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Preface

This book includes extended and revised versions of selected papers from the 6th
International Conference on Operations Research and Enterprise Systems (ICORES
2017), held in Porto, Portugal, during February 23–25.

We received 90 paper submissions from 36 countries, of which 14% are included in
this book. These papers were selected based on several criteria including reviews
provided by Program Committee members, session chair assessments, and also pro-
gram chair perspectives across all papers included in the technical program. The
authors of these selected papers were then invited to submit revised and extended
versions of their papers for formal publication.

The purpose of the annual ICORES conferences is to bring together researchers,
engineers, and practitioners interested in both advances and applications in the field of
operations research. Two simultaneous tracks are held, one covering
domain-independent methodologies and technologies and the other practical work
developed in specific application areas.

The papers selected for this book contribute to current research in operations
research and toward a better understanding of complex enterprise systems. We com-
mend each of the authors for their contributions, and gratefully thank our many
reviewers who ensured the high quality of this publication.

February 2017 Greg H. Parlier
Federico Liberatore

Marc Demange
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Optimization in Sports League
Scheduling: Experiences from the Belgian

Pro League Soccer

Dries Goossens(B)

Faculty of Economics and Business Administration, Ghent University,
Tweekerkenstraat 2, 9000 Ghent, Belgium

dries.goossens@ugent.be

Abstract. Every sports competition needs a schedule of play, stating
who will play whom, when, and where. A good schedule is important
given its impact on the competition’s fairness and outcome, public atten-
dance, commercial interests, and cost of policing. This paper discusses
experiences with scheduling the Belgian Pro League soccer competition,
for which we develop the official schedule since 2006. We present methods
that have proven their value in real-life sports scheduling, and discuss
how they benefited from continuous improvement, in order to accommo-
date changing requirements. We discuss fairness issues, as well as a dis-
crete choice experiment we carried out to estimate the schedule’s impact
on stadium attendance and TV viewership.

Keywords: Sports scheduling · Belgian Pro League
Tv broadcasting · Soccer · Stadium attendance · Breaks
Canonical schedule

1 Introduction

It is safe to say that millions of people, all over the world, are enthralled by sports,
be it actively participating or as a fan or spectator. Not surprisingly, sports has
become big business. For instance, in 2014, the sports market in North America
alone was worth 60.5 billion dollar and is expected to reach 73.5 billion dollar by
2019 according to a sports industry report by PricewaterhouseCoopers1. Apart
from the purely economic impact, sports is also relevant for society because of its
contribution to well-being in general. Indeed, according to Forrest and McHale
[19], the impact of sports on happiness scores collected from nearly 28,000 adults
in the UK turned out to be comparable with the impact of having a job.

Sports offer ample of opportunities for optimization on all kinds of levels.
What strategy should a team or player apply (e.g. [28])? What players should
a manager hire (e.g. [6])? How should referees be assigned to matches (e.g. [3])?
1 See https://www.pwc.com/us/en/industry/entertainment-media/publications/

assets/pwc-sports-outlook-north-america-2015.pdf.

c© Springer International Publishing AG, part of Springer Nature 2018
G. H. Parlier et al. (Eds.): ICORES 2017, CCIS 884, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-94767-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_1&domain=pdf
https://www.pwc.com/us/en/industry/entertainment-media/publications/assets/pwc-sports-outlook-north-america-2015.pdf
https://www.pwc.com/us/en/industry/entertainment-media/publications/assets/pwc-sports-outlook-north-america-2015.pdf
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How should the competition owner organize its league (e.g. [23])? How should
public funds be allocated to sports (e.g. [4])? In this paper, we focus on the
question how the schedule of play should be constructed. Not much more than
a decade ago, most professional sports competitions were scheduled by unskilled
personnel, equipped with little more than pen and paper. In some competi-
tions, and certainly in amateur leagues, this is still the case. A good schedule
is important though, because it affects the outcome and fairness of the compe-
tition, public attendance, commercial interests, as well as the cost of policing.
As league owners manage to close astonishing broadcasting deals, and in light of
the growing financial interests in the sports industry, the importance of a good
schedule has become more and more apparent.

Sport scheduling is about determining a suitable date and venue for each
match that is to be played (according to a given competition format). The com-
plexity of this problem depends on what should be taken into account. Generat-
ing a schedule where each team plays against each other team an equal number
of times, such that each team plays at most once on any given matchday is a
simple task (see e.g. [12]). However, as more constraints and considerations have
to be taken into account, sports scheduling can quickly become a huge challenge.
Nurmi et al. [39] provide a framework for sports scheduling problems, modeled
from the requirements of various professional sports leagues. This framework
includes constraints related to venue availability, teams that should not have
simultaneous home games, bounds on the number of consecutive matches against
teams from a given strength group, and many more.

We discuss practical applications involving the scheduling of the Belgian Pro
League soccer, for which we develop the official schedule since 2006 [21]. Our
contract with the Belgian Pro League currently involves 2 professional and 1
amateur division, each playing a different league format and play-off competi-
tions. Although there have been other papers that discuss the involvement of
academics in real-life soccer scheduling (e.g. [5,14,41]), we believe that our col-
laboration with the Belgian Pro League is exceptional in its length. It allows us
to discuss how our solution method needed continuous improvement, in order
to accommodate changes in the competition format, as well as new require-
ments. Furthermore, we discuss how we gradually got involved in determining
these requirements, e.g. by carrying out a discrete choice experiment in order to
estimate the impact of the schedule on TV viewership and stadium attendance.

This paper is organized as follows. Section 2 presents an overview of the
terminology and main results in sports scheduling. In Sect. 3, we discuss the
competition format currently used in the Belgian Pro League. We also give an
overview of the most important stakeholders, and their wishes and aspirations
with respect to the schedule. Section 4 reports on our solution approach, and
the changes it underwent over the years. We provide and a discussion and some
directions for future research in Sect. 5.
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2 Terminology and Fundamentals

Sports scheduling is a relatively young academic discipline: although the first
substantial contributions were published in the early 80’s, a considerable increase
in sports scheduling articles appeared only in recent years, including publications
in top journals in operations research. Simultaneously, several academics reached
out to the sports scheduling practitioners, offering new methods to deal with the
increasingly more complex problem of scheduling a league. Excellent overviews
of sports scheduling have been written by Easton et al. [15] and Rasmussen and
Trick [40]. An extensive bibliography can be found on a website maintained by
Knust2 and in an annotated bibliography by Kendall et al. [30]. In this section,
we explain the most important concepts discussed in the sports scheduling lit-
erature.

In a sports tournament, n teams play against each other over a period of time
according to a given schedule. The teams belong to a league, which organizes
matches (or games) between the teams. Each match consists of an ordered pair
of teams, denoted i-j, where team i plays a home match - that is, uses its
own venue (stadium) for a game - and team j plays away. In a so-called round
robin tournament each team plays against every other team an equal number
of times. Most sports leagues play a double round robin tournament, where
each team faces each other team twice, once at home and once away. Matches
are typically grouped into so-called rounds, which are played on one or more
consecutive days (usually a weekend). Teams play at most once per round; if
a team does not play on some round, we say it has a bye on that round. A
schedule is called compact or temporally constrained when its number of rounds
is minimal. When the number of teams is even, this means that each team plays
on every round. When more rounds are used than needed, we say the schedule
is temporally relaxed.

Table 1. A compact double round robin schedule for 6 teams.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

A-B B-E B-D C-B B-F B-A E-B F-A B-C F-B

C-D D-A A-F E-A D-E D-C A-D D-B A-E E-D

E-F F-C E-C F-D A-C F-E C-F C-E D-F C-A

Table 1 presents an example of a compact schedule for a double round robin
competition with 6 teams (A-F). If a team plays two home matches or two
away matches in two consecutive rounds, it is said to have a break. For instance,
team E in Table 1 has an away break in rounds 8–9. It is easy to see that any
round robin schedule for an even number of teams will feature at most 2 teams
that have a perfect alternation of home and away matches. Consequently, any
2 See http://www.inf.uos.de/knust/sportssched/sportlit class.

http://www.inf.uos.de/knust/sportssched/sportlit_class
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schedule for a single round robin tournament with an even number of teams
will have at least n − 2 breaks [12]. Goossens and Spieksma [22] introduced the
so-called generalized break, which arises if a team has two home (away) games in
a given pair of arbitrary (i.e. not necessarily consecutive) rounds, and present a
number of theoretical results on this topic.

We can see a schedule as the combination of a timetable (e.g. Table 2 – left)
and a set of home-away patterns (e.g. Table 2 – right). The timetable (sometimes
also referred to as an opponent schedule) specifies for each round which opponent
each team faces. The sequence of (H)ome and (A)way matches (and possibly also
(B)yes) according to which a team plays is called the home-away pattern (HAP)
of this team. A pair of home-away patterns is said to be complementary if the
patterns never feature two home games (or two away games) on the same round.
Clearly, a timetable and a home-away pattern set need to be compatible before a
schedule can emerge: for each match in the timetable, the corresponding home-
away patterns need to give one team the home advantage, and designate an
away match for the other team. Seeing a schedule as a merging of a timetable
and a pattern set, leads to two fundamental problems: the pattern set feasibility
problem and the break minimization problem. The pattern set feasibility problem
departs from a set of home away patterns and asks the question whether there
exists a corresponding timetable (such that a given tournament format, e.g.
single round robin, can be played), in which case we say the pattern set is
feasible. It is still an open question whether this problem is NP-complete or not.
Miyashiro et al. [36] present a necessary condition for HAP sets to be feasible.
Moreover, for HAP sets having a minimum number of breaks, they show how this
condition can be checked in polynomial time and conjecture it to be sufficient.
In the break minimization problem, a timetable is given and the question is
to determine the home assignment (i.e. the home away patterns) such that the
number of breaks is minimized. To the best of our knowledge, the complexity
status of this problem is also still unknown. However, Miyashiro and Matsui [37]
proved a conjecture by Elf et al. [16], stating that deciding whether a feasible
home-away pattern set with n − 2 breaks exists for a given timetable, can be
solved in polynomial time.

Table 2. The timetable (left) and home-away pattern set (right) corresponding to the
schedule in Fig. 1.

Team R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

A B D F E C B D F E C
B A E D C F A E D C F
C D F E B A D F E B A
D C A B F E C A B F E
E F B C A D F B C A D
F E C A D B E C A D B

Team R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

A H A H A H A H A H A
B A H H A H H A A H A
C H A A H A A H H A H
D A H A A H H A H H A
E H A H H A A H A A H
F A H A H A H A H A H
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There is a strong link between sports scheduling and graph theory (see
e.g. [11,13,29]). For instance, a schedule for a single round robin tournament
with an even number of teams can be seen as a one-factorization of Kn, the
complete graph with n nodes. The nodes in this graph correspond to the teams,
and each edge between two nodes represents a match between the two corre-
sponding teams. A one-factorization of Kn is a partitioning into edge-disjoint
one-factors [35]. A one-factor is a set of edges such that each node in the graph
is incident to exactly one of these edges (i.e. a perfect matching), and corre-
sponds to a round. One particular one-factorization, the so-called canonical one-
factorization, can be traced back to a contribution by Kirkman in the 19th
century [31], and has received special attention in sports scheduling. Indeed,
when looking at the schedules used in practice, in particular for soccer (see
e.g. [24]), the majority of the schedules are canonical schedules, i.e. based on
the canonical one-factorization. Their success may be explained by the fact that
there is an easy way to generate them (i.e. the circle method, also known as the
clock method or the polygon method), and that they can be constructed using
the minimum number of breaks [12]. Note however that apart from minimizing
breaks, many other constraints typically play a role in sports scheduling, which
may heavily complicate the problem. For instance, if costs corresponding to each
possible combination of a match and a round are given and the objective is to
minimize the sum of these costs for the scheduled matches, the resulting sports
scheduling is NP-hard [7].

Of the many fairness issues that can arise when constructing a schedule, the
carry-over effect as introduced by Russell [42] has probably been studied most
intensively. Russell defines team A to receive a carry-over effect from team B
if some team X plays against team B in one round, and against team A in
the next round. The carry-over effect is perceived to be particularly relevant in
physical sports. For instance, if team B is very strong, and tough-playing, one
can imagine that its opponent, team X, is weakened by injuries, suspensions,
fatigue or lowered morale, which could be an advantage for its next opponent,
team A. The opposite may be true if team B is a weak team. As carry-over
effects unavoidably are present in any schedule, one can only strive to spread
these carry-over effects as evenly as possible over all teams to increase overall
fairness. Let cij be the number of times team j receives a carry-over effect from
team i in the previous round in a schedule. A schedule’s degree of imbalance
with respect to carry-over effects is given by the so-called carry-over effect value,
which is defined as

∑
ij c

2
ij [42]. A lower bound for the carry-over effect value of

a single round robin tournament is n(n−1); if this bound is attained, we say the
schedule is balanced. Russell also presents an algorithm that results in a balanced
schedule when n is a power of two. For other values of n, the best known results
are by Anderson [2] and Guedes and Ribeiro [27]. Lambrechts et al. [33] have
shown that the canonical schedule maximizes the carry-over effect value.
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3 The Belgian Pro League Soccer

We first discuss the current league format used by the Belgian Pro League
(Sect. 3.1), followed by an overview of the various stakeholders and their (often
conflicting) wishes and interests with respect to the schedule (Sect. 3.2).

3.1 League Format

Since 2016–2017, the Belgian Pro League consists of 2 professional soccer divi-
sions: a first division (1A) with 16 teams, which is also known as the Jupiler
Pro League and a second division (1B) with 8 teams known as the Proximus
League. Both division play a so-called regular stage, which involves a double
round robin tournament for 1A and a quadruple round robin tournament for
1B, completed in 30 and 28 rounds respectively. The regular stage is followed by
a post-competition, inaptly called play-offs by the Belgian Pro League. Indeed,
in general, play-offs involve a direct knock-out competition, where teams are tied
in pairs and the loser of each match is eliminated. This is not the case with the
play-off stage in Belgian soccer: depending on their result in the regular sea-
son, the teams are divided into one of 4 play-off groups, each of which plays a
double round robin tournament. The most awaited play-off group includes the
six best teams of 1A: they keep half of the points they collected in the regular
stage and play for the league title, as well as access to the (qualification stage of
the) Champions League or the Europa League. Two other play-off competitions
include 6 teams, collected from the other teams in 1A and the top half of 1B.
These teams start with a clean sheet and play for the final ticket for the Europa
League qualifiers. A final play-off competition includes the bottom half of 1B;
these 4 teams retain half of the points from the regular stage and play to avoid
being relegated to the amateur competition. An overview of the league format
is given in Fig. 1.

Note that 2 teams do not take part in the play-off stage: the winner of the
regular stage of 1B and the last team after the regular stage of 1A see an early end
to their season. Certainly for the winner of 1B, this is peculiar, as this team does
not get the opportunity to battle for access to the Europa League, as opposed to
teams that performed worse in the regular stage of 1B. This competition format
is quite rare in soccer; it bears resemblance to the format used in Cyprus, which
also has a double round robin post-competition, after the teams have been split
into two groups depending on their performance in the regular stage [24]. A
similar format, including the rule that teams transfer half of their points from
the regular stage to the post-competition stage has been in use in the Maltese
Premier League, but it was recently abandoned in favor of a classic single stage,
double round robin competition format. The main motivation for the Belgian
Pro League competition format is the fact that it allows for more top matches,
without drastically reducing the number of teams in the top division. This format
should increase the level of the top teams, allowing them to perform better in
the European competitions, and at the same time generate more revenue from
TV broadcasting rights, ticketing, and sponsorship.
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Fig. 1. The competition format for the Belgian Pro League.

3.2 Stakeholders and Their Requirements

The Belgian Pro League. Being the owner of the competition, the Belgian Pro
League obviously has a large say in how the competition is organized and what
the schedule should look like. The Pro League has appointed a so-called sched-
ule manager, who gathers the various wishes and requirements from the other
stakeholders and assesses the relative importance of the scheduling requests.
The schedule manager is also responsible for rescheduling postponed matches
and handling complaints.

The main concern of the Pro League is the fairness of the competition. Breaks
play an important role in this. For instance, no team should start or end the sea-
son with two home games (or two away games), as it is assumed that this would
give them an advantage (disadvantage, respectively). Similarly, as a succession
of away games is seen as the path towards a performance slump, teams cannot
have more than two consecutive away matches. In fact, breaks in general should
be minimized.

Given the large number of rounds that come with the league format discussed
in Sect. 3.1, midweek rounds are inevitable. However, teams generally do not
appreciate a home game on a midweek round, as the revenue from ticketing and
catering tends to be lower than on weekend days. Consequently, the Pro League
prefers a balance between home and away matches on midweek rounds: if a team
plays at home on one midweek round, they should not have a home game on the
next midweek round. Note that, as midweek rounds need not be consecutive, we
can see this as avoiding a generalized break.

Another fairness issue is the carry-over effect. At some point, carry-over
effects have been suggested in the Belgian media as the cause of a team’s
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relegation (see e.g. [26]). Even though it was shown that there is no statisti-
cal evidence that carry-over effects have any meaningful impact on the outcome
of soccer matches in the Belgian Pro League [25], the feeling still remains that
unbalanced carry-over effects are to be avoided.

Finally, the Pro League strives for a balanced start of the season for all teams,
avoiding that any team faces a disproportionate number of strong opponents in
the first rounds. Exceptions are made for those teams that are involved in qual-
ification rounds for Champions League or Europa League. In order to maximize
their chances of success at the European stage, these teams are offered a start
of the season without big domestic clashes.

The TV Broadcasters. TV broadcasters aim to maximize their revenue by
attracting as many viewers as possible. Over the years, we have had many dif-
ferent scheduling requests from various TV broadcasters. In the beginning, each
round needed to feature at least one (and preferably two) of four top teams
playing an away match. The underlying motivation was that a top team’s home
matches are less attractive, as the top team tends to win these games without
much opposition. Soon after that, we received a request to have at most one
top match per round, and a balanced spread of top matches over the season.
Later, the TV broadcaster wanted to have so-called Super Sundays, i.e. a Sun-
day with (at least) two top matches. Given this diverse set of requests, at some
point we started to wonder whether the TV broadcasters actually knew what
kind of schedule would maximize their viewing rates. The number of papers on
the determinants for TV viewership of soccer matches is surprisingly limited.
Most of them focus on the relation between viewer ratings and match outcome
uncertainty (e.g. [1,8]); Forrest, Simmons, and Buraimo [17] apply their model
to support the broadcasters’ choice of which matches to televise in the English
Premier League. However, none of these contributions show how the schedule
should be constructed in order to maximize TV viewership.

On a typical weekend round in the regular stage of the competition, the
following kick-off times are used for matches in 1A: Friday 20:30, Saturday 18:00,
Saturday 20:00 (2 matches), Saturday 20:30, Sunday 14:30, Sunday 18:00, and
Sunday 20:00. Essentially, the schedule determines which opponents will face
each other in which part of the season and at what kickoff time. To obtain
a better understanding of the impact of these match characteristics (month,
kickoff time, and opponent strength) on TV viewership, we conducted a discrete
choice experiment using an online survey questionnaire distributed to chart the
preferences of Belgian soccer fans in watching the league matches [44]. Our
results show that fans on average dislike matches scheduled for Wednesday 20:30,
Saturday 18:00, Sunday 14:30, and Sunday 20:30. In particular, midweek matches
are to be avoided, although there is quite some heterogeneity in the individual
preferences for the Wednesday 20:30 kick-off time (probably due to the difference
between employees who have to go to work the next morning and fans without
a job). If midweek matches are inevitable, they are best planned in October
or March to ensure a reasonably sized audience. We found that it does not
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seem beneficial to start the season late in July or even early in August, as a
considerable proportion of the fans take holidays in this period. Surprisingly,
fans do not prefer to see their team play against a top team regardless of the
month and kick-off time: matches against teams of average strength can attract
more viewers than matches against top teams if carefully scheduled on attractive
rounds and kick-off times. Our model can also be used to predict audience ratings
for each (type of) match, depending on the planned month and kickoff time,
which in turn can be used as input parameter for optimizing the schedule.

The Police and the Tax Payer. Soccer matches in the Belgian Pro League are
events that can attract up to 30,000 fans. Moreover, some matches, labeled risk
matches, are known to have an increased risk of hooliganism. Hence, it is clear
that the police is an important stakeholder in professional soccer. Moreover, it is
important to realize that a mayor has the right to forbid a match being played
if he or she judges that public order and safety cannot be guaranteed.

Months before the start of the new season, various local police forces are
queried about their concerns and requests with respect to the schedule. Most
requests deal with risk matches, which should be avoided on dates when other
events are scheduled in the city that require the attention of the local police
(e.g. a festival, summit, or other sports event). Sometimes, the request only
concerns the kick-off time, as some matches can be managed more easily during
daylight. The impact on traffic of scheduling a match on a specific date and
time is also regularly pointed out by the police. A few police zones contain the
venues of two (or even more) teams, and in this case some coordination is needed:
preferably, teams from the same police zone do not play a home game on the
same weekend. For sure, no pair of teams from the same zone should host risk
games simultaneously.

Ultimately, the tax payer bears the vast majority of the policing cost for
soccer matches. Clearly, the schedule has an impact on the size of the policeforce
needed, as well as the costs involved. For instance, scheduling a risk game in the
beginning of the season will allow the police to deploy a smaller force compared to
when this game is decisive for e.g. relegation. Furthermore, matches scheduled
e.g. in the Christmas period result in a higher man-hour rate than midweek
matches.

The Clubs and Their Fans. Clubs have a wide variety of wishes. Teams
sharing a venue have a strong reason for not playing home games in the same
round. Although Belgium currently does not have multi-purpose stadia (i.e. sta-
dia designed to host multiple types of events, such as pop concerts and various
types of sports contests), in some cases, the parking facilities are shared with a
shopping mall or another sports club, resulting in a list of days on which home
games are to be avoided. Most teams believe they can increase their chances of
playing a good season by starting with a home game, ideally against an easy
opponent. Champions League or Europa League contenders typically request a
home game after their European match, as they believe a home game renders
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them less vulnerable to the effects of fatigue resulting from this extra midweek
match (and trip). Teams with cash flow problems prefer a steady number of
home matches per month. Occasionally, a team requests to delay the first home
game by starting the season with two consecutive away games, in order to have
enough time to finish venue construction or renovation works.

In general, teams want to maximize the number of fans attending their home
games, as this is closely related to their revenue. Various models have been
developed to analyze the factors that determine stadium attendance (see e.g.
[9,10,20,34,43]). Compared to TV broadcasting, more factors can influence a
soccer fan’s decision whether or not to travel to the stadium: distance from the
stadium, weather, availability of car parking, availability of tickets, safety, ser-
vice, catering, etc. Here, we limit ourselves to those factors that can be impacted
by the schedule. Forrest and Simmons [18] show that consecutive home games
negatively impact attendance. Hence, teams generally prefer a schedule in which
breaks are minimized. Wang et al. [44] also studied the impact of month, kick-
off time, and opponent strength on stadium attendance for Belgian soccer fans.
They find that, contrary to the results with respect to TV viewership, January
is not a popular month for attending a soccer match in the stadium (presumably
because of the cold). Apparently, August’s nice summer weather is neutralized
by the fact that many people leave on holiday. Wednesday 20:30 and Sunday
20:30 are deplorable kick-off times with respect to stadium attendance, as the
next day is a working day. In contrast, Saturday 18:00 and 20:00 and Sunday
14:30 and 18:00 all work very well.

4 Solution Approach

Before 2006, the Pro League’s highest division consisted of 18 teams, playing a
double round robin tournament without play-offs; the schedule was developed
manually. The starting point was a so-called basic match schedule, i.e. a sched-
ule that specifies the round and the home advantage for all matches, however
using placeholders instead of real teams. For instance, the schedule in Table 3
shows the first 7 rounds of the basic match schedule that has been used by the
Pro League for decades. Clearly, when each team is coupled with a placeholder
(1–18), a schedule follows. Although the origin of this basic match schedule is
not clear, it is a canonical schedule and it has many advantages. For instance, it
consists of two halves, such that each team faces each other team exactly once
in each half, and each half has the minimum number of breaks. Furthermore, no
team plays three home games or away games in a row, and no team starts or ends
the season with two home games or two away games. Moreover, it condenses the
whole scheduling problem to a relatively easy question: which placeholder should
be matched with which team? The way in which this should be done, however,
was less transparent. The schedule manager did this assignment without the
use of any optimization tool, till the point where he found no further improve-
ment by manually swapping the placeholder assignment of a pair of teams. Not
surprisingly, the resulting schedules typically satisfied merely a small fraction of
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Table 3. A basic match schedule for a double round robin tournament with 18 teams,
rounds 1–7.

R1 R2 R3 R4 R5 R6 R7

1–3 2–4 1–7 2–8 1–11 2–12 1–15

4–17 3–18 3–5 4–6 3–9 4–10 3–13

6–15 5–1 6–2 5–18 5–7 6–8 5–11

8–13 7–16 8–17 7–3 8–4 7–18 7–9

10–11 9–14 10–15 9–1 10–2 9–5 10–6

12–9 11–12 12–13 11–16 12–17 11–3 12–4

14–7 13–10 14–11 13–14 14–15 13–1 14–2

16–5 15–8 16–9 15–12 16–13 15–16 16–17

18–2 17–6 18–4 17–10 18–6 17–14 18–8

the constraints. As many teams found their wishes brushed aside without under-
standing how the schedule was constructed, this lead to several accusations of
favoritism and lack of transparency in the media (see e.g. [32]).

When we got involved, our main challenge was to automate and optimize the
assignment of teams to placeholders in the basic match schedule. This, however,
could not be done without explicitly stating all requirements and their relative
importance. The latter turned out problematic: a committee with representa-
tives from some of the clubs, had to come to an agreement on the scheduling
priorities, whereas they were used to deal with the schedule manager individu-
ally and informally. Eventually, we agreed to classify each requirement into one
of 5 priority classes, where each class has a certain weight (it took some time to
convince them that putting all requirements in the highest priority class is not
the way to obtain the best schedule). The optimization model was based on the
assignment model. We used a binary decision variable xi,p which is 1 if team i
is assigned to placeholder p and 0 otherwise. Furthermore, yc is 1 if constraint c
is not satisfied, and 0 otherwise. We use parameters qc for the weight associated
with the class to which constraint c belongs, and ai,p,c and bc as parameters to
model the various requirements (M is a sufficiently large number). The problem
formulation is then as follows:

Min
∑

c

qc · yc (1)

subject to ∑

p

xi,p = 1 ∀i (2)

∑

i

xi,p = 1 ∀p (3)

∑

i

∑

p

ai,p,c · xi,p � bc + M · yc ∀c (4)
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xi,p ∈ {0, 1} ∀i, p (5)

yc ∈ {0, 1} ∀c. (6)

The objective function minimizes the total weight of violated constraints.
Constraints (2) and (3) ensure that each team is assigned to a placeholder and
vice versa. The third set of constraints can be used to model all requirements
stakeholders may have by selecting appropriate values for ai,p and bc.

In the beginning of our collaboration, the Pro League insisted that we used
their basic match schedule. The main reasons for this were that they were highly
familiar with it, and that lower divisions – which to some extent tune their
schedules based on the schedule of the highest division – also used it. However, we
soon became the victim of our early success: as we were able to handle many more
constraints than the manual approach, stakeholders gradually came up with more
wishes and requirements and higher expectations in the next seasons. At some
point, it became clear that no satisfactory solution existed, if we restricted the
solution space to schedules resulting from the Pro League’s basic match schedule.
Hence, the next step was to use a phased approach, where we first assign each
team to one of the home-away patterns from the basic match schedule, and
subsequently decide on the opponents for each team in each round, given the
home-away pattern assignment. We call this the two-phase approach; it is a so-
called first break, then schedule approach, based on a decomposition introduced
by Nemhauser and Trick [38].

The first phase can in fact also be modeled using formulation (1)–(6), how-
ever this time the binary decision variable xi,p is 1 if team i is assigned to home-
away pattern p and 0 otherwise. Notice that constraints (4) now only include
constraints that relate to the home advantage; no constraints involving specific
opponents are included in this model. The second phase uses a binary decision
variable xi,j,k which is 1 if team i plays a home game against team j on round
k, and 0 otherwise. We use ai,j,k,c and bc as parameters to model the various
wishes from the stakeholders related to opponents. Note that we enforce that
both halves of the schedule are mirrored, i.e. the second half of the schedule is
identical to the first half, except the home advantage, which is inverted. Mir-
roring simplifies the model because we only need to schedule the first half of
the season: constraints related to the second half can be modeled in terms of
first-half constraints. The formulation is as follows:

Min
∑

c

qc · yc (7)

subject to ∑

j

(xi,j,k + xj,i,k) = 1 ∀i, k (8)

∑

k

(xi,j,k + xj,i,k) = 1 ∀i, j : i �= j (9)

∑

i

∑

j

∑

k

ai,j,k,c · xi,j,k � bc + M · yc ∀c (10)
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xi,j,k ∈ {0, 1} ∀i, j, k allowed by the HAPs of team i and j (11)

yc ∈ {0, 1} ∀c. (12)

The objective function again minimizes the total weight of violated con-
straints. Constraints (8) ensure that each team plays exactly once on each round,
and constraints (9) enforce that each team meets each other team once in the
first half of the season. Constraints (10) are used to model all opponent-related
stakeholder requirements. This approach keeps all properties of the basic match
schedule related to home advantage and breaks, but drastically increases the
search space, as the order of the opponents is no longer fixed. An important argu-
ment to abandon the basic match schedule was the carry-over effect. Indeed, since
the basic match schedule, being a canonical schedule, has maximally unbalanced
carry-over effects [33], any change results in a positive impact on the carry-over
effect value.

Solving the two phases sequentially, however, does not guarantee an optimal
solution and typically leaves a lot of room for improvement. Hence, we developed
a tabu search algorithm around the first phase. This algorithm finds the best
move in a neighborhood around some current solution; this neighborhood con-
sists of all solutions that can be reached by swapping the home-away patterns of
two teams in this solution. Computationally, computing the consequences of a
swap with respect to the objective function in phase 1 is trivial. The evaluation
of phase 2 can be more time-consuming, although it frequently happens that
there is no need to solve phase 2, since the result after solving phase 1 is already
worse than the best solution so far in this neighborhood. We maintain a tabu
list to make sure that moves are not immediately reversed.

As new requirements kept coming, it did not take long before we again found
no suitable solution in the solution space we considered. Hence we argued to
drop the tradition of having the second half mirrored from the first half. Indeed,
this created for each requirement connected to the first half of the season a
counterpart in the second half, and vice versa, effectively doubling the number
of constraints. It took quite some effort to convince the Pro League to allow
non-mirrored schedules; in the end, the fact that a non-mirrored schedule had
been played before in the Belgian Pro League, albeit a long time ago and for
reasons no one could recollect, was a final nudge in the right direction. The fact
that the home-away patterns where still mirrored resulted in a schedule that
was still about 80% mirrored and at least did not preclude a mirrored schedule
provided that this was feasible given the requirements.

The introduction of the play-offs in the season 2009–2010 entailed a number
of changes with respect to the scheduling process. Until then, the exact kick-off
times were not communicated in the beginning of the season: the broadcaster
had the right to delay that decision until one month before the match. This
allowed them to take into account more recent information on e.g. which teams
qualify for what stages of other competitions (domestic cup, Europa League,
Champions League) and which teams perform well in the domestic league. This
is still the case for the regular stage of the season, however, for the play-off
stage, all kick-off times are to be determined by the schedule manager before
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the play-offs start. Furthermore, interdependencies between the various play-off
competitions required a totally different scheduling approach, in which all play-
off competitions are scheduled simultaneously. On the other hand, each play-off
involves at most six teams, such that an IP model based on variables xi,j,k,t = 1
if team i plays against team j on round k using kick-off time t (and 0 otherwise),
and yi,k = 1 if team i has a break on round k (and 0 otherwise) can be solved
in a reasonable computation time with e.g. IBM Ilog Cplex.

Finally, we also moved away from the set of home-away patterns that follow
from the basic match schedule. Interesting properties of these HA patterns are
that (i) they don’t begin or end with a break, (ii) they don’t have consecutive
breaks, (iii) they have at most 3 breaks, and (iv) they allow a mirrored schedule.
It is easy to see that for e.g. a double round robin tournament with 16 teams,
there are 26 such home-away patterns (13 complementary pairs), i.e. 10 more on
top of the 16 HAPs implied by the basic match schedule. Hence, we found that
among the 1287 possibilities to pick 8 pairs of complementary HAPs out of 13,
46 HAP sets lead to a feasible schedule. Again, this greatly increased the search
space. Currently, we are also including HAPs with more than 3 breaks that do
not allow a mirrored schedule, but have other properties that fit well with the
requirements of that season.

5 Discussion

At the start of our collaboration with the Pro League in the season 2006–2007,
the TV broadcasting rights for the highest division were sold for a price of 36
million euros per season. The current broadcasting contract has been marketed
for 70 million euros per season, which is almost double as much (but still a
trifle compared to the amounts paid in e.g. the English Premier League). In
the seven seasons before our involvement, stadium attendance per season for
the first division amounted to on average 2,954,311, which corresponds to an
average of 9,654 fans per match. In the ten seasons for which we provided the
schedule, stadium attendance equalled 3,451,945 per season (11,491 per match)
on average, which corresponds to an increase of 17%. At the same time, the
number of man-hours performed by the police decreased from 28,613 per season
in the three seasons right before our involvement to 21,780 per season since
we create the official schedule (i.e. a decrease of about 24%). This decrease is
remarkable, because since the introduction of the play-offs more matches are
played, and many of these additional matches are risk matches. Obviously, there
are many factors that play a role in these changes, for instance the introduction
of the play-offs has undoubtedly impacted the attractiveness of the competition,
and the fanbase of the team that promotes to and the team that is relegated
from the first division certainly plays a role. Nevertheless, we like to believe
that our scheduling approach also has contributed considerably to these positive
trends. Equally important, it has improved the transparency of the process.
Although, obviously, the stakeholders do not have a real understanding of the
optimization method itself, it is seen as neutral. Moreover, it is now clear to
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everyone what the various requirements are, and what weight they get. Setting
these weights is not an exact science. Therefore, we present the Pro League with
several good schedules to choose from, instead of just the best. Occasionally, the
Pro League eventually selects a schedule which is not optimal according to our
approach, which is a motivation for us to reevaluate the weights that some of
the requirements receive. Our method offers additional flexibility through what-
if analyses, which can be used to assess the consequences of honoring certain
wishes. As a result, the yearly tradition of stakeholders having a big fight in the
media when the new schedule is announced has now disappeared.

Although we have made a lot of progress with the Pro League over the
past 10 years, there are still a number of opportunities for further research.
We believe that these opportunities not only apply to our case with the Bel-
gian soccer league, but to the sports scheduling community in general. Phased
approaches are very popular, and they perform well provided that the most
important requirements can be solved in earlier phases. Nevertheless, there is
still room for improvement with respect to solution methods. We are not able
to solve highly-constrained sports scheduling problems optimally for league sizes
larger than 12. We have little insight in what makes a HAPset feasible, par-
ticularly if the home-away patterns are not symmetrical and feature several
breaks. Many practical sports scheduling problems require exactly these type
of home-away patterns. Scheduling multiple leagues simultaneously is another
major challenge for future research. Indeed, according to our experience, the
focus is shifting from scheduling one important league to scheduling a multi-
tude of leagues with interdependencies. This is even more apparent in amateur
of youth sport leagues. Finally, we would like to point out the importance of
sports analytics as a way to determine what is important in sports schedul-
ing. We noticed that stakeholders often don’t have a good view on the impact
of the schedule on fairness, gate revenue, TV viewership, or other issues they
care about. Hence, the sports scheduling community can contribute by clarifying
these relationships, and assist practitioners with providing the right parameters
for their sports scheduling problem.

References

1. Alavy, K., Gaskell, A., Leach, S., Szymanski, S.: On the edge of your seat: demand
for football on television and the uncertainty of outcome hypothesis. Int. J. Sport
Financ. 5, 75–95 (2010)

2. Anderson, I.: Balancing carry-over effects in tournaments. In: Holroyd, F., Quinn,
K., Rowley, C., Webb, B. (eds.) Combinatorial Designs and Their Applications,
pp. 1–16 (1997)

3. Alarcón, F., Duran, G., Guajardo, M.: Referee assignment in the Chilean football
league using integer programming and patterns. Int. Trans. Oper. Res. 21, 415–438
(2014)

4. Angulo-Meza, L., Soares de Mello, J.C.C.B., Valério, R.P.: Assessing the efficiency
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Abstract. One main concern of voting theory is to determine a procedure for
choosing a winner from among a set of candidates, based on the preferences of
the voters or, more ambitiously, for ranking all the candidates or a part of them.
In this presentation, we pay attention to some contributions of operations
research to the design and the study of some voting procedures. First, we show
through an easy example that the voting procedure plays an important role in the
determination of the winner: for an election with four candidates, the choice of
the voting procedure allows electing anyone of the four candidates with the
same individual preferences of the voters. This provides also the opportunity to
recall some main procedures, including Condorcet’s procedure, and leads to the
statement of Arrow’s theorem. In a second step, more devoted to a mathematical
approach, we detail a voting procedure based on the concept of Condorcet
winner, namely the so-called median procedure. In this procedure, the aim is to
rank the candidates in order to minimize the number of disagreements with
respect to the voters’ preferences. Thus we obtain a combinatorial optimization
problem. We show how to state it as a linear programming problem with binary
variables. We specify the complexity of this median procedure. Last, we show,
once again through easy examples, that the lack of some desirable properties for
the considered voting procedure may involve some “paradoxes”.

Keywords: Voting theory � Combinatorial optimization � Condorcet winner
Median procedure � Voting paradoxes

1 Introduction

One main concern of voting theory is to determine a procedure (also called, according
to the context or the authors, rule, method, social choice function, social choice cor-
respondence, system, scheme, count, rank aggregation, principle, solution and so on)
for choosing a winner from among a set of candidates or, more ambitiously, for ranking
all the candidates or a part of them, based on the preferences of the voters (for the
context and references, see for instance [1, 4, 5, 14, 15, 18, 27, 31, 37, 51, 55, 58]). In
the sequel, we shall consider an election involving n candidates and v voters. The
preferences of the voters are assumed to be complete preorders (i.e., binary relations
which are reflexive, transitive and complete; as reflexivity is not important here, we
shall not consider it in this contribution) defined on the set X of candidates. In other
words, the voters are supposed to be able to rank all the candidates, possibly with ties,
in a transitive manner: if the voter prefers a candidate x to another candidate y and y to a
third candidate z, then he or she prefers also x to z. Most of the time, we shall assume
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that there is no tie, which means that, for any pair {x, y} of distinct candidates x and y, a
voter strictly prefers x to y or y to x; in this case, the voters’ preferences are in fact
linear orders defined on X. For any voter V and for distinct candidates x and y, we shall
write x >V y (or simply x > y if V does not matter) to denote the fact that x is preferred
to y by V. Then the preference >V of V is a complete preorder if we have
simultaneously:

1. 8 x; yð Þ 2 X2 with x 6¼ y; x [ V y or y [ V x (completeness)
2. 8 x; y; zð Þ 2 X3with x 6¼ y 6¼ z 6¼ x; fx [ V y and y [ V zg ) x [ V z

(transitivity).

It is a linear order if we have, in addition:

3. 8 x; yð Þ 2 X2 with x 6¼ y; x [ V y ) not ðy [ V xÞ (antisymmetry).

Thus a linear order is an antisymmetric complete preorder and conversely.
The aim of the election is to determine a winner of the election or to rank the

candidates (or a part of them) into a collective preference, based on the individual
preferences of the voters. Usually, it is considered that a voting procedure must fulfil
some desirable properties to be satisfying. For example, it is usually wished that the
preferences of all the voters are taken in consideration, which excludes any dictator, a
dictator being a voter who imposes his or her preferences, without respect to the
preferences of the other voters (in a variant, a dictator imposes only his or her strict
preferences and leaves the choice to the other voters for the ties existing in the dic-
tator’s preferences). Or it is wished also that the voting method is monotonous, i.e.
fulfils the following property: let x be the winner of an election; if the rank of x be-
comes better in the preferences of one voter while the preferences of the other voters
remain the same, then x remains the winner of the election.

In fact, designing a voting procedure with satisfying properties is not always an
easy task, depending on the required properties considered as “satisfying”. The usual
voting methods fail to respect simultaneously some basic properties, and Arrow’s
theorem, stated below (see Sect. 2.5) explains why, by showing that there does not
exist any voting procedure fulfilling these basic properties. Anyway, since there does
not exist an “ideal” voting method, how to elect the winner of the election or how to
rank the candidates?

Section 2 recalls, through a small and easy example, the principles of four classic
voting methods: one-round procedure (also known as plurality rule), two-round pro-
cedure (also known as plurality rule with run-off), Borda’s procedure, Condorcet’s
procedure. This example outlines the role of the voting method in the choice of the
winner: for the same given voters’ preferences applied to an election with four can-
didates, we may elect any of these four candidates by selecting the appropriate voting
procedure.

An important concept in voting theory is the one of Condorcet winner: a Condorcet
winner is a candidate who is preferred to any other candidate by a majority of voters. In
other words, a candidate C is a Condorcet winner if, for any other candidate x, the
number of voters who prefer C to x is (strictly) greater than the number of voters who
prefer x to C. Such a Condorcet winner does not necessarily exist; when he or she
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exists, he or she is unique. When there is no Condorcet winner, several methods aim to
recover a Condorcet winner by altering, though the least possible, the data (the voters’
preferences) so that a Condorcet winner appears. In Sect. 3, we will focus on one of
these methods: Condorcet-Kemeny’s method. It leads to interesting, but hard (more
precisely, NP-hard), combinatorial optimization problems.

The last part of this contribution will be devoted to some unexpected results, which
we shall call paradoxes, related to the lack of some good properties, like monotony. For
instance, we shall see that, for the two-round procedure, it can be better for a voter to
vote for the candidate ranked last in his or her preferences rather than for the candidate
that he or she prefers, in order to make his or her favourite candidate elected.

2 An Electoral Tale

2.1 Some Historical Milestones

It is usual to consider that the search for a “good” voting procedure goes back at least to
the end of the eighteenth century, with the works by the chevalier de Borda (1733–
1799) [11] and by the marquis de Condorcet (1743–1794) [16], and maybe before (for
references upon the historical context, see [10, 27, 29, 40–45] and references below).

More precisely, in the 1770’s, Borda [11], a member of the French Academy of
Sciences, showed that the one-round procedure (see below) used at this time by this
academy was not satisfactory. Indeed, with such a voting procedure, the winner can be
contested by a majority of voters who would all agree to choose another candidate
instead of the elected winner. (We shall see below that the two-round procedure used in
many countries has the same defect.) Borda then suggested another procedure (see
below). But, as pointed out by Condorcet in 1784 [16], the procedure advocated by
Borda has the same defect as the one depicted by Borda himself for the one-round
procedure: a majority of dissatisfied voters could agree to constitute a majority coalition
against the candidate elected by Borda’s procedure in favour of another candidate.
Then Condorcet designed a method based on pairwise comparisons. By nature, this
method cannot elect a winner who will give rise to a majority coalition against him or
her. But, unfortunately, Condorcet’s procedure does not always succeed in finding a
winner (who is a Condorcet winner when he or she exists), as we are going to see
below. By the way, notice that, according to McLean et al. [43], “both Ramon Llull (ca
1232–1316) and Nicolaus of Cusa (also known as Cusanus, 1401–1464) made con-
tributions which have been believed to be centuries more recent. Llull promotes the
method of pairwise comparison […]. Cusanus proposes the Borda rule, which should
properly be renamed the Cusanus rule”. Despite these historical discoveries, we shall
keep the usual names here.

In order to illustrate Borda’s and Condorcet’s criticisms and procedures, consider
the following example of an election (drown from [7]), with n = 4 candidates (noted x,
y, z and t) and v = 27 voters. The voters’ preferences are supposed to be the following
linear orders:

• for 5 voters: x > y > z > t
• for 4 voters: x > z > y > t
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• for 2 voters: t > y > x > z
• for 6 voters: t > y > z > x
• for 8 voters: z > y > x > t
• for 2 voters: t > z > y > x.

Then, the question is: who is the winner?
In fact, the answer depends strongly on the voting procedure adopted to determine

the winner, as we are going to see now.

2.2 One-Round Procedure (Plurality Rule) and Two-Round Procedure
(Plurality Rule with Run-off)

One of the easiest voting procedure in order to elect one candidate as the winner is the
one-round procedure (also called plurality rule or relative majority, or sometimes first-
past-the-post, or winner-takes-all, or also majoritarian voting…). In this procedure,
each voter gives one point to his or her favourite candidate (so it is not necessary to
know the preferences of the voters on the whole set of candidates). The candidate who
gains the maximum number of points is the winner.

This procedure belongs to the family of scoring procedures. In such a procedure, a
score-vector (s1, s2,…, sn) is fixed independently of the voters, with s1 � s2 � …
sn. For each voter, a candidate x receives si points if x is ranked at the ith position by the
considered voter. The score of x is the total number of points that x receives. The
winner is any candidate with a maximum score. If the aim is to rank the candidates, we
may also sort them according to the decreasing scores and then consider the linear
extensions of the complete preorder provided by this sorting (another possibility would
be to apply the procedure n − 1 times, after having removed the winner of the current
iteration). For the one-round procedure, the score-vector is (1, 0, 0,…, 0).

Applied to our example, the one-round procedure provides the following scores:

9 for x; 0 for y; 8 for z; 10 for t:

Then the winner is t (we may also rank the four candidates thanks to these scores; we
thus obtain the linear order t > x > z > y, that we may consider as the collective
preference – according to the one-round procedure).

Anyway, following Borda’s remarks, if a second-round is organized between the
two candidates with the best scores after the first round, as in the two-round procedure,
then t is no longer the winner. Indeed, t and x are the two candidates who are not
eliminated by the first round. If we assume that the preferences of the voters remain the
same between the two rounds, the eight voters who preferred z now vote for x (ranked
third in their preferences while t is ranked fourth by them). After the second round, the
scores are the following:

17 for x; 10 for t:

Now, t is defeated by x, and x is the winner according to the two-round procedure.
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In other words, the election of t could give rise to a majority of dissatisfied voters
who would agree to constitute a majority coalition against t in favour of another
candidate, namely x.

So, is x better than t with this respect? Borda noticed that this drawback applies also
to the two-round procedure. Indeed, for the example, if x is declared as the winner of
the election, then another majority of dissatisfied voters could agree to constitute a
majority coalition against x in favour of y: there are 18 voters who prefer y to x versus 9
who prefer x to y!

2.3 Borda’s Procedure

The previous considerations led Borda to design his own method. In Borda’s proce-
dure, each voter gives points to the candidates according to their ranks in his or her
preferences. More precisely, if there are n voters (n = 4 in the example), each voter
gives n points to the candidate ranked first, then n − 1 to the second candidate, n − 2 to
the third candidate, and so on, until the last candidate who receives only one point.
Then, all these points are summed up for each candidate: this sum is the Borda score sB
of the candidate. The candidate with a maximum Borda score is the Borda winner.
With this respect, Borda’s procedure is also a scoring procedure, of which the score-
vector is (n, n − 1,…, 2, 1) (a variant consists in considering (n − 1, n − 2,…, 1, 0) or
(n + a, n − 1 + a,…, 2 + a, 1 + a) as the score-vector, where a is any positive
integer; the result is obviously the same).

For instance, the Borda score sB(x) of x in the example is equal to:

sB xð Þ ¼ 5� 4þ 4� 4þ 2� 2þ 6� 1þ 8� 2þ 2� 1 ¼ 64:

Similarly, we obtain:

sB yð Þ ¼ 75; sB zð Þ ¼ 74; sB tð Þ ¼ 57:

With Borda’s procedure, the winner is y. We may even rank all the candidates by
sorting Borda scores decreasingly: we obtain the collective preference
y > z > x > t (which is the reverse order of the order provided by the one-round
procedure!).

But Borda’s procedure fails to avoid the previous criticism, since a majority of
voters, more precisely 14 voters, would agree to constitute a majority coalition against
y in favour of z! (In spite of this, Borda’s procedure was adopted by the French
Academy – and then by the Institut de France – until 1803…).

2.4 Condorcet’s Procedure

In order to avoid the rise of a majority coalition of dissatisfied voters, Condorcet
designed a method based on the majority relation in a pairwise comparison method.
For each candidate x and each candidate y with x 6¼ y, we compute the number mxy, that
we will call the pairwise comparison coefficients below, of voters who prefer x to
y. Then x is considered as better than y if a majority of voters prefers x to y, i.e. if we

24 O. Hudry



have mxy > myx. This defines the (strict) majority relation M: xMy , mxy > myx. In
some cases, there exists a Condorcet winner, i.e. a candidate C defeating any other
candidate: 8 x 6¼ C, mCx > mxC. As noticed above, if there exists a Condorcet winner,
then he or she is unique. It may even happen that M is a linear order and allows to rank
all the candidates. It is the case for our example. Indeed, for our example, the pairwise
comparison coefficients are the following:

• mxy = 9; myx = 18;
• mxz = 11; mzx = 16;
• mxt = 17; mtx = 10;
• myz = 13; mzy = 14;
• myt = 17; mty = 10;
• mzt = 17; mtz = 10.

The bold values are the ones greater than the majority v/2 (= 13.5 in the example).
These values show that the majority relation is here a linear order, z > y > x > t; here,
z is the Condorcet winner and the winner of the election too. By the way, we may
observe that, though the election admits a Condorcet winner, this one is not elected by
the previous three procedures.

By construction, it is impossible to achieve a majority coalition of dissatisfied
voters against a Condorcet winner. But the problem with this procedure, as noticed by
Condorcet himself [16], relies in the fact that a Condorcet winner may not exist. The
smallest example showing this is the following, with n = 3 candidates (x, y, z) and
v = 3 voters as well (the preferences are still assumed to be linear orders):

• for 1 voter: x > y > z
• for 1 voter: y > z > x
• for 1 voter: z > x > y.

Then the pairwise comparison coefficients are:

• mxy = 2; myx = 1;
• mxz = 1; mzx = 2;
• myz = 2; mzy = 1.

Here, we have a majority relation which is not transitive, but cyclic: x is preferred to
y by a majority of voters, y is preferred to z by a(nother) majority of voters, and z is
preferred to x by a (third) majority of voters. There is no Condorcet winner and so
Condorcet’s procedure cannot be applied here. It is the so-called “voting paradox” or
also “Condorcet effect” [27]: the aggregation of linear orders does not necessarily
provide a linear order. According to Guilbaud [27], the probability of the appearance of
the Condorcet effect for three candidates varies from 5.56% (for three voters) to about
8.77% (for a number of voters that tends towards infinity). It grows with the number of
candidates, and, for a given number of candidates, it grows when the number of voters
increases. For example, according to Gehrlein [24] (see also [25]), it is about 52.5% for
25 candidates and 3 voters, reaching about 73% for 25 candidates and an infinite
number of voters.
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We can anyway distinguish between three cases:

• the Condorcet effect does not involve all the candidates and a Condorcet winner
does exist; if the aim is only to elect one person, this situation is not problematic:
the Condorcet winner is elected;

• candidates may be gathered into subsets in such a way that all candidates in one
subset are preferred to all candidates in another subset; we may then focus our
attention to the top subset and eliminate the candidates belonging to the other
subsets; the problem is now to know how to rank candidates from the top subset;

• finally, the most embarrassing case is that in which the Condorcet effect involves all
the candidates at once and does not allow any conclusion, even partial, for the
collective preference.

In the case of 6 candidates and 21 voters, Mimiague and Rousseau [46] have
experimentally estimated that the probability that the result of the procedure gives a
“paradox” of the first type is about 35%, the second type is 20%, and of the third type
10%. According to these authors, when the numbers of candidates and voters increase,
the last two cases (no Condorcet winner) become predominant and the first case dis-
appears (however, there are significant differences between the values of these authors
and those obtained by Gehrlein).

We can see from this example that the choice of the voting procedure is also a
determining factor, while it is sometimes considered that the result of an election comes
only and intrinsically from the voters’ preferences: here, for a same set of preferences,
four voting procedures, four different winners (the interested reader can find another
example in [3], involving five voting methods applied to five candidates, with five
different winners…). Borda was maybe the first to notice this explicitly (see [40]):
“C’est une opinion généralement reçue, et contre laquelle je ne sache pas qu’on ait
jamais fait d’objection, que dans une élection au scrutin, la pluralité des voix indique
toujours le vœu des électeurs, c’est-à-dire que le candidat qui a obtenu cette pluralité est
nécessairement celui que les électeurs préfèrent à ses concurrents. Mais […] cette
opinion, qui est vraie dans le cas où l’élection se fait entre deux sujets seulement, peut
induire en erreur dans tous les autres cas” (“It is a generally received opinion, and
against which I do not know that anybody objected, that, in an election, the plurality of
voices always indicates the wishes of voters, i.e. that the candidate who got this
plurality is necessarily the one that voters prefer to its competitors. But […] this
opinion, which is true when the election is between two candidates only, can be
misleading in all other cases”).

2.5 Arrow’s Theorem

From the previous example, we may conclude that none of these four methods is utterly
satisfactory when we consider the properties which are usually considered as desirable.
In 1951, Arrow [1] shows that there does not exist a “good” voting procedure, with
respect to some “reasonable” axiomatic properties; this is known as the famous “im-
possibility theorem”. More precisely, assuming that the preferences of the voters are
complete preorders (see above; as already noticed, the set of complete preorders
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includes the one of linear orders, quite often considered to model the preferences of the
voters) and that the result of the voting procedure should also be a complete preorder,
Arrow considered the following properties:

• unrestricted domain or universality: the voting procedure must be able to provide a
result whatever the preferences of the voters are;

• independence of irrelevant candidates: the collective preference between candidates
x and y must depend only on the individual preferences between x and y; in other
words, the collective preference between x and y must remain the same as long as
the individual preferences between x and y do not change;

• unanimity (or Pareto property): if a candidate x is preferred to another candidate
y by all the voters, then x must be preferred to y in the collective preference too.

Arrow showed that, if there are at least three candidates (things are much more
comfortable with only two candidates!), the only procedure which satisfies these three
conditions at once is the dictatorship, in which one voter (the dictator) imposes his or
her preference. Though this impossibility theorem ruins the hope to design a voting
procedure fulfilling the usual desirable properties, several procedures have been sug-
gested since this date. Among the ways to escape Arrow’s impossibility theorem, we
find:

• the definition of other axiomatic systems leading to voting procedures which would
not be the dictatorship;

• the restriction of the individual preferences to more constrained domains;
• adapting the result, when this one is not satisfactory with respect to the required

axiomatic properties, into a result fulfilling these properties and fitting the genuine
result as well as possible, for some criterion which must be defined.

The main questions associated with the first possibility are “given some axiomatic
properties, what are the voting procedures satisfying these properties?” or, conversely,
“given a voting procedure, what is the proper axiomatic system characterizing this
procedure?”; we shall not consider this direction here.

The second possibility can be illustrated, for instance, by the restriction of the
individual preferences to single-peaked linear orders. To define them, assume that we
can order the candidates on a line, from the left to the right, and assume that this linear
order X does not depend on the voters (from a practical point of view, X is not always
easy to define, even for political elections). For any voter V, let x(V) denote the
candidate preferred by V. The preference of V is said to be X-singled-peaked if, for any
candidates y and z with x(V) 6¼ y 6¼ z 6¼ x(V) and located on the same side of X from x
(V), y is preferred to z by V if and only if y is closer to x(V) than z with respect to X.
Let LX denote the set of X-single-peaked linear orders. Black [10] showed that, for any
order X, the aggregation of X-single-peaked linear orders by Condorcet’s procedure
provides an X-single-peaked linear order (if we assume that there is no tie). So, if the
individual preferences are assumed to be X-single-peaked linear orders, there is no
“Condorcet effect” and Condorcet’s procedure can be applied.

The third direction was followed by Kemeny in 1959 [39], when he studied the
aggregation of complete preorders into a median complete preorder (see below). Notice
that this approach is also attributed to Condorcet for the aggregation of linear orders
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into a linear order; in the sequel, we will refer the search for a median linear order or of
a median complete preorder as the Condorcet-Kemeny problem (as other people
rediscovered this problem or some of its variants [48], the problem is also known under
other names, see [17]). We detail such a possibility in the next section.

3 Condorcet-Kemeny’s Problem

As seen in Sect. 2, Condorcet’s procedure may fail in providing a Condorcet winner:
the majority relation then contains cycles. The method depicted in this section, the
Condorcet-Kemeny’s procedure, selects the Condorcet winner as the winner of the
election, when this Condorcet winner does exist; otherwise, we compute a linear order
at minimum distance from the collection of voters’ preferences: the candidate at the top
of such an optimal linear order is considered as the winner of the election. We detail
this method below.

3.1 Condorcet-Kemeny’s Problem Stated as a 0–1 Linear Programming
Problem

In Condorcet-Kemeny’s method, the aim is to compute a complete preorder or a linear
order fitting the majority relation M “as well as possible”. To specify what “as well as
possible” means, we use the symmetric difference distance d defined, for two binary
relations R and S defined on X, by:

d R; Sð Þ ¼ ðx; yÞ 2 X2 : xRy and x�Syð Þ or x�Ry and xSyð Þ� ��� ��:

This quantity d(R, S) measures the number of disagreements between R and
S. Though it is possible to consider other distances, d is used widely and is appropriate
for many applications. Barthélemy [6] shows that d satisfies a number of naturally
desirable properties, and Barthélemy and Monjardet [8] recall that d(R, S) is the
Hamming distance between the characteristic matrices (see below) of R and S and point
out the links between d and the L1-metric or the square of the Euclidean distance
between these matrices (see also [47, 48]).

Then, let P = (R1, R2, …, Rv) denote the collection, called a profile, of the pref-
erences of the v voters (then, for 1 � i � v, the Ri’s are complete preorders or are
linear orders according to the context). We then define a remoteness D(P, R) between a
binary relation R defined on X and the profile P by:

DðP; RÞ ¼
Xv

i¼1

d Ri; Rð Þ:

The remoteness D(P, R) measures the total number of disagreements between P and
R (other remoteness functions are studied in [35]).

Our aggregation problem can be seen now as a combinatorial optimization prob-
lem: given the profile P, determine a binary relation R* minimizing D over the set of
complete preorders or of linear orders defined on X. Such a relation R* minimizing D is
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called a median relation (more precisely a median complete preorder or a median
linear order) of P (see [8, 36]).

We may state D(P, R) for any relation R thanks to variables describing R. Let
r ¼ rxy

� �
ðx;yÞ2X2 be the characteristic matrix associated with R, i.e. the matrix defined

by: rxy = 1 if x is preferred to y by R and rxy = 0 otherwise (as reflexivity does not
matter, we may set rxx = 0 if we wish…). Similarly, for 1 � i � v, let rixy be equal to

1 if x is preferred to y by Ri and to 0 otherwise (with rixx ¼ 0…); note the equalities
rixy þ riyx ¼ 1 for any distinct x and y when the relations Ri are linear orders and the

inequalities rixy þ riyx � 1 when the relations Ri are complete preorders. Because the

quantities rixy and rxy are equal to 1 or 0, we have:

dðRi;RÞ ¼
X

ðx;yÞ2X2

rixy � rxy
���

��� ¼
X

ðx;yÞ2X2

rixy � rxy
� �2

¼
X

ðx;yÞ2X2

rixy þ
X

ðx;yÞ2X2

ð1� 2rixyÞ � rxy:

From this, we obtain:

DðP; RÞ ¼
Xv

i¼1

d Ri; Rð Þ ¼ k �
X

ðx;yÞ2X2

mxy � rxy

where k is a constant (depending only on the profile P) and with, for (x, y) 2 X2,

mxy ¼ 2
Pv
i¼1

rixy � v. The quantity mxy may be interpreted as the difference between twice

the number of the voters who prefer x to y and the total number v of voters. Moreover,
when all the relations Ri for 1 � i � v are linear orders, then note the relation
myx = −mxy and the equality k = vn(n − 1)/2 (both relations coming from the equality
rixy þ riyx ¼ 1, true for any distinct x and y, and from the equality rixx ¼ 0, true for any x);
then mxy can also be interpreted in this case as the difference between the number of
voters who prefer y to x and the number of voters who prefer x to y: we recover the
pairwise comparison coefficients of Condorcet’s procedure (see above).

Thus the minimization of D(P, R) is the same as the maximization ofP
ðx;yÞ2X2

mxy � rxy over the set of complete preorders or of linear orders. The constraints

defining the fact that R must be a complete preorder or a linear order are the following
(except the reflexivity which, once again, does not matter here):

• completeness: 8 (x, y) 2 X2 with x 6¼ y, rxy + ryx � 1
• transitivity: 8 (x, y, z) 2 X3 with x 6¼ y 6¼ z 6¼ x, rxy + ryz − rxz � 1
• and, for linear orders, antisymmetry: 8 (x, y) 2 X2 with x 6¼ y, rxy + ryx � 1,

which, combined with completeness, gives: 8 (x, y) 2 X2 with x 6¼ y, rxy + ryx = 1.
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We thus obtain a linear programming problem with binary variables:

• for the computation of a median complete preorder:

Maximize
X

ðx;yÞ2X2

mxy � rxy

with the following constraints:
8 (x, y) 2 X2 with x 6¼ y, rxy + ryx � 1 (completeness),
8 x 2 (x, y, z) 2 X3 with x 6¼ y 6¼ z 6¼ x, rxy + ryz − rxz � 1 (transitivity),
8 (x, y) 2 X2, rxy 2 {0, 1} (binarity);

• for the computation of a median linear order:

Maximize
X

ðx;yÞ2X2

mxy � rxy

with the following constraints:
8 (x, y) 2 X2 with x 6¼ y, rxy + ryx = 1 (completeness and antisymmetry),
8 (x, y, z) 2 X3 with x 6¼ y 6¼ z 6¼ x, rxy + ryz − rxz � 1 (transitivity),
8 (x, y) 2 X2, rxy 2 {0, 1} (binarity).

3.2 Complexity of the Computation of Median Relations

The complexity of the computation of median relations has been studied by several
researchers (for the theory of complexity of problems, see [23, 38] or [53]). To my
knowledge, Yoshiko Wakabayashi was the first to publish results dealing with the
complexity of the computation of median relations. In her PhD thesis ([59]; see also
[60]), she pays attention to the computation of different kinds of median relations,
including linear orders and complete preorders, but only for profiles of binary relations
(i.e. relations without special structural properties). Some of her results deal with the
case where the number v of voters is fixed. For the computation of median linear orders
or of median complete preorders, her contribution is specified by the following
theorem.

Theorem 1. The computation of a median complete preorder or a median linear order
of a profile of binary relations is NP-hard. Moreover, for the computation of a median
linear order, the problem remains NP-hard for any fixed value of v with v � 1.

This result has been improved and extended in three directions. First, it has been
extended to a profile of v linear orders or to any profile of v relations extending the
structure of linear order (which includes the case of complete preorders). Secondly, for
the computation of median complete preorders, it has been extended to the case where
the number of voters v is fixed. Thirdly, it has been extended to other kinds of medians.
Some of these improvements or extensions are provided below.

Bartholdi et al. [9] studied in 1989 the computation of median orders, including the
case where the preferences of the voters are linear orders. In their results, the number
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v of voters is not fixed but depends on the number of candidates. The same is done, at
the same time, in [28] (see also [30]). In 2001, Dwork et al. [20] showed that the
computation of a median linear order of a profile of four linear orders is NP-hard (this
result remains true for any even value greater than or equal to 4; the case of two voters
can easily be shown to be polynomial). More recently (2016), Bachmeier et al. [2]
showed that the problem also remains NP-hard for any odd value of v with v � 7. The
cases v = 3 and v = 5 are still open to my knowledge. These results are summarized in
the following theorem.

Theorem 2. The computation of a median linear order of a profile of linear orders is
NP-hard and remains so even if the number v of voters is even with v � 4 or odd with
v � 7. The problem is polynomial for v = 2.

The complexity of the computation of median complete preorders of a profile of
linear orders is studied in [28, 30]. It is shown that this problem is also NP-hard if the
number of voters is large enough with respect to the number of candidates. This result
has been improved in [32] by dealing with the case where v is fixed: the problem
remains NP-hard for any v with v � 5.

Theorem 3. The computation of a median complete preorder of a profile of linear
orders is NP-hard and remains so even if the number v of voters is fixed with v � 5.

From the previous results, it is possible to prove (see [32]) that the computation of a
median complete preorder of a profile of complete preorders (i.e. Kemeny’s problem) is
NP-hard. The next theorem is more specific:

Theorem 4. The computation of a median complete preorder of a profile of complete
preorders (Kemeny’s problem) is NP-hard and remains so even if the number v of
voters is even with v � 4 or odd with v � 7.

For other results dealing with the complexity of voting procedures or of the
computation of median relations, see [15, 31, 33–35].

4 “Paradoxes” in Voting Theory

Some of the “paradoxes” depicted in this section come from the lack of monotony
(except if stated otherwise, the examples given below come from [29]; see also [52]).
Monotony is the property saying that, if a candidate x is the winner of the election for
some given voters’ preferences, x must remain the winner if he or she is ranked better
in the preferences of at least one voter. If such a property seems quite reasonable, it
happens that many voting procedures are not monotonous. Which generates “para-
doxes” or, at least, unexpected and usually undesirable effects.

The one-round procedure is obviously monotonous. Anyway, the situation depicted
in the next section may appear as a “paradox”.

4.1 “Paradox” for the One-Round Procedure

Let us imagine a country divided into constituencies and having a parliament whose
members, belonging to political parties, are elected by means of a one-round procedure,
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one member per constituency. Is it possible that a given party P has a majority in this
parliament while being a minority compared to the voters? If so, what should be its
minimum representativeness in the population so that it is so? Similarly, what is the
maximum ratio of seats it can occupy in the parliament?

It is easy to see that, from a theoretical point of view, there is no minimum
threshold to be respected for the representativeness of this party in the population so
that it can obtain all the seats of the parliament, if we can involve as many parties as we
want. Indeed, in order that all the members of the parliament belong to P, it is necessary
and sufficient that P wins in each constituency. However, this can happen with a
representativeness of P as low as we want: it is sufficient to assume that there is a large
enough number of competitors and that each of them is ranked worse than the can-
didate of P. For example, P may represent less than 10% of the population and may
win all the seats if we assume that at least eleven parties (including P) have candidates
in each constituency and that each party other than P gets only 9.05% of the votes
while P obtained 9.5%. This general result, however, is unrealistic because it assumes
that the number of parties is unbounded (for the reasoning to be applicable, the number
of parties increases when the required threshold decreases).

4.2 “Paradoxes” for the Two-Round Procedure

The result of the previous section remains valid for the two-round procedure if we
assume that the transfer of votes between the first and second rounds occurs in favour
of P. It is more interesting to know if a similar situation can occur in the second round
(which amounts to asking the same question for a one-round vote, but limiting the
number of parties to two).

In this case, in order to have all the seats in the parliament, P must win the second
round in all constituencies, implying that it obtains an absolute majority in each
constituency, which in turn implies that P is a majority in the population of voters. But,
conversely, it is enough that P represents a little bit more than 50% of the voters of the
second round to win all the seats of the parliament (which would not fail to provoke
protests among the opponents of P!…), if the voters who vote at the second round for
P are uniformly distributed in the constituencies.

What happens now if P does not seek to have all the seats necessarily, but only
wants to be a majority in the parliament? Is it possible to control the parliament by
being a minority in the country? The answer is “yes”. It is enough that P wins the
elections in half the constituencies plus one to have the absolute majority. However,
since the constituencies do not necessarily have the same number of voters, P may
represent a ratio of the population as low as we wish and still have more than half the
seats.

This paradox becomes more interesting by assuming now that the constituencies
have exactly the same number of voters. Then, split the constituencies into two cate-
gories: those for which P wins the second round and those for which P loses it. In order
for P to have at least half the seats plus one in the parliament, the first type must gather
at least half the constituencies plus one. In order to win a constituency, P must rep-
resent more than 50% of voters in the second round of that constituency. On the other
hand, in the second case (constituency lost for P), the representativeness of P can be
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zero. In such an extreme case (P represents just a little bit more than half the voters in
the constituencies it wins and no one in those it loses), P represents about half of the
voters in about half of the constituencies, that is approximately one quarter of the total
number of voters (since it was assumed that the constituencies all have the same
number of voters). Thus, even with constituencies of identical size, one can have half of
the seats of the parliament while representing only about 25% of the voters. Of course,
the distribution of voters in the constituencies plays a key role. To do this, they must be
divided up so as to gather the opponents of P in “sacrificed” constituencies (“packing
strategy”, i.e. concentrating the opposing party’s voting power in one district to reduce
its voting power in other districts), and to distribute the voters favourable to P in the
other constituencies to represent half of the voters (“cracking strategy”, i.e. diluting the
voting power of the opposing party’s supporters across many districts). Anyway, this
would lead to strange divisions of the constituencies, with bizarre shapes for the
boundaries. Such a division is sometimes called “gerrymander”, after the name of
Governor Elbridge Gerry (1744–1814): in 1812, Gerry signed a bill that redistricted
Massachusetts to benefit his Democratic-Republican Party; when mapped, one of the
contorted districts in the Boston area was said to resemble the shape of a mythological
salamander.

Let us now turn to the question of the monotony of the two-round procedure. For
this, consider an election involving three candidates x, y, z and 17 voters whose
preferences are given by the following profile of linear orders:

• for 6 voters: x > y > z
• for 5 voters: z > x > y
• for 4 voters: y > z > x
• for 2 voters: y > x > z.

Consequently, x and y remain for the second round, with 6 votes each against 5 for
z. As the preferences are assumed to remain the same between the rounds, the 12 voters
who voted for x or y in the first round keep their votes in the second round, while the 5
voters who voted for z vote now for their second choice, x. It is therefore x who is
elected in the second round against y, with 11 votes against 6.

Imagine now that x, the winner, ignoring the outcome of the vote, campaigns
against his rival y and succeeds in convincing the last two voters (whose preferences
were given by y > x > z) to invert x and y in their choices. We thus obtain the following
new preferences:

• for 8 voters: x > y > z
• for 5 voters: z > x > y
• for 4 voters: y > z > x.

It is now x and z who remain for the second round. The voters of y now vote for
their second choice, z. This gives a total of 5 + 4 = 9 votes for z in the second round,
beating x who has only 8 votes: z is now the winner. And yet the ranks of x in the
voters’ preferences are better than in the initial situation. One could therefore expect
that x remains the winner. This is at least what should happen if the two-round pro-
cedure was monotonous; but precisely, it is not! Here, x is still selected for the second
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round (it could not be otherwise), but now y no longer collects enough votes to hold
against x and is therefore eliminated in favour of z. It is this change of opponent that
explains the defeat of x. Conclusion: although x progresses in the preferences of the
voters, this progression is harmful to him or her and makes him or her pass from the
state of winner to the one of loser. The two-round procedure is not monotonous.

A consequence of this lack of monotony concerns what has sometimes been called
“the useful vote”, related to “tactical voting” [21]. In voting methods, tactical voting
(also called “strategic voting”, “sophisticated voting” or “insincere voting”) occurs, in
elections with more than two candidates, when a voter supports another candidate more
strongly than his or her sincere preference in order to prevent an undesirable outcome.
In such a situation, a voter agrees not to vote for his or her preferred candidate, for
example because he or she believes that the candidate is not sufficiently likely to be
present in the second round, and transfers his or her vote to his or her second choice,
who is considered to be more likely to win (but nevertheless threatened with elimi-
nation, so that this “useful vote” is justified in the eyes of the voter who is considering
the manipulation of his or her vote). In fact, the previous example shows that this
“useful vote” could harm those who believe in benefiting from it: the “useful vote”
applied by the last two voters to x causes the latter to lose.

Another consequence, also paradoxical, is that a voter may have interest in voting
for the candidate that he or she least likes to finally help his or her favourite candidate
win. Consider the following example, again with three candidates x, y and z, and 17
voters:

• for 6 voters: x > y > z
• for 5 voters: z > x > y
• for 4 voters: y > z > x
• for 2 voters: x > z > y.

In the first round, y is eliminated; then z is the winner of the second round, thanks to
the voters who voted for y. If now the two voters whose preferences are given by the
linear order x > z > y do not vote according to their preferences and decide to vote for
the candidate they like least, i.e. for y, then z is eliminated from the first round (with 5
votes against 6 for x and 6 for y). Thanks to the contribution of the voters of z and
independently of the behaviour of the two voters whose preferences were initially
x > z > y, x then wins the second round against y. The Machiavellian behaviour of the
two voters led them to vote for y, though y is ranked last, in fact in order to eliminate
z and thus in order to make x be elected… Of course this strategy is risky and, if we
assume, in our example, that all the voters of z prefer y to x, then the two voters who
manipulated their votes would have failed in their aim, even contributing to the election
of y instead of z, though they would have preferred z to y.

The next paradox is called “fishermen’s paradox” by Bouyssou and Perny [12] (to
whom I borrow the following example) and is in fact a paradox dealing with absten-
tion, sometimes called “no-show paradox” [13]; no-show allows an unusual strategy of
tactical voting: abstaining from an election can help a voter’s preferred choice win.
Consider an election with three candidates x, y and z, and eleven voters distributed as
follows:
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• for 4 voters: x > y > z
• for 4 voters: z > y > x
• for 3 voters: y > z > x.

If the eleven voters vote, the first round eliminates y and the second round elects
z with seven votes against only four for x. But, guessing this result, two of the first four
voters, discouraged by the expected victory of z, who is ranked last in their preferences,
decide not to vote and go fishing instead. Then, x having only two voices left, x is
eliminated in the first round; y and z compete in the second round, to the benefit of y,
who benefits from the votes of the two (or of the four if we assume that the two
abstentionists have returned from their fishing party and participate in the second
round) first voters remaining: it is finally y who is elected. At the end of the second
round, our two fishermen are thus satisfied to note that their abstention not only
allowed them to spend a beautiful day in the countryside, but also helped to elect a
candidate (y) whom they prefer rather than the one who would have been elected if they
voted (z). And Bouyssou and Perny conclude that such a voting procedure does not
encourage participation, since it may be worth abstaining instead of voting sincerely.

4.3 “Paradoxes” for Borda’s Procedure

It is easy to see that Borda’s procedure is monotonous: if a Borda winner is ranked
better in the preferences of the voters, he or she obtains more points and thus remains
the winner. But consider a variant of Borda’s procedure sometimes used when there is
more than one person to be elected and called the “iterated Borda’s procedure”. It
consists of applying the usual Borda’s procedure a first time to determine a first elected
candidate; then this one is removed from the list of candidates and the same process is
repeated, as many times as there are candidates to be elected. The following example
shows that the iterated Borda’s procedure is not monotonous, which in turn shows that
monotony is not kept as easily as one might think, since repeating a monotonous
procedure does not necessarily provide a monotonous procedure.

Consider twenty voters who want to choose two candidates out of three. Let us
suppose that the preferences of the twenty voters over the three candidates x, y, and
z are distributed as follows:

• for 4 voters: x > y > z
• for 4 voters: y > z > x
• for 5 voters: y > x > z
• for 7 voters: z > x > y.

Borda scores are:

sB xð Þ ¼ 40; sB yð Þ ¼ 42; sB zð Þ ¼ 38:

Thus y is the first elected candidate. We remove y, which gives 9 voters who prefer x to
z, and therefore 11 who prefer z to x, i.e. Borda scores of 31 for z and 29 for x: z is
elected second.
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Suppose now that the five voters whose preferences are y > x > z decide to invert
x and z. Since x was not elected, one can expect that this regression does not improve
his or her situation; and yet… The scores become:

sB xð Þ ¼ 35; sB yð Þ ¼ 42; sB zð Þ ¼ 43:

As expected, x’s score decreases, while the one of z increases. This allows z to be
elected first now. As a result, the second confrontation now opposes x and y. Now, after
removing z from the candidates, we get 11 voters who prefer x to y and therefore 9 who
prefer y to x (i.e. Borda scores of 31 for x and 29 for y): x is elected second. We are thus
in a doubly paradoxical situation: not only x, less well ranked than before, is now
elected, but in addition y, whose rank does not change for any voter and who was
elected first before these modifications, is now eliminated from the elected candidates!

This example can easily be adapted to show how the progression of a candidate can
lead to his or her elimination; just repeat the previous example and invert the two cases:
we then pass from z and x elected to y and z elected after the progression of x in the
opinion of the five voters (we shall then be surprised by the elimination of x and by the
amazing progression of y, boosted to the first place instead of being eliminated).

Another paradox [19] of which Borda’s procedure suffers is sometimes known as
the reverse order paradox. It may happen when a candidate is removed from an
election and that the effect of that removal is to reverse the order of the remaining
candidates (of course without changing the preferences of the voters). To illustrate this
paradox, let us consider the case of four candidates x, y, z and t and seven voters whose
preferences are:

• for 2 voters: x > t > z > y
• for 2 voters: y > x > t > z
• for 3 voters: t > z > y > x.

Borda scores are:

sB xð Þ ¼ 17; sB yð Þ ¼ 16; sB zð Þ ¼ 15; sB tð Þ ¼ 22;

which provides the linear order t > x > y > z as the collective preference.
But imagine that, for various reasons, t cannot assume the position he was running

for. One could legitimately think that the voters would entrust the position to the one
whom they had ranked second in the election, that is x here. And yet, what happens if
we decide to re-elect the remaining three candidates (without changing the voters’
preferences)? The restriction of the previous preferences to the three candidates x, y,
z gives:

• for 2 voters: x > z > y
• for 2 voters: y > x > z
• for 3 voters: z > y > x

and Borda scores become:
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sB xð Þ ¼ 13; sB yð Þ ¼ 14; sB zð Þ ¼ 15:

Now the collective preference is z > y > x, that is, maybe against all expectations,
exactly the inverse order of the order obtained by suppressing t from the previous
collective order!

A variant of this paradox (suggested by Plott and Ferejohn, according to Fishburn
[22]; see also [54] for a complete analysis of the differences in rankings between
scoring rules) consists in removing the loser from an election (i.e. a candidate with a
smallest Borda score) and in observing that this removal may lead to a reversal of the
ranking of the remaining candidates. It is easy to adapt the previous example to
illustrate this variant: it is enough to reverse the order of the preferences of the voters.
We then obtain:

• for 2 voters: y > z > t > x
• for 2 voters: z > t > x > y
• for 3 voters: x > y > z > t.

Borda scores are:

sB xð Þ ¼ 18; sB yð Þ ¼ 19; sB zð Þ ¼ 20; sB tð Þ ¼ 13;

which provides the linear order z > y > x > t as the collective preference. Removing
the loser, t, leads to the following Borda scores:

sB xð Þ ¼ 15; sB yð Þ ¼ 14; sB zð Þ ¼ 13:

Hence the collective order x > y > z: the suppression of the loser involves the
reversing of the collective preference expressed on the other candidates. This will
perhaps console the losers to know that, although they are the last ones, their presence
may nevertheless be so important! Less anecdotally, it also shows that a candidate may
have an interest in running for election, even if he or she is sure that he or she will lose,
in order to prejudice some other candidates or exercise some form of blackmail. This is
maybe not a surprise as political life offers such examples of blocking candidates…

The last paradox that we will consider in this paper concerns a variant of Borda’s
procedure. It consists in awarding points only to the candidates arriving among the first
ones in the preferences expressed by the voters. More precisely, let k be an integer
greater than or equal to 1; then, for each voter, k points are given to the candidate
ranked at the top by the considered voter, k − 1 points to the candidate ranked at the
second position, k − 2 to the candidate ranked in third, and so on, until the candidate
ranked at the kth position, which is awarded 1 point, after which no points are awarded
to candidates ranked beyond. In other words, we consider the score-vector (k, k − 1,…,
1, 0,…, 0). When k is equal to the number of candidates, we recover Borda’s proce-
dure, and when k is equal to 1, we find the one-round procedure back.

What happens when k changes for a given profile? One might expect to see some
stability in collective preferences, at least for the winners. The following example
shows that this is not the case! Let x, y, z and t denote four candidates and let us
consider the following preferences of seven voters:
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• for 3 voters: x > y > z > t
• for 1 voter: y > z > x > t
• for 1 voter: y > z > t > x
• for 2 voters: z > t > x > y.

For k = 1 (one-round procedure), x is the winner (with 3 votes, against 2 for y, 2
also for z and 0 for t). For k = 2, y wins: the scores are 6 for x, 7 for y, 6 for z and 2 for
t. For k � 3, it is z the winner (indeed, for k = 3, the scores are 12 for x, 12 for y, 13
for z, 5 for t; it is easy to see that, from k = 3, any increase in k has no effect on the
ranking of the candidates with respect to the case k = 3; because of this, only k − 1
different winners can be obtained).

So, in this example, we obtain three different winners for three successive values of
k. More generally, for n candidates, we may design profiles such that, when k varies
from 1 to n − 1, n − 1 distinct winners are obtained (what Fishburn [22] proposes to
call the truncated point-total paradox; as observed above, it is not possible to obtain
n different winners).

5 Conclusion: “Impossibility Theorems”

The previous examples illustrate different kinds of paradoxes, for instance:

• it is possible that a candidate preferred to any other candidate by a majority of
voters (i.e. a Condorcet winner) is not elected;

• the “useful vote” may prevent the expected beneficiary from being elected;
• it may be better for a voter to vote for the candidate that he or she likes least in order

to make his or her favourite candidate be elected;
• there are voting procedures for which it may be better not to vote rather than voting

for his or her favourite candidate;
• a party may have an absolute majority in the parliament while it represents only a

minority, sometimes small, of the voters;
• it is possible to become elected by regressing in the preferences of the voters;
• and so on.

Arrow’s theorem (see Sect. 2.5) provides an explanation to this multiplicity of
paradoxes: there is no “perfect” voting procedure. Hence, any voting procedure will
generate undesirable effects, which can be interpreted as “paradoxes”.

There are other impossibility results. We have already encountered an illustration of
Moulin’s theorem [50] on abstention:

Theorem 5. When there are at least four candidates, any voting procedure choosing
the Condorcet winner, when he or she exists, as the winner of the election is subject to
the paradox of abstention.

Another impossibility theorem was independently established by Gibbard [26] and
Satterthwaite [56, 57] (see also Moulin [49]). A voting procedure is said to be “manip-
ulable”whenever it is more interesting for a voter V to misrepresent his or her preferences
in order to secure an outcome preferred by V to the winner obtained when V votes
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according to his or her true preferences (his or her vote is then called “strategic”, or also
“insincere” or “sophisticated”). The following result shows that the paradoxes related to
manipulability and illustrated above are inevitable if we reject dictatorship:

Theorem 6. When there are at least three candidates, any voting procedure without
dictators is manipulable.

However, the contribution of operations research to the study of voting procedures
is not limited to these negative aspects and, though there does not exist an ideal
procedure, operations research can also provide elements that can guide the choice of a
voting procedure. By highlighting the difficulties encountered in designing a satisfying
voting procedure, by combating prejudices, by separating what is possible from what is
not possible and, more generally, by proposing standards, axiomatizations, method-
ologies for studying voting procedures, operations research applied to voting theory
and social choice will have already achieved a positive goal: to help the citizens that we
are to become more aware of the limitations intrinsic to any voting procedure and to
enable us to act with a better knowledge of these limitations.
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Abstract. One suggestion to overcome the range anxiety of electrical
vehicle owners is the use of a network of battery swapping stations. To
improve the network’s performance, managers can purchase spares and
place them in the network’s stations. The battery allocation problem,
therefore, is finding the allocation that optimizes the network’s perfor-
mance. For the performance measure, we consider the window fill rate,
that is, the probability that a customer that enters a swapping station
will exit it within a certain time window. For the battery swapping net-
work this time window is defined as the customer’s tolerable wait. In our
derivation of the window fill rate formulae, we differ from earlier research
in that we assume that the time to remove and install a battery is not
negligible. We numerically analyze the battery allocation problem for
a hypothetical countrywide application in Israel and demonstrate the
importance of estimating correctly customers’ tolerable wait. We find
that the window fill rate criterion leads to two classes of stations, those
that are assigned spares and those that are not. Additionally, we show
the savings attained by reducing the swapping time. Finally, we compare
between a balanced and imbalanced system (in terms of customer arrival
to the various stations) and show that the advantage of each system cru-
cially depends on the length of the tolerable wait.

Keywords: Exchangeable-item Repair-system
Inventory optimization · M/G/∞ · Tolerable wait · Electric vehicles

1 Introduction

As part of the grand global effort to reduce greenhouse gas emissions, govern-
ments around the world are pushing for the public to switch from regular, fuel
burning cars to electric vehicles. However, despite many incentives offered by
governments, the public is hesitant about adopting these vehicles. The reason to
this hesitation is blamed on the batteries of these vehicles. These batteries need
to be recharged frequently with inconveniently long recharging time. In 2007, the
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US-based corporation Better Place suggested to overcome this problem by sepa-
rating battery ownership from the vehicle’s ownership. Customers will purchase
the vehicle without its battery from the auto-maker and lease battery services
from a third party (“the firm”), which will assume all the battery-associated
risks. The firm will construct a network of battery swapping stations in which
car owners replace their depleted batteries for charged ones from the station’s
stock. Separately, the depleted batteries are recharged and put back in the stock
to be given to future customers. To expedite customer service, the firm will pur-
chase spare batteries that will be placed each station. In the model presented in
this paper we assume that the budget of spare batteries is given, and therefore
the firm’s problem is the ‘spares allocation problem’, namely, to decide how to
allocate the spare batteries among the battery swapping stations with the goal
of optimizing the network’s service measure.

The service measure that we consider in this paper is a generalization of
the fill rate. With the fill rate, the firm will allocate batteries to maximize the
fraction of customers who are served upon arrival. In reality, however, the fill
rate is rarely an accurate measure for the firm’s costs. For example, if the bat-
tery provider advertises or is committed by contract to provide service within
a certain period of time then it does not need to have a battery ready for the
customers immediately when they arrive. From the customers’ standpoint, too,
there is a certain tolerable or acceptable period of wait, which may depend on
their level of patience or their expectations about how time it is reasonable to
wait. If we assume that a customer entering the station expects being served
within the ten minutes it would take to fill a tank of a conventional car, then
only if the customer waits more than ten minutes the firm will experience repu-
tation and contractual losses. Thus, in lieu of optimizing the fill rate, the firm’s
objective should be to maximize the window fill rate, i.e., the probability that a
customer is served within the tolerable wait.

To solve the spares allocation problem, we use related research in the field
of exchangeable-item repair systems. Customers arrive to these systems with a
failed item and exchange it for an operable item in a manner similar to the bat-
tery swapping scheme. Furthermore, since battery charging docks are relatively
inexpensive, one may assume that there are sufficiently many (‘ample server’
assumption) in each location. Further, we assume Poisson arrival and therefore
each location can be modelled as an M/G/∞ queue. [1] develop an algorithm
for finding a near-optimal solution in such multi-location systems assuming that
the item’s assembly and disassembly times are zero. This assumption, however,
is unrealistic for the battery swapping problem since battery removal and instal-
lation times are significant compared to the customer’s tolerable wait.

In the first part of this paper, which expands the research described in [2], we
develop the window fill rate formula for the case of deterministic nonzero item
assembly and disassembly times. The implication of our analysis is that as long
as these times are less than the tolerable wait, a Δ increase in the assembly and
disassembly time is equivalent to a Δ decrease in the tolerable wait. Using this
finding we employ the [1] algorithm to find a solution to the battery swapping
problem, i.e., how to allocate spare batteries in the network.
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In the second part of this paper, we estimate the battery allocation problem
of the Better Place corporation if it had succeeded going widespread in Israel and
derive the optimal solution for different service criteria. This numerical example
provides valuable insight into the critical importance of assessing correctly the
tolerable wait time and the significant losses that the firm incurs if it neglects
to do so. Second, we show how using the window fill rate as the optimization
criterion creates two classes of battery exchange stations; high-traffic stations
that receive spares and low-traffic stations that do not receive spares. As a prac-
tical consequence, managers should develop two different policies with respect to
their service commitments to customers. Third, we conduct a sensitivity anal-
ysis and, in particular, we estimate the savings attained by reducing battery
swapping time. Fourth, we demonstrate how a balanced network with the same
total arrival rate differs from the imbalanced network and from a single loca-
tion system. We find that the performance of each one of these systems may be
higher or lower than the other systems depending on the size of the tolerable
wait. Therefore, if managers wish to increase their customer base, the decision
whether to target customers near high-traffic stations or near low-traffic stations
crucially depends on customers’ tolerable wait.

Although the Better Place endeavor has ended with its bankruptcy in 2013,
the battery swapping idea is either applied or considered by other companies
such as XJ Group Corporation in Qingdao and Gogoro in Taipei [3]. The model
presented in this paper, therefore, may yet be applied in real-life large-scale
situations.

2 Literature Review

Electric vehicles are considered an environmentally-friendly alternative to fuel-
burning cars [4] and are projected to eventually replace them [5]. However, to
date, drivers are wary of these vehicles and therefore, many governments pro-
vide substantial tax incentives to encourage their widespread adoption. Notable
examples for countries with such policies are West European countries, the
United States, China and Japan [6]. Despite these governmental efforts, cus-
tomers’ wariness persists and most governments’ adoption goals have not been
met [7]. The major customer concern is the ‘range anxiety’, namely, the fact
that compared to internal combustion engines, batteries have a limited range
and long recharging time. Range anxiety is discussed in numerous papers (e.g.,
[8]; [9]) and there seems to be a consensus among researchers that the electric
vehicle industry must address customers’ range anxiety for these vehicles to be
widely adopted.

An innovative idea to overcome these battery-related concerns was introduced
by the US-based company Better Place who proposed to separate the vehicle
ownership from the battery ownership. Instead of owning the battery, vehicle
owners will purchase battery services from a firm that will establish a network
of battery swapping stations. There is a plethora of research that examines the
many aspects of this proposition such as the station design, the battery removal
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and installation times, the required number of spare batteries, the network layout
and managing the loads on the power grid [10–12]. Better Place, which operated
mainly in Israel and Denmark failed to sell more than 1500 cars [13] and filed
for bankruptcy in 2013 (see, [9]’s explanation of its failure). Despite its failure,
the ideas promoted by Better Place are still considered in different settings (e.g.,
scooters in Taipei [3]). We contribute to this stream of research by solving the
spare battery allocation problem and demonstrating a large-scale application of
this problem.

The assumption that customers will tolerate a certain wait is at the core
of this paper, which lies at the intersection of inventory and customer service
models. The concept of a tolerable wait is hardly ever considered in inventory
model. In contrast, within the service industry this concept is more commonly
assumed and is associated with numerous terms such as “expectation” [14], “rea-
sonable duration” [15], “maximal tolerable wait” [16], and “wait acceptability”
or “expected delay” of [17]. From a service-oriented approach, the customer’s
attitude to wait is mainly subjective and has cognitive and affective aspects
[17]. Indeed, we propose manipulating the customer’s expectations using behav-
iorial models originating from the service industry [18]. From a logistics point
of view, however, the tolerable wait is more objective and usually stated in the
service contract in clauses specifying within how much time service must be
rendered. Unfortunately, only few inventory models consider the tolerable wait
(e.g., [19,20]). Indeed, researchers have observed that most inventory models fail
“to capture the time-based aspects of service agreements as they are actually
written” [21, p. 744]. This study fills this void by incorporating the tolerable
wait into the optimization criterion.

The battery swapping network may be modelled as an exchangeable-item
repair system; see also [22] who take the same approach. These inventory sys-
tems have been investigated by researchers in different contexts; see [23] for a
review of this literature. A common performance measure for such systems is the
fill rate, which measures the fraction of customers who are served upon arrival
[20,24]. These papers, however, do not develop explicit formulas for the window
fill rate but use numerical techniques. In contrast, [25] develop an exact formula
for the window fill rate in a single location and [1] find that the window fill rate
is generally S-shaped with the number of spares in the location and exploit this
property to develop an efficient near-optimal algorithm for finding the optimal
spares allocation. Both papers, however, assume that item assembly and disas-
sembly times are zero. We contribute to the exchangeable-item repair system
literature by considering the window fill rate in the case of positive assembly
and disassembly times.

3 The Model

Customers arrive with a depleted battery to a battery swapping network that
comprises L stations and are served according to a first-come, first-serve policy.
Upon arrival, the customer’s battery is removed and placed in a charging dock
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and once it is fully recharged it is added to the station’s stock. To reduce cus-
tomer waiting time, the network’s managers purchase spare batteries and places
them in the different locations, so that if there is a spare battery available on
stock it is installed in the client’s vehicle in exchange of the depleted battery that
she has brought. Customers leave the swapping station once their replacement
battery is installed.

For each station l, l = 1, ..., L, we assume that customer arrival rate follows
an independent Poisson process with parameter λl. See [22] for a justification
of this assumption and our discussion in Sect. 5. We assume that there are
sufficiently many charging docks in each station (‘ample server’ assumption)
and that charging time at each dock is i.i.d. The combination of these two
assumptions is that once the battery is removed from the vehicle, it immediately
begins recharging and that recharging times are independent. Let Rl(t) denote
the cumulative probability of a battery to be recharged by time t and let rl denote
the mean recharging time. Battery removal and battery installation times are
t1 and t2, respectively. If the battery swapping time, t1 + t2, is greater than
the tolerable wait, then the window fill rate is zero. Thus, in what follows it is
assumed that t1 + t2 ≤ t.

3.1 Single Station

Consider a random customer, Jane, that arrives at date s to station l that
was allocated b spares. The non-stationary window fill rate, FNS

l (s, t, b) is the
probability that Jane will exit the station by date s + t. Since installing a battery
requires t2 units of time, Jane exits the station by date s + t if and only if by
date s + t − t2 she is at the head of the queue and there is at least one charged
battery available at the station’s stock. By “head of the queue” we mean that
all the customers who arrived before Jane (“Pre-Jane customers”) have either
exited the station or are in the process of installing batteries in their vehicles.
We can ensure this by verifying that the supply of recharged batteries is at least
as large as the demand for these batteries. On the supply side, we consider the
initial number of spare batteries in the station, b, plus all the batteries whose
recharging was completed during the time segment [0, s+ t− t2]. On the demand
side we consider the number of Pre-Jane customer plus Jane herself. Let:

– N1 denote the number of batteries brought by Pre-Jane customers that were
recharged before s + t − t2.

– N2 denote the number of batteries brought by Pre-Jane customers that were
recharged after s + t − t2.

– N3 denote the number of batteries brought by customers who arrived after
Jane (“Post-Jane customers”) and that were recharged before s + t − t2.

– Z denote a binary variable that is equal to one if Jane’s battery were recharged
before s + t − t2 and zero if it were not.
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The probability that Jane will exit the station by s+ t is the probability that
the supply of recharged batteries is greater than the demand as follows

FNS
l (s, t, b) = Pr[Supply ≥ Demand]

= Pr[b + N1 + Z + N3 ≥ N1 + N2 + 1]
= Pr[b + Z + N3 ≥ N2 + 1] (1)

Since removing the battery requires t1 units of time, the battery brought by
Jane begins recharging at s + t1. Therefore, the probability for Z = 1 is the
probability that a battery completes recharging during the interval [s + t1, s +
t− t2], which is equal to Rl(t− t1 − t2). Therefore, we can condition on the value
of Z and rewrite (1) as

FNS
l (s, t, b) = Rl(t − t1 − t2)Pr[b + 1 + N3 ≥ N2 + 1]

+
(
1 − Rl(t − t1 − t2)

)
Pr[b + N3 ≥ N2 + 1]

= Pr[N2 − N3 ≤ b − 1] + Rl(t̂)Pr[N2 − N3 = b], (2)

where t̂ := t − t1 − t2.
The ample server assumption and the assumption that batteries arrive

according to a Poisson process guarantee that N2 and N3 are independent Pois-
son random variables that are also independent of Z. We now turn to derive the
distribution of these variables.

The Distribution of N 2. Recall, N2 is the number of batteries that arrived
during [0, s) and that were not repaired by s + t − t2. Consider a customer that
arrives during the time interval [u, u + du] in [0, s) and whose battery was not
repaired by s+t−t2. The probability for an arrival during [u, u+du] is du/s [26,
Chapter 5.3.5]. The customer’s battery is removed and begins to be recharged
at u + t1, and the probability that recharging is completed later than s + t − t2
is 1 − Rl

(
s + t − t2 − (u + t1)

)
. Thus,

N2 ∼ Poisson
(
λls

s∫

u=0

(
1 − Rl(s + t − t2 − u − t1)

)du

s

)

∼ Poisson
(
λl

s+t̂∫

u=t̂

(
1 − Rl(u)

)
du

)
. (3)

The Distribution of N 3. To derive the distribution of N3 we consider the
customers that arrived during (s, s + t − t2] and whose batteries were recharged
by date s + t − t2. Of these customers, consider a customer that arrives during
the time interval [u, u + du]. The probability for this arrival is du/(t − t2). This
customer’s battery is removed and begins to be recharged at u+t1 and therefore,
the probability that the battery’s recharging is completed by s+ t− t2 is Rl

(
s+

t − t2 − (u + t1)
)
. Thus,
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N3 ∼ Poisson
(
λl(t − t2)

s+t−t2∫

u=s

Rl(s + t − t2 − u − t1)
du

t − t2

∼ Poisson
(
λl

t̂∫

u=−t1

Rl(u)du = λl

t̂∫

u=0

Rl(u)du
)
. (4)

The Stationary Window Fill Rate. We obtain the stationary window fill
rate by taking the limit of s in (3) to infinity. This is summarized in the following
proposition:

Proposition 1. The stationary window fill rate for station l with b spares is
given by

Fl(t, b) = Pr[N ≤ b − 1] + Rl(t̂)Pr[N = b] , (5)

where N := N2 − N3 and where N2 ∼ Poisson
(
λl

∞∫

u=t̂

(1 − Rl(u))du
)
and N3 is

defined in (4).

3.2 The Network

Let b = (b1, ..., bL) denote a network battery allocation and let λ :=
∑

λl denote
the (total) arrival rate to the network. The network’s window fill rate, F (t, b),
is the weighted average of the local window fill rates. Thus, for a given a budget
of B spare batteries, the battery allocation problem is:

max
b≥0

F (t, b) :=
L∑

l=1

λl

λ
Fl(t, bl) s.t.

L∑

l=1

bl = B. (6)

The consequence of Proposition 1 is that the window fill rate depends only
on t̂ = t− t1 − t2, and therefore we can instead assume that the battery removal
and installment times are zero and use the adjusted tolerable wait, t̂, in lieu
of the true tolerable wait t. The implication of this observation is that all the
result of [1] who assume zero swapping time are valid for our model as well. In
the remainder of this section, we state the results of [1] that are necessary for
understanding the battery allocation application.

Result 1: The Shape of the Window Fill Rate. The window fill rate of each
location, Fl(t, b) is strictly increasing in the number of spares in that location,
b. If t ≥ rl + t1 + t2 then Fl(t, b) is concave in b. Otherwise, Fl(t, b) is either
concave in b or initially convex and then concave (S-shaped) in b.
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Fig. 1. The window fill rate for an S-shaped station (Source [2, p. 41]).

Result 2: The Optimization Algorithm. By (6) and Result 1, the window
fill rate is a separable sum of either concave or S-shaped functions. For each
S-shaped station we define the tangent point (see Fig. 1), ml, as the first integer
such that

(
Fl(t,ml) − Fl(t, 0)

)
/ml > ΔFl(t,ml), where ΔFl(t, b) is the first

difference of Fl(t, b) and is given by

ΔFl(t, b) := Fl(t, b + 1) − Fl(t, b)
=

(
1 − Rl(t)

)
Pr[N = b] + Rl(t)Pr[N = b + 1]. (7)

The tangent point of concave stations is set to zero. The tangent point decreases
with t and increases with t1+t2. For each station, let Hl(t, b) denote the concave
covering function of Fl(t, b) in the following manner:

Hl(t, b) =
{

Fl(t, 0) + Fl(t,ml)−Fl(t,0)
ml

b if 0 ≤ b ≤ ml − 1
Fl(t, b) if b ≥ ml .

That is, for any b smaller than the tangent point, we replace Fl(t, b) with the
straight line connecting the point

(
0, Fl(t, 0)

)
and the point

(
ml, Fl(t,ml)

)
. By

construction, for all b ≥ 0, Hl(t, b) is concave and Hl(t, b) ≥ Fl(t, b). Similarly
to (6), we define H(t, b) as the weighted average of all the stations’ functions
Hl(t, bl).

H(t, b) is a separable sum of concave functions and therefore we can use a
greedy algorithm to maximize it. This algorithm will choose the “best for the
buck” station and since Hl is initially linear, it will stay with this station until it
has reached the station’s tangent point. The algorithm then continues with the
next best station and so forth. Note that before switching to the next linear slope
it is possible that stations that have reached their tangent will get additional
spares (as long as their current slope is steeper than the next best linear slope).
However, once a station begins receiving spares in its linear region, it will be the
only one to receive spares until it has reached its tangent point. Consequently,
the algorithm results with an allocation with properties stated in the following
result.
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Result 3: The Optimal Allocation. bH satisfies one of the following two
cases:

1. For every l = 1 . . . L, either bH
l ≥ ml or bH

l = 0 and the optimal solution to
(6), bF = bH .

2. There exists a single station, denoted by l̂ such that 0 < bH
l̂

< ml̂. For every

other station l �= l̂, either bH
l ≥ ml or bH

l = 0. In this case:
(a) The optimal value of F is bounded above by H(t, bH).
(b) The distance from optimum is bounded by λl̂

λ

(
Hl̂(t, b

H
l̂

) − Fl̂(t, b
H
l̂

)
)
.

4 Numerical Application

The US-based corporation Better Place was founded in 2007 by Shay Agassi with
the ambitious goal of a large-scale adoption of fully electric vehicles. At the time,
battery-related issues were considered to be the greatest obstacle to achieving
this goal. Better Place developed a unique business model in which it retained
battery ownership. Customers were to purchase the car absent the battery and
Better Place was to provide battery swapping and recharging services and to
assume all the battery-related risks [5].

Although Better Place has filed for bankruptcy in 2013, its innovative busi-
ness model is still considered a promising solution to solving the battery problem
in the electric car industry [22]. Most of the cars produced for Better Place’s cus-
tomers were sold in Israel, in which it even completed the construction of fifty
battery swapping stations. The following numerical example is a hypothetical
full scale application of the Better Place model in a country with geographical
and demographical characteristics similar to Israel.

Each of the three largest fuel companies in Israel operate approximately two
hundred fifty gasoline stations and accordingly we assume that the battery ser-
vice firm (“the firm”) operates a network of two hundred fifty battery swapping
stations distributed throughout the country. The population density in Israel
may be divided into three regions. The center region is the densest, followed by
the northern region. The south of Israel, which constitutes more than half of
Israel’s land area, is sparsely populated. Consequently, the number of stations
per customer in the south will be higher than the number of stations per cus-
tomer in the center, reflecting the large geographical size that must be serviced.
To model the differences between the different stations in Israel, as well as dif-
ferences between small neighborhood stations and high-traffic major stations we
assume that the arrival rates to the stations are equally spaced between 6.4 and
106 customers per hour.

An empty battery can be recharged to 50% of capacity within twenty minutes
[27]. Recharging time, however, is random since the amount of recharging needed
for each arriving battery is different, since customers may arrive to the station
with partially depleted batteries. Hence, we assume that the recharging time is
distributed normally with mean forty minutes and standard deviation ten min-
utes. Battery swapping time, i.e., the battery removal and battery installation,
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is considerably shorter than recharging time and with state-of-the-art design,
battery swapping can be done in less than two minutes [10]. Each station is
assumed to have ample battery rechargers since recharging docks are relatively
inexpensive. Anecdotal evidence suggests that car owners tolerate a ten minute
stay in the station when they fuel their gasoline-fueled car. Since the electric
vehicles are poised as an alternative to these cars, we assume that the tolerable
wait for refueling is similar for both car types. Finally, we use a baseline budget
of nine thousand spare batteries.

To summarize, the baseline parameters of the example are: L = 250 sta-
tions, λl = 6 + 0.4 · l customers per hour, B = 9000 spare batteries, Rl ∼
Normal(40, 102) min, t1 + t2 = 2 min, and the optimization criterion is the
window fill rate for a tolerable wait t = 10 min (F10).

4.1 The Baseline Scenario

In Fig. 2 we describe the near-optimal spares allocation for the baseline case,
bH , and in Fig. 3 we display the window fill rate for the optimal allocation
as a function of t, F (bH , t). Recall, the optimization algorithm supplies spares
to the station with the steepest slope until it reaches its tangent point and
only then proceeds to the next steepest station. The tangent line’s slope and
the tangent point are increasing with the arrival rate and therefore the bigger
the station’s index, the greater the tangent point. The near-optimal allocation
dictates that the 50 slowest-moving stations will have no spares, whereas each
of the busier stations will receive at least its tangent point. Station 51 is the
exception; although its tangent point is 19 it is allotted only 2 spare batteries
(see case 1 of Result 3). This implies that the solution F (bH , 10) = 88.5% is a
lower bound that it not necessarily optimal. However, the distance between the
bounds is negligible as it is only 0.02% (see notes to Table 1).

Fig. 2. The spare battery allocation for the baseline case (Source [2, p. 43]).

The implication of the baselines results is that from a service viewpoint, the
network comprises two classes of locations. In Fig. 4, we describe the window fill
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Fig. 3. The window fill rate as a function of t for the baseline optimal allocation (Source
[2, p. 43]).

rate of each location. The low arrival rate stations are not given any spares and
consequently, their window fill rate is almost zero. In contrast, locations 52–200
have a window fill rate of almost 100%. To compensate customers for the longer
wait, the network’s managers could offer customers, for example, discounted
meals or drinks. Behavioral research about customer waiting experience may be
used to incentivize customers to agree to longer than usual waiting times [18].
In Sect. 4.7 we discuss in more detail the trade-off between purchasing more
batteries and the cost of compensating customers when they wait beyond their
tolerable wait.

Since the low rate locations receive no spares, their local window fill rate
is very low. For the specific parameter values of the baseline case, having zero
spares results with WFRl(t = 10) ≈ 0 since now customers must surely wait for
a battery to recharge and it is extremely rare for a battery to recharge within
less than ten minutes (recall, recharge time is distributed N(40, 102) min). In
contrast, the higher rate locations achieve excellent results and if we consider
these locations alone, then their average window fill rate is almost 92%. The
peculiar shape of the graph is explained as follows. The number of spares is a
step function with the locations’ index (see Fig. 2). Therefore, a location that has
a higher customer arrival rate than its neighbor but receives the same number
of spares will have a lower window fill rate. The first next location that receives
an additional spare will experience a jump in its window fill rate. The overall
trend will be increasing since the higher rate locations have a stronger impact
on the total fill rate and therefore at optimum their fill rate should be higher.

4.2 The Effect of the Tolerable Wait

To appreciate the effect of the tolerable wait we consider four optimization cri-
teria; the baseline criterion, F10, and the window fill rate for tolerable waits of
two (F2), five (F5) and fifteen (F15) minutes. Table 1 details the performance
statistics for each of these criteria. The performance statistics that are detailed
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Fig. 4. The window fill rate of each location for the baseline case.

are the same measures that we use for the optimality criteria, i.e., the window
fill rates for two, five, ten and fifteen minutes. We see that different criteria
lead to significantly different optimal values of the objective function. As is dis-
cussed below, the near-optimal spares allocations also differ dramatically. These
findings stress the importance of defining the criterion for optimality correctly.
Consider, for example, the situation in which the firm mistakenly optimizes F2
instead of the “correct” criterion F10. As a result, the percentage of satisfied
customers (i.e., customers who were serviced within ten minutes) is only 77.5%
(instead of 88.5%). Similarly, if the firm errs to the other side and optimizes F15
then the percent of satisfied customers is only 84.9% instead of 88.5%.

Table 1. The network’s performance for different optimization criteria (Source [2, p.
43]).

Performance Statistic

F2 F5 F10 F15

Criterion F2 73.5%a 76.5% 77.5% 77.6%

F5 70.6% 78.6%b 82.8% 83.2%

F10 49.8% 68.5% 88.5%c 93.5%

F15 35.0% 54.2% 84.9% 97.9%d

Notes: a: Lower bound displayed. The distance between bounds

is 0.12%.

b: Lower bound displayed. The distance between bounds is

0.05%.

c: Lower bound displayed. The distance between bounds is

0.02%.

d: Optimal value displayed.
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In Fig. 5 we compare the near-optimal allocations for the criteria, F2, F10
and F15. When t = 15, the tangent points are appreciably less than the baseline
case and therefore the 9000 batteries are more than the necessary to supply all
the stations with their tangent points. Once all the stations are in their concave
region the residual batteries are further distributed among all the stations. Con-
versely, when t = 2 the tangent points are higher than in the baseline case and
the high-traffic stations demand more batteries to reach their tangent point. As
a consequence, the budget is depleted after allocating spares to fewer stations
compared to the baseline case.

Fig. 5. The spare battery allocation for different optimization criteria (Source [2,
p. 43]).

4.3 The Budget Effect

In Fig. 6 we describe the spares allocation for the baseline scenario (9000 spare
batteries) and for budgets of 7000 and 11000 batteries. As result of increasing
the budget beyond 9000 the low-rate stations start receiving batteries one by
one according to their tangent point. Eventually, all the stations will reach their
tangent point. From this point on, any additional batteries will be distributed
among all the stations instead of given to only particular stations. In contrast,
if the budget is decreased to below 9000, then some low-rate stations will forfeit
all their batteries. The high-traffic stations, however, will lose at most the few
(if any) batteries they received beyond their tangent point.
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4.4 The Swapping-Time Effect

A corollary of Proposition 1 is that a Δ increase to the swapping time, t1 + t2
is equivalent to a Δ decrease to the tolerable wait, t. Figure 7 displays how the
near-optimal allocation changes with the swapping time. As the swapping time
increases, the tangent points increase too, and therefore the busiest stations
require more spares. As a consequence, more and more low-traffic stations will
be left with zero spares.

Fig. 6. The window fill rate and spare battery allocation for different values of B
(Source [2, p. 44]).

Fig. 7. The spare battery allocation for different battery swapping times (Source [2, p.
44]).
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Fig. 8. The spares budget for different performance target levels (Source [2, p. 44]).

Thus far, we assume that the budget of spares is fixed. Consider, now the
dual problem of (6).

min
b≥0

L∑

l=1

bl s.t. F (t, b) ≥ α . (8)

where α is the network’s target performance.
We can easily solve (8) using the optimization algorithm. The allocation of

spares is done in an identical manner, but now the stopping condition is differ-
ent. Previously, the algorithm stopped when all the batteries were assigned to
stations. In contrast, now the algorithm stops once we have reached the required
service level. Figure 8 displays the budget required to reach a 90%, 95% and
99% window fill rate for different swapping times. The graphs are near-linear
and the slopes reveal the savings obtained by reducing swapping time. For the
performance levels of 90%, 95% and 99% we find that a minute reduction in
the swapping time saves the network approximately 252, 266 and 280 batteries,
respectively.

4.5 Changing the Arrival Rate

We now consider changing the arrival rate to the network. In Fig. 9, we show
the optimal allocation when the arrival rate to each location is 80%, 100% and
120% of the arrival rate in the baseline case.

If the network maintains a certain service level, then an increase in the cus-
tomer base requires adding more spare batteries. In Fig. 10, we depict the number
of batteries needed to maintain a 90%, 95% and 99% window fill rate for different
levels of customer arrival rate. For example, if the arrival rate to each location is
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Fig. 9. The spare battery allocation for different arrival rates.

Fig. 10. The spare budget needed to meet performance targets as a function of the
customer arrival rate for different performance targets.

only 80% compared to the baseline case, then 7544, 8084 and 9000 batteries are
needed to maintain a window fill rate of 90%, 95% and 99%, respectively. The
total arrival rate in the baseline case is 14,050 customers per hour and therefore
a 10% increase in the arrival rate is an additional 1405 customers per hour. Using
the slope of the graph around the baseline case we calculate that an additional
1000 customer per hour will require an additional 559, 588 and 619 batteries to
maintain the 90%, 95% and 99% service levels, respectively.

4.6 Balanced Network

In the baseline scenario, we describe a network in which arrival to the locations
varies along a linear slope. The total arrival to the network is λ =

∑250
i=1 6+0.4i =

14050 customers per hour. We now consider a hypothetical example in which
customer arrival is evenly distributed, namely for each station, λl = λ/250 = 56.2
customers per hour. In Fig. 11, we compare the optimal allocation under this
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Fig. 11. The spare battery allocation for the baseline and balanced scenarios.

scenario with the optimal allocation in the baseline case. Note that since all the
stations are identical, there are multiple optimal solutions (i.e., there are many
ways in which we can choose which of the stations will receive spares and which
will not). Therefore, in contrast to the baseline case in which the location index
is significant (it describes the arrival rate to the station), in the balanced case
locations are interchangeable. In Fig. 11 we see that in the balanced scenario 236
stations receive 38 spares each, and 13 stations receive no spares. There is one
station that receives 32 spares.

From a managerial perspective it is extremely important to know whether
a balanced network performs better or worse than the imbalanced network. For
example, if managers wish to increase their customer base should they draw
customers to the high-arrival locations (and create greater imbalance) or to the
low-arrival locations (and create more balance). To address this question, we
display in Fig. 12 the window fill rate as a function of the tolerable wait for the
baseline and balanced scenarios. Figure 12 also depicts the window fill rate for the

Fig. 12. The window fill rate as a function of t for the baseline, balanced and single
location scenarios.
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extreme case in which all the customers arrive to a single location that receives
all the spare batteries. Interestingly, the answer to the question which system
performs better heavily-depends on the tolerable wait. When t = 2, (i.e., the fill
rate), then the balanced network performs better than the other networks. In
contrast, when t = 10 then it is the worst performer.

If the network’s managers wish to maintain a given service level, then as
the assembly times increase we need more batteries. The results of the balanced
network are similar to the baseline case, with each minute increase of installment
time costing 257, 268 and 281 batteries for service levels of 90%, 95% and 99%,
respectively. These prices are only slightly less than in the baseline case (see
Fig. 8).

4.7 Optimizing Total Inventory Costs

Problems (6) and (8) assume that either the budget or the service level is prede-
termined. In what follows, we relax these constraints and consider the problem
of minimizing the total inventory costs. Let cp denote the penalty cost each time
a customer is not served within the tolerable wait, and let cB denote the cost of
a battery. Since batteries have a limited lifetime, we assume a planning horizon
of T . Therefore, the total number of customers arriving into the network during
the planning horizon is λT , where, recall, λ = 14, 050 customers per hour. The
problem is now given by

min
b≥0

TC(b) := cb

L∑

l=1

bl + cpλT
(
1 − F (t, b)

)
. (9)

The optimization algorithm can be easily adjusted to find the optimal solution to
(9). Each time we consider adding a battery we measure its optimal contribution
to the window fill rate, δ. As long as δcpλT ≥ cb we increase the number of
batteries in the network. Each time the additional battery is allocated to the
location that maximally increases the window fill rate.

Batteries for family sized electric vehicles range between 20 kWH and 80 kWH
with current prices reaching as low as US$200 per-kWh [12]. We therefore exam-
ine battery prices of up to US$25,000. We conservatively estimate battery life to
be four years, and since we assume 12 daily hours of operation T = 17520 h [28].

Figure 13 depicts the near-optimal spares budget depending on battery prices
for different penalty costs. We see that the budget may be very sensitive or very
insensitive to battery prices. Consider, for example, the graph for the penalty cost
of $1. In the battery price range of $3261 to $21378, the budget size is relatively
flat and changes only between 11000 and 9000 batteries. In stark contrast, if
the battery price increases from $21378 to only $25321, then the optimal budget
dramatically decreases from 9000 to 0 batteries.
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Fig. 13. Spares Budget for different penalty costs and battery price (Source [2, p. 45]).

5 Conclusions

In this paper, we develop and apply a model for solving the spare battery allo-
cation problem. Since customers will tolerate a certain wait when they arrive
at a battery-swapping stations, we argue that to minimize its penalty costs the
network should maximize the fraction of customers who are served within the
tolerable wait, the window fill rate. We show that one can set the removal and
installment times to zero by adjusting the tolerable wait, that is by subtracting
the total assembly times from the tolerable wait. Using this finding, we build on
[1] to solve the spare battery allocation problem. To illustrate the application of
the model we estimate a hypothetical application of a full-scale battery swap-
ping network in Israel, similar to the network envisioned by the Better Place
corporation. Our numerical analysis of the problem reveals interesting findings
such as the value of better battery swapping design, the creation of different
classes of stations and the critical importance of estimating the tolerable wait
correctly.

Our model makes a number of assumptions that could be reconsidered. First,
we assume that the battery swapping time is deterministic. This assumption may
be reasonable in for the battery swapping problem since the cars and the swap-
ping stations were designed to streamline the battery removal and installation
operations. In other settings, this may be far from realistic. With stochastic
assembly times the window fill rate formula will differ from (5). Moreover, man-
agers may now depart from a strict FCFS policy. Consider for example a case in
which a later customer’s battery has been removed before an earlier customer.
Will a spare battery on stock be given to the later customer, or must the later
customer wait until the earlier customer’s battery has been removed?
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Our second assumption assumes that the customer arrival rate is constant
over time. This assumption is clearly unrealistic. Our justification for this
assumption is that we design the system for the high traffic hours and this
solution is also applicable for the off-hours since in these hours the budget is
more than necessary. A more careful analysis may reveal a better allocation due
to the peak non-peak hours. These challenge are left for future research.
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1 Introduction

Manufacturing systems are naturally subject to wear and breakdowns when they
are operated. This deterioration affects in turn the quality of the system’s output.
Consequently, in order to enhance the system’s actual utilization, to guarantee
high quality of its output, and to meet the required market demand, maintenance
must be regularly performed especially on critical components of the system. Pre-
ventive and corrective maintenance actions are performed, respectively, before
and after the failure of the system or one of its critical components. A preventive
maintenance action can be either perfect or imperfect. A perfect maintenance
action restores the system’s operating condition to an as good as new state.
In contrast, an imperfect maintenance action restores the system’s operating
condition to state laying somewhere between the condition before maintenance
and the as good as new state. The known results of replacements and main-
tenance policies were summarized and extensively discussed in the literature
[4,10,11,20,27].

During the last two decades, the issue of integrating production and pre-
ventive maintenance, at the tactical planning level, attracted many researchers
and several approaches are proposed to coordinate the production and mainte-
nance functions and integrate their related planning decisions. The earliest work
may be that of Wienstein and Chung [28] where they presented a three-parts
hierarchical production planning and scheduling model taking into account the
reliability of the production system. The first part in the model is an aggregated
production planning model formulated as a linear program. The second part is a
master production schedule with the objective of minimizing the weighted devi-
ations with respect to the goals specified at the first part level. The third part
focuses on simulating equipments’ failures during the planning horizon. Several
experiments are conducted to test the significant factors such as category, fre-
quency and cost of maintenance activity, in addition to failure significance and
aggregate production policy for maintenance policy selection.

Aghezzaf et al. [1] proposed an optimization model to generate optimal inte-
grated production and preventive maintenance plans at the tactical level. Their
approach assumes that the system is minimally repaired when it fails randomly
during a production period. That is, the systems is returned to an operating state
without altering its lifetime distribution. The system undergoes perfect periodic
preventive maintenance after which it returns to an as good as new state, i.e., its
failure rate is the same as the that of a new system. This approach also assumes
that any maintenance action, minimal repair or preventive maintenance, reduces
the available production capacity of the system.

The approach proposed in [1] has been extended under various assumptions’
relaxations in several papers in the literature. In [3], the authors deal with simul-
taneous optimization of production and preventive maintenance in multiple-
lines stochastic degrading manufacturing system. Najid et al. [19] extended the
model in [3] and consider demand time windows and shortage cost. Nourelfath
and Chatelet [21] discussed the same planning problem for a multi-component
production system under economic dependence and common cause failures.
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Zhao et al. [30] assume an order-dependent-failure (ODF) and proposed an iter-
ative method to solve the problem on a single-machine system. Fitouhi and
Nourelfath [8] extended the model [1] to multi-state systems [18]. The reliability
of the production system is computed using the universal moment generating
function (UMGF) [15]. The resulting integrated production and maintenance
optimization model is solved with a genetic algorithm. To efficiently solve mod-
erate to larger instances of the model developed in [3],Yalaoui et al. [29] proposed
some useful exact and heuristic algorithms. The more recent extensions of the
work in [1] have appeared in [2,6,22]. The resulting mathematical models are
still naturally non-linear and hard to solve. In [2], the authors proposed a refor-
mulation for the natural integrated production and imperfect preventive main-
tenance planning problem. The resulting optimization model is a mixed-integer
linear programming problem which is solved using a MILP-based approximation
method.

The model discussed in this paper is similar to the one proposed in [2]. It deals
with the issue of integrating production and non-periodic imperfect preventive
maintenance at the tactical planning level. Imperfect preventive maintenance
is modeled according to the hybrid hazard model initially introduced in [17]
and used in many research papers [5,12–14,16] among others. When an imper-
fect preventive maintenance action is performed it brings the system back to
an operating state that is between the two extreme ‘as bad as old’ and the ‘as
good as new’ operating states. Along the same lines as in [1,3], it is assumed
that each imperfect preventive maintenance improves the available production
capacity of the system and this according to the degree at which the maintenance
is performed. However, the deterioration rate of the manufacturing system after
each imperfect preventive maintenance increases and the production capacity
decreases more rapidly due to more frequent minimal repair tasks. When the
deterioration rate reaches an unacceptable level, the systems is overhauled and
returns to an ‘as good as new’ state. The resulting optimization model is solved
using Relax-and-Fix/Fix-and-Optimize approach. It is shown that such a solu-
tion approach provides quite good solutions, but it requires a large amount of
computational time for medium and large problem instances. To obtain good
quality solutions within a reasonable amount of the computational time, some
heuristics based on the Dantzig-Wolfe decomposition techniques together with
a new version of the Relax-and-Fix/Fix-and-Optimize method are developed.

A short version of the present work appeared in a conference proceeding [24].
The present extended version includes more references that enrich the literature
review dealing with the problem of joint production and maintenance problem.
It also provides more details on how Relax-and-Fix/Fix-and-Optimize as well
as Dantzig-Wolfe Decomposition techniques were applied and implemented for
solving the integrating production and imperfect preventive maintenance prob-
lem. Furthermore, Lagrangian Relaxation techniques are also investigated [7].
Finally, more detailed experiments are conducted to solve the optimization prob-
lem under each of the three solution approaches. The overall results obtained
are then compared in terms of the solution quality as well as CPU time.
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The remainder of this paper is organized as follows. Section 2 presents a
slightly modified version of the mathematical model proposed in [2] for the inte-
grated production and imperfect preventive maintenance planning. In Sect. 3,
the Relax-and-Fix/Fix-and-Optimize (RFFO) solution technique is investigated
and presented in details. Section 4 presents the Dantzig-Wolfe (DWD) decompo-
sition to solve the MINLP reformulated production and maintenance planning
model. Lagrange relaxation (LR) decomposition used to solve the reformulated
problem is described in Sect. 5. Computational results of a set of benchmark test
cases are presented and fully discussed in Sect. 6. Section 7 summarizes the main
findings of this research work and provides some possible research directions.

2 Integrated Production and Imperfect Preventive
Maintenance Planning Model

This section summarizes the mathematical optimization model for the integrated
production and imperfect preventive maintenance problem as initially introduced
in [2,24]. Its corresponding MILP reformulation proposed in [2,24] is also used as
the underlying optimization model. In the present work, the imperfect preventive
maintenance model is based on the hybrid failure rate model initially introduced
in [17] and is also briefly described in the next subsection.

2.1 Modeling Imperfect Preventive Maintenance with Hybrid
Failure Rates

In reliability engineering, failure rate is usually used as a measure which describes
how a system improves or deteriorates with time. We consider a system whose
lifetime is randomly distributed. Its corresponding initial hazard rate function,
simply called the failure rate, is given by the function r0(t) as:

r0(t) =
g(t)

1 − G(t)
(1)

where g(t) and G(t) denote, respectively, the probability density and distribution
functions of the system’s lifetime.

If the kth preventive maintenance takes place Tkτ units of time after an
overhaul, that is in the beginning of period Tk having fixed length τ , the hazard
rate function rk(t) of the system is then defined as:

rk(t) = βkr0(t + αkT k
AOT ), t ∈ [0, (Tk+1 − Tk)τ [, for all k ∈ {1, . . . , kmax} (2)

where T k
AOT is the actual operating time of the system since the beginning of

the planning horizon until the beginning of period Tk, the period during which
the kth preventive maintenance is carried out. It is the timespan during which
the system was in actually producing and not undergoing maintenance, neither
preventive nor corrective. The parameters αk and βk stand, respectively, for the
age reduction coefficient and the hazard rate increase coefficient (adjustment
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factor) such that 0 = α1 < α2 < · · · < αkmax
= 1 and 1 = β1 ≤ β2 ≤ · · · ≤

βkmax
. Note again that for t ∈ [0, T1[, r0(t) is the hazard rate of the system, which

is initially assumed to be ‘as good as new’, that is after an overhauling. The
baseline failure rate function r0(t) is assumed to be a monotonically increasing
function throughout the text.

In the present work, if after the kth preventive maintenance the failure rate
function remains below some threshold function, rkmax

(t), a preventive mainte-
nance can be performed. However, if it reaches or exceeds this threshold level,
the system is overhauled and then will return to an ‘as good as new’ state.

2.2 Modeling the Joint Production and Imperfect Prevetive
Maintenance

We are given a production system which is subject to random failures. The sys-
tem is capable of producing a set of products j ∈ P = {1, ...N} during a planning
horizon H = {1, ...T} covering T production periods of the same length τ . For a
given period t ∈ H, we denote by djt, fjt, pjt and hjt, respectively, the demand
for item j, the fixed cost of producing item j, the variable cost of producing item
j, and the variable holding cost of item j. The quantity dj

st =
∑t

t′=s dj
t′ is the

cumulative demand of item j ∈ P from s to t (s ≤ t). The production system
has a known maximum constant production capacity κmax (given in time units)
and the processing time of each unit of item j is given by ρj . The cost of carrying
out a kth preventive maintenance is denoted by ck

PM and the cost of performing
a corrective maintenance on the system, right after the kth preventive mainte-
nance, is denoted by ck

CM . Finally, let δk
PM be the expected time required for the

kth preventive maintenance, and δk
CM the expected time required to perform a

corrective maintenance, right after kth preventive maintenance.
To define the variables of the model, let Qjt be the quantity of item j pro-

duced during period t; Ijt be the inventory of item j at the end of period t;
xjt be a binary variable set to 1 if item j is produced during period t and 0
otherwise; yt be a binary decision variable set to 1 if the machine is setup to
production during period t and 0 otherwise. We also consider zk

st defined as a
binary variable set to 1 if the last preventive maintenance of the system before
the time period t is the kth one and has taken place during the time period s,
and 0 otherwise. By convention we assume that the manufacturing system is
preventively maintained in the beginning of period 1, that is z111 = 1.

The nonlinear mixed-integer optimization model corresponding to the Inte-
grated Production and Imperfect Preventive Maintenance Planning Problem
(IPImPMP) is given as follows [2]:
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IPImPMP

Minimize ZIP
ImPMP =

T∑

t=1

N∑

j=1

(fjtxjt + pjtQjt + hjtIjt)

+
T∑

t=1

t∑

k=1

ck
PMzk

tt +
T∑

t=1

t∑

s=1

s∑

k=1

ck
st(y)ytz

k
st

Subject to:

Qjt + Ij,t−1 − Ijt = djt, ∀j ∈ P,∀t ∈ H (3)
Qjt − κmaxxjt ≤ 0, ∀j ∈ P,∀t ∈ H (4)
xjt − yt ≤ 0, ∀j ∈ P,∀t ∈ H (5)

N∑

j=1

ρjQjt +
t∑

k=1

δk
PMzk

tt +
t∑

s=1

s∑

k=1

κk
st(y)ytz

k
st ≤ κmax, ∀t ∈ H (6)

t∑

s=1

s∑

k=1

zk
st = 1, ∀t ∈ H (7)

zk
st − zk

s,t+1 ≥ 0, ∀k, s, t ∈ H, k ≤ s ≤ t ≤ T − 1 (8)

zk
tt −

t−1∑

s=k−1

zk−1
s,t−1 ≤ 0, ∀t, k ∈ H, 1 < k ≤ t (9)

T∑

t=2

t∑

s=2

z1st ≤ (1 − z111), (10)

t∑

k=1

zk
tt − yt ≤ 0, ∀t ∈ H (11)

Qjt, Ijt ≥ 0, xjt, yt, z
k
st ∈ {0, 1}, ∀j ∈ P, s, t ∈ H, k ≤ s ≤ t

Constraints (3) are the flow conservation constraints. They guarantee that
the available inventory augmented with the quantity produced in period t is
sufficient to satisfy the demand djt of item j in that period. The remainder
is stocked for the subsequent periods. Constraints (4) make sure that, when
the production of an item is scheduled in certain period, the system is setup
accordingly to produce that item in that period. These constraints force also
disbursement of the fixed costs. Constraints (5) indicate whether the system
is operating or not in each period, in which case it is setup to produce some
products. Constraints (6) are the capacity restrictions which are defined for each
period t ∈ H. They guarantee that the quantity which is produced in a period
t does not exceed the available capacity of the system, given its status in terms
of the expected capacity loss during that period. Constraints (7) determine the
periods during which the preventive maintenance activities take place. In order
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to assure the consistency, constraints (8) are established to guarantee that if the
last preventive maintenance action, before a time period t + 1, takes place in
a period s < t and it is the kth one, then this preventive maintenance action
must also be the kth and the last one before a period t. Again, for consistency,
constraints (9) assure that the kth preventive maintenance takes place in some
period t ≥ k, only if the (k − 1)th preventive maintenance took place in some
period before t. Constraint (10) enforces the convention z111 = 1. Constraints (11)
guarantee that the kth preventive maintenance takes place only once and when
the system is setup to production.

The two functions κk
ts(y) and ck

ts(y) used in the above optimization model
represent, respectively, the expected production capacity loss and the expected
maintenance cost both evaluated during the time period t when the kth and the
last preventive maintenance action before time period t has taken place in the
time period s, with k ≤ s ≤ t. These functions depend on the system’s setup
vector y and are computed as in [2]:

κk
st(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δk
CM

τ∫

0

βkr0

(

u + αk

[
s−1∑

t′=1

yt′

]

τ

)

du; if t = s, k ≤ s,

δk
CM

τ∫

0

βkr0

(

u + αk

[
s−1∑

t′=1

yt′

]

τ +

[
t−1∑

t′=s

yt′

]

τ

)

du; if s ≤ t ≤ T.

(12)

ck
st(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ck
CM

τ∫

0

βkr0

(

u + αk

[
s−1∑

t′=1

yt′

]

τ

)

du; if t = s, k ≤ s,

ck
CM

τ∫

0

βkr0

(

u + αk

[
s−1∑

t′=1

yt′

]

τ +

[
t−1∑

t′=s

yt′

]

τ

)

du if s ≤ t ≤ T.

(13)

2.3 A Mixed-Integer Linear Reformulation of the IPImPMP

The optimization problem IPImPMPP, as given above, is a nonlinear mixed-
integer optimization problem. Its non-linearity results both from the following
component

∑T
t=1

∑t
s=1

∑s
k=1 ck

st(y)ytz
k
st in the objective function and from the

component
∑t

s=1

∑s
k=1 κk

st(y)ytz
k
st in the constraints (6). It is worth noticing

that when the periods during which the system is setup to production are fixed
in advance, the expected maintenance cost components and the expected avail-
able production capacity of the system during each period can then directly be
determined. In this case, the problem becomes a linear optimization problem
integrating a multi-item capacitated lot-sizing problem with preventive main-
tenance. In the following subsection we propose a reformulation of this model
as mixed-integer linear program which can be solved thanks to available MILP
solvers such as CPLEX and Gurobi.



70 P. Le Tam et al.

The proposed linearized formulation is adapted from that obtained in [2] by
considering two new variables vk

st(p, q) and wk
st(p, q), with p ≤ s ≤ t, k ≤ s and

q ≤ t−s+1. The variable vk
st(p, q) is binary and assumes value 1 if the system is

setup to production p times during the horizon 1, . . . , s − 1 and q times during
the period s,. . . ,t, and the kth maintenance takes place in period s. The variable
wk

st(p, q) is also binary and assumes value 1 if the system is setup for production
p times during the horizon 1, . . . , s − 1 and q times during the period s, . . . , t,
the kth maintenance takes place in period s, and the system is also operating
at period t. As in [2], we alos consider the variable ust(p, q), with p ≤ s ≤ t
and 0 ≤ q ≤ t − s + 1, to be a binary variable assuming value 1 if the system is
setup to production p times during the horizon 1,. . . , s− 1 and q times during the
periods s,. . . , t-1. Here again, in line of the work in [2], we also consider the two
functions ck

st(p, q) and κk
st(p, q) be respectively the expected maintenance cost

and expected loss in production capacity of the system during period t, when
the last preventive maintenance action before time period t has taken place in
the beginning of period s, s ≤ t. The functions ck

st(p, q) and κk
st(p, q) are formally

computed as [2]:

ck
st(p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

ck
CM

τ∫

0

βkr0(u + αkpτ)du; if t = s,

ck
CM

τ∫

0

βkr0(u + αkpτ + qτ)du; if s ≤ t ≤ T.
(14)

and

κk
st(p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

δk
CM

τ∫

0

βkr0(u + αkpτ)du; if t = s,

δk
CM

τ∫

0

βkr0(u + αkpτ + qτ)du; if s ≤ t ≤ T.
(15)

The proposed linear formulation (Re IPImPMP) of the original problem
(IPImPMPP) is then given as follows:

Re IPImPMP

Minimize ZRe IP
ImPMP =

T∑

t=1

N∑

j=1

(fjtxjt + pjtQjt + hjtIjt)

+
T∑

t=1

t∑

k=1

ck
PMzk

tt +
T∑

t=1

t∑

s=1

s∑

k=1

s−1∑

p=0

t−s∑

q=0

ck
st (p, q)vk

st (p, q)

Subject to: Eqs. (3)–(5) and (7)–(11),

N∑

j=1

ρjQjt +
t∑

k=1

δk
PMzk

tt +
t∑

s=1

s∑

k=1

s−1∑

p=0

t−s∑

q=0

ck
st (p, q)vk

st (p, q) ≤ κmax, ∀t ∈ H

(16)
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s−1∑

p=0

t−s∑

q=0

p.ust(p, q) −

⎧
⎪⎨

⎪⎩

s−1∑

s′=1

ys′ , if s > 1

0, if s = 1

≤ 0, ∀t, s ∈ H, 1 ≤ s ≤ t (17)

s−1∑

p=0

t−s∑

q=0

q.ust(p, q) −

⎧
⎪⎨

⎪⎩

t−1∑

s′=s

ys′ , if t > 1

0, if t = 1

≤ 0, ∀t, s ∈ H, 1 ≤ s ≤ t (18)

s−1∑

p=0

t−s∑

q=0

ust(p, q) = 1, ∀t, s ∈ H, 1 ≤ s ≤ t (19)

zk
st + ust(p, q) − vk

st (p, q) ≤ 1, ∀k, s, t, p, q ∈ H, p ≤ s − 1, q ≤ t − s (20)

yt + vk
st (p, q) − wk

st (p, q) ≤ 1, ∀k, s, t, p, q ∈ H, p ≤ s − 1, q ≤ t − s (21)

Qjt, Ijt ≥ 0, xjt, yt, zk
st, ust{p, q}, vk

st{p, q}, wk
st{p, q} ∈ {0, 1},∀j ∈ P,

s, t ∈ H, k ≤ s ≤ t, p ≤ s − 1, q ≤ t − s

Constraints (3)–(5) and (7)–(11) are the same as those considered in the orig-
inal problem. Constraints (16) are revisited versions of the constraints (6). Con-
straints (17), (18) and (19) determine the values of the variables u and v. Con-
straints (20) relate the variables z with u and v, meaning that if the kth and last
preventive maintenance before t takes place in period s ≤ t and if the system is
setup to production p times during the horizon {1, . . . , s − 1} and q times dur-
ing the periods {s, . . . , t − 1} then vk

st(p, q) = 1. The constraints (21) relate the
variables v with y and w, if both the kth and last preventive maintenance before t
takes places in period s ≤ t and if the system is setup to production p times during
the horizon {1, . . . , s − 1} and q times during the periods {s, . . . , t − 1} and the
system must operate at period t then wk

st(p, q) = 1.

3 Relax-and-Fix/Fix-and-Optimize Heuristic (RFFO)
to Solve the Re IPImPMP Model

The Relax-and-Fix (RF) heuristic solves a mixed-integer problem (MIP) by
sequentially resolving sub-problems in which some variables are fixed while the
others are relaxed. Dealing with production planning problems, for example,
the planning horizon is partitioned and the setup variables are fixed either back-
ward or forward. The Fix-and-Optimize (FO) is a heuristic solution based on the
decomposition of the original problem into multiple sub-problems with smaller
number of binary variables. The RFFO method is a framework designed to com-
bine the RF and FO heuristics. In [25], the authors propose an approach in which
most binary variables are fixed or relaxed and only few of them are chosen and
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forced to be integer and are optimized. The set of chosen variables is called a
“window”. Three window types are available [25]: (i) row-wise, in which the
window moves along rows; (ii) column-wise, in which the window moves along
columns; (iii) and value-wise, in which the window selects the variables with
relaxed values closest to a half.

As in [25], to solve the Re IPImPMP model with both RF and FO heuristics,
we consider a matrix Y where each of its entries is the binary variable yt. The
pseudo codes corresponding to RF, FO, and RFFO heuristics are summarized
in Algorithms 1, 2 and 3, respectively.

Algorithm 1. Relax-and-Fix heuristic.

1: Inputs: sol.y, windowSize, overlap, timeLimit
2: window ← initWindow(sol.y, windowSize)
3: ȳfixed ← ∅
4: yMIP ← window
5: while fixed solution not reached and elapsedTime < timeLimit do
6: Solve (ȳfixed, yMIP , yLP )
7: window ← moveWindow(overlap, windowSize)
8: ȳfixed ← ȳfixed ∪ (yMIP − window)
9: yMIP← window

10: yLP ← yLP − window
11: end while
12: sol.y ← ȳfixed

Algorithm 2. FIX-and-Optimize heuristic.

1: Inputs:sol.y, windowSize, overlap, timeLimit
2: window ← ∅
3: while elapsedT ime ≥ timeLimit do
4: window ← initWindow(windowSize, WindowType)
5: yMIP ← window
6: ȳfixed ← sol.y − window
7: while window not reach end do
8: Solve (ȳfixed, yMIP )
9: window ← moveWindow(overlap, windowSize)

10: yMIP ← window
11: ȳfixed ← (sol.y − window)
12: sol.w ← ȳfixed ∪ yMIP

13: end while
14: end while

In Algorithm 1, the inputs of the RF heuristic are: the set of binary variables
(sol.y), the number of binary variables (windowSize) to be chosen, the selection
criteria to choose variables (windowType), the overlap rate of binary variables
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Algorithm 3. Relax-and-Fix & FIX-and-Optimize heuristic.

1: Inputs: rfSize, rfOverlap, foSize, foOverlap, timeLimit
2: sol ← RELAXANDFIX (sol.y, rfSize, rfOverlap, timeLimit)
3: prevCost ← sol.cost
4: while timeElapsed < timeLimit do
5: FixAndOptimize (sol.y, foSIZE, foOverlap, timeremaining)
6: end while

to be re-optimized (overlap) and the execution time limit (timeLimit). Initially,
all binary variables in the RF solution (sol.y) are relaxed, and a window is
defined as a set that includes a fixed amount of (windowSize) variables. Then,
those variables inside the window are enforced to be integer in the set yMIP ,
while the others are kept in yLP . We solve the problem to get the results of
MIP. Next, a new set of variables (window) is defined by a subset of fixed
integers (yfixed), sets of optimized integer (yLP ) and relaxed variables (yMIP ).
The window moves forward by the step parameter at each iteration on which
each step = round(|overlap ∗ windowSize|), overlap ∈ [0, 1]. All variables that
leave the window are fixed in the next iteration, and the same number of relaxed
variables are enforced to be integer. The algorithm proceeds in this way until
all variables are fixed. After completion of the RF phase, the FO heuristic is
used to improve this initial solution until the time limit has been reached (see
Algorithm 2). If the improvement achieved by a FO solution is not satisfactory,
the size of the window is increased. As a result of this attempt to find a better
solution, the MIP subproblems become then large.

4 Single Dantzig-Wolfe by Product Decomposition
with Fix and Optimize to Solve the MINLP
IPImPPMP Model

Implementing Dantzig-Wolfe decomposition (DWD) method to solve the multi-
item capacitated lot sizing problem with setup times is discussed in [23] where the
authors proposed three different approaches of the standard DWD implementa-
tion. In the first approach, the subproblems are defined for each item (PIDWD),
in the second they are defined by periods (PJDWD), and in the third one the
subproblems derived from the first two approaches are combined in the same
model (MDWD). The three approaches were tested on the IPImPMP model
developed in Sect. 2.2. Based on the results obtained, the suitable approach is
found to be the item decomposition approach. Consequently, this decomposi-
tion approach is selected to be compared against the other solution methods.
We consider the capacity constraints Eq. 6, linking the variables associated with
different products, as the master problem for this decomposition.



74 P. Le Tam et al.

4.1 The Master Problem

The master problem includes the collections of production plans of each item
in addition to the maintenance planning. The decision variables are ϑm

j , cor-
responding to the item’s production plans m generated by the subproblem for
product j, together with the variables zk

st corresponding to the maintenance plan
developed at the master problem level. The linear programming relaxation of the
master problem of the production decomposition is given as follows:

MPJ-PPM

Minimize ZMPJ
IPImPPM =

N∑

j=1

Mj∑

m=1

[
T∑

t=1

(fjtx̄
m
jt + pjtQ̄

m
jt + hjtĪ

m
jt )

]

ϑm
j

+
T∑

t=1

t∑

k=1

ck
PMzk

tt +
T∑

t=1

t∑

s=1

s∑

k=1

ck
st(ȳ).ȳtz

k
st

Subject to:
Equations (7)–(11),

N∑

j=1

Mj∑

m=1

ρjQ̄
m
jtϑ

m
j +

T∑

t=1

t∑

k=1

δk
PMzk

tt +
t∑

s=1

s∑

k=1

κk
st(ȳ)zk

st ≤ κmax,∀t ∈ H (μt)

(22)
Mj∑

m=1

ϑm
j = 1, ∀j ∈ N (πj) (23)

Mj∑

m=1

x̄m
jtϑ

m
j ≤ ȳt, ∀j ∈ N ; t ∈ H (ηjt) (24)

ϑm
j ≥ 0, ∀j ∈ N (25)

zk
st ≥ 0, ∀j ∈ N ; t, s ∈ H (26)

where ȳt = maxj,m

{
x̄m

jt

}
and the objective function minimizes the overall pro-

duction and maintenance costs. The constraints (22) are capacity constraints.
These require that the combination of the chosen production plans satisfies the
available capacity in each period, while the maintenance plans are taken into
account. Constraints (23) are the convexity constraints. The combination of the
selected production plans is forced by constraints (24) to satisfy the production
setup requirement. Constraints (25) and (26) force the decision variables to take
nonnegative values. At the end of this process, the problem is solved again but
with the variables ϑm

j and zk
st for which the following conditions are satisfied:

ϑm
j , zk

st ∈ {0, 1}∀j ∈ N, s, t ∈ H, k ≤ s ≤ t,m ∈ Mj

To recover solution of the problem IPImPMP, in terms of the original vari-
ables, the values of Qjt and xjt variables are derived from the solution of the
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master problem (MPJ PPM) as follows:

Qjt =
Mj∑

m=1

Q̄m
jtϑ

m
j , ∀j ∈ N, ∀t ∈ T (27)

xjt =
Mj∑

m=1

x̄m
jtϑ

m
j , ∀j ∈ N, ∀t ∈ T (28)

4.2 The Subproblem

Assuming that μt is the dual variables associated with the constraints (22),
indexed by t, that πj is the dual variables associated with the set of convexity
constraints (23) and that ηjt is the dual variables associated with constraints
(24). Each subproblem is of following types for all j ∈ N :

SPJ-PPM

Minimize

ZSPJ
IPImPMP =

T∑

t=1

(fjtxjt + pjtQjt + hjtIjt) −
T∑

t=1

ρjQjtμt − πj −
T∑

t=1

ηjtxjt,

or

Minimize

ZSPJ
IPImPMP =

T∑

t=1

[(fjt − ηjt)xjt + pjtQjt + hjtIjt] −
T∑

t=1

ρjQjtμt − πj

Subject to:
Equations (3)–(4),

Qjt, Ijt ≥ 0, xjt, yt ∈ {0, 1},∀j ∈ N, s, t ∈ H, k ≤ s ≤ t, p ≤ s − 1, q ≤ t − s
(29)

The pseudo-code of the proposed DWD approach is summarized in Algorithm
4. This algorithm starts with two sets of initial plans that are generated. The
first set of plans (one for each item), given by Q̄1

jt, X̄
1
jt and Ī1jt, are obtained by

assuming that the machine is operating in each period at its full capacity, i.e., by
setting the value of κk

t,s(ȳ) and ck
t,s(ȳ) to zero in each period and solving the orig-

inal problem (IPImPMP) (assuming no preventive maintenance is undertaken).
The second set of plans (again one for each item), given by (Q̄2

j,t = demandjt

and X̄2
jt = 1 and Ī2jt = 0, are obtained by assuming that the demand of each

item in a period is produced in the that period (Lines 2 to 5). Then in lines 6
and 7, the values of ȳt, κ

k
t,s(ȳ) and ck

t,s(ȳ) are recalculated.
The values resulting from the two mentioned initial sets of plans are han-

dled by the master problem as input parameters. The master problem is solved
to obtain the dual variables μt, πj , ηjt associated with its constraints and are
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Algorithm 4. Dantzig-Wolfe Product Decomposition heuristic.

1: Inputs: Q, I, X, Y, Z
2: κk

t,s(ȳ), ckt,s(ȳ) ← 0
3: Qjt, Xjt, Ijt ← solve IPImPMP(sol.IP)
4: Q̄1

jt, X̄
1
jt, Ī

1
jt ← Qjt, Xjt, Ijt

5: Q̄2
jt, X̄

2
jt, Ī

2
jt ← demandjt, 1, 0

6: ȳt ← maxj{X̄2
jt}

7: κk
t,s(ȳ), ckt,s(ȳ) ← formula (12) and (13)

8: solve Masterproblem(sol.LP, ϑm
j , μt, πj , ηjt)

9: μt, πj , ηjt ← dual values of constraints (22), (23), (24)
10: solve SUBproblem(sol.IP, Qjt, Xjt, Ijt)
11: m ← 3
12: Q̄m

jt , X̄
m
jt , Ī

m
jt ← Qjt, Xjt, Ijt

13: ȳt ← maxj{X̄kp
jt }

14: κk
t,s(ȳ), ckt,s(ȳ) ← formula formula (12) and (13)

15: while (min(sol.LP ) ≤ 0) do
16: solve Masterproblem(sol.LP, ϑm

j , μt, πj , ηjt)
17: μt, πj , ηjt ← dual values of constraints (22), (23), (24)
18: solve SUBproblem(sol.IP, Qjt, Xjt, Ijt)
19: m ← m + 1
20: Q̄m

jt , X̄
m
jt , Ī

m
jt ← Qjt, Xjt, Ijt

21: ȳt ← maxj{X̄kp
jt }

22: κk
t,s(ȳ), ckt,s(ȳ) ← formula formula (12) and (13)

23: end while
24: ȳt ← 1 if maxj(

∑Mj
m=1 X̄m

jt ∗ ϑm
j ) ≥ 0, and 0 otherwise

25: κk
t,s(ȳ), ckt,s(ȳ) ← formula formula (12) and (13)

26: solve IPImPMPP(sol.IP )

communicated as input parameters to the subproblems (line 9–12). During the
DWD generation process, subproblems are solved to generate new set of plans
mth. For a given product, if the subproblem’s objective value is negative, i.e., if
the mth plan has a negative reduced cost, then this mth plan is added to master
problem in the next iteration. The process is repeated until the stopping crite-
rion is reached. Here, the stopping criteria holds whenever all plans generated
have positive reduced costs, or the limited number of iterations is reached (line
17–26). Finally, the variable ȳt is set to 1 if maxj(X̄m

jt ∗ ϑm
j ) > 0 and to 0 other-

wise. Then after, the values of κk
t,s(ȳ) and ck

t,s, (ȳ) are calculated then a feasible
final plan is obtained by solving the original IPImPMP problem as an integer
linear problem.

5 Lagrange Relaxation Method

Lagrangian relaxation is a technique that is widely used to deal with combi-
natorial optimization problems. It generally provides better lower bounds than
those obtained by the linear programming relaxation (see [7,9]). To generate
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such lower bounds in case of the reformulation Re IPImPMP of the problem,
as presented in Sect. 2.3, we consider the relaxed problem in which the resource
capacity constraints (16) (or (6)) is relaxed with the set of Lagrangian multipliers
μt ≥ 0.

(CAP Re IPImPMP(μ):)

Minimize ZLR
CAP (μ)

=
T∑

t=1

N∑

j=1

(fjtxjt + pjtQjt + hjtIjt) +
T∑

t=1

t∑

k=1

Ck
PMzk

tt

+
T∑

t=1

t∑

s=1

s∑

k=1

s−1∑

p=0

t−s∑

q=0

ck
st (p, q)wk

st (p, q)

+
T∑

t=1

μt

⎛

⎝
N∑

j=1

ρQjt +
t∑

s=1

s∑

k=1

s−1∑

p=0

t−s∑

q=0

ck
st (p, q)vk

st (p, q) − κmax

⎞

⎠ (30)

Subject to:
Equations (3)–(5), (7)–(11), and (17)–(21).
The problem of finding the Lagrangian multipliers μt values that minimize

the result of CAP Re IPImPMP (μ), which is a maximization problem, is
called the Lagrangian dual problem. In general, this later is rather difficult
to solve. There is however a fairly straightforward approach that begins with
each multiplier μt set to 0. Next, the problem CAP Re IPImPMP is solved to
get current solution. The Lagrangean multipliers μt are then updated as shown
below. The process is carried out until either a feasible solution (optimal) is
found or until the quality of the lower bound is good enough. The Lagrangean
multipliers μk+1

t are updated as follows:

μk+1
t = max

⎛

⎜
⎜
⎜
⎜
⎝

0, μk
t − λ

(UB − LB)
T∑

t=1

(slack[t])2
∗ slack[t]

⎞

⎟
⎟
⎟
⎟
⎠

, ∀t ∈ H (31)

where

slack[t] =

(

κmax −
N∑

j=1

ρQjt −
t∑

s=1

s∑

k=1

s−1∑

p=0

t−s∑

q=0

ck
st (p, q)vk

st (p, q)

)

(32)

The Lagrangian relaxation pseudo code is given in Algorithm 5.
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Algorithm 5. Lagrangian relaxation algorithm.

1: μ ← 0
2: LB ← −∞
3: UB ← +∞
4: Xjt ← 1

5: V k
ts(p, q) ←

{
1, if t = s = k and p = s − 1

0, otherwise

6: W k
ts(p, q) ←

{
1, if t = s = k and p = s − 1

0, otherwise

7: UB ← presolve(re PPImPMPP, sol.value)
8: kiter ← 1
9: while LB 	= UB do

10: solve(sol.relaxed, Q, I, X, Y S, Z, v, w, μ)
11: LBkiter ← sol.relaxed
12: LB ← max(LB, LBkiter )
13: recalculate(re PPImPMPP, sol.value)
14: UBk ← sol.value
15: UB ← min(UB, UBkiter )
16: update(μkiter , λkiter )
17: kiter ← kiter + 1
18: end while

6 Results and Discussions

To evaluate the effectiveness of the three different approaches described above, on
the Re IPImPMP model, this section presents the results of the computational
experiments on some test instances, available in the literature. In particular, a
collection of test instances from the LOTSIZELIB [26] is used for this experi-
mental analysis. Of course, these instances from the LOTSIZELIB were extended
and adapted to the integrate maintenance optimization aspect as done in [2,24].

6.1 The Test Instances

The algorithms presented above are coded in AMPL using the callable library
CPLEX 12.6 to solve the MILP problems. The computation tests were carried
out on an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, 3401 MHz, 4 Core(s),
8 Logical with 32 GB RAM operating under windows 7. CPU times are given
in seconds. For the maintenance part, we assumed that the machine is subject
to the random failures according to a Gamma distribution Γ(m = 2, ν = 2)
with a shape parameter m = 2 and a scale parameter ν = 2 as in [2], and
that both preventive and corrective maintenance times are negligible. We also
assume imperfect preventive maintenance with an age reduction coefficient αk =
k/(3k +7) and a failure rate adjustment coefficient βk = (12k +1)/(11k +1) for
all k.

To evaluate the effect of windowSize and overlap for the RFFO heuristic
method, we tested all the windowSize parameters from 1 to T , the last period of
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the planning horizon, and we increased overlap by a step from 1 to WindowSide
for instances A20007 and tr6 15 to get initial value of the problem as shown in
Table 1.

Table 1. Initial value of WindowSize and Overlap chosen in RFFO Algorithm [24].

Instances WindowSize Overlap %

A2007 5 60

tr6 15 8 60

tr6 30 12 60

tr12 15 8 60

tr12 30 12 60

tr24 15 8 60

tr24 30 12 60

set1ch 8 60

6.2 Analysis and Discussions About the Experiments

Table 2 summarizes the results of the experiments which were carried out to
compare the Re IPImPMP [2] and the RFFO heuristic solution method. The first
column of the table identifies the instances solved. The second column reports
the optimal value of each instance which was obtained from the Re IPImPMP
model and the third column reports the resulting CPU running time. The fourth
column describes the value of each instance obtained by the proposed RFFO
heuristic algorithm and the fifth column presents the obtained CPU running
time. The last column shows the GAP between the RFFO heuristic value and
the Re IPImPMP value. When comparing the results of the proposed RFFO
with the results of the Re IPImPMP model, the RFFO algorithm provided the
same optimal value with a considerable saving of the CPU time. This approaches
is 4 to 10 times faster for the medium and/or large instance. However, in the
small scale problems (A2007 and set1ch instances) the CPU time was larger for
RFFO due to the inner loop of the algorithm.

Table 3 summarizes the results of the computational experiments carried out
for the DWD decomposition method. The first column of the table identifies
the instances solved. The second column presents the value of each instance
obtained by the proposed DWD decomposition algorithm, and the third column
reports the CPU time. The last column describes the GAP between the DWD
decomposition value and the Re IPImPMP value given by:

GAP% =
(valueDWD − valueRe IPImPMP )

valueDWD
∗ 100

As shown in Table 3, the proposed DWD provides solutions which are not so
far from the optimal Re IPImPMP value, with the less CPU time and memory.
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Table 2. A Summary of the experimental results for comparision between the
Re IPImPMP and RFFO Heuristic algorithm [24].

Instances Re PPImPMP CPU time (sec) RFFO CPU time (sec) GAP %

A2007 815.435 1.05 815.435 51.25 0.00

tr6 15 337,355.000 4,339.16 337,355.000 210.59 0.00

tr6 30 675,607.000 2,103,730.00 676,080.000 642,130.00 0.07

tr12 15 1,245,920.000 2,710.00 1,252,120.000 520.00 0.50

tr12 30 4,387,470.000 2,088,910.00 4,387,470.000 1,126,980.00 0.00

tr24 15 2,502,640.000 2,920.00 2,502,640.000 245.89 0.00

tr24 30 8,272,760.000 2,031,020.00 8,272,760.000 752,230.00 0.00

set1ch 107,532.000 130.00 107,532.000 244.69 0.00

Table 3. A summary of the experimental results of the DWD applied algorithm [24].

Instance Value DWD CPU time (sec) Gap %

A2007 875.52 1.95 6.86

tr6 15 337,787.00 1.65 0.13

tr6 30 859,051.00 1.29 21.35

tr12 15 2,159,410.00 1.05 42.30

tr12 30 8,917,970.00 3.59 50.67

tr24 15 4,829,470.00 1.01 48.18

tr24 30 16,945,000.00 3.76 50.98

set1ch 172,504.00 1.72 37.66

However, the GAP defined as the ratio of the difference between the value of
the DWD algorithm and the value of the Re IPImPMP model, show that the
approach is just suitable for small and medium scale instances.

Table 4 summarizes the results of the experiments carried out with Lagrange
Relaxation method. The first column of the table identifies the instances solved.
The second column shows the obtained Lower Bound (LB) value of each instance.
The third column present the obtained Upper Bound (UP) value of each instance.
The fourth column reports the CPU time. The last column describes the GAP
between UB and valueRe IPImPMP by:

GAP% =
(UB − valueRe IPImPMP )

UB
∗ 100

In the Lagrange Relaxation decomposition method, the UB are also close
to optimal value in case of small/medium scale problem and excessively large
when the problems have more variables and constraints for large scale prob-
lems. The problem takes more memory, CPU solving time and rises up variables
after each iteration which causes high CPU utilization and out of capacity of
AMPL/CPLEX program. This returns back to feasible solution on inaccuracy
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Table 4. Summary of the experimental results of Lagrange relaxation applied algo-
rithm.

Instance LB UB CPU time (sec) GAP %

A2007 531.65 815.44 14.30 0.00

tr6 15 332,147.00 337,355.00 15,754.90 0.00

tr6 30 652,844.00 2,277,720.00 410.34 70.34

tr12 15 829,906.00 1,245,920.00 1,122.71 0.00

tr12 30 2,041,480.00 40,720,000.00 453.16 89.23

tr24 15 1,722,040.00 2,502,640.00 2,328.80 0.00

tr24 30 3,903,010.00 77,760,500.00 375.74 89.36

set1ch 84,751.80 107,532.00 365.88 0.00

valuable and no updated Lagrange multipliers. It means that GAP, computed
by LB and UB, is huge when the problem becomes more complex.

7 Conclusions

This paper investigates the integrated production and imperfect preventive
maintenance planning problem. The objective of this joint planning problem
is to determine an optimal integrated production plan as well as a preventive
maintenance plan that concurrently minimize production and preventive main-
tenance costs during a given finite planning horizon. Three approaches are used
to solve the resulting reformulated models and compare the obtained results for
a set of benchmark instances.

Thus, the Relax-and-Fix/Fix-and-Optimize (RFFO), Dantzig-Wolfe Decom-
position (DWD) and Lagrangian Relaxation (LR) approaches were applied to the
reformulated version of the problem, and their performances are compared and
discussed. Eight difference instances ranging from small, medium to large-scale
sized problems are considered.

The computational results show that the RFFO approach is quite efficient
and competitive compared to the Dantzig-Wolfe Decomposition (DWD) and
Lagrangian Relaxation (LR) techniques. It provides quite good solutions to
the test problems with a noticeable improvement in computational time. DWD
decomposition and Lagrangian Relaxation methods on the other hand exhibits
a good enhancement in terms of computational time, however, the quality of
solution still requires some more improvements.

Further studies are currently undertaken to investigate more in detail and
improve the DWD decomposition and Lagrangian Relaxation methods to obtain
better quality solutions and increase computational time savings, especially for
large instances of this complex problem.
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Abstract. Markov decision theory is applied to study the distribution
of dividends of a discrete reserve process with a fixed barrier. The non-
payment of dividends is penalized through a cost function which implies
solving an optimal control problem. Two objective functions are pro-
posed: a discounted cost and an average one. In both cases, the same
optimal strategy for the payment of dividends is obtained, which ensures
a ruin probability that guarantees a sustainable reserve operation for
claims distributed with light or heavy tails.

Keywords: Reserve processes
Discounted and average Markov Decision Processes · Ruin probability
Optimal premiums · Dividends

1 Introduction

Defining an optimal policy of dividends distribution of a reserve process of an
insurance company that benefits the share-holders has been studied since De-
Finetti proposed it for the first time in 1957 (see [9]). In this work we are inter-
ested in studying this problem through a discrete approach: dividends are dis-
tributed in fixed periods of time, for claims with light or heavy tails, when the
reserve overpasses a fixed barrier. The payment of dividends is relevant because
in the Lundberg-Cramér model, (see [7,22]), if the intensity of the premiums
is higher than the average total amount of claims (the security loading is pos-
itive), then with probability 1, the paths of the reserve tend to infinity when
the time t increases indefinitely. Therefore, dividends appear as a way to con-
trol an unlimited increment of the reserves. One possible policy is to determine
the dividend strategy that maximizes the expected value of a utility function
by means of control techniques. This approach has been studied in discrete
time by [3,10,23,24,28,29] where the authors have applied the optimal control
c© Springer International Publishing AG, part of Springer Nature 2018
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theory in insurance companies. In particular, [24] introduced the control tech-
niques for the first time by means of the theory of discounted Markov Decision
Processes. There is also a wide variety of publications in continuous time, (see
[5,11,12,15,16,26,29]).

Several criteria have been proposed to distribute dividends, (see [5,11,15,
23,29]). In this work, given an objective capital (barrier) Z > 0, if the reserve
exceeds Z, then the dividends are distributed. A model with a fixed barrier
reserve of an insurance company is proposed. The distribution of the total
amount of claims, by time interval, represents a compound process which is
supposed to be general, in the sense that it only requires for its density to be
continuous almost everywhere, (see [25]).

The Markov Decision Processes (MDPs) at discrete time are those that are
periodically observed under uncertainty, and can be influenced by application of
controls [19]. The sequence of controls is called policy, and an optimal policy is
obtained through the minimization of a cost function which penalizes the failure
to pay dividends. The dynamic programming technique explicitly determines
the optimal solution. In addition, a rate for the ruin probability for the reserve
process is established when the optimal policy is applied.

In a previous work, see [25], we considered only the discounted cost function.
In this work we extend the previous results, to consider the average cost func-
tion whose optimal policy results to be the same as in the discounted case, see
Theorem 3 in Sect. 6. In order to prove Theorem 3, it was necessary to include a
new subsection, see Sect. 2.3, in Sect. 2. We also add in Sect. 5 two new graphs
to illustrate the behavior of the reserve process when the claims have light or
heavy tails.

The paper is organized as follows: in the second section some main results
from MDPs are presented, while in the third section the discrete time reserve
process with a fixed barrier is introduced. In the fourth section the optimal
premium for the discounted case is obtained. In the following section a rate
for the ruin probability is given when the optimal strategy is applied to the
reserve, and two illustrative examples are presented. In the sixth section the
optimal premium is obtained for the average case. Finally, research conclusions
are presented.

2 Markov Decision Processes

This section presents some results on the theory that will be used to solve the
problem stated in the paper.

2.1 Preliminaries

Let X and Y be complete Borel spaces (recall that a Borel space is a Borel subset
of a separable metric space). A stochastic kernel on X given Y is a function
P (·|·) such that P (·|y) is a probability measure on X for each fixed y ∈ Y, and
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P (B|·) is a measurable function on Y for each fixed B ∈ B(X) (here, the Borel
σ-algebra of X is denoted by B(X)).

For a topological space Λ, B(Λ) stands for the Banach space of real-valued,
bounded, (Borel-) measurable functions h on Λ with the supremum norm
‖ h ‖:= supx | h(x) |. For a finite signed measure μ on Λ, ‖ μ ‖ denotes the
total variation norm; in particular, if μ = Q1 − Q2 is the difference between
two probability measures Q1 and Q2, then

‖ Q1 − Q2‖ = 2supD | Q1(D) − Q2(D) |, (1)

where the sup is over all Borel sets D ∈ B(Λ). Besides, let us recall that for any
finite signed measure μ and h ∈ B(Λ),

|
∫

hdμ| = ‖h ‖‖ μ ‖ . (2)

Let W be a Borel space and suppose that W is complete and partially ordered.
The partial order in W is denoted by ≺ . Moreover a function g : W → IR is
considered to be increasing if x, y ∈ W, x ≺ y, imply that g(x) ≤ g(y), where ≤
is the usual order in IR.

Definition 1. Let W be a complete Borel space and suppose that W is partially
ordered. Let P and P ′ be probability measures on (W,B(W )). It is said that P ′

dominates P stochastically if
∫

gdP ≤ ∫
gdP ′ for all g : W → IR measurable,

bounded and increasing, so write P
st≤ P ′ when this holds.

Remark 1. Let P and P ′ be probability measures on (IR,B(IR)). In this case,

P
st≤ P ′ if F ′(x) ≤ F (x), for all x ∈ R, where F and F ′ are the distribution

functions of P and P ′, respectively, (see [21] p. 127).

Lemma 1. Let W be a complete Borel space, and suppose also that W is par-
tially ordered. Let P and P ′ be probability measures on (W,B(W )), such that,

P
st≤ P ′. Then

∫
H∗dP ≤ ∫

H∗dP ′, for H∗ :→ IR which is measurable, nonnega-
tive, nondecreasing, and (possibly) unbounded.

Proof [8] ��
Let (X,A, {A(x)|x ∈ X}, Q, c) be a discrete-time Markov control model (see [4]
or [19] for notation and terminology). This model consists of the state space X,
the control set A, the transition law Q, and the cost-per-stage c. For each x ∈ X,
there is a nonempty measurable set A(x) ⊂ A whose elements are the feasible
actions when the state of the system is x. Define IK := {(x, a) : x ∈ X, a ∈
A(x)}.The cost-per-stage c is assumed to be a measurable function on IK.

The transition law Q is often induced by an equation of the form

xn+1 = G(xn, an, ξn), (3)
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n = 0, 1, · · · , with x0 ∈ X given, where {xn} and {an} are the sequences of
the states and controls, respectively, and {ξn} is a sequence of random variables
independent and identically distributed (i.i.d.), with values in some space S,
common density function Δ, and independent of the initial state x0; G : IK×S →
X is a measurable function.

2.2 Infinite-Horizon Discounted-Cost Problems

The control problem of interest in this subsection is the minimization of the
infinite-horizon expected total discounted cost. For this, let (X,A, {A(x)|x ∈
X}, Q, c) be a discrete-time Markov control model and consider the following
assumption.

Assumption 1. (a) A(x) is compact for all x ∈ X;
(b) c is lower semicontinuous and nonnegative;
(c) The transition law Q is strongly continuous, that is, the function h′, defined

on IK by:

h′(x, a) :=
∫

h(y)Q(dy|x, a), (4)

is continuous and bounded for every measurable bounded function h on X.

Using the standard notation and definitions in [19], Π denotes the set of all
policies and IF is the subset of stationary policies. Each stationary policy f ∈ IF
is identified with the measurable function f : X → A such that f(x) ∈ A(x) for
every x ∈ X.

Remark 2. Given an initial state x ∈ X and a stationary policy f ∈ IF, the
process determined by (3) is a homogeneous Markov process with transition
kernel Q(·|x, f) (see [19] Proposition 2.3.5 p. 19).

Let (X,A, {A(x)|x ∈ X}, Q, c) be a discrete-time Markov Control Model; the
expected total discounted cost is defined as

vα(π, x) := Eπ
x

[
+∞∑
n=0

αnc(xn, an)

]
, (5)

when using the policy π ∈ Π, given the initial state x0 = x ∈ X. In this case,
α ∈ (0, 1) is a given discount factor (note that α is fixed), and Eπ

x denotes the
expectation with respect to the probability measure Pπ

x induced by π and x (see
[19]).

A policy π∗ is said to be optimal if

vα(π∗, x) = V ∗
α (x), (6)

for each x ∈ X, where
V ∗

α (·) := inf
π∈Π

vα(π, ·) (7)

is the so-called optimal value function.
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Remark 3. Assumptions 1(a) and (b) imply that c is inf-compact on IF, that is,
for every x ∈ X and r ∈ IR, the set

Ar(x) := {a ∈ A(x)|c(x, a) ≤ r} (8)

is compact. Therefore, Assumption 1 implies Assumptions 1(a) and (b) in [19].
Consequently, the validity of the next lemma is guaranteed.

Lemma 2. Under Assumption 1,

(a) The optimal value function V ∗
α satisfies the optimality equation

V ∗
α (x) = min

a∈A(x)

{
c(x, a) + α

∫
V ∗

α (y)Q(dy|x, a)
}

, (9)

for each x ∈ X.

(b) There exists an optimal stationary policy f∗ ∈ IF such that

V ∗
α (x) = c(x, f∗(x)) + α

∫
V ∗

α (y)Q(dy|x, f∗(x)), (10)

for each x ∈ X.

(c) Vα,n(x) → V ∗
α (x) when n → ∞, where Vα,n is defined by

Vα,n(x) = min
a∈A(x)

{
c(x, a) + α

∫
Vα,n−1(y)Q(dy|x, a)

}
, (11)

for each x ∈ X, with Vα,0(·) = 0.

Proof. [19], pp. 46–51. ��

2.3 Long-Run Average-Cost Problems

In this subsection a class of infinite horizon control problems in which the objec-
tive function depends only on the asymptotic behavior of the process will be
taken into account. So, let (X,A, {A(X) : x ∈ X} , Q, c), be a Markov control
model as it has been previously described. The long-run expected average
cost (AC) when using the policy π, given the initial state x0 = x, is

J(π, x) := lim sup
k→∞

k−1Eπ
x

[
k−1∑
n=0

c (xn, an)

]
, (12)

and the AC-problem is to find a policy π∗ such that

J (π∗, x) = inf
Π

J(π, x) =: J∗(x) for all x ∈ X. (13)
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A policy π∗ that satisfies (13) is said to be AC-optimal and J∗(·) is the AC-
value function.

In order to characterize AC-optimal policies, now the connection between the
discounted case and the average case will be presented. This connection is known
as the vanishing discount factor approach (see [19]) which consider α vary-
ing and, in fact, α tending to one. For α ∈ (0, 1), let V ∗

α (·) be the corresponding
optimal value function defined in (7).

Assumption 2. There exist a state y ∈ X and numbers β ∈ (0, 1) and M ≥ 0
such that

(a) (1 − α)V ∗
α (y) ≤ M , for all α ∈ [β, 1]. Moreover, there is a constant N > 0

and a nonnegative (not necessarily measurable) function b(·) such that, with
hα(x) := V ∗

α (x) − V ∗
α (y), x ∈ X,

(b) −N ≤ hα(x) ≤ b(x), for all x ∈ X and α ∈ [β, 1).

Remark 4. By Remark 3, the validity of the next lemma is guaranteed.

Lemma 3. Suppose that Assumption 1 holds. Then

(i) Under Assumption 2 there exist a constant ρ∗ ≥ 0, a measurable function
h : X → R with −N ≤ h(x) ≤ b(x), for all x ∈ X, and h(y) = 0, and a
selector g ∈ F such that

(a)

ρ∗ + h(x) ≥ min
a∈A(x)

[
c(x, a) +

∫
h(y)Q(dy|x, a)

]
,

for all x ∈ X,

(b)

ρ∗ + h(x) ≥ c(x, g(x)) +
∫

h(y)Q(dy|x, g(x)),

x ∈ X, and, moreover,

(c) g is AC-optimal and ρ∗ is the AC-value function, i.e.

J∗(x) = J(g, x) = ρ∗, for all x ∈ X, (14)

so that ρ∗ = infX J∗(x) = infX infΠ J(π, x); in fact, any selector g ∈ F

that satisfies (b) also satisfies (14).

(ii) Conversely, if g ∈ F is AC-optimal and satisfies (14), then there exists a
measurable (possibly extended real-valued) function ĥ ≥ 0 on X such that
(ρ∗, ĥ, g) satisfies (b) and hence (a) as well.

Proof. [19], pp. 88–91. ��
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From definition (12) of the AC as a limit of “time averages” it is clear that the
AC problems are related to certain ergodic properties of the controlled process,
which will appear in the following two assumptions (see [18]).

Assumption 3. There exists a state y ∈ X and a positive α0 such that

Q({y}|x, a) ≥ α0,

for all (x, a) ∈ K.

Assumption 4. There exists a number λ0 ∈ (0, 1) such that

sup
k,k′

‖Q(·|k) − Q(·|k′)‖ ≤ 2λ0, (15)

where the sup is over all k, k′ ∈ K.

Lemma 4. Assumption 3 implies Assumption 4.

Proof. [18], pp. 56–59. ��
For f ∈ F, the n-step transient probability Qn(·|x, f(x)), x ∈ X, is given
recursively by

Qn(D|x, f(x)) =
∫

Qn−1(D|y, f(y))Q(dy|x, f(x)), (16)

for all D ∈ B(X) and n ≥ 1, where Q0(·|x, f(x)) := px(·) is the probability
measure concentrated at the point x ∈ X.

Lemma 5. Suppose that Assumptions 1 and 3 hold. Moreover, assume that the
cost function c ∈ B(K).

Then,

|V ∗
α (x) − V ∗

α (y)| ≤ 2‖c‖
1 − λ0

, (17)

for all x ∈ X, where λ0 is the constant in Assumption 4 (recall that by Lemma
4, Assumption 4 also holds) and y is a fixed state.

Proof. Firstly, under Assumption 3, by [14], for all x, z ∈ X, f ∈ F and n ≥ 1,

‖Qn(·|x, f(x)) − Qn(·|z, f(z))‖ ≤ 2−n+1 sup
x,z

‖Q(·|x, f(x)) − Q(·|z, f(z))‖n (18)
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holds (see also (16)). Hence, from (2), Assumption 4, (18), and considering the
optimal policy for the discounted case f∗, it results that, for all x ∈ X,

|V ∗
α (x) − V ∗

α (y)| ≤
+∞∑
n=0

αn

∣∣∣∣
∫

c(z, f∗(z)) [Qn(dz|x, f∗(x)) − Qn(dz|y, f∗(y))]
∣∣∣∣

≤ ‖c‖
+∞∑
n=0

2−n+1(2λ0)nαn

= 2‖c‖
+∞∑
n=0

(λ0α)n

=
2‖c‖

1 − λ0α

≤ 2‖c‖
1 − λ0

.

This is the end of the proof of Lemma 5. ��

3 Reserve Process

The process {Rt}t≥0 is called Reserve Process. Rt represents the reserve of
the company at time t and is given by

Rt = R0 + Pt − St, (19)

where R0 = u > 0 is the initial reserve of the company, Pt are the premiums
earned and St the total amount of claims until time t.

Definition 2. The ruin probability ψ(u), with initial reserve u > 0, is defined
by

ψ(u) := Pr[τ(u) < +∞] (20)

where τ(u) := inf{t > 0|Rt < 0} with τ(u) = +∞ if Rt > 0 for all t ≥ 0.

As in the classical model of Lundberg and Cramér, the premiums are deter-
mined continuously and deterministically, i.e., Pt = Ct where C > 0 and t ≥ 0.
In addition, the total amount of claims St may depend on two process: a homo-
geneous Poisson process {N(t)}t≥0, with intensity λ > 0, and a claims amounts
process {Yi : i = 1, 2, · · · }, where Yi are independent and identically distributed
random variables. Thus, the total amount of claims until time t is given by

St =
N(t)∑
i=1

Yi, (21)

where St = 0 if t = 0.
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Thus, the reserve process is described by

Rt = u + Ct − St.

Choosing C > λE[Y1], known as the safety loading condition, it is concluded
that the average reserves of the company grow indefinitely. In other words, the
reserve Rt tends to infinity when t does so with probability 1 − ψ(u). Different
methods have been proposed to determine the premium value for the safety
loading condition to hold (see [11,29]). In this work the expectation principle
will be used.

In order to avoid the accumulation of earnings, we propose to establish an
upper limit (barrier) Z for the reserve, when Rt > Z, the surplus Rt − Z is paid
as dividends, (see [5,9,11,12,29]). Dividends can be understood as payments
made by a company to its shareholders, either in cash or in shares. Formally,
the cash dividends, dt, are defined as dt = [Rt − Z]+, where [z]+ = max{0, z}.

Remark 5. It is important to mention that in a more general setting, some of the
assumptions may be relaxed, e.g., {N(t)} could be a non-homogeneous Poisson
process or a more general renewal process. Hence it is possible to assume that the
claim size cumulative distribution function is of a particular parametric form,
eg., gamma, Weibull, etc. (see Assumption 5 and Examples 5.1 and 5.2, below).

3.1 Discrete-Time Reserve Process

Now, a discrete-time reserve model will be developed assuming that the insurance
company defines its operational policy at fixed points of time (see [3,10,20,29]).

Let {Rt} be a reserve process with initial reserve R0 = u > 0, and {tn} be
an increasing sequence of positive real numbers with t0 = 0. Then, (19) implies
that

Rtn+1 − Rtn
= (Ptn+1 − Ptn

) − (Stn+1 − Stn
), (22)

for n = 0, 1, · · · , where (Ptn+1 −Ptn
) and (Stn+1 −Stn

) are the premiums earned
and the total amount of claims during the period (tn, tn+1], respectively.

Let xtn
:= Rtn

, atn
:= (Ptn+1 −Ptn

) and ξtn
:= (Stn+1 −Stn

). Then, without
loss of generality, it is possible to assume that tn = n for n > 0. Then, the
discrete-time reserve model is as follows:

xn+1 = xn + an − ξn, (23)

with x0 = u > 0.
In this case, xn+1 represents the reserve at time t = n + 1. Moreover, the

discrete-time ruin probability is determined by

ψd(u) := Pr[τd(u) < +∞] (24)

where τd(u) := inf{n ≥ 1|xn ≤ 0} with τd(u) = +∞ if xn > 0 for all n > 0.
According to the ruin probability defined above, the ruin of the company is

attained when xn + an − ξn ≤ 0 for some n > 0.
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If the following dynamics is considered:

xn+1 = [xn + an − ξn]+, (25)

for n = 1, 2, · · · , with x0 = u > 0, then the ruin is attained when xn = 0 for
some n = 1, 2, · · · . However, just as in the continuous case model, if the safety
loading condition holds, E[xn] → +∞ when n → +∞.

The dynamics described in (25) is known as the Lindley random walk (see
[2]) which has various applications, for example, in storage processes, waiting
time model, queue size models, to name a few [2].

We will extend our model to incorporate the fixed barrier Z which defines the
payments of dividends (see [5,9,11,23]). Let Z be a fixed barrier such that, if at
time tn, xn > Z, the surplus xn − Z is used to pay dividends. This is described
by the following dynamics:

xn+1 = min{[xn + an − ξn]+, Z} (26)

with x0 = u > 0. In this case, xn, an and ξn denotes respectively: reserve,
premium and the total amount of claims of the company at the beginning of the
period (n, n + 1].

The dynamics given in (26) has been used to describe storage processes with
finite capacity such as: dams, inventory, waiting time model and queue sizes, to
name a few (see [13,17]).

Assumption 5. Suppose that {ξn} is a sequence of i.i.d. random variables with
values on [0,∞), and a common distribution F whose density Δ is continuous
almost everywhere (a.e.), with E[ξ] < +∞ (ξ is a generic element of the sequence
{ξn}).
Remark 6. In the rest of this paper Assumption 5 will not be mentioned in each
result, but it is supposed to hold.

Using the expectation principle for premiums calculation, it is ensured that the
safety loading condition for the process described in (26) holds. Define

K := (1 + ε)E[ξ] (27)

and
M := (1 + β)E[ξ], (28)

where 0 < ε < β. Then, by [11,29] K < M, therefore, the admissible premiums
set is the compact subset [K,M ]. (Note that for all premium a ∈ A(x) = [K,M ],
the safety loading condition is satisfied, and β is fixed in order to be competitive
in the insurance market).

Every time that the reserve is below the barrier Z, the non-payments of
dividends is penalized. Therefore, the following cost function is proposed:

c(x, a) := [Z − x]+, (29)

for each x ∈ [0,+∞) and a ∈ [K,M ].
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Remark 7. This model defines an MDP: take X = [0,+∞) as the state space (it
is important to note that the state space may also be a compact set of the form
X = [0, Θ] for some Θ ≥ Z) ; A = [K,M ] as the action space; A(x) = [K,M ]
as admissible actions for each x ∈ X; the transition law Q is induced by the
function G(x, a, s) := min{[x + a − s]+, Z} for each (x, a) ∈ IK and s ∈ [0,+∞)
(see (3)). Finally, the cost function is defined in (29).

According to Remark 7, there is a problem (an OCP) to determine the
sequence of premiums π = {an} which optimizes

να(π, x) := Eπ
x

[
+∞∑
n=0

αn[Z − xn]+
]

, (30)

where x ≥ 0 is the initial reserve, and α is a given discount factor.

4 Discounted Optimal Premiums

In this section the research results are presented using discounted MDPs theory.
(Note that α is considered to be fixed).

By the definition of the cost function in (29) it is concluded that it is non-
negative and continuous. Moreover, for each x ∈ X, A(x) = [K,M ] is a compact
set. So, now it is only necessary to show Assumption 1(c) which is presented in
the following lemma.

Lemma 6. The transition law Q, induced by (26), is strongly continuous.

Proof. Let h : X → IR be a measurable function bounded by the constant γ.
Using the Variable Change Theorem ([1] p. 52), it follows that

∫
h(y)Q(dy|x, a) =

∫ ∞

0

h(min{[x + a − s]+, Z})Δ(s)ds, (31)

(x, a) ∈ K.
Furthermore,

∫ ∞

0

h(min{[x + a − s]+, Z})Δ(s)ds = h(0)(1 − F (x + a))

+ h(Z)F (x +a − Z) +
∫ x+a

x+a−Z
h(x + a − s)Δ(s)ds,

(x, a) ∈ IK, where F is the common distribution function of ξ.
Since density Δ is a continuous function a.e. (see Assumption 5), F is also

continuous (see [1], p. 175).
Given the above, it suffices to prove that

∫ x+a

x+a−Z

h(x + a − s)Δ(s)ds (32)
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is a continuous function on (x, a) ∈ IK.
For this purpose, let {(xk, ak)} be a sequence in IK converging to (x, a) ∈ IK.

By the Variable Change Theorem ([1] p. 52),

∫ x+a

x+a−Z

h(x + a − s)Δ(s)ds =
∫ Z

0

h(y)Δ(x + a − y)dy. (33)

Consider the following functions defined by

hk(y) := h(y)Δ(xk + ak − y)I[0,Z](y), (34)
gk(y) := γΔ(xk + ak − y)I[0,Z](y), (35)

for k = 1, 2, · · · , y ∈ [0,+∞), where IB(·) denotes the indicator function on the
set B.

Note that |hk| ≤ gk for all k ≥ 1. Furthermore, {gk} converges a.e. to the
function g which is defined by

g(y) := γΔ(x + a − y)I[0,Z](y), (36)

y ∈ [0,+∞).
Furthermore,

∫
gk(y)dy = γ

∫ Z

0

Δ(xk + ak − y)dy,

= γPr[xk + ak − Z ≤ ξ ≤ xk + ak],

= γ(F (xk + ak) − F (xk + ak − Z)),

and, as the distribution F is continuous, then

lim
k→∞

∫
gk(y)dy =

∫
g(y)dy. (37)

Finally, by the Dominated Convergence Theorem ([27] p. 92)

lim
k→∞

∫ xk+ak

xk+ak−Z

h(xk + ak − s)Δ(s)ds = lim
k→∞

∫
hk(y)dy

=
∫

lim
k→∞

hk(y)dy

=
∫ Z

0

h(y)Δ(x + a − y)dy

=
∫ x+a

x+a−Z

h(x + a − s)Δ(s)ds

and therefore the result holds. ��
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Remark 8. By Lemma 6, Assumption 1 holds, and therefore Lemma 2 guaran-
tees the existence of the optimal policy, f∗ ∈ IF, which, in the context of the
reserve process, describes the sequence of optimum premiums that minimizes
the performance index given in (30) for the model established in Remark 7.

Lemma 7. (a) The transition law Q, induced by (26), is stochastically ordered,
i.e.,

Q(·|x, a)
st≤ Q(·|w, b) (38)

for each (x, a), (w, b) ∈ IK with x ≤ w and a ≤ b.
(b) The optimal value function V ∗

α (·), and the value iteration functions Vα,n(·),
defined in (11), are decreasing on X.

Proof. (a) Let (x, a), (w, b) ∈ IK with x ≤ w and a ≤ b. Observe that

[x + a − s]+ ≤ [w + b − s]+, (39)

s ∈ [0,+∞).
On the other hand, if min{[w+b−s]+, Z} = Z, then min{[x+a−s]+, Z} ≤

min{[w + b − s]+, Z}, and if min{[w + b − s]+, Z} = [w + b − s]+, by (39)
min{[x + a − s]+, Z} ≤ min{[w + b − s]+, Z}. Therefore

min{[x + a − s]+, Z} ≤ min{[w + b − s]+, Z}, (40)

s ∈ [0,+∞). Thus, by (40) if min{[w + b − ξ]+, Z} ≤ ς, then min{[x + a −
ξ]+, Z} ≤ ς, and therefore

Q(min{[w + b − ξ]+, Z} ≤ ς|w, b) ≤ Q(min{[x + a − ξ]+, Z} ≤ ς|x, a). (41)

Finally, by Remark 1, the result holds.
(b) First it will be shown that Vn is decreasing on X. The proof is made by

mathematical induction.
Let x,w ∈ X with x ≤ w. By definition of Vα,n, for n = 1,

Vα,1(x) = min
a∈A(x)

{
[Z − x]+

}
; (42)

this implies that Vα,1(x) = [Z − x]+, therefore Vα,1 is decreasing on X.
Now, for n = 2,

Vα,2(x) = min
a∈A(x)

{
c(x, a) + α

∫
Vα,1(min{[x + a − s]+, Z})Δ(s)ds

}

= min
a∈A(x)

{
c(x, a) + α

∫
[Z − min{[x + a − s]+, Z}]+Δ(s)ds

}

= min
a∈A(x)

{
c(x, a) + α

∫
(Z − min{[x + a − s]+, Z})Δ(s)ds

}

= min
a∈A(x)

{
[Z − x]+ + αZ − α

∫
min{[x + a − s]+, Z}Δ(s)ds

}

= min
a∈A(x)

{
[Z − x]+ + αZ − α

∫
yQ(dy|x, a)

}
.
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Hence, by part (a) of this lemma and using Lemma 1 with H∗(y) = y, y ∈ X,
the function g∗, defined by

g∗(a) := −α

∫
yQ(dy|x, a), (43)

a ∈ [K,M ] is decreasing, and so its minimum is M. This implies that

Vα,2(x) = [Z − x]+ + αZ − α

∫
yQ(dy|x,M). (44)

Since x ≤ w and after some calculations, it is obtained that V2(w) ≤ V2(x).
As x and w are arbitrary, then V2 is a decreasing function on X. Suppose
that Vn is decreasing on X for some n > 2. Again, take x,w ∈ X with x ≤ w.
Then

Vα,n+1(x) = min
a∈A(x)

{
c(x, a) + α

∫
Vα,n(min{[x + a − s]+, Z})Δ(s)ds

}

= min
a∈A(x)

{
[Z − x]+ + α

∫
Vα,n(y)Q(dy|x, a)

}
. (45)

Let a ∈ [K,M ]. By induction hypothesis and by the stochastic order of Q, it
yields that

[Z −w]+ +α

∫
Vα,n(y)Q(dy|w, a) ≤ [Z −x]+ +α

∫
Vα,n(y)Q(dy|x, a), (46)

then taking minimum on a ∈ [K,M ] on both sides of the inequality, it is
obtained that Vα,n+1(w) ≤ Vα,n+1(x). Therefore, Vα,n+1 is decreasing. By
Lemma 2(c), Vα,n(x) → V ∗

α (x), x ∈ X, which implies that V ∗
α is a decreasing

function on X.
��

Theorem 1. The optimal policy for the reserve process with dividends, induced
by (26), is f∗(·) ≡ M.

Proof. Let x ∈ X be fixed. By Lemma 2, V ∗
α satisfies the optimality equation

(9), that is,

V ∗
α (x) = min

a∈A(x)

{
[Z − x]+ + α

∫
V ∗

α (y)Q(dy|x, a)
}

. (47)

Also, by Lemma 7, V ∗
α is decreasing and Q is stochastically ordered. Then, if

a, b ∈ [K,M ], with a ≤ b, it is obtained that

α

∫
V ∗

α (y)Q(dy|x, b) ≤ α

∫
V ∗

α (y)Q(dy|x, a). (48)

Adding [Z − x]+ on both sides of the inequality above, it is concluded that, for
a ∈ [K,M ],

H(a) := [Z − x]+ + α

∫
V ∗

α (y)Q(dy|x, a) (49)
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is a decreasing function and its minimum is reached in M. Since x is arbitrary,
the result follows. ��

Finally, in this section, by Theorem 1 it is obtained that the optimal value
function is of the form

V ∗
α (x) = να(M,x) = EM

x

[
+∞∑
n=0

αn[Z − xn]+
]

, (50)

for each x ∈ X. That is, the expected total discounted cost of the penalties for not
reaching the barrier Z, and therefore not paying the dividends to shareholders
is brought to present value, given the discount factor α.

5 Sustainability of the Optimal Reserve Process

This section presents a rate for ruin probability which permits to determine a
period of sustainability for the company under the optimum reserve process,
that is, the process under the optimal policy (premium) f∗(·) ≡ M,

xM
n+1 = min{[xM

n + M − ξn]+, Z}, (51)

with xM
0 = u > 0.

To this end,

ψN
d (u) := Pr[xM

0 = u, xM
1 = 0, · · · , xM

N−1 = 0, xM
N = 0] (52)

is defined for u > 0 and N > 2.
Observe that ψN

d (u) is the ruin probability when τd(u) = N, where τd is the
stopping time for the state zero (see (24)).

Theorem 2. Let {xM
n } be the optimal reserve process generated for the optimal

policy f∗ ≡ M, with xM
0 = u > 0 and N > 2. Then

ψN
d (u) ≤ (Pr[ξ < Z + M ])N−2 · Pr[ξ < u + M ]. (53)

Proof. The optimal process {xM
n } is a homogeneous Markov process with tran-

sition law Q (see Remark 2).
Consider the following sets: B0 = {xM

0 = u}, BN = {xM
N = 0} and Bi

= {xM
i = 0}, for i = 1, 2, · · · , N − 1, and observe that Bi ∈ B(X) for i =

1, 2, · · · , N.
Then, by Proposition 7.3 p. 130 in [6],

ψN
d (u) = Pr[xM

0 = u, xM
1 �= 0, · · · , xM

N−1 �= 0, xM
N = 0]

=

∫
BN−1

· · ·
∫
B0

Q(BN |wN−1, M)Q(dwN−1|wN−2, M) · · · Q(dw1|w0, M)ρ(dw0),

where the initial distribution ρ is the Dirac measure concentrated on u.
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On the other hand, observe that

Q(BN |wN−1,M) ≤ 1. (54)

Therefore

ψN
d (u) ≤

∫
BN−1

· · ·
∫

B0

Q(dwN−1|wN−2,M) · · · Q(dw1|w0,M)ρ(dw0). (55)

furthermore, for each i = 1, 2, · · · , N − 1, Bi ⊆ {ξi−1 < xM
i−1 + M} ⊆ {ξ <

Z + M}; this implies that

Q(Bi|wi−1,M) ≤ Pr[ξi−1 < xM
i−1 + M ] ≤ Pr[ξ < Z + M ]. (56)

So

ψN
d (u) ≤

∫
BN−2

· · ·
∫

B0

Pr[ξ < Z + M ]Q(dwN−2|wN−3, M) · · · Q(dw1|w0, M)ρ(dw0).

(57)
Finally, iterating this way N − 3 times and since ρ is concentrated in B0, it is

obtained that
ψN

d (u) ≤ (Pr[ξ < Z + M ])N−2Q(B1|u, M), (58)

where Q(B1|u, M) = Q(xM
1 �= 0|u, M) = Pr[ξ < u + M ]. ��

The examples that follow illustrate the application of Theorem 2. To do this,
the ruin probability ψN

d (u) = 0.001 and ν := 1 − ψN
d (u). N = 1 day and the

period of sustainability is given in years (360 days). Z is chosen in such a way
that Pr[ξ < Z + M ] = ν.

Table 1. Gamma distribution.

u κ = 1 Years κ = 3 Years

1 Z = 5 19.04 Z = 5.22 19.10

2 M = 2 19.13 M = 6 19.14

3 19.17 19.16

4 19.18 19.17

5.1 Example 1

Suppose that ξ has a Gamma distribution with parameters (λ, κ) whose density
is of the form

Δ(s) =
λ

Γ (κ)
(
s

λ
)κ−1e−(s/λ), s > 0, (59)
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where Γ (k) =
∫ +∞
0

sk−1e−sds is the Gamma function.
It is known that the Gamma distribution is not analytically integrable, so

it is necessary to resort to tables for this distribution given in [30] Appendix B
Table B.2.

In this case, the optimal premium is

M = (1 + β)κλ, (60)

where β is the loading factor.
Given λ = β = 1, and different values of u, Z, and M, their respective period

of sustainability (in years) are calculated for κ = 1, 3. These values are shown in
Table 1. In Fig. 1 a possible realization of the reserve is shown when the reserve
is ruined at the eight year.

Fig. 1. A possible realization of the reserve process of example 1 in the case of κ = 1.

5.2 Example 2

Suppose that ξ has a Weibull distribution with parameters (λ, κ). It is known
that the distribution function is as follows:

F (s) = 1 − e−(s/λ)κ

, s > 0. (61)

Since F (M + Z) = ν, it follows that

Z = λ(ln(1 − ν)−1)1/κ − M. (62)

In this case, the optimal premium is

M = (1 + β)λΓ (1 +
1
κ

), (63)

where β is the loading factor.



Markov Decision Processes Applied to the Payment 101

Table 2. Weibull distribution.

u κ = 0.8 Years κ = 0.6 Years

1 Z = 8.94 18.96 Z = 22.06 18.88

2 M = 2.26 19.06 M = 2.99 18.97

3 19.11 19.03

4 19.14 19.06

Fig. 2. A possible realization of the reserve process of example 2 in the case of κ = .6.

Given λ = β = 1, and different values of u, Z, and M, their respective
period of sustainability are calculated for κ = 0.8, 0.6. These values are shown
in Table 2. In Fig. 2 a possible realization of the reserve, for the case κ = 0.6 is
shown when the reserve is ruined before the end of the first year.

6 Average Optimality of f∗(·) = M

Remark 9. Take into account the MDP described in Remark 7 with the difference
that in this section the state space is the compact set X = [0, Θ], with Θ ≥ Z.

Assumption 6. P [ξ ≥ Θ + M ] := α0 > 0 (recall that ξ is a generic element of
the sequence {ξt}).
Remark 10. The corresponding ξ′s proposed in Examples 5.1 and 5.2 of pre-
vious section trivially satisfy Assumption 6. This assumption can be verified
in some inventory-production systems and in some control of water reservoirs
problems [31].

Theorem 3. Consider the MDP described in Remark 9. Suppose that Assump-
tion 6 holds. Then f∗(x) = M , x ∈ X is AC-optimal.
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Proof. Firstly, note that in Lemma 6 it has been proved that Assumption 1 holds.
Secondly, observe that from Assumption 6 and the fact that, for all x ∈ X and
a ∈ [K,M ], [ξ ≥ Θ + M ] ⊆ [ξ ≥ x + a], it follows that

Q({0}|x, a) = P [xt+1 = 0|xt = x, at = a]
= P [ξ ≥ x + a]
� P [ξ � Θ + M ] = α0 > 0.

Hence, Assumption 3 holds, and from Lemma 4, Assumption 4 holds as well.
Thirdly, from Lemma 5, taking y = 0, it results that

| V ∗
α (x) − V ∗

α (0)| ≤ 2Z

1 − λ0
, (64)

for all x ∈ X and α ∈ (0, 1) (it is easy to verify that Z is a bound of c).

Now, fix β ∈ (0, 1). With this β and from the boundedness of the cost func-
tion c and (64), it follows that Assumption 2 holds. Consequently, from Lemma
3, there exists g ∈ IF which is AC-optimal for the MDP described in Remark 9.
Besides, this optimal policy g satisfies (a) and (b) in Lemma 3 for

h(x) = limn→∞(V ∗
αn

(x) − V ∗
αn

(0)), (65)

x ∈ X and for certain sequence {αn} ↑ 1 (see the proof of Theorem 5.4.3 in [19]).
Hence, as V ∗

αn
(·) is decreasing, for each n = 1, 2, ... (see Lemma 7), it results h(·)

is decreasing as well. Therefore, it is easy to see, from Lemmas 3 and 7, that

min
a∈A(x)

{
c(x, a) +

∫
h(y)Q(dy|x, a)

}
= min

a∈A(x)

{
[Z − x]+ +

∫
h(y)Q(dy|x, a)

}
,

(66)
x ∈ X, is attained for g(x) = M , x ∈ X, that is, g(x) = f∗(x) = M , x ∈ X is
AC-optimal. This finalizes the proof of Theorem 3. ��

7 Conclusions

We study the behavior of a reserve with a fixed barrier when it is modelled as a
Markov Decision Process. The dynamics presented in (26) describes the reserve
when it is below the barrier. This allows us to set a penalty to take into account
non-payments of dividends. Two objective functions are proposed: a discounted
cost and an average one. In both cases, by controlling the process generated by
premiums, it is found that the optimal policy is M.

Given a ruin probability and an initial value of the reserve, the rate presented
in Theorem 2 permits to determine the periods of sustainability of the company
when optimal policy is applied. This bound depends on the distribution of the
total amount of claims per time interval which are only assumed to have a density
that is continuous almost everywhere, with finite first and second moments. This
condition is satisfied by a wide range of distributions. Two examples illustrate
how to apply the rate in the case of distributions with light or heavy tails, and
how to choose the fixed barrier.
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Abstract. In Container Terminals, managing the external truck arrivals is one
of the essential managerial activities that, typically, the terminal operators
conduct continuously on the short term using a Truck Appointment System
(TAS). However, the trucking companies are influenced by the developed
appointments and schedules which affect their operations and resources. This
paper introduces a collaborative TAS to enable the trucking companies and
container terminals to share making the decisions on scheduling the external
truck appointments. This paper proposes a Dynamic Collaborative Truck
Appointment System (DCTAS) which adopts a simulation optimization
approach which integrates a discrete event simulation model with a mixed
integer programming model. The DCTAS considers some realistic parameters
that enhance the development of reliable appointments that fit the dynamic and
stochastic circumstances of container terminals environment. The performance
of the developed DCTAS is investigated by solving a numerical instance. The
results show that both the container terminals and trucking companies can gain
benefits from using the DCTAS. Yard efficiency performance indicators such as
the maximum queue lengths, average waiting times, maximum waiting times
and average truck turn times are improved using the developed appointment
system.

Keywords: Collaborative scheduling � Dynamic � Container terminals
Simulation optimization � Truck appointment system

1 Introduction

Container Terminals (CTs) are essential nodes in the global supply chain. The
tremendous growth of the containerized cargo trade around the world is resulting in
increased congestion in many container terminals. This, in turn, leads to more dissat-
isfaction implications for many stakeholders in the maritime supply chain such as the
trucking companies and shipping companies. The negative consequences of congestion
inside the CTs make the external transportation modes like trucks, trains and vessels to

© Springer International Publishing AG, part of Springer Nature 2018
G. H. Parlier et al. (Eds.): ICORES 2017, CCIS 884, pp. 105–128, 2018.
https://doi.org/10.1007/978-3-319-94767-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_6&amp;domain=pdf


spend more time to be served. On the contrary, stakeholders need to deliver and receive
their containers to/from the CTs in a flexible way with low costs and short time. As a
result, container terminals confront considerable challenges to achieve higher levels of
satisfaction for their stakeholders with maintaining their productivity as high as pos-
sible. Therefore, recent literatures are paying increasing interest to reduce congestion in
CTs.

Typically, CTs comprises three main areas: the seaside, yard area, and land-side
(see Fig. 1). The seaside is the area where the vessels are berthed, loaded and/or
unloaded with the desired containers using quay cranes. Containers are transported by
internal transport means like trucks or Automated Guided Vehicles (AGVs) to be
temporarily stored in the yard blocks through the quay-yard transport area. At the yard,
handling operations are performed using yard equipment like yard cranes and straddle
carriers. The operations in each yard block depend on the vessels’ operations and
hinterland operations. On the other side of the terminal, the landside comprises the
terminal gates. The gates are equipped with X-Ray scanners where import containers
are allowed to leave the terminal, and export containers are allowed to enter the yard
area. Transport areas between the main CT areas are used to link these areas together.

Container terminal problems are classified according to the decision level into
operational, tactical and strategic decision problems [1]. The operational problems are
related to the scheduling of operations and assignment of the resources. These kinds of
problems are solved simultaneously in the short term with updating solutions and
schedules daily. For instance, berth allocation and quay crane assignment are

Fig. 1. Container terminal areas and corresponding operations
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considered the main operational decisions at the seaside [2, 3]. Also, at the yard area,
container handling problems and scheduling the stacking and reshuffling of container
affect the yard efficiency [4, 5]. In this paper, more discussion about landside opera-
tional problems will be introduced focusing on managing the arrival of external trucks
to CTs.

Generally, at the operational level, export/import containers are delivered/picked up
from the terminal by external transport means such as trucks and trains. The trucks are
operated by trucking companies. The essential target of these companies is to perform
the delivery/pick-up operations in minimum time and cost. On the other hand, terminal
operators adopt the suitable rules and approaches to develop schedules which achieve
the performance metrics of the terminal such as minimum truck turn time or shortest
queue lengths at the gates or in the yard. In most of terminals around the world, the
trucking operations have the dominant part of CT’s external services rather than the rail
operations due to the high flexibility of the trucking operations. To organize the
transaction between CTs and the trucking companies, some CTs implement a Truck
Appointment System (TAS) to manage external truck arrivals, while other terminals do
not follow an appointment system. The appointment systems can be used to increase
the service quality in CTs for all transshipment means; trucks, train, barges and vessels
[6]. Many terminals have adopted TASs to make a balance in truck arrivals in order to
alleviate the terminal rush hours. This paper introduces a dynamic and collaborative
appointment management solution to support the collaborative decision making
between the CTs and trucking companies to schedule the arrivals of external trucks.

The remaining of the paper is organized as follows. The literature review is
introduced in Sect. 2. Section 3 explains the proposed appointment management sys-
tem. In Sect. 4, numerical experiments are presented. Finally, results and conclusions
are introduced in Sects. 5 and 6 respectively.

2 Literature Review

Using truck appointment systems in managing external truck arrivals received a wide
interest in the literature. The developed models and approaches for appointment sys-
tems addressed various objectives that can be summarized as follows:

• Increasing the CT efficiency.
• Reducing truck turn time.
• Reducing the terminal congestion.
• Reducing environmental emissions.
• Reducing transportation costs.

This section reviews existing literature with a special focus on the used method-
ology and important results. At the end of this section, the use of the collaboration
decision making in managing the external truck arrivals in container terminals is
addressed.
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2.1 Increasing CT Efficiency

In container terminals, the main objectives of the terminal managers are to increase the
operational efficiency and service quality which directly impact the terminal compet-
itiveness. Consequently, improving the operations provides more opportunities for the
terminals to receive higher demand and gain more shipping lines and trucking com-
panies to serve. In this context, many researchers studied the use of truck appointment
management systems to increase the efficiency inside the CTs. [7] studied the impact of
using the arrival information of external trucks on the yard operations. They concluded
that prior knowledge about the arrival time of external trucks reduces the queue lengths
at gates and re-handling frequency at the yard. Based on a previous work, [8] used a
Discrete Event Simulation (DES) model to investigate the effect of truck announcement
system on the yard operations performance. Significant reduction in yard crane moves
is obtained using the proposed algorithms.

To study the yard crane performance, [9] used a hybrid approach of simulation and
queuing models to examine the impact of the TAS on the performance of yard crane
operations. The results showed a significant improvement in system performance and
efficiency after using the TAS. A mixed integer programming model is formulated by
[6] to find the optimum number of appointments to offer with regard to the overall
workload and the available handling capacity of the terminal. Results are validated
using the DES to ensure the improvements of service quality for both the trucks and
also for all terminal resources.

2.2 Reducing Truck Turn Time

The terminal customers in the maritime supply chain are represented mainly in the
trucking and shipping companies. Providing a faster service for these two important
stakeholders leads to higher satisfaction. Trucking companies are in need to be served
with high service rates in order to maximize the utilization of their resources (trucks
and drivers). One way to achieve this, is to reduce the total time that an external truck
spends within the terminal or what is called the Truck Turnaround Time (TTT).

To reduce the TTT, [10, 11] investigated limiting the arrivals and individual
appointments versus using block appointments via a combined DES and mathematical
models. TAS is one of the most viable strategies to avoid the terminal congestion,
improve the system efficiency, and reduce the truck turn time [12]. To achieve that,
authors formulated a nonlinear optimization model and applied a multi-server queuing
model.

A stationary time-dependent queueing model providing a supporting tool to
improve demand management at CTs is introduced by [13]. A convex nonlinear pro-
gramming model is developed to obtain the optimum arrival pattern that minimizes the
turnaround time of the external trucks and reduces the discomfort of shifting the
arrivals. The effect various external truck arrival patterns on truck turn times in CTs is
studied [14]. Based on a simulation study, results showed that arrival patterns affect
significantly the terminal performance. Moreover, understanding the arrival patterns
impacts on terminal operations contributes to establishing a robust and reliable truck
appointment system.
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2.3 Reducing CT Congestion

Due to the increase of the global containerized cargo trade, many CTs confront the
problem of high demand that their capacity cannot afford. This typical situation results
in high congestion levels at the terminal gates, yard blocks, and quay side. One of the
earliest case studies was conducted by [15] at Hong Kong International Terminal
(HIT) to investigate and solve the congestion problems using a truck appointment
system. Authors developed a decision support system based on an information system
to help in making the terminal operational decisions efficiently. A comprehensive study
by [16] was developed to review the appointment system implemented in terminals
across North America. They adopted various strategies to reduce the idling of trucks,
congestion at gates and emissions related to CT drayage operations. To achieve a
steady arrival of external trucks at container terminals, [17] developed an agent-based
simulation model. The results showed that the congestion at CTs can be minimized by
using gate congestion information and estimating the truck idling times. A compre-
hensive study investigate the congestions and related emissions is conducted by [18].
The authors a used a dynamic traffic simulation model to investigate the emissions with
congestion levels. They concluded that extending the gate working hours increases the
terminal productivity and reduces the emissions, especially at peak hours.

To reduce the heavy truck congestions in CTs, [19] developed an optimization
approach for truck appointments. A method based on Genetic Algorithms (GA) and
Point Wise Stationary Fluid Flow Approximation (PSFFA) was designed to solve the
problem resulting in reducing truck turn times. Concepts such as the chassis exchange
were introduced by [20] to reduce the CT congestion using simulation as a calculation
tool. The main goal of the chassis exchange concept is to reduce the extra YC handling
needs by putting containers on a chassis and applying a chassis pool. They concluded
that the proposed method required more land space but the congestion and related
greenhouse emissions were reduced. To control the external truck arrival based on
truck-vessel service relationship, some strategies are developed by [21] to reduce the
terminal congestion. The authors developed a comparison study for the proposed
strategies, and the results showed that the quality planning coordination between the
landside and seaside operations in very essential.

2.4 Reducing Environmental Emissions

The global warming problem motivated many researchers to study how to reduce
greenhouse gases from service and industry sectors. In container terminals, environ-
mental emissions result from the unutilized resources that consume fuel or are operated
by electric power coming from power stations. In this concern, reducing environmental
emissions in container terminals received considerable interests. a bi-objective function
is developed by [22] to reduce the truck turn time and the resulted emissions. The
authors developed a genetic algorithm to solve this optimization problem. The results
showed that shifting the arrivals of external trucks reduced the emissions, particularly
at terminal gates. Form a collaborative management perspective, [23] developed a
collaborative TAS to reduce the emissions related to the empty trips to and from the
terminal by coordinating the appointments among truck drivers. To assess the
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coordinated appointments generated from the appointment matching procedure, a DES
model was developed and the port-related truck emissions were reported. Results
illustrated that, although there was a significant reduction in truck emissions, some-
times terminal experienced higher congestion. [24] proposed some response strategies
that help in solving the problem of truck arrivals’ deviation from its appointments.
Results showed that the greenness of operations is significantly affected by the use of
truck appointments.

2.5 Reducing Transportation Costs

From an economical perspective, reducing transportation costs is essential for trucking
companies and terminal authorities. To reduce the transportation costs, [25] used a
planning strategy for pickup and delivery operations in CTs based on an integer pro-
gramming heuristic. The sequence of the drayage operations is determined by mini-
mizing the transportation cost. An improvement in productivity and capacity utilization
is obtained with some sensitivity to poor selection of the appointment time. [26]
Studied the export container’s drayage operations in Chinese CT. They proposed an
integer programming model to reduce the transportation cost through time window
management. They indicated that the peak arrivals are smoothed by solving the
problem using a genetic algorithm (GA).

2.6 Collaborative Management in Container Terminals

There is an increasing attention paid to the TAS in literature. However, only two
studies for [27, 28] investigated the TAS considering the collaboration among trucking
companies and the container terminal. In these two papers, an iterative approach is used
to model the collaboration among trucking companies and the terminal operator. The
iterative approach consists of two levels which are interconnected by a feedback
loop. The first level is a mathematical model which includes a sub-problem for each
trucking company to minimize the total waiting cost of trucks at the yard. On the other
hand, the second level is a procedure to estimate the expected times the trucks spend at
the yard based on the solution of first level. This iterative approach enables the col-
laboration process.

In this paper, some-real world aspects are considered to improve the collaborative
appointments approaches found in the literature. The first aspect is reducing the
solution number of iterations by developing a straightforward scheduling approach
instead of the existing iterative approaches. From a practical point of view, the large
number of iterations may cause some of the trucking companies not to submit their
appointment applications for some reasons such as not having time to reschedule their
truck operation or forgetting to resubmit their applications. In this case, the quality of
the solution may be impaired. The second aspect is that the developed approach
considers the randomness of the terminal operation which is not considered in existing
collaborative systems. The third aspect is a dynamic scheduling procedure that adopted
in the proposed appointment system. In reality, CTs can receive arrivals at any time
during the day, which makes it is important to use an appointment system that
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considers the dynamic change in the arrival demand to the terminal and enables
trucking companies to book for the delivery or pick-up tasks flexibly.

To consider the previously mentioned aspects in one appointment systems, we
propose a TAS that considers dynamic, collaborative and stochastic nature of the
realistic truck scheduling problem requirements. The proposed approach integrates a
discrete event simulation (DES) model with mixed integer programming model. This
paper contributes to the literature by developing a Dynamic Collaborative Truck
Appointment System (DCTAS) through introducing the mentioned aspects with a
comprehensive numerical analysis.

3 The Dynamic Collaborative Truck Appointment System
(DCTAS)

The Proposed Dynamic Collaborative Truck Appointment System (DCTAS) is
developed based on a collaboration decision making concept where the stakeholders
cooperate in scheduling the appointments considering a degree of convenience. In this
section, an integrated simulation optimization approach is introduced considering two
main aspects in appointment scheduling problems: the dynamic and stochastic nature of
the problem [29]. Figure 2 illustrates the operational steps of using the proposed
DCTAS. The proposed simulation optimization approach integrates the MIP model
with the DES model in a pre-processing way [31] in which the problem under par-
ticular circumstances is solved to produce the input data for the other problem.
The DES model provide the input to the MIP model. After solving the MIP model, the
optimum truck appointment schedules are evaluated using the simulation model to get
the turn time of trucks after optimization.

Fig. 2. The operational steps of the DCTAS.
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The DCTAS operational steps are as follows:

1. Both trucking companies and CTs submit their scheduling parameters and
requirements to the appointment system using an information system for example.
The trucking companies send their preferred arrival schedules and CTs submit the
terminal workload and needed scheduling parameters. These parameters will be the
inputs to the first DCTAS stage which is the simulation model. The DES model is
used as the first stage to determine the average truck turn time for each trucking
company considering the terminal workload and the randomness of the terminal
operations.
DES Model Inputs:
From trucking company: the preferable number of trucks per each Time Window
(TW).
From container terminal inputs: container location – yard carne serve rate/handling
speed- gate service rat- vessels operations - yard and gate operations.

2. The second stage inside the DCTAS is to use the MIP model to solve a scheduling
problem to minimize the congestion cost that is calculated based on the average
truck turn time that results from the simulation. In this step, the MIP solution is
considered the optimum schedules that reduce both congestion of the CT and
inconvenience of the trucking companies.
MIP Model Inputs:
From simulation results: the average truck turn time per each time interval for each
trucking company.
From trucking companies: preferable/proposed arrival schedules - available number
on trucks that a trucking company have per each time window.
From container terminal: container location.

3. Finally, the developed appointments are evaluated and the performance measures
are calculated for the DES model for the newly developed schedules.
DES Model Inputs:
From MIP model: optimum appointments (number of trucks to be dispatched to the
terminal per each time window for each trucking company).

The DCTAS Outputs are optimum appointments and key performance indicators
such as the truck turn time, waiting time, and queue lengths.As illustrated, the DCTAS
provides an interactive management strategy between the stakeholders to cope with the
dynamic nature of the appointment process in CTs. Interacting communication among
stakeholders can be implemented easily using an online collaboration platform. The
online collaboration platform is designed and synthesized using a design thinking
strategy [30]. Whenever a trucking company is ready to submit its preferable arrival
times, the system receives the requests and deals with the workload updates and
changes on an hourly basis. Moreover, using the DES model is expected to enhance the
solution and to accommodate the system’s actual variability and randomness. This
randomness results from the stochastic operations and events such as the gate service
rate, inter-terminal traveling times, yard crane handling rates, quay crane handling rate,
and the failure of equipment.
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3.1 The Discrete Event Simulation (DES) Model

“Flexsim CT®” package was used to develop the DES model. “Flexsim CT®” is a
special simulation package for simulating CT operations. The developed DES model
includes the following objects: four gates processors, five yard blocks, five yard cranes,
and a single shared gate queue (see Fig. 3). When the external truck arrives at the gate
according to the predetermined schedule (Tables 2 and 3), in case of busy gate server,
the truck joins the gate queue then leaves to the first gate that becomes available. At the
gate, the arriving truck will be served according to an Erlang distribution (0.65, 4) [12].
After that, the served trucks are routed to the destination where the container is to be
dropped or picked up from a yard block. At the yard area, one yard crane is used at
each yard block to move the container to/from the external truck and restack it to the
appropriate block position. After finishing the pickup/drop off process, the external
truck is directed to the terminal gate exit which is represented by a gate sink in the
developed DES model. At the seaside, the arriving vessel receives export containers
form the yard or delivers import containers to the yard. A group of four external trucks
(truck gang) are used to transport containers between the vessel and yard blocks.
A quay crane is assigned to the arriving vessel to load/unload containers. At the yard
block, a higher priority is given to internal truck operations rather than the external
trucking operations to reduce the vessel turnaround time.

a. FleXsim discrete event simulation model of the study terminal 

b. The yard area c. The gate severs 

Fig. 3. Container terminal discrete event simulation model.
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There are some assumptions that were considered in developing this simulation
model. For the landside, it is assumed that all arriving trucks will share the same queue
before going to the first available gate. Moreover, the distance that an external truck
travels inside the terminal is neglected. As a result, the truck turn time will be calcu-
lated as the sum of the following times: waiting time at the gate queue, service time at
the gate processor, waiting time at the yard block, and finally service time at the yard
block. To obtain more accurate results, each time window is divided into four time
intervals which means that each time interval is equal to 15 min, and the average truck
turn time is calculated per each time interval to be used in the MIP model. Another
assumption is that the collision of trucks traveling through the internal transportation
network of the terminal is not considered.

This scheduling problem is regarded as a design problem for a new collaborative
appointment system. Therefore, the input parameters are driven from a case study
existing in literature and some parameters are based on some practical experience.
Table 1 illustrates the input parameters to the DES model.

3.2 The Proposed Mathematical Model

In most container Terminals, the arrival of external trucks from the hinterland is a
random process that is affected by the preferable arrival times of trucking companies.
These preferable arrival times are not known by the terminal operators to be considered
in planning and scheduling operations. As a result, a truck may arrive during a con-
gestion time where the waiting time is costly and the emissions are high. On the other
hand, if these trucks are forced to come at certain times that are specified by the
terminal operators, it may be inconvenient for some trucking companies due to the
trucks availability and other operations outside the terminal. To tackle this problem, the
following mathematical model considers both, the convenience of trucking companies
to arrive at their preferable times and the total time spent in the terminal which is
influenced by the terminal congestion.

Table 1. The DES model input parameters [29].

General parameters
Working hours (Tws) 8:00 am–12 pm
Truck speed (max) 300 m/min (18 km/h)
Container dwell time Exponential (0.3) [days]
Gate parameters
Process time (min) Erlang (0.65, 4)
Gate capacity 1 truck/one gate
Yard parameters
Crane speed (max) 90 m/min (empty/loaded)
Block capacity (max) 24 containers
Crane net moves 27.7 move/h (average)
Quayside parameters
Crane speed (max) 120 m/min (empty/loaded)
Crane net moves 12.3 move/h (average)
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Based on the mathematical models formulated by [27], the model is modified to
consider the truck turn time of trucks which is produced by the DES model. The
proposed DCTAS assumes that each trucking company develops its preferable
schedule considering the available number of trucks at each time window. The trucking
company’s operator defines all tasks to be performed, which represent a pick up or a
delivery operation for one container using one truck. Tasks that are assigned in the
same preferable arrival hour (time window) are grouped together in one task group. For
a certain task group, containers can be delivered or picked up from the same yard block
or from several yard blocks (Table 2). The used parameters and indices in MIP model
are defined as follows:

Indices
i index for a task group.
j index for a yard block.
k index for a trucking company.
s index of a time window.
t Index of a time interval. Note that multiple time intervals exist in a time

window.

Table 2. Validating the DCTAS vs DDM [29].

DDM model DCTAS
Task
group

Yard
block

Time
window

Xijs Truck
co.

Task
group

Yard
block

Time
window

Xijs

1 1 2 5 TC1 1 1 1 3
3 1
4 1

2 2 2 1 TC2 2 2 2 1
2 3 1 2 3 1
2 4 2 2 4 2

3 1 2 1 TC3 3 1 3 2
1 4 3 1 4 2
3 3 2 3 4 2

4 4 2 3 TC4 4 4 3 3
5 2 4 3 TC1 5 2 4 3
6 3 1 4 TC2 6 3 1 4
7 2 1 2 TC3 7 2 1 2

4 1 3 4 1 3
8 3 3 1 TC4 8 3 4 1

5 3 2 5 2 4
5 4 3 5 4 1

9 1 4 1 TC1 9 1 3 1
2 3 2 2 3 2

10 4 4 3 TC2 10 4 4 3
Objective function value = $ 116 Objective function value = $ 180
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bli earliest possible (lower) bound of the time window for task group i.
bui latest possible (upper) bound of the time window for task group i.
di number of tasks to be done for task group i.
Sks number of available trucks of company k during time window s.
pi most preferable time window at which containers of task group i to be stored or

retrieved.
r number of time intervals per each time window.
aij maximum number of containers of task i that can be allocated to yard block j.
wþ
i cost of late arrival by a unit time compared with the preferable time window of

task i.
w�
i cost of early arrival by a unit time compared with the preferable time window of

task i.
wk truck waiting cost in the terminal of truck company k per time interval.
P Congestion penalty in $, a strategic parameter determined by the terminal

manager.
TTjt average truck turn time for a truck arriving at yard block j at time interval

t derived variables from the DES model.

Sets
I set of task groups
K set of trucking companies
T set of time intervals
J set of yard blocks j
W set of time windows.

Decision Variables
Xijs number of trucks for task group i which are deployed to yard block j at time

window s.

Derived Variables From the MIP Model
kijt average arrival rate of trucks for task group i at yard block j at time interval t.

The objective function is to Minimize:

X
i2I

X
j2J wþ

i

X
s2W Xijsðs� piÞþ þw�

i

X
s2W Xijsðpi � sÞþ þ

X
t2T ðwk þ pÞTTjtkijt

h i

ð1Þ

Subjected to:

X
j2J

X
s2W Xijs � di 8i 2 I ð2Þ
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X
i2I

X
j2J Xijs � Sks 8k 2 K; s 2 W ð3Þ

X
s2W Xijs � aij 8i 2 I; j 2 J ð4Þ

bli
X

j
Xijs � s

X
j
Xijs � bui

X
j
Xijs 8i 2 I; s 2 W ð5Þ

kijt ¼ Xijs

r
8i 2 I; j 2 J; s 2 W ð6Þ

kijt � 0; Xijs integer 8i 2 I; j 2 J; s 2 W; t 2 T ð7Þ

The objective function (1) is to minimize the cost of shifting (delaying or
advancing) the appointment and the truck turn time (TTjt) cost within the terminal. The
total number of scheduled trucks must satisfy the number of containers to be delivered
or picked up (2). Constraint (3) states that the number of trucks to be assigned to task
i cannot be larger than the resource level of the trucking company. The capacity
constraint of each yard block is described in (4) to ensure that the number of containers
for each task group have to be smaller than or equal to the available spaces in yard
blocks. There is an earliest and latest feasible time window for each container (5). To
calculate the arrival rate for each task group, constraint (6) is used. Constraint (7)
illustrates the domain of each variable in the problem.

3.3 Model Validation

To validate the proposed DCTAS, the system is used to solve an instance from liter-
ature solved by M. Phan and K. Kim (2015). In their work, they developed a
Decentralized Decision Making (DDM) model to provide a negotiation process for
scheduling the external trucks’ appointments between CTs and Trucking companies.
The same input parameters are used and fitted to the developed simulation optimization
approach in this paper. After solving the given instance, the results show that 70% of
the resulted schedules are identical, while 30% are not the same. In other words, the
optimum appointments resulting from the DCTAS for seven task groups out of ten are
the same result of the DDM model as illustrated in [27]. The 7 task groups are equal in
the number of tasks and the size of each task. For the remaining three task groups (1, 8,
3), two of them have the same number of tasks but different in the task sizes. This
experiment illustrates the validity of the proposed system in this paper.

4 Numerical Experiments

In this section, a numerical example is solved to illustrate the operational scenario and
performance of the proposed DCTAS. Table 3 shows a proposed appointment appli-
cation for 4 trucking companies. Each trucking company is assumed to have a specific
number of containers (di) in the terminal. The task group is a set of tasks that will be
submitted by the same trucking company at the same preferred arrival time (pi). It is
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also assumed that each trucking company knows which yard block (j) holds its con-
tainers. To create a workload in the terminal, the externally confirmed applications and
inter-terminal tasks are developed in order to investigate the response of the proposed
system to the heavy-loaded time windows. The proposed system (DCTAS) is expected
to shift the proposed arrival appointments to the time windows where the cost of truck
turn time will be minimized with consideration of the preferred arrival times. Table 4
illustrates the tasks that are assumed to be already reserved and confirmed.

To start working with the DCTAS, all tasks are input to the simulation model. Each
task has a corresponding arrival time, the number of containers, and yard block
location. By running the DES model, the external trucks arrive to the terminal model
according to the predetermined scheduled times and released out of the system as the
task is completed. The average truck turn times at each yard block are recorded for each
time window to be used in the MIP model input. Other performance measures can be
derived from the simulation model such as the queue length at gates, waiting times at
gates and yard, service rate at gates and yard, cranes’ utilization, etc.

Table 3. Proposed appointment applications for four trucking companies [29].

Truck. company Task group di pi j

TC1 1 5 2 1
2 3 4 2
3 1 3 1

2 2
TC2 4 3 4 4

5 4 3 2
6 4 1 3

TC3 7 4 2 1
2 3

8 2 1 2
3 4

TC4 9 3 2 4
10 1 3 3

5 5

Table 4. The reserved tasks in the CT [29].

Confirmed tasks Di TW j

11 30 2 1
12 30 3 2
13 30 2 3
14 30 2 4
15 30 3 5
16 10 (to ship) 3–4 1
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To get statistically reliable results, the simulation model is run for 35 replications
which are used to determine the 95% confidence intervals of the targeted mean per-
formance measures. After obtaining the results from the simulation model, the derived
variables are sent to the MIP model. The MIP model is solved using a personal
computer with Intel® Core i7 CPU and 4 GB RAM. IBM Ilog CPLEX Optimization
Studio version 12.2 is used to code the MIP model and get the optimum solution. The
cost parameters in the objective function are assumed to be $1, $4, $5, and $2 per each
time for wi+ , wi−, wk, and P respectively. Table 5 shows the available number of
trucks (sks) for each trucking company per each time window. In Constraint 3, the
number of available trucks is used to guarantee that the new assigned tasks do not
exceed the trucking company’s available trucks per each time window.

5 Results

After solving the MIP model, the optimum schedules obtained from the MIP model are
shown in Table 6. For Example, trucking company 1 prefers to send 11 (di) trucks in
tree task groups of 5, 3, and 3 trucks per time windows 2,4, and 3 respectively (see
Table 3). After using the DCTAS, the 11 trucks are rescheduled (Xijt) i.e. the first task
group of 5 trucks is scheduled as 2 trucks in TW1 and 3 truck in TW4. By carefully
investigating the solutions of the proposed approach, there are three possibilities
noticed from the results to occur. In the first possibility, there will be no change in the
schedule such as task group 8. The second possibility, the task group preferred time
window will be advanced or delayed resulting in an advancing and/or delaying cost
without any change in the number of containers per task. For example, the arrival time
of task group 5 is shifted from TW3 to TW2. This seems reasonable because, at yard
block 2, the workload in TW3 was the highest among the other three time windows in
the same block before the solution. For the third possibility, the system will decompose
the task group into smaller mini-task groups. It is evident that the second and third
possibility may occur together like in task groups 1, 2, 7, and 10.

To investigate the solution performance, the simulation model is used to test the
performance of the resulting schedule from the MIP model and compare it with sim-
ulation results before solving the MIP model. In other words, it is needed to see how
the proposed schedule differs from the optimum schedule after applying the DCTAS.
Some performance measures of yard operations are studied such as truck turn time,
external truck queue length, waiting time, and yard crane utilization. To investigate the

Table 5. The available number (Sks) of trucks for each trucking company per each time widow
[29].

Truck. company TW1 TW2 TW3 TW4

TC1 3 5 6 4
TC2 7 4 1 5
TC3 6 1 2 4
TC4 3 4 3 4
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significance of difference for the performance measure before and after using the
DCTAS, t-tests are conducted with a 95% confidence interval using Minitab 17 sta-
tistical software to test the 35 samples (replications).

5.1 The Impact of Using DCTAS on Truck Turn Time

The truck turn time is used in many container terminals to measure the productivity of
the terminal [32]. Short truck turn times mean that the terminal can serve the external
trucks faster. Therefore a larger number of trucks can be served, and more containers
can be delivered with less dwell time at the yard blocks. In this experiment, the average
truck turn times at each block j per each time window s (TTjs) are recorded for the
proposed (preferred) appointments and the optimum appointments. Figures 4, 5, 6, 7
and 8 show a comparison between the TTjs values for the proposed (preferred)
appointments by the trucking companies versus the optimum appointments after
applying the DCTAS. Results show that there is a difference between the TTjs values
before and after applying the proposed appointment management system. The statis-
tical results show that there is a significant difference between the average TTjs values
before and after solution for most points such as TW3 at YB1, TW4 at YB2, TW4 at YB3,
TW3 at YB4, and TW4 at YB. While, some points did not show significant differences in
average TTjs such as TW1 at YB2, TW2 at YB3, TW2 at YB4, TW4 at YB4.

Table 6. The DCTAS solution [29].

Truck.
company

Obj.
value
($)

Task
group

Task group
size (di)

Scheduled
trucks (Xijt)

Time
widow
(s)

Yard
block (j)

TC1 137.8 1 5 2 1 1
3 4

2 3 1 1 2
2 2

3 1 1 4 1
2 2 2 2

TC2 114.7 4 3 3 4 4
5 4 4 2 2
6 4 4 1 3

TC3 101.75 7 4 4 4 1
2 1 2 3

1 3
8 2 2 1 2

3 3 1 4
TC4 130.31 9 3 3 4 4

10 1 1 4 3
5 4 2 5

1 3
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Fig. 4. Average truck turn time at yard block 1 (TT1s) [29].

Fig. 5. Average truck turn time at yard block 2 (TT2s) [29].

Fig. 6. Average truck turn time at yard block 3 (TT3s) [29].
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It is noticed that the number of proposed tasks within some task groups increased
after solution because some task groups are decomposed to two or three tasks. How-
ever, this reduces the turn time cost for the external trucks, some trucking companies
may be inconvenient due to shifting their preferable arrival times. For the CT, dis-
tributing the arrival appointments over the terminal working hours is good to avoid
congestion in certain times windows. From another side, reducing congestion and
decreasing waiting time will result in less emissions and less fuel cost as well increased
efficiency for the trucking companies. The results show also that the average queue
length at gates is reduced by 21% and the average truck turn time is reduced by 22.6%
after applying the proposed system.

Fig. 7. Average truck turn time at yard block 4 (TT4s) [29].

Fig. 8. Average truck turn time at yard block 5 (TT5s) [29].
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5.2 The Impact of Using DCTAS on Truck Queue Length at Each Yard
Block

Long queue lengths at yard block or internal waiting areas inside the terminal create
many congestion problems which in turn affect the yard area performance. In this
experiment, the queue length of the external trucks at each yard block is determined for
the four time widows. The results are compared to understand the improvements that
the DCTAS solution provides for the congestion levels at yard blocks. Results illus-
trated that the maximum queue lengths at each yard block are significantly reduced (see
Fig. 9). At yard block 1, the maximum queue length is noticed to have the largest
value, however, all yard blocks have an approximate number of external trucks to be
routed to it through the gates. By analyzing this situation, YB1 is noticed to receive 10
containers from the seaside rather than other yard blocks. This means that the YB1 will
be more congested due to the presence of internal trucks that transport containers
between the yard and vessel and have the priority to be served first rather than the
external trucks. The DCTAS showed great benefit for this conflict between the external
trucks and internal trucks service in reducing the congestion at YB1. Results also
illustrate that about 36%, 33%, 17%, 17% and 27% reduction in the maximum queue
length are obtained for YB1, YB2, YB3, YB4, and YB5 respectively with an average of
26% reduction of the maximum queue length at yard area. As a result, the proposed
appointment system can contribute to the reduction of the overall congestion level at
the yard area which is considered the central area of and any CT and impacts all
terminal operations.

Fig. 9. Impact of DCTAS on truck queue length at each yard block.

Impact of Collaborative External Truck Scheduling 123



5.3 The Impact of Using DCTAS on Waiting Time at Each Yard Block

The waiting time is considered one the most focused objectives in the container ter-
minal. For trucking companies, reducing truck waiting time at the yard area reduces the
non-value added time and increases the resources (trucks/drivers) utilization. Conse-
quently, less costs and higher revenues can be achieved by reducing the non-value
added fuel consumptions and performing more delivery tasks per day. From the ter-
minal point of view; the less waiting time achieves higher satisfaction for customers,
increases the terminal competitiveness, increases the productivity and reduces envi-
ronmental emissions. The results of solving the instance illustrated that both average
and maximum waiting time at yard blocks are reduced (see Figs. 10 and 11). It is also
noted that the proposed DCTAS reduced the waiting time in a proportional way with
the congestion level. For example, the maximum queue length of 14 and 12 trucks is
observed for YB1 and YB2, and the maximum reduction in waiting time with about
50% for both is also observed for YB1 and YB2. Therefore, the more the yard blocks are
congested the more the DCTAS will resolve the congestion at the yard and shift the
arrivals from the congested time windows less congested time windows in such a way
that reduces the total truck turn time and inconvenient of trucking companies.

5.4 The Impact of Using DCTAS on Yard Crane Utilization

The experimental results showed that there are no significant difference in the Yard
Cranes’ (YC) utilizations before and after applying the DCTAS (see Fig. 12). This
result is reasonable because the number of external trucks to be served in the solved

Fig. 10. Impact of using DCTAS on average waiting time at each yard block.

124 A. Azab et al.



Fig. 11. Impact of using DCTAS on maximum waiting time at each yard block.

Fig. 12. Impact of using DCTAS on yard crane utilization.
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instance per the 4 working hours are not changing, and the crane speeds are fixed. The
only change is observed for the schedule of the developed appointments that external
trucks shall arrive according to it. Consequently, the service rate is the same before and
after using the DCTAS. However, terminal operators can use DCTAS to investigate the
idle and busy times of yard cranes in a real-time and use this information to manage the
yard operation in more perfectly.

6 Conclusions

This paper studied the effect of using collaborative scheduling of external trucks’
appointments on yard performance at container terminal (CTs). A Dynamic Collabo-
rative Truck Appointment system (DCTAS) was developed by integrating a discrete
event simulation model for simulating the CT operations with a mixed integer pro-
gramming model for scheduling the appointments based on the simulation results. The
simulation model is used to calculate the average truck turn time which is considered
the key performance indicator that the adopted approach relies on. The obtained
average turn times for each trucking company’s trucks are used to identify the con-
gested times that a trucking company shall avoid sending their trucks within it. Based
on this, the mathematical model is solved to obtain the optimum appointments that
reduced the inconvenience cost resulting from shifting the arrivals from the preferable
arrival times and the congestion cost resulting from the long truck turn times. Some
numerical experiments were conducted and the results showed that the proposed
DCATS improved the performance measures of yard operations. The DCTAS reduced
the truck turn time and waiting time at the yard blocks in such a way that would
increase the convenience of trucking companies. Moreover, less congestion levels can
be achieved since the queue length at yard blocks were reduced. As a result, the
proposed collaborative appointment system achieved many benefits for the trucking
companies and the container terminal.
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Abstract. Due to the rise of e-commerce, an increasing number of mar-
kets is characterized by dynamic pricing competition. Many competi-
tors adjust their prices in response to changing market environments
caused by other competitors’ repricing strategies. In this paper, we study
repricing strategies in an infinite horizon duopoly model with stochas-
tic demand. Assuming that the competitor’s pricing strategy is known,
we derive optimal response strategies that effectively avoid a decline in
price. For different pairs of competing strategies, we analyze resulting
price trajectories over time and evaluate the firms’ associated expected
long-term profits. We measure the effect of price reaction frequencies on
a strategy’s performance. Further, we extend our model to analyze set-
tings with randomized reaction times as well as mixed strategies. Finally,
we study mutual optimal reaction strategies. We show that equilibrium
strategies can be identified by iterating optimal response strategies. We
find that equilibrium strategies are characterized by specific structures
which are illustrated by numerical examples.

Keywords: Dynamic pricing · Duopoly competition
Response strategies · Reaction time · Equilibrium strategies

1 Pricing Strategies for Stochastic Demand

Firms offering goods on online marketplaces have to face increasing competition
and stochastic demand. One reason for the increasing competition is the rising
application of automated repricing algorithms and the resulting shortening of
time spans between price updates. The time pressure and stochastic demand
make it challenging for firms to determine prices fast and efficiently (often for
a large number of products) while ensuring to employ pricing strategies that
maximize their own expected profits. But at the same time, online marketplaces
also provide numerous advantages. Sellers are now able to observe the market
situation at any given point in time and set prices accordingly. Having histori-
cal market data at hand also enables sellers to learn the demand over time and
better understand the consumers’ decision making. More interestingly for the
context of this paper, firms can learn the competitors’ strategies. Pricing strate-
gies that use that demand knowledge and further competitor strategies will thus
be of increasing interest.
c© Springer International Publishing AG, part of Springer Nature 2018
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Nevertheless, determining suitable price reactions is a highly challenging
task. While fixed price strategies are relatively straightforward to manage, in
an increasing number of contexts involving both perishable (e.g., fashion goods,
seasonal products, event tickets) as well as durable goods (e.g., books, natural
resources, gasoline) automated price adjustment strategies are employed. A typ-
ical pattern observed on markets with automated response strategies are cyclic
price patterns over time, e.g., Edgeworth cycles as illustrated in Fig. 1. Here,
firms compete with each other by undercutting the competitor’s price until the
lower bound is reached (e.g., when margin nears zero) and one competitor raises
the price in order to allow for future profits [1,2].

Fig. 1. Exemplary illustration of Edgeworth price cycles in a duopoly. Both firms
undercut each other until the green firm reaches his lower bound and adjusts his price
to the upper bound. (Color figure online)

In this paper, we present a model for duopoly pricing models in a stochastic
dynamic framework in which sales probabilities are allowed to be an arbitrary
function of time and competitor prices. The goal is to take into account (i)
varying (randomized) reaction times, (ii) various given competitor strategies,
(iii) additional passive competitors that use constant prices, and (iv) competitors
that optimally react.

1.1 Literature Review

The challenge of determining optimal prices for the sale of products is one of
the key aspects of revenue management theory. This field of dynamic pricing
has been discussed in an array of books (e.g., [3–5]). Chen and Chen published
a survey giving an excellent overview of recent pricing models under competi-
tion [6]. Gallego and Wang consider a continuous time multi-product oligopoly
for differentiated perishable goods using optimality conditions to reduce the
multi-dimensional dynamic pricing problem to a one-dimensional one [7].
Gallego and Hu analyze structural properties of equilibrium strategies in more
general oligopoly models for the sale of perishable products [8], basing the
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solution model on a deterministic version of the model. Mart́ınez-de-Albéniz and
Talluri consider duopoly and oligopoly pricing models for identical products [9].
They use a general stochastic counting process to model customer demand.

Further related models are studied by Yang and Xia [10] as well as Wu and
Wu [11]. Levin et al. [12] and Liu and Zhang [13] analyze dynamic pricing models
under competition including strategic customers. Dynamic pricing competition
models with limited demand information are analyzed by Adida and Perakis [14],
Tsai and Hung [15], and Chung et al. [16] using robust optimization and learning
approaches. Many models consider continuous time models with finite horizon
and limited inventory. In most existing models, discounting is not included and
the demand is assumed to be of a somewhat artificial and stylized form. We
consider an infinite horizon model without inventory restrictions (i.e., products
can be reproduced or reordered) [17]. Demand is allowed to depend generally on
time as well as on the market participants’ prices.

Current automated pricing strategies are comparatively simple and aggres-
sive. One example is the often employed strategy of slightly undercutting the
price of the cheapest competitor [18]. We do not assume that all market par-
ticipants act rationally. In order to be able to respond to arbitrary suboptimal
pricing strategies we provide applicable solution algorithms that allow comput-
ing optimal response strategies.

1.2 Contribution

This paper is an extended version of [17] in which we analyzed optimal price
response strategies that are based on anticipated competitor strategies. The
model is characterized by a discrete time setting, an infinite horizon, subsequent
price reactions, and no inventory considerations.

Compared to [17], in this paper we make the following contributions: First,
instead of applying value iteration, we compute optimal strategies by solving
the Hamilton-Jacobi-Bellman equation using a non-linear solver. Second, we
allow both firms to apply optimal price response strategies in order to study
iterated mutual strategy adjustments. Third, we identify equilibrium strategies
and analyze their characteristics. Fourth, we study how equilibrium strategies
are affected by the discount factor.

The remainder of this paper is structured as follows. In Sect. 2, we describe
the stochastic dynamic duopoly model with infinite time horizon for durable
goods. We allow sales probabilities to depend on competitor prices as well as
on time (seasonal effects). The state space is characterized by time and the
actual competitors’ prices. The stochastic dynamic control problem is expressed
in discrete time. In Sect. 3, we consider a duopoly competition. The competitor
is assumed to frequently adjust its prices using a predetermined strategy. We
assume that the price reactions of competitors as well as their reaction times can
be anticipated. We set up a firm’s Hamilton-Jacobi-Bellman equation and use
recursive methods (value iteration) to approximate the value function. We are
able to compute optimal feedback prices as well as expected long-term profits
of the two competing firms. Evaluating price paths over time, we are able to
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explain specific price cycles. Additionally, the results obtained are generalized
to scenarios with randomized reaction times and mixed strategies.

In Sect. 4, optimal response strategies in the presence of active and passive
competitors are analyzed. We examine how the duopoly game of two active com-
petitors is affected by additional passive competitors. We show how to compute
optimal pricing strategies and to evaluate expected profits. We also discuss how
the cyclic price paths of the active competitors are affected by different price
levels of passive competitors.

In Sect. 5, we evaluate the expected profits when different strategies are
played against each other. We study scenarios in which the competitor also
applies optimal response strategies. In Sect. 6, we study mutual optimal reaction
strategies. We show that equilibrium strategies can be identified by iterating
optimal response strategies. Eventually, the conclusion and managerial recom-
mendations are given in Sect. 7.

2 Model Description

For this work, we consider the situation where a firm wants to sell goods
(e.g., groceries, technical devices, gasoline) on a digital marketplace (e.g., Ama-
zon, eBay, Alibaba). We assume that several sellers compete for the same market,
i.e., customers are able to compare prices of different competitors at any given
point in time.

We assume that the time horizon is infinite. We assume that firms are able
to reproduce or reorder products (promise to deliver), and the ordering is decou-
pled from pricing decisions. If a sale takes place, shipping costs c have to be
paid, c ≥ 0. A sale of one item at price a, a ≥ 0, leads to a net profit of
a − c. Discounting is also included in the model. We will use the discount factor
δ, 0 < δ < 1, for the length of one period.

On the majority of marketplaces, prices cannot be continuously adjusted.
Thus, we consider a discrete time model. The sales intensity of our product is
denoted by λ. Due to customer choice, the sales intensity will particularly depend
on our offer price a and the competitors’ prices. We also allow the sales intensity
to depend on time, e.g., the time of the day or the week. We assume that the
time dependence is periodic and has an integer cycle length of J periods. In our
model, the sales intensity λ is a general function of time, our offer price a and the
competitors’ prices p. Given the prices a and p in period t, the jump intensity
λ satisfies, t = 0, 1, 2, ..., a ≥ 0, p ≥ 0,

λt(a,p) = λt mod J(a,p). (1)

We assume the sales probabilities (for one period) to be Poisson distributed
in our discrete time model. That means the probability to sell exactly i items
within one period of time is given by, t = 0, 1, 2, ..., a ≥ 0, p ≥ 0, i = 0, 1, 2, ...,

Pt(i, a,p) =
λt(a,p)i

i!
· e−λt(a,p). (2)
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A price a has to be determined for each period t. We call strategies (at)t

admissible when they belong to the class of Markovian feedback policies; i.e.,
pricing decisions at ≥ 0 may depend on time t and the current prices of the
competitors. By A we denote the set of admissible prices. A list of variables and
parameters is given in the Appendix, cf. Table 4.

By Xt we denote the random number of sales in period t. Depending on the
chosen pricing strategy (at)t, the random accumulated profit from time/period
t on (discounted on time t) amounts to, t = 0, 1, 2, ...,

Gt :=
∞∑

s=t

δs−t · (as − c) · Xs. (3)

The objective is determining a non-anticipating (Markovian) pricing strategy
that maximizes the expected total profit E(G0).

In the next sections, we will solve dynamic pricing problems that are related
to (1)–(3). Further, we mostly assume a duopoly situation. We assume that the
competitor frequently adjusts his/her prices and show how to derive optimal
response strategies. We analyze the impact of different reaction times as well as
randomized reaction times. We also consider the case in which the competitor
plays mixed strategies. In Sect. 4, we compute pricing strategies for duopoly
scenarios with additional passive competitors. Eventually, we let the competitor
also apply optimized response strategies in Sects. 5 and 6.

3 Duopoly: Optimal Reaction Strategies

Due to the increasing market transparency on e-commerce platforms, sellers can
observe and thus anticipate transitions of the market situation. In this section,
we examine a duopoly where we compete with a seller that frequently adjusts
her prices using a predetermined strategy.

3.1 Fixed Reaction Times

Having information about a competitor’s strategy at hand and being able to
anticipate it allows us to optimize expected profits. Here, the price responses
of competitors as well as their reaction time can be taken into account. In this
case, a change of the market situation p can take place within a period. A typical
scenario is that a competitor adjusts its price in response to our price with a
certain delay. Throughout this section, we assume that the pricing strategy and
the reaction time of the competitor is known; i.e., we assume that choosing a price
a at time t is followed by a state transition (e.g., a competitor’s price reaction)
and the current market situation p changes to a subsequent state described by a
transition function F , which can depend both on the market situation p as well
as price a.

We want to derive optimal price response strategies to a given competitor’s
strategy. For simplicity, we consider the sale of one type of product in a duopoly
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situation. We assume that the state of the system (the market situation) is
one-dimensional and simply characterized by the competitor’s price p, i.e., we
let p := p.

In real-life applications, a firm is not able to adjust its prices immediately
after the price reaction of the competing firm. Consequently, we assume that in
each period the price reaction of the competing firm takes place with a delay
of h periods, h < 1. Thus, after an interval of size h the competitor adjusts its
price from p to F (a), as illustrated in Fig. 2.

Fig. 2. Duopoly: sequence of price reactions, cf. [17].

In period t, the probability to sell exactly i items during the first interval
(Phase 1, cf. Fig. 2) of size h is

P
(h)
t (i, a, p) := Pois (h · λt(a, p))

while for the rest of the period (Phase 2, cf. Fig. 2) the sales probability changes
to P

(1−h)
t (i, a, F (a)) = Pois ((1 − h) · λt (a, F (a))).

We will use value iteration to approximate the value function which repre-
sents the present value of future profits. For a given “large” number T , T � J ,
we let VT (p) = 0 for all p, and compute, t = 0, 1, 2, ..., T − 1, 0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a))
)}

. (4)

The associated pricing strategy a∗
t (p), t = 0, 1, 2, ..., J − 1, p ∈ A, is deter-

mined by the arg max of

a∗
t (p) = arg max

a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a))
)}

. (5)

Given a∗
t (p) is not unique, we choose the largest one.
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Remark 1. The recursive solution approach also allows to solve problems with
perishable products and finite horizons T . Simply be evaluating Eqs. (4)–(5) for
all t = 0, 1, 2, ..., T − 1.

In order to illustrate the approach, let us consider a numerical example for
durable goods. We assume the competitor applies one of the most common strate-
gies: our current price is undercut by ε down to a certain minimum (e.g., the
shipping costs c). The sales dynamics of the following example above are based
on a large data set from the Amazon marketplace for used books [19].

Definition 1. By P
(h)
t (i, a,p) := Pois

(
h · ex(a,p)′β/(1 + ex(a,p)′β )

)
we define

sales probabilities for oligopoly settings which are based on linear combinations of
the following five regressors x = x(a,p), p = (p1, ..., pK) with given coefficients
β = (β1, ..., β5):

(i) constant/intercept
x1(a,p) = 1

(ii) rank of price a within the set of competitor prices p

x2(a,p) = 1 + |{k = 1, ...,K |pk < a}| + 0.5 · |{k = 1, ...,K |pk = a}|

(iii) price gap between price a and the best competitor price

x3(a,p) = a − min
k=1,...,K

{pk}

(iv) total number of competitors

x4(a,p) = K

(v) average price level

x5(a,p) = (a +
∑

k
pk)/(1 + K)

Example 1. We assume a duopoly, i.e., K = 1 and p = p. Let c = 3, δ = 0.99,
0 ≤ h ≤ 1, and let F (a) := max(a − ε, c), ε = 1, a ∈ A := {1, 2, ..., 100}. For the
computation of the value function, we let T := 1000. We assume the sales proba-
bilities P

(h)
t (·, a, p), cf. Definition 1, where β = (−3.89,−0.56,−0.01,0.07,−0.02).

Figures 3(a) and 4(a) illustrate optimal response strategies for different reac-
tion times h = 0.1 and h = 0.9. The case h = 0.1 illustrates a fast reaction
time of the competitor; h = 0.9 represents a slow reaction of the competitor. In
the case of h = 0.5, both competing firms react equally fast. In all three cases
the optimal response strategies are of similar shape. If the competitor’s price is
either very low or very large, it is optimal to set the price to a certain moderate
level. If the competitor’s price is somewhere in between (intermediate range), it
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Fig. 3. Example 1 with h = 0.1: optimal response strategy and price paths, cf. [17].

is advisable to undercut that price by one price unit ε. If h is larger, also the
intermediate range is larger and the upper price level is increasing.

Employing optimal response strategies can create cyclic price patterns over
time, so-called Edgeworth cycles [1,2,18]. The resulting price paths are illus-
trated in Figs. 3(b) and 4(b). We observe that the cycle length and the ampli-
tude of the price patterns are increasing if the reaction time of the competitor
is longer. Note, roughly h · 100% of the time our firm is offering the lowest price;
i.e., the parameter h can also be used to model situations in which one firm is
able to adjust its prices more often than another firm [20,21].

Fig. 4. Example 1 with h = 0.9: optimal response strategy and price paths, cf. [17].

Additionally, we are able to analyze the impact of the reaction time on
expected long-term profits of our firm as well as the competitor. We assume
that the competitor faces the same sales probabilities and shipping costs.
The competitor’s expected profits can be recursively evaluated by, cf. (4),
t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A, V

(c)
T+h(a) = 0,
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V
(c)
t+h(a) =

∑

i2≥0

P
(1−h)
t+h (i2, F (a), a) ·

∑

i1≥0

P
(h)
t+1

(
i1, F (a), a∗

t+1 mod J(F (a))
)

·
(
(F (a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (F (a))
))

. (6)

Because of the cyclic price paths, expected future profits V0(p) and V
(c)
h (a)

are (almost) independent of the initial states or prices. Figure 5 depicts V as well
as the competitor’s expected profits V (c) as a function of h. We observe that
the expected profit V is linear increasing in the competitor’s reaction time; the
competitor’s profit V (c) is decreasing in h. Note, the impact of h is substantial.
The “disadvantage” of the player that stops the undercutting phase can already
be compensated in case our reaction time is smaller than 0.46, i.e., if h is larger
than 0.54.

3.2 Randomized Reaction Times

Due to the shown significant impact of reaction times firms will try to gain
advantage by updating their prices more frequently. In addition, firms might
also try to minimize their reaction times by anticipating their competitor’s time
of adjustment. In order not to act predictably, firms will randomize their reaction
times.

Our model can be extended to capture the cases in which reaction times
are not deterministic. If the distribution of the reaction time of competitors is
known, the Hamilton-Jacobi-Bellman (HJB) equation, cf. (4), can be modified.
The different reaction scenarios just have to be considered with their correspond-
ing probability. Note, the reaction times of different competitors can be observed
over longer time spans.

Fig. 5. Expected profit for different reaction times of the competitor (Example 1),
cf. [17].

In the following, we consider scenarios with randomized reaction times. We
assume that each firm adjusts its price with a certain intensity (e.g., on average
once a period of size 1). We model that approach as follows: we assume that at
each point in time d, d = t + Δ, t + 2Δ, ..., t + 1, 0 < Δ � 1, our firm adjusts
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its price with probability q, 0 < q � 1; i.e., on average we adjust our price
q/Δ times a period of size 1. Similarly, the competitor adjusts its price with
probability q(c), 0 < q(c) � 1. The competitor applies a certain strategy F (a).
By a− we denote our current price at time d, the beginning of the sub-period
(d, d + Δ). With probability q(c), the competitor adjusts its price from p to
F (a−). We adjust the price a− to price a with probability q. Since q and q(c) are
assumed to be “small” we do not consider the case in which both firms adjust
their prices at the same time. The related value function is given by, a−, p ∈ A,
t = 0,Δ, 2Δ, ..., T − Δ, ṼT (a−, p) = 0,

Ṽt(a−, p) = (1 − q − q(c)) ·
∑

i≥0

P
(Δ)
t (i, a−, p)

·
(
(a− − c) · i + δΔ · Ṽt+Δ(a−, p)

)

+ q(c) ·
∑

i≥0

P
(Δ)
t (i, a−, F (a−)) ·

(
(a− − c) · i + δΔ · Ṽt+Δ(a−, F (a−))

)

+ q · max
a∈A

⎧
⎨

⎩
∑

i≥0

P
(Δ)
t (i, a, p)·

(
(a − c) · i + δΔ · Ṽt+Δ (a, p)

)
⎫
⎬

⎭ . (7)

The optimal price ã∗
t (a

−, p), t = 0,Δ, 2Δ, ..., J −Δ, is determined by the arg
max of (7). The competitor’s expected profit corresponds to, t = 0,Δ, 2Δ, ..., T −
Δ, Ṽ

(c)
T (a−, p) = 0,

Ṽ
(c)
t (a−, p) = (1 − q − q(c)) ·

∑

i≥0

P
(Δ)
t (i, p, a−)

·
(
(p − c) · i + δΔ · Ṽ (c)

t+Δ(a−, p)
)

+ q(c) ·
∑

i≥0

P
(Δ)
t (i, F (a−), a−)

·
(
(F (a−) − c) · i + δΔ · Ṽ (c)

t+Δ(a−, F (a−))
)

+ q ·
∑

i≥0

P
(Δ)
t

(
i, p, ã∗

t mod J(a−, p)
)

·
(
(p − c) · i + δΔ · Ṽ (c)

t+Δ

(
ã∗

t mod J(a−, p), p
))

. (8)

Example 2. We assume the duopoly setting of Example 1 and let c = 3, F (a) :=
max(a−ε, c), ε = 1, a ∈ A := {1, 2, ..., 100}, δ = 0.99, Δ = 0.1. We use T := 1000.
We consider different reaction probabilities q and q(c).



Optimal Repricing Strategies in a Stochastic Infinite Horizon Duopoly 139

Table 1. Expected profits (Ṽ , Ṽ (c)) of both firms for different reaction probabilities
q, q(c) = 0.05, 0.1, 0.2, δ = 0.99, Δ = 0.1; Example 2, cf. [17].

q(c)\q 0.05 0.1 0.2

0.05 (16.53, 17.07) (16.80, 16.81) (17.01, 16.62)

0.1 (16.26, 17.36) (16.48, 17.09) (16.75, 16.84)

0.2 (16.03, 17.59) (16.22, 17.37) (16.48, 17.12)

Table 1 contains the expected profits (Ṽ , Ṽ (c)) of the two competing firms
for different reaction probabilities. We observe that Ṽ is increasing in q and
decreasing in q(c). For Ṽ (c) it is the other way around. We found that the ratio
q/q(c) of the adjustment frequencies is a critical quantity.

The importance of the overall adjustment frequency is alleviated as long as
the ratio q/q(c) is the same. Hence, the expected profits of both firms can be
approximated by the profits from the model with deterministic reaction time,
cf. Sect. 3.1, where h = q/q(c), i.e., the percentage of time our firm has the most
recently updated price.

Fig. 6. Comparison of evaluated price paths, cf. [17].

Figure 6(b) shows the price paths for the parameter setting of Example 2.
Figure 6(a) shows the deterministic case of Example 1 for h = 0.5. We observe
that overall the price patterns have similar characteristics. However, in the ran-
domized case, the timing of the price reactions is not predictable. While in the
deterministic h = 0.5 case (cf. Sect. 3.1) we have Ṽ = 16.44 and Ṽ (c) = 17.13, in
the randomized case (Δ = 0.1, q = q(c) = 0.1) the expected profits are Ṽ = 16.48
and Ṽ (c) = 17.09. In both models the advantage of the aggressive player is basi-
cally the same, but for the model with randomized reaction times the advantage
is slightly smaller.
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3.3 Mixed Competitors’ Strategies

If the competitor’s strategy is known, suitable response strategies can be com-
puted. Hence, firms might try to randomize their strategies. In this section, we
will analyze scenarios in which competitors play a mixed pricing strategy.

Let us assume that the competitor plays strategy Fk(a), a ∈ A, with prob-
ability πk, 1 ≤ k ≤ K < ∞,

∑
k πk = 1. Further, we assume deterministic

reaction times. We adjust our model, cf. Sect. 3.1, by using a weighted sum of
potential price reactions. The Hamilton-Jacobi-Bellman (HJB) equation can be
written as, t = 0, 1, 2, ..., T − 1, 0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p) ·

∑

k

πk ·
∑

i2≥0

P
(1−h)
t+h (i2, a, Fk(a))

· ((a − c) · (i1 + i2) + δ · Vt+1 (Fk(a))
)}

, (9)

where VT (p) = 0 for all p. The associated pricing strategy a∗
t (p), t = 0, 1, 2, ..., J−

1, 0 < h < 1, p ∈ A, is determined by the arg max of (9). The resulting
competitor’s expected profits can be computed by (starting from, e.g., V

(c)
T+h(a) =

0), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A,

V
(c)
t+h(a) =

∑

k

πk·
∑

i2≥0

P
(1−h)
t+h (i2, Fk(a), a)

·
∑

i1≥0

P
(h)
t+1

(
i1, Fk(a), a∗

t+1 mod J(Fk(a))
)

·
(
(Fk(a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (Fk(a))
))

. (10)

Using the models just introduced, we can compute suitable pricing strategies
in various competitive markets. As long as the number of competing firms is
small, the value function and the optimal prices can be computed. Note, due to
the coupled state transitions in general the value function has to be computed
for all states in advance. When the number of competitors is large this can
cause serious problems since the state space can grow exponentially (curse of
dimensionality).

The approach is suitable if the number of competitors is small and their
strategies are known. If the number of competitors is large and the strategies
are unknown, we recommend using simple but robust strategies [19].

4 Active and Passive Sellers in Competition

In case the pricing strategies and the competitors’ reaction times are known,
the model can be extended to an oligopoly setting. For each additional competi-
tor the state space of the model has to be extended by one dimension. Note,
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only active competitors that frequently adjust their prices should be taken into
account. Inactive customers will be treated as external fixed effects.

We assume one active competitor and Z passive competitors. The prices of
the passive competitors are denoted by z = (z1, ..., zZ), zj ≥ 0, j = 1, ..., Z,
and assumed to be constant over time. The active competitor employs a (non-
randomized) strategy F (a) that refers to our price a (not the passive one). The
Hamilton-Jacobi-Bellman (HJB) equation can be written as, t = 0, 1, 2, ..., T −1,
0 < h < 1, p ≥ 0, VT (p,z) = 0 for all p,z,

Vt(p,z) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p,z) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a),z)

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a),z)
)}

. (11)

The associated pricing strategy amounts to, t = 0, 1, 2, ..., J − 1, 0 < h < 1,
p ∈ A,

a∗
t (p,z) = arg max

a∈A

⎧
⎨

⎩
∑

i1≥0

P
(h)
t (i1, a, p,z) ·

∑

i2≥0

P
(1−h)
t+h (i2, a, F (a),z)

· ((a − c) · (i1 + i2) + δ · Vt+1 (F (a),z)
)}

. (12)

The competitor’s profits can be computed by (using, e.g., VT+h(a,z) = 0 for
all a,z), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ≥ 0,

V
(c)
t+h(a,z) =

∑

i2≥0

P
(1−h)
t+h (i2, F (a), a,z)

·
∑

i1≥0

P
(h)
t+1

(
i1, F (a), a∗

t+1 mod J(F (a),z),z
)

·
(
(F (a) − c) · (i1 + i2) + δ · V

(c)
t+h+1

(
a∗

t+1 mod J (F (a),z) ,z
))

. (13)

It is not necessary to compute the value function for all price combinations
of passive competitors in advance. The value function and the associated pricing
strategy can be computed separately for specific market situations (e.g., just
when they occur). In the following, we consider an example with active and
passive competitors.

Example 3. We assume the duopoly setting of Example 1 and let F (a) :=
max(a − ε, c), ε = 1, c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99, and
T = 1000. Further, we consider an additional passive competitor with a con-
stant price z, z = 15, 20, 25.

For the three cases z = 15, z = 20, and z = 25 the results are shown in
Figs. 7, 8, and 9. We observe three different characteristics.
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Fig. 7. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 15), cf. [17].

Fig. 8. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 25), cf. [17].

If the passive competitor’s price is low (z = 15) the cyclic price battle between
our firm and the aggressive firm takes place at a high price level, see Fig. 7(b).
The response strategies of the three firms are illustrated in Fig. 7(a).

In the case that the price of passive firm is sufficiently high (z = 20), the
cyclic price paths of the two active firms take place below that level. If the
constant price is “moderate” (z = 20), then a mixture of the characteristics
shown in Figs. 7 and 8 is optimal. Note, it is not advisable to place price offers
that slightly exceed competitors’ prices (see Fig. 9).

5 Duopoly: Iterated Strategy Adjustments

In this section, we generally evaluate the outcome when different strategies are
played against each other in a duopoly setting.

5.1 Evaluating Competing Strategies

We assume time homogeneous demand and h = 0.5. If firm 1 plays a pure
strategy S1 and firm 2 plays the pure strategy S2 then the associated expected
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Fig. 9. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 20), cf. [17].

profits can be computed by, t = 0, 1, 2, ..., T − 1, V
(1)
T (p) = V

(2)
T (p) = 0, for all

p ≥ 0,

V
(1)
t (p) =

∑

i1≥0

P (h) (i1, S1(p), p) ·
∑

i2≥0

P (1−h) (i2, S1(p), S2(S1(p)))

·
(
(S1(p) − c) · (i1 + i2) + δ · V

(1)
t+1 (S2 (S1(p)))

)
, (14)

V
(2)
t (p) =

∑

i1≥0

P (h) (i1, S2(p), p) ·
∑

i2≥0

P (1−h) (i2, S2(p), S1(S2(p)))

·
(
(S2(p) − c) · (i1 + i2) + δ · V

(2)
t+1 (S1 (S2(p)))

)
. (15)

Alternatively, for given strategies Sk, k = 1, 2, we can exactly evaluate the
associated expected profits V (k) by solving the linear system of equations, p ∈ A,
j, k = 1, 2, j �= k,

V (k)(p) =
∑

i1≥0

P (Δk) (i1, Sk(p), p) ·
∑

i2≥0

P (Δj) (i2, Sk(p), Sj(Sk(p)))

·
(
(Sk(p) − c) · (i1 + i2) + δ · V (k) (Sj (Sk(p)))

)
, (16)

where Δk := h and Δj := 1 − h, 0 < h < 1. Note, the system (16) has |A|
equations and can be solved using standard linear solvers.

5.2 Iterating Optimal Response Strategies

In this subsection we let two firms optimally adjust their strategies in order to
identify equilibrium strategies. The approach, cf. (16), cannot only be used to
evaluate competing strategies, it can also be applied to exactly compute optimal
reaction strategies, cf. (4)–(5), by solving the nonlinear system of equations,
p ∈ A, j, k = 1, 2, j �= k,
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V (k)(p) = max
a∈A

⎧
⎨

⎩
∑

i1≥0

P (Δk) (i1, a, p) ·
∑

i2≥0

P (Δj) (i2, a, Sj(a))

·
(
(a − c) · (i1 + i2) + δ · V (k) (Sj(a))

)}
. (17)

If the number of admissible prices |A| is sufficiently small the system (17)
can be solved using standard nonlinear solvers, such as MINOS1. The associated
pricing strategy a(k)(p;Sj), p ∈ A, j, k = 1, 2, j �= k, is given by the arg max of
(17). If a(k)(p) is not unique, we choose the largest one. In the following example,
we will iterate optimal response strategies.

Example 4. We assume the duopoly setting of Example 1. If not chosen differ-
ently, we let c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99. We consider
an initial strategy S(0)(p) := SU (p) := max(p − ε, c), ε = 1. Additionally, by
S(k)(p) = S(k)(p;S(k−1)) we denote the optimal response strategy to strategy
S(k−1), k = 1, 2, ..., cf. (17).

Considering Example 4, we evaluate the expected profits of the different strat-
egy combinations according to (16). The results are summarized in Table 2. We
observe that the aggressive strategy SU yields good results with the exception
when the competitor also plays SU . The strategy S(1) yields good results in all
constellations. Strategy S(2) is excellent when played against S(1) but yields only
moderate results in the other cases.

Table 2. Expected profits V
(1)
0 (50) of firm 1 when its strategy S(k) is played against

a strategy S(j), k, j = 0, 1, 2, ..., 5, S(0) := SU ; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 2.56 17.14 15.41 12.38 17.24 15.04

S(1) 16.19 16.78 12.07 16.06 16.16 12.07

S(2) 14.74 20.98 14.74 12.05 17.71 14.54

S(3) 11.23 16.84 16.59 12.00 16.84 16.59

S(4) 16.19 17.45 15.00 16.11 17.24 12.41

S(5) 14.31 20.55 15.26 11.81 20.55 14.81

Our example shows that optimal response strategies have a significant impact
on expected profits. They help to gain profits, especially, when aggressive com-
petitors are involved. On the other hand, we learn that it is also important to
know a competitor’s strategies. In practical applications, a competitor’s price
reactions can be inferred from market data over time.

1 MINOS solver: https://www.gams.com/latest/docs/solvers/minos.

https://www.gams.com/latest/docs/solvers/minos
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6 Equilibrium Strategies

In this section, we want to identify mutual best response strategies. We consider
the duopoly setting of Sect. 5. In order to identify equilibrium strategies, we
further iterate mutual strategy responses.

We consider the setting of Example 4. Starting with the aggressive strategy
SU we allow the two competing firms to repeatedly adjust their strategies using
optimal response strategies. Figure 10 illustrates the different iterated response
strategies S(k) for k = 0, 1, 2, ..., 20.

Fig. 10. Iterated response strategies (Example 4; S(0) := SU , h = 0.5).

We observe that optimal response strategies do not converge to mutual opti-
mal pure strategies. Instead, we obtain a repeating cyclic sequence of strategy
adjustments. The structure of the single response strategies is similar to those
shown in Figs. 3 and 4.

However, pure mutual optimal response strategies do exist. We consider
Example 4 for a different starting strategy. Figure 11 illustrates iterated response
strategies S(k), k = 0, 1, 2, ..., 20, for S(0) := S(0)(p) ≡ 20.

We observe that after 11 iterations the optimal response strategies converge
to a pure equilibrium strategy S∗ which is such that no firm has an incentive
to deviate. The equilibrium strategy has a characteristic structure which can be
described as follows.
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Remark 2. If the competitor’s price is either below a certain low price pmin or
a above a certain large price pmax, it is optimal to set the price to the upper
level pmax. If the competitor’s price is slightly under that upper price level pmax

(upper intermediate range), it is best to undercut that price by one price unit
ε as long as the competitor’s price is above a certain medium price pmed. Is
the competitor’s price below the medium price pmed and above pmin (lower
intermediate range) it is optimal to decrease the price to pmin.

Fig. 11. Iterating equilibrium strategies (Example 4; S(0) := 20, h = 0.5).

The equilibrium strategy is similar to the type of strategy derived in Sect. 3,
see Figs. 3 and 4. The difference is the counterintuitive massive price drop (lower
intermediate range) to the minimal price pmin.

This phenomenon can be explained as follows. The price drop forces the
rational competitor to give in and to raise the price immediately. This way the
price range in which the undercutting price battle takes place is shifted to a
higher level, which in turn is advantageous for both competitors.

Table 3 illustrates the expected profits of a firm when different iterated
response strategies are played against each other, cf. Table 2, for S(0) := 20,
i.e., the equilibrium case. We observe that profits quickly converge at a moder-
ate level (16.43) compared to those in Table 2.

We varied different parameters of our model, such as the price granularity,
the discount factor, and the initial strategy S(0). We found that mainly the
initial strategy S(0) is responsible for pure equilibrium strategies to exist. In the
context of Example 4 we obtain the same equilibrium, see Fig. 11, as long as
S(0) ≥ 18. For S(0) < 18 we obtain response cycles similar to Fig. 10.
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Table 3. Expected profits V
(1)
0 (50) of firm 1 when its strategy S(k) is played against

a strategy S(j), k, j = 0, 1, 2, ..., 5, S(0) := 20; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 10.74 8.14 8.14 8.14 8.14 8.14

S(1) 13.62 15.28 16.13 16.13 16.13 16.13

S(2) 12.42 16.19 16.23 16.19 16.19 16.19

S(3) 12.42 16.19 16.23 16.25 16.31 16.23

S(4) 12.42 16.19 16.23 16.27 16.31 16.27

S(5) 12.42 16.17 16.23 16.27 16.31 16.31

Remark 3. If the starting strategy is aggressive, i.e., characterized by low prices
we do not obtain a pure strategy equilibrium. If the starting strategy is not
aggressive, we usually obtain a pure strategy equilibrium. Furthermore, in case
a pure equilibrium strategy exists it is of the structure described above, cf.
Remark 2.

At the end of this section, we study how equilibrium strategies are affected by
the discount factor. We consider the setting of Example 4. Figure 12 illustrates
pure equilibrium strategies for five different discount factors between 0 and 0.99.

Fig. 12. Equilibrium strategies for different discount factors, δ = 0, 0.4, 0.7, 0.85, 0.99,
h = 0.5; Example 4.

We observe that for all S∗ the mutual optimal response strategies δ is of the
structure described above which is characterized by (pmin, pmed, pmax). While
pmin is not affected by δ the thresholds pmed and pmax increase in δ. The range
of the resulting staircase like price trajectories is hardly affected by δ but the
level at which the price battle takes place is higher if δ increases.
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7 Conclusion

The recent rise of e-commerce and the development of web technologies made it
increasingly easy for merchants to observe market situations and automatically
adjust their prices. Subsequently, more and more companies employ dynamic
pricing strategies. In this paper, we analyze stochastic dynamic infinite hori-
zon duopoly models characterized by active competitors. We set up a dynamic
pricing model including discounting and shipping costs. The sales probabilities
are allowed to arbitrarily depend on time, our price as well as the competitor’s
prices. Data-driven estimations of sales intensities under pricing competition can
be used to calibrate the model.

Assuming that a competitor’s response strategy is known, we show how to
compute optimal reaction strategies that take advantage of price anticipations.
As expected, it is often optimal to slightly undercut the competitor’s price.
However, when the price falls below a certain lower bound it is advisable to raise
the price to a certain upper bound. Our optimized strategies optimally choose
these critical price bounds. Optimized feedback strategies effectively avoid a
decline in price. Especially, when competitors play aggressive strategies it is
important to react in a reasonable way in order not to lose potential profits.

Furthermore, we analyze reaction times or price adjustments frequencies,
respectively. We find that they have a huge impact on expected profits. To be able
to adjust prices more often than the competitor does is a competitive advantage.
Hence, the ratio of the competitors’ prices adjustment frequencies is crucial for
the firm’s expected profits. Moreover, it can be profitable to strategically time
price adjustments. In order not to use predictable reaction time firms should
randomize their price adjustments. We show how to derive optimal response
strategies when reaction times are randomized.

We also derive optimal response strategies if additional players are involved
that employ fixed price strategies. We analyzed how the presence of such addi-
tional passive competitors affects the price battle of two active players that
frequently adjust their prices. Our technique to compute prices is simple and
easy to implement.

Finally, we evaluated expected profits of competing pairs strategies if both
players apply optimized price reactions. In order to identify equilibrium strate-
gies, we analyzed iterated strategy adjustments. Mutual strategy responses do
not necessarily have to converge as pure strategy equilibria might not exist.
However, pure equilibrium strategies can be identified by iterating mutual
strategy responses. We found that as long as strategies are not too aggressive
optimal strategy adjustments lead to equilibrium strategies. These strategies
have a characteristic structure: in a certain price range it is optimal to undercut
the competitor’s price, otherwise it is optimal to either raise the price or force
the competitor to restore the price level by significantly dropping the price.

In future research, we will use market data to estimate competitors’ response
strategies. We will also extend the model to study the sale of perishable products
with inventory restrictions.
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Appendix

Table 4. Notation table.

t Time/Period

X Random number sold items

G Random future profits

c Shipping costs

δ Discount factor

F Competitor’s reaction strategy

Z Number of passive competitors

A Set of admissible prices

V Value function

V (c) Competitor’s value function

a Offer price

p Competitors’ prices

z Competitors’ prices (fixed)

K Number of competitors

λ Sales intensity

P Sales probability

β Logit coefficients

J Cycle length

h Reaction time

q Reaction probability

q(c) Competitor’s reaction probabilities

S Response strategy
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Abstract. We propose optimization model to design a charging infras-
tructure for a fleet of electric vehicles. Applicable examples include a
fleet of vans used in the city logistics, a fleet of taxicabs or a fleet of
shared vehicles operating in urban areas. Fleet operator is wishing to
replace vehicles equipped with an internal combustion engine with fully
electric vehicles. To eliminate interaction with other electric vehicles it is
required to design a private network of charging stations that is specif-
ically adjusted to the fleet operation. First, to derive a suitable set of
candidate locations from GPS data, we propose a practical procedure
where the outcomes can be simply controlled by setting few parameter
values. Second, we formulate a mathematical model that combines loca-
tion and scheduling decisions to ensure that requirements of vehicles can
be satisfied. We validate the applicability of our approach by applying it
to data characterizing a large taxicab fleet operating in the city of Stock-
holm. The model assumes that all vehicles posses complete information
about all other vehicles. To study the role of available information, we
evaluate the resulting designs considering the coordinated charging when
vehicle drivers, for example, reveal to each other departure times, and
the uncoordinated charging when vehicle drivers know only actual occu-
pation of charging points. Our results indicate that this approach can
be used to estimate the minimal requirements to set up the charging
infrastructure.
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1 Introduction

Road transport is one of the major producers of the carbon dioxide (CO2) which
is the main greenhouse gas. Transport produces 20% of total carbon dioxide
(CO2) emissions. While these emissions decreased by 3.3% in 2012, they are
still 20.5% higher than in 2011 and it could have been even more if there is no
economic crises [1]. Stong influence on the carbon dioxide (CO2) reduction have
the generation of the electric energy as mentioned in [2]. One possibility how to
reduce CO2 emission in densely populated urban areas is to continue the process
of electrification of individual and public transport together with the higher
penetration of renewable sources of energy. Higher interest in converting large
fleets of vehicles serving urban areas into electric can be caused by advances in
battery technologies and continuously decreasing prices of electric vehicles over
the next years. Although, the purchase of a new electric vehicle is connected
with high purchasing cost, this obstacle can be easily compensated by lower
operational costs. The expected benefits could be considerable due to the high
utilization of such vehicles.

To avoid delays in charging, caused by interaction with other electric vehicles,
a choice of a fleet operator can be to built the private charging infrastructure.
Planning of charging infrastructure for electric vehicles is rapidly growing topic
in the scientific literature over the last years. Researchers has been focusing on
creating models to predict the future expansion of electric vehicles [3] as well
as models designed to estimate the size of the future demand for charging vehi-
cles [4]. An approach, where GPS traces of vehicles were used to extract the
travel behaviour and hence to estimate the expected demand for charging vehi-
cles, was used in [5–7]. Such analysis can provide valuable hints when searching
for suitable positions of charging stations. The data driven approach to predict
the penetration of EVs in the region of Lisbon and the future refuelling demand
was proposed in [8].

Optimization algorithms have been often used to address this problem as
well. A city transportation model to verify various locations of charging stations,
which were generated by the genetic algorithm, was used in [9]. In [10] a bi-
level approach was proposed. It combines the solution of the location problem
(considering the capacity of charging stations) on the upper level, where the total
costs and waiting time are minimized. To evaluate each design, the simulation
approach is used on the lower level. This approach is iterative, i.e., it is repeated
until the locations of charging stations do not change. Simulation can be used to
estimate the expected number of vehicles successfully charged at each candidate
location [11]. In the reference [12] was proposed an approach that allows for
analysing the impact of public charging infrastructure deployment on the electric
miles travelled. A genetic algorithm is used to find locations of charging stations
and it is evaluated by the activity-based assessment method. In [13] authors
developed the simulation-optimization approach where the area is divided into
regions. The OD-matrix for the regions is known and it is used to estimate
the EV flows between them. Linear IP model is used to determine the location
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and size of the charging stations subject to the limited budget. Combination
of a simulation approach with a genetic algorithm that utilizes GPS traces of
vehicles was presented in [14].

Several authors considered a location problem constituting a mixed integer
programming problem. For example, in [15] the demand for charging electric
vehicles on public parking lots was estimated, based on a traffic survey conducted
in the city of Seattle. The suitable location of charging stations was found by
minimising the costs and the optimisation problem was solved by the general
purpose optimisation solver. A similar methodology was also used for the city of
Lyon [16] and the city of Coimbra [17]. When designing a network of charging
stations, capacity constraints are typically included in the model [18–20] and
apart from minimising costs, the area covered within the driving distance is
maximised [4]. Methodologically different approach has been presented in [21].
Here authors considered constraints implied by the daily activity of car users and
the capacity of electrical network and the location of charging stations were found
by the clustering algorithm. The advantage of this approach is that several types
of constraints can be taken into account simultaneously, without significantly
affecting the computational complexity of the algorithm.

Special class of models was developed to cover trajectories of vehicles [22–24].
This approach is applicable in the design of the charging infrastructure along a
highway network to cover long distance trips. An elegant (and simple) way how
to locate charging stations along the paths, not to have larger distance between
the neighbouring charging stations than is the maximum distance reachable by
the electric vehicles, was proposed by [22]. The approach is based on adding
artificial links to the network graph connecting places that fulfil some reachability
rules. The model locates the minimum number of refuelling stations along paths
to make the path traversal feasible. The approach [25] further extends [22] by
considering multi-period case. Extension of this approach that considers multiple
paths connecting origins and destinations of trips was proposed in [26] to take
into account that vehicles can make short detours to reach a charging station.

Some authors considered this topic in the context of autonomous electric
vehicles. An agent based simulation model was proposed in [27]. Model runs
in two stages. In the first stage, the fleet size and the charging infrastructure
is determined for an area that is characterized by the values of demographic
indicators. In the second phase, the model is simulated for long enough time
period in order to determine performance characteristics. Similar model pre-
senting extended computational experiments was presented in [28].

Our contribution is the approach that is purely based on optimization where
we combine location and scheduling problems and thus we avoid the need to
validate the locations and capacity of charging stations by computer simulations.
Because the approach is based on historic data it can be used to estimate the
minimum design of the system that is sufficient to cope with various scenarios
occurring in the past. Obtained results are evaluated by investigating the role
of the available information.



154 M. Koháni et al.

This paper extendsworkpresented in conference paper [29]. In order to improve
and extend the paper we have introduced several amendments. We improved the
description of the mathematical model and eliminated the unnecessary constraints
that have not been taken into account in the numerical experiments. We have pro-
posed a procedure to evaluate the role of available information and applied it to
selected designs of the infrastructure.At themomentwhen drivers chose a charging
station, they may possess various levels of information. We summarize our findings
about the role of available information in the conclusions. We have re-run numeri-
cal experiments and we get optimal solutions in all test cases and we have improved
the presentation of the results in all tables and figures.

The paper is organized as follow: in Sect. 2 we describe the data requirements
and the methodology. In Sect. 3, we describe the data used in the case study and
we introduce the results of numerical experiments. To conclude, we summarise
our main findings in Sect. 4.

2 Methodology

2.1 Data Requirements

Suggested method requires low-frequency GPS data describing the mobility pat-
terns of individual vehicles that belong to the fleet. Data have been collected for
several, typical and sufficiently long-time periods representing relevant scenarios
that should be included in the design of the charging network. The collection of
low-frequency data is easy in practice as there is no need to use expensive GPS
trackers. However, such data are not precise enough to determine the travel dis-
tances. Therefore, we need the second dataset - the graph model of the road
network consisting of nodes and edges. This data helps estimating the travel
distances more precisely.

2.2 Algorithm to Determine a Candidate Set for Charging Station
Locations

In this section, we describe the method that we used to identify the set of
places where the charging of electric vehicles is possible. Here, we do not wish
to affect the actual trajectories that are taken by the vehicle drivers. Thus, the
proposed method allows for the evaluation of the percentage of vehicles that
could be transformed to electric vehicles without affecting their operation, with
the minimal requirements on building the charging infrastructure. Therefore,
we use the GPS data to identify the set of suitable candidate locations for the
charging stations. Here, we aim to identify the locations where large numbers of
vehicles frequently park. To do so, we propose the following two-phase procedure:

– Phase 1: Identify the set of candidate locations for charging stations as loca-
tions where many vehicles tend to park for a long time.

– Phase 2: Identify the set of vehicles that can be served by a selected set of
candidate locations.
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In the phase one, the following parameters are used: As a parking event we iden-
tify the time period, when the average speed of a vehicle is below the maximum
speed limit Vmax for at least the time period Tmin. To ensure that we select a rel-
evant set of candidate locations, we require that each candidate is associated with
at least Mmin parking events taking place in its circular neighbourhood defined by
the radius of ρmax. In the first phase, we process one-by-one the GPS traces of all
vehicles executing the following steps (for illustration example see Fig. 1):

– Step 1: Identify in the GPS trace the traversals that have the average speed
below the speed limit Vmax.

– Step 2: Identify in the GPS trace the maximum connected sequences of traver-
sals longer than the time period Tmin.

– Step 3: Identify as a candidate location the last node of each connected
sequence if there is no other candidate location within the distance ρmax.

After processing all GPS traces we remove all candidate locations that are
associated with less than Mmin parking events.

Fig. 1. Diagram illustrating the identification of candidate locations. Nodes represent
the GPS position of the vehicle at the time ti, links are traversals between two GPS
positions. Red coloured links represent traversals where the average speed vi is below
the limit Vmax and the red coloured node t2 represents the candidate location. Node
t4 is not a candidate location because it does not fulfil the distance condition defined
in the Step 3. Time ti is in minutes, vi is in meters per second and Vmax = 0.1 m/s.

The second phase of the procedure evaluates the proposed set of candidate
locations and identifies the set of vehicles that could be replaced by the electric
vehicles. For each vehicle we evaluate its trajectory and we evaluate whether
it could be sufficiently recharged during parking events, to cover the travel dis-
tances. Here, we consider the unlimited capacity of charging points being located
in each candidate location. We assume that the capacity of each vehicle is β
(measured in kilometres), i.e., it corresponds to the reachable driving distance.
As a vehicle is driven its state of charge is decreasing according to the distance
travelled. Charging speed is denoted by s. We record the number of vehicles
that cannot be served by a given set of candidate locations. In the mathematical
model, we consider only vehicles that can be recharged, otherwise the proposed
mathematical model has no feasible solution.



156 M. Koháni et al.

2.3 Mathematical Model

Our goal is to minimize the costs that are required to set up the charging infras-
tructure, while ensuring that all vehicles identified in Phase 2 are satisfied. The
costs are proportional to the number of charging points. Previous studies [11–
13] indicated that an important requirement is to consider queueing behaviour
of vehicles when they are charging. Hence, we formulate a location optimiza-
tion problem, considering the scheduling problem to ensure that there exists a
feasible schedule how to recharge vehicles.

We suppose that the algorithm from the previous section provides the set I
of candidate locations where it is possible to locate the charging infrastructure.
We split the time into the set T of non-overlapping time intervals. Then for
each vehicle we distinguish two possible states (see Fig. 2). A vehicle is either
parking at the candidate location and it is available for charging or it is located
somewhere else where it cannot be charged.

Fig. 2. Diagram illustrating the movement of an individual vehicle between the can-
didate locations. Vehicle is either parking at the candidate locations (filled or empty
rectangles) and can be charged (filled rectangles) or it is located elsewhere and can-
not be charged (dashed lines). Selected values of optimisation variables are shown to
illustrate the modelling concept.

The fleet is composed of the set C of vehicles and each vehicle is equipped with
a battery of capacity β. The capacity β is expressed as the distance in kilometres
that the fully charged battery allows a vehicle to drive. This assumption is a
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simplification of the model, however it is possible to find models with take into
consideration the details of the EV operation, e.g. [30]. From the data we can
obtain for each vehicle c ∈ C an ordered sequence of parking events Rc and
we determine the list Ncr of all time intervals t ∈ T that have an overlap with
the parking event r ∈ Rc. The fraction of the time interval t ∈ T when the
vehicle c ∈ C is parking we denote by act ∈ 〈0, 1〉. To simplify the description
of the mathematical model we define Bitc ∈ {0, 1}, where Bitc = 1 if the vehicle
c ∈ C parks at the location i ∈ I during the time interval t ∈ T , and Bitc = 0
otherwise. We use the graph of the road network to extract the information
about the real travel distances. Vehicle c ∈ C drives ucr kilometres while driving
from the parking event r − 1 to the parking event r. Each vehicle enters into
the model with a fictive parking event r = 0 of zero duration and ends with a
fictive parking event r = rc of zero duration. Decisions are described by the set
of variables:

– si ∈ Z+ for i ∈ I, representing the number of charging points placed at the
location i ∈ I,

– xct ∈ {0, 1} for c ∈ C, t ∈ T , where xct = 1 when vehicle c ∈ C is being
charged during the time interval t ∈ T and xct = 0 otherwise, and

– dcr ≥ 0 for c ∈ C, r ∈ Rc ∪ {0} ∪ {rc} corresponds to the distance that the
vehicle c ∈ C at the beginning of the parking event r ∈ Rc is able to drive.

We use this notation to formulate the location-scheduling problem that is
shown in Fig. 3.

In the objective function (1) we minimize the number of located charging
points. In each time interval we cannot use more charging points than specified
by the set of constraints (2). We set the initial upper limit for the driving dis-
tance to αβ, where α > 0 is the parameter of the model (see constraints (3)).
Constraints (4) ensure that battery capacity is not exceeded and constraints (5)
ensure contiguity of charging and discharging of batteries.

Fig. 3. Mathematical formulation of the location-scheduling optimization problem.



158 M. Koháni et al.

2.4 Evaluation of the Role of Available Information

In the mathematical model, we suppose that complete information about the
charging requests of car drivers is available. The reality is, however, often differ-
ent. We consider two approaches, which work with various levels of information
(coordinated charging and uncoordinated charging). We consider the set I ⊂ I
of all charging stations that contain at least one charging point (positions of
charging points are found by solving the mathematical model). Ki is the set of
charging points placed in station i ∈ I (we suppose that 0 �∈ Ki). R is the set of
possible charging events (parking events), P is the set of taxicab journeys, and
E = R ∪ P is the set of all events. The charging speed is denoted by s. If e ∈ P ,
then l(e) is the driving distance. Vehicle associated with event e ∈ E is denoted
as c(e). The start time and the end time of the event e ∈ E are denoted by b(e)
and z(e), respectively. The level of the battery of vehicle c ∈ C is dc. Parame-
ter characterizing the maximum acceptable distance of a vehicle at the time of
charging event from the charging station we denote ρmax. Tk is the end time
of the last charging event at the charging point k ∈ Ki (for i ∈ I). Evaluation
procedure follows these steps:

Step 1: (Initialization)
For c ∈ C, set dc = β/2. Initialize the value kmax = 0. Order events in E ascend-
ingly with respect to the b(e). Set Tk = 0 for k ∈ Ki and i ∈ I.
Step 2: (Event list processing)
For each e ∈ E do:

If e ∈ R, then order the set I in descending order according to the number
of charging points k ∈ Ki that are free in time b(e).
For i ∈ I do:

If distance of vehicle c(e) at time b(e) from station i is less than ρmax,
then process the charging event following either coordinated or unco-
ordinated strategy.

If e ∈ P , then set dc(e) = dc(e) − l(e).
Step 3: (Evaluation)
Set c ∈ C as feasible, if dc ≥ 0 all the time during the run of the algorithm.

Strategy of coordinated charging (Strategy 1): Identify the set Kfull =
{k ∈ Ki|(z(e) − max{b(e), Tk})s ≥ β − dc(e)} of charging points where c(e) can
be fully charged.
If Kfull �= ∅:

Choose k ∈ Kfull and set
Tk = b(e) + (β − dc(e))/s and dc(e) = β,

else:
Find kmax ∈ argmax((z(e) − max{b(e), Tk})s), where k ∈ Ki.
If kmax �= 0:

If z(e) − max{b(e), Tkmax
} > 0:
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Set dc(e) = dc(e) + (z(e) − max{b(e), Tkmax
})s.

Set Tkmax
= z(e), kmax = 0 and continue with the step 2, and process

the next event.

Strategy of uncoordinated charging (Strategy 2): Find k ∈ Ki such that
Tk ≤ b(e).
If k �= 0:

Set dc(e) = max{dc(e) + (z(e) − b(e))s, β}. Set Tk = z(e), k = 0 and continue
with the step 2, and process the next event.

In Step 1, we initialize the values of some variables and order the elements
of the set E. In Step 2, we process all events from the ordered set E. If e is a
parking event, we choose a location i ∈ I considering the number of free charging
points and the distance of the vehicle c(e) from the location i. Charging stations
and charging points are assigned to the vehicle c(e) by either coordinated or
uncoordinated charging strategy. If e is a journey, then the level of the battery
of vehicle c(e) is decreased by the value of the driving distance l(e). In Step 3,
we set the vehicle c as feasible, if the state of the battery remains all the time
nonnegative.

Strategy of coordinated charging assumes that drivers posses information
about charging points and know when the charging stations that are occupied
will be freed, thus, drivers can selected those charging points where the batteries
can be charged to the maximum capacity. Moreover, drivers are assumed to be
cooperative, i.e., they unplug the vehicle when the charging is terminated.

When applying the strategy of uncoordinated charging, drivers choose the
charging station i ∈ I with the largest number of free charging points at the
time b(e). The level of the battery of vehicle c(e) is updated and the charging
point is freed when the vehicle starts next journey.

3 Numerical Experiments

3.1 Data

In the case study we consider a fleet of more than 1,500 taxicabs operating in
the area of great Stockholm, in Sweden. Each vehicle reported on average every
90 s its id, GPS position, time-stamp and information whether it is hired or not.
In total, there is 8,989,143 probe data records, covering four selected weeks (see
Fig. 4) representing different scenarios: Week 1 is a typical spring week with 1542
taxicabs. Week 2 represents typical summer week with 1526 taxicabs. Week 3
is the Christmas week with 1491 taxicabs and Week 4, with 1550 taxicabs, is a
special week when the major disruption of the public transport occurred due to
many failed railway connections.
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Fig. 4. The travel distance, the travel distance when the taxicabs are hired and the
number of unique taxicabs for individual weekdays in Weeks 1–4. Figure is reproduced
from the reference [29].

As the reporting frequency of probe data is relatively low, to be able to
measure the travel distances more accurately, probes coordinates’s are map-
matched onto the road network and path is inferred, using the methodology
proposed in [31]. The road network is used to estimate the travel distances. In the
digital model of the road network each link is attributed a number of parameters,
including the length, presence of a traffic signal, road class, speed limit and etc.
Graph of the road network, used in the case study, consists of 231,839 links. To
visualise the origin-destination flows of passenger trips between selected zones,
we produced circular plots shown in the Fig. 5. In Fig. 5(a) are displayed relative
values of origin-destination flows among the selected communes, covering both
airports and extended Stockholm inner city. The majority of taxi trips is made
inside the Stockholm commune, therefore, we created Fig. 5(b) considering only
selected zones of the Stockholm’s city centre.

3.2 Numerical Results: Mathematical Model

To test the proposed approach, we performed numerical experiments with the fol-
lowing values of parameters: the driving range of all vehicles was set to β = 300 km
and the initial fraction of the driving range α = 0.5. The charging speed was set to
s = 5 km/min, the maximum speed limit for vehicles to be considered as parked
Vmax = 0.1 m/s and the associated time limit Tmin = 15 min. In the mathematical
model we discretize the time in steps of 15 min. Numerical experiments were per-
formedon the computer equippedwithCPUIntel (R)Core i7-5500UCPUwith two
3 GHz cores and with 8 GB RAM. Mathematical model was solved using IP-solver
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Fig. 5. Relative values of the origin-destination flows for selected zones (Weeks 1–4).
Thickness of bands represents the proportion of taxicab trips that are in the data
flagged as hired and start in the origin zone and terminate in the destination zone.
(a) Selected administrative communes cover the area of extended Stockholm inner
city till Arlanda Airport on the north-west that corresponds to the geographical area
covered by the data. Most of the trips have both origin and destination in the city
centre. (b) More detailed view at trips having both origin and destination in the city
centre.

FICO Xpress IVE 7.3. Results of numerical experiments are shown in Tables 1, 2,
3 and 4. To explore various situations in scenarios, we selected the following values
of input parameters: ρmax ∈ {100, 500, 1000} meters and Mmin ∈ {100, 150, 800}
parking events. In tables we report the following output values: Column labelled as
|I| is the cardinality of the set of candidate locations identified in the Phase 1. The
number of taxicabs that can be served by the set of candidate locations, determined
in the Phase 2, is shown in the column denoted as Cars. Results of the optimisation
process are summarized in the following columns: Stations represents the number
of located charging stations, CPtotal is the total number of charging points and
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CPmax represents the maximal number of charging points located in one charging
station. Column Time contains computational time in seconds. Running time of a
single experiment was unlimited and for all tested instances we found the optimal
solution. These results extend those presented in [29]. All numerical experiments
were re-run without any limitation on computation time and all presented solu-
tions are optimal. Heuristic methods to solve this type of problems can be found
in [32].

Table 1. Results of numerical experiments for the scenario Week 1 - a typical spring
week (1542 taxicabs).

ρmax Mmin Cars | I | Stations CPtotal CPmax Time[s]

100 800 609 3 3 14 9 1.88

150 1186 27 27 37 6 3682.50

100 1287 44 44 54 6 22.10

500 800 1102 5 5 20 10 46.05

150 1442 46 40 44 5 4235.23

100 1475 77 51 53 3 6987.36

1000 800 1347 6 6 17 5 13789.59

150 1499 51 39 42 3 6532.00

100 1510 70 48 50 2 27896.50

Table 2. Results of numerical experiments for the scenario Week 2 - a typical summer
week (1526 taxicabs).

ρmax Mmin Cars | I | Stations CPtotal CPmax Time[s]

100 800 785 4 4 17 9 2.83

150 1292 30 30 35 4 16.64

100 1363 46 44 49 4 27.67

500 800 1188 5 5 17 7 8963.32

150 1477 46 36 38 2 218.37

100 1498 73 45 46 2 72563.65

1000 800 1409 8 8 19 5 6598.20

150 1506 50 38 58 3 7896.50

100 1513 69 46 59 2 36523.36

To verify the proposed approach, we visualised in Fig. 6 the resulting locations
of charging stations for the scenario Week 1 and the parameter value Mmin = 150
of parking events and two different values of parameter ρmax = {100, 800} in
meters. From the map it is obvious that the charging stations are located at
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Table 3. Results of numerical experiments for the scenario Week 3 - the Christmas
week (1491 taxicabs).

ρmax Mmin Cars | I | Stations CPtotal CPmax Time[s]

100 800 449 2 2 4 2 0.34

150 1019 24 24 27 2 2.84

100 1094 36 36 37 2 6.83

500 800 843 4 4 5 2 6.17

150 1324 39 37 39 2 46.86

100 1359 57 52 53 2 291.05

1000 800 1172 6 6 11 2 27.80

150 1417 43 38 39 2 547.72

100 1445 65 47 48 2 898.37

Table 4. Results of numerical experiments for the scenario Week 4 - a special week with
the major disruption of the public transport due to many failed railway connections
(1550 taxicabs).

ρmax Mmin Cars | I | Stations CPtotal CPmax Time[s]

100 800 631 3 3 17 13 7.66

150 1221 33 33 39 7 2753.50

100 1325 50 49 53 5 38.21

500 800 1097 5 5 18 10 2632.63

150 1491 50 40 42 3 3789.50

100 1515 80 54 56 3 17856.36

1000 800 1408 9 9 21 6 1893.00

150 1525 29 27 39 7 128.50

100 1534 74 49 53 2 16589.30

sensible places with the large expected demand for transportation services such
as airports, railway stations, ferry terminals and other public spaces located in
the city centre. We observe that unless the set |I| is very large, charging points
are distributed over all candidate locations. While increasing the willingness of
vehicle drivers to make a detour when visiting charging stations (expressed by
the value of the parameter ρmax), we observe that the number of vehicles that can
be satisfied by the proposed layouts of charging stations is significantly growing.
When the number of candidate location is large, we find only occasionally more
than one charging point assigned to a charging location. Charging stations with
more than one charging point we find to be located at airports or in the cite
centre. We found similar results in all scenarios, with slightly smaller number
of charging points in Week 3 where also the demand is smaller. The maximum



164 M. Koháni et al.

computational time was in all cases less than one day, what can be considered
as a favourable outcome when dealing with strategic decision problems.

3.3 Numerical Results: Evaluation of the Role of Available
Information

We used the mathematical model to suggest the layout of the charging infras-
tructure. The evaluation procedure allows us to simulate the operation of the
charging stations in specific cases, when drivers make decisions following an
incomplete information. We compare the optimization approach with situations
when drivers posses various levels of information at the time when choosing a
charging point. The results for Weeks 1–4 can be seen in Table 5.

Fig. 6. Locations of charging points obtained for the scenario Week 1 and the values of
input parameters Mmin = 150 parking events and two different values of the parameter
ρmax = 100 m (left panels) and ρmax = 800 m (right panels).
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Columns ρmax and Mmin show the values of input parameters: ρmax is the
maximum acceptable distance between the parking position of a vehicle and
a charging station to make charging possible, Mmin is the minimum number
of parking events that has to be assigned to a location to become eligible as a
candidate for a charging station. In the remaining columns we report the number
of vehicles, which is the outcome of Phase 2 (the same number of vehicles is also
satisfied by the optimisation model); the number of vehicles that are satisfied by
the coordinated charging (Strategy 1); and the number of vehicles that can be
satisfied when applying uncoordinated charging (Strategy 2).

In Table 5, we observe a large difference in the numbers of feasible vehicles
in columns Model and Strategy 1. This difference is caused by the different level
of utilized information. In the mathematical model, all information about the
future parking events of vehicles is available and it gets utilized. Furthermore,
charging decisions are made for each time interval separately. Thus, a vehicle
can interrupt the charging and allow other cars to charge and later continue
with charging again. In Strategy 1, drivers start charging immediately when
initiating the parking event. Drivers posses the information, about the actual

Table 5. Numbers of feasible vehicles obtained when solving the mathematical model
(Model) and applying the evaluation procedure with the strategy of coordinated charg-
ing (Strategy 1) and the strategy of uncoordinated charging (Strategy 2).

Week 1 (1542 vehicles) Week 2 (1526 vehicles)

ρmax Mmin Model Strategy 1 Strategy 2 ρmax Mmin Model Strategy 1 Strategy 2

100 800 609 401 363 100 800 785 473 431

150 1186 652 536 150 1292 623 599

100 1287 689 586 100 1363 689 604

500 800 1102 592 589 500 800 1188 596 542

150 1442 653 603 150 1477 699 687

100 1475 709 695 100 1498 728 685

1000 800 1347 739 692 1000 800 1409 712 596

150 1499 785 701 150 1506 748 632

100 1510 793 706 100 1513 783 692

Week 3 (1491 vehicles) Week 4 (1550 vehicles)

ρmax Mmin Model Strategy 1 Strategy 2 ρmax Mmin Model Strategy 1 Strategy 2

100 800 449 189 163 100 800 631 369 347

150 1019 436 398 150 1221 631 598

100 1094 454 412 100 1325 678 642

500 800 843 385 316 500 800 1097 523 521

150 1324 541 496 150 1491 687 589

100 1359 559 498 100 1515 703 602

1000 800 1172 536 478 1000 800 1408 688 584

150 1417 557 492 150 1525 726 632

100 1445 589 499 100 1534 726 636
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occupation of charging points and know the times when charging points are
freed. This information is used to maximize the charged energy. Moreover, drivers
are cooperative and they unplug the vehicle when it is fully charged. The only
available information in Strategy 2 is the actual occupation of charging points at
the time when drivers choose a charging point. As before, drivers start charging
immediately when initiating the parking event. However, now drivers are careless
and unplug their vehicles only when leaving for the next trip.

Systematically we find the difference between the numbers of feasible vehicles
in columns Strategy 1 and Strategy 2 to be smaller than between the column
Model and the columns Strategies 1 and 2. Thus, our results indicate the high
importance of available information when assigning vehicles to charging points.
Large benefit brings prioritization of vehicles, i.e., delaying the charging of some
vehicles or interrupting charging and continuing it later again. Benefits of know-
ing when other drivers finish charging their vehicles and unplugging of vehicles
when a vehicle is fully charged are not negligible, but not so pronounced.

4 Conclusions

In this contribution we present a method to deploy the charging infrastructure
that is adapted to a fleet of electric vehicles operating in large urban areas.
We assume that the operation of the fleet is described by the GPS traces that
characterize the actual travel patterns of individual vehicles. In the first phase,
we used a practical procedure to derive from GPS data a suitable set of candidate
locations for charging stations, where the outcomes can be controlled by setting
a few parameter values only. In the second phase, vehicles that can be served
by the set of candidate locations are selected. Combining the location decisions
together with the scheduling decisions we formulated the optimisation model.
The model ensures that for a given minimal design there exists a time schedule
that allows for satisfying requirements of all vehicles selected in the second phase.
The limits of the proposed approach were tested by applying it to the real-world
data that characterize the driving behaviour of a large taxicab fleet operating in
the region of Stockholm. From numerical experiments we derived the following
main conclusions:

– Our results indicate that this approach can be used to estimate the minimal
requirements to set up the charging infrastructure. The proposed method is
able to handle relatively large instances of problems independently on the
scenario. All problems were solved on a personal computer in less than one
day.

– Charging points are typically located at parking lots in the vicinity of air-
ports, railways stations and other public spaces, which seem to be natural
locations for them. Results show intuitive locations for charging stations and
it seems to be better to use less complicated approach, however we weanted
to include also capacity constraints for charging stations into the model what
was allowed under the scheduling approach in the model.
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– When comparing the results across selected scenarios we find similar numbers
of located stations in Weeks 1, 2 and 4 and slightly smaller number of charging
points in Week 3, which is the most quiet week.

– We did not limit the number of charging stations by adding a special con-
straint to the mathematical model. Hence, the number of charging stations
was limited only by the set of candidate locations |I|. From the solutions
we can see that if |I| is large enough, the optimization model has the ten-
dency to select the large set of charging stations with only few charging points
more frequently than locating only few charging stations with many charging
points. Such design can be also favourable for the electricity network as the
stations will not load the network largely at few locations, but the load is
spatially more distributed.

– Numerical experiments focused on the evaluation of the role of available infor-
mation, when drivers choose a charging point, revealed that available infor-
mation and cooperative behaviour of drivers have significant impact on the
number of vehicles that the charging infrastructure is able to serve. Thus, our
results suggest that methods being able to estimate well the future demand
(e.g., time when vehicle drivers will free a charging point, arrival times of
vehicles to the charging stations) and tools and technologies that can sup-
port organisation of the charging process together with incentive schemes
facilitating cooperation between users have a potential to increase utilization
and thus can lower investments into the charging infrastructure.
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29. Koháni, M., Czimmermann, P., Váňa, M., Cebecauer, M., Buzna, L.: Designing
charging infrastructure for a fleet of electric vehicles operating in large urban areas.
In: Proceedings of the 6th International Conference on Operations Research and
Enterprise Systems, ICORES, vol. 1, pp. 360–368 (2017)

30. Chau, C.-K., Elbassioni, K., Tseng, Ch.-M.: Fuel minimization of plug-in hybrid
electric vehicles by optimizing drive mode selection. In: Proceedings of e-Energy
2016, pp. 13:1–13:11 (2016)

31. Rahmani, M., Koutsopoulos, H.N.: Path inference from sparse floating car data for
urban networks. Transp. Res. Part C Emerg. Technol. 30, 41–54 (2013)

32. Czimmermann, P., Buzna, L., Kohani, M.: Network flows as a tool for solving
location-scheduling problem to optimize charging infrastructure for electric vehi-
cles. In: Proceedings of APLIMAT 2018, pp. 280–289 (2018)



Approximate Dominance for Many-Objective
Genetic Programming

Ayman Elkasaby(&), Akram Salah, and Ehab Elfeky

Faculty of Computers and Information, Cairo University, Cairo, Egypt
ayman.kasaby@gmail.com,

{akram.salah,e.elfeky}@fci-cu.edu.eg

Abstract. In recent years, many-objective optimization has become a popular
research topic, after it was noted that algorithms that excelled in solving
problems with two objectives were not suitable for problems with more than
three objectives. In these more difficult problems, selection pressure towards the
Pareto front deteriorates, leading to most solutions becoming non-dominated to
each other, which makes selection very difficult. To overcome this, approximate
measures, for example epsilon-dominance, relax the competition criteria
between solutions and make it easier to eliminate worse solutions that would
otherwise be non-dominated. In this paper, epsilon dominance is combined with
genetic programming to solve a many-objective optimization problem for the
first time. Results show that this combination is promising.

Keywords: Genetic programming � Multiobjective optimization
Epsilon � Dominance � Evolutionary algorithms

1 Introduction

Evolutionary algorithms are efficient in solving specific optimization problems with a
limited number (*2) of objectives, but it was noted that their accuracy worsens and
they become increasingly slower when more objectives need to be optimized simul-
taneously. This led to a different set of problems, called many-objective optimization
problems, which usually have a large number of objectives (more than 3). There is
much demand for good algorithms for these problems, partly because most real life
(especially industrial) problems are considered to have many conflicting objectives.
The complexity and large costs of solving them are also additional reasons for the
demand making it an active area of research.

To show the complexity of many-objective optimization problems, let’s consider
the simplest 2-objective problem [1]. For each point in the space of solutions, 4 regions
can be defined as follows.

1. Region ‘S’ that contains solutions that are better than the point in question.
2. Region ‘I’ that contains solutions that are worse than the point in question.
3. Two regions where solutions are incomparable to each other at that point.

In order to generalize for many-objective problems, for a k-objective problem, there
is a region ‘S’ with better solutions, a region ‘I’ with worse solutions, and 2k − 2
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regions containing incomparable solutions. Additionally, assuming no bias towards any
region, the probability of a solution falling into any of these regions is proportional to
the volume of this region divided by the volume of the entire solution set. As the
number of objectives increases, the number of regions increases, and the probability
that a solution will fall into region ‘S’ is reduced significantly.

Many-objective optimization problems with a large number of objectives have a
large number of regions with incomparable solutions, which means that, although they
are apparently similar to problems with fewer objectives, they can’t be solved effi-
ciently using the same methods used for fewer objectives. They are computationally
more intensive, and visualizing their solutions becomes harder as more objectives are
added. To avoid the complexity of solving these problems exactly, some approximate
measures are used to obtain good-enough results of the problem. Epsilon dominance,
notated as ε-dominance from now on, is one of these approximate measures [2].

Solutions for many-objective optimization problems are usually not optimal solu-
tions; they are good-enough solutions. This is due to the time restrictions imposed.
Also, these solutions have to guarantee a degree of diversity within the solutions, to
give various options for each objective to the decision maker.

In this paper, genetic programming, a flexible and powerful type of evolutionary
algorithms that can generate programs that solve problems, is used in order to solve
optimization problems approximately using ε-dominance. This method, called ε-GP,
was first introduced in an earlier paper [3]. In the following sections, ε-GP is explained
in more detail and then used to solve an optimization problem with 4 objectives (many-
objective) instead of the 2-objective (multi-objective) problem used in the aforemen-
tioned paper. Genetic programming was also combined with two other popular algo-
rithms to compare their performance with that of ε-GP. Genetic programming, up to our
knowledge, has not been used before to solve many-objective optimization problems
with an approximate measure. However, genetic programming has been recently used
to solve many-objective optimization problems without approximate measures [4].

The paper is structured as follows. Section 2 starts the paper by giving an outline of
related work in the field of evolutionary algorithms. Afterwards, in Sect. 3, some
background information is given about optimization and ε-dominance. ε-GP is intro-
duced in Sect. 4, while Sect. 5 deals with the experimentation and the method’s results.
Finally, Sect. 6 concludes the paper and lays down future work.

2 Related Work

Evolutionary algorithms (EAs) historically have been very successful in solving multi-
objective optimization problems with fewer number of objectives. The need was clear
though for better algorithms for problems with more objectives after Khare et al. [5]
showed that 3 popular EAs (NSGA-II [6], SPEA2 [7], and PESA [8]) clearly had
vulnerability in solving problems with more objectives.

According to a survey done by [9], which tracked the number of publications, until
2007, in correlation with the number of objectives in the problem that need to be
optimized, problems with 2 objectives were usually considered to be the main research
target, with 3- and 4-objective problems trailing. Problems with more than 4 objectives
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had very few publications, and problems with more than 10 objectives were practically
nonexistent in the literature.

However, in the last decade, the number of papers tackling many-objective opti-
mization problems increased, as shown in Table 1 [10], which shows the number of
papers in major conferences and journals tackling problems with at least 4 objectives.

Many-objective optimization algorithms, created in the last decade, introduced
different ideas to overcome the obstacles of problems with more objectives. Some
recent popular algorithms for many-objective optimization include Nondominated
Sorting Genetic Algorithm III (NSGA-III) [11], which is the latest iteration of the
popular NSGA algorithm; Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [12]; IBEA, the Indicator-Based Evolutionary Algorithm [13]; and
Two_Arch2 [14], which uses two different storage archives: one for diversity and
another for convergence.

3 Optimization

Solving optimization problems is done by choosing a best element, or elements, from
the set of feasible alternatives. The solution is to maximize or minimize the value of the
objective function(s) mentioned in the problem statement, by varying the input values
that are fed into the objective function and choosing the best values. Many of these
problems however exist in a setting that can’t be expressed using a single function, as
different objectives are usually not measured using the same metrics [3].

A multi-objective optimization problem is thus defined as simultaneously
optimizing

FðxÞ ¼minðf1ðxÞ; . . .; fkðxÞÞ;
subject to x 2 X

ð1Þ

by changing n decision variables, subject to some constraints that define the universe X.

Table 1. Number of papers focusing on many-objective optimization. (Source [3]).

Year 2007 2008 2009 2010 2011 2012 2013

CEC 17 11 13 14 9 15 16
GECCO 3 3 8 6 8 4 19
EMO 9 – 8 – 9 – 13
PPSN – 6 – 7 – 2 –

TEC 3 2 4 4 3 3 4
ECJ 2 1 5 1 1 2 1
AIJ 0 0 0 0 1 0 2
Total 34 23 38 32 31 26 54
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In other words, a multi-objective optimization solution optimizes the components
of a scalar FðxÞ where x is an n-dimensional decision variable vector x ¼ ðx1; . . .; xnÞ
from some universe X. Thus, the problem consists of k objectives reflected in the k
objective functions, a number of constraints on the objective functions reflected on the
feasible set of decision vectors X, and n decision variables. For an optimization
problem to become a many-objective optimization problem, k has to � 4.

In the case of optimizing multiple objectives, it may be impossible to find a single
solution that optimizes all of the objectives at the same time. This gives rise to the
definition of nondominated solutions (also called Pareto-optimal solutions). One
solution dominates another if it is strictly better than the other in at least one objective,
and not worse than the other in any objective. A solution is nondominated in some set
of alternatives if no other alternative in the set dominates it. Visualizing the set of all
the Pareto-optimal objective vectors gives what we call the Pareto front. Since these
solutions are nondominated, no one solution exists that can be said to be better than the
other; all of them are presented to the decision maker as a set of solutions called the
Pareto set.

The primary goal of a multi-objective optimizer is to present nondominated solu-
tions, while maintaining the following properties.

– A true Pareto set: the optimizer should present solutions that are as near to the ‘true’
Pareto front as possible.

– Diverse solutions: the optimizer should present a diverse set. However, diversity
isn’t an objective in the traditional sense, because it applies more to populations
visited during search, not final solutions.

– Few solutions: the optimizer shouldn’t overwhelm the decision maker with too
many solutions to choose from; it should select the best few.

In the literature, previous work on multi-objective optimization rarely presented
optimizers that present solutions that conform to all three properties [15].

3.1 ε-Dominance

Elitist EA optimizers (most multi-objective optimization algorithms introduced in the
last two decades are elitist) usually sacrifice either returning diverse solutions or better
solutions, or risk becoming very slow. Diversity preservation always looks toward
empty regions that can have different solutions, and algorithms focusing solely on
better solutions using dominance comparisons leave distribution unsolved and can fall
into local minima. Algorithms insisting on both diversity and convergence to the Pareto
front face Pareto sets of substantial sizes, need huge computation time rendering them
unpractical, and are forced to present a large number of solutions to the decision maker
which makes them useless until further analysis.

The concept of ε-dominance, introduced by Laumanns et al. [2], tries to solve the
aforementioned problems by introducing solutions that are good enough, diverse, and
few in number. ε-dominance approximates domination in the Pareto set by relaxing the
strict regular definitions of dominance. ε-dominance divides the solution space into
hyperboxes of size ε, and allows only one solution in each hyperbox. Typically,
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this solution is the one dominating other solutions in this hyperbox. If multiple solu-
tions are nondominated to each other, the solution closest to the lower-left side is
chosen (in a minimization problem), which means that an individual can ε-dominate
other individuals that would’ve been regularly incomparable to it. Domination is then
checked between the representative solutions in each hyperbox, and the resulting
nondominated hyperboxes are considered to be the best results of the run. The division
of the solution space into hyperboxes is shown in Fig. 1.

Fig. 1. The division of hyperboxes in ε-dominance. The dark circles are the ε-nondominated
solutions in each hyperbox.

Fig. 2. The difference between (a) regular dominance. (b) ε-dominance. (Source [3]).
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In Fig. 2 [2], a visual comparison between ε-dominance and regular dominance is
shown. It makes the differences between regular and epsilon dominance clear. Regular
dominance is shown to have very specific and strict rules for defining dominance
between two points, while ε-dominance relaxes dominance definitions by dividing the
solution space into hyperboxes. This results in less competition between points, which
makes it quicker, although it could sometimes be less accurate if the value of ε is
inappropriate or if the decision maker seeks more variable solutions.

3.2 More Objectives

When a problem has more than 3 objectives, it is usually considered a many-objective
optimization problem, as opposed to a multi-objective optimization problem (3 or less
objectives). Industrial problems usually have many objectives and are the main target
of many-objective optimization. Some difficulties of solving problems with more
objectives are:

1. Visualization of a Pareto-optimal frontier that is more than three-dimensional is
difficult.

2. If the dimensionality of the objective space increases, the dimensionality of the
Pareto front increases, and also there will be a greater proportion of nondominated
solutions in the population as explained previously.

3. Due to (2), an exponential number of points will be needed to represent the Pareto-
optimal front. If N points are needed to represent a one-dimensional Pareto-optimal
front, and there exist M objectives, then OðNMÞ points will be needed to represent
an M-dimensional Pareto-optimal front.

4. Stagnation of the search process due to the larger number of incomparable
solutions.

5. Large computational cost.

The first point of difficulty, visualization of the Pareto-optimal frontier, has been
handled by some proposed techniques in the literature by mapping objective vectors
into a lower dimensional space [16]. On the other hand, the second and third points of
difficulty can be tackled by adding preference information into the solving algorithms.
Preference information is added so that the algorithms can focus on finding solutions
from specific, more-desired regions of the Pareto front [17].

Our work in this paper tries to circumvent the drawbacks of the 2nd, 3rd, 4th points
by changing the definition of dominance to an approximate one, tolerating a bigger
number of nondominated solutions and a higher-dimensional Pareto front. Lastly, the
constant improvement of computing power in the real world has lessened, to a degree,
the impact of the large computational cost needed for visualization and finding
solutions.

Approximate Dominance for Many-Objective Genetic Programming 175



4 Our Proposed Method (ε-GP)

Our algorithm, ε-GP, uses strongly-typed genetic programming [18], which is based on
genetic programming (GP). GP is a subset of evolutionary algorithms that represents
solutions as programs [19]. This representation differentiates genetic algorithms from
genetic programming. Each solution (program) is judged based on its ability to solve
the problem, using a mathematical function called a fitness function. Each program is
represented using a decision tree. Two basic genetic programs (decision tree) that
resemble the equations 6þ xþ 4ð Þ � 3þ 2ð Þð Þ and x� 20 are shown in Fig. 3. GP
evolves a population of programs by selecting some candidates that score high on the
fitness function and using variation operators on them (mutation, crossover, and
reproduction). New populations are created from these outputs until a specific termi-
nation criterion is met.

The pseudocode of ε-GP is shown in Fig. 4. It consists of the following
components.

1. Representation: individuals are represented as decision trees using terminals and
nonterminals. Strong typing doesn’t restrict variables, constants, arguments for
functions, and values returned from functions to be of the same data type. The data
types need to be specified beforehand though. Additionally, to ensure consistency,
the root node of the tree must return a value of the type specified by the problem
definition and each nonroot node has to return a value of the type required by its
parent node as an argument.

2. Fitness function: this function scores how well the solutions in the population match
expected results.

Fig. 3. Two decision trees, used in genetic programming.
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3. Initialization: there are two main methods to initialize populations: full and grow.
Koza [19] recommended using a ramped half-and-half approach, combining the two
methods equally. The full method requires all paths from the root to any leaf to have
the same length. The grow method doesn’t have this requirement. Using the method
in Fig. 5, each tree is generated recursively. All return values and arguments ensure
consistency and are forced to match the types specified when stating the problem.

Fig. 4. Pseudocode of ε-GP.
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To generate trees of different sizes and shapes, the maximum tree depth is varied
between 2 and max_depth.

4. Selection: the selection of individuals in the population to undergo crossover or
mutation is achieved using a mixture of tournament selection and hyperbox-based ε-
dominance. First, the solution space is divided into hyperboxes of size ε (shown in
Fig. 1), computed by the algorithm in Fig. 6, and from each hyperbox a number of
solutions are randomly selected, and from these solutions the ε-nondominated
solutions are chosen for genetic operations (crossover or mutation) according to the
algorithm outlined in Fig. 4. The use of tournament selection along with hyper-
boxes is aimed to ensure diversity between solutions, representing areas in the
solution space that otherwise wouldn’t be represented.

5. Genetic operators: crossover and mutation are the genetic operators used.
a. Crossover starts by choosing two parents for reproduction. A crossover point is

selected from the first parent randomly, followed by finding a set of all nodes
that can satisfy constraints on return values and values of arguments from the
first crossover point. A second parent is then selected from this set; otherwise, if
no such set exists, either the parent is returned or nothing. Crossover is always
performed between a solution from the current generation population and a
solution from the archive. This guarantees both elitism and diversity

b. Mutation works by randomly selecting a point and replacing it with a new
subtree generated by the algorithm outlined in Fig. 5. If generation of a subtree
with valid data types is impossible, mutation returns the parent or nothing.

Fig. 5. Initialization of trees using ramped half and half.

178 A. Elkasaby et al.



6. Parameters: these include maximum tree depth, maximum initial tree depth, max
mutation tree depth, population size, and termination criteria.

Additionally, the performance of ε-GP, and of any ε-dominance-based EA, depends
on the value of ε, which is either user defined or computed from the number of
solutions required. Bigger ε values mean less competition between solutions, as one
solution ε-dominates a bigger area of other solutions. Although the value of ε doesn’t
have to be constant for each objective, we make it constant across all objectives in our
method for ease of use.

ε-GP incorporates elitism by having two different storage locations for solutions:

– An archive that ensures elitism by keeping the best solutions so far and removing
solutions iff other better solutions are found.

– A population that stores the current generation; this current generation can have
worse solutions than a previous generation after crossover and mutation are fin-
ished. This encourages diversity and keeps us from falling into local minima if, after
some generations, the worse solution’s offspring turn out to be more optimal
solutions.

– Offspring from crossover are embedded into the archive if the criteria of acceptance
(to ε-dominate another solution) are met. They are automatically inserted into the
next generation population as well.

Fig. 6. Checking for ε-dominance between two solutions.
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5 Experimentation

To measure the performance of our algorithm, it was tested on a popular genetic
programming problem: the ant trail problem, with two of its variants: the Santa Fe Trail
problem and the more difficult Los Altos Trail problem [19]. The study used the
MOEA Framework [20]. The set of terminals and nonterminals used for both ant trail
problems can be found at Table 2.

NSGA-II [6] and IBEA [13] are both combined with GP to test our proposed
method against them. This was achieved by adding the solution representation and
evolutionary operators of GP to it. They will be, respectively, referred to from now on
as NSGA-GP and IBEA-GP. Our algorithm was used with values of ε of 0.1 and 0.01.

We solved each test problem 30 times with different random seeds. In all runs, no
more than 250,000 evaluations were allowed to be made. We used a crossover prob-
ability rate of 0.9, with a point mutation rate at 0.01. Population size was set to 1024.
The maximum number of moves an ant can take is 500, and the number of generations
per run is 50.

There are four objectives in our version of the problem. The first is to minimize the
number of moves the ant takes as much as possible. The second is to maximize the
number of captured pieces of food. The third objective is to minimize the amount of
turns an ant takes, making it more efficient. This means that an ant that moves in a

Table 3. IGD results.

IGD NSGA-GP IBEA-GP ε = 0.1 ε = 0.01

Santa Fe Min 0.03514 0.16 0.009359 0.015
Median 0.074297 0.19498 0.0246738 0.027
Max 0.164658 0.3372 0.065229 0.1055

Los Altos Min 0.0227 0.189 0.01116 0.019
Median 0.1617 0.236 0.0484 0.04338
Max 0.20629 0.42 0.11746 0.11356

Table 2. Terminals and nonterminals in the ant trail problem.

Terminals Nonterminals

TurnLeft() If-Else-then
TurnRight() Sequence (two subtrees to run in sequence)
MoveForward() Default logic (and; or; not; ¼ ? [ ; \; � ; � )
IsFoodAhead() Arithmetic (þ ;�;�;�;%, ^, √, log x)
Mathematical constants (�1; 0; 1; etc:) Trigonometric functions (sinx; cosx; tanx)
p �ve sign

ex
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straight line is better than one that turns multiple times. The last objective is to max-
imize the weight; each food piece has a fixed weight, so we maximize weight by
encouraging collecting higher-weight food pieces.

The ant can be visualized as a robot in a room, trying to collect all the inventory it
can find, with moves and turns consuming power that we try to minimize. The
inventory in the room are of different weights as well, with larger weights preferred.

To investigate performance, we choose the Inverted Generational Distance
(IGD) [21] as the main performance measure. IGD measures how far away the result is
from the Pareto optimal set. If IGD equals zero, that would mean that the result lies on
the Pareto front and covers all of it. This means that a smaller IGD value is better.

In Table 3, the values of the IGD metric are shown for NSGA-GP, IBEA-GP, and
our algorithm, ε-GP, with values of ε of 0.1 and 0.01. The results shown are over all 30
runs, and the best results for each metric are shown in bold. They show that our
algorithm, ε-GP, has better performance with lower IGD values. ε-GP overall reaches
Pareto sets that are closer to the Pareto front than either of the other algorithms.

In both the Santa Fe and Los Altos problems, the minimum, maximum, and median
IGD values are significantly better for our algorithm using both ε values of 0.1 and
0.01. In fact, the median IGD value is an order of magnitude better for ε-GP with
ε = 0.01 than both NSGA-GP and IBEA-GP in the more difficult Los Altos problem.
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Fig. 7. The set of nondominated solutions resulting from a run of ε-GP with ε = 0.01.
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Fig. 8. The set of nondominated solutions resulting from a run of ε-GP with ε = 0.1.
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Fig. 9. The set of nondominated solutions resulting from a run of NSGA-GP.
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In Figs. 7, 8 and 9, the nondominated resulting front for the Santa Fe Trail problem
from a representative run for ε-GP, with ε values of 0.1 and 0.01, and NSGA-GP are
presented, to show the edge our algorithm presents with regards to presenting diverse
and accurate solutions. It is clear from comparing the abovementioned figures that ε-GP
presents more diverse Pareto sets, both in number and in values in comparison to
NSGA-GP. IBEA-GP wasn’t presented in a figure as it only presents one (and rarely
two) solution each run, which isn’t optimal for decision makers that seek diverse trade-
off solutions. However, the solution it presents is usually of acceptable quality, opti-
mizing all objectives as much as possible.

An additional advantage of ε-GP is its quick runtime. The runtime of IBEA-GP in
comparison is an order of magnitude slower than ε-GP, which is a huge drawback.
IBEA-GP usually took an average of *13 min for each run, versus an average runtime
of less than 30 s for ε-GP with either ε values. NSGA-GP keeps its relatively quick
runtime in our runs. It averaged *38 s per run. The above runtimes are for the Santa
Fe trail problem.

On the other hand, for the Los Altos trail, the runtimes of IBEA-GP and NSGA-GP
were similar, while for ε-GP it increased to about *37 s per run, which is still sig-
nificantly better than IBEA-GP and equal to NSGA-GP.
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Fig. 10. The set of nondominated solutions for the Los Altos problem from all algorithms.
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In Fig. 10, the Pareto set of each algorithm is shown for a sample run. NSGA-GP
results in the last three solutions, IBEA-GP in the two solutions preceding those, while
ε-GP is responsible for the rest of the solutions. The first 10 solutions are for an ε value
of 0.01, while the following 13 solutions are for an ε value of 0.1. Once again, the
resulting Pareto set is better in both diversity and convergence for ε-GP than either of
the other algorithms, which serves its purpose of delivering a diverse set of trade-off
solutions for a decision maker. IBEA-GP results in only two solutions in its run,
although they score well in all objectives. NSGA-GP results in three weak solutions,
especially for the objectives to be maximized.

6 Conclusions and Future Work

The results show that ε-GP is a promising algorithm that can simultaneously optimize
more than one objective, with the algorithm guaranteeing competitive results in all
objectives. The results are a good starting point as genetic programming, up to our
knowledge, has never been used to solve a many-objective optimization problem
alongside an approximate measure.

As problems increase in difficulty, the tolerance of a high ε value starts to decrease
and problems can take longer times to find high-quality solutions and can face a
possibility of falling into local minima due to the discarding of many solutions.
Therefore, choosing the value of ε is very important.

Furthermore, future work includes the following:

– since the value of ε is important for the method to produce significant results, a
prioritized variable ε value for each objective can make the method better, which
calls for an algorithm that can dynamically choose different ε values for the
objectives to optimize better;

– dominance can be changed to mean that a solution dominates another if it is better
in more objectives, even if it is worse in other objectives [22]. This can possibly
speed up the process of getting a Pareto set by dramatically decreasing the com-
petition between solutions, resulting in the acceptance of good-enough solutions
that were discarded previously that could’ve been useful to the decision maker;

– A more detailed study with more test-set problems is needed to further prove that ε-
GP is an efficient many-objective optimizer.
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Abstract. In this paper, we propose a novel allocation strategy based
on possibilistic rewards for the multi-armed bandit problem. First, we
use possibilistic reward distributions to model the uncertainty about the
expected rewards from the arms, derived from a set of infinite confidence
intervals nested around the expected value. They are then converted
into probability distributions using a pignistic probability transforma-
tion. Finally, a simulation experiment is carried out to find out the one
with the highest expected reward, which is then pulled. A parametric
probability transformation of the proposed is then introduced together
with a dynamic optimization. A numerical study proves that the pro-
posed method outperforms other policies in the literature in five sce-
narios accounting for Bernoulli, Poisson and exponential distributions
for the rewards. The regret analysis of the proposed methods suggests a
logarithmic asymptotic convergence for the original possibilistic reward
method, whereas a polynomial regret could be associated with the para-
metric extension and the dynamic optimization.

1 Introduction

The multi-armed bandit problem has been at great depth studied in statistics [8],
becoming fundamental in different areas of economics, statistics or artificial intel-
ligence, such as reinforcement learning [26] and evolutionary programming [18].

The name bandit comes from imagining a gambler playing with K slot
machines. The gambler can pull the arm of any of the machines, which pro-
duces a reward payoff. Since the reward distributions are initially unknown, the
gambler must use exploratory actions to learn the utility of the individual arms.
However, exploration has to be controlled since excessive exploration may lead
to unnecessary losses. Thus, the gambler must carefully balance exploration and
exploitation.
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In its most basic formulation, a K-armed bandit problem is defined by ran-
dom variables Xi,n for 1 ≤ i ≤ K and n ≥ 1, where each i is the index of
an arm of a bandit. Successive plays of arm i yield rewards Xi,1,Xi,2, ... which
are independent and identically distributed according to an unknown law with
unknown expectation μi. Independence also holds for rewards across arms; i.e.,
Xi,s and Xj,t are independent (and usually not identically distributed) for each
1 ≤ i < j ≤ K and each s, t ≥ 1.

A gambler learning the distributions of the arms’ rewards can use all past
information to decide about his next action. An allocation strategy, A is then an
algorithm that chooses the next arm to play based on the sequence of previous
plays and obtained rewards.

The goal is to maximize the sum of the rewards received, or equivalently, to
minimize the regret, which is defined as the loss compared to the total reward
that can be achieved given full knowledge of the problem. The regret of A after
n plays can be computed as

μ∗n −
K∑

i=1

μiE[ni], where μ∗ = max
1≤i≤K

{μi}, (1)

where E[·] denotes expectation and ni be the number of times arm i has been
played by A during the first n plays.

In this paper, we describe two allocation strategies, the possibilistic reward
(PR) method and a dynamic extension (DPR), in which the uncertainty about
the arm expected rewards are first modelled by means of possibilistic reward
distributions. Then, a pignistic probability transformation from decision theory
and transferable belief model is used to convert these possibilistic functions into
probability distributions following the insufficient reason principle. Finally, a
simulation experiment is carried out by sampling from each arm according to
the corresponding probability distribution to identify the arm with the higher
expected reward and play that arm.

This paper is an extension of [24], where the possibilistic reward method
and its extensions were introduced together with a numerical study. However,
a regret analysis was not carried out. This regret analysis constitutes the main
contribution of this paper.

The paper is structured as follows. In Sect. 2 we briefly review the alloca-
tion strategies in the literature. In Sect. 3, we describe the possibilistic reward
method and its dynamic extension. A numeric study is carried out in Sect. 4
to compare the performance of the proposed policies against the best ones in
the literature on the basis of five scenarios for reward distributions. Section 5
reports a regret analysis for the proposed policies. Finally, some conclusions are
provided in Sect. 6.
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2 Allocation Strategy Review

As pointed out in [14], two families of bandit settings can be distinguished. In
the first, the distribution of Xit is assumed to belong to a family of probability
distributions {pθ, θ ∈ Θi}, whereas in the second, the rewards are only assumed
to be bounded (say, between 0 and 1), and policies rely directly on the estimates
of the expected rewards for each arm.

Almost all the policies or allocation strategies in the literature focus on the
first family and they can be separated, as cited in [20], in two distinct approaches:
the frequentist view and the Bayesian approach, see Fig. 1. In the frequentist
view, the expected mean rewards corresponding to all arms are considered as
unknown deterministic quantities and the aim of the algorithm is to reach the
best parameter-dependent performance.

Fig. 1. Review of allocation strategies.

In the Bayesian approach, each arm is characterized by a parameter that is
endowed with a prior distribution, and the Bayesian performance is then defined
as the average performance over all possible problem instances weighted by the
prior distribution of the parameters.

2.1 Frequentist View

Lai and Robbins [21] first constructed a theoretical framework for determining
optimal policies. For specific families of reward distributions (indexed by a single
real parameter), they found that the optimal arm is played exponentially more
often than any other arm, at least asymptotically. They also proved that this
regret is the best one.

These policies work by associating a quantity called upper confidence index
to each arm. This index is generally hard to compute. In fact, it relies on the
entire sequence of rewards obtained so far from a given arm. Once the index for
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each arm has been computed, it is used by the policy as an estimate for the cor-
responding reward expectation, according to which the arm with the currently
highest index is selected for the next round of play. Burnetas and Katehakis [9]
proposed an extension to multiparameter or non-parametric models that facili-
tated the computation of the upper confidence index.

Later, [1] introduced a generic class of index policies termed upper confidence
bounds (UCB), where the index can be expressed as simple function of the total
reward obtained so far from the arm. These policies are thus much easier to
compute than Lai and Robbins’, yet their regret retains the optimal logarithmic
behavior.

From then, different policies based on UCB can be found in the literature.
First, Auer et al. [4] strengthen previous results by showing simple to imple-
ment and computationally efficient policies (UCB1, UCB2 and UCB-Tuned) that
achieve logarithmic regret uniformly over time, rather than only asymptotically.

Specifically, policy UCB1 is derived from the index-based policy of [1]. The
index of this policy is the sum of two terms. The first term is simply the current
average reward, x̄i, whereas the second is related to the size of the one-sided con-
fidence interval for the average reward within which the true expected reward has
an overwhelming probability of falling, i.e. we must play arm i that maximizes

x̄i +
√

2 ln n

ni
, (2)

where n is the current number of rounds of play so far and ni is the number of
times arm i has been played so far.

In UCB2, the plays are divided in epochs. In each new epoch an arm i is
picked and then played τ(ri+1)−τ(ri) times, where τ is an exponential function
and ri is the number of epochs played by that arm so far. The machine picked
in each new epoch is the one maximizing x̄i + an,ri

, where

an,ri
=

√
(1 + α) ln(en/τ(ri))

2τ(ri)
, (3)

τ(ri) = �(1 + α)ri� and α is a parameter.
In the same paper, UCB1 was extended for the case of normally distributed

rewards, which achieves logarithmic regret uniformly over n without knowing
means and variances of the reward distributions. A different higher bound for the
expected regret after any number n of rounds of play was derived for the above
policies. Finally, UCB1-Tuned was proposed to more finely tune the expected
regret bound for UCB1.

The empirical behavior of the above policies was compared with the so-called
εn-greedy rule [26] on Bernoulli reward distributions with different parameters.
They conclude that an optimally tuned εn-greedy rule almost always performs
best. However, UCB1-Tuned performs comparably, and UCB2 performs similarly
to, but always slightly worse than UCB1-Tuned.
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Later, Audibert et al. [3] proposed the UCB-V policy, which is also based on
upper confidence bounds but taking into account the variance of the different
arms. It uses an empirical version of the Bernstein bound to obtain refined
upper confidence bounds. They proved that the regret concentrates only at a
polynomial rate in UCB-V and that it outperformed UCB1.

In [5] the UCB method of Auer et al. [4] was modified, leading to the
improved-UCB method. An improved bound on the regret with respect to the
optimal reward was also given. UCB confidence intervals are shorter than for the
original method, in particular for arms with high estimated rewards. Besides,
arms that perform badly are eliminated.

An improved UCB1 algorithm, termed minimax optimal strategy in the
stochastic case (MOSS), was proposed by Audibert and Bubeck [2], which
achieved the distribution-free optimal rate while still having a distribution-
dependent rate logarithmic in the number of plays. The key idea was to reduce
the exploration of sufficiently pulled arms, using

x̄i +

√
max{log( n

Kni
), 0}

ni
, (4)

instead of Eq. (2).
Thus, an arm that has been pulled more than n/K times has an index equal

to the empirical mean of the rewards obtained from the arm. However, when it
has been pulled close to n/K times, the logarithmic term is much smaller than
reducing the exploration of this already much pulled arm.

Another class of policies under the frequentist perspective are the Kullback-
Leibler (KL)-based algorithms, including DMED, Kinf , KL-UCB and kl-UCB.

The deterministic minimum empirical divergence (DMED) policy was pro-
posed by Honda and Takemura [19] motivated by a Bayesian viewpoint for the
problem (although a Bayesian framework is not used for theoretical analyses).
This algorithm, which maintains a list of arms that are close enough to the best
one (and which thus must be played), is inspired by large deviations ideas and
relies on the availability of the rate function associated to the reward distribu-
tion. Note that DMED is also referred to as DMED+ in the literature.

In [23], the Kinf -based algorithm was analyzed by Maillard et al. It is inspired
by the ones studied in [9,21], taking also into account the full empirical distribu-
tion of the observed rewards. The analysis accounted for Bernoulli distributions
over the arms and less explicit but finite-time bounds were obtained in the case
of finitely supported distributions (whose supports do not need to be known
in advance). These results improve on DMED, since finite-time bounds (imply-
ing their asymptotic results) are obtained, UCB1, UCB1-Tuned, and UCB-V.
Note that DMED considers non-parametric distributions on [0,1] with the opti-
mal bound, whereas Maillard et al. [23] derives the finite-time bound for finite-
parametric models.

Later, the KL-UCB algorithm and its variant KL-UCB+ were introduced by
Garivier and Cappé [14]. KL-UCB satisfied a uniformly better regret bound than
UCB and its variants for arbitrary bounded rewards, whereas it reached the lower
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bound of Lai and Robbins when Bernoulli rewards are considered. Besides, simple
adaptations of the KL-UCB algorithm were also optimal for rewards generated
from exponential families of distributions. Furthermore, a large-scale numerical
study comparing KL-UCB with UCB, MOSS, UCB-Tuned, UCB-V, DMED was
performed, showing that KL-UCB was remarkably efficient and stable, including
for short time horizons.

New algorithms were proposed by Cappé et al. [10] based on upper confi-
dence bounds of the arm rewards computed using different divergence functions.
The kl-UCB uses the Kullback-Leibler divergence; whereas the kl-poisson-UCB
and the kl-exp-UCB account for families of Poisson and Exponential distribu-
tions, respectively. A unified finite-time analysis of the regret of these algorithms
shows that they asymptotically match the lower bounds of Lai and Robbins, and
Burnetas and Katehakis. Moreover, they provide significant improvements over
the state-of-the-art when used with general bounded rewards.

The best empirical sampled average (BESA) algorithm was proposed by
Baransi et al. [6]. It is not based on the computation of an empirical confi-
dence bounds, nor can it be classified as a KL-based algorithm. BESA is fully
non-parametric. As shown in [6], BESA outperforms TS (a Bayesian approach
introduced in the next section) and KL-UCB in several scenarios with differ-
ent types of reward distributions. Moreover, BESA stands out for its flexibility,
since the same implementation can be used for any type of reward distributions,
whereas TS or KL-UCB implementations differ according to the distribution
under consideration.

Note that although they have been tested for different distributions regarding
arm rewards, UCB methods and some of their variants, together with BESA,
only need the rewards to be bounded in an interval.

2.2 Bayesian Approach

Stochastic bandit problems have been analyzed from a Bayesian perspective,
i.e. the parameter is drawn from a prior distribution instead of considering a
deterministic unknown quantity. The Bayesian performance is then defined as
the average performance over all possible problem instances weighted by the
prior on the parameters.

The origin of this perspective is in the work by Gittins [15]. Gittins’ index based
policies are a family of Bayesian-optimal policies based on indices that fully char-
acterize each arm given the current history of the game, and at each time step the
arm with the highest index will be pulled. However, Gittins indices were limited to
a specific set of distributions and with high associated computational costs.

Later, Gittins proposed the Bayes-optimal approach [16] that directly maxi-
mizes expected cumulative rewards with respect to a given prior distribution.

A lesser known family of algorithms to solve bandit problems is the so-called
probability matching or Thompson sampling (TS). The idea of TS is to randomly
draw each arm according to its probability of being optimal. The algorithm
assumes that arm distributions belong to a parametric family of distributions
P = {p(.|θ), θ ∈ Θ}, where Θ ⊆ R. It starts by putting a prior distribution on
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each one of the arm parameters, and a posterior distribution is maintained at
each time step according to the rewards observed so far.

In contrast to Gittins’ index, TS can often be efficiently implemented. Some
empirical results are reported in [11], both for simulated and real-world problems.
Despite its simplicity, TS achieved state-of-the-art results, and in some cases
significantly outperformed other alternatives, like UCB methods.

However, the results of experiments carried out in [22] suggest that a particu-
lar version of the Gittins index strategy is an improvement on existing algorithms
with finite-time regret guarantees such as UCB and Thompson sampling.

Finally, Bayes-UCB was proposed by Kaufmann et al. [20] inspired by the
Bayesian interpretation of the problem but retaining the simplicity of UCB-
like algorithms. It constitutes a unifying framework for several UCB variants
addressing different bandit problems (parametric multi-armed bandits, Gaus-
sian bandits with unknown mean and variance, linear bandits). Moreover, its
generality makes Bayes-UCB suitable for addressing more challenging models.

3 Possibilistic Reward Method

The allocation strategy we propose accounts for the frequentist view but they
cannot be classified as either a UCB method nor a Kullback-Leibler (KL)-based
algorithm. The basic idea is as follows: the uncertainty about the arm expected
rewards are first modelled by means of possibilistic reward distributions derived
from a set of infinite nested confidence intervals around the expected value on
the basis of Chernoff-Hoeffding inequality. Then, we follow the pignistic prob-
ability transformation from decision theory and transferable belief model [25],
that establishes that when we have a plausibility function, such as a possibil-
ity function, and any further information in order to make a decision, we can
convert this function into an probability distribution following the insufficient
reason principle.

Once we have a probability distribution for the reward in each arm, then
a simulation experiment is carried out by sampling from each arm according
to their probability distributions to find out the one with the highest expected
reward higher. Finally, the picked arm is played and a real reward is output.

We shall first introduce the algorithm for rewards bounded between [0,1] in the
real line for simplicity and then, we will extend it for any real interval. The starting
point of the method we propose is Chernoff-Hoeffding inequality [17], which pro-
vides an upper bound on the probability that the sum of random variables deviates
from its expected value, which for [0,1] bounded rewards leads to:

P
(∣∣ 1

n

∑n
t=1 Xt − E[X]

∣∣ > ε
) ≤ 2e−2nε2 ⇒

P
(∣∣ 1

n

∑n
t=1 Xt − E[X]

∣∣ ≤ ε
) ≥ 1 − 2e−2nε2 ⇒

P
(
E[X] ∈ [

1
n

∑n
t=1 Xt − ε, 1

n

∑n
t=1 Xt + ε

]) ≥ 1 − 2e−2nε2 .

It can be used for building an infinite set of nested confidence intervals,
where the confidence level of the expected reward (E[X]) in the interval I =
[ 1n

∑n
t=1 Xt − ε, 1

n

∑n
t=1 Xt + ε] is 1 − 2e−2nε2 .
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Note that other inequalities than the Chernoff-Hoeffding inequality could be
derived to build an infinite set of nested confidence intervals and possibilistic
reward methods with different features. For instance, an alternative Hoeffding’s
extension of the Chernoff bound or its combination with the Bernstein bound
[7] could be considered.

Besides, a fuzzy function representing a possibilistic distribution
can be implemented from nested confidence intervals [12]: π(x) =
sup {1 − P (I), x ∈ I} .

Consequently, in our approach for confidence intervals based on Hoeffd-
ing inequality, the sup of each x will be the bound of minimum interval
around the mean ( 1

n

∑n
t=1 Xt) where x is included. That is, the interval with

ε =
∣∣ 1
n

∑n
t=1 Xt − x

∣∣.
If we consider μ̂n = 1

n

∑n
t=1 Xt, for simplicity, then we have:

π(x) =
{

min{1, 2e−2ni×(μ̂n−x)2}, if 0 ≤ x ≤ 1
0, otherwise

.

Note that π(x) is truncated in [0, 1] both in the x axis, due to the bounded
rewards, and the y axis, since a possibility measure cannot be greater than 1.
Figure 2 shows several examples of possibilistic rewards distributions.

Fig. 2. Possibilistic rewards distributions [24]. (Color figure online)
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3.1 A Pignistic Probability Transformation

Once the arm expected rewards are modelled by means of possibilistic functions,
next step consists of picking the arm to pull on the basis of that uncertainty. For
this, we follow the pignistic probability transformation from decision theory and
transferable belief model [25], which, in summary, establishes that when we have
a plausibility function, such as a possibility function, and any further information
in order to make a decision, we can convert this function into an probability dis-
tribution following the insufficient reason principle [13], or consider equipossible
the same thing that equiprobable. In our case, it can be performed by dividing
π(x) function by

∫ 1

0
min{1, 1 − e−2ni×(μ̂n−x)2}dx.

However, further information is available in form of restrictions that allow
us to model a better approximation of the probability functions. Since a prob-
ability density function must be continuous and integrable, we have to smooth
the gaps that appear between points close to 0 and 1. Besides, we know that
the probability distribution should be a unimodal distribution around the sam-
pling average μ̂n. Thus, the function must be monotonic strictly increasing in
[0, μ̂n) and monotonic strictly decreasing in (μ̂n, 1]. We propose the following
approximation to incorporate the above restrictions:

1. π(x) is transformed into an intermediate function πr(x) as follows:
(a) Multiply the not truncated original function, 2e−2ni×(μ̂n−x)2 , by 1

2 in
order to reach a maximum value 1.

(b) Fit the resulting function in order to have πr(0) = 0 and πr(1) = 0:

Δlow = e−2ni×(μ̂n)2 , Δup = e−2ni×(μ̂n−1)2 ,

πr(x) =

⎧
⎪⎪⎨

⎪⎪⎩

e−2ni×(μ̂n−x)2−Δlow

1−Δlow
, if x ≤ μ̂n

e−2ni×(μ̂n−x)2−Δup

1−Δup
, if x > μ̂n

0, otherswise

.

Two exceptions have to be considered. When all the rewards of past plays
are 0 or 1, then the transformations to reach πr(0) = 0 or πr(1) = 0 are
not applied, respectively.

2. The pignistic transformation is applied to πr(x) by dividing by
∫ 1

0
πr(x)dx,

leading to the probability distribution

P (x) = πr(x)/C, with C =
∫ 1

0

πr(x)dx.

Figure 3 shows the application of the pignistic probability transformation to
derive a probability distribution (in green) from the π(x) functions (in blue) in
Fig. 2.

The next step is similar to Thompson sampling (TS) [11]. Once we have built
the pignistic probabilities for all the arms, we pick the arm with the highest
expected reward. For this, we carry out a simulation experiment by sampling
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from each arm according to their probability distributions. Finally, the picked
arm is pulled/played and a real reward is output. Then, the possibilistic function
corresponding to the picked arm is updated and started again.

Algorithm 1 synthesizes the allocation strategy.

Algorithm 1. PR.

Data: (T = 20.000; K = no. of arms; ai = arm i, i = {1, ..., K})

for (i = 1 to K)
Build πi(x) for arm ai with 0 trials;
Compute pi(x) from πi(x);

end
Randomly select an arm ai; t = 1;
while t < T do

Play the selected arm ai and get the reward Xit;
Update πi(x) accounting for Xit;
for (i = 1 to K )

Sample ai from its pi(x);
end
Pick the arm with the highest expected reward; t = t + 1;

end

3.2 Parametric Probability Transformation and Dynamic
Optimization

In the previous section, rewards were bound to the interval [0,1] and the most
used possibility-probability transformation according to pignistic or maximal
entropy methods [25] was implemented. Now, we extend rewards to any real
interval [a, b] and interpret the possibility distribution πr(x) as a probability
distribution set that encloses any distribution P (x) such as ∀A = [a, b] → πr(x ∈
A) ≤ P (x ∈ A) ≤ 1−πr(x /∈ A). Consequently, another distribution enclosed by
πr(x) that minimizes the expected regret for any particular reward distribution
could be used.

In order to trade off performance and computational cost issues, we were
able to modify our previous probabilistic-possibilistic transformation to create a
family of probabilities just adding an α parameter as follows:

P (x) = πα(x)/C with C =
∫ b

a

πα(x)dx

and

πα(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e
−2ni×α( μ̂n−x

b−a
)2−Δαlow

1−Δαlow
, if x ≤ μ̂n

e
−2ni×α( μ̂n−x

b−a
)2−Δαup

1−Δαup
, if x > μ̂n

0, otherwise

,
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where

Δαlow
= e−2ni×α( μ̂n

b−a )2 ,Δαup
= e−2ni×α( μ̂n−1

b−a )2 , and α > 1.

By adding parameter α, it is possible to adjust the transformation for any
particular reward distribution to minimize the expected regret. For this, an opti-
mization process for parameter α will be required. We denote this extension of
the PR method as PR-opt.

Alternatively to manually tuning parameter α, we propose modifying the
PR algorithm to dynamically tune it while bearing in mind the minimization of
the expected regret. Thus, the advantage of the new dynamic possibilistic reward
(DPR) is that it requires neither previous knowledge nor a simulation of the arm
distributions. In fact, the reward distributions are not known in the majority of
the cases. Besides, the performance of the DPR against PR and other policies
in terms of expected regrets will be analyzed in the next section.

Several experiments have shown that the scale parameter α is correlated
with the inverse of the variance of the reward distribution shown by the experi-
ment. As such, analogously to Auer et al. [4], for practical purposes we can fix
parameter α as

α = 0.5 × (b − a)2

˜var
, (5)

where ˜var is the sample variance of the rewards seen by the agent and [a, b] the
reward interval.

Fig. 3. Pignistic probability transformation examples [24]. (Color figure online)
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4 Numerical Study

In this section, we show the results of a numerical study in which we have com-
pared the performance of PR and DPR methods against other allocation strate-
gies in the literature. Specifically, we have chosen KL-UCB, DMED+, BESA,
TS and Bayes-UCB, since they are the most recent proposals and they outper-
form other allocation strategies [6,10,11]. Additionally, we have also considered
the UCB1 policy, since it was one of the first proposals in the literature that
accounts for the uncertainty about the expected reward.

We have selected five different scenarios for comparison. For this, we have
reviewed numerical studies in the literature to find out the most difficult
and representative scenarios. An experiment consisting on 50,000 simulations
with 20,000 iterations each was carried out in the five scenarios. The Python
code available at http://mloss.org/software/view/415 was used for simulations,
whereas those policies not implemented in that library have been developed by
the authors, including DMED+, BESA, PR and DPR.

4.1 Scenario 1: Bernoulli Distribution and Very Low Expected
Rewards

This scenario is a simplification of a real situation in on-line marketing and
digital advertising. Specifically, advertising is displayed in banner spaces and
in case the customer clicks on the banner then s/he is redirected to the page
that offers the product. This is considered a success with a prize of value 1.
The success ratios in these campaigns are usually quite low, being about 1%.
For this, ten arms will be used with a Bernoulli distribution and the following
parameters: [0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01].

First, a simulation is carried out to find out the best value for parameter α
to be used in the PR-opt method, see Fig. 4. α = 8 is identified as the best value
and used for this scenario 1. Note that in DPR, no previous knowledge regarding
the scenario is required. Besides, although the best value for parameter α to be
used in the PR-opt method is identified for all the scenarios under consideration,
we also take into account the PR method with α = 1 in all cases.

Now, the 50,000 simulations with 20,000 iterations each are carried out.
Figure 5a shows in a logarithmic scale the evolution of the regret for the six
best allocation strategies under comparison along the 20,000 iterations corre-
sponding to one simulation (using a logarithmic scale), whereas Fig. 6 shows the
multiple violinplot corresponding to regrets throughout the 50,000 simulations.

The first two columns in Table 1 show the mean regrets and standard devia-
tions for the policies. The three with lowest mean regrets are highlighted in bold,
corresponding to DPR, PR-opt and BESA, respectively. The variance is simi-
lar for all the policies under consideration. It is important to note that although
PR-opt slightly outperforms DPR, DPR requires neither previous knowledge nor
a simulation regarding the arm distributions, which makes DPR more suitable
in a real environment.

http://mloss.org/software/view/415
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Fig. 4. Selecting parameter α for PR in scenario 1 [24].

Note that in the above multiple violinplot negative regret values are dis-
played. It could be considered an error at first sight. The explanation is as fol-
lows: the optimum expected reward μ∗ used to compute regrets is the theoretic
value from the distribution, see Eq. (1). For instance, in an arm with Bernoulli
distribution with parameter 0.1, μ∗ after n plays is 0.1×n. However, in the sim-
ulation the number of success if the arm is played n times may be higher than
this amount, overall in the first iterations, leading to negative regret values.

Fig. 5. Analysis of scenario 1.
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4.2 Scenario 2: Bernoulli Distribution and Medium Expected
Rewards

In this scenario, we still consider a Bernoulli distribution but now parameters are
very similar in the 10 arms and close to 0.5. This leads to the greatest variances
in the distributions, where in almost all arms in half of the cases they have a
value 1 and 0 in the other half. Thus, it becomes harder for algorithms to reach
the optimal solution. Moreover, if an intensive search is not carried out along a
sufficient number of iterations, we could easily reach sub-optimal solutions. The
parameters for the 10 arms under consideration are: [0.5, 0.45, 0.45, 0.45, 0.45,
0.45, 0.45, 0.45, 0.45, 0.45].

Table 1. Statistics in scenarios 1, 2 and 3 [24].

Bernoulli (low) Bernoulli (med) Bernoulli (G)

Mean σ Mean σ Mean σ

UCB1 393.7 57.6 490.9 104.9 2029.1 125.9

DMED+ 83.1 46.1 356.8 151.5 889.8 313.2

KL-UCB 130.7 47.9 491.5 104.3 1169.6 233.2

KL-UCB+ 103.3 46.0 349.7 104.7 879.7 254.5

BESA 78.1 53.9 281.6 260.9 768.75 399.2

TS 91.1 45.6 284.2 125.1 - -

Bayes-UCB 115.1 46.6 366.3 104.5 - -

PR (α = 1) 242.1 53.5 283.3 124.6 1937.6 148.5

PR-opt 51.1a 49.2 380.5 426.2 431.0a 383.5

DPR 63.6 49.1 214.6a 185.1 643.0
a points out the lowest values in the corresponding columns.

First, a simulation was carried out again to find out the best value for param-
eter α to be used in the PR-opt method in this scenario and α = 2 was selected.

In Fig. 6a the regrets throughout the 50,000 simulations corresponding to the
different policies are shown by means of a multiple violinplot.

The three allocation strategies with lowest average regrets, highlighted in
bold in the third and fourth columns in Table 1, corresponds to DPR, BESA and
TS, respectively. However, DPR outperforms BESA and TS, whose performances
are very similar but BESA has a higher variability.

It is noteworthy that PR is the fourth best allocation strategy in this scenario,
outperforming Bayes-UCB, KL-UCB, KL-UCB+, DMED+ and UCB1.

4.3 Scenario 3: Bernoulli Distribution and Gaussian Rewards

In this scenario, Bernoulli distributions with very low expected rewards (about
1% success ratios) are again considered but now rewards are not 0 or 1, they are
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Fig. 6. Multiple violinplot in scenarios 2, 3 and 4.
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normally distributed. This scenario has never been considered in the literature
but we consider it interesting for analysis. We can also face this scenario in on-
line marketing and digital advertising. As in scenario 1, advertising is displayed
in banner spaces and in case the customer clicks on the banner then s/he is
redirected to the page that offers the product. However, in this new scenario the
customer may buy more than one product, the number of which is modeled by
a normal distribution.

The success ratios in these campaigns are usually quite low, as in scenario 1,
being about 1%. For this, the ten arms will be used with a Bernoulli distribution
and the following parameters: [0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01,
0.01]. Besides, the same σ = 0.5 is used for the normal distributions, whereas
the following means (μ) are considered: [1, 2, 1, 3, 5, 1, 10, 1, 8, 1]. Moreover,
all rewards are truncated between 0 and 10. Thus, the expected rewards for the
ten arms are [0.1, 0.1, 0.05, 0.15, 0.1, 0.02, 0.2, 0.01, 0.08, 0.01], and the seventh
arm is the one with the highest expected reward.

TS and Bayes-UCB policies are not analyzed in this scenario since both
cannot be applied. α = 70 will be used in the PR-opt method. Figure 6b shows
the multiple violinplot for the regrets throughout the 50,000 simulations, whereas
the mean regrets and the standard deviations are shown in last two columns of
Table 1.

The three policies with lowest mean regrets, highlighted in bold in Table 1,
correspond to PR-opt, DPR and BESA, respectively, the three with a similar
variability. However, PR-opt outperforms DPR and BESA in this scenario.

4.4 Scenario 4: Truncated Poisson Distribution

A truncated in [0,10] Poisson distribution is used in this scenario. It is useful to
model real scenarios where the reward depends on the number of times an event
happens or is performed in a time unit, for instance, the number of followers
that click on the “like” button during two days since it is uploaded. The values
for parameter λ in the Poisson distribution for each arm are: [0.75, 1, 1.25, 1.5,
1.75, 2, 2.25].

The variant kl-poisson-UCB was also considered for analysis, whereas TS
and Bayes-UCB will no longer be considered since both cannot be applied in
this scenario.

First, the selected value for parameter α to be used in the PR-opt method
in this scenario is 12. Figure 6c shows the multiple violinplot for the regrets
throughout the 50,000 simulations, whereas the first two columns in Table 2
show the mean regrets and standard deviations.

One should observe the high variability on the regret values in BESA. Figure 7
shows the violinplot corresponding to BESA. As expected, regret values are
mainly concentrated around 7 values (0, 5000, 10,000, 15,000, 20,000, 25,000,
30,000), with the highest number of regret values around 0, followed by 5000 and
so on. Note that the different of λ values in the 7 arms is 0.25 and 0.25× 20, 000
iterations carried out in each simulation is 5000, which matches up with the
amount incremented in the 7 points the regrets are concentrated around.
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DPR again outperforms the other algorithms on the basis of the mean regrets,
including PR-opt, see Table 2. kl-poisson-UCB Poisson is the only policy whose
results are close to DPR and PR-opt. However, we should take into account that
kl-poisson-UCB is based on the assumption that rewards are known to follow a
Poisson distribution and, consequently, takes advantage of that information.

Besides, the variability in DPR is higher than in all the other policies apart
from BESA.

Finally, we should also stress that PR outperforms BESA, KL-UCB+, KL-
UCB+ and UCB1 in this scenario.

4.5 Scenario 5: Truncated Exponential Distribution

A truncated exponential distribution is selected in this scenario, since it is usu-
ally used to compare allocation strategies in the literature. It is used to model
continuous rewards, and for scales greater than 1 too. Moreover, it is appropri-
ate to model real situations where the reward depends on the time between two
consecutive events, for instance, the time between a recommendation is offered
on-line until the customer ends up buying. The values for parameter λ in the
exponential distribution for each arm are: [1, 1/2, 1/3, 1/4, 1/5, 1/6].

The variant kl-exp-UCB was incorporated into the analysis in this scenario,
whereas TS and Bayes-UCB cannot be applied.

The best value for parameter α for the PR-opt method is 6. Figure 8 shows the
multiple violinplot for the regrets throughout the 50,000 simulations. The mean
regret and the standard deviations are shown in last two columns of Table 2.

PR-opt and DPR again outperform the other policies, with PDR being very
similar to but slightly better than PR-opt in this scenario. Moreover, DPR
requires neither previously knowledge nor a simulation of the arm distributions,

Table 2. Statistics in scenarios 4 and 5 [24].

Truncated poisson Truncated exponential

Mean σ Mean σ

UCB1 2632.65 246.03 1295.79 514.03

DMED+ 978.56 225.24 645.70 493.8

KL-UCB 1817.4 236.57 1219.98 510.69

kl-poisson-UCB 314.99 201.79 - -

KL-exp-UCB - - 786.30 498.16

KL-UCB+ 1190.64 225.82 813.45 494.59

BESA 2015.73 3561.5 755.87 2323.22

PR (α = 1) 1315 234.4 660.7 492.4

PR-opt 196.24 212.45 580.31 2182.02

DPR 153.3a 409.17 282.83a 814.72
a points out the lowest values in the corresponding columns.
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Fig. 7. Violinplot for BESA.

what makes DPR more suitable in a real environment. The best four policies are
the same as in scenario 4, with a truncated Poisson, changing the KL-poisson-
UCB with KL-exp-UCB.

Finally, we should remark that PR is the fourth best allocation strategy
in this scenario, outperforming BESA, Bayes-UCB, KL-UCB+, KL-exp-UCB,
KL-UCB and UCB1.

5 Regret Analysis

First, note that the theoretical convergence for the PR, PR-opt and DPR meth-
ods has not been demonstrated. In scenarios other than the above, their regrets
might behave polynomially since the lower bound proven by Lai and Robbins
could be violated [21], thus making the three methods inconsistent.

However, the analyses carried out in this section show that unlike the PR-opt
and the DPR methods the PR (α = 1) method has a logarithmic asymptotic
convergence. The justification is as follows: we start with a scenario with a
Bernoulli distribution, where a logarithmic convergence has been demonstrated
in the literature for Thompson sampling (TS) with beta priors [1]. The density
function for the expected reward for each arm in the PR method is very similar
to the beta function used as a density function in Thompson sampling, see Fig. 9.
Moreover, the density function for the PR method has a higher variance than
for TS, which slightly increases the likelihood of exploring non-optimal arms.
By running a wider exploration than TS, we ensure that all the arms have been
sufficiently explored, and prevent a potential polynomial regret caused by over
exploiting an arm that was not optimal. This argument can be extended to other
non-discrete distributions performing the same comparison with TS for general
stochastic bandits [1].
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Fig. 8. Multiple violinplot for policies in the fifth scenario.

An analogous reasoning does not apply for the PR-opt method (α different to 1)
or the DPR method. In the first case, we must take into account that the value of
α can only be set for a specific scenario where the following configurations must be
known in advance: the number of arms, the rewards probability, and a difference
between the expected awards and the optimal award that is greater than a certain
value.

Note, however, that an α value set for a specific scenario can cause the
algorithm to have a polynomial convergence as we move away from that scenario.
This is mainly due to the fact that density functions with low variance will be
produced, and the arms will not be sufficiently explored. The consequence will
be a polynomial regret in the worst case.

Fig. 9. Density functions for PR and Beta prior.
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The same applies with the DPR method when there are initially very low
variances, which makes DPR equivalent to PR-opt with an extremely high α.

Like Chapelle and Li [11], we have performed different simulations to exper-
imentally verify the possible violation of the lower bound proven by Lai and
Robbins and to check the asymptotic convergence of PR, PR-opt and DPR.

First, we considered a Bernoulli distribution and carried out different sim-
ulations with a large number of iterations, where we progressively reduced the
distance between the arm reward and the optimal reward, as well as the number
of arms.

Figure 10 shows the evolution of the mean cumulative regret on a logarithmic
scale during a large number of iterations for a Bernoulli distribution with k = 100
and α = 0.01. As a logarithmic scale is used, the lower bound proven by Lai and
Robbins is a straight line.

Fig. 10. Regret analysis: Bernoulli k = 100 and α = 0.01.

This draws attention to the behavior of DPR, whose mean cumulative regret
function resembles an exponential function as of a certain number of trials. This
implies that this method has a polynomial asymptotic behavior. On the other
hand, straight lines are associated with PR, PR-opt and TS and, consequently,
there is a logarithmic asymptotic convergence. Note that the logarithmic asymp-
totic convergence for TS has been demonstrated in the literature.

Besides, we can check whether or not the lower bound proven by Lai and
Robbins is violated by comparing the slope of the different straight lines. We
can see that the slopes for the straight lines corresponding to TS and PR are
parallel to the slope of the lower bound proven by Lai and Robbins as of a certain
number of trials. Thus, TS and PR do not violate the lower bound proven by
Lai and Robbins. However, the slope for PR-opt is below the lower bound. This
implies that PR-opt violates the lower bound proven by Lai and Robbins and,
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consequently, is inconsistent. Therefore, its regrets might have a sub-logarithmic
or linear asymptotic behaviour in scenarios other than the above.

In a second scenario, we account for a truncated exponential. We consider
100 arms (k = 100) where the parameter α is equal to 1/6 for the best arm and
1/5 for the others (δ � 0.55); k = 10 with the previous α values; k = 100 and
the parameter α is 1/5.1 for the best arm and 1/5 for the others (δ � 0.059);
and k = 100 with the previous α values.

Figure 11 shows the evolution of the mean cumulative regret on a logarithmic
scale during a large number of iterations for k = 10 and δ � 0.059. Now, the
mean cumulative regret functions for DPR and PR-opt start to resemble an
exponential function as of a certain number of trials, implying that this method
has a polynomial asymptotic behavior, whereas straight lines are associated with
UCB and PR, where there is a logarithmic asymptotic convergence.

Besides, the slopes for the straight lines corresponding to UCB and PR are
higher than the slope of the lower bound proven by Lai and Robbins as for a
certain number of trials. Thus, UCB and PR do not violate the lower bound
proven by Lai and Robbins.

Fig. 11. Regret analysis: exponential k = 10 and δ � 0.059.

To conclude, the PR (λ = 1) method has a logarithmic asymptotic conver-
gence and does not violate the lower bound proven by Lai and Robbins, unlike
that the PR-opt the DPR methods.

6 Conclusions

In this paper, we propose a novel allocation strategy, the possibilistic reward
method (PR), together with a parametric probability transformation (PR-opt)
and a dynamic optimization (DPR).
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A numerical study accounting for five complex and representative scenarios
suggests that the proposed method outperforms other allocations strategies in
the literature. Specifically, we have considered a Bernoulli distribution with very
low success probabilities, with success probabilities close to 0.5, and with success
probabilities close to 0.5 and Gaussian rewards; a Poisson distribution truncated
in [0,10]; and an exponential distribution truncated in [0,10].

In the first three scenarios, in which the Bernoulli distribution is considered,
PR-opt or DPR are the policies with the lowest mean regret and with similar
variability regarding the other policies. BESA is the only policy with results
that are close to DPR and PR-opt, mainly in scenario 1. Besides, DPR and
PR-opt clearly outperform the other policies in scenarios 4 and 5, in which a
truncated Poisson and exponential are considered, respectively. In both cases,
DPR outperforms PR-opt.

However, the experiments performed regarding regret show that the PR
(α = 1) method has a logarithmic asymptotic convergence and unlike the PR-
opt and the DPR methods does not violate the lower bound proven by Lai and
Robbins.

In summary, although the PR-opt and DPR methods outperform the other
allocation strategies in all five scenarios considered in the numerical analysis,
they violate the lower bound proven by Lai and Robbins and their regrets may
have a polynomial behavior in other scenarios. Besides, PR (α = 1) has good
convergence qualities, being the second and third-best allocation strategy in the
scenarios accounting for the truncated exponential and Poisson distributions,
respectively. Additionally, it performs similarly to TS (the best one) in the sce-
nario accounting for a Bernoulli distribution with medium expected rewards;
although performance is worse in scenarios accounting for a Bernoulli distribu-
tion with very low expected rewards and with Gaussian rewards, where it only
outperforms UCB1.

However, if we only take into account the policies that do not make any
assumption about the reward distribution (a very plausible situation in real
scenarios where nothing is known about the rewards except the upper and lower
bounds) the PR performance is comparable on average in all the scenarios with
DMED+, BESA, and KL-UCB+.

We propose as a future research line the use of other inequalities to compute
the confidence intervals nested around the expected value when modeling the
uncertainty about the expected rewards from the arm by means of possibilistic
reward distributions. Specifically, an alternative Hoeffding’s inequality could be
used, together with its combination with Bernstein inequalities.
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3. Audibert, J.-Y., Munos, R., Szepervári, C.: Exploration-exploitation trade-off using
variance estimates in multi-armed bandits. Theor. Comput. Sci. 410, 1876–1902
(2009)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite time analysis of the multiarmed
bandit problem. Mach. Learn. 47, 235–256 (2002)

5. Auer, P., Ortner, R.: UCB revisited: improved regret bounds for the stochastic
multi-armed bandit problem. Adv. Appl. Math. 61, 55–65 (2010)

6. Baransi, A., Maillard, O.-A., Mannor, S.: Sub-sampling for multi-armed bandits.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014.
LNCS (LNAI), vol. 8724, pp. 115–131. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44848-9 8

7. Bernstein, S.N.: Probability Theory. GTTI, Moscow, Leningrad (1946)
8. Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments.

Chapman and Hall, London (1985)
9. Burnetas, A.N., Katehakis, M.N.: Optimal adaptive policies for sequential aallo-

cation problems. Adv. Appl. Math. 17(2), 122–142 (1996)
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Abstract. The management of service parts inventories in the post- product life
cycle is an issue that has often been ignored by companies, resulting in addi-
tional problems that may negatively affect their reputation. The main purpose of
this research is to develop a methodology to help decision makers manage
service part issues in the period following product discontinuation. To this end,
an action research case study was carried out in an industrial manufacturer of
household appliances, which is bound by legal obligation to provide service
parts for its products for a period of 15 years after ceasing production. The work
resulted in three deliverables, namely, characterization of the company situation,
definition of a procedure to eliminate obsolete stocks, and definition of a pro-
cedure to manage active service parts. Implementation of the procedures has
made it possible to improve the service levels for service parts and to achieve a
10% decrease in the inventory value of service part components.

Keywords: Service parts � Discontinued products � Empirical study

1 Introduction

For many companies facing increasing competition, customer satisfaction has become a
goal of the utmost importance, and one way to keep their customers satisfied is their
ability to rapidly repair a product failure. Moreover, while some products, such as
consumer electronics, appear to be disposable, for others, including household appli-
ances and automobiles, service parts management has become an increasingly
important factor [1].

Service parts are mainly used to replace old parts that are no longer working. They
are considered an important area of a company’s business. In some sectors, the service
parts after-sales business can account for up to 25% of the revenues and 40% to 50% of
the profits of manufacturing firms [2, 3]. In a benchmark study covering more than 120
companies from various industries, [4], revealed that business units related to service
provided on average 75% higher profitability as compared to the overall business
profitability. Managing service parts can, thus, also improve customer loyalty,
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sustainability, and profits. While poor management can be detrimental to business
performance and generally hinder attainment of objectives [1].

This situation goes some way to explaining why many companies have shifted their
efforts from improving their manufacturing and delivery processes to improving after
sales service and customer support [5]. As a result of this shift, companies are required
to keep inventories of many of those service parts and, as many of these service parts
are expensive, this entails a great sum of money being wrapped up in inventory matters.

Unfortunately, the lack of availability of service parts is frequently recognized as a
main source of obsolescence of many products. Furthermore, the levels of competition
in the market mean that any stock-out of service parts cannot be tolerated, since this has
an adverse impact on the brand and corporate image [6]. Inventory costs related with
service parts for current products are much lower than those for service parts for
discontinued products. Additionally, after a product has been discontinued, many of the
service parts needed in the post-product life cycle are often no longer in production [7].

Accordingly, meticulous management of service parts is imperative because the
production lines used for manufacturing those service parts have most likely already
been discontinued in advance of the demand for them dropping to zero. In some
geographic areas, companies are required by law to provide past model service parts for
many years after production has finished. The procurement and inventory management
of such service parts is a complex matter due to the intermittent nature of their demand
patterns, the high responsiveness needed to minimize the downtime cost for the cus-
tomer, and the high risk of stock obsolescence [6].

However, service parts cannot be managed using the traditional inventory control
methods [8]. Most of the literature focuses on the definition of (re)ordering policies or
stock control in situations where demand and delivery can be reliably forecasted. This
research looks at the management of service parts for discontinued products – where
demand is erratic and hence hard to predict, suppliers of components of the service
parts may no longer be available, and spare parts must be provided up to 15 years after
ceasing the production of a specific model. Literature on such situations is scarce.
Research dealing with after-market support, such as service parts, is a matter that is
overlooked and under investigated [9]. This is somewhat concerning, considering the
importance of after-sales service [5, 10].

Hence, the main aim of this research is to develop a methodology, through an
action research approach, to help decision makers manage service part issues in the
period following product discontinuation. We focus on defining procedures which will
eliminate obsolete stock, and developing procedures to manage active service parts.

This paper is based on an action research project and, for reasons of confidentiality,
more detailed information about the case study company, its position within its
industry, and its operations is not presented. The company is referred to herein as
AVPT. The outline of the paper is as follows. Section 2 presents a review of the
literature. This is followed by sections describing the research method (Sect. 3), the
case study company and the approach followed (Sect. 4). The application of the model
and some results are described in Sect. 4.4, and conclusions are drawn in Sect. 5.
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2 Literature Review

Inventory management of service parts is acknowledged as playing a key role in
providing adequate after-sales service [1, 5]. First, demand for service parts is usually
unpredictable yet must be filled immediately for practical operational reasons. And
second, because a relatively long service period paired with a general trend towards
decreasing product life cycles is resulting in a steady increase in the number of products
which are no longer produced, but for which service parts must still be available.

During the product life cycle companies can easily manage the production of
service parts making use of the existing production facilities. The purchase of com-
ponents or materials for service parts manufacturing does not pose a problem, as
suppliers are aware of the market demand for the product. However, this situation
changes completely once the company ceases producing the product, in other words,
after the end of the product life cycle. Although there is no longer a demand for the
product itself, service parts are still consumed to replace the damaged parts of the
products already sold. Service parts management during the length of time between
end-of-production (EOP) and end-of-service (EOS) is a challenging task for businesses
(see Fig. 1). This period may be defined by a legal requirement, or it may be set
voluntarily by the company. In some cases, the company may go beyond the legal
limit, as a strategy for improving service levels and improving its image.

[11] looked at this issue specifically for the automotive electronics industry, arguing
that the problem of sourcing the spare parts after product life cycle is more significant
and critical for durable products and products with short innovation cycles. In those
situations, a high degree of uncertainty in demand for spare parts and in supply of used
products with satisfactory recoverability can be identified. The demand for spare parts
and supply of returned used products is illustrated in Fig. 1.

Fig. 1. Demand for new products, spare parts, and product returns (adapted from [11]).
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According to [11], the following possible sources for and approaches to acquiring
spare parts after the end-of-production exist:

• the total demand for spare parts after EOP is forecasted and an extra amount is
manufactured together with the last batch in regular production;

• after the end of regular production, the firm continues manufacturing the spare
parts;

• the firm may outsource spare parts production to small industrial units;
• the firm may begin remanufacturing its used products. After disassembly of returns,

the parts and components may be set aside for remanufacturing, which converts
them to “as-good-as-new” products;

• the defective components that have been replaced are simply repaired and stored as
spare parts for future use. This option can only be applied in those cases where
original spare parts are not required.

Each of these options for sourcing spare parts involves certain benefits and costs.
However, the end of after-sales service may also occur unexpectedly, further

complicating the management of service parts. For example, in a situation where the
functioning of a machine is dependent on the availability of a specific service part, a
stock-out of that part will render the machine obsolete. This means that all the other
service parts of that machine will reach the end of the after-sales service period earlier
than expected. Another source of uncertainty is given when one service part is replaced
by another service part. For example, a company that manufactures mobile computer
batteries may bring a new battery to market with extended capacity and at a lower
price. Then, when consumers need to replace the battery, they will likely choose the
new model over the old model. This source of uncertainty is difficult to predict [6].

There is a considerable body of literature regarding demand forecasting of service
parts. Several well-known approaches exist, ranging from relatively simple models,
such as Croston’s method [12] and the further development thereof [13, 14], to much
more sophisticated algorithms, as in the stochastic forecasting model presented by [6].
The latter method considers four key factors in its model for forecasting service parts:
product sales, the discard rate of the product, the failure rate of the service part and the
replacement probability of the service part.

More recently, [15] presented a pioneering idea for forecasting demand for spare
parts that relies upon the demand generation process itself, comparing it favorably with
a traditional time-series method. [16] presented two approaches for dealing with the
problem of extending maintenance or supply contracts for spare parts of discontinued
products: one includes the use of a continuous-time dynamic programme and the other
employs a two-stage stochastic algorithm. [17] presented a case study in an automaker
that operates in Brazil, considering six years of demand data (10032 spare parts ref-
erences) and comparing several methods using different forecasting techniques and
inventory management policies by simulation. The performance was measured by total
costs and realized-fill-rates, and the results of the simulations allowed for the recom-
mendation of best policies to be followed within each spare part category.

Other authors have proposed practical approaches to managing service parts for
discontinued products in practice. For example, [18] present a model, which was
implemented in an electronic equipment company, to determine the size of a final order
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for service parts, with the aim of covering demand until all service obligations have
ceased. [19] analyzed the problem of calculating an optimal final order for spare
components when, at a certain moment, a company is offered a final chance to order
spare parts components for its machines.

However, preceding research has focused primarily on the planning and operational
aspects (e.g. the determination of optimal spare parts inventory levels) and has ignored
the strategic and organizational issues manufacturing companies must resolve in order
to manage their spare parts business successfully during the post product life cycle.
Indeed, a gap between research and practice has been acknowledged by several
researchers. For a comprehensive literature review on service parts management and on
the gap between research and practice please see [20] These authors argue, for
example, that “despite the wealth of literature on the subject, no attention has in
practice been paid to proper management and control of service-parts inventory” or that
“incremental mathematical inventory research is not likely to enhance practice”.

This gap between practice and research may be explained by the mathematical
complexity of the proposed methods and their need for data which are often not
accessible. One should also note that the acceptance of simple but formalized proce-
dures for the management of service parts during the post product life cycle can help
companies achieve considerable benefits, not only by reducing costs but also by
improving the company’s image [8].

3 Research Method

This paper presents the case of an industrial company which manufactures household
appliances. In the past, the procurement and inventory management of service parts
during the post product life cycle had been largely neglected by the company. This
resulted in several problems already reported in the literature. These include such as
stock-outs, rush orders and obsolete stock (stock of service parts for which the service
contract has expired). Furthermore, service part production also required components
for which the original supplier was no longer available, requiring a time-consuming
negotiation process with potential new suppliers.

To mitigate the impact of these complications, the company decided to launch a
project to define procedures for the procurement and inventory management of service
parts during the post product life cycle. Beyond this, the company’s service parts
decision makers also intended that the procedures to be implemented should avoid
using complex mathematical algorithms that employees would find hard to comprehend
as well as models that would need data which would not be readily accessible, or even
available, in the company information systems.

The research objectives were to propose procedures, effectively implement them
within the manufacturing company, and then to provide evidence on their effectiveness.
This study was carried out under the principles of action research, allowing for col-
laboration between the researchers and the company [21].

Two specific conditions had to be respected for the approach taken to meet the
requirement of action research. Firstly, the research objective and project plan were
driven by the researcher’s agenda rather than by the participating company’s
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representatives. Second, the primary justification for the project plan was the devel-
opment of procedures for the management of service parts during the post product life
cycle and not the transformation of the individual organization’s practices. In any case,
the focus of the research is to introduce changes in reality [22]. More recently, [23]
wrote on the importance of case studies, highlighting the need to focus on real situa-
tions and problems and on the way proposed techniques perform when adopted by
managers.

4 The Case Study Company, Proposal of Procedures
and Results

This section presents a proposal for procedures for the management of service parts
during the post product life cycle and results. The project to define the requested
procedures was developed in three phases, which are described in the following sub-
sections: the characterization of the company service parts; the definition of a procedure
to eliminate obsolete stocks; and the definition of a procedure to manage service parts.

4.1 Characterization of the Case Study Company

The case study company, AVPT, a manufacturer of household appliances, is obliged by
law to provide service parts for models for a period of 15 years after the appliance
containing said parts has been discontinued. The procurement process for service parts
during the post product life cycle was conducted as follows: when the stock for a
specified service part reaches its reorder level, a production order for this service part is
scheduled by the logistics department. To manufacture that service part, the necessary
components are taken from stock, and these components can also eventually reach the
reorder level. If this occurs, an order for the component is placed by the purchasing
department. The size of this order is calculated to meet the predicted demand for the
next six-month period, based on a simple average of the demand for the component
since the time the product became discontinued, adjusted in accordance with the
contractual conditions between AVPT and the supplier.

This stage of the project was designed to provide a clear understanding of how
many spare parts were exclusively used in the post product life cycle. The AVPT
information systems contained information on all the components used in the service
parts of discontinued products. However, accessing that information was difficult (for
example, data on the time remaining until the end of the service contracts was not
available for many of the service parts). That particular information was incomplete
because each component could be used in several service parts and each service part
may be required for several final products. Moreover, the data was spread over two
different information systems (IS 1 and IS 2 in Fig. 2).

Accordingly, a support database was developed to easily access all relevant data
about the components of discontinued products. This database was fed with data from
both information systems (Fig. 2) and was used to identify all the required information
for the procurement process. Using data from the first information system (IS 1), each
component (Comp.) was linked to the service parts (SP) in which it is used. The second
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information system (IS 2) shows how each service part was linked to the final products
in which they are used, and for each final product (FP) the date of the last production
run was recorded. Furthermore, the corresponding supplier of each component was also
identified. An illustrative example of the result of this operation is presented in Table 1.

The information contained in the database that was developed provided a detailed
overview of the discontinued product service parts and their respective components.
Some of these characteristics (namely the “Time remaining to end of service”) make it
possible to divide the service parts and their components into three major groups. For the
first group, the company is no longer required to provide support, for the second group,
the company is required to provide service up to the 15-year limit, and for the third
group, no end-of-service date exists (this accounts for around 50% of the components
listed). The complete listing for Table 1 showed that AVPT manages approximately
1300 components, exclusively used in service parts for discontinued products.

Fig. 2. Data collection from AVPT company information systems (adapted from [24]).

Table 1. Illustrative example of component information.

Component Time to end service (years) Stock (units) Stock (€) Supplier

C1 8 1680 2825 Sup_1
… … … … …

C19 1 30 900 Unknown
… …

Cn −1 450 689 Sup_39
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These 1300 components are required in some 1800 service parts for discontinued
products (there are more service parts than components as each component can be used
in various service parts). In turn, these service parts are used in 6530 end products
(appliances). The 1300 components make up 14% of the total number managed by
AVPT and 9% of the company stock value. Three percent of these components are
considered as obsolete stock. Another conclusion that was drawn from the analysis of
the database was that roughly 50% of the components has no active supplier assigned.

The lack of an assigned supplier represents a major challenge to the management
and procurement of the components, because if a stock-out of one of those components
occurred, AVPT would have to start from scratch a negotiation process with a new
supplier, meaning long delivery lead times. There are two possible reasons for the lack
of an active supplier: the usual component supplier has ceased trading, or a long time
has passed since AVPT has placed an order with a supplier and it is neither able nor,
perhaps, even willing to supply that component any longer.

4.2 A Procedure to Eliminate Obsolete Stocks

The preceding project phase identified some obsolete stocks. It was then necessary to
develop a process to eliminate these stocks. The stock of these components could just
be sold as scrap. However, they could still be of value as components for producing
service parts for some discontinued products, even though AVPT might no longer have
the legal obligation to do so.

In the past, if AVPT received an order for a service part which was no longer active
(no longer covered by the post product life cycle period) and for which there was no
available stock, the client was informed that AVPT could no longer provide this service
part and the stock-out was not considered as a service-level failure by the company. But
such situations had a negative impact on the company’s reputation. To avoid these
kinds of problems a procedure to eliminate obsolete stocks was proposed, as shown in
Fig. 3.

Following this procedure, clients are informed which service parts have reached the
end-of-service period and that they can place a final order for these service parts. If the
stock of components for the end-of-life service parts is sufficient to cover the client’s
final order, the order is delivered. If the stock of components is not enough to cope with
the service part production, an order for the required components is placed. After the
final client orders, if some service parts or components still remain in stock, they are
then sold as scrap. This procedure is now programmed to be carried out at the
beginning of each calendar year for all service parts which have reached their end-of-
life date during the previous year.

This procedure allows for obsolete stock to be removed, including both spare parts
and the components which they alone use, given the direct link between the two. In
addition, the warehouse space allocated to these parts and components becomes
available for other items. Finally, and most importantly, this approach ensures customer
satisfaction (service level), given that the customer is cautioned in advance of the
service part’s end of life. Customers are given the chance to place a last order, guar-
anteeing a fixed quantity and with a lead time of around one month.
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4.3 A Procedure to Manage Active Service Parts

This final phase of the project defined a procedure to improve the management process
of active service parts. The main objective in managing service parts is to establish a
component ordering procedure which ensures an adequate inventory level. The
availability of components for the production of service parts is crucial to AVPT. Long
lead times are not acceptable as the end customer is waiting for their household
appliance to be repaired.

The process for obtaining the components used to manufacture the service parts for
end products which are still currently in production is relatively simple, as it depends
on the demand (for service parts). However, in situations where the demand for service
parts can be described as intermittent, proper forecasting methods must be used so that
inventory levels can be appropriately managed.

In the past, AVPT spare parts decision makers used the average service part
demand over the preceding six months to forecast the demand for the following six
months, each time the component reorder point was reached. The forecast demand for
the following six months would help anticipate the component procurement process
and the service part production, thus avoiding long lead times for the final client. In this
respect, two distinct situations are possible. Service parts with components for which
there are active suppliers, and service parts with components for which there are no

Fig. 3. Flowchart showing the procedure to eliminate obsolete stock (adapted from [24]).
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active suppliers. In both cases demand forecasting is important for guaranteeing an
effective procurement process and efficient inventory level management. Additionally,
in the second case forecasting is also important for helping the procurement department
negotiate the right business conditions with potential new suppliers.

At the beginning of the project AVPT spare parts decision makers expressed a
number of concerns with respect to the adequacy of the forecasting method currently
used. Thus, in order to identify which forecasting methods could be used for managing
service parts it was decided to analyze the demand patterns of those service parts (using
available data from a seven-year period).

The service parts were classified according to their demand patterns as slow
moving, intermittent, erratic and lumpy, in line with the proposal by [25] This clas-
sification was made on the basis of the values calculated using inter-demand interval
(IDI) and the squared coefficient of variation of the demand sizes (CV2).

Given that the company expressed the wish to avoid complex algorithms that would
be hard for the users to understand, and considering the available data, three demand
forecasting models were tested: The Croston Model [12], the SBA model [14] and the
simple six-month-average method currently used by the company.

As proposed by these authors, demand for slow moving components should be
forecasted using the Croston method, and demand for the others with the SBA model.
Using historical data, the accuracy of these models was compared with the result
obtained using the simple average-based procedure in place in the company. The
comparison of the models centered on the forecasting errors, considering the mean
absolute percentage error. Table 2 presents the inter-demand interval (IDI) and the
squared coefficient of variation of the demand (CV2) for three randomly selected
service parts.

The forecasting errors obtained for each component are presented in Table 3. It is
clear that none of the forecasting methods tested outperforms the others in all cases.
Thus, it was decided to keep the simple average procedure, already in place in the
company. This decision is in accordance with the findings of [25].

Table 2. Illustrative example of demand patterns for three randomly selected service parts
(adapted from [24]).

SP. 1 SP. 2 SP. 3

IDI 2.35 1.02 1.94
CV2 1.25 0.37 2.7

Table 3. Illustrative example of the performance of the forecasting models (adapted from [24]).

Service parts Forecasting model Mean absolute percentage error

1 SBA (a = 0.10) 43%
Average 42%

2 Croston (a = 0.17) 76%
Average 96%

3 SBA (a = 0.15) 202%
Average 203%
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Having identified the proper forecasting model to be used, the support database
developed during this project (referred to in the previous section) was used to draw up a
list of all the components with no available supplier. For these components, a single
average of the past demand (since time 0) was used to estimate their future demand
until the end of their service life. This list was sent to the procurement department
which was responsible for initiating contacts to find potential suppliers for those
components.

The demand estimate based on past demand helped the procurement managers in
their negotiations with the selected suppliers. To avoid the same problem in the future
(where components have no supplier available), a simple procedure represented in
Fig. 4 was implemented in the company.

The database established during this action research project made it possible for a
historical record to be created, comprising demand data for all the service parts and
respective components. At the beginning of each year, the list of components is
checked to identify all components where demand existed last year. For these com-
ponents, all suppliers are contacted to verify if they are still able to deliver the required
component. If not, the procurement department will be required to initiate contacts to
find a new supplier.

For the components with available suppliers the procurement process in place in the
company will be as follows. Whenever the reorder point is reached, an order that will
cover the demand for the next six months will be made, based on the simple average
demand over the previous six months.

Fig. 4. Procedure to guarantee the availability of suppliers (adapted from [24]).
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4.4 Results

This project enabled AVPT to transform the management of spare parts during the post
product life cycle. The process is now more efficient and reliable, making it possible to
anticipate some of the issues regularly faced. In achieving this objective, several
procedures were developed to support the procurement decisions for these spare parts,
based on the time period remaining that the company has to assure the availability of
spare parts.

The assessment of the different forecasting methods revealed that a simple six-
month average could produce acceptable results to define the order quantity for service
parts. The procurement and inventory management procedures for service parts
described were applied in the company and have been used on an ongoing basis.

The implemented procedures led to a 4% reduction in stock-outs, raising service
from a level of 95% to 99%. The improvement was primarily the result of imple-
mentation of this set of formal procedures that guarantee the existence of suppliers for
any service parts components in the post product life cycle.

Another result of this project was a 10% reduction in the inventory value of service
part components. This was mainly achieved through the elimination of obsolete stock,
which also helped to improve warehouse efficiency.

5 Conclusions

Management of service parts is generally acknowledged as playing an important role in
providing adequate after-sales service. However, it takes on critical importance once
the company ceases producing a product. Although there is no longer demand for the
product in question, service parts are still consumed through the need to replace the
damaged service parts of the products already sold. Service parts management during
the length of time between end-of-production and end-of-service is a challenging task
for many companies.

Unfortunately, the prior research has focused primarily on the planning and oper-
ational aspects (e.g., the determination of optimal spare parts inventory levels) and has
ignored the strategic and organizational issues manufacturing companies must resolve in
managing their spare parts business successfully during the post product life cycle.

This research demonstrates how an action research project can provide performance
improvements in the management of service parts used in the post product life cycle.
The simplicity of the procedures proposed was decisive for their acceptance by the
service parts decision makers, particularly considering that most of the available
methods described in the literature require data which is frequently not readily
accessible for companies.

Three well-known forecasting models were tested: the Croston model, the SBA
model and a simple six-month average of past demand. It was concluded that no
method outperforms the others. Accordingly, it was decided to retain the six-month
average of past demand method already in use in the company. The implementation of
the procedures has allowed AVPT to improve the service levels for service parts and to
achieve a 10% decrease in the inventory value of service part components.
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The action research model used in this research project contributed both to
achieving practical results and to developing new knowledge. This was achieved
through the active involvement of both service parts decision makers and researchers.

We acknowledge that this study has certain limitations, particularly its focus on
organizational and information aspects relating to service parts management. A future
avenue of research could be to explore the decisions related to the dimensioning of the
last order.
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Abstract. Growing awareness for sustainability and green legislation
being implemented worldwide are forcing manufacturers and other orga-
nizations to recover and remanufacture used products to extend their
lifecycles. These remanufactured products are send back to the market-
place or used in maintenance or used as replacement products to honour
warranty offers. This paper presents the development and optimization of
two mathematical models to determine the optimal combination rebate
warranty policy when remanufactured products are used for replacements
from both the seller and buyer’s point of view. Several numerical exper-
iments are conducted to derive useful managerial knowledge and con-
sumer guidelines.

Keywords: Warranty policy · Remanufactured products
Seller and buyer perspectives · Reliability optimization

1 Introduction

Sustainable development legislation along with concerns for the environment
have forced organizations all over the world to adapt their manufacturing prac-
tices and adopt new ways of recovering value from end-of-use or end-of-life
products. Remanufacturing processes such as refurbishing and reconditioning
are examples of activities that can extend the lifecycles of products. Econom-
ical opportunities in remanufacturing have increasingly generated substantial
volumes of remanufactured products that are mainly sold to environmentally
conscious consumers. Remanufactured parts are also commonly used as spare
parts in repair and maintenance of other products. The aim of this paper is to
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investigate the use of remanufactured products as replacement products to hon-
our warranty claims. In the literature these remanufactured products are also
sometimes called refurbished or second-hand products.

A product warranty is a contractual agreement offered by the manufacturer or
seller to the buyer at the point of sale of a product to establish liability upon fail-
ure [3,4,17]. The use of warranties is universal and serves numerous purposes. It
assures the consumer or buyer that the seller will rectify all the failures occurring
within the warranty period at lower or no cost. For manufacturers, the warranty
acts as a promotional tool to increase sales and revenue [3] by inferring the high
quality of their products. According to [8,20], American manufacturers spend over
25 billion dollars to service warranty claims which is about 2% of their annual rev-
enue from sales. According to [20], in the 2009 General Motors annual report, the
company had a total revenue of $104.2 billion and the future warranty cost on sold
cars estimated to be $2.7 billion, about 2.6% of the revenue.

When buying a product, the buyer usually faces the difficult task of deciding
between purchasing the warranty or not. And when the decision is to get the war-
ranty, choosing between different characteristics and warranty policies is another
challenge. When the warranty period is optional, the consumer has to decide if
the warranty is worth the additional cost based on very limited knowledge. This
is becoming more and more important, since there is a growing trend among the
manufacturers to offer extended term warranties. These involve additional costs
with terms that can vary considerably [3,4,25]. Often, at the time of purchase,
the consumer has to decide based, on very limited information, whether to opt
for an extended warranty or not and to determine the best extended terms for
their situation when there are multiple options [3,4]. The average buyer is not
capable of conducting a mathematical analysis before making a choice because
the consumer neither has the expertise for such an analysis nor the bargaining
power to obtain relevant data from the manufacturer or seller. However, con-
sumer bureaus and regulatory agencies can carry out such analyses and inform
the general public. Any model developed from the buyer’s point of view in this
article is then assumed to have been done for a consumer agency on behalf of
all consumers and with data obtained by the agency from the manufacturers
or from established and recognized independent reviewing bodies such as the
Consumer Reports magazine in North America.

There are many different types of warranty policies designed to cover the
needs of manufacturers, dealers and consumers. A policy which is based on one
factor (usually age) alone is said to be one-dimensional (1-D), on the other hand
a two dimensional (2-D) warranty is limited by the first expiry of any of two
factors, usually age and a measure of usage of the product. 1-D policies are
commonly used for products which are known to last for a fixed time period
such as cellphones, computers, and projectors. 2-D warranties apply to products
that display wear and tear, degradation with usage. Automobiles, hydraulic and
mechanical systems and heavy-duty machinery are examples of products with 2-
D warranty policies. Some basic warranty types are the Free replacement (FRW),
Pro-rata (PRW), and Rebate warranty.
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1. Free Replacement Warranty (FRW). The manufacturer agrees to
repair/replace a failed item during the warranty period at no charge to the
customer. Example: small household appliances, electronics.

2. Pro-Rata Warranty (PRW). The customer covers a proportion of the
repair cost prorated to the age of the item at failure. Example: Tires.

3. Rebate Warranty. The seller agrees to refund some proportion of the sale
price to the buyer, if the product fails during the warranty period. The refund
amount may be a linear or non-linear function of the failure time. Example:
Money Back Guarantee (MBG) for electronic components such as hard drives,
computer screens, and high density storage devices.

Basic taxonomies of warranty policies are presented in [3,4]. [20] developed an
integrated warranty-maintenance taxonomy based on three categories: product
type, warranty policy, and maintenance strategy.

Hybrid (combination) warranties are designed to utilize the desirable char-
acteristics of the pure warranties and downplay some of their drawbacks [3,4].
The combination warranty gives the buyer full protection against full liabil-
ity for later failures, where the buyer has received nearly the full amount of
service that was guaranteed under the warranty. It has a significant promo-
tional value to the seller while at the same time providing adequate control over
costs for both buyer and seller. An example for hybrid warranty is seen in the
FRW/PRW policy offered on some tires. During the first 2 years of service, the
tire is replaced free of charge. Beyond year 2, the replacement price is pro-rated
based on years of service from the original purchase date. Some advantages of
combination warranties are improved protection towards the product, customer
satisfaction, higher ownership lifetime for the buyers and higher sales volume
which increases manufacturer profit.

Chari et al. [6] reported that combination warranty was a good type of war-
ranty for remanufactured products as its offers a good protection for both man-
ufacturers and consumers. In their recent paper, Alqahtani and Gupta [1] show
how warranty is used as a marketing strategy for remanufactured products. Two
main problems faced by the consumers acquiring remanufactured products are
their uncertainty and durability due to the lack of past usage and maintenance
history [1,20]. In order to reduce the risk and impact of product malfunctioning,
sellers usually offer generous warranty policies. A review of warranty models
currently available in the literature for remanufactured or second-hand prod-
ucts show that there are very few of them and all deal with the manufacturers
perspective [7,10,20,22].

Reliability improvement strategies for second-hand products sold under mul-
tiple warranty policies including: failure-free warranty, rebate warranty, and a
combination of free replacement and lump sum policies were presented by [19].
The goal of [21] was to find the age of the second-hand product to be used, the
warranty period to be offered, and the upgrade level to be performed to max-
imize the expected profit of the dealer or seller. In [14], the aim was to deter-
mine the optimal upgrade level and warranty length to maximize the expected
profit for used cars. A joint optimal price and upgrade level model for warranted
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second-hand electric drills was proposed by [18]. A mathematical model for a
one-dimensional renewing FRW policy with replacements carried out solely with
reconditioned components was developed by [5]. A periodic inspection/upgrade
model under non-renewing FRW (NFRW) policy with a fixed length of war-
ranty period for a second-hand product is formulated by [13]. It jointly deter-
mined the optimal number of inspections required and an optimal improvement
level to minimize the expected total warranty cost from the perspective of the
dealer during the warranty period. It is apparent from the examples mentioned
above that most warranty models for second-hand or remanufactured products
are developed from the dealer or buyer’s perspective.

The goal of this article is to address this shortcoming by proposing a warranty
policy and develop mathematical models from both the manufacturers and con-
sumers perspectives. This paper is an major extension of the following conference
paper [2]. The present work is improved and extended to consider remanufac-
tured systems with an initial age. The proposed warranty policy is modified to
include a secondary warranty period that is proportional to the primary war-
ranty coverage. Optimality conditions are added by deriving the Hessian matrix
of the total expected profit function. New figures and recent relevant references
are added.

The remainder of this article is structured as follows. Section 2 details the
notation used, presents the warranty policy under consideration and derive two
mathematical models for the seller and buyer’s points of view. In Sect. 3, both
optimization models are solved and two sets of numerical experiments are con-
ducted, and their results are analyzed to derive managerial insights and consumer
guidelines. Conclusions are drawn in Sect. 4 and avenues for future research are
outlined.

2 Optimal Combination Warranty Models Using
Remanufactured Products

For most warranty policies, failed products are repaired or replaced with new
components or products. In the context of sustainable manufacturing, remanu-
factured products may be available and can therefore be re-used as replacements
when consumers return failed products [9,23,24]. In doing so, the manufacturers
or sellers can lower their costs and consumers can extend their ownership of
the products. However, remanufactured products are known to potentially have
lower reliability than new ones [7,9], therefore it is important to determine the
optimal parameters of the warranty policy to be offered to avoid higher costs
to the manufacturer and less than anticipated performance/ownership time for
the consumer or buyer. In this article, we will develop two mathematical mod-
els for a combination rebate warranty policy using remanufactured products as
replacement products.
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2.1 Proposed Warranty Policy

Under the proposed warranty policy, a brand new product is sold with a total
warranty coverage period of length w. The seller will replace a defective product
only once with:

– A new product if the failure occurs before w1 (Phase 1);
– A remanufactured product if the failure occurs between w1 and w2 (Phase 2).

The length of the second coverage period is proportional to the first period
by a factor k which is a decision variable so that w2 = k w1 with k ≥ 1. Thus,
w = (1 + k) w1.

The proposed warranty policy is depicted in Fig. 1. New products have age u = 0.
Remanufactured (also referred to as refurbished or second-hand) products have
age u > 0. The policy offered here is equivalent to a rebate warranty where the
refund amount is enough to repurchase a new or remanufactured product. Blis-
chke and Murthy [4] provide detailed discussions of common warranty policies.

The Weibull distribution is used as the product failure distribution as is
commonly done in reliability theory.

Fig. 1. Proposed warranty policy.

The following notation is used.

Parameters
Cr(u): Cost of replacement by a remanufactured product of age u

C0: Cost of replacement by a new product
Cw: Warranty cost

a: Price coefficient
bi: Warranty coefficient

D0: Demand amplitude factor
D1: Warranty displacement constant

β, θ: Slope and scale parameters of the Weibull distribution
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Decision Variables
p: Unit sale price of the new product

w1: Length of initial/primary warranty period
k: Multiplier used to determine the length of the secondary warranty period
u: Age of the remanufactured products used as replacements

Functions
f(t): Lifetime probability density function (pdf)
F (t): Cumulative distribution (cdf)
R(t): Reliability function R(t) = 1 − F (t)

P(p, w1, k, u): Total expected profit for the Seller
D(p, wi): Total demand

EOT : Expected ownership time
MTTF : Expected lifetime of the original new product

RMTTF : Expected residual lifetime of the remanufactured products
EOCR1: EOT per cost ratio of the product when warranty is purchased
EOCR2: EOT per cost ratio of the product without warranty

In the following subsections, two mathematical models will be developed for
the maximization of the seller’s expected profit and the maximization of the
buyer’s ownership time.

2.2 Model 1: Maximization of Seller’s Expected Profit

If the original product fails within w1, a new product is given to the customer at
a cost of C0 which is incurred by the seller (i.e., the manufacturer in this case).
When the original product fails between w1 and w2, a remanufactured product
of age u is offered to the buyer at a cost of Cr(u) which is incurred by the seller.

Cr(u), the unit cost of a replacement product with age u, is given by Eq. (1)
where C0 is the base price and ε > 0, and η > 0. Parameter ε represents the
discount rate offered on remanufactured products, and parameter η models the
increase in cost due to aging [6].

Cr(u) =
C0

(1 + u)ε + uη (1)

A new product will therefore cost

Cr(u = 0) = C0 (2)

The cost of remanufactured products initially decrease with age as documented
in the literature: remanufactured items cost less than new ones [5,12]. However,
this cost for remanufactured products reaches a minimum then increases with age
to account for technical, logistics and operational difficulties encountered when
trying to collect, sort, disassemble and recondition very old products (availability
of parts, obsolescence, corrosion, etc.)

The probability that a product will fail between wi−1 and wi for i = 1, 2 is
given by:

[F (wi) − F (wi−1)] (3)

where w0 = 0.
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The total expected warranty cost (Cw) is given by the weighted average of
the replacement costs in each phase i given in Eq. (4) shown below.

Cw =
2∑

i=1

Cr(u) × [Prob. failure in phase i]

Cw = C0 · F (w1) + Cr(u) · (F (w2) − F (w1)) (4)

Given that the lifetimes of the product follow the Weibull distribution, the
cumulative distribution function F (t) is given by

F (t) = 1 − e−( x
θ )β

, 0 ≤ t

Then, Eq. (4) can equivalently be re-written as

Cw = C0

[(
1 − e−(

w1
θ )β

)
+

(
(1 + u)−ε +

uη

C0

)
·
(
e−(

w1
θ )β − e−(

w2
θ )β

)]
(5)

Demand Function. The market demand function D(p,wi) for the product is
modelled as a displaced log-linear function of wi and p as in [7,11]:

D(p,wi) = D0 · p−a ·
2∏

i−1

(D1 + wi)bi (6)

where D0 > 0, D1 ≥ 0, a > 1, and bi > 0. Parameter a is the rate of decrease
of the demand as the price of the product increases. Parameters bi are the rate
of increase of the sales volume with the increase of the warranty lengths wi.
The factor D0 is the demand amplitude and D1 is the warranty displacement
constant. These parameters can be estimated from customer surveys and empir-
ical market studies using regression and econometric methods as suggested in
[15,16]. Equation (6) models consumers’ preference for longer warranty coverage
and aversion for high prices.

Total Expected Profit. The seller’s total expected profit P(p,w1, k, u) is the
product of the expected unit profit with the total demand. The expected unit
profit is obtained by subtracting the cost of the original product C0 and the
expected warranty cost Cw from the unit sale price p.

P(p,w1, k, u) = (p − C0 − Cw) · D(p,wi) (7)

The optimal strategy is solution of the following system of differential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(p,w1, k, u)
∂p

= 0, at p = p∗

∂P(p,w1, k, u)
∂w1

= 0, at w1 = w∗
1

∂P(p,w1, k, u)
∂k

= 0, at k = k∗

∂P(p,w1, k, u)
∂u

= 0, at u = u∗

(8)
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Equation (8) being analytically cumbersome to solve for the Weibull lifetime
distribution, a numerical optimization procedure will be used to find the values
of the decision variables (p∗, w∗

1 , u
∗, k∗) which maximize the total expected profit

for the seller.

2.3 Model 2: Maximization of Buyers’ Expected Ownership Time

This subsection focuses on the consumer or buyer’s perspective. The goal is to
find an optimal policy that maximizes the expected ownership time per unit of
price paid. The warranty policy introduced in Subsect. 2.2 is still under consid-
eration here.
At time of purchase, the consumer has two choices:

– Option 1: Buy the original product with warranty at price p set by the seller
and determined using model 1 presented above; or

– Option 2: Buy the original product without warranty at a fraction ρ (0 ≤ ρ ≤
1) of the price p.

The goal of model 2 is to formulate the Expected Ownership Time per Cost
Ratio (EOCRi) for both options (i = 1, 2) and compare their behaviour through
the analysis of their difference Δ:

Δ = EOCR1 − EOCR2. (9)

Option 1: Purchase with Warranty

EOCR1 =
EOT1

p
(10)

A consumer enjoys his original new product from purchase time up to the
instant of the first failure which has expected duration MTTF . At failure, the
consumer gets a replacement product that will have an expected residual life-
time MTTF if the failure occurred in phase 1, otherwise the remanufactured
replacement product will have an expected residual lifetime RMTTF . The orig-
inal product fails in phase i with probability [F (wi) − F (wi−1)] . Therefore, the
expected ownership time for option 1 is given by

EOT1 = MTTF + MTTF · F (w1) + RMTTF · [F (w2) − F (w1)] (11)

with

RMTTF =
1

R(u)

∫ ∞

u

R(x).dx. (12)

Combining Eqs. (10) and (11), gives the expression for EOCR1:

EOCR1 =
MTTF + MTTF · F (w1) + RMTTF [F (w2) − F (w1)]

p
(13)
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Option 2: Purchase without Warranty

EOCR2 =
EOT2

ρ · p

EOCR2 =
MTTF

ρ · p

where MTTF is the expected lifetime of the original product

EOT2 = MTTF = θ · Γ

[
1 +

(
1
β

)]
.

Γ (.) is the gamma function. Therefore,

EOCR2 =
θ · Γ

[
1 +

(
1
β

)]

ρ · p
. (14)

Finally, Eq. (9) becomes:

Δ =
MTTF

p

[
1 + F (w1) − 1

ρ
+

RMTTF

MTTF
· [F (w2) − F (w1)]

]

Δ =
MTTF

p

[
2 − e−(

w1
θ )β − 1

ρ
+

RMTTF

MTTF
·
[
e−(

w1
θ )β − e−(

w2
θ )β

] ]
(15)

The obtained mathematical model is solved for various scenarios in order to
derive decision-making guidelines for consumer organizations and bureaus who
have the ability to test products, report their findings and influence consumers
behaviour.

3 Numerical Results

Two sets of numerical experiments are conducted: one for each of the two models
developed in the previous section.

3.1 Numerical Results for Model 1

For illustration purposes and without loss of generality, an example with three
decision variables is considered by fixing the length of the first phase of war-
ranty coverage w1. This is reasonable if there are competitors in the market
and the seller matches at minimum their warranty coverage. For the parame-
ter values given below, we solve for the optimal solution (p, u, k) which maxi-
mizes the seller’s total expected profit: w1 = 2; θ = 25;β = 1.2;C0 = 15;D0 =
100, 000;D1 = 1; a = 2.9; b1 = 1.2; b2 = 0.1; ε = 3.3; η = 1.7.
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The optimal strategy obtained is a combination of price p∗ = 25.04 monetary
units (m.u.), an age u∗ = 1.14 for the remanufactured product to be used as a
replacement product, and a factor k∗ = 5.84 (i.e., w∗

2 = 11.68). In practice,
this would mean that if competitors offer a warranty coverage of 2 trimesters
(6 months), then the seller can also match their coverage and add a secondary
warranty period with a length of 9.68 trimesters where failed products would
be replaced with remanufactured products with age 1.14. The total coverage
is then for 11.68 months or about 35 months when the competition would be
offering 6 months only. The resulting total expected profit for the seller is 365.6
m.u. These results are also depicted in Fig. 2 which shows a 3D plot of the total
expected profit P as a function of purchase price p and age u for k fixed at its
optimal value 5.83. The Hessian (H(u, p, k)) and its eigenvalues (λ1, λ2, λ3) are:

H(u, p, k) =

⎡

⎣
−10.91086641 5.712003821 10−8 −5.275175676 10−7

5.712003821 10−8 −2.540090311 0.5572053122
−5.275175676 10−7 0.5572053122 −5.749472601

⎤

⎦

λ1 = −10.911, λ2 = −5.843, λ3 = −2.446

The Hessian matrix is negative definite because all three eigenvalues are
negative. Therefore, the optimal solution found is a local maximum. The 3D-
plot shows that it is also a global maximum but it cannot be proven analytically
given that Eq. (8) is not tractable.

Figure 3 shows a surface and contour view of the seller’s profit. The contour at
345 delimits an area corresponding to a price range of 22 to 29, and an age range
of 0.5 to 2.2 for a deviation from the optimal value of about 5.6%. This means
that in practice, the seller can use remanufactured products aged between 0.5
and 2.2 to honour the warranty claims without affecting its profit significantly.
This is an interesting managerial decision-making guideline as remanufactured
products are not always easy to acquire in the quality and quantities needed.

A set of numerical experiments was conducted with model 1 by varying β, the
shape parameter of the Weibull distribution. The results are plotted on Figs. 4
and 5. Figure 4 shows a very fast increasing profit function followed by a slowing
down after β = 6. Increasing the shape parameter β increases the reliability
of the product so that the warranty cost reduces and thus the profit increases.
There is very little return on investment to improve reliability of the products
beyond β = 6. Figure 5 shows that with improving reliability (increasing β), the
warranty costs reduce and therefore the model can afford to reduce the unit price
which increases profits by stimulating demand. As can also be seen on Fig. 5,
the length of the secondary warranty period first decreases as β starts increasing
then reaches a minimum around β = 1.5 after which, it starts to increase. When
β is high, the product is very reliable meaning that very few failures will occur
during the secondary warranty period. The seller is then able to offer longer
warranty coverage. For values of β between 1 and 1.5, the product is not reliable
enough that the remanufactured products could fail more often, which causes
the model to suggest shorter secondary warranty lengths.
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Fig. 2. Seller’s total expected profit as a function of price and age when k∗ = 5.84.

Fig. 3. Surface and contour plot of the seller’s total expected profit when k∗ = 5.84.
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Fig. 4. Profit and price as a function of β.

Fig. 5. Profit and price as a function of β.

Figure 6 is obtained by solving the optimization model for various values of
k. When k = 1, the primary and secondary coverage lengths are equal. As k
increases the secondary coverage increase more than the primary coverage. The
seller’s expected profit increases as k increases from 1 to k∗ because more cus-
tomers are attracted to the product with the increase of the secondary warranty
period. After reaching k∗, the profit starts to drop as more failures are expe-
rienced during the increasingly long secondary coverage period which increases
the warranty cost. Figure 6 displays an operating range (3 ≤ k ≤ 5.84) where the
total expected profit is within a 1.5% gap from the optimal total expected profit.
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Note that the operating range is not extended beyond k∗, because in practice
the seller would never give a longer warranty period for the same profit.

Fig. 6. Seller’s expected profit for various values of k.

3.2 Numerical Results for Model 2

In this subsection, numerical experiments are conducted with the goal of deriving
recommendations for consumer groups using the mathematical model in Eq. 15.

The first set of experiments is designed to analyze the recommendations
made by the model for 6 secondary warranty durations (i.e., 6 values of k) when
β changes. Figure 7 depicts the results obtained for the following parameters:
ρ = 0.85, p = 24.42, θ = 25, and w = 2. The results show two clear zones
separated by the horizontal axis. Above the horizontal axis, the difference Δ is
positive and means that it is preferable for the buyer to pay a higher price to
get the warranty. Below the horizontal axis, the difference Δ is negative and
therefore suggests that it is not worthwhile to get the warranty.

The following other observations can be made from the figure:

– The general profile of Δ for any of the 6 policies shows a fast decreasing
curve for low values of β and a stabilizing shape for higher values. Δ is
higher for β < 1 because early failures make the purchase of warranty more
valuable. Δ stabilizes as β keeps increasing because of the resulting increase in
reliability which decreases the likelihood of failure and therefore the purchase
of warranty does not add significant value to the consumer. For high values
of β (i.e., highly reliable products), all curves dip below the horizontal axis
meaning that there is no need to purchase the warranty policy.

– Different warranty policies have different slopes of the same profile.
– As expected, policies with longer secondary warranty policies (higher values

of k) are more beneficial to the consumer.
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Fig. 7. Values of Δ for various warranty policies as β varies.

Fig. 8. Values of Δ for various warranty prices.

The second experiment investigates the impact of the warranty discount fac-
tor ρ on the decision to purchase the warranty or not. Figure 8 displays the
results obtained when varying β for 6 values of ρ. As expected, when ρ decreases
the incentive to buy the warranty also diminishes. In general, it is recommended
to buy the warranty when β is relatively low and ρ is high.
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4 Conclusions

This paper presented the development and optimization of two mathematical
models with the aim of determining optimal combination rebate warranty poli-
cies when remanufactured products are used for replacements from both the
seller and buyer’s point of views. The first mathematical model was developed
from the sellers’ point of view to maximize their total expected profit. The sec-
ond model dealt with the maximization of the buyer’s expected ownership time
of the product. The extensive numerical experiments that were conducted have
showed that appropriate optimal warranty policy decisions can be reached. Fur-
thermore, it is demonstrated that remanufactured products can efficiently be
used to honour warranty claims. Both the manufacturer and consumer groups
can use these mathematical models to improve profitability levels and increase
ownership durations.

A natural extension of the current models would be to consider other types
of combination warranty suitable for remanufactured products such as hybrid
pro-rata policies. Another research avenue would be the development of joint
imperfect maintenance and warranty policies for remanufactured products.
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authors.
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Abstract. Scheduling multiproduct pipelines is a complex managerial task with
a remarkable impact on the total revenues of the pipeline industry. It consists of
sequencing, sizing and timing of injections and removals, to meet product
demands on time at minimum cost. Generating the detailed scheduling of
pipeline networks can be very challenging, requiring efficient optimization tools
to find good feasible solutions. This paper develops a hierarchical decomposi-
tion approach for tree-like pipeline systems with two-level branching. Decisions
related to the sequence of product injections and the destination for each batch,
are made at the higher planning layer, while the lower layer then finds the
sequence and timing of product deliveries. Each layer is tackled by a mixed-
integer linear programming (MILP) formulation, which neither discretizes the
time horizon nor divides a pipeline segment into packs of equal size. Solutions
to three case studies present significant reductions in both the operating cost and
the computational burden.

Keywords: Optimization � Hierarchical approach � Pipelines � Scheduling
MILP

1 Introduction

The petroleum supply chain includes oil exploration, refining and product distribution,
with the latter having a major influence on the cost of oil and its derivatives. Of the
different means of distributing oil products from refineries to depots, pipelines are the
most reliable and cost-effective. They operate without any interruption day and night,
and can convey large varieties of petroleum products such as gasoline, gasoil, diesel, jet
fuel, kerosene and liquefied petroleum gas (LPG). Products are sequenced back to
back, often without any separation in between, resulting into a mixing at the interface
of adjacent products. The quantity of interface material is a function of the pipeline
profile (pump rate and length of pipeline) and the physicochemical properties of the
products. If two products are known to form a vast interface, the pipeline operators
must avoid injecting them in immediate succession (forbidden product sequence).
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G. H. Parlier et al. (Eds.): ICORES 2017, CCIS 884, pp. 243–266, 2018.
https://doi.org/10.1007/978-3-319-94767-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94767-9_13&amp;domain=pdf


The main feature of liquid pipelines is that they are always full. Consequently,
when a volume of a product is pumped into a pipeline, the same volume is discharged
into downstream depots. Pipeline operators must decide how much of each product to
inject or discharge in a time interval, to meet demand on time at minimum operating
cost. It includes refinery pumping costs, which may vary with products, inventory cost
at depots, interface and stoppages cost. The latter accounts for the energy consumed for
resuming fluid in idle segments.

In recent years, several authors have introduced optimization tools to solve pipeline
scheduling problems. The models satisfy operational constraints related to sequencing,
volume balances, flowrate limitations and product distribution, and can rely on dis-
crete- or continuous-time and volume representations. They can be of the mixed-integer
linear, or non-linear [1, 2] types. Sometimes, models are part of decomposition algo-
rithms that consider two operational plans: aggregate and detailed. The aggregate plan
determines the best sequence of product injections and the destination for each batch,
while the detailed plan provides the sequence and timing of batch removals from the
pipeline into depots.

To generate a good feasible schedule, discrete-time approaches need to divide the
time horizon into several intervals. They can lead to large-scale problems even for short
time horizons [3–6]. The major advantage of discrete approaches against their con-
tinuous counterparts, is their simplicity. Rejowski and Pinto [3] were the firsts to solve
with a discrete-time MILP, the detailed scheduling problem of a straight pipeline,
connecting a refinery to multiple depots. In subsequent work [4], they added integer
cuts to reduce CPU time by at least 70%.

Cafaro and Cerdá [7] developed the first continuous time MILP model for the
aggregate scheduling of pipeline systems with a single refinery and multiple depots.
The model was then generalized to tackle the operation of systems with multiple
refineries [8], branching lines [9] and even bidirectional flow [10]. Relvas et al. [11]
focused on the inventory management of a depot fed by a single-refinery pipeline. All
the structures operating with unidirectional flow can be addressed by the continuous-
time model developed by Castro [12], which is the first for detailed scheduling of
complex pipeline networks.

Cafaro et al. [13] developed a two-level optimization model based on continuous
time MILPs for detailed scheduling of a straight pipeline including a refinery and
multiple depots, minimizing pump operating and restart/stoppage costs. The model was
later generalized [14] to consider simultaneous deliveries to depots. A similar pipeline
scheduling problem was studied by Mostafaei and co-workers [15, 16], who developed
monolithic MILP continuous-time approaches that achieve better pipeline schedules in
terms of cost.

Recent works involving detailed scheduling of multiproduct pipelines have con-
sidered pipeline networks with dual purpose stations, acting alternately as input and
output node [17, 18]. Both approaches assume that at any time, each pipeline segment
can be fed by the adjacent upstream segment or the input node at the segment origin.
This assumption was then relaxed by Mostafaei and Castro [19], leading to a sub-
stantial reduction on the overall time required to meet demand, i.e., the schedule
makespan. In all these approaches, the modeler must properly allocate the initial
products to batches, which may include empty lots, and choose the number of batches
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to be transported. Otherwise, the resulting mathematical problems will be infeasible or
lead to suboptimal solutions. To overcome such usual shortcomings, Castro and
Mostafaei [20] recently introduced a product-centric formulation that does not have a
priori decisions on batch allocations to products and is capable of rigorously handling
forbidden product sequences. Later, Castro [21] extended the model in [20] to account
for the optimal operations of all kind of pipeline structures.

In another work, Mostafaei et al. [22] tackled the detailed scheduling of single-level
tree-like pipeline networks featuring a unique refinery and multiple depots. The net-
work consists of a set of pipelines with a mainline and several secondary lines branched
from the mainline at different sites. Given the product demands, the model finds the
optimal sequence of batch injections, batch removals and the size of batches to be
transported by each pipeline, all in a single step. However, the optimization model is
incapable of finding the detailed schedule of two-level tree-like pipelines, where
branches emerging from the mainline can have their own set of lateral branch lines.

This paper presents an MILP optimization framework for the detailed scheduling of
complex tree-like pipeline systems. To find the best schedule in a reasonable com-
putational time, the proposed MILP model is decomposed in two, based on the work in
[23]. In the upper level, dealing with the aggregate schedule, the optimal sequence of
batches is determined, with the aim of meeting product demand at minimum pump and
interface costs. The subsequent level, generating the detailed schedule, focuses on
finding the optimal sequence of batch removals at depots, to meet demand with the
minimum number of ON/OFF pump operations and flow restarts in pipeline segments.
The proposed optimization framework is tested by solving three case studies, one of
which uses a large scale real-life two level tree-like system from the Iranian products
pipeline network.

In contrast to our previous work in [23], the proposed model is capable of con-
sidering the operation of two-level tree-like pipelines, rather than single-level pipelines.
It strictly tracks the size and the coordinate of new batches and monitors the splitting of
product lots and the creation of new interfaces while diverting products to second-level
pipelines. This capability allows to precisely handle forbidden product sequences and
compute additional costs associated to new interfaces. These are provided by the new
constraints (33)–(39), (40), (43)–(44), (47), (51), (55), (58), (63) and described in detail
in Subsects. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8.

2 Problem Statement

We deal with a short-term scheduling problem where a unidirectional two-level tree-
like pipeline must convey oil derivatives from a single refinery to several distribution
centers (depots), as seen in Fig. 1. It consists of a mainline (pipeline n0), a few
secondary lines (first-level branches) split from the mainline, and lateral branching lines
(second-level branches) emerging from the secondary lines. As an example, the net-
work in Fig. 1 has three secondary lines (n1; n3 and n4) and a lateral branching line
(n2) emerging from n1: A pipeline segment ends with either a depot or a branch point.
In Fig. 1, the mainline starts at the refinery and ends at depot D8, featuring a total of 8
segments, s1n0 � s8n0: The branches involve five segments.
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Batches of petroleum products pumped at the refinery are diverted to the mainline
depots and/or reach the secondary and lateral branching lines. The aim is to build an
optimization framework to find the optimal sequence of batch input and output oper-
ations. The main assumptions are: (A1) each pumping operation involves at most one
batch injection in the refinery; (A2) in the detailed level, a pumping operation can at
most have one batch input in each active pipeline and active depot, whereas the
aggregate plan relaxes such assumption; (A3) the refinery pumping rate must respect
the admissible injection rates; (A4) in detailed level, the valves of active depots and
segments remain open throughout the pumping operation; in contrast, they may be
turned on/off several times in the aggregated plan; (A5) in detailed level, pipeline
segments should operate within acceptable flowrate ranges; such restriction cannot be
enforced in the aggregated level.

3 Optimization Model

We now present a continuous-time MILP formulation for detailed scheduling of two-
level tree-like pipeline systems. Such a MILP model (hereafter referred to as DP) is
capable to find the schedule in a single step. It includes the following major sets:
(a) pumping runs K; (b) pipelines N; (c) secondary lines on the mainline (SL � N),
(d) lateral branch lines on secondary line n(LLn � N), (e) segments of pipeline n;Sn,
(f) depots of pipeline nðDn � SnÞ; (g) I ¼ fi1; i2; . . .; ijIjg; batches to be conveyed, with
batch ijþ 1 always moving right after batch ij; (h) In ¼ Ioldn [ Inewn ; batches flowing along
pipeline n; with Ioldn indicating the batches inside pipeline n at the start, and Inewn

denoting the new batches to be transferred, (i) Ibatchn batches that can receive material
from the origin of pipeline n(Ibatchn � In), (j) Isn; batches that can be transferred to depot
sn(Isn � In), and (k) P; oil derivatives. Note that we have Ibatchn ¼ Inewn [fiold;ng, where
iold;n 2 Ioldn is an old batch that can receive product from the origin of pipeline n:

The proposed optimization framework is a generalization of our previous model in
Mostafaei et al. [22] for the scheduling of single-level tree like pipeline and so we will

Refinery
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D2 D3
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D10

D9
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D6 D7
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s3n0 s4n0 s5n0
s6n0

s7n0

s8n0
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Batch B3
Batch B2

Batch B1

B2

B2
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Fig. 1. A two-level tree-like multi-product pipeline.
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focus on the description of the novel constraints in Sects. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and
3.8. The list of model entities can be found in Mostafaei et al. [22].

3.1 Common Constraints for Single- and Two-Level Tree-like Pipelines

• Product allocation to batches

X
p2P

yi;p � 1; i 2 I; ð1Þ

X
p2P

yi;p �
X
p2P

yi�1;p; i 2 Inewn0 ; ð2Þ

X
p2P

yi;p �
X
k2K

ki;k; i 2 Inewn0 ; ð3Þ

• Pumping sequence

STk � STk�1 � Lk�1; k 2 Kðk� 2Þ; ð4Þ

ST1 ¼ stf ; ð5ÞX
k2K

Lk � hmax: ð6Þ

• Location of batches

LPVi;k;n ¼
X

i0 2 In
i0 � i

SPVi;k;n; i 2 In; k 2 K; n 2 N; ð7Þ

LPVi;k;n � SPVi;k;n ¼ LPViþ 1;k;n i 2 In; k 2 K; n 2 N ð8Þ

• Injection at refinery

X
i2Ibatchn0

ki;k � 1; k 2 K; ð9Þ

X
i2Ibatchn0

ki;k �
X
i2Ibatchn0

ki;k�1; k 2 Kðk[ 2Þ; ð10Þ

LPVi;k�1;n0 � SPVi;k�1;n0 �PVn0ð1� ki;kÞ; i 2 Ibatchn0 ; k 2 K; ð11Þ

IPVmin
n0 ki;k � IPVi;k;n0 � IPVmax

n0 ki;k; i 2 Ibatchn0 ; k 2 K; ð12Þ
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X
i2Ibatchn0

IPVi;k;n0

vrmax
n0

� Lk �
X
i2Ibatchn0

IPVi;k;n0

vrmin
n0

; k 2 K; ð13Þ

X
p2P

PPVi;p;k ¼ IPVi;k;n0; i 2 Ibatchn0 ; k 2 K ð14Þ

X
k2K

PPVi;p;k �PPVmax
p yi;p; i 2 Ibatchn0 ; p 2 P: ð15Þ

X
i2Ibatchn0

X
k2K

PPVi;p;k � reftp; p 2 P: ð16Þ

• Supplying material to output terminals (depots)

X
i2Isn

xi;s;k;n � 1; s 2 Dn; k 2 K; n 2 N; ð17Þ

LPViþ 1;k;n � ss;n þðPVn � ss;nÞð1� xi;s;k;nÞ; i 2 Isn; s 2 Dn; k 2 K; n 2 N;

ð18Þ

LPVi;k�1;n � ss;nxi;s;k;n; i 2 Isn; s 2 Dn; k 2 K; n 2 N; ð19Þ

DPVmin
s;n �DPVi;s;k;n �DPVmax

s;n ; i 2 Isn; s 2 Dn; k 2 K; n 2 N; ð20Þ

Ps
s02Dn

DPVi;s;k;n �ðss0;n � LPViþ 1;k;nÞþ IPVi;k;n þðPVn � ss;nÞð1� xi;s;k;nÞ
i 2 Isn; s 2 Dn; k 2 K; n 2 N;

ð21Þ

X
p2P

PDPVi;p;s;k;n ¼ DPVi;s;k;n; i 2 Isn; s 2 Dn; k 2 K; n 2 N; ð22Þ

X
k2K

PDPVi;p;s;k;n � IPVmax
s;n yi;p; i 2 Isn; s 2 Dn; n 2 N; ð23Þ

X
i2Isn

X
k2K

PDPVi;p;s;k;n �Demandp;s;n � Backp;s;n; p 2 P; s 2 Dn; n 2 N: ð24Þ

• Diverting material from mainline to secondary lines

X
i2Ibatchn

ui;k;n � 1; k 2 K; n 2 SL; ð25Þ

LPViþ 1;k;n0 � rn þðPVn � rnÞð1� ui;k;nÞ; i 2 Ibatchn ; k 2 K; n 2 SL; ð26Þ
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LPVi;k�1;n0 � rnui;k;n; i 2 Ibatchn ; k 2 K; n 2 SL; ð27Þ

IPVmin
n ui;k;n � IPVi;k;n � IPVmax

n ui;k;n; i 2 Ibatchn ; k 2 K; n 2 SL; ð28Þ

IPVi;k;n�ðrn � LPViþ 1;k;n0Þþ IPVi;k;n0þðPVn � rnÞð1� ui;k;nÞ; i 2 Ibatchn ; k 2 K; n 2 SL; ð29Þ

New batch i 2 Inewn will move (zi;n ¼ 1) in secondary line n; if it is transferred from
the mainline during the planning horizon (

P
k2K

ui;k;n � 1). Note that for old non empty

batch existence at the secondary line n at time stf , we have zi;n ¼ 0:

zi;n �
X
k2K

ui;k;n � jKjzi;n; i 2 Inewn ; n 2 SL: ð30Þ

• Constraints on supplying material from a batch to mainline depots and its secondary
lines

P
s2Dn0jrn � ss;n0

DPVi;s;k;n0ji2Isn0 þ
Pn

n02SP
IRVi;k;n0 ji2Ibatch

n0
� ðrn � LPViþ 1;k�1;n0Þ

þ IPVi;k;n0ji2Ibatchn0
þPVn0 1� ui;k;nji2Ibatchn

� �
8i 2 In0; k 2 K; n 2 SL

ð31Þ

Ps
s02Dn0

DPVi;s0;k;n0ji2Isn0 þ
P

n2SLjrn � ss;n0

IPVi;k;nji2Ibatchn
�ðss;n0 � LPViþ 1;k�1;n0Þ

þ IPVi;k;n0ji2Ibatchn0
þPVn0 1� xi;s;k;n0ji2Isn0

� �
8i 2 In0; k 2 K; s 2 Dn0

ð32Þ

3.2 Diverting Material from a Secondary Line to Its Branches

During pumping run k; batch i can be transferred from secondary line n to its branch n0

if the following condition holds: LPViþ 1;k;n � ln;n0 � LPVi;k�1;n; where ln;n0 is the
volumetric coordinate of lateral branch line n0 located on secondary line n: If
li;k;n;n0 ¼ 1, then a portion of batch i in secondary line n is transferred to lateral branch
line n0. The volume is restricted by ðln;n0 � LPViþ 1;k�1;nÞ plus the material injected to
the batch from the secondary line n: All the conditions can be described by the
following eqs:

X
i2Ibatch

n0

li;k;n;n0 � 1; k 2 K; n 2 SL; n0 2 LLn; ð33Þ

LPViþ 1;k;n � ln;n0 þ ðPVn0 � ln;n0 Þð1� li;k;n;n0 Þ; i 2 Ibatchn0 ; k 2 K; n 2 SL; n0 2 LLn;

ð34Þ
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LPVi;k�1;n � ln;n0 li;k;n;n0 ; i 2 Ibatchn0 ; k 2 K; n 2 SL; n0 2 LLn; ð35Þ

IPVmin
n0 li;k;n;n0 � IPVi;k;n0 � IPVmax

n0 li;k;n;n0 ; i 2 Ibatchn ; k 2 K; n 2 SL; n0 2 LLn ð36Þ

IPVi;k;n �ðln;n0 � LPViþ 1;k;nÞþ IPVi;k;nþ ðPVn0 � ln;n0 Þð1� li;k;n;n0 Þ; i 2 Ibatchn ; k 2 K;

n 2 SL; n0 2 LLn;
ð37Þ

A new batch i 2 Ibatchn0 will be transported by the lateral branch line n0, split from
secondary line n, if binary variable li;k;n;n0 is activated during scheduling horizon.

zi;n0 �
X
k2K

li;k;n;n0 � jKjzi;n0 ; i 2 Inewn0 ; n 2 SL; n0 2 LLn: ð38Þ

3.3 Constraints on Supplying Material from a Secondary Line to Its
Depots and Branches

During pumping run k; the total volume transferred from batch i 2 In in secondary line
n to its depots and branches, can never exceed the volume that is accessible by depots
s 2 Dn and lateral branch lines n0 2 LLn at time STk; plus the total volume injected to
the batch i 2 In from the mainline. We have thus the following eqs:

P
s2Dnjln;n0 � ss;n

DPVi;s;k;nji2Isn þ
Pn0

n002LLn
IRVi;k;n00 ji2Ibatch

n00
� ðln;n0 � LPViþ 1;k�1;nÞ

þ IPVi;k;njIbatchn
þPVn 1� li;k;n;n0 ji2Ibatch

n0

� �
8i 2 In; k 2 K; n 2 SL; n0 2 LLn

ð39Þ

Xs

s02Dn

DPVi;s0;k;nji2Isn þ
X

n02LLnjln;n0 � ss;n

IPVi;k;n0 ji2Ibatch
n0

� ðss;n � LPViþ 1;k�1;nÞ

þ IPVi;k;nji2Ibatchn
þPVn 1� xi;s;k;nji2Isn

� �
8i 2 In; k 2 K; n 2 SL; s 2 Dn

ð40Þ

3.4 Interface Material and Forbidden Sequence in the Mainline

Batch ðiþ 1Þn0 is injected into the mainline right after in0 and consequently there will
always be a contamination product at their common boundary which is referred to as
interface. If continuous variable INTFi;p;p0;n is the interface volume between batch i and
its successor in pipeline n conveying products p and p0 we have the following eq for
batches in the mainline:

INFTi;p;p0;n0 �MIXp;p0;n0ðyiþ 1;p � yi;p0 � 1Þ; i 2 In; p; p
0 2 P: ð41Þ

where the model parameter MIXp;p0;n is the interface volume between products p and p0

inside pipeline n:
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For quality reasons, some products should not touch each other inside the pipeline.
Since batch in0 is injected into the mainline immediately after batch ði� 1Þn0; we will
have Eq. (42) avoiding forbidden sequences between two incompatible products
(Touchp;p0 ¼ 0).

yi;p þ yi�1;p0 � 1þ Touchp;p0 ; i 2 Inewn0 ; p; p0 2 P: ð42Þ

3.5 Interface Volume and Forbidden Sequence in Split Lines

Unlike the mainline, batch i may have no interface with batch ðiþ 1Þ in split line n:
This is because the batch sequence in a split line may be different to the mainline batch
sequence. Batch ip and i0p0 can have an interface in a split line n if: (i) both are diverted
to the split line n (zi;n ¼ zi0;n ¼ 1), (ii) they convey compatible products (yi;p ¼ yi0;p0 ¼ 1
and Touchp;p0 ¼ 1) and (iii) there are no non-empty batches between them

(
Pi�1

i00 � i0 þ 1 zi00;n ¼ 0). We have thus the following eq:

INFTi;p;p0;n �MIXp;p0;nðyi;p þ yi0;p0 þ yi;p þ yi0;p0

� Pi�1

i00 � i0 þ 1
zi00;n þ Touchp;p0 � 4Þ; i; i0 2 Inði[ i0Þ; p; p0 2 P; n 6¼ n0: ð43Þ

Controlling forbidden sequences inside split lines is more difficult than inside the
mainline due to the moving of empty batches between two real batches. New batch
i 2 Inewn should never touch batch i0 2 In already transferred to split line nðzi0;n ¼ 1Þ if:
(i) they convey two incompatible products (yi;p ¼ yi0;p0 ¼ 1 and Touchp;p0 ¼ 0) and
(ii) there are no non-empty batches between them. All the conditions can be described
by Eq. (44).

zi;n þ zi0;n0 �
Pi�1

i00 � i0 þ 1
zi00;n � yi;p � yi0;p0 þ Touchp;p0 þ 3 i 2 Inewn ;

i0 2 Inði0\iÞ; p; p0 2 P; n 6¼ n0:
ð44Þ

3.6 Size of Batch i in Pipelines

At the end of pumping run k; the size of batch i in pipeline n can be computed from its
size at time STk(SPVi;k�1;n) by adding the material entered from the origin of pipeline n
and subtracting the amount of material transferred to its depots and its split lines, as
imposed by Eqs. (45), (46) and (47).

SPVi;k;n0 ¼ SPVi;k;n0 þ IPVi;k;n0ji2Ibachn0
� P

s2Dn0

DPVi;s;k;nji2Isn
� P

n2SL
IPVi;k;nji2Ibachn

; i 2 In; k 2 K
ð45Þ
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SPVi;k;n ¼ SPVi;k;n þ IPVi;k;nji2Ibachn
� P

s2Dn

DPVi;s;k;nji2Isn
� P

n02LLn
IPVi;k;n0 ji2Ibach

n0
; i 2 In; k 2 K ; n 2 N ð46Þ

SPVi;k;n ¼ SPVi;k;n þ IPVi;k;nji2Ibachn
� P

s2Dn

DPVi;s;k;nji2Isn ; i 2 In; k 2 K;

n 6¼ n0; n 62 SL
ð47Þ

3.7 Mass Balance

One of the main aspects of pipelines is that they must always remain full with products,
as imposed by Eq. (48).

X
i2In

SPVi;k;n ¼PVn; k 2 K; n 2 N: ð48Þ

Equations (49)–(51) state that the total volume entering a pipeline is equal to the
volume transferred to its depots and branching lines.X

i2Ibatchn0

IPVi;k;n0 ¼
X
i2Isn0

X
s2Dn0

DPVi;s;k;n0 þ
X
n2SL

X
i2Ibatchn

IPVi;k;n; k 2 K; ð49Þ

X
i2Ibatchn

IPVi;k;n ¼
X
i2Isn

X
s2Dn

DPVi;s;k;n0 þ
X
n02LLn

X
i2Ibatch

n0

IPVi;k;n0 ; k 2 K; n 2 SL; ð50Þ

X
i2Ibatchn

IPVi;k;n ¼
X
i2Isn

X
s2Dn

DPVi;s;k;n; k 2 K; n 6¼ n0; n 62 SL ð51Þ

3.8 Flowrate Bounds and Activated and Stopped Volumes

Binary variable vs;k;n is 1 if some material moves in segment sn (segment s of pipeline
n) through pumping run k; otherwise vs;k;n ¼ 0 and the segment is idle. Since the
pipeline network features a unique refinery, segment ðs� 1Þn will be active if segment
sn is active, as imposed by Eq. (52). The first segment of a pipeline n is active if some
material is injected from the origin of that segment, and vice versa, as expressed by
Eqs. (53)–(55). On the other hand, depot sn will be idle if segment sn is idle, as
imposed by Eq. (56).

vs;k;n � vs�1;k;n; s 2 Sn; k 2 K; n 2 N; ð52Þ

vs;k;n0 ¼
X
i2Ibatchn0

ki;k; s ¼ firstðSn0Þ; k 2 K; ð53Þ
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vs;k;n ¼
X
i2Ibatchn

ui;k;n; s ¼ firstðSnÞ; k 2 K; n 2 SL; ð54Þ

vs;k;n ¼
X
i2Ibatch

n0

li;k;n;n0 ; s ¼ firstðSn0 Þ; k 2 K; n 2 SL; n0 2 LLn; ð55Þ

X
i2Isn

xi;s;k;n � vs;k;n; s 2 Sn; k 2 K; n 2 N; ð56Þ

Through pumping run k; split line nðn 6¼ n0Þ will not receive any material if the
segment that this line emerges from is idle, as imposed by Eqs. (57)–(58).

X
i2Ibatchn

ui;k;n � vs;k;n0; s 2 fs 2 Sn0; qs;n0 ¼ rng; k 2 K; n 2 SL; ð57Þ

X
i2Ibatch

n0

li;k;n;n0 � vs;k;n; s 2 fs 2 Sn; qs;n ¼ ln;n0 g; k 2 K; n 2 SL; n0 2 LLn ð58Þ

where qs;n is the volume of pipeline n between its origin and the end of segment sn:
The main goal of this paper is to find the best sequence of batch removals at the

depots by restarting segments as few times as possible. To avoid unnecessary flow
restarts and stoppages, the model incorporates two continuous variables ACVs;k;n and
STVs;k;n to detect the activated and stopped volume of segment sn during pumping run
k: If the flow resumes in segment sn (vs;k�1;n ¼ 0 and vs;k;n ¼ 1), ACVs;k;n will be equal
to SEGs;n; the volume of segment sn: In the stoppage case, segment sn is idle during run
k; but active in run k � 1: We have thus the following eqs:

ACVs;k;n � SEGs;nðvs;k;n � vs;k�1;nÞ; s 2 Sn; k 2 K; n 2 N; ð59Þ

STVs;k;n � SEGs;nðvs;k�1;n � vs;k;nÞ; s 2 Sn; k 2 K; n 2 N: ð60Þ

The liquids in active segments should flow in feasible rate ½vmin
s;n ; v

max
s;n �, which is

restricted by Eqs. (61)–(63).

vsmin
s;n0Lk � IPVmax

n0 ð1� vs;k;n0Þ�
X

s02Dn0js0 � s

X
i2Is0no

DPVi;s0;k;n

þ
X

n2SLjrn � qs;n0

X
i2Ibatchn

IPVi;k;n � vsmax
s;n0Lk; s 2 Sn0; k 2 K;

ð61Þ

vsmin
s;n Lk � IPVmax

n ð1� vs;k;nÞ�
X

s02Dnjs0 � s

X
i2Is0no

DPVi;s0;k;n

þ
X

n02LLnjln;n0 � qs;n

X
i2Ibatch

n0

IPVi;k;n0 � vsmax
s;n Lk; s 2 Sn; k 2 K; n 2 SL

ð62Þ
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vsmin
s;n Lk � IPVmax

n ð1� vs;k;nÞ�
X

s0 2 Dn

s0 � s

X
i2Is0no

DPVi;s0;k;n� vsmax
s;n Lk; s 2 Sn; k 2 K; n 2 N=fn0[ SLg

ð63Þ

3.9 Objective Function

The objective function is to minimize operating charges including pumping, interface,
backorder, flow restarts and ON/OFF pump switching costs.

min zDP ¼ P
k2K

P
p2P

P
i2Ibatchn0

CPpPPVi;p;k þ
P
n2N

P
p2P

P
p02P

P
i2In

CIFp;p0 INTFi;p;p0;n þ
P
n2N

P
s2Dn

P
p2P

CBp;s;nBackp;s;n þ
P
n2N

P
s2Sn

P
k2K

CA� ACVs;n;k þCS� STVs;n;k þ
P
k2K

P
i2Ibatchn0

CF � ki;k

where the parameter CPp is the cost of pumping a unit volume of product p from the
refinery, the coefficient CIFp;p0 stands for the cost of reprocessing of a unit interface
material between products p and p0, the coefficient CBp;s;n stands for the cost of
backorder for a unit of product p at depot sn, the parameter CF stands for the fixed cost
to fulfill a pumping operation and the coefficients CA and CS are the unit flow restart
and stoppage costs in each pipeline segment, respectively.

4 MILP Model for Generating an Aggregate Plan (AP)

By slightly changing some constraints of DP, we can obtain an aggregate scheduling
model (hereafter referred to as AP). Per assumption (A2), Eqs. (17), (25) and (33)
should not be considered in model AP. In addition, Eqs. (18)–(19), (26)–(27) and (34)–
(35) enforce feeding an active depot and branch line with a single batch per pumping
run. To relax these, the new Eqs. (18’)–(19’), (26’)–(27’) and (34’)–(35’) are consid-
ered instead. Such equations still allow to meet product demand at the minimum
number of pumping operations and consequently to reduce the CPU time.

LPViþ 1;k�1;n � ss;n þðPVn � ss;nÞð1� xi;s;k;nÞ; i 2 Isn; s 2 Dn; k 2 K; n 2 N; ð18’Þ

LPVi;k;n � ss;nxi;s;k;n; i 2 Isn; s 2 Dn; k 2 K; n 2 N; ð19’Þ

LPViþ 1;k�1;n � rn þðPVn � rnÞð1� ui;k;nÞ; i 2 Ibatchn ; k 2 K; n 2 SL; ð26’Þ

LPVi;k;n � rnui;k;n; i 2 Ibatchn ; k 2 K; n 2 SL; ð27’Þ

LPViþ 1;k�1;n � ln;n0 þ ðPVn0 � ln;n0 Þð1� li;k;n;n0 Þ; i 2 Ibatchn0 ; k 2 K; n 2 SL; n0 2 LLn; ð34’Þ

LPVi;k;n � ln;n0 li;k;n;n0 ; i 2 Ibatchn0 ; k 2 K; n 2 SL; n0 2 LLn; ð35’Þ
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On the other hand, aggregated plans do not need to account for flow rate limitations
and be concerned with the minimum number of flow resumes. Therefore, Eqs. (52)–
(63) should not be considered in AP.

We have the following optimization framework for the AP:

min zAP ¼ P
k2K

P
p2P

P
i2Ibatchn0

CPpPPVi;p;k þ
P
n2N

P
p2P

P
p02P

P
i2In

CIFp;p0 INTFi;p;p0;n þP
n2N

P
s2Dn

P
p2P

CBp;s;nBackp;s;n

s.t. Eqs. (1)–(16), (18’)–(19’), (21)–(24), (26’)–(27’) + (29)–(33) + (34’)–(35’),
(37)–(52)

5 Hierarchic Approach for Generating a Detailed Schedule

The scheduling problem will become intractable if all decisions related to the pipeline
input and output operations are taken in a single step, even for relatively short time
horizons. To find the best detailed schedule in a reasonable time, we first solve model
AP to find the optimal batch sequence in each pipeline. The resulting solution helps us
to identify the exact elements of sets In; Inewn ; Ibatchn and Isn, and consequently reduce the
variables and constraints domain. Then, after fixing the binary variables yi;p and zi;n,
and removing the interface and forbidden sequencing constraints, we solve model DP
to meet demand with the minimum number of pumping operations and flow
resumes/stoppages. The proposed decomposition procedure will hereafter be called
DSM and is depicted in Fig. 2. The objective function of DSM is given below:

min zDSM ¼ P
n2N

P
s2Dn

P
p2P

CBp;s;nBackp;s;n þ
P
n2N

P
s2Sn

P
k2K

CA� ACVs;n;k þCS� STVs;n;k

þ P
k2K

P
i2Ibatchn0

CF � ki;k

Remark 1: Since in DSM all elements of set Isn should be sent to depot sn; we can add
constraint

P
k xi;s;k;n � 1. While it may lead to no solution for a low number of pumping

runs, it speeds up the branch-and-bound procedure.

Fig. 2. Proposed DSM framework.
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Remark 2: Due to the same batch sequencing, the interface cost will be the same in
the AP and DSM approaches. To obtain the same pumping cost, the inventory of
product p in DSM will be equal to its injected volume into the mainline in AP i.e.,
reftDSMp ¼ P

i;k PPV
AP
i;p;k; where PPVAP

i;p;k is the size of batch i containing product p
injected into the mainline during pumping run k in the aggregated plan.

6 Optimal Number of Pumping Runs

To solve both AP and DSM models, we should first guess the number of pumping
operations for each step. Like previous continuous-time approaches, we use an iterative
procedure to find the optimal number of pumping operations jKj to be performed. Since
all pumping operations may not involve the maximum volume (IPVmax

n0 ), the lower
bound on the number of pumping operations of model AP can be:

X
p;s;n

Demandp;s;n
IPVmax

n0

& ’
� jKjAP

Unlike in AP, depots and branching lines in DSM should receive material from a
single batch during the execution of a pumping operation and so the number of
pumping operations in DSM (jKjDSM) will be greater than or equal to jKjAPopt; the
optimal number of pumping runs of the aggregate plan. On the other hand since in the
lower level model two binary variables yi;p and zi;n are fixed, and due to Eqs. (3), (31)

and (39), jKjDSM should be at least as large as maxfjInewn jDSM; n 2 Ng. Besides, due to
Remark 1, jKjDSM should be greater or equal to maxfjIsnjDSM ; n 2 N; s 2 Sng. Thus;

jKjAPopt � jKjDSM ;

m ¼ maxfjInewn jDSM ; n 2 Ng� jKjDSM;
g ¼ maxfjIsnjDSM ; n 2 N; s 2 Sng� jKjDSM;

and so, the initial number of pumping operations for DSM can be described by the
following expression:

maxfm; g; jKjAPoptg� jKjDSM:

We start solving both AP and DSM models by setting jKj equal to the lower
bounds, and then, following a single increment in jKj, keep solving them until the
objective function stops improving, if all demand is satisfied.
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7 Previous Two-Level Approaches

Cafaro and co-workers [13, 14] were the firsts to develop a two-level approach for the
detailed scheduling of straight pipeline systems. In their approach (hereafter CC), after
finding the product sequences with minimum pumping and interface costs, they fix the
aggregate batch sizes, the starting and completion times of each pumping operation in
AP, and solve the second stage to generate a detailed schedule. In fact, the start and end
of pumping operations for a batch injection in the lower level must exactly comply with
the start and end times specified for that batch injection in the upper level model. To
this end, each product delivery in the lower level model should be accomplished in the
same time interval of the upper level model. Since the solution quality for the detailed
scheduling problem depends on the sequence of product deliveries, the CC algorithm
does not usually find cost-effective transportation plans.

8 Computational Results

Three examples are solved to illustrate the capabilities of the new continuous-time
formulation for the short-term scheduling of tree-like pipeline systems, two of them
involving an industrial case study. All MILP problems were solved on an Intel
(R) Core (TM) i7-6700 K (4 GHz) CPU with 16 GB of RAM running Windows 10
(64-bit) using GAMS/CPLEX 12.6 in parallel deterministic mode (using up to 8
threads) as the solver. A relative optimality tolerance of 10−9 has been adopted as the
stopping criterion.

8.1 Example 1

This example deals with a small network to illustrate the selection of the elements in
sets In; Inewn ; Ibatchn and Isn, for both the aggregated and detailed schedules. The pipeline
network consists of a refinery, a mainline, a secondary line emerging from the mainline
at point 3000 m3, a lateral branch line splitting from the secondary line at point
1000 m3 and 4 depots. The first line of Fig. 3 shows the pipeline network, initial
product composition, and old-batch to product assignments. The refinery pumping rate
can vary between 20 and 100 m3/h and the minimum flowrate in pipeline segments is
20 m3/h.

Table 1. Data for Example 1.

refp CPp Demand(10 � m3) CIFp;p0 (10
2$)/MIXp;p0 (m

3)

P (m3) ($/m3) N1 N2 N3 N4 P1 P2 P3 P4

P1 4000 8 – 100 – – 0 24/1 25/1 20/1
P2 4000 7 – – 100 200 24/1 0 30/1 X
P3 4000 8 – 100 – – 25/1 30/1 0 26/1
P4 4000 5 200 100 – – 20/1 X 26/1 0
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Table 1 lists the initial product inventories in the refinery, product demands for the
next 4 days (hmax ¼ 96 h) and pumping and interface costs. Note that product
sequences with an X are forbidden (e.g., product P2 cannot immediately follow product
P4). The maximum volume input per operation in each pipeline is 4000 m3 for a
minimum of 1000 m3. The same values hold for the minimum and maximum batch
size diverted to depots. Moreover, CBp ¼ 200 $/m3, CAn ¼ 1 $/m3, CSn ¼ 0 and
CF ¼ 100 $/run.

At time stf ¼ 0; the mainline contains three old batches (Ioldn0 ¼ fB2,B3,B4g), the
secondary line has two old batches, B1 and B2, and the lateral branch line is filled with
B2. Let us assume Inewn0 ¼ fB5g, meaning that batch B5 will be injected into the
mainline as a new batch. Note that size of old batch B4 in the mainline can be increased
by pumping additional product (P4) from the refinery and so Ibatchn0 ¼ Inewn0 [fB4g ¼
fB4,B5g: Five batches should thus be transported by the pipeline network within the
next 4 days (I ¼ fB1,. . .;B5g). Before solving AP, we don’t exactly know which
batches will move in each pipeline and therefore we need to consider all possible
combinations.

Secondary line n1 is initially filled with old batches B1 and B2 and can receive
products from new batches B3, B4 and B5 during the scheduling horizon. Thus, Inewn1 ¼
fB3,B4,B5g: No old batch in the secondary line can receive product from the mainline
and so Ibatchn1 ¼ Inewn1 [; ¼ fB3,B4,B5g: Old batch B2 in the lateral branch line can
receive product from the secondary line and so Ibatchn2 ¼ Inewn2 [fB2g ¼
fB3,B4,B5g[ fB2g ¼ fB2,. . .;B5g:Depot s1(D1) can only receive product from batch
B4 and from new batch B5 that is injected into the pipeline in the future and so Is1¼D1

n0 ¼
fB4,B5g: Similarly Is3¼D4

n0 ¼ fB2,. . .;B5g; Is2¼D2
n1 ¼ fB1,. . .;B5g; and Is1¼D3

n2 ¼
fB2,. . .;B5g:Finally, wewill have In0 ¼ Ioldn0 [ Inewn0 ¼ fB2,. . .;B5g; In1 ¼ fB1,. . .;B5g
and In2 ¼ fB2,. . .;B5g:
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We start solving model AP with the lower bound jKjAP ¼ P
p;s;n

Demandp;s;n
IPVmax

n0

l m
¼

8000
4000

� � ¼ 2: The optimal solution satisfies all product demands and is worth $67600. To
confirm that this is the global optimal solution, the problem is also solved for
jKjAP ¼ 3, but no improvement is observed (see Table 2). In fact, the third pumping
run is a dummy operation (

P
i ki;k3 ¼ 0) and so jKjAPopt ¼ 2. The optimal schedule from

model AP is depicted in Fig. 3.

Table 2. Computational results for Example 1.

Case |K| CPU (s) C.var B.var Eqs Backorder (%) Obj. Fun ($)

AP 2 0.16 504 84 1022 0 67600
AP 3 0.24 626 110 1271 0 67600
DSM 3 0.01 248 110 669 12.5 210300
DSM 4 0.11 317 136 849 12.5 210300
DSM 5 0.13 386 162 1029 0.0 10500
DSM 6 0.22 445 188 1209 0.0 10500

20
00

20
00

2000 3000 2000 m3

1000

1000

1000

3000 2000

1000

1000

1000

1000B2

1000

10
00

10
00

10
00

10
00

10
00

10
00

10
00 1000

1000

1000

1000

10
00

10
00

10
00

20
00

10
00

3000 2000 2000

2000

2000

1000

1000 1000

1000 1000

2000

2000

2000

1000

3000

4000 1000

1000

2000

2000

2000

2000

D1 D4

D3

D2
Refinery

00.00

Start [h] End [h]

00.00    20.00

20.00    40.00

40.00    50.00

50.00    70.00

70.00    80.00

100 m3/h

100 m3/h

100 m3/h

100 m3/h

100 m3/h

50 m3/h

50 m3/h

50 m3/h

50 m3/h

100 m3/h

50 m3/h

Flow rate

50 m3/h

1000 m3

2000 m3 3000 m3 7000 m3

P1 P2 P3 P4

Stopped Volume

Restart Volume

50 m3/h

Fig. 4. Optimal schedule of Example 1 using DSM.

Hierarchical Decomposition Approach for Detailed Scheduling 259



To solve DSM, the initial number of pumping operations should be accounted by
using the equations introduced in Sect. 6. By doing so, we have jKjDSM � 3: By setting
jKjDSM ¼ 3 and 4, the resulting problems present the same solution of $210300, from
which $200000 correspond to backorders. For jKjDSM ¼ 5 and 6 demand is fully
satisfied and the value of the objective function is the same (see Table 2). The optimal
detailed schedule using model DSM is depicted in Fig. 4.

To show the advantages of the proposed DSM approach, Table 3 gives the results
for Example 1 using CC and the monolithic model (DP) presented in Sect. 3. From the
table, the CC approach contains 6 pumping runs i.e., one more pumping operation with
respect to our DSM approach. Furthermore, a larger volume should be restarted. For
example, the third segment of the mainline should be restarted two times, one in the
second pumping run and another in the last operation (specified in blue rectangle in
Fig. 5). Besides, the same segment stops from time 40.00 h to 50.00 h (specified in red
rectangle in Fig. 5). However, in our proposed two level approach, there is only one
flow restart in the mainline segment (blue rectangle in Fig. 4) and no flow stoppage.
Compared with the single level DP approach, the proposed DSM approach finds the
same solution in less time, requiring a smaller model size.

8.2 Example 2

Example 2 is taken from Mostafaei et al. [22] and deals with the detailed scheduling of
a tree-like pipeline with two first-level branch lines. The first secondary line leaves the
mainline at point 3000 m3 and conveys products to depots D3 and D4. The second
secondary line emerges at point 15000 m3 of the mainline and transports products to
depot D5. The pipeline structure and its initial batch profile are given in the first line of
Fig. 6. The product injection rate at the refinery should be kept between 300 and
800 m3/h. Other data for this example, together with the aggregate transportation plan,
can be found in [22].

To solve DSM, we adopt jKjDSM ¼ jKjAPopt ¼ 10; but the solution presents unsat-

isfied demands at the optimum. Backorders are also not avoided for jKjDSM ¼ 11 and
12. By setting jKjDSM ¼ 13; an optimal solution of $15680 is obtained, which cannot
be improved for jKjDSM ¼ 14 (see Table 4). Figure 6 shows the optimal detailed
schedule for Example 2 using DSM.

Table 3. Comparison of solutions obtained by DSM, CC and DP for Example 1.

|K| CPU C.var B.var Eqs Obj. Fun Total
(s) ($) cost($)

CC 6 0.01 461 146 1209 15600 83200a

DP 5 0.89 894 198 1932 78100 78100
DSM 5 0.13 386 162 1029 78100 78100a

a Total cost for DSM and CC is the optimal cost obtained
from AP plus the cost obtained by DSM objective function
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To show that the proposed decomposition approach DSM is more efficient and
flexible, we solve Example 2 using the single level model (DP) [22] and CC. Table 5
compares the solutions obtained. DP and DSM generate the same optimal solution, but
DSM finds the optimum seven times faster. CC requires a few more pumping opera-
tions (22 vs. 13 for DSM) to meet demand for a 3.8% higher cost.
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Table 4. Model size and computational requirements of Example 2 for DSM.

Case |K| CPU (s) C.var B.var eqs Backorder (%) Obj. Fun ($)

AP 10 22.14 2850 546 5387 0 817800
DSM 10 4.85 1942 467 3669 3.65 760560
DSM 11 18.38 2128 509 4008 1.38 306800
DSM 12 32.17 2314 551 4347 0.19 55680
DSM 13 48.34 2500 593 4686 0 15680
DSM 14 97.29 2668 635 5025 0 15680
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8.3 Example 3

Example 3 is a large-scale case study involving a portion of the Iranian pipeline system.
The trunk line in Fig. 1 starts at Tondgooyan refinery in Tehran using feedstock from
the Ahvaz, Maroon and Shadegan oil fields and ends at Mashhad, the second most
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Table 5. Comparison of solutions obtained by DSM, CC and DP for Example 2.

DP [22] CC DSM

No of pumping runs 12 22 13
No of binary variables 782 1381 593
No of continuous variables 3714 6281 2500
No of constraints 5864 9090 4686
CPU time (s) 348.21 200.56 48.34
Total cost ($) 833480 865160 833480
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populous city in Iran. The mainline capacity is reduced from 27840 to 22800 m3/day
after the output facility located at Shahrood (depot D4). The first secondary line leaves
the mainline at point 87200 m3 carrying products to three depots D9, D10 and D11. It
contains a lateral branch line starting from depot D9 to depot D11, located at Gorgan.
The second secondary line emerges at point 153800 m3 of the mainline and transports
products to Khayyam combined cycle power plant (depot D12). The last secondary line
branches from the mainline at point 166100 m3 and carries products to Torbat-e
Heydarieh city (depot D13). The pump rate in the refinery should be set between 600
and 1160 m3/h and the time horizon has a length of 240 h (10-day). Unit restart cost is
0.1 $/m3, for all segments, each pumping run has a fixed cost of $2000, and backorder
has a unit cost of 10 $/m3. Other data for this example are listed from Tables 6, 7 and 8.

The optimal aggregated plan for example 3 with 4 pumping runs is depicted in
Fig. 7 and was found in just 1.93 s of CPU. The pipeline optimal schedule involves the
injection of four product batches P124810, P235025, P3128674 and P258341 into the
mainline, with subscripts indicating the injection sizes in m3. To generate a detailed
schedule, DSM needs at least 8 pumping operations, which cannot fully meet product
demands. By setting the number of pumping runs to 9, DSM finds a solution worth
$40042.8, which is not improved by jKj ¼ 10: The model statistics and computational
results of Example 3 are all listed in Table 9.

Table 6. Flow rate range in pipeline segment of Example 3.

Pipeline section
Ref–D4 D4–D8 D4–D9 D9–D10 D9–D11 D6–D12 D7–D13

Flow rate (m3/h) 600–1160 600–850 120–410 50–410 50–410 80–00 100–350

Table 7. Product demands at depots of Example 3.

Demand (10 � m3)
P D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

P1 289 817 0 430 623 407 – 2837 100 380 185 – –

P2 – 500 870 680 1060 1882 1451 2140 195 370 800 – 690
P3 350 400 480 890 500 10 1245 2126 370 580 – 137 890

Table 8. Product inventory at refinery and interface cost of Example 3.

Inventory (m3) Interface volume
(m3)/cost ($)

Refinery P1 P2 P3

P1 24810 – 60/100 X
P2 93366 60/100 – 50/100
P3 128674 X 50/100 –
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9 Conclusions

This paper has presented an optimization algorithm for detailed scheduling of two-level
tree-like pipeline networks featuring a unique refinery and multiple depots. Such
pipelines consist of a mainline, first-level branches split from the mainline, and second-
level branches emerging from the first-level lines. The algorithm consists of a two-level
approach, featuring closely related continuous-time mixed-integer linear programming
models in each level. Decisions related to the sequence of product injections and the
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Table 9. Model statistics and computational results of Example 3.

Case |K| CPU (s) C.var B.var eqs Backorder (%) Makespana (h) Obj. Fun ($)

AP 4 1.93 1853 458 4360 0 212.82 60000
DSM 5 0.01 1193 497 3006 – – Infeasible
DSM 6 0.04 1405 588 3544 – – Infeasible
DSM 7 0.81 1621 679 4082 – – Infeasible
DSM 8 1.92 1837 770 4620 9.93 213.57 283361.6
DSM 9 31.01 2053 861 5158 0.0 215.37 40042.8
DSM 10 212.7 2269 952 5696 0 215.37 40042.8
a For indication only (not part of objective function)
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destination for each batch are made at the higher planning level, while the lower level
then finds the sequence and timing of product deliveries. Through the solution of three
example problems, two of them involving real-world case studies, we show that the
proposed algorithm is more flexible than previous hierarchic approaches and is able to
solve large-scale problems in quite reasonable time. Future work will involve gener-
alizing the proposed method for multi-level tree pipeline networks.

Acknowledgments. Financial support from Fundação para a Ciência e Tecnologia through
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Abstract. Wind energy is a field of main importance in the transition
away from fossil fuels. In order to achieve this goal, reducing produc-
tion cost of wind energy is of primary importance, especially for offshore
wind parks. In the present paper we illustrate optimization models to
achieve this goal for the cable routing problem. In particular we focus on
the economical impact of considering power losses in the optimization.
The resulting optimization problem considers both minimizing immedi-
ate costs (CAPEX) and minimizing costs due to power losses in the park
lifetime. Thanks to the close collaboration with a leading energy com-
pany, we have been able to conduct different what-if analyses on a set
of existing wind parks. Having a fast and reliable tool to optimize cable
routing considering or not power losses, we have been able, for the first
time, to quantify the impact of these kinds of decisions at design phase.
Our results illustrates the importance of considering power losses already
at the design phase, as well as the importance of having a sophisticated
optimization tool, compared with the traditional manual design.

Keywords: Mixed Integer Linear Programming
Offshore wind parks · Green energy · Cable routing · Cable losses

1 Introduction

Wind power is a leading technology in the transition to green sources of energy.
Having a yearly market growth of 15–20%, it is however necessary to face new
challenges on a market that is more and more competitive. According to [11] the
expenses for electrical infrastructure of a offshore wind farm account for 15–30%
of the overall initial costs. Therefore, high-level optimization in this area is a
key factor. Cable layout is a problem of great interest in many companies and it
is typically solved only manually. Different types of cable layout problems can
be addressed: in this paper we study the inter array cable optimization, i.e.,
the optimal routing to connect offshore turbines and to collect their energy in
one or more substations. In particular, we focus on the impact of considering
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power losses already in the design phase. While the energy flows through a
cable, indeed, part of it gets lost due to the intrinsic resistance of the cable. An
optimized selection of the cable structure and the cable type, can reduce the
amount of these losses.

The main scope of the inter-array cable routing is to collect the power pro-
duction of turbines in offshore substations. To do that, each turbine must be
connected to one substation through a loop-free path. The inter-array cable
routing optimization problem consists in finding the cable connection that min-
imizes the associated cost. Since different cables with different costs, capacities
and resistances are available on the market, the task is not only to find the
turbines to be directly connected, but also to choose appropriate cable types to
minimize losses.

Wind park cable routing optimization has obtained considerable attention
in the last years. Due to the large number of constraints and the intrinsic com-
plexity of the problem, many studies (i.e. [6,12,16,18]) preferred to use ad-hoc
heuristics. Only a few papers used Mixed Integer Linear Programming (MILP),
notably [1,2,4,5,7,14,17]. A MILP approach boosted with heuristics (a so-called
matheuristic approach) to deal with large-scale wind parks in an acceptable
time has been recently proposed in [8]. The present work is based on [8] but
focuses more on real applications of the optimization model and on its economi-
cal impact. Several variants of the problem have been proposed in the literature.
To the best of our knowledge only [4] has considered power loss in cables. How-
ever, [4] does not take into account variable cable loads due to fluctuating wind.
[1] proposes an Open Vehicle Routing approach for this problem adding the
planarity constraints on the fly. In this Open Vehicle Routing version of the
problem, only one cable can enter a turbine, even if this is often not the case in
the reality. In [1], the possibility of branching cables in the turbines (as we are
doing), is mentioned as a future work. However, the substation limits, that could
be a major constraint in practical applications, are not considered in [1]. Differ-
ent approaches for the cable network design are provided in [2]. The suggested
approach is a divide-and-conquer heuristic based on the idea of dividing the big
circuit problem into smaller circuit ones. They also propose a MILP model, but
it cannot deal with more than 11 turbines. In [14] the cable layout problem for
onshore cases is studied.

Thanks to the collaboration with a leading energy company it has been pos-
sible to build a detailed model including a majority of the constraints arising in
practical applications, and to evaluate the savings of optimized layouts on real
cases. First, the energy flow is unsplittable (so the flow leaving a turbine must be
supported by a single cable) and the flow in each cable cannot exceed its capac-
ity. Secondly, also the substations that collect the energy has some limitations.
In particular, each substation has a maximum number of electric connections,
i.e., a maximum number of cables that can be connected to it. Moreover, cable
crossings should be avoided. Cable crossing is not impossible in principle, but
is highly not recommended in practice. Building one cable on top of another is,
indeed, more expensive and increases the risk of cable damages. Therefore it is
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important for a model to take this planarity constraint into account. We used a
Mixed Integer Linear Programming (MILP) approach with ad-hoc heuristics to
solve difficult instances of this problem [8]. The resulting optimization tool has
been validated by company experts, and is now routinely used by the planners.

The main contribution of the present paper is to analyse how the inter-array
cable routing of real-world wind farms can be improved by using modern opti-
mization techniques. A particularly challenging aspect in the cable routing design
is to understand if one could limit power losses by optimizing cable routing. As
a general rule, cables with less resistance are also more expensive, therefore we
would like to make a proper trade-off between investments and cable losses. We
formulate the optimization problem with immediate costs (CAPEX) and losses-
related costs as two separate goals. The two objectives can be merged into a
single objective by proper weighing of the two parts. The weighing factor can be
considered fixed or can vary: this makes it possible to perform various what-if
analyses to evaluate the impact of different preferences (i.e. weighing factors).
This analysis is important in cases where a positive pay-back is demanded within
a short time horizon, or where liquidity problems hinder choosing the best long-
term solution. We report a study of both approaches on a set of real-world
instances.

In our computation of power losses, we show that wind scenarios can be
handled efficiently as part of data preprocessing, resulting in a MILP model of
tractable size. Tests on a library of real-life instances proved that substantial
savings can be achieved.

Our paper is organized as follows: Sect. 2 describes our MILP model, first
presenting a basic model and then improving and extending the formulation.
In particular, we show how to model power losses, and propose a precomputing
strategy that is able to handle this non-linearity efficiently, thus avoiding sophis-
ticated quadratic models that would make our approach impractical. In Sect. 3
we describe how to handle large size instances using a matheuristic approach.
Section 4 compares our optimized solutions with an existing cable layout for
a real wind farm (Horns Rev 1), showing that millions of euro can be saved.
Section 5 is dedicated to various what-if analyses. In particular, Subsect. 5.1
describes the real-world wind farms that we considered in our tests, while Sub-
sect. 5.2 shows the results of our optimization on a testbed of real-world cases,
reporting the impact of considering power losses for all the instances. Section 6
is dedicated to different analyses on the weighting factor: Subsect. 6.1 analyses
the impact of different return-of-investment requirements on the cable routing
costs, while Subsect. 6.2 studies the impact of considering price fluctuations on
the market. Some conclusions are finally addressed in Sect. 7.

The present paper is an extended version of the conference paper [9] from
the same authors, where both the methodological and the test part have been
extended. In particular, in the present paper, we describe some matheuristic
techniques that can be used for difficult instances and we present sensitivity
analyses on price fluctuations.
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2 Mathematical Models

In order for this paper to be self-contained, we start by reviewing the MILP
models and algorithms we proposed in [8]; the interested reader is referred to
the given paper for details.

2.1 Basic Model

We assume that the location of the turbines has already been defined. We wish
to find an optimal cable connection between all turbines and the given substa-
tion(s), minimizing the total cable costs. The optimization problem considers
that:

– the energy flow leaving a turbine must be supported by a single cable;
– the maximum energy flow (when all the turbines produce their maximum) in

each connection cannot exceed the capacity of the installed cable;
– different cables, with different capacities, costs and impedances, can be

installed;
– cable crossing should be avoided;
– a given maximum number of cables can be connected to each substation;
– cable losses (dependent on the cable type, the cable length and the current

flow through the cable) must be considered.

We will first model the problem without cable losses and then discuss in
Subsect. 2.2 how to efficiently express these latter constraints. We model turbine
positions as nodes of a complete and loop-free directed graph G = (V,A) and all
possible connections between them as directed arcs. Some nodes correspond to
the substations that are considered as the roots of the trees, being the only nodes
that collect energy. Let Ph be the power production at node h. We distinguish
between two different types of node: VT is the set of turbine nodes, and V0 is the
set of substation nodes. Let T denote the set of different cable types that can
be used. Each cable type t has a given capacity kt and unit cost ut, representing
the cost per meter of the cable (CAPEX). Arc costs can therefore be defined as
cti,j = utdist(i, j) for each arc (i, j) ∈ A and for each type t ∈ T , where dist(i, j)
is the Euclidean distance between turbine i and turbine j. In our model we use
the continuous variables fi,j ≥ 0 for the flow on arc (i, j). The binary variables
xt
i,j define cable connections as

xt
i,j =

{
1 if arc (i, j) with cable type t is selected
0 otherwise.
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Finally, variables yi,j indicate whether turbines i and j are connected (with any
type of cable). Note that variables yi,j are related to variables xt

i,j as
∑

t∈T xt
i,j =

yi,j . The overall model can be stated as follows [8]:

min
∑

i,j∈V

∑
t∈T

cti,jx
t
i,j (1)

s.t.
∑

t∈T
xt
i,j = yi,j , i, j ∈ V : j �= i (2)∑

i:i�=h
(fh,i − fi,h) = Ph, h ∈ VT (3)∑

t∈T
ktx

t
i,j ≥ fi,j , i, j ∈ V : j �= i (4)∑

j:j �=h
yh,j = 1, h ∈ VT (5)∑

j:j �=h
yh,j = 0, h ∈ V0 (6)∑

i�=h
yi,h ≤ C, h ∈ V0 (7)

xt
i,j ∈ {0, 1}, i, j ∈ V, t ∈ T (8)

yi,j ∈ {0, 1}, i, j ∈ V (9)
fi,j ≥ 0, i, j ∈ V, j �= i. (10)

The objective function (1) minimizes the total cable layout cost. Constraints
(2) impose that only one type of cable can be selected for each built arc, and
defines the yi,j variables. Constraints (3) are flow conservation constraints: the
energy (flow) exiting each node h is equal to the flow entering h plus the power
production of that node (except if the node is a substation). Constraints (4)
ensure that the flow does not exceed the capacity of the installed cable, while
constraints (5) and (6) impose that only one cable can exit a turbine and none
can exit the substations (tree structure with root in the substations). Finally,
constraints (7) impose the maximum number of cables (C) that can enter each
substation.

In order to model no-cross constraints we need a constraint for each pair
of crossings arcs, i.e. a very large number of constraints. We have, therefore,
decided to generate them on the fly, as also suggested in [1]. In other words,
the optimizer considers model (1)–(10) and adds the following new constraints
whenever two established connections (i, j) and (h, k) cross

yi,j + yj,i + yh,k + yk,h ≤ 1. (11)

The reader is referred to [8] for stronger versions of those constraints. Using
this approach, the number of non-crossing constraints actually added to the
model decreases dramatically, making the model faster to solve. As presented,
the model is able to deal with small size instances only. In order to produce high
quality solutions in an acceptable amount of time also for large-scale instances,
a “matheuristic” framework (as the one proposed in [8]) can be used on top of
this basic model. We refer to Sect. 3, for more details.
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2.2 Cable Losses

In this section we review an extension of the previous model taking cable losses
into account (still from [8]). Consider a generic cable of type t under wind sce-
nario s. Power losses increase with the square of the current gt,si,j , according to
the formula:

3Rt · dist(i, j)(gti,j)
2 (12)

where Rt is the electrical resistance of the 3-phase cable of type t, in Ω/m.
Decision variable gt,si,j obviously depends on the considered wind scenario. As a
consequence, dealing with Eq. (12) directly in the model, would imply dealing
with non-linearities over multiple scenarios. Nevertheless, (12) can be simplified
if we assume that all the turbines in the park have the same power production
under the same wind scenario. This is a fair assumptions since typical parks
are constructed by using only one turbine model and wake effect is not usually
considered in electrical studies. Under this assumption, the current Is passing
through a generic cable supporting f turbines (say), can be expressed as gt,si,j =
fIS where Is is the current produced by a single turbine under scenario s.
Accordingly, power loss can be expressed as a function of f , as

PLosst,f,s = 3Rtdist(i, j)(fIs)2. (13)

The value f ∈ 1, . . . F is limited by the capacity of the cables. By introducing
the dependency on f in our main binary variables (now xt,f

i,j ) we can re-write
our two cost contribution as:

min
∑

i,j∈V

∑
t∈T

∑
f∈F

∑
s∈S

πsPLosst,f,sxt,f
i,j (14)

and

min
∑

i,j∈V

∑
t∈T

∑
f∈F

cti,jx
t,f
i,j , (15)

where πs is the probability of scenario s. As we have discussed earlier, minimizing
losses can imply an increase of the CAPEX cost, therefore the two objective must
be properly balanced. In some cases (e.g., when there is no limit on the CAPEX)
they can be merged, by using a converting factor for the loss-related term: this
is the estimated cost for each MW of production lost over the wind farm lifetime
(Net Present Value). This value (denoted K) is an input value, that the designer
can set to the desired project-specific value. The merged objective function, now
expressed in e, is then:

min
∑
i,j∈V

∑
t∈T

∑
f∈F

cti,jx
t,f
i,j + K

∑
i,j∈V

∑
t∈T

∑
f∈F

∑
s∈S

πsPLosst,f,sxt,f
i,j . (16)



On the Impact of Considering Power Losses in Offshore Wind Farm 273

The new set of variables xt,f
i,j can actually be handled implicitly in a pre-

processing phase, without changing the original model (1)–(10), according to
the following idea. We consider the basic model (1)–(10) without cable losses
on a modified instance where each cable type is replaced by a series of “subca-
bles” with discretized capacity and modified cable cost taking both CAPEX and
revenue losses due to cable losses into account.

Nearly all wind farms are designed for only one turbine type, hence the
maximum power production Ph of each turbine can be normalized to 1, meaning
that we can express the cable capacity as the maximum number of turbines
supported. Consider a certain cable type t that can support up to kt turbines.
We replace it by kt “subcable” types of capacity f = 1, 2, . . . , kt whose unit
cost is computed by adding both cable/installation unit costs (ut) and loss costs
(denoted as losst,f ) considering the current produced by exactly f turbines. Note
that such unit costs increase with f , so the optimal solution will always select
the subcable type f supporting exactly the number of turbines connected, hence
the approach is correct.

The above approach allows us to easily consider multiple wind scenarios
without affecting the model size. This is obtained by precomputing the subcable
unit costs by just considering a weighted average of the loss unit cost under
different wind scenarios (and hence different current productions). To be more
specific, we can now precompute the value

losst,f = 3RtK
∑

s∈S
πs(fIs)2, (17)

where πs is the probability of scenario s and Is is the current produced by a
single turbine under wind scenario s. We refer to the next subsection for a more
detailed example of how cable costs are pre-processed when considering losses.
As said, K is a factor to estimate the value (in e) of a MW loss, and can be
computed as K = keuro · 8760 where keuro is the NPV for a MW/h production
over the park lifetime, and 8760 is the number of hours in a year. Notice that
keuro acts as a weighing factor between the two objectives: minimize CAPEX
costs versus minimize losses. In practice, this value is site-specific so it is given
by the business team of the specific farm. It takes into account the expected cost
of energy and the lifetime of the park. In Sect. 6.1 we will sketch a sensitivity
analysis on the variation of this parameter, looking in particular at the effect
of considering a shorter return of investment for the park. In general, we will
consider a unique keuro that does not follow the variations of the spot price:
wind parks, indeed, commonly operate at a protected and fixed price for most
of their lifetime (at least in Denmark). In Sect. 6.2 we will consider the case of
using market prices, i.e. having a different keuro for different wind scenarios. We
will analyse the impact of considering price fluctuation on the losses optimized
solution on real-world instances.
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2.3 Loss Pre-computation

In this section we illustrate the pre-computing strategy proposed in the previous
session, using a concrete example from the real wind park Horns Rev 1. The
park consists of 80 2 MW turbines and is located about 15 Km from the Danish
shore. This park will be used as one of our test cases in Sects. 4 and 5.

Cable sets can differ in cable cross section or in voltage (33 kV or 66 kV
generally), which reflects in different capacities and resistances. The set of most
adequate cables is selected by the electrical specialists in the company. Of course,
different cable types can lead to different optimal layouts, as we will see in Sect. 5.

Let us suppose that we are given a set of two cables: the cheapest one can
support 10 2 MW turbines and the most expensive 14 turbines. This set of cables
will be indicated as cb05 in Sect. 5. We are provided with the following table,
that reports the characteristics of the two cable types (including installation
costs).

Table 1. Cable information for cb05 [9].

Cables Type No. of 2 MW turb. Resistance [Ω/km] Cost [e/m] Install. cost [e/m]

cb05 1 10 0.13 180 260

2 14 0.04 360 260

If we want to optimize on CAPEX costs only, we just need to input to the
model the capacity of each cable type and its overall cost (cable price plus
installation cost). In this case, for example, this would be:

– type 1: supports up to 10 turbines with a unit cost of 440 e/m
– type 2: supports up to 14 turbines with a unit cost of 620 e/m.

Third column of Table 2 shows how the model will compute the unit price
(CAPEX only) depending on the number of turbines connected.

Let us now consider losses using the strategy of Subsect. 2.2. As we discussed
earlier, the power loss in a cable depends on the current passing through it. Since
only a discrete number of turbines can be connected to each cable path, we can
express the current as a function of the number f of turbines connected without
any loss of precision in the result.

Still referring to Eq. (17), the losses depend also on the wind statistics in the
site. We can define a wind scenario (s) as a wind speed and its probability to occur
(πs). At a given wind speed, a given turbine will produce a specific current (Is).

Wind scenarios can be defined in different ways. In this paper we used both
real measurements and scenarios derived from Weibull distributions for the spe-
cific sites. For the Horns Rev 1 case we are considering, we had real measurements
from the site, i.e., a wind speed sample each 10 min for 10 years. We grouped
all these samples in wind-speed bins of 1 m/s, obtaining 25 wind scenarios (from
1 to 25 m/s). The probability of each scenario was obtained looking at the
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frequency of the specific wind speed over all the samples. In our tests we decided
to bin our data every 1 m/s, following the practice in electrical losses computa-
tions. However this should not be considered a limit: since the wind scenarios
are handled in the pre-processing phase, the number of scenarios does not affect
the size of the final optimization model.

Having computed Is and πs according to the scenario definition, power losses
can now be calculated. Parameter keuro = 690 e/MWh was computed by the
company experts for a wind park lifetime of 25 years, while resistance Rt is
defined according to Table 1. Using Eq. (17), the cost for power losses losst,f

can be now precomputed. As shown in (16), the cost considered in the objective
for each cable connection will need to include the CAPEX costs (ut) and the
contribution from losses (losst,f ). Therefore the final input to the optimization
tool for Horns Rev 1 with cb05, will be as shown in the fourth column of Table 2.

Table 2. Precomputed cable prices for cable cb05 (including installation costs) for
Horns Rev 1. First column indicates the cable type, second column indicates the number
of turbines supported f . Third column indicates the CAPEX costs, while fourth column
reports prices with also power losses costs included.

Cable type No. of 2 MW turb. supported CAPEX cost [e/m] Cost with losses [e/m]

1 1 440 441.16

2 440 442.71

3 440 445.27

4 440 448.87

5 440 453.50

6 440 459.15

7 440 465.83

8 440 473.54

9 440 482.28

10 440 492.04

2 11 620 639.77

12 620 643.41

13 620 647.36

14 620 651.63

A comparison between the last two columns of Table 2 shows the impact of
considering losses on cable prices. While from a installation perspective the cost
for each cable type is fixed, it now varies depending on how many turbines are
connected. As we will see, this can have a significant impact on the optimal cable
routing.
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3 Matheuristics

In a practical setting, one would like to find high-quality solutions in short
computing time, making it possible to experiment with different settings. This
could be useful, for example, for what-if analyses considering different cables
from different manufactures, or to evaluate the effect of different design choices
(as we will do in Sect. 5). In some difficult cases, model (1)–(10) could require
long computing time before producing even the first feasible solution. On the
other hand, due to the intrinsic structure of MILP solvers, having a first solution
as soon as possible in the branch-and-bound tree could significantly speed up
the overall resolution. In [8] we used MILP-based heuristics on a relaxed version
of the model to quickly produce first solutions for the MILP solver. The relaxed
model and the matheruistics applied on it, are next outlined for the sake of
completeness.

3.1 A Relaxed Model

Model (1)–(10) can be relaxed to find feasible solutions faster. This can be
obtained by allowing for disconnected solutions, that are penalized by high costs.

To be more specific, we introduce a new variable, lh ≥ 0, that indicates the
loss at the node h. The cost of a unit loss is fixed to M , a large positive constant
greater than all the prices involved in the optimization (we used 109). This is to
ensure that a connected solution would always have a lower cost compared with
a disconnected one.

The relaxed model is then obtained from (1)–(10) by replacing (1) with

min
∑

i,j∈V

∑
t∈T

cti,jx
t
i,j +

∑
i
Mli (18)

and (3) with ∑
i:i�=h

(fh,i − fi,h) = Ph − lhh ∈ VS ∪ VT . (19)

A MILP solver applied to the relaxed model is typically able to find, in a few
seconds, a feasible (possibly disconnected) first solution and to quickly proceed
in the tree enumeration to discover better and better ones. Therefore, the relaxed
model is used in our experiments.

3.2 Matheuristics Based on the Relaxed Model

As its name suggests, a matheuristic is the hybridization of mathematical pro-
gramming with metaheuristics. The idea presented in what follows is to use the
relaxed model powered up by the use of a metaheuristic. We refer the interested
reader to [3,10,13], for a more general treatment of the subject. The basic idea
of our matheuristic is to restrict the number of variables in the optimization by
temporary fixing some arcs of the best solution found so far, and re-optimize on
the remaining arcs. In other words, given a feasible solution y∗ of the relaxed
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model, we fix to 1 some of the y variables with y∗
i,j . Note that in our problem,

fixing some arcs implies to exclude all the crossings arcs, with a drastic redac-
tion in the dimension of the model. In order to decide which arcs to fix in the
solution, we used different heuristic strategies.

Our first matheuristic works as follows: The relaxed model is solved with a
short time limit and the best found solution y∗ is returned. Afterwards, the arcs
selected in this solution (i.e., all those variables having y∗

i,j = 1) are temporally
fixed with a certain probability (e.g. 0.5). The resulting restricted problem is
reoptimized on the remaining arcs, and the approach is repeated.

As already observed, every time some arcs are heuristically fixed on input, in
a preprocessing phase we can forbid all possible crossing arcs (i.e. we can set to
zero all the variables related to them). This is very important for the success of
our heuristic, as the restricted problems become much easier due to the fixing.

Our second matheuristic uses a similar approach, but with a more problem-
related strategy to choose the fixing probability. Instead of having a fixed prob-
ability to select arcs, the probability is now related with the distance to the
substation(s): the arcs closer to the substation(s) are fixed with a higher proba-
bility. The distance of an arc (i, j) to the substation(s) is defined as

DISTi,j = max{minh∈V0dist(i, h),minh∈V0dist(j, h)}.

Distances are normalized with respect to the longest distance in the specific test
instance (DISTMAX) and the fixing probability is computed as 1 − DISTi,j/
DISTMAX . In this way the arcs closer to the substation have an higher proba-
bility to be fixed and the optimization tends to focus on the more far away arcs.

The third matheuristic is specific for wind farms with only one substation.
Analysing the solutions, indeed, the layout appears divided in sectors: the final
layout looks as a collection of “irregular rays” connected to the substation. Our
third matheuristic is therefore randomly decomposing the problem in sectors,
fixing the arcs outside the sector and re-optimizing inside. To be more specific,
all the nodes are ordered according to their angle with the substation. A turbine
(that we will call “the seed”) is randomly selected and the sector is defined by
picking the next μ turbines in the ordered sequence (e.g. μ = 30% of the total
number of turbines). The arcs connecting turbines outside this sector are fixed
while any arc (i, j) where i or j is in the sector, is reoptimized. The already dis-
cussed pre-processing is applied on the fix arcs and the optimization is re-run. If
the new solution is improved, we select a new seed close to the previous one (i.e.
in the ordered vector we pick a node in the interval [current seed −2, current seed
+2], according to a normal distribution), while, if the solution is not improved,
the new seed is the 5th turbine after the current seed. Figure 1 illustrates this
last heuristic. Turbines are represented as black dots, while the substation is
the red square. Different cable types are represented by arcs of different colours.
Some turbines are connected to other turbines or to the substation with different
types of cables (in blue and green). The first plot in Fig. 1 shows the first (dis-
connected) solution obtained using a MILP solver on the relaxed model with a
few-second timelimit. A sector is defined on this solution (in pink in the picture).
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The variables y referring to arcs outside this sector are fixed to 1. This means
that these connections are fixed in the next iteration (cable types are instead
not fixed, meaning that the colour of the connection in the plot can vary). The
restricted MILP model (with fixed variables) is passed again to the MILP solver
with a short timelimit. The second plot in Fig. 1 shows the new solution we got
from the solver. The arcs outside the sector are kept in the new solution, even if
the type of cable changed, while the arcs inside the sector are not reselected in
the new solution. By repeating this framework many times, the solutions quickly
improve exploring different neighbourhoods.

Fig. 1. Two consecutive iterations of the Sector matheuristic: after a short timelimit
we receive a first disconnected solution from the solver (left plot). We define a sector
(in pink) and we fix all the connections outside the sector (setting the corresponding
y variables at 1). We pass the new (restricted) problem to the solver, that returns the
solution on the second plot (right plot). We iterate the process obtaining still better
solutions to warm start the MILP solver. (Color figure online)

All three matheuristics are used in our tests, repeating them 5 times before
starting the final MILP-solver run (without any fixing). We refer to [8] for a
computational analysis on the impact of using matheuristics techniques on the
wind farm cable routing problem.

4 Comparison with an Existing Layout

We report in this section a comparison between our optimized solutions (consid-
ering and not considering losses) and the existing cable routing for Horns Rev 1,
a real-world offshore park located in Denmark. Figure 2 shows the actual design
for Horns Rev 1 (from [15]).
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Fig. 2. Existing cable routing for Horns Rev 1 [9]. (Color figure online)

Fig. 3. Optimized layout for Horns Rev 1 (CAPEX costs only): this layout is more
than 1.5 Me more profitable than the existing one [9]. (Color figure online)

Three different types of cables are used: the thinnest cable supports one tur-
bine only, the medium supports 8 turbines, and the thickest 16. We estimated the
costs and resistances of these cables based on the cable cross section. The estimated
prices are 85e/m, 125e/m and 240e/m, respectively, plus an estimated 260e/m
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for installation costs (independent of the cable type). We ran our CAPEX opti-
mization with the above prices obtaining the layout in Fig. 3. The optimized lay-
out is significantly different from the existing one. Looking at immediate costs, the
optimized layout is more than 1.5 Me less expensive. As already said, this layout
is optimized only on immediate costs, nevertheless if we estimate its value in 25
years (considering losses) it is still more profitable than the existing one (by about
1.6 Me).

By optimizing cable losses, one can further increase the value in the long
term. Figure 4 shows the optimized solution considering losses (thus optimizing
the value of the cable route in its lifetime). Compared with the existing layout
(Fig. 2), this new layout is about 1.7 Me (NPV) more profitable in 25 years, and
still around 1.5 Me cheaper at construction time.

Fig. 4. Optimized layout for Horns Rev 1 (considering losses): in the wind park lifetime
this layout is estimated to be more than 1.7 Me more profitable than the existing
one [9]. (Color figure online)

Table 3 summarizes the savings of the two optimized layouts compared with
the existing one, both from an immediate cost perspective and from a long-term
perspective; all values are expressed in ke.

The test shows that more than one million Euros can be saved using our
optimization methods on real parks. In the next section we want to focus on
the other big advantage of using automatic optimization tools: the possibility
of performing a number of what-if analyses. To the best of our knowledge, this
is the first detailed study on the impact of different design choices on the cable
routing itself and on its impact on immediate costs (CAPEX) and long term
costs.



On the Impact of Considering Power Losses in Offshore Wind Farm 281

Table 3. Savings of optimized solutions compared with the existing cable routing for
Horns Rev 1 [9].

Opt mode Savings [ke]

Immediate In 25 years

CAPEX 1544 1605

Lifetime 1511 1687

5 Impact of Considering Power Losses on Real Instances

We performed a number of what-if analyses on different real-world wind farms. In
particular, we were interest in evaluating the impact of considering power losses
in the design phase. We will next compare solutions optimized only for CAPEX
costs, with solutions optimized looking at the whole lifetime of the park. We
will then study the usage of different types of cable (with different resistances)
in both cases, and the long-term savings compared with the possibly higher
investments costs.

5.1 Test Instances

We tested our model on the real-world instances proposed in [8]. They consider
five different real wind farms in operation in United Kingdom and Denmark, and
one new wind farm under construction. These parks are Horns Rev 1, Kentish
Flats, Ormonde, Dan Tysk, Thanet and Horns Rev 3.

This dataset includes old and new parks, with different power ratings and
different number of turbines installed, and therefore represents a good bench-
mark for our tests. Each park has one substation with its own maximum number
of connections (C).

In details:

– Horns Rev 1 has 80 turbines Vestas 80-2 MW and C = 10.
– Kentish Flats has 30 turbines Vestas 90-3 MW. It is a near-shore wind farm, so

it is connected to the onshore electrical grid without any offshore substation.
Nevertheless, only one export cable is connected to the shore, therefore the
starting point of the export cable is treated as a substation. We set C = ∞
as there is no physical substation limitation in this case.

– Ormonde has 30 Senvion 5 MW and C = 4.
– DanTysk has 80 Siemens 3.6 MW and C = 10.
– Thanet has 100 Vestas 90-3 MW and C = 10.
– Horns Rev 3 has 50 Vestas 164-8 MW and C = 12 (this is a preliminary layout

for this park).

The dataset also includes different sets of cables, indicated as cb01, cb02, cb03,
cb04 and cb05.
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The cost of the cables considering power losses has been precomputed fol-
lowing the strategy described in Subsect. 2.2. We computed the cable-loss prices
using real data (for Horns Rev 1 and 3, Ormonde and DanTysk) and estimates
based on Weibull distributions (Kantish Flats and Thanet).

Each combination of site (i.e., wind farm) and feasible cable set represents
an instance in the testbed.

5.2 Impact of Considering Power Losses

The aim of this subsection is to analyse how cable routing changes when cable
losses are taken into account. We used the real-world instances presented in the
previous subsection to perform our tests. We ran our optimization tool with a
time-limit of 10 h (on an Intel Xeon CPU X5550 at 2.67 GHz, using Cplex 12.6 as
MILP solver) in order to have high quality solutions (for small instances, these
are in fact proven optimal solutions).

In all our instances, thicker cables are more expensive and have lower resis-
tance. This means that if the designer of the cable routing aims only at mini-
mizing the initial costs (CAPEX), then he/she would go for the cheapest cables
satisfying the load, thus increasing the power losses. On the contrary, focusing
only on minimizing the losses, one would go for the most expensive cables, thus
increasing the initial costs. Using the methods explained in Sect. 2.2, we aim at
finding the optimal balance between the two objectives, looking at the overall
costs in the life time of the park.

As it can be seen from Table 4, the amount of savings varies from instance to
instance, depending on the prices, on the restrictions of the specific wind farm,
and on the structure of the layout.

It should be noticed that the layout optimized on the wind/farm lifetime
always provides some savings in the long term, but the amount highly varies
from case to case. In Fig. 5 the case of Horns Rev 3 with cable set cb04 is
shown.1 As expected, the usage of thicker cables (green in the figure) increases
in the loss-optimized layout.

In this case the loss-optimized layout is 41 ke more expensive at construction
time (with respect to the CAPEX optimized layout). Nevertheless, in 25 years,
this amount is paid back and 172 ke are additionally saved.

We now try to investigate how the optimizer is restructuring the layout in
order to achieve savings in the long run. As already noticed, every wind farm is
different, so one cannot define a rule of thumb to design a good cable routing.
Nevertheless, observing our layouts, we noticed a different proportion in the
usage of the cable types (black and green in the figures). In particular, all the
CAPEX solutions minimize the use of the expensive cables: looking only at
the immediate costs, it is always preferable to go for the cheapest cable when
possible, even creating longer connections. When optimizing considering losses,
instead, cables with less resistance become more appealing, even if they are

1 This is a preliminary layout from Vattenfall, not necessarily reflecting the final lay-
out.
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Table 4. Increase in the initial investment and long term savings for our test instances
(Net Present Value). The first two columns denote the wind farm and possible cable
types. The next column shows how much the investment is increased in the layout
taking cable losses into account. In all test cases this amount is paid back in 25 years,
and the additional savings by using the lifetime-optimized cable layout are shown in
the last column [9].

Wind farm Cable set Increase in initial
investment [ke]

Net savings in 25y [ke]

Horns Rev 1 cb01 1 23

cb02 24 60

cb05 103 56

Kentish Flats cb01 2 3

cb02 1 4

cb04 19 8

cb05 5 1

Ormonde cb03 9 0

cb04 19 16

DanTysk cb01 115 21

Thanet cb04 15 92

cb05 1 19

Horns Rev 3 cb04 42 172

cb05 682 208

Fig. 5. Optimized cable routing for Horns Rev 3, using cable set cb04. The experts
imposed the additional constraint that cable type 2 can support 5 turbines only twice.
The top layout is optimized only on CAPEX, the second considers power losses as well
[9]. (Color figure online)
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more expensive. In the Horns Rev 1 instance, for example, going from CAPEX
optimized to lifetime-optimized the usage of type 1 cables decreases (from 55.5%
of the total length to 40.3%) and the usage of type 2 cables increases (from 44.5
to 59.7%).

In Table 5 we report the cable usage (percentage of the total cable length)
for all our test-bed solutions.

Table 5. Analysis on the usage of different types of cables when optimizing considering
or not losses. The last three columns report the usage of the different cable types as
percentage of the total cable length of that layout [9].

ID Wind farm Cable set Opt mode % length

Type 1 Type 2 Type 3

1 Horns Rev 1 cb01 CAPEX 55.1 40.1 4.8

2 Lifetime 53.6 41.7 4.7

3 cb02 CAPEX 57.4 42.6

4 Lifetime 44.1 55.9

5 cb05 CAPEX 100.0 0.0

6 Lifetime 87.7 12.3

7 Kentish Flats cb01 CAPEX 66.4 33.6 0.0

8 Lifetime 66.1 33.9 0.0

9 cb02 CAPEX 66.4 33.6

10 Lifetime 60.8 39.2

12 cb04 CAPEX 90.1 9.9

13 Lifetime 90.1 9.9

14 cb05 CAPEX 95.6 4.4

15 Lifetime 95.6 4.4

16 Ormonde cb03 CAPEX 69.6 30.4

17 Lifetime 76.7 23.3

18 cb04 CAPEX 66.9 33.1

19 Lifetime 67.4 32.6

20 DanTysk cb01 CAPEX 39.0 19.4 41.7

21 Lifetime 38.7 22.5 38.8

26 Thanet cb04 CAPEX 86.3 13.7

27 Lifetime 82.7 17.3

28 cb05 CAPEX 71.9 28.1

29 Lifetime 71.9 28.1

30 Horns Rev 3 cb04 CAPEX 57.4 42.6

31 Lifetime 60.7 39.3

32 cb05 CAPEX 51.8 48.2

33 Lifetime 52.6 47.4
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All in all, it can be observed from our results on real-world instances that in
most cases it is convenient to invest in cables with lower resistance. The cable
route and the type of cable selection for each connection is not an obvious choice
and an optimization tool is necessary to determine it.

6 Analysis on the Energy Price k

In this section we will focus on the value K appearing in Eq. (17). As we have
seen, K is the a factor to estimate the value (in e) of a MW of loss, and is
computed as K = keuro · 8760 where keuro is the NPV for a MW/h production
over the park lifetime, and 8760 is the number of hours in a year. Note that K
acts as a balancing factor between the immediate costs (CAPEX) and the power
losses. In this section we will investigate the impact of this balancing factor on
the final layout. In Subsect. 6.1, we will perform a multi-criteria analysis where
we consider different values of keuro, supposing that the company requests that
the extra investment must be paid off in a limited number of years. Secondly,
in Subsect. 6.2, we will evaluate the impact of considering fluctuating prices
depending on the wind scenario.

6.1 Sensitivity Tests on the Return of Investment

As discussed in Subsect. 2.2, one has to balance between two opposite objectives:
minimizing immediate costs and minimizing revenue losses in the long run. As
we have seen in the previous tests, these two objectives are not always aligned
since the more expensive cables have lower resistances (so less losses). The bal-
ancing factor between the two objectives is keuro, that represents the price of
energy (Net Present Value). Setting keuro to zero, for example, means that there
is no revenue from selling energy, therefore it does not matter to have losses,
but it is instead important only to minimize immediate costs. This corresponds
to the case that we called “CAPEX optimized” in the previous tests. On the
contrary, setting keuro to a high value, implies that big revenue can be earned
selling more energy, so it is very important to minimize losses (whatever initial
costs this could imply). The balance between the two objectives, in practice, is
set by defining the parameter keuro for the specific project of interest. This is
a value known by the designer, and varies from project to project. A realistic
value for keuro has been used in the tests of the previous subsection (this value
considers weighted average cost of capital (WACC), subsidies for 10 years of
operations and estimated market price). Nevertheless, one could be interested in
studying how the balance between immediate costs and long term costs varies
when varying keuro. As a practical example, one could be interested in optimizing
CAPEX and losses at the same time, but being sure to pay off the extra invest-
ment in a short time. We considered, in this test, Horns Rev 3 with cable set
cb04. For keuro = 0 we have our CAPEX solution of Fig. 5 (top), for keuro = 690
e/MWh we have our life-time loss-optimized solution of Fig. 5 (bottom). Com-
pany experts estimated 690 e/MWh to be a realistic value for the energy earning



286 M. Fischetti and D. Pisinger

Table 6. Bi-objective analysis for Horns Rev 3 with cable set cb04: solutions change
when varying parameter keuro [9].

keuro Immediate
cost [ke]

Total lifetime
cost [ke]

Revenue loss due
to power losses
[ke]

0 47283 52663 5379

176 47291 52551 5259

252 47309 52508 5199

321 47325 52490 5165

386 47325 52490 5165

690 47325 52490 5165

over 25 years of operation (expected lifetime of a wind park). We asked them to
recompute this value assuming that we want a return of investment in a shorter
time. They recomputed it to be keuro = 176 for two years, keuro = 252 for 3
years, keuro = 321 for 4 years, and keuro = 386 for 5 years. Setting our balanc-
ing factor keuro to these values translates in imposing that extra CAPEX cost
will be paid back in 2, 3, 4 or 5 years, respectively. We recomputed the cable
costs according to these different values of keuro and re-optimized the layout
accordingly. Once the optimized layouts were found, we re-evaluated them with
keuro = 0 to evaluate their CAPEX costs and keuro = 690 to estimate their
cost in 25 years. Table 6 shows these figures. For keuro higher than 321 e/MWh
the layout is not changing. This means that in the lifetime optimized solution
(keuro = 690) all the additional CAPEX costs were actually paid back in 4 years
of operation. In Fig. 6 we plot the values from Table 6: the value of the different
layouts is decomposed into its CAPEX (x axis) and lifetime-cost part (y axis).
The first point (marked by “+” on the leftmost extreme) represents the value
for the CAPEX optimized solution (keuro = 0): it has the lowest immediate cost,
but the highest cost on the long run. Proceeding from left to right, the next “+”s
represent the solutions optimized over 2, 3, 4 and 5 years respectively. As already
mentioned, from the 4th year on, the layout is not changing any more, and is
equal to the solution optimized on the park lifetime (keuro = 690), therefore all
these layouts are represented at the same coordinates in the plot in Fig. 6.
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Fig. 6. Bi-objective analysis from Table 6. Each “+” corresponds to a layout optimized
for a given value of keuro (specified beside each “+”) and its coordinates correspond to
its immediate cost (x axis) and costs in 25 years (y axis). The layouts optimized with
keuro = 321, 386, and 690 are the same [9].

6.2 Considerations on Price Fluctuations

In all our analyses we assumed to have a unique price for energy, independently
of the wind scenario. This is in general true, since, at least in Denmark, parks
operate with a protected price for about 10 years. Nevertheless, in other coun-
tries, this could not be the case, and the price of energy would depend on the
market.

In this subsection we suppose not to have a warranted price for wind energy,
but to sell energy at the market price. Of course this analysis requires a sufficient
amount of data on the spot market price variations. We recorded the Nord Pool
prices over the first semester of 2015, sampling the market price every hour
together with the wind speed in the park at that time. Figure 7 plots these
samples against the wind speed in Horns Rev 1.

It can easily be observed from Fig. 7 that there is a correlation between
energy prices and wind: when there is low wind (under 5 m/s) the price tends to
be higher, while when the wind is high (over 12–15 m/s) the price drops. This is
because of a surplus of MWh production at high wind speeds.

Looking at this analysis, one could then re-consider the power losses figures
we have used so far, and investigate the impact of price fluctuations on the cable
routing. In order to do so, we had to reformulate the loss cost-related part of the
objective function, considering that now the value keuro depends itself on the
wind scenario s, and therefore will be indicated as ks

euro in the following. The
value losstf to precompute is now

losstf = 3Rt
∑
s∈S

πs(fIs)2ks
euro. (20)
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Fig. 7. Spot price (DKK/MWh) on the y-axis vs wind speed (m/s) on the x-axis for
HR1. Each dot represents a real-world sample recorded in 2015.

We consider again the Horns Rev 1 case in our test, with the same cable set as
in Sect. 4. In order to estimate the impact of considering a ks

euro that varies with
scenarios s, we compared with the case of a fixed keuro, equal to the average
spot price. In both cases we considered a WACC of 8%. Figure 8 shows the
two options: in yellow, the value of keuro that varies over the different wind
speeds (x-axis); in red, the value of keuro that is fixed at the average market
price (0.22 e/KWh). The value of keuro in the varying case (yellow line) has
been computed by a simple interpolation of the registered spot prices (Fig. 7),
by computing their average at each wind speed. Note that, in formula (20), the
different scenarios s are weighted by their probability πs: the blue line in Fig. 8
represents the probabilities used in our test case (extracted from samples of
real-data from Horns Rev).

Fig. 8. keuro variations over different wind speeds in the two possible approaches:
considering one fixed value equal to the average market price (red line), or explicitly
considering the price variations (yellow line). The blue line shows the frequency of the
different wind scenarios in the site. (Color figure online)
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We computed the cable prices for the two strategies, using the precomputing
strategy of Subsect. 2.3 with formula (17) for fixed price, or with formula (20)
for fluctuating price. Table 7 shows the result of the precomputation: the first
two columns give the details of the cable set (type of cables, and capacities in
terms of number of turbines), the third column reports CAPEX prices, the fourth
column the prices computed considering losses with a fixed keuro; and the fifth
column considering a price of energy that varies over different wind scenarios.

Table 7. Costs for the cables. In the first two columns we indicate the type of cable
and its capacity, expressed as number of 2 MW turbines supported. The third column
reports the CAPEX costs of the cables, including installation costs. The last columns
show the cable prices taking power losses into account: in the fourth column assuming
a fixed price of energy (i.e., the average market price), in the fifth column considering
a different price of energy for each scenario.

Type No. of turb. CAPEX Avg. Fluctuating

1 1 345 345.56 345.56

2 2 385 385.85 385.85

3 385 386.65 386.64

4 385 387.77 387.76

5 385 389.21 389.19

6 385 390.97 390.95

7 385 393.04 393.02

8 385 395.44 395.41

3 9 500 509.12 509.09

10 500 511.21 511.17

11 500 513.52 513.47

12 500 516.05 515.99

13 500 518.80 518.74

14 500 521.77 521.69

15 500 524.96 524.87

16 500 528.37 528.27

As already discussed, until the max capacity of the cable is reached, the
CAPEX cost (third column) does not depend on the number of turbines con-
nected – while the costs including losses (fourth-fifth column) do. Comparing
the last two columns, it can be noticed that the input cable prices are not very
sensitive to the variation of keuro. This is also explained by the fact that the
extreme wind speeds, where keuro varies the most, are also the less frequent
ones. At the most frequent wind speeds (between 5 and 15 m/s) keuro is closer
to its average value (see Fig. 8). If we run the optimization tool on the HR1 case
using the losses prices, we obtain the two layouts in Fig. 9. As in our previous
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layout plots, different colours indicate different cable types. Referring to Table 7,
black lines represent cable type 1, green cable type 2, and blue cable type 3.

Fig. 9. Layout considering no protected price of energy: the first plot shows the opti-
mized layout considering a fixed price of energy, equal to the average market price. The
second plot shows the optimized layout considering price variations over the different
wind scenarios. (Color figure online)

Assume that the company decides to use the layout optimized for the aver-
age price (first plot in Fig. 9). If we re-evaluate this layout considering fluctuat-
ing prices, we can conclude that the company would loose 1400 e (0.006%) in
the park lifetime, with respect with the fluctuating-price layout (second plot in
Fig. 9). This shows that the impact of considering fluctuating prices is, in this
example, very small.

All in all, our results suggests that price fluctuations do not significantly
impact the layout. Even if it is less profitable to avoid losses when the price of
energy drops, this event is so rare in reality that it does not pay off to consider
it in the cable routing optimization.

7 Conclusions

In this paper we used Mixed Integer Linear Programming (MILP) and
Matheuristic approaches to optimize inter-array offshore cable routing. The main
focus of the paper is to quantify the impact of considering both the immediate
cable costs and power losses already at design phase. First, we illustrated how
to mathematically model the problem and how to deal with large scale instances
using a matheuristic approach. Next, we performed different analyses on real-
world instances. To begin with, we compared the optimized solution with an
existing cable layout, proving that more than one million Euro can be saved
by using adequate optimization tools for the offshore cable routing problem.
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Afterwords, we compared optimized solutions under different assumptions to
understand and (for the first time) quantify the impact of considering cable
losses in real offshore cable routings.

In general, we observed that it is convenient to use cables with less resis-
tance in order to reduce power losses, even if these cables are more expensive
at construction time. We used our testbed to evaluate the profitability of the
new solutions, both in terms of CAPEX and revenue in the long term. Results
show that it is very difficult to define some “rules-of-thumb” for this problem,
since usage of cables and savings highly vary from instance to instance. This
proves that a proper optimization tool, as the one presented here, is necessary
for an optimal design of each layout. Finally, we performed different analyses on
the balancing parameter keuro. This corresponds to giving more or less impor-
tance to power losses in the objective function, and it is of great importance for
designers. In this way, indeed, they can evaluate the return of investment and
the impact of their assumptions on the long-term energy price, when designing
their cable routing. In particular, we looked at two specific reasons for which
the company could consider different energy prices: requirements on the return
of investments and fluctuations of the energy price on the market. In the latter
case, we extended the original model to consider the dependency of the energy
price over the different wind scenarios, using real-world measurements. Our tests
showed that it is important to define a value of keuro that well reflects the require-
ments of the specific project, whereas the layout is not very sensible to small
variations of this parameter.
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Abstract. In developing countries, such as those in Latin America, inland
flows of container terminals present high levels of uncertainty and variability.
This situation occurs mainly due to lack of automation procedures, affecting
coordination with the hinterlands. In this article, a methodology based on a
dwell time segregated container storage policy is proposed. This methodology
considers only import containers, due to the difficulty to determine a segregation
criterion, which motivated us to use container dwell time information. Dwell
times are discretized to determine classes, so that containers of the same class
are assigned to close locations at the yard. The architecture of a decision support
system to aid the stacking decisions based on this storage policy is proposed.
The port of Arica in Chile is considered as a case study, and a discrete-event
simulation model is also proposed to estimate potential benefits of this approach.
Numerical results for the case study show a good performance, with potential
reduction of the rehandles incurred when containers are retrieved from the yard.

Keywords: Container storage policies � Dwell times of containers
Segregation of containers � Classification algorithms

1 Introduction

World container port throughput increased by an estimated 5.1% to 651.1 million
TEUs in 2013 and global containerized trade was projected to grow by 5.6% in 2014
[42]. Maritime ports are strategic nodes on the international logistic chain whose
current role goes beyond the traditional functions of transferring cargo to a more active
participation and promotion of value-added services to the port stakeholders. Ports can
be conceptualized from a logistics and supply chain management approach and under
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this vision the traditional port system is extended to an “integrated channel manage-
ment system” where the port is a key location linking different flows and channels with
the port community [6]. In this con-text, efficient cargo handling operations are
essential, as new value-added services, as well as better service levels, agility and
predictability are demanded by the users of the port. The productivity of a container
terminal is related to an efficient use of labor, equipment and land, and is commonly
measured as a function of the ship turnaround time, the transfer rate of containers and
the dwell times of the cargo at the port [8, 19, 20].

At the port, the yard can serve as a buffer between the arrival and departure of
temporarily stored cargo which is later loaded on a ship or dispatched to external
carriers. The efficiency of the operations at the yard significantly impact ship turn-
around times so adequate container storage space assignment policies and yard
equipment planning are needed. In addition, minimizing port dwell times is one of the
main objectives from the perspective of the shippers in the port supply chain [29].

Coordination of landside operations at a container terminal is not straightforward in
ports in developing countries where there are important challenges in terms of
infrastructure development, technology implementation and paper-based documental
procedures. Latin American and Caribbean (LAC) ports have seen an important
increase in their participation in world foreign trade. This growth has put pressure on
the freight distribution systems that need to develop better logistics capabilities [37].

In the article of [23], the problem of defining a container storage space allocation
policy for import containers is addressed by considering the case of a container ter-
minal that faces a high level of uncertainty in the dispatching process of import con-
tainers. This uncertainty is mainly explained by the lack of coordination mechanisms
with the hinterland, a situation that can be very common at ports in emerging countries.
In the present chapter, we describe in more detail than [23] the classification algorithms
and the evaluation metrics used to select one of them. Also, we include the statistical
description of the used database, from which seven factors were considered, including a
brief description of them. In addition, we present a comparative analysis of the clas-
sification algorithm based on a Pareto-analysis in order to improve the dwell time
estimations. Finally, we extend the conclusions derived from the simulation results, and
present some recommendations for the Port of Arica that may enhance better container
dwell time estimations. For instance, additional information of the type and content of
cargo, whether the container is FCL (Full container loaded) or LCL (Less than con-
tainer loaded), etc.

The assignment of space at the yard for export containers is not considered in this
article. The reason is that yard planners of container terminals have general criteria to
group export containers into segregations (e.g., vessel, port of destination, weight, etc.),
while for import containers is more difficult to determine, as the time in which the
containers are retrieved depends on the different consignees of the cargo (importers)
and the fulfillment of all the procedures, resulting in more uncertainty, compared to
export containers that all will be loaded to a single vessel at the container terminal.

During the dispatching of an import container, it is possible that other containers
may be blocking the container and should be removed to be able to reach the required
container. These non-value added movements are refereed as “rehandle” or “reshuffle”
of containers. Rehandles represent a high cost with no value for the container terminal,
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and increase the truck turnaround times of the external trucks at the container terminal,
generating congestion and affecting service levels of to the users of the container
terminal.

To assign a storage space for the import containers in the yard, a dwell time
segregated storage policy is proposed. In this case, segregations of import containers
are defined based on dwell time intervals, and containers of the same segregation are
assigned to close locations. The aim is to reduce potential container rehandles at the
retrieval of containers from their locations at the yard. Hence, containers with the same
interval of dwell time located at close positions in the yard, may incur in less number of
rehandles. To estimate dwell times of import containers, classification algorithms are
employed. This is justified as the results of the estimations are used to define import
container groups based on dwell time ranges, so the precise values of the predicted
dwell times are not needed. In addition, the design of a decision support system for the
assignment of storage space to import containers is proposed with the aim to assist the
yard planner with a tool that may be interconnected with the Terminal Operator System
(TOS) of the container terminal.

As a case study, the container terminal at the port of Arica in Chile is considered.
High levels of uncertainty for import container dispatching as well as long dwell times
are observed in the container terminal due to the type of cargo handled; around 70% of
the cargo is in-transit from Bolivia. The political agreement between Chile and Bolivia
establishes special conditions for the in-transit cargo where no storage fee is charged.
The current practice of the yard managers is to assign space to containers in a semi-
random fashion where containers are located at the yard considering only the space
utilization rules that have been set to avoid unutilized space.

To validate the methodology proposed in a stochastic environment, a discrete-event
simulation model was implemented, to determine the potential impacts in terms of
rehandles of containers when are retrieved to be dispatched to external transport
carriers.

The article is structured as follows: Sect. 2 presents a literature review. Section 3
describes the methodology employed and the proposed dwell time segregated storage
policy. Section 4 presents the architecture and components of the decision support
system for the storage space assignment of import containers. Section 5 presents the
case study as well as the simulation model to estimate the benefits of using the pro-
posed support system to assign storage space to import containers. Conclusions and
recommendations for further research are provided in Sect. 6.

2 Literature Review

In this section, we present a literature review and provide some context of the problem
addressed in this manuscript. Section 2.1 presents a review of the main contributions in
the literature related to dwell time estimation studies, while Sect. 2.2 presents a review
on the determinant factors of dwell time.
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2.1 Dwell Time Estimation’s Contributions in the Literature

Port terminal capacity is defined as the amount of cargo that can be handled by a port
per time period [4]. The first contributions related to capacity analysis at the yard of a
Container Terminal are presented by [13, 15, 26], where storage capacity at the yard is
estimated as a function of container dwell times, the number of stacking containers, and
the container storage space available expressed in TEUs (twenty-foot equivalent units),
among other factors.

Determining the factors that influence port choice and port competitiveness is
another research avenue where cargo dwell times are identified as an explicative
variable [14, 33, 40, 44]. [1] identify dwell time as a factor that directly affects
operational costs in the ports as it increases inventory levels and uncertainty in the
dispatching process. On the other hand, dwell times have also been identified as an
element of port competiveness and a factor in port choice related decisions [30].

From a macro-economic perspective, the impact of port delays at Puerto Limón in
Costa Rica, over the regional economy in Central America is estimated in [43]. They
conclude that reducing port inefficiencies, such as long dwell times of cargo at the
ports, may improve the GDP (Gross Domestic Product) of Costa Rica by about 0.5%.
[17] employed a gravity model to estimate the impact that each additional day required
for dispatching cargo may have on the GDP. The unproductive movements undertaken
during quay transfer operations are quantified by [7]. They identify storage density as a
factor of unproductive movements during ship loading and unloading operations. This
refers to the number of containers stacked in the yard and the ground slots used for
storage. Furthermore, their results show that housekeeping moves represent most of the
unproductive moves undertaken.

[31] estimates dwell time impact on the capacity of a terminal based on a sensitivity
analysis, where he computes the yard storage capacity by employing the model pro-
posed by [11], considering five scenarios with different dwell times and container
types. The interaction among the terminal operators and the users of the port (e.g.
importers/exporters, freight forwarders) is analyzed by [38] and they conclude that the
relationship and collaboration levels could impact container dwell times at the port.

An analysis of dwell times at ports in Sub-Saharan Africa is presented by [36].
Main findings highlight that dwell times are abnormally long, more than 2 weeks, and
show an abnormal dispersion which increases the inefficiencies of port operations and,
in consequence, total logistic costs. [5] provide an analysis of the causes of these long
dwell times from the shipper perspective, discovering the crucial importance of private
sector practices and incentives.

[32] analyze the factors that determine container dwell times in a port, employing
three data mining algorithms: (i) Naive Bayes Algorithm [28], (ii) Decision Tree C4.5
[34] and (iii) The Hybrid Bayesian decision tree [27]. Estimation results are compared
in terms of four indicators: accuracy, the Kappa coefficient, RSME and execution times.
In order to evaluate the results they provide a simulation under different scenarios with
the results obtained. An important difference with respect to the work presented herein,
is that the authors do not use the results to estimate container storage assignment
policies. In addition, the data mining algorithms also differ from those proposed in this
article.
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Another contribution of the work is presented in [23], is the discretization of a
continuous variable (dwell time) for its prediction, justified by the fact that the results
are employed as criteria to segregate import containers and assign storage space
according to this policy. In contrast, [32] do not employ classification algorithms in
their approach, which is reasonable as their aim is not to determine storage space
policies which is an important difference with respect to the work presented here.

Another contribution of [23] is the simulation proposed model that aims to measure
the impact of different storage policies in terms of the number of rehandles incurred
when containers are dispatched to external carriers. It is important to point out that in
the literature there is no approach proposed in which the input data of a simulation
model consists of the results obtained by the classification algorithms for dwell time
estimation. In this work, we extend the research of [23], describing in more details the
classification algorithms and the evaluation metrics used for selecting a more accurate
method.

2.2 Determinant Factors of Dwell Time

The main factors considered in the literature as dwell time determinants are presented
in Table 1. The factors are divided into two groups: unique value and nominal value.
Factors with a unique value are those that may have a unique value at each port and this

Table 1. Main determinant factors of dwell time (Source: [23]).

Factor References Type

Frequency of the sailing schedules of the vessels [31, 32] Unique
value

Type of container (e.g., empty/full, dry/reefer, etc.), size (20/40
TEUs) and its contents

[31, 32] Nominal

Modal split of hinterland connections [31, 32] Unique
value

Port Governance and structure [31, 32] Unique
value

Location of the Port Terminal and the main products (or logistic
chains) that are transferred

[31, 32] Unique
value

Terminal working hours and business days [31, 32,
38]

Unique
value

Shippers and consignee [32, 38] Nominal
Inspections and regulatory procedures [32] Unique

value
Transport corridors [32] Nominal
Ocean carriers or Maritime Shipping Company and the demurrage
time for the empty containers

[32] Nominal

Container flow balance (export and import) [32] Nominal
Freight Forwarder/Broker and Third Party Logistics Company
(3PL)

[32] Nominal
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value does not vary as a function of the cargo transferred at the port (i.e., the frequency
on the itineraries, the location of the port terminal, etc.). This type of factor is not
considered as the results for predicting dwell time are employed for container space
allocation policies and this is influenced by the amount of cargo handled. On the other
hand, nominal and numerical factors correspond to factors that vary as a function of the
cargo handled, where nominal factors are represented by strings and numerical factors
by a number. For instance, a nominal factor is related to the name of the importer or
exporter, while the weight of a container is a numerical factor.

3 Methodology Description

The dwell time segregated storage space policy is based on generating segregations of
import containers based on dwell time intervals. In this way, containers of the same
segregation are those whose dwell time is predicted to be at the same interval. In order
to determine the dwell time classes and estimate the potential impact of the proposed
storage space policy, the proposed methodology is described in the following Table.

Table 2. General methodology (Source: [23]).

Factor

Input: Data Base of historical information- arrival and departure time of import containers

1. STAGE 1: Dwell time prediction by classification algorithms

1.1.Class definition as a function of time intervals to discretize the dwell time 
numerical variable. 

1.2.Application and validation of the classification algorithms based on a predictive 
model. 

1.3.Identification of the interrelation among the dwell time measure units based on a 
multi-classifier generation.

1.4.Performance evaluation of the classification algorithms.

2. STAGE 2: Dwell time segregated storage policy implementation and evaluation 

2.1.Segregate containers based on the dwell time classes obtained in Stage 1.

2.2.Run the simulation model for a set of instances, testing the performance in terms of 
the number of rehandles when containers are retrieved. Compare results with 
alternative storage policies that may resemble the current practice of the Container 
Terminal under study. 

Output: Policy and impact estimation if dwell-time segregated policy is implemented.
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3.1 STAGE 1: Dwell Time Prediction by Classification Algorithms

As observed in Table 2, the first stage consists of applying classification algorithms to
predict dwell times. For this, it is necessary to have a database with historical data
about the containers’ arrival and departure times at the yard. Step 1.1 is related to the
class interval definition. We consider that the classes may be measured in three time
units: hour, day and week. Table 3 summarizes the classification algorithms evaluated.
These algorithms allow to analyze classes with nominal values. Table 4 presents a
more detailed description of Step 1.2 of the general methodology.

Depending on the stages of the classification processes, there are diverse types of
algorithms. The most commonly used are Naïve Bayes, Lazy Learning and Rules
Induction Learning [24]. As indicated in Table 3, the classifiers Naive Bayes are based
on the Bayes probability function, while the classifiers Lazy Learning are algorithms
that do not require to create a predictive model. On the other hand, the Rules Induction
Learning algorithms are classifiers that create a predictive model based on the rules
applied to the training set [24]. It is important to highlight that in addition to classi-
fication algorithms, in this research we also employ multi-classifiers [41] with the aim
to analyze the improvements achieved in the classification results.

For the sample size definition, the formula to be used is provided by [11], in which
the size of the population is assumed to be an input data. For the classification model,
different classification algorithms can be evaluated according to the specific charac-
teristics of the Container Terminal under study. In addition, Step 1.3 consists of the
definition of the multi-classifier to determine the inter-relations among different dwell
time measure units. Step 1.4 consists of an evaluation of the results obtained by the
different classification algorithms. Four performance metrics are considered: (i) the
number of instances classified correctly, (ii) the Kappa coefficient, (iii) the computa-
tional time and (iv), the mean squared error in time units [47].

3.2 STAGE 2: Dwell Time Segregated Storage Policy Implementation
and Evaluation

A common practice of terminal operators is to assign space to containers at the yard
based on segregations. To determine segregations of import containers based on dwell
time intervals, the predicted dwell times and intervals found in stage 1 (see Fig. 1) are
employed for an instance of the container terminal under study. Then, a real time
stacking heuristic for locating the import containers in each dwell time segregation is
defined, so that containers of the same segregation may be assigned to close locations
with the aim of reducing rehandles when containers are retrieved.

To evaluate the benefits of implementing the policy at the yard, a discrete event
simulation model is also proposed, in which the dwell-time storage space policy is
implemented to define the location of the import containers at the yard. The dispatching
process of the import containers to external carriers is also simulated in order to count
the number of rehandles incurred. More details will be provided at Sect. 5 with the case
study.

With the aim to define an error index of the predictions obtained with the classi-
fication algorithms, several validation methods can be employed. As an example, we
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Table 3. Classification algorithms evaluated (based on [23]).

Algorithms Description References

K nearest neighbors (KNN) This algorithm is based on a distance
measurement. The class of each
instance is assigned according to the
biggest class of the K nearest
neighbors

[12]

Naive Bayes (NB) This is a family of simple probabilistic
classifiers, based on the Bayes
conditional probability. To apply this
algorithm, it is necessary to guarantee
the independence of the attributes

[28]

One Rule (OneR) The OneR algorithm is a simple
classification algorithm that creates a
rule for each predictor or attribute in
the training data and chose the rule
with the smallest total error. In order
to create a rule for each attribute, it is
necessary to construct a frequency
table for each predictor against the
target

[25]

Incremental Reduced Error Pruning
(IREP) or Repeated Incremental
Pruning to Produce Error Reduction
(RIPPER or JRip)

It is a classifier algorithm based on the
construction of decision rules in a
greedy fashion (one rule at a time). It
integrates pre-prunning and post-
prunning into the learning process.
The basic idea is each clause is pruned
right after it has been generated. In
this case, after learning a clause from
the growing set, literals are deleted
from this clause in a greedy fashion
until any further deletion would
decrease the accuracy of this clause on
the pruning set

[22]

K* The K* has a similar procedure as the
KNN algorithm, but instead distance,
it considers the entropy as a measure

[10]

Decision Table (DT) The DT algorithm is an exact method
for the numerical prediction of
decision trees. It generates an ordered
set of rules If-Then, that have the
potential of being more compact and
easy to understand than decision trees

[27]

Zero Rule (ZeroR) This is the simplest classification
method. It relies on the target and
ignores all predictors. If all the classes
are nominals, it predicts the class with
more frequency. If classes are
numerical, it uses the average value of
the class

[47]
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can mention the simple validation, cross-validation, bootstrap and confusion matrixes
[41]. These methods are further described.

– Simple validation. It consists on employing a portion of date as the training set, with
the aim to construct the model, while the rest of the data is used as the experi-
mentation set.

– Cross validation. It consists on dividing the data into k subsets that are mutually
exclusive of approximately the same size [16]. For this validation, training is per-
formed k times, considering as the training set a different subset each time.

– Bootstrap. It involves taking random samples from the data set with re-selection
against which to evaluate the model. In this case, a random training set of L in-
stances is created (including re-selection).

– Confusion matrix. The matrix is constructed with a table M � M where M corre-
sponds to the number of values that takes the class. Each column of the matrix
represents the number of predictions of each class, while each row represents the
number of instances of the class. This method is used in most of the metrics
proposed in the literature to evaluate the performance of a classification algorithm
[9, 45, 46].

Table 5 summarizes the main performance metrics used in the literature to evaluate
the classification algorithms.

Both the mean squared error as well as the average error for numerical categorical
factors correspond to metrics that are commonly employed to measure the performance
of regression algorithms. We use these metrics as the class is numerical in our research.
Although the values of the dwell time are discretized, these can be transformed to
numerical values to measure the error.

Table 4. Classification algorithms based on a predictive model (Source: [23]).

Step 1.2 Classification algorithm application and validation
INPUT: Data base with historical data on the arrival and departure times of import 
containers

1. Sample size definition 
2. Random sample of instances
3. Definition of the classification model 
4. Evaluation of the classification model 
5. Estimation of the prediction error

Output: Dwell time predictions.
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4 Decision Support System for the Assignment of Storage
Positions to Import Containers

This section details the architecture of a decision support system for the container
position assignment at the yard of a Container Terminal. The aim of the system is two-
fold. First, we enhance the capabilities of the Terminal Operator System (TOS) by
implementing a module which predicts the dwell time based on historical data. Second,
we take advantage of that prediction to suggest an explicit storage location for the
container under scrutiny.

When an import container is unloaded from the vessel and is transported to the
yard, the yard planner examines the container and faces the decision of where to store

Table 5. Main performance metrics of the classification algorithms.

Metric Description References

Number of instances
correctly classified

Number of correct predictions [21]

Accuracy Number of correct predictions divided by the total
number of data

[35, 39,
48]

Kappa coefficient Measure of concordance with respect to the level
of randomness of the classification that varies
between 1 and −1. A Kappa coefficient of 1
indicates that the model is perfect and a value of
zero means that each value of the model is
different from the actual value of the class.
A negative value of the coefficient indicates that
there is no concordance among the observations

[48, 50]

Mean squared error It measures the average of the squares of the errors
or deviations; that is the difference between the
estimator and what is estimated

[49, 50]

Precision Probability that a prediction corresponds to its real
value. It is employed when only two possible
values can be obtained within a class

[21]

Recall Proportion of positive cases that were correctly
classified. It is employed when only two possible
values can be obtained within a class

[21]

C-Statistic Geometric measure that combines the precision
and recall metrics to evaluate the model. It is a
measure of goodness or fit for binary outcomes

[50]

Specificity Capacity of the estimator to correctly identify the
negative cases. It is employed when only two
possible values can be obtained within a class

[21]

Average error for
numerical categorical
factors

These metric is employed for numerical
categorized factors when the class is measured by
a numerical value but it is employed as a nominal
value
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it. The yard planner uses the proposed system to estimate the dwell time based on
characteristics associated to the container and historical information of other containers
stored in the yard. As opposed to expert intuition, this estimation can be used to make
an informed decision. If the yard planner desires, the system can suggest a specific
storage location for the container.

When a container is assigned to a storage slot at the yard, it is stored until requested
by the consignee. There are some cases in which the container may be relocated
because it is blocking the access to the yard crane to retrieve another container. These
movements are also referred as rehandles. One of the objectives of the yard planner, is
to reduce the number of rehandles or relocations of containers, as these are non-value
movements that generate additional costs and waiting times.

The storage space at the yard is organized as a three-dimensional matrix ordered in
bays, columns and rows (please observe Fig. 1 for a pictorial reference). This abstract
representation is convenient for maintaining an internal representation of the current
state of the storage space. It is possible to define algorithmic operations for assigning a
slot to a container, requesting the coordinates of a container, and analyzing if there are
more containers on top of the requested item (i.e., a container), and so on.

To explain the details of our proposed architecture, we will describe a sequence of
temporal events and the relationship with each module of the system. Figure 2 depicts
the software architecture for the above-mentioned decision support system. This system
is constituted by one main module that is connected to the Terminal Operator System
(TOS). The TOS corresponds to a software suite designed to manage the resources of
the enterprise and it can be an in-house developed software or a generic commercial
product (e.g., Navis N4 TOS).

The whole process begins when the import container arrives to the port. At that
moment, the yard planner accesses the graphical user interface (GUI) to identify the
container that must be stored (labeled with the number 1 in the Fig. 2). Then, the
system connects to the TOS, retrieving statistical information regarding the container
such as the name of the consignee, the service or vessel, type of container, weight, etc.

Fig. 1. Baroti index (Source: [23]).
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This information is fed to the predictor and an estimation for the dwell time is obtained
(see number 2 in the Fig. 2). This estimation is made based on a mathematical model
that use the historical data of containers and dwell time kept in the Container database.
The planner use the dwell time estimation to decide where to place the container.

Alternatively, the planner may request to the system a recommendation for the
location of the incoming container to the yard. For this matters, the system includes a
special module that may suggest to the yard planner, a storage position at the yard (see
label 3 in the Fig. 2). The module internally ask for a dwell time prediction, which is
used as the input for an internal algorithm that outputs a location. This output location
is assumed to be the best option for storing the current container. At this juncture, the
general assumption is that two given containers with a similar dwell time must be
located in neighboring regions, while two given containers with large difference in their
dwell times must be assigned to regions that are far between each other.

Once the dwell time prediction and/or the storage position of each incoming
container at the yard have been determined, the system will provide a report to the yard
planner with this information. This report may include a graphical representation of the
yard, specifying the location in which the current container must be assigned (label 4 in
the Fig. 2). Based on this information the yard planner may decide whether to accept to
locate the import container in the suggested position. This action (label 5) is recorded in

Fig. 2. Container Position Assignment System architecture (Source: [23]).
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the Action Database. Here, our idea is that the learning system is generating solutions
for the problem and the human expert can validate them as being correct or wrong,
knowledge that can be further exploited to refine the learning method of the system.

Finally (label 6), the decision made by the yard planner is communicated to the
TOS system, which records the transaction. As a final comment in this matter, we
observe that the architecture is not limited for a single user. Rather, more than one yard
planner may access the service concurrently, which can be an advantageous feature, as
this information for instance, could be provided to the yard crane operators in a mobile
device.

5 Case Study: Port of Arica in Chile

The port of Arica, Chile is used in this case study because it presents a high level of
uncertainty in the import processes and huge container dwell times. The port of Arica
occupies the 43rd position in the Latin American containerized movements ranking
provided by UN-ECLAC, and the 6th position in the Chilean port system, with a total
of 204,174 TEUs transferred in 2013 [18]. The port consists of a single multi-purpose
terminal whose main characteristic is that about 70% of the cargo corresponds to cargo
in transit from Bolivia. The port presents special conditions for cargo handling, due to
the Political Agreements maintained between Chile and Bolivia, a reason for which the
cargo has no storage fee (exports for 60 days and imports up to 365 days). Furthermore,
the main hinterland (located in Bolivia) is more than 1000 km away, in contrast with
the main Chilean ports, Valparaiso and San Antonio, whose main hinterland
(Metropolitan Region of Santiago) is located about 120 km from the ports.

The port of Arica lacks coordination systems such as appointment or booking
systems. In addition, most of the procedures are paper-based and performed with no
anticipation as in other ports. These foster the uncertainty and variability in port
operations, especially for the import processes, resulting in long service times (truck
turnaround times) and container rehandles when retrieved to be dispatched to their
consignees. Under this situation, the current practice of the yard managers is to assign
space to containers in a semi-random fashion, where containers are located at the yard
considering only very simple rules that maximize space utilization.

A segregation based policy for storage space assignment of export containers has
been an efficient strategy for reducing rehandles incurred when containers are loaded
on the ship and is a common strategy at Container Terminals. Segregating export
containers is commonly done based on the ship characteristics that are employed when
the stowage plan is generated and hence, rehandles are potentially minimized. In
contrast, the criteria for segregating import containers is not so straightforwardly
determined, especially if high levels of uncertainty are observed.

In this paper a methodology to implement a dwell time segregated policy for
assigning space to import containers is proposed. The policy considers segregating
containers based on predicted dwell time intervals. To evaluate the different classifi-
cation and multi-classification algorithms employed, the following metrics have been
considered: (i) number of instances correctly classified, (ii) accuracy, (iii) Kappa’s
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coefficient; (iv) the mean squared error; (v) the mean error in time units” and (vi) the
mean error for categorized factors.

A data base with container movements for the years 2011, 2012 and August 2013 is
included, with a total of 151,640 import containers. Seven factors were considered:
(1) size of the container (20/40), (2) type of container (Dry, Reefer, High Cube, etc.),
(3) the status of the container (full or empty), (4) weight, (5) ship where the container is
unloaded, (6) consignee or customer, and (7) the cargo’s port of origin.

The first four factors correspond to characteristics of the container. The factors are
numerical (size of container and weight) and nominal (type, status, ship, port of origin,
consignee). The only dual attribute is dwell time, and the nominal variable consignee
has the largest number of classes (about 5000 to 7000). It is important to mention that
the weight and port of origin are factors not previously employed in the literature (see
Table 1).

Unlike the work of [23], the statistical description of the database, considering the
three years (2011–2013), is presented in this article. Table 6 shows each confidence
interval was computed considering the confidence interval of the average per year. The
database was divided into three subsets of data, segregated by year. Seven factors were
considered: size, type of container, status of the container, weight, vessel from which
the container was unloaded, the corresponding consignee, the port of origin and the
dwell time. Each factor is further described.

The first four factors indicated in previous table correspond to characteristics of the
container. The size indicates if the container is of 20 or 40 TEUs. The type of container
considers if the container is High Cube, Refeer, Open Top, among others. The state of
the container indicates if the container is full or empty, while the weight varies
according to the cargo of the container. The rest of the factors do not describe char-
acteristics of the container: vessel that transported the container, the consignee of the
cargo and the port of origin of the cargo. As observed in previous table, for the
numerical attributes, we compute the average, minimum and maximum value and the
standard deviation. For the nominal attributes, we estimate the number of different
classes. The only dual attribute is the dwell time that is treated as both, nominal and
numerical. It is possible to observe in the same table that the attribute “size of the
container” has the least standard deviation value with respect to its average value. On
the other hand, the attributes “weight” and “dwell time” are the ones that present higher

Table 6. Statistical description of the data.

Factors Type Average Minimum Maximum Standard
deviation

Number of
classes

Size (TEU) Numerical 30.58 ± 0.59 20.00 ± 0.00 40.00 ± 0.00 9.97 ± 0.04
Type Nominal 24 ± 1
Status Nominal 2 ± 0
Weight (ton) Numerical 12.97 ± 2.04 0.16 ± 0.11 292.89 ± 6.78 10.65 ± 0.88
Vessel Nominal 236 ± 42
Consignee Nominal 6.613 ± 1.062
Port of Origin Nominal 329 ± 54
Dwell time
(days)

Nominal/Numerical 12.68 ± 2.22 0.33 ± 0.65 885.33 ± 721.54 15.51 ± 1.38 175 ± 11
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deviation values. The nominal variables type, state, vessel, port of origin and dwell
time have less number of classes than the consignee variable. The port of origin
represents the worst case with 329 classes. On the other hand, the consignee has
between 5000 to 7000 classes.

Due to the high number of classes that the attributes vessels, consignees and port
origin present, we performed a Pareto Analysis with the aim to identify the instances
observed in the 80% of the import containers. The Pareto Analysis identified that
approximately 9.2% of the consignees represent 80% of the import cargo, which is
equivalent to 1,114 consignees. On the other hand, the Pareto Analysis indicated that
27.3% of the vessels transport 80% of the import cargo which corresponds to 39
vessels. Finally, 7.1% of the ports of origin correspond to 80% of the import cargo
which are equal to 34 ports.

5.1 Results Obtained with the Classification Algorithms

In this section, we present the results obtained with the classification algorithms. The
experiments were performed using both the whole database, and also the data selected
based on the Pareto Analysis. This later case was tested for the multi-classifier algo-
rithms in particular. For the classification model, non-supervised classification algo-
rithms were employed as they allow working with known classes (as opposed to
supervised algorithms) [2, 3]. This is justified by the fact that classes are known, since
they are determined in Step 1.1 (see Table 1). The applied offline algorithms are Naive
Bayes, Lazy Learning, and Rules Induction Learning.

Dwell times were measured in days, as this is the commonly used time unit in port
Terminals. The year 2011 data was used to generate the model and the 2012 data was
used to evaluate it. Data for 2013 was used only for the simulation model described in
Sect. 4.2. The algorithms were implemented in JAVA version 1.6.0_25, using the
software WEKA (Waikato Environment for Knowledge Analysis) in a personal
computer with a processor Intel Core 7, and 8 GB of RAM.

Table 7 summarizes the results found with each algorithm. The classification
algorithm that obtained a larger number of correctly classified instances, best accuracy,
Kappa’s coefficient values and root mean squared error is the K*, and the JRip algo-
rithm obtained the best error values. On the other hand, the K* algorithm had longer
computational times (twice as much as JRip).

Table 7. Results obtained with the classification algorithms (Source: [23]).

Algorithms Number of correctly
classified instances

Accuracy Kappa’s
coefficient

Mean squared
error

Rootmean
squared error

Computational
time (seconds)

Error (days)

Naive
Bayes

3,875.8 ± 188.4 6.77% 0.031 ± 0.002 0.058 ± 0.000 0.069 ± 0.000 34.1 ± 2.9 7.88 ± 0.67

OneR 2,365.9 ± 103.3 4.13% 0.019 ± 0.003 0.058 ± 0.000 0.098 ± 0.000 34.1 ± 3.9 8.51 ± 0.20
ZeroR 2,942.3 ± 167.6 5.14% 0.000 ± 0.000 0.058 ± 0.000 0.068 ± 0.000 62.4 ± 4.9 8.21 ± 0.93
Decision
table

3,254.6 ± 256.3 5.68% 0.013 ± 0.005 0.058 ± 0.000 0.068 ± 0.000 27.4 – 1.6 7.12 ± 0.44

K* 4,116.7 – 88.1 7.19% 0.038 – 0.002 0.058 ± 0.000 0.067 – 0.000 109.0 ± 3.4 7.42 ± 0.10
KNN,
K = 1

3,966.6 ± 135.2 6.93% 0.035 ± 0.002 0.058 ± 0.000 0.070 ± 0.000 31.1 ± 10.5 8.07 ± 0.17

JRip 2,760.6 ± 164.1 4.82% 0.002 ± 0.001 0.058 ± 0.000 0.068 ± 0.000 36.6 ± 4.1 6.94 – 0.88
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A multi-classifier algorithm for dwell time predictions was also proposed, and it
was trained using the information from the historical data base. Results are presented in
Table 8, where it can be observed that the KNN algorithm obtained the larger number
of correctly classified instances, accuracy and error values, with a computational time
of 40 s.

As observed in previous tables, the algorithms without the multi-classifier obtained
better results in general. On the other hand, the accuracy values are always lower than
10%, which is explained due to the variability of the ship and consignee factors in the
data base. For dwell time predictions, the average error is about 7 days, which is high,
but under current operations, managers of the port of Arica are not able to estimate
container dwell times, hence in the long run, it is expected that this number can be
reduced.

In order to reduce the dwell time estimation, we consider only the data that resulted
more representative according to the Pareto Analysis for determining data training set.
For this reason, the training set considers only the 9.2% of the consignees, 7.1% of the
ports of origin and 27.3% of the vessels identified in the analysis as correspond to the
most representative. Table 9 presents the results, using the training set obtained from
the database of 2011. The training set corresponds to the 2012 data considering 10
replicates. In this analysis, the algorithm with the best performance is the KNN with
N = 84, obtaining the highest number of instances correctly classified and the least
error measured in days. Therefore, in this chapter we explain in more details the
performed analysis carried out in [23] in order to improve dwell time estimations.

From results shown in previous table, it is possible to observe that using the Pareto
Analysis data, it is possible to reduce the error to 4.56 days. Results obtained can be
used to derive operational rules for different storage policies for containers according to
the predictive dwell time values.

Table 8. Multi-classifier results (Source: [23]).

Algorithms N° of correctly
classified instances

Accuracy Computational time
(seconds)

Error (days)

Naive
Bayes

3,226.9 ± 122.6 5.63% 79.9 ± 1.5 7.47 ± 0.20

OneR 1,309.6 ± 87.9 2.28% 19.4 – 0.9 8.75 ± 0.25
ZeroR 3,216.4 ± 262.9 5.62% 31.1 ± 9.3 7.29 ± 0.41
Decision
table

2,992.7 ± 380.5 5.23% 55.2 ± 4.6 7.18 ± 0.42

K* 3,183.5 ± 98.7 5.56% 114.7 ± 1.6 7.63 ± 0.17
KNN,
N = 85

3,608.0 – 394.8 6.30% 38.7 ± 4.9 6.92 – 0.19

JRip 3,153.1 ± 351.8 5.51% 61.4 ± 8.8 7.27 ± 0.47
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5.2 Impact Assessment of the Proposed Policy via a Discrete Events
Simulation Model

A simulation model of the import processes at the port of Arica is proposed to evaluate
the impact of the storage policies in terms of the number of rehandles incurred. For
comparison purposes, a storage policy was implemented considering two variants for
the stacking strategy of containers without dwell time segregation to resemble the
current practice of the port managers.

Table 10 outlines the general procedure for the general stacking strategy imple-
mented based on the dwell time segregations policy, while Table 11 outlines the
procedure for the non-segregation storage policy that employs two stacking strategies:
Semi-random and Sequential, which are illustrated respectively in Figs. 3 and 4.

Table 9. Comparative analysis of the classification algorithm based on the Pareto-Analysis
results. Dwell time measured in days.

Algorithm Number of instances
correctly classified

Accuracy
(%)

Computational
time (min)

Average
error (days)

Naive
Bayes

2,062.5 ± 74.2 3.86 91.0 ± 23.0 5.30 ± 0.13

OneR 2,053.0 ± 69.8 3.84 18.4 ± 1.7 5.28 ± 0.12
ZeroR 2,003.3 ± 403.0 3.75 14.2 ± 2.6 5.32 ± 0.42
Decision
table

2,065.0 ± 127.5 3.86 14.0 ± 0.3 4.86 ± 0.27

K* 2,094.7 ± 66.0 3.92 75.5 ± 2.3 5.19 ± 0.10
KNN,
N = 84

2,402.9 ± 152.2 4.50 46.6 ± 7.2 4.56 ± 0.11

JRip 2,192.2 ± 181.2 4.10 12.5 ± 0.6 4.58 ± 0.19

Table 10. Segregated stacking strategy (Source: [23]).

Dwell time Segregated Stacking Strategy
INPUT: Dwell time predictions for each container and dwell time classes; Yard layout and 
inventory

1. Define the segregation of containers based on the dwell time class predictions
2. Assign to each block a segregation of containers. One block can contain either a single or 
several segregations.
3. Once a container arrives, assign it to the corresponding segregation block. 
4. Define the location of the container in the block based on the Semi-random or 
Sequential stacking strategies.
5. If a container arrives and there is no available space in the block corresponding to the 
segregation, then randomly select a block and repeat step 4
OUTPUT: Container location.
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Table 11. Non-segregated stacking strategy (Source: [23]).

Dwell time Non-Segregated Stacking Strategy
INPUT: Yard layout and inventory

1. Randomly select a block with available space. 
2. Define the location of the container in the block based on the Semi-Random or 

Sequential stacking strategies.
3. If a container arrives and there is no available space in the predetermined block, then 

randomly select a block and repeat step 4. 
OUTPUT: Container location.

Fig. 3. Semi-random stacking strategy illustration (Source: [23]).

Fig. 4. Sequential stacking strategy illustration (Source: [23]).
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The stacking strategies are illustrated respectively in Figs. 3 and 4. The instance
implemented considered the movements of containers in the years 2012 and 2013. The
yard of the port Terminal consists of 19 blocks for import containers with a total of
4820 TEU slots. To predict the dwell times, the JRip and multi-classifier algorithms
were implemented. The real arrival of containers at the port during each year is taken
from the data base. For the random stacking strategies, five replicates were run. For the
sequential stacking strategies, no replicates were tested given that the solution obtained
is the same since the arrival of containers does not change. For the random stacking
strategies, standard deviation values were in the range of 140 to 444 rehandles. The
simulation model was implemented in the software ExtendSim OR version 9.0 and run
in a personal computer with Intel Core 7 and 8 Gb RAM. Table 12 presents the results
obtained.

As observed in Table 12, the average number of rehandles incurred for both 2012
and 2013 are always lower for the segregated dwell time policies employing any type
of stacking strategy. Furthermore, the gap between the average number of rehandles for
the non-segregated and segregated policies is around 13%. Comparing the best stacking
strategy in each period for the segregated and non-segregated policies, a 6% and a 37%
gap were obtained for the 2012 and 2013 periods respectively.

Table 12. Numerical Results: Rehandles per time period and stacking strategy (Source: [23]).

Storage
policy

Stacking strategy Average
per policy
(DT vs NS)

Rehandles per
period
2012 2013

Non-
segregated
policy (NS)

Non-segregated random stacking
strategy

45840.6 48611.8 43083.6

Non-segregated sequential stacking
strategy

48756 42911

Dwell time
segregation
policy (DT)

Dwell time segregated and random
stacking strategy (JRip)

39768.76 45785.8 37423.8

Dwell time segregated and
sequential stacking strategy (JRip)

45343 36531

Dwell time segregated and random
stacking strategy (multi-classifier
and KNN, N = 84)

46377.4 27909

Dwell time segregated and
sequential stacking strategy (multi-
classifier and KNN, N = 84)

45337 26986

GAP (Avg. NS - Avg. DT)/Avg. DT 13.25%
Gap (Best NS - Best DT)/Best DT [2012] 6.74%
Gap (Best NS - Best DT)/Best DT [2013] 37.11%
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6 Conclusions and Recommendations for Further Research

Ship turnaround times are an important productivity indicator for a port terminal and
efficient container handling is needed during the loading and unloading operations.
Among several factors that affect the performance of the ship service, the yard oper-
ation efficiency is a key element. In addition, for those terminals in which land is very
restricted, the planning and scheduling of resources at the yard (space and equipment)
are even more critical.

A common practice among yard managers for storage space assignment consists of
defining segregations or groups of containers with common characteristics. Export
container segregations depend on the ship loading sequence, which is based on the
ship, port of destination, weight, type, empty/full, among other factors. On the other
hand, segregating import containers for a port terminal where no hinterland coordi-
nation mechanisms exist and where there is a high level of uncertainty results in a
difficult task.

In this article a dwell time segregated storage space policy for import containers is
proposed as well as the design of a decision support system for the yard planner of a
container terminal based on the proposed storage policy. The focus of this article was
import containers, due to the difficulty to determine the criteria to segregate import
containers, as there is more uncertainty on the dispatching times. Hence, it is very
common that an important number of rehandles are incurred when import containers
are dispatched to the external transport carriers. For the proposed policy, dwell times of
import containers are predicted by classification algorithms, such that containers are
segregated based on dwell time classes. Import containers of the same dwell time class,
are assigned to close locations at the yard. Using classification methods in this research
is justified as we are dealing with a big database and also due to the fact that the dwell
time prediction is used to define groups of containers rather than predicting a precise
value.

As a case study, we consider the case of the port of Arica in Chile. This port
presents special conditions for cargo handling. More than 70% of the cargo transferred
by the port of Arica corresponds to transit cargo of Bolivia. Due to the Political
Agreements maintained between Chile and Bolivia, there exists a high uncertainty in
the dispatching processes of the import containers at the port. To evaluate the potential
benefits in the daily operations of the yard, a discrete event simulation model is also
implemented. Numerical results of the simulation model show that a dwell time seg-
regated storage policy with a sequential stacking strategy provides a significant
reduction in the number of rehandles incurred. Considering the real number of con-
tainers handled by the port for a specific instance data set, around to 17% reduction in
rehandles is obtained by the proposed policy, compared to the real number of rehandles
incurred by the port managers’ current practices. In addition, the implementation of the
decision support system proposed may provide a valuable tool for the yard planner.

We estimate that implementing the proposed system does not require significant
efforts of the port terminal and could lead to more efficient operations at the yard. The
current practice of the managers follow a semi-random assignment of containers at the
yard, given the limitations of data and uncertainty in the dispatching times of import
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containers. Hence, the proposed support system will not change significantly their
current operations but in turns, will provide recommendations to the yard planners that
they could consider for the assignment of spaces to containers, without replacing the
personnel.

We proposed a simulation model with the aim to analyze the impacts of the storage
policies for container stacking in the yard. The model developed simulate the stacking
process of containers since the moment in which the container is unloaded from the
vessel until the moment in which is retrieved to be dispatched to its consignee. When
we evaluated the model with the database of the 2012 year, the best policy to stack
containers in the yard is the one in which containers are segregated based on the dwell
time policy and the sequential policy. This is also consistent with the results obtained
using the database of the 2013 year.

In order to improve the dwell time estimations, we recommend that the port of
Arica may improve its Terminal Operating System (TOS), to have more precise data as
some inconsistencies were found in the records of the database provided by the port. It
is also recommendable to register more information, such as the type and value of the
cargo transported in the container (content). This information could be also used as an
attribute for the dwell time estimation.

As a further research, additional factors that may affect dwell time predictions
should be analyzed, such as the content of the container, and whether the container
contains cargo that belongs to a single or several importers (Full container loaded, FCL
vs Less than container loaded, LCL). The problem addressed in this article is at the
tactical decision level. Hence, another research avenue would be to develop real time
stacking strategies based on the dwell time segregated policy. Furthermore, impact
assessment for different types of yard equipment could be another research project to be
developed (reachstackers vs RTG vs straddle-carriers, etc.). In addition, ship turn-
around times can be also considered as a performance metric for the different stacking
strategies and a sensitivity analysis to determine the most significant factors deter-
mining dwell times for the port of Arica could be performed.
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