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Abstract. Due to the rise of e-commerce, an increasing number of mar-
kets is characterized by dynamic pricing competition. Many competi-
tors adjust their prices in response to changing market environments
caused by other competitors’ repricing strategies. In this paper, we study
repricing strategies in an infinite horizon duopoly model with stochas-
tic demand. Assuming that the competitor’s pricing strategy is known,
we derive optimal response strategies that effectively avoid a decline in
price. For different pairs of competing strategies, we analyze resulting
price trajectories over time and evaluate the firms’ associated expected
long-term profits. We measure the effect of price reaction frequencies on
a strategy’s performance. Further, we extend our model to analyze set-
tings with randomized reaction times as well as mixed strategies. Finally,
we study mutual optimal reaction strategies. We show that equilibrium
strategies can be identified by iterating optimal response strategies. We
find that equilibrium strategies are characterized by specific structures
which are illustrated by numerical examples.
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Response strategies · Reaction time · Equilibrium strategies

1 Pricing Strategies for Stochastic Demand

Firms offering goods on online marketplaces have to face increasing competition
and stochastic demand. One reason for the increasing competition is the rising
application of automated repricing algorithms and the resulting shortening of
time spans between price updates. The time pressure and stochastic demand
make it challenging for firms to determine prices fast and efficiently (often for
a large number of products) while ensuring to employ pricing strategies that
maximize their own expected profits. But at the same time, online marketplaces
also provide numerous advantages. Sellers are now able to observe the market
situation at any given point in time and set prices accordingly. Having histori-
cal market data at hand also enables sellers to learn the demand over time and
better understand the consumers’ decision making. More interestingly for the
context of this paper, firms can learn the competitors’ strategies. Pricing strate-
gies that use that demand knowledge and further competitor strategies will thus
be of increasing interest.
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Nevertheless, determining suitable price reactions is a highly challenging
task. While fixed price strategies are relatively straightforward to manage, in
an increasing number of contexts involving both perishable (e.g., fashion goods,
seasonal products, event tickets) as well as durable goods (e.g., books, natural
resources, gasoline) automated price adjustment strategies are employed. A typ-
ical pattern observed on markets with automated response strategies are cyclic
price patterns over time, e.g., Edgeworth cycles as illustrated in Fig. 1. Here,
firms compete with each other by undercutting the competitor’s price until the
lower bound is reached (e.g., when margin nears zero) and one competitor raises
the price in order to allow for future profits [1,2].

Fig. 1. Exemplary illustration of Edgeworth price cycles in a duopoly. Both firms
undercut each other until the green firm reaches his lower bound and adjusts his price
to the upper bound. (Color figure online)

In this paper, we present a model for duopoly pricing models in a stochastic
dynamic framework in which sales probabilities are allowed to be an arbitrary
function of time and competitor prices. The goal is to take into account (i)
varying (randomized) reaction times, (ii) various given competitor strategies,
(iii) additional passive competitors that use constant prices, and (iv) competitors
that optimally react.

1.1 Literature Review

The challenge of determining optimal prices for the sale of products is one of
the key aspects of revenue management theory. This field of dynamic pricing
has been discussed in an array of books (e.g., [3–5]). Chen and Chen published
a survey giving an excellent overview of recent pricing models under competi-
tion [6]. Gallego and Wang consider a continuous time multi-product oligopoly
for differentiated perishable goods using optimality conditions to reduce the
multi-dimensional dynamic pricing problem to a one-dimensional one [7].
Gallego and Hu analyze structural properties of equilibrium strategies in more
general oligopoly models for the sale of perishable products [8], basing the
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solution model on a deterministic version of the model. Mart́ınez-de-Albéniz and
Talluri consider duopoly and oligopoly pricing models for identical products [9].
They use a general stochastic counting process to model customer demand.

Further related models are studied by Yang and Xia [10] as well as Wu and
Wu [11]. Levin et al. [12] and Liu and Zhang [13] analyze dynamic pricing models
under competition including strategic customers. Dynamic pricing competition
models with limited demand information are analyzed by Adida and Perakis [14],
Tsai and Hung [15], and Chung et al. [16] using robust optimization and learning
approaches. Many models consider continuous time models with finite horizon
and limited inventory. In most existing models, discounting is not included and
the demand is assumed to be of a somewhat artificial and stylized form. We
consider an infinite horizon model without inventory restrictions (i.e., products
can be reproduced or reordered) [17]. Demand is allowed to depend generally on
time as well as on the market participants’ prices.

Current automated pricing strategies are comparatively simple and aggres-
sive. One example is the often employed strategy of slightly undercutting the
price of the cheapest competitor [18]. We do not assume that all market par-
ticipants act rationally. In order to be able to respond to arbitrary suboptimal
pricing strategies we provide applicable solution algorithms that allow comput-
ing optimal response strategies.

1.2 Contribution

This paper is an extended version of [17] in which we analyzed optimal price
response strategies that are based on anticipated competitor strategies. The
model is characterized by a discrete time setting, an infinite horizon, subsequent
price reactions, and no inventory considerations.

Compared to [17], in this paper we make the following contributions: First,
instead of applying value iteration, we compute optimal strategies by solving
the Hamilton-Jacobi-Bellman equation using a non-linear solver. Second, we
allow both firms to apply optimal price response strategies in order to study
iterated mutual strategy adjustments. Third, we identify equilibrium strategies
and analyze their characteristics. Fourth, we study how equilibrium strategies
are affected by the discount factor.

The remainder of this paper is structured as follows. In Sect. 2, we describe
the stochastic dynamic duopoly model with infinite time horizon for durable
goods. We allow sales probabilities to depend on competitor prices as well as
on time (seasonal effects). The state space is characterized by time and the
actual competitors’ prices. The stochastic dynamic control problem is expressed
in discrete time. In Sect. 3, we consider a duopoly competition. The competitor
is assumed to frequently adjust its prices using a predetermined strategy. We
assume that the price reactions of competitors as well as their reaction times can
be anticipated. We set up a firm’s Hamilton-Jacobi-Bellman equation and use
recursive methods (value iteration) to approximate the value function. We are
able to compute optimal feedback prices as well as expected long-term profits
of the two competing firms. Evaluating price paths over time, we are able to
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explain specific price cycles. Additionally, the results obtained are generalized
to scenarios with randomized reaction times and mixed strategies.

In Sect. 4, optimal response strategies in the presence of active and passive
competitors are analyzed. We examine how the duopoly game of two active com-
petitors is affected by additional passive competitors. We show how to compute
optimal pricing strategies and to evaluate expected profits. We also discuss how
the cyclic price paths of the active competitors are affected by different price
levels of passive competitors.

In Sect. 5, we evaluate the expected profits when different strategies are
played against each other. We study scenarios in which the competitor also
applies optimal response strategies. In Sect. 6, we study mutual optimal reaction
strategies. We show that equilibrium strategies can be identified by iterating
optimal response strategies. Eventually, the conclusion and managerial recom-
mendations are given in Sect. 7.

2 Model Description

For this work, we consider the situation where a firm wants to sell goods
(e.g., groceries, technical devices, gasoline) on a digital marketplace (e.g., Ama-
zon, eBay, Alibaba). We assume that several sellers compete for the same market,
i.e., customers are able to compare prices of different competitors at any given
point in time.

We assume that the time horizon is infinite. We assume that firms are able
to reproduce or reorder products (promise to deliver), and the ordering is decou-
pled from pricing decisions. If a sale takes place, shipping costs c have to be
paid, c ≥ 0. A sale of one item at price a, a ≥ 0, leads to a net profit of
a − c. Discounting is also included in the model. We will use the discount factor
δ, 0 < δ < 1, for the length of one period.

On the majority of marketplaces, prices cannot be continuously adjusted.
Thus, we consider a discrete time model. The sales intensity of our product is
denoted by λ. Due to customer choice, the sales intensity will particularly depend
on our offer price a and the competitors’ prices. We also allow the sales intensity
to depend on time, e.g., the time of the day or the week. We assume that the
time dependence is periodic and has an integer cycle length of J periods. In our
model, the sales intensity λ is a general function of time, our offer price a and the
competitors’ prices p. Given the prices a and p in period t, the jump intensity
λ satisfies, t = 0, 1, 2, ..., a ≥ 0, p ≥ 0,

λt(a,p) = λt mod J(a,p). (1)

We assume the sales probabilities (for one period) to be Poisson distributed
in our discrete time model. That means the probability to sell exactly i items
within one period of time is given by, t = 0, 1, 2, ..., a ≥ 0, p ≥ 0, i = 0, 1, 2, ...,

Pt(i, a,p) =
λt(a,p)i

i!
· e−λt(a,p). (2)
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A price a has to be determined for each period t. We call strategies (at)t

admissible when they belong to the class of Markovian feedback policies; i.e.,
pricing decisions at ≥ 0 may depend on time t and the current prices of the
competitors. By A we denote the set of admissible prices. A list of variables and
parameters is given in the Appendix, cf. Table 4.

By Xt we denote the random number of sales in period t. Depending on the
chosen pricing strategy (at)t, the random accumulated profit from time/period
t on (discounted on time t) amounts to, t = 0, 1, 2, ...,

Gt :=
∞∑

s=t

δs−t · (as − c) · Xs. (3)

The objective is determining a non-anticipating (Markovian) pricing strategy
that maximizes the expected total profit E(G0).

In the next sections, we will solve dynamic pricing problems that are related
to (1)–(3). Further, we mostly assume a duopoly situation. We assume that the
competitor frequently adjusts his/her prices and show how to derive optimal
response strategies. We analyze the impact of different reaction times as well as
randomized reaction times. We also consider the case in which the competitor
plays mixed strategies. In Sect. 4, we compute pricing strategies for duopoly
scenarios with additional passive competitors. Eventually, we let the competitor
also apply optimized response strategies in Sects. 5 and 6.

3 Duopoly: Optimal Reaction Strategies

Due to the increasing market transparency on e-commerce platforms, sellers can
observe and thus anticipate transitions of the market situation. In this section,
we examine a duopoly where we compete with a seller that frequently adjusts
her prices using a predetermined strategy.

3.1 Fixed Reaction Times

Having information about a competitor’s strategy at hand and being able to
anticipate it allows us to optimize expected profits. Here, the price responses
of competitors as well as their reaction time can be taken into account. In this
case, a change of the market situation p can take place within a period. A typical
scenario is that a competitor adjusts its price in response to our price with a
certain delay. Throughout this section, we assume that the pricing strategy and
the reaction time of the competitor is known; i.e., we assume that choosing a price
a at time t is followed by a state transition (e.g., a competitor’s price reaction)
and the current market situation p changes to a subsequent state described by a
transition function F , which can depend both on the market situation p as well
as price a.

We want to derive optimal price response strategies to a given competitor’s
strategy. For simplicity, we consider the sale of one type of product in a duopoly
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situation. We assume that the state of the system (the market situation) is
one-dimensional and simply characterized by the competitor’s price p, i.e., we
let p := p.

In real-life applications, a firm is not able to adjust its prices immediately
after the price reaction of the competing firm. Consequently, we assume that in
each period the price reaction of the competing firm takes place with a delay
of h periods, h < 1. Thus, after an interval of size h the competitor adjusts its
price from p to F (a), as illustrated in Fig. 2.

Fig. 2. Duopoly: sequence of price reactions, cf. [17].

In period t, the probability to sell exactly i items during the first interval
(Phase 1, cf. Fig. 2) of size h is

P
(h)
t (i, a, p) := Pois (h · λt(a, p))

while for the rest of the period (Phase 2, cf. Fig. 2) the sales probability changes
to P

(1−h)
t (i, a, F (a)) = Pois ((1 − h) · λt (a, F (a))).

We will use value iteration to approximate the value function which repre-
sents the present value of future profits. For a given “large” number T , T � J ,
we let VT (p) = 0 for all p, and compute, t = 0, 1, 2, ..., T − 1, 0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a))
)}

. (4)

The associated pricing strategy a∗
t (p), t = 0, 1, 2, ..., J − 1, p ∈ A, is deter-

mined by the arg max of

a∗
t (p) = arg max

a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a))
)}

. (5)

Given a∗
t (p) is not unique, we choose the largest one.
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Remark 1. The recursive solution approach also allows to solve problems with
perishable products and finite horizons T . Simply be evaluating Eqs. (4)–(5) for
all t = 0, 1, 2, ..., T − 1.

In order to illustrate the approach, let us consider a numerical example for
durable goods. We assume the competitor applies one of the most common strate-
gies: our current price is undercut by ε down to a certain minimum (e.g., the
shipping costs c). The sales dynamics of the following example above are based
on a large data set from the Amazon marketplace for used books [19].

Definition 1. By P
(h)
t (i, a,p) := Pois

(
h · ex(a,p)′β/(1 + ex(a,p)′β )

)
we define

sales probabilities for oligopoly settings which are based on linear combinations of
the following five regressors x = x(a,p), p = (p1, ..., pK) with given coefficients
β = (β1, ..., β5):

(i) constant/intercept
x1(a,p) = 1

(ii) rank of price a within the set of competitor prices p

x2(a,p) = 1 + |{k = 1, ...,K |pk < a}| + 0.5 · |{k = 1, ...,K |pk = a}|

(iii) price gap between price a and the best competitor price

x3(a,p) = a − min
k=1,...,K

{pk}

(iv) total number of competitors

x4(a,p) = K

(v) average price level

x5(a,p) = (a +
∑

k
pk)/(1 + K)

Example 1. We assume a duopoly, i.e., K = 1 and p = p. Let c = 3, δ = 0.99,
0 ≤ h ≤ 1, and let F (a) := max(a − ε, c), ε = 1, a ∈ A := {1, 2, ..., 100}. For the
computation of the value function, we let T := 1000. We assume the sales proba-
bilities P

(h)
t (·, a, p), cf. Definition 1, where β = (−3.89,−0.56,−0.01,0.07,−0.02).

Figures 3(a) and 4(a) illustrate optimal response strategies for different reac-
tion times h = 0.1 and h = 0.9. The case h = 0.1 illustrates a fast reaction
time of the competitor; h = 0.9 represents a slow reaction of the competitor. In
the case of h = 0.5, both competing firms react equally fast. In all three cases
the optimal response strategies are of similar shape. If the competitor’s price is
either very low or very large, it is optimal to set the price to a certain moderate
level. If the competitor’s price is somewhere in between (intermediate range), it
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Fig. 3. Example 1 with h = 0.1: optimal response strategy and price paths, cf. [17].

is advisable to undercut that price by one price unit ε. If h is larger, also the
intermediate range is larger and the upper price level is increasing.

Employing optimal response strategies can create cyclic price patterns over
time, so-called Edgeworth cycles [1,2,18]. The resulting price paths are illus-
trated in Figs. 3(b) and 4(b). We observe that the cycle length and the ampli-
tude of the price patterns are increasing if the reaction time of the competitor
is longer. Note, roughly h · 100% of the time our firm is offering the lowest price;
i.e., the parameter h can also be used to model situations in which one firm is
able to adjust its prices more often than another firm [20,21].

Fig. 4. Example 1 with h = 0.9: optimal response strategy and price paths, cf. [17].

Additionally, we are able to analyze the impact of the reaction time on
expected long-term profits of our firm as well as the competitor. We assume
that the competitor faces the same sales probabilities and shipping costs.
The competitor’s expected profits can be recursively evaluated by, cf. (4),
t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A, V

(c)
T+h(a) = 0,
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V
(c)
t+h(a) =

∑

i2≥0

P
(1−h)
t+h (i2, F (a), a) ·

∑

i1≥0

P
(h)
t+1

(
i1, F (a), a∗

t+1 mod J(F (a))
)

·
(
(F (a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (F (a))
))

. (6)

Because of the cyclic price paths, expected future profits V0(p) and V
(c)
h (a)

are (almost) independent of the initial states or prices. Figure 5 depicts V as well
as the competitor’s expected profits V (c) as a function of h. We observe that
the expected profit V is linear increasing in the competitor’s reaction time; the
competitor’s profit V (c) is decreasing in h. Note, the impact of h is substantial.
The “disadvantage” of the player that stops the undercutting phase can already
be compensated in case our reaction time is smaller than 0.46, i.e., if h is larger
than 0.54.

3.2 Randomized Reaction Times

Due to the shown significant impact of reaction times firms will try to gain
advantage by updating their prices more frequently. In addition, firms might
also try to minimize their reaction times by anticipating their competitor’s time
of adjustment. In order not to act predictably, firms will randomize their reaction
times.

Our model can be extended to capture the cases in which reaction times
are not deterministic. If the distribution of the reaction time of competitors is
known, the Hamilton-Jacobi-Bellman (HJB) equation, cf. (4), can be modified.
The different reaction scenarios just have to be considered with their correspond-
ing probability. Note, the reaction times of different competitors can be observed
over longer time spans.

Fig. 5. Expected profit for different reaction times of the competitor (Example 1),
cf. [17].

In the following, we consider scenarios with randomized reaction times. We
assume that each firm adjusts its price with a certain intensity (e.g., on average
once a period of size 1). We model that approach as follows: we assume that at
each point in time d, d = t + Δ, t + 2Δ, ..., t + 1, 0 < Δ � 1, our firm adjusts
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its price with probability q, 0 < q � 1; i.e., on average we adjust our price
q/Δ times a period of size 1. Similarly, the competitor adjusts its price with
probability q(c), 0 < q(c) � 1. The competitor applies a certain strategy F (a).
By a− we denote our current price at time d, the beginning of the sub-period
(d, d + Δ). With probability q(c), the competitor adjusts its price from p to
F (a−). We adjust the price a− to price a with probability q. Since q and q(c) are
assumed to be “small” we do not consider the case in which both firms adjust
their prices at the same time. The related value function is given by, a−, p ∈ A,
t = 0,Δ, 2Δ, ..., T − Δ, ṼT (a−, p) = 0,

Ṽt(a−, p) = (1 − q − q(c)) ·
∑

i≥0

P
(Δ)
t (i, a−, p)

·
(
(a− − c) · i + δΔ · Ṽt+Δ(a−, p)

)

+ q(c) ·
∑

i≥0

P
(Δ)
t (i, a−, F (a−)) ·

(
(a− − c) · i + δΔ · Ṽt+Δ(a−, F (a−))

)

+ q · max
a∈A

⎧
⎨

⎩
∑

i≥0

P
(Δ)
t (i, a, p)·

(
(a − c) · i + δΔ · Ṽt+Δ (a, p)

)
⎫
⎬

⎭ . (7)

The optimal price ã∗
t (a

−, p), t = 0,Δ, 2Δ, ..., J −Δ, is determined by the arg
max of (7). The competitor’s expected profit corresponds to, t = 0,Δ, 2Δ, ..., T −
Δ, Ṽ

(c)
T (a−, p) = 0,

Ṽ
(c)
t (a−, p) = (1 − q − q(c)) ·

∑

i≥0

P
(Δ)
t (i, p, a−)

·
(
(p − c) · i + δΔ · Ṽ (c)

t+Δ(a−, p)
)

+ q(c) ·
∑

i≥0

P
(Δ)
t (i, F (a−), a−)

·
(
(F (a−) − c) · i + δΔ · Ṽ (c)

t+Δ(a−, F (a−))
)

+ q ·
∑

i≥0

P
(Δ)
t

(
i, p, ã∗

t mod J(a−, p)
)

·
(
(p − c) · i + δΔ · Ṽ (c)

t+Δ

(
ã∗

t mod J(a−, p), p
))

. (8)

Example 2. We assume the duopoly setting of Example 1 and let c = 3, F (a) :=
max(a−ε, c), ε = 1, a ∈ A := {1, 2, ..., 100}, δ = 0.99, Δ = 0.1. We use T := 1000.
We consider different reaction probabilities q and q(c).
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Table 1. Expected profits (Ṽ , Ṽ (c)) of both firms for different reaction probabilities
q, q(c) = 0.05, 0.1, 0.2, δ = 0.99, Δ = 0.1; Example 2, cf. [17].

q(c)\q 0.05 0.1 0.2

0.05 (16.53, 17.07) (16.80, 16.81) (17.01, 16.62)

0.1 (16.26, 17.36) (16.48, 17.09) (16.75, 16.84)

0.2 (16.03, 17.59) (16.22, 17.37) (16.48, 17.12)

Table 1 contains the expected profits (Ṽ , Ṽ (c)) of the two competing firms
for different reaction probabilities. We observe that Ṽ is increasing in q and
decreasing in q(c). For Ṽ (c) it is the other way around. We found that the ratio
q/q(c) of the adjustment frequencies is a critical quantity.

The importance of the overall adjustment frequency is alleviated as long as
the ratio q/q(c) is the same. Hence, the expected profits of both firms can be
approximated by the profits from the model with deterministic reaction time,
cf. Sect. 3.1, where h = q/q(c), i.e., the percentage of time our firm has the most
recently updated price.

Fig. 6. Comparison of evaluated price paths, cf. [17].

Figure 6(b) shows the price paths for the parameter setting of Example 2.
Figure 6(a) shows the deterministic case of Example 1 for h = 0.5. We observe
that overall the price patterns have similar characteristics. However, in the ran-
domized case, the timing of the price reactions is not predictable. While in the
deterministic h = 0.5 case (cf. Sect. 3.1) we have Ṽ = 16.44 and Ṽ (c) = 17.13, in
the randomized case (Δ = 0.1, q = q(c) = 0.1) the expected profits are Ṽ = 16.48
and Ṽ (c) = 17.09. In both models the advantage of the aggressive player is basi-
cally the same, but for the model with randomized reaction times the advantage
is slightly smaller.
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3.3 Mixed Competitors’ Strategies

If the competitor’s strategy is known, suitable response strategies can be com-
puted. Hence, firms might try to randomize their strategies. In this section, we
will analyze scenarios in which competitors play a mixed pricing strategy.

Let us assume that the competitor plays strategy Fk(a), a ∈ A, with prob-
ability πk, 1 ≤ k ≤ K < ∞,

∑
k πk = 1. Further, we assume deterministic

reaction times. We adjust our model, cf. Sect. 3.1, by using a weighted sum of
potential price reactions. The Hamilton-Jacobi-Bellman (HJB) equation can be
written as, t = 0, 1, 2, ..., T − 1, 0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

k

πk ·
∑

i2≥0

P
(1−h)
t+h (i2, a, Fk(a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (Fk(a))
)}

, (9)

where VT (p) = 0 for all p. The associated pricing strategy a∗
t (p), t = 0, 1, 2, ..., J−

1, 0 < h < 1, p ∈ A, is determined by the arg max of (9). The resulting
competitor’s expected profits can be computed by (starting from, e.g., V

(c)
T+h(a) =

0), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A,

V
(c)
t+h(a) =

∑

k

πk·
∑

i2≥0

P
(1−h)
t+h (i2, Fk(a), a)

·
∑

i1≥0

P
(h)
t+1

(
i1, Fk(a), a∗

t+1 mod J(Fk(a))
)

·
(
(Fk(a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (Fk(a))
))

. (10)

Using the models just introduced, we can compute suitable pricing strategies
in various competitive markets. As long as the number of competing firms is
small, the value function and the optimal prices can be computed. Note, due to
the coupled state transitions in general the value function has to be computed
for all states in advance. When the number of competitors is large this can
cause serious problems since the state space can grow exponentially (curse of
dimensionality).

The approach is suitable if the number of competitors is small and their
strategies are known. If the number of competitors is large and the strategies
are unknown, we recommend using simple but robust strategies [19].

4 Active and Passive Sellers in Competition

In case the pricing strategies and the competitors’ reaction times are known,
the model can be extended to an oligopoly setting. For each additional competi-
tor the state space of the model has to be extended by one dimension. Note,
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only active competitors that frequently adjust their prices should be taken into
account. Inactive customers will be treated as external fixed effects.

We assume one active competitor and Z passive competitors. The prices of
the passive competitors are denoted by z = (z1, ..., zZ), zj ≥ 0, j = 1, ..., Z,
and assumed to be constant over time. The active competitor employs a (non-
randomized) strategy F (a) that refers to our price a (not the passive one). The
Hamilton-Jacobi-Bellman (HJB) equation can be written as, t = 0, 1, 2, ..., T −1,
0 < h < 1, p ≥ 0, VT (p,z) = 0 for all p,z,

Vt(p,z) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p,z) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a),z)

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a),z)
)}

. (11)

The associated pricing strategy amounts to, t = 0, 1, 2, ..., J − 1, 0 < h < 1,
p ∈ A,

a∗
t (p,z) = arg max

a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p,z) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a),z)

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a),z)
)}

. (12)

The competitor’s profits can be computed by (using, e.g., VT+h(a,z) = 0 for
all a,z), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ≥ 0,

V
(c)
t+h(a,z) =

∑

i2≥0

P
(1−h)
t+h (i2, F (a), a,z)

·
∑

i1≥0

P
(h)
t+1

(
i1, F (a), a∗

t+1 mod J(F (a),z),z
)

·
(
(F (a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (F (a),z) ,z
))

. (13)

It is not necessary to compute the value function for all price combinations
of passive competitors in advance. The value function and the associated pricing
strategy can be computed separately for specific market situations (e.g., just
when they occur). In the following, we consider an example with active and
passive competitors.

Example 3. We assume the duopoly setting of Example 1 and let F (a) :=
max(a − ε, c), ε = 1, c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99, and
T = 1000. Further, we consider an additional passive competitor with a con-
stant price z, z = 15, 20, 25.

For the three cases z = 15, z = 20, and z = 25 the results are shown in
Figs. 7, 8, and 9. We observe three different characteristics.
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Fig. 7. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 15), cf. [17].

Fig. 8. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 25), cf. [17].

If the passive competitor’s price is low (z = 15) the cyclic price battle between
our firm and the aggressive firm takes place at a high price level, see Fig. 7(b).
The response strategies of the three firms are illustrated in Fig. 7(a).

In the case that the price of passive firm is sufficiently high (z = 20), the
cyclic price paths of the two active firms take place below that level. If the
constant price is “moderate” (z = 20), then a mixture of the characteristics
shown in Figs. 7 and 8 is optimal. Note, it is not advisable to place price offers
that slightly exceed competitors’ prices (see Fig. 9).

5 Duopoly: Iterated Strategy Adjustments

In this section, we generally evaluate the outcome when different strategies are
played against each other in a duopoly setting.

5.1 Evaluating Competing Strategies

We assume time homogeneous demand and h = 0.5. If firm 1 plays a pure
strategy S1 and firm 2 plays the pure strategy S2 then the associated expected
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Fig. 9. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 20), cf. [17].

profits can be computed by, t = 0, 1, 2, ..., T − 1, V
(1)
T (p) = V

(2)
T (p) = 0, for all

p ≥ 0,

V
(1)
t (p) =

∑

i1≥0

P (h) (i1, S1(p), p) ·
∑

i2≥0

P (1−h) (i2, S1(p), S2(S1(p)))

·
(
(S1(p) − c) · (i1 + i2) + δ · V

(1)
t+1 (S2 (S1(p)))

)
, (14)

V
(2)
t (p) =

∑

i1≥0

P (h) (i1, S2(p), p) ·
∑

i2≥0

P (1−h) (i2, S2(p), S1(S2(p)))

·
(
(S2(p) − c) · (i1 + i2) + δ · V

(2)
t+1 (S1 (S2(p)))

)
. (15)

Alternatively, for given strategies Sk, k = 1, 2, we can exactly evaluate the
associated expected profits V (k) by solving the linear system of equations, p ∈ A,
j, k = 1, 2, j �= k,

V (k)(p) =
∑

i1≥0

P (Δk) (i1, Sk(p), p) ·
∑

i2≥0

P (Δj) (i2, Sk(p), Sj(Sk(p)))

·
(
(Sk(p) − c) · (i1 + i2) + δ · V (k) (Sj (Sk(p)))

)
, (16)

where Δk := h and Δj := 1 − h, 0 < h < 1. Note, the system (16) has |A|
equations and can be solved using standard linear solvers.

5.2 Iterating Optimal Response Strategies

In this subsection we let two firms optimally adjust their strategies in order to
identify equilibrium strategies. The approach, cf. (16), cannot only be used to
evaluate competing strategies, it can also be applied to exactly compute optimal
reaction strategies, cf. (4)–(5), by solving the nonlinear system of equations,
p ∈ A, j, k = 1, 2, j �= k,
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V (k)(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P (Δk) (i1, a, p) ·
∑

i2≥0

P (Δj) (i2, a, Sj(a))

·
(
(a − c) · (i1 + i2) + δ · V (k) (Sj(a))

)}
. (17)

If the number of admissible prices |A| is sufficiently small the system (17)
can be solved using standard nonlinear solvers, such as MINOS1. The associated
pricing strategy a(k)(p;Sj), p ∈ A, j, k = 1, 2, j �= k, is given by the arg max of
(17). If a(k)(p) is not unique, we choose the largest one. In the following example,
we will iterate optimal response strategies.

Example 4. We assume the duopoly setting of Example 1. If not chosen differ-
ently, we let c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99. We consider
an initial strategy S(0)(p) := SU (p) := max(p − ε, c), ε = 1. Additionally, by
S(k)(p) = S(k)(p;S(k−1)) we denote the optimal response strategy to strategy
S(k−1), k = 1, 2, ..., cf. (17).

Considering Example 4, we evaluate the expected profits of the different strat-
egy combinations according to (16). The results are summarized in Table 2. We
observe that the aggressive strategy SU yields good results with the exception
when the competitor also plays SU . The strategy S(1) yields good results in all
constellations. Strategy S(2) is excellent when played against S(1) but yields only
moderate results in the other cases.

Table 2. Expected profits V
(1)
0 (50) of firm 1 when its strategy S(k) is played against

a strategy S(j), k, j = 0, 1, 2, ..., 5, S(0) := SU ; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 2.56 17.14 15.41 12.38 17.24 15.04

S(1) 16.19 16.78 12.07 16.06 16.16 12.07

S(2) 14.74 20.98 14.74 12.05 17.71 14.54

S(3) 11.23 16.84 16.59 12.00 16.84 16.59

S(4) 16.19 17.45 15.00 16.11 17.24 12.41

S(5) 14.31 20.55 15.26 11.81 20.55 14.81

Our example shows that optimal response strategies have a significant impact
on expected profits. They help to gain profits, especially, when aggressive com-
petitors are involved. On the other hand, we learn that it is also important to
know a competitor’s strategies. In practical applications, a competitor’s price
reactions can be inferred from market data over time.

1 MINOS solver: https://www.gams.com/latest/docs/solvers/minos.

https://www.gams.com/latest/docs/solvers/minos
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6 Equilibrium Strategies

In this section, we want to identify mutual best response strategies. We consider
the duopoly setting of Sect. 5. In order to identify equilibrium strategies, we
further iterate mutual strategy responses.

We consider the setting of Example 4. Starting with the aggressive strategy
SU we allow the two competing firms to repeatedly adjust their strategies using
optimal response strategies. Figure 10 illustrates the different iterated response
strategies S(k) for k = 0, 1, 2, ..., 20.

Fig. 10. Iterated response strategies (Example 4; S(0) := SU , h = 0.5).

We observe that optimal response strategies do not converge to mutual opti-
mal pure strategies. Instead, we obtain a repeating cyclic sequence of strategy
adjustments. The structure of the single response strategies is similar to those
shown in Figs. 3 and 4.

However, pure mutual optimal response strategies do exist. We consider
Example 4 for a different starting strategy. Figure 11 illustrates iterated response
strategies S(k), k = 0, 1, 2, ..., 20, for S(0) := S(0)(p) ≡ 20.

We observe that after 11 iterations the optimal response strategies converge
to a pure equilibrium strategy S∗ which is such that no firm has an incentive
to deviate. The equilibrium strategy has a characteristic structure which can be
described as follows.
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Remark 2. If the competitor’s price is either below a certain low price pmin or
a above a certain large price pmax, it is optimal to set the price to the upper
level pmax. If the competitor’s price is slightly under that upper price level pmax

(upper intermediate range), it is best to undercut that price by one price unit
ε as long as the competitor’s price is above a certain medium price pmed. Is
the competitor’s price below the medium price pmed and above pmin (lower
intermediate range) it is optimal to decrease the price to pmin.

Fig. 11. Iterating equilibrium strategies (Example 4; S(0) := 20, h = 0.5).

The equilibrium strategy is similar to the type of strategy derived in Sect. 3,
see Figs. 3 and 4. The difference is the counterintuitive massive price drop (lower
intermediate range) to the minimal price pmin.

This phenomenon can be explained as follows. The price drop forces the
rational competitor to give in and to raise the price immediately. This way the
price range in which the undercutting price battle takes place is shifted to a
higher level, which in turn is advantageous for both competitors.

Table 3 illustrates the expected profits of a firm when different iterated
response strategies are played against each other, cf. Table 2, for S(0) := 20,
i.e., the equilibrium case. We observe that profits quickly converge at a moder-
ate level (16.43) compared to those in Table 2.

We varied different parameters of our model, such as the price granularity,
the discount factor, and the initial strategy S(0). We found that mainly the
initial strategy S(0) is responsible for pure equilibrium strategies to exist. In the
context of Example 4 we obtain the same equilibrium, see Fig. 11, as long as
S(0) ≥ 18. For S(0) < 18 we obtain response cycles similar to Fig. 10.
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Table 3. Expected profits V
(1)
0 (50) of firm 1 when its strategy S(k) is played against

a strategy S(j), k, j = 0, 1, 2, ..., 5, S(0) := 20; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 10.74 8.14 8.14 8.14 8.14 8.14

S(1) 13.62 15.28 16.13 16.13 16.13 16.13

S(2) 12.42 16.19 16.23 16.19 16.19 16.19

S(3) 12.42 16.19 16.23 16.25 16.31 16.23

S(4) 12.42 16.19 16.23 16.27 16.31 16.27

S(5) 12.42 16.17 16.23 16.27 16.31 16.31

Remark 3. If the starting strategy is aggressive, i.e., characterized by low prices
we do not obtain a pure strategy equilibrium. If the starting strategy is not
aggressive, we usually obtain a pure strategy equilibrium. Furthermore, in case
a pure equilibrium strategy exists it is of the structure described above, cf.
Remark 2.

At the end of this section, we study how equilibrium strategies are affected by
the discount factor. We consider the setting of Example 4. Figure 12 illustrates
pure equilibrium strategies for five different discount factors between 0 and 0.99.

Fig. 12. Equilibrium strategies for different discount factors, δ = 0, 0.4, 0.7, 0.85, 0.99,
h = 0.5; Example 4.

We observe that for all S∗ the mutual optimal response strategies δ is of the
structure described above which is characterized by (pmin, pmed, pmax). While
pmin is not affected by δ the thresholds pmed and pmax increase in δ. The range
of the resulting staircase like price trajectories is hardly affected by δ but the
level at which the price battle takes place is higher if δ increases.
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7 Conclusion

The recent rise of e-commerce and the development of web technologies made it
increasingly easy for merchants to observe market situations and automatically
adjust their prices. Subsequently, more and more companies employ dynamic
pricing strategies. In this paper, we analyze stochastic dynamic infinite hori-
zon duopoly models characterized by active competitors. We set up a dynamic
pricing model including discounting and shipping costs. The sales probabilities
are allowed to arbitrarily depend on time, our price as well as the competitor’s
prices. Data-driven estimations of sales intensities under pricing competition can
be used to calibrate the model.

Assuming that a competitor’s response strategy is known, we show how to
compute optimal reaction strategies that take advantage of price anticipations.
As expected, it is often optimal to slightly undercut the competitor’s price.
However, when the price falls below a certain lower bound it is advisable to raise
the price to a certain upper bound. Our optimized strategies optimally choose
these critical price bounds. Optimized feedback strategies effectively avoid a
decline in price. Especially, when competitors play aggressive strategies it is
important to react in a reasonable way in order not to lose potential profits.

Furthermore, we analyze reaction times or price adjustments frequencies,
respectively. We find that they have a huge impact on expected profits. To be able
to adjust prices more often than the competitor does is a competitive advantage.
Hence, the ratio of the competitors’ prices adjustment frequencies is crucial for
the firm’s expected profits. Moreover, it can be profitable to strategically time
price adjustments. In order not to use predictable reaction time firms should
randomize their price adjustments. We show how to derive optimal response
strategies when reaction times are randomized.

We also derive optimal response strategies if additional players are involved
that employ fixed price strategies. We analyzed how the presence of such addi-
tional passive competitors affects the price battle of two active players that
frequently adjust their prices. Our technique to compute prices is simple and
easy to implement.

Finally, we evaluated expected profits of competing pairs strategies if both
players apply optimized price reactions. In order to identify equilibrium strate-
gies, we analyzed iterated strategy adjustments. Mutual strategy responses do
not necessarily have to converge as pure strategy equilibria might not exist.
However, pure equilibrium strategies can be identified by iterating mutual
strategy responses. We found that as long as strategies are not too aggressive
optimal strategy adjustments lead to equilibrium strategies. These strategies
have a characteristic structure: in a certain price range it is optimal to undercut
the competitor’s price, otherwise it is optimal to either raise the price or force
the competitor to restore the price level by significantly dropping the price.

In future research, we will use market data to estimate competitors’ response
strategies. We will also extend the model to study the sale of perishable products
with inventory restrictions.
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Appendix

Table 4. Notation table.

t Time/Period

X Random number sold items

G Random future profits

c Shipping costs

δ Discount factor

F Competitor’s reaction strategy

Z Number of passive competitors

A Set of admissible prices

V Value function

V (c) Competitor’s value function

a Offer price

p Competitors’ prices

z Competitors’ prices (fixed)

K Number of competitors

λ Sales intensity

P Sales probability

β Logit coefficients

J Cycle length

h Reaction time

q Reaction probability

q(c) Competitor’s reaction probabilities

S Response strategy
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