R−→

1
.

In what follows we always assume that R0, R1 and R−→
1

are subsets of V ×
irr

and pairwise disjoint. Furthermore R0 and R1 are always symmetric relations
while R−→

1
is always an anti-symmetric relation.

Definition 1 (Full and Partial Relations). A set H = {R0, R1, R−→
1
} of

relations is full if R0 ∪ R1 ∪ Rsym−→
1

= V ×
irr and partial if R0 ∪ R1 ∪ Rsym−→

1
⊆ V ×

irr.

The definition allows considering full relations as partial. In other words, all
results that will be obtained for partial relations will also be valid for full rela-
tions.

The question arises under which conditions the given partial relations R0, R1

and R−→
1

are satisfiable, i.e., there is a cotree T = (T, t) such that R1 ⊆ R1(T),
R0 ⊆ R0(T) and R−→

1
⊆ R−→

1
(T), or equivalently, there is a di-cograph G� =

(V,E�) such that (R1 ∪ R−→
1
) ⊆ E� and R0 ∩ E� =

←−−
R−→

1
∩ E� = ∅.

Definition 2 (Satisfiable Relations). A full set H = {R0, R1, R−→
1
} is satis-

fiable, if there is a cotree T = (T, t) such that R1 = R1(T), R0 = R0(T) and
R−→

1
= R−→

1
(T).

A partial set H = {R0, R1, R−→
1
} is satisfiable, if there is a full set H� =

{R�
0, R

�
1, R

�−→
1
} that is satisfiable such that R0 ⊆ R�

0, R1 ⊆ R�
1, and R−→

1
⊆ R�−→

1
.

In this case, we say that H can be extended to a satisfiable full set H� and
that T explains H and H�.

It is easy to see that a full set H is satisfiable if and only if the graph
G(R1, R−→

1
) = (V,R1 ∪ R−→

1
) is a di-cograph. The latter result has already been

observed in [19] and is summarized below.

Theorem 1 ([19]). The full set H = {R0, R1, R−→
1
} is satisfiable if and only if

G(R1, R−→
1
) = (V,R1 ∪ R−→

1
) is a di-cograph.

Due to errors and noise in the data, the graph G(R1, R−→
1
) is often not a di-

cograph. However, in case that H is partial, it might be possible to extend
G(R1, R−→

1
) to a di-cograph. Moreover, in practice, one often has additional

knowledge about the unknown parts of the relations, that is, one may know
that a pair (x, y) is not in relation Ri for some i ∈ {0, 1,

−→
1 }. To be able to

model such forbidden pairs, we introduce the concept of satisfiability in terms
of forbidden relations.
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Definition 3 (Satisfiable Relations w.r.t. Forbidden Relations). Let F ={
F0, F1, F−→

1

}
be a partial set of relations. We say that a full set H =

{
R0,

R1, R−→
1

}
is satisfiable w.r.t. F if H is satisfiable and

R0 ∩ F0 = R1 ∩ F1 = R−→
1

∩ F−→
1

= ∅.

On the other hand, a partial set H = {R0, R1, R−→
1
} is satisfiable w.r.t. F if H

can be extended to a full set H� that is satisfiable w.r.t. F.

Equivalently, a partial set H = {R0, R1, R−→
1
} is satisfiable w.r.t. F, if there is

a cotree T = (T, t) such that R0 ⊆ R0(T), R1 ⊆ R1(T), R−→
1

⊆ R−→
1
(T) and

R0(T) ∩ F0 = R1(T) ∩ F1 = R(T)−→
1

∩ F−→
1

= ∅.

4 Satisfiable Relations

In what follows, we consider the problem of deciding whether a partial set H of
relations is satisfiable, and if so, finding an extended full set H� of H and the
respective cotree that explains H. Due to space limitation, all proofs are omitted
and can be found in [1].

Based on results provided by Böcker and Dress [5], the following result has
been established for the HGT-free case.

Theorem 2 ([18,24]). Let R−→
1

= ∅ , F0 = F1 = ∅ and F−→
1

= V ×
irr. A full set

H = {R0, R1, R−→
1
} is satisfiable w.r.t. F = {F0, F1, F−→

1
} if and only if the graph

G = (V,R1) is an undirected cograph.
A partial set H = {R0, R1, ∅} is satisfiable w.r.t. F if and only if at least one

of the following statements is satisfied:

1. G = (V,R1) is disconnected and each of its connected components is satisfi-
able.

2. G = (V,R0) is disconnected and each of its connected components is satisfi-
able.

To generalize the latter result for non-empty relations R−→
1
, F0 and F1 and to

allow pairs to be added to R−→
1
, i.e., F−→

1

= V ×

irr, we need the following result.

Lemma 2. A partial set H = {R0, R1, R−→
1
} is satisfiable w.r.t. the set of for-

bidden relations F = {F1, F0, F−→
1
} if and only if for any partition {C1, . . . , Ck}

of V the set H[Ci] is satisfiable w.r.t. F[Ci], 1 ≤ i ≤ k.

Lemma 2 characterizes satisfiable partial sets H = {R0, R1, R−→
1
} in terms of a

partition {C1, . . . , Ck} of V and the induced sub-relations in H[Ci]. In what
follows, we say that a component C of a graph is satisfiable if the set H[C] is
satisfiable w.r.t. F[C].

We are now able to state the main result.

Theorem 3. Let H = {R0, R1, R−→
1
} be a partial set. Then, H is satisfiable

w.r.t. the set of forbidden relations F = {F0, F1, F−→
1
} if and only if R0 ∩ F0 =

R1 ∩ F1 = R−→
1

∩ F−→
1

= ∅ and at least one of the following statements hold:
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Rule (0): |V | = 1.
Rule (1): (a) G0 := (V,R1 ∪R−→

1
∪F0) is disconnected and (b) each connected

component of G0 is satisfiable.
Rule (2): (a) G1 := (V,R0 ∪R−→

1
∪F1) is disconnected and (b) each connected

component of G1 is satisfiable.
Rule (3): (a) G−→

1
:= (V,R0∪R1∪R−→

1
∪←−

F−→
1
) contains more than one strongly

connected component, and (b) each strongly connected component of G−→
1

is
satisfiable.

Note, the notation G0, G1 and G−→
1

in Theorem 3 is chosen because if G0

(resp. G1 and G−→
1
) satisfies Rule (1) (resp. (2) and (3)), then the root of the

cotree that explains H is labeled “0” (resp. “1” and “
−→
1 ”).

In the absence of forbidden relations, Theorem3 immediately implies

Corollary 1. The partial set H = {R0, R1, R−→
1
} is satisfiable if and only if at

least one of the following statements hold

Rule (0): |V | = 1
Rule (1): (a) G0 := (V,R1 ∪ R−→

1
) is disconnected and (b) each connected

component of G0 is satisfiable.
Rule (2): (a) G1 := (V,R0 ∪ R−→

1
) is disconnected and (b) for each connected

component of G1 is satisfiable.
Rule (3): (a) G−→

1
:= (V,R0 ∪ R1 ∪ R−→

1
) contains more than one strongly

connected component, and (b) each strongly connected component of G−→
1

is
satisfiable.

Theorems 1 and 3 together with Corollary 1 imply the following characterization
of di-cographs.

Corollary 2. G = (V,E) is a di-cograph if and only if either
(0) |V | = 1
(1) G is disconnected and each of its connected components are di-cographs.
(2) G is disconnected and each of its connected components are di-cographs.
(3) G and G are connected, but G contains more than one strongly connected

component, each of them is a di-cograph.

Theorem 3 gives a characterization of satisfiable partial sets H = {R0, R1, R−→
1
}

with respect to some forbidden sets F = {F0, F1, F−→
1
}. In the appendix [1], it

is shown that the order of applied rules has no influence on the correctness of
the algorithm. Clearly, Theorem3 immediately provides an algorithm for the
recognition of satisfiable sets H, which is summarized in Algorithm 1. Figure 1
shows an example of the application of Theorem3 and Algorithm 1.

Theorem 4. Let H = {R0, R1, R−→
1
} be a partial set, and F = {F0, F1, F−→

1
} a

forbidden set. Additionally, let n = |V | and m = |R0 ∪R1 ∪R−→
1

∪F0 ∪F1 ∪F−→
1
|.

Then, Algorithm1 runs in O(n2 + nm) time and either:

(i) outputs a cotree (T, t) that explains H; or
(ii) outputs the statement “H is not satisfiable w.r.t. F”.
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Fig. 1. Consider the partial relations R0 = ∅, R1 = {[1, 2], [2, 3], [3, 4]}, and
R−→

1
= {(3, 1), (2, 5)}, and the forbidden relations F0 = {[2, 4]}, F1 = {[1, 5], [4, 5]}

and F−→
1

= ∅. Here [x, y] ∈ R means that both (x, y) and (y, x) are contained in R.
Left, the three graphs G0, G1 and G−→

1
as defined in Theorem 3 are shown (arrows are

omitted for symmetric arcs and dashed arcs correspond to forbidden pairs). Both G0

and G1 are connected. However, G−→
1

contains the two strongly connected components
C1 = {1, 2, 3, 4} and C2 = {5} (highlighted with gray rectangles). Thus, Rule (3)
can be applied. The graphs G0[C1] and G−→

1
[C1] are connected. However, since G1[C1]

is disconnected one can apply Rule (2). For the graph G[C2] only Rule (0) can be
applied. The workflow in the lower part shows stepwise application of allowed rules
on the respective components. The final cotree (T, t) that explains the full set H� =
{R�

0 = ∅, R1 = {[1, 2], [2, 3], [3, 4], [1, 4], [2, 4]}, R−→
1

= {(3, 1), (1, 5), (2, 5), (3, 5), (4, 5)}
is shown in the upper right part.

Algorithm 1 provides a cotree; (T ; t), explaining a full satisfiable set; H� =
{R�

0, R
�
1, R

�−→
1
} extended from a given partial set H, such that H� is satisfiable

w.r.t. a forbidden set F. Nevertheless, it can be shown that H� can easily be
reconstructed from a given cotree (T ; t) in O(|V |2) time (see Appendix [1]).

5 Experiments

In this section, we investigate the accuracy of the recognition algorithm and
compare recovered relations with known full sets that are obtained from sim-
ulated cotrees. The intended practical application that we have in mind,
is to reconstruct estimated homology relations. In this view, sampling ran-
dom trees would not be sufficient, as the evolutionary history of genes and
species tend to produce fairly balanced trees. Therefore, we used the DendroPy
uniform pure birth tree model [17,33] to simulate 1000 binary gene trees for
each of the three different leaf sizes |L| ∈ {25, 50, 100}. In addition, we randomly
labeled the inner vertices of all trees as “0”, “1” or “

−→
1 ” with equal probability.

Each cotree T = (T ; t) then represents a full set H�(T) =
{
R�

0(T), R�
1(T),

R�−→
1
(T)

}
. For each of the full sets H�(T) and any two vertices x, y ∈ V , the
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Algorithm 1. Recognition of satisfiable partial sets H w.r.t. forbidden sets F

and reconstruction of a cotree (T, t) that explains H.
Input: Partial sets H = {R0, R1, R−→

1 } and F = {F0, F1, F−→
1 }

Output: A cotree (T ; t) that explains H, if one exists and R0 ∩ F0 = R1 ∩ F1 = R−→
1 ∩ F−→

1 = ∅
or the statement “H is not satisfiable w.r.t. F”

1: if R0 ∩ F0 = R1 ∩ F1 = R−→
1 ∩ F−→

1 = ∅ then Call BuildCotree(V,H,F)

2: else

3: Halt and output: “H is not satisfiable w.r.t. F”

4: function BuildCotree(V,H = {R0, R1, R−→
1 },F = {F0, F1, F−→

1 } )

� G0, G1 and G−→
1 are defined as in Thm. 3 for given H and F

5: if |V | = 1 then return the cotree ((V, ∅), ∅)
6: else if G0 (resp. G1) is disconnected then

7: C := the set of connected components {C1, . . . , Ck} of G0 (resp. G1)

8: T := {BuildCotree(V [Ci], H[Ci], F[Ci]) | Ci ∈ C}
9: return the cotree from joining the cotrees in T under a new root labeled 0 (resp. 1)

10: else if G−→
1 has more than one strongly connected component then

11: C := the set of strongly connected components {C1, . . . , Ck} of G−→
1

12: π := a topological order on the quotient G/{C1, . . . , Ck}
13: T := {BuildCotree(V [Ci], H[Ci], F[Ci]) | for all Ci, i = 1, . . . , k}
14: return the cotree (T, t) obtained by joining the cotrees in T under a new root

with label
−→
1 , where Ti is placed left from Tj whenever π(Ci) < π(Cj)

15: else

16: Halt and output: “H is not satisfiable w.r.t. F”

corresponding gene pairs (x, y) and (y, x) is removed from R�
0(T)∪R�

1(T)∪R�−→
1
(T)

with a fixed probability p ∈ {0.1, 0.2, . . . , 1}. Hence, for each p ∈ {0.1, 0.2, . . . , 1}
and each fixed leaf size |L| ∈ {25, 50, 100}, we obtain 1000 partial sets H =
{R0, R1, R−→

1
}. We then use Algorithm 1 on each partial set H, to obtain a cotree

T̃ = (T̃ ; t̃) explaining the full set H�(T̃) = {R�
0(T̃), R1(T̃), R−→

1
(T̃)}.

Figure 2(left) shows the average relative difference of the original full set
H�(T) and the recovered full sets H�(T̃) for each instance. The dashed line in

Fig. 2. Shown are the average relative differences of original and recovered relations
depending on the size of unknowns (left) and the size of additional forbidden relations
(right).
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the plots of Fig. 2(left) shows the expected relative difference when each unknown
gene pair is assigned randomly to one of the relations in the partial set H. As
expected, the relative differences increases with the number of unassigned leaf
pairs. Somewhat surprisingly, even if 80% of pairs of leaves are expected to be
unassigned in H, it is possible to averagely recover 79.8%–95.3% of the original
relations. Moreover, the plot in Fig. 2(left) also suggests that the accuracy of
recovered homology relations increases with the input size, i.e., the number of
leaves. To explain this fact, observe that the number of constraints given by
the full set of homology relations on some leaf set L is O(|L|2). Conversely, the
number of inner vertices in a tree only increases linearly with L, O(|L|). Hence,
on average the number of constraints given on the labeling of an internal vertex
in the gene tree is O(|L|2)/O(|L|) = O(|L|). Note, Algorithm 1 constructs cotrees
and hence, if there are more leaves, then there are also more constraints for the
rules (labeling of the inner vertices) that are allowed to be applied. Therefore,
with an increasing number of leaves the correct relation between unassigned
pairs of leaves in H are already determined.

Figure 2(right) shows the impact of additional forbidden relations for the
instances where we have removed pairs (x, y) with probability p = 0.7. For
each of the partial sets H, we have chosen two vertices x and y where neither
(x, y) nor (y, x) is contained in H with probability p′ ∈ {0.1, 0.2, . . . , 1} and
assigned (x, y), (y, x) to a forbidden relation Fi such that (x, y), (y, x) ∈ R�

j (T)
with i, j ∈ {0, 1,

−→
1 } implies that i 
= j. In other words, if (x, y), (y, x) are

assigned to Fi with i ∈ {0, 1,
−→
1 } then (x, y), (y, x) were not in the original set

R�
j (T). The latter is justified to ensure satisfiability of the partial relations w.r.t.

the forbidden relations. Again, we compared the relative difference of the original
full sets H�(T) and the recovered full sets H�(T̃) computed with Algorithm1.
The plot shows that, with an increasing number of forbidden leaf pairs, the
relative difference decreases. Clearly, the more leaf pairs are forbidden the more
of such leaf pairs are not allowed to be assigned to one of the relations. Therefore,
the degree of freedom for assigning a relation to an unassigned pair decreases
with an increase of the number of forbidden pairs.

One factor that may affect the results of the plots shown in Fig. 2 is the order
in which rules are chosen when more than one rule is satisfied. By construction,
Algorithm 1 fixes the order of applied rules as follows: first Rule (1), then Rule
(2), then Rule (3). In other words, when possible the trees for the satisfiable
(strongly) connected components are first joined by a common root labeled “1”;
if this does not apply, then with common root labeled “0”, and “

−→
1 ” otherwise.

To investigate this issue in more details, we modified Algorithm 1 so that either
a different fixed rule order or a random rule order is applied.

Figure 3(left) shows the plot for the partial relations for the fixed leaf size
|L| = 50. The rule orders are shown in the legend of Fig. 3. Here, X/Y/Z, with
X,Y,Z ∈ {1 =̂ Rule(2), 0 =̂ Rule(1),

−→
1 =̂ Rule(3)} being distinct; indicates that

first rule X is checked, then rule Y and, if both are not applicable, then rule
Z is used. RAND means that each of the allowed rules are chosen with equal
probability. As one can observe, the rule order does not have a significant impact
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Fig. 3. Shown are the average relative differences of original and recovered relations,
depending on the percentage of unassigned pairs and the rule order for cotrees with
uniform (left) and skewed (right) label distribution.

on the quality of the recovered full sets. This observation might be explained by
the fact that we have used a random assignment of events 0, 1 and

−→
1 for the

vertices of the initial simulated trees T .
To investigate this issue in more detail, we additionally used 1000 unlabeled

simulated trees T with |L| = 50 and assigned to each vertex v a label t(v) = 1
with a probability p = 0.8, label t(v) =

−→
1 with p = 0.1 and label t(v) = 0 with

p = 0.1 Again, each resulting cotree T = (T ; t) represents a full set H�(T) =
{R�

0(T), R�
1(T), R�−→

1
(T)} from which we obtain partial sets H = {R0, R1, R−→

1
} as

for the other instances. Figure 3(right) shows the resulting plots. As it can be
observed, even a quite skewed distribution of labels in the cotrees and the choice
of rule order does not have an effect on the quality of the recovered full sets.

In summary, the results show that it suffices to have only a very few but
correct pairs of the original relations to reconstruct most of them.
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Abstract. This paper studies intermediate datasets storage problem
with linear dataflow in multiple clouds. The proliferation of cloud com-
puting allows users to flexibly store, re-compute or transfer large gener-
ated datasets with multiple cloud service providers. However, due to the
pay-as-you-go model, the total cost of using cloud services depends on the
consumption of storage, computation and bandwidth resources. Given
cloud service providers with different pricing models on their resources,
users can flexibly choose a cloud service to store a generated dataset, or
delete it and then regenerate it when needed, or transfer it to another
cloud service in order to reduce the total cost for datasets storage and
re-computation. The current best algorithm for finding an optimal strat-
egy of a linear dataflow in multiple clouds takes O

(
m4n3

)
, where m is

the number of the clouds and n is the number of datasets in a dataflow.
In this paper, we present an improved algorithm for the linear dataflow
with time complexity O

(
m3n3

)
.

Keywords: Multiple clouds · Intermediate datasets
Storage strategies · Time complexity

1 Introduction

A scientific workflow is data intensive running in a cloud computing environ-
ment [1]. In a scientific workflow, there are usually a large number of datasets,
including initial dataset, output dataset and a large volume of intermediate
datasets generated during the execution [2]. The intermediate datasets often con-
tain valuable intermediate results, thus which would be frequently traced back
for re-analyzing or re-using [5]. In the process of the datasets, all used resources
need to be paid for. As indicated in [1], for a scientific cloud workflow system,
storing all the intermediate datasets generated during workflow executions may
cause a high storage cost. In contrast, if we delete all the intermediate datasets
and re-generate them whenever they are needed, the computation cost of the
system may well be very high too. A possible solution is to store some datasets
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and delete the rest of datasets for minimizing the total cost of the cloud workflow
system [3,6]. This leads to the intermediate datasets storage problem (Abbr. for
IDSP). In one cloud, we may need to design an optimal strategy to find the best
trade-off between the re-generation cost and the storage cost. Hence, in multiple
clouds, this problem comes to be more complex, and we may need to design an
optimal strategy to find the best trade-off between the re-generation cost, the
storage cost and the bandwidth cost. In this paper, we focus on the IDSP in
multiple clouds.

In [4], Yuan et al. proposed the newest algorithm with time complexity
O

(
m4n3

)
for the linear IDSP in multiple clouds. This paper addresses a new

algorithm for linear IDSP, which can improve the time complexity to O
(
m3n3

)
,

where m is the number of the clouds and the n is the number of the intermediate
datasets.

The rest of the paper is organized as follows. Section 2 introduces the inter-
mediate datasets storage problem and related notions. Section 3 describes the
algorithm proposed by Yuan et al. Our improved algorithm is in Sect. 4. Section 5
concludes and prospects future work.

2 Related Notions and Notations

2.1 Data Dependency Graph

The intermediate datasets and their relationship can be demonstrated on a data
dependency graph (Abbr. for DDG). A DDG is a directed acyclic graph, where
the vertexes and directed arcs represent the datasets and the dependencies,
respectively. For example, Fig. 1 depicts a simple workflow. di points to dj rep-
resents that regenerating dj needs di. In the same way, multiple nodes point to
dj represents that regenerating dj needs multiple nodes.

To better describe the relationships of datasets in DDG, we define a
symbol:→, which denotes the transitive and dependency relationships between
the datasets. In Fig. 1, for example, d1 → d2 means that d1 is the precursor of
d2 in DDG, moreover, d2 → d3, d3 → d5, d4 → d5. ((d2 → d3) ∪ (d3 → d5)) ⇒
(d2 → d5), etc.

2.2 Datasets Storage Cost, Computing Cost and Bandwidth Cost
Model

In cloud environment, the IDSP in multiple clouds is complex, including the
IDSP in linear workflow with multiple clouds and the IDSP in non-linear work-
flow with multiple clouds. In [4], Yuan et al. for the first time proposed a solution
for linear DDG with multiple clouds. Facing the complex situation, they simpli-
fied the cost model. In this cost model, there are three basic resources involving
the StorageCost,ComputingCost, and BandwidthCost.

In this paper, we consider the algorithm solutions based on this cost model,
as follows.

Cost = StorageCost + ComputingCost + BandwidthCost (1)
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Fig. 1. An example of a workflow.

In this cost model, the Cost is the sum of storage cost, and computing cost,
and bandwidth cost, and it is the sum of total cost of storage resources and total
cost of computation resources and total cost of the bandwidth resources adopted
for transferring intermediate datasets via network.

To utilize the cost model, we present the following assumptions and denota-
tions and definitions.

Assumption [4]: we assume that the datasets are transferred between the m
Cloud Service Providers(CSP). And CSP = {c1, c2, . . . , cm}.

Denotations [4]: the regeneration cost, the storage cost and the bandwidth
cost are represented as X, Y and Z, respectively. In multiple clouds, the three
items are related to the cloud service providers. So the three items are denoted
as follows:

X
cj
di

denotes the regeneration cost of regenerating di from its direct stored
precursor in DDG with the cloud service provider cj

Y
cj
di

denotes the storage cost of di with the cloud provider cj
Z

cj ,ck
di

denotes the bandwidth cost of transferring the di from the cloud
provider cj to the cloud provider ck

In multiple clouds, we aim to find a generic best trade-off among computing
and storage and bandwidth (Abbr. GT-CSB) in linear DDG.

2.3 Cost Transitive Tournament Graph for Linear DDG

When considering a linear DDG (See Fig. 2), we generally need to construct a
cost transitive tournament graph (Abbr. CTG). For example, in Fig. 2, the linear
DDG is constructed by six datasets with determined status. Hence, the total cost
of the linear DDG is sum of all datasets storage cost or regeneration cost based
on their status. However, in multiple clouds, the dataset storage cost and the
regeneration cost are all with the cloud service providers. We can construct the
CTG of Fig. 2 by the three steps (See Figs. 3 and 4).

Step 1: Add vertices to CTG As indicated in Fig. 3, we can add m vertices
to CTG for each dataset in DDG, denoted as Vdi

={verc1di
, verc2d2

, . . . , vercmdi
}. In
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Fig. 2. An example of a linear DDG

order to utilize the Dijkstra algorithm, we need to add the extra vertices called
start node and end node, denoted as verc0d0

and ver
cm+1
dn+1

without cost.

Fig. 3. Create vertices for CTG

Step 2: Add edges to CTG As indicated in Fig. 4, we add O(m2n2) edges to
construct CTG (See Theorem 1).

Theorem 1. A complete CTG needs to be added O(m2n2) edges, where m is
the number of clouds and n is the number of datasets.

Proof. In Fig. 4, we can see that there are m ∗ n + 2 vertices, including the
secondary nodes such as verc0d0

and ver
cm+1
dn+1

. According to induction, we can
prove Theorem 1, as follows.

(1) For verc0d0
, there are m ∗ n + 1 edges created.

(2) For verc1d1
, there are m ∗ (n − 1) + 1 edges created.
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Fig. 4. Create edges for CTG

(3) For vercmd1
, there are m ∗ (n − 1) + 1 edges created.

(4) Apply broadly, for verc1d2
, there are m ∗ (n − 1) + 1 edges created.

(5) For verc1dn
, there are m ∗ (n − 2) + 1 edges created.

(6) Apply broadly, for ver
cm+1
dn+1

, there is one edge created.
(7) For verc0d0

, there is not any edge created.

According to (2)(3)(4), we can calculate the total edges as m ∗
(m ∗ (n − 1) + 1) for one dataset with m clouds. According to (2)(5)(6), we can
calculate the total edges as (m ∗ (n − 1) + 1)+ (m ∗ (n − 2) + 1)+ . . .+1 for all
datasets with one cloud. So, we define the total edges as tedges, as follows.

tedges = (m ∗ n + 1) + (m ∗ (m ∗ (n − 1) + 1)) + (m ∗ (m ∗ (n − 2) + 1)) +
(m ∗ (m ∗ (n − 3) + 1)) + . . . + (m ∗ 1)

= (m ∗ n + 1)+m ∗ (n − 1)+m2 ∗ [(n − 1) + (n − 2) + . . . + 2 + 1 + 0]
= 2mn + 1 − m + m2

(
n2−n

2

)

= m2n2

2 -m
2n
2 + 2mn − m + 1. This ends the proof.

In this cost transitive graph, we guarantee that the paths in the CTG (from
start vertex to end vertex) have one-to-one mapping to the storage strategies of
datasets in the DDG. (See Fig. 4)

In one word, for any two vertices, vercsdi
,ver

c
s

′
d
i
′ ∈ CTG belonging to different

datasets vertex sets (i.e.Vdi
�= Vd

′
i
), we create an edge between them. Formally,
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(vercsdi
, ver

c
s

′

d
′
i

∈ CTG) ∩ (di → di′ ) ⇒ e〈vercsdi
, ver

c
s

′
d
i
′ 〉 (2)

Lemma 1 [4]. The storage strategies for a DDG have one-to-one mapping to
the paths from verc0d0

to ver
cm+1
dn+1

in the CTG.

Step 3: Set weight to CTG

Definition 1 [4]. We define the value of a vertex vercsdi
∈ as the minimum regen-

eration cost of di with cloud service provider cs from its direct stored predecessors,
as follows. ⎧

⎨

⎩

verckdi+1
= Zcs,ck

di
+ Xck

di+1

verckdj
= minm

h=1

{
verchdj−1

+ Zch,ck
dj−1

}
+ Xck

dj

(3)

Where dj ∈ DDG and di+1 → dj → di′ , ck ∈ {c1, c2, ..., cm}. And the cost of
verc0d0

or ver
cm+1
dn+1

is zero.

Definition 2 [4]. For an edge e〈vercsdi
, ver

c
s

′
d
i
′ 〉, the weight of the edge is the

sum of di′ storage cost and the datasets’ regeneration cost between di and di′ ,
supposing that the only di and di′ is stored with cloud service provider cs and cs′

respectively and the rest of the datasets are all deleted with cloud service provider
ch (h = 1 . . .m).

Based on above definition, the weight of e〈vercsdi
, ver

c
s

′
d
i
′ 〉 is as follows:

e〈vercsdi
, ver

c
s

′
d
i
′ 〉 = Y

c
s

′
d
i
′ +

∑

di→dj→d
i
′

mimm
h=1{verchdj

} (4)

Lemma 2 [4]. The length of every path from verc0d0
to ver

cm+1
dn+1

in the CTG
equals to the total cost of the corresponding storage strategy and the minimum
cost regeneration strategy for the deleted datasets.

From the steps above, we can create a weighted directed acyclic graph. Based
on the graph theory, we can utilize the Dijkstra algorithm to find the shortest
path. We denote the shortest path as Pmin〈verc0d0

, ver
cm+1
dn+1

〉.
Theorem 2 [4]. Given a linear DDG with n datasets {d1, d2, . . . , dn} and m
cloud services {c1, c2, . . . , cm} for storage, the length of Pmin〈verc0d0

, ver
cn+1
dn+1

〉 of
its CTG is the minimum cost of storing and regenerating datasets of the DDG
in clouds.

3 Original GT-CSB Algorithm

In [4], based on the CTG, Yuan et al. proposed the detailed algorithm to find
the generic best trade-off among computing and storage and bandwidth (GT-
CSB). The pseudo code is as follows. Seen from Fig. 5, we can know that the
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Step 1 is demonstrated on line 1–4 and Step 2 is demonstrated on line 5–7.
For the linear DDG with n datasets and m cloud service providers, we need
to create m ∗ n + 2 vertexes (line 1–4) and O(m2n2) edges (line 5–7). Step 3
is demonstrated on line 8–16. To calculate the weight of an edge in the CTG,
we need to calculate at most m ∗ n vertices’ values (line 11–12). Because of the
iterations, the calculated vertices’ values can be reused in the next iteration.
Hence the time complexity for calculating the value of one vertex is O (m) (line
13). Hence, the time complexity of calculating the weight of an edge is O(m2n).
In Step 4 (line 17), the time complexity of Dijkstra algorithm is O

(
m2n2

)
. Hence,

the time complexity of calculating weights of all edges in the CTG is O
(
m4n3

)
.

Fig. 5. Pseudo code of GT-CSB algorithm

Based on the above analysis, the total time complexity of the GT-CSB algo-
rithm is O

(
m4n3

)
. The space complexity of the GT-CSB algorithm is O

(
m2n2

)
.

Because of the iterations, the calculated vertices’ values can be reused in the next
iteration.

4 Improved Algorithm

4.1 Weakness of Proposed Algorithm

In Yuan’s algorithm, they re-calculated the values of vertices calculated by
them before. For example, As indicated in Fig. 6, they calculate the weight of
e〈verc1d1

, verc1d3
〉 in Yuan’s algorithm by the steps.

(1) Calculate the values of verc1d1
and verc2d1

, as follows:

verc1d1
= Zc0,c1

d0
+ Xc1

d1
= Xc1

d1

verc2d1
= Zc0,c2

d0
+ Xc2

d1
= Xc2

d1
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(2) Calculate the values of verc1d2
and verc1d2

, as follows:

verc1d2
= min2

h=1{verchd1
+ Zch,c1

d1
} + Xc1

d2

verc2d2
= min2

h=1{verchd1
+ Zch,c2

d1
} + Xc2

d2

(3) Calculate the value of e〈verc1d1
, verc1d3

〉, as follows:

e〈verc1d1
, verc1d3

〉 = min{verc1d2
, verc2d2

} + Y c1
d3

For instance again, they calculate the weight of e〈verc1d1
, verc3d4

〉 in Yuan’s
algorithm by the steps.

(1) Calculate the values of verc1d1
and verc2d1

, as follows:

verc1d1
= Zc0,c1

d0
+ Xc1

d1
= Xc1

d1

verc2d1
= Zc0,c2

d0
+ Xc2

d1
= Xc2

d1

(2) Calculate the values of verc1d2
and verc2d2

, as follows:

verc1d2
= min2

h=1{verchd1
+ Zch,c1

d1
} + Xc1

d2

verc2d2
= min2

h=1{verchd1
+ Zch,c2

d1
} + Xc2

d2

(3) Calculate the values of verc1d3
and verc2d3

as follows:

verc1d3
= min2

h=1{verchd2
+ Zch,c1

d2
} + Xc1

d3

verc2d3
= min2

h=1{verchd2
+ Zch,c2

d2
} + Xc2

d3

(4) Calculate the value of e〈verc1d1
, verc3d4

〉, as follows:

e〈verc1d1
, verc3d4

〉 = min2
h=1{verchd2

} + min2
h=1{verchd3

}
From the examples, we can see that when they calculate the weight of

e〈verc1d1
, verc1d3

〉, they calculate the values of min2
h=1{verchd1

} and min2
h=1{verchd2

}.
However, when they calculate the weight of e〈verc1d1

, verc3d4
〉, they did it again,

even though they calculated them while calculating the weight of e〈verc1d1
, verc3d4

〉.
We can firstly calculate the weight of e〈verc1d1

, verc3d4
〉 and then calculate the

edges with left endpoint verc1d1
and arbitrary right endpoint. So we can utilize

the values of the nodes that the path passes from verc1d1
to verc3d4

. In this paper,
we find a way to reduce calculation redundancies so as to decrease the time
complexity.

Definition 3 If the left endpoint of one edge and the left endpoint of another
edge are the same, we define the two edges are the SameClassification (Abbr.
for SClass). Formulation:

SClass =

⎧
⎪⎪⎨

⎪⎪⎩

all edges whose the left endpoints are the same

and right endpoints are arbitrary, in other words,

e〈vercjdi
, ver

c
j
′

d
i
′ 〉 ∼= e〈vercjdi

, ver
c
j
′′

d
i
′′ 〉 ∩

(
(di′ �= di′′ ) or

(
cj′ �= cj′′

))

(5)
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Fig. 6. CTG for three datasets with two cloud service providers

Specially, in the SameClassification, there is a longest edge whose right end-
point is the end node.
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To avoid the repeated calculations, among the edges in the SClass, we only
calculate the longest edge, denoted as e〈vercjdi

, ver
cm+1
dn+1

〉(i ∈ {
1, 2, . . . , n

}
, j ∈

{
1, 2, . . . ,m

}
).

Hence, we can directly utilize the calculated values of vertices that the longest
path passed to set the weight of the edges in the SClass.

After calculating weight of the longest path corresponding to e〈vercjdi
,

ver
cm+1
dn+1

〉, we set weight of the edge in the SClass by rules.

(1) The right endpoint is the end node. a. The left endpoint is next to the end
node. The weight of the edge is zero. b. The left endpoint is not next to the
end node. The weight of the edge is the sum of the values of the vertices
that the path passed.

(2) The right endpoint is not the end node. a. The left endpoint is next to
the right endpoint. The weight of the edge is the storage cost of the right
endpoint. b. The left endpoint is not next to the right endpoint. The weight
of the edge is the sum of the values of the storage cost of the right endpoint
and the values of the vertices that the path passed.

4.2 Detailed Algorithm

We list the detailed steps, as follows:

Step 1: Adding vertices, which is the same as the above Step 1 in the Sect. 3.
Step 2: Set weight of edges.
Step 2.1: Calculate the value of the next vertice for next iteration (line 5–7);
Step 2.2: Calculate the values of the vertices that the edge passes from the vertice
with value of minm

h=1{verchdi+1
} to the ver

cm+1
dn+1

(line 8–10);
Step 3: Create edge and set weight to the edge (line 11–27);
Step 4: Find the shortest path of the CTG (line 28).

Based on the analysis, we demonstrate the pseudo code and make the time
complexity analysis, as follows.

From Fig. 7, we can see that Step 1 is demonstrated on line 1–4, where we
need to create m ∗ n vertices. Step 2 is demonstrated on line 5–10. In line 5–7,
we calculated the values of m adjacent vertices. In line 8–10, we calculated the
most m∗n values of vertices that the path passed from verckdi+1

to the end vertice
ver

cm+1
dn+1

. Step 3 is demonstrated on line 11–27. In line 11–27, we set weight of
O(m2n2) edges. The path corresponding to edge passes m*n vertices at most.
In conclusion, the time complexity of this algorithm is O

(
m3n3

)
, compared

to O
(
m4n3

)
of Yuan, obviously decreased. Also, the space complexity of this

algorithm is O
(
m2n2

)
same as that of Yuan.
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Fig. 7. Pseudo code of improved algorithm
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5 Conclusions and Future Work

In this paper, we have designed a pseudo algorithm with O
(
m3n3

)
for the linear

workflow in multiple clouds, which improves upon the best known exited algo-
rithm. Looking forward to future, it is more important and interesting to design
more efficient algorithms for parallel intermediate datasets storage problem in
multiple clouds.

Acknowledgement. The author thanks reviewers for their constructive suggestions.
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Abstract. Subgraph reconfiguration is a family of problems focus-
ing on the reachability of the solution space in which feasible solutions
are subgraphs, represented either as sets of vertices or sets of edges, sat-
isfying a prescribed graph structure property. Although there has been
previous work that can be categorized as subgraph reconfiguration,
most of the related results appear under the name of the property under
consideration; for example, independent set, clique, and matching. In
this paper, we systematically clarify the complexity status of subgraph
reconfiguration with respect to graph structure properties.

1 Introduction

Combinatorial reconfiguration [5], [4], [10] studies the reachability/connectivity
of the solution space formed by feasible solutions of an instance of a search
problem. More specifically, consider a graph such that each node in the graph
represents a feasible solution to an instance of a search problem P , and there is
an edge between nodes representing any two feasible solutions that are “adja-
cent,” according to a prescribed reconfiguration rule A; such a graph is called the
reconfiguration graph for P and A. In the reachability problem for P and A, we
are given source and target solutions to P , and the goal is to determine whether
or not there is a path between the two corresponding nodes in the reconfiguration
graph for P and A. We call a desired path a reconfiguration sequence between
source and target solutions, where a reconfiguration step from one solution to
another corresponds to an edge in the path.
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Table 1. Subgraph representations and variants

Subgraph representations Variant names Known reachability problems

Edge subset Edge Spanning tree [5]

Matching [5,9], and b-matching [9]

Vertex subset Induced Clique [6]

Independent set [5,7]

Induced forest [8]

Induced bipartite [8]

Induced tree [11]

Spanning Clique [6]

Es = E0 E1 E2
E3 = Et

Fig. 1. A reconfiguration sequence 〈E0, E1, E2, E3〉 in the edge variant under the TJ
rule (also under the TS rule) with the property “a graph is a path,” where the edges
forming solutions are depicted by thick lines.

1.1 Subgraph Reconfiguration

In this paper, we use the term subgraph reconfiguration to describe a family
of reachability problems that take subgraphs (more accurately, vertex subsets
or edge subsets of a given graph) as feasible solutions. Each of the individual
problems in the family can be defined by specifying the node set and the edge set
of a reconfiguration graph, as follows. (We use the terms node for reconfiguration
graphs and vertex for input graphs.)

Nodes of a Reconfiguration Graph. The set of feasible solutions (i.e., sub-
graphs) can be defined in terms of a specified graph structure property Π which
subgraphs must satisfy; for example, “a graph is a tree,” “a graph is edgeless
(an independent set),” and so on. By the choice of how to represent subgraphs,
each specific problem in the family can be categorized into one of three variants.
(See also Table 1.) If a subgraph is represented as an edge subset, which we will
call the edge variant, then the subgraph formed (induced) by the edge subset
must satisfy Π. For example, Fig. 1 illustrates four subgraphs represented as
edge subsets, where Π is “a graph is a path.” On the other hand, if a subgraph
is represented as a vertex subset, we can opt either to require that the subgraph
induced by the vertex subset satisfies Π or that the subgraph induced by the ver-
tex subset contains at least one spanning subgraph that satisfies Π; we will refer
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Vs = V0 V4 = VtV1 V2 V3

(a) Induced variant

Vs = V0 V2 = VtV1

(b) Spanning variant
ʹ ʹ ʹ

Fig. 2. Reconfiguration sequences 〈V0, V1, V2, V3, V4〉 in the induced variant under the
TJ rule and 〈V ′

0 , V ′
1 , V ′

2 〉 in the spanning variant under the TJ rule with the property “a
graph is a path,” where the vertices forming solutions are depicted by colored circles,
and the subgraphs satisfying the property by thick lines.

to these as the induced variant and spanning variant, respectively. For example,
if Π is “a graph is a path,” then in the induced variant, the vertex subset must
induce a path, whereas in the spanning variant, the vertex subset is feasible if
its induced subgraph contains at least one Hamiltonian path. Figure 2 illustrates
feasible vertex subsets of the induced variant and spanning variant. In the figure,
the vertex subset V ′

1 is feasible in the spanning variant, but is not feasible in the
induced variant, because it contains a spanning path but does not induce a path.
As can be seen by this simple example, in the spanning variant, we need to pay
attention to the additional complexity of finding a spanning subgraph and the
complications resulting from the fact that the subgraph induced by the vertex
subset may contain more than one spanning subgraph which satisfies Π.

Edges of a Reconfiguration Graph. Since we represent a feasible solution
by a set of vertices (or edges) in any variant, we can consider that tokens are
placed on each vertex (resp., edge) in the feasible solution. Then, in this paper,
we mainly deal with the two well-known reconfiguration rules, called the token-
jumping (TJ) [7] and token-sliding (TS) rules [2,3,7]. In the former, a token can
move to any other vertex (edge) in a given graph, whereas in the latter it can
move only to an adjacent vertex (adjacent edge, that is sharing a common ver-
tex.) For example, Figs. 1 and 2 illustrate reconfiguration sequences under the TJ
rule for each variant. Note that the sequence in Fig. 1 can also be considered as a
sequence under the TS rule. In the reconfiguration graph, two nodes are adjacent
if and only if one of the two corresponding solutions can be obtained from the
other one by a single move of one token that follows the specified reconfiguration
rule. Therefore, all nodes in a connected component of the reconfiguration graph
represent subgraphs having the same number of vertices (edges).
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We note in passing that since in most cases we wish to retain the same number
of vertices and/or edges, we rarely use the token-addition-and-removal (TAR)
rule [5,7], where we can add or remove a single token at a time, for subgraph
reconfiguration problems.

1.2 Previous Work

Although there has been previous work that can be categorized as subgraph
reconfiguration, most of the related results appear under the name of the
property Π under consideration. Accordingly, we can view reconfiguration of
independent sets [5,7] as the induced variant of subgraph reconfiguration
such that the property Π is “a graph is edgeless.” Other examples can be found
in Table 1. We here explain only known results which are directly related to our
contributions.

Reconfiguration of cliques can be seen as both the spanning and the induced
variant; the problem is PSPACE-complete under any rule, even when restricted
to perfect graphs [6]. Indeed, for this problem, the rules TAR, TJ, and TS have all
been shown to be equivalent from the viewpoint of polynomial-time solvability.
It is also known that reconfiguration of cliques can be solved in polynomial time
for several well-known graph classes [6].

Wasa et al. [11] considered the induced variant under the TJ and TS rules
with the property Π being “a graph is a tree.” They showed that this variant
under each of the TJ and TS rules is PSPACE-complete, and is W[1]-hard when
parameterized by both the size of a solution and the length of a reconfiguration
sequence. They also gave a fixed-parameter algorithm when parameterized by
both the size of a solution and the maximum degree of an input graph, under
both the TJ and TS rules. In closely related work, Mouawad et al. [8] considered
the induced variants of subgraph reconfiguration under the TAR rule with
the properties Π being either “a graph is a forest” or “a graph is bipartite.”
They showed that these variants are W[1]-hard when parameterized by the size
of a solution plus the length of a reconfiguration sequence.

1.3 Our Contributions

In this paper, we study the complexity of subgraph reconfiguration under
the TJ and TS rules. (Our results are summarized in Table 2, together with
known results, where an (i, j)-biclique is a complete bipartite graph with the
bipartition of i vertices and j vertices.) As mentioned above, because we consider
the TJ and TS rules, it suffices to deal with subgraphs having the same number
of vertices or edges. Subgraphs of the same size may be isomorphic for certain
properties Π, such as “a graph is a path” and “a graph is a clique,” because
there is only one choice of a path or a clique of a particular size. On the other
hand, for the property “a graph is a tree,” there are several choices of trees of a
particular size. (We will show an example in Sect. 3 with Fig. 3.)

As shown in Table 2, we systematically clarify the complexity of subgraph
reconfiguration for several fundamental graph properties. In particular, we
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show that the edge variant under the TJ rule is computationally intractable
for the property “a graph is a path” but tractable for the property “a graph
is a tree.” This implies that the computational (in)tractability does not follow
directly from the inclusion relationship of graph classes required as the properties
Π; one possible explanation is that the path property implies a specific graph,
whereas the tree property allows several choices of trees, making the problem
easier.

We omitted proofs for the claims marked with (*) from this extended abstract
due to the page limitation.

Table 2. Previous and new results

Property Π Edge variant Induced variant Spanning variant

Path NP-hard (TJ)
[Theorem 2]

PSPACE-c. (TJ, TS)
[Theorems 7, 9]

PSPACE-c. (TJ, TS)
[Theorems 7, 9]

Cycle P (TJ, TS)
[Theorem 3]

PSPACE-c. (TJ, TS)
[Theorems 8, 9]

PSPACE-c. (TJ, TS)
[Theorems 8, 9]

Tree P (TJ)
[Theorem 6]

PSPACE-c. (TJ, TS)
[11]

P (TJ)
PSPACE-c. (TS)
Theorems [11], [10]

(i, j)-biclique P (TJ, TS)
[Theorem 5]

PSPACE-c. for i = j (TJ)
PSPACE-c. for fixed i (TJ)
[Corollary 1, Theorem 12]

NP-hard for i = j (TJ)
P for fixed i (TJ)
[Theorems 13, 14]

Clique P (TJ, TS)
[Theorem 4]

PSPACE-c. (TJ, TS) [6] PSPACE-c. (TJ, TS)
[6]

Diameter two PSPACE-c. (TS)
[Theorem 15]

PSPACE-c. (TS)
[Theorem 15]

Any property XP for solution
size (TJ, TS)
[Theorem 1]

XP for solution
size (TJ, TS)
[Theorem 1]

XP for solution
size (TJ, TS)
[Theorem 1]

1.4 Preliminaries

Although we assume throughout the paper that an input graph G is simple,
all our algorithms can be easily extended to graphs having multiple edges with
small modifications. We denote by (G,Vs, Vt) an instance of a spanning variant
or an induced variant whose input graph is G and source and target solutions are
vertex subsets Vs and Vt of G. Similarly, we denote by (G,Es, Et) an instance
of the edge variant. We may assume without loss of generality that |Vs| = |Vt|
holds for the spanning and induced variants, and |Es| = |Et| holds for the edge
variant; otherwise, the answer is clearly no since under both the TJ and TS rules,
all solutions must be of the same size.
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2 General Algorithm

In this section, we give a general XP algorithm when the size of a solution (that
is, the size of a vertex or edge subset that represents a subgraph) is taken as
the parameter. For notational convenience, we simply use element to represent
a vertex (or an edge) for the spanning and induced variants (resp., the edge
variant), and candidate to represent a set of elements (which does not necessarily
satisfy the property Π.) Furthermore, we define the size of a given graph as the
number of elements in the graph.

Theorem 1. Let Π be any graph structure property, and let f(k) denote the
time to check if a candidate of size k satisfies Π. Then, all of the spanning,
induced, and edge variants under the TJ or TS rules can be solved in time
O(n2kk + nkf(k)), where n is the size of a given graph and k is the size of
a source (and target) solution. Furthermore, a shortest reconfiguration sequence
between source and target solutions can be found in the same time bound, if it
exists.

Proof. Our claim is that the reconfiguration graph can be constructed in the
stated time. Since a given source solution is of size k, it suffices to deal only with
candidates of size exactly k. For a given graph, the total number of possible can-
didates of size k is O(nk). For each candidate, we can check in time f(k) whether
it satisfies Π. Therefore, we can construct the node set of the reconfiguration
graph in time O(nkf(k)). We then obtain the edge set of the reconfiguration
graph. Since there are O(nk) nodes in the reconfiguration graph, the number of
pairs of nodes is O(n2k). Since each node corresponds to a set of k elements, we
can check if two nodes are adjacent or not in O(k) time. Therefore, we can find
all pairs of adjacent nodes in time O(n2kk).

In this way, we can construct the reconfiguration graph in time O(n2kk +
nkf(k)) in total. The reconfiguration graph consists of O(nk) nodes and O(n2k)
edges. Therefore, by breadth-first search starting from the node representing a
given source solution, we can determine in time O(n2k) whether or not there
exists a reconfiguration sequence between two nodes representing the source and
target solutions. Notice that if a desired reconfiguration sequence exists, then
the breadth-first search finds a shortest one. ��

3 Edge Variants

In this section, we study the edge variant of subgraph reconfiguration for
the properties of being paths, cycles, cliques, bicliques, and trees.

We first consider the property “a graph is a path” under the TJ rule.

Theorem 2 (*). The edge variant of subgraph reconfiguration under the
TJ rule is NP-hard for the property “a graph is a path.”

We now consider the property “a graph is a cycle,” as follows.



434 T. Hanaka et al.

Theorem 3. The edge variant of subgraph reconfiguration under each of
the TJ and TS rules can be solved in linear time for the property “a graph is a
cycle.”

Proof. Let (G,Es, Et) be a given instance. We claim that the reconfiguration
graph is edgeless, in other words, no feasible solution can be transformed at
all. Then, the answer is yes if and only if Es = Et holds; this condition can be
checked in linear time.

Let E′ be any feasible solution of G, and consider a replacement of an edge
e− ∈ E′ with an edge e+ other than e−. Let u, v be the endpoints of e−. When
we remove e− from E′, the resulting edge subset E′ \ {e} forms a path whose
ends are u and v. Then, to ensure that the candidate forms a cycle, we can
choose only e− = uv as e+. This contradicts the assumption that e+ �= e−. ��

The same arguments hold for the property “a graph is a clique,” and we
obtain the following theorem. We note that, for this property, both induced and
spanning variants (i.e., when solutions are represented by vertex subsets) are
PSPACE-complete under any rule [6].

Theorem 4. The edge variant of subgraph reconfiguration under each of
the TJ and TS rules can be solved in linear time for the property “a graph is a
clique.”

We next consider the property “a graph is an (i, j)-biclique,” as follows.

Theorem 5. The edge variant of subgraph reconfiguration under each of
the TJ and TS rules can be solved in polynomial time for the property “a graph
is an (i, j)-biclique” for any pair of positive integers i and j.

Proof. We may assume without loss of generality that i ≤ j holds. We prove the
theorem in the following three cases: Case 1: i = 1 and j ≤ 2; Case 2: i, j ≥ 2;
and Case 3: i = 1 and j ≥ 3.

We first consider Case 1, which is the easiest case. In this case, any (1, j)-
biclique has at most two edges. Therefore, by Theorem 1 we can conclude that
this case is solvable in polynomial time.

We then consider Case 2. We show that (G,Es, Et) is a yes-instance if and
only if Es = Et holds. To do so, we claim that the reconfiguration graph is
edgeless, in other words, no feasible solution can be transformed at all. To see
this, because i, j ≥ 2, notice that the removal of any edge e in an (i, j)-biclique
results in a bipartite graph with the same bipartition of i vertices and j vertices.
Therefore, to obtain an (i, j)-biclique by adding a single edge, we must add back
the same edge e.

We finally deal with Case 3. Notice that a (1, j)-biclique is a star with j
leaves, and its center vertex is of degree j ≥ 3. Then, we claim that (G,Es, Et) is
a yes-instance if and only if the center vertices of stars represented by Es and Et

are the same. The if direction clearly holds, because we can always move edges
in Es \ Et into ones in Et \ Es one by one. We thus prove the only-if direction;
indeed, we prove the contrapositive, that is, the answer is no if the center vertices
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of stars represented by Es and Et are different. Consider such a star Ts formed
by Es. Since Ts has j (≥ 3) leaves, the removal of any edge in Es results in a star
having j − 1 (≥ 2) leaves. Therefore, to ensure that each intermediate solution
is a star with j leaves, we can add only an edge of G which is incident to the
center of Ts. Thus, we cannot change the center vertex. ��

In this way, we have proved Theorem 5. Although Case 1 takes non-linear
time, our algorithm can be easily improved (without using Theorem 1) so that
it runs in linear time.

We finally consider the property “a graph is a tree” under the TJ rule. As we
have mentioned in the introduction, for this property, there are several choices of
trees even of a particular size, and a reconfiguration sequence does not necessarily
consist of isomorphic trees (see Fig. 3). This “flexibility” of subgraphs may yield
the contrast between Theorem 2 for the path property and the following theorem
for the tree property.

Es = E0 E1 E2 = Et

Fig. 3. Reconfiguration sequence 〈E0, E1, E2〉 in the edge variant under the TJ rule
with the property “a graph is a tree.”

Theorem 6 (*). The edge variant of subgraph reconfiguration under the
TJ rule can be solved in linear time for the property “a graph is a tree.”

4 Induced and Spanning Variants

In this section, we deal with the induced and spanning variants where subgraphs
are represented as vertex subsets. Most of our results for these variants are
hardness results, except for Theorems 11 and 14.

4.1 Path and Cycle

In this subsection, we show that both induced and spanning variants under the
TJ or TS rules are PSPACE-complete for the properties “a graph is a path” and
“a graph is a cycle.” All proofs in this subsection make use of reductions that
employ almost identical constructions. Therefore, we describe the detailed proof
for only one case, and give proof sketches for the other cases.

We give polynomial-time reductions from the shortest path reconfigu-
ration problem, which can be seen as a subgraph reconfiguration prob-
lem, defined as follows [1]. For a simple, unweighted, and undirected graph G
and two distinct vertices s, t of G, shortest path reconfiguration is the
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induced (or spanning) variant of subgraph reconfiguration under the TJ
rule for the property “a graph is a shortest st-path.” Notice that there is no dif-
ference between the induced variant and the spanning variant for this property,
because any shortest path in a simple graph forms an induced subgraph. This
problem is known to be PSPACE-complete [1].

Let d be the (shortest) distance from s to t in G. For each i ∈ {0, 1, . . . , d},
we denote by Li ⊆ V (G) the set of vertices that lie on a shortest st-path at
distance i from s. Therefore, we have L0 = {s} and Ld = {t}. We call each Li a
layer. Observe that any shortest st-path contains exactly one vertex from each
layer, and we can assume without loss of generality that G has no vertex which
does not belong to any layer.

We first give the following theorem.

Theorem 7. For the property “a graph is a path,” the induced and spanning
variants of subgraph reconfiguration under the TJ rule are both PSPACE-
complete on bipartite graphs.

Proof. Observe that these variants are in PSPACE. Therefore, we construct a
polynomial-time reduction from shortest path reconfiguration.

Let (G,Vs, Vt) be an instance of shortest path reconfiguration. Since
any shortest st-path contains exactly one vertex from each layer, we can assume
without loss of generality that G has no edge joining two vertices in the same
layer, that is, each layer Li forms an independent set in G. Then, G is a bipartite
graph. From (G,Vs, Vt), we construct a corresponding instance (G′, V ′

s , V ′
t ) for

the induced and spanning variants; note that we use the same reduction for
both variants. Let G′ be the graph obtained from G by adding four new vertices
s1, s2, t1, t2 which are connected with four new edges s2s1, s1s, tt1, t1t2. Note
that G′ is also bipartite. We then set V ′

s = Vs ∪ {s1, s2, t1, t2} and V ′
t = Vt ∪

{s1, s2, t1, t2}. Since each of Vs and Vt induces a shortest st-path in G, each of V ′
s

and V ′
t is a feasible solution to both variants. This completes the polynomial-time

construction of the corresponding instance.
We now give the key lemma for proving the correctness of our reduction.

Lemma 1 (*). Let V ′ ⊆ V (G′) be any solution for the induced or spanning
variant which is reachable by a reconfiguration sequence from V ′

s (or V ′
t ) under

the TJ rule. Then, V ′ satisfies the following two conditions:

(a) s2, s1, s, t, t1, t2 ∈ V ′; and
(b) V ′ contains exactly one vertex from each layer of G.

Consider any vertex subset V ′′ ⊆ V (G′) which satisfies conditions (a) and
(b) of Lemma 1; note that V ′′ is not necessarily a feasible solution. Then, these
conditions ensure that V ′′ \ {s2, s1, t1, t2} forms a shortest st-path in G if and
only if the subgraph represented by V ′′ induces a path in G′. Thus, an instance
(G,Vs, Vt) of shortest path reconfiguration is a yes-instance if and only if
the corresponding instance (G′, V ′

s , V
′
t ) of the induced or spanning variant is a

yes-instance. This completes the proof of Theorem 7. ��
Similar arguments give the following theorem.
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Theorem 8. Both the induced and spanning variants of subgraph reconfig-
uration under the TJ rule are PSPACE-complete for the property “a graph is
a cycle.”

Proof. Our reduction is the same as in the proof of Theorem 7 except for the
following point: instead of adding four new vertices, we connect s and t by a
path of length three with two new vertices s1 and t1. Then, the same arguments
hold as the proof of Theorem 7. ��

4.2 Path and Cycle Under the TS Rule

We now consider the TS rule. Notice that, in the proofs of Theorems 7 and 8,
we exchange only vertices contained in the same layer. Since any shortest st-
path in a graph G contains exactly one vertex from each layer, we can assume
without loss of generality that each layer Li of G forms a clique. Then, the same
reductions work for the TS rule, and we obtain the following theorem.

Theorem 9. Both the induced and spanning variants of subgraph reconfig-
uration under the TS rule are PSPACE-complete for the properties “a graph
is a path” and “a graph is a cycle.”

4.3 Tree

Wasa et al. [11] showed that the induced variant under the TJ and TS rules
is PSPACE-complete for the property “a graph is a tree.” In this subsection,
we show that the spanning variant for this property is also PSPACE-complete
under the TS rule, while it is linear-time solvable under the TJ rule.

We first note that our proof of Theorem 9 yields the following theorem.

Theorem 10. The spanning variant of subgraph reconfiguration under
the TS rule is PSPACE-complete for the property “a graph is a tree.”

Proof. We claim that the same reduction as in Theorem 9 applies. Let V ′ ⊆
V (G′) be any solution which is reachable by a reconfiguration sequence from
V ′
s (or V ′

t ) under the TS rule, where (G′, V ′
s , V

′
t ) is the corresponding instance

for the spanning variant, as in the reduction. Then, the TS rule ensures that
s2, s1, s, t, t1, t2 ∈ V ′ holds, and V ′ contains exactly one vertex from each layer
of G. Therefore, any solution forms a path even for the property “a graph is a
tree,” and hence the theorem follows. ��

In contrast to Theorem 10, the spanning variant under the TJ rule is solvable
in linear time. We note that the reduction in Theorem 10 does not work under
the TJ rule, because the tokens on s2 and t2 can move (jump) and hence there
is no guarantee that a solution forms a path for the property “a graph is a tree.”

Theorem 11. The spanning variant of subgraph reconfiguration under
the TJ rule can be solved in linear time for the property “a graph is a tree.”



438 T. Hanaka et al.

Suppose that (G,Vs, Vt) is a given instance. We assume that |Vs| = |Vt| ≥ 2
holds; otherwise it is a trivial instance. Then, Theorem 11 can be obtained from
the following lemma.

Lemma 2 (*). (G,Vs, Vt) with |Vs| = |Vt| ≥ 2 is a yes-instance if and only if
Vs and Vt are contained in the same connected component of G.

4.4 Biclique

For the property “a graph is an (i, j)-biclique,” we show that the induced variant
under the TJ rule is PSPACE-complete even if i = j holds, or i is fixed. On the
other hand, the spanning variant under the TJ rule is NP-hard even if i = j
holds, while it is polynomial-time solvable when i is fixed.

We first give the following theorem for a fixed i ≥ 1.

Theorem 12. For the property “a graph is an (i, j)-biclique,” the induced vari-
ant of subgraph reconfiguration under the TJ rule is PSPACE-complete
even for any fixed integer i ≥ 1.

Proof. We give a polynomial-time reduction from the maximum independent
set reconfiguration problem [12], which can be seen as a subgraph recon-
figuration problem. The maximum independent set reconfiguration
problem is the induced variant for the property “a graph is edgeless” such that
two given independent sets are maximum. Note that, because we are given max-
imum independent sets, there is no difference between the TJ and TS rules for
this problem. This problem is known to be PSPACE-complete [12].

Suppose that (G,Vs, Vt) is an instance of maximum independent set
reconfiguration. We now construct a corresponding instance (G′, V ′

s , V
′
t ) of

the induced variant under the TJ rule for the property “a graph is an (i, j)-
biclique,” where i is any fixed positive integer. Let L and R be distinct sets
of new vertices such that |L| = i and |R| = 1. The vertex set of G′ is defined
as V (G′) = V (G) ∪ L ∪ R, and the edge set of G′ as E(G′) = E(G) ∪ {uv |
u ∈ V (G), v ∈ L} ∪ {vw | v ∈ L,w ∈ R}, that is, new edges are added so
that there are edges between each vertex of L and each vertex of V (G) ∪ R.
Let V ′

s = Vs ∪ L ∪ R and V ′
t = Vt ∪ L ∪ R. Since L, R, Vs and Vt are all

independent sets in G′, both V ′
s and V ′

t form (i, j)-bicliques, where i = |L| and
j = |Vs ∪ R| = |Vt ∪ R|. We have now completed the construction of our corre-
sponding instance, which can be accomplished in polynomial time. We omit the
correctness proof of our reduction from this extended abstract. ��

The corresponding instance (G′, V ′
s , V

′
t ) constructed in the proof of Theo-

rem 12 satisfies i = j if we set i = |Vs| + 1 = |Vt| + 1. Therefore, we can obtain
the following corollary.

Corollary 1. For the property “a graph is an (i, j)-biclique,” the induced vari-
ant of subgraph reconfiguration under the TJ rule is PSPACE-complete
even if i = j holds.
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We next give the following theorem.

Theorem 13 (*). For the property “a graph is an (i, j)-biclique,” the spanning
variant of subgraph reconfiguration under the TJ rule is NP-hard even if
i = j holds.

We now give a polynomial-time algorithm solving the spanning variant for a
fixed constant i ≥ 1.

Theorem 14 (*). For the property “a graph is an (i, j)-biclique,” the span-
ning variant of subgraph reconfiguration under the TJ rule is solvable in
polynomial time when i ≥ 1 is a fixed constant.

4.5 Diameter-Two Graph

In this subsection, we consider the property “a graph has diameter at most two.”
Note that the induced and spanning variants are the same for this property.

Theorem 15 (*). Both induced and spanning variants of subgraph recon-
figuration under the TS rule are PSPACE-complete for the property “a graph
has diameter at most two.”

5 Conclusions and Future Work

The work in this paper initiates a systematic study of subgraph reconfigura-
tion. Although we have identified graph structure properties which are harder
for the induced variant than the spanning variant, it remains to be seen whether
this pattern holds in general. For the general case, questions of the roles of diam-
eter and the number of subgraphs satisfying the property are worthy of further
investigation. Another obvious direction for further research is an investigation
into the fixed-parameter complexity of subgraph reconfiguration.

A natural extension of subgraph reconfiguration is the extension from
isomorphism of graph structure properties to other mappings, such as topological
minors.
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Abstract. In a recent breakthrough STOC 2015 paper, a continuous
diffusion process was considered on hypergraphs (which has been refined
in a recent JACM 2018 paper) to define a Laplacian operator, whose
spectral properties satisfy the celebrated Cheeger’s inequality. However,
one peculiar aspect of this diffusion process is that each hyperedge directs
flow only from vertices with the maximum density to those with the min-
imum density, while ignoring vertices having strict in-beween densities.

In this work, we consider a generalized diffusion process, in which ver-
tices in a hyperedge can act as mediators to receive flow from vertices
with maximum density and deliver flow to those with minimum density.
We show that the resulting Laplacian operator still has a second eigen-
value satisfying the Cheeger’s inequality.

Our generalized diffusion model shows that there is a family of oper-
ators whose spectral properties are related to hypergraph conductance,
and provides a powerful tool to enhance the development of spectral
hypergraph theory. Moreover, since every vertex can participate in the
new diffusion model at every instant, this can potentially have wider
practical applications.

1 Introduction

Spectral graph theory, and specifically, the well-known Cheeger’s inequality give
a relationship between the edge expansion properties of a graph and the eigen-
values of some appropriately defined matrix [1,2]. Loosely speaking, for a given
graph, its edge expansion or conductance gives a lower bound on the ratio of
the number of edges leaving a subset S of vertices to the sum of vertex degrees
in S. It is natural that graph conductance is studied in the context of graph
partitioning or clustering [10,12,13], whose goal is to minimize the weight of
edges crossing different clusters with respect to intra-cluster edges. The reader
can refer to the standard references [6,9] for an introduction to spectral graph
theory.

The full version of this paper is available online [3].
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Recent Generalization to Hypergraphs. In an edge-weighted hypergraph
H = (V,E,w), an edge e ∈ E is a non-empty subset of V . The edges have
positive weights indicated by w : E → R+. The weight of each vertex v ∈ V
is its weighted degree wv :=

∑
e∈E:v∈e we. A subset S of vertices has weight

w(S) :=
∑

v∈S wv, and the edges it cuts is ∂S := {e ∈ E : e intersects both S
and V \ S}.

The conductance of S ⊆ V is defined as φ(S) := w(∂S)
w(S) . The conductance of

H is defined as:

φH := min
∅�S�V

max{φ(S), φ(V \ S)}. (1)

Until recently, it was an open problem to define a spectral model for hyper-
graphs. In a breakthrough STOC 2015 paper, Louis [11] considered a continuous
diffusion process on hypergraphs (which has been refined in a recent JACM
paper [4]), and defined an operator Lwf := −df

dt , where f ∈ R
V is some appro-

priate vector associated with the diffusion process. As in classical spectral graph
theory, Lw has non-negative eigenvalues, and the all-ones vector 1 is an eigen-
vector with eigenvalue 0. Moreover, the operator Lw has a second eigenvalue γ2,
and the Cheeger’s inequality can be recovered1 for hypergraphs:

γ2
2

≤ φH ≤ 2
√

γ2.

Limitation of the Existing Diffusion Model [4,11]. Suppose at some
instant, each vertex has some measure that is given by a measure vector
ϕ ∈ R

V . A corresponding density vector f ∈ R
V is defined by fu := ϕu

wu
,

for each u ∈ V . Then, at this instant, each edge e ∈ E will cause mea-
sure to flow from vertices Se(f) := argmaxs∈efs having the maximum den-
sity to vertices Ie(f) := argmini∈efi having the minimum density, at a rate of
we ·maxs,i∈e(fs −fi). Observe that there can be more than one vertex achieving
the maximum or the minimum density in an edge, and a vertex can be involved
with multiple number of edges. As shown in [4], it is non-trivial to determine
the net rate of incoming measure for each vertex.

One peculiar aspect of this diffusion process is that each edge e only concerns
its vertices having the maximum or the minimum density, and ignores the vertices
having strict in-between densities. Even though this diffusion process leads to
a theoretical treatment of spectral hypergraph properties, its practical use is
somehow limited, because it would be considered more natural if vertices having
intermediate densities in an edge also take part in the diffusion process.

For instance, in a recent work on semi-supervised learning on hyper-
graphs [15], the diffusion operator is used to construct an update vector that
changes only the solution values of vertices attaining the maximum or the min-
imum in hyperedges. Therefore, we consider the following open problem in this
work:

1 In fact, as shown in the full version [3], a stronger upper bound holds: φH ≤ √
2γ2.
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Is there a diffusion process on hypergraphs that involves all vertices in every
edge at every instant such that the resulting operator still retains desirable spec-
tral properties?

1.1 Our Contribution and Results

Generalized Diffusion Process with Mediators. We consider a diffusion
process where for each edge e, a vertex j ∈ e can act as a mediator that receives
flow from vertices in Se(f) and delivers flow to Ie(f). Formally, we denote [e] :=
e∪{0}, where 0 is a special index that does not refer to any vertex. Each edge e
is equipped with non-negative constants (βe

j : j ∈ [e]) such that
∑

j∈[e] β
e
j = 1.

Intuitively, for j = 0, βe
0 refers to the effect of flow going directly from Se(f)

to Ie(f); for each vertex j ∈ e, βe
j refers to the significance of j as a mediator

between Se(f) and Ie(f). The complete description of the diffusion rules is in
Definition 1. Here are some interesting special cases captured by the new diffusion
model.

– For each e ∈ E, βe
0 = 1. This is the existing model in [4,11].

– For each e ∈ E, there is some je ∈ e such that βe
je

= 1, i.e., each edge has
one special vertex that acts as its mediator who regulates all flow within the
edge.

– For each e ∈ E, for each j ∈ e, βe
j = 1

|e| , i.e., every vertex in an edge are
equally important as mediators.

Theorem 1 (Recovering Cheeger’s Inequality via Diffusion Process
with Mediators). Given a hypergraph H = (V,E,w) and mediator constants
(βe

j : e ∈ E, j ∈ [e]), the diffusion process in Definition 1 defines an operator
Lwf := −df

dt that has a second eigenvalue γ2 satisfying γ2
2 ≤ φH ≤ 2

√
γ2, where

φH is the hypergraph conductance defined in (1).

Impacts of New Diffusion Model. Our generalized diffusion model shows
that there is a family of operators whose spectral properties are related to hyper-
graph conductance. On the theoretical aspect, this provides a powerful tool to
enhance the development of spectral hypergraph theory.

On the practical aspect, as mentioned earlier, in the context of semi-
supervised learning [8,15], the following minimization convex program is con-
sidered: the objective function is Q(f) := 〈f, Lwf〉w, and the f values of labeled
vertices are fixed. For an iterative method to solve the convex program, our new
diffusion model can possibly lead to an update vector that modifies every coor-
dinate in the current solution, thereby potentially improving the performance of
the solver.

1.2 Related Work

Other Works on Diffusion Process and Spectral Graph Theory. Apart from
the most related aforementioned works [4,11] that we have already mentioned,
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similar diffusion models (without mediators) have been considered for directed
normal graphs [14] and directed hypergraphs [5] to define operators whose spec-
tral properties are analyzed.

2 Preliminaries

We consider an edge-weighted hypergraph H = (V,E,w). Without loss of gen-
erality, we assume that the weight wi :=

∑
e∈E:i∈e we of each vertex i ∈ V is

positive, since any vertex with zero weight can be removed. We use W ∈ R
V ×V

to denote the diagonal matrix whose (i, i)-th entry is the vertex weight wi; we
let In denote the identity matrix.

We use R
V to denote the set of column vectors. Given f ∈ R

V , we use fu or
f(u) to indicate the coordinate corresponding to u ∈ V . We use AT to denote
the transpose of a matrix A.

We use 1 ∈ R
V to denote the vector having 1 in every coordinate. For a

vector x ∈ R
V , we define its support as the set of coordinates at which x is

non-zero, i.e. supp(x) := {i : xi 
= 0}.
We use χS ∈ {0, 1}V to denote the indicator vector of the set S ⊂ V , i.e.,

χS(v) = 1 iff v ∈ S.
Recall that the conductance φH of a hypergraph H is defined in (1). We drop

the subscript whenever the hypergraph is clear from the context.

Generalized Quadratic Form. For each edge e ∈ E, we denote [e] := e ∪
{0}, where 0 is a special index that does not correspond to any vertex. Then,
each edge e is associated with non-negative constants (βe

j : j ∈ [e]) such that
∑

j∈[e] β
e
j = 1. The generalized quadratic form is defined for each f ∈ R

V as:

Q(f) :=
∑

e∈E we{βe
0 maxs,i∈e (fs − fi)

2

+
∑

j∈e βe
j [(maxs∈e fs − fj)2 + (fj − mini∈e fi)2]}.

For each non-zero f ∈ R
V , its discrepancy ratio is defined as Dw(f) :=

Q(f)∑
u∈V wuf2

u
.

Remark. Observe that for each S ⊆ V , the corresponding indicator vector χ(S) ∈
{0, 1}V satisfies Q(χ(S)) = w(∂S). Hence, we have Dw(χ(S)) = φ(S).

Special Case. We denote Q0(f) :=
∑

e∈E we maxs,i∈e (fs − fi)
2 for the case

when βe
0 = 1 for all e, which was considered in [4]. As we shall see later, for

j ∈ e, the weight βe
j denotes the significance of vertex j as a “mediator” in the

diffusion process to direct measure from vertices of maximum density to those
with minimum density. As in [4], we consider three isomorphic spaces as follows.

Density Space. This is the space associated with the quadratic form Q. For
f, g ∈ R

V , the inner product is defined as 〈f, g〉w := fTWg, and the associated
norm is ‖f‖w :=

√〈f, f〉w. We use f ⊥w g to denote 〈f, g〉w = 0.

Normalized Space. Given f ∈ R
V in the density space, the corresponding

vector in the normalized space is x := W
1
2 f . The normalized discrepancy ratio

is D(x) := Dw(W− 1
2 x) = Dw(f).
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In the normalized space, the usual �2 inner product and norm are used.
Observe that if x and y are the corresponding normalized vectors for f and g in
the density space, then 〈x, y〉 = 〈f, g〉w.

Towards Cheeger’s Inquality. Using the inequality a2 +b2 ≤ (a+b)2 ≤ 2(a2 +b2)
for non-negative a and b, we conclude that Q(f) ≤ Q0(f) ≤ 2Q(f) for all f ∈ R

V .
This immediately gives a partial result of Theorem 1.

Lemma 1 (Cheeger’s Inequality for Quadratic Form). Suppose γ2 :=
min0 �=f⊥w1

Q(f)
‖f‖2

w
. Then, we have γ2

2 ≤ φH ≤ 2
√

γ2, where φH is the hypergraph
conductance defined in (1).

Proof. Denote γ0
2 := min0 �=f⊥w1

Q0(f)
‖f‖2

w
. Then, the result from [4] and an improved

upper bound in the full version [3] give: γ0
2
2 ≤ φH ≤

√
2γ0

2 . Finally, Q ≤ Q0 ≤ 2Q
implies that γ2 ≤ γ0

2 ≤ 2γ2. Hence, the result follows. ��

Goal of This Paper. In view of Lemma 1, the most technical part of the paper
is to define an operator2 Lw : RV → R

V such that 〈f, Lwf〉w = Q(f), and show
that γ2 defined in Lemma 1 is indeed an eigenvalue of Lw. To achieve this, we
shall consider a diffusion process in the following measure space.

Measure Space. Given a density vector f ∈ R
V , multiplying each coordinate

with its corresponding weight gives the measure vector ϕ := Wf . Observe that a
vector in the measure space can have negative coordinates. We do not consider
inner product explicitly in this space, and so there is no special notation for it.

Transformation between Different Spaces. We use the Roman letter f for
vectors in the density space, x for vectors in the normalized space, and Greek
letter ϕ for vectors in the measure space. Observe that an operator defined on
one space induces operators on the other two spaces. For instance, if L is an
operator defined on the measure space, then Lw := W−1LW is the corresponding
operator on the density space and L := W− 1

2 LW
1
2 is the one on the normalized

space. Moreover, all three operators have the same eigenvalues. Recall that the
Rayleigh quotients are defined as Rw(f) := 〈f,Lwf〉w

〈f,f〉w and R(x) := 〈x,Lx〉
〈x,x〉 . For

W
1
2 f = x, we have Rw(f) = R(x).

3 Diffusion Process with Mediators

Intuition. Given an edge-weighted hypergraph H = (V,E,w), suppose at some
instant, each vertex has some measure given by the vector ϕ ∈ R

V , whose
corresponding density vector is f = W−1ϕ. The idea of a diffusion process is that
within each edge e ∈ E, measure should flow from vertices with higher densities
to those with lower densities, and the rate of flow has a positive correlation with

2 In the literature, the weighted Laplacian is actually WLw in our notation. Hence, to
avoid confusion, we restrict the term Laplacian to the normalized space.
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the difference in densities and the strength of the edge e given by we. If the
diffusion process is well-defined, then an operator on the density space can be
defined as Lwf := −df

dt . This induces the Laplacian operator L := W
1
2 LwW

− 1
2

on the normalized space.
In previous work [4], within an edge, measure only flows from vertices

Se(f) := argmaxs∈efs ⊆ e having the maximum density to those Ie(f) :=
argmini∈efi having minimum densities, where the rate of flow is we ·maxs,i∈e(fs−
fi). If all fu’s for an edge e are equal, then we use the convention that
Ie(f) = Se(f) = e. Note that vertices j ∈ e \ (Se(f) ∪ Ie(f)) with strict in-
between densities do not participate due to edge e at this instant.

Generalized Diffusion Process with Mediators. In some applications as
mentioned in Sect. 1, it might be more natural if every vertex in an edge e plays
some role in diverting flow from Se(f) to Ie(f). In our new diffusion model, each
edge e is associated with constants (βe

j : j ∈ [e]) such that
∑

j∈[e] β
e
j = 1.

Here, 0 is a special index and the parameter βe
0 corresponds to the significance

of measure flowing directly from Se(f) to Ie(f). For j ∈ e, βe
j indicates the

significance of vertex j as a “mediator” to receive measure from Se(f) and deliver
measure to Ie(f). The formal rules are given as follows.

Definition 1 (Rules of Diffusion Process). Suppose at some instant the
system is in a state given by the density vector f ∈ R

V , with measure vector
ϕ = Wf . Then, at this instant, measure is transferred between vertices according
to the following rules. For u ∈ e and j ∈ [e], the pair (e, j) imposes some rules on
the diffusion process; let ϕ′

u(e, j) be the net rate of measure flowing into vertex u
due to the pair (e, j).

R(0) For each vertex u ∈ V , the density changes according to the net rate of
incoming measure divided by its weight:

wu
dfu

dt
= ϕ′

u :=
∑

e∈E:u∈e

∑

j∈[e]
ϕ′

u(e, j).

R(1) We have ϕ′
u(e, j) < 0 and u 
= j implies that u ∈ Se(f).

Similarly, ϕ′
u(e, j) > 0 and u 
= j implies that u ∈ Ie(f).

R(2) Each edge e ∈ E and j ∈ [e], the rates of flow satisfy the following.
For j = 0, the rate of flow from Se(f) to Ie(f) due to (e, 0) is:

−
∑

u∈Se(f)
ϕ′

u(e, 0) = we · βe
0 · maxs,i∈e(fs − fi) =

∑

u∈Ie(f)
ϕ′

u(e, 0).

For j ∈ e, the rate of flow from Se(f) to j due to (e, j) is:

−
∑

u∈Se(f)
ϕ′

u(e, j) = we · βe
j · (maxs∈e fs − fj);

the rate of flow from j to Ie(f) due to (e, j) is:
∑

u∈Ie(f)
ϕ′

u(e, j) = we · βe
j · (fj − mini∈e fi).
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Then the net rate of flow received by j due to (e, j) is:

we · βe
j · (maxs∈e fs + mini∈e fi − 2fj) = ϕ′

j(e, j).

Existence of Diffusion Process. The diffusion rules in Definition 1 are much
more complicated than those in [4]. It is not immediately obvious whether such
a process is well-defined. However, the techniques in [5] can be employed. Intu-
itively, by repeatedly applying the procedure described in Sect. 4, all higher-order
derivatives of the density vector can be determined, which induce an equivalence
relation on V such that vertices in the same equivalence class will have the same
density in infinitesimal time. This means the hypergraph can be reduced to a
simple graph, in which the diffusion process is known to be well-defined. How-
ever, to argue this formally is non-trivial, and the reader can refer to the details
in [5].

As in [4], if we define an operator using the diffusion process in Definition 1,
then the resulting Rayleigh quotient coincides with the discrepancy ratio. The
proof of the following lemma is deferred to the full version [3].

Lemma 2 (Rayleigh Quotient Coincides with Discrepancy Ratio).
Suppose Lw on the density space is defined as Lwf := −df

dt by the rules in Defi-
nition 1. Then, the Rayleigh quotient associated with Lw satisfies that for any f
in the density space, Rw(f) = Dw(f). By considering the isomorphic normalized
space, we have for each x, R(x) = D(x).

4 Computing the First Order Derivative in the Diffusion
Process

In Sect. 3, we define a diffusion process, whose purpose is to define an operator
Lwf := −df

dt , where f ∈ R
V is in the density space. In this section, we show

that the diffusion rules uniquely determine the first order derivative vector df
dt ;

moreover, we give an algorithm to compute it.

Infinitesimal Considerations. In Definition 1, if a vertex u is losing measure
due to the pair (e, j) and u 
= j, then u must be in Se(f). However, u must also
continue to stay in Se(f) in infinitesimal time; otherwise, if u is about to leave
Se(f), then u should no longer lose measure due to (e, j). Hence, the vertex u
should have the maximum first-order derivative of fu among vertices in Se(f).
A similar rule should hold when u is gaining measure due to (e, j) and u 
= j.
This is formalized as the first-order variant of (R1):

Rule (R3) First-Order Derivative Constraints:
If ϕ′

u(e, j) < 0 and u 
= j, then u ∈ argmaxs∈Se(f)
dfs

dt .
If ϕ′

u(e, j) > 0 and u 
= j, then u ∈ argmini∈Ie(f)
dfi

dt .
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Considering Each Equivalence Class U Independently. As in [4], we con-
sider the equivalence relation induced by f ∈ R

V , where two vertices u and v
are in the same equivalence class iff fu = fv. For vertices in some equivalence
class U , their current f values are the same, but their values could be about to
be separated because their first derivatives might be different.

Subset with the Largest First Derivative: Densest Subset. Suppose X ⊆
U are the vertices having the largest derivative in U . Then, these vertices should
receive or contribute rates of measure in each of the following cases.

1. The subset X receives measure due to edges IX := {e ∈ E : Ie(f) ⊆ X},
because the corresponding vertices in X continue to have minimum f values
in these edges; we let cI

e ≥ 0 be the rate of measure received by Ie(f) due to
(e, j) for j /∈ Ie(f).

2. The subset X contributes measure due to edges SX := {e ∈ E : Se(f) ∩ X 
=
∅}, because the corresponding vertices in X continue to have maximum f
values in these edges; we let cS

e ≥ 0 be the rate of measure delivered by Se(f)
due to (e, j) for j /∈ Se(f).

3. Each j ∈ X receives or contributes measure due to all (e, j)’s such that e ∈ E
and j ∈ e; we let cj ∈ R be the net rate of measure received by vertex j due
to (e, j) for all e ∈ E such that j ∈ e.

Hence, the net rate of measure received by X is

C(X) :=
∑

e∈IX
cI
e −

∑

e∈SX

cS
e +

∑

j∈X
cj .

Therefore, given an instance (U, IU , SU ), the problem is to find a maximal
subset P ⊆ U with the largest density δ(P ) := C(P )

w(P ) , which will be the df
dt values

for the vertices in P . For the remaining vertices in U , the sub-instance (U \P, IU \
IP , SU \SP ) is solved recursively. The procedure and the precise parameters are
given in Fig. 1. Efficient algorithms for this densest subset problem are described
in [4,7].

The next lemma shows that the procedure in Fig. 1 returns a vector r ∈ R
V

that coincides with the first-order derivative df
dt of the density vector obeying

rules (R0) to (R3). This implies that these rules uniquely determine the first-
order derivative. Given f ∈ R

V and r = df
dt , we denote rS(e) := maxu∈Se(f) ru

and rI(e) := minu∈Ie(f) ru.

Lemma 3 (Densest Subset Problem Determines First-Order Deria-
tive). Given a density vector f ∈ R

V , rules (R0) to (R3) uniquely determine
r = df

dt ∈ R
V , which can be found by the procedure described in Fig. 1. Moreover,∑

e∈E cI
e · rI(e) − ∑

e∈E cS
e · rS(e) +

∑
j∈V cj · rj =

∑
u∈V ϕ′

uru = ‖r‖2w.

Proof. Using the same approach as in [4], we consider each equivalence class U
in Fig. 1, where all vertices in a class have the same f values.

For each such equivalence class U ⊂ V , define IU := {e ∈ E : U ∩ Ie(f) 
= ∅},
SU := {e ∈ E : U ∩ Se(f) 
= ∅}. Notice that each e can only be in exactly one of
IU and SU .
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Given a hypergraph H = (V, E, w) and a vector f ∈ R
V in the density space, define

an equivalence relation on V such that u and v are in the same equivalence class iff
fu = fv. We consider each such equivalence class U ⊆ V and define the r = df

dt
values

for vertices in U as follows.

1. Denote EU := {e ∈ E : U ∩ [Ie(f) ∪ Se(f)] �= ∅}.
For e ∈ E, define
cIe := we · [βe

0 · maxs,i∈e(fs − fi) +
∑

j∈e βe
j · (fj − mini∈e fi)],

cSe := we · [βe
0 · maxs,i∈e(fs − fi) +

∑
j∈e βe

j · (maxs∈e fs − fj)];
for j ∈ V , define cj :=

∑
e∈E:j∈e βe

j · we · (maxs∈e fs +mini∈e fi − 2fj).
For X ⊆ U , define IX := {e ∈ EU : Ie(f) ⊆ X}, SX := {e ∈ EU : Se(f)∩X �= ∅}.
Denote C(X) :=

∑
e∈IX

cIe − ∑
e∈SX

cSe +
∑

j∈X cj and δ(X) := C(X)
w(X)

.
2. Find P ⊆ U such that δ(P ) is maximized. For all u ∈ P , set ru := δ(P ).
3. Recursively, find the r values for the remaining vertices in U ′ := U \ P using

EU′ := EU \ (IP ∪ SP ).

Fig. 1. Procedure to compute r = df
dt

Considering Each Equivalence Class U . Suppose T is the set of vertices
within U that have the maximum first-order derivative r = df

dt . It suffices to show
that T is the maximal densest subset in the densest subset instance (U, IU ∪SU )
defined in Fig. 1.

Because of rule (R3), the rate of net measure received by T is C(T ). Hence,
all vertices u ∈ T have ru = C(T )

w(T ) .
Next, suppose P is the maximal densest subset found in Fig. 1. Observe that

the net rate of measure entering P is at least C(P ). Hence, there exists some
vertex v ∈ P such that C(P )

w(P ) ≤ rv ≤ C(T )
w(T ) , where the last inequality follows from

the definition of T .
Since P is the maximal densest subset, it follows that in the above inequality,

actually all equalities hold and all vertices in P have the same r value. In general,
the maximal densest subset contains all densest subsets, and it follows that
T ⊆ P . Since all vertices in P have the maximum r value within U , we conclude
that P = T .

Recursive Argument. Hence, it follows that the set T can be uniquely identified
in Fig. 1 as the set of vertices having maximum r values, which is also the unique
maximal densest subset. Then, the argument can be applied recursively for the
smaller instance with U ′ := U \ T , IU ′ := IU \ IT , SU ′ := SU \ ST .

Claim.
∑

e∈E cI
e · rI(e) − ∑

e∈E cS
e · rS(e) +

∑
j∈V cj · rj =

∑
u∈V ϕ′

uru = ‖r‖2w.
Consider some T defined above with δ := δ(T ) = ru, for u ∈ T .
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Observe that
∑

u∈T
ϕ′

uru =
(∑

e∈IT
cI
e − ∑

e∈ST
cS
e +

∑
j∈T cj

)
· δ

=
∑

e∈IT
cI
e · mini∈Ieri −

∑

e∈ST

cS
e · maxs∈Se

rs +
∑

j∈T
cj · rj

where the last equality is due to rule (R3).
Observe that every u ∈ V will be in exactly one such T , and every e ∈ E will

be accounted for exactly once in each of IT and ST , ranging over all T ’s. Hence,
summing over all T ’s gives the result. ��

5 Spectral Properties of Laplacian

A classical result in spectral graph theory is that for a 2-graph whose
edge weights are given by the adjacency matrix A, the parameter γ2 :=
min

0 �=x⊥W
1
2 1

D(x) is an eigenvalue of the normalized Laplacian L := In −
W− 1

2 AW− 1
2 , where a corresponding minimizer x2 is an eigenvector of L. Observe

that γ2 is also an eigenvalue on the operator Lw := In − W−1A induced on the
density space.

In this section, we generalize the result to hypergraphs. Observe that any
result for the normalized space has an equivalent counterpart in the density
space, and vice versa.

Theorem 2 (Eigenvalue of Hypergraph Laplacian). For a hypergraph
with edge weights w, there exists a normalized Laplacian L such that the normal-
ized discrepancy ratio D(x) coincides with the corresponding Rayleigh quotient
R(x). Moreover, the parameter γ2 := min

0 �=x⊥W
1
2 1

D(x) is an eigenvalue of L,
where any minimizer x2 is a corresponding eigenvector.

Before proving Theorem2, we first consider the spectral properties of the
normalized Laplacian L induced by the diffusion process defined in Sect. 4.

Lemma 4 (First-Order Derivatives). Consider the diffusion process satis-
fying rules (R0) to (R3) on the measure space with ϕ ∈ R

V , which corresponds
to f = W−1ϕ in the density space. Suppose Lw is the induced operator on the
density space such that df

dt = −Lwf . Then, we have the following derivatives.

1. d‖f‖2
w

dt = −2〈f, Lwf〉w.
2. d〈f,Lwf〉w

dt = −2‖Lwf‖2w.
3. Suppose Rw(f) is the Rayleigh quotient with respect to the operator Lw on

the density space. Then, for f 
= 0, dRw(f)
dt = − 2

‖f‖4
w

· (‖f‖2w · ‖Lwf‖2w −
〈f, Lwf〉2w) ≤ 0, by the Cauchy-Schwarz inequality on the 〈·, ·〉w inner product,
where equality holds iff Lwf ∈ span(f).
By considering a transformation to the normalized space, for any x 
= 0,
dR(x)

dt ≤ 0, where equality holds iff Lx ∈ span(x).
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Proof. For the first statement, d‖f‖2
w

dt = 2〈f, df
dt 〉w = −2〈f, Lwf〉w.

For the second statement, from the proof of Lemma 2 we have
〈f, Lwf〉w =

∑
e∈E we{βe

0 maxs,i∈e (fs − fi)
2 +

∑
j∈e βe

j [(maxs∈e fs − fj)
2 +

(fj − mini∈e fi)
2]}.

Hence, by the Envelope Theorem,

d〈f,Lwf〉w
dt

= 2
∑

e∈E we

[
βe
0 maxs,i∈e (fs − fi)

(
maxs∈Se

dfs

dt − mini∈Ie
dfi

dt

)]

+
∑

j∈e βe
j (maxs∈e fs − fj)

(
maxs∈Se

dfs

dt − dfj

dt

)

+
∑

j∈e βe
j (fj − mini∈e fi)

(
dfj

dt − mini∈Ie
dfi

dt

)]

= 2
∑

e∈E we

{[
βe
0 maxs,i∈e (fs − fi) +

∑
j∈e βe

j (maxs∈e fs − fj)
]
maxs∈Se

dfs

dt

−
[
βe
0 maxs,i∈e (fs − fi) +

∑
j∈e βe

j (fj − mini∈e fi)
]
mini∈Ie

dfi

dt

+
∑

j∈e βe
j (2fj − maxs∈e fs − mini∈e fi)

dfj

dt

}
.

= 2
(∑

e∈E cI
e · maxs∈Se

rs − ∑
e∈E cS

e · maxi∈Ie ri − ∑
j∈V cj · rj

)

where cI
e, c

S
e , cj are defined in Fig. 1. From Lemma 3, this equals −2‖r‖2w =

−2‖Lwf‖2w.
Finally, for the third statement, we have d

dt
〈f,Lwf〉w

〈f,f〉w = 1
‖f‖4

w
(‖f‖2w · d〈f,Lwf〉w

dt −
〈f, Lwf〉w · d‖f‖2

w

dt ) = − 2
‖f‖4

w
·(‖f‖2w ·‖Lwf‖2w −〈f, Lwf〉2w), where the last equality

follows from the first two statements. ��
We next prove some properties of the normalized Laplacian L with respect

to orthogonal projection in the normalized space.

Lemma 5 (Laplacian and Orthogonal Projection). Suppose L is the nor-
malized Laplacian. Moreover, denote x1 := W

1
2 1, and let Π denote the orthog-

onal projection into the subspace that is orthogonal to x1. Then, for all x, we
have the following:

1. L(x) ⊥ x1,
2. 〈x,Lx〉 = 〈Πx,LΠx〉.
3. For all real numbers a and b, L(ax1 + bx) = bL(x).

Proof. For the first statement, observe that since the diffusion process is defined
on a closed system, the total measure given by

∑
u∈V ϕu does not change. There-

fore, 0 = 〈1, dϕ
dt 〉 = 〈W 1

2 1, dx
dt 〉, which implies that Lx = −dx

dt ⊥ x1.
For the second statement, observe that from Lemma 2, we have 〈x,Lx〉 =∑

e∈E we{βe
0 maxs,i∈e( xs√

ws
− xi√

wi
)2 +

∑
j∈e βe

j [(maxs∈e
xs√
ws

− xj√
wj

)2 + ( xj√
wj

−
mini∈e

xi√
wi

)2]} = 〈(x + αx1),L(x + αx1)〉, where the last equality holds for all
real numbers α. Observe that Πx = x + αx1, for some suitable real α.
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For the third statement, it is more convenient to consider transformation into
the density space f = W− 1

2 x. It suffices to show that Lw(a1 + bf) = bLw(f).
Observe that in the diffusion process, only pairwise difference in densities

among vertices matters. Hence, we immediately have Lw(a1 + bf) = Lw(bf).
For b ≥ 0, observe that all the rates are scaled by the same factor b. Hence,

we have Lw(bf) = bLw(f).
Finally, if we reverse the sign of every coordinate of f , then the roles of

Se(f) and Ie(f) are switched. Moreover, the direction of every component of the
measure flow is reversed with the same magnitude. Hence, Lw(−f) = −Lw(f),
and the result follows. ��
Proof of Theorem 2. This follows the same argument as in [4]. Suppose L is the
normalized Laplacian induced by the diffusion process in Lemma3. Let γ2 :=
min

0 �=x⊥W
1
2 1

R(x) be attained by some minimizer x2. We use the isomorphism

between the three spaces: W− 1
2 ϕ = x = W

1
2 f .

The third statement of Lemma 4 can be formulated in terms of the normalized
space, which states that dR(x)

dt ≤ 0, where equality holds iff Lx ∈ span(x).
We claim that dR(x2)

dt = 0. Otherwise, suppose dR(x2)
dt < 0. From Lemma 5,

we have dx
dt = −Lx ⊥ W

1
2 1. Hence, it follows that at this moment, the current

normalized vector is at position x2, and is moving towards the direction given
by x′ := dx

dt |x=x2 such that x′ ⊥ W
1
2 1, and dR(x)

dt |x=x2 < 0. Therefore, for
sufficiently small ε > 0, it follows that x′

2 := x2 + εx′ is a non-zero vector such
that x′

2 ⊥ W
1
2 1 and R(x′

2) < R(x2) = γ2, contradicting the definition of x2.
Hence, it follows that dR(x2)

dt = 0, which implies that Lx2 ∈ span(x2). Since
γ2 = R(x2) = 〈x2,Lx2〉

〈x2,x2〉 , it follows that Lx2 = γ2x2, as required. ��
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Abstract. Subgraph enumeration problems ask to output all subgraphs
of an input graph that belong to a specified graph class or satisfy a
given constraint. These problems have been widely studied in theoreti-
cal computer science. So far, many efficient enumeration algorithms for
the fundamental substructures such as spanning trees, cycles, and paths,
have been developed. This paper addresses the enumeration problem of
bipartite subgraphs. Even though bipartite graphs are quite fundamen-
tal and have numerous applications in both theory and practice, their
enumeration algorithms have not been intensively studied, to the best of
our knowledge. We propose the first non-trivial algorithms for enumer-
ating all bipartite subgraphs in a given graph. As the main results, we
develop two efficient algorithms: the one enumerates all bipartite induced
subgraphs of a graph with degeneracy k in O (k) time per solution. The
other enumerates all bipartite subgraphs in O (1) time per solution.

Keywords: Graph algorithms · Subgraph enumeration
Bipartite graphs · Constant delay · Binary partition method
Degeneracy

1 Introduction

A subgraph enumeration problem is, for given a graph G and a constraint R,
to output all subgraphs of G that satisfy R once for each and without duplica-
tion. An example is to enumerate all the trees in the given graph, and all the
subgraphs whose minimum degree is at least k. The complexity and polynomi-
ality of the subgraph enumeration have been intensively studied in theoretical
computer science in the terms of both output size sensitivity and input size sen-
sitivity. Compared to optimization approach, enumeration has an advantage on
exploring and investigating all possibilities and all aspects of the data, thus is
widely studied from a practical point of view, e.g. in Bioinformatics [1], machine
learning [18], and data mining [22,26]. We say that an enumeration algorithm
is efficient if the algorithm is output sensitive [11]. Especially, we say that A
runs in polynomial amortized time, if the total running time of an enumeration
algorithm A is O (N · poly(n)) time, where N is the number of solutions, n is
the size of the input, and poly is a polynomial function. That is, A enumerates
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 454–466, 2018.
https://doi.org/10.1007/978-3-319-94776-1_38
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all solutions in poly(n) time per solution. Such algorithms have been considered
to be efficient, and one of our research goals is to develop efficient enumeration
algorithms. So far, there have been studied enumeration algorithms for many
fundamental graph structures such as spanning trees [17,19], st-paths [7,17],
cycles [2,8,17], maximal cliques [3,6,15], minimal dominating sets [12], and so
on. See the comprehensive list in [23] of this area. Recently, Uno [21] developed
a technique for a fine-grained analysis of enumeration algorithms.

A bipartite graph which is a fundamental structure is a graph containing no
cycle of odd length, that is, whose vertex set can be partitioned into two disjoint
independent sets. Bipartite graphs widely appear in real-world graphs such as
itemset mining [22,26], chemical information [13], Bioinformatics [27], and so
on. Further, enumeration problems for matchings [9,10,20] and biclique [4,15]
in bipartite graphs are well studied. However, to the best of our knowledge, there
has been proposed no non-trivial enumeration algorithm for bipartite subgraphs.

In this paper, we propose efficient enumeration algorithms for bipartite
induced subgraphs and bipartite subgraphs. For enumerating both substruc-
tures, we employ a simple binary partition method and develop a data structure
for efficiently updating the candidates that are called child generators. Intuitively
speaking, child generators are vertices or edges such that adding them to a cur-
rent solution generates another solution. For bipartite induced subgraph, we look
at the degeneracy [14] of a graph. The degeneracy of a graph is the upper bound
of the minimum degree of any its subgraph, so the graph is sparse when the
degeneracy is small. It is widely considered as a sparsity measure [3,5,24,25].
There are several graph classes have constant degeneracies, e.g., forests, grid
graphs, planar graphs, bounded treewidth graphs, H-minor free graphs with
some fixed H, and so on [14]. In addition, Real-world graphs such as road net-
works, social networks, and internet networks are said to often have small degen-
eracies, or do so after removing a small part of vertices. Our algorithm utilizes
a good ordering on the vertices called a degeneracy ordering [16], that achieves
O (k) amortized time per solution, where k is the degeneracy of an input graph.
This implies that when we restrict the class of input graphs, such as planar
graphs, the algorithm runs in constant time per solution and is optimal in the
sense of time complexity. Next, for developing an algorithm for bipartite induced
subgraph, we show that we can avoid redundant edge additions and removal to
obtain a solution from another solution. As the main result, we give an optimal
enumeration algorithm, that is, the algorithm runs in constant time per solution.
These algorithms are quite simple, but by giving non trivial analysis, we show
the algorithms are efficient. These are the first non-trivial efficient enumeration
algorithms for bipartite subgraphs.

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge
set E = {e1, . . . , em} ⊆ V × V . An edge is denoted by e = (u, v). We say that u
and v are endpoints of e = (u, v), and u is adjacent to v if (u, v) ∈ E. When the
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graph is undirected, (u, v) = (v, u). Two edges are said to be adjacent to each
other if a vertex is an endpoint of both edges. The set of neighbors of v is the set
of vertices that are adjacent to v and is denoted by N(v). For any vertex subset
S of V , E[S] = E∩(S×S), that is, E[S] is the set of edges whose both endpoints
are in S. For any edge subset F of E, V [F ] = {v ∈ V | ∃e ∈ F (v ∈ e)}, that is,
V [F ] is the collection of endpoints of edges in F . The induced graph of G by S
is (S,E[S]) and is denoted by G[S]. G[F ] = (V [F ], F ) is a subgraph of G by F .
We denote by G \ S = G[V \ S]. Since G[S] (resp. G[F ]) is uniquely determined
by S (resp. F ), we identify S with G[S] (resp. F with G[F ]) if no confusion
arises.

We say that a sequence π = (v = w1, . . . , w� = u) of vertices in V is a path of
G between v and u if for each i = 1, . . . , � − 1, (wi, wi+1) ∈ E, and each vertex
in π appears exactly once. We denote by the length of a path the number of
edges in the path. π is a cycle if v = u and the length of π is at least three.
The distance dist (u, v) between u and v is the We say G is connected if there is
a path between any pair of vertices in G. G is bipartite if G has no cycle with
odd length. For a vertex subset S ⊆ V (resp. an edge subset F ⊆ E) such that
G[S] (resp. G[F ]) is bipartite, we say S (resp. F ) a bipartite vertex set (resp.
a bipartite edge set). For any bipartite vertex set S, if G[S] is connected, we
say S a connected bipartite vertex set. We also say a bipartite edge set F is a
connected bipartite edge set if G[F ] is connected. Let BV (G) and BE (G) be the
collection of connected bipartite vertex sets and connected bipartite edge sets,
respectively. We call BV (G) (resp. BE (G)) the solution space for Problem1
(resp. for Problem 2). Since we only focus on connected ones, we simply call a
connected bipartite vertex (resp. edge) set a bipartite vertex (resp. edge) set.
In what follows, we assume that G is connected and simple. We now define the
enumeration problems of this paper as follows:

Problem 1 (Bipartite induced subgraph enumeration). For given a graph G, out-
put all vertex sets in BV (G) without duplication.

Problem 2 (Bipartite subgraph enumeration). For given a graph G, output all
subgraphs in BE (G) without duplication.

3 Enumeration of Bipartite Induced Subgraphs

In this paper, we propose two enumeration algorithms for Problems 1 and 2,
and this section describes the algorithm for Problem 1. The pseudocode of the
algorithm is described in Algorithm 1. We employ binary partition method for
constructing the algorithms. The algorithm outputs the minimal solution to be
output, and partitions the set of remaining solutions to be output into two or
more disjoint subsets. Then, the algorithm recursively solves the problems for
each subset, by generating recursive calls. We call this dividing step excluding
recursive calls (Line 11 in Algorithm 1) an iteration.

For any pair X and Y of iterations, X is the parent of Y if Y is called from
X and Y is a child of X if X is the parent of Y .
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Algorithm 1. Enumeration algorithm based on binary method
1 Procedure Main(G = (V, E))
2 foreach v ∈ V do
3 Rec(G, {v} , N(v));
4 G ← G \ {v};

5 Subprocedure Rec(G, S,C (S, G))
// C (S, G): the set of child generators of G.

6 output(S);
7 while C (S, G) �= ∅ do
8 u ← the smallest child generator in C (S, G);
9 C (S, G) ← C (S, G) \ {u};

10 S′ ← S ∪ {u};
11 Rec(G, S′, ComputeChildGen(C (S, G) , u, G));
12 G ← G \ {u};

13 Subprocedure ComputeChildGen(C (S, G) , u, G)

// Compute the set of child generators by Lemma 3.

14 if u ∈ CL (S, G) then
15 C (S ∪ {u} , G) ← C (S, G) \ (CL (S, G) ∩ N(u));
16 else if u ∈ CR (S, G) then
17 C (S ∪ {u} , G) ← C (S, G) \ (CR (S, G) ∩ N(u));
18 C (S ∪ {u} , G) ← C (S ∪ {u} , G) ∪ Γ (S, u, G);
19 return C (S ∪ {v} , G);

For any bipartite vertex set S, we say that S′ is a child of S if there
exists a vertex u such that S′ = S ∪ {u}. A vertex v /∈ S is a child
generator of S for G if S ∪ {v} is a bipartite vertex set in G. That is,
the proposed algorithm enumerates all bipartite vertex sets by recursively
adding a child generator to a current bipartite vertex set S. We denote by
C (S,G) the set of child generators of S in G. Suppose that r is the small-
est vertex in S. Let L (S) = {u ∈ S | dist (u, r) mod 2 = 0} and R (S) =
{u ∈ S | dist (u, r) mod 2 = 1}. For any vertex v in G, any descendant iteration
of Rec(G, {v} , N(v)) does not output a bipartite vertex set including vertices
less than v. Hence, no vertex will never move to the other side in any descen-
dant bipartite vertex set. Let CL (S,G) = {u ∈ C (S,G) | u ∈ L (S ∪ {u})} and

Fig. 1. Example of the partitioning the solution space. Algorithm 1 recursively parti-
tions the solution space BV (G, S) into smaller disjoint solution spaces, according to
C (S, G) = {u1, . . . , u�}.
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CR (S,G) = {u ∈ C (S,G) | u ∈ R (S ∪ {u})}. Note that C (S,G) = CL (S,G) �
CR (S,G), where A � B is the disjoint union of A and B. We denote by
BV (G,S) =

{
S′ ∈ BV (G)

∣
∣ S ⊆ S′} the collection of bipartite vertex sets which

include S. Note that BV (G) = BV (G, ∅). From now on, we fix a graph G and
a bipartite vertex set S of G. By the following lemma, the algorithm divides
BV (G,S) according to C (S,G) (Fig. 1). For an edge u ∈ C (S,G), we define
G(S,≥ u) by G \ {v ∈ C (S,G) | v < u}.

Lemma 1. BV (G(S,≥ u), S ∪ {u})∩BV (G(S,≥ v), S ∪ {v}) = ∅ for any u 
= v
of C (S,G).

Lemma 2. BV (G,S) = {S} ∪ ⊔�
u∈C (S,G) BV (G(S,≥ u), S ∪ {u}).

Next, we consider the correctness of ComputeChildGen. For brevity, we intro-
duce some notations: Let u be a child generator in C (S,G). Γ (S, u,G) =
{w ∈ N(u) | w /∈ N [S]} is the set of vertices that are adjacent to only u in
S ∪ {u}. Note that C (S,G) ∩ Γ (S, u,G) = ∅. Δ(S,G, u) = CL (S,G) ∩ N [u]
if u ∈ CL (S,G); Δ(S,G, u) = CR (S,G) ∩ N [u] if u ∈ CR (S,G). Intu-
itively, Γ (S, u,G) and Δ(S,G, u) are the set of vertices that are added to and
removed from C (S,G) to compute C (S ∪ {u} , G(G,≥ u)), respectively. The
following lemma shows the sufficient and necessary conditions for computing
C (S ∪ {u} , G(G,≥ u)).

Lemma 3. C (S ∪ {u} , G(S,≥ u)) = ((C (S,G) \ Δ(S,G, u)) � Γ (S, u,G)) \
{v ∈ C (S,G) | v < u} .

Proof. We let C∗ = ((C (S,G) \ Δ(S,G, u)) � Γ (S, u,G)) \ {
v ∈ C (S,G) |

v < u
}
. Suppose that x ∈ C (S ∪ {u} , G(S,≥ u)). Without loss of general-

ity, we can assume that u ∈ CL (S,G). From the definition of G(S,≥ u),
x /∈ {v ∈ C (S,G) | v < u}. If x /∈ N [S], then since x can be added to S ∪ {u},
x is adjacent to only one vertex u in S ∪ {u}. Hence, x ∈ Γ (S, u,G). If
x ∈ N [S], then since x ∈ C (S ∪ {u} , G(S,≥ u)), x ∈ C (S,G). Moreover, if
x is in CL (S,G)∩N(u), then S ∪{u, x} has an odd cycle. Hence, the statement
holds.

Suppose that x ∈ C∗. Without loss of generality, we can assume that u ∈
CL (S,G). Since x ∈ C (S,G)�Γ (S, u,G), S′ = S∪{u, x} is connected. Suppose
that S′ has an odd cycle Co. Since S ∪ {u} is bipartite, Co must contain x. This
implies that x has neighbors both in L (S′) and R (S′). If x ∈ Γ (S, u,G), then
x has exactly one neighbor in S′ since u ∈ L (S ∪ {u}). Hence, x ∈ C (S,G).
This implies that either (I) N(x) ∩ (S ∪ {x}) ⊆ L (S) or (II) N(x) ∩ (S ∪
{x}) ⊆ R (S). If (I) holds, then x has neighbors only in L (S ∪ {u}) on S′ since
u ∈ CL (S,G) and x ∈ CR (S,G). If (II) holds, then x has neighbors only in
R (S ∪ {u}) on S′ since x /∈ N(u). Both cases contradict that x in Co. Hence,
x ∈ C (S ∪ {u} , G(S,≥ u)) and the statement holds. ��

From the above discussion, we can show the correctness of our algorithm.

Lemma 4. Algorithm1 correctly enumerates all bipartite vertex sets in G.
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Fig. 2. An example of a degeneracy ordering of G. The degeneracy of G is two even
though there is a vertex with degree six. The right-hand side shows a degenerate
ordering of G. In the figure, if a vertex u is larger than a vertex v, then u is placed at
the right v. Each vertex has at most two larger neighbors.

Fig. 3. Three types of neighbors of v. Here, VSN (v, S) = {u1, u2, u3}, USN (v, S) =
{u4, u5}, and LN (v, S) = {u6, . . . , u9}. All of vertices in VSN (v, S) are adjacent to
some vertices in S. Thus, for any S ⊆ S′, if ui is in VSN (v, S), then ui is also in
VSN (v, S′). In addition, Algorithm 1 also stores VSNC (v, S) and VSNC (v, S).

3.1 Update of Child Generators

In this section, we consider the time complexity for the maintenance of the sets
of child generators. If we näıvely use Lemma 3 for ComputeChildGen, we cannot
achieve O (k) amortized time per solution. To overcome this, we use a degeneracy
ordering on vertices. G is a k-degenerate graph [14] if for any induced graph S
of G, S has a vertex whose degree is at most k (Fig. 2). The degeneracy of G
is the smallest k such that G is k-degenerate. Every k-degenerate graph G has
a degeneracy ordering on V . The definition of a degeneracy ordering is that for
any vertex v in G, the number of neighbors of v that are larger than v is at
most k. By recursively removing a vertex with the minimum degree, we can
obtain this ordering in linear time [16]. Note that there are many degeneracy
orderings for a graph. In what follows, we pick one of degeneracy orderings of
G and then fix it as the vertex ordering of G. For any two vertices u, v in G, we
write u < v if u is smaller than v in the ordering. We can easily see that if u is
the smallest child generator, then u has at most k neighbors in G[C (S,G)] since
G[C (S,G)] is k-degenerate. Therefore, Lemma 3 implies that we can compute
the child generators of S ∪ {u} by removing at most k vertices and adding some
vertices that generate some grandchildren of S.
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Next, we define the three types of neighbors of a vertex v in S, larger neigh-
bors, visited smaller neighbors, and unvisited smaller neighbors: For any vertex
u ∈ N(v), (1) u is a larger neighbor of v if v < u, (2) u is a visited smaller
neighbor of v if u ∈ N [S] and u < v, and (3) u is an unvisited smaller neigh-
bor otherwise (Fig. 3). Intuitively, u is a visited smaller neighbor if one of its
neighbors is already picked in some ancestor iteration of X which receives S. We
denote by LN (v, S), VSN (v, S), and USN (v, S) the sets of larger neighbors,
visited smaller neighbors, and unvisited smaller neighbors of v, respectively. In
addition, the algorithm divides VSN (v, S) into two disjoint parts VSNC (v, S)
and VSNC (v, S); VSNC (v, S) ⊆ C (S,G) and VSNC (v, S) ∩ C (S,G) = ∅. We
omit S if no confusion arises.

We now consider the data structure for the algorithm. For each vertex v, the
algorithm stores LN (v), VSNC (v), VSNC (v), and USN (v) in doubly linked
lists. C (S,G) is also stored in a doubly linked list and sorted by the degeneracy
ordering. The algorithm needs O (m) = O (kn) space for storing these data struc-
tures. The algorithm also records the modification when an iteration X calls a
child iteration Y . Let SX (resp. SY ) be bipartite vertex sets received by X (resp.
Y ). Note that for each neighbor w of a vertex v, if w moves from USN (v, SX)
to VSN (v, SY ), then w will never move from the list in any descendant of Y .
Moreover, when w moves to VSN (v, SY ), w becomes a child generator of Y , and
thus, w ∈ VSNC (v, SY ). Initially, for all smaller neighbors of v is in USN (v, ∅).
In addition, v will be never added to the set in any descendant of S if v is not a
child generator of S. Hence, the algorithm totally needs O (m) space for storing
the modification history. When the algorithm backtracks to X from Y , the algo-
rithm can completely restore the data structure in the same complexity as the
transition from X to Y . Now, we consider the time complexity for the transition
from X to Y . Suppose that when we remove a vertex v from C (S,G) or add v
to S, for each larger neighbor w of v, we give a flag which represents w is not
a child generator of the child of S. This can be done in O (k) time per vertex
because of the degeneracy. The next technical lemma shows the number of the
larger neighbors which are checked for updating the set of child generators.

Lemma 5. S has at most one larger neighbor of v for any vertex v in C (S,G).

Proof. Suppose that two or more neighbors of v are in S. Let x and y be two of
them such that y is added after x, and S′ ⊆ S be an ancestor bipartite vertex set
of S for some graph G′ such that x ∈ S′ and y /∈ S′. Without loss of generality,
we can assume that v and y are child generators of S′. We can also assume that
v is added after y. Then, from Lemma 3, When y is added to S′, v is not in
G(G′,≥ y) since v < y. This contradicts, and thus, the statement holds. ��
Lemma 6. Let u and v be two vertices in C (S,G) such that u < v and
�w ∈ C (S,G) (u < w < v). C (S ∪ {v} , G(S,≥ v)) can be computed from
C (S ∪ {u} , G(S,≥ u)) in O(k|C (S ∪ {u} , G(S,≥ u)) | + k|C (S ∪ {v} , G(S,≥
v))|) time.
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Proof. From Lemma 3, only the neighbors of v or u may be added to or removed
from C (S ∪ {u} , G(S,≥ u)) to obtain C (S ∪ {v} , G(S,≥ v)). Let w be a vertex
in LN (v). We consider the following cases: (L.1) w ∈ C (S ∪ {u} , G(S,≥ u)) ∩
C (S ∪ {v} , G(S,≥ v)) or w /∈ C (S ∪ {u} , G(S,≥ u))∪C (S ∪ {v} , G(S,≥ v)).
In this case, there is nothing to do. (L.2) w ∈ C (S ∪ {u} , G(S,≥ u)) \
C (S ∪ {v} , G(S,≥ v)). For each larger neighbor x of w, we need to
move w from VSNC (x, S ∪ {u}) to VSNC (x, S ∪ {v}). The number such x
is at most k |C (S ∪ {u} , G(S,≥ u))|. (L.3) w ∈ C (S ∪ {v} , G(S,≥ v)) \
C (S ∪ {u} , G(S,≥ u)). For each larger neighbor x of w, we need to move
w from VSNC (x, S ∪ {u}) to VSNC (x, S ∪ {v}). The number of such x is
at most k |C (S ∪ {v} , G(S,≥ v))|. Note that for each vertex, at most one
larger its neighbor is in S from Lemma 5. Thus, the above three conditions
can be checked in constant time for each w by checking whether or not w
is in the same partition as v. Therefore, the larger part can be done in
O (k + k |C (S ∪ {u} , G(S,≥ u))| + k |C (S ∪ {v} , G(S,≥ v))|) time.

Next, let w be a vertex in VSNC (v, S). From Lemma 3, such w does not
belong to C (S ∪ {v} , G(S,≥ v)). Moreover, since u and v are consecutive on
C (S,G), such w is also not in C (S ∪ {u} , G(S,≥ u)). Thus, this case can
be done in constant time by skipping such vertices. For each vertex w in
VSNC (v, S), w cannot be added to both S ∪ {u} and S ∪ {v}. Hence, we skip
them. In addition, we need to remove v from G(S,≥ u). This takes O (k) time
since we only need to update larger neighbors of v. The same procedure needs
for updating the neighbors of u. Hence, the statement holds. ��

Roughly speaking, by ignoring neighbors of u or v such that they cannot
be added to both S ∪ {u} and S ∪ {v}, we can compute C (S ∪ {v} , G(S,≥ v))
from C (S ∪ {u} , G(S,≥ u)), efficiently. In addition, other neighbors have corre-
sponding bipartite vertex sets with size |S|+2, that is, grandchildren of S. This
implies that we can amortize the cost for these neighbors as follows.

Lemma 7. Let u be a vertex in C (S,G) and T (S, u) be the computation
time for C (S ∪ {u} , G(S,≥ u)). The total computation time for all the sets
of child generators of S’s children and recording the modification history is
∑

u∈C (S,G) T (S, u) = O
(
k |C (S,G)| +

∑
u∈C (S,G) k |C (S ∪ {u} , G(S,≥ u))|

)

time.

Proof. From Lemma 3, we need O (k |C (S,G)| + k |C (S ∪ {u∗} , G(S,≥ u∗))|)
time for computing C (S ∪ {u∗} , G(S,≥ u∗)), where u∗ is the smallest child gen-
erator in C (S,G). From Lemma 6, we can compute all the sets of child generators
for children of S except for S∪{u∗} in O

(∑
u∈C (S,G) k |C (S ∪ {u} , G(S,≥ u))|

)

time in total. Moreover, recording the modification history can be done in the
same time complexity in above. Hence, the statement holds. ��
Theorem 1. Given a graph G with degeneracy k, Algorithm1 enumerates all
solutions in O (

k
∣
∣BV (G)

∣
∣) total time, that is, O (k) time per solution with

O (m) = O (kn) space and preprocessing time.
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Proof. From Lemma 7, we can see the larger neighbors of u are always checked.
Thus, Line 12 can be done in O (k) time since the algorithm does not need to
remove edges whose endpoints are u and a smaller neighbor of u. Moreover, Line
9 can be done in O (1) time. In addition, in the preprocessing, we need to initialize
the data structure and compute the degeneracy ordering. Both need O (kn) time
and space since the number of edges is at most kn. From Lemma 7 and the above
this discussion, the algorithm runs in O

(∑
S∈BV (G)

∑
u∈C (S,G) T (S, u)

)
time.

Now, O
(∑

S∈BV (G)

(
|C (S,G)| +

∑
u∈C (S,G) |C (S ∪ {u} , G(S,≥ u))|

))
=

O (∣∣BV (G)
∣
∣). Hence, the statement holds. ��

Algorithm 2. Enumeration algorithm for bipartite edges sets
1 Procedure Main(G = (V, E))
2 foreach e ∈ E do // Pick the smallest edge in E.

3 Rec(G, {e} , N(e));
4 G ← G \ {e};

5 Subprocedure Rec(G, F, N ′ (F, G))
6 output(F);
7 while N ′ (F, G) �= ∅ do
8 e ← the smallest child generator in N ′ (F ) G;
9 F ′ ← F ∪ {e};

10 G′ ← G(F, ≥ e) \ E(B(G(F, ≥ e), F ′));
11 N ′ (G′, F ′) ←

(N ′ (G, F ) ∪ N+(G, F, e)) \ (N−(G, F, e) ∪ {f ∈ E | f ≤ e});
12 Rec(G′, F ′, N ′ (G′, F ′));
13 N ′ (F, G) ← N ′ (F, G) \ {e};

Corollary 1. All bipartite induced subgraphs in graphs with constant degener-
acy, such as planar graphs, can be listed in O (1) time per solution with O (n)
space and preprocessing time.

4 Enumeration of Bipartite Subgraphs

In this section, we describe our algorithm for Problem2. For a graph G
and a bipartite edge set F of G, let B(G,F ) be the set of edges e of
G such that F ∪ {e} is not bipartite, i.e., F ∪ {e} has an odd cycle
that includes e. Let BE (G,F ) =

{
F ′ ∈ BE (G)

∣
∣ F ⊆ F ′}. We can see that

BE (G(F ), F ) = BE (G(F ) \ B(G,F ), F ). For an edge e of G, we define
N ′ (G, e) = {f ∈ E \ {e} | f is adjacent to e}, N ′ (G,F ) =

⋃
e∈F N ′ (e) \F , and

we also define G(F,≥ e) by G \ {f ∈ N ′ (G,F ) | f < e}.
The framework of the algorithm is the same as the algorithm for Problem1.

The algorithm starts from the empty edge set, and add edges recursively so that
the edge sets generated are always connected and bipartite, and no duplication
occurs. For given a graph G and a bipartite edge set F of G, the algorithm
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first removes edges of B(G,F ) from G, and outputs F as a solution. Then for
each e ∈ N ′ (G,F ), the algorithm generates the problems of enumerating all
bipartite subgraphs that include F ∪ {e} but no edge f < e, f ∈ N ′ (G,F ), that
is, bipartite subgraphs in G(F,≥ e) that includes F ∪{e}. Before generating the
recursive call, the algorithm computes the edges of B(G(F,≥ e), F ∪ {e}) and
removes them from G(F,≥ e) so that the computation of the iteration will be
accelerated. The correctness of our strategy for the enumeration is as follows.

Lemma 8. BE (G(F,≥ e), F ∪ {e}) ∩ BE (G(F,≥ f), F ∪ {f}) = ∅ for any e 
=
f of N ′ (G,F ).

Lemma 9. BE (G,F ) = {F} ∪ ⊔
e∈N ′(G,F ) BE (G(F,≥ e), F ∪ {e}),

For the efficient computation, our algorithm always keeps N ′ (G,F ) in the
memory, and update and passes it to the recursive calls. For the efficient update
of N ′ (G,F ), we keep the graph G \ F in the memory since edges of F never
be added to N ′ (G,F ), until the completion of the iteration. We also put a
label of “1” or “2” to each vertex in V (F ) and update so that each edge of F
connects vertices of different labels, that is always possible since F is bipartite.
For a vertex v of G that is not in V (F ), let N1(G,F, v) (resp., N2(G,F, v)) be
the set of edges f of N(v) \ F such that the endpoint of f other than v has
label “1” (resp., “2”). We also keep and update N1(G,F, v) and N2(G,F, v).
For an edge (u, v) ∈ N ′ (G,F ) such that u /∈ V (F ), we define N+(G,F, (u, v))
by N1(G,F, v) and N−(G,F, (u, v)) by N2(G,F, v) if the label of v is “1”, and
N+(G,F, (u, v)) by N2(G,F, v) and N−(G,F, (u, v)) by N1(G,F, v) otherwise.
We define N1(G,F, (u, v)) and N2(G,F, (u, v)) by the empty set if both u and v
are in V (F )

For an edge e ∈ N ′ (G,F ), let F ′ = F ∪ {e} and G′ be the graph obtained
from G(F,≥ e) by removing edges of B(G(F,≥ e), F ′).

Lemma 10. Suppose that B(G,F ) = ∅ and e = (u, v). Then, B(G′, F ′) =
N−(G,F, v).

Proof. Since B(G,F ) = ∅, any edge f in B(G′, F ′) must share one of its endpoint
with e, and the endpoint is adjacent to no edge of F . Further, the edge is not
included in F . The addition of f to F generates an odd cycles if and only if the
label of both endpoints of f are the same. Therefore the statement holds. ��

The following lemma shows that the computation of N ′ (G′, F ′) from
N ′ (G,F ) can be also done in O (|N+(G,F, e)| + 1) time.

Lemma 11. N ′ (G′, F ′) = (N ′ (G,F ) ∪ N+(G,F, e)) \ (N−(G,F, e) ∪ {f ∈ E|
f ≤ e}) .

Proof. We first prove N ′ (G′, F ′) ⊆ (N ′ (G,F ) ∪ N+(G,F, e)) \ (N−(G,F, e) ∪
{f ∈ E | f ≤ e}). Let f be an edge in N ′ (G′, F ′). Then, f is in either
N ′ (G,F ) or N+(G,F, e). From the definition of G(F,≥ e) and B(G′, F ′), f
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is not in B(G′, F ′). Further, f > e from f ∈ G′. This implies that f ∈
(N ′ (G,F ) ∪ N+(G,F, e)) \ (N−(G,F, e) ∪ {f ∈ E | f ≤ e}).

We next prove (N ′ (G,F ) ∪ N+(G,F, e)) \ (N−(G,F, e) ∪ {f ∈ E | f ≤ e})
⊇ N ′ (G′, F ′) . Suppose that f ∈ (N ′ (G,F ) ∪ N+(G,F, e)) \ (N−(G,F, e) ∪
{f ∈ E | f ≤ e}). Then, f is not in F ′, and adjacent to an edge of F ′. Further,
f > e and the addition of f to F ′ generates no odd cycle. Thus, f ∈ N ′ (G′, F ′). ��

When we generate G(F,≥ e) for each e ∈ N ′ (G,F ) one by one in
increasing order, the total computation time is O (|N ′ (G,F )|). Computa-
tion of G′ \ F ′ is at most the time to compute G′. From this together
with these lemmas, we can see that an iteration of the algorithm spends
O

(
|N ′ (G,F )| +

∑
e∈N ′(G,F ) |N+(G,F, e)|

)
time. The following lemma bound

this complexity in another way. Let Ge is the graph obtained from G(F ∪{e} ,≥
e) by removing edges of B(G(F ∪ {e} ,≥ e), F ∪ {e}).

Lemma 12. Suppose that e′ is next to e in the edge ordering in N ′ (G,F ).
The computation of N ′ (Ge′ , F ∪ {e′}) from N ′ (Ge, F ∪ {e}) can be done in
O (|N ′ (Ge′ , F ∪ {e′})| + |N ′ (Ge, F ∪ {e})|) time.

Proof. The computation is to recover N ′ (G,F ) \ {f ∈ E | f ≤ e} from
N ′ (Ge, F ∪ {e}) and construct N ′ (Ge′ , F ∪ {e′}) from it. From Lemma 11,
its time is linear in |N+(G,F, e) \ {f ∈ E | f ≤ e} | + |N−(G,F, e)\
{f ∈ E | f ≤ e}| + |N+(G,F, e′) \ {f ∈ E | f ≤ e}| + |N−(G,F, e′)\
{f ∈ E | f ≤ e}|. We see that N+(G,F, e) \ {f ∈ E | f ≤ e} ⊆ N ′ (Ge, F ∪ {e}),
and N+(G,F, e′) \ {f ∈ E | f ≤ e′} ⊆ N ′ (Ge′ , F ∪ {e′}). When N−(G,F, e) 
=
N−(G,F, e′), we have N−(G,F, e) ∩ N−(G,F, e′) = ∅, thus N−(G,F, e) \
{f ∈ E | f ≤ e} ⊆ N ′ (Ge′ , F ∪ {e′}), and N−(G,F, e′) \ {f ∈ E | f ≤ e′} ⊆
N ′ (Ge, F ∪ {e}) thus the statement holds. When N−(G,F, e) = N−(G,F, e′),
they are canceled out and no need of taking care in the computation, thus the
statement also holds. ��
Lemma 13. For any iteration inputting G and F such that B(G,F ) = ∅, its
computation time is at most proportional to one plus the number of its children
and the grandchildren.

Proof. For the first recursive call with respect to an edge e, we pay computation
time of O (|N ′ (G,F )| + |N ′ (Ge, F ∪ {e})|). For the remaining recursive calls, as
we see in Lemma 12, the computation time is linear in the number of grandchil-
dren generated in the recursive call, and that generated just before. Thus, the
statement holds. ��

Sine any iteration requires at most O (|V | + |E|) space. When the iteration
generates a recursive call, the graphs and variants which the iteration is using
have to be recovered, just after the termination of the recursive call. This can be
done by just keeping the vertices and edges that are removed to make the input
graph of the recursive call. Thus, the total accumulated space spent by all its
ancestors is at most O (|V | + |E|). Therefore, we obtain the following theorem.
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Theorem 2. All bipartite subgraphs in a graph G = (V,E) can be listed in
O (∣∣BE (G)

∣
∣) total time, that is, O (1) time per solution with O (|V | + |E|) space.
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Abstract. We study a parameter of bipartite graphs called readabil-
ity, introduced by Chikhi et al. (Discrete Applied Mathematics 2016)
and motivated by applications of overlap graphs in bioinformatics. The
behavior of the parameter is poorly understood. The complexity of com-
puting it is open and it is not known whether the decision version of the
problem is in NP. The only known upper bound on the readability of a
bipartite graph (Braga and Meidanis, LATIN 2002) is exponential in the
maximum degree of the graph. Graphs that arise in bioinformatic appli-
cations have low readability. In this paper we focus on graph families
with readability o(n), where n is the number of vertices. We show that
the readability of n-vertex bipartite chain graphs is between Ω(log n)
and O(

√
n). We give an efficiently testable characterization of bipartite

graphs of readability at most 2 and completely determine the readability
of grids, showing in particular that their readability never exceeds 3. As
a consequence, we obtain a polynomial-time algorithm to determine the
readability of induced subgraphs of grids. One of the highlights of our
techniques is the appearance of Euler’s totient function in the proof of
the upper bound on the readability of bipartite chain graphs. We also
develop a new technique for proving lower bounds on readability, which
is applicable to dense graphs with a large number of distinct degrees.

1 Introduction

In this work we further the study of readability of bipartite graphs initiated by
Chikhi et al. [6]. Given a bipartite graph G = (Vs, Vp, E), an overlap labeling of
G is a mapping from vertices to strings, called labels, such that for all u ∈ Vs

The full version of this paper is available online [5].
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and v ∈ Vp there is an edge between u and v if and only if the label of u overlaps
with the label of v (i.e., a non-empty suffix of u’s label is equal to a prefix of
v’s label). The length of an overlap labeling of G is the maximum length (i.e.,
number of characters) of a label. The readability of G, denoted r(G), is the
smallest nonnegative integer r such that there is an overlap labeling of G of
length r. In this definition, no restriction is placed on the alphabet. One could
also consider variants of readability parameterized by the size of the alphabet. A
result of Braga and Meidanis [4] implies that these variants are within constant
factors of each other, where the constants are logarithmic in the alphabet sizes.

The notion of readability arises in the study of overlap digraphs. Overlap
digraphs constructed from DNA strings have various applications in bioinfor-
matics.1 Most of the graphs that occur as the overlap graphs of genomes have
low readability. Chikhi et al. [6] show that the readability of overlap digraphs is
asymptotically equivalent to that of balanced bipartite graphs: there is a bijec-
tion between overlap digraphs and balanced bipartite graphs that preserves read-
ability up to (roughly) a factor of 2. This motivates the study of bipartite graphs
with low readability. In this work we derive several results about bipartite graphs
with readability sublinear in the number of vertices.

For general bipartite graphs, the only known upper bound on readability is
implicit in a paper on overlap digraphs by Braga and Meidanis [4]. As observed
by Chikhi et al. [6], it follows from [4] that the readability of a bipartite graph
is well defined and at most 2Δ+1 − 1, where Δ is the maximum degree of the
graph. Chikhi et al. [6] showed that almost all bipartite graphs with n vertices in
each part have readability Ω(n/ log n). They also constructed an explicit graph
family (called Hadamard graphs) with readability Ω(n).

For trees, readability can be defined in terms of an extremal question on cer-
tain integer functions on the edges, without any reference to strings or their over-
laps [6]. In this work, we reveal another connection to number theory, through
Euler’s totient function, and use it to prove an upper bound on the readability
of bipartite chain graphs.

So far, our understanding of readability has been hindered by the difficulty
of proving lower bounds. Chikhi et al. [6] developed a lower bound technique
for graphs where the overlap between the neighborhoods of any two vertices is
limited. In this work, we add another technique to the toolbox. Our technique
is applicable to dense graphs with a large number of distinct degrees. We apply
this technique to obtain a lower bound on readability of bipartite chain graphs.

We give a characterization of bipartite graphs of readability at most 2 and
use this characterization to obtain a polynomial-time algorithm for checking
if a graph has readability at most 2. This is the first nontrivial result of this
kind: graphs of readability at most 1 are extremely simple (disjoint unions of

1 In the context of genome assembly, variants of overlap digraphs appear as either de
Bruijn graphs [11] or string graphs [18,21] and are the foundation of most modern
assemblers (see [17,19] for a survey). Several graph-theoretic parameters of overlap
digraphs have been studied [1–3,9,15,16,20,23], with a nice survey in [14].
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complete bipartite graphs, see [6]), whereas the problem of recognizing graphs
of readability k is open for all k ≥ 3.

We also give a formula for the readability of grids, showing in particular that
it never exceeds 3. As a corollary, we obtain a polynomial-time algorithm to
determine the readability of induced subgraphs of grids.

1.1 Our Results and Structure of the Paper

Preliminaries are summarized in Sect. 2; here we only state some of the most
important technical facts. All missing proofs can be found in the full version [5].

To study readability, it suffices to consider bipartite graphs that are con-
nected and twin-free, i.e., no two nodes in the same part have the same sets
of neighbors [6]. As connected bipartite graphs have a unique bipartition up to
swapping the two parts, we state some of our results without specifying the
bipartition.

Bounds on the Readability of Bipartite Chain Graphs (Sect.3). Bipar-
tite chain graphs are the bipartite analogue of a family of digraphs that occur
naturally as subgraphs of overlap graphs of genomes. In a bipartite chain graph

s1

s2

s3

s4

p1

p2

p3

p4

Fig. 1. The graph
C4,4

G = (Vs, Vp, E), the vertices in Vs (or Vp) can be lin-
early ordered with respect to inclusion of their neighbor-
hoods. That is, we can write Vs = {v1, . . . , vk} so that
N(v1) ⊆ . . . ⊆ N(vk) (where N(u) denotes the set of u’s
neighbors). A twin-free connected bipartite chain graph
must have the same number of vertices on either side.
For each n ∈ N, there is, up to isomorphism, a unique
connected twin-free bipartite chain graph with n vertices
in each part, denoted Cn,n. The graph Cn,n is (Vs, Vp, E)

where Vs = {s1, . . . , sn}, Vp = {p1, . . . , pn}, and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}.
The graph C4,4 is shown in Fig. 1. We prove an upper and a lower bound on the
readability of Cn,n.

Theorem 1. For all n ∈ N, the graph Cn,n has readability O(
√

n), with labels
over an alphabet of size 3.

We prove Theorem 1 by giving an efficient algorithm that constructs an over-
lap labeling of Cn,n of length O(

√
n) using strings over an alphabet of size 3.

Theorem 2. For all n ∈ N, the graph Cn,n has readability Ω(log n).

Characterization of Bipartite Graphs with Readability at Most 2
(Sect. 4). Let Ct for t ∈ N denote the simple cycle with t vertices. The domino
is the graph obtained from the cycle C6 by adding an edge between two diamet-
rically opposite vertices. For a graph G and a set U ⊆ V (G), let G[U ] denote
the subgraph of G induced by U .

Every bipartite graph with readability at most 1 is a disjoint union of com-
plete bipartite graphs (also called bicliques) [6]. The characterization in the
following theorem extends our understanding to graphs of readability at most 2.
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Fig. 2. The 4 × 4 grid G4,4 and toroidal grid TG4,4.

Theorem 3. A twin-free bipartite graph G has readability at most 2 iff G has a
matching M such that the graph G′ = G − M satisfies the following properties:

1. G′ is a disjoint union of complete bipartite graphs.
2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three

edges.
3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4

and an edge.

Theorem 3 expresses a condition on vertex labels of a bipartite graph in purely
graph theoretic terms, reducing the problem of deciding if a graph has readability
at most 2 to checking the existence of a matching with a specific property.

An Efficient Algorithm for Readability 2 (in the Full Version). It is
unknown whether computing the readability of a given bipartite graph is NP-
hard. In fact, it is not even known whether the decision version of the problem
is in NP, as the only upper bound on the readability of a bipartite graph with
n vertices in each part is O(2n) [4]. We make some progress on this front by
showing that for readability 2, the decision version is polynomial-time solvable.

Theorem 4. There exists an algorithm that, given a bipartite graph G, decides
in polynomial time whether G has readability at most 2. Moreover, if the answer
is “yes”, the algorithm can also produce an overlap labeling of length at most 2.

Readability of Grids and Their Induced Subgraphs (Sect. 5). We fully
characterize the readability of grids. A (two-dimensional) grid is a graph Gm,n

with vertex set {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} such that there is an edge
between two vertices iff the L1-distance between them is 1. An example is shown
in Fig. 2. Our next theorem fully settles the question of readability of grids.

Theorem 5. For any two positive integers m,n with m ≤ n,

r(Gm,n) =

⎧
⎪⎪⎨

⎪⎪⎩

3, if m ≥ 3 and n ≥ 3;
2, if (m = 2 and n ≥ 3) or (m = 1 and n ≥ 4);
1, if (m,n) ∈ {(1, 2), (1, 3), (2, 2)};
0, if m = n = 1.
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Theorem 5 has an algorithmic implication for the readability of grid graphs.
A grid graph is an induced subgraph of a grid. Several problems are NP-hard on
the class of grid graphs, including Hamiltonicity problems [12], various layout
problems [8], and others (see, e.g., [7]). We show that, unless P = NP, this is not
the case for the readability problem.

Corollary 1. The readability of a given grid graph can be computed in polyno-
mial time.

1.2 Technical Overview

We now give a brief description of our techniques. The key to proving the upper
bound on the readability of bipartite chain graphs is understanding the combi-
natorics of the following process. We start with the sequence (1, 2). The process
consists of a series of rounds, and as a convention, we start at round 3: we write
3 (= 1 + 2) between 1 and 2 and obtain the sequence (1, 3, 2). More generally,
in round r, we insert r between all the consecutive pairs of numbers in the cur-
rent sequence that sum up to r. Thus, we obtain (1, 4, 3, 2) in round 4, then
(1, 5, 4, 3, 5, 2) in round 5, and so on. The question is to determine the length of
the sequence formed in round r as a function of r. We prove that this length is
1
2

∑r
k=1 ϕ(k) = Θ(r2), where ϕ(k) is the famous Euler’s totient function denoting

the number of integers in {1, . . . , k} that are coprime to k.
To prove our lower bound on the readability of bipartite chain graphs, we

define a special sequence of subgraphs of the bipartite chain graph such that
the number of graphs in the sequence is a lower bound on the readability. The
sequence that we define has the additional property that if two vertices in the
same part have the same set of neighbors in one of the graphs, then they have the
same set of neighbors in all preceding graphs in the sequence. If the readability is
very small, then we cannot simultaneously cover all the edges incident with two
large-degree nodes as well as have their degrees distinct. The only properties
of the connected twin-free bipartite chain graph that our proof uses are that
it is dense and all vertices in the same part have distinct degrees. Hence, this
technique is more broadly applicable to any class of dense graphs with a large
number of distinct degrees.

Our characterization of graphs of readability at most 2, roughly speaking,
states that a twin-free bipartite graph has readability at most 2 iff the graph
can be decomposed into two subgraphs G1 and G2 such that G1 is a disjoint
union of bicliques and G2 is a matching satisfying some additional properties.
For i ∈ {1, 2}, the edges in Gi model overlaps of length exactly i. The heart of
the proof lies in observing that for each pair of bicliques in the first subgraph,
there can be at most one matching edge in the second subgraph that has its left
endpoint in the first biclique and the right endpoint in the second biclique.

To derive a polynomial-time algorithm for recognizing graphs of readability
two, we first reduce the problem to connected twin-free graphs of maximum
degree at least three. For such graphs, we show that the constraints from our
characterization of graphs of readability at most 2 can be expressed with a 2SAT



472 R. Chikhi et al.

formula having variables on edges and modeling the selection of edges forming
a matching to form the graph G2 of the decomposition.

In order to determine the readability of grids, we establish upper and lower
bounds and in both cases use the fact that readability is monotone under induced
subgraphs (that is, the readability of a graph is at least the readability of each of
its induced subgraphs). The upper bound is derived by observing that every grid
is an induced subgraph of some 4n × 4n toroidal grid (see Fig. 2) and exploiting
the symmetric structure of such toroidal grids to show that their readability is at
most 3. This is the most interesting part of our proof and involves partitioning
the edges of the 4n × 4n toroidal grid into three sets and coming up with labels
of length at most 3 for each vertex based on the containment of the four edges
incident with the vertex in each of these three parts. Our characterization of
graphs of readability at most 2 is a helpful ingredient in proving the lower bound
on the readability of grids, where we construct a small subgraph of the grid for
which our characterization easily implies that its readability is at least 3.

2 Preliminaries

For a string x, let prei(x) (respectively, sufi(x)) denote the prefix (respectively,
suffix) of x of length i. A string x overlaps another string y if there exists an i
with 1 ≤ i ≤ min{|x|, |y|} such that sufi(x) = prei(y). If 1 ≤ i < min{|x|, |y|},
we say that x properly overlaps with y. For a positive integer k, we denote by
[k] the set {1, . . . , k}. Let G = (V,E) be a (finite, simple, undirected) graph.
If G is a connected bipartite graph, then it has a unique bipartition (up to the
order of the parts). In this paper, we consider bipartite graphs G = (V,E).
If the bipartition V = Vs ∪ Vp is specified, we denote such graphs by G =
(Vs, Vp, E). Edges of a bipartite graph G are denoted by {u, v} or by (u, v)
(which implicitly implies that u ∈ Vs and v ∈ Vp). We respect bipartitions when
we perform graph operations such as taking an induced subgraph and disjoint
union. For example, we say that a bipartite graph G1 = (V 1

s , V 1
p , E1) is an

induced subgraph of a bipartite graph G2 = (V 2
s , V 2

p , E2) if V 1
s ⊆ V 2

s , V 1
p ⊆ V 2

p ,
and E1 = E2∩{(x, y) : x ∈ V 1

s , y ∈ V 1
p }. The disjoint union of two vertex-disjoint

bipartite graphs G1 = (V 1
s , V 1

p , E1) and G2 = (V 2
s , V 2

p , E2) is the bipartite graph
(V 1

s ∪ V 2
s , V 1

p ∪ V 2
p , E1 ∪ E2).

The path on n vertices is denoted by Pn. Given two graphs F and G, graph
G is said to be F -free if no induced subgraph of G is isomorphic to F . Two
vertices u, v in a bipartite graph are called twins if they belong to the same part
of the bipartition and have the same neighbors (that is, if N(u) = N(v)). Given
a bipartite graph G = (Vs, Vp, E), its twin-free reduction TF (G) is the graph
with vertices being the equivalence classes of the twin relation on V (G) (that
is, x ∼ y iff x and y are twins in G), and two classes X and Y are adjacent iff
(x, y) ∈ E for some x ∈ X and y ∈ Y . For graph theoretic terms not defined
here, we refer to [24]. We now state some basic results for later use.

Lemma 1. Let G and H be two bipartite graphs.
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Then:

(a) If G is an induced subgraph of H, then r(G) ≤ r(H).
(b) If F is the disjoint union of G and H, then r(F ) = max{r(G), r(H)}.
(c) The readability of G is the same for all bipartitions of V (G).
(d) r(G) = r(TF (G)).

Lemma 1(b) shows that the study of readability reduces to the case of con-
nected bipartite graphs. By Lemma1(c), the readability of a bipartite graph is
well defined even if a bipartition is not given in advance. Lemma1(d) further
shows that to understand the readability of connected bipartite graphs, it suffices
to study the readability of connected twin-free bipartite graphs.

3 Readability of Bipartite Chain Graphs

In this section, we prove an upper bound on the readability of twin-free bipartite
chain graphs, Cn,n, and prove Theorem 1. The lower bound on their readability
(Theorem 2) is proved in the full version. Recall that the graph Cn,n is (Vs, Vp, E)
where Vs = {s1, . . . , sn}, Vp = {p1, . . . , pn}, and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}.

3.1 Upper Bound

To prove Theorem 1, we construct a labeling � of length O(
√

n) for Cn,n that
satisfies (1) �(si) = �(pi) for all i ∈ [n], and (2) �(si) properly overlaps �(sj) iff
i < j. It is easy to see that such an � will be a valid overlap labeling of Cn,n. As
the labels on either side of the bipartition are equal, we will just come up with
a sequence of n strings to be assigned to one of the sides of Cn,n such that the
strings satisfy condition (2) above.

Definition 1. A sequence of strings (s1, . . . , st) is forward-matching if

– ∀i ∈ [t], string si does not have a proper overlap with itself and
– ∀i, j ∈ [t], string si overlaps string sj iff i ≤ j.

Given an integer r ≥ 2, we will show how to construct a forward-matching
sequence Sr with Θ(r2) strings, each of length at most r, over an alphabet of
size 3. This will imply an overlap labeling of length O(

√
n) for Cn,n, proving

Theorem 1. The following lemma is crucial for this construction.

Lemma 2. For all integers t ≥ 2 and all i ∈ [t − 1], if (s1, . . . , st) is forward-
matching, so is (s1, . . . , si, sisi+1, si+1, . . . , st).

Proof. For the purposes of notation, let A be an arbitrary string from s1, . . . , si−1

(if it exists), let B = si, C = si+1, and let D be an arbitrary string from
si+2, . . . , st (if it exists). The reader can easily verify that A and B overlap
with the new string BC, and BC overlaps with C and D, as desired. What
remains to show is that there are no undesired overlaps. Suppose for the sake of
contradiction that BC overlaps B, and let i be the length of any such overlap.
If sufi(BC) only includes characters from C, then C overlaps B; if it includes
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B C

B

B C

B

(a) BC does not overlap B.

B C

B C

(b) BC has no proper overlap with itself.

Fig. 3. Overlaps in the proof of Lemma 2

characters from B (and the entire C) then B has a proper overlap with itself
(see Fig. 3a). In either case, we reach a contradiction. So, BC does not overlap
B. By a symmetric argument, C does not overlap BC.

Next, suppose for the sake of contradiction that BC overlaps A, and let i
be the length of any such overlap. If sufi(BC) only includes characters from C,
then C overlaps A; if it includes characters from B (and the entire C) then B
overlaps A. In either case, we reach a contradiction. So, BC does not overlap A.
By a symmetric argument, D does not overlap BC.

Finally, suppose for the sake of contradiction that BC has a proper overlap
with itself, and let i be the length of any such overlap. Since C does not overlap
BC, it follows that sufi(BC) must include characters from B and the entire C.
But then B has a proper overlap with B, a contradiction (see Fig. 3b). So, BC
does not have a proper overlap with itself, completing the proof. ��

Now, we show how to construct a forward-matching sequence Sr. For the
base case, we let S2 = (20, 0, 01). It can be easily verified that S2 is forward-
matching. Inductively, let Sr for r > 2 denote the sequence obtained from Sr−1

by applying the operation in Lemma2 to all indices i such that sisi+1 is of length
r, that is, add all obtainable strings of length r. Let Br, for all integers r ≥ 2, be
the sequence of lengths of strings in Sr. We can obtain Br directly from Br−1

by performing the following operation: for each consecutive pair of numbers x, y
in Br−1, if x + y = r then insert r between x and y. Note that there is a mirror
symmetry to the sequences with respect to the middle element, 1. The right sides
of the first 6 sequences Br, starting from the middle element, are as follows:

r = 2 1 2
r = 3 1 3 2
r = 4 1 4 3 2
r = 5 1 5 4 3 5 2
r = 6 1 6 5 4 3 5 2
r = 7 1 7 6 5 4 7 3 5 7 2

It turns out that |Br|, and, by extension, |Sr|, is closely related to the totient
summatory function [22], also called the partial sums of Euler’s totient function.
This is the function Φ(r) =

∑r
k=1 ϕ(k), where ϕ(k) is the number of integers

in [k] that are coprime to k. The asymptotic behavior of Φ(r) is well known:
Φ(n) = 3n2

π2 + O(n log n) [10, p. 268]. The following lemma therefore implies
|Sr| = |Br| = Θ(r2), completing the proof of Theorem1.
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Lemma 3. For all integers r ≥ 2, the length of the sequence Br is Φ(r) + 1.

Proof. For the base case, observe that |B2| = 3 = Φ(2) + 1. In general, consider
the case of r ≥ 3.

Definition 2. Two elements of Br are called neighbors in Br if they appear in
two consecutive positions in Br.

We will show that any two neighbors are coprime (Claim 7) and any pair (i, j)
of coprime positive integers that sum up to r appears exactly once as a pair of
ordered neighbors in Br (Claim 8). Together, these claims show that the neighbor
pairs in Br−1 that sum up to r are exactly the pairs of coprime positive integers
that sum up to r.

Fact 6. If i and j are coprime then each of them is coprime with i+ j and with
i − j.

By this fact, there is a bijection between pairs (i, j) of coprime positive integers
that sum up to r and integers i ∈ [r] that are coprime to r. Hence, the number
of neighbor pairs in Br−1 that sum up to r is ϕ(r). Therefore, Br contains
ϕ(r) occurrences of r. By induction, it follows that |Br| = |Br−1| + ϕ(r) =
Φ(r − 1) + 1 + ϕ(r) = Φ(r) + 1, proving the Lemma. ��
We now prove the necessary claims.

Claim 7. For all r ≥ 2, if two numbers are neighbors in Br, they are coprime.

Proof. We prove the claim by induction. For the base case of r = 2, the claim
follows from the fact that 1 and 2 are coprime. For the general case of r ≥ 3, recall
that Br was obtained from Br−1 by inserting an element r between all neighbors
i and j in Br−1 that summed to r. By the induction hypothesis, gcd(i, j) = 1,
and, hence, by Fact 6, gcd(i, r) = gcd(i, i+j) = 1 and gcd(r, j) = gcd(i+j, j) = 1.
Therefore, any two neighbors in Br must be coprime. ��
Claim 8. For all r ≥ 3, every ordered pair (i, j) of coprime positive integers
that sum to r occurs exactly once as neighbors in Br−1.

Proof. We prove the claim by strong induction. The reader can verify the base
case (when r = 3). For the inductive step, suppose the claim holds for all k ≤ r−1
for some r ≥ 4. Consider an ordered pair (i, j) of coprime positive integers that
sum to r. Assume that i > j; we know that i = j, and the case of i < j
is symmetric. Since r ≥ 4, we have that i ≥ 3. In the recursive construction
of the sequences {Bk}, the elements i are added to the sequence Bi when Bi

is created from Bi−1. Since j < i, all the elements j are already present in
Bi−1. By Fact 6, since gcd(i, j) = 1, we get that gcd(i − j, j) = 1. By the
inductive hypothesis, pair (i − j, j) appears exactly once as an ordered pair of
neighbors in Bi−1. Consequently, (i, j) must appear exactly once as an ordered
pair of neighbors in Bi. No new elements i, j are added to the sequence in later
stages, when k > i. Also, no new elements are inserted between i and j when
i + 1 ≤ k ≤ i + j − 1 = r − 1. Therefore, the ordered neighbor pair (i, j) appears
exactly once in Br−1. ��
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4 A Characterization: Graphs with Readability at Most 2

We characterize bipartite graphs with readability at most 2 by proving Theo-
rem 3. By Lemma 1, it is enough to obtain such a characterization for connected
twin-free bipartite graphs. We use this characterization (in the full version) to
develop a polynomial-time algorithm for recognizing graphs of readability at
most 2 and also (in Sect. 5) to prove a lower bound on the readability of gen-
eral grids. Recall that a domino is the graph obtained from C6 by adding an
edge between two vertices at distance 3. We first define the notion of a feasible
matching, which is implicitly used in the statement of Theorem3.

Definition 3 (Feasible Matching). A matching M in a bipartite graph G is
feasible if the following conditions are satisfied:

1. The graph G′ = G−M is a disjoint union of bicliques (equivalently: P4-free).
2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three

edges.
3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4

and an edge.

In the full version, we prove Theorem3 by showing that a bipartite graph G
has readability at most 2 iff G has a feasible matching. The following corollary
of Theorem 3 is used in Sect. 5.

Corollary 2. Every bipartite graph G of maximum degree at most 2 has read-
ability at most 2.

Proof. If G is a connected twin-free bipartite graph of maximum degree at most
2, then G is a path or an (even) cycle. In this case, the edge set of G can
be decomposed into two matchings M1 and M2. Both M1 and M2 are feasible
matchings. Thus, by Theorem3, G has readability at most 2. ��

5 Readability of Grids and Their Induced Subgraphs

In this section, we determine the readability of grids by proving Theorem5. We
first look at toroidal grids, which are closely related to grids. For positive integers
m ≥ 3 and n ≥ 3, the toroidal grid TGm,n is obtained from the grid Gm,n by
adding edges ((i, 0), (i, n − 1)) and ((0, j), (m − 1, j)) for all i ∈ {0, . . . , m − 1}
and j ∈ {0, . . . , n−1} (See Fig. 2 for an example.). The graph TGm,n is bipartite
iff m and n are both even. In this case, a bipartition can be obtained by setting
V (TGm,n) = Vs ∪ Vp where Vs = {(i, j) ∈ V (TGm,n) : i + j ≡ 0 (mod 2)} and
Vp = {(i, j) ∈ V (TGm,n) : i + j ≡ 1 (mod 2)}.

Lemma 4. For all integers n > 0, we have r(TG4n,4n) ≤ 3.

We now prove Theorem 5, about the readability of Gm,n. We first recall the
following simple observation (which follows, e.g., from [6, Theorem 4.3]).
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Lemma 5. A bipartite graph G has: (i) r(G) = 0 iff G is edgeless, and (ii)
r(G) ≤ 1 iff G is P4-free (equivalently: a disjoint union of bicliques).

Proof (of Theorem 5). First, by Lemma 5, r(Gm,n) is 0 if m = n = 1 and
positive, otherwise. Second, when (m,n) ∈ {(1, 2), (1, 3), (2, 2)}, the graphs Gm,n

are isomorphic to K1,1,K1,2, and K2,2, respectively. Thus, by Lemma 5, their
readability is 1.

Third, when m+n ≥ 5, the grid Gm,n contains an induced P4, implying that
r(Gm,n) ≥ 2. By Theorem 3, a twin-free bipartite graph G has readability at most
2 iff G has a feasible matching. (See Definition 3.) When m + n ≥ 5, the grid
Gm,n is twin-free. If m = 2 and n ≥ 3, then M = {((i, j), (i, j + 1)) | i ∈ {0, 1}
and j ∈ {0, . . . , n − 2} is even} is a feasible matching in Gm,n, so r(Gm,n) = 2.
If m = 1 and n ≥ 4, then Gm,n is isomorphic to a path of length at least
three. Since its maximum degree is 2, we get r(Gm,n) ≤ 2, by Corollary 2. Thus,
r(Gm,n) = 2.

To show that r(Gm,n) ≤ 3 for m ≥ 3 and n ≥ 3, we observe that Gm,n (for
m ≤ n) is an induced subgraph of TG4n,4n. By Lemmas 1(a) and 4, we have
that r(Gm,n) ≤ r(TG4n,4n) ≤ 3. The proof that r(Gm,n) ≥ 3 can be found in
the full version. ��

6 Conclusion

In this work, we gave several results on families of n-vertex bipartite graphs
with readability o(n). The results were obtained by developing new or applying
a variety of known techniques to the study of readability. These include a graph
theoretic characterization in terms of matchings, a reduction to 2SAT, an explicit
construction of overlap labelings analyzed via number theoretic notions, and a
new lower bound applicable to dense graphs with a large number of distinct
degrees. One of the main specific questions left open by our work is to close
the gap between the Ω(log n) lower bound and the O(

√
n) upper bound on the

readability of n-vertex bipartite chain graphs. In the context of general bipartite
graphs, it would be interesting to determine the computational complexity of
determining whether the readability of a given bipartite graph is at most k, where
k is either part of input or a constant greater than 2, to study the parameter
from an approximation point of view, and to relate it to other graph invariants.
For instance, for a positive integer k, what is the maximum possible readability
of a bipartite graph of maximum degree at most k? Another interesting direction
would be to study the complexity of various computational problems on graphs
of low readability.
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1. B�lażewicz, J., Formanowicz, P., Kasprzak, M., Kobler, D.: On the recognition of de
Bruijn graphs and their induced subgraphs. Discrete Math. 245(1), 81–92 (2002)
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Abstract. In this paper we study the problem of finding a maximum
colorful clique in vertex-colored graphs. Specifically, given a graph with
colored vertices, we wish to find a clique containing the maximum num-
ber of colors. Note that this problem is harder than the maximum clique
problem, which can be obtained as a special case when each vertex has
a different color. In this paper we aim to give a dichotomy overview on
the complexity of the maximum colorful clique problem. We first show
that the problem is NP-hard even for several cases where the maximum
clique problem is easy, such as complement graphs of bipartite permu-
tation graphs, complement graphs of bipartite convex graphs, and unit
disk graphs, and also for properly vertex-colored graphs. Next, we pro-
vide a XP parameterized algorithm and polynomial-time algorithms for
classes of complement graphs of bipartite chain graphs, complete mul-
tipartite graphs and complement graphs of cycle graphs, which are our
main contributions.

1 Introduction

In this paper we deal with vertex-colored graphs, which are useful in various
applications. For instance, the Web graph may be considered as a vertex-colored
graph where the color of a vertex represents the content of the corresponding
site (i.e., green for corporate sites, red for blogs, yellow for ecommerce sites,
etc.) [2]. In a biological population, vertex-colored graphs can be used to rep-
resents the connections and interactions between species where different species
have different colors. Other applications of vertex-colored graphs arise also in
bioinformatics (Multiple Sequence Alignment Pipeline or for multiple Protein-
Protein Interaction networks) [5], and in scheduling problems [11].

Given a vertex-colored graph, a tropical subgraph is a subgraph where each
color of the initial graph appears at least once. Many graph properties, such as
the domination number, the vertex cover number, independent sets, connected
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components, shortest paths, matchings, etc. can be studied in their tropical ver-
sion. Tropical subgraphs find applications in many scenarios: in a (biological)
population, for instance, a tropical subgraph fully represents the (bio-)diversity
of the population. There are many cases, however, where tropical subgraphs do
not necessarily exist. Hence, one might be interested in the more general ques-
tion of finding a maximum colorful subgraph, i.e., a subgraph with the maximum
possible number of colors. For instance in biology this would represent a sub-
graph with the most diverse population. As a special case, a maximum colorful
subgraph is tropical if it contains all colors. The notion of colorful subgraph is
close to, but somewhat different from the colorful concept considered in [1,9,10],
where neighbor vertices must have different colors. It is also related to the con-
cepts of color patterns or colorful used in bio-informatics [6]. Note that in a
colorful subgraph considered in our paper, two adjacent vertices may have the
same color, i.e., the subgraph is not necessarily properly colored.

In this paper we are interested in finding maximum colorful cliques in vertex-
colored graphs. Throughout, we let G = (V,E) denote a simple undirected graph.
Given a set of colors C, Gc = (V,E) denotes a vertex-colored graph whose vertices
are (not necessarily properly) colored by one of the colors in C. The number of
colors of Gc is |C|. Given a subset of vertices U ⊆ V , the set of colors of vertices
in U is denoted by C(U). Moreover, we denote by c(v) the color of vertex v and
by v(H, c) the number of vertices of H whose color is c. The set of neighbors of
v is denoted by N(v). More formally, in this paper we study the following:

Maximum Colorful Clique Problem (MCCP). Given a vertex-colored graph Gc =
(V,E), find a clique with the maximum number of colors of the original graph.

Related Work. In the special case where each vertex has a distinct color, MCCP
reduces to the maximum clique problem. The maximum clique problem has
been widely studied in the literature and it is known to be NP-complete for
general graphs, fixed-parameter intractable and hard to approximate. However,
the maximum clique problem can be efficiently solved in polynomial time for
several special classes of graphs, such as complement graphs of bipartite graphs,
permutation graphs, comparability graphs, chordal graphs. All those are perfect
graphs, and the maximum clique problem can be solved in polynomial time also
in other non-perfect graphs such as circle graphs and unit disk graphs.

Another related problem, which has also been widely considered in the lit-
erature, is listing all maximal cliques in a graph. Clearly, if one can list all
maximal cliques, one can also find a maximum clique, since a maximum clique
must be maximal. In a similar vein, one can also find the maximum colorful
clique, since any maximum colorful clique can be extended to a maximal clique.
Therefore, MCCP is easy for all classes of graphs for which we can list in poly-
nomial time all maximal cliques. Those graphs include chordal graphs, complete
graphs, triangle-free graphs, interval graphs, graphs of bounded boxicity, and
planar graphs.

Tropical subgraph and maximum colorful subgraph problems in vertex-
colored graphs have been studied only recently. In particular, tropical subgraph



482 G. F. Italiano et al.

problems in vertex-colored graphs such as tropical connected subgraphs, tropical
dominating sets have been investigated in [7]. The maximum colorful matching
problem [3], the maximum colorful path problem [4] and the maximum col-
orful cycles problem [8] have been studied, and several hardness results and
polynomial-time algorithms were shown for different classes of graphs.

Our Contributions. In this paper, we aim to give a dichotomy overview on the
complexity of MCCP. First, we show that MCCP is NP-hard even for several
cases where the maximum clique problem is known to be easy, such as com-
plement graphs of bipartite permutation graphs, complement graphs of convex
bipartite graphs, and unit disk graphs. Also, we show that MCCP is NP-hard
for properly vertex-colored graphs. Next, we present polynomial-time algorithms
for several classes of graphs. First, we prove that MCCP belongs to the class of
XP parameterized algorithms. Second, we show that MCCP can be solved in
polynomial time for complement graphs of bipartite chain graphs, which is a
special case of complement graphs of bipartite permutation graphs (for which
MCCP is NP-hard).

Our main contribution is polynomial-time algorithms for complete multipar-
tite graphs and complement graphs of cycle graphs. A graph is called multipartite
if its vertices can be partitioned into different independent sets. In a complete
multipartite graph any two vertices in different independent sets are adjacent.
To solve MCCP on complete multipartite graphs, we proceed as follows. We
start with a maximum clique, by picking one vertex from each independent set.
To compute a maximum colorful clique, we iterate through different maximum
cliques by increasing at each step the number of colors, without decreasing the
number of vertices. To do this efficiently, we define a special structure, called
k-colorful augmentation, which might be of independent interest. The running
time of our algorithm is O(|C|M(m + n, n)), where |C| is the total number of
colors and M(m,n) is the time required for finding a maximum matching in a
general graph with m edges and n vertices (Currently, M(m,n) = O(

√
nm) [12]).

A cycle graph is a graph that consists of a single cycle. Similar to the algo-
rithm for complete multipartite graphs, we also investigate a special structure
to obtain another better clique from the current cliques in a complement graph
of a cycle graph and this yields a polynomial algorithm in this case.

Due to space limit, some results, proofs and details are omitted from this
extended abstract and are deferred to the appendix.

2 Hardness Results for MCCP

In this section, we present several NP-hardness results for MCCP. Specifically,
we show that MCCP is NP-hard for the complement graphs of biconvex bipartite
graphs and the complement graphs of permutation bipartite graphs. Note that
the maximum clique problem can be solved in polynomial time for the com-
plement graphs of bipartite graphs based on König’s Theorem, and therefore
the maximum clique problem can be also efficiently solved for the complement
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graphs of biconvex bipartite graphs and the complement graphs of permuta-
tion bipartite graphs. Next, we also show that MCCP is NP-hard for unit disk
graphs, which are also easy cases for the maximum clique problem. We also
prove that MCCP is NP-hard for properly vertex-colored graphs. The following
lemma shows that MCCP is NP-hard for the complement graphs of bipartite
permutation graphs. Recall that a graph is a bipartite permutation graph, if it
is both bipartite and a permutation graph.

Lemma 1. The maximum colorful clique problem is NP-hard for the comple-
ment graphs of permutation bipartite graphs.

Proof. We reduce from the MAX-3SAT problem. Consider a boolean expression
B in CNF with variables X = {x1, . . . , xs} and clauses B = {b1, . . . , bt}. In
addition, suppose that B constains exactly 3 literals per clause (actually, we
may also consider clauses of arbitrary size). We show how to construct a vertex-
colored graph Gc associated with any such formula B, such that, there exists
a truth assignment to the variables of B satisfying t′ clauses if and only if Gc

contains a clique with t′ distinct colors. Suppose that ∀i, 1 ≤ i ≤ s, the variable
xi appears in clauses bi1, bi2, . . . , biαi

and xi appears in clauses b′
i1, b

′
i2, . . . , b

′
iβi

in which bij ∈ B and b′
ik ∈ B. Now a vertex-colored permutation bipartite graph

Gc is constructed as follows. We give geometrical definition as the intersection
graphs of line segments whose endpoints lie on two parallel lines L1 and L2.

We create first α1 + β1 endpoints for two parallel lines as follows. Firstly,
from left to right, we let α1 endpoints of L1 corresponding to pairs (x1, b11),
(x1, b12), . . . , (x1, b1α1), and next β1 endpoints of L1 will be (x1, b

′
11), (x1, b

′
12)

. . . , (x1, b
′
1β1

). Conversely, on L2, from left to right, we let first β1 endpoints
including (x1, b

′
11), (x1, b

′
12) . . . , (x1, b

′
1β1

), and next α1 endpoints of L2 will
be (x1, b11), (x1, b12), . . . , (x1, b1α1). This way, the segment of (x1, b1i) and the
segment (x1, b1j) are in parallel and they do not intersect each other for ∀i, j, 1 ≤
i �= j ≤ α1; similarly for each pair (x1, b

′
1i) and (x1, b

′
1j), for ∀i, j, 1 ≤ i �= j ≤

β1. However, it is easy to see that the pair of segment (x1, b1i) and (x1, b
′
1j)

intersect each other. Now we finish arrangement for clauses corresponding to
the variable x1 and x1. Next, we similarly create and arrange α2 + β2 endpoints
corresponding to the variable x2 and x2 on L1 and L2. The segments of this
section are separated with the segments of x1 and x1 but they still guarantee
the properties of intersection: the segment of (x2, b2i) and the segment (x2, b2j)
are in parallel, similarly for (x2, b

′
2i) and (x2, b

′
2j) but the pair of segment (x2, b2i)

and (x2, b
′
2j) intersect each other.

By doing so, we created a permutation bipartite graph. In fact, it is a bipartite
graph since edges are between (xi, bij) and (xi, b

′
ik). It is also a permutation

graph since it is the intersection graph of line segments whose endpoints lie
on two parallel lines. Now we color vertices as follows. We use color cl for the
vertex (xi, bij) and (xi, b

′
ik) if bij or b′

ik is the clause bl of B. From this vertex-
colored permutation bipartite graph, we focus on its complement graph. Clearly
the obtained graph is the complement graph of a vertex-colored permutation
bipartite graphs, denoted it by Gc. Now we claim that there exists a truth
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assignment to the variables of B satisfying t′ clauses if and only if Gc contains
a clique with t′ distinct colors. Observe that in the complement graph Gc, there
are no edges between (xi, bij) and (xi, b

′
ik) for ∀i, 1 ≤ i ≤ s but there are all edges

between (xi, bij) and (xi, bik), between (xi, bij) and (xi′ , bi′k), between (xi, bij)
and (xi′ , bi′k) in which ∀i, i′, 1 ≤ i �= i′ ≤ s.

Now we extract a subgraph from a truth assignment to the variables of B
satisfying t′ clauses, as follows. For each ∀i, 1 ≤ i ≤ s, in the case that xi is
assigned true, then we choose all vertices (xi, bij), 1 ≤ j ≤ αi. Otherwise, we
choose all vertices (xi, bij), 1 ≤ j ≤ βi. It is possible to see that this is a clique
and this clique contains all vertices corresponding to satisfied clauses, so the
number of colors of this cliques is equal to t′. Conversely, from a clique with t′

colors we obtain an assignment as follows. Note that in this clique we can ot
have both vertices (xi, bij) and (xi, b

′
ik). Therefore, it is possible to assign xi

as true if this clique contains vertices (xi, bij), otherwise xi is assigned as false.
Clearly, this assignment is consistent. Since this clique has t′ colors, it must
contain vertices corresponding to t′ different clauses. Thus, it is not difficult to
see that the corresponding assignment leads to t′ satisfied clauses. This complete
our proof. �	

Next, we show that MCCP is also NP-hard for the complement graphs of
biconvex bipartite graphs. Recall that a bipartite graph (X,Y,E) is biconvex
if there is an ordering of X and Y that fulfills the adjacency property, i.e., for
every vertex y ∈ Y (resp., x ∈ X), N(y) (resp., N(x)) consists of vertices that
are consecutive in the sorted ordering of X (resp., Y ).

Lemma 2. The maximum colorful clique problem is NP-hard for the comple-
ment graphs of biconvex bipartite graphs.

Proof. We use the same notation as in Lemma 1, and reduce again from MAX-
3SAT, as follows. We first create a vertex-colored biconvex bipartite graph
(X,Y,E) from an instance of the MAX-3SAT problem such that, there exists
a truth assignment to the variables of B satisfying t′ clauses if and only if Gc

contains a clique with t′ distinct colors. We also assume that ∀i, 1 ≤ i ≤ s,
the variable xi appears in clauses bi1, bi2, . . . , biαi

and xi appears in clauses
b′
i1, b

′
i2, . . . , b

′
iβi

in which bij ∈ B and b′
ik ∈ B. Now each vertex of X represents

a pair of (xi, bij) with 1 ≤ j ≤ αi (xi appears in the clause bij). Similarly, each
vertex of Y represents a pair of (xi, b

′
ik) with 1 ≤ k ≤ βi (xi appears in the

clause b′
ik). Next, we sort an ordering over X from left to right as follows. The

vertices of X are sorted as (x1, b11), (x1, b12), . . . , (x1, b1α1), (x2, b21), (x2, b22),
. . . , (x2, b2α2), . . . , (xs, bs1), (xs, bs2), . . . , (xs, bsαs

). Similarly, vertices over Y
are sorted from left to right as follows: (x1, b

′
11), (x1, b

′
12), . . . , (x1, b

′
1β1

), (x2, b
′
21),

(x2, b
′
22), . . . , (x2, b

′
2β2

), . . . , (xs, b
′
s1), (xs, b

′
s2), . . . , (xs, b

′
sβs

). Now edges between
X and Y are created by connecting each vertex (xi, bij) to each vertex (xi, b

′
ik)

for ∀j, 1 ≤ j ≤ αi and ∀k, 1 ≤ k ≤ βi. Clearly the obtained graph is a bicon-
vex bipartite graph since for each vertex (xi, bij), all its neighbors, i.e., (xi, b

′
i1),

(xi, b
′
i2), . . . , (xi, b

′
iβi

), are consecutive by the sorted ordering over Y and vice
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versa for each vertex (xi, b
′
ik). Similar to the case of complement graphs of per-

mutation bipartite graphs, we use the color cl for the vertex (xi, bij) and (xi, b
′
ik)

if bij or b′
ik is the clause bl of B. Now we focus on the complement graph of this

vertex-colored biconvex bipartite graph, denoted by Gc. It is not difficult to see
that this graph has the same structure as the complement graphs of bipartite
permutation graphs in Lemma1. In other words, there are no edges between
(xi, bij) and (xi, b

′
ik) for all 1 ≤ i ≤ s but there are all edges between (xi, bij)

and (xi, bik), between (xi, bij) and (xi′ , bi′k), between (xi, bij) and (xi′ , bi′k) in
which ∀i, i′, 1 ≤ i �= i′ ≤ s. So, exactly the same arguments used in Lemma 1
yield the proof. �	

Now we prove that MCCP is NP-hard also for unit disk graphs and properly
vertex-colored graphs, as shown in the following lemmas (proofs in the appendix).

Lemma 3. The maximum colorful clique problem is NP-hard for unit disk
graphs.

Lemma 4. The maximum colorful clique problem is NP-hard for properly
vertex-colored graphs.

3 Efficient Algorithms for MCC

In this section we present several efficient algorithms for the maximum color-
ful clique problem. We start by proving that MCPP belongs to the class XP
parameterized problems. Next, we show that MCCP can be efficiently solved for
complement graphs of bipartite chain graphs. This is in contrast with the case
of complement graphs of bipartite permutation graphs and complement graphs
of biconvex bipartite graphs, for which we have shown in Sect. 2 that MCCP
is NP-hard. Finally, we present our polynomial-time algorithms for MCCP in
complete multipartite graphs and complement graphs of cycle graphs.

3.1 A XP Parameterized Algorithm for MCCP

Our algorithm is based on the following observation: each maximum colorful
clique can be reduced to another maximum colorful clique in which each color
appears at most once. Indeed, if a color c appears more than once in maximum
colorful clique, we can maintain only one vertex of this color. By doing so, we
can keep all colors of the original clique, and obtain a new maximum colorful
clique where each color appears only once. From this observation, we can list
all cases by trying each vertex from the set of vertices of a color for each subset
of the original set of colors. Let C = {c1, c2, . . . , c|C|} be the set of colors of the
original graph Gc. For each color ci, let ni be the number of vertices of the graph
with the color ci and let denote V (ci) be the set of vertices of Gc of color ci.
Our XP parameterized algorithm for MCCP is as follows.

The following theorem shows the correctness of our XP parameterized algo-
rithm for computing a maximum colorful cycle in a vertex-colored graph Gc.
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Algorithm 1. Maximum colorful clique in vertex-colored graphs.
1: max ← 0 /* the number of colors of a maximum colorful clique */
2: H∗ ← ∅ /* the maximum colorful clique returned */
3: for {ci1 , ci2 , . . . , cij} ⊆ {c1, c2, . . . , c|C|} do # Consider all subsets of colors

of C
4: for {v1, v2, . . . , vj} ⊆ {V (ci1) × V (ci2) × . . . × V (cij )} do
5: H ← the induced graph of the vertices {v1, v2, . . . , vj}
6: if H is a clique and max < |C(H)| then
7: H∗ ← H
8: end if
9: end for

10: end for
11: return H∗ as a maximum colorful clique

Theorem 1. Algorithm1 computes a maximum colorful clique of Gc in time
O(( n

|C| )
|C|) where |C| is the number of colors in Gc and n is the number of vertices

of Gc.

Proof. The algorithm first consider all subsets of colors of the set C. This takes
2|C| times in the outer loop. Inside each of these iterations (corresponding to the
set {ci1 , ci2 , . . . , cij )), the algorithm considers all subsets of vertices of {V (ci1)×
V (ci2) × . . . × V (cij )} (each vertex from a set), to check the existence of clique.
It is easy to see that this takes O(|V (ci1)| × |V (ci2)| × . . . × |V (cij )|). By the
Cauchy inequality, with j ≤ |C| we have that |V (ci1)|×|V (ci2)|× . . .×|V (cij )| ≤
(

∑ |V (ci)|
|C| )|C|. Therefore, the complexity of this algorithm is O(( n

|C| )
|C|). �	

3.2 An Algorithm for MCCP for Complement Graphs of Bipartite
Chain Graphs

In this section, we show a polynomial algorithm for MCCP for complement
graphs of bipartite chain graphs. Recall that a bipartite graph G = (X,Y,E) is
said to be a chain bipartite graph if its vertices of X can be linearly ordered such
that N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|). As a consequence, we also immediately
obtain a similar linear ordering over Y such that N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |).
It is known that these orderings over X and Y can be computed in O(n)
time. Here we will look for a maximum colorful clique in the complement
graph of a vertex-colored bipartite chain graph Gc = (X,Y,E). Let us denote
this complement graphs by Gc. First, we observe that in Gc, we have that
N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(x|X|) and N(y1) ⊆ N(y2) ⊆ . . . ⊆ N(y|Y |). Let
K be a maximum colorful clique of Gc in which the set of vertices of X and Y of
K are denoted by XK and YK , respectively. Then, we can convert K to another
maximum colorful clique by exploiting the following lemma.

Lemma 5. Let K be a maximum colorful clique of Gc, let i and j be the mini-
mum numbers such that xi ∈ XK and yj ∈ YK . Then there exists another maxi-
mum colorful clique K ′ where V (K ′) = {xi, xi+1, . . . , x|X|}∪ {yj , yj+1, . . . , y|Y |}.
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Proof. Let xi′ be a vertex such that xi′ /∈ XK and i < i′ < |X|. Since
N(xi) ⊆ N(xi′) and K is a clique, adding the vertex xi′ yields a larger clique
which contains the old clique. Similarly, it is possible to add vertices yj′ to
our clique such that yj′ /∈ YK and j < j′ < |Y |. As a consequence, there
exists another maximum colorful clique K ′ where V (K ′) = {xi, xi+1, . . . , x|X|}∪
{yj , yj+1, . . . , y|Y |}. �	

The following algorithm, which computes a maximum colorful clique in com-
plement graphs of vertex-colored bipartite chain graphs, is based directly on
Lemma 5.

Algorithm 2. Maximum colorful clique in complement graphs of vertex-colored
bipartite chain graphs.
1: max ← 0 /* the number of colors of a maximum colorful clique */
2: H∗ ← ∅ /* the maximum colorful clique returned */
3: for 1 ≤ i ≤ |X| do
4: for 1 ≤ j ≤ |Y | do
5: H ← the induced graph of the vertices {xi, xi+1, . . . , x|X|}∪

{yj , yj+1, . . . , y|Y |}
6: if H is a clique and max < |C(H)| then
7: H∗ ← H
8: end if
9: end for

10: end for
11: return H∗ as a maximum colorful clique

The proof of following theorem is immediate.

Theorem 2. Algorithm2 computes a maximum colorful clique of Gc in time
O(n2).

3.3 An Algorithm for MCCP for Complete Multipartite Graphs

In this section, we present our new algorithm for MCCP for vertex-colored com-
plete multibipartite graphs. Recall that a k-partite graph is a graph whose ver-
tices can be partitioned into k different independent sets. A k-partite graph is
complete if there exists an edge from each vertex of an independent set to each
vertex of another independent set. Observe that if we pick one vertex from each
independent set we obtain a clique. Therefore, it is possible to reduce the original
MCCP problem to the problem of choosing one vertex from each independent
set such that the number of colors is maximized. Note that all independent sets
have to be selected, otherwise one could add more vertices. From now on, we
denote a set of such vertices as a maximum clique. Suppose that our complete
multipartite graph has N independent sets and let us denote these independent
sets by I1, I2, . . . , IN . The main idea behind our algorithm is to create first a
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maximum clique K by randomly picking a vertex from each independent set.
Next, we construct a maximum colorful clique from K by iteratively increas-
ing the number of covered colors, without decreasing the number of vertices.
To show how to accomplish this task, we need some further notation. Given a
maximum clique K and a color c, let v(K, c) be the total number of vertices of
color c in K. We let c0 be a color of the original graph which does not appear
in the current maximum clique, i.e., v(K, c0) = 0. Now a set of pairs of vertices
{(v′

1, v1), (v′
2, v2), . . . , (v′

k, vk)} (1 ≤ k ≤ N ) is called a k-colorful augmentation
w.r.t. a maximum clique K if it satisfies the following properties:

1. For all i = 1, 2, . . . , k, vi is covered by K and v′
i is not covered by K.

2. The color c(v′
1) = c0 is not presented in K, i.e., v(K, c0) = 0.

3. For all i = 1, 2, · · · , k − 1, c(vi) = c(v′
i+1) = ci and v(K, ci) = 1. (Note that

ci �= cj , for all 1 ≤ i, j ≤ k − 1.)
4. The color c(vk) = ck such that v(K, ck) ≥ 2 and ck �= ci for all i = 1, 2, · · · ,

k − 1.

Note that a k-colorful augmentation {(v′
1, v1), (v′

2, v2), . . . , (v′
k, vk)} w.r.t. K

provides a better solution for our problem. Indeed, if we replace the vertices
{v1, v2, . . . , vk} by the set of vertices {v′

1, v
′
2, . . . , v

′
k}, we obtain a new maxi-

mum clique, which includes a new color c(v′
1) = c0 and preserves the old colors

c(v1), c(v2), . . . , c(vk), i.e., the number of colors in the new clique increases by
one. The following theorem is at the heart of our algorithm for finding a maxi-
mum colorful clique in a vertex-colored complete multipartite graph Gc.

Theorem 3. Let K be a maximum clique in a vertex-colored complete multipar-
tite graph Gc. Then, K admits a k-colorful augmentation w.r.t. K if and only if
there exists another maximum clique K ′ such that |C(K ′)| > |C(K)|.
Proof. First, assume that K admits a k-colorful augmentation. A k-colorful aug-
mentation P = {(v′

1, v1), (v′
2, v2), . . . , (v′

k, vk)} w.r.t. K can be used to transform
K into another clique K ′ such that |C(K ′)| > |C(K)|. Replacing vertices in K by
vertices not in K ′ inside this k-colorful augmentation yields another maximum
clique K ′, which increases the number of distinct colors used.

Conversely, suppose that there exists a maximum colorful clique K ′ such
|C(K ′)| > |C(K)|. Since K and K ′ are maximum cliques, |K| = |K ′| = N , i.e.,
both K and K ′ contains one vertex from each independent set. Let S be the
set of independent sets in which the vertex chosen by K is equal to the vertex
chosen by K ′. Clearly, the set of colors of vertices of K in S is equal to the set
of colors of vertices of K ′ in S. Thus, from now we can ignore all those vertices.
We first focus on vertices v′

1 of K ′ such that c(v′
1) = c0 is not present in K, i.e.,

v(K, c0) = 0. Let us denote the set of those vertices by V1(K ′). From each vertex
v′
1 of V1(K ′), we extend to a sequence of pairs of vertices of K and K ′, namely

{(v′
1, v1), (v′

2, v2), . . . , (v′
k, vk)} such that: (i) for all i = 1, 2, . . . , k, vi ∈ K and

v′
i ∈ K ′, and (ii) for all i = 1, 2, · · · , k − 1, c(vi) = c(v′

i+1) = ci and v(K, ci) = 1.
Clearly this extension is unique for each vertex v′

1. Note that the ending vertex
in each of the extended sequences is the vertex vk. Next, we will focus on those
ending vertices.
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– In the case that there exists an ending vertex vk such that v(K, ck) ≥ 2
then this set of pair of vertices {(v′

1, v1), (v′
2, v2), . . . , (v′

k, vk)} is a k-colorful
augmentation w.r.t. K.

– Otherwise, for each v′
1 of V1(K ′) such that v(K, c0) = 0 and v(K ′, c0) ≥ 1,

we have that the ending vertex vk satisfies v(K, ck) = 1 and v(K ′, ck) = 0.
Note that v(K ′, ck) = 0 since otherwise it is possible to extend this sequence.
Clearly, except for the vertices of V1(K ′), then for each vertex v′ of K ′ such
that v′ /∈ V1(K ′) (denote this set of vertices by V2(K ′)), we have that c(v′) ∈
C(K), i.e., v(K, c(v′)) ≥ 1. Combining these properties of vertices in the sets
V1(K ′), V2(K ′), we can deduce that |C(K ′)| ≤ |C(K)|, a contradiction. This
completes our proof. �	
In order to complete our algorithm, we need a polynomial sub-routine for

finding colorful augmentations. This is achieved with the following lemma.

Lemma 6. Let K be a maximum clique in a vertex-colored complete multipartite
graph Gc. The problem of finding a k-colorful augmentation with respect to K in
Gc can be reduced in polynomial time to the problem of finding an M-augmenting
path in another graph G′c w.r.t. K.

Proof. Since K is a maximum clique, each vertex of K is in an independent set
Ii of Gc. Let us denote these vertices by v1, v2, . . . , vN . W.l.o.g. assume that
vi ∈ Ii. To look for a k-colorful augmentation with respect to K in Gc, we
construct a new graph G′ = (V ′, E′) and a matching M as follows. Its vertex-set
is defined as V (G′) = {v ∈ V (Gc) : v(M, c(v)) �= 1} ∪ {vη : v(M,η) = 1 and η ∈
C} ∪ {ui|1 ≤ i ≤ N} ∪ {z}, where ui and z are new artificial vertices not in
V (Gc) and ui is corresponding to the set Ii. Next the edge-set of G′ is defined as
E(G′) = {(t(v), t(w)) : (v, w) ∈ E(Gc)} ∪ {(ui, v) : ui and v are covered by Ii} ∪
{(z, v) : v = t(v) and v is covered by K}, where t(v) = v if v(M, c(v)) �= 1,
otherwise t(v) = vη if v(M,η) = 1 and c(v) = η.

Now we define our matching: M = {(u1, v1), (u2, v2), . . . , (uN , vN )}. Let M ′

be a subset of E(G′) such that M ′ = {(t(x), t(y)) : (x, y) ∈ M}. It is easy to see
that M ′ is also a matching of G′.

Conversely, let P = {(v′
1, v1), (v′

2, v2), . . . , (v′
k, vk)} be a k-colorful augmen-

tation w.r.t. K, 1 ≤ k ≤ N , in which vi and v′
i are in Ii, 1 ≤ i ≤ k. From this

k-colorful augmentation, we can define an M-augmenting path P ′ with respect to
M in G′ as P = {v′

1, u1, vc1 , u2, vc2 , u3, . . . , vck−1 , uk, vk, z} in which ci = c(vi).
Recall that v(K, c(v′

1)) = 0 and v(K, c(vk)) ≥ 2. In conclusion, finding a k-
colorful augmentation with respect to a maximum clique K in Gc is equivalent
to finding an augmenting path P ′ with respect to M in G′. �	

Our algorithm for MCCP in vertex-colored complete multipartite graphs
derives immediately from Theorem 3 and Lemma 6.

The following theorem shows that Algorithm 3 runs in polynomial time.

Theorem 4. Let Gc be a vertex-colored complete multipartite graph. Algorithm3
computes a maximum colorful clique of Gc in time O(|C|M(m + n, n)), where
O(M(m,n)) is the time required to find a maximum matching in a general graph
with n vertices and m edges.
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Algorithm 3. Maximum colorful clique in vertex-colored complete multipartite
graphs.
1: K ← any maximum clique of Gc /* pick each vertex from each independent set */
2: while a k-colorful augmentation w.r.t. K P is found do
3: K ← K ⊕ P /* replace vertices of {vi} by vertices of {v′

i} */
4: end while
5: return K as a maximum colorful clique

Proof. The initialization step of the algorithm is trivial. Next, after each iteration
of the while loop in the algorithm, a new color is included into the new maximum
clique. Thus, the maximum number of iterations of the while loop is |C| (the
number of colors of Gc). Inside each iteration of the while loop, we can use
Lemma 6 to look for a k-colorful augmentation, which requires O(M(m,n)) time.
Note that the new graph G′c has O(n) vertices and O(n+m) edges. In summary,
the total running time of the algorithm is O(|C|M(m + n, n)), as claimed. �	

3.4 An Algorithm for MCCP for Complement Graphs of Cycle
Graphs

In the final section, we propose another algorithm for the case of complement
graphs of cycle graphs. Related theorems and the algorithm can be found in the
appendix.
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Abstract. We develop a randomized approximation algorithm for
the classical maximum coverage problem, which given a list of sets
A1, A2, · · · , Am and integer parameter k, select k sets Ai1 , Ai2 , · · · , Aik

for maximum union Ai1 ∪Ai2 ∪· · ·∪Aik . In our algorithm, each input set
Ai is a black box that can provide its size |Ai|, generate a random element
of Ai, and answer the membership query (x ∈ Ai?) in O(1) time. Our
algorithm gives (1− 1

e
)-approximation for maximum coverage problem in

O(poly(k)m · logm) time, which is independent of the sizes of the input
sets. No existing O(p(m)n1−ε) time (1− 1

e
)-approximation algorithm for

the maximum coverage has been found for any function p(m) that only
depends on the number of sets, where n = max(|A1|, · · · , |Am|) (the
largest size of input sets). The notion of partial sublinear time algorithm
is introduced. For a computational problem with input size controlled by
two parameters n and m, a partial sublinear time algorithm for it runs
in a O(p(m)n1−ε) time or O(q(n)m1−ε) time. The maximum coverage
has a partial sublinear time O(poly(m)) constant factor approximation
since k ≤ m. On the other hand, we show that the maximum cover-
age problem has no partial sublinear O(q(n)m1−ε) time constant factor
approximation algorithm.

1 Introduction

The maximum coverage problem is a classical NP-hard problem with many appli-
cations [7,13], and is directly related to set cover problem, one of Karp’s twenty-
one NP-complete problems [16]. The input has several sets and a number k. The
sets may have some elements in common. You must select at most k of these sets
such that the maximum number of elements are covered, i.e. the union of the
selected sets has a maximum size. The greedy algorithm for maximum coverage
chooses sets according to one rule: at each stage, choose a set which contains
the largest number of uncovered elements. It can be shown that this algorithm
achieves an approximation ratio of (1 − 1

e ) [7,14].
Inapproximability results show that the greedy algorithm is essentially the

best-possible polynomial time approximation algorithm for maximum cover-
age [10]. The existing implementation for the greedy (1 − 1

e )-approximation
c© Springer International Publishing AG, part of Springer Nature 2018
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algorithm for the maximum coverage problem needs Ω(mn) time for a list of
m sets A1, · · · , Am with n = |A1| = |A2| = · · · = |Am| [14,23]. We have not
found any existing O(p(m)n1−ε) time algorithm for the same ratio (1 − 1

e ) of
approximation for any function p(m) that only depends on the number of sets.
The variant versions and methods for this problem have been studied in a series
of papers [1,5,6,18,21].

This paper sticks to the original definition of the maximum coverage problem,
and studies its complexity under several concrete models. In the first model,
each set is accessed as a black box that only provides random elements and
answers membership queries. When m input sets A1, A2, · · · , Am are given, our
model allows random sampling from each of them, and the cardinality |Ai| (or
approximation for |Ai|) of each Ai is also part of the input. The results of the first
model can be transformed into other conventional models. A set could be a set of
points in a geometric shape. For example, a set may be all lattice points in a d-
dimensional rectangular shape. If the center position, and dimension parameters
of the rectangle are given, we can count the number of lattice points and provide
a random sample for them.

A more generalized maximum coverage problem was studied under the model
of submodular set function subject to a matroid constraint [2,11,20], and has
same approximation ratio 1− 1

e . The maximum coverage problem in the matroid
model has time complexity O(r3m2n) [11], and O(r2m3n+m7) [2], respectively,
according to the analysis in [11], where r is the rank of matroid, m is the number
of sets, and n is the size of the largest set. The maximum coverage problem in the
matroid model has the oracle query to the submodular function [2] and is counted
O(1) time per query. Computing the size of union of input sets is #P-hard if
each input set as a black box is a set of high dimensional rectangular lattice
points since #DNF is #P-hard [22]. The size of union of sets is approximated
in this paper. This enable us to apply our model to this high dimensional space
maximum coverage problem.

In this paper, we develop a randomized algorithm to approximate the maxi-
mum coverage problem. We show an approximation algorithm for maximum cov-
erage problem with (1 − 1

e )-ratio. For an input list L of finite sets A1, · · · , Am,
an integer k, and parameter ε ∈ (0, 1), our randomized algorithm returns an
integer z and a subset H ⊆ {1, 2, · · · ,m} such that |∪j∈H Aj | ≥ (1− 1

e )C∗(L, k)
and |H| = k, and (1 − ε)| ∪j∈H Aj | ≤ z ≤ (1 + ε)| ∪j∈H Aj |, where C∗(L, k) is
the maximum union size for a solution of maximum coverage. Its complexity is
O(k6

ε2 (log(3m
k ))m) and its probability to fail is less than 1

4 .
Our computational time is independent of the size of each set if the mem-

bership checking for each input set takes one step. When each set Ai is already
saved in an efficient data structure such as B-tree, we can also provide an effi-
cient random sample, and make a membership query to each Ai in a O(log |Ai|)
time. This model also has practical importance because B-tree is often used to
collect a large set of data. Our algorithms are suitable to estimate the maxi-
mum coverage when there are multiple big data sets, and each data set is stored
in a efficient data structure that can support efficient random sampling and
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membership query. The widely used B-tree in modern data base clearly fits our
algorithm. Our model and algorithm are suitable to support online computation.

We apply the randomized algorithm to several versions of maximum coverage
problem: 1. Each set contains the lattice points in a rectangle of d-dimensional
space. It takes O(d) time for a random element, or membership query. This
gives an application to a #P-hard problem. 2. Each set is stored in a unsorted
array. It takes O(1) time for a random element, and O(n) time for membership
query. It takes O(log n) time for a random element, or membership query. 3.
Each set is stored in a sorted array. 4. Each set is stored in a B-tree. It takes
O(log n) time for a random element, or a membership query. Furthermore, B-
tree can support online version of maximum coverage that has dynamic input.
5. Each set is stored in a hashing table. The time for membership query needs
some assumption about the performance of hashing function. We show how the
computational time of the randomized algorithm for maximum coverage depends
on the these data structures.

Sublinear time algorithms have been found for many computational prob-
lems, such as checking polygon intersections [3], estimating the cost of a mini-
mum spanning tree [4,8,9], etc.

The notion of partial sublinear time computation is introduced in this paper.
It characterizes a class of computational problems that are sublinear in one
of the input parameters, but not necessarily the other ones. For a function
f(.) that maps a list of sets to nonnegative integers, a O(p(m)n1−ε) time or
O(q(n)m1−ε) time approximation to f(.) is a partial sublinear time computation.
The maximum coverage has a partial sublinear time constant factor approxima-
tion scheme. We prove that the special case of maximum coverage problem with
equal size of sets, called equal size maximum coverage, is as hard as the gen-
eral case. On the other hand, we show that the equal size maximum coverage
problem has no partial sublinear O(q(n)m1−ε) constant factor approximation
randomized algorithm in a randomized model. Thus, the partial sublinear time
computation is separated from the conventional sublinear time computation via
the maximum coverage problem.

2 Computational Model and Complexity

In this section, we show our model of computation, and the definition of com-
plexity. For a finite set A, we use |A|, cardinality of A, to be the number of
distinct elements in A. For a real number x, let �x� be the least integer y greater
than or equal to x, and 	x
 be the largest integer z less than or equal to x. Let
N = {0, 1, 2, · · · } be the set of nonnegative integers, R = (−∞,+∞) be the set of
all real numbers, and R+ = [0,+∞) be the set of all nonnegative real numbers.
An integer s is a (1 + ε)-approximation for |A| if (1 − ε)|A| ≤ s ≤ (1 + ε)|A|.
Definition 1. Let parameters αL and αR be in [0, 1). An (αL, αR)-biased gen-
erator RandomElement(A) for set A generates an element in A such that for
each y ∈ A, (1 − αL) · 1

|A| ≤ Prob(RandomElement(A) = y) ≤ (1 + αR) · 1
|A| .
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Definition 2 gives the randomized computation model that allows biased ran-
dom generators and approximate sizes for input sets. It is suitable to apply our
algorithm for high dimensional geometric problems that may not give uniform
random sampling or exact set size. For example, it is not trivial to count the
number of lattice points or generate a random lattice point in a d-dimensional
ball with its center not at a lattice point.

Definition 2. The randomized computation model for our algorithm is defined
below: Let real parameters αL, αR, δL, δR be in [0, 1). An input L is a list
of sets A1, A2, · · · , Am that provide an approximate cardinality si of Ai with
(1 − δL)|Ai| ≤ si ≤ (1 + δR)|Ai| for i = 1, 2, · · · ,m, the largest approximate
cardinality of input sets s = max{si : 1 ≤ i ≤ m}, and support the following
operations:

1. Function RandomElement(Ai) is a (αL, αR)-biased random generator for Ai

for i = 1, 2, · · · ,m.
2. Function Query(x,Ai) returns 1 if x ∈ Ai, and 0 otherwise.

The model is called type 0 model if αL = αR = δL = δR = 0, and type 1 model
otherwise.

The main problem, which is called maximum coverage, is that given a list of
sets A1, · · · , Am and an integer k, find k sets from A1, A2, · · · , Am to maximize
the size of the union of the selected sets in the computational model defined
in Definition 2. For real number a ∈ [0, 1], an approximation algorithm is a
(1 − a)-approximation for the maximum coverage problem that has input of
integer parameter k and a list of sets A1, · · · , Am if it outputs a sublist of sets
Ai1 , Ai2 , · · · , Aik

such that |Ai1 ∪Ai2 ∪ · · · ∪Aik
| ≥ (1−a)|Aj1 ∪Aj2 ∪ · · ·∪Ajk

|,
where Aj1 , Aj2 , · · · , Ajk

is a solution with maximum size of union.
We use the triple (T (.), R(.), Q(.)) to characterize the computational com-

plexity, where

– T (.) is a function for the number of steps that each access to
RandomElement(.) or Query(.) is counted one step,

– R(.) is a function to count the number of random samples from Ai for
i = 1, 2, · · · ,m. It is measured by the total number of times to access those
functions RandomElement(Ai) for all input sets Ai, and

– Q(.) is a function to count the number of queries to Ai for i = 1, · · · , Am. It is
measured by the total number of times to access those functions Query(x,Ai)
for all input sets Ai.

The parameters ε, γ, k, n,m can be used to determine the three complexity
functions, where n = max(|A1|, · · · , |Am|) (the largest cardinality of input
sets), ε controls the accuracy of approximation, and γ controls the fail-
ure probability of a randomized algorithm. Their types could be written as
T (ε, γ, k,m), R(ε, γ, k,m), and Q(ε, γ, k,m). All of the complexity results of this
paper at both model 0 and model 1 are independent of parameter n.
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Definition 3. For a list L of sets A1, A2, · · · , Am and real αL, αR, δL, δR ∈
[0, 1), it is called ((αL, αR), (δL, δR))-list if each set Ai is associated with a num-
ber si with (1 − δL)|Ai| ≤ si ≤ (1 + δR)|Ai| for i = 1, 2, · · · ,m, and the set Ai

has a (αL, αR)-biased random generator RandomElement(Ai).

3 Outline of Our Methods

For two sets A and B, we develop a randomized method to approximate the
cardinality of the difference B−A. We approximate the size of B−A by sampling
a small number of elements from B and calculating the ratio of the elements
in B − A by querying the set A. The approximate |A ∪ B| is the sum of an
approximation of |A| and an approximation of |B − A|.

A greedy approach will be based on the approximate difference between a
new set and the union of sets already selected. Assume that A1, A2, · · · , Am is
the list of sets for the maximum coverage problem. After Ai1 , · · · , Ait

have been
selected, the greedy approach needs to check the size |Aj −(Ai1 ∪Ai2 ∪· · ·∪Ait

)|
before selecting the next set. Our method to estimate |Aj −(Ai1 ∪Ai2 ∪· · ·∪Ait

)|
is based on randomization in order to make the time independent of the sizes of
input sets. Some random samples are selected from set Aj .

The classical greedy approximation algorithm provides 1 − (1 − 1
k )k ratio for

the maximum coverage problem. The randomized greedy approach gives 1−(1−
1
k )k − ξ ratio, where ξ depends on the accuracy of estimation to |Aj − (Ai1 ∪
Ai2 ∪ · · · ∪ Ait

)|. As (1 − 1
k )k is increasing and 1

e = (1 − 1
k )k + Ω( 1

k ), we can let
(1− 1

k )k +ξ ≤ 1
e by using sufficient number of random samples for the estimation

of set difference when selecting a new set. Thus, we control the accuracy of the
approximate cardinality of the set difference so that it is enough to achieve the
approximation ratio 1 − 1

e for the maximum coverage problem.
During the accuracy analysis, Hoeffiding Inequality [15] plays an important

role. It shows how the number of samples determines the accuracy of approxi-
mation.

Theorem 1 ([15]). Let X1, . . . , Xs be s independent random 0-1 variables and
X =

∑s
i=1 Xi.

i. If Xi takes 1 with probability at most p for i = 1, . . . , s, then for any ε > 0,
Pr(X > ps + εs) < e− 1

2 sε2 .
ii. If Xi takes 1 with probability at least p for i = 1, . . . , s, then for any ε > 0,

Pr(X < ps − εs) < e− 1
2 sε2 .

We define the function μ(x) in order to simply the probability mentioned in
Theorem 1

μ(x) = e− 1
2x2

(1)

Chernoff Bound (see [19]) is also used in the maximum coverage approxima-
tion when our main result is applied in some concrete model. It implies a similar
result as Theorem 1.
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Theorem 2. Let X1, . . . , Xs be s independent random 0-1 variables, where Xi

takes 1 with probability at least p for i = 1, . . . , s. Let X =
∑s

i=1 Xi, and μ =
E[X]. Then for any δ > 0, Pr(X < (1 − δ)ps) < e− 1

2 δ2ps.

Theorem 3. Let X1, . . . , Xs be s independent random 0-1 variables, where Xi

takes 1 with probability at most p for i = 1, . . . , s. Let X =
∑s

i=1 Xi. Then for

any δ > 0, Pr(X > (1 + δ)ps) <
[

eδ

(1+δ)(1+δ)

]ps

.

A well known fact in probability theory called union bound is expressed by
the inequality

Pr(E1 ∪ E2 . . . ∪ Et) ≤ Pr(E1) + Pr(E2) + . . . + Pr(Et), (2)

where E1, E2, . . . , Et are t events that may not be independent. In the analysis
of our randomized algorithm, there are multiple events such that the failure
from any of them may fail the entire algorithm. We often characterize the failure
probability of each of those events, and use the above inequality to show that
the whole algorithm has a small chance to fail, after showing that each of them
has a small chance to fail.

Our algorithm performance will depend on the initial accuracy of approxi-
mation to each set size, and how biased the random sample from each input set.
This consideration is based on the applications to high dimensional geometry
problems which may be hard to count the exact number of elements in a set,
and is also hard to provide perfect uniform random source. We plan to release
more applications to high dimensional geometry problems that need approximate
counting and biased random sampling.

Overall, our method is an approximate randomized greedy approach for the
maximum coverage problem. The numbers of random samples is controlled so
that it has enough accuracy to derive the classical approximation ratio 1 − 1

e .
The main results are stated at Theorem 4.

There is an existing analysis about the accuracy of approximation and the
approximate gain when adding a new set to a partial solution [13]. If the gain
|Aj − (Ai1 ∪Ai2 ∪ · · · ∪Ait

)| for set Aj is at least β|Aj′ − (Ai1 ∪Ai2 ∪ · · · ∪Ait
)|,

then the approximation ratio is 1 − 1
eβ , where Aj′ has the maximal gain |Aj′ −

(Ai1 ∪Ai2 ∪· · ·∪Ait
)|. Our method has a more careful control to the approximate

gain when selecting a set in order to match the best possible approximation ratio
1 − 1

e .

Definition 4. Let the maximum coverage problem have integer parameter k,
and a list L of sets A1, A2, · · · , Am as input. We always assume k ≤ m. Let
C∗(L, k) = |At1 ∪ At2 ∪ · · · ∪ Atk

| be the maximum union size of a solution
At1 , · · · , Atk

for the maximum coverage.

Theorem 4. Let ρ be a constant in (0, 1). For parameters ε, γ ∈ (0, 1) and
αL, αR, δL, δR ∈ [0, 1−ρ], there is an algorithm to give a (1− 1

eβ ) approximation
for the maximum cover problem, such that given a ((αL, αR), (δL, δR))-list L of
finite sets A1, · · · , Am and an integer k, with probability at least 1−γ, it returns
an integer z and a subset H ⊆ {1, 2, · · · ,m} that satisfy
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1. | ∪j∈H Aj | ≥ (1 − 1
eβ )C∗(L, k) and |H| = k,

2. ((1 − αL)(1 − δL) − ε)| ∪j∈H Aj | ≤ z ≤ ((1 + αR)(1 + δR) + ε)| ∪j∈H Aj |, and
3. Its complexity is (T (ε, γ, k,m), R(ε, γ, k,m), Q(ε, γ, k,m)) with T (ε, γ, k,m) =

O(k5

ε2 (k log(3m
k ) + log 1

γ )m), R(ε, γ, k,m) = O(k4

ε2 (k log(3m
k ) + log 1

γ )m), and

Q(ε, γ, k,m) = O(k5

ε2 (k log(3m
k ) + log 1

γ )m), where β = (1−αL)(1−δL)
(1+αR)(1+δR) .

4 Randomized Algorithm for Maximum Coverage

We give a randomized algorithm for approximating the maximum coverage. It is
based on an approximation to the cardinality of set difference. The algorithms
are described at type 1 model, and has corollaries for type 0 model.

4.1 Randomized Algorithm for Set Difference Cardinality

In this section, we develop a method to approximate the cardinality of B − A
based on random sampling. It will be used as a submodule to approximate the
maximum coverage.

Definition 5. Let R = x1, x2, · · · , xw be a list of elements from set B, and let
L be a list of sets A1, A2, · · · , Au. Define test(L,R) = |{j : 1 ≤ j ≤ w, and xj �∈
(A1 ∪ A2 ∪ · · · ∪ Au)}|.

The Algorithm ApproximateDifference(.) gives an approximation s for the
size of B − A. It is very time consuming to approximate |B − A| when |B −
A| is much less than |B|. The algorithm ApproximateDifference(.) returns an
approximate value s for |B−A| with a range in [(1−δ)|B−A|−ε|B|, (1+δ)|B−
A| + ε|B|], and will not lose much accuracy when it is applied to approximate
the maximum coverage by controlling the two parameters δ and ε.

Algorithm 1 : RandomTest(L,B,w)
Input: L is a list of sets A1, A2, · · · , Au, B is another set with a random

generator RandomElement(B), and w is an integer to control the number of
random samples from B.

1. For i = 1 to w let xi = RandomElement(B);
2. For i = 1 to w
3. Let yi = 0 if (xi ∈ A1 ∪ A2 ∪ · · · ∪ Au), and 1 otherwise;
4. Return t = y1 + · · · + yw;

End of Algorithm
Algorithm 2 : ApproximateDifference(L,B,s2, ε, γ)
Input: L is a list of sets A1, A2, · · · , Au, B is another set with a random

generator RandomElement(B), integer s2 is an approximation for |B| with (1 −
δL)|B| ≤ s2 ≤ (1 + δR)|B|, and ε and γ are real parameters in (0, 1), where
δ ∈ [0, 1].
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Steps:

1. Let w be an integer with μ( ε
3 )w ≤ γ

4 , where μ(x) is defined in equation
(1).

2. Let t =RandomTest(L,B,w);
3. Return s = t

w · s2

End of Algorithm
Lemma 1 shows how Algorithm ApproximateDifference(.) returns an approx-

imation s for |B − A| with a small failure probability γ, and its complexity
depends on the accuracy ε of approximation and probability γ. Its accuracy is
controlled for the application to the approximation algorithms for maximum
coverage problem.

Lemma 1. Assume that real number ε ∈ [0, 1], B is a set with (αL, αR)-biased
random generator RandomElement(B) and an approximation s2 for |B| with
(1 − δL)|B| ≤ s2 ≤ (1 + δR)|B|, and L is a list of sets A1, A2, · · · , Au. Then

1. If R = x1, x2, · · · , xw be a list of elements generated by RandomElement(B),
and μ( ε

3 )w ≤ γ
4 , then with probability at most γ, the value s = t

w · s2 fails to
satisfy inequality (3)

(1 − αL)(1 − δL)|B − A| − ε|B| ≤ s ≤ (1 + αR)(1 + δR)|B − A| + ε|B|, (3)

where A = A1 ∪ A2 ∪ · · · ∪ Au is the union of sets in the input list L.
2. With probability at most γ, the returned value s by the algorithm Approxi-

mateDifference(.) fails to satisfy inequality (3), and
3. If the implementation of RandomTest(.) in Algorithm 1 is used, then the com-

plexity of ApproximateDifference(.) is (TD(ε, γ, u), RD(ε, γ, u), QD(ε, γ, u))
with TD(ε, γ, u) = O( u

ε2 log 1
γ ), RD(ε, γ, u) = O( 1

ε2 log 1
γ ), and QD(ε, γ, u) =

O( u
ε2 log 1

γ ).

4.2 A Randomized Algorithm for Set Union Cardinality

We describe a randomized algorithm for estimating the cardinality for set union.
It will use the algorithm for set difference developed in Sect. 4.1. Karp et al. [17]
developed a (1+ε) randomized approximation algorithm to improve the running
time for approximating the number of distinct elements in the union A1∪· · ·∪Am

to linear O((1 + ε)m/ε2) time. Their algorithm requires each set provides exact
size and a uniform random generator. Their algorithm cannot be directly used for
the maximum coverage problem algorithm in this paper as we use biased random
generator and approximate size from each set. Furthermore, the greedy approach
for the maximum coverage needs to estimate gain, which is based on Lemma 1
in this paper, for adding each new set to a partial solution. The following lemma
gives an approximation for the size of sets union. Its accuracy is enough when it
is applied in the approximation algorithms for maximum coverage problem.
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Lemma 2. Assume ε, δL, δR, , δ2,L, δ2,R, αL, αR ∈ [0, 1], (1 − δL) ≤ (1 −
αL)(1 − δ2,L) and (1 + δR) ≥ (1 + αR)(1 + δ2,R). Assume that L is a list of
sets A1, A2, · · · , Au, and X2 is set with an (αL, αR)-biased random genera-
tor RandomElement(X2). Let integers s1 and s2 satisfy (1 − δL)|X1| ≤ s1 ≤
(1 + δR)|X1|, and (1 − δ2,L)|X2| ≤ s2 ≤ (1 + δ2,R)|X2|, then

1. If t satisfies (1−αL)(1−δ2,L)|X2 −X1|−ε|X2| ≤ t ≤ (1+αR)(1+δ2,R)|X2 −
X1| + ε|X2|, then s1 + t satisfies

(1 − δL − ε)|X1 ∪ X2| ≤ s1 + t ≤ (1 + δR + ε)|X1 ∪ X2|. (4)

2. If t =ApproximateDifference(L,X2, s2, ε, γ), with probability at most γ, s1 + t
does not have inequality (4),

where X1 = A1 ∪ A2 ∪ · · · ∪ Au.

4.3 Approximation to the Maximum Coverage Problem

In this section, we show that our randomized approach to the cardinality of
set union can be applied to the maximum coverage problem. Lemma 3 gives
the approximation performance of greedy method for the maximum coverage
problem. It is adapted to a similar result [14] with our approximation accuracy
to the size of set difference.

In [13], it showed that if each iteration selects a set Aj with |Aj − (Ai1 ∪
Ai2 ∪ · · · ∪ Ait

)| ≥ β|Aj′ − (Ai1 ∪ Ai2 ∪ · · · ∪ Ait
)|, then the approximation ratio

is 1 − 1
eβ , where Aj′ has the maximal gain |Aj′ − (Ai1 ∪ Ai2 ∪ · · · ∪ Ait

)|. When
the accuracy for the approximate gain |Aj − (Ai1 ∪ Ai2 ∪ · · · ∪ Ait

)| is controlled
by a single factor β, it is not enough to obtain (1 − 1

e )-approximation ratio.
The error control at the term ε|B| in inequality (3) enables us to achieve the
(1 − 1

e )-approximation ratio.

Definition 6. For a list L of sets A1, A2, · · · , Am, define its initial h sets by
L(h) = A1, A2, · · · , Ah, and the union of sets in L by U(L) = A1∪A2∪· · ·∪Am.

Lemma 3. Let L′ be a sublist of sets At1 , At2 , · · · , Atk
selected from the list L

of sets A1, A2, · · · , Am. If each subset Atj+1(j = 0, 1, 2, · · · , k − 1) in L′ satisfies
|Atj+1 −U(L′(j))| ≥ θ · C∗(L,k)−|U(L′(j))|

k − δC∗(L, k), then |U(L′(l))| ≥ (1− (1−
θ
k )l)C∗(L, k) − l · δC∗ for l = 1, 2, · · · , k.

Definition 7. If L′ is a list of sets B1, B2, · · · , Bu, and Bu+1 is another set,
define Append(L′, Bu+1) to be the list B1, B2, · · · , Bu, Bu+1, which is to append
Bu+1 to the end of L′.

In Algorithm ApproximateMaximumCover(.), there are several virtual
functions including RandomSamples(.), ApproximateSetDifferenceSize(.), and
ProcessSet(.), which have variant implementations and will be given
in Virtual Function Implementations 1, 2 and 3. We use a virtual
function ApproximateSetDifferenceSize(L′, Ai, si, ε

′, γ, k,m) to approximate
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|Ai − ∪Aj is in L′Aj |. We will have variant implementations for this function,
and get different time complexity. Another function ProcessSet(Aj) also has
variant implementations. Its purpose is to process a newly selected set Aj to list
L′ of existing selected sets, and may sort it in one of the implementations. The
function RandomSamples(.) is also virtual and will have two different implemen-
tations (see the full version of this paper [12] for details).

Algorithm 3 : ApproximateMaximumCover(L, k, ξ, γ)
Input: a list ((αL, αR), (δL, δR))-list L of m sets A1, A2, · · · , Am, an integer

parameter k, and two real parameters ξ, γ ∈ (0, 1). Each Ai has a (αL, αR)-biased
random generator RandomElement(Ai), and an approximation si for |Ai|.

Steps:

1. Let H = ∅, and list L′ be empty;
2. Let z = 0;
3. Let ε′ = ξ

4k ;
4. For i = 1 to m let Ri =RandomSamples(Ai, ξ, γ, k,m);
5. For j = 1 to k
6. {
7. Let s∗

j = −1;
8. For each Ai in L,
9. {

10. Let si,j =ApproximateSetDifferenceSize(L′, Ai, si, Ri, ε
′, γ, k,m);

11. If (si,j > s∗
j ) then let s∗

j = si,j and tj = i;
12. }
13. Let H = H ∪ {tj};
14. Let z = z + stj ,j ;
15. ProcessSet(Atj

);
16. Let L′ =Append(L′, Atj

);
17. Remove Atj

from list L;
18. }
19. Return z and H;

End of Algorithm
The performance of the algorithm is stated in Theorem 4. It gives an (1− 1

e )-
approximation for the maximum coverage problem for ((0, 0), (0, 0))-list accord-
ing to Definition 3.

5 Inapproximability of Partial Sublinear Time

In this section, we introduce the concept of partial sublinear time computation.
The maximal coverage has a partial sublinear constant factor approximation
algorithm. On the other hand, we show that an inapproximability result for
maximum coverage if the time is q(n)m1−ε, where m is the number of sets. This
makes the notion of partial sublinear computation different from conventional
sublinear computation.
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The inapproximability result is derived on a randomized computational
model that includes the one used in developing our randomized algorithms for the
maximum coverage problem. The randomized model result needs some additional
work than a deterministic model to prove the inapproximability. A deterministic
algorithm with q(n)m1−ε time let some set be never queried by the computation,
but all sets can be queried in randomized algorithm with q(n)m1−ε time as there
are super-polynomial (of both n and m) many paths.

6 Conclusions

We developed a randomized greed approach for the maximum coverage problem.
It obtains the same approximation ratio (1 − 1

e ) as the classical approximation
for the maximum coverage problem, while its computational time is independent
of the cardinalities of input sets under the model that each set answers query and
generates one random sample in O(1) time. It can be applied to find approximate
maximum volume by selecting k objects among a list of objects such as rectangles
in high dimensional space. Our approximation ratio depends on the how much
the random sampling is biased, and the initial approximation accuracy for the
input set sizes. The two accuracies are determined by the parameters αL, αR, δL

and δR in a ((αL, αR), (δL, δR))-list. It seems that our method can be generalized
to deal with more general version of the maximum coverage problems, and it is
expected to obtain more results in this direction. The notion of partial sublinear
time algorithm will be used to characterize more computational problems than
the sublinear time algorithm.
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Abstract. A graph G is called a pairwise compatibility graph (PCG,
for short) if it admits a tuple (T,w, dmin, dmax) of a tree T whose leaf set
is equal to the vertex set of G, a non-negative edge weight w, and two
non-negative reals dmin ≤ dmax such that G has an edge between two
vertices u, v ∈ V if and only if the distance between the two leaves u and
v in the weighted tree (T,w) is in the interval [dmin, dmax]. The tree T
is also called a witness tree of the PCG G. The problem of testing if a
given graph is a PCG is not known to be NP-hard yet. To obtain a com-
plete characterization of PCGs is a wide open problem in computational
biology and graph theory. In the literature, most witness trees admitted
by known PCGs are stars and caterpillars. In this paper, we give a com-
plete characterization for a graph to be a star-PCG (a PCG that admits
a star as its witness tree), which provides us the first polynomial-time
algorithm for recognizing star-PCGs.

Keywords: Pairwise compatibility graph
Polynomial-time algorithm · Graph algorithm · Graph theory

1 Introduction

Pairwise compatibility graph is a graph class originally motivated from com-
putational biology. In biology, the evolutionary history of a set of organisms
is represented by a phylogenetic tree, which is a tree with leaves representing
known taxa and internal nodes representing ancestors that might have led to
these taxa through evolution. Moreover, the edges in the phylogenetic tree may
be assigned weights to represent the evolutionary distance among species. Given
a set of taxa and some relations among the taxa, we may want to construct
a phylogenetic tree of the taxa. The set of taxa may be a subset of taxa from
a large phylogenetic tree, subject to some biologically-motivated constraints.
Kearney et al. [12] considered the following constraint on sampling based on the
observation in [10]: the pairwise distance between any two leaves in the sample
phylogenetic tree is between two given integers dmin and dmax. This motivates
the introduction of pairwise compatibility graphs (PCGs). Given a phylogenetic
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 504–515, 2018.
https://doi.org/10.1007/978-3-319-94776-1_42
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tree T with an edge weight w and two real numbers dmin and dmax, we can
construct a graph G whose each vertex is corresponding to a leaf of T so that
there is an edge between two vertices in G if and only if the corresponding two
leaves of T are at a distance within the interval [dmin, dmax] in T . The graph G
is called the PCG of the tuple (T,w, dmin, dmax).

It is straightforward to construct a PCG from a given tuple
(T,w, dmin, dmax). However, the inverse direction seems a considerably hard
task. Few methods have been known for constructing a corresponding tuple
(T,w, dmin, dmax) from a given graph G. The inverse problem attracts certain
interests in graph algorithms, which may also have potential applications in com-
putational biology. PCG has been extensively studied from many aspects after
its introduction [3,6,7,9,18,19].

A natural question was whether all graphs are PCGs. This was proposed
as a conjecture in [12], and was confuted in [18] by giving a counterexample
of a bipartite graph with with 15 vertices. Later, a counterexample with eight
vertices and a counterexample of a planar graph with 20 vertices were found [9].
It has been checked that all graphs with at most seven vertices are PCGs [3] and
all bipartite graphs with at most eight vertices are PCGs [14]. In fact, it is even
not easy to check whether a graph with a small constant number of vertices is
a PCG or not. Whether recognizing PCGs is NP-hard or not is currently open.
Some references conjecture the NP-hardness of the problem [7,9]. A generalized
version of PCG recognition is shown to be NP-hard [9].

Several graph classes contained in PCG have been investigated. PCG contains
the well-studied graph class of leaf power graphs (LPGs) as a subset of instances
such that dmin = 0, which was introduced in the context of constructing phyloge-
nies from species similarity data [8,13,15]. Another natural relaxation of PCG is
to set dmax = ∞. This graph class is known as min leaf power graph (mLPG) [6],
which is the complement of LPG. Several other known graph classes have been
shown to be subclasses of PCG, e.g., disjoint union of cliques [2], forests [11],
cacti [17,19], chordless cycles and single chord cycles [19], complete k-partite
graphs [17], tree power graphs [18], threshold graphs [6], triangle-free outerpla-
nar 3-graphs [16], some particular subclasses of split matrogenic graphs [6], Dil-
worth 2 graphs [5], the complement of a forest [11] and so on. It is also known
that a PCG with a witness tree being a caterpillar also allows a witness tree
being a centipede [4]. A method for constructing PCGs is derived [17], where it
is shown that a graph G consisting two graphs G1 and G2 that share a vertex
as a cut-vertex in G is a PCG if and only both G1 and G2 are PCGs.

How to recognize PCGs or construct a corresponding phylogenetic tree for
a PCG becomes a wide open problem in this area. To make a step toward this
open problem, we consider PCGs with a witness tree being a star in this paper,
which we call star-PCGs. Note that in the literature, most of the witness trees of
PCGs have simple graph structures, such as stars and caterpillars [7]. It is fun-
damental to consider the problem of characterizing subclasses of PCGs derived
from a specific topology of trees. Although stars are trees with a rather simple
topology, star-PCG recognition is not easy at all. It is known that threshold



506 M. Xiao and H. Nagamochi

graphs are star-PCGs (even in star-LPG and star-mLPG) and the class of star-
PCGs is nearly the class of three-threshold graphs, a graph class extended from
the threshold graphs [6]. However, no complete characterization of star-PCGs
and no polynomial-time recognition of star-PCGs are known. In this paper, we
give a complete characterization for a graph to be a star-PCG, which provides
us the first polynomial-time algorithm for recognizing star-PCGs.

The main idea of our algorithm is as follows. Without loss of generality, we
always rank the leaves of the witness star TV (and the corresponding vertices
in the star-PCG G) according to the weight of the edges incident on it. When
such an ordering of the vertices in a star-PCG G is given, we can see that all the
neighbors of each vertex in G must appear consecutively in the ordering. This
motivates us to define such an ordering to be “consecutive ordering”. To check
if a graph is a star-PCG, we can first check if the graph can have a consecutive
ordering of vertices. Consecutive orderings can be computed in polynomial time
by reducing to the problem of recognizing interval graphs. However, this is not
enough to test star-PCGs. A graph may not be a star-PCG even if it has a
consecutive ordering of vertices. We further investigate the structural properties
of star-PCGs on a fixed consecutive ordering of vertices. We find that three cases
of non-adjacent vertex pairs, called gaps, can be used to characterize star-PCGs.
A graph is a star-PCG if and only if it admits a consecutive ordering of vertices
that is gap-free (Theorem 3). Finally, to show that whether a given graph is gap-
free or not can be tested in polynomial time (Theorem4), we also use a notion
of “contiguous orderings”. All these together contribute to a polynomial-time
algorithm for our problem.

The paper is organized as follows. Section 2 introduces some basic notions and
notations necessary to this paper. Section 3 discusses how to test whether a given
family S of subsets of an element set V admits a special ordering on V , called
“consecutive” or “contiguous” orderings and proves the uniqueness of such order-
ings under some conditions on S. Section 4 characterizes the class of star-PCGs
G = (V,E) in terms of an ordering σ of the vertex set V , called a “gap-free”
ordering, and shows that given a gap-free ordering of V , a tuple (T,w, dmin, dmax)
that represents G can be computed in polynomial time. Section 5 first derives
structural properties on a graph that admits a “gap-free” ordering, and then
presents a method for testing if a given graph is a star-PCG or not in polyno-
mial time by using the result on contiguous orderings to a family of sets. Finally
Sect. 6 makes some concluding remarks. Due to the space limitation, some proofs
are omitted in the extended abstract.

2 Preliminaries

For two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b. For
a sequence σ of elements, let σ denote the reversal of σ. A sequence obtained by
concatenating two sequences σ1 and σ2 in this order is denoted by (σ1, σ2).

Families of Sets. Let V be a set of n ≥ 1 elements. We call a subset S ∈ V
trivial in V if |S| ≤ 1 or S = V . We say that a set X has a common element
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with a set Y if X ∩ Y �= ∅. We say that two subsets X,Y ⊆ V intersect (or X
intersects Y ) if three sets X ∩ Y , X \ Y , and Y \ X are all non-empty sets. A
partition {V1, V2, . . . , Vk} of V is defined to be a collection of disjoint non-empty
subsets Vi of V such that their union is V , where possibly k = 1.

Let S ⊆ 2V be a family of m subsets of V . A total ordering u1, u2, . . . , un of
elements in V is called consecutive to S if each non-empty set S ∈ S consists of
elements with consecutive indices, i.e., S is equal to {ui, ui+1, . . . , ui+|S|−1} for
some i ∈ [1, n − |S| − 1]. A consecutive ordering u1, u2, . . . , un of elements in V
to S is called contiguous if any two sets S, S′ ∈ S with S′ ⊆ S start from or end
with the same element along the ordering, i.e., S′ = {uj , uj+1, . . . , uj+|S′|−1}
and S = {ui, ui+1, . . . , ui+|S|−1} satisfy j = i or j + |S′| = i + |S|.
Graphs. Let a graph stand for a simple undirected graph. A graph (resp., bipar-
tite graph) with a vertex set V and an edge set E (resp., an edge set E between
two vertex sets V1 and V2 = V \V1) is denoted by G = (V,E) (resp., (V1, V2, E)).
Let G be a graph, where V (G) and E(G) denote the sets of vertices and edges
in a graph G, respectively. For a vertex v in G, we denote by NG(v) the set of
neighbors of a vertex v in G, and define degree degG(v) to be the |NG(v)|. We
call a pair of vertices u and v in G a mirror pair if NG(v) \ {u} = NG(u) \ {v}.
Let X be a subset of V (G). Define NG(X) to be the set of neighbors of X, i.e.,
NG(X) = {u ∈ NG(v) \ X | v ∈ X}. Let G − X denote the graph obtained from
G by removing vertices in X together with all edges incident to vertices in X,
where G − {v} for a vertex v may be written as G − v. Let G[X] denote the
graph induced by X, i.e., G[X] = G − (V (G) \ X).

Let T be a tree. A vertex v in T is called an inner vertex if degeT (v) ≥ 2 and
is called a leaf otherwise. Let L(T ) denote the set of leaves. An edge incident to
a leaf in T is called a leaf edge of T . A tree T is called a star if it has at most
one inner vertex.

Weighted Graphs. An edge-weighted graph (G,w) is defined to be a pair of a
graph G and a non-negative weight function w : E(G) → �+. For a subgraph
G′ of G, let w(G′) denote the sum

∑
e∈E(G′) w(e) of edge weights in G′.

Let (T,w) be an edge-weighted tree. For two vertices u, v ∈ V (T ), let
dT,w(u, v) denote the sum of weights of edges in the unique path of T between
u and v.

PCGs. For a tuple (T,w, dmin, dmax) of an edge-weighted tree (T,w) and two
non-negative reals dmin and dmax, define G(T,w, dmin, dmax) to be the simple
graph (L(T ), E) such that, for any two distinct vertices u, v ∈ L(T ), uv ∈ E
if and only if dmin ≤ dT,w(u, v) ≤ dmax. Note that G(T,w, dmin, dmax) is not
necessarily connected.

A graph G is called a pairwise compatibility graph (PCG, for short) if
there exists a tuple (T,w, dmin, dmax) such that G is isomorphic to the graph
G(T, dmin, dmax), where we call such a tuple a pairwise compatibility representa-
tion (PCR, for short) of G, and call a tree T in a PCR of G a pairwise compat-
ibility tree (PCT, for short) of G. The tree T is called a witness tree of G. We
call a PCG G a star-PCG if it admits a PCR (T,w, dmin, dmax) such that T is
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a star. Figure 1 illustrates examples of star-PCGs and PCRs of them. Although
phylogenetic trees may not have edges with weight 0 or degree-2 vertices by
some biological motivations [4], our PCTs do not have these constraints. This
relaxation will be helpful for us to analyze structural properties of PCGs from
graph theory. Furthermore, it is easy to get rid of edges with weight 0 or degree-2
vertices in a tree by contracting an edge.

Lemma 1. Every PCG admits a PCR (T,w, dmin, dmax) such that 0 < dmin <
dmax and w(e) > 0 for all edges e ∈ E(T ).
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Fig. 1. Illustration of examples of star-PCG. (a) A connected and bipartite star-PCG
G1 = (V1, V2, E). (b) The same graph G1 in (a) with a different ordering of vertices (the
two different orderings of vertices in (a) and (b) will be used to illustrate the concept
of “gap-free” later). (c) A PCR (T,w, dmin = 8, dmax = 9) of G1. (d) A connected and
non-bipartite star-PCG G2. (e) A PCR (T,w, dmin = 4, dmax = 8) of G2 in (d).

3 Consecutive/Contiguous Orderings of Elements

Let S ⊆ 2V be a family of m subsets of a set V of n ≥ 1 elements in this section.
Let V (S) denote the union of all subsets in S.

3.1 Consecutive Orderings of Elements

Observe that when S admits a consecutive ordering of V (S), any subfamily
S ′ ⊆ S admits a consecutive ordering of V (S ′). We call a non-trivial set C ⊆ V
a cut to S if no set S ∈ S intersects C, i.e., each S ∈ S satisfies one of S ⊇ C,
S ⊆ C and S ∩ C = ∅. We call S cut-free if S has no cut.
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Theorem 1. For a set V of n ≥ 1 elements and a family S ⊆ 2V of m ≥ 1
sets, a consecutive ordering of V to S can be found in O(nm2) time if one exists.
Moreover if S is cut-free, then a consecutive ordering of V to S is unique up to
reversal.

3.2 Contiguous Orderings of Elements

We call two elements u, v ∈ V equivalent in S if no set S ∈ S satisfies |{u, v} ∩
S| = 1. We call S simple if there is no pair of equivalent elements u, v ∈ V .
Define XS to be the family of maximal sets X ⊆ V such that any two vertices
in X are equivalent and X is maximal subject to this property.

A non-trivial set S ∈ S is called a separator if no other set S′ ∈ S contains
or intersects S, i.e., each S′ ∈ S satisfies S′ ⊆ S or S′ ∩ S = ∅. We call S
separator-free in S if S has no separator.

Theorem 2. For a set V of n ≥ 1 elements and a family S ⊆ 2V of m ≥
1 sets, a contiguous ordering of V to S can be found in O(nm2) time if one
exists. Moreover, all elements in each set X ∈ XS appear consecutively in any
contiguous ordering of V to S, and if S is separator-free, then a contiguous
ordering of V to S is unique up to reversal of the entire ordering and arbitrariness
of orderings of elements in each set X ∈ XS .

4 Star-PCGs

Let G = (V,E) be a graph with n ≥ 2 vertices, not necessarily connected. Let MG

denote the set of mirror pairs {u, v} ⊆ V in G, i.e., NG(u) \ {v} = NG(v) \ {u},
where u and v are not necessarily adjacent. Let TV be a star with a center v∗ and
L(T ) = V . An ordering of V is defined to be a bijection σ : V → {1, 2, . . . , n},
and we simply write a vertex v with σ(v) = i with vi. For an edge weight
w in TV , we simply denote w(v∗vi) by wi. When G is a star-PCG of a tuple
(TV , w, dmin, dmax), there is an ordering σ of V such that w1 ≤ w2 ≤ · · · ≤ wn.
Conversely this section derives a necessary and sufficient condition for a pair
(G, σ) of a graph G and an ordering σ of V to admit a PCR (TV , w, dmin, dmax)
of G such that w1 ≤ w2 ≤ · · · ≤ wn.

For an ordering σ of V , a non-adjacent vertex pair {vi, vj} with i < j in G is
called a gap (with respect to edges e1, e2 ∈ E) if there are edges e1, e2 ∈ E that
satisfy one of the following:

(g1) e1 = vivj′ and e2 = vivj′′ such that j′ < j < j′′ (or e1 = vi′vj and
e2 = vi′′vj such that i′ < i < i′′), as illustrated in Fig. 2(a);

(g2) e1 = vivi′ and e2 = vjvj′ such that j′ < i and j < i′, as illustrated
in Fig. 2(b); and

(g3) e1 = vivi′ and e2 = vjvj′ such that i′ < j and i < j′, as illustrated
in Fig. 2(c).
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Fig. 2. Illustration of a gap {vi, vj} in an ordered graph G = (V = {v1, v2, . . . , vn}, E),
where edges are denoted by solid lines and anti-edges are denoted by dashed lines: (a)
e1 = vivj′ and e2 = vivj′′ such that j′ < j < j′′, (b) e1 = vivi′ and e2 = vjvj′ such
that j′ < i and j < i′, (c) e1 = vivi′ and e2 = vjvj′ such that i′ < j and i < j′, where
possibly j′ ≤ i′ or i′ < j′.

We call an ordering σ of V gap-free in G if it has no gap. Clearly the reversal of a
gap-free ordering of V is also gap-free. We can test if a given ordering is gap-free
or not in O(n4) time by checking the conditions (a)–(c) for each non-adjacent
vertex pair {vi, vj} in G.

Figure 1(a) and (b) illustrate the same graph G1 with different orderings
σa = v1, v2, v3, v4, v8, v7, v6, v5 and σb = v1, v2, . . . , v8, where σa is not gap-free
while σb is gap-free.

We have the following result, which implies that a graph G = (V,E) is a
star-PCG if and only if it admits a gap-free ordering of V .

Theorem 3. For a graph G = (V,E), let σ be an ordering of V . Then there is
a PCR (TV , w, dmin, dmax) of G such that w1 ≤ w2 ≤ · · · ≤ wn if and only if σ
is gap-free.

The necessity of this theorem is relatively easy to prove. Next we consider
the sufficiency of Theorem 3, which is implied by the next lemma.

Lemma 2. For a graph G = (V,E), let σ = v1, v2, . . . , vn be an gap-free order-
ing of V . There is a PCR (TV , w, dmin, dmax) of G such that w1 ≤ w2 ≤ · · · ≤ wn.
Such a set {w1, w2, . . . , wn, dmin, dmax} of weights and bounds can be obtained in
O(n3) time.

A main technique used to prove this lemma is to color all edges and anti-
edges in the graph (i.e., all edges in the complete graph K|V | = (V,E∪E) on the
vertex set V , where E =

(
V
2

) \ E) to indicate the range of the distance between
the two endpoints of the edge or anti-edge in the PCT. Note that when two
vertices u and v are not adjacent in a PCG G, i.e., there is anti-edge between
u and v, there are two reasons: one is that the distance between them in the
PCR (T,w, dmin, dmax) is smaller than dmin, and the other is that the distance is
larger than dmax. We will use two different colors to distinguish these two kinds
of anti-edges. It will become easier to set weights to edges and bounds after
coloring all the anti-edges.

A coloring of a graph G = (V,E) is a function c : E ∪ E → {r, g, b}. We call
an edge e with c(e) = r (resp., g and b) a red (resp., green and blue) edge and
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use red (resp., green and blue) to denote the sets of red (resp., green and blue)
edges. We denote by Nred(v) the set of neighbors of a vertex v via red edges. We
define Ngreen(v) and Nblue(v) analogously.

For a graph G with an ordering σ = v1, v2, . . . , vn of the vertices, a coloring
c is proper to (G, σ) if it satisfies the following conditions:
each vi ∈ V admits integers a(i), b(i) ∈ [1, n] such that

Nred(vi) = {vj | 1 ≤ j ≤ a(i) − 1} \ {vi}

and
Nblue(vi) = {vj | b(i) + 1 ≤ j ≤ n} \ {vi},

where a(i) = 1 if Nred(vi) = ∅; b(i) = n if Nblue(vi) = ∅;
Ngreen(vi) = V \ (Nred(vi) ∪ Nblue(vi) ∪ {vi}), which is ∅ if b(i) < a(i) and
{vj | a(i) ≤ j ≤ b(i)} \ {vi} otherwise.

We will show that for a graph G with an ordering σ of the vertices, if there
is a coloring c proper to (G, σ), then we can find weights wi and bounds dmin

and dmax so that the next holds:

w1 ≤ w2 ≤ · · · ≤ wn;
dmin ≤ wi + wj ≤ dmax for (i, j) ∈ green;
wi + wj < dmin for (i, j) ∈ red; and
wi + wj > dmax for (i, j) ∈ blue.

All these are necessary for us to set the weights and bounds.
Recall that a(i) and b(i) are defined in the above definition of proper coloring.

We define integers ired and iblue as follows.

ired =
{

the largest index i such that i < a(i) if red �= ∅,
0 if red = ∅,

iblue =
{

the smallest index i such that b(i) < i if blue �= ∅,
n + 1 if blue = ∅.

In other words, ired �= 0 is the largest i with (i, i + 1) ∈ red, and ired < n,
whereas iblue �= n+1 is the smallest i with (i−1, i) ∈ blue, and iblue > 1. Given
a graph G, a gap-free ordering σ = v1, v2, . . . , vn of V , and a coloring c proper
to (G, σ), we can find the set {a(i), b(i) | i = 1, 2, . . . , n} ∪ {ired, iblue} of indices
in O(n2) time. We also compute the set MG of all mirror pairs in O(n3) time.
Equipped with above results, we can design an O(n)-time algorithm that assigns
the right values to weights w1, w2, . . . , wn in TV . The details can be found in the
full version.

To prove Lemma 2, we also need the following lemma.

Lemma 3. For a graph G = (V,E) and a gap-free ordering σ of V , there is a
coloring c of G that is proper to (G, σ), which can be found in in O(n2) time.
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5 Recognizing Star-PCGS

Based on Theorem 3, we can test whether a graph G = (V,E) is a star-PCG or
not by generating all n! orderings of V . In this section, we show that whether a
graph has a gap-free ordering of vertices can be tested in polynomial time.

Theorem 4. Whether a given graph G = (V,E) with n vertices has a gap-free
ordering of V can be tested in O(n6) time.

Lemma 4. For a graph G = (V,E) with a gap-free ordering σ = v1, v2, . . . , vn
of V and a coloring c proper to (G, σ), let V1 = {vi | 1 ≤ i ≤ ired}, V2 = {vi |
iblue ≤ i ≤ n}, and V ∗ = {vi | ired − 1 ≤ i ≤ iblue + 1}. Then
(i) If two edges vivj and vi′vj′ with i < j and i′ < j′ cross (i.e., i < i′ < j < j′

or i′ < i < j′ < j), then they belong to the same component of G;
(ii) It holds ired+1 ≤ iblue−1. The graph G[V ∗] is a complete graph, and G−V ∗

is a bipartite graph between vertex sets V1 and V2;
(iii) Every two vertices vi, vj ∈ V1∩NG(V ∗) with i < j satisfy viblue−1 ∈ NG(vi)∩

V ∗ ⊆ NG(vj) ∩ V ∗ ⊆ V ∗ \ {vired+1}; and
Every two vertices vi, vj ∈ V2 ∩ NG(V ∗) with i < j satisfy vired+1 ∈ NG(vj) ∩
V ∗ ⊆ NG(vi) ∩ V ∗ ⊆ V ∗ \ {viblue−1}.
We call the complete graph G[V ∗] in Lemma 4(ii) the core of G. Based on the

next lemma, we can treat each component of a disconnected graph G separately
to test whether G is a star-PCG or not. Figure 3 illustrates a disconnected PCG
and a connected non-bipartite PCG.

Lemma 5. Let G = (V,E) be a graph with at least two components.

(i) If G admits a gap-free ordering of V , then each component of G admits
a gap-free ordering of its vertex set, and there is at most one non-bipartite
component in G;

(ii) Let G′ = (V ′
1 , V

′
2 , E

′) be a bipartite component of G, and G′′ = G − V (G′).
Assume that G′ admits a gap-free ordering v′

1, v
′
2, . . . , v

′
p of V ′

1 ∪ V ′
2 and G′′

admits a gap-free ordering v1, v2, . . . , vq of V2. Then there is an index k such
that {{v′

1, v
′
2, . . . , v

′
k}, {v′

k+1, v
′
k+2, . . . , v

′
p}} = {V ′

1 , V
′
2}. Moreover, the order-

ing v′
1, v

′
2, . . . , v

′
k, v1, v2, . . . , vq, v

′
k+1, v

′
k+2, . . . , v

′
p of V is gap-free to G.

Proof. (i) Let G admit a gap-free ordering of V . Any induced subgraph G such
as a component of G is a star-PCG, and a gap-free ordering of its vertex set by
Theorem 3. By Lemma 4(i), at most one component H containing a complete
graph with at least three vertices can be non-bipartite, and the remaining
graph G − V (H) must be a collection of bipartite graphs.

(ii) Immediate from the definition of gap-free orderings. ��
We first consider the problem of testing if a given connected bipartite graph is

a star-PCG or not. We reduce this to the problem of finding contiguous ordering
to a family of sets.
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Fig. 3. (a) A disconnected PCG, (b) A connected non-bipartite PCG, where the edges
between two vertices in V ∗ = {u7, u8, u9, u10, u11, u12, u13, u14} are not depicted.

For a bipartite graph G = (V1, V2, E) and i ∈ {1, 2}, define Si to be the family
{NG(v) | v ∈ Vj} for the j ∈ {1, 2}−{i}, where even if there are distinct vertices
u, v ∈ Vj with NG(u) = NG(v), Si contains exactly one set S = NG(u) = NG(v).
For the example of a connected bipartite graph G1 = (V1, V2, E) in Fig. 1(a), we
have S1 = {{v3, v4}, {v1, v2, v3, v4}}, and S2 = {{v5, v6}, {v5, v6, v7, v8}}.

Lemma 6. Let G = (V1, V2, E) be a connected bipartite graph with |E| ≥ 1.
Then family Si is separator-free for each i = 1, 2, and G has a gap-free ordering
of V if and only if for each i = 1, 2, family Si admits a contiguous ordering σi

of Vi. For any contiguous ordering σi of Vi, i = 1, 2, one of orderings (σ1, σ2)
and (σ1, σ2) of V is a gap-free ordering to G.

Note that |S1|+ |S2|+ |V (S1)|+ |V (S2)| = O(n). By Theorem 2, a contiguous
ordering of V (Si) for each i = 1, 2 can be computed in O(|V (Si)||Si|2) = O(n3)
time.

Figure 1(a) illustrates an ordering σa = v1, v2, v3, v4, v8, v7, v6, v5 of V (G1) of
a connected bipartite graph G1 = (V1, V2, E), where σa consists of a contiguous
ordering σ1 = v1, v2, v3, v4 of V1 and a contiguous ordering σ2 = v8, v7, v6, v5
of V2. Although σa is not gap-free in G, the other ordering σb of V (G1) that
consists of σ1 and the reversal of σ2 is gap-free, as illustrated in Fig. 1(b).

Finally we consider the case where a given graph G is a connected and non-
bipartite graph. Figure 1(d) illustrates a connected and non-bipartite star-PCG
whose maximum clique is not unique.

In a graph G = (V,E), let Et denote the union of edge sets of all cycles
of length 3 in G, V t denote the set of end-vertices of edges in Et, and Nt

G(v)
denote the set of neighbors u ∈ NG(v) of a vertex v ∈ V such that uv ∈ Et.

Lemma 7. For a connected non-bipartite graph G = (V,E) with V t �= ∅, and
let v∗

1 , v
∗
2 be two adjacent vertices in V t. Let V ∗ = {v∗

1 , v
∗
2}∪ (NG(v∗

1)∩NG(v∗
2)),

V ′
1 = NG(v∗

2)\V ∗, and V ′
2 = NG(v∗

1)\V ∗. Assume that G has a gap-free ordering
σ of V and a proper coloring c to σ such that v∗

1 = vired+1, v∗
2 = viblue−1. Then:



514 M. Xiao and H. Nagamochi

(i) A maximal clique Kv∗
1 ,v

∗
2
of G that contains edge v∗

1 , v
∗
2 is uniquely given

as G[V ∗]. The graph G[V ∗] is the core of the ordering σ, and G − V ∗ is a
bipartite graph (V1, V2, E

′);
(ii) Let Si denote the family {NG(v) | v ∈ Vj} for {i, j} = {1, 2}, and S =

S1 ∪ S2 ∪ {V ∗}. Then S is a separator-free family that admits a contiguous
ordering σ of V , and any contiguous ordering σ of V is a gap-free ordering
to G.

For example, when we choose vertices v∗
1 = u7 and v∗

2 = u14 in the
connected non-bipartite graph G = (V,E) in Fig. 3(b), we have V ∗ =
{u7, u8, u9, u10, u11, u12, u13, u14}, S1 =

{{
u1, u2

}
,
{
u2, u3, u4

}
,
{
u3, u4, u5

}
,{

u3, u4, u5, u6, u7, u8

}
,
{
u5, u6, u7, u8, u9, u10, u11

}}
, and S2 =

{{
u19

}
,
{
u18,

u19

}
,
{
u16, u17, u18

}
,
{
u13, u14, u15, u16, u17

}
,
{
u10, u11, u12, u13, u14, u15, u16

}}
.

For a fixed V ∗ in Lemma 7, we can test whether the separator-free family
S in Lemma 7(ii) is constructed from V ∗ in O(|V (S)||S|2) = O(n3) time by
Theorem 2, since |S| + |V (S)| = O(n) holds. It takes O(n4) time to check a
given ordering is gap-free or not. To find the right choice of a vertex pair v∗

1 =
vired+1 and v∗

2 = viblue−1 of some gap-free ordering σ of V , we need to try O(n2)
combinations of vertices to construct V ∗ according to the lemma. Then we can
find a gap-free ordering of a given graph, if one exists in O(n6) time, proving
Theorem 4.

By Theorems 3 and 4, we conclude that whether a given graph with n vertices
is a star-PCG or not can be tested in O(n6) time.

6 Concluding Remarks

Pairwise compatibility graphs were initially introduced from the context of phy-
logenetics in computational biology and later became an interesting graph class
in graph theory. PCG recognition is a hard task and we are still far from a
complete characterization of PCG. Significant progresses toward PCG recogni-
tion would be interesting from a graph theory perspective and also be helpful
in designing sampling algorithms for phylogenetic trees. In this paper, we give
the first polynomial-time algorithm to recognize star-PCGs. Although stars are
trees of a simple topology, it is not an easy task to recognize star-PCGs. To do
so, we need to develop several structural properties of this problem. We first
show that three cases of non-adjacent vertex pairs (called gaps) under a fixed
ordering of vertices can be used to characterize star-PCGs and the gaps in a
graph can be tested in polynomial time. Then we show that we only need to
test a polynomial number of orderings of vertices and thus we can get a poly-
nomial time algorithm. For further study, it is an interesting topic to study the
characterization of PCGs with witness trees of other particular topologies.
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Abstract. In this article, we study a variant of the dominating set prob-
lem known as the liar’s dominating set problem on unit disk graphs. We
prove that the liar’s dominating set problem is NP-complete and admits
a polynomial time approximation scheme in unit disk graphs.

Keywords: Dominating set · Liar’s dominating set · Unit disk graph
Approximation scheme

1 Introduction

Given a simple undirected graph G = (V,E), the open and closed neighborhoods
of a vertex vi are defined by NG(vi) = {vj ∈ V | (vi, vj) ∈ E and vi �= vj} and
NG[vi] = NG(vi) ∪ {vi}, respectively. A dominating set D of G is a subset of V
such that every vertex in V \ D is adjacent to at least one vertex in D. That
is, each vertex vi ∈ V is either in D or there exists a vertex vj ∈ D such that
(vi, vj) ∈ E. Observe that for any dominating set D ⊆ V , |NG[vi] ∩ D| ≥ 1
for each vi ∈ V . We say that a vertex vi is dominated by vj in G, if vj ∈ D
and (vi, vj) ∈ E. The dominating set problem asks to find a dominating set
of minimum size in a given graph. A set D ⊆ V is a k-tuple dominating set
in G, if each vertex vi ∈ V is dominated by at least k vertices in D. In other
words, |NG[vi] ∩ D| ≥ k for each vi ∈ V . The minimum cardinality of a k-tuple
dominating set of a graph G is called the k-tuple domination number of G.

A liar’s dominating set (LDS) of a simple undirected graph, G = (V,E), is
a dominating set D having the following two properties: (i) for every vi ∈ V ,
|NG[vi] ∩ D| ≥ 2, and (ii) for every pair of distinct vertices vi and vj in V ,
|(NG[vi]∪NG[vj ])∩D| ≥ 3. For a given graph G, the problem of finding an LDS
in G of minimum cardinality is known as the minimum liar’s dominating set
(MLDS) problem. The cardinality of an MLDS in a graph G is known as the liar’s
domination number of G. Every 3-tuple dominating set is a liar’s dominating
set as it satisfies both conditions, so the liar’s domination number lies between
2-tuple and 3-tuple domination numbers.

c© Springer International Publishing AG, part of Springer Nature 2018
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2 Related Work

The MLDS problem is introduced by Slater [14]. He showed that the problem
is NP-hard for general graphs, and gave a lower bound on the liar’s domination
number in case of trees by proving that the size of any liar’s dominating set
of a tree of order n is between 3

4 (n + 1) and n. Later, Roden and Slater [13]
characterized tree classes with liar’s domination number equal to 3

4 (n + 1). In
the same paper, they also showed that the MLDS problem is NP-hard even for
bipartite graphs. Panda and Paul [9] proved that the problem is NP-hard for
split graphs and chordal graphs. They also proposed a linear time algorithm for
computing an MLDS in case of trees.

Panda et al. [12] studied the approximability of the problem and presented
an O(ln Δ(G))-factor approximation algorithm, where Δ(G) is the degree of the
graph. Panda and Paul [10] considered the problem for proper interval graphs
and proposed a linear time algorithm for computing a minimum cardinality liar’s
dominating set. The problem is also studied for bounded degree graphs, and p-
claw free graphs [12]. Sterling [15] considered the problem on two-dimensional
grid graphs and presented bounds on the liar’s domination number.

Alimadadi et al. [1] provided the characterization of graphs and trees for
which the liar’s domination number is |V | and |V | − 1, respectively. Panda and
Paul [8,11] studied variants of liar’s domination, namely, connected liar’s dom-
ination and total liar’s domination. A connected liar’s dominating set (CLDS)
is an LDS whose induced subgraph is connected. A total liar’s dominating set
(TLDS) is a dominating set L with the following two properties: (i) for every
v ∈ V , |NG(v) ∩ L| ≥ 2, and (ii) for every distinct pair of vertices u and v,
|(NG(u) ∪ NG(v)) ∩ L| ≥ 3, where NG(·) is the open neighborhood of a ver-
tex. The objective of both problems is to find CLDS and TLDS of minimum
size, respectively. They proved that both problems are NP-hard and proposed
O(ln Δ(G))-factor approximation algorithms. They also proved that the prob-
lems are APX-complete for graphs with maximum degree 4. Jallu and Das [6]
studied the geometric version of the MLDS problem, and presented constant
factor approximation algorithms.

2.1 Our Contribution

We study the MLDS problem on a geometric intersection graph model, partic-
ularly on unit disk graphs. A unit disk graph (UDG) is an intersection graph of
disks of equal radii in the plane. Given a set S = {d1, d2, . . . , dn} of n circular
disks in the plane, each having diameter 1, the corresponding UDG G = (V,E)
is defined as follows: each vertex vi ∈ V corresponds to a disk di ∈ S, and there
is an edge between two vertices if and only if the Euclidean distance between
the respective disk centers is at most 1.

Our interest in this problem arises from the following scenario. Consider a
graph in which each node is a possible location for an intruder such as a thief,
or a saboteur. We would like to detect and report the intruder’s location in the
graph. A protection device such as a camera, or a sensor placed at a node can not
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only detect (and report) the intruder’s presence at it, but also at its neighbors.
Our objective is to place a minimum number of protection devices such that the
intrusion of the intruder at any vertex is detected and reported. In this situation,
one must place the devices at the vertices of a minimum dominating set of the
graph to achieve the goal. The protection devices are prone to failure and hence
certain degree of redundancy is needed in the solution. Also, some times the
devices may misreport the intruder’s location deliberately or due to transmission
error. Assume that at most one protection device in the closed neighborhood of
the intruder can lie (misreport). In this context, one must place the protection
devices at the vertices of an MLDS of the graph to achieve the objective. The
first property in the definition of LDS deals with single device fault-tolerance,
while the second property deals with the case in which two distinct locations
about the intruder are reported.

3 Hardness of the MLDS Problem on UDGs

In this section, we show that the MLDS problem on UDGs is NP-complete by
reducing the vertex cover problem defined on planar graphs to it, which is known
to be NP-complete [3]. The decision versions of both problems are defined below.

The MLDS problem on UDGs (Lds-Udg)
Instance: A unit disk graph G = (V,E) and a positive integer k.
Question: Does there exist a liar’s dominating set L in G such that |L| ≤ k?.

The vertex cover problem on planar graphs (Vc-Pla)
Instance: An undirected planar graph G with maximum degree 3 and a positive

integer k.
Question: Does there exist a vertex cover D of G such that |D| ≤ k?.

Lemma 1 ([16]). A planar graph G = (V,E) with maximum degree 4 can be
embedded in the plane using O(|V |2) area in such a way that its vertices are
at integer coordinates and its edges are drawn so that they are made up of line
segments of the form x = i or y = j, for integers i and j.

This kind of embedding is known as orthogonal drawing of a graph. Biedl
and Kant [2] gave a linear time algorithm that produces an orthogonal drawing
of a given graph with the property that the number of bends along each edge is
at most 2 (see Fig. 1).

Corollary 1. A planar graph G = (V,E) with maximum degree 3 and |E| ≥ 2
can be embedded in the plane such that its vertices are at (4i, 4j) and its edges
are drawn as a sequence of consecutive line segments on the lines x = 4i or
y = 4j, for integers i and j.

Lemma 2. Let G = (V,E) be an instance of Vc-Pla with |E| ≥ 2. An instance
G′ = (V ′, E′) of Lds-Udg can be constructed from G in polynomial-time.



Liar’s Dominating Set in Unit Disk Graphs 519

Fig. 1. (a) A planar graph G with maximum degree 3, (b) its embedding on a grid,
and (c) a UDG construction from the embedding.

Proof. We construct G′ in four phases.
Phase 1: Embedding of G into a grid of size 4 × 4
Embed the instance G in the plane as discussed previously using one of the
algorithms in [4,5]. An edge in the embedding is a sequence of connected line
segment(s) of length four units each. If the total number of line segments used
in the embedding is �, then the sum of the lengths of the line segments is 4�
as each line segment has length 4 units. We name the points in the embedding
correspond to the vertices of G by node points.
Phase 2: Adding extra points to the embedding
Divide the set of line segments in the embedding into two categories, namely,
proper and improper. We call a line segment proper if none of its end points
correspond to a vertex in G. A line segment is improper if it is not a proper
segment. For each edge (pi, pj) of length 4 units we add two points at distances
1 and 1.5 units of pi and pj , respectively (thus adding four points in total, see
the edge (p4, p6) in Fig. 1(c)). For each edge of length greater than 4 units, we
also add points as follows: for each improper line segment we add four points at
distances 1, 1.5, 2.5, and 3.5 units from the end point corresponding to a vertex
in G, and for each proper line segment we add four points at distances 0.5 and
1.5 units from its end points (see Fig. 1(c)). We name the points added in this
phase joint points.
Phase 3: Adding extra line segments and points
Add a line segment of length 1.4 units (on the lines x = 4i or y = 4j for some
integers i or j) for every point pi, which corresponds to a vertex vi in G, without
coinciding with the line segments that had already been drawn. Observe that
adding this line segment on the lines x = 4i or y = 4j is possible without losing
the planarity as the maximum degree of G is 3. Now, add three points (say xi, yi,
and zi) on these line segments at distances 0.2, 1.2, and 1.4 units, respectively,
from pi. We name the points added in this phase support points.
Phase 4: Construction of UDG
For convenience, let us denote the set of node points, joint points, and support
points by N , J , and S, respectively. Let N = {pi | vi ∈ V }, J = {q1, q2, . . . , q4�},
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and S = {xi, yi, zi | vi ∈ V }. We construct a UDG G′ = (V ′, E′), where V ′ =
N ∪ J ∪ S and there is an edge between two points in V ′ if and only if the
Euclidean distance between the points is at most 1 (see Fig. 1(c)). Observe that,
|N | = |V |(= n), |J | = 4�, where � is the total number of line segments in the
embedding, and |S| = 3|V |(= 3n). Hence, |V ′| = 4(n + �) and � is bounded by a
polynomial of n. Therefore G′ can be constructed in polynomial-time.

Theorem 1. Lds-Udg is NP-complete.

Proof. For any given set L ⊆ V and a positive integer k, we can verify whether
L is a liar’s dominating set of size at most k or not in polynomial-time.

We prove the hardness of Lds-Udg by reducing Vc-Pla to it. Let G = (V,E)
be an instance of Vc-Pla. Construct an instance G′ = (V ′, E′) of Lds-Udg as
discussed in Lemma 2. We now prove the following claim: G has a vertex cover
of size at most k if and only if G′has a liar’s dominating set of size at most
k + 3� + 3n.

Necessity: Let D ⊆ V be a vertex cover of G such that |D| ≤ k. Let N ′ =
{pi ∈ N | vi ∈ D}, i.e., N ′ is the set of vertices in G′ that correspond to the
vertices in D. From each segment in the embedding we choose 3 vertices. The
set of chosen vertices, say J ′(⊆ J), together with N ′ and S will form an LDS
of desired cardinality in G′. We now discuss the process of obtaining the set J ′.
Initially J ′ = ∅. As D is a vertex cover, every edge in G has at least one of its
end vertices in D. Let (vi, vj) be an edge in G and vi ∈ D (the tie can be broken
arbitrarily if both vi and vj are in D). Note that the edge (vi, vj) is represented
as a sequence of line segments in the embedding. Start traversing the segments
(of (vi, vj)) from pi, where pi corresponds to vi, and add all the vertices to J ′

except the first one from each segment encountered in the traversal (see (p2, p5)
in Fig. 2b. The big vertices are part of J ′ while traversing from p2).

Fig. 2. (a) A vertex cover {v2, v3, v4} in G, and (b) the construction of J ′ in G′ (the
tie between v2 and v3, and v3 and v4 is broken by choosing v3)
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Apply the above process to each edge in G. Observe that the cardinality of
J ′ is 3� as we have chosen 3 vertices from each segment in the embedding. Let
L = N ′ ∪ J ′ ∪ S. Now, we argue that L is a liar’s dominating set in G′.

1. Each pi ∈ N is dominated by xi in S. If pi ∈ N ′ (i.e., the corresponding
vertex vi ∈ D in G), then |NG′ [pi]∩L| ≥ |{pi, xi}| = 2. If pi /∈ N ′, then there
must exist at least one vertex qj in J ′ dominating pi. The existence of qj is
guaranteed by the way we constructed J ′. Hence, |NG′ [pi]∩L| ≥ |{qj , xi}| = 2.
In either case every vertex in N is dominated by at least two vertices in L.
It is needless to say that vertex in J is dominated by at least two vertices in
N ′ ∪J ′. Similarly, every vertex in S is dominated by itself, by its neighbor(s)
in S, and, perhaps, by one vertex in N ′. Therefore, every vertex in V ′ is
double dominated by vertices in L.

2. Consider a pair of distinct vertices in V ′. Of course, every pair of distinct
vertices in S satisfy the liar’s second condition. We prove that remaining pairs
of distinct vertices also satisfy the liar’s second condition by considering all
possible cases.
Case a. pi, pj ∈ N : If at least one of pi, pj belongs to N ′ (without loss of
generality say pi ∈ N ′), then |(NG′ [pi] ∪ NG′ [pj ]) ∩ L| ≥ |{xi, xj , pi}| = 3.
If none of pi, pj belongs to N ′, then there must exists some qi, qj ∈ J ′ such
that qi, qj dominate pi, pj , respectively. Hence, |(NG′ [pi] ∪ NG′ [pj ]) ∩ L| ≥
|{xi, xj , qi, qj}| = 4.
Case b. qi, qj ∈ J : If both qi, qj ∈ J ′, then it is trivial that |(NG′ [qi] ∪
NG′ [qj ])∩L| ≥ 3. Suppose one of qi, qj belongs to J ′ (without loss of generality
say qi ∈ J ′). As every vertex in G′ is double dominated, qj must be dominated
by two vertices in J ′ or by either some qk in J ′ and some pl in N ′. In either
case we get |(NG′ [qi] ∪ NG′ [qj ]) ∩ L| ≥ 3. A similar argument works even if
none of qi, qj belong to J ′.
Case c. pi ∈ N and qj ∈ J : If none of pi and qj belong to L, then the
argument is trivial as each one is dominated by at least two vertices in L. If
both belong to L, then |(NG′ [pi] ∪ NG′ [qj ]) ∩ L| ≥ |{pi, xi, qj}| = 3. If pi ∈ L
and qj /∈ L (the other case is similar), then |(NG′ [pi]∪NG′ [qj ])∩L| ≥ 3 holds
as qj is double dominated.
Likewise, we can argue for other pair combinations too. Therefore, every pair
of distinct vertices in V ′ is dominated by at least 3 vertices in L.

Thus, we have L is an LDS in G′ and |L| = |N ′| + |J ′| + |S| ≤ k + 3� + 3n.

Sufficiency: Let L ⊆ V ′ be an LDS of size at most k + 3� + 3n. We prove that
G has a vertex cover of size at most k with the aid of the following claims: (i)
S ⊂ L, (ii) Every segment in the embedding must contribute at least 3 vertices
to L and hence |J ∩ L| ≥ 3�, where � is the total number of segments in the
embedding, and (iii) If pi and pj correspond to end vertices of an edge (vi, vj)
in G, and both pi, pj are not in L, then there must be at least 3�′ + 1 vertices in
L form the segment(s) representing the edge (vi, vj), where �′ is the number of
segments representing the edge (vi, vj) in the embedding.
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We shall show that, by removing and/or replacing some vertices in L, a set
of k vertices from N can be chosen such that the corresponding vertices in G
is a vertex cover. The vertices in S account for 3n vertices in L (due to Claim
(i)). Let L = L \ S and D = {vi ∈ V | pi ∈ L ∩ N}. If any edge (vi, vj) in G has
none of its end vertices in D, then we do the following: consider the sequence
of segments representing the edge (vi, vj) in the embedding. Since, both pi and
pj are not in L, there must exist a segment having all its vertices in L (due to
Claim (iii)). Consider the segment having its four vertices in L. Delete any one
of the vertices on the segment and introduce pi (or pj). Update D and repeat
the process till every edge has at least one of its end vertices in D. (due to Claim
(ii)) D is a vertex cover in G with |D| ≤ k. Therefore, Lds-Udg is NP-complete.

4 Approximation Scheme

We propose a PTAS for the MLDS problem on UDGs, i.e., for a given UDG
G = (V,E) and a parameter ε > 0, we propose an algorithm which produces a
liar’s dominating set of size no more than (1 + ε) times the size of a minimum
liar’s dominating set in G. We use δG(u, v) to denote the number of edges on
a shortest path between u and v in G. For A,B ⊆ V , δG(A,B) denotes the
distance between A and B and is defined as δG(A,B) = minu∈A,v∈B{δG(u, v)}.
For A ⊆ V , LD(A) and LDopt(A) denote an LDS and an optimal (minimum
size) LDS of A in G, respectively. We define the closed neighborhood of a set
A ⊆ V as NG[A] =

⋃
v∈A NG[v].

Fig. 3. A 4-separated collection S = {S1, S2, S3, S4}

The proposed PTAS is based on the concept of m-separated collection of sub-
sets of V (m ≥ 4). Let G = (V,E) be a UDG. A collection S = {S1, S2, . . . , Sk}
such that Si ⊆ V for i = 1, 2, . . . , k, is said to be an m-separated collection,
if δG(Si, Sj) > m, for 1 ≤ i ≤ k and 1 ≤ j ≤ k (see Fig. 3 for a 4-separated
collection). Nieberg and Hurink [7] considered 2-separated collection to propose
a PTAS for the minimum dominating set problem on unit disk graphs.

Lemma 3. Let S = {S1, S2, . . . , Sk} be an m-separated collection. If |Si| ≥ 3
for 1 ≤ i ≤ k, then

∑k
i=1 |LDopt(Si)| ≤ |LDopt(V )|.
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Proof. Observe that NG[Si] ∩ NG[Sj ] = ∅ for i �= j and 1 ≤ i, j ≤ k. Also,
LDopt(Si)∩LDopt(Sj) = ∅ as Si and Sj are m-separated. Let S′

i = {u ∈ V | v ∈
Si and δG(u, v) ≤ 2} for i = 1, 2, . . . , k. Observe that Si ⊆ S′

i and S′
i ∩LDopt(V )

is a liar’s dominating set of Si for i = 1, 2, . . . , k. Since, δG(Si, Sj) > m(≥ 4) for
i �= j, implies S′

i ∩ S′
j = ∅. Therefore, (S′

i ∩ LDopt(V )) ∩ (S′
j ∩ LDopt(V )) = ∅

and
⋃k

i=1(S
′
i ∩ LDopt(V )) ⊆ LDopt(V ). Also, LDopt(Si) ⊆ S′

i ∩ LDopt(V ) for
i = 1, 2, . . . , k, S′

i ∩ LDopt(V ) is a liar’s dominating set of Si, and LDopt(Si)
is a minimum size liar’s dominating set. Thus,

⋃k
i=1 LDopt(Si) ⊆ ⋃k

i=1(S
′
i ∩

LDopt(V )) ⊆ LDopt(V ). Hence, the result of the lemma follows.

Lemma 4. Let S = {S1, S2, . . . , Sk} be an m-separated collection, and
N1, N2, . . . , Nk be subsets of V with Si ⊆ Ni for all i = 1, 2, . . . , k. If there
exists ρ ≥ 1 such that |LDopt(Ni)| ≤ ρ|LDopt(Si)| holds for all i = 1, 2, . . . , k,
and if

⋃k
i=1 LDopt(Ni) is a liar’s dominating set in G, then the value of

∑k
i=1 |LDopt(Ni)| is at most ρ times the size of a minimum liar’s dominating

set in G.

In the proposed PTAS we have chosen the concept of 4-separated collection
to make LDopt(Ni) ∩ LDopt(Nj) = ∅ for i �= j.

4.1 Algorithm

In this section, we discuss the construction of a 4-separated collection S =
{S1, S2, . . . , Sk} and subsets N1, N2, . . . , Nk of V such that Si ⊆ Ni for all
i = 1, 2, . . . , k. The algorithm proceeds in an iterative manner. Initially V1 = V .
In the i-th iteration the algorithm computes Si and Ni. For a given ε > 0, the i-
th iteration of the algorithm starts with an arbitrary vertex v ∈ Vi and increases
the value of r(= 1, 2, . . .) as long as |LD(Nr+4

G [v])| > ρ|LD(Nr
G[v])| holds. Here,

LD(Nr+4
G [v]) and LD(Nr

G[v]) are liar’s dominating sets of Nr+4
G [v] and Nr

G[v],
respectively, and ρ = 1+ε. The smallest r violating the above condition, say r̂, is
obtained. Set Si = N r̂

G[v] and Ui = N r̂+4
G [v]. Now, the removal of Ui from Vi may

lead to some isolated (i) vertex u ∈ Vi, and/or (ii) connected component with
two vertices u,w ∈ Vi. In case (i), for each such vertex u find x, y ∈ Ui such that
{u, x, y} forms a connected component and update Ui as follows: Ui = Ui\{x, y}.
In case (ii), for each such pair of vertices u,w find x ∈ Ui such that {u,w, x}
forms a connected component and update Ui as follows: Ui = Ui \ {x}. Set
Ni = Ui and Vi+1 = Vi \ Ni. The process stops if Vi+1 = ∅ and returns the
sets Sis and Nis. The collection of the sets Sis is a 4-separated collection. The
pseudo code is given in Algorithm 1.

The liar’s dominating set of a r-th neighborhood of a vertex v, LD(Nr
G[v]),

can be computed with respect to G as follows. We successively find maximal
independent sets I1, I2 and I3 such that I1 ∩ I2 ∩ I3 = ∅. Now I1 ∪ I2 ∪ I3 is
a liar’s dominating set for Nr

G[v] \ I1 as every vertex not in I1 either belongs
to I2 ∪ I3 or is adjacent to at least one vertex in each I1, I2, and I3. To ensure
the liar’s domination conditions for the vertices in I1, for each vertex u in I1
we add two arbitrary vertices from the neighborhood of u, if they exist. If u
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Algorithm 1. Liar’s dominating set
Require: An undirected graph G = (V, E) with |V | ≥ 3 and an arbitrary small ε > 0
Ensure: A liar’s dominating set D of V
1: i ← 0 and Vi+1 ← V
2: D ← ∅ and ρ ← 1 + ε
3: while (Vi+1 �= ∅) do
4: pick an arbitrary v ∈ Vi+1

5: N0[v] ← v and r ← 1
6: while |(LD(Nr+4

G [v])| > ρ|LD(Nr
G[v])| do � call Algorithm 2

7: r ← r + 1

8: r̂ ← r � the smallest r violating while condition in step 6
9: i ← i + 1 � the index i keeps track of the number of iterations

10: Si ← N r̂
G[v] and Ui ← N r̂+4

G [v]
11: if (Vi+1 \ N r̂+4

G [v] contains isolated components of size 1 and/or 2) then
12: for (each component, {u}, of size 1) do
13: find x, y ∈ Ui such that {u, x, y} is a connected component
14: Ui ← Ui \ {x, y}
15: for (each component, {u, w}, of size 2) do
16: find x ∈ Ui such that {u, w, x} is a connected component
17: Ui ← Ui \ {x}
18: Ni ← Ui

19: D ← D ∪ LD(Ni) � call Algorithm 2
20: Vi+1 ← Vi \ Ni

21: return D

has only one neighbor, say u′, then we add u′ and one of its neighbors in the
solution. The pseudo code is given in Algorithm 2. In summary, Algorithm 1 deals
with obtaining an m-separated collection S = {S1, S2, . . . , Sk} and collection
N = {N1, N2, . . . , Nk} such that Si ⊆ Ni ⊆ V and using Algorithm 2 (that
deals with obtaining a liar’s dominating set of the r-th neighborhood of a vertex)
it computes a liar’s dominating set for G.

Lemma 5. LD(Nr
G[v]) returned by Algorithm2 is an LDS of Nr

G[v] in G.

Proof. Let u ∈ V . We prove the first condition of liar’s domination in the fol-
lowing cases.
Case 1. u ∈ Nr

G[v] \ (I1 ∪ I2 ∪ I3)
Observe that I1 ∩ I2 ∩ I3 = ∅. The vertex u is dominated by at least three
vertices as in each round u is dominated by at least one vertex (see for loop in
line number 2 in Algorithm2). Thus, |NG[u] ∩ LD(Nr

G[v])| ≥ 3.
Case 2. u ∈ I1 ∪ I2 ∪ I3
We consider the following two sub-cases: (a) u ∈ I2 ∪ I3: In this case |NG[u] ∩
LD(Nr

G[v])| ≥ 2 holds as every vertex in I2 ∪ I3 has at least one neighbor in
I1. (b) u ∈ I1: For every vertex u in I1, LD(Nr

G[v]) contains a neighbor of u
or u’s neighbor’s neighbor (see line number 6 in Algorithm2). Hence, |NG[u] ∩
LD(Nr

G[v])| ≥ 2 holds.
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Algorithm 2. Liar’s dominating set in r-th neighborhood
Require: The r-th neighborhood of a vertex v i.e., Nr

G[v]
Ensure: A liar’s dominating set LD(Nr

G[v]) of Nr
G[v]

1: j ← 0, Ij ← ∅, LD(Nr
G[v]) ← ∅ and N ← Nr

G[v]
2: for (j = 1 to 3) do
3: if (N �= ∅) then
4: Ij ← MIS(N \ Ij−1) � MIS(·) returns a maximal independent set
5: LD(Nr

G[v]) ← LD(Nr
G[v]) ∪ Ij ; N ← N \ Ij

6: for every u ∈ I1 do
7: if (|NG[u]| > 2) then
8: add two arbitrary vertices from NG[u] to LD(Nr

G[v])
9: else

10: add w and its neighbor to LD(Nr
G[v]) � w is the neighbor of u

11: return LD(Nr
G[v])

Now we prove the second condition of liar’s domination. Let u,w ∈ Nr
G[v].

We prove the inequality |(NG[u] ∪ NG[w]) ∩ LD(Nr
G[v])| ≥ 3 by considering the

following cases.
Case 1. u,w ∈ Nr

G[v]\(I1∪I2∪I3): Observe that both u and w have a neighbor
in each I1, I2 and I3. Hence |(NG[u] ∪ NG[w]) ∩ LD(Nr

G[v])| ≥ 3.
Case 2. u ∈ Nr

G[v] \ (I1 ∪ I2 ∪ I3) and w ∈ I1 ∪ I2 ∪ I3 (the other case proof is
similar): In this case, the inequality |(NG[u] ∪ NG[w]) ∩ LD(Nr

G[v])| ≥ 3 is true
as |NG[u] ∩ LD(Nr

G[v])| ≥ 3 and |NG[w] ∩ LD(Nr
G[v])| ≥ 2.

Case 3. u,w ∈ I1 ∪ I2 ∪ I3: The inequality |(NG[u] ∪ NG[w]) ∩ LD(Nr
G[v])| ≥ 3

holds in this case as u,w ∈ LD(Nr
G[v]) and each of them has a neighbor (different

from w, u, respectively) in LD(Nr
G[v]). This completes the proof of the lemma.

Lemma 6. |LD(Nr
G[v])| ≤ O(r2).

Proof. Algorithm 2 computes LD(Nr
G[v]) by first computing maximal indepen-

dent sets I1, I2, and I3 subsequently. After computing I1, I2, and I3, the algo-
rithm adds two vertices for each vertex in I1 to ensure that LD(Nr

G[v]) is a
feasible solution. Without loss of generality we assume that |I1| ≥ |I2|, |I3|.
Hence, |LD(Nr

G[v])| = 3|I1| + |I2| + |I3| ≤ 5 × |I1| ≤ 5 × π(r+1)2

π(1)2 = O(r2). The
latter inequality follows from the standard area argument, the number of non-
intersecting unit disks can be packed in a larger disk of radius r + 1 centered
at v.

Lemma 7. In each iteration of Algorithm1, there exists an r violating the con-
dition |(LD(Nr+4

G [v])| > ρ|LD(Nr
G[v])|, where ρ = 1 + ε.

Proof. We prove the lemma by contradiction. Suppose there exists v ∈ V
such that |(LD(Nr+4

G [v])| > ρ|LD(Nr
G[v])| for r = 1, 2, . . .. Observe that

|LD(N2
G[v])| ≥ 3 as there exists at least three vertices in G.

If r is even,
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(r + 5)2 ≥ |(LD(Nr+4
G [v])| > ρ|LD(Nr

G[v])| > · · · > ρ
r
2 |LD(N2

G[v])| ≥ 3ρ
r
2 , and

if r is odd,
(r + 5)2 ≥ |(LD(Nr+4

G [v])| > ρ|LD(Nr
G[v])| > · · · > ρ

r−1
2 |LD(N3

G[v])| ≥ 3ρ
r−1
2 .

In both the cases the first inequality follows from Lemma 6. Hence,

(r + 5) >

{
(
√

ρ)r, if r is even
(
√

ρ)r−1, if r is odd
(1)

The right hand part in inequality (1) is an exponential function in r and the
left hand part is a polynomial in r, for arbitrarily large r none of the inequalities
can be true. Hence we arrived at contradiction. Thus there exists an r violating
the condition.

Lemma 8. The smallest r violating inequality (1) is a constant and is bounded
by O(1ε log 1

ε ).

Proof. Lemma 7 suggests that the smallest r violating the condition cannot be
sufficiently large but a constant. Let r̂ be the smallest r violating the condition
i.e., when r = r̂ the inequalities in (1) are violated. Using the inequality log(1 +
ε) > ε

2 for 0 < ε < 1, we have r̂ ≤ O( 1ε log 1
ε ) as follows.

Consider the inequality (1 + ε)x < x2 for a fixed ε > 0. We prove that there
exist ε′ such that (1 + ε)x < x2 < (x + 5)2 for 0 < ε < ε′. The latter inequality
is trivial. Let x = 4

ε log 1
ε . By taking the logarithm on both sides of the former

inequality, we get, log 4 + log log 1
ε > 0. Note that, we can always find an ε′ such

that log 4 + log log 1
ε > 0 for 0 < ε < ε′. Therefore, (1 + ε)x < x2 holds for

sufficiently smaller ε values and hence, r̂ ≤ 4
ε log 1

ε .

Lemma 9. For a given v ∈ V , liar’s dominating set LDopt(Ni) of Ni can be
computed in polynomial time.

Proof. Note that Ni ⊆ Nr+4
G [v]. The size of a liar’s dominating set LD(Ni)

of Ni obtained by Algorithm2 is bounded by O(r2) (by Lemma 6). Again, r =
O(1ε log 1

ε ) by Lemma 8. Therefore, the size of the minimum size liar’s dominating
set LDopt(Ni) of Ni is bounded by a constant. The process of checking whether
a given set is a liar’s dominating set or not can be done in polynomial-time.
Therefore, we can consider every subset of Ni as a possible liar’s dominating
set and check whether it is a liar’s dominating set or not in polynomial-time.
Finally, the minimum size liar’s dominating set is reported. Thus the lemma.

Lemma 10. For the collection of neighborhoods {N1, N2, . . . , Nk} created by
Algorithm1, the union D =

⋃k
i=1 LD(Ni) is a liar’s dominating set in G.

Proof. We first prove that for every v ∈ V, |NG[v] ∩ D| ≥ 2. Observe that
⋃k

i=1 Ni = V as Vi+1 = Vi \ Ni and Ni ⊆ Vi. Thus, every vertex v ∈ Ni for
some 1 ≤ i ≤ k. By Lemma 5, |NG[v] ∩ D| ≥ 2 is satisfied.

Now we prove the second condition. Consider two arbitrary vertices u, v ∈ V .
The following cases may arise.
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Case 1. u, v ∈ Ni for some 1 ≤ i ≤ k
Since LD(Ni) is the liar’s dominating set of Ni in G, we have, |(NG[u]∪NG[v])∩
LD(Ni)| ≥ 3 for every u, v ∈ Ni. Hence, |(NG[u] ∪ NG[v]) ∩ D| ≥ 3 for every
u, v ∈ V .
Case 2. u ∈ Ni and v ∈ Nj for some i �= j and 1 ≤ i, j ≤ k
If u and v are not adjacent in G, the proof is trivial. Hence, we assume that
(u, v) ∈ E i.e., u and v are adjacent in G. Now the following sub-cases may
arise.
(a) u ∈ LD(Ni) and v ∈ LD(Nj)
Observe that |NG[u] ∩ LD(Ni)| ≥ 2 and |NG[v] ∩ LD(Nj)| ≥ 2 as LD(Ni) and
LD(Nj) are liar’s dominating sets of Ni and Nj , respectively. Hence, u has a
neighbor, say w, in LD(Ni), similarly v has also a neighbor, say x, in LD(Nj).
However, maybe w = x or maybe not. In either case |(NG[u] ∪ NG[v]) ∩ D| ≥ 3
holds.
(b) u /∈ LD(Ni) and v ∈ LD(Nj) (the other case proof similar)
Since LD(Ni) is a liar’s dominating set of Ni, we have |NG[u] ∩ LD(Ni)| ≥ 2.
Hence, |(NG[u] ∪ NG[v]) ∩ D| ≥ 3 is true as v is part of the solution.
(c) u /∈ LD(Ni) and v /∈ LD(Nj) (The proof is similar to the previous cases).

Corollary 2. For the collection N = {N1, N2, . . . , Nk} created by Algorithm1,
the union D∗ =

⋃k
i=1 LDopt(Ni) is a liar’s dominating set.

Theorem 2. For a given UDG, G = (V,E), and an ε > 0, we can design a
(1 + ε)-factor approximation algorithm to find an LDS in G with running time
nO(c2), where c = O(1ε log 1

ε ).

Proof. Note that Algorithm 1 generates the collection of sets S =
{S1, S2, . . . , Sk} and N = {N1, N2, . . . , Nk} such that S is a 4-separated col-
lection of V with Si ⊆ Ni for each i ∈ {1, 2, . . . , k} and

⋃k
i=1 Ni = V with

Ni ∩ Nj = ∅ for i �= j. Corollary 2 suggests that D∗ =
⋃k

i=1 LDopt(Ni) is a
liar’s dominating set of G. The approximation bound follows from Lemmas 3
and 4. Let |Ni| = ni for 1 ≤ i ≤ k. By Lemma 9, an optimal liar’s dominating

set LDopt(Ni) of Ni can be computed in n
O( 1

ε2
log 1

ε )

i time. Therefore, the total

running time to compute D∗ is
∑k

i=1 n
O( 1

ε2
log 1

ε )

i ≤ nO( 1
ε2

log 1
ε ).

5 Conclusion

We studied the minimum liar’s dominating set problem (MLDS) on unit disk
graphs, showed that the MLDS problem is NP-complete and proposed a PTAS.
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Abstract. In this article, we study a variant of the geometric minimum
spanning tree (MST) problem. Given a set S of n disjoint line segments
in IR2, we need to find a tree spanning one endpoint from each of the
segments in S. Note that, we have 2n possible choices of such a set of
endpoints, each being referred as an instance. Thus, our objective is to
choose one among those instances such that the sum of the lengths of all
the edges of the tree spanning the points of that instance is minimum.
We show that finding such a spanning tree is NP-complete in general,
and propose a O(log2 n)-factor approximation algorithm for the same.

Keywords: Minimum spanning tree · k-MST
Approximation algorithm · NP-complete

1 Introduction

The minimum spanning tree (MST) is well studied in both graph and geometric
domain. In the context of an edge-weighted graph G, the objective is to find
a tree spanning all the nodes in G such that the sum of the weights of all the
tree edges is minimized. In the geometric setup, the nodes of the underlying
graph correspond to a given set of objects, the graph is complete, and each edge
of the graph is the distance (in some appropriate metric) between the objects
corresponding to the nodes incident to that edge. If the objects are points in
IRd and the distances are in the Euclidean metric, the problem is referred to
as Euclidean MST. In IR2 and IR3, the problem can be solved in O(n log n)
and O((n log n)4/3) time, respectively. In IRd, the best-known algorithm runs in
sub-quadratic time [1]. Using a well-separated pair decomposition, it is possible
to produce a (1 + ε)-approximation of the Euclidean MST in IRd (d ≥ 2) in
O(n log n) time [22]. For a survey on the Euclidean spanning tree of a point set
in IRd, refer to [7,11].

Several variations of minimum spanning tree problem are studied in the lit-
erature. In the k-MST problem, an edge-weighted graph with n vertices is given,
and the objective is to compute a tree of minimum weight that spans at least k
vertices. The problem is well studied in graphs as well as in the metric space.
In the latter case, the underlying graph is a complete graph induced by a set of

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 529–541, 2018.
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points in the plane and the weight of an edge is the Euclidean distance between
the pair of points defining that edge. For weighted undirected graph, the k-MST
problem is NP-hard [23] for arbitrary k. A O(

√
k)-factor approximation algo-

rithm is proposed by Ravi et al. [21]. Later it was improved to O(log2 k) [3], and
then to O(log k) [19]. It is also shown that improving the approximation factor
beyond 96

95 is NP-hard [9]. The best known approximation result is 2 [14].
For the geometric k-MST problem, Ravi et al. [21] proposed a O(k

1
4 )-factor

approximation algorithm, which is improved to O(log k) [15]. Blum et al. [4] gave
a O(1) approximation result where the constant involved in the O-notation is
high. Mitchell [18] improved this factor to 2

√
2. Finally, Arora [2] presented a

polynomial time approximation scheme for this problem.
The MST problem for colored points is also studied in the literature. For

a given set of n red and n blue points, the problem of computing an MST of
2n points whose edges are non-crossing, and each edge joins a red and a blue
point, is studied in [5]. The problem is NP-hard. However, (i) if the points are in
convex position, then the optimal tree can be obtained in O(n3) time, and (ii)
if number of points of one color is bounded by a constant k, then the optimal
tree can be computed in nO(k5) time. Finally, they proposed a O(

√
n)-factor

approximation algorithm for the general problem. In [10] the MST problem with
multicolor point set is studied, where n points of m different colors (m ≤ n) are
given. The objective is to select m different colored points such that (i) the total
edge length of spanning tree of those m points is minimum, (ii) the total edge
length of a minimal spanning tree of those m points is as large as possible, and
(iii) the perimeter of the convex hull of m different colored points is as small
as possible. All the three problems are shown to be NP-complete. For problem
(iii), the authors have proposed a

√
2-factor approximation algorithm.

The study on the Euclidean MST problem, where the objects are different
from points, is relatively less. Bose and Toussaint [8] first considered the MST
problem with disjoint line segments. Here, a set S of n disjoint straight-line seg-
ments in IR2 is given, and the objective is to compute a minimum spanning tree
T on 2n endpoints of these segments where each line-segment in S appears as
an edge of T and the tree has no crossing edges. This kind of tree is known as
encompassing spanning tree. A minimum encompassing spanning tree for a set
of disjoint line segments can be computed in O(n log n) time [8]. Later Bose et
al. [6] proved that every set of disjoint line segments admits an encompassing
binary tree, i.e., the maximum vertex degree of the resulting tree is bounded by
3. Hoffman and Tóth [17] showed that the segment endpoint visibility graph1 of
a set S of n segments is Hamiltonian. Hoffman et al. [16] proposed an optimal
O(n log n) time algorithm to compute an encompassing spanning tree of maxi-
mum degree three, such that at every vertex v all the edges of the tree that are
incident to v lie in a half-plane bounded by the line through the input segment
of which v is an endpoint. This kind of tree is known as pointed binary encom-

1 Its vertices are the 2n segment endpoints; two vertices a and b are connected by an
edge, if and only if the corresponding line segment ab is either in S or if the open
segment ab does not intersect any (closed) segment from S.
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passing tree. Rappaport et al. [20] showed that in O(n log n) time it is possible to
test whether the convex hull of a set S of n segments has at least one endpoint
of each segment on its boundary (as a vertex).

In this paper, we concentrate on a different variation of the MST problem
for a set S of non-crossing line segments in IR2. Here, the objective is to find a
tree of n nodes with a minimum sum of edge costs such that each of its nodes
corresponds to an endpoint of n distinct members of S (see Fig. 1). From now on,
we call this problem the minimum spanning tree of segments (MSTS) problem.
Surely, if the segments in S are of length zero, then the MSTS problem reduces
to the standard Euclidean MST problem. We show that in the non-degenerate
case, i.e., where not all the segments are of length zero, the MSTS problem
is NP-hard. We also propose a O(log2 n)-factor approximation algorithm that
runs in polynomial time. To the best of our knowledge, this version of the MST
problem for line segment objects has not been studied in the literature.

The proposed MSTS problem may find its application in VLSI physical
design. In global routing, the pins of the same net are routed in a hierarchi-
cal manner. In an intermediate stage, the objective is to connect a number of
already routed segments using wires of minimum total length. In this scenario,
a routing wire connecting two segments a and b may choose any point on the
two segments a and b for the connection. Here, we consider a simplified version
of the problem, where the chosen point of connection of a segment is restricted
to one of its endpoints only.

Fig. 1. (a) A set of line segments in the plane, (b) a spanning tree of the segments,
and (c) a minimum spanning tree

2 The MSTS Problem is NP-hard

We prove the MSTS problem is NP-hard by a reduction from the Max 2-Sat
problem, defined below, and which is known to be NP-complete [13].

Instance: A boolean formula consisting of n variables and a set
{C1, C2, . . . , Cm} of m clauses, each Ci is a disjunction of at most two literals,
and an integer k, 1 ≤ k < m.

Question: Is there a truth assignment to the variables that simultaneously
satisfies at least k clauses?
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Given an instance of Max 2-Sat, we get an instance of the MSTS problem
such that the given Max 2-Sat formula satisfies k clauses if and only if the cost
of the MSTS attains a specified value.

We represent a horizontal line segment s as (l(s), r(s)), where l(s) and r(s) are
the left and right endpoints of s, respectively. Similarly, a vertical line segment
s is represented as (t(s), b(s)), where t(s) and b(s) are the top and bottom
endpoints of s, respectively. For a point p in the plane, we use x(p) and y(p) to
denote the x and y-coordinate of p, respectively.

Our reduction is similar to [10], however, the gadgets we use in our reduction
are entirely different. Let ψ be a 2-Sat formula having m clauses C1, C2, . . . , Cm

and n variables x1, x2, . . . , xn. We use the following notation as used in [10]. Let
xi,j,k (or ¬xi,j,k) be the variable xi that appears at the j-th literal in ψ from left
to right such that xi (including ¬xi) appears k −1 times already in ψ before the
current occurrence of xi. For example in the boolean formula (x1∨¬x2)∧(x2∨x3),
the literals x1,¬x2, x2, and x3 are represented as x1,1,1,¬x2,2,1, x2,3,2, and x3,4,1,
respectively. We create gadgets for each variable xi (1 ≤ i ≤ n) and for each
literal xi,j,k (or ¬xi,j,k). Each gadget consists of a set of horizontal/vertical line
segments in the plane.

Fig. 2. (a) Variable gadget for xi, and (b) literal gadget for xi,j,k

Variable Gadget: For each variable xi, five disjunct segments sl
i (1 ≤ l ≤

5) are considered. The first four are vertical and the last one is horizontal.
The vertical segments are of equal length (say λ > 0) and their top endpoints
are horizontally aligned with unit distance between consecutive endpoints. The
horizontal segment s5i spans as follows: x(l(s5i )) = x(t(s2i )), y(l(s5i )) = y(t(s2i )) +
ε, x(r(s5i )) = x(t(s4i )), y(r(s5i )) = y(t(s2i )) + ε, where ε is a very small positive
real number (see Fig. 2a).

Literal Gadget: For each literal xi,j,k (or ¬xi,j,k), six disjunct segments
sl

i,j,k (1 ≤ l ≤ 6) are considered. The first four segments are vertical, while
the last two are horizontal (see Fig. 2b). Here also the vertical segments are of
same length and their top endpoints are aligned as discussed in variable gadget.
The two horizontal segments are above the vertical segments and are of differ-
ent lengths. Their lengths depend on how many times its associated variable xi

appears in different clauses of ψ. The left endpoint of the horizontal segment
s5i,j,k (resp. s6i,j,k) is at x(l(s5i,j,k)) = x(t(s2i,j,k)), y(l(s5i,j,k)) = y(t(s2i,j,k)) + α
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(resp. x(l(s6i,j,k)) = x(t(s4i,j,k)), y(l(s6i,j,k)) = y(t(s4i,j,k)) + β), where α = 2jε
(resp. β = (2j + 1)ε). The two horizontal segments will be used to connect with
the gadget of variable xi. In the connection, the right endpoints of the horizontal
segments are vertically aligned with s2i and s4i (see Fig. 3).

Fig. 3. Connecting xi,j,k’s gadget to xi’s gadget

The basic idea of putting the segments in this manner is to get two
minimum spanning trees of the segments for connecting the gadgets of xi

and xi,j,k depending on whether xi is set to true or false respectively.
If xi = false , we choose the endpoints F = {l(s6i,j,k), t(s4i,j,k), t(s3i,j,k),
t(s2i,j,k), t(s1i,j,k), t(s1i ), t(s

2
i ), t(s

3
i ), t(s

4
i ), l(s5i ), r(s

5
i,j,k)}, and if xi = true, we

choose the endpoints T = {t(s4i,j,k), t(s3i,j,k), t(s2i,j,k), t(s1i,j,k), t(s1i ), t(s
2
i ), t(s

3
i ),

t(s4i ), l(s
5
i,j,k), r(s5i ), r(s

6
i,j,k)}. In Fig. 4 these two minimum spanning trees are

shown using bold lines.

Fig. 4. (a) The MSTS when xi is false, and (b) the MSTS when xi true.

We now explain the arrangement of the gadgets according to the given for-
mula ψ. The gadgets corresponding to the variables x1, x2, . . . , xn are placed on
the positive part of the x-axis in left to right order with the top endpoints of the
vertical segments aligned with the x-axis. Similarly, the gadgets corresponding
to the literals are arranged on the negative part of the x-axis from right to left
(in the order they appear in ψ). Needless to mention, the y-coordinates of the
top endpoint of the vertical segments (in both variable and literal gadgets) are
zero. As mentioned earlier, the horizontal segments of a literal gadget establish
a connection with its corresponding variable gadget2. Note that, the formula
for the y-coordinates of the horizontal segments ensure that no two horizontal
segments will overlap (refer Fig. 5 for the example x1 ∨ x2).

2 A variable gadget may be connected with multiple literal gadgets.
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According to our construction, we get a set S of 5n + 12m segments (5n
segments corresponding to n variables, 12m segments corresponding to m clauses
(since each clause contains two literals). Let TS be the MSTS over S and W(TS)
be its weight. TS satisfies the following properties:

(i) In every (variable and literal) gadget, the top endpoints of all its vertical
segments are part of it,

(ii) No edge in TS connects any two horizontal segments of literal gadgets,
(iii) No edge in TS connects horizontal segments of any two variable gadgets,

and
(iv) The horizontal segments of any literal xi,j,k (or ¬xi,j,k) gadget are either

connected to its vertical segments or segments in its associated variable xi’s
gadget using a vertical edge of TS .

These properties justify the need of taking four equidistant vertical segments
in each gadget as it prohibits from choosing non axis-parallel edges of TS to
connect segments in the gadgets.

Fig. 5. Placement of variable and literal gadgets in the clause x1 ∨ x2

So far, we have discussed the arrangement of variable and literal gadgets
and the nature of the minimum spanning tree of those segments for a true/false
assignment of the n variables. Now, we add one special horizontal segment3 for
each clause in ψ. These segments appear in the same vertical level in which the
horizontal segments of the variable gadgets appear. Consider a clause xi1,j,k1 ∨
xi2,j+1,k2 in ψ. We put a segment s� j

2 � that connects the gadgets corresponding to
xi1,j,k1 and xi2,j+1,k2 , an endpoint representing a literal in the clause. Depending
on whether the literal xi,j,k corresponds to the variable xi or its negation ¬xi,
we put the corresponding endpoint of the segment s� j

2 � on the top of s2i,j,k or
s4i,j,k, respectively. Figure 6(a) and (b) demonstrates the horizontal segments
(with its endpoints represented as black squares) of clauses x1∨x2 and x1∨¬x2,
respectively. Figure 7 shows the MSTS instance for the formula ψ = (¬x1 ∨x2)∧
(x2 ∨ ¬x3). Let S ′ = S ∪ {s� j

2 � | j = 1, 3, . . . , 2m − 1}, and T be an MSTS of
this extended set S ′ of 5n + 13m segments with weight W (T ).

3 This segment corresponds to the binary relation or .
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Fig. 6. Gadget for the clause (a) x1 ∨ x2, and (b) x1 ∨ ¬x2

Fig. 7. Gadget for ψ = (¬x1 ∨ x2) ∧ (x2 ∨ ¬x3)

Lemma 1. From an MSTS T of S ′ one can get a conflict-free assignment of
the variables.

Proof. Without loss of generality, we assume that the horizontal segments of the
literal and variable gadgets are connected to vertical segments in T , in one of
the ways shown in Fig. 4. If there is a connection of a pair of segments in T
which is not in either of the forms as shown in Fig. 4 (see the curved edges in
the left part of Fig. 8), then we can alter the tree without changing its weight
(see the right part in Fig. 8).

For every variable xi’s gadget, we check which endpoint between t(s2i ) and
t(s4i ) is chosen to connect to its horizontal segment s5i . Note that, both the
endpoints cannot be connected to the horizontal segment simultaneously due
to the feasibility4 of the problem. By our construction of the gadgets, if t(s2i )
is connected then we set xi = false, else set xi = true. Also note that, if a

4 Only one endpoint of a segment can participate in the tree.
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Fig. 8. The possible tree alterations in an MSTS

variable xi gets an assignment it never changes. Because T is a spanning tree
with minimum weight, if t(s2i ) (or t(s4i )) is chosen, then this choice forces to
connect the horizontal segments’ endpoints vertically aligned with it. Thus, we
get a conflict-free assignment of the variables.

�	

Lemma 2. The Max 2-Sat instance ψ satisfies at least k clauses simultane-
ously if and only if the weight of T is at most W (TS) + (m − k)ε, where m is
the number of clauses in ψ, ε > 0 is a very small real number, and 1 ≤ k < m.

Proof (Necessity). Let ψ satisfies at least k clauses simultaneously. For a lit-
eral xi,j,k (or ¬xi,j,k), if variable xi is true (or false), then T (or F ) is chosen
accordingly; this implies, one of the endpoints of the segment s� j

2 � can be chosen
to connect with TS in MSTS T without adding any extra weight (see Fig. 9,
where the blue edge implies ¬x1 is true, i.e., x1 is false). Therefore, if at least
one literal is true in one clause, no extra weight will be added to TS for that
clause to get W (T ). If both the literals are false, then the extra weight of ε will
be added to W (TS). Therefore, if ψ satisfies at least k clauses simultaneously,
then an extra weight of at most (m−k)× ε will be added to W (TS) (see the red
edge in Fig. 9).

(Sufficiency). Let T be an MSTS over S ′ such that W (T ) ≤ W (TS)+(m−k)ε.
We show that there is a truth assignment of variables such that at least k clauses
are satisfied. In any gadget, all the top endpoints of its vertical segments are
part of T . Let in T , the horizontal segments of literal and variable gadgets are
connected to vertical segments in one of the ways as shown in Fig. 4 (if not, we
can alter the tree as discussed in the proof of Lemma 1).

By Lemma 1, it is guaranteed that we can obtain a conflict-free assignment to
the variables. Now consider the second term (i.e., (m−k)ε) of W (T ). Each factor
ε is due to the non-existence of an edge between some segment s� j

2 � endpoints
and any one of the horizontal segments’ endpoints of the j-th and (j+1)-st literal
gadgets. We assign false to both the literals in the clause associated with the
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Fig. 9. The MSTS (shown in thick) obtained for the assignment x1 = false, x2 =
false, and x3 = true

segment s� j
2 �, implying the clause corresponding to s� j

2 � is not satisfied. Since
at most m − k clauses are not satisfied, the result follows. �	

Given a designated set of endpoints (one marked endpoint of each segment) of
S and a parameter μ, in polynomial time it can be checked whether the sum of
lengths of the edges of the MST of those points is less than or equal to μ. Thus,
we have the following result:

Theorem 1. The MSTS problem is NP-complete.

Observe that, the MSTS problem remains NP-hard for the case where all the seg-
ments are horizontal. Here, the same reduction works by replacing each vertical
segment by a segment of length zero.

3 Approximation Algorithm

We now propose a O(log2 n)-factor approximation algorithm for the MSTS prob-
lem. We use d(p, q) to denote the Euclidean distance between the points p and q
in the plane. The lune of two points p and q, denoted by lune(p, q), is the inter-
section region of the two disks of radius d(p, q) centered at p and q, respectively.
Let S = {s1, s2, . . . , sn} be the given set of segments in the plane. The basic
idea of our algorithm is as follows: for every pair of distinct segments si and sj ,
we consider all four edges between the endpoints of si and sj . Every edge, say
(pi, pj), is processed separately by considering the lune formed by pi and pj . If
lune(pi, pj) contains at least one endpoint of each segment, then we judiciously
choose n endpoints (one per segment) in lune(pi, pj) having certain properties.
Then we compute a minimum tree spanning those chosen points. We repeat the
above process for all the four edges between si and sj , and the spanning tree with
the minimum cost is noted. Finally, we output a spanning tree with minimum
cost considering all the pairs of segments. The pseudo-code of the algorithm is
given in Algorithm 1.

Our algorithm finds a set of n endpoints that are close. The closeness of a
point set is defined in terms of potential (see Definition 1) of the set. For a given
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point set P , potential on P is a function f : 2P → R
+. Garg and Hochbaum

[15] used the concept of potential to get a O(log k)-factor approximation algo-
rithm for the k-MST problem in the plane. We use their algorithm to propose a
O(log2 n)-factor approximation result for our problem.

Let OPT be the cost of an optimal MSTS of S, and P ∗ be the set of endpoints
in the MSTS. Let pi, pj ∈ P ∗ such that d(pi, pj) = δ = the diameter5 of P ∗. Note
that all the points in P ∗ lie in lune(pi, pj). If there exists a point pk ∈ P ∗, not
in lune(pi, pj), then either d(pi, pk) or d(pj , pk) is greater than δ, contradicting
the fact that d(pi, pj) is the diameter of the set P ∗. Also, note that OPT ≥ δ.

Let S be the set of endpoints of the segments in S lying in lune(pi, pj), and
P ⊆ S be the set of endpoints returned by our algorithm. Let Q be the smallest
rectangle circumscribing lune(pi, pj) (see Fig. 10). Needless to say, Q is of size√

3δ × δ. We will use some of the definitions and lemmas discussed in [15].

Fig. 10. The smallest rectangle circumscribing lune(pi, pj).

Let G0 be a grid having each cell of size x0 =
√
3δ
n . Let G1, . . . , Glog n be

a family of grids defined on Q and constructed recursively such that each grid
cell in Gi is composed of four cells in Gi−1. That is, if xi is the size of a cell
in Gi, then xi = 2xi−1 = 2ix0. Since xlog n = nx0 for i = log n, Glog n is the
rectangle Q.

Definition 1. (a) The Gi-potential of a point set P ⊆ S, denoted by Gi(P ), is
equal to xi × ti, where ti is the number of cells of Gi containing the points of P .

(b) The potential of a point set P is the sum of the Gi-potentials of P , i.e.,

P(P ) =
log n−1∑

i=0

Gi(P ).

It is known that the potential of a point set is small if and only if the weight of
the minimum spanning tree of the point set is small, and the authors used this
fact to get a O(log k)-factor approximation result for the k-MST problem. For
our problem, the following two lemmas can be proved as in [15] using the fact
that δ ≤ OPT .

Lemma 3 [15]. The minimum tree spanning a set of points P has weight at
most

√
2P(P ).

5 The maximum possible distance between a pair of points.
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Algorithm 1. Approximation algorithm
Require: A set S = {s1, s2, . . . , sn} of line segments in the plane
Ensure: A spanning tree of S
1: for each distinct pair of segments si and sj in S do
2: for each edge (pi, pj) between si and sj do
3: let lune(pi, pj) be the lune of pi and pj

4: if (lune(pi, pj) contains at least one endpoint from each segment) then
5: let Q be the smallest rectangle circumscribing the lune
6: Compute the grids G0, G1, . . . , Glogn defined on Q as described earlier
7: let l = n and P ← ∅
8: while (l ! = 0) do
9: let S be the set of endpoints of the segments in S lying in lune(pi, pj)

10: P ′ = Min Potential(S, G0, G1, . . . , Glogn, l)
11: � P ′ ⊆ S is of size l with minimum potential in Q [15]
12: while (there is a segment having both its endpoints in P ′) do
13: remove any one of its endpoints from P ′

14: P = P ∪ P ′

15: remove every segment in S having at least one endpoint in P
16: l = l − |P |
17: compute the MST of P

18: return spanning tree with the minimum cost and the set P corresponding to it

Lemma 4 P(P ∗) ≤ 8 log n × OPT

Let pi and pj are the farthest pair of points in P ∗. Let them correspond to the
segments si and sj . Consider the iteration in which pi and pj are picked by
our algorithm (see line number 2 in Algorithm 1). As we are considering every
distinct pair of segments and all the pairs of endpoints, we must have considered
(pi, pj) in some iteration. Algorithm 1 returns a feasible solution by obtaining a
set P of cardinality n iteratively. Initially P = ∅. The algorithm finds a set P ′

of size n − |P | having minimum potential among the endpoints in lune(pi, pj)
by calling the subroutine Min Potential() (see line number 10 in Algorithm
1). Note that P ′ need not be a feasible solution as there can be some segments
having both endpoints in P ′, and some segments having no representation in
P ′. We update P ′ to get a (partial) feasible solution (see line numbers 12–13
in Algorithm 1) as follows: for every segment having both the endpoints in P ′

we delete any one of its endpoints arbitrarily. We also update S by deleting
segments having at least one endpoint in P ′ (refer line number 15) to ensure the
feasibility of the final solution returned by the algorithm. The same process is
repeated with P = P ∪ P ′ until |P | = n.

Lemma 5 P(P ) ≤ log n × P(P ∗)

Proof The factor log n in the bound is due to the number of iterations needed
to find P in worst case6. Let us divide the set S of segments into disjoint
6 In each iteration at least half of the segments are deleted from S.
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subsets S1,S2, . . . ,Slog n, where Si is the set of segments considered in i-th iter-
ation by Algorithm 1. Analogously, we divide P and P ∗ into disjoint subsets
P1, P2, . . . , Plog n and P ∗

1 , P ∗
2 , . . . , P ∗

log n, respectively, where Pi and P ∗
i are the

set of endpoints of the segments in Si (one for each) included in the solution P
and in the optimal solution P ∗, respectively. By the way the algorithm chooses
the sets Pi, it is clear that P(Pi) ≤ P(P ∗

i ) for 1 ≤ i ≤ log n. The lemma follows
by taking the summation in both sides over log n iterations. �	

Theorem 2 The minimum tree spanning P has weight at most O(log2 n)OPT .

Proof The weight of the minimum tree spanning the points in P

≤
√

2P(P ) (by Lemma 3)

≤
√

2 log n × P(P ∗) (by Lemma 5)

≤ 8
√

2 log2 n × OPT = O(log2 n)OPT (by Lemma 4) �	

Algorithm 1 runs in time O(n2 × π(n) log n), where π(n) is the running time
of the sub-routine Min Potential(). In [15], a O(k4) algorithm is proposed to
find a set of size k with minimum potential in a given set P of n points. However,
using the idea in [12], the running time can be improved to O(nk log k).
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Abstract. We consider the problem of learning k-parities in the online
mistake-bound model: given a hidden vector x ∈ {0, 1}n where the ham-
ming weight of x is k and a sequence of “questions” a1, a2, · · · ∈ {0, 1}n,
where the algorithm must reply to each question with 〈ai, x〉 (mod 2),
what is the best trade-off between the number of mistakes made by the
algorithm and its time complexity? We improve the previous best result
of Buhrman et al. [BGM10] by an exp(k) factor in the time complexity.

Next, we consider the problem of learning k-parities in the PAC model
in the presence of random classification noise of rate η ∈ (0, 1/2). Here,
we observe that even in the presence of classification noise of non-trivial
rate, it is possible to learn k-parities in time better than

(
n

k/2

)
, whereas

the current best algorithm for learning noisy k-parities, due to Grigorescu
et al. [GRV11], inherently requires time

(
n

k/2

)
even when the noise rate

is polynomially small.

1 Introduction

By now, the “Parity Problem” of Blum et al. [BKW03] has acquired widespread
notoriety. The question is simple enough to be in our second sentence: in order to
learn a hidden vector x ∈ {0, 1}n, what is the least number of random examples
(a, �) that need to be seen, where a is uniformly chosen from {0, 1}n and � =∑

i aixi (mod 2) with probability at least 1−η? Information-theoretically, x can
be recovered after only O(n) examples, even if the noise rate η is close to 1/2.
But if we add the additional constraint that the running time of the learning
algorithm be minimized, the barely sub-exponential running time of [BKW03]’s
algorithm, 2O(n/ log n) still holds the record of being the fastest known for this
problem (for any distribution)!
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Learning parities with noise, abbreviated as LPN, is a central problem in
theoretical computer science. It has incarnations in several different areas of
computer science, including coding theory as the problem of decoding random
binary linear codes and cryptography as the “learning with errors” problem that
underlies lattice-based cryptosystems [Reg09,BV11]. The learning with errors
problem, often known as LWE, is in fact a generalization of LPN to finite fields
of larger alphabets. Note that, LPN is a special case of LWE when the alphabet
size is two.

In learning theory, the special case of the problem where the hidden vector x is
known to be supported on a set of size k much smaller than n has great relevance.
We refer to this problem as learning k-parity with noise or k-LPN. Feldman
et al. [FGKP09] showed that learning k-juntas, as well as learning 2k-term DNFs
from uniformly random examples and variants of these problems in which the
noise is adversarial instead of random, all reduce to the k-LPN problem. For
the k-LPN problem, the current record is that of Grigorescu et al. [GRV11]
who showed a learning algorithm that succeeds with constant probability, takes
(

n
k/2

)1+(2η)2+o(1) time and uses k log n
(1−2η)2 · ω(1) samples. When the noise rate η

is close to 1/2, this running time is improved by an algorithm due to Valiant
[Val12] that runs in time n0.8k · poly( 1

1−2η ). It is a wide open challenge to find
a polynomial time algorithm for k-LPN for growing k or to prove a negative
result.

Another outstanding challenge in machine learning is the problem of learning
parities without noise in the “attribute-efficient” setting [Blu96]. The algorithm
is given access to a source of examples (a, �) where a is chosen uniformly from
{0, 1}n and � =

∑
i aixi (mod 2) with no noise, and the question is to learn x

using number of samples polynomial in the description length of x. Note that,
the attribute-efficient setting is not an interesting question for general parities, as
using poly(n) many samples is attribute-efficient and this is enough for Gaussian
elimination. We focus on the case where x has sparsity k � n. Information-
theoretically, of course, O(k log n) examples should be sufficient, as each linearly
independent example reduces the number of consistent k-parities by a factor
of 2. But the fastest known algorithm requiring O(k log n) samples runs in time
Õ(

(
n

k/2

)
) [KS06], and it is open whether there exists a polynomial time algorithm

for learning parities that is attribute-efficient, i.e. it uses poly(k log n) samples.
Buhrman et al. [BGM10] give the current best tradeoffs between the sample
complexity and running time for learning parities in this noiseless setting and in
fact, give an algorithm which achieves the current best running time for given
sample complexity. Notice that with O(n) samples, it is easy to learn the k-parity
in polynomial time using Gaussian elimination.

1.1 Our Results

We first study the noiseless setting and consider the mistake-bound model
[Lit89]. Our main technical result is an improved tradeoff between the sample
complexity and runtime for learning parities.
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We assume throughout, as in [BGM10], that k, t : N → N are two functions
such that they are constructible in quadratic time. We also use the shorthand
notation k = k(n) and t = t(n) henceforth. Finally, we use f(n) � g(n) to mean
that f(n) = o(g(n)).

Theorem 1. Let k, t : N → N be two functions such that log log n � k(n) �
t(n) � n. Then for every n ∈ N, there is an algorithm that learns PAR(k) in
the mistake-bound model, with mistake bound at most (1 + o(1))kn

t + log
(

t
k

)
and

running time per round e−k/4.01 · (
t
k

) · Õ
(
(kn/t)2

)
.

For comparison, let us quote the result of Buhrman et al.:

Theorem 2. Let k, t : N → N be two functions satisfying k(n) � t(n) � n. For
every n ∈ N, there exists a deterministic algorithm that learns PAR(k) in the
mistake-bound model, with the mistake bound k�n

t �+ �log
(

t
k

)� and running time
per round O

((
t
k

)
(kn/t)2

)
.

Thus, in the comparable regime, our Theorem 1 improves the runtime complex-
ity of Theorem 2 by an exp(k) factor while its sample complexity remains the
same upto constant factors. Note that as t approaches k, our algorithm requires
O(n) samples and takes poly(n) time which is the complexity of the Gaussian
elimination approach. On the other hand, if t = n/ log(n/k), our algorithm
requires O(k log(n/k)) samples and takes1 exp(−k) · (

n/k
k

)
time (ignoring poly-

nomial factors), compared to the trivial approach which explicitly keeps track of
the subset of all the k-weight parities consistent with examples given so far and
which requires O(k log(n/k)) samples and takes O(

(
n
k

)
) time.

The mistake-bound model is stronger than the PAC model (in fact, strictly
stronger assuming the existence of one-way functions [Blu94]). As a consequence,
we can get a PAC learning algorithm from the above theorem. There are stan-
dard conversion techniques which can be used to transform any mistake-bound
algorithm into a PAC learning algorithm (over arbitrary distributions):

Theorem 3 [Ang88,Hau88,Lit89]. Any algorithm A that learns a concept class
C in the mistake-bound model with mistake bound m and running time t per round
can be converted into an algorithm A′ that PAC-learns C with sample complexity
O( 1εm + 1

ε log 1
δ ), running time O(1εmt + t

ε log 1
δ ), approximation parameter ε,

and confidence parameter δ.

Using Theorem 3, we directly obtain the following corollary. In fact, since
Theorem 3 produces a PAC-learner over any distribution, a statement of the
form of Corollary 1 also holds for examples obtained from any distribution.

Corollary 1. Let k, t : N → N be two functions satisfying log log n � k(n) �
t(n) � n. For any δ > 0, there is an algorithm that learns the concept class of
k-parities on n variables with confidence parameter δ, using O(kn/t + log

(
t
k

)
+

1 By exp(·), we mean 2O(·).
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log(1/δ)) uniformly random examples and e−k/4.01
(

t
k

) ·poly(n) · log(1/δ) running
time2.

We next examine the noisy setting. Here, our contribution is a simple, general
observation that does not seem to have been explicitly made before. Let PAR(k)
represent concept class of parities of Hamming weight k.

Theorem 4. Given an algorithm A that learns PAR(k) over the uniform dis-
tribution with confidence parameter δ using s(δ) samples and running time t(δ),
there is an algorithm A′ that solves the k-LPN problem with noise rate η ∈
(0, 1/3), using O(s(δ/2) log(4/δ)) examples and running time exp(O(H(3η/2) ·
s(δ/2))) · log(4/δ) · (t(δ/2) + s(δ/2)) and with confidence parameter δ.

In the above, H : [0, 1] → [0, 1] denotes the binary entropy function H(p) =
p log2

1
p + (1 − p) log2

1
1−p . The main conceptual message carried by Theorem 4

is that improving the sample complexity for efficient learning of noiseless par-
ity improves the running time for learning of noisy parity. For instance, if we
use Spielman’s algorithm as A, reported in [KS06], that learns k-parity using
O(k log n) samples and O(

(
n

k/2

)
) running time, we immediately get the following:

Corollary 2. For any η ∈ (0, 1/3) and constant confidence parameter, there is
an algorithm for k-LPN with sample complexity O(k log n) and running time
O

((
n

k/2

)1+O(H(1.5η))
)
.

For comparison, consider the current best result of [GRV11]:

Theorem 5 (Theorem 5 of [GRV11]). For any ε, δ, η ∈ (0, 1/2), and distribu-
tion D over {0, 1}n, the k-LPN problem over D with noise rate η can be solved

using k log(n/δ)ω(1)
ε2(1−2η)2 samples in time log 1/δ

ε2(1−2η)2 ·( n
k/2

)1+( η
ε+η−2εη )2+o(1), where ε and

δ are the approximation and confidence parameters respectively.

This result has runtime
(

n
k/2

)1+4η2+o(1) and sample complexity ω(k log n). In
the regime under consideration, our algorithm’s runtime has a worse exponent
but an asymptotically better sample complexity.

The result of [GRV11] requires
(

n
k/2

)
time regardless of how small η is. We

show via Theorem 4 and Corollary 1 for the uniform distribution, that it is
possible to break the

(
n

k/2

)
barrier when η is a small enough function of n.

Corollary 3. Suppose k(n) = n/f(n) for some function f : N → N for which
f(n) � n/ log log n, and suppose η(n) = o( 1

((f(n))α log n) ) for some α ∈ [1/2, 1).
Then, for constant confidence parameter, there exists an algorithm for k-LPN
with noise rate η with running time O

(
e−k/4.01+o(k) · (

n
k

)1−α · poly(n)
)

and
sample complexity O(k(f(n))α).

We note that because of the results of Feldman et al. [FGKP09], the above
results for k-LPN also extend to the setting where the example source adver-
sarially mislabels examples instead of randomly but with the same rate η.
2 The “4.01” can be replaced by any constant more than 4.
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1.2 Our Techniques

We first give an algorithm to learn parities in the noiseless setting in the mistake
bound model. We use the same approach as that of [BGM10] (which was itself
inspired by [APY09]). The idea is to consider a family S of subsets of {0, 1}n such
that the hidden k-sparse vector is contained inside one of the elements of S. We
maintain this invariant throughout the algorithm. Now, each time an example
comes, it specifies a halfspace H of {0, 1}n inside which the hidden vector is lying.
So, we can update S by taking the intersection of each of its elements with H. If
we can ensure that the set of points covered by the elements of S is decreasing
by a constant factor at every round, then after O(log

∑
S∈S |S|) examples, the

hidden vector is learned. The runtime is determined by the number of sets in S
times the cost of taking the intersection of each set with a halfspace.

One can think of the argument of Buhrman et al. [BGM10] as essentially
initializing S to be the set of all

(
n
k

)
subspaces spanned by k standard basis

vectors. The intersections of these subspaces with a halfspace can be computed
efficiently by Gaussian elimination. Our idea is to reduce the number of sets in
S. Note that we can afford to make the size of each set in S larger by some factor
C because this only increases the sample complexity by an additive log C. Our
approach is (essentially) to take S to be a random collection of subspaces spanned
by αk standard basis vectors, where α > 1 is a sufficiently large constant. We
show that it is sufficient for the size of S to be smaller than

(
n/α

k

)
by a factor

that is exponential in k, so that the running time is also improved by the same
factor. Moreover, the sample complexity increases by only a lower-order additive
term.

Our second main contribution is a reduction from noiseless parity learning to
noisy parity learning. The algorithm is a simple exhaustive search which guesses
the location of the mis-labelings, corrects those labels, applies the learner for
noiseless parity and then verifies whether the output hypothesis matches the
examples by drawing a few more samples. Surprisingly, this seemingly immediate
algorithm allows us to devise the first algorithm which has a better running time
than

(
n

k/2

)
in the presence of a non-trivial amount of noise.

2 Preliminaries

Let PAR(k) be the class of all vectors f ∈ {0, 1}n of Hamming weight k. So,
|PAR(k)| =

(
n
k

)
. With each vector f ∈ PAR(k), we associate a parity function

f : {0, 1}n → {0, 1} defined by f(a) =
∑n

i=1 xiai (mod 2).
Let C be a concept class of Boolean functions on n variables, such as PAR(k).

We discuss two models of learning in this work. One is Littlestone’s online mis-
take bound model [Lit89]. Here, learning proceeds in a series of rounds, where
in each round, the learner is given an unlabeled boolean example a ∈ {0, 1}n by
an oracle and must predict the value f(a) of an unknown target function f ∈ C.
Once the learner predicts the value of f(a), the true value of f(a) is revealed
to the learner by the oracle. The mistake bound of a learning algorithm is the
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worst-case number of mistakes that the algorithm makes over all sequences of
examples and all possible target functions f ∈ C.

The second model of learning we consider is Valiant’s famous PAC model
[Val84] of learning from random examples. Here, for an unknown target function
f ∈ C, the learner has access to a source of examples (a, f(a)) where a is chosen
independently from a distribution D on {0, 1}n. A learning algorithm is said to
PAC-learn C with sample complexity s, running time t, approximation parameter
ε and confidence parameter δ if for all distributions D and all target functions
f ∈ C, the algorithm draws at most s samples from the example source, runs for
time at most t and outputs a function f∗ such that, with a probability at least
1 − δ:

Pr
a←D

[f(a) �= f∗(a)] < ε

Often in this paper (e.g., all of the Introduction), we consider PAC-learning
over the uniform distribution, in which case D is fixed to be uniform on {0, 1}n.
Notice that for learning PAR(k) over the uniform distribution, we can take ε = 1

2
because any two distinct parities differ on half of {0, 1}n.

The k-LPN problem with noise rate η, introduced in Sect. 1, corresponds to
the problem of PAC-learning PAR(k) under the uniform distribution, when the
example source can mislabel examples with a rate η ∈ (0, 1/2). More generally,
one can study the k-LPN problem over D, an arbitrary distribution. In fact,
Theorem 5 [GRV11] show their algorithm for any arbitrary distribution D.

3 In the Absence of Noise

We re-state Theorem 1, which is the main result of this section.

Theorem 1. Let k, t : N → N be two functions such that log log n � k(n) �
t(n) � n. Then for every n ∈ N, there is an algorithm that learns PAR(k) in
the mistake-bound model, with mistake bound at most (1 + o(1))kn

t + log
(

t
k

)
and

running time per round e−k/4.01 · (
t
k

) · Õ
(
(kn/t)2

)
.

For comparison, we quote the relevant result of [BGM10] in the mistake-
bound model.

Theorem 2 (recalled) [Theorem 2.1 of [BGM10]]. Let k, t : N → N be
two functions such that k(n) � t(n) � n. Then for every n ∈ N, there is a
deterministic algorithm that learns PAR(k) in the mistake-bound model, with
mistake bound at most k�n

t �+log
(

t
k

)
and running time per round

(
t
k

)·O((kn/t)2).

Note that their mistake bound is better by a lower-order term which we do not
see how to avoid in our setup. This slack is not enough though to recover Theorem
1 from Theorem 2: dividing t by C roughly multiplies the sample complexity by
C and divides the running time by Ck in [BGM10]’s algorithm, whereas in our
algorithm, dividing t by C roughly multiplies the sample complexity by C and
divides the running time by (1.28C)k.
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3.1 The Algorithm

Let f ∈ {0, 1}n be the hidden vector of sparsity k that the learning algorithm
is trying to learn. Let e = {e1, e2, · · · , en} be the set of standard basis of the
vector space {0, 1}n.

Let α be a large constant we set later, and let T = αt. Note that T � n. We
define an arbitrary partition π = C1, C2, · · · , CT on the set e into T parts, each
of size at most �n/T �. Next, let S1, . . . , Sm ⊂ [T ] be m random subsets of [T ],
each of size αk. We choose m to ensure the following:

Claim. If m = Õ

(
( T

αk)
( T −k

αk−k)

)

, then with nonzero probability, for every set A ⊂ [T ]

of size k, A ⊂ Si for some i ∈ [m].

Proof. This follows from the simple observation that for any fixed i ∈ [m],
Pr[A ⊂ Si] =

(
T−k
αk−k

)/(
T
αk

)
, and so,

Pr[∀i ∈ [m], A �⊂ Si] =
(

1 −
(

T − k

αk − k

)/(
T

αk

))m

� e−m( T −k
αk−k)/( T

αk)

Choosing m = 2 ( T
αk)

( T −k
αk−k)

log
(
T
k

)
and applying the union bound finishes the proof.

We fix some choice of S1, . . . , Sm ⊂ [T ] that satisfies the conclusion of above
claim for what follows. In fact, the rest is exactly [BGM10]’s algorithm, which
we reproduce for completeness.

For every i ∈ [m], let Mi ⊂ {0, 1}n be the span of
⋃

j∈Si
Cj . Note that

∣
∣
∣
⋃

j∈Si
Cj

∣
∣
∣ � αk�n/T � � αk · (

n
T + 1

)
= kn

t + αk = (1 + o(1))kn/t, as t � n

and α is a constant. So, Mi is a linear subspace containing at most 2(1+o(1))kn/t

points.
Note that every f ∈ {0, 1}n with |f | = k is contained in some Mi. This is

simply because every set of k standard basis vectors is contained in the union of
at most k of the T parts in the partition π, and by Claim 3.1, every subset of
[T ] of size k is contained in some Si.

Initially, the unknown target vector f can be in any of the Mi’s. Consider
what happens when the learner sees an example a ∈ {0, 1}n and a label y ∈
{0, 1}. For i ∈ [m], let Mi(a, y) = {v ∈ Mi : v(a) = y}. Mi(a, y) may be of size
0, |Mi| or |Mi|/2. Note that the size of Mi(a, y) can be efficiently found using
Gaussian elimination.

We are now ready to describe the algorithm:

– Initialization: The learning algorithm begins with a set of affine spaces
Ni, i ∈ [m] represented by a system of linear equations. Initialize the affine
spaces Ni = Mi for all i ∈ [m].

– On receiving an example a ∈ {0, 1}n from the oracle: Predict its label
ŷ ∈ {0, 1} such that

∑
i∈[m] |Ni(a, ŷ)| �

∑
i∈[m] |Ni(a, 1 − ŷ)|.

– On receiving the answer from the oracle y = f(a): Update Ni to Ni(a, y)
for each i ∈ [m].

– Termination: The algorithm terminates when | ∪i∈[m] Ni| � 1.
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3.2 Analysis

Before we analyze the algorithm, we first establish a combinatorial claim that is
the crux of our improvement:

Lemma 1. If α is a large enough constant,
(

T
αk

)

(
T−k
αk−k

) � e−k/4.01 ·
(

t

k

)

Proof.

1
(

t
k

) ·
(

T
αk

)

(
T−k
αk−k

) =
k−1∏

i=0

k − i

t − i
· T − i

αk − i

=
k−1∏

i=0

αt − i

αk − i
· k − i

t − i

=
k−1∏

i=1

⎛

⎝1 −
i
(
1 − 1

α

) (
1

k−i − 1
t−i

)

1 + i
k−i

(
1 − 1

α

)

⎞

⎠

�
k−1∏

i=1

(

1 − 0.999
1 + k−i

i
α

α−1

)

where the equalities are routine calculation and the inequality is using that
k(n) � t(n). Each individual term in the product is strictly less than 1. So, the
above is bounded by3:

�
k−1∏

i=k/(2−ε)

(

1 − 0.999
1 + k−i

i
α

α−1

)

�
(

1 − 0.999
1 + (1 − ε) α

α−1

) 1−ε
2−ε k

� exp

(

− lg e · 0.999(1 − ε)
(2 − ε)(1 + (1 − ε) α

α−1 )
k

)

� e−k/4.01

for a small enough constant ε > 0 and large enough constant α > 1.

Proof (Proof of Theorem 1). Fix α to be a constant that makes the conclusion
of Lemma 1 true.

We first check that the invariant is maintained throughout the algorithm that
f ∈ ∪i∈[m]Ni. This holds at initiation by the argument given earlier. After that,
obviously, if f ∈ Ni, then f ∈ Ni(a, f(a)) for any a ∈ {0, 1}n, and so the invariant
holds. Therefore, if the algorithm terminates, it will find the hidden vector f and
return it as the solution. The rate of convergence is precisely captured by the
number of mistakes learning algorithm makes, which we describe next.
3 Again, in the second last inequality, by exp(·), we mean 2O(·).
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Mistake Bound. Notice that when the algorithm begins, the sum of the sizes

of all the affine spaces,
∑

i |Ni| � Õ

(
( T

αk)
( T −k

αk−k)

)

2(1+o(1))kn/t. Now whenever the

learner makes a mistake by predicting ŷ �= y, the size of all affine spaces
∑

i |Ni|
reduces by a factor of at least 2. This is due to the definition of ŷ and the fact
that |Ni(a, ŷ)| + |Ni(a, 1 − ŷ)| = |Ni|.

Hence, using Lemma 1, after at most

log

(∑
i

|Ni|
)

� log

⎡
⎣Õ

( (
T

αk

)
(

T −k
αk−k

) )
2
(1+o(1))kn/t

⎤
⎦ � (1+ o(1))kn/t+ log

(
t

k

)
− Ω(k)+O

(
log log

(
t

k

))

mistakes, the size of ∪i∈[m]Ni will decrease to 1, which by the invariant above
will imply that ∪i∈[m]Ni = {f}, and hence the learner makes no more mistakes.
Since we assume k � log log n and t � n, we can bound the number of mistakes
by: (1 + o(1))kn/t + log

(
t
k

)
.

Running Time. We analyze the running time of the learner for each round.
At each round, for a question a ∈ {0, 1}n, we need to compute |Ni(a, 0)| and
|Ni(a, 1)| as well as store a representation of the updated Ni. Now, since for
each Ni is spanned by at most � = (1 + o(1))kn/t basis vectors, we can treat
each Ni as a linear subspace in {0, 1}�. Ni(a, 0) and Ni(a, 1) can be computed
by performing one step of Gaussian elimination on a system of linear equations
involving � variables, which takes O(�2) time. Thus, the total running time is
O(m�2), which using Lemma 1 is exactly the bound claimed in Theorem 1.

4 In the Presence of Noise

Recall the k-LPN problem. In this section, we show a reduction from k-LPN to
noiseless learning of PAR(k) and its applications.

4.1 The Reduction

We focus on the case when the noise rate η is bounded by a constant less than 1
3 .

Theorem 4 (recalled). Given an algorithm A that learns PAR(k) over the
uniform distribution with confidence parameter δ using s(δ) samples and run-
ning time t(δ),there is an algorithm A′ that solves the k-LPN problem with
noise rate η ∈ (0, 1/3), using O(s(δ/2) log(4/δ)) examples and running time
exp(O(H(3η/2) ·s(δ/2))) · log(4/δ) · (t(δ/2)+s(δ/2)) and with confidence param-
eter δ.

Let A(δ) be a PAC-learning algorithm over the uniform distribution for
PAR(k) of length n with confidence parameter δ that draws s(δ) examples and
runs in time t(δ). Below is our algorithm Noisy for k-LPN. Here, H denotes
the binary entropy function p �→ p log2(1/p) + (1 − p) log2(1/(1 − p)).
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Algorithm . Noisy(δ, η)
1: X = φ
2: for ρ = 1 to 3 log(4/δ) do
3: Draw s′ = s(δ/2) random samples (a1, �1), . . . , (as′ , �s′) ∈ {0, 1}n × {0, 1}.
4: for all S ⊂ [s′], |S| � 3

2
ηs′ do

5: for i ∈ [s′] do
6: if i ∈ S then �̃i ← 1 − �i

7: else �̃i ← �i

8: end if
9: end for

10: xS ← A(δ/2) applied to examples (a1, �̃1), . . . , (as′ , �̃s′).
11: X = X ∪ xS

12: end for
13: end for
14: Draw s′′ = 600

(
s′ · H(3η/2) + log

( 24 log(4/δ)
δ

))
random samples

(b1, m1), . . . , (bs′′ , ms′′) ∈ {0, 1}n × {0, 1}
15: xS∗ ← arg maxxS∈X |{i ∈ [s′′] : 〈bi, xS〉 = mi}|
16: return xS∗

Proof (Proof of Theorem 4).

Lemma 2. The sample complexity of Noisy is s′ · 3 log(4/δ) + s′′ =
O(s(δ/2) log(4/δ)).

Proof. Immediate.

Lemma 3. The running time of Noisy is 2O(H(3η/2)s(δ/2)) · log(4/δ) · (t(δ/2)+
s(δ/2)).

Proof. We use the standard estimate
∑αx

i=0

(
x
i

)
� 2H(α)x for α � 1

2 . The bound
is then immediate.

Lemma 4. If x is the hidden vector and x∗ is output by Noisy(δ), then with
probability at least 1 − δ, x∗ = x.

Proof. Let T = {i ∈ [s′] : 〈ai, x〉 �= �i} be the subset of the s′ samples drawn in
line 3 that are mislabeled by the example source. By Markov’s inequality:

Pr[|T | > 3ηs′/2] � 2/3

Thus, if we repeat step 3, 3 log(4/δ) times, then with probability at least 1 −
δ/4, it is true that |T | � 3ηs′/2 in some round. If |T | � 3ηs′/2, we have with
probability at least 1−δ/2, xT = x. Thus, for any i ∈ [s′′],Prbi

[〈xT , bi〉 �= mi] �
η. On the other hand, for all xS �= xT , Prbi

[〈xS , bi〉 �= 〈x, bi〉] = 1/2, and so
Prbi

[〈xS , bi〉 �= mi] = 1/2 as the noise is random. Again, using Chernoff bounds,

Pr[∃S �= T s.t.|{i ∈ [s′′] : 〈bi, xS〉 �= mi}| � 5s′′/12] � 2H(3η/2)s′ · 3 log(4/δ) · e−s′′/450 <
δ

8
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On the other hand, for xT itself, Pr[|{i ∈ [s′′] : 〈bi, xT 〉 �= mi}| > 5s′′/12] < δ
8

by a similar use of Chernoff bounds. So, in all, with probability at least 1 − δ,
xT will be returned in step 15.

When the noise rate η is more than 1/3, a similar reduction can be given by
adjusting the parameters accordingly. For example, for any η < 1/2, performing
the for loop of step 2, log(4/δ)

(1−2η) times, with |S| � s′/2 in step 4, we would still
have that with probability at least 1 − δ/4, it is true that |T | � s′/2. Further,
when the distribution is arbitrary, A is invoked with a smaller approximation
parameter than the one given to Noisy so that the filtering step in line 14 works.

4.2 Applications

An immediate application of Theorem 4 is obtained by letting A be the current
fastest known attribute-efficient algorithm for learning PAR(k), the algorithm
due to Spielman4 [KS06] that requires O(k log n) samples and takes O(

(
n

k/2

)
)

time (for constant confidence parameter δ). (We ignore the confidence parameter
in this section for simplicity.)

Corollary 2 (recalled). For any η ∈ (0, 1/3) and constant confidence param-
eter, there is an algorithm for k-LPN with sample complexity O(k log n) and
running time O

((
n

k/2

)1+O(H(1.5η))
)
.

Proof. Immediate from Theorem 4.

Our next application of Theorem4 uses our improved PAR(k) learning algo-
rithm from Sect. 3.

Corollary 3 (recalled). Suppose k(n) = n/f(n) for some function f : N →
N for which f(n) � n/ log log n, and suppose η(n) = o(1/((f(n))α log n))
for some α ∈ [1/2, 1). Then, for constant confidence parameter, there
exists an algorithm for k-LPN with noise rate η with running time
O

(
e−k/4.01+o(k) · (

n
k

)1−α · poly(n)
)
and sample complexity O(k(f(n))α).

Proof. Let A be the algorithm of Corollary 1 with t(n) = �n/(f(n))α�. The
running time of A is e−k/4.01 ·(n

k

)1−α ·poly(n) and its sample complexity is O(k ·
f(n))α). Now, applying Theorem4, we see that since H(1.5η) = o((f(n))−α),
the running time for Noisy is only a 2o(k) factor times the running time of A.
This yields our desired result.

4 Though a similar algorithm was also proposed by Hopper and Blum [HB01].
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Abstract. Haplotype assembly is the problem of reconstructing the two
parental chromosomes of an individual from a set of sampled DNA-
sequences. A combinatorial optimization problem that models haplotype
assembly is the Minimum Error Correction problem (MEC). This prob-
lem has been intensively studied in the computational biology literature
and is also known in the clustering literature: essentially we are required
to find two cluster centres such that the sum of distances to the nearest
centre, is minimized. We introduce here the problem Fixed haplotype-
Minimum Error Correction (FH-MEC), a new variant of MEC which
corresponds to instances where one of the haplotypes/centres is already
given. We provide hardness results for the problem on various restricted
instances. We also propose a new and very simple 2-approximation algo-
rithm for MEC on binary input matrices.

1 Introduction

Humans have, genetically speaking, an extremely high degree of similarity: at
the vast majority of positions in our DNA sequence we share the same DNA
symbol. The relatively few positions at which we differ are known as Single
Nucleotide Polymorphisms (SNP) [5]. In most cases the variation observed at a
given position involves two nucleotides (as opposed to three or four). For this
reason the SNPs of an individual can be summarized as a string over a binary
alphabet, also known as a haplotype.

A classical computational challenge in the genomic era is to efficiently infer
such haplotypes from a set of overlapping, aligned haplotype fragments which
have been obtained by sequencing the DNA at different intervals. This problem
is complicated by the fact that humans (and diploid organisms in general) actu-
ally have two haplotypes (chromosomes): one inherited from the mother, and one
from the father. We do not know easily which haplotype fragment originated from
which of the two haplotypes, so the goal is to construct two haplotypes and to
map the fragments to these two haplotypes. This is the haplotype assembly prob-
lem [11]. The Minimum Error Correction (MEC) model imposes the following
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 554–566, 2018.
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objective function on the selection of the haplotypes: find two haplotypes such
that, summing over all the input fragments, the Hamming distance (interpreted
as ‘errors corrected’) from the fragment to its nearest haplotype, is minimized.
(When a fragment contains no information about a given position, a ‘wildcard’
character is used which does not contribute to the Hamming distance). The hap-
lotypes can be thought of as cluster centres. This problem, originally introduced
in 2001 [10], has been intensively studied in the computational biology litera-
ture: we refer to articles [2–4,7] and the references therein for a comprehensive
overview. We assume that the optimal solution has always cost greater that zero
since, otherwise, it is a trivial task to find the optimal solution.

Without restrictions on the use of wildcards it is straightforward to show NP-
hardness, and the problem remains hard under a number of natural restrictions.
For many years, however, it was unclear whether the problem is NP-hard if
there are no wildcards in the input: this is the BinaryMEC problem. This was
finally settled in 2014 by Feige, who showed that the equivalent Hypercube 2-
segmentation problem is NP-hard [8].

Here we present a new variant of the problem: Fixed-haplotype Minimum
Error Correction (FH-MEC). In this version of the problem one fixed haplotype
(not necessarily the optimal one) is given as part of the input, and we are asked to
find the other that minimizes the total error correction. This is a quite natural
variation which models the situation when one of the haplotypes has already
been determined. Fast algorithms for FH-MEC could also be used to heuristically
explore the space of solutions to MEC, and thus to provide warm-start upper
bounds for MEC algorithms.

It is straightforward (by simply adding many copies of the fixed haplotype
to the input) to reduce FH-MEC to MEC in an approximation-preserving way
(under preservation of common restrictions on the use of wildcards), so the
Binary Fixed-Haplotype variant of MEC, BinaryFH-MEC, inherits the PTAS
that via the clustering literature was already known to exist for BinaryMEC
[4,9,12]. Determining the complexity of FH-MEC is, however, a more involved
task since there is no obvious reduction in the opposite direction. We show in
this article that FH-MEC is APX-hard by providing an L-reduction from the
MaxCut problem on cubic graphs. Our central result is a proof that BinaryFH-
MEC is NP-hard. This is a non-trivial adaption of the elegant proof by Feige
[8]. Feige, who reduces from MaxCut, works purely with �1-norms, but unfor-
tunately this option is not open to us due to the presence of the fixed haplo-
type, which cannot be interpreted this way. Another difficulty posed is that we
also have to explicitly identify a fixed haplotype sufficient to induce hardness,
and deal with a number of subtle technicalities concerning the way Hadamard
(sub)matrices, and submatrices encoding the endpoints of graph edges (from
the maxCut instance), are divided between the fixed haplotype and the vari-
able haplotype. Although the NP-hardness of BinaryFH-MEC implies the NP-
hardness of UngappedFH-MEC (where each haplotype fragment covers a con-
tiguous interval of positions), we show an alternative NP-hardness reduction for
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this problem which is much simpler and potentially easier to manipulate into
stronger forms of hardness, and thus of independent interest.

Ending the article on a positive note, we return to BinaryMEC. We follow
the trend towards simplification given in [3] and provide another very simple
polynomial-time 2-approximation algorithm for this problem. Our algorithm has,
compared to [3], lower polynomial dependency on the length of the haplotypes
we are constructing (at the expense of higher dependency on the number of
fragments).

Definitions and Notations: A fragment matrix F is a matrix with n rows and
m columns, every entry of which is in {−1, 1, ∗}. A ∗ entry is called a hole, and
encodes an unknown value. F is binary if F contains no holes. F is ungapped if,
for every row r ∈ F , there exists no hole in r such that there is a non-hole entry
somewhere to the left and somewhere to the right of it.

Let ri, rj be two distinct rows of F . By ri[k] we denote the kth entry of
ri. Given two vectors ri, rj of the same dimension their (generalized) Hamming
distance is defined as

d(ri, rj) = |{k : ri[k], rj [k] ∈ {−1, 1}, ri[k] �= rj [k]}|. (1)

i.e., d(ri, rj) counts in how many positions the two vectors differ, where ∗ char-
acters in one vector induce no errors, no matter what is the corresponding entry
of the other vector. The Minimum Error Correction (MEC) problem is defined
as follows.
Problem: MEC
Input: An n × m fragment matrix.
Output: Two m-dimensional vectors h1, h2 ∈ {−1, 1}m, such that the following
sum over all rows of F is minimized:

∑

ri∈F

min
{

d(h1, ri), d(h2, ri)
}

.

In other words, the goal is to find two haplotypes h1 and h2 minimizing the sum
of (generalized) Hamming distances of each row of F to its closest haplotype.
This creates a bipartition of the rows into two groups, where rows that share
the same closest haplotype are in the same group or partition. Ties can be
broken arbitrarily. To make a row equal to its closest haplotype, the differing
positions (errors) would have to be corrected. By minimizing the sum of these
error corrections, the most likely parental haplotypes are found. Observe that a
bipartition of the rows immediately induces two haplotypes by a simple majority
voting rule on the rows within the same bipartition. Two variants of this problem,
UngappedMEC and BinaryMEC, minimize the same function, but take as
input an ungapped and binary fragment matrix, respectively.

In the Fixed-Haplotype MEC (FH-MEC) problem, one of the haplotypes
h1, h2 is fixed and part of the input:
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Problem: FH-MEC
Input: An n×m fragment matrix F and an m-dimensional vector h1 ∈ {−1, 1}m
(the fixed centre).
Output: An m-dimensional vector h2 ∈ {−1, 1}m, such that the following is
minimized: ∑

ri∈F

min
{

d(h1, ri), d(h2, ri)
}

.

For FH-MEC, binary and ungapped variants exist as well. In this paper, the
haplotypes h1 and h2 are sometimes described as the fixed and variable haplo-
types, respectively.

Given a minimization problem Π, we say that an algorithm A is a ρ-
approximation algorithm if for any given instance I for Π (i) A runs in polyno-
mial time in the size of I, and (ii) it outputs a solution sol(I) with value at most
ρ · opt(I). Here opt(I) corresponds to the optimal solution value for I. Note that
ρ ≥ 1.

2 APX-Hardness of FH-MEC

In this section we will prove that FH-MEC is APX-hard by showing that the
CubicMaxCut problem, where the input graph is cubic, L-reduces [13] to our
problem. A cubic graph is a graph where every vertex has exactly three adjacent
vertices (i.e., the degree of each vertex is exactly three). MaxCut is APX-hard,
even for cubic graphs [1]. Moreover, the value of MaxCut on cubic graphs has
a lower bound of 2/3 of the number of the edges [4], which will be used to prove
that the proposed reduction is indeed an L-reduction.

Theorem 1. FH-MEC is APX-hard.

Proof. Let G = (V,E) be an arbitrary, cubic, connected graph corresponding
to an input to the CubicMaxCut problem. Let F be a |V | × 2|E| fragment
matrix to be constructed as follows: Every edge e ∈ E is represented by a block
of two columns of F , and every vertex v ∈ V is represented by a row of F . F is
constructed as follows: First arbitrarily orient the edges of the graph. For every
edge e = (u, v), set its corresponding columns in F to

(
1 −1

)
in row u, and to(−1 1

)
in row v and set its corresponding columns in the other rows to

(∗ ∗)
.

A simple example for the cycle graph C3 on vertices {1, 2, 3} with orientations
(1, 2), (2, 3), (1, 3) is given below.

F =

⎛

⎝
1 −1 ∗ ∗ 1 −1

−1 1 1 −1 ∗ ∗
∗ ∗ −1 1 −1 1

⎞

⎠

Now, let the fixed haplotype h1 be the all −1 vector. We will first prove that
MaxCut(G) = c if and only if UngappedFH-MEC(F, h1) = 2|E| − c. Then,
we will show that the conditions of an L-reduction are satisfied. There are 2
cases to consider:
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Two vertices connected by an edge are in the same partition: The rows
containing

(−1 1
)

and
(
1 −1

)
will be in the same partition. If both rows are

closest to h1 (having value
(−1 −1

)
in the two corresponding columns), then

these columns will contribute 2 to the error correction. If both rows are closest
to the variable haplotype h2, any values on the corresponding columns of h2

will contribute 2 to the error correction.
Two vertices connected by an edge are not in the same partition: In

every pair of columns representing an edge, there are only two rows filled with
numbers. If these rows are placed in separate partitions, the row closest to h1

will increase the error correction by 1. h2 can be set to the other row without
contributing to the error correction.

For vertices that are not connected by an edge, there is no column pair that
is not already covered in the two cases discussed above. For every column pair
covered in cases 1 and 2, the rows corresponding to these vertices will be

(∗ ∗)
.

Thus, they do not contribute to the error correction.
For every edge, either case 1 or case 2 will hold. Edges that are split over

the partitions (i.e., cut-edges) will contribute 1 to the error correction (case
2). Edges that are not split over the partitions will contribute 2 to the error
correction (case 1). The minimum error correction is found by maximizing the
number of cut edges. There are |E| edges in G. Therefore, c edges are cut iff the
error correction of a solution is 2|E| − c.

To complete the proof, we will show that the conditions of an L-reduction
are satisfied. Let G be an instance of CubicMaxCut. Let R(G) = (F, h1 =
{−1}2|E|) be the instance of FH-MEC that is constructed from G. Clearly, R(G)
can be constructed in polynomial time. Let Opt(G) be the value of the maximum
cut of G. Let Opt(R(G)) be the minimum error correction of R(G). Lastly, let
s be a feasible solution of R(G) and S(s) the corresponding solution for G and
let c(s) and c(S(s)) be their respective costs. According to the definition of an
L-reduction [13], two conditions need to be satisfied:

Opt(R(G)) ≤ αOpt(G) (2)

|Opt(G) − c(S(s))| ≤ β|Opt(R(G)) − c(s)| (3)

where α, β are positive constants. We have that Opt(G) ≥ 2/3|E| for any cubic
graph G. We showed that Opt(R(G)) = 2|E| − Opt(G) ≤ 2Opt(G). Therefore,
taking α = 2 will be sufficient to satisfy Eq. (2). For any bipartition s of F of cost
c(s), the cost of the corresponding cut is c(S(s)) = 2|E| − c(s). Thus, Opt(G) −
c(S(s)) = Opt(G) − 2|E| + c(s), and Opt(R(G)) − c(s) = 2|E| − Opt(G) − c(s).
This shows that Opt(G) − c(S(s)) = −(Opt(R(G)) − c(s)). Therefore, taking
β = 1 will satisfy Eq. 3) and this completes the proof. ��

3 NP-Hardness of BINARYFH-MEC

NP-hardness for a variant of BinaryMEC was proven by a reduction from
MaxCut [8]. In that variant the objective is to maximize the sum of the �1
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norms of the vector sums of the rows of each bipartition, rather than to mini-
mize the error correction as we are interested in this paper. Here, we will prove
NP-hardness for BinaryFH-MEC using a reduction inspired by [8]. A vanilla
approach does not work and we need to resolve several technicalities that arise
from the difference in the objective function and from the presence of a fixed
center. In the following we will show that optimizing the one objective function
is equivalent to optimizing the other by showing how to translate one objective
function value to another. The following allows the conversion of an �1 norm to
an error correction.

Lemma 1. Let P be a subset of np rows of a binary fragment matrix F . The
�1 norm of the sum of the rows of P is l, if and only if the contribution to the
error correction of the rows is (npm − l)/2.

Proof. Let nmaj be the number of bits in P that belong to the majority bit of
their column. Let nmin be the bits that belong to minority bit of their column. If
a column contains equal numbers of −1’s and 1’s, the majority bit can be chosen
arbitrarily. Let l be the �1 norm of the sum of the rows of P . The contribution
of a column to l is the absolute difference between the number of majority and
minority bits in that column. Therefore, l = nmaj − nmin.

The total number of bits in P is npm = nmaj + nmin. The contribution of P
to the error correction is equal to the number of minority bits nmin in P . We
have that nmin = npm − nmaj = npm − nmin − l from which we immediately get
that nmin = (npm−l)/2. ��
Corollary 1. Given a bipartition of the rows of a binary matrix, the task of
maximizing the �1 norm of the sum of the rows of each partition is equivalent to
minimizing the error correction.

The reduction involves the use of Hadamard matrices. We recall that an M -
dimensional Hadamard matrix is a set of M row vectors in {−1, 1}M , such that
the vectors are pairwise orthogonal. This means that every pair of vectors will
differ in exactly M/2 positions. Hadamard matrices can be constructed recursively
[14] as follows: Let H1 =

(
1
)
. From here, we can construct H2M from HM by

using

H2M =
(

HM HM

HM −HM

)
. (4)

This construction is also known as Sylvester’s construction (James Joseph
Sylvester, 1867). Using this recursive construction, M will be a power of 2. In
the proof of our reduction, we use the fact that all columns of a recursively
constructed Hadamard matrix HM contain M/2 1’s:

Lemma 2. Let HM be an M -dimensional Hadamard matrix that is constructed
as above. In each column of HM , except for the first one, the number of 1’s in
that column is M/2.
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Proof. Since the first row contains only 1’s, and the rows of HM are pairwise
orthogonal, all other rows contain M/2 1’s. Due to the recursive construction by
Eq. (4), HM = HT

M . Therefore, all columns except the first column contain M/2
1’s. ��

Feige showed an upper bound on the �1-norm of an arbitrary subset of q
vectors of a Hadamard matrix (Proposition 2 in [8]):

Lemma 3 ([8]). Consider an arbitrary set of q distinct vectors from an arbitrary
Hadamard matrix HM . Then, the �1 norm of their sum is at most

√
qM .

Theorem 2. BinaryFH-MEC is NP-hard.

Proof. Given a graph G = (V,E), an instance to the MaxCut problem, an
M |V | × M |E| fragment matrix F is constructed where M will be fixed later on.
Every vertex v ∈ V is represented by a block of M rows, and every edge e ∈ E is
represented by a block of M columns. Arbitrarily orient all edges e ∈ E so every
edge is now an ordered pair of vertices. For every edge e = (u, v), in the block of
columns representing e, set the block representing vertex u to all 1’s, and set the
block representing vertex v to all −1’s. Set each block representing one of the
remaining vertices (not incident to e) to the M -dimensional Hadamard matrix
HM , constructed recursively as shown in Eq. (4).

The fixed haplotype h1 ∈ {−1, 1}M |E| is set as follows: for each block of
columns representing an edge, the corresponding coordinates of h1 are set to
M/2 1’s followed by M/2 −1’s.

We will first discuss the case where an optimum solution to BinaryFH-MEC
on the matrix F and fixed haplotype h1 never splits the rows belonging to a single
vertex block to two different parts of the bipartition. Such a block of rows will be
assigned to either the fixed haplotype h1 or the variable haplotype h2. For each
block of columns representing an edge, there are 4 options to consider. Each of
these options shows the possible values for the error correction of cut and uncut
edges. After that we will calculate the contribution of the blocks of Hadamard
matrices to the error correction. In the following, when we say that an edge is
cut we mean that the block that corresponds to one if its vertices is assigned
to one haplotype but the block corresponding to the other vertex to the other
haplotype.

The edge is cut and the block of −1’s is closest to h2. The block of 1’s
corresponding to one of the vertices incident to the edge, will contribute M2

/2
to the error correction. If the block of −1’s is the only block closest to h2,
h2 can be set to all −1’s and the block of −1’s will not contribute to the
error correction. If other rows, that include blocks with Hadamard matrices
are included in h2, the first column of h2 will be set to 1, and the block of
−1’s will contribute M to the error correction.

The edge is cut and the block of 1’s is closest to h2. The block of −1’s will
cause an error correction of M2

/2. h2 can be set to all 1’s on the corresponding
entries without contributing to the error correction.
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The edge is not cut and both blocks are closest to h2. If both blocks are
assigned to h2, the first column among the rows assigned to h2 will always have
1 as a majority bit. In every other column, there will be no unique majority
bit, making the haplotype choice unimportant. The two blocks together will
contribute M2 to the total error correction.

The edge is not cut and both blocks are closest to h1. In the first M/2
columns, the block of 1’s will not contribute to the error correction and the
block of −1’s will contribute M2

/2. In the second M/2 columns, the block
of −1’s will not contribute to the error correction and the block of 1’s will
contribute M2

/2. The total contribution to the error correction for the two
blocks will be M2.

From the cases above it is clear that, when ignoring the Hadamard blocks, a
cut edge will contribute to the error correction either M2

/2 or M2
/2 + M , while

an uncut edge will have contribution of M2. Note that every Hadamard block
will have no error in the first column and an error correction of exactly M/2 in
each one of the remaining columns, regardless which haplotype is assigned to,
yielding a total error correction of M(M−1)/2. Note that for each edge there are
(|V | − 2) Hadamard blocks in that column block representing that edge, thus
in total we have (|V | − 2)|E| Hadamard blocks.

Summing up the terms of (i) the c cut edges each one contributing either
M2

/2 or M2
/2 + M , (ii) the |E| − c uncut edges each one with contribution of

M2, and (iii) (|V | − 2)|E| Hadamard matrices each one contributing M(M−1)/2,
we see that a cut of size c will have an error correction ec in the interval
[(

(|V ||E| − c)M2 − |E|M(|V | − 2)
)

2
,

(
(|V ||E| − c)M2 − M((|V | − 2)|E| + 2c)

)

2

]

It is straightforward to see that the difference in error correction between cuts
of size c and c + 1 is at least M2

/2 − (c + 1)M . By taking M ≥ 2|V |2|E|2 and
since c ≤ |E|, knowing ec, it is always possible to distinguish between cuts of
size c and c + 1.

On the other hand, it could be possible that splitting rows belonging to a
block (representing a vertex) could give us a lower error correction as opposed
to not splitting a block. If this potential decrease is less than M2

/2 − (c + 1)M ,
it is still possible to distinguish between cuts of size c and c + 1.

Assume a Hadamard block is split, and q of its rows are closest to h2. By
Lemma 3, the �1 norm of these q rows is at most

√
qM . By Lemma 1, the con-

tribution to the error correction of this subset is at least (qM − √
qM)/2. The

crucial observation is that a fixed haplotype h1 is equal to one of the rows of HM

i.e., there is a row in HM that has M/2 1’s followed by M/2 −1’s. This fact can
be derived from the recursive construction shown in Eq. (4). Abusing slightly
notation, we say that that row is equal to h1. Thus, all rows, except the one row
equal to h1, will contribute M/2 to the error correction. Summing up, this will be
(M − q − 1)M/2. From here it follows that the contribution of a split Hadamard
codematrix to the error correction is at least (M2 − (

√
q +1)M)/2. Since q < M
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(since we assume splitting of the Hadamard blocks), splitting a Hadamard block
can decrease the total error correction by at most M3/2, by Lemma 3. There
are (|V | − 2)|E| Hadamard blocks in F , so taking M 
 O(|V |2|E|2), the total
decrease is at most M2

/2 − (c + 1)M .
Lastly, we investigate whether partially cutting edges can close the gap

between cuts of size c and c + 1. Assume an edge e = (u, v) is cut partially, and
its corresponding blocks of 1’s and −1’s are distributed over both partitions. Let
xu, xv be the fractions of rows corresponding to vertices u, v, respectively, which
are closest to h2 (and so (1 − xu), (1 − xv) fractions of rows are assigned to h1).
In this bipartition, by majority voting, the contribution to the error correction
will be at least min(xu, xv)M2. For the rows closest to h1, the contribution will
be (2 − xu − xv)M

2
/2. Thus, the total contribution tc of the edges to the error

correction is

tc = min(xu, xv)M2 +
(

2 − min(xu, xv) − max(xu, xv)
)

M2

2

= M2 −
(

max(xu, xv) − min(xu, xv)
)

M2

2

= M2 − |xu − xv|M
2

2

= M2 − ye
M2

2
.

In the above expression, ye is the extent to which e is cut. Summing up
over all edges, the total contribution of the blocks of 1’s and −1’s to the error
correction is |E|M2 − M2

/2
∑

ye. The term
∑

ye can be bounded by observing
that local search can always change a fractional cut into an integer cut, which
is at least as large. Indeed, within a connected set of fractional vertices we can
always either increase them all by some amount of decrease them all by some
amount such that in each case at least one of the fractional vertices becomes
1 or 0 respectively. Since we change all the fractional values at the same time
by the same amount, this does not alter (i.e., worsen) the value of the term
ye = |xu −xv|. Hence,

∑
ye ≤ c, the value of the cut. Thus, the edges contribute

at least (|E| − c/2)M2 to the error correction, allowing a maximum decrease of
cM , which cannot close the gap between cuts of size c and c + 1. ��

4 NP-Hardness of UNGAPPEDFH-MEC

The NP-hardness of UngappedFH-MEC is implicitly proven by Theorem2. The
proof that follows does not involve the use of Hadamard matrices, and is therefore
less technical and more intuitive. Since little is known yet about the approxima-
bility of both UngappedMEC and UngappedFH-MEC, this more straightfor-
ward proof might see potential use in future research.

Theorem 3. UngappedFH-MEC is NP-hard.
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Proof. Let G = (V,E) be an arbitrary, connected graph. Let F be a (M + |V |)×
4|E| ungapped fragment matrix. Here, M will be a sufficiently large number.
Every edge e ∈ E is represented by a block of four columns of F , and every
vertex v ∈ V is represented by one of the rows of F . F is constructed as follows:
As usual, each edge is oriented arbitrarily. For every edge e = (u, v), set its
corresponding columns in F to

(
1 1 −1 −1

)
in row u, and to

(−1 −1 1 1
)

in row
v. Set the corresponding block of columns in all other rows corresponding to
vertices to

(
1 −1 1 −1

)
. Now, set its corresponding columns in M/2|E| of the last

M rows to
(
1 1 −1 −1

)
, and in M/2|E| rows to

(−1 −1 1 1
)
. In the remaining

blocks of columns, set all values in these rows to ∗. Lastly, let the fixed haplotype
h1 be −1 in all positions.

A simple example of the above construction for the simple triangle graph C3

with vertices {1, 2, 3} and oriented edges {(1, 2), (2, 3), (1, 3)} is given below.

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 1 −1 1 −1 1 1 −1 −1
−1 −1 1 1 1 1 −1 −1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−1 −1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 1 −1 −1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ −1 −1 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

M/(2|E|) copies

(5)

For every set of columns representing an edge, the variable haplotype h2 will
either be

(
1 1 −1 −1

)
or

(−1 −1 1 1
)
. By doing this, half of the last M rows

will not contribute to the error correction. The other half can simply be assigned
to h1, contributing M to the error correction. Setting h2 to a value other than(
1 1 −1 −1

)
or

(−1 −1 1 1
)

will increase the error correction among the last M
rows by at least M/2, since M/2 rows contribute 0 to the error correction in
these configurations. Since there are only 4|E||V | values in the upper |V | rows,
the decrease in error correction of the new configuration can be at most 4|E||V |.
Therefore, when setting M > 8|E||V |, no different configuration will yield an
optimum result.

Any row of the first |V | rows that is assigned to h1, will con-
tribute 2 to the error correction for every edge, since the possible values(
1 1 −1 −1

)
,

(−1 −1 1 1
)

and
(
1 −1 1 −1

)
all have a hamming distance of 2

to
(−1 −1 −1 −1

)
.

Let e = (u, v) be an edge that is part of a maximum cut of G. If u is assigned
to h2, then the h2 can be set to

(
1 1 −1 −1

)
, causing row u not to contribute to

the error correction in the columns corresponding to e. If v is also assigned to
the h2, it will contribute 4 to the error correction in the columns corresponding
to e. When assigning v to h1 instead, the contribution will be 2. It follows that
assigning two vertices that are connected by an edge to the same haplotype
will contribute 4 to the error correction in the columns corresponding to that
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edge. Assigning the vertices to different haplotypes will contribute 2 to the error
correction. Since c = MaxCut(G) edges can be split up this way, the total error
correction for the edges is 4|E| − 2c. Sequences that do not encode an edge will
contribute 2 to the error correction in any haplotype. There are |E|(|V | − 2) of
these sequences, yielding an error of 2|E|(|V | − 2). Combining the errors of the
edges, the values that do not encode an edge, and the last M rows, the total error
correction is equal to 2|E||V |+M − 2c. Since M , |V | and |E| are known for any
instance, the maximum cut can always be determined based on the minimum
error correction. ��

5 A Simple 2-Approximation for BINARYMEC

For the BinaryMEC polynomial time approximation schemata (PTAS) are
known [9,12]. In [3] a simple and fast 2-approximation algorithm was shown.
The algorithm follows the simple observation that given a “conflict-free” matrix
M , then any heterozygous column (i.e., not all 1 or not all −1 column) of M
naturally induces a bipartition of the rows of M1. Their algorithm tries to built
from any binary matrix M a conflict free matrix M ′ that is induced by a column
of M .

Here we give an even simpler 2-approximation algorithm for BinaryMEC.
We show that it is enough to work directly with rows and, in particular, we show
that there always exists a pair of rows of M that when considered as the two
haplotypes h1 and h2 induce a 2-approximate solution. The algorithm simply
iterates over all pairs of rows and picks the pair inducing the smallest error
correction.

Theorem 4. For every binary matrix F , there exists a pair of rows r1, r2 such
that taking r1, r2 as the haplotypes will yield a 2-approximation to BinaryMEC.

Proof. Let h1 and h2 be the haplotypes of an optimum solution to BinaryMEC.
Let R1 and R2 be the partition of rows induced by h1 and h2, respectively.
Thus, the cost of the optimum solution is

∑
r∈R1

d(r, h1) +
∑

r∈R2
d(r, h2) =:

opt. For i = 1, 2, let ri ∈ Ri be the row from Ri that is closest to hi (in
the Hamming distance). Then, by triangle inequality, for every row r ∈ Ri,
d(r, ri) ≤ d(r, hi) + d(hi, ri) ≤ 2d(r, hi).

Let R∗
1, R

∗
2 be the partition of the rows induced by considering r1 and r2 as

the haplotypes. The cost of this partition is minimum among all partitions, and
thus at most the cost induced by the partition R1, R2, which is

∑
r∈R1

d(r, r1)+∑
r∈R2

d(r, r2) ≤ ∑
r∈R1

2d(r, h1) +
∑

r∈R2
2d(r, h2) = 2opt. ��

The running time is O(n2m) since we loop over pairs of rows (n2 pairs of
rows in total on instances with n rows) and for each pair we compute the error
correction which takes O(m) time. The algorithm of [3] runs in time O(m2n).

1 A binary matrix M is conflict-free if the rows of M can be bipartitioned into two
sets such that the corresponding entries on each set are identical.
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Thus, the new algorithm is quicker for inputs where n is much smaller than m.
Moreover, if the optimum solution to BinaryMEC is k, then (after collapsing
identical rows) the number of rows in the input will also be at most k + 2 – yet
the number of columns could still be large. Hence our algorithm might have a
role in parameterized approaches to solve or approximate BinaryMEC [3,6].

To see that this is tight, let F =
(

I
1 − I

)
, where I is the identity matrix. We

further replace each 0 in F by −1. The two optimum haplotypes will be {−1}m
and {1}m. It is easy to see that each row will contribute 1 to the error correction,
for a total error correction of n on instances of n rows. The approximation
algorithm, on the other hand, will pick one row of I and one of 1−I as haplotypes.
The two chosen rows will not contribute to the error correction. For the n − 2
remaining rows, the contribution will be 2 for a total error of 2(n − 2).
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Abstract. It is well known that any set of n intervals in R
1 admits a

non-monochromatic coloring with two colors and a conflict-free coloring
with three colors. We investigate generalizations of this result to colorings
of objects in more complex 1-dimensional spaces, namely so-called tree
spaces and planar network spaces.

1 Introduction

Conflict-free colorings, CF-colorings for short, were introduced by Even et al. [5]
and Smorodinsky [9] to model frequency assignment to base stations in wireless
networks. In the basic setting one is given a set S of objects in the plane—
often disks are considered—and the goal is to assign a color to each object such
that the following holds: for any point p in the plane such that the set Sp :=
{D ∈ S | p ∈ D} of objects containing p is non-empty, Sp must contain an
object whose color is different from the colors of the other objects in Sp. Even
et al. proved, among other things, that any set of disks admits a CF-coloring
with O(log n) colors. This bound is tight in the worst case. Since then many
different geometric variants of CF-colorings have been studied. For example,
Har-Peled and Smorodinsky [6] generalized the result to objects with near-linear
union complexity, while Even et al. [5] considered the dual version of the problem.
See the survey by Smorodinsky [11] for an overview. A restricted type of a CF-
coloring is a unique-maximum (UM ) coloring, in which the colors are identified
with integers, and the maximum color in the set Sp is required to be unique.
Another type of coloring, often used as an intermediate step to obtain a CF-
coloring, is non-monochromatic (NM ). In an NM-coloring—sometimes called a
proper coloring—we only require that, for any point p in the plane, if the set Sp
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contains at least two elements, not all of them have the same color. Smorodinsky
[10] showed that if an NM-coloring of k elements using β(k) colors exists for
every k, one can CF-color n elements with O(β(n) log n) colors.

CF- or NM-coloring objects in R
1 is significantly easier than in the planar

case. In R
1 the objects become intervals, assuming we require the objects to be

connected, and a folklore result states that any set of intervals in R
1 can be

CF-colored with three colors and NM-colored with two colors. (This is achieved
by the chain methods, which we describe in the full version [2].) Thus, unlike in
the planar case, the number of colors for a CF- or NM-coloring of intervals in
R

1 does not depend on the number of intervals to be colored.
We are interested in generalizations of this result to 1-dimensional spaces that

have a more complex topology than R
1. To this end we consider network spaces:

1-dimensional spaces with the topology of an arbitrary graph. It is convenient
to view a network space N as being embedded in R

2, although the embedding
is actually immaterial. In this view the nodes of N are points in R

2, and the
edges are simple curves connecting pairs of nodes and otherwise disjoint. We
let d : N 2 → R+ denote the geodesic distance on N . In other words, for two
points p, q ∈ N—these points may lie in the interior of an edge—we let d(p, q)
denote the minimum Euclidean length of any path connecting p to q in N . We
consider two special types of network spaces, tree spaces and planar network
spaces, whose topology is that of a tree and a planar graph, respectively.

The objective of our paper is to investigate the number of colors needed to
CF- or NM-color a set A of n objects in a network space, where we consider
various classes of connected objects. (Here CF- and NM-colorings are defined as
above: in a CF-coloring, for any point p ∈ N the set Sp := {o ∈ A | p ∈ o}
of objects containing p should have an object with a unique color when it is
non-empty, and in an NM-coloring the set Sp should not be monochromatic
when it consists of at least two objects.) In particular, we consider balls on
N—the ball centered at p ∈ N of radius r is defined as B(p, r) := {q ∈ N |
d(p, q) � r}—and, for tree spaces, we also consider arbitrary connected subsets
as objects. Note that, if the given network space is a single curve, then our
setting, both for balls and for connected subspaces, reduces to coloring intervals
in R

1. The main question we want to answer is: How does the maximum number
of colors needed to NM- or CF-color a set A of objects in a network space depend
on the complexity of the network space and of the objects to be colored?

Our Results. We assume without loss of generality that the nodes in our net-
work space either have degree 1 or degree at least 3—there are no nodes of
degree 2. Nodes of degree 1 are also called leaves, and nodes of degree at least 3
are also called internal nodes.

We start by considering colorings on a tree space, which we denote by T .
Let A be the set of n objects that we wish to color, where each object T ∈ A is
a connected subset of T . Note that each such object is itself also a tree. From
now on we refer to the objects in A as “trees,” and always use “tree space” when
talking about T . Observe that internal nodes of a tree are necessarily internal
nodes of T , but a tree leaf may lie in the interior of an edge of T . We will
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investigate CF- and NM-chromatic number of trees on tree space as a function
of the following parameters:

– k, the number of leaves of the tree space T ;
– �, the maximum number of leaves of any tree in A;
– n, the number of objects in A.

We define the CF-chromatic number Xtree,trees
cf (k, �;n) as the minimum number

of colors sufficient to CF-color any set A of n trees of at most � leaves each, in a
tree space of at most k leaves. The NM-chromatic number Xtree,trees

nm (k, �;n) is
defined similarly. Rows 3 and 4 in Table 1 give our bounds on these chromatic
numbers. Notice that the upper bounds do not depend on n. In other words, any
set of trees in a tree space can be colored with a number of colors that depends
only on the complexity of the tree space T and of the trees in A. (Obviously the
number of objects, n, is an upper bound on these chromatic numbers as well.
To avoid cluttering the statements, we usually omit this trivial bound.) We also
study balls in tree spaces. Here it turns out to be more convenient to not use k
(the number of leaves) as the complexity measure of T , but

– t, the number of internal nodes of T .

Table 1. Overview of our results. The folklore result for intervals on the line (that is,
in R

1) is explained in the full version [2].

Space Objects Coloring Upper bound Lower bound Reference

Line Intervals NM 2 2 Folklore

Line Intervals CF 3 3 Folklore

Tree Trees NM min
(
� + 1, 2

√
6k

)
min

(
� + 1,

⌊
1+

√
1+8k
2

⌋)
Section 2

Tree Trees CF O(� log k) �log2 min(k, n)� Section 2

Tree Balls NM 2 2 Section 3.1

Tree Balls CF �log t� + 3 �log(t + 1)� Section 3.1

Planar Balls NM 4 4 Section 3.2

Planar Balls CF �log4/3 t� + 3 �log(t + 1)� Section 3.2

We are interested in the chromatic numbers Xtree,balls
cf (t;n) and Xtree,balls

nm (t;n).
Rows 5 and 6 of Table 1 state our bounds for these chromatic numbers.

After studying balls in tree spaces, we turn our attention to balls in planar
network spaces. Rows 7 and 8 of Table 1 contain our bounds on the correspond-
ing chromatic numbers Xplanar,balls

cf (t;n) and Xplanar,balls
nm (t;n). Due to space con-

straints, lower bounds and some proofs are deferred to the full version [2].

Related Results. Above we considered CF- and NM-colorings in a geomet-
ric setting, but they can also be defined more abstractly. A CF-coloring on a
hypergraph H = (V,E) is a coloring of the vertex set V such that, for every
(non-empty) hyperedge e ∈ E, there is a vertex in e whose color is different from
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that of the other vertices in e. In a NM-coloring any hyperedge with at least two
vertices should not be monochromatic. Smorodinsky’s survey [11] also gives an
overview of results on CF-colorings in this abstract setting.

The basic geometric version mentioned above—coloring objects in R
2 with

respect to points—can be phrased in terms of hypergraphs by letting the objects
be the node set V and, for each point p in the plane, creating a hyperedge e := Sp.
Another avenue for constructing a hypergraph H to be colored is to start with a
graph N , let the vertices of H be the nodes of N and create hyperedges for (the
sets of vertices of) certain subgraphs of N . For example, Pach and Tardos [8]
considered the case where hyperedges are all the node neighborhoods. For this
case, Abel et al. [1] recently showed that a planar graph can always be CF-colored
with only three colors, if we allow some nodes to be uncolored. (Otherwise, we
can use a dummy color, increasing the number of colors to four.) As another
example, we let the hyperedges be induced by all the paths in the graph. This
setting is equivalent to an older notion of node ranking [3], or ordered coloring [7].
Note that in the above results the goal is to color the nodes of a graph. We, on
the other hand, do not want to color nodes, but objects (connected subsets) in
a network space (which has a graph topology, but is a geometric object).

2 Trees on Tree Spaces

Overview of the Coloring Procedure. Let T be a tree space with k leaves
and let A be a set of n trees in T , each with at most � leaves. We describe an
algorithm that NM-colors A in two phases: first, we select a subset C ⊆ A of size
at most 6k−12 and color it with at most min

(
� + 1, 2

√
6k

)
colors. In the second

phase we extend this coloring to the whole set A without using new colors.
An edge e of T is a leaf edge if it is incident to a leaf; the remaining edges are

internal. We define C ⊆ A as the set of at most 6k − 12 trees selected as follows.
For every pair (e, v), where e is an edge of T and v is an endpoint of e that is not
a leaf of T , we choose two trees containing v and extending the furthest into e (if
they exist), that is, trees T of A containing v for which length(T ∩e) is maximal,
and place them in A(e, v). If two or more trees of A fully contain e, then A(e, v)
contains two of them, chosen arbitrarily. If a tree contains an internal edge e fully,
it may be chosen by both endpoints. We now define A(e) := A(e, u) ∪ A(e, v)
for each internal edge e = uv, A(e) := A(e, v) for each leaf edge e = uv with
non-leaf endpoint v, and C :=

⋃
A(e), with the union taken over all edges e of T .

Then A(e) contains at most four trees for any internal edge e and at most two
trees for any leaf edge e. If T has at most k leaves, it has at most k leaf edges
and at most k − 3 internal edges; recall that T has no degree-two nodes. Thus
|C| � 6k − 12, as claimed. We first explain how to color C.

Coloring C. We color C in two steps. Let T ∈ C be a tree. We define E(T ) to be
the set of edges e of T with T ∈ A(e). Firstly, if � > 2

√
6k we select all subtrees T

with |E(T )| �
√

6k, and give each of them a unique color. Since
∑

e |A(e)| �
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6k − 12, there are at most
√

6k − 1 such trees, so we use at most
√

6k − 1 colors.
For each uncolored T ∈ C, we create a new tree T ′, defined as the smallest tree
containing

⋃
e∈E(T ) e ∩ T ; see Fig. 1. T ′ has at most �′ := min(�,

√
6k) leaves

because |E(T )| <
√

6k. Define C′ := {T ′ | T ∈ C}.

Fig. 1. The original tree T (left), the set
⋃

e∈E(T ) e ∩ T (middle), and the new tree T ′

(right).

The second step is to color C′. We need the following lemma, which shows
that an NM-coloring of C′ carries over to C.

Lemma 1. Any NM-coloring of C′ corresponds to an NM-coloring of C, that is,
if we give each tree T ∈ C the color of the corresponding tree T ′ ∈ C′ then we
obtain an NM-coloring.

Next we show how to NM-color C′. Fix an arbitrary internal node r of T and
treat T as rooted at r. Our coloring procedure for C′ maintains the following
invariant: any path from r to a leaf v of T consists of three disjoint consecutive
subpaths (some possibly empty), in this order, as illustrated in Fig. 2:

– a non-monochromatic subpath containing the root on which at least two trees
are colored with at least two different colors,

– a singly-colored subpath covered by exactly one colored tree, and
– an uncolored subpath containing the leaf on which no tree is colored.

v

non-monochromatic

singly-colored

uncolored

v

Fig. 2. A coloring of trees (left) and an illustration of the invariant for v (right). (Color
figure online)
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Observation 1. Any set of trees containing r and satisfying the invariant
described above is NM-colored if we disregard uncolored trees.

We color the trees T ∈ C′ that contain r in an arbitrary order, using �′ + 1
colors, as follows: for each leaf v of T , we follow the path from v to the root r
to find a singly-colored part. Note that if we find a singly-colored part—by the
invariant there is at most one such part on the path from v to r—we cannot use
that color for T . Since T has at most �′ leaves, this eliminates at most �′ colors.
Hence, at least one color remains for T .

Lemma 2. The procedure described above maintains the invariant and colors
all trees of C′ containing r with at most �′ + 1 colors.

Once all the trees containing r are colored we delete r from T , that is, we
consider the space T \ {r}, and we take the closures of the resulting connected
components. This creates a number of subspaces such that each uncolored tree
in C′ is contained in exactly one of them. Consider such a subspace T ′ and let r′

be the neighbor of r in T ′. We now want to recursively color the uncolored trees
in T ′, taking r′ as the root of T ′. However, the invariant might not hold on the
edge e from r′ to the old root r: Since now r is considered a child of r′, the order
of the three parts might switch on e—see Fig. 3. Suppose this is the case, and
let ce be the color of the singly-colored part on the edge e. (If the singly-colored
part is empty, we can cut the tree between the non-monochromatic and the
uncolored part and recurse immediately, which maintains the invariant.) Note
also that, for the order to switch, the non-monochromatic part needs to end on e,
and therefore the only color used in any singly-colored part of the tree rooted
at r′ is ce. We overcome this problem by carefully choosing the order in which
we color the trees containing r′. Namely, we fist color the tree T extending the
farthest into e. In this case, there is only one color forbidden, namely ce. We
can therefore easily color T . We can then trim the treespace T ′ to remove any
non-monochromatic and singly-colored part and hence restore the invariant and
continue with the coloring.

r

r′ r′ r′ r′

Fig. 3. When recursing on the subspace rooted at r′ (leftmost), the invariant does not
hold anymore (middle left), as the parts are switched on the edge between r and r′.
To remedy this, we first color the tree extending the farthest into that edge (middle
right), starting from r′. We then trim the tree to fix the invariant (rightmost).
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Lemma 3. C admits an NM-coloring with min(� + 1, 2
√

6k) colors.

Extending the Coloring from C to A. Let c : C → N be an NM-coloring on C.
We extend the coloring to A as follows. We start by coloring all trees in A \ C
containing an internal node of T using an arbitrary color already used. We then
treat all edges in an arbitrary order, coloring all trees contained in the edge as
explained now.

Let e = rr′ be an arbitrary edge of T and A∗(e) be the set of uncolored trees
contained in e. We color A∗(e) as follows. We first color the set of uncolored
trees contained in e naively using the chain method. For this we use two new
colors, which are used for all chains—we can re-use the same two colors for the
chains, since trivially the chains in any two edges e, e′ do not interact. However,
we can avoid using two extra colors and re-use the colors from C as explained in
the full version [2].

Theorem 2.

1. Xtree,trees
nm (k, �;n) � min

(
� + 1, 2

√
6k

)
.

2. Xtree,trees
cf (k, �;n) = O(� log k).

Proof. For the NM-coloring part of the theorem, we use Lemma 3 and the color-
ing extension explained in the full version [2]. For the second part, if � > 2

√
6k

we again reduce C to C′ using at most
√

6k − 1 colors. Then use the result by
Smorodinsky [10] on the NM-coloring on C′ provided by Lemma 2. Since this
coloring uses at most �′ + 1 colors and |C′| � 6k − 12, the CF-coloring uses
O(� log k) colors. We then extend the coloring to A using similar techniques as
for the NM-coloring. This coloring uses O(

√
k log k) colors if � > 2

√
6k, which is

in O(� log k), and directly O(� log k) colors otherwise. Note that a direct applica-
tion of the result of Smorodinsty [10] would give a O(� log n) bound instead. �	

3 Balls in Tree Spaces and on Planar Network Spaces

In this section we restrict the objects to balls. Let N be a network
space, d : N 2 → R a distance function on N , and let A be a set of balls on N .
We define the coverage covx(B) of a node x by a ball B = B(p, r) containing x
as covx(B) := r − d(p, x). Given a node x contained in at least one ball from A,
we define Bx as the ball maximizing the coverage of x, where we break ties
using an arbitrary but fixed ordering on the balls. We say that Bx is assigned
to x. Note that Bx does not exist if no ball contains x, and that a ball can be
assigned to multiple nodes. We will regularly use the following lemma regarding
the assigned balls.

Lemma 4. Let x be an internal node of N .

(i) Suppose N is a tree space, and let T1, . . . , Tdeg(x) denote the subtrees result-
ing from removing x from N or, more precisely, the closures of the connected
components of T \ {x}. Let p be a point in some subtree Ti and suppose p is
contained in a ball B ∈ A whose center lies in Tj with j 
= i. Then p ∈ Bx.
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(ii) Suppose x is contained in at least one ball in A. Let π be a shortest path
from x to the center of Bx, and let y be a node on the path π. Then Bx is
also assigned to y, that is, Bx = By.

3.1 Tree Spaces

For balls on a tree space T , the upper bounds from Theorem2 with � = k apply.
Below we improve upon these bounds using the special structures of balls. Let T
be a tree with t internal nodes. We present algorithms to NM-color balls on trees
using two colors, and CF-color them with log t + 3 colors.

Let A be a set of n balls on T . Let also C := {B = B(c, r) | ∃x : B = Bx}
be the set of balls assigned to at least one internal node. Recall that an internal
node x is assigned the ball maximizing the coverage of x.

NM-Coloring. We first explain how to NM-color A. We use a divide-and-
conquer approach. If t = 0, that is T consists of a single node or a single edge,
we use the chain method for NM-coloring with colors blue and red. If t > 0, then
we proceed as follows. Let e = uv be an edge of T . Let Tu, respectively Tv, be
the connected component of T \ e containing u, respectively v. Recall that Bu

and Bv are the balls assigned to u and v, respectively. Note that we may assume
that both Bu or Bv exist, for otherwise recursion is trivial. Also observe that Bu

and Bv may coincide. We define

A(u) := {balls B ∈ A whose center lies in Tu} ∪ {Bu},

We define A(v) similarly. We recursively color A(u) in Tu and A(v) in Tv, obtain-
ing colorings of A(u) and A(v) with colors blue and red. In the recursive calls
on A(u), and similarly for A(v), we “clip” the balls to within Tu. Note that the
clipped balls are still balls in the space Tu. This is clear for the balls whose center
lies in Tu. The center of Bu may not lie in Tu, but in that case it behaves within
Tu as a ball with center u and radius covu(Bu).

Let A(e) := A \ (A(u) ∪ A(v)) be the set of the remaining balls. In other
words, A(e) contains the balls whose center is contained in e, except for Bu

and Bv. We color A(e), possibly swapping colors in A(u) or A(v), as follows.

– If Bu = Bv, we first ensure that it gets the same color in both A(u) and A(v)
by swapping colors in one of the two subsets if necessary. We then color all
balls in A(e) blue if Bu is red, and red if Bu is blue.

– If Bu 
= Bv, let π be a longest simple path containing u and v. We color A(e)∪
{Bu, Bv} restricted to π using the non-monochromatic chain method. We then
possibly swap colors in A(u) and A(v) so that Bu and Bv match the colors
they were given by the chain method.

Both cases are illustrated in Fig. 4.

Theorem 3. Xballs,trees
nm (t;n) = 2.
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Bu
Bv

A(u)
B′

u

A(v)

B′
v Bu

Bv

Bu = Bv
A(u)

B′
u

A(v)

B′
v Bu = Bv

Fig. 4. On the left, we have the two different initial cases, i.e., on the top, Bu �= Bv,
on the bottom, Bu = Bv. In the middle, the recursive call is made. On the right, we
use the two recursive colorings and swap colors if needed. (Color figure online)

Proof. The coloring obviously uses two colors. It remains to show it is non-
monochromatic. We use induction on t. If t = 0, the coloring is non-
monochromatic since it uses the chain method.

Suppose now that t � 1 and that the claim holds for any tree space with
fewer than t internal nodes. Let p be a point contained in at least two balls.

If p is contained in balls only of A(v), only of A(u), or only of A(e), it is
contained in at least two balls of different colors. Indeed, the colorings of A(v)
and A(u) are non-monochromatic since they use the method on a tree with fewer
than t internal nodes and we can use the induction hypothesis. Moreover A(e)
is non-monochromatic due to the chain method.

It remains to consider the case where p is contained in balls from at least
two of the sets A(u), A(v), and A(e). We distinguish two cases: p is contained
in a ball of A(e) and p is not contained in a ball of A(e).

If p is contained in a ball B of A(e), we can assume without loss of generality
that p is also contained in a ball of A(v). By Lemma 4(i), we have that p ∈ Bv.

If Bu = Bv then all balls in A(e) are given a different color than Bv hence p
is contained in two balls of different color. If Bu 
= Bv then we use the chain
method on π. Hence if p ∈ π, it is contained in two balls of different color. To
show that if p /∈ π then p is still contained in two balls of different colors, it
suffices to notice that for any subset of balls of A(e) in which p is contained,
the point p′ ∈ π at distance d(u, p) from u is contained in the same set of balls
from A(e) as π is the longest path containing e.

On the other hand, if p is not contained in a ball of A(e), then it is contained
in at least one ball from A(u) and one from A(v). By Lemma 4 we have that p ∈
Bu ∩ Bv.

We then have two cases. If Bu = Bv, then p is contained in another ball
of A(u) or A(v), and then the coloring is non-monochromatic by the induction
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hypothesis. Otherwise Bu and Bv are part of the chain A(e) ∪ {Bu, Bv}, and
hence p is contained in at least two balls of different color. �	

CF-Coloring. The second algorithm CF-colors A using �log t + 3 colors. As
before, define C := {B = B(c, r) | ∃x : B = Bx}. We explain how to color C
and then extend the coloring to A. Let r be a node whose removal results in
subtrees each of at most t/2 internal nodes. We color Br (if it exists) with color 1.
Let T1, . . . , Tdeg(r) be subtrees resulting from removing r, that is, the closures
of the connected components of T \ {r}. For each i = 1, . . . ,deg(r), we recurse
on Ti with the balls from C whose centers lie in Ti. In such a recursive call,
we consider a node to be an internal node when it was an internal node in the
original space T and when it has not yet been selected as a splitting node in a
previous call. Hence, when t = 0 in a recursive call on a subtree T ′ ⊂ T , then
T ′ must be a single edge both of whose endpoints have already been treated.

The recursion stops when there are no more balls left (which must be the
case when we have a recursive call with t = 0). Note that the internal nodes
are fixed from the beginning, hence at some point of the recursion, a leaf node
might still be considered internal for the purposes of the recursion.

Lemma 5. The above algorithm CF-colors C using �log t colors.

We now wish to extend the coloring to balls in A\C. To this end, define T ′ :=
T \ (

⋃
C) to be the part of T that remains after removing all points covered by

the balls in C.
We finish the coloring with three more colors (using the chain method for CF-

colorings) as explained next, resulting in �log t + 3 colors. We use the following
lemma to show that the remaining balls can be reduced to intervals on disjoint
lines. Note that it does not use tree spaces and can hence be applied also for
planar network spaces.

Lemma 6. For any ball B /∈ C, we have {p ∈ B | p /∈ ∪C} ⊆ e, where e is the
edge containing the center of B.

Theorem 4. Xtree,balls
cf (t;n) � �log t + 3.

3.2 Planar Network Spaces

NM-Coloring. We first explain how to NM-color balls on a planar network
space N . Let again C be the set {B = B(c, r) | ∃x : B = Bx}. We create a
graph GC whose node set is C and whose edge set is defined as follows: there is
an edge between B and B′ if and only if there is an edge vv′ in T with Bv = B
and Bv′ = B′. It follows from Lemma 4 that for any ball B, the set of nodes
of N to which B is assigned, together with the edges between these nodes,
is a connected set. Therefore, GC is planar as well since its nodes correspond
to disjoint connected subspaces in the planar space N . We now use the Four
Color Theorem to color GC and we give each ball in C the same color as the
corresponding node in GC .
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Lemma 7. The coloring on C is non-monochromatic and uses at most four
colors.

We now wish to extend the coloring to balls in A \ C. To this end, define
N ′ := N \ (

⋃
C) to be the part of N that remains after removing all points

covered by the balls in C. The proof of the following lemma is similar to the
proof of Lemma 6.

Lemma 8. Consider a ball B ∈ A \ C, and let B′ := B ∩ N ′. Then B′ is
contained in a single edge of N ′.

For each edge e of N ′, let A(e) denote the set of balls contained in e. Let u
and v denote the endpoints of the edge in N containing e. We color the uncolored
balls in e using the chain method with two colors not equal to c(Bu) and c(Bv).
We have now colored the balls in C as well as the balls in A \ C that lie at least
partially in N ′. Next we explain how to color the remaining balls, which are
fully covered by the balls in C.

Lemma 9. Any uncolored ball is contained in the union of at most three balls.

Using this lemma, we can easily finish the NM-coloring.

Theorem 5. Xplanar,balls
nm (t;n) = 4.

CF-Coloring. We now explain how to CF-color balls on a planar network. As
before, define C := {B = B(c, r) | ∃x : B = Bx}. We first CF-color C using
the following recursive algorithm introduced by Smorodinsky [10]: we select a
maximum independent set in C1 := C, we give it color 1, place all uncolored balls
in C2, and recurse. We claim that for all i, the Delauney graph Di := (Ci, Ei) on
the balls in Ci is planar, where Ei := {{B1, B2} | ∃p ∈ N : p ∈ B1∩B2 and ∀B /∈
{B1, B2} : p /∈ B}.

Lemma 10. Di is planar.

Using this lemma and the Four Color Theorem, we get a coloring on C
using �log4/3 t colors. Note that this method does not give an efficient algo-
rithm because of the use of the Four Color Theorem. For a fast algorithm, we
can use a linear-time algorithm [4] to find an independent set of size at least n/5,
leading to �log5/4 t colors.

We then color the balls in A \ C. Using Lemma 6, we have that for any such
ball B, the set of points contained in B but not in any ball in C is contained in
one edge of N . Therefore, if we cut ∪C out of N , the remaining space is a union
of disjoint segments, and any object that is not colored is contained in at most
one segment. We can therefore use the chain coloring on each segment with the
two additional colors and the dummy one.

Finally, any point in ∪C is contained in a ball in C of unique color, and any
point not in ∪C, is contained in at most one ball of each of the two additional
colors. Therefore, the coloring is conflict-free. This yields the following theorem.

Theorem 6. Xplanar,balls
cf (t;n) � �log4/3 t + 3.
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4 Concluding Remarks

We studied NM- and CF-colorings on network spaces, where the objects to be
colored are connected regions of the network space. We showed that the number
of colors can be bounded as a function of the complexity (which depends on the
type of space and of objects) of the network space and the objects, rather than
on the number of objects. All our bounds are tight up to some constants, except
for Xtree,trees

cf (k, �;n) where the upper bound is a factor � away from the lower
bound. Closing this gap remains an open problem. It would also be interesting to
find bounds on general connected objects on any network space, or other settings
where the number of colors depends on the complexity of the space and objects
rather the number of objects.
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Abstract. Amplitude amplification (AA) is tool of choice for quantum
algorithm designers to increase the success probability of query algo-
rithms that reads its input in the form of oracle gates. Geometrically
speaking, the technique can be understood as rotation in a specific two-
dimensional space. We study and use a generalized form of this rotation
operator to design algorithms in a geometric manner. Specifically, we
apply AA to algorithms that take their input in the form of input states
and in which rotations with different angles and directions are used in
a unified manner. We show that AA can be used to sequentially dis-
criminate between two unitary operators, both without error and with
bounded-error, in an asymptotically optimal manner. We also show how
to reduce error probability in one and two-sided bounded error algo-
rithms more efficiently than the usual parallel repetitions technique; in
particular, errors can be completely eliminated from the exact error algo-
rithms.

1 Introduction

Amplitude amplification (AA) is the engine that powers the “unordered quantum
search” algorithm proposed by Grover in 1996 [1]. A lot of efficient quantum
algorithms essentially ride this horse in some way or the other [2–5] and one
wonders how much more can this idea deliver. It is now routine to apply AA for
boosting the success probability of quantum algorithms. One reason behind this
unmatched popularity is the black-box manner in which this technique can be
applied. Suppose A is a quantum algorithm without any intermediate measure-
ment such that after measuring the output of A|00 . . . 0〉, we obtain a solution to
A that may be “good” with some probability, say p. Then AA can be applied to
A to generate an algorithm Q that basically calls A (and A†) as black-boxes in
an iterative manner. Temptation to use AA becomes stronger due to the uni-
form nature of Q: A and A† are used as black-box here and the input state to
A as well as the measurement operators at the end remain unchanged (maybe,
extended). Therefore, it makes sense to apply this technique to a family of A,
e.g., to {Ax}x∈{0,1}∗ in which Ax uses an oracle gate to read bits of input string
x. This is why AA has so far been applied in the query-complexity model in
which A can read the “input” by making oracle queries.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 579–591, 2018.
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The second reason behind the popularity of AA is the square-root promise
that the amplification algorithm Q makes O(

√
p) calls to A (and A†) and can

guarantee a good solution with high probability; this is in contrast to classical
techniques that require O(p) calls to A. There are also several improvements to
workaround the requirement of knowing p beforehand [6,7].

This work is motivated by two other observations about AA. Amplitude
amplification requires use of a diffusion operator that essentially depends upon
the input state of the algorithm A. Therefore, it is worth investigating if, and
when, can amplitude amplification be applied to non-query algorithms, i.e., algo-
rithms in which the input is supplied in the form of an input state. In this setting,
we have a family of input states instead of a family of algorithms and therefore,
we no longer have a uniform amplification circuit for different input states. We
find that AA works in general, but with a subtlety for communication protocols.

Amplitude amplification can also be viewed as a rotation in a particular 2-
dimensional space. Our second observation is that it is possible to mix-match
rotations in different directions and by different angles but in a uniform manner
across different instances – this we call as “differential amplification”. This is an
extension of the idea present in the original search algorithm by Grover that if
A has no solution, then the amplified algorithm too will produce no solution—
geometrically, the same amplification routine rotated different states differently.

Contribution: Sequential Operator Discrimination [Sect. 3]: A common manner
of differentiating between output distributions of algorithms is to run them in
parallel and statistically analyse the aggregate of the outcomes [8,9]. Differential
amplification can be seen as a sequential technique for the same purpose. For
instance, a recently proposed fault detection method for quantum circuits uses
a classical repeated sampling of the output of a quantum circuit to distinguish
between several output distributions, one for each type of faulty circuit [10]. Our
technique can be used to replace the classical repetition by quantum amplifica-
tion and we show a limited form of this in this work. Specifically, we design
both exact and bounded-error sequential algorithms for discriminating between
two unitary operators (given as black-box) without using any special input state
for the operators, whereas, the existing parallel and sequential methods require
preparation of a specific “optimum” state [9,11]. Moreover, if the optimum state
is used, then our algorithm makes at most additional call compared to the opti-
mum. In this process we also strengthen and generalize some known upper and
lower bounds on sequential and parallel discrimination algorithms.

Contribution: Sequential Amplification of Bounded-Error Algorithms [Sect. 4]:
Quantum algorithms that operate in the non-query mode, i.e., take input in
the form of input states, appear sidelined in the crowd of quantum query algo-
rithms. However, important problems like “Factoring” and “Discrete-logarithm”
with eye-catching quantum algorithms, belong to the non-query BQP class. The
current technique for boosting the success probability of RQP (one-sided error)
and BQP (two-sided error) is by parallely and independently running the orig-
inal algorithm [8, Chap. 6], [12]. We use differential amplification for reducing
error of bounded-error algorithms faster compared to the parallel ones. We also
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show that one-sided and two-sided “exact” error quantum classes (ERQP and
EBQP) can be improved to be included in EQP (a quantum version of the
complexity class P) thus making EQP = ERQP = EBQP.

2 Grover Iterator Revisited

Brassard et al. [6] formalized the key technique of Grover’s search algorithm
as amplitude amplification (AA) and showed its use in general search prob-
lems. AA involves repeated application of an operator commonly known as the
Grover iterator G. Traditionally G has been defined based on a quantum (oracle)
algorithm A that on input |00 . . . 0〉 searches a state space and outputs a super-
position |Ψ〉 of “good” and “bad” solution states (in the standard basis) of some
search problem (say, searching for 1 in an unordered array). Another operator
UΨ0 = (I − 2

∑
x:good |x〉〈x|) is used to identify “good” solution states. Then, G

is constructed as G = −A(I − 2|00 . . . 0〉〈00 . . . 0|)A†UΨ0 = (2|Ψ〉〈Ψ | − I)UΨ0 .
Soon after Grover proposed his quantum search algorithm, researchers

observed that his algorithm, and the underlying amplitude amplification tech-
nique, has an elegant geometric interpretation of a rotation in a 2-dimensional
state. Several extensions to Grover’s search rely on this geometric interpre-
tation, e.g., the generalization of Grover’s search to handle arbitrary initial
states [13,14]. The algorithms that we study are not search algorithms and we
want to mix-and-match more than one generalizations of G. Even though such
generalized Grover’s iterator has been analyzed in the context of unordered quan-
tum search [13,14], we did not find any independent characterization suitable
for us.

Given a state |Ψ〉 and a two-outcome projective measurement P = 〈P 0, P 1〉,
we study the following operator family for any pair of angles 0 ≤ a, b < 2π:

Ga,b = [(1 − eia)|Ψ〉〈Ψ | − I] · [I − (1 − eib)P 1]

It is easy to show that Ga,b is a unitary operator for any a, b. These operators
were used to amplify query algorithms in which they are applied to rotate certain
types of states that are related to |Ψ〉 and P 1 [6,13,14]. Our motivation was to
characterize the transformation and which all states can this be applied on.

Define angle θ ∈ [0, π/2] and orthogonal states |Ψ0〉 and |Ψ1〉 such that
P 0|Ψ〉 = cos θ|Ψ0〉 and P 1|Ψ〉 = sin θ|Ψ1〉. Observe that sin2 θ is the probability
of observing outcome P 1 when |Ψ〉 is measured using P. Denote the Hilbert
space spanned by |Ψ0〉 and |Ψ1〉 by H. If P 0|Ψ〉 = 0 or P 1|Ψ〉 = 0, then H
is 1-dimensional, essentially spanned by |Ψ〉. In that case Ga,b

ϕ� I; we use the
notation U

ϕ� V to indicate that the two operators U and V are identical, except
maybe for different global phases. So, henceforth, we will only consider the cases
when P 0|Ψ〉 �= 0 �= P 1|Ψ〉, and in that case, H is 2-dimensional.

We will use CPρ to denote the conditional phase-change unitary operator
P 0 + eiρP 1. Observe that CPρ

ϕ� I if H is one-dimensional. The following well-
known theorem shows how to implement rotations in two-dimensional H and
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can be proved by observing the action of G and CPρ in H. We will use Rx to
denote rotation by angle x in H in the anti-clockwise direction from |Ψ0〉 to |Ψ1〉.

Theorem 1 (Proved by Høyer [15]). Let |Ψ〉 denote a state and 〈P 0, P 1〉
denote a two-outcome projective measurement. Let H be the space spanned by
{P 0|Ψ〉, P 1|Ψ〉} and let (|Ψ0〉, |Ψ1〉) be a basis of H such that 〈Ψ0|P 0|Ψ〉 = cos θ
and 〈Ψ1|P 1|Ψ〉 = sin θ for some θ ∈ [0, π/2]. Let Rα denote rotation by angle
α in H from |Ψ0〉 towards |Ψ1〉. If H is one-dimensional then Gπ,π

ϕ� I and
CPρ · Ga,b · CP †

ρ

ϕ� I for any ρ, a, b.
On the other hand, if H is two-dimensional then, for any 0 ≤ θ′ ≤ 2θ, there

exists angles ρ, a, b ∈ [0, 2π] such that Rθ′
ϕ� CPρ · Ga,b · CP †

ρ . In particular,
R2θ = Gπ,π = [2|Ψ〉〈Ψ | − I] · [I − 2P 1].

For any angle δ ∈ [0, π/2], Rδ can be implemented as Rθ′Rk
2θ in which k is

the largest integer such that δ = k · 2θ + θ′. The above theorem allows us to
rotate any state in H by any angle and may be of independent interest.

Corollary 1. Let |Φ〉 denote some state in H of the form cos φ|Ψ0〉 + sinφ|Ψ1〉
for some φ ∈ [0, π/2] and let δ be some angle. Then, cos(δ+φ)|Ψ0〉+sin(δ+φ)|Ψ1〉
can be obtained by executing Rδ|Φ〉 ϕ� CPρGa,bCP †

ρGk
π,π|Φ〉 for some angles ρ, a, b

depending on δ, θ and k = 	 δ
2θ 
.

In particular, let |χ〉 = cos x|Ψ0〉 + sin x|Ψ1〉 be some other state in H. Define
project measurement operators P = 〈P ′0 = I −|χ〉〈χ|, P ′1 = |χ〉〈χ|〉. Then there
exists ρ, a, b, k such that ‖P ′1CPρGa,bCP †

ρGk
π,π|Φ〉‖2 = ‖P ′1Rx−φ|Φ〉‖2 = sin2 x.

Simpler rotation operators can surely be constructed for any Hilbert space.
However, we shall see in the next two sections that the particular construction
of Rδ allows us to differentially amplify different states in different manners.

3 Unitary Operator Discrimination

In the unitary operator discrimination problem, we are given a unitary operator
U ∈ {U1, U2} as a black-box with equal chance of picking either of the operators.
The goal is to identify U . Let ω(U), for any unitary operator U , denote the angle
of the smallest arc containing all the eigenvalues of U (on the unit circle). Let
ω represent ω(U†

1U2). It is known that 1
2 (1 − sin ω

2 ) is the minimum probability
of error to discriminate between U1 and U2 by making only one call to U on an
appropriate input state and using an appropriate measurement operator [9,11].
Thus, if ω ≥ π then there exists a |γ〉 such that U1|γ〉 and U2|γ〉 are orthonormal
and therefore, can be perfectly distinguished.

On the other hand, if ω < π, then the optimal methods for exact discrim-
ination require k = π

ω � calls to U on a bespoke input state followed by a
measurement in a suitable basis. These k calls may happen in parallel in which
case the input state is a maximally entangled one over kd qubits [11,16] or may
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also happen sequentially in which the input state is a superposition of the eigen-
states of (U†

1U2) [17]. Such bespoken input states may be difficult to create, all
the more if k is large. It may be desirable to have a method that uses easy to
construct input states (e.g., |0 . . . 0〉) and it will be even better if one simple state
can discriminate any U1 and U2. Our method requires a sequential application
of U and can be applied to “any input state” (except a small subset).

To discriminate with a probability of error at most 1/3, Kawachi et al. [9]
reported a method that used parallel calls to U and an entangled state over kd
qubits. They proved an upper bound of  π

3ω � calls and also showed that there
exists operators that require at least  2

3ω � calls to U . Their method can be easily
generalized for an arbitrary error ε and after doing that along with additional
tightening (see full version [18]), we obtain an upper bound of  2

ω sin−1(1 − 2ε)�
calls and a lower bound of  1−2ε

sin(ω/2)� calls that almost matches their upper bound.
However, even for their method a specific input state is required. Our method
can be seen as an alternative sequential method but with fewer qubits.

Duan et al. gave a lower bound on the number of calls required in a sequential
method for perfect discrimination [17]. Their method can also be easily gener-
alized (see full version [18]) to arbitrary error and we obtained the same lower
bound as that obtained from the generalization of Kawachi et al.’s result that
was mentioned earlier. Duan et al. also gave a sequential algorithm for perfect
discrimination (using a specific input state) but it was not immediately clear
how to extend their algorithm for bounded-error discrimination. In any case,
we would like to see our discrimination algorithm as an alternative sequential
method that uses the idea of amplitude amplification, is independent of the
input state and makes almost the same number of calls to the black-boxes as
the currently known parallel discrimination method.

3.1 Separation Using Amplitude Amplification

Suppose that we want to use an input state |γ〉 which may be chosen optimally or
may simply be available for use. We assume that we have access to the black-box
U ∈ {U1, U2} and its corresponding adjoint U† as well. It should be noted that
if U is implemented as a quantum circuit, then U† is usually easy to implement.
We will discuss both cases of error probability ε < 0.5 and ε = 0.

Let s be some phase and θ ∈ [0, π/4] be an angle such that 〈γ|U†
1U2|γ〉 =

cos 2θeis; define |σ1〉 = U1|γ〉 and |σ2〉 = e−isU2|γ〉 so that 〈σ1|σ2〉 = cos 2θ is
real making it easier to apply Theorem 1. Given this |γ〉, the probability of error
in discriminating between U1|γ〉 and U2|γ〉 can be expressed according to this
well-known relationship: Pr[error] = 1

2

(
1 − √

1 − |〈σ1|σ2〉|2
)

= 1−sin 2θ
2 .

Observe that if θ = π
4 , the states |σ1〉 and |σ2〉 are already orthogonal and

so can be perfectly discriminated; on the other hand, if θ = 0 (i.e., |σ1〉 and |σ2〉
differ only by a global phase), then they cannot be discriminated better than a
random guess. Therefore, we will focus on the case when θ ∈ (0, π/4) and our
strategy will be to devise a suitable projective measurement that allows us to
use amplitude amplification (as Theorem1) to identify between the states.
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|σ2〉

|σ1〉
θ

π
4

|σ⊥
a 〉

|ρ1〉

|σa〉

|ρ2〉

Fig. 1. The different states that are used in operator discrimination.

Construct an orthogonal basis for H = H(|σ1〉, |σ2〉) by first defining |σa〉 =
p|σ1〉 + p|σ2〉 and then defining an appropriate orthogonal state |σ⊥

a 〉 = p′|σ1〉 −
p′|σ2〉; it suffices to use p = 1/(2 cos θ) and p′ = 1/(2 sin θ). It is now easy to
represent |σi〉 in the above basis; |σ1〉 = 〈σa|σ1〉|σa〉+ 〈σ⊥

a |σ1〉|σ⊥
a 〉 = cos θ|σa〉+

sin θ|σ⊥
a 〉 and |σ2〉 = 〈σa|σ2〉|σa〉 + 〈σ⊥

a |σ2〉|σ⊥
a 〉 = cos θ|σa〉 − sin θ|σ⊥

a 〉. Define
operators Q0 = |σa〉〈σa|, Q1 = |σ⊥

a 〉〈σ⊥
a | and define a projective measurement

Q = 〈Q0, Q1〉. It will be easier to visualize all rotations in the basis (|σ〉, |σ⊥〉).
Now define |ρ1〉 = 1√

2
|σa〉+ 1√

2
|σ⊥

a 〉 and |ρ2〉 = 1√
2
|σa〉− 1√

2
|σ⊥

a 〉. Use this to
define a two-outcome projective measurement operator P = 〈P1, P2〉 in which
P1 = |ρ1〉〈ρ1| and P2 = I − P1 = |ρ2〉〈ρ2|. The different states that were con-
structed are explained in Fig. 1.

Suppose GU
a,b denotes the operator U [(1 − eia)|γ〉〈γ| − I]U† · [I − (1 − eib)Q1]

that uses the black-box U . Our first observation is that GUi

a,b can also be written
as [(1 − eia)|σi〉〈σi| − I]U† · [I − (1 − eib)Q1]. Since the space spanned by Q0|σ1〉
and Q1|σ1〉 is H itself, and ‖Q1|σ1〉‖2 = |〈σ⊥

a |σ1〉|2 = sin2 θ, GU1
a,b operators can

be used in Theorem 1 for rotating any state in H in a counter-clockwise manner
by some angle that is at most 2θ.

Our second observation arises from the fact that since |σ2〉 = cos θ|σa〉 +
sin θ(−|σ⊥

a 〉), GU2
a,b can still be used in Theorem 1 but the rotation will be from

|σa〉 towards −|σ⊥
a 〉; that is, the rotation will be in a clockwise manner with

everything else remaining the same as above (also illustrated in Fig. 1).
For discriminating with low probability of error, say ε, let ε ∈ [0, π/2] be an

angle such that sin2 ε = ε. Let φ = π/4 − θ − ε. Applying Corollary 1, one can
calculate ρ, a, b and set k = 	 φ

2θ 
 such that CPρG
Ui

a,bCP †
ρ [GUi

π,π]k rotates in the
following manner. Here, |σ̄⊥

a 〉 denotes the state −|σ⊥
a 〉.

|σ1〉 = cos θ|σa〉 + sin θ|σ⊥
a 〉 CPρG

U1
a,bCP †

ρ [GU1
π,π ]k

−−−−−−−−−−−−−−−→cos(θ + ε)|σa〉 + sin(θ + ε)|σ⊥
a 〉

|σ2〉 = cos θ|σa〉 + sin θ|σ̄⊥
a 〉 CPρG

U2
a,bCP †

ρ [GU2
π,π ]k

−−−−−−−−−−−−−−−→cos(θ + ε)|σa〉 + sin(θ + ε)|σ̄⊥
a 〉

Let V Ui denote the operator CPρG
Ui

a,bCP †
ρ [GUi

π,π]kUi. Our discrimination pro-
cedure consists of first deriving the parameters (ρ, a, b, k), constructing a cir-
cuit for the operator V U using the black-box U , executing V U |γ〉 to obtain
state |Ψ〉 and finally measuring |Ψ〉 in the basis P. U is declared to be Ui if
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measurement outcome is |ρi〉. The probability of error can be calculated as
‖P1V

U2 |γ〉‖2 = ‖P2V
U1 |γ〉‖2 = sin2 ε = ε, as desired.

Finally, we would like to discuss the query complexity of discrimination. Since
each call to GU

a,b involves one call to U and one call to U†, the number of calls
to U† is k +1 while the number of calls to U is k +2 (including the initial call to
|γ〉). Therefore, the total number of queries is 2k + 3. Here k = 	π/4−θ−sin−1 √

ε
2θ 


that can be simplified to R( π
8θ − sin−1 √

ε
2θ )−1. We use R(f) to denote the nearest

integer to any floating point number f (R(0.5) is set to 1).

Theorem 2. The above algorithm can differentiate between two operators U1

and U2 for any input state |γ〉 with probability of error at most ε as long as
θ = cos−1 |〈γ|U†

1U2|γ〉| �= 0 and using 2 ∗ R
(

π
8θ − sin−1 √

ε
2θ

)
+ 1 total calls to the

black-boxes U and U†.

Of course, |γ〉 can be chosen optimally to maximize θ. For the optimal |γ〉,
|〈γ|U†

1U2|γ〉| equals cos2 ω
2 (therefore, use θ = ω/4) which leads to the following

corollary about optimal discrimination between U1 and U2.

Corollary 2. The above algorithm can differentiate between two operators U1

and U2 without any error using the optimal input state and a total of 2 ·R (
π
2ω

)
+

1 ∈ {π
ω �, π

ω � + 1} calls to the black-boxes. The number of calls to discriminate

with probability of error ε is at most 2·R
(

π
ω − 2 sin−1 √

ε
ω

)
+1 = 2·R

(
sin−1(1−2ε)

ω

)
+

1 and in particular, with error 1/3 is at most 2 · R(0.34/ω) + 1.

For both exact and bounded-error algorithms, the query complexity of our
algorithm using the optimal state is at most one more than current known
bounds.

4 Randomized Non-query Classes

The current methods for improving success probability of bounded-error non-
query quantum algorithms are parallel repetitions [12] that have the same com-
plexity as classical methods. Intuitively, however, amplitude amplification ought
to be applicable for such algorithms too. In fact, if the error is known and fixed
(not simply bounded), then AA should be able to “precisely rotate” an output
state to the basis states used for the (projective) measurement, thereby com-
pletely eliminating error. The current section discusses this idea in detail.

Consider the randomized complexity class RQPε. For any language L ∈
RQPε, there exists a corresponding uniform family of quantum circuits {C}n,
say, over n + a qubits and an initial state |α〉 over a ancilla qubits that may
depend on n. As per standard practice, we assume that after C is applied the first
qubit is measured in the standard basis, i.e., the output state is measured by the
projective measurement operator P = 〈P 0 = |0〉〈0|⊗I, P 1 = |1〉〈1|⊗I〉. This can
be easily generalized to any other decision criterion that involves measuring the
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output state by a two-outcome projective measurement. We denote the output
state Cn(|x〉 ⊗ |α〉) by |Ψx〉 in which n denotes |x|. Let θ ∈ (0, π/2) be an angle
such that sin2 θ = ε; note that if θ = π/2, then p = 1 and in that case we anyway
have L ∈ EQP. Since L ∈ RQPε, the following should hold for any x ∈ {0, 1}∗.

x ∈ L =⇒ ‖P 1|Ψx〉‖2 ≥ ε = sin2 θ, and x �∈ L =⇒ ‖P 1|Ψx〉‖2 = 0 = sin2 0

We also define the exact one-sided error quantum class ERQPε by extending
RQPε: for x ∈ L, ‖P 1|Ψx〉‖2 = ε and the probability is zero for x �∈ L.

We can similarly define two-sided bounded-error quantum classes. For any
0 ≤ ε2 < 1

2 < ε1 ≤ 1, define BQPε1,ε2 as the class of languages L such that:

x ∈ L =⇒ ‖P 1|Ψx〉‖2 ≥ ε2, and x �∈ L =⇒ ‖P 1|Ψx〉‖2 ≤ ε1 for any x

Also, define its exact error version1 EBQPε1,ε2 which consists of languages with
error probabilities that is exactly ε1 if x ∈ L and exactly ε2 if x �∈ L.

Furthermore, define ERQP =
⋃

ε ERQPε and EBQP =
⋃

ε1,ε2
EBQPε1,ε2 .

Obviously EQP = RQP0 = BQP0,0; therefore, EBQP ⊇ EQP ⊆ ERQP.

θ

|ψyes
x 〉

Rδ |ψyes
x 〉

δ

Rδ |ψno
x 〉

= |ψno
x 〉

(a) Amplification of
ERQP

θ1

θ2
π
2−θ2

π
2−θ2

|ψyes
x 〉

|ψ̃yes
x 〉 = R π

2 −θ2 |ψyes
x 〉

|ψ̃no
x 〉 = R π

2 −θ2 |ψno
x 〉

|ψno
x 〉

(b) Stage-1 of EBQP
amplification

Rθ′
2
|ψ̃yes

x 〉
= |ψ̃yes

x 〉

θ′
2 Rθ′

2
|ψ̃no

x 〉

|ψ̃no
x 〉

(c) Stage-2 of EBQP
amplification

Fig. 2. Amplification of exact-error classes can be seen as conditional rotations. Solid
lines denote the states before rotation and dashed lines denotes the states after rotation.

4.1 One-Sided Exact Error Class: ERQP

Languages in ERQPε can be amplified immediately by using Theorem 1. Con-
sider any such L and any x ∈ L. Let H denote the space spanned by P 1|Ψx〉
and P 0|Ψx〉; clearly, |Ψx〉 ∈ H. Let δ = π/2 − θ. Construct rotation operator
Rδ using |Ψx〉 and P 1. Applying this Rδ on |Ψx〉 gives us a state such that
‖P 1Rδ|Ψx〉‖2 = 1. On the other hand, if x �∈ L, H is one-dimensional and in
that case the constructed operator Rδ acts as the identity operator; therefore,
‖P 1Rδ|Ψx〉‖2 = 0. Figure 2a illustrates the action of Rδ for both the cases.

We only need to show that Rδ can be constructed in a uniform manner for
a fixed L. Rδ will be constructed as Rδ′Rk

2θ where k = 	 δ
2θ 
 and δ′ = δ − k · 2θ.

1 A similar question on exact two-sided-error classical class was asked in http://
cstheory.stackexchange.com/questions/20027.

http://cstheory.stackexchange.com/questions/20027
http://cstheory.stackexchange.com/questions/20027
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However, the difficulty lies in constructing the Rδ′ and R2θ operators. Both of
them involve some uniformly chosen gates (that depend upon |α〉, P 1, δ and 2θ)
but also operators of the type [(1 − eiγ)|Ψx〉〈Ψx| − I] that seem to be dependent
on x. The key observation here is that

((1 − eiγ)|Ψx〉〈Ψx| − I) = C · ((1 − eiγ)|x〉〈x| ⊗ |α〉〈α| − I) · C†

and that a Fanout gate [19] can be used to make a copy of the input state
|x〉 at the beginning which can be used later to implement |x〉〈x|. The detailed
construction of the above operator is given in the full version [18]. Essentially
we are able to construct a uniform circuit Rδ that can completely eliminate any
error in deciding strings in ERQP languages.

Theorem 3. EQP =
⋃

ε ERQPε = ERQP.

We will now analyse the complexity of amplification. Let s(n) be an upper
bound on the size (number of gates) the circuits Cn and C†

n. Let C ′
n denote the

amplified zero-error circuit that calls Cn and C†
n and let s′(n) denote the size

of C ′
n. Assuming that A,B,E can be implemented without much overhead on

size, s′(n)/s(n) is proportional to 1 + 2(k + 1) ≈ 2( π
4 sin−1 √

ε
− 1

2 ) + 3 ≤ 1.6√
ε

+ 2.
Now contrast this with the usual parallel scheme of running multiple copies of
Cn in parallel (on copies of |x〉⊗|α〉, with |x〉 being copied using a Fanout gate).
First of fall, such a parallel scheme cannot possible achieve 100% probability of
success. Secondly, the size increases by a factor proportional to 1

− ln(1−ε) ≈ 1
ε

that is quadratic ally large compared to the amplified C ′
n with zero-error.

4.2 Two-Sided Exact Error Class EBQP

Two-sided bounded-error classes can be treated similarly as their one-sided coun-
terparts. We will leave out the details and only chalk the main ideas using the
Rθ rotation operators for suitable θ. We have already explained in the earlier
subsections how to implement Rθ in a uniform manner; this is sufficient to give
us uniform circuits to decide languages with a higher probability of success.

For the two-sided exact error class EBQP and some language L ∈ EBQP,
consider the two-stage amplification process illustrated in Fig. 2. Consider any
n-bit x and let C denote the corresponding circuit and |α〉 denote the (uniformly
generated) fixed-state ancilla register. Let |Ψx〉 denote C|x〉 ⊗ |α〉.

Consider any xyes ∈ L and denote C|xyes〉 ⊗ |α〉 by |Ψyes
x 〉. Similarly, if

xno �∈ L, denote C|xno〉 ⊗ |α〉 by |Ψno
x 〉. Furthermore, let 0 < θ1 < θ2 < π/2 be

angles such that sin2 θ1 = ε1 and sin2 θ2 = ε2.
In stage-1 (Fig. 2b), first Rπ/2−θ2 is applied to |Ψx〉; let C1 denote the circuit

and |Ψ̃x〉 = C1|x〉 ⊗ |α〉 denote the state thus obtained. Here Rπ/2−θ2 is con-
structed by using |Ψx〉 and P 1 and involves C and C† similar to the construction
in Subsect. 4.1. If x ∈ L, then |Ψ̃x〉 is now aligned with P 1|Ψx〉 whereas if x �∈ L,
then |P 1|Ψ̃x〉| = sin(π/2 − (θ2 − θ1)).

Let θ′
2 denote π/2− (θ2 − θ1). Observe that |Ψ̃x〉 belongs to the same Hilbert

space spanned by P 1|Ψx〉 and P 0|Ψx〉. In stage-2 (Fig. 2c), R̃θ′
2

is applied on |Ψ̃x〉
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but now R̃θ′
2

is constructed using |Ψ̃x〉 and P 0 and involves C1 and C†
1 similar

to the construction in Subsect. 4.1; C1 and C†
1 in turn calls C and C†.

First consider the case of x ∈ L. P 0|Ψ̃x〉 = 0 implies that R̃θ′
2
|Ψ̃x〉 is identical

to |Ψ̃x〉 (up to a global phase). Then consider the case of x �∈ L. Since, |P 0|Ψ̃x〉| =
sin(θ2 − θ1), R̃θ′

2
|Ψ̃x〉 will be now aligned with P 0.

Thus we get the resultant circuit C ′ = R̃θ′
2
Rπ/2−θ2C and the final state

applying C ′ is measured using (P 0, P 1). If P 0 is observed, (correctly) decide
that x �∈ L and otherwise, (correctly) decide that x ∈ L.

Theorem 4. EQP =
⋃

ε1,ε2
EBQPε1,ε2 = EBQP.

We will now discuss the complexity of the amplified algorithm and compare it
with the usual parallel repetition algorithm for BQP that outputs the majority.
Like for the EQP case, we will use C and C ′ for the original circuit and the
zero-error amplified circuit, respectively. We will focus only on overhead caused
by the multiple calls to C and C† hoping that the additional components in the
Rδ gates can be implemented with a small number of gates.

For comparison with the parallel repetition algorithm, it will be convenient
to assume that ε2 = 1 − ε1 and therefore, θ2 = π/2 − θ1 in which θ2 > π/4.

Apart from the initial call to C to generate |Ψx〉, notice that the number of
calls in the first phase is at most 2 since π/2−θ2

2θ2
< 1. The number of calls in the

second phase is ≈ 2
(
1 + π/2−(θ2−θ1)

2(θ2−θ1)

)
= 1 + π

2(θ2−θ1)
= 1 + π

2(sin−1 √
ε2−sin−1 √

ε1)

= 1 + π/2

sin−1(
√

ε2(1−ε1)−
√

ε1(1−ε2))
≤ 1 + π/4

ε2−1/2 . Let ns denote this upper bound.

Contrast this with the parallel repetition method that takes the majority
of several parallel executions of C|x〉 ⊗ |α〉. Even though this method cannot
collapse EBQP to EQP, suppose we are interested to improve the probability
ε2 to σ ≈ 1. Applying the usual Chernoff’s bound based analysis, the number of
parallel executions necessary is 4(1−ε2)

(ε2−1/2)2 ln 1
1−σ that we denote by np.

Note that if ε2 ≥ 3/4, i.e., θ2 ≥ π/3 and θ1 ≤ π/6, then only 2 calls are
necessary in the second phase. So, for comparison we consider 1/2 < ε2 < 3/4.
In that case, np ≥ 1

(ε2−1/2)2 ln 1
1−σ and ns ≈ √

np (ignoring small constants).

4.3 Non-exact Classes RQP and BQP

First we address the amplification of non-exact RQPε languages. For such lan-
guages 1−ε is only an upper bound on the failure probability (when x ∈ L). Since
amplitude amplification requires knowledge of the success probability, there has
been several attempts to generalize amplitude amplification for the cases when
this probability is not known. An often followed approach guesses the value of ε
in an exponentially increasing manner until a solution is found [6] or time-out
happens. Instead we suggest using the quantum “fixed-point” search techniques
for RQPε languages, e.g., following the one proposed by Yoder et al. [7] gives us
a quantum circuit that makes O( 1√

ε
log 2√

1−δ
) = O( 1√

ε
log 1

1−δ ) calls to C and
C† and is sufficient to increase the success probability from ε to δ. The gates in
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that circuit are either fixed for L or of the form Ga,b that we showed how to
construct in a uniform manner in the earlier subsection. Contrast this to classi-
cal techniques for amplifying probability of RP languages; if C was a classical
algorithm, then ln(1−δ)

ln(1−ε) ≥ 1
ε ln 1

1−δ calls to C are required which is almost square
of the number of calls required for the quantum case.

Circuits for BQP languages can also be amplified using ideas presented here.
However, we leave out the specific details from this paper.

4.4 Communication Protocols

Apart from black-box/query algorithms, quantum amplitude amplification has
also been applied to quantum communication protocols [20] for reducing proba-
bility of error and for distributed leader election [4] but they do not involve pro-
tocols that use pre-shared entangled bits. One can observe that existing quantum
communication complexity protocols can be applied to protocols in which the
parties get their input in the form of input state and not as oracle gates.

In this context we want to point out that the subtle requirement that it is
not possible to amplify protocols that use arbitrary shared entangled qubits as
ancilla. This is in stark contrast to quantum circuits that may use ancilla in
entangled states and yet, can be amplified.

|r2〉

|0〉
|rn〉

|x1〉
|x2〉

|xn〉
|r1〉

|x·r〉
(a) Circuit IP

Alice

Bob

IP

IP

|x〉

|y〉

|0〉

|0〉

n

n

(b) Circuit imple-
menting randomized
string equality

Fig. 3. Circuit to detect if x = y with probability at least 1/2

Consider the quantum protocol illustrated in Fig. 3 that implements the well-
known randomized algorithm for EQ(x, y) that asks whether two n-bit string x
and y are identical. The protocol compares x · r and y · r in which r represents n
random bits known to both parties. The circuit uses n EPR pairs to simulate n
public random bits used in the randomized algorithm. It can be verified that
if x = y, then the output qubit is always observed to be in |0〉 whereas if
x �= y, then the output qubit is observed in |0〉 or |1〉 with equal probability. If
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we could somehow apply amplitude amplification to this protocol, then Grover
iterator would be applied only once, i.e., involving a total communication of
6 qubits (each Grover iterator involves a call to the circuit and a call to its
inverse). That would invalidate the well-established lower bound that computing
EQ by a communication protocol that involves pre-shared EPR pairs requires
communication of at least n/2 qubits [21].

5 Conclusion

Amplitude amplification is commonly used to improve the probability of success
of quantum query algorithms. We extend their usage to non-query algorithms
by exploiting the fact that what they essentially do is increase the difference in
probability of success between two cases. Based on this observation, we obtain
efficient sequential algorithms for discrimination of unitary operators and for
improving success probability of bounded error quantum algorithms.
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Abstract. A long-standing open problem in graph theory is to prove or
disprove the graph reconstruction conjecture proposed by Kelly and Ulam
in the 1940s. This conjecture roughly states that every graph on at least
three vertices is uniquely determined by its vertex-deleted subgraphs.
We adapt the idea of reconstruction for Boolean formulas in conjunc-
tive normal form (CNFs) and formulate the reconstruction conjecture
for CNFs: every CNF with at least four clauses is uniquely determined
by its clause-deleted subformulas. Our main results can be summarized
as follows. First, we prove that our conjecture is equivalent to a well-
studied variation of the graph reconstruction conjecture, namely, the
edge-reconstruction conjecture for hypergraphs. Second, we prove that
the number of satisfying assignments of a CNF is reconstructible, i.e., this
number can be computed from the clause-deleted subformulas. Third, we
show that every CNF with m clauses over n variables is reconstructible
if 2m−1 > 2n · n!.

1 Introduction

We consider reconstruction of combinatorial objects from their subobjects, for
example, graphs from their subgraphs, or Boolean formulas from their sub-
formulas. Suppose that an object A is uniquely determined by its subobjects
A1, . . . , An. The problem arises when the subobjects are given “up to isomor-
phism”. Can we reconstruct A, up to isomorphism, from the isomorphism classes
of A1, . . . , An?

The Graph Reconstruction Conjecture. A typical example of reconstruction is
reconstruction of a graph from its vertex-deleted subgraphs. Let G be a sim-
ple graph on vertices v1, . . . , vn. Let G−v1, . . . , G−vn denote subgraphs, where
G−vi is obtained from G by removing vi and its incident edges. These subgraphs
are called vertex-deleted subgraphs of G. The deck of G consists of n cards that
represent the vertex-deleted subgraphs: the ith card shows G − vi up to isomor-
phism, i.e., the vertices on the card have no names. Can we reconstruct G up to
isomorphism from its deck? Equivalently, does the deck determine G uniquely?

The graph reconstruction conjecture, proposed by Kelly and Ulam in the
1940s, also known as the Kelly-Ulam conjecture or Ulam’s conjecture, gives a
positive answer to these questions:
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 592–601, 2018.
https://doi.org/10.1007/978-3-319-94776-1_49
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Every simple graph on at least three vertices is uniquely determined up to
isomorphism by its deck.

The conjecture is stated in terms of a deck of cards, which was proposed
by Harary in [Har64]. The following equivalent form is given in terms of two
graphs [Kel57,Ula60]. Let G be a graph on vertices v1, . . . , vn and H be a graph
on vertices u1, . . . , un. We say that H is a reconstruction of G if there is a
permutation σ on [1..n] such that G − vi is isomorphic to H − uσ(i) for all
i ∈ [1..n]. A graph G is called reconstructible if every reconstruction of G is
isomorphic to G. In these terms, the graph reconstruction conjecture states that
all simple graphs with at least three vertices are reconstructible.

While it is an open problem whether all graphs are reconstructible, many well
known classes of graphs are shown to be reconstructible, for example, regular
graphs, Eulerian graphs, trees, disconnected graphs [Kel57]. Computerized veri-
fication shows that all graphs with up to 11 vertices are reconstructible [McK97].
Considering reconstruction for randomly chosen graphs, almost all graphs are
reconstructible [Mül76]. Moreover, almost all graphs can be uniquely determined
up to isomorphism using only three cards from their decks [Bol90].

Properties or parameters of a graph G are called invariants if they are pre-
served under isomorphisms. An invariant is called reconstructible if it is uniquely
determined by the deck of G. For example, the number of edges of G is recon-
structible (note that if G has n vertices then each edge of G appears in exactly
n − 2 cards). Another simple example is the degree sequence of G which can be
computed from the number of edges of G and the numbers of edges of the cards.

Reconstruction of the number of edges is a special case of Kelly’s lemma
[Kel57] stating that for every graph H with fewer vertices than in G, the number
of subgraphs of G isomorphic to H is reconstructible. Other examples of recon-
structible properties and parameters include the Tutte polynomial, the chromatic
number, the number of Hamiltonian cycles, and planarity, see a survey in [LS16].

A number of variations of the graph reconstruction conjecture have been pro-
posed and studied. Some of them have been disproved, for example, for directed
graphs [Sto77] and for hypergraphs [Koc87]. Other variations have still been
neither proved nor disproved, for example, the set reconstruction conjecture pro-
posed by Harary in [Har64]: every simple graph with at least four vertices is
uniquely determined up to isomorphism by the set (not the multiset) of its
cards.

Edge Reconstruction. An edge-card of a graph G is its subgraph obtained from
G by removing an edge and viewed up to isomorphism. The edge-deck of G is the
multiset of all edge-cards of G. Harary proposed the edge reconstruction conjec-
ture [Har64]: every simple graph with at least four edges is uniquely determined
up to isomorphism by its edge-deck.

It was shown in [Gre71] that the deck of a graph with at least four edges
and no isolated vertices can be uniquely determined from the graph’s edge-
deck. Therefore, if the Kelly-Ulam conjecture is true, then the edge reconstruc-
tion conjecture is true. Using the inclusion-exclusion principle, Lovász showed in
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[Lov72] that a graph on n vertices with m edges is reconstructible from its deck
if m > 1

2

(
n
2

)
. Müller improved this result to 2m−1 > n!; this result also follows

from the sufficient condition for edge reconstruction given by Nash-Williams in
[NW78].

Extension for Hypergraphs. Berge extended the notion of edge reconstruction
to hypergraphs [Ber72]. The edge-deck for a hypergraph is defined in literally
the same way as for graphs. The edge reconstruction conjecture for hypergraphs
states:

Every hypergraph with at least four edges is uniquely determined up to
isomorphism by its edge-deck.

It is still open whether this conjecture is true or not. A number of hypergraph
invariants were recently shown to be reconstructible from the edge-deck, for
example, multivariate chromatic polynomials [Whi11], edge-induced and vertex-
induced sub-hypergraph polynomials [Tad15].

Alon et al. extended edge reconstruction from graphs and hypergraphs to
more general combinatorial structures in [ACKR89], see Sect. 5 for more details.
Müller’s inequality mentioned above follows from their results on reconstructible
structures.

What is Done in this Paper. We adapt the idea of graph reconstruction to CNFs,
Boolean formulas in conjunctive normal form. The motivation for this adapta-
tion is natural. CNFs can be characterized using graph structures, for example,
using their primal graphs, dual graphs, or incidence graphs [SS09]. Properties and
parameters of the corresponding graphs, like bandwidth or treewidth, are used
in satisfiability-testing algorithms and their analysis, see for example [AR11].
It would be interesting to see if results on graph reconstruction could help in
learning more about CNF structures. It would also be interesting to see if recon-
struction techniques could help in computing reconstructible invariants like the
number of satisfying assignments.

In Sect. 2, we define the notion of deck for CNFs and we formulate the recon-
struction conjecture for CNFs: every CNF with at least four clauses is recon-
structible from its deck. It is shown in Sect. 3 that this conjecture is true if and
only if the edge conjecture for hypergraphs is true. In Sect. 4, we use a combina-
tion of the inclusion-exclusion principle with the idea of Kelly’s lemma [Kel57]
to show that the number of satisfying assignments of a CNF can be computed
from its deck. In Sect. 5, we apply the results of [ACKR89] about combinatorial
structures to prove that a CNF on n variables with m clauses is reconstructible
if 2m−1 > 2n · n!.

2 Reconstruction of CNFs: Definitions

Terminology and Notation for CNFs. A literal is a Boolean variable x or its
negation ¬x. The literals x and ¬x are called complementary ; each of them is
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the complement of the other. A clause is a finite set of literals that contains no
pair of complements. The width of a clause C is |C|, i.e. the number of literals
in C. A formula in conjunctive normal form, or a CNF for short, is a finite set
of clauses.

For a clause C, we write var(C) to denote the set of all variables appearing
in C (with or without negation). A clause C is viewed as the disjunction of its
literals: C is satisfied by an assignment of truth values to the variables in var(C)
if at least one literal in C is true under this assignment. For a CNF φ consisting
of clauses C1, . . . , Cm, let var(φ) denote

⋃m
i=1 var(Ci). An assignment for φ is

an assignment of truth values to all variables of var(φ). An assignment satisfies
φ if all clauses of φ are satisfied by this assignment. The number of assignments
satisfying of φ is denoted by #φ.

Isomorphism of CNFs. Consider a CNF φ and a variable x ∈ var(φ). We change
φ by flipping x if

– all occurrences of x are replaced with ¬x;
– all occurrences of ¬x are replaced with x.

Let y be a variable that may or may not belong to var(φ). We change φ by
renaming x to y if

– all occurrences of x are replaced with y;
– all occurrences of y are replaced with x;
– all occurrences of ¬x are replaced with ¬y;
– all occurrences of ¬y are replaced with ¬x.

Thus, if both x and y appear in φ then these variables swap their names, other-
wise x is renamed to the new variable y.

We say that CNFs φ and ψ are isomorphic, written φ � ψ, if one of them can
be obtained from the other by a composition of renamings and flippings. Note
that an isomorphism between CNFs is sometimes defined as a composition of
renamings only, see for example [SS09], yet in this paper we adhere to the more
general version. For a CNF φ, we write [φ] to denote the isomorphism class of
φ, i.e., the class of all CNFs isomorphic to φ. Thus, [φ] can be viewed as φ up to
isomorphism.

The Reconstruction Conjecture for CNFs. Let φ be a CNF consisting of clauses
C1, . . . , Cm and let n = var(φ). Consider m CNFs obtained from φ by removing
one clause:

φ − C1, . . . , φ − Cm.

Each of them is called a clause-deleted CNF of φ. The cards of φ are the isomor-
phism classes of all clause-deleted CNFs of φ:

[φ − C1], . . . , [φ − Cm].

The deck of φ is defined to be the following pair: the number n and the multiset
of the cards of φ.

The following conjecture about reconstruction of CNFs has the form similar
to the Kelly-Ulam conjecture about reconstruction of graphs.
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Conjecture 1 (reconstruction of CNFs). For every CNF φ with at least four
clauses, the isomorphism class of φ is uniquely determined by the deck of φ.

3 CNFs and Hypergraphs

We prove that the reconstruction conjecture for CNFs (Conjecture 1 above) is
equivalent to the following conjecture known as the edge-reconstruction conjec-
ture for hypergraphs [Ber72]:

Conjecture 2 (edge-reconstruction of hypergraphs). For every hypergraph H with
at least four edges, the isomorphism class of H is uniquely determined by the
edge-deck of H.

Theorem 1. Conjecture 1 implies Conjecture 2.

Proof. Let H be a hypergraph with edges e1, . . . , em. Let v1, . . . , vn be all non-
isolated vertices of H, i.e.

{v1, . . . , vn} = e1 ∪ . . . ∪ em.

We define the CNF representation of H to be the following CNF φH : it has
n variables identified with v1, . . . , vn and m clauses identified with e1, . . . , em.
Note that the clauses of φH contain no literals with negations. The following
properties of CNF representations are easy to verify:

– Two hypergraphs are isomorphic if and only if they have the same number
of isolated vertices and their CNF representations are isomorphic.

– If two hypergraphs have identical edge-decks, then their CNF representations
have identical decks.

Therefore, the edge-deck of H uniquely determines the deck of φH . By Conjec-
ture 1, the deck of φH uniquely determines the isomorphism class of φH . Also,
the edge-deck of H determines the number of isolated vertices in H. The iso-
morphism class of φH together with the number of isolated vertices uniquely
determine the isomorphism class of H. ��
Theorem 2. Conjecture 2 implies Conjecture 1.

Proof. Theorem 1 has been proved using the CNF representation of a hyper-
graph. In Theorem2, we use a “dual” method: every CNF is represented by a
hypergraph such that two CNFs are isomorphic if and only if the corresponding
hypergraphs are isomorphic.

Let φ be a CNF consisting of clauses C1, . . . , Cm. The idea of representation
of φ by a hypergraph is simple. The hypergraph’s vertices are the literals of φ and
it has two types of edges: some edges represent the clauses of φ and the others
represent the pairs of complementary literals. It would be straightforward to
think of C1, . . . , Cm as edges of the first type and think of pairs of complements
as edges of the second type. However, this implementation of the idea does not
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work because φ can have two-literal clauses and then two-vertex edges of different
types could be mapped to each other under isomorphisms. To fix this issue, we
represent every clause of width k, where k ≥ 2, by an edge of size k +1. Namely,
a clause consisting of literals a1, . . . , ak is represented by an edge that consists
of the vertices corresponding to a1, . . . , ak plus an additional, “dummy” vertex
which appears only in this edge.

More exactly, the hypergraph representation of φ is a hypergraph Hφ defined
as follows.

– Vertices. If var(φ) = {x1, . . . , xn} then Hφ has 2n + m vertices: vertices
v1, . . . , vn representing the variables x1, . . . , xn, vertices vn+1, . . . , v2n that
represent the complements ¬x1, . . . ,¬xn, and dummy vertices u1, . . . , um.
We refer to vertices vi and vi+n representing complements as complementary
vertices.

– Edges. The hypergraph Hφ has n two-vertex edges representing pairs of com-
plements: edges {vi, vi+n} for all i ∈ [1..n]. Also, there are edges e1, . . . , em

representing the clauses C1, . . . , Cm: if Ci = {a1, . . . , ak} then ei consists of
the vertices representing the literals a1, . . . , ak and the dummy vertex ui.

We need to show that hypergraph representations have the same property as
CNF representations defined above: CNFs φ and ψ are isomorphic if and only if
their hypergraph representations Hφ and Hψ are isomorphic.

To prove the “only if” part, we consider an isomorphism α from φ to ψ, i.e.,
a bijection from the set of all variables of φ and their negations to the set of all
variables of ψ and their negations. This bijection preserves both the clauses and
complements. The isomorphism α induces a bijection β from the non-dummy
vertices of Hφ to the non-dummy vertices of Hψ. The bijection β preserves two-
vertex edges and preserves the non-dummy parts of edges representing clauses:
{vi1 , . . . , vik , ui} is an edge in Hφ if and only if {β(vi1), . . . , β(vik), wj} is an edge
in Hψ. Next, it remains to make β an isomorphism from Hφ to Hψ by extending
β to the dummy vertices in an obvious way: ui is mapped to wj . The “if” part
is even easier: we have an isomorphism β from Hφ to Hψ, and the restriction of
β to the non-dummy vertices induces an isomorphism between φ and ψ.

Suppose that Conjecture 2 is true. Then we can reconstruct every CNF φ
from its deck as follows. Let Hφ be the hypergraph representation of φ. Each
card of φ obtained by removing a clause C uniquely determines the card in the
edge-deck of Hφ obtained by removing the edge that represents C and by adding,
if needed, vertices that represent literals. By Conjecture 2, the edge-deck of Hφ

uniquely determines [Hφ]. In turn, [Hφ] uniquely determines [φ]. ��

4 Number of Satisfying Assignments

An invariant of a CNF is a parameter or a property of this CNF that is preserved
under isomorphism. For example, the number of satisfying assignment of a CNF
is an invariant because for all CNFs φ and ψ, if φ � ψ then #φ = #ψ. An
invariant is called reconstructible if it can be computed from the deck of φ.
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Theorem 3. The number of satisfying assignments of a CNF is reconstructible.

Proof. Let φ be a CNF with clauses C1, . . . , Cm. For every i ∈ [1..m], let F(Ci)
denote the set of assignments for φ that falsify the clause Ci. Then the set of
assignments falsifying φ is the union

F(C1) ∪ . . . ∪ F(Cm)

and the cardinality of this union can be computed using the inclusion-exclusion
principle:

|F(C1) ∪ . . . ∪ F(Cm)| = s1 − s2 + . . . (−1)m+1sm

where
sk =

∑

1≤i1≤...≤ik≤m

|F(Ci1) ∩ . . . ∩ F(Cik)|. (1)

If the numbers s1, . . . , sm are known, then #φ can be computed by

#φ = 2n −
m∑

k=1

(−1)k+1sk (2)

where n = |var(φ)|. Thus, the claim will be proved if we show that s1, . . . , sm

are reconstructible, i.e., they can be computed from the deck of φ.
Consider a k-subset of clauses {Ci1 , . . . , Cik} occurring in equality (1) and

notice that the number |F(Ci1) ∩ . . . ∩ F(Cik)| is an invariant, i.e., this number
remains the same for all isomorphic copies of {Ci1 , . . . , Cik}. Also notice that
isomorphic copies of {Ci1 , . . . , Cik} appear in exactly m − k cards of φ. Hence,
if k < m, then the number sk can be reconstructed using the idea of Kelly’s
Lemma [Kel57] as follows.

In every card of φ, we enumerate all k-subsets {A1, . . . , Ak} of clauses and
compute |F(A1) ∩ . . . ∩ F(Ak)| for each of them:

|F(A1) ∩ . . . ∩ F(Ak)| =
{

0 if A contains complements
2n−|A| otherwise

where A = A1 ∪ . . . ∪ Ak. Note that 2n−|A| can be computed because the deck
of φ contains n. Next, we sum up all these numbers; let Sk denote their sum:

Sk =
∑

{A1,...,Ak}
|F(A1) ∩ . . . ∩ F(Ak)|

where the sum is taken over all k-subsets {A1, . . . , Ak} in all cards of φ. The key
point is that isomorphic copies of {Ci1 , . . . , Cik} were counted m − k times and,
therefore, sk = Sk/(m − k). Thus, all s1, . . . , sm−1 are found from the deck. As
for sm, there are only two options:

– φ contains a pair of complements and then sm = 0;
– φ contains no pair of complements and then sm = 1.

Obviously, it can be determined from the deck whether or not φ contains a pair
of complements. Therefore, all s1, . . . , sm are known and #φ can be computed
using (2). ��
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5 Reconstructible CNFs

Combinatorial Structures. Following [LS16], we define a structure S to be a
triple (D,Γ,E) where D is a finite set, Γ is a subgroup of the symmetric group
on D, and E is a subset of D. The set D is called the domain and elements of E
are called edges of S. For example, the following structure (D,Γ,E) represents
a hypergraph on vertices v1, . . . , vn. The domain D is the set of all subsets of
{v1, . . . , vm}, E is the set of edges of the hypergraph, and Γ is the subgroup of
the symmetric group on D induced by all permutations on v1, . . . , vn.

Two structures S1 = (D,Γ,E1) and S2 = (D,Γ,E2) are called isomorphic if
there is a permutation α in Γ such that for all s ∈ D, we have

s ∈ E1 ⇔ α(s) ∈ E2.

The isomorphism class of a structure S is denoted [S].
Consider a structure S = (D,Γ,E) where E = {e1, . . . , em}. For every i ∈

[1..m], we write S − ei to denote the structure obtained from S by removing ei

from E. The deck of S is defined to be the multiset

[S − e1], . . . , [S − em].

The following theorem has in fact been proved by Alon et al. [ACKR89], see
Corollary 2.4. It shows that every structure (D,Γ,E) is uniquely determined by
its deck for a certain relationship between the size of E and the order of Γ .

Theorem 4 ([ACKR89,LS16]). Let S = (D,Γ,E) be a structure such that

2|E|−1 > ord(G).

Then [S] is uniquely determined by the deck of S.
Proof. See Theorem 11.8 and its proof in [LS16]. ��

Representation of CNFs by Structures. Let φ be a CNF with clauses C1, . . . , Cm

and let var(φ) = {x1, . . . , xn}. We define the structure representation of φ to
be the following structure S = (D,Γ,E). The domain D consists of all subsets
of the set {1, . . . , 2n}. We think of the integers in this set as representations of
literals of φ: the integers 1, . . . , n represent the variables x1, . . . , xn respectively
and the integers n + 1, . . . , 2n represent their complements. We refer to integers
i and n+ i as complements. The set E consists of edges e1, . . . , em that represent
clauses:

– for every integer i between 1 and n, we have i ∈ ej if and only if xi ∈ Cj ;
– for every integer i between n+1 and 2n, we have i ∈ ej if and only if ¬xi ∈ Cj .

To define the group Γ , we first define the following group Π of permutations on
{1, . . . , 2n}. Consider two types of permutations on {1, . . . , 2n}: renamings and
flippings, where a renaming is induced by a permutation on {1, . . . , n} and a
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flipping is a swapping integers i and n + i. The group Π consists of all compo-
sitions of renamings and flippings. Clearly, the order of Π is 2n · n!. The group
Γ is the group of permutations on D induced by the group Π.

Note that such representations of CNFs by structures have the following
properties:

– Two CNFs are isomorphic if and only if their structure representations are
identical.

– Two CNFs have identical decks if and only if their structure representations
have identical decks.

Theorem 5. Let φ be a CNF with m clauses over n variables such that

2m−1 > 2n · n!.

Then [φ] is uniquely determined by the deck of φ.

Proof. The deck of φ uniquely determines the deck of its structure representation
Sφ. By Theorem 4, Sφ is reconstructible if 2m−1 > 2n · n!. ��

Thus, all CNFs such that m > 1 + e + n log2 n are reconstructible.

References

[ACKR89] Alon, N., Caro, Y., Krasikov, I., Roditty, Y.: Combinatorial reconstruction
problems. J. Comb. Theory Ser. B 47(2), 153–161 (1989)

[AR11] Alekhnovich, M., Razborov, A.: Satisfiability, branch-width and tseitin tau-
tologies. Comput. Complex. 20(4), 649–678 (2011)

[Ber72] Berge, C.: Isomorphism problems for hypergraphs. In: Berge, C., Ray-
Chaudhuri, D. (eds.) Hypergraph Seminar. LNM, vol. 411, pp. 1–12.
Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0066174

[Bol90] Bollobás, B.: Almost every graph has reconstruction number three. J.
Graph Theory 14(1), 1–4 (1990)

[Gre71] Greenwell, D.L.: Reconstructing graphs. Proc. Am. Math. Soc. 30(3), 431–
433 (1971)

[Har64] Harary, F.: On the reconstruction of a graph from a collection of subgraphs.
In: Theory of Graphs and Its Applications, pp. 47–52 (1964)

[Kel57] Kelly, P.J.: A congruence theorem for trees. Pac. J. Math. 7(1), 961–968
(1957)

[Koc87] Kocay, W.L.: A family of nonreconstructible hypergraphs. J. Comb. Theory
Ser. B 42(1), 46–63 (1987)

[Lov72] Lovász, L.: A note on the line reconstruction problem. J. Comb. Theory
Ser. B 13, 309–310 (1972)

[LS16] Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruc-
tion. London Mathematical Society Lecture Note Series, 2nd edn. Cam-
bridge University Press, Cambridge (2016)

[McK97] McKay, B.D.: Small graphs are reconstructible. Aust. J. Comb. 15, 123–126
(1997)

https://doi.org/10.1007/BFb0066174


Reconstruction of Boolean Formulas in Conjunctive Normal Form 601

[Mül76] Müller, V.: Probabilistic reconstruction from subgraphs. Commentationes
Mathematicae Universitatis Carolinae 17(4), 709–719 (1976)

[NW78] Nash-Williams, C.: The reconstruction problem. In: Selected Topics in
Graph Theory, chap. 8, pp. 205–235. Academic Press (1978)

[SS09] Samer, M., Szeider, S.: Fixed-parameter tractability. In: Handbook of Sat-
isfiability, chap. 13, pp. 425–456. IOS Press (2009)

[Sto77] Stockmeyer, P.K.: The falsity of the reconstruction conjecture for tourna-
ments. J. Graph Theory 1(1), 19–25 (1977)

[Tad15] Tadesse, Y.: Using edge-induced and vertex-induced subhypergraph poly-
nomials. Mathematica Scandinavica 117(3), 161–169 (2015)

[Ula60] Ulam, S.: A Collection of Mathematical Problems. Interscience Tracts in
Pure and Applied Mathematics, vol. 8. Wiley, New York (1960)

[Whi11] White, J.: On multivariate chromatic polynomials of hypergraphs and
hyperedge elimination. Electron. J. Comb. 18(1), #P160 (2011)



A Faster FPTAS for the Subset-Sums
Ratio Problem

Nikolaos Melissinos1 and Aris Pagourtzis2(B)

1 School of Applied Mathematical and Physical Sciences, National Technical
University of Athens, Polytechnioupoli, 15780 Zografou, Athens, Greece

nmelissinos@corelab.ntua.gr
2 School of Electrical and Computer Engineering, National Technical University of

Athens, Polytechnioupoli, 15780 Zografou, Athens, Greece
pagour@cs.ntua.gr

Abstract. The Subset-Sums Ratio problem (SSR) is an optimization
problem in which, given a set of integers, the goal is to find two subsets
such that the ratio of their sums is as close to 1 as possible. In this
paper we develop a new FPTAS for the SSR problem which builds on
techniques proposed by Nanongkai (Inf Proc Lett 113, 2013). One of the
key improvements of our scheme is the use of a dynamic programming
table in which one dimension represents the difference of the sums of
the two subsets. This idea, together with a careful choice of a scaling
parameter, yields an FPTAS that is several orders of magnitude faster
than the best currently known scheme of Bazgan et al. (J Comput Syst
Sci 64(2), 2002).

Keywords: Approximation scheme · Subset-Sums Ratio
Knapsack problems · Combinatorial optimization

1 Introduction

We study the optimization version of the following NP-hard decision problem
which given a set of integers asks for two subsets of equal sum (but, in contrast
to the Partition problem, the two subsets do not have to form a partition of the
given set):

Equal Sum Subsets Problem (ESS). Given a set A = {a1, . . . , an} of n
positive integers, are there two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n}
such that

∑
i∈S1

ai =
∑

j∈S2
aj?

Our motivation to study the ESS problem and its optimization version comes
from the fact that it is a fundamental problem closely related to problems appear-
ing in many scientific areas. Some examples are the Partial Digest problem, which
comes from molecular biology (see [2,3]), the problem of allocating individual
goods (see [8]), tournament construction (see [7]), and a variation of the Subset
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Sum problem, namely the Multiple Integrated Sets SSP, which finds applications
in the field of cryptography (see [10]).

The ESS problem has been proven NP-hard by Woeginger and Yu in [11] and
several of its variations have been proven NP-hard by Cieliebak et al. in [4–6].
The corresponding optimization problem is:

Subset-Sums Ratio Problem (SSR). Given a set A = {a1, . . . , an} of n
positive integers, find two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n} that
minimize the ratio

max{
∑

i∈S1
ai,

∑
j∈S2

aj}
min{

∑
i∈S1

ai,
∑

j∈S2
aj}

.

The SSR problem was introduced by Woeginger and Yu [11]. In the same work
they present an 1.324 approximation algorithm which runs in O(n log n) time.
The SSR problem received its first FPTAS by Bazgan et al. in [1], which approx-
imates the optimal solution in time no less than O(n5/ε3); to the best of our
knowledge this is still the faster scheme proposed for SSR. A second, simpler but
slower, FPTAS was proposed by Nanongkai in [9].

The FPTAS we present in this paper makes use of some ideas proposed
in [9], strengthened by certain key improvements that lead to a considerable
acceleration: our algorithm approximates the optimal solution in O(n4/ε) time,
several orders of magnitude faster than the best currently known scheme of [1].

2 Preliminaries

We will first define two functions that will allow us to simplify several of the
expressions that we will need throughout the paper. We will use the convention∑

i∈S ai = 0 if S = ∅.

Definition 1 (Ratio of two subsets). Given a set A = {a1, . . . , an} of n pos-
itive integers and two sets S1, S2 ⊆ {1, . . . , n} we define R(S1, S2, A) as follows:

R(S1, S2, A) =

⎧
⎨

⎩

+∞ if S2 = ∅,
∑

i∈S1
ai

∑
j∈S2

aj
otherwise.

Definition 2 (Max ratio of two subsets). Given a set A = {a1, . . . , an} of
n positive integers and two sets S1, S2 ⊆ {1, . . . , n} we define MR(S1, S2, A) as
follows:

MR(S1, S2, A) = max{R(S1, S2, A),R(S2, S1, A)}.
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Note that, in cases where at least one of the sets is empty, the Max Ratio function
will return ∞. Using these functions, the SSR problem can be rephrased as shown
below.

Subset-Sums Ratio Problem (SSR) (Equivalent Definition). Given a
set A = {a1, . . . , an} of n positive integers, find two disjoint sets S1, S2 ⊆
{1, . . . , n} such that the value MR(S1, S2, A) is minimized.

In addition, from now on, whenever we have a set A = {a1, . . . , an} we will
assume that 0 < a1 < a2 < . . . < an (clearly, if the input contains two equal
numbers then the problem has a trivial solution).

The FPTAS proposed by Nanongkai [9] approximates the SSR problem by
solving a restricted version.

Restricted Subset-Sums Ratio Problem. Given a set A = {a1, . . . , an} of
n positive integers and two integers 1 ≤ p < q ≤ n, find two disjoint sets S1, S2 ⊆
{1, . . . , n} such that {max S1,max S2} = {p, q} and the value MR(S1, S2, A) is
minimized.

Inspired by this idea, we define a less restricted version. The new problem
requires one additional input integer, instead of two, which represents the small-
est of the two maximum elements of the sought optimal solution.

Semi-Restricted Subset-Sums Ratio Problem. Given a set A = {a1, . . . ,
an} of n positive integers and an integer 1 ≤ p < n, find two disjoint
sets S1, S2 ⊆ {1, . . . , n} such that max S1 = p < max S2 and the value
MR(S1, S2, A) is minimized.

Let A = {a1, . . . , an} be a set of n positive integers and p ∈ {1, . . . , n − 1}.
Observe that, if S∗

1 , S∗
2 is the optimal solution of SSR problem of instance A

and Sp
1 , Sp

2 the optimal solution of Semi-Restricted SSR problem of instance A,
p then:

MR(S∗
1 , S∗

2 , A) = min
p∈{1,...,n−1}

MR(Sp
1 , Sp

2 , A).

Thus, we can find the optimal solution of SSR problem by solving the SSR
Semi-Restricted SSR problem for all p ∈ {1, . . . , n − 1}.

3 Pseudo-Polynomial Time Algorithm
for Semi-Restricted SSR Problem

Let the A, p be an instance of the Semi-Restricted SSR problem where A =
{a1, . . . , an} and 1 ≤ p < n. For solving the problem we have to check two cases
for the maximum element of the optimal solution. Let S∗

1 , S∗
2 be the optimal
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solution of this instance and maxS∗
2 = q. We define B = {ai | i > p, ai <∑p

j=1 aj} and C = {ai | ai ≥
∑p

j=1 aj} from which we have that either aq ∈ B
or aq ∈ C. Note that A = {a1, . . . , ap} ∪ B ∪ C.

Case 1 (aq ∈ C). It is easy to see that if aq ∈ C, then aq = min C and
the optimal solution will be (S1 = {1, . . . , p}, S2 = {q}). We describe below a
function that returns this pair of sets, thus computing the optimal solution if
Case 1 holds.

Definition 3 (Case 1 solution). Given a set A = {a1, . . . , an} of n positive
integers and an integer 1 ≤ p < n we define the function SOL1(A, p) as follows:

SOL1(A, p) =

{
({1, . . . , p}, {min C}) if C 	= ∅,

(∅, ∅) otherwise,

where C = {ai | ai >
∑p

j=1 aj}.

Case 2 (aq ∈ B). This second case is not trivial. Here, we define an integer
m = max{j | aj ∈ A � C} and a matrix T , where T [i, d], 0 ≤ i ≤ m,−2 ·∑p

k=1 ak ≤ d ≤
∑p

k=1 ak, is a quadruple to be defined below. A cell T [i, d] is
nonempty if there exist two disjoint sets S1, S2 with sums sum1, sum2 such that
sum1 − sum2 = d,max S1 = p, and S1 ∪ S2 ⊆ {1, . . . , i} ∪ {p}; if i > p, we
require in addition that p < max S2. In such a case, cell T [i, d] consists of the
two sets S1, S2, and two integers max(S1∪S2) and sum1+sum2. A crucial point
in our algorithm is that if there exist more than one pairs of sets which meet
the required conditions, we keep the one that maximize the value sum1 + sum2;
for convenience, we make use of a function to check this property and select
the appropriate sets. The algorithm for this case (Algorithm 1) finally returns
the pair S1, S2 which, among those that appear in some T [m, d] 	= ∅, has the
smallest ratio MR(S1, S2, A).

Definition 4 (Larger total sum tuple selection). Given two tuples v1 =
(S1, S2, q, x) and v2 = (S′

1, S
′
2, q

′, x′) we define the function LT ST (v1, v2) as
follows:

LT ST (v1, v2) =

{
v2 if v1 = ∅ or x′ > x,

v1 otherwise.
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Algorithm 1. Case 2 solution [SOL2(A, p) function]
Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z

+, and an integer p, 1 ≤ p < n.
Output: the sets of an optimal solution for Case 2.
1: S′

1 ← ∅, S′
2 ← ∅

2: Q ← ∑p
i=1 ai, m ← max{i | ai < Q}

3: if m > p then
4: for all i ∈ {0, . . . , m}, d ∈ {−2 · Q, . . . , Q} do
5: T [i, d] ← ∅
6: end for
7: T [0, ap] ← ({p}, ∅, p, ap) � p ∈ S1 by problem definition
8: for i ← 1 to m do
9: if i < p then

10: for all T [i − 1, d] �= ∅ do
11: (S1, S2, q, x) ← T [i − 1, d]
12: T [i, d] ← LT ST (T [i, d], T [i − 1, d])
13: T [i, d + ai] ← LT ST (T [i, d + ai], (S1 ∪ {i}, S2, q, x + ai))
14: T [i, d − ai] ← LT ST (T [i, d − ai], (S1, S2 ∪ {i}, q, x + ai))
15: end for
16: else if i = p then � p is already placed in S1

17: for all T [i − 1, d] �= ∅ do
18: T [i, d] ← T [i − 1, d]
19: end for
20: else
21: for all T [i − 1, d] �= ∅ do
22: (S1, S2, q, x) ← T [i − 1, d]
23: if i > p + 1 then
24: T [i, d] ← LT ST (T [i, d], T [i − 1, d])
25: end if
26: if d − ai ≥ −2 · Q then
27: T [i, d − ai] ← LT ST (T [i, d − ai], (S1, S2 ∪ {i}, i, x + ai))
28: end if
29: end for
30: for all T [p, d] �= ∅ do
31: (S1, S2, q, x) ← T [p, d]
32: if d − ai ≥ −2 · Q then
33: T [i, d − ai] ← LT ST (T [i, d − ai], (S1, S2 ∪ {i}, i, x + ai))
34: end if
35: end for
36: end if
37: end for
38: for d ← −2 · Q to Q do
39: (S1, S2, q, x) ← T [m, d]
40: if MR(S1, S2, A) < MR(S′

1, S
′
2, A) then

41: S′
1 ← S1, S′

2 ← S2

42: end if
43: end for
44: end if
45: return S′

1, S′
2
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We next present the complete algorithm for Semi-Restricted SSR (Algorithm 2)
which simply returns the best among the two solutions obtained by solving the
two cases. Algorithm 2 runs in time polynomial in n and Q (where Q =

∑p
i=1 ai),

therefore it is a pseudo-polynomial time algorithm. More precisely, by using appro-
priate data structures we can store the sets in the matrix cells in O(1) time (and
space) per cell, which implies that the time complexity of the algorithm is O(n·Q).

Algorithm 2. Exact solution for Semi-Restricted SSR [SOLex(A, p) function]
Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z

+, and an integer p, 1 ≤ p < n.
Output: the sets of an optimal solution of Semi-Restricted SSR.
1: (S1, S2) ← SOL1(A, p)
2: (S′

1, S
′
2) ← SOL2(A, p)

3: if MR(S1, S2, A) ≤ MR(S′
1, S

′
2, A) then

4: return S1, S2

5: else
6: return S′

1, S′
2

7: end if

4 Correctness of the Semi-Restricted SSR Algorithm

In this section we will prove that Algorithm 2 solves exactly the Semi-Restricted
SSR problem. Let S∗

1 , S∗
2 be the sets of an optimal solution for input (A =

{a1, . . . , an}, p).
Starting with Case 1 (where maxS∗

2 ∈ {i | ai ≥
∑p

j=1 aj}), is easy to see that:

Observation 1. The sets S∗
1 = {1, . . . , p}, S∗

2 = {min{i | ai ≥
∑p

j=1 aj}} give
the optimal ratio.

These are the sets which the function SOL1(A, p) returns.
For Case 2 (where max S∗

2 ∈ {i | i > p, ai <
∑p

j=1 aj}) we have to show that
the cell T [m, d] (where d =

∑
i∈S∗

1
ai −

∑
j∈S∗

2
aj) contains two sets S1, S2 with

ratio equal to optimum. Before that we will show a lemma for the sums of the
sets of the optimal solution.

Lemma 1. Let Q =
∑p

i=1 ai then we have
∑

i∈S∗
1

ai ≤ Q and
∑

i∈S∗
2

ai < 2 · Q.

Proof. Observe that max S∗
1 = p. This gives us

∑
i∈S∗

1
ai ≤

∑p
i=1 ai so it remains

to prove
∑

i∈S∗
2

ai < 2 · Q. Suppose that
∑

i∈S∗
2

ai ≥ 2 · Q. We can define the set
S2 as S∗

2 � {min S∗
2}. Note that, for all i ∈ S∗

2 , we have that the ai <
∑p

i=1 ai.
Because of that,

∑

i∈S∗
1

ai ≤
p∑

i=1

ai <
∑

i∈S2

ai <
∑

i∈S∗
2

ai

which means that the pair (S∗
1 , S2) is a feasible solution with smaller max ratio

than the optimal, which is a contradiction. 
�
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The next two lemmas describe conditions which imply that certain cells of T are
nonempty. Furthermore, they secure that appropriate sets are stored so that an
optimal solution is returned.

Lemma 2. If there exist two disjoint sets (S1, S2) such that

– max S2 < max S1 = p
–

∑
i∈S1

ai −
∑

j∈S2
aj = d

then T [i, d] 	= ∅ for all p ≥ i ≥ max(S1 ∪ S2 � {p}). Furthermore for the sets
(S′

1, S
′
2) which are stored in T [i, d] it holds that

∑

i∈S′
1

ai +
∑

j∈S′
2

aj ≥
∑

i∈S1

ai +
∑

j∈S2

aj .

Proof. Note that, for all pairs (S1, S2) which meet the conditions, their sums
are smaller than Q because max(S1 ∪ S2) = p so for the value d =

∑
i∈S1

ai −∑
j∈S2

aj we have
−Q ≤ d ≤ Q.

The same clearly holds for every pair of subsets of S1, S2.
We will prove the lemma by induction on q = max(S1 ∪ S2 � {p}). For

convenience if S1 ∪ S2 � {p} = ∅ we let q = 0.

• q = 0 (base case).

The only pair which meets the conditions for q = 0 is the ({p}, ∅). Observe that
cell T [0, ap] is nonempty by the construction of the table and the same holds
for T [i, ap], 1 ≤ i ≤ p (by line 12). In this case the pair of sets which meets
the conditions and the pair which is stored are exactly the same, so the lemma
statement is obviously true.

• Assume that the lemma statement holds for q = k ≤ p − 1; we will prove it
for q = k + 1 as well.

Let (S1, S2) be a pair of sets which meets the conditions. Either q ∈ S1 or
q ∈ S2; therefore either (S1 � {q}, S2) or (S1, S2 � {q}) (respectively) meets the
conditions. By the inductive hypothesis, we know that

– either T [q − 1, d − aq] or T [q − 1, d + aq] (resp.) is nonempty
– in any of the above cases for the stored pair (S′

1, S
′
2) it holds that:∑

i∈S′
1
ai +

∑
j∈S′

2
aj ≥

∑
i∈S1

ai +
∑

j∈S2
aj − aq

In particular, if (S1 � {q}, S2) meets the conditions then T [q − 1, d − aq] is
nonempty. In line 13 q is added to the first set and therefore T [q, d] is nonempty
and the stored pair is (S′

1∪{q}, S′
2) (or some other with larger total sum). Hence,

the total sum of the pair in T [q, d] is at least
∑

i∈S′
1

ai +
∑

j∈S′
2

aj + aq ≥
∑

i∈S1

ai +
∑

j∈S2

aj .
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If on the other hand (S1, S2 � {q}) is the pair that meets the conditions then
T [q −1, d+aq] is nonempty. In line 14 q is added to the second set and therefore
T [q, d] is nonempty and the stored pair is (S′

1, S
′
2 ∪ {q}) (or other with larger

total sum). Hence, the total sum of the pair in T [q, d] is at least
∑

i∈S′
1

ai +
∑

j∈S′
2

aj + aq ≥
∑

i∈S1

ai +
∑

j∈S2

aj .

The same holds for cells T [i, d] with q < i ≤ p (due to line 12).
This concludes the proof. 
�

A similar lemma can be proved for sets with maximum element index greater
than p. Due to lack of space the proof is deferred to the full version of the paper.

Lemma 3. If there exist two disjoint sets (S1, S2) such that

– max S2 = q > p = max S1

–
∑

i∈S1
ai ≤ Q,

∑
j∈S2

aj < 2 · Q
–

∑
i∈S1

ai −
∑

j∈S2
aj = d

then T [i, d] 	= ∅ for all i ≥ q. Furthermore for the sets (S′
1, S

′
2) which are stored

in T [i, d] it holds that
∑

i∈S′
1

ai +
∑

j∈S′
2

aj ≥
∑

i∈S1

ai +
∑

j∈S2

aj .

Now we can prove that in Case 2 the pair of sets which the algorithm returns
and the pair of sets of an optimal solution have the same ratio.

Lemma 4. If (S′
1, S

′
2) is the pair of sets that Algorithm1 returns, then:

MR(S′
1, S

′
2, A) = MR(S∗

1 , S∗
2 , A).

Proof. Let m be the size of the first dimension of the matrix T . Observe that for
all i, p + 1 ≤ i ≤ m, the sets S1, S2 of the nonempty cells T [i, d] are constructed
(lines 21–35 of Algorithm 1) such that maxS1 = p and i ≥ max S2 > p. Therefore
the pair (S′

1, S
′
2) returned by the algorithm is a feasible solution. We can see

that the sets S∗
1 , S∗

2 meet the conditions of Lemma 3 (the conditions for the
sums are met because of Lemma 1) which give us that the cell T [m, d] (where
d =

∑
i∈S∗

1
ai −

∑
j∈S∗

2
aj) is non empty and contains two sets with total sum

non less than
∑

i∈S∗
1

ai +
∑

j∈S∗
2

aj . Let S1, S2 be the sets which are stored to
the cell T [m, d]. Then we have

MR(S′
1, S

′
2, A) ≤ MR(S1, S2, A) ≤ MR(S∗

1 , S∗
2 , A) (1)

where the second inequality is because
∑

i∈S∗
1

ai −
∑

j∈S∗
2

aj =
∑

i∈S1

ai −
∑

j∈S2

aj
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and ∑

i∈S∗
1

ai +
∑

j∈S∗
2

aj ≤
∑

i∈S1

ai +
∑

j∈S2

aj .

By (1) and because the S∗
1 , S∗

2 have the smallest Max Ratio we have

MR(S′
1, S

′
2, A) = MR(S∗

1 , S∗
2 , A).


�
As a corollary of Observation 1 and Lemma 4 we obtain the following.

Theorem 1. Algorithm2 returns an optimal solution for Semi-Restricted SSR.

5 FPTAS for Semi-Restricted SSR and SSR

Algorithm 2, which we presented at Sect. 3, is an exact pseudo-polynomial time
algorithm for the Semi-Restricted SSR problem. In order to derivee a (1 + ε)-
approximation algorithm we will define a scaling parameter δ = ε·ap

3·n which we
will use to make a new set A′ = {a′

1, . . . , a
′
n} with a′

i = �ai

δ . The approximation
algorithm solves the problem optimally on input (A′, p) and returns the sets of
this exact solution. The ratio of those sets is a (1 + ε)-approximation of the
optimal ratio of the original input.

Algorithm 3. FPTAS for Semi-Restricted SSR [SOLapx(A, p, ε) function]
Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z

+, an integer p, 1 ≤ p < n, and
an error parameter ε ∈ (0, 1).

Output: the sets of a (1 + ε)-approximation solution for Semi-Restricted SSR.
1: δ ← ε·ap

3·n
2: A′ ← ∅
3: for i ← 1 to n do
4: a′

i ← 	ai
δ



5: A′ ← A′ ∪ {a′

i}
6: end for
7: (S1, S2) ← SOLex(A′, p)
8: return S1, S2

Now, we will prove that the algorithm approximates the optimal solution by
factor (1 + ε). Our proof follows closely the proof of Theorem 2 in [9].

Let SA, SB be the pair of sets returned by Algorithm 3 on input A =
{a1, . . . , an}, p and ε and (S∗

1 , S∗
2 ) be an optimal solution to the problem.

Lemma 5. For any S ∈ {SA, SB , S∗
1 , S∗

2}
∑

i∈S

ai − n · δ ≤
∑

i∈S

δ · a′
i ≤

∑

i∈S

ai, (2)

n · δ ≤ ε

3
·
∑

i∈S

ai. (3)
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Proof. For Eq. (2) notice that for all i ∈ {1, . . . , n} we define a′
i = �ai

δ . This
gives us

ai

δ
− 1 ≤ a′

i ≤ ai

δ
⇒ ai − δ ≤ δ · ai ≤ ai.

In addition, for any S ∈ {SA, SB , S∗
1 , S∗

2} we have |S| ≤ n, which means that
∑

i∈S

ai − n · δ ≤
∑

i∈S

δ · a′
i ≤

∑

i∈S

ai.

For Eq. (3) observe that max S ≥ p for any S ∈ {SA, SB , S∗
1 , S∗

2}. By this obser-
vation, we can show the second inequality

n · δ ≤ n · ε · ap

3 · n
≤ ε

3
·
∑

i∈S

ai.


�

Lemma 6. MR(SA, SB , A) ≤ MR(SA, SB , A′) + ε
3

Proof.

R(SA, SB , A) =

∑
i∈SA

ai
∑

j∈SB
aj

≤
∑

i∈SA
δ · a′

i + δ · n
∑

j∈SB
aj

[by Eq. (2)]

≤
∑

i∈SA
a′

i∑
j∈SB

a′
j

+
δ · n

∑
j∈SB

aj
[by Eq. (2)]

≤ MR(SA, SB , A′) +
ε

3
[by Eq. (3)]

The same way, we have

R(SB , SA, A) ≤ MR(SA, SB , A′) +
ε

3

thus the lemma holds. 
�

Lemma 7. For any ε ∈ (0, 1), MR(S∗
1 , S∗

2 , A′) ≤ (1 + ε
2 ) · MR(S∗

1 , S∗
2 , A).

Proof. If R(S∗
1 , S∗

2 , A′) ≥ 1, let (S1, S2) = (S∗
1 , S∗

2 ), otherwise (S1, S2) =
(S∗

2 , S∗
1 ). That gives us

MR(S∗
1 , S∗

2 , A′) = R(S1, S2, A
′) =

∑
i∈S1

a′
i∑

j∈S2
a′

j

≤
∑

i∈S1
ai

∑
j∈S2

aj − n · δ
[by Eq. (2)]

=

∑
i∈S2

ai
∑

j∈S2
aj − n · δ

·
∑

i∈S1
ai

∑
j∈S2

aj

= (1 +
n · δ

∑
j∈S2

aj − n · δ
) ·

∑
i∈S1

ai
∑

j∈S2
aj

.
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Because S2 ∈ {S∗
1 , S∗

2} by Eq. (3) it follows that

MR(S∗
1 , S∗

2 , A′) ≤ (1 +
1

3
ε − 1

) ·
∑

i∈S1
ai

∑
j∈S2

aj

= (1 +
ε

3 − ε
) ·

∑
i∈S1

ai
∑

j∈S2
aj

≤ (1 +
ε

2
) ·

∑
i∈S1

ai
∑

j∈S2
aj

[because ε ∈ (0, 1)]

≤ (1 +
ε

2
) · MR(S∗

1 , S∗
2 , A).

This concludes the proof. 
�

Now we can prove that Algorithm 3 is a (1 + ε) approximation algorithm.

Theorem 2. Let SA, SB be the pair of sets returned by Algorithm3 on input
(A = {a1, . . . , an}, p, ε) and S∗

1 , S∗
2 be an optimal solution, then:

MR(SA, SB , A) ≤ (1 + ε) · MR(S∗
1 , S∗

2 , A).

Proof. The theorem follows from a sequence of inequalities:

MR(SB , SA, A) ≤ MR(SA, SB , A′) +
ε

3
[by Lemma 6]

≤ MR(S∗
1 , S∗

2 , A′) +
ε

3
≤ (1 +

ε

2
) · MR(S∗

1 , S∗
2 , A) +

ε

3
[by Lemma 7]

≤ (1 + ε) · MR(S∗
1 , S∗

2 , A).


�

It remains to show that the complexity of Algorithm 3 is O(poly(n, 1/ε)). As
mentioned in Sect. 3 the algorithm solves the Semi-Restricted SSR problem in
O(nQ) time (where Q =

∑p
i=1 a′

i). We have to bound the value of Q. By the
definition of a′

i we have,

Q =
p∑

i=1

a′
i ≤ n · a′

p ≤ n · ap

δ
=

3 · n2

ε

which means that the time complexity of Algorithm 3 is O(n3/ε).
Clearly, it suffices to perform n−1 executions of the FPTAS for Semi-Restricted
SSR (Algorithm 3), and pick the best of the returned solutions, in order to
obtain an FPTAS for the (unrestricted) SSR problem. Therefore, we obtain the
following.

Theorem 3. The above described algorithm is an FPTAS for SSR with O(n4/ε)
time complexity.
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6 Conclusion

In this paper we provide an FPTAS for the Subset-Sums Ratio (SSR) problem
that is much faster than the best currently known scheme of Bazgan et al. [1].
There are two novel ideas that provide this improvement.

The first comes from observing that in [9], the proof of correctness essentially
relies only on the value of the smallest of the two maximum elements; this led to
the idea to use only that information in order to solve the problem by defining
and solving a new variation which we call Semi-Restricted SSR. Note that the
idea of using a single parameter instead of two was mentioned in [9] as a hint for
further improvement; however, the suggestion was to use the maximum of the
two parameters, whereas we obtained our improvement by using the minimum
of the two. In particular, we observed that a key ingredient in the technique of
Nanongkai [9] is the use, in the scaling parameter δ, of a value smaller than the
sums of the sets of both the optimal and the approximate solutions. We believe
that this method can be used in several other partition problems, e.g. such as
the ones described in [8,10].

The second idea was to use one dimension only, for the difference of the sums
of the two sets, instead of two dimensions, one for each sum. This idea, combined
with the observation that between two pairs of sets with the same difference, the
one with the largest total sum has ratio closer to 1, is the key to obtain an
optimal solution in much less time. It’s interesting to see whether and how this
technique could be used to problems that seek more than two subsets.

A natural open question is whether our techniques can be applied to obtain
approximation results for other variations of the SSR problem [5,6].
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Abstract. Let T[1, n] be a text of length n and T[i, n] be the suffix
starting at position i. Also, for any two strings X and Y , let LCP(X, Y )
denote their longest common prefix. The range-LCP of T w.r.t. a range
[α, β], where 1 ≤ α < β ≤ n is

rlcp(α, β) = max{|LCP(T[i, n], T [j, n])| | i �= j and i, j ∈ [α, β]}
Amir et al. [ISAAC 2011] introduced the indexing version of this problem,
where the task is to build a data structure over T, so that rlcp(α, β) for
any query range [α, β] can be reported efficiently. They proposed an
O(n log1+ε n) space structure with query time O(log log n), and a linear
space (i.e., O(n) words) structure with query time O(δ log log n), where
δ = β − α + 1 is the length of the input range and ε > 0 is an arbitrarily
small constant. Later, Patil et al. [SPIRE 2013] proposed another linear
space structure with an improved query time of O(

√
δ logε δ). This poses

an interesting question, whether it is possible to answer rlcp(·, ·) queries in
poly-logarithmic time using a linear space data structure. In this paper,
we settle this question by presenting an O(n) space data structure with
query time O(log1+ε n) and construction time O(n log n).

A part of this work was done at NII Shonan Meeting No. 126: Computation over
Compressed Structured Data.
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1 Introduction and Related Work

The longest common prefix (LCP) is an important primitive employed in various
string matching algorithms. By preprocessing a text T[1, n] (over an alphabet set
Σ) into a suffix tree data structure, we can compute the longest common prefix
of any two suffixes of T, say T[i, n] and T[j, n], denoted by LCP(T[i, n],T[j, n]),
in constant time. From now onwards, we use the shorthand notation lcp(i, j) for
the length of LCP(T[i, n],T[j, n]). Given its wide range of applicability, various
generalizations of LCP has also been studied [1–3,9,15].

In this paper, we focus on the “range” versions of this problem. The line
of research was initiated by Cormode and Muthukrishnan. They studied the
Interval Longest Common Prefix (Interval-LCP) problem in the context of data
compression [6,12,13].

Definition 1 (Interval-LCP). The Interval-LCP of a text T[1, n] w.r.t a query
(p, α, β), where p, α, β ∈ [1, n] and α < β is

ilcp(p, α, β) = max{lcp(p, i) | i ∈ [α, β]}

As observed by Keller et al. [12], any Interval-LCP query on T can be reduced to
two orthogonal range successor/predecessor queries over n points in two dimen-
sions (2D). Therefore, using the best known data structures for orthogonal range
successor/predecessor queries [14], we can answer any Interval-LCP query on T
in O(logε n) time using an O(n) space data structure, where ε > 0 is an arbitrar-
ily small positive constant.1 Moreover, queries with p ∈ [α, β] can be answered
in faster O(logε δ) time, where δ = β −α+1 is the length of the input range [15].

Another variation of LCP, studied by Amir et al. [1,2], is the following.

Definition 2 (Range-LCP). The Range-LCP of a text T[1, n] w.r.t a range
[α, β], where 1 ≤ α < β ≤ n is

rlcp(α, β) = max{lcp(i, j) | i �= j and i, j ∈ [α, β]}

In order to efficiently solve the data structure version of this problem, Amir
et al. [1,2] introduced the concept of “bridges” and “optimal bridges” and
showed that any Range-LCP query on T[1, n] can be reduced to an equivalent 2D
range maximum query over a set of O(n log n) weighted points in 2D. Therefore,
an O(n log1+ε n) space data structure with O(log log n) query time is immediate
from the best known result for 2D range maximum problem [4]. The construction
time is O(n log2 n). By choosing an alternative structure for 2D (2-sided) range
maximum query2, the space can be improved to O(n log n) with a slowdown in

1 All results throughout this paper assume the standard unit-cost word RAM model, in
which any standard arithmetic or boolean bitwise operation on word-sized operands
takes constant time. The space is measured in words of log n bits unless specified
otherwise.

2 See Theorem 9 in [16] on sorted dominance reporting in 3D.
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query time to O(log n). This sets an interesting question, whether it is possi-
ble to reduce the space further without sacrificing the poly-logarithmic query
time. Unfortunately, the query times of the existing linear space solutions (listed
below) are dependent on the parameter δ, which is Θ(n) in the worst case.

– O(n) space and O(δ log log n) query time [1,2].
– O(n) space and O(

√
δ logε δ) query time [15]

To this end, we present our main contribution below. Our model of computation
is the word RAM with word size Ω(log n).

Theorem 1. A text T[1, n] can be preprocessed into an O(n) space data struc-
ture in O(n log n) time, such that any Range-LCP query on T can be answered
in O(log1+ε n) time.

Map. We start with some preliminaries (Sect. 2). We the briefly sketch the
framework by Amir et al. [1] in Sect. 3. Sections 4 and 5 are dedicated for the
details of our solution. The details of the construction of our data structure is
deferred to Appendix.

2 Preliminaries

2.1 Predecessor/Successor Queries

Let S be a subset of {1, 2, . . . , n}. Then, S can be preprocessed into an O(|S|)
space data structure, such that for any query p, we can return pred(p,S) and
succ(p,S) in O(log log n) time [19], where

pred(p,S) = max {i | i ≤ p and i ∈ S ∪ {−∞}}
succ(p,S) = min {i | i ≥ p and i ∈ S ∪ {∞}}

2.2 Range Minimum Query

Let A[1, n] be an array of length n. A range minimum query (RMQ) with an input
range [i, j] asks to report rmq(i, j) = arg mink{A[k] | k ∈ [i, j]}. By maintaining
a data structure of size 2n + o(n) bits, any RMQ on A can be answered in O(1)
time [8] (even without accessing A).

2.3 2D Range Maximum Query

Let S be a set of m weighted points in a [1, n]×[1, n] grid. A 2D-RMQ with input
(a, b, a′, b′) asks to return the highest weighted point in S within the orthogonal
region corresponding to [a, b] × [a′, b′]. Data structures with the following space-
time trade-offs are known for this problem.

– O(m) space, O(m log m) preprocessing time and O(log1+ε m) query time [5].
– O(m logε n) space, O(m log m) preprocessing time and O(log log n) query

time [4].
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2.4 Orthogonal Range Predecessor/Successor Queries in 2D

A set P of n points in an [1, n] × [1, n] grid can be preprocessed into a linear-
space data structure, such that the following queries can be answered in O(logε n)
time [14].

– ORQ([x′, x′′], [−∞, y′′]) = arg maxj{(i, j) ∈ P ∩ [x′, x′′] × [−∞, y′′]}
– ORQ([−∞, x′′], [y′, y′′]) = arg maxi{(i, j) ∈ P ∩ [−∞, x′′] × [y′, y′′]}
– ORQ([x′, x′′], [y′,+∞]) = arg minj{(i, j) ∈ P ∩ [x′, x′′] × [y′,+∞]}
– ORQ([x′,+∞], [y′, y′′]) = arg mini{(i, j) ∈ P ∩ [x′,+∞] × [y′, y′′]}

2.5 Suffix Trees and Suffix Arrays

For a string T[1, n], the suffix array SA[1, n] is an array of length n, such that SA[i]
denotes the starting position of the lexicographically ith smallest suffix among all
suffixes of T. The suffix tree ST is a compact trie of all its suffixes [18]. The suffix
tree consists of n leaves and at most n − 1 internal nodes. The edges are labeled
with substrings of T. For any node u, path(u) is defined as the concatenation of
edge labels on the path from the root of the suffix tree to u. Therefore, path(	x) =
T[SA[x], n], where 	x is the xth leftmost leaf node. Moreover, path(lca(	x, 	y)) =
LCP(T[SA[x], n],T[SA[y], n]), where lca(·, ·) denotes the lowest common ancestor.
The suffix tree of T occupies O(n) space, can be constructed in O(n) time and
space, and for any two text positions i, j, we can compute lcp(i, j) in constant
time. Also, define inverse suffix array ISA[1, n], such that ISA[i] = j, where
SA[j] = i.

2.6 Heavy Path Decomposition

We define the heavy path decomposition [11,17] of a suffix tree ST as follows.
First, we categorize the nodes in ST into light and heavy. The root node is light
and for any internal node, exactly one child is heavy. Specifically, the child having
the largest number of leaves in its subtree (ties are broken arbitrarily). When
all incident edges to the light nodes are removed, the remaining edges of ST are
decomposed into maximal downward paths, each starting from an internal light
node and following a sequence of heavy nodes. We call each path a heavy path.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at
most log2 n. Equivalently, the number of light nodes on any root to leaf path is
at most log2 n.

3 Amir et al.’s Framework

We start with some definitions.

Definition 3 (Bridges). Let i and j and two distinct positions in the text T and
let h = lcp(i, j) and h > 0. Then, we call the tuple (i, j, h) a bridge. Moreover,
we call h its height, i its left leg and j its right leg, and LCP(T[i, n],T[j, n]) its
label.
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Let Ball be the set of all such bridges. Then clearly,

rlcp(α, β) = max{h | (i, j, h) ∈ Ball and i, j ∈ [α, β]}

Therefore, by mapping each bridge (i, j, h) ∈ Ball to a 2D point (i, j) with
weight h, the problem can be reduced to a 2D-RMQ problem (refer to Sect. 2.3).
This yields an O(|Ball| logε n) space data structure with query time O(log log n).
Unfortunately, this is not a space efficient approach as the size of Ball is Θ(n2)
in the worst case. To circumvent this, Amir et al. [1] introduced the concept of
optimal bridges.

Definition 4 (Optimal Bridges). A bridge (i, j, h) ∈ Ball is optimal if there
exists no other bridge (i′, j′, h′), such that i′, j′ ∈ [i, j] and h′ ≥ h.

Let Bopt be the set of all optimal bridges. Then, it is easy to observe that

rlcp(α, β) = max{h | (i, j, h) ∈ Bopt and i, j ∈ [α, β]}.

Thus, to answer an rlcp query, it is sufficient to examine the bridges in Bopt,
instead of all the bridges in Ball. The crux of Amir et al.’s [1] data structure is
the following lemma.

Lemma 2 ([1]). The size of Bopt is O(n log n).

Therefore, by applying the above reduction (from Range-LCP to 2D-RMQ)
on the bridges in Bopt, they got an O(|Bopt| logε n) = O(n log1+ε n) space data
structure with query time O(log log n). Additionally, they showed that there
exist cases where the the size of Bopt is Ω(n log n). For example, when T is a
Fibonacci word (see Sect. 4 in [1] for its definition). This means that the bound
on the number of optimal bridges is tight.

4 Our Framework

Firstly, we present a replacement for optimal bridges, called special bridges.

Definition 5 (Special Bridges). A bridge (i, j, h) ∈ Ball is special if there
exists no other bridge (i′, j′, h′) ∈ Ball, such that i′, j′ ∈ [i, j] and

LCP(T[i, n],T[j, n]) = LCP(T[i′, n],T[j′, n])

Let Bspe be the set of all special bridges. Clearly Bopt ⊆ Bspe, therefore

rlcp(α, β) = max{h | (i, j, h) ∈ Bspe and i, j ∈ [α, β]}

From Lemma 3, |Bspe| = Θ(|Bopt|), the same space-time trade-off as in Amir et
al. [1] can be obtained by employing special bridges instead of optimal bridges.
However, the main advantage over optimal bridges is that special bridges can be
encoded efficiently, in O(1)-bits per bridge.
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Lemma 3. The size of Bspe is O(n log n).

Proof. Firstly, we show how to bound the number of special bridges with a fixed
label P . Let u be the node in ST such that path(u) = P . For any such bridge
(i, j, h), the leaves (say 	ISA[i] and 	ISA[j]) corresponding to the suffixes T[i, n] and
T[j, n] must be under the subtree of u, but not under the subtree of the same
child of u. This means, either 	ISA[i] or 	ISA[j] must be under a light child of u.
Moreover, the starting position of the suffix corresponding to a leaf can be the
left-leg (resp., right-leg) of at most one special bridge with label P . Therefore
the number of special bridges with a fixed label P is at most twice the sum of
subtree sizes of all light children of u. Hence, the total number of special bridges
is at most twice the sum of subtree sizes of all light nodes in the suffix tree,
which is bounded by O(n log n), since each leaf is under at most O(log n) light
ancestors. ��
We now present an overview of our solution.

4.1 An Overview of Our Data Structure

We start by defining two queries, which are weaker than Range-LCP.

Definition 6. For a parameter Δ = Θ(log n), a query EΔ(α, β) asks to return
an estimate τ of rlcp(α, β), such that

τ ≤ rlcp(α, β) < τ + Δ

Definition 7. A query Q(α, β, h) asks to return YES if there exists special
bridge (i, j, h), such that i, j ∈ [α, β]. Otherwise, Q(α, β, h) returns NO.

The following two are the main components of our data structure.

1. A linear space structure for EΔ(·, ·) queries in O(log1+ε n) time.
2. A linear space structure for Q(·, ·, ·) queries in O(logε n) time.

Our algorithm for computing rlcp(α, β) is straightforward. First obtain
τ = EΔ(α, β). Then, for h = τ, τ + 1, τ + 2, ..., τ + Δ − 1, compute Q(α, β, h).
Then report

rlcp(α, β) = max{h | h ∈ [τ, τ + Δ − 1] and Q(α, β, h) = YES }
The time complexity is log1+ε n + Δ · logε n = O(log1+ε n) and the space com-
plexity is O(n), as claimed. In what follows, we present the details of these two
components of our data structure.

5 Details of the Components

We maintain the suffix tree ST of T and the linear space data structure for
various 2D range successor/predecessor queries (in O(logε n) time [14]) over the
following set of n points.
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P = {(i,SA[i]) | i ∈ [1, n]}
We rely on this structure for computing interval-LCP and left-leg/right-leg
queries (to be defined next).

Lemma 4. We can answer an interval-LCP query ilcp(p, α, β) in time
O(logε n).

Proof. Find the leaf 	ISA[p] first. Then find the rightmost leaf 	x before 	ISA[p]
and the leftmost leaf 	y after 	ISA[p], such that SA[x],SA[y] ∈ [α, β]. We can rely
on the following queries for this:

x = ORQ([−∞, p − 1], [α, β]) and y = ORQ([p + 1,+∞], [α, β])

Clearly, ilcp(p, α, β) is given by max{lcp(p, x), lcp(p, y)}. This completes the
proof. ��
Definition 8. Let (i, j, h) ∈ Bspe, then define

rightLeg(i, h) = j and leftLeg(j, h) = i

If there exists no j, such that (i, j, h) ∈ Bspe, then rightLeg(i, h) = ∞. Similarly,
if there exists no i, such that (i, j, h) ∈ Bspe, then leftLeg(j, h) = −∞. If exists,
then rightLeg(i, h) (resp. leftLeg(j, h)) is unique.

Lemma 5. By maintaining a linear space data structure, we can answer
rightLeg(k, h) and leftLeg(k, h) queries in O(logε n) time.

Proof. Find the ancestor u (if it exists) of 	ISA[k], such that |path(u)| = h via a
weighted level ancestor query on ST3. If u does not exist, then rightLeg(k, h) =
+∞ and leftLeg(k, h) = −∞. Otherwise, let u′ be the child of u, such that 	ISA[k]
is under u′. Also, let [x, y] and [x′, y′] be the range of leaves under u and u′,
respectively. Then,

rightLeg(k, h) = min(ORQ([x, y]\[x′, y′], [k + 1,+∞]),+∞)

leftLeg(k, h) = max(ORQ([x, y]\[x′, y′], [−∞, k − 1]),−∞)

This completes the proof. ��
The structures described in Lemma 4 and Lemma 5 are the building blocks

of our main components, to be described next. The following observation is
exploited in both.

Lemma 6. Suppose that (i, j, h) ∈ Bspe. Then, ∀k ∈ [1, h − 1], there exists
(i + k, ·, h − k) ∈ Bspe such that rightLeg(i + k, h − k) ∈ (i + k, j + k].

Proof. Given lcp(i, j) = h, we have lcp(i+k, j +k) = (h−k). Clearly, (i+k, j +
k, h−k) ∈ Ball. This means, there exists a special bridge (i+k, lk, h−k), where
lk is the smallest integer after i+k, such that lcp(i+k, lk) = h−k. Equivalently,
lk = rightLeg(i + k, h − k). Clearly, lk ≤ j + k, since lcp(i + k, j + k) = h − k.
This completes the proof. ��
3 Weighted level ancestor queries on suffix trees can be answered in O(1) time using

a linear space data structure [10] (also see [7]).
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5.1 The Structure for Estimating Range-LCP

Let Bt denotes the set of all special bridges with height t. Also, for f =
0, 1, 2, . . . , (Δ − 1), where Δ = Θ(log n), define Cf : the set of all special bridges
with its height divided by Δ leaving remainder f . Specifically,

Cf =
�n−f

Δ �⋃

k=0

B(f+kΔ)

Let Cπ : π ∈ [0,Δ−1] be the smallest set among all Cf ’s. Its size can be bounded
by O((n log n)/Δ) (by pigeonhole principle), which is O(n). We map each special
bridge (i, j, h) ∈ Cπ into a 2D point (i, j) with weight h and maintain the linear-
space data structure over them for answering 2D-RMQ. We use the linear-space
structure by Chazelle [5]. The space is |Cπ| = O(n) words and the query time is
O(log1+ε n).

Our Algorithm. Let (α∗, β∗, h∗) be the tallest special bridge, such that both
α∗, β∗ ∈ [α, β]. For computing EΔ(α, β), we query on the 2D-RMQ structure
over Cπ and find the tallest bridge (i′, j′, h′) ∈ Cπ, such that i′, j′ ∈ [α, β]. Two
possible scenarios are

1. β∗ ∈ (α, β−Δ]: We claim that h∗ ∈ [h′, h′ +Δ). Proof follows from Lemma 6.
2. β∗ ∈ (β − Δ,β]: We can rely on Interval-LCP queries. Specifically, h∗ =

max{ilcp(p, α, β) | p ∈ (β − Δ,β]}.

By combining both cases, we have

EΔ(α, β) = max
(
{ilcp(p, α, β) | p ∈ (β − Δ,β]} ∪ {h′}

)

The time complexity is proportional to that of one 2D-RMQ and at most Δ
number of Interval-LCP queries. That is, log1+ε n + Δ · logε n = O(log1+ε n).

5.2 The Structure for Handling Q(α, β, h) Queries

Recall that Bt is the set of all special bridges with height t. Let Lt represent the
sorted list of left-legs of all bridges in Bt in the form of a y-fast trie for fast prede-
cessor search. Also, let Rt be another array, such that Rt[k] = rightLeg(Lt[k], t).
In other words, for k = 1, 2, ..., |Bt|, Lt[k] (resp., Rt[k]) denotes the left-leg (resp.,
right-leg) of kth bridge among all bridges in Bt in the ascending order of left-leg.
Also, let

Sπ = {π, π + Δ,π + 2Δ,π + 3Δ, ..., (π + �(n − π)/Δ�Δ)}
For each t ∈ [1, n], we maintain a separate structure that can answer queries of
the type Q(·, ·, t). Based on whether h in the query Q(α, β, h) is in Sπ or not,
we have two cases.

Case 1: h ∈ Sπ To handle this case, we maintain Lt and the succinct data
structure for range minimum query (RMQ) on Rt for all t ∈ Sπ. The total
space is |Cπ| = O(n) words. Therefore, any query Q(α, β, h) with h ∈ Sπ can be
answered using the following steps.
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1. Find the smallest k, such that Lh[k] ≥ α via a successor query.
2. Then, find the index k′ corresponding to the smallest element in Rh[k, |Rh|]

using a range minimum query. Note that Rh is not stored.
3. Then, find rightLeg(Lh[k′], h) and report “YES” if it is ≤ β, and report “NO”

otherwise.

The time complexity is (log log n + logε n) = O(logε n). The correctness can be
easily verified.

Case 2: h /∈ Sπ We first show how to design a structure for a predefined h. Let
q = pred(h, Sπ) = π +Δ · �(h−π)/Δ� and z = (h− q). Note that for each special
bridge (i, j, h), there exists a special bridge (i + z, ·, h − z) = (i + z, ·, q) (refer to
Lemma 6). This implies the following.

{Lh[k] | k ∈ [1, |Bh|]} ⊆ {(Lq[k] − z) | k ∈ [1, |Bq|]} (1)

Now, define an array R′
h of length |Bq|, such that for any k ∈ [1, |Bq], R′

h[k] =
rightLeg((Lq[k] − z), h). Note that R′

h[k] = ∞ if there exists no special bridge
with left-leg (Lq[k] − z) and height h. Our data structure is a succinct range
minimum query (RMQ) structure over R′

h. We now show how to answer an
Q(α, β, h) query using R′

h and Lq (in Case 1). The steps are as follows.

1. Find the smallest k, such that (Lq[k]− z) ≥ α. We perform a successor query
on Lq for this.

2. Then, find the index k′ corresponding to the smallest element in R′
h[k, |Rq|]

using a range minimum query.
3. Then, find rightLeg(Lh[k′] − z, h) and report “YES” if it is ≤ β, and report

“NO” otherwise.

The time complexity is (log log n + logε n) = O(logε n). The correctness follows
from the definition of R′

h and Eq. 1. The space complexity for a fixed h is |Bq|(2+
o(1)) bits. Therefore, by maintaining the above structure for all values of h, we
can answer Q(α, β, h) for any α, β and h in O(logε n) time. Total space (in bits)
is:

(2 + o(1))
n∑

h=1

|Bπ+Δ·�(h−π)/Δ�| = (2 + o(1))Δ
∑

q∈Sπ

|Bq| = O(n log n).

In summary, any Range-LCP query on the text T[1, n] can be answered in
O(log1+ε n) time using a linear space data structure. We remark that our data
structure can be constructed in O(n log n) time.

Acknowledgments. This research is supported in part by the U.S. NSF under the
grants CCF-1703489 and CCF-1527435, and the Taiwan Ministry of Science and Tech-
nology under the grant 105-2221-E-007-040-MY3.



624 P. Abedin et al.

References

1. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 683–692. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25591-5 70

2. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)

3. Amir, A., Lewenstein, M., Thankachan, S.V.: Range LCP queries revisited. In:
Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
350–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 33

4. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

5. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

6. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 321–
330. Society for Industrial and Applied Mathematics (2005)

7. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: formalization and algo-
rithms. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–
140. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0 11

8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

9. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 107–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 12

10. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix
trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 455–466.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 38

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

12. Keller, O., Kopelowitz, T., Feibish, S.L., Lewenstein, M.: Generalized substring
compression. Theor. Comput. Sci. 525, 42–54 (2014)

13. Lewenstein, M.: Orthogonal range searching for text indexing. In: Brodnik, A.,
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Abstract. We consider efficient construction of DNA-based polymers
in a model introduced by Dabby and Chen (SODA 2013) called inser-
tion systems, where monomers insert themselves into the middle of
a growing linear polymer. Specifically, we describe a new family of
non-deterministic insertion systems that construct length-n polymers in
Θ(log3/2(n)) expected time, breaking the lower bound of Ω(log5/3(n))
for deterministic construction. We also prove that this time is optimal for
systems constructing finite polymers, and that the Θ(log(n)) monomer
types used in the construction is optimal for this time.

1 Introduction

We study a theoretical model of DNA-based algorithmic self-assembly introduced
by Dabby and Chen [6], in which simple particles called monomers aggregate
to form long, complex chains called polymers via individual monomers asyn-
chronously inserting themselves between adjacent monomers. This model shares
similarities with other active1 self-assembly models, e.g. the graph grammars
of Klavins et al. [14,15] and the nubots model of Woods et al. [2–4,19], where
structures undergo reconfiguration.

One appeal of active self-assembly models is that they allow formation of
complex assemblies exponentially quickly by enabling insertion of new particles
simultaneously throughout the assembly, a phenomenon observed in a wide range
of biological systems [6,19]. In contrast, passive self-assembly models such as
the abstract Tile Assembly Model (aTAM) of Winfree [18] are limited to only
polynomially fast growth [12].

A preprint containing the omitted proof of Theorem 1 is available on arXiv: https://
arxiv.org/abs/1411.0973.

1 Not to be confused with active tile assembly models [8,9,11,13,16,17] in which bond
states change.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 626–637, 2018.
https://doi.org/10.1007/978-3-319-94776-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_52&domain=pdf
https://arxiv.org/abs/1411.0973
https://arxiv.org/abs/1411.0973


Non-determinism Reduces Construction Time in Active Self-assembly 627

Of the active self-assembly models, both graph grammars and nubots are
capable of a topologically rich set of assemblies and reconfigurations, but rely
on stateful particles forming complex bond arrangements. In contrast, insertion
systems consist of stateless particles forming a single chain of bonds. Indeed, all
insertion systems are captured as a special case of nubots in which a linear poly-
mer is assembled via parallel insertion-like reconfigurations, as in Theorem 5.1
of [19]. The simplicity of insertion systems makes their implementation in matter
a more immediately attainable goal; Dabby and Chen [5,6] describe experimental
implementations in DNA.

1.1 Non-determinism in Insertion Systems

Previous work in insertion systems [6,10] only considered deterministic sys-
tems, where each location accepts at most one monomer type. In the equiv-
alent [10] model of context-free grammars, deterministic systems are those in
which each non-terminal symbol appears on the left-hand side of a unique pro-
duction rule. Allowing insertion sites in which different monomer types may
be inserted gives rise to non-deterministic insertion systems. As a result of such
sites, non-deterministic insertion systems may construct many distinct polymers.

In deterministic systems, the expected time of assembling length-n polymers
is known [10] to have a tight lower bound of Ω(log5/3(n)). In contrast, a simple
non-deterministic system of just two monomer types is easily shown (see Sect. 3)
to reduce expected assembly time to Θ(log n). The cost of this reduced assembly
time is a loss of precision: the two-monomer system yields infinitely many poly-
mers of arbitrarily large lengths (i.e. is “pumpable” in grammar terminology),
making it useless for targeted construction of polymers of a given length.

1.2 Our Results

We consider whether non-determinism may be used to reduce assembly time
without resulting in the complete loss of precision in the lengths of constructed
polymers (i.e. without becoming “pumpable”). We answer this question in the
affirmative, giving a non-deterministic insertion system that assembles length-n
polymers in Θ(log3/2(n)) expected time (Theorem 1) and a proof that this time
is optimal systems that assemble a finite number of polymers (Theorem 2). How-
ever, the system still suffers from reduced precision: polymers of Θ(n) distinct
lengths up to n are constructed (see Sect. 5 for further discussion).

The proof of Theorem 2 also implies a monomer type and time tradeoff for
systems constructing a finite set of polymers: constructing a length-n polymer
using k monomer types takes Ω(log2(n)/

√
k) expected time (Lemma 4). This

lemma implies that both our upper bound construction using k = O(log(n))
monomer types (and assembling in O(log3/2(n) expected time) and the upper
bound construction of [10] using k = O(log2/3(n)) monomer types (and assem-
bling in O(log3/2(n) expected time) are optimal constructions at both ends of
this tradeoff curve.
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2 Definitions

An insertion system in the active self-assembly model of Dabby and Chen [6]
carries out the construction of a linear polymer consisting of constant length
monomers. A polymer grows incrementally by the insertion of a monomer at
an insertion site between two existing monomers in the polymer, according to
complementary bonding sites between the monomer and the insertion site.

An insertion system S is defined as a 4-tuple S = (Σ,Δ,Q,R). The first
element, Σ, is a set of symbols. Each symbol s ∈ Σ has a complement s∗. We
denote the complement of a symbol s as s, i.e. s = s∗ and s∗ = s. The set
Δ is a set of monomer types, each assigned a concentration. Each monomer is
specified by a quadruple (a, b, c, d)+ or (a, b, c, d)−, where a, b, c, d ∈ Σ ∪ {s∗ :
s ∈ Σ}, and each concentration is a real number between 0 and 1. The sum
of all concentrations in Δ must be at most 1. The two symbols Q = (a, b) and
R = (c, d) are special two-symbol monomers that together form the initiator of
S. It is required that either a = d or b = c. The size of S is |Δ|, the number of
monomer types in S.

A polymer is a sequence of monomers Qm1m2 . . . mnR where mi ∈ Δ such
that for each pair of adjacent monomers (w, x, a, b)(c, d, y, z), either a = d or
b = c. The length of a polymer is the number of monomers, including Q and R,
it contains. Each pair of adjacent monomer ends (a, b)(c, d) form an insertion
site. Monomers can be inserted into an insertion site (a, b)(c, d) according to the
following rules (see Fig. 1):

1. If a = d, then any monomer (b, e, f, c)+ can be inserted.
2. If b = c, then any monomer (e, a, d, f)− can be inserted.2

A monomer is inserted after time t, where t is an exponential random variable
with rate equal to the concentration of the monomer type. The set of all poly-
mers constructed by an insertion system is recursively defined as any polymer
constructed by inserting a monomer into a polymer constructed by the system,
beginning with the initiator. Note that the insertion rules guarantee by induction
that for every insertion site (a, b)(c, d), either a = d or b = c.

We say that a polymer is terminal if no monomer can be inserted into any
insertion site in the polymer, and that an insertion system is deterministic if
every polymer P constructed by the system is either P or is non-terminal and
has length less than that of P (i.e. can become P ).

3 Upper Bound for Assembly Time

It is natural to ask whether faster construction of polymers is possible in non-
deterministic systems: systems that do not construct a single terminal polymer.
A two-monomer-type insertion system consisting of the initiator (s1, s2)(s∗

2, s
∗
1)

2 In [6], this rule is described as a monomer (d, f, e, a)− that is inserted into the
polymer as (e, a, d, f).
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Fig. 1. A pictorial interpretation of the two insertion rules for monomers. Loosely based
on Fig. 2 and corresponding DNA-based implementation of [6].

and monomer types (s∗
2, s

∗
1, s1, s2)

+, and (s∗
2, x, x, s2)+ simultaneously constructs

polymers of all lengths n ≥ 3 in expected time O(log n) via balanced inser-
tion sequences of logarithmic length. Moreover, any polymer in any system has
Ω(log n) expected construction time, since every insertion takes Ω(1) expected
time, and constructing a polymer of length n requires an insertion sequence of
length at least �log2(n − 2)�. So if assembling anything is permitted, then this
two-monomer-type system is asymptotically optimal.

This leads to the question considered in this paper: to what extent is assembly
time reduction possible in systems that only construct finite number of polymers?
Our next result proves that even this relaxation is sufficient to improve assembly.
The key idea of the construction is allow large sets of monomer types to “com-
pete” to insert into a common insertion site first. This competition increases the
total concentration of insertable monomer types, reducing the expected insertion
time, but results in a non-deterministic system.

Theorem 1. For any positive, odd integer r, there exists an insertion system
constructing a finite set of polymers with O(r2) monomer types that constructs
a polymer of length n = 2Θ(r2) in O(log3/2(n)) expected time. Moreover, the
expected time has an exponentially decaying tail probability.
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Due to space constraints, the proof of Theorem 1 is omitted; we give a brief
sketch here. The construction uses insertion sites to store the (two) variable val-
ues of a double for-loop, with short insertion sequences used to either increment
the inner variable or increment the outer variable and reset the inner variable
to 0.

Non-determinism is used to speed up loop increments in the following way:
loops with different variable values “share” insertable monomer types, increasing
the concentration of insertable monomer types for all insertion sites to decrease
the expected time for the increment to take place. This comes with the tradeoff
that not all monomer types lead to successful incrementing; some instead cause
the loop to “break”, leading to assembly of additional polymers of length less
than n.

4 Lower Bound for Assembly Time

Here we show that the construction in the previous section is the optimal in
expected assembly time and, for the given assembly time, optimal in the number
of monomer types used (Theorem 2). A collection of intervening lemmas are used
to prove bounds on the number of monomer types and expected time to carry out
an insertion sequence: a sequence of monomer insertions where each insertion is
into a site created by the previous insertion.

Observe that if two monomer types of the same sign are insertable into a
common site, then the set of sites each can be inserted into is equal. Nearly all of
the lemmas involve consideration of not only monomer types, but insertion sets:
maximal sets of same-signed monomer types sharing a common set of insertion
sites each can be inserted into.

The first several lemmas of the section are used to prove Lemma 4, a lemma
describing the trade-off between the number of monomer types and expected
construction time for systems constructing finite polymer sets. This lemma is
combined with extremal bounds on the minimum number of monomer types
and insertion sets to prove the final result.

Lemma 1. Any insertion sequence of length l with no repeated insertion sites
has Θ(l) sites of the form (a, b)(c, a) with b �= c.

Proof. Insertion sites have one of three forms:

Positive: (a, b)(c, a) with b �= c.
Mixed: (a, b)(b, a).
Negative: (b, a)(a, c) with b �= c.

We prove that every sequence of four consecutive insertion sites has at least
one positive site. Consider such a sequence of four sites (and the three intervening
insertions). If the first site is positive, we’re done. If the first site is mixed,
then the first monomer type inserted may be negative or positive. If a negative
monomer type is inserted:

(a, b) 	 (b, a)
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(a, b)(c, a, a, d)(b, a)

Since the sequence does not repeat sites, b �= c, d and either second site,
(a, b)(c, a) or (a, d)(b, a), is positive. If a positive monomer type is inserted:

(a, b) 	 (b, a)

(a, b)(b, c, d, b)(b, a)

As before, a, d �= c since sites cannot repeat. So the next insertion must use a
negative monomer type. We assume the left site is used next in the sequence (a
symmetric argument works if the right site is used instead). The entire insertion
sequence has the form:

(a, b) 	 (b, a)

(a, b) 	 (b, c, d, b)(b, a)

(a, b) 	 (b, c)

(a, b)(e, a, c, f)(b, c)

As before, e, f �= b since sites cannot repeat. So the next site, either (a, b)(e, a)
with b �= e or (c, f)(b, c) with f �= b is positive. So the third site in the sequence
is positive. Finally, if the initial site is negative then the first monomer type
inserted is negative:

(b, a) 	 (a, c)

(b, a) 	 (d, b, c, e)(a, c)

(b, a) 	 (d, b)

We assume that the left site is used next in the sequence (a symmetric argu-
ment works if the right side is used instead). If a �= d then the second site is
positive. Otherwise the second site is mixed, and by previous argument, at most
two more insertions (a total of three) will take place until a positive site appears.
So in the entire sequence of length l, a positive site appears at least once in every
sequence of four consecutive sites. 
�
Lemma 2. Any insertion sequence with no repeated insertion sites using k
monomer types forming m insertion sets has length O(m

√
k).

Proof. Let S = (Σ,Δ,Q,R) be the insertion system containing the sequence.
Relabel the symbols in Σ ∪ {s∗ : s ∈ Σ} as s1, s2, . . . , s4k, with some of these
symbols possibly unused. Note that this implies that for every si, si = sj for
some j ∈ 1, 2 . . . , 4k. Let l be the length of the sequence. By Lemma 1, Θ(l) sites
are positive: they have the form (sa, sb)(sc, sa) with b �= c.

A bound of
∑4k

i=1 min(|Li|, |Ri|) ≤ 3m. Let Li and Ri be the sets of
monomer types of the forms ( , , si, )± and ( , si, , )±, respectively, used in
the insertion sequence. Each positive site (si, sb)(sc, si) consists of a left monomer
in Li and right monomer in Ri. Every occurrence of a positive site in the sequence
is followed by the use of the left or right resulting site, e.g.:
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(si, sb) 	 (sc, si)

(si, sb) 	 (sb, sd, se, sc)(sc, si)

(si, sb) 	 (sb, sd)

It is the case that d is unique for c, i.e. no two insertions into positive sites
using the left resulting sites both use monomers of the form (sb, sd, , )+,
since such a pair of monomers implies the sequence repeats the insertion site
(sa, sb)(sb, sd). A similar claim holds for e and b in the case that the right
site is used. So inserting into the resulting site requires a monomer from a
distinct insertion set {( , si, sd, )− ∈ Δ} or, in the special case that i = d,
{(sb, , , sb)+ ∈ Δ}.

The resulting sites require monomers from a number of distinct insertion sets
equal to the sum of two values. First, the number of times the left side is used
with a distinct c and a monomer is inserted into a site (si, sb)(sb, sd) with d
unique for c. Second, the number of times the right side is used with a distinct
b and a monomer is inserted into a site (se, sc)(sc, si) with e unique for b. An
assignment of left and right side usage that minimizes the number of distinct
insertion sets needed is nearly equivalent to a minimum vertex covering of the
following bipartite graph:

• A node L(i,b) for every site (si, sb)(sc, si) in the insertion sequence.
• A node R(c,i) for every site (si, sb)(sc, si) in the insertion sequence.
• An edge (L(i,b), R(c,i)) for every site (si, sb)(sc, si) in the insertion sequence.

Selecting a vertex to cover a given edge corresponds to using the resulting left
or right site of the edge’s site, e.g. selecting R(c,i) to cover the edge (L(i,b), R(c,i))
corresponds to using the resulting left site and inserting a monomer type of the
form ( , si, sd, )−, where d is unique for c. By König’s theorem (see [1,7]), since
the graph is bipartite, the size of a minimum vertex covering is equal to the size
of a maximum matching, which is bounded from above by

∑4k
i=1 min(|Li|, |Ri|).

However, an insertion set {( , se, sd, )− ∈ Δ} corresponds to selecting both
R(c,i), where d is unique for c, and L(j,b), where e is unique for b. So the num-
ber of insertion sets needed may be as little as half the size of the vertex
cover of the bipartite graph. Additionally, one site may not be inserted into.
So

∑4k
i=1 min(|Li|, |Ri|) − 1 ≤ 2m and

∑4k
i=1 min(|Li|, |Ri|) ≤ 3m.

Maximizing Insertion Sequence Length. Consider the number of posi-
tive sites y accepting some monomer type. We proved that Ω(l) = y and
it is easily observed that y ≤ ∑4k

i=1 min(m, |Li| · |Ri|). We also proved that
∑4k

i=1 min(|Li|, |Ri|) ≤ 3m and it is easily observed that
∑4k

i=1 max(|Li|, |Ri|) ≤
2k, since each monomer type is in at most one Li and one Ri. This gives the
following set of constraints:

1. Ω(l) =
∑4k

i=1 min(m, |Li| · |Ri|).
2.

∑4k
i=1 min(|Li|, |Ri|) ≤ 3m.

3.
∑4k

i=1 max(|Li|, |Ri|) ≤ 2k.
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Observe that |Li| · |Ri| = min(|Li|, |Ri|) ·max(|Li|, |Ri|). Define two new vari-
ables yi = min(|Li|, |Ri|) and zi = max(|Li|, |Ri|) for an alternate formulation of
the previous constraints:

1. Ω(l) =
∑4k

i=1 min(m, yizi).
2.

∑4k
i=1 yi ≤ 3m.

3.
∑4k

i=1 zi ≤ 2k.

Relax yi, zi to be real-valued and let W = {i : yizi > 0}. If 0 < yizi, yjzj < m
for some i �= j and yi = max(yi, zi, yj, zj), then min(m, yizi) + min(m, yjzj) <
min(m, yi(zi+ε))+min(m, yj(zj−ε)) for sufficiently small ε > 0. More generally,
if 0 < yizi, yjzj < m for some i �= j then the values of yi, zi, yj , zj can be modified
to increase

∑4k
i=1 min(m, yizi). Therefore the maximum value is achieved when

m = yizi for all but at most one i ∈ W .
We claim that it cannot be that yizi = m for 6

√
k distinct values of i.

By contradiction, assume so. So |W | ≥ 6
√

k and the average value of yi for
i ∈ W must be less than 3m/(6

√
k) = m/(2

√
k). So for a subset W ′ ⊆ W with

|W ′| ≥ |W |/2 ≥ 3
√

k, yi ≤ 2 · m/(2
√

k) = m/
√

k for all i ∈ W ′. For every
i ∈ W ′, because yi ≤ m/

√
k and yizi = m, it must be the case that zi ≥ √

k. So
∑4k

i=1 zi ≥ |W ′|·√k ≥ 3k, a contradiction with the constraint that
∑4k

i=1 zi ≤ 2k.
So the maximum value is achieved when m = yizi for all but at most one

i ∈ W , with |W | + 1 < 6
√

k + 1 < 7
√

k. So
∑4k

i=1 min(m, yizi) ≤ (|W | + 1)m <

7m
√

k. So Ω(l) = 7m
√

k and l = O(m
√

k). 
�
Lemma 3. An insertion sequence of length l using monomer types from m
insertion sets with no repeated insertion sites takes Ω(ml) expected time.

Proof. By linearity of expectation, the total expected time of the insertions is
equal to the sum of the expected time for each insertion. By Lemma 1, Θ(l) sites
are both positive, i.e. they have the form (sa, sb)(sc, sa) with b �= c, and accept
the monomer types of a positive, non-empty insertion set.

Let m be the number of insertion sets formed by the monomer types inserted
into these Ω(l) sites. Let c1, c2, . . . , cm be the sums of the concentrations of
the monomer types in these sets, and x1, x2, . . . , xm be the number of times a
monomer from each set is inserted in the subsequence. Then the total expected
time for all of the insertions in the subsequence is

∑m
i=1 xi/ci. Moreover, these

variables are subject to the following constraints:

1.
∑m

i=1 xi = Ω(l) (total number of insertions is Ω(l)).
2.

∑m
i=1 ci ≤ 1 (total concentration is at most 1).

Minimizing Expected Time. We now consider minimizing the total expected
time subject to these constraints, starting with proving that xi/ci = xj/cj for
all 1 ≤ i, j ≤ m. That is, that the ratio of the number of sites that accept an
insertion set to the total concentrations of the monomer types in the set is equal
for all sets. Assume, without loss of generality, that xi/ci > xj/cj and ci, cj > 0.
Then it can be shown algebraically that the following two statements hold:
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1. If cj ≥ ci, then for sufficiently small ε > 0, xi

ci
+ xj

cj
> xi

ci+ε + xj

cj−ε .
2. If cj < ci, then for sufficiently small ε > 0, xi

ci
+ xj

cj
> xi

ci−ε + xj

cj+ε .

Since the ratios of every pair of monomer types are equal,

ci

1
≤ ci∑m

i=1 ci
=

xi∑m
i=1 xi

= O(xi/l)

So Ω(l) = xi/ci and Ω(ml) =
∑m

i=1 xi/ci. 
�
Lemma 4. Any polymer of length n constructed by an insertion system with
k monomer types constructing a finite set of polymers takes Ω(log2(n)/

√
k)

expected time.

Proof. By Lemma 2, n = 2O(m
√

k). So m = Ω(log n/
√

k). Constructing any
polymer of length n requires an insertion system of length l = Ω(log n). Then
by Lemma 3, the expected time to construct any polymer of length n is Ω(ml) =
Ω(log2(n)/

√
k).

Before proving the final result, we prove a helpful lemma showing that
the number of insertion sets cannot be too much smaller than the number of
monomer types:

Lemma 5. Any insertion sequence of length l with no repeated insertion sites
using k monomer types forming m insertion sets has m = Ω(

√
k).

Proof. Notice that this bound can only be obtained by assuming the monomer
types are used to carry out an insertion sequence, since it is possible to have an
arbitrarily large set of monomer types belonging to a single insertion set. The
number of monomer types used is at most the length of the insertion sequence
(k ≤ l), and the remainder of the proof is spent proving that the number of
insertion sites in a system with m insertion sets is O(m2) (l = O(m2)), giving
the desired inequality.

Let S = (Σ,Δ,Q,R) be the insertion system containing the sequence. Rela-
bel the symbols in Σ ∪ {s∗ : s ∈ Σ} as s1, s2, . . . , s4k, with some of these
symbols possibly unused. By Lemma 1, Ω(l) sites are positive: they have the
form (sa, sb)(sc, sa) with b �= c.

Since the second monomer inserted to create the site must be negative, each
positive site consists of at least one negative monomer type. Let L−

i and R−
i be

the sets of monomer types of the forms ( , , si, )− and ( , si, , )−, respec-
tively, used in the insertion sequence of length l. For a specific i, there exists a
site of the form (si, sb)(sc, si) only if |L−

i |+|R−
i | > 0. So the number of values of i

such that a site of the form (si, sb)(sc, si) exists is at most
∑4k

i=1 |L−
i |+∑4k

i=1 |R−
i |.

Since all monomer types of a negative insertion set belong to the same L−
i and

R−
i ,

∑4k
i=1 |L−

i | +
∑4k

i=1 |R−
i | ≤ 2m.

Next, observe there are at most m sites of the form (si, sb)(sc, si) that accept a
monomer, since each site requires a monomer from a different positive insertion
set. So the total number of positive sites that accept a monomer is at most
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2m · m = 2m2. Since there are Ω(l) positive sites in the insertion sequence,
Ω(l) = 2m2 and l = O(m2). 
�
Theorem 2. Any polymer of length n constructed by an insertion system con-
structing a finite set of polymers takes Ω(log3/2(n)) expected construction time.
Moreover, constructing a polymer of length n in Θ(log3/2(n)) expected time
requires using Ω(log n) monomer types.

Proof. First, observe that constructing a polymer of length n in a system
constructing a finite set of polymers involves an insertion sequence of length
log2(n) ≤ l with no repeated sites. By Lemmas 2 and 5, log2(n) = O(m2) and so
m = Ω(

√
log n) Then by Lemma 3, carrying out the insertion sequence and com-

pleting the construction of the polymer takes Ω(ml) = Ω(log3/2(n)) expected
time and by Lemma 4, k = Ω(log n). 
�

5 Open Problems

The results of in this paper, combined with those of [10] describe the landscape
of efficient polymer construction using insertion systems:

– Trivial systems of just a few polymers can construct polymers of arbitrary
length in optimal time, but with the caveat that the growth is uncontrolled
and the systems construct infinite set of polymers.

– Deterministic construction a polymer of length n requires Ω(log2/3(n))
monomer types and Ω(log5/3(n)) expected time, and both of these are achiev-
able simultaneously.

– The intermediate situation of constructing finite sets of polymers is more
intricate – polymers can be constructed faster, but with the trade-off of using
more monomer types and non-determinism.

In our system achieving O(log3/2(n)) expected construction time (Theo-
rem 1), an exponential number (2Θ(n log log n)) of “junk” terminal polymers are
constructed. Since achieving such speed requires significantly fewer insertion sets
than monomer types, some junk is necessary – but how much? One approach to
proving a lower bound is to prove that insertion sites accepting large insertion
sets imply a large number of terminal polymers. We have been unable to prove
such an implication even in the simplest case:

Conjecture 1. Every deterministic system with no unused monomer types has
exclusively singleton insertion sets.

Since assembling a polymer in o(log5/3(n)) expected time requires that
Ω(log n) insertions along most insertion sequences are non-deterministic, the
previous conjecture implies that any improvement in speed comes with an expo-
nential number of junk terminal polymers:

Conjecture 2. Any system constructing a polymer of length n in O(log3/2(n))
expected time constructs a set of 2Ω(n) polymers.
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Setting aside non-determinism, the trade-off between monomer types and
construction time has a lower bound (Lemma 4) with matching upper bounds
only at the extremes. Does there exist a parameterized system matching the
lower bound across the entire range?

Conjecture 3. For every combination of n and k such that log2/3
2 (n) ≤ k ≤

log2(n), there exists a system with k monomer types that constructs a polymer
of length n in O(log2 n/

√
k) time.
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Abstract. The Minimum Membership Set Cover (MMSC) problem is
a well studied variant among set covering problems. We study the dual
of MMSC problem which we refer to as Minimum Membership Hitting
Set (MMHS) problem. Exact Hitting Set (EHS) problem is a special
case of MMHS problem. In this paper, we show that EHS problem for
hypergraphs induced by horizontal axis parallel segments intersected by
vertical axis parallel segments is NP-complete. Our reduction shows that
finding a hitting set in which the number of times any set is hit is min-
imized does not admit a 2 − ε approximation. In the case when the
horizontal segments are intersected by vertical lines (instead of vertical
segments), we give an algorithm to optimally solve the MMHS problem
in polynomial time. Clearly, this algorithm solves the EHS problem as
well. Yet, we present a combinatorial algorithm for the special case of
EHS problem for horizontal segments intersected by vertical lines because
it provides interesting pointers to forbidden structures of intervals that
have exact hitting sets. We also present partial results on such forbidden
structures.

1 Introduction

A set system X is a pair (S, C), where S is a set of elements and C is a collection
of subsets of S. A hitting set of X is a set S′ ⊆ S that contains at least one
element from every set in C. The set S is trivially a hitting set for X. Given a
set system X, finding a minimum cardinality hitting set of X is a fundamental
computational problem known to be NP-complete [8]. This problem has several
well-studied variants. In our paper, we study a slightly different hitting set prob-
lem, which we refer to as minimum membership hitting set (MMHS) problem.

The set S′ ⊆ S is an exact hitting set of X, if S′ is a hitting set of X and
every set in C contains exactly one element from S′. If X has an exact hitting
set, then we refer to X as an exactly hittable set system. Given a set system
X, the Exact Hitting Set (EHS) problem decides if X is exactly hittable. Given
a set system X and a positive integer k, the MMHS problem seeks to find a
hitting set S′ ⊆ S such that for every Ci ∈ C the number of elements in set
S′ ∩ Ci is atmost k. Observe that EHS is a special case of MMHS with k = 1.
The MMHS problem is the dual of a well-studied set cover problem known as
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 638–649, 2018.
https://doi.org/10.1007/978-3-319-94776-1_53
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Minimum Membership Set Cover (MMSC) problem. In the MMSC problem,
given a set system X = (S, C), one must find if there exists a subset C′ of C
that covers all elements in S such that the maximum number of occurrences
each element from S has in C′ is at most k. MMSC problem was motivated by
the need to reduce interference among transmitting base stations in cellular net-
works. Kuhn et al. [11] have addressed the problem of minimizing interference
by assigning every base station a transmission power level such that the number
of base stations covering any client is minimum. However, every client must be
under the transmission range of at least one base station in order to maintain
availability of the network. Formally, a base station is modelled as a set contain-
ing exactly all clients covered. The union of transmission ranges by all selected
base stations is modelled as a collection of client sets. Kuhn et al. [11] showed
that MMSC is NP-complete by a reduction from Minimum Set Cover problem.
They also gave an O(ln n) approximation algorithm for MMSC and showed that
there is no polynomial time approximation algorithm with ratio better than lnn
unless NP ⊂ TIME(nO(log log n)). MMSC problem has also been studied in con-
texts where the collection of sets have consecutive ones property (C1P) [4]. In a
paper by Dom et al. [3], the authors studied the Red-Blue Hitting Set (RBHS)
problem and special cases of RBHS where sets have C1P. RBHS problem is a
generalization of MMSC problem. Given an n-element set S, two collections Cred

and Cblue of subsets of S, and a non-negative integer k, RBHS problem seeks to
find if there exists a subset S′ ⊆ S such that each set in Cred contains at least one
element from S′ and each set in Cblue contains at most k elements from S′. The
authors showed that RBHS is NP-complete when either Cred or Cblue or both do
not have C1P. However, when both Cred and Cblue obey C1P, the problem has
been shown to admit a polynomial time solution. Observe that MMHS problem
is exactly the same as RBHS problem when Cred = Cblue.

In this paper, we study the EHS and MMHS problems on geometric set sys-
tems obtained by intersection of segments on a two-dimensional plane. A set of
line segments is called axis parallel (or orthogonal), if each line segment in the
set is parallel either to the x-axis or to the y-axis on the plane. The line seg-
ments parallel to x-axis are called horizontal (denoted by set H) and those line
segments parallel to y-axis are called vertical (denoted by set V). Katz et al. [10]
studied geometric stabbing problems for axis parallel line segments. In partic-
ular, they studied the Orthogonal Segment Dominating Set (OSDS) problem to
obtain a minimum cardinality dominating set for H∪V and Orthogonal Segment
Covering (OSC) problem to find a subset of vertical segments of minimal size
that intersects all horizontal segments in H. They showed that, in general, both
OSDS and OSC are NP-complete. For the special cases of OSC, where either the
set of horizontal segments or the set of vertical segments or both are constituted
by rays1, they gave deterministic polynomial-time algorithm based on dynamic
programming. Observe that OSDS and OSC focus on minimizing the cardinality
of the hitting set, whereas in our paper, we focus on minimizing the number of
times any set is hit.

1 A ray is a line with one endpoint and extends infinitely in the other direction.
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1.1 Our Results

We present the EHS problem and the MMHS problem as problems in hyper-
graphs, which are graph theoretic representations of set systems. A hypergraph
X is a pair (U , E) where U is a set of vertices and E is a set of hyperedges
which are subsets of vertices in U . In the problems we consider, the horizontal
segments or the vertical segments are the vertices of the hypergraph. The set
of vertical segments that intersect with horizontal segments are the hyperedges
of the hypergraph. Formally, we consider the hypergraph X = (V, {N(h)}h∈H)
where H is a set of horizontal segments and V is a set of vertical segments in
the plane and N(h) denotes the set of vertical segments intersecting a horizontal
segment h (N(h) denotes the neighbourhood of segment h). Given a set S ⊆ V,
we say a vertex v ∈ S hits a hyperedge e ∈ E if and only if hyperedge e contains
the vertex v. We also consider hypergraphs whose vertex set is a set of vertical
lines and not vertical segments. We clearly distinguish between the two cases in
the following definitions:

1. MHSegments : Minimum Membership Hitting Set for Horizontal Segments
intersected by Vertical Segments
Let H be a set of horizontal segments and V be a set of vertical segments in
the plane.
Input : X = (V, {N(h)}h∈H), k ∈ Z

+

Output : Does there exist a set S ⊆ V that hits every hyperedge such that
maximum number of times each hyperedge in X is hit by S is at most k?
We refer to the special case of k = 1 in MHSegments as EHSegments (Exact
Hitting Set for Horizontal Segments intersected by Vertical Segments).

2. MHLines : Minimum Membership Hitting Set for Horizontal Segments inter-
sected by Vertical Lines
Let H be a set of horizontal segments and Vl be a set of vertical lines in the
plane.
Input : Xl = (Vl, {N(h)}h∈H), k ∈ Z

+

Output : Does there exist a set S ⊆ Vl that hits every hyperedge such that
maximum number of times each hyperedge in Xl is hit by S is at most k?
When k = 1 in MHLines, we refer to it as EHLines (Exact Hitting Set for
Horizontal Segments intersected by Vertical Lines).

Katz et al. [10] observed that the more there are “endpoints” for elements
in sets H and V, the harder the OSC problem becomes. Our results are simi-
lar wherein we show that MHSegments is harder than MHLines. In Sect. 2, we
show that MHSegments is NP-complete through a reduction from Planar Pos-
itive 1-in-3 SAT. For arbitrary k, we show that MHSegments does not admit
a 2 − ε approximation for ε > 0. For the case of MHLines, we give a polynomial
time algorithm for arbitrary k. We do this by reducing MHLines to MHIntervals
(MMHS problem in intervals, defined in Sect. 1.2). We also give a combinatorial
algorithm for the special case when k = 1. However, we do not know if this
algorithm can be extended to arbitrary k. In Sect. 4.1, we present combinatorial
structures that are forbidden for exactly hittable interval hypergraphs. These
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forbidden structures give an insight into the complexity of recognizing exactly
hittable interval hypergraphs.

In their paper, Katz et al. [10] have studied the minimum cardinality hit-
ting set problem for segments intersected by rays and for rays intersected by
segments. They showed that these problems can be solved in polynomial time
using dynamic programming techniques. We believe that similar dynamic pro-
gramming approaches can be devised for minimum membership variants as well.

1.2 Preliminaries

Definition 1 (Interval Hypergraph). The hypergraph Hn = (U , In), where U =
{1 . . . n} is a set of points and In = {[i, j]|i � j, i, j ∈ [n]} is a set of intervals,
is known as the discrete intervals hypergraph [9] or complete interval hypergraph
[1]. A hypergraph whose hyperedge set is a family of intervals I ⊆ In is known
as an interval hypergraph.

Definition 2 (k-hitting set). If S is a hitting set of hypergraph X that hits every
hyperedge atmost k times, then we refer to S as a k-hitting set of X.

Definition 3. MHIntervals : Minimum Membership Hitting Set for Intervals
Input : An interval hypergraph X = (V, I) and k ∈ Z

+

Output : Does there exist a set S ⊆ V that hits every interval in I such that
maximum number of times each interval in X is hit by S is at most k?

Definition 4 (Consecutive Ones Property (C1P)). [12] A matrix is said to have
Consecutive Ones Property for rows if it has a permutation of its columns such
that 1’s in every row are placed consecutively. A set family is said to have C1P
for rows if the incidence matrix of the family (elements on the sets) has C1P.

2 Minimum Membership Hitting Sets for Segments
Intersecting Segments

In this section, we show that EHSegments is NP-complete. We prove the NP-
hardness through a reduction from Planar Positive 1-in-3 SAT. Let ϕ be
a boolean formula on n variables X = {x1, x2, . . . , xn} having m clauses C =
{C1, C2, . . . , Cm}. Every boolean formula can be associated with a planar bipar-
tite graph Gϕ = (C,X,E) where X = {x1, x2, . . . , xn}, C = {C1, C2, . . . , Cm}
and E = {(xi, Cj) | variable xi appears in the clause Cj}.
PP1in3SAT (Planar Positive 1-in-3 SAT):

Input : A positive 3-CNF Boolean formula ϕ(X) such that Gϕ is planar.
Output : Does there exist a satisfying assignment for ϕ that sets exactly

one variable in every clause to true?
PP1in3SAT is known to be NP-complete [13]. We say a formula is 1-in-3 satisfiable
if and only if there exists an assignment ā = (a1, a2, . . . , an) ∈ {0, 1}n such that
for every clause Cj in ϕ, there is exactly one variable xi ∈ Cj such that ai = 1.
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Theorem 1. EHSegments is NP-complete.

Proof. EHSegments is in NP. We show that EHSegments is NP-hard by reducing
from PP1in3SAT. Let ϕ be a positive 3-CNF boolean formula such that Gϕ is
planar. Hartman et al. [6] have shown that every planar bipartite graph has
a grid representation. That is, corresponding to every planar bipartite graph
G = (U, V,E), there is a set of horizontal segments U and vertical segments V on
the plane such that for any ui ∈ U, vj ∈ V , edge (ui, vj) belongs to E if and only
if the segments ui and vj intersect [6]. Since Gϕ is a planar bipartite graph, Gϕ =
(C,X,E) has a grid representation (H,V) where H and V are the horizontal and
vertical segments in the grid representation of Gϕ corresponding to C and X
respectively. Such a grid representation can be obtained in polynomial time [2,6].
Let X = (V, {N(h)}h∈H) be the hypergraph induced by segments in the grid
representation (H,V). We now argue that ϕ is 1-in-3 satisfiable if and only if
X is exactly hittable. Let a = (a1, a2, . . . , an) be a satisfying assignment of ϕ.
Consider the set S = {vi | ai = 1, i ∈ [n]}. S is an exact hitting set for X. Now,
suppose X is exactly hittable and let S be one of the exact hitting sets of X. Let
T = {i | vi ∈ S}. Consider the assignment ā = (a1, a2, . . . , an) ∈ {0, 1}n defined
by

ai =

{
1 if i ∈ T

0 therwise

Note that ϕ is 1-in-3 satisfiable via the assignment ā. ��
Since EHSegments is a special case of MHSegments and EHSegments is NP-

complete, it follows that MHSegments is also NP-complete.

2.1 Inapproximability of MHSegments

Theorem 2. If there is a 2 − ε approximation algorithm for MHSegments for
some ε > 0, then P = NP.

Proof. Suppose there is a 2 − ε approximation algorithm for MHSegments for
some ε > 0. Then there is an approximation algorithm A that outputs a set
S ⊆ V such that S hits every hyperedge in X and that the maximum number
of times each hyperedge in X is hit by S is atmost (2 − ε) · OPT where OPT is
the size of the optimum solution to MHSegments instance. We use algorithm A
to decide EHSegments.

Let A(J ) � |S| where S is the set returned by algorithm A on input J . We
use this to decide EHSegments.
Algorithm for EHSegments: On input J , if A(J ) ≤ 1 then return yes. Else if
A(J ) ≥ 2 then return no.
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To argue the correctness of the algorithm for EHSegments, we argue:

(i) If A(J ) ≤ 1, then J is a yes instance of EHSegments.
Proof: If A(J ) ≤ 1 then the set S ⊆ V returned by A hits every hyperedge
in X atleast once and the maximum number of times each hyperedge is hit
by S is atmost 1. Hence S is an exact-hitting set for X. J is a yes instance
of EHSegments.

(ii) If J is a yes instance of EHSegments, then A(J ) ≤ 1.
Proof: If J is a yes instance, then we know OPT = 1. A outputs a set
S ⊆ V that hits every hyperedge such that the maximum number of times
each hyperedge in X is hit by S is atmost (2− ε). Since the number of times
a hyperedge is hit by S is an integer (2 − ε) ≤ 1 and S hits each hyperedge
in X, it follows that A(J ) ≤ 1.

Thus algorithm A decides EHSegments in polynomial time. By Theorem 1,
EHSegments is NP-complete. Therefore, if there is a 2 − ε approximation algo-
rithm for MHSegments for some ε > 0, then P = NP. ��

3 Minimum Membership Hitting Sets for Lines
Intersecting Segments

In this section, we show that MHLines can be solved in polynomial time. Given
a set H of horizontal line segments and a set Vl of vertical lines in the plane, let
XL = (Vl, {N(h)}h∈H) be a hypergraph, where N(h) denotes the set of vertical
lines intersecting horizontal segment h. Recall that the MHLines problem seeks
to find if there exists a set V ′ ⊆ Vl that hits every hyperedge h ∈ H such that
maximum number of times each hyperedge in XL is hit by V ′ is at most k.

We first reduce MHLines problem to MHIntervals (defined under preliminar-
ies). Then we show that MHIntervals, and hence MHLines, can be optimally
solved in polynomial time due to a result by Dom et al. [3]. They showed that
an optimal solution to an integer linear program (say B) for MHIntervals can be
can be obtained in polynomial time. The coefficients of inequalities in B results
in a binary matrix. Let Ax � b represent the set of constraints in the linear
programming relaxation corresponding to B. If the underlying set system corre-
sponds to an interval hypergraph, then the coefficient matrix A is known to have
C1P [4]. Any matrix having C1P is known to be totally unimodular [5]. Since A
is totally unimodular, then for all integral b, the polyhedron P = {x | Ax � b}
is known to be an integer polyhedron [7,14]. It follows that an optimal solution
to MHIntervals can be obtained in polynomial time. Now, we present a reduction
from MHLines to MHIntervals.

Lemma 1. MHLines ≤p MHIntervals.

Proof. Let XL = (Vl, {N(h)}h∈H) be an instance of MHLines. Let XI = (P, I)
be an interval hypergraph where P = {1, 2, . . . , n} is a set of points on the
integer line and I is a set of intervals which are obtained from XL as follows.



644 N. S. Narayanaswamy et al.

Let p : Vl → {1, 2, . . . , n} be a function that maps every vertical line to a point in
P. For every vertical line vi ∈ Vl, let xi be the point at which vi intersects with
the x-axis. Sort vertical lines according to their xi value. Let v1 < v2 < . . . < vn

be the resulting order. Set p(vi) to i. In order to construct the intervals, for every
horizontal segment h in H, we add an interval I(h) = [l(h), r(h)] to I as follows.
Let vh(l) and vh(r) be the leftmost and rightmost vertical lines intersecting h. Set
l(h) to p(vh(l)) and r(h) to p(vh(r)). For instance, Fig. 1 shows a set of vertical
lines intersecting horizontal segments and the interval hypergraph obtained from
it. Clearly, XI can be obtained in polynomial time.

We now show the correctness of the reduction. First, we show that if XL

has a k-hitting set (defined under preliminaries) then XI has a k-hitting set.
Let SL ⊆ Vl be a k-hitting set of XL. Let SI = {p(v) | v ∈ SL}. We show
that SI is a k-hitting set of XI . First, we show that SI is a hitting set of XI ,
that is, every hyperedge is hit atleast once. By construction, every interval in
XI corresponds to some horizontal segment in XL. Assume for contradiction
that there is an interval J that is not hit by SI . Let hJ be a horizontal segment
in XL corresponding to J . By construction, l(J) (and r(J)) corresponds to the
leftmost (and rightmost) vertical segment intersecting hJ . It follows that if J∩SI

is empty, then hJ ∩ SL is empty, a contradiction to our assumption that SL is
a hitting set of XL. Now, we show that SI is a k-hitting set of XI . Again the
proof is by contradiction. Let J ′ be an interval such that |J ′ ∩ SI | > k. Let hJ ′

be a horizontal segment from which J ′ was obtained. Then, by construction, all
vertical lines in the set {v | v = p−1(x),where x ∈ J ′ ∩ SI} intersect hJ ′ . It
follows that |SL ∩ hJ ′ | > k, which is a contradiction.

Now, we show that if XI has a k-hitting set then XL has a k-hitting set.
Let S′

I ⊆ P be a k-hitting set of XI . Let S′
L = {v | v = p−1(x),where x ∈ SI}.

We show that S′
L is a k-hitting set of XL. Let I be any interval in XI . Then

|I ∩ S′
I | ≤ k. Let hI be a horizontal segment from which I was obtained. Then,

p−1(I ∩ S′
I) belongs to S′

L and it also intersects with hI . Since |I ∩ S′
I | ≤ k,

there are atmost k vertical lines in S′
L that intersects with hI . Thus XL has a

k-hitting set. ��
Theorem 3. MHLines problem can be solved in polynomial time.

Proof. Follows immediately from Lemma 1 and the fact that MHIntervals can be
solved in polynomial time [3,5,7]. ��
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Fig. 1. A set of lines intersecting segments and the corresponding interval hypergraph



Minimum Membership Hitting Sets of Axis Parallel Segments 645

Recall that EHLines is a special case of MHLines when k = 1. Due to Theorem
3, EHLines problem is also solvable in polynomial time. However, we present a
combinatorial algorithm for this problem via an algorithm to recognize exactly
hittable interval hypergraphs. We have seen in Lemma 1 that an instance of
EHLines can be reduced to an instance of an interval hypergraph such that if
the EHLines instance has an exact hitting set, then the reduced interval hyper-
graph instance also has an exact hitting set and vice-versa. Effectively, if we
have an algorithm that recognizes an exactly hittable interval hypergraph, then
that algorithm can be made to recognize an yes instance of EHLines problem. In
the next section, we present such an algorithm to recognize an exactly hittable
interval hypergraph. This algorithm works by progressively pruning away ver-
tices which cannot be elements of any exact hitting set. The algorithm returns
a yes, if the set of intervals have an exact hitting set. Else, it returns a no. The
feasibility of extending this algorithm to MHLines problem is an open question.

4 Algorithm to Recognize Exactly Hittable Interval
Hypergraphs

We present an algorithm that recognizes an exactly hittable interval hypergraph
X. Given an interval hypergraph X = (V, I), our problem seeks to find if there
exists an exact hitting set for X. We define a function c : V → {B, W}, where B
and W stand for colours black and white respectively. Initially, for every point
v on the line (the vertex set of X), set c(v) to W. As the algorithm proceeds, if
v cannot belong to any exact hitting set, then c(v) is set to black. We define
another function C : I → {Y, N} as follows.

C(I) =

{
N, if c(v) = B, ∀v ∈ I

Y, otherwise

If, for some I, C(I) is set to N, then it means that no point in I can belong
to any exact hitting set of X and hence I cannot be hit exactly once. We now
present the algorithm.
Algorithm isEHS(X = (V, I)): If X is a proper interval hypergraph, then
by Lemma 2, X is exactly hittable and the algorithm returns yes. Note that a
proper interval hypergraph can be identified by checking if any interval shares its
left endpoint (or right endpoint resp.) with the left endpoint (or right endpoint
resp.) of another interval. If X is not a proper interval hypergraph, then we
proceed as follows. Let I1, I2 . . . Im be the intervals in I. For all v ∈ V, initialize
c(v) to W. For every pair of intervals Ii, Ij , if Ii contains Ij (that is l(Ij) ≥ l(Ii)
and r(Ij) ≤ r(Ii)), then for all v ∈ Ii \ Ij , set c(v) to B. After the values are set,
if there is any interval I for which C(I) becomes N, the algorithm returns no.
If not, construct a smaller hypergraph X ′ = (V ′, I ′) as follows. The vertex set
of X ′ is the set of points in X for which the colour has not been set to black.
That is V ′ = {v | v ∈ V ∧ c(v) �= B}. For each Ij in I, we add a new hyperedge
I ′
j = {v | v ∈ V ′ ∩ Ij} to I ′. If there are two intervals Ii and Ij in X ′ such that
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l(Ii) = l(Ij) and r(Ii) = r(Ij), then retain either Ii or Ij but not both in X ′.
That is, if there are multiple intervals with the same left end points and same
right end points, retain one among those intervals and discard the rest while
constructing X ′. We show in Lemma 3 that X ′ is indeed an interval hypergraph.
Recurse on X ′ = (V ′, I ′).

Lemma 2. Let X = (V, I) be a proper interval hypergraph. Then X is exactly
hittable.

Proof. We prove the claim by constructing an exact hitting set S for X. Initialize
S to ∅. Order intervals in I according to increasing order of their right end points.
Since no interval is properly contained inside another interval, this ordering is
well defined. Let this ordering be I1 < I2 < . . . < Im. Add r(I1) (which is the
smallest right end point among all intervals) to set S. Remove every interval
I such that |r(I1) ∩ I| �= ∅. Recurse on the remaining set of intervals until all
the intervals are hit by S. Clearly, S is a hitting set. We now show that S is
an exact hitting set. Suppose it is not, then there exists an interval I such that
|I ′ ∩S| > 1. Let I ′ ∩S contain points p1 and p2 where p1 < p2. By construction,
p1 hits I ′ and p2 is the right end point of some interval, say I ′′, that is not hit
by p1. Since p1 ∈ I ′, p1 < p2, p2 ∈ I ′, p2 is the right end point of I ′′, and I ′′ is
not hit by p1, it follows that I ′′ ⊂ I ′, contradicting the fact that X is an interval
hypergraph in which no interval properly contains another. ��
Lemma 3. X ′ is an interval hypergraph.

Proof. Clearly, every interval in X ′ is a subset of some interval in X. More
importantly, every hyperedge in X ′ is an ordered subset of points of some inter-
val in X. Let σ be the left to right ordering of points in V(H ′) on the line.
Any consecutive subset of points in σ is an interval in X ′. We show that every
hyperedge in X ′ is a consecutive subset of points in σ. In X ′, the line has only
those points which have not been set to B in X. Let I ′ be an interval in X ′ such
that I ′ ⊆ I, where I is an interval in X. I \ I ′ are the set of points in X that
have been set to B and are absent in X ′. So, the points in I ′ have the same order
as in I and are consecutive in X ′. Hence the hyperedges in X ′ correspond to
intervals. ��
Lemma 4. Let X = (V, I) and X ′ = (V ′, I ′) be interval hypergraphs that are
as described in Algorithm isEHS. Then X is exactly hittable if and only if X ′ is
exactly hittable.

Theorem 4. Let X be an interval hypergraph. Algorithm isEHS(X) decides, in
polynomial time, if X is exactly hittable.

With a slight modification, this algorithm can be made to output an exact
hitting set of an exactly hittable interval hypergraph. However, when the set of
intervals is not exactly hittable, it outputs a simple no. Can we answer more?
Can we answer as to what makes it not exactly hittable? Our next section is an
attempt to answer this question, at least partially.
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4.1 Forbidden Structures in Exactly Hittable Interval Hypergraphs

We present sets of intervals that are forbidden configurations for exactly hit-
table interval hypergraphs. Table 1 shows instances of such forbidden structures.
Row 1 and Row 2 of the table show F0 and F1 respectively, which are two basic
forbidden structures from which infinite families of forbidden configurations can
be constructed. It is easy to see that F0 is not exactly hittable since any exact
hitting set of I2, I3 must hit I1 twice. Similarly F1 is not exactly hittable because
any exact hitting set of I1, I2, I3, I5 cannot hit I4. We give a procedure to con-
struct infinite families of forbidden structures as a combination of F0s and/or
F1s. Rows 3 and 4 show two examples of such combinations. These forbidden
structures will not have either F0 or F1 as an induced substructure. We start
with F0 comprising of intervals II = {I1, I2, I3}. Extend I3 to the right such
that the right endpoint of I3 goes one point to the right of right endpoint of
I1. Now, II becomes exactly hittable. Then, append IJ = {J1, J2, J3}, which is
another instance of F0, to II as given below. We fuse I3 and J2 to become a
single interval I3J2 as shown in row 3 of the table. Also, I1 ∩ J1 �= ∅. We refer
to this new set of intervals as F0F0, to denote a contrived concatenation of two
F0s. Similarly, row 4 shows how to obtain F0F1.

We now outline a general procedure to construct an infinite family of for-
bidden structures. We use r(I) and l(I) to denote the left and right endpoints,
respectively, of interval I. Start with Fi, i ∈ {0, 1}. Extend the interval with the
largest left endpoint, say Ir, to the right such that r(Ir) is strictly larger than
the right endpoint of every other interval in Fi. Let this new structure be F ′

i .
Observe that F ′

i is exactly hittable due to the extended interval Ir. To obtain
another forbidden structure, we place either an F0 or an F1 to the right of F ′

i .
We can think of this as concatenating or attaching two forbidden structures to
obtain a bigger forbidden structure. Here, we show how to concatenate an F0 to
the right of F ′

i . In Fi, let I be the interval which properly contained Ir before
extending. In F ′

i , extend r(I) such that r(I) is strictly larger than the right end-
point of every other interval in F ′

i . Add an interval I ′ such that l(I ′) > r(Ir) and
r(I ′) < r(I). That is, I ′ is an interval properly contained inside I but is disjoint
from Ir. This procedure concatenates an F0 to the right of an Fi. We refer to
this structure as FiF0. Since F ′

i is exactly hittable due to the extended interval
Ir, any exact hitting set of FiF0 hits the extended part of Ir. Consequently the
concatenated F0 cannot be exactly hit. Therefore, FiF0 is not exactly hittable.

By a similar procedure, we can concatenate an F1 to the right of an Fi.
We refer to the resulting structure as FiF1. Once we obtain a new forbidden
structure, we can keep concatenating Fis to its right using exactly the same
procedure as above. Observe that none of these forbidden structures have any
Fi as a substructure. We believe that the infinite family of interval hypergraphs
are the ones that are exactly the forbidden structures of exactly hittable interval
hypergraphs.
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Table 1. Instances of forbidden structures for exactly hittable interval hypergraphs
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Abstract. We are given a directed graph G(V,E) on n vertices and m
edges where each edge has a positive weight associated with it. The influx
of a vertex is defined as the difference between the sum of the weights
of edges entering the vertex and the sum of the weights of edges leaving
the vertex. The goal is to find a graph G′(V,E′) such that the influx of
each vertex in G′(V,E′) is same as the influx of each vertex in G(V,E)
and |E′| is minimal. We show that
1. finding the optimal solution for this problem is NP-hard,
2. the optimal solution has at most n − 1 edges, and we give an algo-

rithm to find one such solution with at most n−1 edges in O(m log n)
time, and

3. for one variant of the problem where we can delete as well as add
extra edges to the graph, we can compute a solution that is within
a factor 3/2 from the optimal solution.

1 Introduction

Network flow problems have been studied in great depth in the literature. The
maximum flow problem involves finding the maximum flow from a single source
to a single sink in the graph. There have been many improvements down the
years starting from the textbook algorithms of Ford-Fulkerson and Edmond-
Karp [3] to the current state of the art result of James Orlin. Orlin [6] showed
that maximum flow in a network can be found in O(mn) time.

In a similar vein, Sleator and Tarjan [9] have talked about the acyclic flow
problem. Given a flow from s to t in an arbitrary network, they reduce it to
an acyclic flow by repeatedly finding a cycle in the graph and reducing the flow
around the cycle to zero. In all these versions of flow problems we have a capacity
associated with the edges which is an upper bound on the flow through that edge.

The problem of finding a subgraph G′ of a graph G which maintains a specific
property of G has also been studied extensively in the context of graph spanners
[2,7,8], and in more recent years in its use in fault tolerant algorithms [1,4,5]. We
define and study a new problem which is somewhat similar to these problems.

Problem Definition and Results. The input consists of a directed graph
G(V,E) where each edge has a positive weight. An edge e ∈ E is a tuple (u, v, w),
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 650–661, 2018.
https://doi.org/10.1007/978-3-319-94776-1_54
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which denotes that the edge is directed from u to v and its weight is w > 0.
Let Iv be sum of weights of all edges entering v and Ov be sum of weights of all
edges leaving v. We define the influx of a vertex v ∈ V as Iv − Ov. The desired
output is a graph G′(V,E′), such that for all vi ∈ V the influx of vertex vi in G
is same as the influx of vertex vi in G′. Our aim is to minimize the size of |E′|
by redistributing the weights on the edges. We consider three variants of this
problem depending on restrictions placed on the graph G′:

1. G′ is only allowed to have an edge (u, v, x) in E′, if (u, v, y) ∈ E, i.e. one can
only delete edges from G to obtain G′.

2. G′ is only allowed to have an edge (u, v, x) in E′, if (u, v, y) or (v, u, y) ∈ E,
i.e., one can either delete or reverse edges in G to obtain G′.

3. G′ is allowed to have any edge in E′, which may or may not be present in E,
i.e., one can either add or delete edges to/from G to obtain G′.

Henceforth, in the paper these variants are referred to as the first, second and
third variant of the problem. We show the following results.

1. Finding the optimal solution of the problem is NP-hard for all three variants.
2. For all three versions, the optimal solution has at most n − 1 edges. We give

an algorithm to find one (not necessarily optimal) solution with at most n−1
edges in O(m log n) time for the first version, and O(m + n) time for the
second.

3. For the third version of the problem, we give a 3/2 approximation of the
optimal solution in O(m + n) time.

In Fig. 1, the influx of the vertices a, b, c, d are 0, 0, 5,−5 respectively in the
input graph G (graph on top). The three graphs below G show solutions to the
three variants of the problem. The graph in Fig. 1(i) shows the desired output
graph which has the minimum number of edges, provided edges have to be a
subset of edges in the input graph. The graph in Fig. 1(ii) shows the desired
output graph which has minimum number of edges provided the direction of
edges (for example, of the edge between c and a) can be reversed in the final
output. The graph in Fig. 1(iii) shows the case when the output can have edges
(for example, edge from d to c) which are not present in the input graph.

A motivation comes from the following real-world application. Suppose the
customers of n banks do wired transactions across these banks. Although the
money is wired electronically, it is later complemented by a transfer of same
amount of fiat currency. In such cases there is a cost involved with transfer of
fiat currency. So the banks ideally want to reduce the number (and also the
amount) of actual transfers of fiat currency.

Organization of the Paper. In Sects. 2.1 and 2.2, we define some notations
and make a few elementary observations. Section 3 concludes that the minimum
transactions problem is NP-hard. Section 4 gives a 3/2 approximation of the
optimal solution for the third version of the problem. Section 5 gives algorithms
for finding solutions which have at most n−1 edges for the first and second ver-
sion. Section 6 concludes with a few remarks and questions that warrant further
research.
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Fig. 1. The top graph shows the input graph G(V,E) along with the transactions. The
three graphs below the input graph show the different optimal solutions obtained from
the different restrictions on G′.

2 Preliminaries

2.1 Notations

GU (V,E) denotes the undirected unweighted version of the directed graph
G(V,E). An edge in G(V,E) from u to v is denoted by (u, v). GU (V,E) is
assumed to be a connected graph without any loss of generality. An edge may
also interchangeably be referred to as a transaction.

2.2 Elementary Observations

We make few elementary observations which apply to all the three variations
of the Minimum Transactions problem mentioned earlier. The following lemma
follows from the fact that the sum of the influxes of all the vertices in any graph
is zero.

Lemma 1. If G1(V,E1) and G2(V,E2) are two graphs with the same set of
vertices and if there exist n − 1 vertices {v1, v2 . . . vn−1}, such that the influx of
vi (∀i ≤ n − 1) in G1 is same as the influx of vi in G2, then influx of vn in G1

is also the same as the influx of vn in G2.

Lemma 2. Let G(V,E′) be an optimal solution to the Minimum Transactions
problem for a given graph G(V,E). Then the graph GU (V,E′) is acyclic.
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Proof. Suppose, by contradiction, that C = {a1, a2, . . . , ac} is a cycle in
G(V,E′). Without loss of generality, assume that the edge having the small-
est weight in cycle C is the edge (a1, a2) with weight w. The remaining edges
have weights equal to or more than the weight of edge (a1, a2). Delete edge
(a1, a2). Now a2s’ influx is reduced by w, and to compensate for that we need
to increment/decrement the weight of edge between a2 and a3 by the value w
depending on whether (a2, a3) ∈ G(V,E) or (a3, a2) ∈ G(V,E). We keep adjust-
ing the weights of the edges in cycle C until we reach the vertex a1. At this point
all the vertices in cycle C (except a1) have their influx adjusted to the influx
in G(V,E). The vertices which were not part of this cycle, have none of their
corresponding edges changed in any way, so their influx also remains the same.
The vertex a1 does not have the option of adjusting the edge (a1, a2) since the
edge has been deleted. Even though a1 has no choice of edge to alter weights,
we can still claim that a1’s influx is same as in G(V,E) due to Lemma 1.

This shows that the undirected version of an optimal solution (GU (V,E′))
does not have a cycle. ��

It is to be noted that the weight of the edges before and after a cycle is
broken stays non-negative, since the weight added or subtracted from any edge
is the smallest weight in that cycle.

Lemma 2 also shows the following result:

Corollary 1. The optimal solution for any graph contains at most n − 1 edges.

Consider the graph G(V,E) such that V = {s, v1, v2 . . . vn−1} and E consists
of all edges of the form (s, vi) ( ∀i ≤ n − 1). They all have arbitrary positive
weights. We can easily see that the optimal solution is the graph G(V,E) itself
as each vertex has a non zero influx. Thus, there exists a problem instance whose
optimal solution contains at least n − 1 edges.

The above observation can also be generalized to make the following claim.

Lemma 3. In G(V,E) if P is the number of vertices which have positive influx,
and N is the number of vertices which have negative influx, then any optimal
solution for G will have Ω(max(P,N)) edges.

Proof. Suppose P > N . Each of P vertices need at least one incoming edge to
account for the positive influx in the optimal solution. Thus at least P edges are
needed by the optimal solution. Similarly when P ≤ N , we can see that at least
N edges are present in the optimal solution. ��

It is to be noted that all the observations made in this subsection apply to
all the three variants of the problem.

3 Hardness of the Problem

3.1 Reduction from Subset Sum

The Subset-Sum problem is known to be NP-complete when the weights are given
in binary. We show that an instance of the subset-sum problem can be converted
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into an instance of Minimum Transactions problem. The Subset-Sum problem
involves a sorted set (or multiset) of integers (given in binary) S = {d1, d2 . . . dn}
and a target value t. The goal is to find a set of integers X ⊆ S (if it exists) such
that sum of all integers in X is t.

First we show that an instance of Subset-Sum can be transformed
into an instance of the Minimum Transactions problem where any directed
edge can be added or deleted. Create a directed graph on n + 3 vertices
{v1 . . . vn, centre, vt, vt′}. The directed graph is created to have exactly n + 2
edges. The edges (vi, centre) (∀i ∈ [1, n]) have weight di. The weight of edge
(centre, vt) is t and weight of edge (centre, vt′) is

∑
di − t. This instance of

minimum transactions problem is then given to an algorithm which solves it.
If there exists a subset X ⊆ S such that sum of all elements in X is t, then
the algorithm will output a solution which has exactly n edges. The solution
will consist of |X| edges which are directed to vt and n − |X| edges which are
directed to vt′ . Otherwise it will output a solution which has exactly n+1 edges,
in which case all but one vertex in {v1, v2 . . . vn} have exactly one edge to either
vt or vt′ and one of the vertices has edges to both vt and vt′ . This shows that any
instance of Subset-Sum problem can be transformed into an instance of Mini-
mum Transactions problem (where any edge can be added in the final solution)
in polynomial time.

We now show that the Minimum Transactions problem where the final
solution can only have edges present in the input is also NP-hard. Suppose
S = {d1, d2 . . . dn} denotes the sorted set of n positive numbers and we need to
find whether a subset of X ⊆ S exists such that the sum of the numbers in that
subset is t. Create sets S′ = {v1, . . . , vn} and T ′ = {vt, v

′
t}, as in the previous

case. For each i = 1, . . . , n, construct edges (vi, vt) and (vi, v′
t), both of weight

di/2. Thus, so far the influx of vt and v′
t is (

∑
di)/2 and the influx of vi is −di

(∀i ∈ [1, n]). Create an edge from vt to v′
t or from v′

t to vt, with weight chosen
so that the influx of vt is t and the influx of v′

t is t′ := (
∑

di) − t. Now check
whether there is a solution with n edges. Such a solution must have an edge of
weight di going out of each vi. This edge goes either to vt or v′

t, and the edges
going into vt have to have total weight t so that the edge between vt and v′

t does
not need to be used. Otherwise, the solution consists of n + 1 edges and there
will be an additional edge between vt and v′

t. The same reduction also works for
the case where the edges are allowed to be reversed in the final solution. All the
edges are directed from S′ to T ′. If there exists a solution with exactly n edges,
then all those n edges have to be directed from S′ to T ′. Thus the ability to
reverse an existing edge does not help in any way. This proves that Minimum
Transactions problem is NP-hard, irrespective of which of the above mentioned
variants we are dealing with.

Theorem 1. Solving the Minimum Transactions problem optimally is NP-hard
for all the three versions.
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4 Approximation Algorithm for the Third Version

When the algorithm is allowed to add/delete any edge a simple algorithm exists
which gives a near optimal solution. Compute the influx of all the vertices in
O(m+n) time (where m is number of edges and n is the number of vertices in the
graph). Now partition the vertices into two sets P and N . P consists of vertices
which have positive influx and N consists of vertices which have negative influx.
The vertices with zero influx are neither added to P nor N . A vertex v ∈ P is
selected arbitrarily. The final solution consists of edges from all vertices in N
to v and edges from v to all vertices in P − {v}. The weight of an edge (vi, v)
(where vi ∈ N) is the absolute value of influx of vertex vi in graph G. Similarly
the weight of an edge (v, vj) (where vj ∈ P ) is the absolute value of influx of
vertex vj in G. This solution has |N | edges from N to v and |P | − 1 edges from
v to P . Thus, this solution has |P | + |N | − 1 edges, which at most twice the
optimal number of edges, since the optimal solution has at least max(|P |, |N |)
by Lemma 3.

This leads to the following theorem:

Theorem 2. A solution with at most 2 times the optimal number of edges can
be found for the Minimum Transactions problem, when the edges not present in
the input are allowed to be added and the total time taken to find such a solution
is O(m + n).

In fact, we can also show that a slightly modified version of the above men-
tioned algorithm can yield a solution which has at most 1.5 times the number
of edges in the optimal solution.

In this pursuit, we show the following lemma:

Lemma 4. Given an instance of Minimum Transactions problem, when the
edges not present in the input are allowed to be added, if a vertex x has influx
t > 0 and a vertex x′ has influx −t, then there exists an optimal solution for
which has a directed edge from x′ to x with weight t .

Proof. Suppose there exists an optimal solution, in which there is no edge from
x′ to x. In such a case, suppose the influx of x is satisfied by vertices u1, u2 . . . ui

and the influx of x′ is satisfied by vertices v1, v2 . . . vj . These account for (i + j)
edges. These vertices may have other edges associated with them, but they will
not matter in the analysis. Now we can construct a different optimal solution in
the following manner. Construct a direct edge of weight t from x′ to x. Now there
are i positive influx vertices and j negative influx vertices, whose influx has not
been satisfied. Here we use Theorem 2 and find a solution with i + j − 1 edges.
The other edges in the new solution remain the same as in the old solution. Thus
we can obtain a new solution which has a directed edge from x′ to x and which
has same number of edges as the optimal solution. ��

Now we will show how to use the above lemma to get a better solution. A
matching pair is defined as a pair of vertices one of which has influx z and the
other has influx −z.
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As in the previous algorithm, compute the influx of all the vertices and ignore
vertices which have zero influx. Separate the vertices into two groups of vertices
P and N , where P denotes the set of vertices which have net positive influx, and
N are the set of vertices which have net negative influx. Sort the vertices in P
and N according to their influx in O(n lg n) time. Let k be the number of vertices
in P which have a matching negative influx in N . These k vertices in P will have
a directed edge to their respective matching vertex among the k vertices in N .
Using the Lemma 4 we can remove these k vertices from P and k vertices from
N and work on the remaining set of vertices. Thus, in the reduced problem, we
have P − k positive influx vertices, and N − k negative influx vertices.

Since there are no matching pairs in the reduced problem, this implies that
for every pair of vertices (x, y), where x ∈ P and y ∈ N , either x has two
edges incident on it or y has two edges incident on it. This implies that at least
two edges are required to ensure that any 3 vertices have their influx correctly
distributed. This implies that the optimal solution (for the reduced problem)
has at least 2/3(P − k + N − k) and thus the optimal solution for the entire
problem has at least [2/3(P − k + N − k) + k = 2(P + N)/3 − k/3] edges.

Thus the new lower bound for the number of edges in the final solution is
max(P,N, 2(P + N)/3 − k/3).

The improved algorithm involves finding these k matching pairs and then
using the algorithm in Theorem 2 on the reduced problem, to find a solution of
size (P − k) + (N − k) − 1 = P + N − 2k − 1. So the improved algorithm gives a
solution with at most P + N − k − 1 edges for the entire problem. For all three
possibilities of the lower bound, we analyse the quality of the solution.

1. P = max(P,N, 2(P + N)/3 − k/3).
Then we get that P ≥ N and P ≥ 2P/3 + 2N/3 − k/3.
=⇒ P/3 ≥ 2N/3 − k/3.
=⇒ (P + k)/2 ≥ N
=⇒ 3P/2 − k/2 − 1 ≥ P + N − k − 1

Thus, in this case the lower bound on the number of edges in the optimal
solution is P and the upper bound is 3P/2 − k/2 − 1, which gives an approx-
imation ratio of 3/2.

2. N = max(P,N, 2(P + N)/3 − k/3).
The analysis is analogous to one shown in case 1.

3. 2(P + N)/3 − k/3 = max(P,N, 2(P + N)/3 − k/3).
The number of edges in the solution is at most (P + N − k − 1). Taking the
ratio of number of edges in final solution to the lower bound on the number
of edges required by the optimal solution, we get
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P + N − k − 1
2/3(P + N − k/2)

= (1.5)
P + N − k − 1
P + N − k/2

= 1.5
P + N − k/2
P + N − k/2

− 3k/4 + 3/2
P + N − k/2

which gives a 3/2 approximation ratio of the solution.

This gives us the following theorem.

Theorem 3. A solution with at most 3/2 times the optimal number of edges can
be found for the Minimum Transactions problem, when the edges not present in
input are allowed to be added and the total time taken to find such a solution is
O(m + n lg n).

5 Finding Solutions with at Most n − 1 Edges

5.1 Second Version: Case When Re-orienting an Edge Is Allowed

The algorithm assumes that G(V,E) is a connected graph, otherwise discon-
nected components can be dealt with as separate disjoint problems.

We know that GU (V,E) has a single connected component, and thus it has
a spanning tree. First we find an arbitrary spanning tree T on GU (V,E). If the
edge directions can be changed in the final output, we will show that proper
orientation of the edges in T is enough to find a valid solution with at most n−1
edges.

Let S denote the solution with at most n − 1 edges. Initially it is empty.
Now we look at any leaf vertex (say u) and its neighbor (say v) in T . If u has a
positive net flow w, then the edge (v, u) with the weight |w| is added to S and
net flow of v is decremented by |w|. If u has a negative net flow w, then the edge
(u, v) with the weight |w| is added to S and the net flow of v is incremented
by |w|. If u has zero net flow, then do not add any edge to S. Irrespective of
whether the net flow of u is positive, negative or zero, delete the edge uv from
T . Repeat this process till T is empty. The pseudocode is given in the Appendix.

Correctness. The edges in final solution S are just orientated versions of the
undirected edges in T . T is subgraph of GU . This implies that if a directed edge
(u, v) exists in S, then either (u, v) or (v, u) belongs to set E. When the first
leaf vertex is deleted from T , the algorithm makes sure that the influx of deleted
vertex (which is now added to S) is the same as the influx of that vertex in
G. In a similar way, it can be shown that the influx of all but last two vertices
being added to S is processed correctly. When T has only one edge, one of the
vertices is correctly assigned the influx to match its influx in input graph, but
the other vertex in the final edge does not have any option. Lemma 3 again helps
in this case, and shows that if all but one pair of vertices have matching influx
in both graphs, then the last pair of vertices also have the matching influx in
both graphs.

This shows that the algorithm gives a correct solution with at most n − 1
edges.
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Complexity. O(m + n) time is spent to find compute the influx of each of the
vertices and to find a spanning tree of the input. Another O(n) time is enough
to correctly assign the weights of the edges and their orientation.

This gives us the following theorem.

Theorem 4. A solution with at most n−1 edges can be found for the Minimum
Transactions problem, when the edges are allowed to be reversed and the total
time taken is O(m + n).

5.2 First Version: Case When only Deletion of Edges Is Allowed

In this section, we deal with the hardest variant of the problem, where the final
solution is required to be a subgraph of the input. We present two algorithms
for the variant. One algorithm is simple to execute but takes O(mn) time to
find a solution with at most n − 1 edges. The other algorithm requires the use
of Link-Cut trees but takes O(m lg n) time to find a solution with at most n − 1
edges.

5.2.1 O(mn) Running Time Algorithm to Find G′

In this variant of the problem, we restrict the final solution to contain only those
edges which are present in the input graph.

The algorithm for this variant processes the edges of the graph one by one
and maintains a partial solution on edges which have been processed until that
point. The algorithm initially has a solution G′(V,E′) where E′ is empty. Then
it processes edges one by one from E and adds them to E′. After adding an
edge it checks if the undirected version of the graph has a cycle or not. If it
has a cycle, then it is resolved using Lemma 2. Otherwise, if G′ does not have a
cycle, then the algorithm processes the next edge. This process continues until
all edges in E have been processed.

The pseudocode is deferred to the full version.

Complexity. The process of detecting a cycle in G′
U is executed at most m

times. At any point during the execution of the algorithm, the graph G′
U either

does not have a cycle, or has exactly one cycle in G′
U . It cannot have more than

one cycle, since adding an edge to an undirected tree/forest can create at most
one cycle. The graph G′

U has at most n edges at any given time and O(n) time
is spent to find a cycle (if it exists), adjust the weights of the edges in this cycle
and then delete an edge from the cycle. Thus, the total running time of the
algorithm is O(mn).

Correctness. We argue that the algorithm correctly maintains a partial solution
for all the edges which have been processed. In other words, the graph G′ after
processing t edges in E, gives a valid solution for G if it consisted only of the edges
processed till the tth iteration. Initially, when the first edge in G is processed,
G′ has only one edge and thus this claim is trivially true.

Suppose q edges have been processed and the partial solution G′ is consistent
with all the edges that have been processed till this point. When the (q + 1)th
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edge is processed either of two cases can happen: Either G′
U has an undirected

cycle or not. In the former case, the edge is added to the cycle and some edge
is removed from the cycle, by using Lemma 2. This ensures that the influx of
vertices is consistent with the edges that have been processed. If the latter case
happens, then a simple edge addition happens and this maintains the invariant
that the influx of all the vertices in G′ is consistent with the edges that have
been processed.

Thus the algorithm always maintains a correct solution for the processed
edges and the solution consists of at most n − 1 edges, which are sufficient to
perform the transactions. This gives us the following theorem,

Theorem 5. A solution with at most n−1 edges can be found for the Minimum
Transactions problem, when the edges have to be a subset of the input graph and
the total time taken to find this solution is O(mn).

5.2.2 O(m lgn) Running Time Algorithm to Find G′

The algorithm for an improved runtime bound uses the same algorithm as the
previous one, but performs the book-keeping operations faster by the use of Link-
Cut Trees. We use the Link-Cut trees in the cycle-detection phase, to efficiently
detect if the edge being processed will create a cycle or not and if so make the
necessary adjustments of weights along this cycle and then delete one edge from
the newly formed cycle.

The Link-Cut trees [9] were designed for solving network flow problems in
directed graphs. The Link-Cut trees maintain forests of trees that have edges ei
with non-zero weights wi. We shall use the following operations supported by
Link-Cut Trees which can be performed in O(lg n) worst case time.

1. Link (u, v, w) - Add edge between vertices u and v with weight w.
2. Cut(u, v) - Cut the edge between vertices u and v.
3. MakeRoot(v) - Restructure the tree around the vertex v to make it the root

of the tree which it belongs to. While restructuring, it also negates the value
of all the edges on the path from v to the previous root of the tree.

4. Add(v, w) - Adds a real value w to all edges on the path from the root to v.
5. Minima(v) - Returns the edge with smallest weight on path from root to v.

In our implementation, we slightly modify the implementation of Minima(v).
If two edges have weight w1 and w2, then the smallest weight edge among the
two is defined the edge with weight min(|w1|, |w2|). Thus, when Minima(v) is
called, the data structure returns an edge with the smallest absolute weight on
the path from the root to v and its weight.

We point out that not only the update of weights on the cycle is done by
Link-Cut trees, but also the detection of the cycle itself (before it is about to be
formed), as this was also an expensive operation in the naive algorithm.

It is also to be noted that the Link-Cut trees (which have rooted trees) do
not store the direction of the edges. But we store the direction of the edges
implicitly. For an edge uv in a tree Ti ∈ F , assume that u is nearer to the root
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than v, then the direction of edge is defined as follows. If the weight of the edge
is positive, then the direction of the edge is from u to v, otherwise the direction
of the edge in the original input graph (and final solution) is from v to u. When
a vertex v which is not a root of its tree is made the root of its tree, then all the
implicit directions of all the edges on the path from previous root of tree to v,
have their directions reversed, which is then compensated by negating the value
of weights of these edges. In this way it is ensured that the tree always captures
the direction of the edge according to the original input graph.

The pseudocode of the algorithm is deferred to the full version.
The algorithm in this subsection, just like the previous algorithm, processes

the edges one by one. We add these edges to the forest F . Denote the underlying
undirected graph of F as FU . If u1 and v1 belong to different trees, then adding
an edge between them does not create a cycle(in FU ) and thus the edge is added
“as is” between the two vertices. If u1 and v1 belong to the same tree, then
adding an edge between them will create a single cycle. In order to avoid the
cycle, the tree is pre-emptively adjusted, taking into account the edge which is
being processed.

If the edge being processed is the edge which has the smallest absolute weight
in that cycle (which would form in FU , if (u1, v1) was added to F ), then we can
use Lemma 2 on this cycle and avoid adding that edge in the final solution.
Similarly, if there is an edge on the path from u to v which has an absolute
weight smaller than the weights of all the edges in that path and it is also
smaller than the edge which is being processed, then this edge can be removed
from the solution by the use of Lemma 2. The use of Lemma 2 for breaking
cycles also ensures that if an edge (u, v) has positive weight in the final solution,
then the edge (u, v) also had a positive weight in the input.

If T has negative weight for edge (u, v), it means that the input graph contains
(v, u) as an edge. In this case, we check the directions of all edges in E′, and
add their corresponding edges in E in the final solution. The weight of an edge
in the final solution is the absolute weight of that edge in E′. This takes care
of adjusting the direction of edges in the final solution according to the input
graph.

Complexity. The number of edges processed one by one is m and each edge
while processed may create a cycle in G′

U . The detection of a cycle which is to
be formed and necessary adjustments made to remove this cycle require a con-
stant number of Minima(v), Makeroot(v), Add(v, w), Cut(u, v) and Link(u, v, w)
operations. All these operations take O(lg n) amortized time when implemented
using Link-Cut trees. Thus the algorithm takes O(m lg n) running time.

Correctness. Since the algorithm is essentially the same as the previous sub-
section, we do not argue its correctness separately.

Thus, we have the following theorem.

Theorem 6. A solution with at most n−1 edges can be found for the Minimum
Transactions problem, when the edges have to be a subset of the input graph and
the total time taken to find this solution is O(m lg n).
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6 Conclusion

In this paper, we define a variation of the network flow problem and give various
results on the possible lower bounds and upper bounds on the number of edges
needed in the final solution. This network flow problem differs from most widely
studied variations of network flow problem, as the edges do not have an upper
limit on their capacity. The paper introduces this concept of unbounded edge
flows. The following are the open research problems

– What is the fine-grained complexity of these problems?
– Are the algorithms efficient in practice?
– Can a better approximation be achieved for this problem?
– Given an instance of G(V,E), a vertex v and an integer k, can we find a

solution G′(V,E′) such that v has at most k edges in G′?
– Are there better lower bounds for the problem, when new edges cannot be

added in the solution?
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Abstract. In multi-channel Wireless Mesh Networks (WMN), each
node is able to use multiple non-overlapping frequency channels. Rani-
wala et al. (MC2R 2004, INFOCOM 2005) propose and study several
such architectures in which a computer can have multiple network inter-
face cards. These architectures are modeled as a graph problem named
maximum edge q-coloring and studied in several papers by Feng et. al
(TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016). Later
on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the min-max edge q-coloring .

The above mentioned graph problems, namely the maximum edge q-
coloring and the min-max edge q-coloring are studied mainly from the
theoretical perspective. In this paper, we study the min-max edge 2-
coloring problem from a practical perspective. More precisely, we intro-
duce, implement and test four heuristic approximation algorithms for
the min-max edge 2-coloring problem. These algorithms are based on a
Breadth First Search (BFS)-based heuristic and on local search meth-
ods like basic hill climbing, simulated annealing and tabu search tech-
niques, respectively. Although several algorithms for particular graph
classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs,
cliques, bi-cliques, hypergraphs), we design the first algorithms for gen-
eral graphs.

We study and compare the running data for all algorithms on Unit
Disk Graphs, as well as some graphs from the DIMACS vertex coloring
benchmark dataset.

1 Introduction

Motivation. In multi-channel Wireless Mesh Networks (WMN), each node is
able to use multiple non-overlapping frequency channels. The use of many chan-
nels inside the same network can significantly improve overall performance. Inter-
ference from neighboring nodes can be decreased substantially when nodes do
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not need to use the same radio channel for every link. Multiple radio channels
in the network imply that at least some of the nodes need to handle more than
one channel at a time. In many proposed designs the multi-channel feature is
achieved by packet-by-packet reconfiguration of the radio [6,12,15]. However, one
of the drawbacks of this kind of continuous channel switching of a single radio
interface is that it requires precise synchronization throughout the network.

An alternative approach would be to fit multiple radio interfaces to each
node, thus allowing a more persistent channel allocation per interface. A couple
of such multi-NIC (network interface card) architectures have been proposed
by Raniwala et al. [13,14]. Their simulation and testbed experiments show a
promising improvement with only two NICs per node, compared to a single-
channel WMN. Another appealing feature of these architectures is that they are
based on readily available, commodity IEEE 802.11 interfaces, requiring only
systems software modification.

The scenario of two or more NICs per node with fixed channels imposes
some limitations to the assignment of channels on each interface. In order to set
up a link between two nodes, both of them have to have at least one of their
interfaces set to the same channel. On the other hand, links inside an interference
range should use as many different channels as possible. Thus, the channels need
to be assigned carefully in order to both keep every required link possible and
maximize useful bandwidth throughout the network.

Problem definition. The channel assignment problem can be modeled as a
type of edge coloring problem: given a graph G, the edges have to be colored so
that there are at most q different colors incident to each vertex. Here, vertices,
edges and colors represent network nodes, links and channels, respectively. A
coloring that satisfies this constraint, is called an edge q-coloring. Note, that the
coloring constraint differs from the traditional coloring problems, where adjacent
items are not allowed to have the same color. Also the goal is different; instead
of minimizing, we want to maximize the number of different colors in an edge
q-coloring.

Initially, the channel assignment was formulated as the maximum edge q-
coloring problem, where the goal was to maximize the total number of colors
in a q-coloring. The drawback of this model is that in an optimal solution the
same color is assigned to many edges while other colors are used only once. We
remind the reader that in the wireless mesh network setting, having the same
color assigned to many edges is equivalent to having the same frequency used
many times, and therefore, having interference. Since the goal of the application
is to minimize the interference, max edge q-coloring is perhaps not the ideal
theoretical formulation (although max edge q-coloring is still interesting as a
combinatorial problem). Instead, it is more relevant for the network application
to try to have the color components as balanced as possible. Thus, the min-max
edge q-coloring had been introduced, where the goal is to minimize the maximum
size of a color group. The formal definition of the min-max q-coloring follows.

Problem 1 (Min-max edge q-coloring). Given a graph G = (V,E), find an edge
q-coloring σ of G such that the amount maxc|{e ∈ E|σ(e) = c}| is minimized.
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In other words, find an edge coloring that minimizes the size of the largest set
of edges with the same color.

Previous work. The problem of finding a maximum edge q-coloring of a given
graph has been first studied by Feng et al. [2–4]. They provide a 2-approximation
algorithm for q = 2 and a (1 + 4q−2

3q2−5q+2 )-approximation for q > 2. They show
that the problem is solvable in polynomial time for trees and complete graphs
in the case q = 2, but the complexity for general graphs has been left as an
open problem. Later, Adamaszek and Popa [1] show that the problem is APX-
hard and present a 5/3-approximation algorithm for graphs which have a perfect
matching. The maximum edge q-coloring is also considered in combinatorics and
is a particular case of the anti-Ramsey number. For a brief description of the
connection of the two problems, the reader can refer to [1].

Larjomaa and Popa [8,9] introduce and study the min-max edge q-coloring
problem. They prove that the problem is NP-hard for any q ≥ 2 and show an
exact polynomial time algorithm for trees, for q = 2. Moreover, Larjomaa and
Popa [9] analyze the value of the optimal solution on special classes of graphs:
cliques, bicliques and hypercubes. They provide the exact formulas of the optimal
solutions for cliques. For bicliques they present a lower bound which is tight when
both parts of the graph have an even number of vertices (and almost tight for
the other cases). For a hypergraph Qn they give a lower bound which is tight for
even n, and similarly, almost tight for odd n. Although these classes of graphs
have a very simple structure, finding lower bounds is much more difficult than
in the case of the max edge q-coloring problem.

A good lower bound of the optimal solution is necessary in order to design
approximation algorithms. For the min-max edge q-coloring problem, a trivial
lower bound is half of the maximum degree. Larjomaa and Popa [9] show another
lower bound in terms of the average degree of the graph. Larjomaa and Popa [9]
also present an approximation algorithm for planar graphs which achieves a
sublinear approximation ratio. The algorithm uses a theorem of Lipton and
Tarjan [10] which says that a planar graph admits a small balanced separator.

Our results. Although the min-max q-coloring problem has been studied for
particular classes of graphs, little has been done for general graphs in the sense
of an approximation algorithm. As such, we design, implement and analyze algo-
rithms for the min-max 2-coloring problem for general graphs.

The paper is organized as follows. In Sect. 2 we show a Breadth First Search
(BFS)-inspired approach to approximating min-max 2-coloring. In Sect. 3 we
present min-max q-coloring as a local search problem in the context of combina-
torial optimization. Subsequently, we build the necessary tools to tackle min-max
edge 2-coloring as a local search problem (provide neighborhood structure, aux-
iliary objective function). After this framework is built, we construct algorithms
to solve the problem using hill climbing (its basic nature led to omitting the full
algorithm from this paper), simulated annealing (Subsect. 3.1) and tabu search
(Subsect. 3.2) techniques. Finally, we reveal some experimental results in Sect. 4
and provide insight into the difficulty of the problem and the nature of the meth-
ods we employ to solve it. We reveal a simple design for a BFS-inspired algorithm
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that yields good results while having the benefit of the linear time complexity
of BFS. We provide evidence that all of our local search algorithms success-
fully exploit the search space gradient in improving their working solutions as
shown by a linear decrease in the objective function. We show that a simple
hill climbing approach produces reasonably good solutions using a low number
of iterations over the initial solution. Algorithms 2 and 3 (based on simulated
annealing and tabu search techniques) take longer to complete but manage to
escape local optima and achieve better solutions.

In the Experimental Results (Sect. 4) we describe the testing dataset, analyze
the implementation of the local search algorithms and show the behavior of the
described algorithms on our selected dataset. The results are encouraging while
considering the upper bounds for the optimum solutions for a selection of the
input graphs that are obtained with an Integer Linear Program (ILP).

2 A BFS-Inspired Heuristic Algorithm

We show a simple algorithm for approximating the min-max edge 2-coloring
by using Breadth First Search (BFS). The idea is to color the uncolored edges
incident to each subsequent “level” in a BFS with a distinct color. The “levels”
denote the starting vertex, then its neighbors, then the neighbors of the neigh-
bors and so on. The full algorithm is presented as Algorithm 1. The algorithm
takes time O(n + m), same as BFS. We can improve the base algorithm by
coloring disconnected colored components with distinct colors as shown in step
5. By using a disjoint set forest data structure we may quickly determine these
disconnected components during the edge coloring step for only a small overhead
of O(α(m)), α denoting the inverse of the Ackermann function.

Algorithm 1. input: graph G = (V,E), an initial vertex v0
1 : Let there be two sets Q1 ← {v0} and Q2 ← ∅. Mark v0 as visited. Integer c ← 1.
2 : Color all uncolored edges (vi, vj) incident to each vi ∈ Q1 using integer color c.
3 : During the previous operation, add all unvisited vj (neighbors of vi) to set Q2.
4 : Mark all these vj as visited.
5 : (Improvement step) Consider the subgraph containing all the edges colored with
integer c. Color each disconnected component in this subgraph with a new color
obtained by incrementing c.
6 : Let c ← c + 1, Q1 ← Q2 and Q2 ← ∅
7 : If Q1 = ∅ then the algorithm terminates. Else, continue with step 2.

Theorem 1. Algorithm 1 produces a valid 2-coloring.

Proof. The colored subgraph Gi grows at each iteration i of the algorithm by
adding a new layer of previously uncolored edges. The vertices along the border
of Gi all have incident edges with the same color. At step i + 1 these vertices
may obtain a second incident color if they had any uncolored incident edges in
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the main graph at iteration step i. Assume that G0 = (V, ∅) and at step i there
is a 2-coloring using i colors in Gi, but in Gi+1 we add a third incident color
different from ci+1 to some vertex p (which has to be at the border of Gi). This
third color comes from an edge that is incident to both p and a vertex q from
the border of Gi+1. This edge can only be colored with ci+1, contradiction. ��

3 Local Search Algorithms

Min-max edge q-coloring (including 2-coloring) can naturally be modeled as a
combinatorial optimization problem:

– a solution ω is a color mapping from the edge set of the graph to a set of
positive integers, for example.

– the objective function f(ω) used to evaluate the quality of the solution is the
largest number of edges that share the same color. Our purpose is to minimize
this amount, as such, it is a minimization problem.

– the constraint is that the set of edges incident to a vertex can contain edges
that are colored with at most q (respectively, two for 2-coloring) different
colors.

– a feasible solution will respect the constraint across all vertices while an unfea-
sible solution will not.

To solve this problem using local search, there are a few more requirements
to fulfill:

– some initial solution ω0 to start improving upon.
– a neighborhood structure N(ω) to provide slightly modified candidate color-

ings that we will evaluate with our objective function. If a neighbor is better
in terms of the objective function then we select it as current solution (i.e.
ωcurrent ← ωbest ∈ N(ωcurrent)).

– some stopping criteria to prevent the algorithm from looping.

For our neighborhood structure we choose operations based neighborhood,
that is to say, we apply some local modifications or moves (i.e. color changes) to
some components of the current solution (i.e. edges). The set of moves applied
to every component of the solution ω will construct the neighborhood N(ω).

Notation 1. In the following we refer to the color class of a vertex as being
the set of colors of its incident edges. We use cc(v) to denote the color class of a
vertex v. By definition, cc(v) =

⋃
(v,v′)∈E σ((v, v′)), where σ is an edge coloring.

We now consider a move set that can be applied only on feasible solutions
(i.e. 2-colorings) and will also produce only feasible solutions.

The defined moves can only be applied in certain cases depending on the
color classes of the endpoint vertices of the edge we operate on. Such scenarios
are depicted in Fig. 1 but do not reveal all possible cases. The omitted cases are
those that result in the removal of a color from either or both of the color classes
for exchange, connect and create.
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The effect of each move in our defined move set is detailed below:

1. Exchange. Applicable iff the color class of either endpoint is included in the
other (or equal) and at least one of the endpoint vertices has a color class of
cardinality 2: change the color of the edge to the other color in the endpoints’
color classes.

∀e = (v, v′) if {col} = cc(v) ∪ cc(v′) \ {ecolor} : ecolor ← col

2. Connect. Applicable iff the color classes of the endpoint vertices are both of
cardinality 2 and not equal: repaint the edge color, as well as all the edges
using the other two colors in the respective endpoints’ color classes with a
new, unified color.

∀e = (v, v′)if{col1, col2} = cc(v) ∪ cc(v′) \ {ecolor} :

ecolor ← colnew,∀e′ ∈
⎛

⎝
⋃

σ(e1)=col1

e1

⎞

⎠ ∪
⎛

⎝
⋃

σ(e2)=col2

e2

⎞

⎠ : e′
color ← colnew

3. Create. Applicable iff the endpoints both have color classes of cardinality 1:
assign a new color to the edge.

∀e = (v, v′) if ∅ = cc(v) ∪ cc(v′) \ {ecolor} : ecolor ← colnew

4. Merge. Essentially an operation that recolors two neighboring colored com-
ponents with a new color. For consistency it is defined as operating on an
edge like the other moves.

Theorem 2. The move set defined above can only produce 2-colorings.

Fig. 1. Illustration of the considered move set in our local search algorithms. The
central horizontal edge in all scenarios is the one that considers changing its color
(ecol). The operation may affect the color of edges other than the horizontal one, as in
merge and connect. Here, the ∪ operator stands for unifying two colors. The bottom
row shows the vertex color classes where the move is applicable. (Color figure online)
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Proof. All of the moves change the edge color and never add a third color to the
edge endpoint vertices’ color classes. We can observe that:

1. Exchange case 1 does not add a new color to either color class. At most it
can remove one from either or both.

2. Exchange case 2 can at most add a color to a color class of cardinality 1.
3. Connect modifies the colors in the color classes but they remain of cardinality

2 (or may decrease). Other affected edges maintain their color class cardinality
(or may decrease).

4. Create adds a color to color classes of cardinality 1. A color class may remain
of cardinality 1 if the respective endpoint has degree 1.

5. Merge produces color classes of cardinality 1. Other affected edges maintain
their color class cardinality (or may decrease).

Therefore any move applied on a 2-coloring will produce a 2-coloring. ��

Notation 2. We refer to an edge as being color critical if by removing this
edge from a subgraph containing all of the edges that share its color will result
in the number of connected components increasing in that subgraph.

In our algorithms, recoloring of a color critical edge will cause one of the
resulting connected components to be colored with a new color.

Suppose that we have a solution ω and we operate on an edge which is colored
with the most frequent color. Then, the moves defined above will affect f(ω),
our objective function, in the following way:

1. Exchange will produce f(ω′) ← f(ω) − 1 if the edge is not color critical.
Otherwise the objective function can decrease by more than 1. However, if
the other color present in the endpoints’ color classes has the same frequency
as the one on the edge we operate on, then f(ω′) ← f(ω) + 1.

2. Connect will produce f(ω′) ← f(ω) − 1 if the edge is not color critical.
Otherwise the objective function can decrease by more than 1. However, if
the sum of the frequencies of the other two colors in the endpoints’ color
classes is equal to or exceeds that of the edge we operate on, then f(ω′) will
increase by 1 or more.

3. Create will produce f(ω′) ← f(ω)−1 if the edge is not color critical. Otherwise
the objective function can decrease by more than 1.

4. Merge will affect f(ω′) if the number of colored edges that use the new color
exceeds the previous objective function value. The new f(ω′) can be no more
than twice f(ω), just like with the connect case.

The cases when the moves affect a color critical edge of the most frequent
color are tricky: to properly calculate the impact on the objective function one
needs to perform for example a depth first search across all the neighboring
edges to update the objective function. When we want to explore the entire
neighborhood of a solution this becomes computationally expensive as we need
to perform depth first searches for all edges in O(|E|(|V | + |E|) for all iterations
of our local search algorithms.
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To avoid this, one can use probabilistic sampling of the neighborhood. In our
implementations we prefer to discard this computation entirely, as it is certain
that the objective function is decreased by at least 1 with all of the moves if we
are careful about avoiding the special cases that worsen the value.

However, if the objective function can only decrease by 1 in all cases, there
will not be sufficient information to drive the search to good solutions. As such,
we use an auxiliary objective function in terms of defining an attractiveness value
for each of the moves.

Notation 3. In the following we denote count(c) to represent the number of
edges that are colored with color c ∈ C. Formally, count(c) = |{e ∈ E|σ(e) = c}|.

Next, we define the attractiveness for each move (which must be maximized):

1. attexchange(e, ω) = b1 + w1 · count(ecolor) · f(ω)−count(colother)
f(ω)

2. attconnect(e, ω) = b2 + w2 · count(ecolor) · f(ω)−count(col1)−count(col2)−1
f(ω)

3. attcreate(e, ω) = b3 + w3 · count(ecolor) · 1
f(ω)

4. attmerge(e, ω) = b4 + w4 · f(ω)−count(ecolor)−count(colother)
f(ω)

The constants bi, wi are used for the fine tuning of the attractiveness values.
Observe that for connect and merge the fraction part of the attractiveness will
be 0 when the newly colored components reach exactly the size of f(ω) and
negative if they exceed f(ω) (and thus worsen the new objective function value).

With all of the above we have all the elements required to build a simple hill
climbing algorithm to approximate min-max 2-coloring by choosing the most
attractive move at each iteration. We may improve upon this algorithm by using
metaheuristics for local search such as simulated annealing and tabu search.

3.1 Simulated Annealing Algorithm (Algorithm 2)

Algorithm 2. input: graph G = (V,E)
1 : Let the working solution ω to be some initial 2-coloring.
2 : Set up some initial starting temperature of the annealing system: temp ← tempinitial

3 : Initialize echosen ← nil, attchosen ← 0
4 : Cycle through edges e ∈ E :

– (accept improving moves always:)
if att(e) > attchosen: echosen ← e, attchosen ← att(e)

– (accept worsening moves with temperature dependent probability:)

else if uniform(0, 1) < exp(att(e)−attchosen
temp

): echosen ← e, attchosen ← att(e)

5 : Perform the move on the working solution: ω ← move(echosen, ω)
6 : temp ← temperature decrease schedule(temp)
7 : Evaluate stopping criteria. If one of the criteria is met terminate the algorithm and
output ω. Otherwise, continue with step 3.
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In the simulated annealing setup we select an initial temperature for our
system and we may accept worsening moves to our working solution with a
probability p. This probability is affected by the temperature at a particular
iteration step of the algorithm and by the loss in move attractiveness of our
worsening operation. Lowering temperature causes p to decrease, while moves
with low attractiveness also cause a small probability of acceptance.

3.2 Tabu Search Algorithm (Algorithm 3)

Algorithm 3. input: graph G = (V,E)
1 : Let the working solution ω to be some initial 2-coloring.
2 : Set up the frequency list to contain 0 for all edges, set up TabuList ← nil.
3 : Initialize echosen ← nil, attchosen ← 0
4 : Cycle through edges e ∈ E, e /∈ TabuList :
if att(e)−k·frequency(e) > attchosen: echosen ← e, attchosen ← att(e)−k·frequency(e)
5 : Perform the move on the working solution: ω ← move(echosen, ω)
6 : TabuList ← TabuList ∪ {e}, frequency(e) ← frequency(e) + 1
7 : Evaluate stopping criteria. If one of the criteria is met terminate the algorithm and
output ω. Otherwise, continue with step 3.

To explore the neighborhood of a solution in a more intelligent way we can
employ memory to prevent cycling and drive the search to less explored areas of
the search space. To solve the problem using tabu search techniques we use:

– a simple tabu list providing short-term memory that disallows a move on any
edge recently changed;

– a frequency list on edge moves providing long-term memory. The frequency
of an edge e increases by 1 each time it is used in an exchange operation, and
move attractiveness values receive a penalty of −k · frequency(e) for some
selected constant k.

Theorem 3. Algorithms 2 and 3 produce valid 2-colorings.

Proof. The algorithms take a feasible solution and apply a move set that only
results in feasible solutions (2-colorings). ��

4 Experimental Results

4.1 Testing Dataset Details

Our testing dataset includes computer generated Unit Disk Graphs and Quasi-
Unit Disk Graphs (prefixed with “udg” and “qudg”, respectively in Table 1)
that are traditionally used to model Wireless Mesh Networks: two nodes can
communicate only if they are within transmission range of each other.



Heuristic Algorithms for the Min-Max Edge 2-Coloring Problem 671

In the testing setup, these two aforementioned types of graphs were generated
by deploying 100, 500 and 1000 vertices with uniformly distributed coordinates
over a square with the side measuring 2500 units. The maximum transmission
range parameter is specified as a suffix (e.g. udg500.140 is a Unit Disk Graph
with 500 vertices and transmission range 140). The algorithms were tested on the
largest connected component in each graph. The vertex count, edge count and
maximum degree of the test graphs are presented in Table 1. The transmission
range for the Quasi-Unit Disk Graphs varies uniformly between 50% and 100%
of the maximum specified range. They are generated with the same random seed
as their UDG counterparts so that the layout is identical excepting the absence
of some edges from the qUDG cases.

The rest of our testing dataset contains graphs that are not themselves mod-
elling wireless networks, for the sake of a more thorough analysis. These graphs
are a part of the dataset for the DIMACS graph vertex coloring benchmarks and
their high connectivity proves to be quite a challenge for our local search edge-
coloring algorithms. Note that the following graphs featured in our experimental
result showcase are geometric graphs, which are more relevant to the Wireless
Mesh Network topology: dsjr500.1c, dsjr500.5, r250.5, r1000.1c.

4.2 Algorithms 2 and 3 Implementation Details

Our implementations are based on the JGraphT Java Graph Library and are
made publicly available by means of a GitHub repository [11].

In all our local search algorithms we employ a disjoint set forest structure to
keep track of colors when we use the merge and connect moves. The create move
draws a new color by incrementing a static counter. Every so often, we renumber
the colors because all moves except create can cause colors to disappear from the
coloring. The vertex color classes are maintained inside a hash map structure.
After every iteration it is necessary to perform a depth first search to recolor a
potential new connected component that becomes disconnected when an edge
changes color. Every iteration takes total time O(|E|α(|V |)).

In our simulated annealing algorithm we have selected for our cooling schedule
the exponential cooling scheme T ′ ← kT , with k < 1, close to 1, as first proposed
by Kirkpatrik et al. [5].

In our tabu search algorithm we use hash map structures to keep track of the
tabu moves and quickly determine if a move is tabu or not.

4.3 Running Data

Our experiments for the min-max 2-coloring approximation algorithms are per-
formed on a selection of Unit Disk Graphs with increasing vertex density and
transmission range, as well as on DIMACS benchmark graphs.

To compare the local search algorithms in terms of the quality of the produced
solution the time required to obtain it, we plot the value of the objective function
for the current solution at each iteration step in Fig. 2. To compute the values,
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Fig. 2. A plot illustrating the quality of the incumbent solution at each iteration of the
algorithms on a selected graph (7968 edges). Marks indicate best achieved solutions.

we start with an initial solution containing a single colored component and select
graph qudg1000.220 and the best combination of parameters we have discovered.
The plot makes it easy to observe the linear drop in the objective function for
5000 units and between iterations 1 and 5000. This is a strong point of local
search techniques as they exploit the gradient in the search space. Their weakness
is that once they reach a local optimum it is hard to escape it as there are no
more improving moves to be considered. Simulated annealing approaches this
problem by adding randomness to the moves that are selected and we can see
the result in the quality of the found solutions. Tabu search will run out of
improving moves and will attempt worsening ones to escape the local optimum.
The spikes in the objective value function correspond to applying the merge
move which sometimes almost doubles the last best value.

For our local search algorithms we choose the initial solution to be either the
solution given by Algorithm 1 or a single colored component. We stop the algo-
rithms when they fail to produce an improvement for a set number of iterations.

We compare the algorithms with solutions obtained by running an ILP solver
(Gurobi) on the linear program formulation from [7]. To obtain these solutions
we had to limit the running time of the solver (3 h) and the maximum number
of allowed colors in the linear program (which in turn decreases the number of
variables). As such, the obtained linear program solutions are not the optimum
solution and instead are an upper bound for each min-max 2-coloring on the
respective graph.

Finally, we present the running data for our algorithms on a selection of
graphs in Table 1. The results are encouraging for Unit Disk Graphs and their
variants. Our tabu search heuristic applied to the solution of the BFS algorithm
seems to consistently yield good results by improving (decreasing) the objective
by up to 37% (21% on average). For some graphs, the BFS-inspired algorithm
seems to create a harder to escape local optimum for the local search heuristic
algorithms. This is where simulated annealing produces the best results starting
from a blank (single color) initial solution.
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Table 1. Algorithm running data. The first four columns display graph name, vertex
count, edge count and maximum vertex degree. The next three columns represent
the objective function value obtained by executing hill climbing, simulated annealing
and tabu search with a blank (single color) initial solution. The following column is
the solution for the BFS-based algorithm and then the solutions for the local search
algorithms now starting with it as an initial solution. The last column gives an upper
bound for the value of the optimum solution. The best solutions are highlighted.

Graph |V | |E| Deg HC SA TS BFS HC′ SA′ TS′ ILP

udg100.400 100 347 12 46 40 32 33 30 27 27 22

udg100.600 100 694 22 177 156 131 140 124 113 113 86

qudg100.400 100 232 9 29 19 19 21 19 17 17 12

qudg100.600 100 525 18 104 80 79 88 82 66 64 56

udg500.140 357 893 12 36 33 35 35 32 28 28 23

udg500.180 499 1862 16 198 156 120 77 70 59 54 63

udg500.220 500 2776 22 840 402 834 195 190 190 148 127

udg1000.140 1000 4641 20 359 173 183 163 141 133 102 −
udg1000.180 1000 7592 28 2218 1073 2218 579 579 579 478 −
udg1000.220 1000 11152 39 4132 3443 3854 1058 1058 1058 1058 −
qudg500.140 108 198 9 17 12 16 15 12 12 12 10

qudg500.180 480 1281 13 66 52 45 48 34 38 31 29

qudg500.220 500 1965 17 251 219 100 90 79 67 64 −
qudg1000.140 998 3305 14 120 135 78 78 65 60 56 −
qudg1000.180 1000 5427 21 614 542 586 295 255 220 215 −
qudg1000.220 1000 7968 31 2601 1727 2601 623 619 619 614 −
dsjc250.5 250 15668 147 7834 7182 7193 10148 7625 7625 7625 5234

dsjc500.1 500 12458 68 6123 5558 6123 9162 6084 6084 6084 5824

dsjc500.5 500 62624 286 31115 30089 31115 42946 30766 30766 33946 −
dsjr500.5 500 58862 388 29326 28653 29326 28724 28704 28704 28704 −
flat300 28 0 300 21695 162 10586 10781 10586 14604 10551 10551 10551 −
le450 25c 450 17343 179 8214 8416 8214 8614 8614 7549 7286 5781

le450 25d 450 17425 157 8339 7763 8339 8667 8667 7484 7154 5952

r250.5 250 14849 191 7425 6530 6806 7321 7321 5813 5813 4950

5 Conclusions and Future Work

The newly designed algorithms for the 2-coloring min-max problem offer a prac-
tical method of obtaining good solutions without resorting to more time con-
suming exact methods.

More techniques to approach the problem may be used, such as recombination
heuristics. An idea is to attempt to find some coding for graphs with colored
edges suitable for solving 2-coloring by using a genetic algorithm approach.

It would be interesting to find a constant factor approximation algorithm for
min-max edge q-coloring.
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Abstract. A geometric spanner on a point set is a sparse graph that
approximates the Euclidean distances between all pairs of points in the
point set. Here, we intend to construct a geometric spanner for a massive
point set, using a distributed algorithm on parallel machines. In particu-
lar, we use the MapReduce model of computation to construct spanners
in several rounds with inter-communications in between. An algorithm in
this model is called efficient if it uses a sublinear number of machines and
runs in a polylogarithmic number of rounds. In this paper, we propose
an efficient MapReduce algorithm for constructing a geometric spanner
in a constant number of rounds, using linear amount of communication.
The stretch factors of our spanner is 1 + ε, for any ε > 0.

Keywords: Computational geometry · Parallel computation
Geometric spanners · MapReduce

1 Introduction

Space limitations are the main challenge in processing massive data i.e. data that
do not fit inside the memory of a single machine. Given a bounded memory, an
efficient algorithm has a low time complexity. Some space-bounded models allow
a type of secondary slower memory or communication between multiple fast
memories to reduce the running time of the algorithm. Allowing two types of
memory, shifts the challenge in the algorithm design to data communication.

MapReduce is a framework for processing data in large scales in which a set of
machines, each have a part of the input, run an algorithm in simultaneous rounds
and after each round, they can communicate their data to each other. Efficient
MapReduce algorithms have sublinear machines each with sublinear memory
that run for polylogarithmic number of rounds and the number of machines
used in the algorithm must be asymptotically as many as the input size.

An example of problems that has been discussed in MapReduce framework
is Euclidean minimum spanning tree problem, which was studied by Andoni
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et al. [3] who presented an algorithm with O(1) round complexity and superlinear
memory. Later, Yaroslavtsev and Vadapalli [23] proved lower bounds for this
problem and proposed an algorithm for approximating each edge of the minimum
spanning tree. Another example is computing the core-set for convex hull using
the method proposed in [2], which also works in MapReduce model. Moreover,
fixed-dimensional linear programming, 1-dimensional all nearest neighbors, 2-
dimensional and 3-dimensional convex hull algorithms were solved in memory-
bound MapReduce model [13] and practically proven algorithms for sky-line
computation, merging two polygons, diameter and closest pair problems have
been discussed in MapReduce model [8,10].

A network is called a t-spanner, if there is a short path between any pairs
of nodes, within a guaranteed ratio t to the shortest paths between those nodes
in an underlying base graph. Most of the time and in this paper, the complete
graph which has θ(n2) edges is considered as the underlying base graph.

Most efficient spanner construction algorithms are geometric and they find
practical applications in areas such as terrain construction [12,21], metric space
searching [19], broadcasting in communication networks [11] and solving approx-
imately geometric problems like traveling salesman problem [20].

Recently, a divide and conquer algorithm for constructing geometric spanners
has been studied as spanners merging problem in [4]. The size of the spanner
created using this method is O(n log n), which requires O(log n) times more
memory than the input. However, the proposed algorithm uses linear memory
in its final merging steps, which is infeasible for MapReduce model. Moreover,
in [6,14] the problems of well-separated pair decomposition on PRAM and 3D
covex hull in MapReduce model were considered. Using the lifting transforma-
tion, 3D convex hull solves planar Delaunay triangulation. Using simulation of
PRAM algorithms in MapReduce as discussed in [14] gives algorithms for the two
spanners of [4,6]. Direct algorithms for Delaunay triangulation in MapReduce
[5,18] are randomized and require a super-linear number of machines unlike the
PRAM simulation. A summary of results on geometric spanners in MapReduce
is shown in Table 1.

Contributions. Table 1 compares the previous results for geometric spanners
with the one given in this paper.

Table 1. A summary of results on geometric spanners in MapReduce. 1
δ

= logn
m, where

m is the memory of each machine.

Spanner |E| Stretch factor Rounds Communication Reference

WSPD O(n) 1 + ε O( log n
δ

) O( n
δ log n

) Simulation [14], PRAM [6]

DT O(n) 1.998 O( 1
δ
) O(n

δ
) 3D convex hull [14,22]

- O(n
ε
) 1 + ε O( 1

δ
) O(n

δ
) this paper (Algorithm 4)
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In this paper, we propose efficient algorithms for constructing a geometric
spanner similar to Yao-graph and a special case of dynamic programming in the
MapReduce model. Our algorithms run for a constant number of rounds and use
linear memory.

2 Preliminaries

In this section we review basic knowledge required to understand the rest of the
paper.

2.1 MapReduce Model

Different theoretical models for MapReduce has been introduced over the years
[9,14,16]. In MapReduce class (MRC) model, for an input of size n, the following
three conditions must be satisfied:

– the number of machines is sublinear: L = o(n)
– the memory of each machine is sublinear: m = o(n)
– the number of rounds is polylogarithmic: O(polylog(n)).

In MRC model, the input of each round is distributed among machines. Let Si

be the part of the input assigned to machine i in each round. Data in MapReduce
are stored as (key, value) pairs. A MapReduce algorithm consists of three steps:
map, shuffle and reduce:

– map: processes data into a set of (key, value) pairs.
– shuffle: sends data with the same key to the same machine.
– reduce: aggregates data with the same key.

Operations map and reduce are local, while shuffle distributes data between
machines.

Two main parallel algorithms operations are semi-group and prefix sum:

– Semi-group: x1 ⊕ x2 ⊕ · · · ⊕ xn, i.e. for a set S and a binary operation ⊕ :
S×S → S, the associative property holds: ∀a, b, c ∈ S, (a⊕b)⊕c = a⊕(b⊕c).

– Prefix sum: x1 ⊕ x2 ⊕ · · · ⊕ xi, i = 1, . . . , n
– Diminished prefix sum: x1 ⊕ x2 ⊕ · · · ⊕ xi−1, i = 1, . . . , n

Both of these operations also take O(logn
m) rounds and O(n logn

m) computation in
MapReduce [14]. Parallel algorithms in CRCW PRAM model can be simulated
in MapReduce model by a factor 2 slow-down [14]. A class of functions that can
be computed with minimum round and communication complexity are known as
MRC-parallelizable functions [16]. An example of a MRC-parallelizable func-
tions is computing the frequency of words in a set of documents which is known
as word count algorithm [7].

Special cases of dynamic programming have been discuessed in MapRe-
duce [15] with (1 + ε)-approximation factor, O(1) rounds and Õ(n) communica-
tion, where Õ ommits a polylog(n) factor. The required conditions for this type
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of dynamic programming are monotonicity and decomposability. Monotonicity
states that the cost of subproblems is less than the main problem, and decom-
posability states that the input can be decomposed into two-level laminar family
of partial inputs where group is the higher level and block is the lower level, such
that the solution to the main problem is a concatenation of the solutions to the
subproblems and a nearly optimal solution can be constructed from O(1) blocks.

Algorithms for constructing range searching data structures in MapReduce
exist [1]. However, they lack the efficiency required for simultaneous queries.

2.2 Geometric Spanners

A geometric network G is a t-spanner for a point set P , if a t > 1 exists such
that for each pair of points u and v in P , there is a path in G between u and
v, whose length is less than or equal to the t times of the Euclidean distance
between u and v. The minimum t such that G is a t-spanner of P is the spanning
ratio of G.

Many spanner algorithms exist which excel in different quality measures.
Here, we describe an algorithm for constructing a t-spanner of a set of points
in Euclidean space which constructs a spanner with a linear number of edges in
O(n log n) time.

Yao-Graph. One of the most common spanners is Yao-graph which is denoted
by Yk-graph. The Yk-graph is constructed as follows. Given a set P of points
in the plane, for each vertex p ∈ P , partition the plane into k disjoint cones
(regions in the plane between two rays originating from the same point) with
apex p, each defined by two rays at consecutive multiples of θ = 2π

k radians
from the negative y-axis and label the cones C0(p) through Ck−1(p), in counter-
clockwise order around p. Then for each cone with apex p, connect p to its closest
vertex q inside that cone.

It is proven that for any θ with 0 < θ < π/3, the Yao-graph with cones of
angle θ, is a t-spanner of P for t = 1

1−2 sin(θ/2) with O(n
θ ) edges, that can be

constructed in O(n log n
θ ) time [17].

3 Mergeable Dynamic Programming

In Algorithm 1 we solve the special dynamic programming, which is defined
below, in MapReduce model. Actually, the idea behind dynamic programming
in MapReduce is similar to the parallel prefix sum in PRAM.

Definition 1 (Mergeable DP). A dynamic program (DP) with input set S
and output set Q with a recurrence relation f : Sk → Q and a table T with a
valid filling order Φ : T → N and size |T | = nd, and mappings between S ↔ T
and Q ↔ T , is a mergeable DP if the following three conditions hold:

– Sparsity: The number of cells of T required for computing Q is O(|S|).
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– Neighbors: Computing f on each block requires data only from O(1) previous
blocks (in the order of Φ).

– Order Preserving: The value of each cell must only depend on the cells with
smaller or equal index based on Φ and the order of each dimension of the
table T .

– Parallelizable: Function f must be a semi-group function.
– Summarizable: There is an integer � sublinear in |S| (� = o(|S|)), such that

using the last � values of T in the order of Φ, it is possible to compute the
rest of the table, i.e. function h exists such that T [Φ−1(k)] = h(T [Φ−1(k −
1)], . . . , T [Φ−1(k − �)], S[Φ−1(k)]).

The sparsity and summarizability of the DP table allow us to summarize
the computed part of the table into a sublinear subset of cells, which we call a
frontier. A formal definition of frontier is given in Definition 2.

Definition 2 (Frontier). The frontier is a subset of cells along with their
indices F (denoted by F.cells and F.indices) of a DP table T , such that cells
with indices R = {E(F ) + 1, . . . , |T |} can be computed using cells with indices
F.indices ∪ R, where E(F ) = maxf∈F.indices f .

Definition 3 (Frontier Merging). Given two frontiers a, b, frontier merg-
ing operation creates a frontier c which is a frontier for cells from 1 to k =
max{E(a), E(b)}. Build a hypotetical table TX similar to T but only store data
from set X = a.cells ∪ b.cells. Fill the table TX from cell 1 to cell k. Using
the summarizabilty property of the mergeable DP with table TX and ordering Φ,
there is a sequence TX [Φ−1(k)], . . . , TX [Φ−1(k − �−1)] for each cell TX [Φ−1(k)].
Report this as c.

In Lemma 1, we show that a frontier of a mergeable DP can be constructed using
a (diminished) parallel prefix algorithm.

Lemma 1. The operation of Definition 3 builds a frontier for ∪k−�
i=kT [Φ−1(i)]

and it is a semi-group function.

Proof. Since T is a mergeable DP, TX is also a mergeable DP. For two sets A and
B, using the semi-group property of f , computing TA and TB and applying f
on their results in the order of Φ, gives TA∪B. For A = {T [1], . . . , T [E(a)]}
and B = {T [1], . . . , T [E(b)]}, the result is A ∪ B = {T [1], . . . , T [k]}, k =
max(E(a), E(b)) = E(c).

Assume three frontiers a, b and c of a DP table in the order of Φ with the
set of indices denoted by Sa, Sb and Sc, respectively. Now, we prove the two
possible orders of computation result in the same result. Since the frontiers in
the computation follow the order of Φ:

a ⊕ b = TSa∪Sb
[E(b)] ⇒ (a ⊕ b) ⊕ c = TSa∪Sb∪Sc

[E(c)]

The other case can be proven similarly:

b ⊕ c = TSb∪Sc
[E(c)] ⇒ a ⊕ (b ⊕ c) = TSa∪Sb∪Sc

[E(c)]

which proves the lemma. 	
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Now, we give an algorithm (Algorithm 1) for solving the mergeable DP (Defini-
tion 1) problems in MapReduce.

Algorithm 1. Mergeable DP in MapReduce
Input: A mergeable DP (S, Q, f, T, Φ)
Output: The output of DP
1: Compute a valid ordering Φ on S and distribute the points by Algorithm 2.
2: Map each cell S[Φ−1(i)] to a �-tuple (∅, . . . , ∅, S[Φ−1(i)]).
3: Run the diminished parallel prefix algorithm with the frontier merging as the oper-

ation on �-tuples.
4: Compute T by applying f on �-tuples and S and store the result.
5: Use f to update the local values of T to compute Q.
6: return Q

Theorem 1. Algorithm1 solves mergeable dynamic programming problems cor-
rectly.

Proof. By Definition 1, for a mergeable dynamic programming, the order (Φ)
in which the table is filled can be determined. Using this order, Algorithm2
finds partitions that are ordered based on the order of the dynamic program
(Theorem 4). Then, a parallel prefix computation can be used for computing the
frontier in each cell (Lemma 1) and the minimum of the related cells gives the
value of the cell in T . 	

Theorem 2. Algorithm1 takes O(logn

m) rounds and it has O(n logn
m) commu-

nication complexity in MRC model, if � = O( d+1
√

n) for a d-dimensional DP.

Proof. The algorithm consists of a parallel prefix computation and running
Algorithm 2 once. The round and communication complexity of Algorithm2 is
O(logn

m) and O(n logn
m) respectively. The round complexity of parallel prefix

algorithm is O(logn
m) and the communication complexity of the algorithm is

O(�.�d logn
m), since instead of data with O(1) dimension, vectors of length O(�)

have been used, and there are O(�d) cells.
Using Theorem 4, the number of points in each row and column is O(m), so

the overall communication and space for sending data from a row and a column
is also O(m). Based on Definition 1, the amount of data from other cells is O(m).
Therefore, all the steps of the algorithm can be run using O(n) communication
per round. 	


4 Application: Geometric Spanners in MapReduce

In this section, we present an efficient algorithm for constructing a geometric
spanner in the MapReduce model.
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4.1 A Balanced Grid in MapReduce

We can store a grid by its separating lines. A partitioning based on a regular grid
and an indexing scheme is used to distribute data among machines. Algorithm 2
takes as input a set of point-sets and an ordering scheme and builds a regular
grid and a partitioning of that grid based on the given ordering.

In Algorithm 2, Sortf (S) means sorting based on function f of points in S in
MapReduce model. Sorting points means they are distributed among L machines
such that i < j ⇒ ∀a ∈ Si, b ∈ Sj , f(a) ≤ f(b). Sorting n points in this model
can be done in O(logn

m) rounds [14], which is O( 1δ ) for m = nδ where δ is a
constant (0 ≤ δ ≤ 1).

Algorithm 2. A Regular Grid in MapReduce
Input: a set of points set S = {S1, · · · , SL}, an ordering function f(., .)
Output: a space partitioning of S, the grid lines
1: Sortx(S)
2: Xi ← min(x,y)∈∪iSi

x
3: send xi to all other machines (X = ∪iXi)
4: Sorty(S)
5: Yi ← min(x,y)∈∪iSi

y
6: send Yi to all other machines (Y = ∪iYi)
7: locally compute the index of each cell (i, j) using the ordering function f(i, j)
8: Sortf(x,y)(S)
9: Re-index the sets in the order of min(x,y)∈Si

f(x, y)
10: return S = {S1, · · · , SL}, X, Y

Here, we present some properties of Algorithm 2, which are used later.

Lemma 2. The number of points in each cell of the grid in Algorithm2 is at
most m.

Proof. Based on the sorting on x, the number of points between Xi and Xi+1

is O(m). Similarly, the number of points between Yi and Yi+1 is O(m). So, in
the grid built on X × Y , the number of points in each cell is O(m). By indexing
the points based on f(x, y), the partitions lie inside cells of X × Y . Since all
equal keys in a MapReduce computation go to the same machine, there are no
half-cells.

Theorem 3. The round complexity of Algorithm2 is O(logn
m) and its commu-

nication complexity is O(n logn
m).

Proof. Each sorting takes O(logn
m) rounds, which is constant for m = O(nδ)

and O(logn
m) communication. Since the round and communication complexities

of the algorithm are the sum of the complexities of these sorting steps, they are
O(logn

m) and O(n logn
m) respectively. 	
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Theorem 4. There are at most O(L) partitions in the output of Algorithm2,
each with O(m) points.

Proof. The last sorting step of the algorithm which sorts points based on the
value of f , divides points into sets S1, . . . , SL such that ∀(x, y) ∈ Si, (x′, y′) ∈
Sj , i < j ⇒ f(x, y) ≤ f(x′, y′). The size of the sets created using a sorting
algorithm is O(m) (Lemma 2) and the number of sets is O(L), so the number of
partitions is O(L) and each of them has O(m) points. 	


4.2 Simultaneous 2-Sided Queries

Now we present an offline algorithm for solving the 2-sided range queries in
Algorithm 3, which can be extended to MapReduce in the same way as parallel
prefix computation.

In Algorithm 3, the closest point to (Xi, Yj) using distance function �1 that
lies inside the 2-sided range (x ≤ Xi, y ≤ Yj) is computed. Also, ‖x‖1 denotes
the length of vector x under �1.

Algorithm 3. Simultaneous 2-Sided Queries
Input: A point set S, a rectangular grid {Xi}�

i=1 × {Yj}�
i=1

Output: The nearest neighbor to (Xi, Yj) using points of S inside the 2-sided range
1: Run Algorithm 2 to build a � × � table T and index it using Φ(x, y) = x + y × �.
2: Run Algorithm 1 with S as point set, T as table, T [i, j] =

arg min
t∈S[i,j]∪T [i−1,j]∪T [i,j−1]

‖t − (Xi, Yj)‖1 as f and Φ as the ordering.

3: return T

Fig. 1. For a 2D DP table which is filled in 2 directions (down and right), the data of
the same row and column cells are needed in addition to Ci of the previous cells.

Lemma 3. Algorithm3 is a mergeable dynamic programming.

Proof. The algorithm is mergeable since it satisfies the conditions of mergeable
dynamic programming as defined in Definition 1:

– Sparsity: The number of cells required to answer 2-sided queries is O(n), since
we only need to know the value of cells which contain a point.
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– Neighbors: The value of a cell (i, j) can be determined using the values of
cells T [i − 1, j], T [i, j − 1], S[i, j].

– Parallelizable: Minimum distance to the grid point corresponding to the cor-
ner of cell [i, j] is a semi-group function, since minimum computations are
semi-group.

– Summarizable: The anti-diagonal of T that passes through each cell is the
frontier of that cell under 2-sided queries. So this problem is summarizable
for � = n. 	


(0,0) (0,1)

(1,0) (1,1)

(0,2) (0,3)

(1,2) (1,3)

(2,0) (2,1)

(3,0) (3,1)

(2,2) (2,3)

(3,2) (3,3)

Fig. 2. Three 2-sided range queries for computing 3 nearest neighbors.

Lemma 4. The nearest neighbor of a point inside a 2-sided range using �1 dis-
tance can be computed using Algorithm3.

Proof. Each 2-sided range query on the grid (Fig. 2), can be computed using
Algorithm 1 for computing the recurrence relation. The nearest point to (Xi, Yj)
using �1 distance is either in cell S[i, j] or in one of its neighbors: T [i − 1, j],
T [i, j − 1] (Fig. 1). Since the algorithm checks all these values, it finds the exact
nearest neighbor. 	


4.3 A Geometric Spanner in MapReduce

To build a spanner similar to Yao-graph, we first solve simultaneous 2-sided
range queries, using dynamic programming. These queries are then used in the
spanner algorithm to find an approximate nearest neighbor in each cone.

Our algorithm for constructing a spanner (Algorithm4) creates a grid and
applies nearest neighbor search to find the edges. Algorithm4 creates a set of
oriented rhomboid grids with lines parallel to the ones creating cones around
each point, as shown in Fig. 3.

In Algorithm 4, the distances computed in Algorithm 3 are �1 distances of
the affine transformations of a grid, as shown in Fig. 4. Lemma 5 computes the
approximation factor between this distance and the Euclidean distance.

Lemma 5. The distance between two points on a grid with unit vectors that
have an angle θ (0 ≤ θ ≤ π

2 ) between them, is 1 + O(θ) times the Euclidean
distance between those points.
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Fig. 3. The overlay of two out of k = 8 square grids of Algorithm 4, indicated by dotted
lines and dashed lines. The bold red lines denote the cones around a point. (Color figure
online)

Algorithm 4. A Geometric Spanner in MapReduce
Input: A set of points set S = {S1, . . . , SL}, an integer k ≥ 7
Output: A spanner with k cones around each point
1: Θ = { 2πi

k
|i = 1, . . . , k}

2: locally create pairs of consecutive directions from Θ in clockwise order.
3: locally build a grid for each pair of directions from previous step.
4: repeat each point p once in each grid.
5: run Algorithm 3 with d(., .) defined as the �1 distance and ∪iSi as the point set,

using Algorithm 1 in each grid to find the nearest neighbor of each point inside its
cone.

6: add an edge between each point and one of its nearest neighbors in each direction
(cone).

7: return the edges of the spanner.

Proof. Assume w.l.o.g. that one of the points is (0, 0) and the other one is p =
(x, y), x, y > 0. The angle between −→op and

−→
i is α ≤ θ, since p lies inside the cone.

Using basic trigonometry, the distance computed in our algorithm is x + y and
the Euclidean distance between these points is y sin(θ)

sin(α) . Also, x = cos(α)y sin(θ)
sin(α) −

y cos(θ). So, using Taylor series for cosine and Maclaurin series for 1
1−X , the

approximation factor is proved:

x + y

|−→op| =
cos(α)y sin(θ)

sin(α) − y cos(θ) + y

y sin(θ)
sin(α)

=
y cos(α) sin(α) − y cos(θ) sin(α) + y sin(α)

y sin(θ)
=

sin(θ − α) + sin(α)
sin(θ)

=
2 sin( θ

2 ) cos( θ−2α
2 )

2 sin( θ
2 ) cos( θ

2 )
=

cos( θ−2α
2 )

cos( θ
2 )

≤ 1
1 − θ2

8

= 1 +
θ2

8
+ o(θ2).
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Fig. 4. A grid built inside a cone and the path on the grid compared to the distance
between the point inside the cone and the apex.

Theorem 5. The stretch factor of the spanner of Algorithm4 is 1 + O(θ).

Proof. Applying Lemma 5 proves using �1 distance instead of the Euclidean dis-
tance (Algorithm 4) adds a factor 1 + O(θ2), and Lemma 4 proves Algorithm 3
computes the exact �1 distance. Using induction on the length of the path, sim-
ilar to the proof of the stretch factor of Yao-graph, proves the approximation
factor. 	

Theorem 6. Algorithm4 has O(k logn

m) round complexity and O(nk logn
m) com-

munication complexity.

Proof. The algorithm solves one instance of range query per cone to compute the
nearest neighbors simultaneously. Based on Lemma 3, Algorithm 3 is a mergeable
dynamic program, and using Theorem1, it takes O(logn

m) rounds and O(n logn
m)

communications to solve it. Since there are k cones, the overall complexity of
the algorithm is O(k logn

m) rounds and O(kn logn
m) communication. 	


5 Conclusion

We introduced a (1 + ε)-spanner in Euclidean plane and presented a MRC algo-
rithm for constructing it in optimal round and communication complexities.
However, the number of machines used in our algorithm is sub-quadratic. Find-
ing algorithms that use fewer machines and algorithms for spanners with other
geometric properties such as bounded degree spanners and bounded diameter
spanners are also important.

We also proved conditions for parallelizable dynamic programming problems.
Solving other problems in MapReduce using our method might also be inter-
esting. Also, finding algorithms for other simultaneous queries can reduce the
complexity of some MapReduce algorithms.
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Abstract. We give approximation algorithms for the edge expansion
and sparsest cut with product demands problems on directed hyper-
graphs, which subsume previous graph models such as undirected hyper-
graphs and directed normal graphs.

Using an SDP formulation adapted to directed hypergraphs, we apply
the SDP primal-dual framework by Arora and Kale (JACM 2016) to
design polynomial-time algorithms whose approximation ratios match
those of algorithms previously designed for more restricted graph mod-
els. Moreover, we have deconstructed their framework and simplified the
notation to give a much cleaner presentation of the algorithms.

1 Introduction

The edge expansion of an edge-weighted graph gives a lower bound on the ratio of
the weight of edges leaving any subset S of vertices to the sum of the weighted
degrees of S. Therefore, this notion has applications in graph partitioning or
clustering [10,13,14], in which a graph is partitioned into clusters such that,
loosely speaking, the general goal is to minimize the number of edges crossing
different clusters with respect to some notion of cluster weights.

The edge expansion and the sparsest cut problems [11] can be viewed as
a special case when the graph is partitioned into two clusters. Even though
the involved problems are NP-hard, approximation algorithms have been devel-
oped for them in various graph models and settings, such as undirected [4,5]
or directed graphs [1,2], and uniform [2,5] or general demands [1,4] in the case
of sparsest cut. Recently, approximation algorithms have been extended to the
case of undirected hypergraphs [12]. In this paper, we consider these problems
for the even more general class of directed hypergraphs.
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Directed Hypergraphs. We consider an edge-weighted directed hypergraph
H = (V,E,w), where V is the vertex set of size n and E ⊆ 2V × 2V is the set of
m directed hyperedges; Each directed hyperedge e ∈ E is denoted by (Te,He),
where Te ⊆ V is the tail and He ⊆ V is the head ; we assume that both the tail
and the head are non-empty, and we follow the convention that the direction is
from tail to head. We denote r := maxe∈E(|Te| + |He|).

The function w : E → R+ assigns a non-negative weight to each edge. Note
that Te and He do not have to be disjoint. This notion of directed hypergraph was
first introduced by Gallol et al. [8], who considered applications in propositional
logic, analyzing dependency in relational database, and traffic analysis.

Observe that this model captures previous graph models: (i) an undirected
hyperedge e is the special case when Te = He, and (ii) a directed normal edge e
is the special case when |Te| = |He| = 1.

Directed Hyperedge Expansion. In addition to edge weights, each vertex
u ∈ V has weight ωu :=

∑
e∈E:u∈Te∪He

we that is also known as its weighted
degree. Given a subset S ⊆ V , denote S := V \ S and ω(S) :=

∑
u∈S ωu. Define

the out-going cut ∂+(S) := {e ∈ E : Te ∩S �= ∅∧He ∩S �= ∅}, and the in-coming
cut ∂−(S) := {e ∈ E : Te ∩S �= ∅∧He ∩S �= ∅}. The out-going edge expansion of
S is φ+(S) := w(∂+(S))

ω(S) , and the in-coming edge expansion is φ−(S) := w(∂−(S))
ω(S) .

The edge expansion of S is φ(S) := min{φ+(S), φ−(S)}. The edge expansion of
H is

φH := min
∅�=S⊂V :ω(S)≤ ω(V )

2

φ(S).

Directed Sparsest Cut with Product Demands. As observed in previous
works such as [5], we relate the expansion problem to the sparsest cut problem
with product demands. For vertices i �= j ∈ V , we assume that the demand
between i and j is symmetric and given by the product ωi · ωj . For ∅ �= S � V ,
its directed sparsity is ϑ(S) := w(∂+(S))

ω(S)·ω(S)
. The goal is to find a subset S to

minimize ϑ(S).
Observe that ω(V )·ϑ(S) and w(∂+(S))

min{ω(S),ω(S)} are within a factor of 2 from each
other. Therefore, the directed edge expansion problem on directed hypergraphs
can be reduced (up to a constant factor) to the sparsest cut problem with product
demands. Hence, for the rest of the paper, we just focus on the sparsest cut
problem with product demands.

Vertex Weight Distribution. For the sparsest cut problem, the vertex weights
ω : V → R+ actually do not have to be related to the edge weights. However, we
do place restrictions on the skewness of the weight distribution. Without loss of
generality, we can assume that each vertex has integer weight. For κ ≥ 1, the
weights ω are κ-skewed, if for all i ∈ V , 1 ≤ ωi ≤ κ. In this paper, we assume
κ ≤ n.
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Balanced Cut. For 0 < c < 1
2 , a subset S ⊆ V is c-balanced if both ω(S) and

ω(V \ S) are at least c · ω(V ).

1.1 Our Contributions and Results

Our first observation is a surprisingly simple reduction of the problem from the
more general directed hypergraphs to the case of directed normal graphs.

Fact 1 (Reduction to Directed Normal Graphs). Suppose H = (V,E)
is a directed hypergraph with edge weights w and vertex weights ω. Then, trans-
formation to a directed normal graph Ĥ = (V̂ , Ê), where |V̂ | = n + 2m and
|Ê| = m +

∑
e∈E(|Te| + |He|), is defined as follows.

The new vertex set is V̂ := V ∪ {vT
e , vH

e : e ∈ E}, i.e., for each edge e ∈ E,
we add two new vertices; the old vertices retain their original weights, and the
new vertices have zero weight.

The new edge set is Ê := {(vT
e , vH

e ) : e ∈ E} ∪ {(u, vT
e ) : e ∈ E, u ∈ Te} ∪

{(vH
e , v) : e ∈ E, v ∈ He}. An edge of the form (vT

e , vH
e ) has its weight we derived

from e ∈ E, while all other edges have large weights M := n
∑

e∈E we.
We overload the symbols for edge w and vertex ω weights. However, we use

∂̂+(·) for out-going cut in Ĥ.
Given a subset S ⊆ V , we define the transformed subset Ŝ := S ∪ {vT

e :
S ∩ Te �= ∅} ∪ {vH

e : He ⊆ S}. Then, we have the following properties.

– For any S ⊆ V , ω(S) = ω(Ŝ) and w(∂+(S)) = w(∂̂+(Ŝ)).
– For any T ⊆ V̂ , ω(T ∩ V ) = ω(T ); moreover, if w(∂̂+(T )) < M, then

w(∂+(T ∩ V )) = w(∂̂+(T )).

Fact 1 implies that for problems such as directed sparsest cut (with product
demands), max-flow and min-cut, it suffices to consider directed normal graphs.

Semidefinite Program (SDP) Formulation. Arora et al. [5] formulated an
SDP for the sparsest cut problem with uniform demands for undirected normal
graphs. The SDP was later refined by Agarwal et al. [2] for directed normal
graphs to give a rounding-based approximation algorithm. Since the method
can be easily generalized to product demands with κ-skewed vertex weights by
duplicating copies, we have the following corollary.

Corollary 1 (Approximation Algorithm for Directed Sparsest Cut
with Product Demands). For the directed sparsest cut problem with prod-
uct demands (with κ-skewed vertex weights) on directed hypergraphs, there are
randomized polynomial-time O(

√
log κn)-approximate algorithms.

Are We Done Yet? Unfortunately, solving an SDP poses a major bottleneck in
running time. Alternatively, Arora and Kale [3] proposed an SDP primal-dual
framework that iteratively updates the primal and the dual solutions.
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Outline of SDP Primal-Dual Approach. The framework essentially performs
binary search on the optimal SDP value. Each binary search step requires iter-
ative calls to some Oracle. Loosely speaking, given a (not necessarily feasible)
primal solution candidate of the minimization SDP, each call of the Oracle
returns either (i) a subset S ⊂ V of small enough sparsity ϑ(S), or (ii) a (not
necessarily feasible) dual solution with large enough objective value to update
the primal candidate in the next iteration. At the end of the last iteration, if a
suitable subset S has not been returned yet, then the dual solutions returned in
all the iterations can be used to establish that the optimal SDP value is large.

Disadvantage of Direct Reduction. For directed sparsest cut problem with uni-
form demands, the primal-dual framework gives an O(

√
log n)-approximate algo-

rithm, which has running time1 Õ(m1.5 + n2+o(1)). If we apply the reduction in
Fact 1 directly, the resulting running time for directed hypergraphs becomes
Õ((mr)1.5 + n2+o(1) + m2+o(1)). The term (mr)1.5 is due to a max-flow compu-
tation, which is not obvious how to improve. However, the extra m2+o(1) term is
introduced, because the dimension of the primal domain is increased. Therefore,
we think it is worthwhile to adapt the framework in [9] to directed hypergraphs
to avoid the extra m2+o(1) term.

Other Motivations. We deconstruct the algorithm for directed normal graphs
with uniform vertex weight in Kale’s PhD thesis [9], and simplify the notation.
The result is a much cleaner description of the algorithm, even though we con-
sider more general directed hypergraphs and non-uniform vertex weights. As a
by-product, we discover that since the subset returned by sparsest cut needs not
be balanced, there should be an extra factor of O(n2) in the running time of
their algorithm. We elaborate the details further as follows.

1. In their framework, they assume that in the SDP, there is some constraint on
the trace Tr(X) = I • X, which can be viewed as some dot-product with the
identity matrix I. The important property is that every non-zero vector is an
eigenvector of I with eigenvalue 1. Therefore, if the smallest eigenvalue of A
is at least −ε for some small ε > 0, then the sum A+ εI � 0 has non-negative
eigenvalues. This is used crucially to establish a lower bound on the optimal
value of the SDP.
However, for the SDP formulation of directed sparsest cut, the constraint
loosely translates to I · X ≤ O( n

ω(S)·ω(S)
), where S ⊂ V is some candidate

subset. To achieve the claimed running time, one needs a good enough upper
bound, which is achieved if the subset is balanced. However, for general S
that is not balanced, there can be an extra factor of n in the upper bound,
which translates to a factor of O(n2) in the final running time.

1 After checking the calculation in [9] carefully, we conclude that there should actually
be an extra factor of O(n2) in the running time. Through personal communication
with Kale, we are told that it might be possible reduce a factor of O(n), using the
“one-sided width” technique in [9].



692 T.-H. H. Chan and B. Sun

Instead, as we shall see, there is already a constraint K • X = 1, where K
is the Laplacian matrix of the complete graph. Since K is actually a scaled
version of the identity operator on the space orthogonal to the all-ones vector
1, a more careful analysis can use this constraint involving K instead.

2. In capturing directed distance in an SDP [2], typically, one extra vector v0 is
added. However, in the SDP of [9], a different vector wi is added for each i ∈
V , and constraints saying that all these wi’s are the same are added. At first
glance, these extra vectors wi’s and constraints seem extraneous, and create
a lot of dual variables in the description of the Oracle. The subtle reason
is that by increasing the dimension of the primal domain, the width of the
Oracle, which is measured by the spectral norm of some matrix, can be
reduced.
Observe that the matrix K does not involve any extra added vectors. If we
do not use the trace bound on Tr(X) in the analysis, then we cannot add
any extra vectors in the SDP. This can be easily rectified, because we can
just label any vertex in V as 0 and consider two cases. In the first case, we
formulate an SDP for the solution S to include 0; in the second case, we
formulate a similar SDP to exclude 0 from the solution. The drawback is that
now the width of the Oracle increases by a factor of O(n), which leads to a
factor of O(n2) in the number of iterations.
Therefore, in the end, we give a simpler presentation than [9], but the asymp-
totic running time is the same, although an improvement as mentioned in
Footnote 1 might be possible.

3. For each simple path, they add a generalized �22-triangle inequality. This
causes an exponential number of dual variables (even though most of them are
zero). However, only triangle inequalities for triples are needed, because each
triangle inequality for a long path is just a linear combination of inequalities
involving only triples.

We summarize the performance of our modified primal-dual approach as
follows.

Theorem 2 (SDP Primal-Dual Approximation Algorithm for Directed
Sparsest Cut). Suppose the vertex weights are κ-skewed. Each binary search
step of the primal-dual framework takes T := Õ(κ2n2) iterations. The running
time of each iteration is Õ((rm)1.5 + (κn)2).

The resulting approximation ratio is O(
√

log κn).

1.2 Related Work

As mentioned above, the most related work is the SDP primal-dual framework by
Arora and Kale [3] used for solving various variants of the sparsest cut problems.
The details for directed sparsest cut are given in Kale’s PhD thesis [9]. We briefly
describe the background of related problems as follows.
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Edge Expansion and Sparsest Cut. Leighton and Rao [11] achieved the first
O(log n)-approximation algorithms for the edge expansion problem and the
sparsest cut problem with general demands for undirected normal graphs.
An SDP approach utilizing �22-representation was used by Arora et al. [5] to
achieve O(

√
log n)-approximation for the special case of uniform demands; sub-

sequently, O(
√

log n · log log n)-approximation has been achieved for general
demands [4] via embeddings of n-point �22 metric spaces into Euclidean space
with distortion O(

√
log n · log log n). This embedding was also used to achieve

O(
√

log n log r · log log n)-approximation for the general demands case in undi-
rected hypergraphs [7], where r is the maximum cardinality of an hyperedge.

More related works are given in the full version [6].

2 SDP Relaxation for Directed Sparsest Cut

We follow some common notation concerning sparsest cut (with uniform
demands) in undirected [5] and directed [2] normal graphs.

Definition 1 (�22-Representation). An �22-representation for a set of vertices
V is an assignment of a vector vi to each vertex i ∈ V such that the �22-triangle
inequality holds:

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2, ∀i, j, k ∈ V.

Directed Distance [2]. We arbitrarily pick some vertex in V , and call it 0.
We first consider the case when 0 is always included in the feasible solution.

Given an �22-representation {vi}i∈V , define the directed distance d : V ×V → R+

by
d(i, j) := ‖vi − vj‖2 − ‖vi − v0‖2 + ‖vj − v0‖2.
It is easy to verify the directed triangle inequality: for all i, j, k ∈ V , d(i, k)+

d(k, j) ≥ d(i, j).
For subsets S ⊆ V, T ⊆ V , we also denote d(S, T ) := mini∈S,j∈T {d(i, j)},

d(i, S) = d({i}, S) and d(S, i) = d(S, {i}).

Interpretation. In an SDP-relaxation for directed sparsest cut, vertex 0 is always
chosen in the solution S ⊆ V . For i ∈ S, vi is set to v0; for i ∈ S = V \ S, vi is
set to −v0. Then, it can be checked that d(i, j) is non-zero iff i ∈ S and j ∈ S,
in which case d(i, j) = 8‖v0‖2.

The Other Case. For the other case when 0 is definitely excluded from the
solution S, it suffices to change the definition d(i, j) := ‖vi − vj‖2 −‖vi + v0‖2 +
‖vj + v0‖2. For the rest of the paper, we just concentrate on the case that 0 is
in the solution S.

We consider the following SDP relaxation (where {vi : i ∈ V } are vectors) for
the directed sparsest cut problem with product demands on an edge-weighted
hypergraph H = (V,E,w) with vertex weights ω : V → {1, 2, . . . , κ}. We denote
W :=

∑
i∈V ωi.
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SDP min
1
2

∑

e∈E

we · de (1)

s.t. de ≥ d(i, j), ∀e ∈ E,∀(i, j) ∈ Te × He (2)

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2, ∀i, j, k ∈ V (3)
∑

{i,j}∈(V
2)

ωiωj‖vi − vj‖2 = 1, (4)

de ≥ 0, ∀e ∈ E. (5)

SDP Relaxation. To see that SDP is a relaxation of the directed sparsest cut
problem, it suffices to show that any subset S ⊆ V induces a feasible solution
with objective function ϑ(S). We set v0 to be a vector with ‖v0‖2 = 1

4ω(S)·ω(S)
.

For each i ∈ V , we set vi := v0 if i ∈ S, and vi := −v0 if i ∈ S. Then, the value
of the corresponding objective is

1
2

∑

e∈E

we · de =
1
2

∑

e∈E

we · max
(i,j)∈Te×He

{d(i, j)}

=
1
2

∑

e∈∂+(S)

we · (‖v0 + v0‖2 − ‖v0 − v0‖2 + ‖ − v0 − v0‖2)

=
w(∂+(S))

ω(S) · ω(S)
= ϑ(S).

Trace Bound. We have
∑

i∈V ‖vi‖2 ≤ n
4ω(S)·ω(S)

≤ O(κn2

W2 ). Note that if S is
balanced, then the upper bound can be improved to O( n

W2 ).

SDP Primal-Dual Approach [3]. Instead of solving the SDP directly, the
SDP is used as a tool for finding an approximate solution. Given a candidate
value α, the primal-dual approach either (i) finds a subset S such that ϑ(S) ≤
O(

√
log n) · α, or (ii) concludes that the optimal value of the SDP is at least α

2 .
Hence, binary search can be used to find an O(

√
log n)-approximate solution.

This approach is described in Sect. 3.

3 SDP Primal-Dual Approximation Framework

We use the primal-dual framework by [3]. However, instead of using it just as a
blackbox, we tailor it specifically for our problem to have a cleaner description.

Notation. We use a bold capital letter A ∈ R
V ×V to denote a symmetric

matrix whose rows and columns are indexed by V .
The sum of the diagonal entries of a square matrix A is denoted by the trace

Tr(A). Given two matrices A and B, let A • B := Tr(A	B), where A	 is the
transpose of A. We use 1 ∈ R

V to denote the all-ones vector.
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Primal Solution. We use X � 0 to denote a positive semi-definite matrix that
is associated with the vectors {vi}i∈V such that X(i, j) = 〈vi, vj〉.

We rewrite SDP (1) to an equivalent form as follows.

SDP min
1
2

∑

e∈E

we · de (6)

s.t. de − Aij • X ≥ 0, ∀e ∈ E,∀(i, j) ∈ Te × He (7)
Tp • X ≥ 0, ∀p ∈ T (8)
K • X = 1, (9)
X � 0 ; de ≥ 0, ∀e ∈ E. (10)

We define the notation used in the above formulation as follows:

– For (i, j) ∈ V × V , Aij is the unique symmetric matrix such that Aij • X =
d(i, j) = ‖vi − vj‖2 − ‖vi − v0‖2 + ‖vj − v0‖2.

Since we consider a minimization problem, we just use X � 0 to represent a
primal solution, and automatically set de := max{0,max(i,j)∈Te×He

Aij • X}
for all e ∈ E. As we shall see, this implies that corresponding dual variable
ye

ij ∈ R can be set to 0.
Moreover, we do not need the constraint Aij • X ≥ 0, because we already
have de ≥ 0.

– The set T contains elements of the form
[
{i, k}

j

]

∈
(
V
2

)
× V , where i, j, k are

distinct elements in V .
They are used to specify the �22-triangle inequality.

For p =
[
{i, k}

j

]

, Tp is defined such that Tp •X = ‖vi − vj‖2 + ‖vj − vk‖2 −

‖vi − vk‖2.
Observe that in [9], a constraint is added for every path in the complete graph
on V . However, these extra constraints are simply linear combinations of the
triangle inequalities, and so, are actually unnecessary.

– As above, K is defined such that K • X =
∑

{i,j}∈(V
2) ωiωj‖vi − vj‖2.

Observe that any X � 0 can be re-scaled such that K • X = 1.
– Optional constraint. In [9], an additional constraint is added, which in our

notation2 becomes:
−I • X ≥ −Θ(

n

W2
).

2 In the original notation [9, p. 59], the claimed constraint is Tr(X) ≤ n, but for
general cut S, only the weaker bound Tr(X) ≤ Θ(n2) holds.
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However, this holds only if the solution S is balanced. For general cut S, we
only have the weaker bound: −I •X ≥ −Θ(κn2

W2 ). As we shall see in the proof
of Lemma 1, adding this weaker bound is less useful than the above constraint
K • X = 1.

The dual to SDP is as follows:

Dual max z (11)

s.t. −
∑

e∈E

∑

(i,j)∈Te×He

ye
ijAij +

∑

p∈T
fpTp + zK � 0 (12)

∑

(i,j)∈Te×He

ye
ij ≤ we

2
, ∀e ∈ E, (13)

fp ≥ 0, ∀p ∈ T , (14)
ye

ij ≥ 0, ∀e ∈ E,∀(i, j) ∈ Te × He. (15)

Observe that, if we add the optional constraint −I • X ≥ −b in the primal,
then this will create a dual variable x ≥ 0, which causes an extra term −bx
in the objective function and an extra term −xI on the left hand side of the
constraint.

To use the primal-dual framework [3], we give a tailor-made version of the
Oracle for our problem.

Definition 2 (ORACLE for SDP). Given α > 0, Oracle(α) has width ρ
(which can depend on α) if the following holds. Given a primal candidate solution
X � 0 (associated with vectors {vi}i∈V ) such that K • X = 1, it outputs either

(i) a subset S � V such that its sparsity ϑ(S) ≤ O(
√

log κn) · α, or
(ii) some dual variables (z, (fp ≥ 0 : p ∈ T )), where all ye

ij’s are implicitly 0,
and a symmetric flow matrix F ∈ R

V ×V such that all the following hold:

– z ≥ α
– (

∑
p∈T fpTp + zK) • X ≤ F • X

– For all feasible primal solution X∗, F • X∗ ≤ 1
2

∑
e∈E wed

∗
e,

where d∗
e := max{0,max(i,j)∈Te×He

Aij • X∗}.
– For all x ∈ span{1}, Fx = 0.
– The spectral norm ‖

∑
p∈T fpTp + zK − F‖ is at most ρ.

Using Oracle in Definition 2, we give the primal-dual framework for one
step of the binary search in Algorithm 1. As in [3], the running for each iteration
is dominated by the call to the Oracle.
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Input: Candidate value α > 0; Oracle (α) with width ρ

1 T is chosen as in Lemma 1; η ←
√

lnn
T ;

2 W(1) ← I ∈ R
V ×V ;

3 for t = 1, 2, . . . , T do
4 X(t) ← W(t)

K•W(t) ;
5 Run Oracle (α) with X(t);
6 if Oracle returns some S ⊂ V then
7 return S and terminate.
8 end
9 Otherwise, the Oracle returns some dual solution

(z(t), (f (t)
p : p ∈ T )) and matrix F(t) as promised in Definition 2.

10 M(t) ← − 1
ρ

(∑
p∈T f

(t)
p Tp + z(t)K − F(t)

)
;

11 W(t+1) ← exp
(
−η

∑t
τ=1 M

(τ)
)
;

12 end
13 if no subset S is returned yet then
14 report the optimal value is at least α

2 .
15 end

Algorithm 1: Primal-Dual Approximation Algorithm for SDP

The following result is proved in [3, Corollary 3.2].

Fact 3 (Multiplicative Update). Given any sequence of matrices M(1),
M(2), . . . ,M(T ) ∈ R

n×n that all have spectral norm at most 1 and η ∈ (0, 1], let
W(1) = I, W(t) = exp

(
−η

∑t−1
τ=1 M

(τ)
)
, for t = 2, . . . , T ; let P(t) = W(t)

Tr(W(t))
,

for t = 1, 2, . . . , T . Then, we have

T∑

t=1

M(t) • P(t) ≤ λmin

(
T∑

t=1

M(t)

)

+ ηT +
ln n

η
,

where λmin(·) gives the minimum eigenvalue of a symmetric matrix.

Lemma 1 (Correctness). Set T := � 16κ2ρ2n2 lnn
α2W4 �. Suppose that in Algo-

rithm 1, the Oracle never returns any subset S in any of the T iterations.
Then, the optimal value of SDP is at least α

2 .

Proof. The proof follows the same outline as [3, Theorem 4.6], but we need to
be more careful, depending on whether we use the constraint on I • X.

For t = 1, . . . , T , we use M(t) as in Algorithm 1, and apply Fact 3. Definition 2
guarantees that M(t) • P(t) ≥ 0, because X(t) is positively scaled from P(t).

Hence, by Fact 3, we have λmin

(∑T
t=1 M

(t)
)

+ ηT + lnn
η ≥ 0.

By setting η :=
√

lnn
T and Z := ρ

T

∑T
t=1 M

(t) = 1
T

∑T
t=1(F

(t) −
∑

p∈T f
(t)
p Tp − z(t)K), this is equivalent to λmin(Z) ≥ −2ρ ·

√
lnn
T .
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As in [3], we would like to add some matrix from the primal constraint to Z
to make the resulting matrix positive semi-definite.

A possible candidate is K, whose eigenvalues are analyzed as follows.
First, observe that for all x ∈ span{1}, it can be checked that Kx = Tp x = 0,

for all p ∈ T . Furthermore, Definition 2 guarantees that F(t)x = 0, for all t.
Hence, it follows that Zx = 0, which implies that any negative eigenvalue of Z
must be due to the space orthogonal to span{1}.

We next analyze the eigenvectors of K in this orthogonal space. Consider a
unit vector u ⊥ span{1}, i.e.,

∑
i∈V ui = 0 and

∑
i∈V u2

i = 1.
Then, u	Ku = 1

2

∑
i∈V

∑
j∈V ωiωj(ui − uj)2 = W2 · [

∑
i∈V δiu

2
i −

(
∑

i∈V δiui)2], where δi := ωi

W can be interpreted as some probability mass func-
tion. Hence, this term can be interpreted as some variance.

Observe that the κ-skewness of the weights ω implies that for all i ∈ V ,
δi ≥ 1

κn . Therefore, Lemma 2 below implies that u	Ku ≥ W2 · 1
κn .

Hence, by enforcing ε · W2 · 1
κn ≥ 2ρ ·

√
lnn
T , we have λmin(Z + εK) ≥ 0.

Next, suppose X∗ (with induced d∗) is an optimal primal solution to SDP.
Then, Definition 2 implies that 1

2

∑
e∈E wed

∗
e ≥ 1

T

∑T
t=1 F

(t) • X∗.
Since (Z + εK) • X∗ ≥ 0, the optimal value is at least

1
T

T∑

t=1

⎛

⎝
∑

p∈T
f (t)

p Tp • X∗

⎞

⎠ +
1
T

T∑

t=1

z(t)K • X∗ − εK • X∗

≥0 +
1
T

T∑

t=1

z(t) · 1 − ε · 1

≥α − ε,

where the last two inequalities come from the properties of primal feasible X∗

and Oracle, respectively. Setting ε = α
2 gives the result. ��

Remark. One can see that in the proof of Lemma 1, if one uses the weaker

bound −I•X ≥ −Θ(κn2

W2 ). Then, the proof continues by choosing ν = 2ρ ·
√

lnn
T ,

we have λmin(Z + νI) ≥ 0.
Using the same argument, we conclude that the optimal value is at least
α − νI • X∗ ≥ α − ν · Θ(κn2

W2 ).
Setting α

2 = ν · Θ(κn2

W2 ) gives T := Θ(κ2ρ2n4 lnn
α2W4 ) in this case, which has an

extra factor of O(n2).
However, since we do not add any extra vectors in our primal domain, the

width in our Oracle in Theorem 4 has an extra O(n) factor compared to that
in [9], which brings back the O(n2) factor we have saved earlier.

Lemma 2. (Bounding the Variance). For real numbers u1, u2, . . . , un and
δ0, δ1, δ2, . . . , δn such that

∑n
i=1 ui = 0,

∑n
i=1 u2

i = 1,
∑n

i=1 δi = 1 and δi ≥ δ0 >

0, ∀i, we have
∑n

i=1 δiu
2
i − (

∑n
i=1 δiui)

2 ≥ δ0.
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Moreover, we have
∑n

i=1 δiu
2
i − (

∑n
i=1 δiui)

2 ≤ maxi δi.

Proof. Let u1, . . . , un be fixed and consider the function

g(δ1, . . . , δn) =
n∑

i=1

δiu
2
i −

(
n∑

i=1

δiui

)2

with domain {(δ1, . . . , δn)|
∑n

i=1 δi = 1, δi ≥ δ0,∀i}.
We claim that the minimum can be obtained at some point where at most

one δi has value strictly greater than δ. Indeed, suppose there are two variables,
say δ1 and δ2, whose value is strictly greater than δ0. Consider h(x) = g(x, s −
x, δ3, . . . , δn) where s = δ1 + δ2. Simplifying it, we know that the coefficient
associated to x2 in h is −(u1 − u2)2 ≤ 0, which means that we can shift either
δ1 or δ2 to δ0 (and the other variable to s − δ0) without increasing the value of
g.

Therefore, we only need to consider the case where there is at most one
δi > δ0. Without loss of generality, suppose δ2 = δ3 = · · · = δn = δ0 and thus
δ1 = (1 − nδ0) + δ0. Then,

g(δ1, . . . , δn) = δ0 + (1 − nδ0)u2
1 − ((1 − nδ0)u1)2 = δ0 + nδ0(1 − nδ0)u2

1 ≥ δ0,

since δ0 cannot be greater than 1
n . ��

Corollary 2. (Non-zero Eigenvalues of K). All eigenvectors of K that are
orthogonal to 1 has eigenvalues in the range [W

2

κn , κW2

n ].

Implementation of ORACLE. The construction is almost the same as [9],
except that max-flow is computed on a directed hypergraph. Moreover, since we
do not increase the dimension of the primal domain, there is an extra factor of
O(n) in the width of our Oracle. For completeness, the proof of the following
theorem is in the full version [6].

Theorem 4. Given a candidate value α > 0 and primal X � 0 such that K •
X = 1, the Oracle ruturns one of the following:

1. A subset S with directed sparsity ϑ(S) = w(∂+(S))

ω(S)ω(S)
= O(

√
log κn) · α.

2. Dual variables (z, (fp : p ∈ T )) and flow matrix F satisfying Definition 2.
Moreover, the spectral norm satisfies ‖

∑
p fp Tp + z K − F‖ ≤

O(αW2
√

log κn).

The running time is Õ((rm)1.5 + (κn)2), where κ is the skewness of vertex
weights, m = |E| and r = maxe∈E(|Te| + |He|).
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Abstract. Algebraic Branching Programs (ABPs) are standard mod-
els for computing polynomials. Syntactic multilinear ABPs (smABPs)
are restrictions of ABPs where every variable is allowed to occur at most
once in every path from the start to terminal node. Proving lower bounds
against syntactic multilinear ABPs remains a challenging open question
in Algebraic Complexity Theory. The current best known bound is only
quadratic [Alon,Kumar,Volk ECCC 2017].

In this article, we develop a new approach upper bounding the rank of
the partial derivative matrix of syntactic multilinear ABPs: Convert the
ABP to a syntactic multilinear formula with a super polynomial blow
up in the size and then exploit the structural limitations of resulting for-
mula to obtain a rank upper bound. Using this approach, we prove expo-
nential lower bounds for special cases of smABPs and circuits namely,
sum of Oblivious Read-Once ABPs, r-pass multilinear ABPs and sparse
ROABPs. En route, we also prove super-polynomial lower bound for a
special class of syntactic multilinear arithmetic circuits.

Keywords: Computational complexity
Algebraic complexity theory · Algebraic branching programs

1 Introduction

Algebraic Complexity Theory investigates the inherent complexity of comput-
ing polynomials with arithmetic circuit as the computational model. Arithmetic
circuits introduced by Valiant [16] are standard models for computing polyno-
mials over an underlying field. An arithmetic formula is a subclass of arithmetic
circuits corresponding to arithmetic expressions. For circuits and formulas, the
parameters of interest are size and depth, where size represents the number of
nodes in the graph and depth the length of longest path in the graph. The arith-
metic formulas are computationally weaker than circuits, a proper separation
between them is not known. Nested in-between the computational power of for-
mulas and circuits is yet another well-studied model for computing polynomials
referred to as Algebraic Branching Programs (ABPs for short).

Arithmetic Formula ⊆P ABP ⊆P Arithmetic Circuits.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 701–712, 2018.
https://doi.org/10.1007/978-3-319-94776-1_58
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where the subscript P denotes the containment upto polynomial blow-up in
size. Most of algebraic complexity theory revolves around understanding whether
these containments are strict or not.

Separation of complexity classes of polynomials involves obtaining lower
bound for specific polynomial against classes of arithmetic circuits.

For general classes of arithmetic circuits, Baur and Strassen [4] proved that
any arithmetic circuit computing an explicit n-variate degree d polynomial must
have size Ω(n log d). In fact, this is the only super linear lower bound we know
for general arithmetic circuits.

While the challenge of proving lower bounds for general classes of circuits
still seems to be afar, recent research has focused on circuits with additional
structural restrictions such as multilinearity, bounded read etc. We now look at
some of the models based on these restrictions in more detail.

An arithmetic circuit (formula,ABP) is said to be multilinear if every gate
(node) computes a multilinear polynomial. A seminal work of Raz [13] showed
that multilinear formulas computing detn or permn must have size nΩ(log n).
Note that any multilinear ABP of nO(1) size computing f on n variables can be
converted to a multilinear formula of size nO(log n) computing f . In order to prove
super-polynomial lower bounds for ABPs, it is enough to obtain a multilinear
formula computing f of size no(log n) or prove a lower bound of nω(log n) for
multilinear formulas, both of which are not known.

Special cases of multilinear ABPs have been studied time and again. In this
work, we focus on the class of Read-Once Oblivious Algebraic branching pro-
grams (ROABP for short). ROABPs are ABPs where every edge is labeled by
a variable and every variable appears as edge labels in atmost one layer. There
are explicit polynomials with 2Ω(n) ROABP size lower bound [7,8,10]. Also,
ROABPs have been well studied in the context of polynomial identity testing
algorithms (See e.g.,[6]).

In this article, we prove lower bounds against sum of multilinear ROABPs
and other classes of restricted multilinear ABPs and circuits. Definitions of the
models considered in this article can be found in Sect. 2.

Our Results. Let X = {x1, . . . , xN} and F be a field. Let g denote the family
of N variate (for N even) defined by Raz and Yehudayoff [14]. (See Definition 5
for more details.) As our main result, we show that any sum of sub-exponential
(2o(Nε)) size ROABPs to represent g requires 2Nε

many summands:

Theorem 1. Let f1, . . . fm be polynomials computed by oblivious ROABPs such

that g = f1 + · · · + fm. Then, m = 2Ω(N1/5)

sc log N , where c is a constant and s =
max{s1, s2, . . . , sm}, si is the size of the ROABP computing fi.

Further, we show that Theorem 1 extends to the case of r-pass multilinear
ABPs (Theorem 3) for r = o(log n) and α-sparse multilinear ABPs (Theorem 4)
for 1/1000 ≤ α ≤ 1/2.

Finally, we develop a refined approach to analyze syntactic multilinear for-
mulas based on the central paths introduced by Raz [13]. Using this, we prove
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exponential lower bound against a class of O(log N) depth syntactic multilinear
circuits (exact definition can be found in Sect. 4, Definition 8).

Theorem 2. Let δ < N1/5/10 and c = No(1). Any O(log N) depth (c, δ) vari-
able close syntactically multilinear circuit computing the polynomial g requires
size 2Ω(N1/5/ log N).

Our Approach. Our proofs are a careful adaptation of the rank argument devel-
oped by Raz [13]. This involves upper bounding the dimension of the partial
derivative matrix (Definition 4) of the given model under a random partition of
variables. However, upper bounding the rank of the partial derivative matrix of
a syntactic multilinear ABP is a difficult task and there are no known methods
for the same. To the best of our knowledge, there is no non-trivial upper bound
on the rank of the partial derivative matrix of polynomials computed by ABPs
(or special classes of ABPs) under a random partition.

Our crucial observation is, even though conversion of a syntactic multilinear
ABP of size s into a syntactic multilinear formula blows the size to sO(log s),
the resulting formula is much simpler in structure than an arbitrary syntactic
multilinear formula of size nO(log s). For each of the special classes of multilinear
ABPs (ROABPS, r-pass ABPs etc) considered in the article, we identify and
exploit the structural limitations of the formula obtained from the correspond-
ing ABP to prove upper bound on the rank of the partial derivative matrix
under a random partition. Overall our approach to upper bound the rank can
be summarized as follows:

1. Convert the given multilinear ABP P of size s to a multilinear formula Φ of
size sO(log s) (Lemmas 4, 7 and 9);

2. Identify structural limitations of the resulting formula Φ and exploit it to
prove upper bound on the rank of the partial derivative matrix under a ran-
dom partition (Lemmas 6, 2, 10 and 11);

3. Exhibit a hard polynomial that has full rank under all partitions. (Lemma 3)

Related Results. Anderson et al. [2] obtained exponential lower bound against
oblivious read k branching programs. Kayal et al. [8] obtained a polynomial
that can be written as sum of three ROABPs each of polynomial size such
that any ROABP computing it has exponential size. Arvind and Raja [3] show
that if permanent can be written as a sum of N1−ε many ROABPs, then at
least one of the ROABP must be of exponential size. Further, sum of read-once
polynomials, a special class of oblivious ROABPs was considered by Mahajan
and Tawari [9], independently by the authors [11]. Recently, Chillara et al. [5]
show that any o(log N) depth syntactic multilinear circuit cannot a polynomial
that is computable by width-2 ROABPs.

The existing lower bounds against ROABPs or sm-ABPs, implicitly restrict
the number of different orders in which the variables can be read along any s to
t path. In fact, the lower bound given in Arvind and Raja [3] allows only N1−ε

different ordering of the variables. To the best of our knowledge, this is the state
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of art with respect to the number of variable orders allowed in ABPs. Without
any restriction on the orderings, the best known lower bound is only quadratic
upto poly logarithmic factors [1]. In this light, our results in Theorems 1 and 3
can be seen as the first of the kind where the number of different orders allowed
is sub-exponential. Certain proofs have been omitted due to space constraints.

2 Preliminaries

In this section we include necessary definitions and notations used. We begin
with the formal definition of the models considered in this article.

An arithmetic circuit C over a field F and variables X = x1, . . . , xN is a
directed acyclic graph with vertices of in-degree 0 or 2 and exactly one vertex of
out-degree 0 called the output gate. The vertices of in-degree 0 are called input
gates and are labeled by elements from X ∪ F. The vertices of in-degree 2 are
labeled by either + or ×. Every gate in C naturally computes a polynomial. The
polynomial f computed by C is the polynomial computed by the output gate
of the circuit. The size of an arithmetic circuit is the number of gates in C and
depth of C is the length of the longest path from an input gate to the output
gate in C. An arithmetic formula is an arithmetic circuit where the underlying
undirected graph is a tree.

An Algebraic Branching Program P (ABP for short) is a layered directed
acyclic graph with two special nodes, a start node s and a terminal node t. Each
edge in P is labeled by either an xi ∈ X or α ∈ F. The size of p is the total
number of nodes, width is the maximum number of nodes in any layer of P .
Each path γ from s to t in P computes the product of the labels of the edges in
γ which is a polynomial. The ABP P computes the sum over all s to t paths of
such polynomials.

An ABP P is said to be syntactic multilinear (sm-ABP for short) if every
variable occurs at most once in every path in P . An ABP is said to be oblivious
if for every layer L in P there is at most one variable that labels edges from L.

Definition 1 (Read-Once Oblivious ABP). An ABP P is said to be Read-Once
Oblivious (ROABP for short) if P is an oblivious and each xi ∈ X appears as
edge label in at most one layer.

In any Oblivious ROABP, every variable appears in exactly one layer and
all variables in a particular layer are the same. Hence, variables appear in layers
from the start node to the terminal node in the variable order xi1 , xi2 , . . . , xin

where (i1, i2, . . . , in) ∈ Sn is a permutation on [n]. A natural generalization of
ROABPs is the r-pass ABPs defined in [2]:

Definition 2 (r-pass multilinear ABP). An oblivious sm-ABP P is said to be r-
pass if there are permutations π1, π2, . . . , πr ∈ Sn such that P reads the variables
from s to t in the order (xπ1(1), xπ1(2), . . . , xπ1(n)), . . .,(xπr(1), xπr(2), . . . , xπr(n)).

A polynomial f ∈ F[X] is s-sparse if it has atmost s monomials with non-zero
coefficients.
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Definition 3 (α-Sparse ROABP). [6] An d+1 layer ABP P is said to be an α-
sparse ROABP if there is a partition of X into d = Θ(Nα) sets X1,X2, . . . , Xd

with |Xi| = N/d such that every edge label in layer Li is an s-sparse multilinear
polynomial in F[Xi] for s = NO(1).

Let Ψ be a circuit over F with X = {x1, . . . , xN} as inputs. For a gate v
in Ψ , let Xv denote the set of variables that appear in the sub-circuit rooted
at v. The circuit Ψ is said to be syntactic multilinear (sm for short), if for
every × gate v = v1 × v2 in Ψ , we have Xv1 ∩ Xv2 = ∅. By definition, every
syntactic multilinear circuit is a multilinear circuit. In [13], it was shown that
every multilinear formula can be transformed into a syntactic multilinear formula
of the same size, computing the same polynomial.

Let Ψ be a circuit (formula) and v be a gate in Ψ . The product-height of v is
the maximum number of × gates along any v to root path in Ψ .

We now review the partial derivative matrix of a polynomial introduced
in [13]. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zm} be disjoint sets of variables.

Definition 4 (Partial Derivative Matrix). Let f ∈ F[Y,Z] be a polynomial.
The partial derivative matrix of f(denoted by Mf ) is a 2m × 2m matrix defined
as follows. For monic multilinear monomials p and q in variables Y and Z
respectively, the entry Mf [p, q] is the coefficient of the monomial pq in f .

For a polynomial f , let rank(Mf ) denote the rank of the matrix Mf over the
field F. rank(Mf ) is known to satisfy sub-additivity and sub-multiplicativity.

Lemma 1 [13] (Sub-additivity, sub-multiplicativity). Let f, g ∈ F[Y,Z]. Then,
we have that rank(Mf+g) ≤ rank(Mf )+rank(Mg). Further, if var(f)∩var(g) = ∅,
then rank(Mfg) = rank(Mf )rank(Mg).

Further, since row-rank of a matrix is equal to its column rank, we have:

Lemma 2 [13]. For f ∈ F[Y1, Z1], rank(Mf ) ≤ 2min{|Y1|,|Z1|}, where Y1 ⊆
Y,Z1 ⊆ Z.

For f ∈ F[X], it may be noted that the matrix Mf is dependent on the
partition of the variable set X into variables in Y ∪Z. In most cases, partition of
the variable set is not apparent. In such cases, we need to consider a distribution
over the set of all such partitions. We represent a partition as a bijective function
ϕ : X → Y ∪ Z, where |Y | = |Z| = |X|/2.

Let D be the uniform distribution on the set of all partitions ϕ : X → Y ∪Z,
with |Y | = |Z| = |X|/2.
Now, we state a property of hypergeometric distribution that will be used later.

Proposition 1 [12,15] (Hypergeometric Distribution). Let M1,M2 ≤ S be inte-
gers. Let H(M1,M2, S) denote the distribution of size of the intersection of a
random set of size M2 and a set of size M1 in a universe of size S. Let χ be a
random variable distributed according to H(M1,M2, S) :

1. If S1/2 ≤ M1 ≤ S/2 and S/4 ≤ M2 ≤ 3S/4 then Pr[χ = a] ≤ O(S−1/4).
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2. If 0 ≤ M1 ≤ 2S/3 and S/4 ≤ M2 ≤ 3S/4 then Pr[χ = a] ≤ O(M−1/2
1 ) for

any a ≤ M1.

We consider the full rank polynomial g defined by Raz and Yehudayoff [14]
to prove lower bounds for all models that arise in this work.

Definition 5 (Hard Polynomial). Let N ∈ N be integer. Let X = {x1, . . . , xN}
and W = {wi,k,j}i,k,j∈[N ]. For any two integers i, j ∈ N, we define an interval
[i, j] = {k ∈ N, i ≤ k ≤ j}. Let |[i, j]| be the length of the interval [i, j]. Let
Xi,j = {xp | p ∈ [i, j]} and Wi,j = {wi′,k,j′ | i′, k, j′ ∈ [i, j]}. Let G = F(W),
the rational function field. For every [i, j] such that |[i, j]| is even we define a
polynomial gi,j ∈ G[X] as gi,j = 1 when |[i, j]| = 0 and if |[i, j]| > 0 then,
gi,j � (1+xixj)gi+1,j−1+

∑
k wi,k,jgi,kgk+1,j . where xk, wi,k,j are distinct variables,

1 ≤ k ≤ j and the summation is over k ∈ [i + 1, j − 2] such that |[i, k]| is even.
Let g � g1,N .

Lemma 3 [14, Lemma 4.3]. Let X = {x1, . . . , xN} and W = {wi,k,j}i,k,j∈[N ].
Let G = F(W) be the set of rational functions over field F and W. Let g ∈ G[X]
be the polynomial in Definition 5. Then for any ϕ ∼ D, rank(Mgϕ) = 2N/2.

3 Lower Bounds for Special Cases of sm-ABPs

In this section, we obtain exponential lower bound for sum of ROABPs and
related special classes of syntactic multilinear ABPs.

3.1 Sum of ROABPs: Proof of Theorem 1

Let P be an ROABP with �+1 layers L0, L1, L2, . . . , L� computing a multilinear
polynomial f ∈ F[x1, x2, . . . , xN ]. For every i ∈ {0, 1, . . . , � − 1}, we say a layer
Li is a constant layer if every edge going out of a vertex in Li is labeled by a
constant from F, else we call the layer Li a variable layer. For any variable layer
Li denote by var(Li) the variable in X that labels edges going out of vertices
in Li. For nodes u, v in P , we denote by [u, v] the polynomial computed by
the subprogram with u as the start node and v as the terminal node and let
Xu,v be the set of variables that occur in P between layers containing u and v
respectively. We can assume without loss of generality that P does not have any
two consecutive constant layers and that every ROABP P has exactly 2N layers
by introducing dummy constant layers in between consecutive variable layers.
Further, we assume that the variables occur in P in the order x1, . . . xN , and
hence indices of variables in Xu,v is an interval [i, j] = {t ∈ N | i ≤ t ≤ j} for
some i < j. (In case of a different order π for occurrence of variables, the interval
would be [i, j] = {π(i), π(i + 1), . . . , π(j)}.)

Approach: In order to prove Theorem 1, we use rank(Mfϕ) as a complexity
measure, where ϕ ∼ D. The outline is as follows:

1. Convert the ROABP P into a multilinear formula Φ with a small (super
polynomial) blow up in size (Lemma 4).
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2. Obtain a partition B1, . . . , Bt of the variable set with O(
√

N) parts of almost
equal size, so that there is at least one set that is highly unbalanced under a
random ϕ drawn from D. (Observation 1 and Lemma 6.)

3. Using the structure of the formula Φ, show that if at least on of the Bi is
highly unbalanced, then the formula Φ has low rank (Lemma 5).

4. Combining with Lemma 3 gives the required lower bound.

The following lemma lists useful properties of the straightforward conversion of
an ROABP into a multilinear formula. The proof is a simple divide and conquer
conversion of branching programs to formulas.

Lemma 4. Let P be an ROABP of size s computing an f ∈ F[x1, . . . , xN ].
Then f can be computed by a syntactic multilinear formula Φ of size sO(log N)

and depth O(log N) such that

1. Φ has an alternative of layers of + and × gates; and
2. × gates have fan-in bounded by two; and
3. Every + gate g in Φ computes a polynomial [u, v] for some u, v in P ; and
4. Every × gate computes a product [u, v] × [v, w], for some u, v and w in P .
5. The root of Φ is a + gate.

Let P be an ROABP and Φ be the syntactic multilinear formula obtained
from P as in Lemma 4. Let g be a + (respectively ×) gate in Φ computing
[ug, vg] (respectively [ug, vg]× [vg, wg]) for some nodes ug, vg and wg in P . Since
P is an ROABP with variable order x1, x2, . . . xN , the set Xug,vg

(respectively
Xug,vg

∪ Xvg,wg
) corresponds to an interval Ig in {1, . . . , N}. We call Ig the

interval associated with g. By the construction of Φ in Lemma 4, the intervals
have the following properties :

1. For any gate g in Φ at product-height i, |Ig| ∈ [N/2i − i,N/2i + i].
2. For any + gate g in Φ with children g1, . . . , gw, we have Ig = Ig1 = · · · = Igw

.
3. Let I be the set of all distinct intervals associated with gates at product-

height log N
2 in Φ. The intervals in I are disjoint and |I| = Θ(

√
N). For any

Ij ∈ I,
√

N − log N ≤ |Ij | ≤
√

N + log N .

We call the intervals in I as blocks B1, B2, . . . , Bt in Φ where t = Θ(
√

N).
For any block B� = [i�, j�], X� = {xia

| i� ≤ ia ≤ j�} = var(Li�
) ∪ var(Li�+1) ∪

· · · ∪ var(Lj�
).

Let ϕ : X → Y ∪ Z be a partition. We say a block B� is k-unbalanced with
respect to ϕ iff ||Y ∩ϕ(X�)|− |Z ∩ϕ(X�)|| > k. For any two intervals I1 = [i1, j1]
and I2 = [i2, j2] we say I1 ⊆ I2 iff i2 ≤ i1 ≤ j1 ≤ j2.

Observation 1. Let P be an ROABP and Φ be the syntactic multilinear formula
obtained from P and B1, . . . , Bt be the blocks in Φ. Then, for any gate v in Φ,

(1) If v is at a product-height < log N
2 in Φ, then Bi ⊆ Iv for some block Bi.

(2) If v is at product-height > log N
2 in Φ, then for every 1 ≤ i ≤ t, either Iv ⊆ Bi

or Bi ∩ Iv = ∅.
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(3) If v is at product-height log N
2 in Φ, then for every 1 ≤ i ≤ t, either Iv = Bi

or Bi ∩ Iv = ∅.
We need the following before formalizing Step 3 in the approach outlined.

Definition 6 (kB-hitting formula). Let ϕ : X → Y ∪ Z be a partition and B be
a k-unbalanced block in Φ with respect to ϕ. A gate v with product-height ≤ log N

2
in Φ is kB-hitting if either

(i) Iv = B; Or
(ii) B ⊆ Iv and,

• If v is a sum gate with children v1, . . . , vw, the gates v1, . . . , vw are
kB-hitting.

• If v is a product gate with children v1, v2, then atleast one of v1 or v2 are
kB-hitting.

A formula Φ is kB-hitting with respect to ϕ if the root r is kB-hitting for some
k-unbalanced block B ∈ {B1, B2, . . . , Bt} where t = Θ(

√
N).

In the following, we note that the partial derivative matrix of kB-hitting for-
mulas have low rank. The proof is by induction on the structure of the formula.

Lemma 5. Let P be an ROABP computing f and ΦP be the multilinear formula
obtained from P computing f . Let ϕ ∼ D such that block B is k-unbalanced in
Φ with respect to ϕ. Let v be a gate in Φ that is kB-hitting then rank(Mfϕ

v
) ≤

|Φv| · 2|Xv|/2−k/2.

Observation 2. Let ϕ : X → Y ∪ Z be a partition and B be a k-unbalanced
block in Φ with respect to ϕ.

1. If a + gate v in Φ with children v1, . . . , vw is not kB-hitting then Ivj
∩B = ∅

for some j ∈ [w].
2. If a × gate v with children v1, v2 is not kB-hitting then Iv1 ∩ B = ∅ and

Iv2 ∩ B = ∅.
Further, we observe that, proving that a formula Φ is kB-hitting with respect

to a partition, is equivalent to showing existence of a k-unbalanced block among
B1, . . . , Bt.

Observation 3. Let B1, . . . , Bt be the blocks of the formula Φ obtained from
an ROABP P . Let B ∈ {B1, . . . , Bt} be a k-unbalanced block with respect to a
partition ϕ. Then, Φ is kB-hitting with respect to ϕ.

In the remainder of the section, we estimate the probability that at least one of
the blocks among B1, . . . , Bt is k-unbalanced. This is a straightforward applica-
tion of the property of the hyper geometric distribution.

Lemma 6. Let P be an ROABP computing a polynomial f ∈ F[x1, . . . , xN ] and
ΦP be the syntactic multilinear formula computing f . Let ϕ ∼ D. Then, for any
k ≤ N1/5, there exists a block B in Φ such that such that

Pr
ϕ∼D

[Φ is kB-hitting ] ≥ 1 − 2−Ω(
√

N log N)
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Corollary 1. Let P be an ROABP and ΦP be the multilinear formula obtained
from P computing f . Let ϕ ∼ D. Then with probability 1 − 2−Ω(

√
N log N),

rank(Mfϕ) ≤ |Φ| · 2N/2−N1/5
.

Proof. Follows directly from Lemmas 5 and 6.

We are ready to combine the above to prove Theorem 1:

Proof (of Theorem 1). Suppose, fi has an ROABP Pi of size si. Then, by
Lemma 4, there is a multilinear formula Φi computing fi. By Lemma 6, probabil-
ity that Φi is not kB-hitting is at most 2−Ω(

√
N log N). Therefore, if m < 2cN1/5

,
there is a partition ϕ ∼ D such that Φi is kB-hitting for every 1 ≤ i ≤ m.
Therefore, by Lemma 5, there is a partition ϕ ∼ D such that rank(Mgϕ) ≤
m · sO(log N) · 2N/2−k. If m < 2c(N1/5)/slog N , we have rank(Mgϕ) < 2N/2, a
contradiction to Lemma 3.

3.2 Lower Bound Against Multilinear r-pass ABPs

In this section, we extend Theorem 1 to the case of r-pass ABPs. Let P be
a multilinear r-pass ABP of size s having � layers. Let π1, π2, . . . , πr be the r
orders associated with P . Lemmas 7 and 8 show that techniques in Sect. 3.1 can
be adapted to the case of r-pass sm-ABPs.

Lemma 7. Let P be a multilinear r-pass ABP of size s having � layers com-
puting a polynomial f ∈ F[x1, . . . , xN ]. Then there exists a syntactic multilinear
formula ΨP = Ψ1+Ψ2+· · ·+Ψt, t = sO(r) where each Ψi is a syntactic multilinear
formula obtained from an ROABP.

Lemma 8. Let P be a multilinear r-pass ABP computing a polynomial f ∈
F[x1, . . . , xN ] and ΨP = Ψ1 +Ψ2 + · · ·+Ψt, t = sO(r) be the syntactic multilinear
formula computing f . Let ϕ ∼ D and k ≤ N1/5. Then with probability 1 −
2−Ω(

√
N log N), rank(Mf ) ≤ |Ψ | · 2N/2−k/2.

Combining the above Lemmas with Lemma 3 we get the following.

Theorem 3. Let f1, . . . fm be polynomials computed by multilinear r-pass ABPs
of size s1, s2, . . . , sm respectively such that g = f1 + · · · + fm. Then, m =
2Ω(N1/5)

sc(r+log N) , where c is a constant and s = max{s1, s2, . . . , sm}.

3.3 Lower Bound Against Sum of α-sparse ROABPs

In this section we prove lower bounds against sum of α-sparse ROABPs for
α > 1/10. We begin with a version of Lemma 4 for sparse ROABPs. The proof
is similar to that of Lemma 4.

Lemma 9. Let α ≥ 1/10 and P be an α-sparse ROABP of size s computing a
polynomial f ∈ F[x1, . . . , xN ]. Then f can be computed by a syntactic multilinear
formula Φ of size sO(log d) and depth O(log d) such that the leaves are labelled
with sparse polynomials in Xi for some 1 ≤ i ≤ d, where d = Θ(Nα).
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Lemma 10. Let P be an α-sparse ROABP computing f ∈ F[x1, . . . , xN ] and
Φ be the syntactic multilinear formula computing f . Let ϕ ∼ D. Then, for any
k ≤ N (1−α)/4, there exists an i ∈ [d] such that Xi is k-unbalanced with probability
atleast 1 − 2Ω(−N1/10 log N/16).

Our first observation is that X1, . . . , Xd can be treated as blocks B1, . . . , Bd as
in Sect. 3.1:

Observation 4. If Xr is k-unbalanced , then Φ is kB-hitting for B = Xr.

Note that for any t-sparse polynomial f and any ϕ ∼ D, rank(Mfϕ) ≤ t.

Corollary 2. Let P be a α-sparse ROABP computing f and Φ be the multilinear
formula obtained from P . Let ϕ ∼ D. Then with probability 1−2Ω(−N1/10 log N/16),
rank(Mfϕ) ≤ |Φ|·t·2N/2−N9/40

, where t is the sparsity of the polynomials involved
in the α-sparse ROABP computing f .

Combining the above with Lemma 3, we get the following similar to Theorem 1:

Theorem 4. Let f1, . . . , fm be polynomials computed by α-sparse ROABPs of
size s < 2N9/40/ log N , for α > 1/10 such that g = f1+· · ·+fm. Then m ≥ 2N1/11

.

4 Lower Bounds for Special Classes of Multilinear
Circuits

In this section, we develop a framework for proving super polynomial lower bound
against syntactic multilinear circuits and ABPs based on Raz [13]. Our approach
involves a more refined analysis of central paths introduced by Raz [13].

Definition 7 (Central Paths). Let Φ be a syntactic multilinear formula. For
node v in Φ, let Xv denote the set of variables appearing in the sub-formula
rooted at v. A leaf to root path ρ = v1, . . . , v� in Φ is said to be central, if
|Xvi+1 | ≤ 2|Xvi

| for 1 ≤ i ≤ � − 1.

For a leaf to root path ρ : v1, . . . , v� in Φ, Xv1 ⊆ . . . ⊆ Xv�
is called the

signature of the path ρ. A signature Xv1 ⊆ . . . ⊆ Xv�
is called central if |Xvi+1 | ≤

2|Xvi
| for 1 ≤ i ≤ � − 1. Let ϕ : X → Y ∪ Z be a partition. A central signature

Xv1 ⊆ . . . ⊆ Xv�
of a formula Φ is said to be k-unbalanced with respect to ϕ

if for some i ∈ [�], Xvi
is k-unbalanced with respect to ϕ , i.e., |ϕ(Xvi

) ∩ Y −
ϕ(Xvi

) ∩ Z| ≥ k. The formula Φ is said to be k-weak with respect to ϕ, if every
central signature that terminates at the root is k-unbalanced. Our observation
is that, we can replace central paths in [13] (Lemma 4.1) with central signatures
and use the same arguments as in [13].

Observation 5. Let ϕ : X → Y ∪ Z be a partition of X = {x1, . . . , xN}. Let Φ
be any multilinear formula compuitng a polynomial f ∈ F[x1, . . . , xN ].

1. If Φ is k-weak with respect to ϕ, then rank(Mfϕ) ≤ |Φ| · 2N/2−k.
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2. Let C : Xv1 ⊆ Xv2 ⊆ · · · ⊆ Xv�
be a central signature in Φ such that k <

|Xv1 | ≤ 2k. Then Prϕ∼D[C is not k-unbalanced] = N−Ω(log N).

Unfortunately, it can be seen that even when P is an ROABP the number of
central signatures in a formula from an ROABP can be NΩlog N . We show that a
careful bound on the number of central signatures yields super-polynomial lower
bounds for sum of ROABPs. Now, we consider a subclass of syntactic multilinear
circuits where we can show that the equivalent formula obtained by duplicating
nodes as and when necessary, has small number of central signatures. To start,
we consider a refinement of the set of central signatures of a formula.

Let Φ be a syntactically multilinear formula of O(log N) depth. Two central
paths ρ1 and ρ2 in Φ are said to meet at ×, if their first common node along leaf
to root is labeled by ×. A set T of central paths in Φ is said to be +-covering,
if for every central path ρ /∈ T , there is a ρ′ ∈ T such that ρ and ρ′ meet at ×.
A signature-cover C of Φ is the set of all signatures of the +-covering set T of
central paths in Φ.

Lemma 11. Let Φ be a syntactic multilinear formula. Let ϕ be a partition. If
there is a signature-cover C of Φ such that every signature in C is k-unbalanced
with respect to ϕ, then rank(Mfϕ) ≤ |Φ| · 2N/2−k/2.

Let X1, . . . , Xr ⊆ X, be subsets of variables. Let Δ(Xi,Xj) denote the Ham-
ming distance between Xi and Xj , i.e, Δ(Xi,Xj) = |(Xi \ Xj) ∪ (Xj \ Xi)|.
Let C1 : X11 ⊆ X12 ⊆ · · · ⊆ X1� and C2 : X21 ⊆ X22 ⊆ · · · ⊆ X2� be
two central signatures in Φ. Define Δ(C1, C2) = max1≤i≤� Δ(X1i,X2i). Let
C be signature-cover in Φ. For δ > 0, a δ-cluster of C is a set of signatures
C1, . . . , Ct ∈ C such that for every C ∈ C, there is a j ∈ [t] with Δ(C,Cj) ≤ δ.
The following is immediate:

Observation 6. Let C be a signature-cover, and C1, . . . , Ct be a δ-cluster of C.
If ϕ is a partition of X such that for every i ∈ [t], signature Ci is k-unbalanced,
then for every C ∈ C, signature C is k − 2δ unbalanced.

We are ready to define the special class of sm-circuits where the above men-
tioned approach can be applied. For X1, . . . , Xr ⊆ X and δ > 0, a δ-equivalence
class of X1, . . . , Xr, is a minimal set of indices i1, . . . , it such that for 1 ≤ i ≤ r,
there is an ij , 1 ≤ j ≤ t such that Δ(Xi,Xij

) ≤ δ.

Definition 8. Let δ ≤ N ∈ N. Let Ψ be an sm-circuit with alternating layers
of + and × gates. Ψ is said to be (c, δ)-variable close, if for for every + gate
v = v11 × v12 + · · · + vr1 × vr2, there are indices b1, b2, . . . , br ∈ {1, 2} such that
there is a δ-equivalence class of Xv1b1

, . . . , Xvrbr
with at most c different sets.

We show (c, δ) close circuits have small number of signatures.

Lemma 12. Let Ψ be a (c, δ)-variable close syntactic multilinear arithmetic cir-
cuit of size s and depth O(log N). Let Φ be the syntactic multilinear formula
obtained by duplicating gates in Ψ as necessary. Then there is a signature-cover C
for Φ such that C has a δ-cluster consisting of at most cO(log N) sets.
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Proof (of Theorem 2). Let Ψ be a (c, δ) variable close circuit of depth O(log N)
and Φ be formula obtained by duplicating nodes in Ψ . By Lemma 12 {C1, . . . , Ct}
be a δ-cluster of a signature-cover C of Φ for t = No(log N).By Observations 5
and 6, probability that there is a signature in C that is not k − 2δ unbalanced
is at most t · N−Ω(log N) < 1 for ϕ ∼ D. Then, there is a ϕ such that every
signature in {C1, . . . , Ct} is k − 2δ unbalanced. By Lemma 11, there is ϕ with
rank(Mgϕ) ≤ |Φ|·2N/2−(k−2δ) < 2N/2 for s < 2k/10 log N , a contradiction to Lemma 3.
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grams. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp.
407–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-
4 33

8. Kayal, N., Nair, V., Saha, C.: Separation between read-once oblivious algebraic
branching programs (ROABPs) and multilinear depth three circuits. In: STACS,
pp. 46:1–46:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.46

9. Mahajan, M., Tawari, A.: Sums of read-once formulas: how many summands are
necessary? Theoret. Comput. Sci. 708, 34–45 (2018). https://doi.org/10.1016/j.
tcs.2017.10.019

10. Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: STOC, pp. 410–418 (1991). https://doi.org/10.1145/103418.103462

11. Ramya, C., Rao, B.V.R.: Sum of products of read-once formulas. In: FSTTCS, pp.
39:1–39:15 (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.39

12. Raz, R.: Separation of multilinear circuit and formula size. Theory Comput. 2(6),
121–135 (2006). https://doi.org/10.4086/toc.2006.v002a006

13. Raz, R.: Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM 56(2) (2009). https://doi.org/10.1145/1502793.1502797

14. Raz, R., Yehudayoff, A.: Balancing syntactically multilinear arithmetic circuits.
Comput. Complex. 17(4), 515–535 (2008). https://doi.org/10.1007/s00037-008-
0254-0

15. Saptharishi, R.: A survey of lower bounds in arithmetic circuit complexity (2015).
https://github.com/dasarpmar/lowerbounds-survey

16. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979).
https://doi.org/10.1145/800135.804419

https://eccc.weizmann.ac.il/report/2017/124
https://eccc.weizmann.ac.il/report/2017/124
https://doi.org/10.4230/LIPIcs.CCC.2016.30
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.1016/0304-3975(83)90110-X
http://arxiv.org/abs/1710.05481
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.4230/LIPIcs.STACS.2016.46
https://doi.org/10.1016/j.tcs.2017.10.019
https://doi.org/10.1016/j.tcs.2017.10.019
https://doi.org/10.1145/103418.103462
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.39
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-008-0254-0
https://github.com/dasarpmar/lowerbounds-survey
https://doi.org/10.1145/800135.804419


Approximation Algorithms on Multiple
Two-Stage Flowshops

Guangwei Wu1,2(B) and Jianer Chen3,4

1 School of Information Science and Engineering, Central South University,
Changsha, People’s Republic of China

will99031827@hotmail.com
2 College of Computer and Information Engineering, Central South University

of Forestry and Technology, Changsha, People’s Republic of China
3 School of Computer Science & Education Software, Guangzhou University,

Guangzhou, People’s Republic of China
4 Department of Computer Science and Engineering, Texas A&M University,

College Station, USA

Abstract. This paper considers the problem of scheduling multiple two-
stage flowshops that minimizes the makespan, where the number of
flowshops is part of the input. We study the relationship between the
problem and the classical makespan problem. We prove that if there
exists an α-approximation algorithm for the makespan problem, then
for the multiple two-stage flowshop scheduling problem, we can con-
struct a 2α-approximation algorithm for the general case, and (α+1/2)-
approximation algorithms for two restricted cases. As a result, we get
a (2 + ε)-approximation algorithm for the general case and a (1.5 + ε)-
approximation algorithm for the two restricted cases, which significantly
improve the previous approximation ratios 2.6 and 11/6, respectively.

Keywords: Scheduling · Flowshops · Approximation algorithm
makespan

1 Introduction

This paper studies the scheduling problem of two-stage jobs on multiple two-
stage flowshops. A job is a two-stage job if it consists of two operations: the R-
operation and the T -operation. A flowshop is a two-stage flowshop if it contains
two processors that can run in parallel: the R-processor and the T -processor.
In this scheduling model, if a two-stage job is assigned to a two-stage flowshop,
then both operations of the job are executed in the flowshop in such a way
that the T -operation cannot be started by the T -processor of the flowshop until
the R-operation has been finished by the R-processor of the same flowshop.
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Correspondingly, a schedule on a set of two-stage jobs includes an assignment
for each job to a flowshop, and for each flowshop, an execution order of the R- and
T -operations of the jobs assigned to that flowshop. Our objective is to construct
a schedule of the two-stage jobs on m two-stage flowshops that minimizes the
makespan, i.e., the completion time of the last operation.

The scheduling model derives from current research in data centers and cloud
computing. A modern data center in cloud usually contains hundreds of thou-
sands of servers [1]. Cloud computing is a paradigm for hosting and deliver-
ing services over network, which stores software and data as resources in the
servers in data center, and allows clients to dynamically request these resources
as services [17]. The resources are usually large in size thus are stored in sec-
ond memory such as disks or flashes [2]. When a request for a resource from a
client arrives at a server, the server needs to read the resource from the second
memory to the main memory (i.e., the R-operation), and then send it to the
client over the network (i.e., the T -operation). Therefore, each request has to
pass through two stage operations in a server, and each server can be regarded
as a two-stage flowshop. Given a set of requests, scheduling them on the servers
in the data center to minimize the completion time of the last request, is exactly
the scheduling model studied in this paper and is thus meaningful in practice.

Some characteristics should be taken into account when studying this
scheduling model. The number of servers in data center is large and may vary
frequently due to the issues such as economic factor and energy consumption
factor [5,11]. Thus, it is natural to consider the number of servers as part of the
input rather than a fixed constant in a scheduling algorithm. The servers in a
data center are usually divided into clusters according to services they provide
[2], and each request to a server in a cluster may be inclined towards one side:
for some services requiring high reliability of data, the implementation of enter-
prise hard disk drives, which exceed the MTBF (mean time between failure) by
sacrificing the transfer rate, makes the R-operation consume more time than the
T -operation; on the other hand, for some services requiring a high I/O rate to
deal with a huge requests, the use of cache system and SSDs (solid state drives)
will make the R-operation less expensive than the T -operation.

Scheduling two-stage jobs on a single two-stage flowshop is the classical two-
stage flowshop problem, that can be solved in polynomial time by sorting
the jobs into Johnson’s order [14]. Therefore, when scheduling two-stage jobs
on multiple flowshops, if the job assignment to flowshops is given, an optimal
schedule of the jobs on each flowshops can be easily obtained. Unfortunately, job
assignment to flowshops is intractable, because the classical makespan problem
can be viewed as a simpler case of our scheduling problem: each job is a one-
stage job with its R-operation being 0, which is NP-hard even when the number
m of machines is a fixed constant [3], and becomes strongly NP-hard when m
is part of the input [7]. It is very likely that no algorithm can yield an optimal
assignment in polynomial time.

As a result, it is of interest to study algorithms on this scheduling model that
are guaranteed to yield, in polynomial time, a schedule that is close to the opti-
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mum. For a scheduling problem whose objective is to minimize the makespan, an
α-approximation algorithm, achieving the approximation ratio α, is a polynomial
time algorithm that for every instance of the problem produces a schedule with
the makespan bounded by α times the minimum makespan [16,20].

In the approximation algorithms proposed in this paper for scheduling two-
stage jobs on multiple flowshops, the job assignment process is dealt with by
approximation algorithms for the classical makespan problem, by transform-
ing the two-stage jobs into one-stage jobs, then applying the algorithms for the
makespan problem on these one-stage jobs, and finally constructing the assign-
ment for the two-stage jobs from that for the one-stage jobs. The approximation
algorithms then arrange the jobs assigned to each flowshop into Johnson’s order.
Therefore we will review some results in the scheduling literature about the clas-
sical makespan problem, and later the parallel two-stage flowshop problem.

The makespan problem has been extensively studied in the scheduling lit-
erature. Graham gave the well-known ListRanking algorithm for the problem
with an approximation ratio (2 − 1/m) [8], then, later further showed that if
the jobs are sorted into an order such that the next job to be scheduled is the
one with Longest Processing Time (i.e., LPT rule), then the approximation ratio
of the ListRanking algorithm is ((4 − 1/m)/3) [9]. By studying the relationship
between the makespan problem and the bin-packing problem, Coffman et al.
[4] gave their MULTIFIT algorithm and proved that this algorithm can achieve
an approximation ratio 1.22. Hochbaum and Shmoys provided a polynomial-time
approximation scheme [13] based on the approach of dual approximation algo-
rithms. When the number m of machines is a fixed constant, there exist fully
polynomial-time approximation schemes [9,18].

Compared to the rich literature on the makespan problem, scheduling mul-
tiple two-stage flowshops had not received much research until recently, and
most studies focused on the case when the number m of the flowshops is a fixed
constant. Kovalyov seems the first to study this problem [15]. He et al. gave a
mixed-integer programming formulation and a heuristic algorithm [12]. In order
to cope with the hybrid flowshop problem, Vairaktarakis and Elhafsi proposed
a formulation that leads to a pseudo-polynomial time algorithm for the problem
when the number m is 2 [19]. Zhang and Velde provided two approximation
algorithms with the approximation ratios 3/2 and 12/7, respectively, when the
number m of flowshops equals 2 and 3 [24]. Based on a similar formulation to that
in [19], Dong et al. [6] gave a pseudo-polynomial time algorithm for a fixed con-
stant m, and constructed a fully polynomial-time approximation scheme under
a fairly standard procedure. Wu et al. [21] proposed a new formulation totally
different from that in [6,19], which leads to a fully polynomial-time approxima-
tion scheme with improved running time for the problem on a fixed number m
of flowshops.

Wu et al. also studied this scheduling problem when the number of flow-
shops is part of the input. The paper [22] dealt with two restricted cases of this
model: for the case where each job has a more time-consuming R-operation, they
proposed an online 2-competitive algorithm and an offline 11/6-approximation
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algorithm; for the second case where each job has a more time-consuming T -
operation, they gave an online 5/2-competitive algorithm and an offline 11/6-
approximation algorithm. They also provided a 2.6-approximation algorithm for
the two-stage flowshops problem in the general case [23].

Our paper is organized as follows. A formal presentation of the scheduling
model is given in Section 2, as well as some preliminary results. Section 3 gives
an approximation algorithm for the scheduling model in the general case, which
achieves an approximation ratio 2+ε in time O((2n/ε)4/ε2 +n log n) and thus sig-
nificantly improves the ratio 2.6 of the algorithm in [23]. For the scheduling model
in two restricted cases where each R-operation is more (less, respectively) expen-
sive than the corresponding T -operation, Section 4 presents another approxima-
tion algorithm with the approximation ratio 1.5 + ε and with the running time
O((n/ε)1/ε2 +n log n). It is also shown that the offline 11/6-approximation algo-
rithms in [22] can be viewed as special cases of this approximation algorithm.

2 Preliminaries

For scheduling a given two-stage job set G = {J1, . . . , Jn} on a system of m
identical two-stage flowshops {M1, . . . ,Mm}, we make some assumptions: each
two-stage job Ji = (ri, ti) of two integers consists of an R-operation and a
T -operation, and each two-stage flowshop contains an R-processor and a T -
processor, which can process, in parallel, the R- and T -operations of the jobs
assigned to it; if a job is assigned to a flowshop, its R-operation and T -operation
must be executed by the R-processor and the T -processor of this flowshop,
respectively, with the cost R-time ri and the cost T-time ti, under the restriction
that the T -operation cannot start unless the R-operation is finished; there is no
precedence constraint among the jobs; and preemption is not allowed.

Given a schedule S for the two-stage job set on m two-stage flowshops, the
completion time of a flowshop is the time when the flowshop finishes the execution
of the last operation on it under the schedule S, and the makespan Cmax is the
maximum completion time over all flowshops. The objective of a schedule is to
minimize the makespan. Using the three-field notation α|β|γ suggested by Gra-
ham et al. [10], we refer to the multiple two-stage flowshops scheduling problem
as P |2FL|Cmax for general case, and as P |2FLR≥T |Cmax and P |2FLR≤T |Cmax

for the two restricted cases respectively, when m is part of the input.
P1|2FLR≥T |Cmax is the classical two-stage flowshop problem, which can

be solved in time O(n log n) by sorting the given n jobs into Johnson’s order
[14]. The Johnson’s order, which will be used as the permutation process of the
schedules in the following sections, is given formally as follows:

A two-stage job sequence is in Johnson’s order if the sequence is divided
into two subsequences: the sequence G1, which contains the jobs (rf , tf )
with rf ≤ tf , sorted in non-decreasing order by their R-times; and the
following sequence G2, which contains the rest jobs (rs, ts) with rs > ts,
sorted in non-increasing order by their T -times.
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The result also implies that if we are only concerned with the completion time
of a flowshop, we only need to consider the schedules where the executions of the
R-operations and the T -operations of the jobs on the flowshop follow the same
order. Therefore in the current paper, a schedule for a flowshop M is expressed
as a job sequence 〈J1, . . . , Jt〉, in which M executes the R-operations and the
T -operations of these jobs in a way that strictly follows the ordered sequence.
Let ρ̄i and τ̄i denote the times when the R-operation and the T -operation of job
Ji on a two-stage flowshop start, respectively. We have the following lemma.

Lemma 1 ([21]). Let S = 〈J1, J2, . . . , Jt〉 be a two-stage job sequence scheduled
on a single two-stage flowshop, where Ji = (ri, ti), for 1 ≤ i ≤ t. Then for
all i, 1 ≤ i ≤ t, we can assume (with τ̄0 = t0 = 0): ρ̄i =

∑i−1
k=1 rk; and τ̄i =

max{ρ̄i + ri, τ̄i−1 + ti−1}.
The lemma is intuitive. Given a schedule on a flowshop represented by a job

sequence, the R-operation and the T -operation of a job always start as soon as
they can if the objective of the schedule is to minimize the makespan. Thus, for
a job, the execution of its R-operation starts once the previous R-operation in
the sequence is finished. On the other hand, only when all previous T -operations
and its own R-operation are all finished, the execution of the T -operation of a
job can start. Therefore, the R-processor of a flowshop operates continuously,
while the T -processor may have some idle times if there exists a T -operation of
a job waiting for its own R-operation to finish. It is easy to see that after the
R-processor finishes the R-operations of the given job sequence, the processing of
the T -processor is continuous: the R-operations are finished, thus the remaining
T -operations only need to wait for the previous T -operation to be finished.

We define some notations for the problem of scheduling n two-stage jobs
on m identical two-stage flowshops. For each 1 ≤ j ≤ m, let ρj and τj be the
finishing times of the R-processor and the T -processor of the two-stage flowshop
Mj , respectively, under the schedule for the jobs currently assigned to flowshops.
Thus the status of a flowshop Mj is expressed as a pair (ρj , τj), which can be
easily updated, by Lemma 1, after assigning a new job. Clearly, the finishing
time τj after finishing all the jobs scheduled on Mj is also the completion time
of Mj , and ρj equals the sum of the R-times of these jobs. Let ψj be the sum of
the T -times of the current jobs assigned to Mj . We have a further observation.

Lemma 2. For each two-stage flowshop Mj under a schedule, ρj plus ψj, where
ρj and ψj are the sum of the R-times and the sum of the T -times of the current
jobs on Mj by the schedule, respectively, is not larger than 2 · τj, where τj is the
finishing time of Mj under the schedule.

3 Approximation Algorithms for P |2FL|Cmax

This section considers the relationship between the multiple two-stage flowshops
problem in general case and the makespan problem, when the number of the
flowshops is part of the input, and provides approximation algorithms based
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on these observations, which construct a schedule for the multiple two-stage
flowshops problem.

Given a two-stage job Ji = (ri, ti), we call a job Jp
i the R&T -job of Ji if

Jp
i = (ri + ti, 0), i.e., the R&T -job Jp

i is constructed from the job Ji by setting
its R-time to the R-time plus the T -time of Ji and its T -time to 0. Let G =
{J1, . . . , Jn} be a two-stage job set, then its R&T -job set is Gp = {Jp

1 , . . . , Jp
n},

where Jp
i is the R&T -job of the job Ji for each 1 ≤ i ≤ n. Note that the R&T -

job is actually a one-stage job with the T -time equaling 0, thus by Lemma 1,
the execution order of the R&T -jobs assigned to a flowshop will not affect the
completion time of the flowshop, which always equals the sum of the R-times
of these jobs. Let Makespan(S) be the makespan Cmax under a schedule S
of scheduling a two-stage job set G on m two-stage flowshops, and denote by
Opt(G) the Makespan(S) if S is an optimal schedule for the job set G. We have
the following observation.

Lemma 3. Given a schedule S for a two-stage job set G on m two-stage flow-
shops, we construct a schedule S̄ for the R&T -job set Gp of G on m flowshops,
in such a way that the job Jp

i is scheduled on a flowshop Mj if and only if Ji is
scheduled on the same flowshop Mj under the schedule S. Then Makespan(S̄)
is not larger than 2 · Makespan(S).

Proof. Let Mh be the two-stage flowshop achieving the makespan Makespan(S̄)
denoted by τ̄h, under the schedule S̄ for the job set Gp, where 〈Jp

1 , Jp
2 , . . . , Jp

c 〉 is
the job sequence on Mh. According to the construction of the schedule S̄, that the
job Jp

i is assigned to the flowshop Mh means that Ji is assigned to Mh under the
schedule S for the job set G, thus the schedule on Mh under S is 〈J1, J2, . . . , Jc〉.
Combining this with the definition of the R&T -job, where its R-time equals the
sum of the R-time and the T -time of the original job and its T -time equals 0, it is
easy to see that τ̄h equals ρh plus ψh, where ρh and ψh represent the sum of the
T -times and the sum of the R-times of the jobs 〈J1, J2, . . . , Jc〉, respectively. By
Lemma 2, ρh plus ψh is bounded by 2 ·τh, where τh is the completion time of Mh

under the schedule S, thus we have τ̄h ≤ 2 ·τh and further τ̄h ≤ 2 ·Makespan(S),
since τh is obviously not larger than Makespan(S). ��

Suppose that S is an optimal schedule for a job set G. By Lemma 3, we
can construct a schedule S̄ for the R&T -job set Gp of G with the makespan
bounded by 2 ·Makespan(S). That is, there exists a schedule for the job set Gp,
whose makespan is not larger than 2 · Opt(G). Thus the above lemma can also
be written as:

Theorem 1. Given a two-stage job set G, let Gp be its corresponding R&T -job
set, then we have that Opt(Gp) is not larger than 2 · Opt(G).

Now we show that by using Theorem 1, if there exists an α-approximation
algorithm denoted by AlgMα(G,m) for the classical makespan problem, we can
get a 2α-approximation algorithm for the two-stage scheduling problem.
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The 2α-approximation algorithm is presented in Fig. 1. Given a two-stage
job set G and an integer m representing the number of the two-stage flow-
shops, we first construct the R&T -job set Gp of G. As we discussed, the jobs
in Gp, which have their T -times being 0, can be considered as one-stage jobs,
thus scheduling such jobs on flowshops to minimize the makespan is actually
the classical makespan problem. As a result, for the R&T -job set Gp on m
flowshops, applying AlgMα based on the R-times of the jobs in Gp generates a
schedule S̄α = {S̄α

1 , . . . , S̄α
m} for Gp with the makespan bounded by α ·Opt(Gp),

where S̄α
j is the job sequence scheduled on the flowshop Mj for all 1 ≤ j ≤ m.

Finally, we construct a schedule S = {S1, . . . , Sm} for the original job set G from
S̄α, where the job sequence Sj for the flowshop Mj consists of the jobs whose
corresponding R&T -job belongs to S̄α

j and is sorted in Johnson’s order.

Fig. 1. An approximation algorithm for P |2FL|Cmax

In this algorithm, Steps 1–2 of constructing the R&T -job set of G take time
O(n). After calling AlgMα(Gp,m), Step 4 of dividing the jobs in G into m job
sets for m flowshops takes time O(n). Step 5 sorts the jobs in each job set Sj

into Johnson’s order in time O(n1 log n1 + . . . + nm log nm), where nj is the size
of Sj for 1 ≤ j ≤ m. Since n1 + . . . + nm = n, the time complexity of this
step is bounded by O(n log n). Therefore the time complexity of the algorithm
excepting for the step of calling AlgMα is O(n log n).

We give the relationship between the makespans of the schedules S and S̄α.

Lemma 4. Makespan(S) is bounded by Makespan(S̄α), where S̄α is a schedule
of the job set Gp on m flowshops, and the schedule S of the job set G on m
flowshops is constructed from S̄α according to Steps 4 and 5 of the algorithm
ApproxProg-I.

Thus, at the termination of the construction of the schedule S for G, we have

Makespan(S) ≤ Makespan(S̄a) ≤ α · Opt(Gp) ≤ 2α · Opt(G).

We conclude the discussion as the following theorem:
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Theorem 2. If the makespan problem has an α-approximation algorithm, then
the multiple two-stage flowshops problem has a 2α-approximation algorithm.

For the makespan problem when the number of machines is part of the
input, Hochbaum et al. provided a polynomial-time approximation scheme [13],
which runs in time O((n/ε)1/ε2) for each ε and has an approximation ratio 1+ ε.
In addition, they presented more practical algorithms for ε = 1/5 + 2−k and
ε = 1/6 + 2−k, with the running times O(n(k + log n)) and O(n(km4 + log n)),
respectively. By Theorem 2, using this polynomial-time approximation scheme as
AlgMα makes the algorithm ApproxProg-I reach an approximation ratio 2+ ε
and run in time O((2n/ε)4/ε2 + n log n), where the additional time O(n log n) is
spent by the other steps except the step of calling AlgMα. This approximation
ratio significantly improves the ratio 2.6 of the algorithm in the paper [23],
which runs in time O(n log n). Similarly, when using the other two more practical
algorithms as AlgMα, the algorithm ApproxProg-I achieves the approximation
ratios α = 12/5+2−k+1 and α = 14/6+2−k+1, respectively, with more reasonable
running times O(n(k + log n)) and O(n(km4 + log n)).

4 Approximation Algorithms for P |2FLR≥T |Cmax

and P |2FLR≤T |Cmax

Motivated by the practical application in data centers and cloud computing, the
paper [22] argues that if the servers in a cloud are divided into clusters based
on the services they provide, then the requests to the servers in each cluster will
be likely to be all with more expensive R-operations or all with more expensive
T -operations. In this section, we consider the two-stage scheduling problem in
these two restricted models, one assumes that for each job the R-time is not
smaller than the T -time (i.e., P |2FLR≥T |Cmax), while the other assumes that
for each job the R-time is not larger than the T -time (i.e., P |2FLR≤T |Cmax).
By employing approximation algorithms for the makespan problem, we obtain
approximation algorithms for the restricted cases, improving the results in [22].

We first give a simple but important lemma used in the following analysis.

Lemma 5 ([22]). For each job Ji, ri + ti is at most Opt(G). Consequently, the
smaller of the values ri and ti is not larger than 1/2 · Opt(G).

The lemma is obvious because Opt(G) cannot be smaller than the entire
execution time of any single job Ji = (ri, ti) in the job set G, which equals ri + ti
in this scheduling problem. We have a further observation holding in both cases.

Lemma 6. In the models P |2FLR≥T |Cmax and P |2FLR≤T |Cmax, the comple-
tion time of a flowshop under a schedule is bounded by the sum of the R/T -times
of the jobs assigned to the flowshop plus 1/2 · Opt(G), where the R/T -time of a
job denotes the cost of the more time-consuming operation of the job, i.e., the
R/T -time of a job equals the R-time of the job in the case P |2FLR≥T |Cmax and
equals the T -time in the case P |2FLR≤T |Cmax.
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Proof. Without loss of generality, let S = 〈J1, . . . , Jc〉 be a two-stage job
sequence scheduled on a single two-stage flowshop in any of the two restricted
models. The status of the flowshop after scheduling by S for the two models
is shown in Figs. 2 and 3, respectively. Let d be the minimum job index such
that the T -operations of the jobs Jd, Jd+1, . . . , Jc are executed continuously by
the flowshop. We denote by l the difference between the completion time τ
of the flowshop and the sum of the R/T -times of the jobs on the flowshop.
Let a0 =

∑d−1
i=1 ri be the sum of the R-times of the jobs from J1 to Jd−1,

and b0 =
∑d−1

i=1 ti be the sum of the T -times of these jobs. Notice that the T -
operations of the jobs from J1 to Jd−1 do not need to be executed continuously
though denoted by b0 here. Similarly, let a1 =

∑c
i=d+1 ri and b1 =

∑c
i=d+1 ti.

Fig. 2. The status of a flowshop after scheduling in P |2FLR≥T |Cmax

Fig. 3. The status of a flowshop after scheduling in P |2FLR≤T |Cmax

We first show that in both models, the completion time τ of the flowshop
can be expressed as a0 + rd + td + b1. There are three reasons holding in both
cases: (1) the T -operation of the job Jd starts right after the R-operation of Jd

is finished: otherwise by Lemma 1, the T -operation of Jd must be waiting for
the T -operation of Jd−1 to be completed at that time, thus there would be no
gap between the execution of the T -operations of Jd−1 and Jd, contradicting the
assumption of the minimality of the job index d, (2) by Lemma 1, the processing
of the R-processor of any flowshop is continuous, and (3) by the definition of d,
the T -operations of the jobs Jd, Jd+1, . . . , Jc are executed continuously.

Now consider the two models separately. In the case P |2FLR≥T |Cmax where
the R-time is not smaller than the T -time for each job, we have that the R/T -
time of a job equals the R-time of the job and b1 is not larger than a1, where a1

and b1 represent the sum of the R- and T -times of the same jobs from Jd+1 to
Jc, respectively (note that a1 and b1 could be 0). The difference l between the
completion time τ and the sum of the R-times of the jobs is bounded as follows:

l = τ − (a0 + rd + a1) = (a0 + rd + td + b1) − (a0 + rd + a1) = td + b1 − a1 ≤ td.
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By Lemma 5, the assumption in this case that ri ≥ ti for each job Ji, implies
that td ≤ 1/2 · Opt(G), thus l is bounded by 1/2 · Opt(G).

The analysis of the case P |2FLR≤T |Cmax is similar. It is easy to see that the
R/T -time of a job equals the T -time of the job and a0 is not larger than b0 (note
that a0 and b0 could be 0). Therefore the difference l between the completion
time τ and the sum of the T -times of the jobs is here:

l = τ − (b0 + td + b1) = (a0 + rd + td + b1) − (b0 + td + b1) = rd + a0 − b0 ≤ rd.

Due to that rd is not larger than 1/2·Opt(G) by Lemma 5, thus l is also bounded
by 1/2 · Opt(G) in this case. These complete the proof. ��

The lemma yields an interesting result that in both restricted cases, the
completion time of a flowshop depends on the cost of the more time-consuming
operation of the jobs assigned to it, and the difference between them is bounded
by 1/2 · Opt(G). Therefore when scheduling n two-stage jobs on m two-stage
flowshops in these two cases, it should be more natural to be based on the
scheduling strategy on the more time-consuming operation rather than the
other operation, i.e., the R-operation in P |2FLR≥T |Cmax and the T -operation
in P |2FLR≤T |Cmax. We also remark that the lemma is not sensitive to the job
order.

For convenience of the description of the algorithm, we define notations simi-
lar to that in the previous section. Call a job Jo

i a R/T-job of the job Ji = (ri, ti)
if Jo

i equals (ri, 0) in P |2FLR≥T |Cmax or equals (0, ti) in P |2FLR≤T |Cmax, i.e.,
the job Jo

i is constructed from Ji by setting the cost of its less time-consuming
operation to 0. For a two-stage job set G = {J1, . . . , Jn}, its corresponding R/T -
job set is Go = {Jo

1 , . . . , Jo
n}, where Jo

i is the R/T -job of job Ji for 1 ≤ i ≤ n.
The algorithm for both restricted models is also similar to the algorithm

ApproxProg-I. Given a two-stage job set G = {J1, . . . , Jn} and an integer m,
we first construct its R/T -job set Go = {Jo

1 , . . . , Jo
n}. According to the definition,

the job Jo
i in both cases is actually a one-stage job. Thus any α-approximation

algorithm for the classical makespan problem, denoted by AlgMα(G,m), can
be used to schedule the R/T -job set Go on m flowshops and will construct a
schedule S̄α for these jobs with the makespan bounded by α ·Opt(Go). Let S̄α =
{S̄α

1 , . . . , S̄α
m} be the schedule for Go, where S̄α

j is the job set on the flowshop
Mj by S̄α for 1 ≤ j ≤ m, then we construct a schedule S = {S1, . . . , Sm} for the
original job set G in such a way that Ji is scheduled on the two-stage flowshop Mj

if and only if the corresponding R/T -job Jo
i is scheduled on Mj under schedule

S̄α and for each flowshop Mj , the job set Sj is sorted into Johnson’s order. The
algorithm ApproxProg-II is shown in Fig. 4.

The approximation algorithm deals with the two cases almost the same way,
except for the first step, which constructs the R/T -job for each job in G by
setting the cost of each job’s less time-consuming operation to 0. This step is
also the only difference between the algorithm ApproxProg-I and the algo-
rithm ApproxProg-II: the algorithm ApproxProg-I constructs the R&T -job
instead of the R/T -job for each job in the job set G. Thus the algorithm takes
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Fig. 4. An approximation algorithm for P |2FLR≥T |Cmax and P |2FLR≤T |Cmax

time O(n log n), excluding the step of calling AlgMα(G,m). Based on Lemma
6, the following theorem holds for the algorithm ApproxProg-II.

Theorem 3. If the makespan problem has an α-approximation algorithm, then
the two restricted cases P |2FLR≥T |Cmax and P |2FLR≤T |Cmax of the multiple
two-stage flowshops problem have an (α + 1/2)-approximation algorithm.

Proof. It is sufficient to verify the following inequality, where the schedule S and
the schedule S̄a are described in the algorithm ApproxProg-II.

Makespan(S) ≤ Makespan(S̄a) + 1/2 · Opt(G)
≤ α · Opt(Go) + 1/2 · Opt(G) ≤ (α + 1/2) · Opt(G).

Therefore, the algorithm ApproxProg-II can construct a schedule for the job
set G on flowshops with the makespan bounded by (α + 1/2) · Opt(G), when
using an α-approximation algorithm for the classical makespan problem. ��

As a result, when using a polynomial-time approximation scheme from [13]
as AlgMα, the algorithm ApproxProg-II is (1.5 + ε)-approximation, running
in time O((n/ε)1/ε2 + n log n). This improves the results in [22], which provided
11/6-approximation algorithms for the two restricted cases in offline setting.
One may argue that the algorithms in [22] have a more practical running time
O(n log n). In fact, these algorithms can be viewed as the special cases of the algo-
rithm ApproxProg-II. By Theorem 3, when using the ListRanking algorithm as
AlgMα, whose approximation ratio is 4/3 and which runs in time O(n log n) [9],
the approximation ratio of the algorithm ApproxProg-II is 4/3 + 1/2 = 11/6,
and the running time is O(n log n + n log n) = O(n log n), which are identical to
that of the algorithms in [22].
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Abstract. An l-pseudoforest is a graph each of whose connected com-
ponent is at most l edges away from being a tree. The l-Pseudoforest
Deletion problem is to delete a vertex set P of minimum weight from a
given vertex-weighted graph G = (V,E) such that the remaining graph
G[V \ P ] is an l-pseudoforest. The Feedback Vertex Set problem is a
special case of the l-Pseudoforest Deletion problem with l = 0. In this
paper, we present a polynomial time 4l-approximation algorithm for the
l-Pseudoforest Deletion problem with l ≥ 1 by using the local ratio tech-
nique. When l = 1, we get a better approximation ratio 2 for the problem
by further analyzing the algorithm, which matches the current best con-
stant approximation factor for the Feedback Vertex Set problem.
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1 Introduction

An l-pseudoforest is a graph which can be transformed into a forest by deleting at
most l edges from each connected component. Let G = (V,E) be an undirected
graph with a weight function w : V → R+. A set P ⊆ V is an l-pseudoforest
deletion set (l-PFDS) of G if the induced graph G[V \P ] is an l-pseudoforest. The
l-Pseudoforest Deletion problem (l-PFD) is to find an l-PFDS of minimum weight
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from graph G. When l = 1, the problem is called the Pseudoforest Deletion
problem (PFD). Obviously, the classical Feedback Vertex Set problem (FVS) is
the special case of the l-PFD problem with l = 0.

The FVS problem has been intensively studied for several decades, and a
series of results have been obtained, such as, parameterized algorithms of run-
ning time O∗(3.619k) in deterministic setting [10] and O∗(3k) in randomized
setting [6] parameterized by the size k of a feedback vertex set, an exact exponen-
tial algorithm with running time O(1.7266n) [16] and polynomial-time approx-
imation algorithms of ratio 2 [1,3,5,8]. Philip et al. [13] introduced the l-PFD
problem and studied the parameterized l-PDF problem which is to find an l-
PFDS with at most k vertices in given graph G = (V,E) where k is given non-
negative integer. From the point of view of parameterized algorithm, the l-PFD
problem has a kernel with f(l)k2, and an algorithm with running time ckl n

O(1)

where the constant cl depends only on l. For the PFD problem, Philip et al.
[13] showed an explicit kernel with O(k2) vertices and proposed a deterministic
algorithm with running time O∗(7.5618k) by applying the iterative compression
technique. This was subsequently improved by Bodlaender et al. [4], who gave
an O∗(3kkO(1))-time algorithm. Jansen et al. [9] showed the FVS problem has
an O(k10) kernel and a kernel lower bound of Ω(k4) if parameterized by the size
k of a pseudoforest deletion set of input instance. Majumdar [12] gave a kernel of
O(k6) vertices. Related to the l-PFD problem, Rai and Saurabh [14] studied the
Almost Forest Deletion problem which is to find a vertex set P of size at most
k such that the induced subgraph G[V \ P ] is an l-forest, where an l-forest is a
graph which can be transformed into a forest by deleting at most l edges. They
gave a kernel of size O(kl(k + l)) and presented an FPT algorithm of running
time O∗(5.0024(k+l)) based on the iterative compression technique. Recently, we
developed an improved parameterized algorithm with running time O∗(5k4l) for
the Almost Forest Deletion problem [11].

A graph is a pseudoforest if and only if it does not have the butterfly and the
diamond as minors. The class of l-pseudoforests has also finite forbidden minor
characterization [15]. Based on the results given by Fomin et al. [7], it is easy
to get that for the l-PFD problem, there exist a polynomial kernel (improved
to quadratic by [13]), a constant factor randomized approximation algorithm
with running time O(nm), a randomized parameterized algorithm with running
time O(2O(k)n) and a deterministic parameterized algorithms with running time
O(2O(k)nlog2n). In this paper, we generalize the results in [1,3,5,8] based on the
local ratio technique [2] by presenting polynomial time constant factor approxi-
mation for all the l-PFD problem with fixed l. Our approximation ratio is still
2 if l = 1, and 4l for all l ≥ 2.

2 Preliminaries

We assume that any graph G = (V,E) in this paper is simple and undirected,
with |V | = n vertices and |E| = m edges. For a subgraph G′ of graph G, we
denote the vertex set and the edge set of G′ by V (G′) and E(G′), respectively.
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If there exists an edge e between two vertices u and v, we say that u and v are
adjacent, edge e = (u, v) is incident to u and v, and u is a neighbor of v. If there
exists an edge e between a vertex v and a vertex of subgraph C where v �∈ C,
we say v and C are adjacent by e. For vertex v, the degree of v in graph G,
denoted by degG(v), is the number of edges incident to v in G. The minimum
degree of graph G is δG = minv∈GdegG(v). A cut vertex is a vertex removing
which increases number of connected components. For any subset W ⊆ V , let
G[W ] be the subgraph induced by W . For simplicity, we use the notation G−w
and G−W for G[V \{w}] and G[V \W ], respectively. For two subsets P,Q ⊆ V ,
E(P,Q) = {(u, v)|(u, v) ∈ E, u ∈ P, v ∈ Q}. A connected undirected graph Tl

is called an l-pseudotree if it can be transformed into a tree by deleting l edges
(i.e. |E(Tl)| = |V (Tl)| + l − 1). In graph G, an l-pseudotree Tl is semidisjoint
if there exists at most one vertex v ∈ V (Tl) not satisfying degG(v) = degTl

(v),
where Tl is an induced subgraph in G. Obviously, if there exists a vertex v with
degG(v) �= degTl

(v), v must be a cut vertex of G.
For graph G = (V,E), a vertex-weighted function w is a mapping V → R+.

We use (G,w) to denote graph G with a vertex-weighted function w. For set
P ⊆ V , w(P ) =

∑
v∈P w(v). Let {(Gi, wi)} be a collection of subgraphs of

(G,w) that satisfies
∑

i wi(u) ≤ w(u) for ∀u ∈ V (G), {(Gi, wi)} is said to be a
decomposition of (G,w). An l-PFDS of G is a set P ⊆ V such that each connected
component Ci of G − P contains at most |V (Ci)| − 1 + l edges. In graph G, an
l-PFDS P is minimal if there exists no l-PFDS P ′ with P ′ ⊂ P ; and an l-PFDS
P is optimal if there exists no l-PFDS P ′ with

∑
v∈P ′ w(v) <

∑
v∈P w(v).

3 Outline

In this section, we give the general idea of our method and a description of
the approximation algorithm based on the local ratio technique for the l-PFD
problem. The following lemma is to extend Theorem 2.1 in [1] to handle the
l-PFD problem.

Lemma 1. Let {(Gi, wi)} be a decomposition of (G,w), opt(G,w) be an optimal
l-PFDS of G with a weight function w, and P be any l-PFDS of G such that
w(P ) =

∑
i wi(P ∩ V (Gi)). Then

w(P )
w(opt(G,w)) ≤ max{ wi(P∩V (Gi))

wi(opt(Gi,wi))
}.

Proof. Since {(Gi, wi)} is a decomposition of (G,w), w(X) ≥ ∑
i wi(X ∩V (Gi))

for any set X ⊆ V (G). Thus, w(opt(G,w)) ≥ ∑
i wi(opt(G,w) ∩ V (Gi)). As

opt(Gi, wi) is the optimal l-PFDS for (Gi, wi), wi(opt(Gi, wi)) ≤ wi(opt(G,w)∩
V (Gi)). Therefore, we have

w(P )
w(opt(G,w))

≤
∑

i wi(P ∩ V (Gi))∑
i wi(opt(G,w) ∩ V (Gi))

(1)

≤
∑

i wi(P ∩ V (Gi))∑
i wi(opt(Gi, wi))

(2)

≤ max{ wi(P ∩ V (Gi))
wi(opt(Gi, wi))

} (3)

��
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Let (G,w) be an instance of given optimization problem, where G is a graph
and w is a non-negative weight function defined on vertices of graph G. The idea
of local ratio technique is to recursively find a decomposition {(Gi, wi)} of (G,w)
such that wi is a simple weight function which is suited for obtaining a good
approximation solution to the optimal solution of (Gi, wi). The local solution
for each subgraph has a bounded approximation ratio. The approximation ratio
of the algorithm is the maximum local ratio of all subgraphs in {(Gi, wi)} by
Lemma 1. The key step in obtaining the desired approximation ratio is to find a
special weight function wi and prove the approximation ratio with respect to wi.
In this paper, we give a detailed analysis for the approximation ratio of those
subgraphs derived in the decomposition by the algorithm.

Most of 2-approximation algorithms for the FVS problem are based on the
similar degree observation that a vertex of larger degree has a larger chance to
be in a minimum feedback vertex set. For the l-PFD problem, our algorithm is
also based on the observation. In graph G with the minimum degree at least
two, a larger degree vertex v can be in more cycles. If v is deleted, more cycles
can be destroyed. Therefore, in our algorithm, we greedily choose some ver-
tices with less weight and larger degree as candidate vertices. Our algorithm is
described in Fig. 1. Alg-l-PFD(G,w, l) is recursive and works as follows. If G is
an l-pseudoforest, then the algorithm stops and returns ∅ (line 1–line 3). Oth-
erwise, it checks whether there exists v ∈ V (G) with w(v) = 0 and determines
whether vertex v with w(v) = 0 is in a minimal l-PFDS for graph G (line 4–line
13). If there exists a vertex v ∈ V (G) with w(v) = 0, then recursively call Alg-l-
PFD(G−v, w′, l). If the returned solution P of Alg-l-PFD(G−v, w′, l) for G−v
is an l-PFDS of graph G, then v is not in the minimal l-PFDS of graph G and
Alg-l-PFD(G,w, l) returns P , otherwise returns P ∪ {v}. If there does not exist
any v ∈ V (G) with w(v) = 0, graph G′ is obtained by deleting all connected
components with at most l cycles and all vertices of degree at most 1 from graph
G (line 14–line 15). After that, the minimum degree of graph G′ is at least two.
Then, we extract a sequence of decomposition subgraphs of G′(line 16–line 25).
If G′ contains a semidisjoint (l +1)-pseudotree Tl+1, then we choose a minimum
vertex weight in Tl+1 as a new weight function γ = min{w(v) : v ∈ V (Tl+1)}
of decomposition subgraph Tl+1, and call Alg-l-PFD(G′, w − γ, l). Otherwise,
we greedily choose some vertex with less weight and larger degree, constructs a
new weight function γ = min{w(v)/(degG′(v)−1) : v ∈ V (G)} of decomposition
subgraph G′ and call Alg-l-PFD(G′, w − γ, l) to solve the problem.

In the following, we analyze the time complexity of Alg-l-PFD(G,w, l).
Detecting an l-pseudoforest in line 1 and line 14 (or an l-PFDS P in line 8)
can be executed in time O(|V |+ |E|) by checking whether every connected com-
ponent Ci of G (or G − P ) satisfies |E(Ci)| < |V (Ci)| + l. Deleting vertices of
degree at most one in line 15 can also be executed in time O(|V |+|E|). Detecting
semidisjoint (l+1)-pseudotrees in line 16 takes O(|V |+ |E|) time by finding and
deleting all cut vertices and then determining every connected components Ci

adjacent to at most one cut vertex v whether |E(G[Ci ∪{v}])| = |V (Ci)|+1+ l.
Computing the minimum weight w(v) in line 17 (or w(v)/degG′(v)−1 in line 22)
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Fig. 1. Approximation algorithm for the l-Pseudoforest Deletion Problem.

takes O(|V |). The algorithm makes recursive calls at most |V | times. Therefore,
the whole running time of Alg-l-PFD(G,w, l) is O(|V | · (|E| + |V |)).

4 Properties of Decomposition

In this section, we show some basic properties about the decomposition sub-
graphs of input graph after running Alg-l-PFD(G,w, l). Let P be an l-PFDS
generated by Alg-l-PFD(G,w, l) and Gi = (Vi, Ei) be i-th decomposition sub-
graph derived from Alg-l-PFD(G,w, l). In line 4–line 13 of Alg-l-PFD(G,w, l),
we check whether vertices with zero weight are in a minimal l-PFDS, one by
one, in the reverse order of their inclusion into P . Whenever a vertex is found to
be extraneous, it is not in P . Therefore, this process ensures that P is a minimal
l-PFDS for G. We introduce the following definitions and lemmas.

Definition 1 (type-1 subgraph and type-2 subgraph).
The subgraph Gi derived in the i-th decomposition is either a semidisjoint
(l + 1)-pseudotree or G itself without semidisjoint (l + 1)-pseudotrees by Alg-
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l-PFD(G,w, l). For a semidisjoint (l + 1)-pseudotree Gi in the decomposition, it
is called type-1 subgraph. Otherwise, it is called type-2 subgraph.

Lemma 2. Let P be a minimal l-PFDS of G generated by Alg-l-PFD(G,w, l)
and {(Gi, wi)} be the decomposition of (G,w) derived by Alg-l-PFD(G,w, l).
Then w(P ) =

∑
i wi(P ∩ V (Gi)).

Proof. Let (Gi, wi) denote the decomposition subgraph derived in the i-th
decomposition by Alg-l-PFD(G,w, l), and (G′

i, w
′
i) denote the remaining graph

right after the i-th extracting subgraph Gi. Assume that v ∈ P is a vertex in
(Gi, wi) with w′

i−1(v) − wi(v) = 0 in Alg-l-PFD(G,w, l) for some fixed inte-
ger i ≥ 1. Since v is put into P in Alg-l-PFD(G,w, l) after its weight w(v)
is reduced to zero by a sequence subtractions, w(v) =

∑
j≤i wj(v). Therefore,

w(P ) =
∑

i wi(P ∩ V (Gi)). ��
Lemma 3. Let P be a minimal l-PFDS of G generated by Alg-l-PFD(G,w, l).
For each type-1 subgraph (Gi, wi) in the decomposition derived by Alg-l-
PFD(G,w, l), P ∩ Vi contains an optimal l-PFDS for (Gi, wi).

Proof. Since type-1 subgraph Gi = (Vi, Ei) is a semidisjoint (l + 1)-pseudotree,
|Ei| = |Vi| + l. If P ∩ Gi does not contain any vertex in Gi, G is not an l-
pseudoforest after completing Alg-l-PFD(G,w, l) as G contains Gi. It contradicts
with the fact that P is a minimal l-PFDS of G. Thus, P ∩Gi �= ∅. For each vertex
u ∈ Vi, degGi

(u) ≥ 2 because the vertices of degree at most 1 are removed before
detecting type-1 subgraph. For v ∈ P ∩ Vi, we have

|E(Gi − v)| ≤ |Ei| − 2 = (|Vi| − 1) + (l − 1) = |V (Gi − v)| + (l − 1) (4)

By inequality (4) and degGi−v(u) ≥ 1 for each vertex u ∈ Vi \ {v}, we know
that graph Gi − v is an l-pseudoforest. Thus, v is a minimal l-PFDS of Gi. If
|P ∩Vi| ≥ 2, then since there is the same weight for every vertex of (Gi, wi), v is
an optimal l-PFDS for (Gi, wi). Therefore, P ∩ Vi contains an optimal l-PFDS
for (Gi, wi). ��
Lemma 4. Let P be a minimal l-PFDS of G generated by Alg-l-PFD(G,w, l).
For each type-2 subgraph (Gi, wi) in the decomposition {(Gi, wi)} derived by
Alg-l-PFD(G,w, l), P ∩ V (Gi) is a minimal l-PFDS for Gi.

Proof. Let (Gi, wi) denote the decomposition subgraph derived in the i-th
decomposition by Alg-l-PFD(G,w, l), and (G′

i, w
′
i) denote the remaining graph

right after the i-th extracting subgraph Gi. We know that Gi is a subgraph
of G′

i−1 by Alg-l-PFD(G,w, l). If G′
j is an l-pseudoforest for some j, Alg-l-

PFD(G,w, l) stops. Hence, G′
j−1 = Gj . After that, Alg-l-PFD(G,w, l) firstly

checks whether the vertices satisfying w′
j−1(v) − wj(v) = 0 are in a minimal

l-PFDS of G′
j−1. When a vertex is found to be redundant, it is not in P . Oth-

erwise, it is put into P . It is clearly seen that P ∩ V (Gj) is a minimal l-PFDS
for Gj . Then, in the reverse order of recursive calls, Alg-l-PFD(G,w, l) examines
whether every vertex satisfying w′

i−1(v) − wi(v) = 0 is in a minimal l-PFDS of
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G′
i−1 and tests its redundancy where i ≤ j. If it is redundant, it is not in P .

Otherwise, it is put into P . Thus, P ∩G′
i−1 is a minimal l-PFDS of G′

i−1. For Gi

is a type-2 subgraph, by Alg-l-PFD(G,w, l), we know that G′
i−1 = Gi. Hence,

P ∩ Gi is a minimal l-PFDS of Gi. ��

5 Approximation Ratio for the l-PFD Problem

In this section, we analyze the approximation ratio of Alg-l-PFD(G,w, l) which
is the maximum local ratio of all subgraphs in {(Gi, wi)} by Lemma 1. Thus, we
analyze the local ratio of type-1 subgraphs and type-2 subgraphs, respectively.

Lemma 5. Let P be a minimal l-PFDS of G generated by Alg-l-PFD(G,w, l).
For each type-1 subgraph (Gi, wi) in the decomposition {(Gi, wi)} derived by
Alg-l-PFD(G,w, l), wi(P∩V (Gi))

wi(opt(Gi,wi))
≤ l + 1.

Proof. For type-1 subgraph Gi, by Lemma 3, we know that P ∩ V (Gi) contains
one vertex which is an optimal solution for (Gi, wi). Since a semidisjoint (l +1)-
pseudotree contains l + 1 cycles, P ∩ V (Gi) contains at most l + 1 vertices of
Gi. In subgraph (Gi, wi), each vertex has the same weight. Therefore, the local
ratio of type-1 subgraph is that wi(P∩V (Gi))

wi(opt(Gi,wi))
≤ l + 1. ��

For a type-2 subgraph in {(Gi, wi)}, because the weight function of every
type-2 subgraph Gi is degree proportional in Alg-l-PFD(G,w, l), it suffices to
analyze this approximation ratio for the case when w(v) = degGi

(v) − 1 for
every v ∈ V (Gi). In the following argument, let P be a minimal l-PFDS for
type-2 subgraph (G,w) without semidisjoint (l + 1)-pseudotrees, where w(v) =
degG(v) − 1 for every v ∈ V (G). We give a lower bound and an upper bound for
w(P ) =

∑
v∈P w(v) when l ≥ 1.

Lemma 6. w(P ) ≥ |E|−|V |
2l .

Proof. In G − P , each connected component Ci = (Vi, Ei) contains |Vi| − 1 + li
edges with 0 ≤ li ≤ l for i = 1, · · · , k, where k is the number of connected
components in G−P . We partition the connected components of graph G−P into
several parts by the partitioning operation (see Fig. 2.) such that each part which
contains some connected components adjacent to vertex vi ∈ P is represented
by D(vi).

By the partitioning operation, connected components in G − P are parti-
tioned into classes D(v1), · · · ,D(v|P |), where P = {v1, v2, · · · , v|P |}, and each
connected component Ci(Vi, Ei) of G − P only belongs to a class D(vj). If
Ci ∈ D(vj), there exists an edge e = (vj , vh) that connects vj and some
vh ∈ V (Gi). Note that a class D(vj) cannot contain any connected component
of G − P .

Consider a vertex v ∈ P with D(v) = {C1, · · · , Cj} (j ≥ 0). There are at most
∑j

t=1(|V (Gt)| − 1 + l) edges in D(v). Let E′(v) = E(C1) ∪ · · · ∪ E(Cj), E′′(v) =
E({v}, V (G) \ P ), E(v) = E′(v) ∪ E′′(v), and V (v) = V (C1) ∪ · · · ∪ V (Cj).
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Fig. 2. Partition the connected components in G − P .

Case 1: j = 0. In this case, we have E′(v) = ∅, V (v) = ∅, and |E′′(v)| ≥ 2.

|E(v)| − (1 + |E′(v)|) ≥ 1
2

· |E(v)| ≥ 1
l + 1

· (|E(v)| − |V (v)|) (5)

Case 2: j = 1. In this case, we have E′(v) �= ∅, V (v) �= ∅, |E′(v)| − |V (v)| ≤
l − 1 and |E′′(v)| ≥ 2.

|E(v)| − (1 + |E′(v)|) ≥ 1
l + 1

· (|E(v)| − |V (v)|) (6)

Case 3: j ≥ 2. In this case, we have E′′(v) = j + h for some h ≥ 0,
|E(Ci)| − |V (Ci)| ≤ l − 1 for 1 ≤ i ≤ j. Hence we can obtain that

|E(v)| − |V (v)| ≤ l · j + h (7)

Thus, we have

|E(v)| − (1 + |E′(v)|) = |E′′(v)| − 1 (8)
≥ (j − 1) + h (9)

≥ j

2
+ h (10)

≥ |E(v)| − |V (v)|
2l

(11)

From inequality (10) to (11), we use inequality (7).
By the above inequality (5), (6), (11), and l ≥ 1, we get the following con-

clusion.

|E| − |P | − |E(V \ P, V \ P )| ≥ |E| − |V |
2l

(12)
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Therefore, we have

w(P ) = Σv∈P (degG(v) − 1) = Σv∈P degG(v) − |P | (13)
= 2|E(P, P )| + |E(P, V \ P )| − |P | (14)
= (|E(P, P )| + |E(P, V \ P )|) + |E(P, P )| − |P | (15)
= |E| − |E(V \ P, V \ P )| + |E(P, P )| − |P | (16)
= |E| − (|E(V \ P, V \ P )| + |P |) + |E(P, P )| (17)

≥ |E| − |V |
2l

+ |E(P, P )| (18)

≥ |E| − |V |
2l

(19)

From inequality (17) to (18), we use inequality (12). ��
Since P is a minimal l-PFDS of G obtained by Alg-l-PFD(G,w, l), each

connected component Ci = (Vi, Ei) in G−P either is acyclic or contains at least
one cycle and at most l cycles. If a connected component in G − P is acyclic, it
is called an acyclic component. Otherwise, it is called a cyclic component. Let k′

be the number of acyclic components in G − P .

Lemma 7. |P | + 2k′ ≤ |E(P, V \ P )|.
Proof. For connected components in graph G − P , we can classify acyclic com-
ponents and cyclic components. We consider the following cases.

Case 1: For an acyclic component Ci in G − P , if |E(P, V (Ci)| ≤ 1, then
G[E(P, V (Ci)) ∪ E(Ci)] is a acyclic graph and Ci is handled in line 14 of Alg-l-
PFD(G,w, l). Thus, |E(P, V (Ci)| ≥ 2, namely, 0+2×1(one acyclic component)≤
|E(P, V (Ci)|.

Case 2: For a cyclic component Ci in G − P , if there exists a vertex v ∈ P
adjacent to Ci by edges, |E({v}, V (Ci)| ≥ 1. Hence, 1(one vertex v)+2 × 0 ≤
|E({v}, V (Ci)|.

Case 3: For a vertex v ∈ P , assume that vertex v is adjacent to c′ connected
components C1, · · · , Cc′ of G−P . Let C = {C1, · · · , Cc′}, and c′′ be the number
of acyclic components of C.

Subcase 3.1: There exists at least a cyclic component Ci ∈ C. We can
obtain that 1 + 2c′′ ≤ |E({v}, V (C)| by Case 1 and Case 2.

Subcase 3.2: There exists at least one acyclic component Ci ∈ C adjacent to
v by at least three edges. |E({v}, V (Ci)| ≥ 3, namely, 1+2×1 ≤ |E({v}, V (Ci)|.
Thus, we also have 1 + 2c′′ ≤ |E({v}, V (C)| by Case 1.

Subcase 3.3: c′ = 1 and Cc′ is an acyclic component. Since P is a minimal
l-PFDS for G, vertex v is adjacent to the acyclic component Cc′ by at least l+2
edges. It is easy to see that 1 + 2 × 1 ≤ l + 2 ≤ |E({v}, V (Cc′))| as l ≥ 1.

Subcase 3.4: c′ ≥ 2 and each component in C is an acyclic component
adjacent to v by at most two edge. Vertex v is adjacent to each acyclic component
in C by at least one edge. Since P is a minimal l-PFDS of G, G[{v} ∪ V (C)]
contains at least l + 1 cycles. If an acyclic component Ci is adjacent to v by
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only one edge, G[{v} ∪ V (Ci)] must be a tree. There exists a vertex u ∈ P \ {v}
adjacent to Ci, if not, Ci is handled in line 15 of Alg-l-PFD(G,w, l). We remove
edge E({v}, Ci) and insert a new edge incident with u and Ci. That does not
have impact on the cycles in G[{v}∪V (C)] and Case 1. Thus, for the subcase, we
only consider the case that each component Ci in C is adjacent to v by two edges,
namely |E({v}, Ci)| = 2 (1 ≤ i ≤ c′) and c′ = c′′. If these components in C are
not adjacent to vertices in P \{v}, then there exists a semidisjoint l-pseudotree in
G[{v}∪V (C)] which is handled in line 16–20 of Alg-l-PFD(G,w, l). Thus, there
exists one component Ci ∈ C adjacent to vertex u ∈ P \{v}. If |E({u}, V (Ci))| =
1, then remove edge E({u}, V (Ci)) and insert a new edge incident with v and
Ci. Thus, we have |E({v}, V (Ci))| = 3, namely, 1 + 2 × 1 ≤ |E({v}, V (Ci))|. If
|E({u}, V (Ci))| ≥ 2, then we have |E({u, v}, V (Ci))| ≥ 4, namely, 2 + 2 × 1 ≤
|E({u, v}, V (Ci))|. For C\{Ci}, we obtain that 2×(c′−1) ≤ |E({v}, V (C\{Ci}))|
by Case 1.

Therefore, by the above analysis, we have |P | + 2k′ ≤ |E(P, V \ P )|. ��
Lemma 8. w(P ) ≤ 2(|E| − |V |).
Proof. Since graph G−P is an l-pseudoforest and there are k′ acyclic connected
components in graph G − P , |V | − |P | − k′ ≤ |E(V \ P, V \ P )|.

w(P ) = Σv∈P (degG(v) − 1) = Σv∈P degG(v) − |P | (20)
= 2|E(P, P )| + |E(P, V \ P )| − |P | (21)
= 2(|E(P, P )| + |E(P, V \ P )|) − |E(P, V \ P )| − |P | (22)
= 2(|E| − |E(V \ P, V \ P )|) − |E(P, V \ P )| − |P | (23)
≤ 2(|E| − (|V | − |P | − k′)) − |E(P, V \ P )| − |P | (24)
= 2|E| − 2|V | + |P | + 2k′ − |E(P, V \ P )| (25)
≤ 2(|E| − |V |) (26)

��
Lemma 9. Let P be a minimal l-PFDS of G generated by Alg-l-PFD(G,w, l).
For each type-2 subgraph (Gi, wi) in the decomposition {(Gi, wi)} derived by
Alg-l-PFD(G,w, l), wi(P∩V (Gi))

wi(opt(Gi,wi))
≤ 4l.

Proof. For type-2 subgraph Gi, we obtain the approximation ratio with a lower
bound of w(Pi) by Lemma 6 and a upper bound of w(Pi) by Lemma 8. Therefore,
the local ratio of type-2 subgraph is that

wi(P ∩ V (Gi))
wi(opt(Gi, wi))

≤ 2(|E(Gi)| − |V (Gi)|)
|E(Gi)|−|V (Gi)|

2l

= 4l (27)

��
Thus, when l ≥ 1, by Lemmas 1, 5 and 9, we get the following conclusion.

Theorem 1. There is a 4l-approximation polynomial time algorithm for the l-
Pseudoforest Deletion problem where l is an integer with l ≥ 1.
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6 Approximation Ratio for the PFD Problem

In this section, we further analyze the approximation ratio of Alg-l-PFD(G,w, l)
for the PFD problem. Let P be a minimal 1-PFDS for type-2 subgraph (G,w)
of the decomposition derived by Alg-l-PFD(G,w, l), and k′ be the number of
acyclic connected components of G − P , where w(v) = degG(v) − 1 for every
v ∈ V (G). Now we compute a lower bound of w(P ).

Lemma 10. w(P ) ≥ |E| − |V |.
Proof. Since every connected component in graph G−P is a 1-pseudoforest and
contains at most one cycle, |E(V \ P, V \ P )| ≤ |V | − |P |. We have

w(P ) = Σv∈P (degG(v) − 1) = Σv∈P degG(v) − |P | (28)
= 2|E(P, P )| + |E(P, V \ P )| − |P | (29)
= (|E(P, P )| + |E(P, V \ P )|) + |E(P, P )| − |P | (30)
= |E| − |E(V \ P, V \ P )| + |E(P, P )| − |P | (31)
≥ |E| − (|V | − |P |) + |E(P, P )| − |P | (32)
≥ |E| − |V | (33)

��
Thus, when l = 1, by Lemmas 1, 5, 8 and 10, we get the following result.

Theorem 2. There is a 2-approximation polynomial time algorithm for the
PFD problem.

7 Conclusions

We develop a 4l-approximation algorithm with running time O(|V | · (|E|+ |V |))
for the l-PFD problem when l ≥ 1. For any fixed l, the approximation ratio
is fixed. The approximation ratio of the algorithm is 2 when l = 1. It seems
that there is some chance to improve the ratio of approximation for l ≥ 2, but
needs some additional efforts for analysis about the structure of decomposition
and local ratio. We do not know if there is a polynomial time reduction from
the classical vertex cover problem to 1-PFD problem for a lower bound 2 of
approximation ratio as it is for the FVS Problem (0-PFD).
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Abstract. For a Boolean function f : {0, 1}n → {0, 1} computed by
a circuit C over a finite basis B, the energy complexity of C (denoted
by ECB(C)) is the maximum over all inputs {0, 1}n the numbers of
gates of the circuit C (excluding the inputs) that output a one. Energy
complexity of a Boolean function over a finite basis B denoted by

ECB(f)
def
= minC ECB(C) where C is a circuit over B computing f .

We study the case when B = {∧2, ∨2, ¬}, the standard Boolean basis.
It is known that any Boolean function can be computed by a circuit
(with potentially large size) with an energy of at most 3n(1 + ε(n)) for
a small ε(n)(which we observe is improvable to 3n − 1). We show sev-
eral new results and connections between energy complexity and other
well-studied parameters of Boolean functions.

– For all Boolean functions f , EC(f) ≤ O(DT(f)3) where DT(f) is the
optimal decision tree depth of f .

– We define a parameter positive sensitivity (denoted by psens), a
quantity that is smaller than sensitivity and defined in a similar
way, and show that for any Boolean circuit C computing a Boolean
function f , EC(C) ≥ psens(f)/3.

– Restricting the above notion of energy complexity to Boolean for-
mulas, denoted ECF(f), we show that ECF(f) = Θ(L(f)) where L(f)
is the minimum size of a formula computing f .

We next prove lower bounds on energy for explicit functions. In this
direction, we show that for the perfect matching function on an input
graph of n edges, any Boolean circuit with bounded fan-in must have
energy Ω(

√
n). We show that any unbounded fan-in circuit of depth 3

computing the parity on n variables must have energy is Ω(n).

Keywords: Energy complexity · Boolean circuits · Decision trees

1 Introduction

For a Boolean function f : {0, 1}n → {0, 1} computed by a circuit C over a
basis B, the energy complexity of C (denoted by ECB(C)) is the maximum over
all inputs {0, 1}n the numbers of gates of the circuit C (excluding the inputs)
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that outputs a one. The energy complexity of a Boolean function over a basis B
denoted by ECB(f) def= minC ECB(C) where C is a circuit over B computing f .
A particularly interesting case of this measure of Boolean function, is when the
individual gates allowed in the basis B are threshold gates (with arbitrary weights
allowed). In this case, the term energy in above model captures the number of
neurons firing in the models of the human brain [10]. This motivated the study
of upper and lower bounds [10] on various parameters of energy efficient circuits
- in particular the question of designing threshold circuits which are efficient in
terms of energy as well as size which computes various Boolean functions.

Indeed, irrespective of the recently discovered motivation mentioned above,
the notion of energy complexity of Boolean functions, has been studied much
before. Historically, the measure of energy complexity of Boolean functions1

was first studied by Vaintsvaig [13] (under the name “power of a circuit”).
Initial research was aimed at understanding the maximum energy needed to
compute any n bit Boolean function for a finite basis B (denoted by ECB(n)).
Towards this end, Vaintsvaig [13] showed that for any finite basis B, the value of
ECB(n) is asymptotically between n and 2n

n . Refining this result further, Kasim-
zade [4] gave a complete characterization by showing the following remark-
able trichotomy: for any finite complete basis B, either ECB(n) = Θ(2n/n) or
Ω(2n/2) ≤ ECB(n) ≤ O(

√
n2n/2) or Ω(n) ≤ ECB(n) ≤ O(n2).

An intriguing question about the above trichotomy is where exactly does
the standard Boolean basis B = {∧2,∨2,¬} fits in. By an explicit circuit con-
struction, Kasim-zade [4] showed that ECB(n) ≤ O(n2). Recently, Lozhkin and
Shupletsov [7] states (without proof) that the circuit construction by Kasim-
zade [4] over the complete Boolean basis is of energy 4n, thus deriving that
ECB(n) ≤ 4n. Lozhkin and Shupletsov improves it to 3n(1 + ε(n)) by construct-
ing a circuit of size 2n

n (1 + ε(n)) for an ε(n) tending to 0 for large n. We observe
that, this bound can be further improved to be at most 3n−1 while size is 2O(n)

by carefully following the construction in [7] (see Proposition 1).
As mentioned in the beginning, in a more recent work, for the case when the

basis is threshold gates2, Uchizawa et al. [10] initiated the study of energy com-
plexity for threshold circuits. More precisely, they defined the energy complexity
of threshold circuits and gave some sufficient conditions for certain functions to
be computed by small energy threshold circuits. In a sequence of works, Uchizawa
et al. ([12] and references therein) related energy complexity of Boolean func-
tions under the threshold basis to the other well-studied parameters like circuit
size, depth for interesting classes of Boolean functions. In a culminating result,
Uchizawa and Takimoto [11] showed that for constant depth thresholds circuits
of unbounded weights with the energy restricted to no(1) needs exponential sized
circuits to compute the inner product function. This is also important in the con-

1 We remark the notion of energy of Boolean circuits studied in this paper is very
different from those studied in [2,3,5].

2 With values of the weights and threshold being arbitrary rational numbers, notice
that this basis is no longer finite and hence the bounds and the related trichotomy
are not applicable.
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text of circuit lower bounds, where it is an important open question to prove
exponential lower bounds against constant depth threshold circuits in general
(without the energy constraints) for explicit functions.

Our Results: Returning to the context of standard Boolean basis B =
{∧2,∨2,¬}, we show several new results and connections between energy com-
plexity and other Boolean function parameters.

Relation to Parameters of Boolean Functions: As our first and main
contribution, we relate energy complexity, EC(f) of Boolean functions to three
parameters of Boolean functions that are not known to be related before, one in
terms of a lower bound and the other in terms of an upper bound for the energy
complexity EC(f). The third parameter characterizes the energy complexity of
Boolean functions when restricted to formulas, in terms of optimal formula size
itself.

For a function f : {0, 1}n → {0, 1}, let DT(f) denote the decision tree com-
plexity of the Boolean function - the smallest depth of any decision tree com-
puting the function f . We state our main result:

Theorem 1 (Main). For any Boolean function f , EC(f) ≤ O(DT(f)3).

We remark that the size of the circuit constructed above is exponentially in
DT(f). However, in terms of the energy of the circuit, this improves the bounds
of [7] since it now depends only on DT(f). There are several Boolean functions,
for which the decision trees are very shallow - a demonstrative example is the
address function3 where the decision tree is of depth O(log n). This gives a circuit
computing the address function with O(log3 n) energy.

On a related note, Uchizawa et al. [10], as a part of their main proof, showed
a similar result for threshold decision trees which are decision trees where each
internal node can query an arbitrary weighted threshold function on input vari-
ables. Let ECth(f) denote the energy of the minimum energy threshold circuit
computing f . They showed that ECth(f) ≤ 1 +DTth(f) where DTth(f) denotes
the depth of smallest depth threshold decision tree computing f . Since their
construction produces a weighted threshold circuit, it does not directly give us
a low energy Boolean circuit even for Boolean decision trees.

To obtain lower bounds on energy, we define a new parameter called the
positive sensitivity (which is at most the sensitivity of the Boolean function). For
a function f : {0, 1}n → {0, 1} and an input a ∈ {0, 1}n, we define the positive
sensitivity (denoted by psens(f)) as the maximum over all inputs a ∈ {0, 1}n -
of the number of indices i ∈ [n] such that ai = 1 and f(a ⊕ ei) 	= f(a). Here
ei ∈ {0, 1}n has the ith bit alone set to 1. Using this parameter, we show the
following.

Theorem 2. For any Boolean function f : {0, 1}n → {0, 1} computed by a
circuit C over the Boolean basis, EC(C) ≥ psens(f)/3.

3 ADDRk(x1, x2, . . . , xk, y0, y1, . . . , y2k−1) = yint(x) where int(x) is the integer repre-
sentation of the binary string x1x2 . . . xk.
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The third parameter we relate to is the formula complexity when the com-
putation is restricted to formulas. For a Boolean function f , let L(f) denotes
the number of leaves in the optimal bounded fan-in formula computing f , and
ECF(f) denotes the minimum energy for any bounded fan-in formula computing
f . We show the following tight relation.

Theorem 3. For any Boolean function f , ECF(f) = Θ(L(f))

This indeed shows that there are input settings that makes almost all the
gates in a formula to output a one. Thus, bounded fan-in formulas are quite
inefficient in terms of energy.

Energy Lower Bounds for Explicit Functions: We explore energy lower
bounds for explicit functions for circuits over Boolean basis. In the first part, we
show an Ω(

√
n) lower bound for energy when the fan-in of the circuit is bounded

and in the second we show an Ω(n) lower bound when the depth of the circuit
is bounded by three and fan-in of the circuit is unbounded.

Theorem 4. Let f be the perfect matching function of a graph on n edges.
Then, any Boolean circuit with bounded fan-in, computing f will require energy
at least Ω(

√
n).

To prove this result, we use the idea of continuous positive paths developed in
proving Theorem 2, and show that the monotone Karchmer Wigderson games
can be solved by exchanging at most EC(C) log c where C is a circuit with fan-in
at most c (see Lemma 3 for more details). On the depth restricted front, we show
the following.

Theorem 5. Let C be any unbounded fan-in circuit of depth 3 computing the
parity function on n variables. Then, EC(C) is Ω(n).

2 Preliminaries

Let [n] def= {1, . . . , n}. For i ∈ [n], let ei denote the n length Boolean vector with
the ith entry alone as 1. For an a ∈ {0, 1}n, a⊕ ei denotes the input obtained by
flipping the ith bit of a. The positive sensitivity of f on a, denoted by psens(f, a),
is the number of i ∈ [n] such that ai = 1 and f(a ⊕ ei) 	= f(a).

A Boolean circuit C over the basis B = {∧2,∨2,¬} is a directed acyclic graph
(DAG) with a root node (of out-degree zero), input gates labeled by variables
(of in-degree zero) and the non-input gates labeled by functions in B. Define
the size to be the number of non-input gates and, depth to be the length of the
longest path from root to any input gate of the circuit C. A Boolean formula
is a Boolean circuit where the underlying DAG is a tree. We call a negation
gate that take input from a variable as a leaf negation. A circuit is said to be
monotone if it does not use any negation gates. A function is monotone if it can
be computed by a monotone circuit. Equivalently, a function f is monotone if
∀ x, y ∈ {0, 1}n, x ≺ y =⇒ f(x) ≤ f(y) where x ≺ y iff xi ≤ yi for all i ∈ [n].
For a circuit C, negs(C) denotes the number of negations in the circuit C.
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For a monotone function f : {0, 1}n → {0, 1}, x ∈ f−1(1) and y ∈ f−1(0),
define S+

f (x, y) = {i | xi = 1, yi = 0, i ∈ [n]}. The monotone Karchmer Wigder-
son cost of f (denoted by KW+(f)) is the optimal communication cost of the
problem where Alice has x, Bob has y and they have to find an i ∈ [n] such that
i ∈ S+

f (x, y). It is known that KW+(f) equals the minimum depth monotone
circuit computing f . For more details about this model, see [6]. For a Boolean
circuit C, and an input a, the energy complexity of C on the input a (denoted
by EC(C, a)) is defined as the number of gates that output a 1 in C on the input
a. Define the energy complexity of C (denoted EC(C)) as maxa EC(C, a). The
energy complexity of a function f , (denoted by EC(f)) to be the energy of the
minimum energy circuit over the Boolean basis B computing f . As mentioned
in the introduction, we observe the following about the construction of Lozhkin
and Shupletsov [7].

Proposition 1. For any f : {0, 1}n → {0, 1}, EC(f) ≤ 3n − 1.

A decision tree is a rooted tree with all the non-leaf nodes labeled by variables
and leaves labeled by a 0 or 1. Note that every assignment to the variable in
the tree defines a unique path from root to leaf in the natural way. A Boolean
function f is said to be computed by a decision tree if for every input a, the path
from root to a leaf guided by the input is labeled by f(a). Depth of a decision
tree is the length of the longest path from root to any leaf. Define decision tree
depth of f (denoted by DT(f)) as the depth of the minimum depth decision tree
computing f .

3 Energy Complexity as a Boolean Function Parameter

In this section, we show new techniques to obtain upper bounds and lower bounds
on EC(f). In the upper bound front, we show that a Boolean function f whose
DT(f) is low can be computed by a low energy circuit and also a weak converse
of the statement (Sect. 3.1). We introduce a new parameter of Boolean function,
called the positive sensitivity, and show that it forms a lower bound on EC(f) for
any Boolean function f (Sect. 3.2) and conclude the section by a characterization
of energy complexity of Boolean formulas (Sect. 3.3).

3.1 Energy Upper Bounds from Decision Trees

We know that any n bit function f can be computed by a circuit of energy at most
3n−1 (see Proposition 1). In this section, we identify the property of having low
depth decision trees as a sufficient condition to guarantee energy efficient circuits.
More precisely, we show that for any Boolean function f , EC(f) ≤ O(DT(f)3).

One of the challenges in constructing a Boolean circuit is to use as few nega-
tion gates as possible. The reason is that non-leaf negation gates always con-
tribute to the energy since either the gate or its input will always output a 1 on
any input to the circuit. We achieve this in our construction via an idea inspired
by the connector circuit introduced by Markov [8]. We now describe a circuit C
computing f of energy at most 2DT(f)2 with ∧ gates having a large fan-in.
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Lemma 1. For any non-constant Boolean function f , there exists a circuit C
computing f with, (1) all ∨ gates are of fan-in 2 and all ∧ gates are of fan-in at
most DT(f) + 2, (2) no ∨ gate have a negation gate or a variable directly as its
input, (3) negs(C) ≤ DT(f) and, (4) EC(C) ≤ 2DT(f)2.

Proof. We first describe a circuit computing a function of the kind f(x) = ¬x1 ∧
f0(x)∨x1∧f1(x) which is efficient in terms of the usage of negations. Using this,
we obtain a C computing f satisfying (1) to (4).

Let f0 (resp. f1) be computed by a circuit C0 (resp. C1). We now con-
struct a circuit C∗ computing f with 1 + max {negs(C0), negs(C1)} nega-
tions. We start with the circuit A = ¬x1 ∧ C0(x) ∨ x1 ∧ C1(x). Let g0
(resp. g1) be the lexicographically least gate that feeds into a negation
in C0 (resp. C1). Let D′

0 (resp. D′
1) be the circuit C0 with the nega-

tion gate that g0 (resp. g1) feeds into alone removed and let D0 (resp.
D1) be the sub-circuit rooted at g0 (resp. g1). We construct a new circuit
as shown in Fig. 1 with the connector circuit in the box. By construction,

Fig. 1. Circuit C∗ and the
modifications

it can be argued that the resulting circuit cor-
rectly computes f while using one negation less
that the circuit A. We repeat the previous steps
restricted to gates in D′

0 and D′
1 as long as

the negations in at least one of the circuits
is exhausted. Hence the resulting circuit C∗

(see Fig. 1 without the thinly dashed lines) has
1+negs(C0)+negs(C1)−min {negs(C0), negs(C1)} =
1 + max {negs(C0), negs(C1)}. We remark that
though Markov [8] does shows the existence of such
a circuit, their construction can be shown to have
high energy making it unsuitable for our purpose.

We describe the construction of the circuit C
by an induction on DT(f). For f with DT(f) ≤ 2,
the Boolean function f can be expressed as (¬x1 ∧
�1) ∨ (x1 ∧ �2) where �i is a literal or a constant. By
applying the construction of C∗ outlined (if needed) the condition (3) can be
ensured. It can be verified that for the resulting circuit, (1), (2) and (4) holds for
f . This completes the base case.

Let f be a Boolean function computed by a decision tree T of depth DT(f) ≥
3. Let the root variable of T be x1 and T0 (resp. T1) be the left (resp. right)
subtree computing the function f0 = f |x1=0 (resp. f1 = f |x1=1). Since f0 and f1
are computed by decision trees of depth DT(f) − 1, by induction, there exists
circuits C0 and C1 computing f0 and f1, respectively, satisfying (1) to (4).

Observe that f(x) = ¬x1 ∧ f0 ∨ x1 ∧ f1. Hence by our construction, there
exists a circuit C∗ computing f (Fig. 1 omitting the thinly dashed lines) with
negs(C) = max {negs(C0), negs(C1)} + 1. We modify the circuit C∗ as follows :
for each ∧ gate which was originally in C0 (resp. C1), we add ¬x1 (resp. x1) as
input thereby increasing its fan-in by 1. We also remove the ∧ gate (shaded in
Fig. 1) feeding into the top ∨ gate and feed the output of the circuits directly to
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the top ∨ gate (shown as dashed in Fig. 1). Call the resulting circuit C ′ and the
gates from C0 as C ′

0 (the left part in Fig. 1) and the gates from C1 as C ′
1 (the

right part in Fig. 1).
For the circuit C ′, we observe that by construction and inductive hypothesis,

the condition (1) holds. The removal of the shaded ∧ gates never causes a variable
or a negation to be fed to the top ∨ gate since f0 and f1 have a decision tree
depth of at least 2 and hence the circuits of the respective functions have top gate
as ∨ which is guaranteed by base case for depth 2 and by induction otherwise.
Hence condition (2) holds. We now argue that C ′ correctly computes f . When
x1 = 1, all the ∧ gates in C ′

0 evaluates to 0. Since no input variable or negation
gate feeds into any ∨ gate in C ′

0 (condition (2)), all the ∨ gates and ∧ gates
output 0 irrespective of the remaining input bits. Hence the C ′

0 outputs 0. Since
x1 = 1, C ′

1 behaves exactly same as C1. By construction of C∗, the circuit C1

correctly computes f when x1 = 1. Hence the circuit C ′ correctly computes f
for x1 = 1. The same argument with C0 and C1 interchanged shows that C ′

correctly computes f when x1 = 0.
As no new negations are added in C ′, negs(C ′) = negs(C∗), whence by induc-

tion hypothesis, condition (3) holds. We now show that condition (4) holds for
C ′. Let x be an input with x1 = 1. We have already argued that when x1 = 1,
none of the ∧ or ∨ gates of C ′

0 output a 1. Hence the gates that can output a 1 in
C ′ are the negations in C ′

0, the gates that output 1 in C ′
1, the connector gates, the

root gate and the negation gate for x1 (recall that the shaded ∧ gates are removed
in C ′). A similar argument holds for x with x1 = 0. Hence, it can be argued
that EC(C ′) is at most max {EC(C0),EC(C1)} + 3max {negs(C0), negs(C1)} + 2.
By induction, we have EC(f) ≤ EC(C ′) ≤ 2(DT(f) − 1)2 + 3(DT(f) − 1) + 2
which implies EC(f) ≤ 2DT(f)2 as f is non-constant. This completes the
induction. ��

We now prove the main result of this section.

Proof (of Theorem 1). If f is constant, the result holds. Otherwise, apply-
ing Lemma 1, we have a circuit C ′ computing f with fan-in of ∨ gate being
2 and fan-in of ∧ gate being at most DT(f) + 2 of energy at most 2DT(f)2. To
obtain a bounded fan-in circuit from C ′, we replace the ∧ gates by a tree of
fan-in 2 ∧ gates of DT(f) + 2 leaves. Hence, EC(f) ≤ EC(C) · (DT(f) + 1) ≤
2DT(f)2 · (DT(f) + 1) = O(DT(f)3). ��
It can be argued that for any Boolean function f and a circuit C of size s and
energy e computing f over an arbitrary finite basis B, se ≥ Ω(DT(f)) which
can be seen as a weak converse of Theorem 1. The proof is deferred to the full
version of this paper.

3.2 Energy Lower Bounds from Positive Sensitivity

In this section, we prove Theorem 2 from the introduction. We first describe an
outline here. As a starting case, consider a monotone circuit C computing f
evaluates to 1 on an input a ∈ {0, 1}n. Let i ∈ [n] be such that ai = 1 and
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flipping ai to 0 causes the circuit to evaluate to 0. We show that for such an
index i on input a, there is a path from xi to the root such that all the gates in
the path outputs a 1. The latter already implies a weak energy lower bound. We
then generalize this idea to non-monotone circuits as well and use it to prove
energy lower bounds. This generalization also helps us to prove upper bounds
for KW+ games in Sect. 4.1.

To keep track of all input indices that are sensitive in the above sense, we
introduce the measure of positive sensitivity denoted by psens(f) (as defined
in Sect. 2). Let p̃sens(f, a) denote the set of positive sensitive indices on a.

Continuous Positive Paths: Let C be a Boolean circuit computing f :
{0, 1}n → {0, 1}. For an input a ∈ {0, 1}n, we call a path of gates such that
every gate in the path output 1 on a as a continuous positive path in C.

Fix an a ∈ {0, 1}n. We argue that for every positive sensitive index i on a,
either there is a continuous positive path from xi to the root or it must be broken
by a negation gate of the circuit. Using this we show that energy complexity of
a function is lower bounded by its positive sensitivity.

Lemma 2. Let f : {0, 1}n → {0, 1} and a ∈ {0, 1}n be an input such that
psens(f, a) 	= 0 and i ∈ p̃sens(f, a). Let C be any circuit computing f . Then,
either (1) there is a continuous positive path from xi to root or (2) there is a
continuous positive path from xi to a gate which feeds into a negation gate of C.

Proof. It suffices to prove the following stronger statement: for a Boolean func-
tion f and an a ∈ {0, 1}n with psens(f, a) 	= 0 and i ∈ p̃sens(f, a), let C be
any circuit such that C(a) = f(a) and C(a ⊕ ei) = f(a ⊕ ei). Then, either (1)
there is a continuous positive path from xi to root or (2) there is a continuous
positive path from xi to a gate which feeds into a negation gate of C. Proof
is by induction on negs(C). Let C be any circuit such that f(a) = C(a) and
f(a ⊕ ei) = C(a ⊕ ei).

Base Case: For the base case, negs(C) = 0. As C is a monotone circuit and
i ∈ psens(f, a), C(a) = 1. Hence, there must exist a series of gates all evaluating
to 1 reaching some inputs. For any i ∈ psens(f, a), we show that (1) holds.
Suppose not, then among all the paths from xi to the root, collect all the gates
that evaluate to 0 for the first time in the path and call this set as T . We fix all
the variables except xi to the values in a and view each of the gates in g ∈ T as
a function of xi. Now, flipping xi from ai = 1 to 0 does not change the output
of any g ∈ T as they compute monotone functions and already evaluate to 0.
Since all other values are fixed, the output of the root gate does not change by
this flip which contradicts the fact that i ∈ psens(f, a).

Induction Step: Let C be a circuit with negs(C) ≥ 1. Let g be the first gate that
feeds into a negation in the topologically sorted order of the gates of C.

We have the following two possibilities. In both the cases, we argue existence
of continuous positive path in C from the variable xi. The first case is, on input
a, flipping ai change the output of g. Denote the function computed at g as fg.
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Then fg is monotone and i ∈ p̃sens(fg, a) and is non-empty. Hence applying the
argument in the base case to fg and the monotone circuit rooted at g, we are
guaranteed to get a continuous positive path from xi to g. Since the circuit at
g is a sub-circuit of C (that is, it appear as an induced subgraph), this gives
a continuous positive path in C also. The second case is, on input a, flipping
ai does not change the output of g. In this case, we remove the negation gate
that g feeds into and hard wire the output of this negation gate (on input a)
in C to get a circuit C ′. Note that all other gates in C are left intact. Observe
that C ′(a) = f(a). Since flipping ai did not change the output of g and as all
other gates are left intact, C ′(a⊕ ei) = f(a⊕ ei). As negs(C ′) = negs(C)− 1, by
induction, either (1) there is a continuous positive path from xi to root or (2)
there is a continuous positive path from xi to a gate which feeds into a negation
gate of C ′. By construction, C ′ is same as C except for the negation gate. Hence
a continuous positive path in C ′ is also a continuous positive path in C. ��

From Positive Sensitivity to Energy Lower Bounds: We call the negation
gates and the root gate of a circuit as target gates. In Lemma 2, we have already
shown the existence of continuous positive paths from a positive sensitive index
up to a target gate. Using this, we show an energy lower bound for any circuit
of bounded fan-in computing a Boolean function f in terms of psens(f). Since
the fan-in of the circuit is limited, we exploit the idea that in a connected DAG,
the number nodes with out degree at least 1 (internal nodes) is lower bounded
by the number of source nodes.

Since every such positive sensitive index is reachable via a continuous positive
path from a target gate, we obtain a lower bound on energy by applying this
idea on an appropriate subgraph constructed from our circuit.

Proof (of Theorem 2). Without loss of generality assume that f is non-constant.
Let C be any circuit computing f of fan-in 2 such that EC(C) = EC(f). We
prove that ∀a ∈ {0, 1}n, psens(f, a) ≤ 3EC(C).

Let a ∈ {0, 1}n by any input. If psens(f, a) = 0, the claim holds. Hence we
can assume, psens(f, a) 	= 0. Let T be the set of all target nodes in C. For every
i ∈ p̃sens(f, a), by Lemma 2, there exists continuous positive paths starting from
xi to a gate g ∈ T . For every g ∈ T , let Xg be the set of all gates that lie in
a continuous positive path from an xi to g for some i ∈ p̃sens(f, a). Note that
the subgraph induced by vertices in Xg is connected and does not include g. We
now obtain a connected DAG with psens(f, a) leaves as follows. Let D be a full
binary tree (with edges directed from child to parent) with |T | many leaves and
hence |T | − 1 internal nodes. For each g ∈ T if it is a negation, we attach the
gate feeding into g as a leaf of the D and if it is a root, we attach the root as a
leaf of the D. Let H be the resulting DAG.

Since graph induced on Xg is connected for each g, this gives us a connected
DAG on psens(f, a) many source nodes. Let X = ∪g∈T Xg. Observe that the
number of internal nodes is |X| + (|T | − 1) + 1 where the first term is the
gates in X, the second term is the number of internal nodes of the tree and
third term is due to the root. Since the target gates include negations and the
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root, |T | = negs(C) + 1. Since the total number of negation gates in any circuit
computing f is at most EC(f), we get that number of internal nodes of H is at
most |X| + |T | − 1 ≤ |X| + EC(f) + 1 − 1 ≤ 2EC(f). Since the resulting DAG is
connected, the number of leaves, which is psens(f, a), is at most the number of
internal nodes +1 which is at most 2EC(f) + 1 ≤ 3EC(f). ��

3.3 Formulas Size Characterizes Formula-Energy Complexity

Intuitively, Boolean formulas can take more energy than a circuit since we cannot
“reuse” computation. Recall that ECF(f) as the energy of a minimum energy
bounded fan-in formula computing f . In this section, we show that ECF(f) =
Θ(L(f)) where L(f) is the size of an optimal formula computing f .

Proof (of Theorem 3). Observe that since f can be computed by a fan-in 2
formula of size L(f), there are at most L(f)−1 internal nodes implying that the
number of gates that fire cannot exceed L(f)− 1. Hence ECF(f) = O(L(f)). We
show that for any formula H of s leaves computing f , ECF(H) ≥ s/32 implying
ECF(f) ≥ Ω(s) thereby completing the proof.

If at least half of the leaves of H read a negated variable, we have EC(H) ≥
s/2. Otherwise, at least s/2 of the leaves are unnegated and feeds directly to at
least s/4 gates which are either ∧ or ∨ gates. Of these, assume without loss of
generality that ∧ appears at least s/8 times. Then, on a random assignment, since
∧ will be 1 with probability 1/4, the expected number of gates that evaluate to
1 is at least s/32. Hence EC(H) ≥ s/32 for the input achieving the expectation.
Similar argument for ∨ gives that EC(H) ≥ 3s/32. Hence ECF(H) ≥ Ω(s).
Since we started with an arbitrary formula computing f , ECF(f) = Ω(L(f)).
The above argument can be extended to show that for formulas of fan-in k,
ECF(f) = Ω(L(f)/2k). ��

4 Energy Lower Bounds for Explicit Functions

In this section, we prove energy lower bounds for explicit functions. The first
one is a lower bound for any Boolean circuit, and the second one is against
unbounded fan-in depth three circuits.

4.1 Energy Lower Bounds from Karchmer-Wigderson Games

We use Lemma 2 and utilize the existence of continuous positive paths to design
a KW+ protocol of cost O(EC(C) log fan-in(C)) (Lemma 3). Using this, we derive
that any circuit C with constant fan-in computing the perfect matching func-
tion fPM require energy at least Ω(

√
n) since KW+(fPM ) = Ω(

√
n) [9] thus

proving Theorem 4 from the introduction.
Recall that S+

f (x, y) def= {i | xi = 1, yi = 0, i ∈ [n]}. Also, we call the set of all
negation gates, along with the root gate of C as the target gates of C.
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Lemma 3. For a non-constant monotone Boolean function f , let Alice and Bob
hold inputs a ∈ f−1(1) and b ∈ f−1(0) respectively. Let C be any circuit com-
puting f , and every gate in the circuit is either a ∧,∨ with fan-in of at most c
or a negation gate. Then, KW+(f) ≤ EC(C) log c.

Proof. We argue that, without loss of generality it can be assumed that
p̃sens(f, a) = {i | ai = 1}. Alice finds an a′ ≺ a with f(a′) = f(a) = 1 such that
for any a′′ ≺ a′, f(a′′) = 0. Observe that a′ 	= 0n for otherwise, f(0n) = 1 and
since f is monotone, f must be a constant which is a contradiction. By construc-
tion, every bit in a′ which is 1 is sensitive. Since a′ ≺ a, S+

f (a′, b) ⊆ S+
f (a, b),

thereby it suffices to find an index in S+
f (a′, b).

We now describe the protocol. Let a ∈ f−1(1) such that p̃sens(f, a) = {i |
ai = 1}. Before the protocol begins, Alice does the following pre-computation.
Let P be the collection of positive paths one each for every i ∈ p̃sens(f, a),
which exists as per Lemma 2. Alice computes P =

⋃
g∈T Pg where Pg is the

collection of all continuous positive paths ending at the target gate g. This ends
the pre-processing. Now Alice and Bob fixes an ordering of the target gates. For
each target gate g ∈ T in the order, the following procedure is repeated. For
each continuous positive path p ∈ P, ending at g, Alice sends the address of the
previous gate in the path p (using log c bits) until they trace back to an input
index i. Now, Bob checks if bi = 0, and if so, we have found i ∈ S+

f (a, b), else,
they attempt on the next p ∈ Pg.

We argue about the correctness of the protocol. Notice that the above proto-
col searches through all i ∈ p̃sens(f, a) by traversing through all Pg, for g ∈ T .
Since p̃sens(f, a) = {i | ai = 1} and S+

f (a, b) ⊆ p̃sens(f, a) the protocol cor-
rectly computes i such that ai = 1 and bi = 0. Since the protocol visits only
those gates that output 1 on a, we have a protocol with communication cost
≤ EC(C, a) × log(c) ≤ EC(C) log c. ��

4.2 Energy Lower Bounds for Depth Three Circuits

We now turn to the energy complexity lower bounds for the constant depth
circuits. While we are unable to prove strong lower bounds for circuits of depth
d for an arbitrary constant d, we show that any depth d = 3 unbounded fan-
in circuit computing the parity function requires large energy. For any Boolean
function f , the trivial depth 2 circuit of unbounded fan-in computing f has an
energy n+2 and it can be shown that any depth two circuit computing the parity
on n bits require an energy of n + 1. We show that the same also holds for any
depth 3 circuit computing parity thereby proving Theorem5 from Introduction.

Razbarov showed that any circuit C of depth d of unbounded fan-in com-
puting parity on n bits must be of size at least 2Ω(n1/4d) [1]. Using this result we
show an energy lower bound of Ω(n) for any depth 3 circuit computing ⊕n.

Proof (of Theorem 5). We call the root gate of the circuit as the “top” level and
the two level immediately below as the “middle” and “bottom” levels respec-
tively. Assume the circuit C does not have any redundant gates. Note that
negations do not count towards the level.
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Let there be i negated input variables and without loss of generality, assume
i < n. We set these variables to 0 and let C ′ be the resulting circuit obtained.
Let g1, g2, . . . , gk be the k gates in the bottom layer that feeds to the layers
above via negation gates. We set input variables to these k gates such that the
output of the negations are fixed in the following way: for the gate gi, consider
any input variable, say xj , that feeds into gi and set it to 0 if gi is ∧ gate and 1
if gi is ∨. We also remove the gates that have become a constant and hardwire
their output to get the result circuit C ′. Hence, all the gates at the bottom level
are not fed negated to the level above.

In this process, we have eliminated the k negations leaving us with the circuit
C ′′ where all the gates at bottom and middle layer computes some monotone
function on the remaining m = n − (i + j) for some j ≤ k variables. Since
the resulting circuit must compute parity on m variables, by [1], size(C ′′) ≥
2Ω(m1/12). Since C ′′ is of depth 3, the number of bottom and middle gates in
C ′ must also be at least 2Ω(m1/12). As the gates in the bottom and middle
level computes monotone function, there is a setting of input such that at least
i + k ≥ i + j = n − m gates contributes an energy of 1 (since either the input to
the negation or the negation gate itself will be 1) and 2Ω(m1/12) gates in C that
evaluate to 1. Hence EC(C) ≥ n − m + 2Ω(m1/12) = Ω(n) irrespective of m. ��
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Abstract. d-Hitting Set and d-Set Cover are among the classical
NP-hard problems. In this paper, we study variants of d-Hitting Set
and d-Set Cover, which are called Partial d-Hitting Set (Par-
tial d-HS) and Partial d-Exact Set Cover (Partial d-Exact SC),
respectively. In Partial d-HS, given a universe U , a family F , of sets
of size at most d over U , and integers k and t, the objective is to decide
if there exists a S ⊆ U of size at most k such that S intersects with
at least t sets in F . We obtain a kernel for Partial d-HS in which the
size of the universe is bounded by O(dt) and the size of the family is
bounded by O(dt2). Using this result, we obtain a kernel for Partial
Vertex Cover (PVC) with O(t) vertices, where t is the number of
edges to be covered. Next, we study the Partial d-Exact SC problem,
where, given a universe U , a family F , of sets of size exactly d over U ,
and integers k and t, the objective is to decide if there is S ⊆ F of size at
most k, such that S covers at least t elements in U . We design a kernel
for Partial d-Exact SC in which sizes of the universe and the family
are bounded by O(kd+1). Finally, we study a special case of Partial
d-HS, when d = 2, and design an exact exponential time algorithm with
running time O(1.731nnO(1)).

Keywords: Partial d-Hitting Set · Partial d-Set Cover
Partial Vertex Cover · k-Maximum Coverage · Kernel · Exact algorithm

1 Introduction

Hitting Set and Set Cover are among the most classic NP-hard prob-
lems [14]. Both these problems (and their variants) have received substantial
attention in algorithm design, and their studies have led to development of
many tools and techniques (see, for example [6,8,21]). Consider a universe U
and a family F , of subsets of U . A set X ⊆ U is said to “hit” a set F ∈ F , if
X ∩ F �= ∅. Furthermore, a set F ∈ F is said to “cover” an element u ∈ U if
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u ∈ F . The Hitting Set problem takes as an input a universe U , a family F
of sets over U , and an integer k, and the objective is to test if there exists a set
S ⊆ U of size at most k such that S hits every set in F . A problem equivalent
to Hitting Set, is the Set Cover problem. Set Cover takes as an input a
universe U , a family F of sets over U , and an integer k, and the objective is to
test if there exists a set S ⊆ F of size at most k, such that

⋃
S∈S S covers every

element in U .
Hitting Set and Set Cover have also been studied for the case when

each set in the input family has size at most d (see, for example [3,13,19] and
references therein). These variants of Hitting Set and Set Cover are called
d-Hitting Set and d-Set Cover, respectively. Note that d-Hitting Set is
NP-hard, even for d = 2. While Set Cover is polynomial time solvable for
d = 2 [17], it becomes NP-hard for d ≥ 3 [14,20]. A well studied variant of d-
Hitting Set (d-Set Cover) is the Partial d-Hitting Set (Partial d-Set
Cover) problem. The Partial d-Hitting Set (Partial d-Set Cover) takes
as an input a universe U , a family F of sets, each of size at most d, over U , and
integers k and t, the objective is to decide if there exists a S ⊆ U (S ⊆ F) of
size at most k, such that S (S) hits (covers) at least t sets (elements) in F (U).

In this paper, we look at the d-Partial Hitting Set and d-Partial Set

Cover problems. Firstly, we study these problems from the viewpoint of Kernel-
ization complexity. Kernelization is one of the central notions in Parameterized
Complexity. It mathematically models the efficiency of a preprocessing routine.
The input to a parameterized problem is an instance of I, the classical problem,
and an integer κ, which is called the parameter. A parameterized problem Π is
said to admit an f(κ)-kernel if there exists a polynomial time algorithm (the
degree of the polynomial is independent of κ), called a kernelization algorithm,
that given an input (I, κ) of Π, outputs an equivalent instance (I ′, κ′) such that
|I ′| + κ′ ≤ f(κ). If the function f(·) is polynomial in κ, then we say that the
problem admits a polynomial kernel. Secondly, we provide a Fixed Parameter
Tractable (FPT) algorithm for Partial Vertex Cover. A problem is said
to be FPT if it admits an algorithm that takes an input (I, κ), and correctly
decides the problem in time g(κ) · |I|c, where g(·) is a computable function. For
more details on Parameterized Complexity we refer to the books of Downey and
Fellows [7], Flum and Grohe [9], Niedermeier [18], and Cygan et al. [6].

The d-Hitting Set problem admits a kernel of size O(kd−1) [1]. An equiv-
alent formulation of Partial 2-Hitting Set is the Partial Vertex Cover

problem. Partial Vertex Cover is known not to admit a kernel (or an FPT
algorithm) when parameterized by the solution size [12]. This implies that Par-
tial d-Hitting Set also does not admit a kernel, when parameterized by the
solution size. Kneis et al. [16] gave a deterministic algorithm with running time
O(1.396t), and a randomized algorithm with running time O(1.2993t) for PVC,
where t is the number of edges to be covered. The PVC problem has also
been studied for the case when the input is restricted to some special family
of graphs (see for example [2,10]). The Partial Set Cover problem is known
not to admit an FPT algorithm, when parameterized by the solution size, but
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it admits an FPT algorithm (or an exponential kernel) when parameterized by
t [5]. Weighted versions of Partial Vertex Cover have also been studied (see
for example, [4,11,15]).

Our Results. Firstly, we study the Partial d-Hitting Set problem, from
the viewpoint of Kernelization Complexity. In the following, we formally define
the problem Partial d-Hitting Set.

Partial d-Hitting Set (Partial d-HS) Parameter: t
Input: A universe U , a family F of sets of size at most d over U , and integers
k and t.
Question: Is there a set S ⊆ U of size at most k, for which there is F ′ ⊆ F
of size at least t such that for each F ∈ F ′, we have S ∩ F �= ∅?

In Sect. 3, we obtain a kernel for Partial d-HS, where the size of the universe
is bounded by O(dt) and the size of the family is bounded by O(dt2). As a
corollary to this result, we obtain a kernel for PVC (to be defined, shortly) with
O(t) vertices and O(t2) edges.

Next, we consider the problem Partial d-Exact Set Cover, which is
formally defined below.

Partial d-Exact Set Cover (Partial d-Exact SC) Parameter: t
Input: A universe U , a family F of sets of size exactly d over U , and integers
k and t.
Question: Is there a set S ⊆ F of size at most k, such that | ∪F∈S F | ≥ t?

In Sect. 4, we obtain a kernel for Partial d-Exact SC, where the size of
universe is bounded by O((k − 1)d+1dd+2) and size of the family is bounded by
O((k − 1)d+1dd+1). Our kernelization algorithm is based on careful selection of
a set that can be removed from the family, and once the number of sets in the
family is bounded, we are able to obtain a bound on the size of the universe.

Finally, we consider the problem called Partial Vertex Cover, which is
exactly the same as Partial d-HS, for d = 2. The problem Partial Vertex

Cover is formally defined below in a graph theoretic notation.

Partial Vertex Cover (PVC) Parameter: t
Input: A (multi) graph G, and integers k and t.
Question: Is there a set S ⊆ V (G) of size at most k, for which there is E′ ⊆
E(G) of size at least t, such that for each uv ∈ E′, we have S ∩ {u, v} �= ∅?

In Sect. 5, we give an exact exponential time algorithm for PVC. To the
best of our knowledge, we do not know any exact exponential algorithm for the
problem, apart from the trivial 2nnO(1) algorithm, where n is the number of
vertices in the input graph. We design an algorithm for PVC running in time
O(2ωn/3nO(1)) ∈ O(1.731nnO(1)). Here, ω is the exponent of matrix multipli-
cation algorithm, for which the current best known bound is ω < 2.373 [23].
Our algorithm for PVC is based on reducing the problem to finding maximum
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weighted triangle in a graph. Maximum weighted triangle in a graph can be
found by using the algorithm given by Williams in [22].

2 Preliminaries

Sets and Functions. We denote the set of natural numbers and the set of integers
by N and Z, respectively. By Z

+, we mean the set of positive integers. For n ∈ N,
we use [n] to denote the sets {1, 2, · · · , n}. We use ω to denote the exponent in
running time of algorithm for matrix multiplication, the current best known
bound for it is ω < 2.373 [23].

In the following consider a set U and a family of sets F , of subsets of U . We
call U as the universe of F , and F is a family over U . By 2U , we denote the
power set of U , i.e., 2U = {X | X ⊆ U}. For U ′ ⊆ U , by F − U ′, we denote
the multi-set {F \ U ′ | F ∈ F}. A set X ⊆ U hits a set F ∈ F , if X ∩ F �= ∅.
Moreover, X is a hitting set for F , if X hits each set in F . For a set F ′ ⊆ F , F ′

covers an element u ∈ U , if there is an F ∈ F ′ such that u ∈ F . Moreover, F ′ is
a cover of U if it covers every element in U .

Graphs. Consider a graph G. By V (G) and E(G) we denote the set of vertices
and edges in G, respectively. For X ⊆ V (G), G[X] denotes the subgraph of G
with vertex set X and edge set {uv ∈ E(G) | u, v ∈ X}.

Let G be a graph. A set X ⊆ V (G), is said to cover an edge uv ∈ E(G), if
{u, v} ∩ X �= ∅. Moreover, X is a vertex cover in G if it covers every edge in G.
By dG(v), we denote the degree of a vertex in graph G.

3 Kernel for Partial d-Hitting Set

In this section, we design a kernelization algorithm for Partial d-Hitting Set

(Partial d-HS for short) where the size of the universe is bounded by O(dt)
and the size of the family is bounded by O(dt2). Let (U,F , k, t) be an instance of
Partial d-HS. The algorithm starts by applying some reduction rules exhaus-
tively, in the order in which they are stated. When none of the reduction rules are
applicable, we argue that we have obtained an instance of the desired size. Note
that, in this section we assume that F is a multi-set. This assumption is required
for proving safeness of one of our reduction rules. Next, we state reduction rules
that are used by the algorithm.

Reduction Rule 1. If k < 0 then return that (U,F , k, t) is a NO instance of
Partial d-HS.

The safeness of Reduction Rule 1 follows from the fact that the size of any
set is at least 0.

Reduction Rule 2. If t ≤ 0 then return that (U,F , k, t) is a YES instance of
Partial d-HS.
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The safeness of Reduction Rule 2 follows from the fact that Reduction Rule 1
is not applicable and in this case an empty set is a solution to the given instance.

Reduction Rule 3. If t > 0 and k = 0, then return that (U,F , k, t) is a NO
instance of Partial d-HS.

The safeness of Reduction Rule 3 follows from the fact that we need at least
one element from U in the solution in order to have a non-empty intersection
with a set in F . Hereafter, we assume that we have k > 0 and t > 0.

Next, we define some notations that will be used in upcoming reduction rules.
For u ∈ U , Fu = {F ∈ F | u ∈ F} ⊆ F , and for X ⊆ U , FX = {F ∈ F | F ∩X �=
∅}. The following reduction rule deals with elements in U that appear in many
sets.

Reduction Rule 4. If there exists u ∈ U such that |Fu| ≥ t, then return that
(U,F , k, t) is YES instance of Partial d-HS.

The safeness of Reduction Rule 4 follows from the fact that u ∈ U , with |Fu| ≥ t
will intersect at least t sets in F , and since k > 0 (as Reduction Rule 1 to 3 are
not applicable), {u} is a solution to Partial d-HS for the given instance. When
Reduction Rule 4 is not applicable, an element of U can appear in at most t − 1
sets in F .

To state our next reduction rule, we need the following notations. Let ϕ =
(u1, · · · , un) be a monotonically non increasing ordering of elements in U , based
on |Fui

|, for i ∈ [�], i.e. we arrange the elements of U based on non increasing
order of their frequency of appearance in sets of F . Let A be the set comprising of
first min{n, dt+1} elements in ϕ. We are now ready to state our final reduction
rule.

Reduction Rule 5. If there is u ∈ U \ A, then return (U \ {u},F − {u}, k, t).

Lemma 1. Reduction Rule 5 is correct.

Proof. Consider u ∈ U\A. We show that (U,F , k, t) is a YES instance of Partial
d-HS if and only if (U \ {u},F − {u}, k, t) is a YES instance of Partial d-HS.

In the forward direction, let (U,F , k, t) be a YES instance of Partial d-
HS, and S be one of its solutions. If u /∈ S, then clearly S is a solution to
Partial d-HS in (U \ {u},F − {u}, k, t). Note that here we rely on the fact
that F −{u} (and F) is a multi-set. Next, we assume that u ∈ S, and construct
some sets, which will be useful in constructing a solution to Partial d-HS in
(U \ {u},F − {u}, k, t). Let FS = {F ∈ F | F ∩ S �= ∅}, and F̂S ⊆ FS be
an arbitrarily chosen set of size t. Furthermore, let F̂u = {F ∈ F̂S | u ∈ F},
F̃ = F̂S \ F̂u, and Ũ = ∪F∈ ˜FF . Observe that |Ũ | ≤ dt and |A| = dt + 1
(since U \ A �= ∅), and therefore, A \ Ũ �= ∅. Consider v ∈ A \ Ũ , and let
Sv = (S \ {u}) ∪ {v} and Fv = {F ∈ F | v ∈ F}. Notice that Fv ∩ F̃ = ∅, as
each set in Fv contains v and no set in F̃ contains v. Since v appears before u in
the ordering ϕ of U , we have |Fv| ≥ |F̂u|. From the above arguments, together
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with the fact the F̂S = F̂u ∪ F̃ , we have |Fv ∪ F̃| ≥ |F̂S | = t. Moreover, Sv is
of size at most |S| ≤ k, and Sv intersects each set in Fv ∪ F̃ . Therefore, Sv is a
solution to Partial d-HS in (U \ {u},F − {u}, k, t).

In the backward direction, let S be a solution to Partial d-HS in (U \
{u},F − {u}, k, t), and F ′

S ⊆ F − {u} be the set containing sets from F − {u}
that have a non-empty intersection with S. Consider the (multi) set F̂ = {F ∈
F | F ∈ F − {u}} ∪ {F ∪ {u} ∈ F | F ∈ F − {u}}. Observe that |F̂ | ≥ |F ′

S | ≥ t,
S ⊆ U , and each set in F̂ has a non-empty intersection with S. Thus, S is a
solution to Partial d-HS in (U,F , k, t). 
�

We are now ready to state the main lemma of this section.

Lemma 2. Let (U,F , k, t) be an instance of Partial d-HS. If Reduction Rules 1
to 5 are not applicable, then |U | ∈ O(dt) and |F| ∈ O(dt2).

Proof. Let (U,F , k, t) be an instance of Partial d-HS, where none of the Reduc-
tion Rules 1 to 5 are applicable. From safeness and non-applicability of reduction
rules, (and particularly that of Reduction Rule 5) we have |U | ∈ O(dt). Since
Reduction Rule 4 is not applicable, for each u ∈ U , we have |Fu| ≤ t − 1. More-
over, F = ∪u∈UFu. From the above arguments, we have |F| ∈ O(dt2). 
�

Lemma 2 immediately implies the following theorem.

Theorem 1. Partial d-HS admits a kernel with |U | ∈ O(dt) and |F| ∈
O(dt2).

As an immediate corollary to Theorem1, we obtain the following result.

Corollary 1. Partial Vertex Cover admits a kernel with O(t) vertices and
O(t2) edges, where t is the number of edges to be covered.

4 Kernel for Partial d-Exact Set Cover

In this section, we design a kernelization algorithm for Partial d-Exact Set

Cover (Partial d-Exact SC for short) where the size of the universe is
bounded by O((k − 1)d+1dd+2), and the size of the family is bounded by
O((k − 1)d+1dd+1). Let (U,F , k, t) be an instance of Partial d-Exact SC.
The algorithm starts by applying some reduction rules exhaustively, in the order
in which they are stated. When none of the reduction rules are applicable, we
argue that we have an equivalent instance of the desired size. Next, we state
reduction rules that are used by the algorithm.

Reduction Rule 6. If k < 0, then return that (U,F , k, t) is a NO instance of
Partial d-Exact SC.

The safeness of Reduction Rule 6 follows from the fact that the size of any
set is at least 0.
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Reduction Rule 7. If t ≤ 0, then return that (U,F , k, t) is a YES instance of
Partial d-Exact SC.

The safeness of Reduction Rule 7 follows from the fact that Reduction Rule 6
is not applicable and in this case an empty set is a solution to the given instance.

Reduction Rule 8. If t > 0 and k = 0, then return that (U,F , k, t) is a NO
instance of Partial d-Exact SC.

The safeness of Reduction Rule 8 follows from the fact that at least one set
from F is required to cover an element of U . Hereafter, we assume that k > 0
and t > 0.

Reduction Rule 9. If t ≤ d, then return that (U,F , k, t) is a YES instance of
Partial d-Exact SC.

The safeness of Reduction Rule 9 follows from the fact that any set F ∈ F
can cover d elements.

Reduction Rule 10. If t > kd, then return that (U,F , k, t) is a NO instance
of Partial d-Exact SC.

The safeness of above reduction rule follows from the fact that any solution
of size k can cover at most kd elements.

Let T ⊆ U be a set of size l. We define FT as a subset of family F such
that sets in FT contains T . In particular, FT = {F ∈ F | T ⊆ F}. Next, the
kernelization algorithm calls Algorithm1 on instance (U,F , k, t).

Algorithm 1. Algo-PDSC(U,F , k, t)
1: Fix an arbitrary ordering of sets in the family F
2: if |F| ≤ ((k − 1)d)d+1 then
3: return (U,F , k, t)
4: else
5: Let F∗ be the family of first (kd)d+1 sets in F , U∗ = {u ∈ F | F ∈ F∗}.
6: Apply Reduction Rules 11 and 12 exhaustively on instance (U∗,F∗, k, t). Let

(U∗,F ′, k, t) be the reduced instance.
7: return Algo-PDSC(U, (F \ F∗) ∪ F ′, k, t)
8: end if

Reduction Rule 11. Let lr = (k − 1)d + 1 if r = 1 and lr = lr−1(k − 1)d + 1,
otherwise. Let r ∈ [d − 1] be the least integer such that there exists a set T ⊆ U∗

of size d − r, for which |F∗
T | ≥ lr + 1. Then, delete an arbitrary set F ∈ F∗

T to
generate a new instance (U∗,F ′, k, t), where F ′ = F∗ \ F .

Lemma 3. Reduction Rule 11 is safe.

Proof. We use induction on r to prove the lemma.
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Base Step: r = 1. Let T ⊆ U∗ of size d − 1, for which |F∗
T | ≥ (k − 1)d + 2. We

delete an arbitrary set F ∈ F∗
T from F∗ to generate a new instance (U∗,F ′ =

F∗ \ F, k, t). Now, we prove that (U∗,F∗, k, t) is a YES instance of Partial

d-Exact SC if and only if (U∗,F ′, k, t) is a YES instance of Partial d-Exact
SC. In the forward direction, let S be a minimal solution of size at most k for
Partial d-Exact SC in (U∗,F∗, k, t). If S does not contain F , then clearly S
is also a solution for Partial d-Exact SC in (U∗,F ′, k, t). Now, suppose that
S contains F and let S∗ = S \ F . Let U∗

S∗ = {u ∈ S | S ∈ S∗, u /∈ T}. Observe
that |U∗

S∗ | ≤ (k − 1)d. Since U∗
S∗ ∩ F = ∅, |X ∩ S∗| ≤ 1, for any X ∈ F∗. Hence,

there can be at most (k − 1)d sets in F∗
T \ F which have non empty intersection

with U∗
S∗ . Hence, there exist at least one set F ′ ∈ F∗

T \F such that F ′ ∩U∗
S∗ = ∅.

This implies that S ′ = F ′ ∪S∗ covers t elements and S ′ is a solution to Partial

d-Exact SC in (U∗,F ′, k, t). For backward direction, since F ′ ⊂ F∗, therefore
any solution S to (U∗,F ′, k, t) is also a solution to Partial d-Exact SC in
(U∗,F∗, k, t).

Induction Hypothesis: Let us assume that Reduction Rule 11 is safe for r ≤
j − 1. So when Reduction Rule 11 is applied for r = j, family F∗ is already
reduced by Reduction Rule 11 for r ≤ j − 1.

Induction Step: r = j. For r = j, lj = lj−1(k − 1)d + 1. Let T ⊆ U∗ of
size d − j and |F∗

T | ≥ lj + 1. We delete an arbitrary set F ∈ F∗
T from F∗ to

obtain a new instance (U∗,F ′ = F∗ \ F, k, t). Now, we prove that (U∗,F∗, k, t)
is a YES instance of Partial d-Exact SC if and only if (U∗,F ′, k, t) is a
YES instance of Partial d-Exact SC. In the forward direction, let S be a
minimal solution of size at most k for Partial d-Exact SC in (U∗,F∗, k, t).
If S does not contain F , then clearly S is also a solution for Partial d-Exact
SC in (U∗,F ′, k, t). Now, suppose that S contains F and let S∗ = S \ F . Let
U∗

S∗ = {u ∈ S | S ∈ S∗, u /∈ T}. Observe that |U∗
S∗ | ≤ (k − 1)d. We have that

|F∗
T \ F | ≥ lj . Since F∗ is reduced by Reduction Rule 11 for r ∈ [j − 1], for a set

T ′ of size d − (j − 1), |F∗
T ′ | ≤ lj−1. This implies that for any element u ∈ U∗

S∗ ,
size of the family F∗

T∪u ⊆ F∗
T is at most lj−1 and | ∪u∈U∗

S∗ F∗
T∪u| ≤ lj−1(k −1)d.

Therefore, there exists at least one set F ′ ∈ F∗
T \ F such that, F ′ ∩ U∗

S∗ = ∅.
This implies that S ′ = F ′ ∪S∗ covers t elements and S ′ is a solution to Partial

d-Exact SC in (U∗,F ′, k, t). For backward direction, since F ′ ⊂ F∗, therefore
any solution S to (U∗,F ′, k, t) is also a solution to Partial d-Exact SC in
(U∗,F∗, k, t). 
�
Lemma 4. Let (U∗,F ′, k, t) be reduced instance after applying Reduction
Rule 11 exhaustively. Then, any element in U∗ can be in at most ((k − 1)d)d

sets in F ′.

Proof. For r ∈ [d − 1], lr = (k − 1)d + 1 if l = 1 and lr = lr−1(k − 1)d + 1,
otherwise. When r = 1, the Reduction Rule 11 bounds the sets in family which
shares subset of size d − 1 and when r = j the Reduction Rule 11 bound the



Hitting and Covering Partially 759

sets in family which shares subset of size d − j, and hence when r = d − 1 the
Reduction Rule 11 bound the sets in family which shares an element.

ld−1 = ld−2(k − 1)d + 1

= 1 + (k − 1)d + ((k − 1)d)2 + · · · + ((k − 1)d)d−1 ≤ ((k − 1)d)d

This completes the proof. 
�
Let (U∗,F∗, k, t) be the reduced instance after applying Reduction Rule 11
exhaustively, we now give following reduction rule to bound size of family F∗.

Reduction Rule 12. If |F∗| ≥ ((k − 1)d)d+1 + 2, then delete an arbitrary set
F ∈ F∗. Let the new instance be (U∗,F ′, k, t), where F ′ = F∗ \ F .

Lemma 5. Reduction Rule 12 is safe.

Proof. We prove that (U∗,F∗, k, t) is a YES instance of Partial d-Exact SC

if and only if (U∗,F ′, k, t) is a YES instance of Partial d-Exact SC. In the
forward direction, let S be a minimal solution of size at most k for Partial

d-Exact SC in (U∗,F∗, k, t). If S does not contain F , then clearly S is also a
solution for Partial d-Exact SC in (U∗,F ′, k, t). Now, suppose that S contains
F and let S∗ = S \ F . Let US∗ = {u ∈ S | S ∈ S∗, u /∈ F}. Observe that
|US∗ | ≤ (k − 1)d. We have that |F∗ \ F | ≥ ((k − 1)d)d+1 + 1. Since F∗ is
reduced by Reduction Rule 11, for an element u ∈ US∗ , |F∗

u | ≤ ((k − 1)d)d and
|∪u∈US∗ F∗

u | ≤ ((k − 1)d)d+1. Therefore, there exists at least one set F ′ ∈ F∗ \F
such that F ′ ∩ US∗ = ∅. This implies that S ′ = F ′ ∪ S∗ covers t elements and S ′

is a solution to Partial d-Exact SC in (U∗,F ′, k, t). For backward direction,
since F ′ ⊂ F∗, therefore any solution S to (U∗,F ′, k, t) is also a solution to
Partial d-Exact SC in (U∗,F∗, k, t). 
�

The correctness of Algorithm 1 follows from Lemmas 3, 4, and 5. Let
(U,F , k, t) be the reduced instance returned by Algorithm 1. We now give the
following reduction rule to bound size of universe U .

Reduction Rule 13. Delete all the elements from U that are not present in
any set in family F .

The proof of above reduction rule follows from that fact the elements not present
in any set in F can not be covered. This completes the description of kernelization
algorithm.

Now, we give the main lemma of this section.

Lemma 6. Let (U,F , k, t) be an instance of Partial d-Exact SC. If none of
the Reduction Rules 6 to 13 are applicable, then |F∗| ∈ O(((k − 1)d)d+1) and
|U | ∈ O((k − 1)d+1dd+2).

Proof. Let (U,F , k, t) be an instance of Partial d-Exact SC when none of
the Reduction Rules 6 to 13 are applicable. From the safeness and exhaustive
application of reduction rules, |F∗| ∈ O((k − 1)d)d+1. Since each set in |F∗| has
at most d elements, |U | ∈ O((k − 1)d+1dd+2). 
�
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Lemma 7. Let (U,F , k, t) be an input instance of Partial d-Exact SC, then
the kernelization algorithm can be implemented in O((kd)d2 |F|O(1)) time.

Proof. It is easy to see that Reduction Rules 6, 7, 8, 9, 10, and 13 can be applied
in polynomial time. The Algorithm1 applies Reduction Rule 11 on a family F∗

of size (kd)d+1 and universe U∗ of size at most (kd+1dd+2). Reduction Rule 11
is applied on every subset of universe U∗ of size at most d − 1, i.e.

(
kd+1dd+2

d−1

)

and each application runs in O(|F∗|) time. Reduction rule 12 can be applied in
at most O(|F|) time. Algorithm1 has at most |F| many recursive calls. Thus
running time of the algorithm is O((kd)O(d2)|F|O(1)). 
�

Lemma 6 along with Lemma7 implies the following theorem.

Theorem 2. Partial d-Exact SC admits a kernel with |U | ∈ O((k −
1)d+1dd+2) and |F| ∈ O((k − 1)d+1dd+1).

5 Exact Algorithm for PVC

In this section, we design an exact algorithm for Partial Vertex Cover (PVC

for short). Towards this we first present a reduction from PVC to Maximum

Edge Weighted Triangle (MWT) and then we use the subcubic algorithm
known for MWT [22,23] to solve PVC. MWT problem is formally defined as
follows.

Maximum Edge Weighted Triangle (MWT)
Input: A graph G = (V,E), a weight function f : E(G) → Z

+ and a positive
integer W .
Question: Does there exists a triangle in G of weight at least W?

Given an instance (G, t) of PVC, we generate an instance (G′, f,W ) of MWT

as follows. Let V1, V2, and V3 be an arbitrary partition of V (G) such that for
each partition Vi, |Vi| is at most �n

3 �. Note that here we split the vertex set
into 3 instead of 2 partitions because we are aiming at an algorithm running
in time better than O(2n). Now, corresponding to each set Sij in 2Vi , where
i ∈ [3], j ∈ [2|Vi|], add a vertex vij in V (G′). Now, for each vij , vpq ∈ V (G′),
add an edge vijvpq (where i, p ∈ [3]) to E(G′), if and only if i �= p. Next, we
assign a weight function, f : E(G′) → Z

+ as follows. Let Y,Z ⊆ V (G), we define
EY Z = {uv ∈ E(G) | u ∈ Y, v ∈ Z}. For an edge vijvpq ∈ E(G′),

f(vijvpq) =
∑

v∈Sij

dG(v) +
∑

v∈Spq

dG(v) − |ESijSij
| − |ESpqSpq

| − 2|ESijSpq
|

Now, we choose an appropriate value for W . Let W = 2t. This completes the
reduction. In the following lemma, we prove that the instance (G, t) of PVC and
(G′, f,W ) of MWT are equivalent.



Hitting and Covering Partially 761

Lemma 8. (G, t) is a YES instance of PVC if and only if (G′, f,W ) is a YES
instance of MWT.

Proof. In the forward direction, let (G, t) be a YES instance of PVC and X be
one of its solutions. Let S1j = V1 ∩ X,S2p = V2 ∩ X, and S3q = V3 ∩ X. We
claim that the vertices corresponding to S1j , S2p and S3q, i.e. {v1j , v2p, v3q} form
a triangle T in G′ of weight at least 2t. It is to be noted here that S1j ∪S2p ∪S3q

covers t edges, where

t =
∑

v∈S1j

dG(v) +
∑

v∈S2p

dG(v) +
∑

v∈S3q

dG(v)−

(|ES1jS1j | + |ES2pS2p | + |ES3qS3q | + |ES1jS2p | + |ES2pS3q | + |ES1j3q|).
Now, weight of the triangle T is

f(v1jv2p) + f(v2pv3q) + f(v3qv1j) = 2
∑

v∈S1j

dG(v) + 2
∑

v∈S2p

dG(v) + 2
∑

v∈S3q

dG(v)

− 2|ES1jS1j | − 2|ES2pS2p | − 2|ES3qS3q |
− 2|ES1jS2p | − 2|ES2pS3q | − 2|ES1jS3q |
= 2t

Conversely, let G′ has a triangle {v1j , v2p, v3q} of weight at least W . Let X =
S1j ∪ S2p ∪ S3q. By the similar arguments as above, X covers at least W

2 edges
in G. This completes the proof. 
�
Theorem 3. There exists an exact algorithm for PVC with running time
O(2ωn/3), where ω is matrix multiplication constant.

Proof. To construct an instance of MWT from PVC, we generate a graph G′

in which for every subset of Vi ⊆ V (G), where i ∈ [3], we added a vertex in G′.
Hence, G′ consists of 3 · 2n/3 vertices and 3 · 22n/3 edges by construction. There-
fore, the construction of G′ takes O(22n/3) time. Using the algorithm presented
by Williams [22] for finding maximum weighted triangle in the graph, we get
O(22n/3 + 2ωn/3) = O(2ωn/3) time algorithm for PVC. 
�

6 Conclusion

We explored kernelization of Partial d-HS and Partial d-Exact SC problems
in this paper, along with giving an exact algorithm for the PVC problem. For
Partial d-HS, we gave a kernel with O(dt) elements, and O(dt2) sets. For
Partial d-Exact SC, we gave a kernel with O((k − 1)d+1dd+2) elements, and
O((k − 1)d+1dd+1) sets. The exact algorithm for PVC, ran in time O(2ωn/3).
Interesting open problems are to improve these bounds. Polynomial kernel for
PVC parameterized by k (solution size) remains open for planar and bipartite
graphs.
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