
Model-Driven Approach to Handle Evolutions
of OLAP Requirements and Data Source

Model

Said Taktak1(&), Jamel Feki2, Abdulrahman Altalhi3,
and Gilles Zurfluh4

1 FSEGS Faculty, Miracl Laboratory, University of Sfax, Sfax, Tunisia
said.taktak@fsegs.rnu.tn

2 Faculty of Computing and IT, University of Jeddah,
Jeddah, Saudi Arabia
jfeki@uj.edu.sa

3 Faculty of Computing and IT, King Abdelaziz University,
Jeddah, Saudi Arabia

ahaltalhi@kau.edu.sa
4 IRIT Laboratory, University of Toulouse 1 Capitole, Toulouse, France

gilles.zurfluh@ut-capitole.fr

Abstract. Data Warehouse (DW) evolution is becoming a critical research
topic for several organizations mainly because their analytical data change
permanently and rapidly due to changes in the data source and decision-makers’
requirements. This paper presents an MDA-compliant (Model Driven Archi-
tecture) approach and a software tool for propagating automatically the evolu-
tions of the data source model and OLAP (On-Line Analytical Processing)
requirements towards the multidimensional DW model. More accurately, we
propose a DWE (Data Warehouse Evolution) framework. Being MDA com-
pliant, we perform this DW evolution through Model-To-Model transformation
rules we have defined as QVT (Query/View/Transformation) along with M2T
(Model-To-Text) transformations realized using Acceleo templates. Thus, the
evolution operations (Create table, Add column…) are firstly modeled, secondly
transformed into multidimensional evolution operations (Create dimension,
hierarchy…), and then are used with Acceleo templates for generating the DW
alteration code.

Keywords: Data warehouse � Evolution modeling � Data source model
OLAP requirements � MDA � M2M � M2T

1 Introduction

Nowadays the DW is a powerful technology for strengthening the decision-making
process within organizations. It gathers synthesis information from internal and/or
external operational data sources.

DW modeling has been considered, for more than one decade, as a real challenging
research topic for which several approaches were proposed. Three major categories of

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 401–425, 2018.
https://doi.org/10.1007/978-3-319-94764-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf

approaches for designing a DW schema (i.e., data-model) are well known in the
literature: Top-down [1], bottom-up [2, 3], and mixed [4] approaches.

All these DW design approaches rely on a rigid assumption; they consider that the
conceptual model of the DW is time-invariant. However, in practice, this assumption is
unrealistic most of the time, and therefore restricts the evolution of the real world. In
fact, the DW model may evolve due to internal and/or external factors (e.g., business
processes changes, organization environment evolution). Furthermore, it is difficult to
fix definitively the DW model at the design phase; in fact, for sustainability issues, the
DW model should often undergo changes after its implementation. These changes are
due to two main reasons namely (a) Evolution of the analytical needs: changes in these
needs might require extending the DW model (e.g. adding new axes or subjects of
analysis), and (b) Evolution of the data source model (DS) due to the evolution of the
business processes (e.g., adding/removing conceptual entities). To the best of our
knowledge, we can claim that the problem of changes in the DW model needs more
research investigations and appropriate software features. Indeed, all evolution strate-
gies proposed in the DW literature are at a single level of modeling: schemas before
and after changes conform to the same meta-model. In the DW domain, the evolution
of schemas expressed in different models has not yet received its full share of the
investigation.

To alleviate this problem, we propose in this paper an MDA (Model Driven
Architecture) approach [14] that automates the propagation of the evolution of the DS
model and the evolution of decision-makers’ requirements (OLAP-requirements in the
remaining of the paper) towards its associated DW model. In this context, we suggest
an approach based on a classification of the evolution scenarios and a set of trans-
formation rules to identifying the evolution operations to apply to the DW model.

This paper is organized as follows. Section 2 provides a review of works dealing
with the DW evolution problem. Section 3 describes our MDA-based approach for the
propagation of OLAP-requirements and DS evolution towards the multidimensional
DW model. Section 4 discusses the effect of the evolution of the DS model on the DW.
Section 5 introduces our classification of evolutions of OLAP-requirements; it devel-
ops algorithms to derive the appropriate changes that should apply on the DW model.
Section 6 describes the implementation of the DW evolution through MDA transfor-
mations at two levels: Model-To-Model (M2M) and Model-To-Text (M2T). Finally,
Sect. 7 concludes the paper and enumerates its perspectives.

2 Related Works

The DW evolution problem is considered from two main viewpoints: (a) Evolution of
data source model, and (b) Evolution of business requirements of decision-makers.
Hereafter, we review the approaches for each trends.

2.1 Approaches Based on DS Evolution Model

Organizations’ business processes evolve over time due to the modification of existing
processes or the emergence of new ones that may create new real world objects.

402 S. Taktak et al.

Naturally, these evolutions affect the data-model of the DS (i.e., information system)
that feeds the DW with data. In turn, the DW cannot be immunized against the
evolutions of its DS; consequently this evolution deserves to be studied in order to
semi-(automatically) propagate towards the DW data-model and the ETL (Extract
Transformed and Load) process. This evolution problem has been addressed from
different perspectives; we classify the related works into three main categories:
(i) Evolution of the DW multidimensional model, (ii) Maintenance of materialized
views, and (iii) Adaptation of the ETL process.

Works addressing views maintenance consider the DW as a set of materialized
views directly built on, and loaded from, the DS. In this category of approaches, any
change in the DS data-model requires views maintenance efforts. As a practical
extension, [5, 6] proposed approaches for a dynamic adaptation of materialized views
in response to the evolution of the DS/DW. These approaches maintain not only the
schema views but also their content; they mainly attempt to avoid recalculating views
after DS changes by deriving a new schema view from the old one. More details on
views maintenance in multidimensional context are available in [7].

Other research works adapt the ETL process when the DS data-model evolve.
Among these works, the authors in [8, 9] provide a mechanism for adapting the ETL
tasks to the changes occurred in the DS data-model. However, this study was restricted
to the ETL process without tackling the impact of the DS evolution on the DW model
components (Dimensions, facts, hierarchies…).

To lighten these shortcomings, the authors in [10] have defined a formal model for
a multi-version DW. They presented a set of evolution operations that affect the DW
schema and content. These authors have distinguished two types of DW versions: real
version and alternative version. The DW real version reflects the changes in the real
world environment of the organization whereas the DW alternative version simulates
the change process; to do so, “What-If” analysis strategy was adopted. Furthermore, the
authors have developed the MVDW (Multi-Version Data Warehouse) prototype for the
DW maintenance and versions management. A major drawback of this contribution is
the manual identification of the DW evolution operations; this identification requires
high expertise of the DW administrator and, therefore, is out of reach of end-users.

2.2 Approaches Based on Business Requirement Evolution

Let us note that in mixed DW design approaches [4], the design of the DW relies, from
the one hand, on the DS model and, from the other hand, on the OLAP-requirements.
Obviously, OLAP-requirements could not be static in time; therefore, the DW-design
driven by user requirements may become obsolete and no longer comply the new
requirements. To overcome this issue, it is necessary to consider the new analytical
requirements and then adapt the DW to encompass them. Among the research works of
this category, the authors in [11] suggested an approach for the customization of
analyses based on “If-Then” rules model; this model allows users to integrate their own
knowledge in order to enlarge the panoply of analysis on the DW by changing the DW
schema. The suggested evolution operations affect only two components of the DW:
dimensions and hierarchies. The authors have developed a prototype called WEDriK
(Warehouse Evolution Driven by Knowledge) based on a set of DW evolution

Model-Driven Approach to Handle Evolutions of OLAP Requirements 403

algorithms to create new analytical axes. The analytical requirements introduced by
each user are processed and transformed into DW evolution operations. Nevertheless,
the authors assume that the DW users are skilled enough to express properly their
requirements. Moreover, the supported changes are simple: they do not cover all cases
that decision-makers may ask for.

To overcome this problem, in [12] the authors studied the evolution of complex
hierarchies (multiple alternative hierarchies, dependent and independent parallel hier-
archies). They defined constraint-based evolution operations to ensure data integrity
and schema consistency of the new DW model. Operations and constraints are defined
in ULD (Uni-Level Description language) and MDD (Multilevel Dictionary Defini-
tion). This study is an extension of the work in [12] where the authors presented a
conceptual requirement-oriented framework called DWEVOLVE for DW evolution. It
analyzes the changes in the requirements specified by stakeholders as well as devel-
opers, and then incorporates them into the DW by performing appropriate additions,
deletions and updates. Nevertheless, the authors do not suggest mechanism for auto-
matic inference of evolution operations from OLAP-requirements. In fact, this task is
borne entirely by the DW administrator.

In the same context, in [13] authors have also investigated the problem of business
requirements evolution. They defined a formalism for modeling the new analytical
needs and proposed a semi-automatic approach to adjust and create a new version for
the DW model. However, the evolution operations supported by this solution are
simple and lack accuracy. For instance, when adding an attribute, the proposed algo-
rithm is able to identify just the dimension to change but cannot find the role of the new
attribute in the dimension, i.e., whether it creates a hierarchy or inserts a level into an
existing hierarchy… How to find the role of the new component is really a hard task
left to a skilled user.

2.3 Discussion

In the related works section we have focused on two complementary categories of
evolutions in DW systems, namely evolution of the DS model and evolution of OLAP
needs. We have identified three deficiencies concerning (i) complementarity, (ii) com-
plexity of the evolutions, and (iii) automatic propagation of changes from the DS
toward the DW.

First, concerning the complementarity, to the best of our knowledge, no solution
has combined the DS evolution with business requirements evolution so far. Indeed,
contributions have addressed these two evolutions separately.

Secondly, few works were interested in studying the DS evolution effect on the
multidimensional model. Moreover, most of these works provide solutions touching a
few isolated aspects and treating simple evolution cases (i.e., Dimension evolution,
Fact evolution, ETL evolution).

Thirdly, automatic propagation was not a main concern in these works, and where
addressed, it was carried out according to traditional modeling and programming
approaches.

Finally, from the technological viewpoint, we note that all proposed solutions were
realized in a conventional software engineering context; therefore, implementations are

404 S. Taktak et al.

platform-dependent. Obviously, using the MDA approach allows benefiting from its
multiple advantages.

The objective of this paper is to propose a Data Warehouse Evolution framework
(DWE) as a complete solution covering the DS evolution and the OLAP-requirements
evolution. Our proposal is MDA compliant, it promotes the automatic propagation of
changes occurred in the DS model along with business requirements changes towards
the multidimensional DW. Relying DWE on the MDA technology is really a chal-
lenging proof. In fact, MDA facilitates realizing our proposed approach, which inherits
benefits from this technology (i.e. platform-independent, reduced efforts, and improved
quality of results). We define one for the OLAP needs and one model for the DS
evolution. In the remaining of this paper, we present our approach that addresses the
DW model evolution problem.

3 Overview of the Proposed Approach

Our MDA-based approach aims to automate the propagation of the changes raised by
decision-makers (as new needs) and DS model (as new evolution operations) towards
the DW multidimensional model. Figure 1 depicts our approach where the evolution of
the DW model is due either to an evolution of its DS model (Fig. 1, panel A), or to an
evolution of OLAP needs (panel B). To do so, we define an appropriate evolution
model for the new OLAP needs; this enables us reusing our on-hand DW evolution
model [15]: we keep the same M2T transformation rules for code generation.

Our approach relies on three evolution models: (i) DS Evolution Model (DSEM),
(ii) DW Evolution Model (DWEV), and (iii) Requirements Evolution Model (REM). In
addition, it applies M2M and M2T transformations:

– DSEM: This model describes all evolution operations that may affect the relational
DS elements (table, column…).

– DWEM: It describes all operations that may affect the multidimensional structures
(dimensions, facts…). These operations should be derived from the DSEM model.

Fig. 1. Overview of our MDA-based DW evolution approach.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 405

– REM: This model describes the new needs of decision-makers in terms of subject
and axes of analysis. It also allows defining knowledge introduced by the user (e.g.
rules, formulas). This model will be transformed into a DWEM model.

– M2M transformation: It generates the DWEM model from REM model. It relies on
automatic mapping between these two models. M2M transformation rules are
implemented in QVT (Query-View-Transformation), and use a set of meta-models
stored upstream as Ecore files.

– M2T transformation: It generates the code that performs the DW model alteration;
the generated code results from the DWEM previously generated by applying a set
of transformation rules we have formalized in MOF2Text. M2T process takes as
input the physical model (PSM) along with the DW evolution models; it produces
SQL script file(s) for creating or modifying the DW model. We have defined
Acceleo templates for transforming DWEM operations into an executable script.
This transformation process is valid as well for processing the DS evolution as for
processing the needs evolution. In fact, this reuse is feasible because these two
transformations start from the same DWEM evolution model.

4 Evolution Inferred by the DS Model

The DW schema may evolve over time due to the evolution of its DS data-model.
Naturally, the evolution frequency is domain-dependent. As an illustration, in the
banking domain the DS of a DW changes every 2–4 weeks on average, also the DS of a
telecommunication company is less stable since its schema changes every 7–13 days on
average [16].

Two crucial questions arise when the DS evolve: (1) What are the changes to apply
to the DW model (i.e., adding a dimension, fact, level of analysis…), and (2) How to
perform these changes efficiently and quickly; rapidity is an imperative factor for some
decisional systems as argued before. A trivial solution rebuilds the DW from the new
DS data-model starting from scratch; but this is a poor approach because the DW
reconstruction is a heavy and complex task requiring a lot of time and effort, and is
therefore costly. Furthermore, rebuild from scratch cannot be envisaged especially in
frequently changing domains. In order to address this evolution issue, we have pro-
posed a model-driven approach for propagating changes from the relational DS towards
its DW in an almost-automatic way, thus avoiding the need for the full reconstruction
of the DW model (and later its full-reloading process). To do so, we have proposed an
MDA-based architecture [14] for propagating the evolution operations occurred on the
DS model towards the DW data-model. We have identified sets of evolution operations
on the DS and their transformation rules. These operations concern tables, columns,
keys…; their execution is not systematic (a precondition should be satisfied). Table 1
lists the evolution operations that could affect the relational DS, and gives for each one
the corresponding set of plausible evolution operations we may apply on the DW. For
example, in line 1 when we “Add new table” to the DW the effect of this evolution
operation may create a “New Fact”, “New Dimension”, “New Hierarchy” and/or “New
Level” within an existing hierarchy.

406 S. Taktak et al.

In order to define the transformation rules we adopt the following notation:

– DS: a third normal form relational DS schema
– t: a relational table belonging to DS
– t.pk: the set of primary key columns of table t
– t.Cols: the set of non-primary key columns of t (t.pk \ t.Cols = Ø)
– ti ! tj: table ti references table tj via a foreign key belonging to ti
– DW: a multidimensional data warehouse schema loadable from tables in DS
– f: a fact table belonging to DW
– d: a dimension belonging to DW
– di.hj: a hierarchy hj of dimension di
– di.hj.lk: a level lk belonging to di.hj
– di.dj.lk.p: a parameter at level di.hj.lk
– di.hj.lk.p.W: a possibly empty set of weak attributes associated with parameter di.hj.

lk.p
– f.M: the set of measures of fact f
– f.D: the set of dimensions of fact f
– Load (t, d): A Boolean function returning True if table t loads dimension d.

In this section, we limit ourselves to detail two transformation rules:

– Transforming a table into a dimension,
– Transforming a table into a fact,

Table 1. DS evolution operations and their corresponding evolution operations on the DW.

DS evolution operation Plausible DW evolution operation

Add new table New fact
New dimension

New hierarchy
New level

Add new column New measure
New hierarchy
New level

New parameter
New weak attribute*

Modify column type Modify weak attribute type*

Modify parameter type
Modify parameter type
Modify measure type

Drop table Delete fact
Delete dimension

Delete level
Delete parameter

Remove column Delete measure
Delete level

Delete weak attribute*

Delete hierarchy
Add new constraint New fact

New dimension
New hierarchy
New level

Drop constraint Delete fact
Delete dimension

Delete level
Delete parameter

Split table New fact
New dimension
Delete measure
Delete level

New hierarchy
New level
Delete weak attribute*

Delete hierarchy

*Less significant operation

Model-Driven Approach to Handle Evolutions of OLAP Requirements 407

Other transformation rules are available in [15].
We illustrate these transformation rules using the DS and DW of Fig. 2.

4.1 Transforming a Table into a Dimension

The creation of a table tnew in the DS may create a new dimension dnew in the DW by
calling the Add_dimension(dnew) operation. This performs through rule T2D.

Input:
- tnew: table added to the DS via the Add_Table (t: Table) operation
- DS, DW
Condition:
- DS.ti DS.tnew -- tnew is referenced by a table ti in the DS
- Load (DS.ti, DW.fj) -- table ti (which references tnew) loads a fact fj

Processing: /*Create a new dimension dnew*/
- Find F’ -- the set of all facts loaded from tables that reference tnew
- dnew.F := F’ -- link dnew with all facts in F’
- dnew.name:= “D_” + tnew.name -- + denotes the string concatenation operator.
- dnew.H := {hnew} -- create a hierarchy hnew for dimension dnew

- dnew.hnew.L:= {lnew} -- create a level lnew within hnew

- dnew.hnew.lnew.p := tnew.pk -- parameter of lnew is tnew.pk
- dnew.hnew.lnew.W := tnew.Cols -- weak attributes of lnew are columns of tnew

Output:
- dnew: new dimension added to the DW using Add_dimension (d: Dimension).

Rule T2D: Table-To-Dimension

Fig. 2. A relational Data source model and its multidimensional DW model [17].

408 S. Taktak et al.

In our running example (Fig. 2), let us create the table RETAIL_OUTLET (Id_Ro,
Ro_name, Ro_zone…) that is referenced by the DS table SALE that feeds the fact
F_SALE. Applying rule T2D, the new table creates a new dimension called
D_RETAIL_OUTLET linked to the F_SALE fact.

4.2 Transforming a Table into a Fact

The creation of table tnew in the DS using Add_table(tnew) may create a new fact fnew in
the DW by calling the Add_fact(fnew) operation. This evolution is realized by applying
rule T2F hereafter.

Rule T2F: Table-To-Fact
Input:
- tnew: table added to the DS via Add_Table (t: Table)
- DS, DW
Condition:
- tnew DS.t1 …, DS.tk with k ≥ 2 -- tnew references k tables in the DS
- Numeric (tnew) ≠ -- tnew has numeric attributes
- Load (DS.ti, DW.dj) with 1≤i≤k -- each table ti referenced by tnew loads a dim dj

Processing: /*Create a new fact fnew*/
- Find D’, the set of all dimensions loaded from tables referenced by tnew
- fnew.D := D’ -- link fnew with dimensions in D’
- fnew.M := Numeric (Tnew.Cols) -- numeric columns of tnew become Measures in fnew

- fnew.name := “F_” + tnew.name -- name of the new fact.
Output:
- fnew: new fact added to DS via the Add_Fact (f: Fact) operation.

Continuing with our example, we create the table SCORE_PROD (#Id_Prod,
#Id_Cust, ScoreNumeric…) that references two tables PRODUCT and CUSTOMER in
the DS. These tables feed respectively the two dimensions D_PRODUCT and
D_CUSTOMER. Applying rule T2F, the new table creates a fact called F_SCOR-
E_PROD with Score as a measure, related to D_CUSTOMER and D_PRODUCT
dimensions.

5 Evolution Implied by the Decision Makers Needs

The evolution of the OLAP-requirements leads to several cases of evolution on the DW
model. We group these evolution cases into three classes namely: Evolution by
derivation, Evolution by reorganization, and Evolution by extension. More details
about this classification are available in [17]. We clarify these classes and we textually
explain the transformation rules that generate the modifications operations to apply on
the DW model when the OLAP-requirements evolve.

– Statico: Nothing to change if the current DW model meets a new requirement.
– Reorganization: Applies when the necessary elements (i.e., measure or attribute) for

the new requirement already exist in the DW model but their current roles are not

Model-Driven Approach to Handle Evolutions of OLAP Requirements 409

adequate. We change the role of such elements by creating new links between some
elements of the DW model. This reorganization mainly affects temporal and spatial
dimensions.

– Derivation: If an element is vital for a new requirement but is not in the DW model,
therefore, we check if it is derivable from an existing DW element; the derivation
uses knowledge introduced by the DW administrator as rules or formulae. Other-
wise, if the vital element is derivable from the DS, then we extend the DW model
with the derived element.

– Extension: This alternative is the most delicate. In fact, when the DW model cannot
satisfy the new requirement, either by derivation or by re-formulation, we have to
identify which element from the DS we should add to the DW and define its role,
and then we expand the DW model with the new element.

In order to decide which alternative of evolution - from above -to apply to the DW
model, we develop the Main algorithm (Algorithm 1).

Note that we use these alternatives independently or combined. In the following,
we detail each one and specify the evolution operations to perform it. To do so, we use
the notation below:

– Req: a new requirement
– A: set of attributes describing Req; A divides into two subsets A = Aquant[Aqual

– Aqual: all qualitative attributes of Req
– Aquant: all quantitative attributes of Req,
– DW: set of elements of the DW multidimensional model (i.e., schema)
– DS: set of elements of the DS model.

The Main algorithm depicts the principle of defining the evolution strategy. It calls
three algorithms Reorganize (Algorithm 2), Derive (Algorithm 3) and Extend (Algo-
rithm 4).

Algorithm 1: Main.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Input:
 Req, DW, DS
Begin:
if DW_answer(Req) then

Null // No changes to do on the DW model
else if A DW then

Reorganize() // see Reorganize algorithm
else

for each a A
 if a DW and (Rule(a) or Formula(a)) then

Derive() // see Derive algorithm
 else if a DW and a DS then

Extend() // see Extend algorithm
end if
end for

 end if
end if
End.

410 S. Taktak et al.

DW_answer(Req) is a Boolean function that returns True if the DW model meets the
new requirement (Req): Statico alternative, and False otherwise.

Rule(a) is a Boolean function True if attribute a is defined through a rule, and False
otherwise.

Formula(a) is a Boolean function True if attribute a is defined through a formula,
and False otherwise.

5.1 Reorganization

The reorganization process (see Algorithm 2) begins with the identification of the DW
elements (fact, dimensions) for the new requirement. It calls two functions Find_Fact
and Find_Dimension; these functions return respectively the fact containing quantita-
tive attributes Aquant, and dimensions containing qualitative attributes Aqual. The fact
fnew will be enriched with the set of measures Aquant attributes. Dimensions containing
Aqual attributes are refined using the Refine function before their link to the new fact.
This function prunes hierarchies by eliminating unnecessary attributes for the new
requirement.

Algorithm 2: Reorganize.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Input:
Aquant , Aqual
Begin:

f = Find_Fact(Aquant)
D = Find_Dimensions(Aqual)
if f == ∅ Then

fnew.M = Aquant

else
fnew = f

end if
for each d D

dnew = Refine(d)
dnew.f = fnew

Add_Dimension(dnew)
end for
Add_Fact(fnew)

End.

5.2 Derivation

The Derive algorithm describes the derivation process; it takes as input the attribute to
derive as well as the knowledge given by the DW administrator as rules or formulae.
We treat differently qualitative and quantitative attributes of this class.

If the derived attribute ad is quantitative, and if there is, a fact f related to the
dimension that contains the qualitative attributes of the new requirement, then we add
ad to f as new measure mnew. Otherwise, we create a new fact fnew for the derived
attribute ad.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 411

If ad is a qualitative attribute, it necessarily belongs to a dimension where its
position generally depends on the asource attribute in the rules. If asource belongs to a
terminal level lt then anew becomes a terminal level lnew in the same hierarchy as lt.
Otherwise, we create a new hierarchy hnew that contains level ls and all its predecessor
levels. lnew adds to the new hierarchy as a terminal level.

Algorithm 3: Derive.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Input:
ad: a derived attribute
asource: an attribute of DS model used within a rule or formula
Aquant , Aqual.
Begin:
if ad Aquant and formula(ad) then
 f = Find_Fact(Aqual) //find the fact linked to dimensions containing Aqual

 if f ==∅ then
fnew.M = fnew.M∪ ad // define the measure of the new fact
fnew.D = Find_Dimensions(Aqual) //find dimensions containing Aqual

Add_Fact (fnew)
else

mnew = ad ; mnew.fact = f
Add_Measure (mnew)

 end if
else if ad Aqual and Rule(ad) then

 return level containing asource

 if Terminal_Level(ls) then
lnew.h = ls.h //hierarchy of level lnew is ls hierarchy
lnew.p = ad // parameter of lnew is the derived attribute ad

lnew.pred = ls // the predecessor level of lnew is ls
else
hnew.d = ls.h.d //dimension of hnew is the dimension of ls

//the levels of hnew are all ls predecessor levels
 Add_ hierarchy (hnew)

lnew.p = ad ; lnew.pred = ls ; lnew.h = hnew

 end if
 Add_ Level(lnew)
end if
End.

5.3 Extension

The Extend algorithm states the principle of the extension, which enriches the DW
model with elements extracted from the DS to satisfy the new OLAP-requirement. We
assume that a semi-automatic association between attributes of the new requirement
and the DS attributes is provided; this treatment could use a semantic resource or a
dictionary of the DS attributes. The role of each element depends on the type (quan-
titative or qualitative) of its associated attribute and its membership table in the DS.

412 S. Taktak et al.

Algorithm 4: Extend.

Input:
DW, DS,

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

ae : attribute to retrieve from the data source
Begin:
t = Find_Table(ae) // returns the table that contains ae

if ae Aqual then
returns the level which is loaded from t

if l == null then
t’ = ref(t) // returns the table which references table t
t” = IsRef (t) // returns the table which is referenced by t

 if t’ not null and t” not null then
l’= Load_Level(t’)
l” = Load_Level(t”)

if l”.pred == l’ then
lnew.h = l’.h ; lnew.pred = l’ ; lnew.succ = l”
Add_Level(lnew) // add level lnew

end if
 else if t’ is not null then

l’ = Load_Level (t’)
if Terminal_Level (l’) then // add terminal level
lnew.p = ae ; lnew.pred = l’ ; lnew.h = l’.h

else // add hierarchy and a new level
hnew.d = ls.h.d
hnew.L = l1.. l’ // the level in the new hierarchy

 Add_Hierarchy (hnew)
lnew.p = ae ; lnew.pred = l’ ; lnew.h = hnew

 Add_Level (lnew)
end if

 end if
else
anew.p = l.p
Add_Attribute(anew)

 end if
else

f = Load_Fact(t)
if f not null then

mnew = ae ; mnew.fact = f
Add_Measure (mnew) // add measure mnew to the fact I
else
fnew. M = ae ; Add_Fact(fnew) // add fact I

 end if
end if
End.

If the attribute to extract ae (ae belongs to a table t) is qualitative, four situations
arise to define the role of ae in the multidimensional model:

– If table t feeds a level l then it becomes a low attribute by applying the Add_At-
tribute evolution operation.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 413

– If t feeds no levels, and if t is referenced by a table t’ which feeds a terminal level l’,
then ae becomes an attribute for a new terminal level lnew by applying the
Add_Level evolution operation.

– If t does not feed any level, and if t is a table referenced by t’ and refers to a table t”
- t’ and t” respectively feed the two successive levels l’ and l”- ae can then feed a
hierarchical level inserted between the two levels l’ and l”.

– If t does not feed any level and if t is referenced by table t’ which feeds a
non-terminal level l’ then ae creates a new hierarchy hnew by calling the
Add_Hierarchy evolution operation. hnew contains the level l’ and all its predecessor
levels in the hierarchy of l’. Then, we create a new terminal level lnew for the new
hierarchy hnew.

When the extracted attribute ae is quantitative, if t (table of ae) feeds a fact f, then ae
becomes a measure of f. Otherwise, we create a new fact with the new measure ae.

6 Implementation

To validate our approach, we have developed a DWE (Data Warehouse Evolution)
software prototype under the EMF (Eclipse Modeling Framework) platform that is a
complete environment for MDA. Figure 3 shows the DWE overall architecture that
offers two evolution features: (i) Evolution of the DW model as a result of changes in
its DS model; (ii) Evolution of the DW model to meet new OLAP-requirements.

The DW evolution process starts with the modelling of the new requirements or
changes occurred in the DS model; it aims to generate respectively the requirement
evolution model (REM) and the DS evolution model (DSEM). The next step is the
M2M that transforms the REM and the DSEM into DWEM. Once the DWEM is
generated, thereafter the new DW model displays graphically; this enables the DW

Fig. 3. Architecture of the DWE prototype [17].

414 S. Taktak et al.

administrator to observe and study the effects (i.e., computed changes) of the
DW-evolutions operations. At this stage, the DW administrator can accept the sug-
gested changes or even adapt them. Finally, the M2T process transforms the DWEM
into script for DW alteration. In what follows, we detail these steps.

6.1 Modeling of Evolution

We use UML (Unified Modeling Language) class diagrams to define the evolution
models DSEM, REM and DWEM. The static property list in the classes define the
models of the DS, Requirements and the DW whereas the operations define the
changes that may affect each of these structures. Next, we detail these three evolution
models.

DS Evolution Model (DSEM)
The DSEM model is the basic model for deducing the DWEM model. It defines the
relational DS schema (tables, constraints…) through class properties as well as the
evolution operations (add table, add column…).

The DSEM conforms to its Meta-Model in Fig. 4. The latter has two components:
(i) The DS Meta-Model (enclosed within the dashed area) stores the DS schema; and
(ii) The Meta-Model of the DS Schema Evolution Operations that stores the DS schema
evolution operations.

Modeling Decision-makers Requirements
This step takes as input the new requirements expressed as queries, rules or formulae
and returns a Requirements Evolution Model (REM) compliant to the Meta-Model in
[13] depicted in Fig. 5. A new requirement has quantitative and qualitative attributes,
arithmetic operations (i.e., formula) and logical expressions (i.e., rules).

Fig. 4. DS evolution meta-model.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 415

DW Evolution Model
The DW Evolution Meta-Model has two components (cf. Fig. 6): (i) The DW
Meta-Model (dashed area) that stores the DW Schema, and (ii) The Meta-Model of the
DW Schema Evolution Operations that stores the DW Schema Evolution Operations.
This latter will be deduced automatically from the DSEM using transformation rules.

Fig. 5. Requirements evolution meta-model [13].

Fig. 6. DW evolution meta-model.

416 S. Taktak et al.

6.2 M2M Transformations in QVT: REM to DWEM

The first aim of our approach is to determine the evolution operations to apply on the
DW model after the appearance of new analytical needs. Figure 7 lists transformations
potentially applicable to the DW according to the evolution strategies.

Due to space limitation, we define the rules that transform a new requirement into
the Add_Fact evolution operation that adds a fact into the DW.

Each new requirement, defined using an appropriate model, is converted auto-
matically into a set of evolution operations on the target model (DW evolution model).

The relationMain is the entry point of the transformation process; it has elements of
the two following models (cf. Fig. 8):

– « rem » model conform to REMM (Requirement Evolution Meta-Model),
– « dwem » model conform to DWEMM (DW Evolution Meta-Model).

Fig. 7. DW evolution operations for new requirements [17].

Fig. 8. Graphical representation of the QVT relation Main [17].

Model-Driven Approach to Handle Evolutions of OLAP Requirements 417

The Domain element of the « rem » model is marked with « C » (Checkonly); this
means when a transformation occurs in this direction (i.e. the direction of a Checkonly
domain) it simply checks if there is a valid match in the relevant model that satisfies the
relationship. The domain of the « dwem » model is marked with « E » (Enforce); this
means when a transformation occurs in this direction (i.e. the direction of the model of
an enforced domain) if the checking fails then the target model « dwem » is modified
to satisfy this relation. The left side of this relation describes the elements of the source
model « rem » , which transforms into elements of the target model « dwem » . More
specifically, a new requirement from the left « nr: New_Requirement » transforms into
evolution operation(s) for the DW « dweo: Dw_Evol_Operation » by invoking the
relation New_Requirement_TO_Dw_Evolution_Operation (nr, dweo) specified in the
where clause. Consequently, the following relations executes:

– New_Requirement_TO_AddDimension,
– New_Requirement_TO_AddLevel,
– New_Requirement_TO_AddFact,
– New_Requirement_TO_AddMeasure,
– New_Requirement_TO_AddParameter, and
– New_Requirement_TO_AddAttribute.

Let us focus on the New_Requirement_TO_Add_Fact relation. Figure 9 describes
the relation that transforms a new requirement « nr » into the DW evolution operation
Add_Fact.

Fig. 9. QVT relation NewRequirement_TO_AddFact [17].

418 S. Taktak et al.

Since we are treating the DW evolution problem according to the extension
strategy, we have elements from the DS model (« Domain: Ds_Schema ») in the
New_Requirement_ TO_Add_Fact relation. Truthfully, a quantitative attribute aQuant
(in a new requirement nr) that belongs to a table t of the DS model « dss » may create
a new fact newf in the DW model « dws » if table t does not load any fact of the «
dws » . Then, the aQuant attribute feeds a measure of the new fact newf via the relation
AttributeQuant_ to_Measure(aQuant,m). The dimensions of newf will be deducted from
the qualitative attributes present in the new nr requirement using the relation
AttributeQual_To_Dimension (aQual,d).

6.3 M2M Transformations in QVT: DSEM to DWEM

Here, we define our QVT rules to transform the DS evolution model into a DW
evolution model. Figure 10 depicts how the evolution operations performed on the DS
model will be transformed into evolution operations on the DW model. Among these
relations, we have selected to detail AddTable_TO_AddDimension and AddTable_
TO_AddFact.

Relation AddTable_TO_AddDimension.
Note that in multidimensional modeling, each fact f is associated with a finite set of n
(n > 1) dimensions; each dimension is an analysis axes of the measures in f. Dimen-
sions are loaded from the DS tables directly or indirectly related to the table that feeds
f [18, 19]. Hence, if a new table newt is added to the DS and is referenced by a table
that feeds f, then newt transforms into a dimension for f.

Fig. 10. Principle of transforming DS-evolution operations into DW-evolution operations.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 419

This AddTable evolution operation is achieved through the QVT relation
AddTable_TO_AddDimension in Fig. 11 that transforms the operation « AddTable » on
the DS data-model into the operation « AddDimension » on the DW data-model. The
When clause specifies the condition to check for executing this relation. It means if the
new table noted « newt » is referenced by a table noted « reft » that feeds a fact «
f » through the relation « Load(reft, f) » then « newt » will be transformed into a new
dimension « newd » via the relation « Table_TO_Dimension(newt, newd) » specified
in the Where clause.

Relation AddTable_TO_AddFact
In DW design approaches, an n-ary relationship having non-(prime and foreign key)
numeric columns transforms into a fact [20, 21].

This heuristic helps us to decide whether a new table added to the DS will trans-
form into a fact or not. Thus, the relation AddTable_TO_AddFact transforms the
AddTable operation into AddFact operation on the DW. Figure 12 gives its formal-
ization in QVT explained hereafter. If the new table « newt » refers to two tables «
ta » and « tb » that feed two dimensions « da » and « db » respectively, and if «
newt » has numeric columns then « newt » is likely to transform into fact via the
relation « Table_To_Fact (newt, newf) » . Numeric columns in newt transform into
measures through a relation called « Column_To_Measure (c, m) » not defined in this
paper.

Fig. 11. QVT relation AddTable_TO_AddDimension.

420 S. Taktak et al.

6.4 Validation and Adaptation Module

Once the DWEM is generated, thereafter the new DW model could be visualized
graphically; this enables the DW Administrator (DWA) to follow/study the effects (i.e.,
suggested changes) of the DS-evolutions operations on the original DW model. Fig-
ure 13 shows the DWE graphical interface after adding the Retail_Outlet table to the
DS model. At this stage, the DWA can validate these changes or adapt them according
to the evolution requirements. Consequently, the DWEM is automatically modified and
then the M2T process generates the code.

Fig. 12. Relation AddTable_TO_AddFact in QVT.

Added Table
RETAIL_OUTLET

Fig. 13. Sample DWE interfaces (graphical and code).

Model-Driven Approach to Handle Evolutions of OLAP Requirements 421

6.5 Implementing M2t Transformations

We use Acceleo plugin that implements the MOFM2T standard of the OMG [22].
Acceleo provides tools for generating codes from models. This generation of code
conforms to a template-based approach.

A template is a text containing placeholders to fill with information extracted from
the input model (Fig. 14). For our running example, the input model is the DW
evolution model issued from the Requirement Evolution Model (REM) or DS Evo-
lution Model (DSEM). For M2T transformations, we developed a PSM (Platform
Specific Model) as an Acceleo template for generating the code [17] for the target
platform Oracle Warehouse Builder (OWB). Our Template generates OMB (Oracle
MetaBase) script that runs under OMB-Plus with Oracle JDeveloper or OMB-Plus
console. The execution of this template generates the code to connect to OWB and
propagates the changes to the DW data-model (Fig. 13).

7 Preliminary Results and Evaluation

Using the case study of Fig. 2, we have conducted a preliminary assessment by con-
sidering a significant set of DS and OLAP-requirements evolution scenarios leading to
changes on the DW model, as the creation of new facts and dimensions. The achieved
results are very promising. Hereafter, we present four evolution scenarios:

7.1 Evolution Scenarios of the DS

The creation of the DS-table RETAIL_OUTLET (Id_Ro, Ro_name, Ro_zone…) with
a reference from the SALES DS-table to the RETAIL_OUTLET DS-table causes
applying rule T2D that creates a dimension D_RETAIL_OUTLET linked to the
F_SALE fact.

Adding the DS-table SCORE_PROD (#Id_Prod, #Id_Cust, ScoreNumeric…) refer-
encing tables PRODUCT and CUSTOMER has caused applying rule T2F that creates
the fact F_SCORE_PROD referring dimensions D_CUSTOMER and D_PRODUCT
and having Score as a measure.

Script file (e.g., OMB)

Acceleo Template

Model

Fig. 14. Acceleo schema for the generation of OMB script.

422 S. Taktak et al.

7.2 Evolution Scenarios Due to OLAP Requirements

Assume the decision-maker wants to analyze the Sales by Category (analysis param-
eter) of products. The Category is in the DS but not in the multidimensional model. To
do so, he gives a rule indicating that the last digit of the product identifier (Id_Prod)
codifies the Category of the product. Because of this evolution in requirement, a new
parameter “Category” is created within a new hierarchy Id_Prod ! Category for the
D_PRODUCT dimension.

Suppose the decision-maker needs to analyze The Sales by product provider.
The DW does not exist in the DW but the Provider table exists in the DS. The
prototype creates a new parameter Id_Prov within a new hierarchy Id_Prod !
Id_Prov for the D_PRODUCT dimension.

Actually, DWE offers the DW administrator the ability to graphically view the
changes suggested on the DW model, adjust these changes, and automatically generate
the DW alteration script. This allows a considerable grain in terms of quality and time.
Further experiments are in progress to improve the quality of the propagations
obtained, for example, the systematic addition of any weak attributes to be associated
with a new inserted parameter.

8 Conclusion

In this paper, we have proposed a model-driven based approach in order to automate
the propagation of the evolution of OLAP-requirements and the data source model
towards its associated data warehouse. To do so we have defined three evolution
models: DSEM (DS Evolution Model), REM (Requirement Evolution Model) and
DWEM (DW Evolution Model). Furthermore, we have defined a set of transformation
rules and formalized them in QVT (Query/View/Transformation) language; these rules
implement the transformation process for the passage between these models; they
support the propagation of changes due to changes occurred in the data source or to
new OLAP-requirements.

In order to validate our approach, we have developed a software prototype called
DWE (Data Warehouse Evolution). DWE is compliant to the Model Driven Approach.
Moreover, we have presented the functional architecture of DWE based on two levels
of transformations. The first is Model-to-Model (M2M) which transforms the DS and
the requirements evolution data-models into a DW evolution data-model. The second
transformation is Model-To-Text (M2T), which generates the script for the DW
alteration using Acceleo templates that we have defined for generating OMB (Oracle
MetaBase) code. The execution of this template allows log in to Oracle Warehouse
Builder and executing the OMB scripts that alter the DW data-model.

Our DWE prototype differs from the literature solutions mainly because it provides
(semi-)automatic propagation of evolutions applied to the OLAP-requirements and DS
data-model towards the DW data-model. Indeed, DWE covers the whole cycle of the
DW evolution starting from the identification of the DW evolutions and extends to
code generation. Additionally, being MDA-based, DWE allows benefits offered by this

Model-Driven Approach to Handle Evolutions of OLAP Requirements 423

technology (i.e. independence of platforms, reduction of efforts, reuse of models, and
improvement of the quality of result).

This work is currently opening up many perspectives. As a further step, we intend
to study the effect of such evolutions on the ETL (Extract-Transform-Load) process.
Obviously, the ETL process must evolve to consider the effects of the DS-DW changes
on the existing loading procedures. We are also planning a case study for efficiency
measurement and performance evaluation of the transformation rules.

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley, New York (2002)
2. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources. In:

Proceedings of ACM International Workshop on Data Warehousing and OLAP (DOLAP
2001), Atlanta, GA, USA, pp. 40–47 (2001)

3. Rusu, L.I., Rahayu, W., Taniar, D.: A methodology for building XML DW. Int. J. Data
Warehous. Min. 1(2), 67–92 (2005)

4. Nabli, A., Soussi, A., Feki, J., Ben Abdallah, H., Gargouri, F.: Towards an automatic data
warehouse and data mart design. In: 7th International Conference on Enterprise Information
Systems (ICEIS 2005), Miami, USA, pp. 226–231 (2005)

5. Rundensteiner, E.A., Nica, A., Lee, A.J.: On preserving views in evolving environments. In:
The 4th International Workshop Knowledge Representation Meets Databases, pp. 131–141
(1997)

6. Bellahsene, Z.: Schema evolution in data warehouses. Knowl. Inf. Syst. 4(3), 283–304
(2002)

7. Thakur, G., Gosain, A.: A comprehensive analysis of materialized views in a data warehouse
environment. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(5), 76–82 (2011)

8. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T., Vassiliou, Y.: Rule-based
management of schema changes at ETL sources. In: Grundspenkis, J., Kirikova, M.,
Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp. 55–62. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12082-4_8

9. El Akkaoui, Z., Zimànyi, E., Mazón, J.N., Trujillo. J.: A model-driven framework for ETL
process development. In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP (DOLAP 2011), New York, USA, pp. 45–52 (2011)

10. Wrembel, R., Bębel, B.: Metadata management in a multiversion data warehouse. In:
Spaccapietra, S., et al. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 118–
157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70664-9_5

11. Favre, C., Bentayeb, F., Boussaid, O.: Dimension hierarchies updates in data warehouses: a
user-driven approach. In: 9th International Conference on Enterprise Information Systems
(ICEIS 2007), Madeira, Portugal, pp. 206–211 (2007)

12. Thakur, G., Gosain, A.: DWEVOLVE: a requirement based framework for DW evolution.
SIGSOFT Softw. Eng. Notes 36(6), 1–8 (2011)

13. Solodovnikova, D., Niedrite, L., Kozmina, N.: Handling evolving data warehouse
requirements. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol.
539, pp. 334–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-0_35

14. Object Management Group (OMG): Model Driven Architecture (MDA) (2004)
15. Taktak, S., Feki, J., Zurfluh, G.: Toward evolution models for data warehouses. In: 2nd

International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2014), Lisbon, Portugal, pp. 472–479 (2014)

424 S. Taktak et al.

http://dx.doi.org/10.1007/978-3-642-12082-4_8
http://dx.doi.org/10.1007/978-3-540-70664-9_5
http://dx.doi.org/10.1007/978-3-319-23201-0_35

16. Bellatreche, L., Wrembel, R.: Evolution and versioning in semantic data integration systems.
J. Data Semant. 2, 57–59 (2013)

17. Taktak S., Alshomrani S., Feki J., Zurfluh G.: The power of a model-driven approach to
handle evolving data warehouse requirements. In: Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD
2017), pp. 169–181 (2017). ISBN 978-989-758-210-3

18. Hachaichi, Y., Feki, J., Ben-Abdallah, H.: Designing data marts from XML and relational
data sources. In: Design and Advanced Engineering Applications: Methods for Complex
Construction. Advances in Data Warehousing and Mining Series, pp. 55–80. IGI Global
(2009). Bellatreche Edition

19. Taktak, S., Alshomrani, S., Feki, J., Zurfluh, G.: An MDA approach for the evolution of data
warehouses. Int. J. Decis. Support Syst. Technol. (IJDSST) 7(3), 65–89 (2015)

20. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data
warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

21. Hachaichi, Y., Feki, J.: An automatic method for the design of multidimensional schemas
from object oriented databases. Int. J. Inf. Technol. Decis. Mak. 12(06), 1223–1259 (2013)

22. Object Management Group (OMG): MOF Model to Text Transformation Language, v1.0
(2008). http://www.omg.org/spec/MOFM2T/1.0/

Model-Driven Approach to Handle Evolutions of OLAP Requirements 425

http://www.omg.org/spec/MOFM2T/1.0/

	Model-Driven Approach to Handle Evolutions of OLAP Requirements and Data Source Model
	Abstract
	1 Introduction
	2 Related Works
	2.1 Approaches Based on DS Evolution Model
	2.2 Approaches Based on Business Requirement Evolution
	2.3 Discussion

	3 Overview of the Proposed Approach
	4 Evolution Inferred by the DS Model
	4.1 Transforming a Table into a Dimension
	4.2 Transforming a Table into a Fact

	5 Evolution Implied by the Decision Makers Needs
	5.1 Reorganization
	5.2 Derivation
	5.3 Extension

	6 Implementation
	6.1 Modeling of Evolution
	6.2 M2M Transformations in QVT: REM to DWEM
	6.3 M2M Transformations in QVT: DSEM to DWEM
	6.4 Validation and Adaptation Module
	6.5 Implementing M2t Transformations

	7 Preliminary Results and Evaluation
	7.1 Evolution Scenarios of the DS
	7.2 Evolution Scenarios Due to OLAP Requirements

	8 Conclusion
	References

