
123

Luís Ferreira Pires
Slimane Hammoudi
Bran Selic (Eds.)

5th International Conference, MODELSWARD 2017
Porto, Portugal, February 19–21, 2017
Revised Selected Papers

Model-Driven Engineering
and Software Development

Communications in Computer and Information Science 880

Communications
in Computer and Information Science 880

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Luís Ferreira Pires • Slimane Hammoudi
Bran Selic (Eds.)

Model-Driven Engineering
and Software Development
5th International Conference, MODELSWARD 2017
Porto, Portugal, February 19–21, 2017
Revised Selected Papers

123

Editors
Luís Ferreira Pires
University of Twente
Enschede
The Netherlands

Slimane Hammoudi
Siège du Groupe ESEO
Angers
France

Bran Selic
Malina Software Corp.
Nepean, ON
Canada

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-94763-1 ISBN 978-3-319-94764-8 (eBook)
https://doi.org/10.1007/978-3-319-94764-8

Library of Congress Control Number: 2018947447

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present volume contains extended versions of a set of selected papers from the 5th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2017), held in Porto, Portugal, during February 19–21, 2017.

These papers were selected by the event chairs and their selection is based on a
number of criteria that include the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, as well as the program
chairs’ overview of all papers in the technical program. The authors of selected papers
were then invited to submit a revised and extended version of their papers having at
least 30% additional new material.

The purpose of the International Conference on Model-Driven Engineering and
Software Development, MODELSWARD 2017, was to provide a platform for
researchers, engineers, academics as well as industrial professionals from all over the
world to present their research results and development activities in using models and
model-driven engineering techniques for software development. Model-driven devel-
opment (MDD) is an approach to the development of IT systems in which models take
a central role, not only for purposes of analysis and documentation but also for their
construction. MDD has emerged from a number of modeling initiatives, most promi-
nently the model-driven architecture (MDA) adopted by the Object Management
Group (OMG).

The papers selected to be included in this book contribute to the development of
highly relevant research trends in model-driven engineering and software development,
including:

– Methodologies for MDD development and exploitation
– Model-based testing
– Model simulation
– Domain-specific modeling
– Code generation from models
– New MDD tools
– Multi-model management
– Model evolution
– Industrial applications of model-based methods and technologies

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

February 2017 Luis Ferreira Pires
Slimane Hammoudi

Bran Selic

Organization

Conference Chair

Bran Selic Malina Software Corp., Canada

Program Co-chairs

Luis Ferreira Pires University of Twente, The Netherlands
Slimane Hammoudi ESEO, MODESTE, France

Program Committee

Silvia Abrahão Universitat Politecnica de Valencia, Spain
Guglielmo De Angelis CNR, IASI, Italy
Keijiro Araki Kyushu University, Japan
Marco Autili University of L’Aquila, Italy
Omar Badreddin University of Texas El Paso, USA
Mira Balaban Ben-Gurion University of the Negev, Israel
Daniel Balasubramanian Vanderbilt University, USA
Bernhard Bauer University of Augsburg, Germany
Martin Becker Fraunhofer IESE, Germany
Luca Berardinelli Vienna University of Technology, Austria
Antonia Bertolino Italian National Research Council, CNR, Italy
Lorenzo Bettini Università di Firenze, Italy
Paolo Bocciarelli University of Rome Tor Vergata, Italy
Jan Bosch Chalmers University of Technology, Sweden
Marco Brambilla Politecnico di Milano, Italy
Mark van den Brand Eindhoven University of Technology, The Netherlands
Antonio Brogi Università di Pisa, Italy
Achim D. Brucker SAP Research, Germany
Philipp Brune University of Applied Sciences Neu-Ulm, Germany
Christian Bunse University of Applied Sciences Stralsund, Germany
Dumitru Burdescu University of Craiova, Romania
Olena Chebanyuk National Aviation University, Ukraine
Dickson Chiu The University of Hong Kong, Hong Kong, SAR

China
Antonio Cicchetti Malardalen University, Sweden
Bernard Coulette Université Toulouse Jean Jaurès, France
Kevin Daimi University of Detroit Mercy, USA
Andrea D’Ambrogio Università di Roma Tor Vergata, Italy
Birgit Demuth TU Dresden, Germany

Enrico Denti Università di Bologna, Italy
Zinovy Diskin McMaster University and University of Waterloo,

Canada
Dimitris Dranidis CITY College, International Faculty of the University

of Sheffield, Greece
Schahram Dustdar Vienna University of Technology, Austria
Sophie Ebersold IRIT, France
Holger Eichelberger Universität Hildesheim, Germany
Maria Jose Escalona University of Seville, Spain
Rik Eshuis Eindhoven University of Technology, The Netherlands
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa,

Spain
Vladimir Estivill-Castro Griffith University, Australia
Anne Etien University of Lille 1, Inria, CNRS, France
Dirk Fahland Eindhoven University of Technology, The Netherlands
João Faria University of Porto, Portugal
Bernd Fischer Stellenbosch University, South Africa
Stephan Flake S&N CQM Consulting & Services GmbH, Germany
Francois Fouquet University of Luxembourg, Luxembourg
Piero Fraternali Politecnico di Milano, Italy
Jicheng Fu University of Central Oklahoma, USA
Kurt Geihs University of Kassel, Germany
Sébastien Gérard CEA, France
Paola Giannini University of Piemonte Orientale, Italy
Stefania Gnesi CNR, Italy
Cesar Gonzalez-Perez Institute of Heritage Sciences, Spanish National

Research Council, Spain
Carmine Gravino University of Salerno, Italy
Slimane Hammoudi ESEO, MODESTE, France
Klaus Havelund Nasa/Jet Propulsion Laboratory, USA
Jose R. Hilera University of Alcala, Spain
Pavel Hruby DXC Technology, Denmark
Marianne Huchard Université de Montpellier, France
Emilio Insfran Universitat Politècnica de València, Spain
Stefan Jablonski University of Bayreuth, Germany
Slinger Jansen Utrecht University, The Netherlands
Ricardo Jardim-Gonçalves Universidade Nova de Lisboa, Portugal
George Kakarontzas Technological Educational Institute of Thessaly,

Greece
Teemu Kanstren VTT, Finland
Jun Kong North Dakota State University, USA
Jochen Kuester University of Applied Sciences in Bielefeld, Germany
Uirá Kulesza Federal University of Rio Grande do Norte, Brazil
Anna-Lena Lamprecht Utrecht University, The Netherlands
Kun Chang Lee Sungkyunkwan University, South Korea

VIII Organization

Claudia Linnhoff-Popien Ludwig-Maximilians-Universität Munich, Germany
Francesca Lonetti National Research Council Pisa, Italy
Roberto Lopez-Herrejon École de Technologie Supérieure, Canada
David Lorenz Open University, Israel
Der-Chyuan Lou Chang Gung University, Taiwan
Frederic Mallet Université Nice Sophia Antipolis, France
Eda Marchetti ISTI-CNR, Italy
Beatriz Marin Universidad Diego Portales, Chile
Steve McKeever Uppsala University, Sweden
Dragan Milicev University of Belgrade, Serbia
Dugki Min Konkuk University, South Korea
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Halit Oguztüzün Middle East Technical University, Turkey
Olaf Owe University of Oslo, Norway
Rob Pettit The Aerospace Corp., USA
Luis Ferreira Pires University of Twente, The Netherlands
Elke Pulvermueller University of Osnabrück, Germany
Gil Regev Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Iris Reinhartz-Berger University of Haifa, Israel
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Werner Retschitzegger Johannes Kepler University, Austria
Colette Rolland Université de Paris 1 Panthèon Sorbonne, France
Jose Raul Romero University of Cordoba, Spain
Gustavo Rossi Lifia, Argentina
Motoshi Saeki Tokyo Institute of Technology, Japan
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Comai Sara Politecnico di Milano, Italy
Klaus Schmid University of Hildesheim, Germany
Jean-Guy Schneider Swinburne University of Technology, Australia
Wieland Schwinger Johannes Kepler University, Austria
Bran Selic Malina Software Corp., Canada
Peter Sestoft IT University of Copenhagen, Denmark
Marten van Sinderen University of Twente, The Netherlands
Pnina Soffer University of Haifa, Israel
Arnor Solberg Sintef, Norway
Stéphane Somé University of Ottawa, Canada
Jean-Sébastier Sottet Luxembourg Institute for Science and Technology,

Luxembourg
Alin Stefanescu University of Bucharest, Romania
Arnon Sturm Ben-Gurion University of the Negev, Israel
Hiroki Suguri Miyagi University, Japan
Eugene Syriani University of Montreal, Canada
Massimo Tivoli University of L’Aquila, Italy
Mario Trapp Fraunhofer IESE, Germany

Organization IX

Naoyasu Ubayashi Kyushu University, Japan
Andreas Ulrich Siemens AG, Germany
Gianluigi Viscusi EPFL Lausanne, Switzerland
Shuai Wang Simula Research Lab, Norway
Christiane Gresse von

Wangenheim
Federal University of Santa Catarina, Brazil

Layne Watson Virginia Polytechnic Institute and State University,
USA

Jan Martijn van der Werf Universiteit Utrecht, The Netherlands
Michael Whalen University of Minnesota, USA
Franz Wotawa Graz University of Technology, Austria
Husnu Yenigun Sabanci University, Turkey
Gefei Zhang Hochschule für Technik und Wirtschaft Berlin,

Germany
Heming Zhang Tsinghua University, China
Tian Zhang Nanjing University, China
Chunying Zhao Western Illinois University, USA
Haiyan Zhao Peking University, China
Kamil Zyla Lublin University of Technology, Poland

Additional Reviewers

Zakia Alkadri University of Texas at El Paso, USA
Shinpei Hayashi Tokyo Institute of Technology, Japan
Alexander Jahl Kassel University, Germany
Giorgio Oronzo Spagnolo ISTI CNR ITALY, Italy

Invited Speakers

Uwe Assmann Technische Universität Dresden, Germany
Juan de Lara Universidad Autónoma de Madrid, Spain
Frédérick Benaben Ecole de Mines Albi-Carmaux, France

X Organization

Contents

SOMMELIER: A Tool for Validating TOSCA Application Topologies 1
Antonio Brogi, Antonio Di Tommaso, and Jacopo Soldani

Evaluation of XIS-Reverse, a Model-Driven Reverse Engineering
Approach for Legacy Information Systems . 23

André Reis and Alberto Rodrigues da Silva

Formal and Virtual Multi-level Design Space Exploration 47
Letitia W. Li, Daniela Genius, and Ludovic Apvrille

Automated Synthesis of a Real-Time Scheduling for Cyber-Physical
Multi-core Systems . 72

Johannes Geismann, Robert Höttger, Lukas Krawczyk, Uwe Pohlmann,
and David Schmelter

A Model Based Approach for Complex Dynamic Decision-Making. 94
Souvik Barat, Vinay Kulkarni, Tony Clark, and Balbir Barn

Deterministic High-Level Executable Models Allowing Efficient
Runtime Verification . 119

Vladimir Estivill-Castro and René Hexel

A Consistency-Preserving Editing Model for Dynamic Filtered Engineering
of Model-Driven Product Lines. 145

Felix Schwägerl and Bernhard Westfechtel

Model-Driven STEP Application Protocol Extensions Combined
with Feature Modeling Considering Geometrical Information 173

Thorsten Koch, Jörg Holtmann, and Timo Lindemann

A Model Driven Engineering Approach for Heterogeneous Model
Composition . 198

Fazle Rabbi, Yngve Lamo, and Lars Michael Kristensen

Generative versus Interpretive Model-Driven Development: Moving
Past ‘It Depends’ . 222

Michiel Overeem, Slinger Jansen, and Sven Fortuin

Applying Integrated Domain-Specific Modeling for Multi-concerns
Development of Complex Systems . 247

Reinhard Pröll, Adrian Rumpold, and Bernhard Bauer

A Domain-Specific Modeling Approach for Testing
Environment Emulation . 272

Jian Liu, John Grundy, Mohamed Abdelrazek, and Iman Avazpour

A Framework for UML-Based Component-Based Design and Code
Generation for Reactive Systems. 300

Van Cam Pham, Ansgar Radermacher, Sébastien Gérard, and Shuai Li

Automatic UI Generation for Aggregated Linked Data Applications
by Using Sharable Application Ontologies . 328

Michael Hitz, Thomas Kessel, and Dennis Pfisterer

Surveying Co-evolution in Modeling Ecosystems . 354
Jürgen Etzlstorfer, Elisabeth Kapsammer, Wieland Schwinger,
and Johannes Schönböck

Functional Decomposition for Software Architecture Evolution 377
David Faitelson, Robert Heinrich, and Shmuel Tyszberowicz

Model-Driven Approach to Handle Evolutions of OLAP Requirements
and Data Source Model . 401

Said Taktak, Jamel Feki, Abdulrahman Altalhi, and Gilles Zurfluh

Complex Event Processing for User-Centric Management of IoT Systems . . . 426
Moussa Amrani, Fabian Gilson, and Vincent Englebert

Efficient Distributed Execution of Multi-component
Scenario-Based Models . 449

Shlomi Steinberg, Joel Greenyer, Daniel Gritzner, David Harel,
Guy Katz, and Assaf Marron

Modelling the World of a Smart Room for Robotic Co-working 484
Uwe Aßmann, Christian Piechnick, Georg Püschel, Maria Piechnick,
Jan Falkenberg, and Sebastian Werner

Author Index . 507

XII Contents

Sommelier: A Tool for Validating TOSCA
Application Topologies

Antonio Brogi, Antonio Di Tommaso, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. TOSCA is an OASIS standard for specifying cloud applica-
tions and automating their management. The topology of a cloud appli-
cation can be described as a typed and directed graph. The latter can
then be automatically processed by so-called TOSCA engines to auto-
mate the deployment and management of the described application on
cloud platforms. In this paper we first illustrate the conditions ensur-
ing the validity of a TOSCA application topology. We then introduce
Sommelier, an open-source validator of TOSCA application topologies
based on such validity conditions.

1 Introduction

Cloud computing is nowadays characterised by a lack of standardisation, with
different cloud platforms providing similar offerings in different and heteroge-
neous ways [1]. As a result, cloud developers tend to remain locked-in a spe-
cific platform environment because it is practically unfeasible for them, due to
high complexity and cost, to migrate their applications to a different platform.
According to [2], to enable the creation of portable cloud applications, the appli-
cation components, their relations and management should be modelled in a
standardised, machine-readable format. This would also allow the automation
of the deployment and management of modelled applications [3].

In this scenario, OASIS released the Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA [4]). TOSCA permits specifying portable
cloud applications and automating their management. The structure of a cloud
application can be described as a typed and directed topology graph (specified
in a standardised, YAML-based modelling language). In a topology graph, the
nodes model the components of an application (e.g., a web application, an appli-
cation server, a NoSQL database, and a NoSQL DBMS), while the edges model
the relationships occurring between such components (e.g., the web application
runs on the application server and it connects to the NoSQL database, and the
NoSQL database is installed on the NoSQL DMBS).

TOSCA applications can then be declaratively processed by so-called
TOSCA engines to automate their deployment [5]. Such a declarative processing
depends on the inter-node relationships specified in the topology of an applica-
tion [6]. Initially, (i) all nodes without dependencies on other nodes are deployed.
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 1–22, 2018.
https://doi.org/10.1007/978-3-319-94764-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_1&domain=pdf

2 A. Brogi et al.

Then, (ii) the nodes whose requirements are actually satisfied (by capabilities
offered by the nodes that have been deployed) are deployed, and their outgoing
relationships are properly processed. Step (ii) is repeated until all the nodes in
the application topology have been deployed [7].

Fig. 1. A toy example of application topology

Consider, for instance, the application topology in Fig. 1, whose nodes are a
web application, an application server, a NoSQL database and a NoSQL DBMS.
The inter-node relationships indicate that the web application must be hosted
on the application server and connected to the NoSQL database. They also
indicate that the NoSQL database must be hosted on the NoSQL DBMS. Step
(i) would result in first deploying the application server and the NoSQL DBMS.
Step (ii) would then result in deploying the NoSQL database on the NoSQL
DBMS. Step (ii) would then be repeated, and it would result in deploying the
web application on the application server, and in setting up a connection from
the web application to the NoSQL database.

The above (toy) example demonstrates how the declarative processing of
TOSCA applications heavily depends on the inter-node relationships indicated in
the topology of an application. We must also consider that the actual processing
of each node and relationship relies on configuration information contained in its
specification, which is put into context by indicating constraints on how it can
be interconnected with other nodes and relationships [7]. This makes it crucial
to ensure, at design-time, that TOSCA application topologies are valid, by also
checking that all the relationships interconnecting the nodes in an application
topology have been set properly.

This paper aims at providing a first design-time support for TOSCA appli-
cation developers, by allowing them to validate their application topologies. In
this perspective, the main contributions in this paper are twofold:

– We formalise the conditions that must hold to have valid TOSCA application
topologies, by systematically mapping the interconnection constraints that
can be specified in TOSCA into formal conditions that must hold to ensure
the validity of a TOSCA application topology.

– We propose a first prototype of validator for TOSCA application topologies,
called Sommelier. Sommelier checks whether the topology of a TOSCA
application satisfies all interconnection constraints, by actually checking all
the proposed validity conditions.

Sommelier: A Tool for Validating TOSCA Application Topologies 3

We believe that Sommelier can fruitfully help TOSCA application developers,
as it allows them to automatically validate their TOSCA application topologies
at design time (a task that they currently have to perform manually). Also, as
Sommelier fully integrates with the OpenStack TOSCA parser [8], and since
both Sommelier and the OpenStack TOSCA parser are open-source, they can
lay the foundations for an open-source toolset for supporting TOSCA application
developers from the design time till the run time [9].

This paper is an extended version of [10], which further motivates the need for
a design-time support for validating of TOSCA application, and which includes
an extended description of the prototype and of its testing.

The rest of this paper is organised as follows. Section 2 provides background
on TOSCA and a motivating example further highlighting the need for validat-
ing TOSCA application topologies. Section 3 illustrates the formal conditions
allowing to validate the topology of a TOSCA application. Sect. 4 provides a
detailed description of Sommelier, by also showing its testing and how it per-
mits validating TOSCA application topologies. Finally, Sects. 5 and 6 discuss
related work and draw some concluding remarks, respectively.

2 Background and Motivations

2.1 Background: TOSCA

The OASIS standard TOSCA [4] aims at enabling the specification of portable
cloud application and at automating their deployment and management. Cloud
applications can be specified in a YAML-based, machine-readable modelling lan-
guage. Obtained specifications can then be declaratively processed by TOSCA
engines, which can automatically deploy and manage specified applications.

In TOSCA, a cloud application is specified as a service template, which is
in turn composed by a topology template, and by the types needed to build
such a topology template (Fig. 2). The topology template is a typed directed
graph that describes the topology of a cloud application, viz., its structure.
Its nodes (called node templates) model the components of an application,
while its edges (called relationship templates) model the inter-component
relationships.

The node templates and relationship templates are typed by means of
node types and relationship types, respectively. A node type defines the
requirements of a component, the capabilities that it can offer to satisfy the
requirements of other components, its observable attributes and properties,
and the interfaces through which it offers its management operations. Capa-
bilities are also typed through so-called capability types, which permit indi-
cating their attributes, properties and valid source types (viz., the node
types that can be satisfied by such capabilities).

A relationship type instead describes the attributes and properties of an
inter-component relationship, as well as the interfaces through which it offers
its management operations. A relationship type can also indicate constraints on
the capability types that can be targeted by such type of relationships (through
its clause valid target types).

4 A. Brogi et al.

Fig. 2. TOSCA service template [4].

It is worth noting that the TOSCA type system supports inheritance. A node
type can extend another, to inherit all its attributes, properties, requirements,
interfaces, and operations. Analogously, a relationship type or a capability type
can extend another to inherit all its features.

TOSCA application specifications are given in .tosca document, which has
then to be packaged together with all the installable and executable files needed
to properly instantiate the specified applications. To enable this, TOSCA also
prescribes the format (called CSAR—Cloud Service ARchive) to archive appli-
cation specifications together with all such files.1

2.2 Motivating Example

Consider the (toy) web-based application in Fig. 3 (modelled in TOSCA accord-
ing to the Winery graphical notation [11]). The application is composed by three
main components, namely a web-based GUI, a REST API and a Database, which
are hosted on a WebServer, a Server and a DBMS, respectively. The GUI depends
on the availability of the REST API to effectively work, and the REST API in
turn depends on the availability of the Database.

Despite the application specification in Fig. 3 seems valid, there are two wrong
inter-node relationships. Firstly, the REST API explicitly states that it requires a
connection to the back-end Database, but the requirement connection is satisfied
by a relationships of type DependsOn. The latter will be processed by TOSCA-
compliant cloud platforms by only postponing the installation of the REST API
after that of the Database. No connection from the REST API to the Database
will be set up (even if the REST API explicitly requires it).

Also, the Database in our motivating application is NoSQL, and it HostedOn
a MariaDB2 DBMS. The latter is however a SQL-based relational DBMS, which
is hence not capable of managing NoSQL databases.

1 A more detailed, self-contained introduction to TOSCA can be found in [9].
2 https://mariadb.com/.

https://mariadb.com/

Sommelier: A Tool for Validating TOSCA Application Topologies 5

Fig. 3. Motivating example.

The above errors are hard to be manually detected, as we need to manually
check that all inter-node relationships in a TOSCA application topology sat-
isfy the interconnection constraints specified in (the types of) the source and
target nodes, as well as those specified in (the type of) the employed relation-
ships. TOSCA application developers should hence be provided with solutions
for automatically validating TOSCA application topologies.

3 Validating TOSCA Application Topologies

The aim of this paper is to provide a first design-time support for TOSCA appli-
cation developers, which allows them to validate the topology of an application.
The topology of an application is given in the form of a topology template,
viz., a typed directed graph whose nodes represent the components of an appli-
cation, and whose edges model the relationships occurring among such compo-
nents [4]. Each relationship specifies that a requirement of the source node must
be actually satisfied by (a capability of) the target node.

To check whether a TOSCA application topology is valid, we must verify
that all inter-component relationships are properly settled. This in turn means
that we must check all TOSCA elements forming a relationship, namely its
source (viz., a requirement of a node), the relationship itself (viz., a relationship
template), and its target (viz., a node or a capability of a node).

In the following, we show how to systematically map3 the interconnection con-
straints that can be specified in TOSCA to formal conditions. We first present

3 We first systematically read the TOSCA specification [4], and we excerpted all por-
tions that describe how to specify interconnection constraints. In the following, we
shall recall all such portions, and we illustrate how to directly map each of them to a
formal condition that must be verified to ensure the validity of a TOSCA application
topology.

6 A. Brogi et al.

the validation conditions for sources of relationships (Sect. 3.1), those for rela-
tionships themselves (Sect. 3.2), and those for targets of relationships (Sect. 3.3).
We finally compose all such conditions to provide a notion of validity for appli-
cation topologies (Sect. 3.4).

3.1 Validating Sources of Relationships

The source of a relationship is a requirement of a node [4]. We must hence
verify that all the relationships outgoing from a requirement do not violate any
constraint indicated in the requirement definition.

In this section, we first recall how requirements can be defined in TOSCA,
by also explaining what the meaning of a requirement definition is (according
to the TOSCA specification [4]). We then single out the formal conditions that
must be verified to ensure that the interconnection constraints indicated in a
requirement definition are all satisfied.

How to define a Requirement in TOSCA
A node type ntype defines the set of named requirements that can be exposed

by a node template of such type. Requirements can be defined within the
requirements of ntype with the grammars displayed in Fig. 4. Both grammars
permit specifying the requirement name (req name) and some constraints that
must be fulfilled to actually satisfy the requirement under definition.

Fig. 4. (a) Simple and (b) extended grammars for requirement definitions [4].

The simple grammar (a) requires to indicate the name of a valid capability
type that must be used to fulfill the requirement under definition. The extended
grammar (b) allows to specify three additional (optional) constraints.

– node allows to indicate a node type that contains a capability definition that
can be used to fulfill the requirement.

Sommelier: A Tool for Validating TOSCA Application Topologies 7

– relationship allows to indicate a relationship type that can be exploited to
create an outgoing relationship template to fulfill the requirement.

– occurrences allows to indicate the minimum and maximum occurrences of
the requirement in node templates, whose node type is that under definition.4

A node template ntemp is an instance of a node type ntype in a TOSCA
application topology, which allows to indicate the requirements that are actually
needed by the application component modelled by ntemp . Such requirements can
be indicated within the requirements clause of ntemp , through so-called require-
ment assignments. Each requirement assignment instantiates a corresponding5

requirement definition in ntype . Figure 5 displays the grammars for requirement
assignments in TOSCA.

Fig. 5. (a) Simple and (b) extended grammars for requirement assignments [4].

The simple grammar (a) only allows to indicate (the name of) the node
template satisfying the requirement under assignment. This notation is only
valid if the corresponding requirement definition (in the node type of the node
template that is being specified) indicates at least a valid capability type that
can be found in the target node template.

The extended grammar (b) not only allows to indicate (the name of) the
target node template, but also to specify some additional information.

– node allows to indicate the target node. It can be used to provide either the
name of the node template that is actually fulfilling the requirement under
assignment, or the name of a node type that constrains the type of nodes
that can be used to dynamically satisfy the requirement at run-time.

4 Since the focus of this paper is on validating inter-component dependencies in
TOSCA application topologies, and since occurrences is not giving any constraint
concerning inter-component dependencies, we shall not formalise the trivial condi-
tion to validate occurrences.

5 A node template’s requirement assignment corresponds to a node type’s requirement
definitions if they have the same name req name.

8 A. Brogi et al.

– relationship is optional, and it allows to indicate the name of a relationship
template (to relate the source node to the—capability in the—target node
when fulfilling the requirement), or the name of a relationship type (that
constrains the type of relationships that can be used to dynamically settle a
relationship between the source and target nodes at run-time).

– node filter is also optional, and it allows to indicate additional constraints
on the node/relationship that can be used to dynamically satisfy the require-
ment under assignment at run-time.

How to validate a TOSCA Requirement
We hereby single out the conditions that must hold to validate sources of

relationships at design-time.6 In doing so, we exploit some shorthand notation.

Notation. We shall write:

– type(·) and name(·) to denote the type and name of a TOSCA element,
– t′ ≥ t to denote that t′ extends7 or is equal to t,
– e.f to denote the field f of the TOSCA element e (which is ⊥ if f is not

defined in e), and
– C(·) and R(·) to denote the capabilities and the requirements defined in a node

type or assigned by a node template.

Given a TOSCA application topology, the sources of its inter-component rela-
tionships are valid if each of the requirements of its node templates is associated
with a node and a relationship satisfying all constraints indicated in the defini-
tion and assignment of such requirement.

Condition 1. Let ntemp be a node template of type ntype . Then: ∀ra ∈
R(ntemp),∃rd ∈ R(ntype) :

(1) name(ra) = name(rd) ∧
(2) rd .node �= ⊥ ⇒ type(ra .node) ≥ rd .node ∧
(3) ra .capability �= ⊥ ⇒ type(ra .capability) ≥ rd .capability∧
(4) ra .capability = ⊥ ⇒ ∃c ∈ C(ra .node) : type(c) ≥ rd .capability∧
(5) rd .relationship �= ⊥ ∧ ra .relationship �= ⊥ ⇒

type(ra .relationship) ≥ rd .relationship

The first check (Condition 1.1) ensures that, for each requirement assigned ra in
a node template ntemp (of type ntype), there exists a corresponding requirement
definition rd in ntype .

We can then check that no requirement assignment ra is violating the con-
straints indicated by the corresponding requirement definition rd :
6 Since we focus on design-time, we shall not consider all constraints on how to auto-

matically complete the topology of a TOSCA application (viz., those constraining
the types of node and relationship that can be used to automatically fulfill a require-
ment at run-time). Anyway, our approach can help driving the automatic completion
of TOSCA application topologies, as well as to double-check that automatically com-
pleted topologies are valid.

7 Given that t and t′ are TOSCA types, t′ extends t if t′ is (directly or indirectly)
derived from t [4].

Sommelier: A Tool for Validating TOSCA Application Topologies 9

– A requirement definition rd may indicate the node type that can be used
to validly satisfy a requirement (through the optional field node). Hence,
if node is specified in rd , the type of the node template targeted by each
corresponding requirement assignment ra has to extend or to be equal to
that indicated in node (Condition 1.2.)

– Each requirement definition specifies the name of a capability type that can be
used to validly satisfy the requirement. This is ensured if each corresponding
requirement assignment ra directly targets a capability whose type extends or
is equal to that indicated in the requirement definition (Condition 1.3). When
a requirement assignment is instead only indicating the target node template
(without indicating any of its capabilities), we must check whether such node
template is offering at least one type-compatible capability (Condition 1.4).

– A requirement definition rd may also indicate the relationship type that
can be validly exploited to settle a relationship template outgoing from
the requirement (through the optional field relationship). Hence, if
relationship is specified in rd , the type of a relationship template out-
going from a corresponding requirement assignment ra (if any) extends or is
equal to that indicated in relationship (Condition 1.5).

3.2 Validating Relationships

Inter-component relationships are indicated as typed relationship templates [4].
We must hence verify that the relationship templates in a TOSCA application
topology are instantiating the corresponding relationship types without violating
any of their interconnection requirements.

In this section, we first recall how to specify relationship types in TOSCA, by
also explaining what the meaning of a relationship type definition is (according to
the TOSCA specification [4]). We then single out the formal conditions that must
be verified to ensure that no relationship template is violating the constraints
given by the corresponding relationship type.

How to define a Relationship in TOSCA
TOSCA allows to define a relationship type with the grammar shown in

Fig. 6. The latter permits indicating the name of the relationship type under
definition (rel type name), and its features and interconnection constraints.

– derived from is optional, and it allows to indicate (the name of) a parent
relationship type8. If indicated, the relationship type under definition inherits
all the features and constraints of the parent relationship type, and it can over-
ride some of them [7]. For instance, if the relationship type under definition
does not specify a new list of valid target types, then it takes that of the
parent relationship type. Otherwise, the parent’s list of valid target types
is overridden by that specified in the relationship type under definition.

8 All TOSCA relationship types should be derived (directly or indirectly) from the
tosca.relationships.Root relationship type [4].

10 A. Brogi et al.

Fig. 6. Grammar for relationship types [4].

– version and description are optional, and they permit versioning and
describing (in natural language) a relationship type.

– properties and attributes are also optional, and they allow to specify the
desired and actual state of a relationship, respectively.

– interfaces is optional, and it allows to indicate the management operations
that can be offered by relationship templates whose relationship type is that
under definition.

– valid target types is optional, and it allows to list the capability types that
can be validly used as targets of relationship templates whose relationship
type is that under definition.

How to validate a TOSCA Relationship
We hereby single out the conditions ensuring that a relationship template

is not violating any of the interconnection constraints indicated by the corre-
sponding relationship type. In this perspective, it is worth highlighting that the
only interconnection constraints that can be specified while defining a relation-
ship type are those concerning its valid target types (which can be indicated
inline or inherited from the parent relationship type).

Notation. We shall denote with T(·) the set of capability types that are valid
targets for a relationship type. Given a relationship type rel type :

– If rel type .valid target types �= ⊥, then T(rel type) is the set containing all
types in rel type .valid target types,

– otherwise, if rel type .derived from �= ⊥, then T(rel type) is the set containing
all types in T(rel type .derived from),

– otherwise, T(rel type) is the set containing all capability types (meaning that
all capability types are valid targets for rel type).

The relationship templates instantiated in a TOSCA application topology are
valid if all their targets are valid, viz., the targets do not violate the constraints
indicated in the corresponding relationship types.

Condition 2. Let rel temp be a relationship template of type rel type . If there
exists a requirement assignment ra that is source of rel temp, then:

Sommelier: A Tool for Validating TOSCA Application Topologies 11

(1) ra .capability �= ⊥ ⇒
∃ctype ∈ T(rel type) : type(ra .capability) ≥ ctype ∧

(2) ra .capability = ⊥ ⇒
∃ca ∈ C(ra .node) : ∃ctype ∈ T(rel type) : type(ca) ≥ ctype

The above conditions ensure that, if a relationship template targets a spe-
cific capability9, then such capability must be type-compatible with at least one
of those indicated in vaid target types (Condition 2.1). If a relationship tem-
plate instead targets a node template (but not concretely pointing to any of its
capabilities), then such node template must offer at least one type-compatible
capability (Condition 2.2).

3.3 Validating Targets of Relationships

The target of a relationship can be either a capability or a node template. In
the latter case, the targeted node template must offer at least a capability that
can satisfy the source requirement [4].

In this section, we first recall how to specify capabilities in TOSCA, by also
explaining what their meaning is (according to the TOSCA specification [4]).
We then single out the formal conditions that must be verified to ensure that no
relationship is violating the constraints given by its target.

How to define a Capability in TOSCA
Capability types can be defined in TOSCA according to the grammar shown

in Fig. 7. The latter permits indicating the name of the capability type under
definition (cap type name), and its features and interconnection constraints.

Fig. 7. Grammar for capability types [4].

– derived from is optional, and it allows to indicate (the name of) a parent
capability type10. If indicated, the relationship type under definition inherits

9 Please recall that a relationship is outgoing from a requirement assignment ra . The
latter can either indicate the specific capability satisfying ra , or a node template
offering (at least) a capability satisfying ra (see Fig. 5).

10 All TOSCA capability types should be derived (directly or indirectly) from the
tosca.capability.Root capability type [4].

12 A. Brogi et al.

all the features and constraints of the parent relationship type, and it can
override some of them [7]. For instance, if the capability type under definition
does not specify a new list of valid source types, then it takes that of the
parent capability type. Otherwise, the parent’s list of valid source types is
overridden by that specified in the capability type under definition.

– version and description are optional, and they permit versioning and
describing (in natural language) a capability type.

– properties and attributes are optional, and they allow to indicate the
desired and actual state of a capability, respectively.

– valid source types is optional, and it allows to list the node types that can
be validly used as sources of relationships whose target capability is of the
type under definition.

Capability types are then referred by node types. Each node type indeed defines
(within its field capabilities) the set of named capabilities that can be exposed
by node templates of such type. The grammars for capability definitions are
displayed in Fig. 8.

Fig. 8. (a) Simple and (b) extended grammars for capability definitions [4].

Both the simple grammar (a) and the extended grammar (b) allow to
indicate the name (cap name) of the capability under definition, and its
type. The extended grammar (b) also allows to specify some optional fields
(viz., description, properties, attributes, and valid source types), whose
meaning is analogous to that of their homonym fields in the grammar for speci-
fying capability types (Fig. 7).

Node templates are instances of node types, and they also instantiate the
capabilities they define. Node templates can also assign concrete values to the
properties and attributes of such capabilities, to provide additional information
concerning their desired and actual state, respectively. Such a kind of capability
assignments can be provided with the field capabilities of a node template,
with the grammar in Fig. 9.

Sommelier: A Tool for Validating TOSCA Application Topologies 13

Fig. 9. Grammar for capability assignments [4].

How to validate a TOSCA Capability
We hereby single out the conditions ensuring that a relationship template is

not violating any of the interconnection constraints indicated by the capability it
targets. The interconnection constraints concern the valid source types, and
they can be indicated while specifying defining a capability type or while defining
a capability in a node type. In the former case, the constraints can be indicated
inline in the specification of capability type, or they can be inherited by the
parent capability type.

Notation. We shall denote with S(·) the set of node types that are valid sources
for a capability type. Given a capability type ctype :

– If ctype .valid source types �= ⊥, then S(ctype) is the set containing all node
types in ctype .valid source types,

– otherwise, if ctype .derived from �= ⊥, then S(ctype) is the set containing all
node types in S(ctype .derived from),

– otherwise, S(ctype) is the set containing all node types (meaning that all node
types are valid targets for ctype).

TOSCA application topologies are such that (requirement assignments of)
multiple node templates can be sources of relationship templates targeting
the same capability assignment ca . All such node templates must not violate
the interconnection constraints indicated by the capability type of ca (Condi-
tion 3.1), nor those indicated in its corresponding capability definition (Condi-
tion 3.2).

Condition 3. Let ca be a capability assignment, whose corresponding type and
definition are ctype and cd . For each node template ntemp having a requirement
assignment ra such that ra .capability = ca :

(1) ∃ntype ∈ S(ctype) : type(ntemp) ≥ ntype ∧

(2) ∃ntype ∈ S(cd) : type(ntemp) ≥ ntype

3.4 Valid TOSCA Application Topologies

In the previous sections we have singled out the formal conditions that must
hold to ensure the validity of sources, instances, and targets of relationships in a
TOSCA application topology. For the convenience of readers, all such conditions
are recapped in Table 1. We below define the notion of validity for a TOSCA
application topology, by gathering Conditions 1, 2, and 3 in a single definition.

14 A. Brogi et al.

Table 1. Formal conditions ensuring the validity of sources, instances, and targets of
relationships in a TOSCA application topology.

Definition 1. A TOSCA application topology is valid if all its node templates
and relationship templates satisfy Conditions 1, 2, and 3.

4 Prototype Implementation

In this section, we present Sommelier, a Python prototype of validator for
TOSCA application topologies (based on the formal conditions discussed in
Sect. 3. The prototype of Sommelier is open-source11, and it is fully integrated
with the OpenStack TOSCA parser [8].

4.1 Sommelier

Sommelier validates TOSCA application topologies as illustrated in Fig. 10:

1 Sommelier takes as input a CSAR archive or a .tosca document. The input
contains the application topology to be validated.

2 Sommelier forwards the input to the OpenStack TOSCA parser [8].
11 The source code of Sommelier is publicly available on GitHub at https://github.

com/di-unipi-socc/Sommelier.

https://github.com/di-unipi-socc/Sommelier
https://github.com/di-unipi-socc/Sommelier

Sommelier: A Tool for Validating TOSCA Application Topologies 15

Fig. 10. Workflow followed by Sommelier while checking the validity of a TOSCA
application topology [10].

3 The OpenStack TOSCA parser checks whether the specified application is
syntactically correct, viz., whether all its elements have been specified by
respecting the grammar of TOSCA, as well as each template has been defined
by respecting the structure indicated by its corresponding type. If this is
the case, the TOSCA parser of OpenStack generates a representation of the
TOSCA application in Python, according to its object-model [8].

4 The OpenStack TOSCA parser returns the Python representation of repre-
senting the TOSCA application to Sommelier.

5 Sommelier validates the topology of the TOSCA application. More precisely,
Sommelier check whether all the conditions listed in Table 1 are satisfied by
all the nodes and relationships of the input topology. The result is a Python
dictionary12 structured as indicated in Fig. 11. The dictionary associates each
requirement of each node template with a list containing all validation errors
affecting its outgoing relationship. Errors are in turn represented with lists,
which head is the error code (e.g., 1.2, if Condition 1.2 is violated) and which
remaining elements provide additional information on the error (e.g., type/-
name of the target node, which is not satisfying Condition 1.2).

6 Sommelier displays the results of the validation, viz., it states that the
analysed topology is valid, or it provides the list of all violations that make
the topology not valid.

Example. In this example, we show how Sommelier can be fruitfully exploited
to validate TOSCA application topologies. An instance of Sommelier can be
run with the following command line instruction:

$ python sommelier.py --template -file=template -file -path

(where template-file-path indicates the absolute path for retrieving the TOSCA
file to be validated).

Figure 12 shows two concrete runs of Sommelier, to which we passed as
input two TOSCA application specifications available in the GitHub repository
12 https://docs.python.org/3/tutorial/datastructures.html.

https://docs.python.org/3/tutorial/datastructures.html

16 A. Brogi et al.

Fig. 11. Structure of the Python dictionary containing the results of the validation [10].

Fig. 12. Example of runs of Sommelier [10].

of the OpenStack TOSCA parser, viz., tosca elk.yaml and transactionsubsys-
tem.yaml.13 tosca elk.yaml turned out to be valid (Fig. 12(a)).

The topology of transactionsubsystem.yaml instead resulted to be not valid.
As shown in Fig. 12(b), this is because the relationship outgoing from require-
ment host of the node template app is violating Condition 1.2 (since it targets the
node template websrv, whose type is not compatible with those indicated in the
requirement definition corresponding to host). Without a design-time support

13 The files are developed and maintained by the community around the OpenStack
TOSCA parser. They are publicly available at https://github.com/openstack/tosca-
parser/tree/master/toscaparser/tests/data. We hereby consider the version of the
files available on November 13th, 2016.

https://github.com/openstack/tosca-parser/tree/master/toscaparser/tests/data
https://github.com/openstack/tosca-parser/tree/master/toscaparser/tests/data

Sommelier: A Tool for Validating TOSCA Application Topologies 17

like that offered by Sommelier, such a kind of issues would have been hard to
detected, as the validation should have been performed manually.
�

4.2 Unit Testing of Sommelier

We developed a battery of unit tests covering 99% of the source code of Somme-
lier, to double-check that Sommelier was capable of recognising all possible
violations of all conditions in Table 1. More precisely, we developed a set of
non-valid TOSCA application specification, each containing a violation of a con-
dition in Table 1. Each specification was obtained by injecting an error in the
valid application topology specified in tosca elk.yaml (Fig. 12(b)).

To run the unit tests, we must first clone the master branch of the GitHub
repository of Sommelier in a host folder. This can be done by running the
following command:

$ git clone https:// github.com/di -unipi -socc/Sommelier.git

We can then execute all unit tests by running the following command in the
newly created sommelier folder14:

$ coverage run --source topologyvalidator \

-m unittest discover

We can then display the source code coverage by running the command in Fig. 13.

Fig. 13. Source code coverage of Sommelier.

5 Related Work

Validation techniques permit checking whether software systems fulfill a set of
specified requirements [12]. Such techniques are crucial nowadays, as software
systems are more and more involved in our everyday life, and ensuring that they
fulfill desired requirements is imperative [13].

The OASIS standard TOSCA [4] recognises the importance of validation.
TOSCA allows to indicate a set of constraints on how to interconnect appli-
cation components, which have to be fulfilled when building the topology of a
cloud application. The design-time support for verifying such constraints is how-
ever currently limited, and this makes the validation of TOSCA applications a
cumbersome and time-consuming process.
14 To run coverage, the coverage-py Python library must be installed on the host. The

latter can be installed by executing sudo pip install coverage.

18 A. Brogi et al.

OpenStack recently developed a TOSCA parser [8], which can be used to ver-
ify the syntactical correctness of TOSCA application specifications. The Open-
Stack TOSCA Parser indeed allows to check whether all the elements in a
TOSCA specification have been provided in their proper section (e.g., relation-
ship types in the relationship types section, relationship templates in the
relationship templates section), and that all templates have been specified
coherently with the structure indicated by the corresponding types (e.g., the
properties indicated by a relationship template are also defined in the corre-
sponding relationship type, numeric properties contain numeric values). Even if
it can be used to check that the actual values assigned to the fields of a tem-
plate are of the proper type, the OpenStack TOSCA Parser does not check their
“meaningfulness”. For instance, the OpenStack TOSCA Parser can fruitfully be
exploited to check that the node field of a requirement assignment contains the
name of a node template, but it does not provide any information on whether
the indicated node template satisfies the interconnection constraints defined in
the requirement definition. The objective of this paper (and of Sommelier) is
precisely to allow to check such a kind of interconnection constraints.

Similar considerations apply to other TOSCA parsers currently available,
e.g., the brooklyn-tosca parser [14], that employed in SeaClouds [15], or the
TOSCA parser in Alien4Cloud [16].

The OASIS standard TOSCA is also available in an older, XML-based ver-
sion [17]. TOSCA XML still allows to specify the topology of a cloud applica-
tion and interconnection constraints on application components. It also allows to
define management plans, which can be specified as workflows that orchestrate
the management operations of the components forming an application.

Winery and OpenTOSCA are two open-source tools allowing to edit and exe-
cute cloud applications specified in TOSCA XML. Despite both tools are pro-
vided with parsers verifying the syntactical correctness of TOSCA XML appli-
cations, a support for validating the interconnection forming the topology of an
application is currently lacking.

A first approach exploiting some of the interconnection constraints that can
be expressed in TOSCA XML is that in [18], which proposes a solution for
automatically completing TOSCA XML application topologies. The solution is
based on the idea of exploiting the interconnection constraints to select (from
a set of available components) the components that can be used to satisfy dan-
gling requirements. [18] however differs from our approach mainly due to its
objectives. It indeed relies on TOSCA XML, and it only considers some of the
interconnection constraints that can be specified in TOSCA XML, viz., those
indicating which capability types and relationship types can be used to satisfy a
requirement. Our objective is instead to enable a full validation of TOSCA appli-
cation topologies, by systematically mapping all the interconnection constraints
that can be specified in TOSCA to formal conditions that must be ensured when
building application topologies.

There also exist approaches for validating the management plans indicated in
TOSCA XML application specifications. Such approaches are based on manage-

Sommelier: A Tool for Validating TOSCA Application Topologies 19

ment protocols [19,20], a compositional modelling for specifying the management
behaviour of application components. The behaviour of the components forming
a TOSCA XML application can then be combined (according to the topology of
the application) to automatically derive the management behaviour of the appli-
cation. The latter allows to automate various analyses, including the validation
of management plans. At the same time, even if the topology of an application
is fundamental to derive its management behaviour, it is always assumed to be
valid (because of the lack of a design-time support for validating TOSCA XML
application topologies).

In summary, even if TOSCA allows to indicate interconnection constraints
that must be fulfilled when building application topologies, there is currently a
lack of a design-time support for checking such constraints. The contributions
presented in this paper can help solving this lack, as we systematically map the
interconnection constraints that can be expressed in TOSCA to formal condi-
tions, and we exploit such conditions to provide a first support for validating
TOSCA application topologies.

It is finally worth highlighting that our approach follows the baselines of exist-
ing approaches for validating multi-component systems at design time, e.g., [21–
23], or for automatically synthesizing them, e.g., [24,25]. Similarly to all such
approaches, we start from the specification of a multi-component system, and
we try to enforce that all its components are properly interconnected (viz., that
no interconnection violates the constraints imposed by its source and target
components, and by the interconnection itself). The main difference between
such approaches and ours is given by the context. While [21–25] target the
valid composition of the functionalities offered by a set of components, we focus
on ensuring that the dependencies between the components forming a TOSCA
application are properly specified, as such information is the basis for orches-
trating the management of a TOSCA application.

6 Conclusions

The OASIS standard TOSCA permits specifying cloud applications, and
automating their management. TOSCA permits describing the structure of an
application as a topology graph, which is then exploited by TOSCA-compliant
cloud platforms to automate the management of the components forming an
application. As the automated deployment of TOSCA applications is based
on their topologies [7], it is fundamental to ensure—at design time—that such
topologies are valid.

TOSCA allows to indicate the interconnection constraints that must be ful-
filled when building the topology of a cloud application (e.g., a node can indicate
which types of nodes and relationships can be used to satisfy its requirements).
In this paper we have systematically mapped such constraints to formal condi-
tions that must hold to ensure the validity of a TOSCA application topology
(see Table 1). We have also introduced a first prototype of validator based on
such conditions, viz., Sommelier.

20 A. Brogi et al.

Sommelier is open-source and it is already integrated with the open-source
TOSCA parser developed by the OpenStack community [8]. Sommelier and the
OpenStack TOSCA parser can put the basis for the development of a full-fledged
design time support for TOSCA application developers.

In this perspective, Sommelier can be fruitfully exploited for validating
TOSCA application topologies while they are being developed, e.g., by improv-
ing the functionalities of existing graphical editors (such as that in the SeaClouds
platform [15], for instance). Its output could indeed be exploited for suggesting
how to fix errors (e.g., by highlighting a misplaced requirement, and by suggest-
ing which nodes can be used to actually satisfy it) or to drive the development
itself (e.g., by impeding developers to wrongly interconnecting nodes). The inte-
gration of Sommelier with an existing graphical editor is left for future work.
This is in line with the research directions indicated in [9], in particular with the
development of tools to support TOSCA developers from the design time till the
run time.

Notice that the version of TOSCA considered in this paper [4] is a simplified
profile of the former, XML-based version of TOSCA [17]. All the interconnec-
tion constraints that can be indicated in the considered version of TOSCA can
also be specified in TOSCA XML. We hence plan to check whether the pro-
posed conditions for validating TOSCA applications can be exploited also for
validating applications specified in TOSCA XML (or whether they need to be
extended). We also plan to implement an extended version of Sommelier capa-
ble of validating TOSCA XML application topologies, and to integrate with the
OpenTOSCA open-source environment [5,11].

Notice also that both versions of TOSCA also allow to indicate non-functional
requirements of application components (such as scalability policies or QoS
requirements). All such non-functional requirements should also be enforced,
hence requiring TOSCA application specifications should be validated from a
non-functional perspective. We plan to devise a technique for carrying out such
a validation, and to include it within Sommelier.

Acknowledgements. We would like to thank Luca Rinaldi for his valuable help in
preparing the battery of unit tests for Sommelier.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

https://doi.org/10.1007/978-1-4614-7535-4_22

Sommelier: A Tool for Validating TOSCA Application Topologies 21

3. Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim, A., Pimentel, E., Soldani,
J.: EU Project SeaClouds - adaptive management of service-based applications
across multiple clouds. In: CLOSER 2014 - Proceedings of the 4th International
Conference on Cloud Computing and Services Science, pp. 758–763. SciTePress
(2014)

4. OASIS: TOSCA Simple Profile in YAML, Version 1.0 (2016). http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-
YAML-v1.0.pdf

5. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

6. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., Wettinger,
J.: Declarative vs. imperative: two modeling patterns for the automated deploy-
ment of applications. In: Proceedings of the 9th International Conference on Perva-
sive Patterns and Applications, pp. 22–27. Xpert Publishing Services (XPS) (2017)

7. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer (2013). http://docs.oasis-open.org/tosca/tosca-primer/v1.0/
tosca-primer-v1.0.pdf

8. OpenStack: TOSCA Parser (2016). https://github.com/openstack/tosca-parser
9. Brogi, A., Soldani, J., Wang, P.: TOSCA in a nutshell: promises and perspectives.

In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol.
8745, pp. 171–186. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44879-3 13

10. Brogi, A., Di Tommaso, A., Soldani, J.: Validating TOSCA application topologies.
In: Pires, L.F., Hammoudi, S., Selic, B., (eds.) Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development, MODEL-
SWARD 2017, Porto, Portugal, 19–21 February 2017, pp. 667–678. SciTePress
(2017)

11. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

12. Geraci, A.: IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. IEEE Press, New York (1991)

13. Marchetti, E.: Foreword of the thematic track: ICT verification and validation. In:
Proceedings of the 9th International Conference on the Quality of Information and
Communications Technology, QUATIC 2014, pp. 208–209. IEEE (2014)

14. Brooklyn-tosca (2016). https://github.com/cloudsoft/brooklyn-tosca
15. Brogi, A., et al.: SeaClouds: an open reference architecture for multi-cloud gov-

ernance. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS,
vol. 9839, pp. 334–338. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48992-6 25

16. Alien4cloud (2016). https://github.com/alien4cloud/alien4cloud
17. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
18. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology comple-

tion of TOSCA-based cloud applications. In: INFORMATIK 2014. LNI, vol. 232 ,
pp. 247–258. Gesellschaft für Informatik (GI) (2014)

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
https://github.com/openstack/tosca-parser
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-642-45005-1_64
https://github.com/cloudsoft/brooklyn-tosca
https://doi.org/10.1007/978-3-319-48992-6_25
https://doi.org/10.1007/978-3-319-48992-6_25
https://github.com/alien4cloud/alien4cloud
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

22 A. Brogi et al.

19. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 19–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24072-5 2

20. Brogi, A., Canciani, A., Soldani, J., Wang, P.: A petri net-based approach to
model and analyze the management of cloud applications. In: Koutny, M., Desel,
J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XI. LNCS, vol. 9930, pp. 28–48. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53401-4 2

21. Speck, A., Pulvermuller, E., Jerger, M., Franczyk, B.: Component composition
validation. Int. J. Appl. Math. Comput. Sci. 12, 581–590 (2002)

22. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: Proceedings of the 26th
International Conference on Software Engineering, ICSE 2004, pp. 221–230. IEEE
Computer Society (2004)

23. Wu, Y., Chen, M.-H., Offutt, J.: UML-based integration testing for component-
based software. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580,
pp. 251–260. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36465-
X 24

24. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: a tool for automat-
ically assembling correct and distributed component-based systems. In: Proceed-
ings of the 29th International Conference on Software Engineering, ICSE 2007, pp.
784–787. IEEE Computer Society (2007)

25. Pelliccione, P., Tivoli, M., Bucchiarone, A., Polini, A.: An architectural approach
to the correct and automatic assembly of evolving component-based systems. J.
Syst. Softw. 81, 2237–2251 (2008)

https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-662-53401-4_2
https://doi.org/10.1007/978-3-662-53401-4_2
https://doi.org/10.1007/3-540-36465-X_24
https://doi.org/10.1007/3-540-36465-X_24

Evaluation of XIS-Reverse,
a Model-Driven Reverse Engineering

Approach for Legacy Information Systems

André Reis(B) and Alberto Rodrigues da Silva

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{andre.filipe.reis,alberto.silva}@tecnico.ulisboa.pt

Abstract. Companies have been struggling to manage and maintain
their legacy information systems because upgrading said systems has
been a complex challenge. Many times, requirements changes are difficult
to be properly managed, leading to legacy information system require-
ments deterioration. To overcome or reduce such problems we propose
the XIS-Reverse, a software reverse engineering approach. XIS-Reverse
is a model-driven reverse engineering approach that takes database arte-
facts and user preferences as input, and generates high-level models and
specifications of these legacy information systems. This paper presents
the evaluation of XIS-Reverse using two real-world information systems,
provides an assessment of its interoperability with an existent framework
and discusses its main challenges and benefits.

Keywords: Model-driven engineering
Model-driven reverse engineering · Model-driven reengineering
Database · Legacy system

1 Introduction

One of the main reasons software projects tend to fail is the difficulty to manage
their requirements, mainly due to the fact that requirements changes are diffi-
cult to be managed [1]. Without a proper way to manage requirements, software
projects may have consequences, namely excessive development and manage-
ment costs, the development of a system which does not meet stakeholders needs,
and so on. Although new methods to collect, analyze, document and maintain
requirements have been appearing, their software requirements specifications are
still mainly written in natural language [1]. Those kinds of specifications are usu-
ally hard to keep up to date while the software applications are being developed,
leading to deterioration. To overcome or reduce such problems, software reverse
engineering approaches can be used.

Reverse engineering was initially used in hardware analysis, but it quickly
extended its scope to software systems [2]. Then, following the huge expansion
and advent of software from the end of the 80s, the reverse engineering topic has
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 23–46, 2018.
https://doi.org/10.1007/978-3-319-94764-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_2&domain=pdf

24 A. Reis and A. R. da Silva

been mainly used in the context of legacy information systems, which are often
still responsible for running crucial and critical operations for companies [3].

Reverse engineering can be defined as the process of examining an already
implemented software system to create a higher abstraction level representation
in a different form [2].

The main objective of such representations is to provide a better understand-
ing of the software system’s current state. These can be used to correct (e.g. fix
bugs), update (e.g. alignment with updated user requirements), upgrade (e.g.
add new capabilities), or even completely reengineer the system under study [3].
These operations are happening now more than ever due to new user require-
ments and expectations, adaptation to emerging business models, updated legis-
lation, new technology innovation and prevention of system structure deteriora-
tion [4]. Since reverse engineering an information system is a time-consuming and
error-prone process, any reverse engineering solution that increases the automa-
tion level of the process will benefit the users of such complex task, and thus
facilitate its larger adoption.

Model-driven engineering (MDE) approaches are increasingly gaining accep-
tance in the software engineering field to tackle software complexity and to
improve software productivity [5,6]. These approaches promote the systematic
use of models, raising the level of abstraction at which software is specified
and increasing the automation level of software development applying model
transformations. Although most of the MDE approaches use forward engineer-
ing techniques to, for instance, transform higher-level models into source code,
MDE can also be used to perform the opposite transformation using reverse
engineering techniques (Model-Driven Reverse Engineering (MDRE)) [3].

XIS-Reverse [7] aims to mitigate requirements deterioration and maintenance
of legacy information systems, reducing human effort and improving productiv-
ity. Such goals can be achieved using reverse engineering techniques based on
a model-driven approach, producing high-level specifications of information sys-
tems through model transformations. This is accomplished using and extending
the Sparx Systems Enterprise Architect (EA) tool with those transformations.

This paper extends the previous work that introduced the XIS-Reverse app-
roach [7] with the following novel contributions: (i) an extensive discussion of the
relevance of this approach based on the evaluation of two real-world cases studies
with large databases (e.g., case study B involves more than 150 data entities and
more than 200 associations); (ii) a discussion showing how to combine the XIS-
Reverse approach with forward engineering approaches, namely the XIS-Web
approach [8], by showing that the extracted models (with the XIS-Reverse) can
then be involved in models validation, model-to-model and model-to-text trans-
formations; (iii) finally, a comparison of the XIS-Reverse with other approaches
and a discussion of the related work.

Furthermore, regarding the main contributions of XIS-Reverse, we have to
highlight the following aspects: (i) semi-automatic heuristics that can identify
certain relationships between entities, namely implicit generalizations and aggre-
gations (specialization of associations), and also (ii) the possibility to extract
values from the source database to enrich the target models or specifications.

Evaluation of XIS-Reverse, a MDRE Approach 25

All that combined enhances the understanding of each entity’s role in the
produced models, and consequently the comprehension of the information sys-
tem.

XIS-Reverse was developed in sixteen months following the Action Research
methodology [9]. Over time it was necessary to evaluate the level of detail and
correctness of the XIS-Reverse extracted specifications. This evaluation process
was done in an iterative way. Initially, this was done testing only a subset of
the approach, namely the domain entities extraction with simple case studies.
However, throughout this period, we got the chance to test XIS-Reverse using
real-world applications, increasing the relevance of XIS-Reverse’s results.

The outline of this paper is as follows. Section 2 presents the context. Section 3
gives an overview of the XIS-Reverse. Section 4 presents and analyses the eval-
uation performed to XIS-Reverse using two real-world applications. Section 5
presents and analyses the interoperability evaluation of XIS-Reverse with an exis-
tent framework. Section 6 analyses and compares this proposal with the related
work. Finally, Sect. 7 summarizes the main conclusions of this work along with
some future work perspectives.

2 Background

This research has been developed at the Instituto Superior Técnico, Universidade
de Lisboa, in the scope of the MDDLingo1 and the RSLingo2 initiatives.

MDDLingo is an umbrella researching initiative that aggregates several
projects around MDE topics, namely involving the definition of a family of lan-
guages, also known as XIS*. This set of modelling languages derives from the
XIS-UML profile [10], involving namely XIS-Mobile [11,12], XIS-CMS [13] or
XIS-Web [8]. XIS-UML is a set of coherent constructs defined as an UML profile
that allows a high-level and visual modeling way to design business information
systems. In general these languages include the following views: Entities (which
includes Domain and Business Entities views), UseCases (containing Actors and
Use Cases views), Architectural and User-Interfaces (composed by Interaction
Space and Navigation Space views).

Figure 1 illustrates a simple XIS* Domain view which aggregates domain
classes (XisEntity), their attributes (XisEntityAttribute) and relationships (Xis-
EntityAssociation and XisEntityInheritance).

Fig. 1. Example of a XIS* Domain view.

1 https://github.com/MDDLingo.
2 https://github.com/RSLingo.

https://github.com/MDDLingo
https://github.com/RSLingo

26 A. Reis and A. R. da Silva

Fig. 2. Example of a XIS* BusinessEntities view.

Fig. 3. Example of a XIS* UseCases view.

Figure 2 shows a BusinessEntities view, which allows to define higher-level
entities (XisBusinessEntity), that aggregate XisEntities and that in the context
of a given use case can be easily manipulated.

Figure 3 shows the UseCases View. This view details the operations an actor
can perform over the business entities when interacting with the system [11].

RSLingo is a general approach defined to rigorously specify and validate soft-
ware requirements using lightweight Natural Language Processing techniques to
(partially) translate informal requirements into a rigorous representation pro-
vided by a language specially designed for Requirements Engineering. Over time,
following the RSLingo’s approach, several projects have been developed, namely
RSLingo4Privacy [14] and RSLingo’s RSL3 [15]. Moreover, RSLingo’s RSL is a
controlled natural language (restricted use of a natural language grammar and
a set of standardized terms to be used in a restricted grammar) to help the pro-
duction of software requirements specifications in a more systematic, rigorous
and consistent way [15]. Such specifications are usually specified as a set of .rsl
files, and later they can be validated and used by different types of users such
as requirement engineers, business analysts, or domain experts [15]. The most
relevant RSLingo’s RSL concepts regarding our research are: Data Entities, Data
Entity Views, User Stories, Functional Requirements, Goals, Business Processes
and Terms.

3 XIS-Reverse Overview

The XIS-Reverse [7] is a MDRE approach that allows to extract high-level spec-
ifications from legacy application artefacts.

As illustrated in Fig. 4, the XIS-Reverse approach starts by extracting the
application data model from an available database, and from that and from the
3 https://github.com/RSLingo/RSL.

https://github.com/RSLingo/RSL

Evaluation of XIS-Reverse, a MDRE Approach 27

Fig. 4. Overview of the XIS-Reverse approach.

user configuration (second stage), the reverse engineering execution takes place,
by applying several reverse engineering heuristics on those artefacts, and then
generating the extracted knowledge in the form of models and specifications.

XIS-Reverse was implemented on top of the Sparx Systems EA4, as an EA
plug-in. The XIS-Reverse’s first stage (data schema extraction) relies on the
native capability of EA to reverse engineer a database schema through an ODBC
connection. Then, the following stages (reverse engineering configuration and
execution) are supported by the XIS-Reverse tool (available from GitHub5).
The configuration stage provides a user interface (see Fig. 5) that can be split
into 4 different areas:

– Input - to specify input artefacts, namely the application data model,
database name and additional artefacts, namely a database access or a profiler
log file;

– Output - to select additional output representations, namely XIS-Web and
RSLingo’s RSL;

– Transformation Rules Guidance - to provide configuration points to
the following features: Simple Principal Entities (to identify aggregations);
Attribute Values Extraction (to extract attribute values); and Generalization
Discovery (to detect implicit generalizations);

– Appearance - to improve the readability of the produced specifications.

Although the number of available input technologies and output specifica-
tions can be extended, for now our approach is able to produce XIS-Web lan-
guage models [8] and RSLingo’s RSL specifications [15] from Microsoft SQL
Server databases.
4 http://www.sparxsystems.com/products/ea.
5 https://github.com/MDDLingo/xis-reverse.

http://www.sparxsystems.com/products/ea
https://github.com/MDDLingo/xis-reverse

28 A. Reis and A. R. da Silva

Fig. 5. Main configuration panel of the tool.

Finally, the reverse engineering execution stage is supported by Model-to-
Model (M2M) transformations that use the application data model and user
configurations to generate XIS* models and RSLingo’s RSL specifications. Then,
the user can analyze the produced artefacts and introduce some refinements,
such as changing automatically identified relationships into different ones in the
Entities view, enhancing the Use-Cases views, etc.

4 Evaluation

In this section, two case studies are introduced and used to assess the XIS-
Reverse approach.

Both applications were supported by SQL Server databases and our experi-
ments only considered database access in order to enhance the output specifica-
tions since it is harder to generate a profiler log file that adequately represents
the normal usage of such applications.

To assess the overall results of each Case Study we divided this evaluation into
three levels of configuration scenarios: Without configuration, Blind configura-
tion and Semi-guided configuration. Within each scenario we extracted: number
of XisEntities (including explicit and implicit superclasses); number of XisAsso-
ciations (also including Aggregations and Many-to-many associations); number
of Aggregations; number of Many-to-many associations; number of explicit and
implicit subclasses and superclasses; number of XisBusinessEntities; number of
each XisBusinessEntity associations and number of XisEntityUseCases.

Evaluation of XIS-Reverse, a MDRE Approach 29

Moreover, we defined some heuristics to evaluate the obtained results in a
deeper way, namely in terms of aggregation associations and implicit generaliza-
tions. However, those heuristics will not be applied to the Case Study B due to
privacy constraints.

Regarding aggregations, we defined two rules. The first one requires having
an updated domain model in the available application requirements, in which
entity associations are classified (e.g. one-to-one or aggregation associations).
The second one requires having every entity manually classified as a main entity
(e.g. relevant entity in the domain), configuration entity (e.g. “kind of” entity)
or association entity (e.g. entity whose main purpose is to link two or more
entities).

Rule-1: Number of Associations Well Classified in Terms of Aggre-
gations. We assess this rule by applying the concepts of a confusion matrix
to the results (after the experiment), thus we count the number of: (1) actual
aggregations that were correctly classified as aggregations (true positive); (2)
non-aggregations that were incorrectly classified as aggregations (false positive);
(3) aggregations that were incorrectly marked as non-aggregations (false nega-
tive); (4) all the remaining associations correctly classified as non-aggregations
(true negative).

Rule-2: Number of Configuration Entities that do not Aggregate Main
Nor Association Entities. We assess this rule by counting how many of those
did and did not aggregate main or association entities (after the experiment).

Regarding generalizations, we want to extract implicit generalizations which
maximize both the number of subclasses found (variable x) and the number of
inherited attributes (variable y), based on the following function:

Reis(x, y) = 0.5x + 0.5y (1)

To better explain the Reis function and its variables, a simple domain model
illustrated in Fig. 6 will be used.

Variable x is determined by the number of subclasses found (after the exper-
iment), divided by the maximum number of subclasses that could be found
(number of entities without generalization and with at least 1 attribute (before
the experiment), such as A, B, C, F and G (5) in Fig. 6).

Taking into account that generalizations with the exact number of two sub-
classes will always maximize the number of superclasses that can be found, and
thus, maximize also the number of inherited attributes:

Variable y is determined by the sum of all the superclass attributes found
(after the experiment), divided by the sum of the maximum number of attributes
that could be inherited (the sum of the maximum number of attributes every
pair of entities can share (before the experiment), taking into account all pairs
of entities that can be grouped, by the descending order of attributes number,
such as 3 in Fig. 6, since pairs A-B share at most 2 attributes and C-F share at
most 1 attribute, for example).

30 A. Reis and A. R. da Silva

Fig. 6. Support example to explain the Reis function.

4.1 Case Study A: ProjectIT-Enterprise

The ProjectIT6 [16] initiative aggregates several research topics, such as soft-
ware engineering and software development. The main goal behind this initia-
tive is to provide a complete software development workbench, with support
for project management, requirements engineering, analysis, design and code
generation features. Moreover, within this initiative, a collaborative tool with
Web interface was developed. This web application, called ProjectIT-Enterprise
[17,18], provides a mechanism to process definition, collaborative support for
teamwork, emphasizing project management, project-process alignment, work-
flows and documents management.

Although ProjectIT-Enterprise was mainly used and tested in an academic
and research scope, it is mature, with well-defined concepts and requirements.
Since we had the chance to use it, we decided to perform an exhaustive experi-
ment to assess the XIS-Reverse.

Regarding the aggregation rules, since we had access to the domain model
specifications and database of this application (Fig. 7), and it was granted
that there were no significant updates in the database since this specifica-
tion was defined, we used the said specification to evaluate against our experi-
ment (required for Rule-1). With that, we established a mapping between every
database table and the corresponding entity in the domain model (Table 1) and
then, with some domain knowledge, we classified those entities/tables as main
entities, configuration entities and association entities (required for Rule-2). This
mapping and classification will be used during the evaluation to compare the
extracted specification (using the XIS-Reverse) with the aforementioned domain
model, shown in Fig. 7.

Moreover, we also identified the direct relationships between the main entities
in the domain, defined as foreign key constraints in the application database
(checked symbols in Fig. 7).

Taking into account Fig. 7, from the total of 8 direct relationships identified,
7 were aggregations (relaxing the composition definition) and 1 was a one-to-one
relationship (not an aggregation).
6 http://isg.inesc-id.pt/alb/ProjectIT.

http://isg.inesc-id.pt/alb/ProjectIT

Evaluation of XIS-Reverse, a MDRE Approach 31

Fig. 7. Case Study A - domain model of the project dimension (adapted from [17]).

Table 2 shows the results of applying the aggregation rules using the XIS-
Reverse. These results are analyzed bellow, in each of the configuration scenarios.

Furthermore, to support each scenario, Table 3 presents the overall picture
of the extracted elements.

Scenario A: Extraction Without Configuration. In this scenario, we only
used the minimum required configurations, namely select the root node package,
provide the database name and select database access to enhance the specifica-
tions. With that, our aim was to extract and analyze of the simplest scenario
used with the XIS-Reverse, and then to compare the obtained results with the
scenarios that use configurations (Scenario-B and Scenario-C).

The first execution of this configuration scenario allowed to identify a problem
in our approach, namely the identification of many-to-many associations (rule
E-1 [7]). This problem occurred due to the generic definition of such heuristic
that did not take into account composite primary keys. Moreover, that issue

32 A. Reis and A. R. da Silva

Table 1. Case Study A - equivalence between application database and domain model.

Application database table Domain model entity Manual classification

ActivityEffort - Main

ActivityMembers - Association

ActivityProcess Activity Process Main

ActivityProcessSkills - Association

ActivityProject Activity Project Main

ActivityProjectTemplate - Main

ActivityProjectTemplateSkills - Association

Country - Configuration

DisciplineProcess Discipline Process Main

DisciplineProjectTemplate - Main

DocumentProcess Document Process Main

DocumentProject Document Project Main

DocumentProjectTemplate - Main

PrivacyLevel - Configuration

Process Process Main

ProcessDefinition - Main

Project Project Main

ProjectMembers - Association

RoleActivities - Association

RoleProcess Role Process Main

RoleSkills - Association

Skill Skill Configuration

State - Configuration

TimePeriod - Configuration

UserProfile Person Main

UserSkills - Association

WorkPackage Work Package Project Main

WorkPackageMembers - Association

WorkPeriodProcess Work Period Process Main

WorkPeriodProject Work Period Project Main

WorkPeriodProjectTemplate - Main

WorkProductProcess Work Product Process Main

WorkProductProject Work Product Project Main

WorkProductProjectTemplate - Main

Evaluation of XIS-Reverse, a MDRE Approach 33

Table 2. Case Study A - evaluation of aggregation scenarios.

Scenarios Results

Rule-1 Rule-2

True
positive

False
positive

False
negative

True
negative

Configs. without
aggregations

Configs. with
aggregations

A: Without
Configs.

6 1 1 0 4 1

B: M = 20 0 0 7 1 5 0

B: M = 10 2 1 5 0 5 0

B: M = 5 3 1 4 0 4 1

C: Semi-guided 6 1 1 0 5 0

occurred in cases that an entity had at least 2 primary keys (which only one of
them was a foreign key), there was only one attribute and that attribute had
a foreign key constraint. Taking that into account, we redefined that heuristic
(updated listing available on GitHub (see footnote 5)).

After updating that heuristic, a new execution was performed in which 34
XisEntities were found with 45 XisEntityAssociations established, from which
42 were classified as aggregations. Regarding our aggregation evaluation Rule-1,
from the 8 direct relationships, 6 aggregations were well identified. However, one
aggregation was misinterpreted as a simple XisEntityAssociation and the one-
to-one relationship was wrongly classified as an aggregation. The first problem
occurred due to the difference of rows’ number of each entity in the database, and
since that difference goes against the rule EA-2-b ([7]) and there is no available
configuration able to correct this problem, this type of issue had to be solved
manually. On the other hand, the second problem was due to the absence of
a Unique Index property in that foreign key, which was probably forgotten or
relaxed.

Moreover, following Rule-2, from all configuration entities, only the Skill
entity had aggregation associations with main or association entities. This can
be solved by classifying this entity as Simple Principal Entity during the config-
uration stage.

There were no many-to-many associations identified, neither explicit gener-
alizations. Thus, to improve the quality of the obtained specifications in this
scenario, the main configurations that make sense to explore, in the following
configuration scenarios, are the identification of Simple Principal Entities and
Generalization discovery.

Scenario B: Extraction with Blind Configuration. After the previous
configuration results, the goal in this scenario is toimprove the results using a

34 A. Reis and A. R. da Silva

Table 3. Case Study A - overall results of the reverse engineering.

Element/scenario A B M = 20 B M = 10 B M = 5 C

XisEntities 34 34 34 34 38

XisEntityAssociations 45 45 45 45 45

XisEntityAssociations (Aggregations) 42 6 13 32 38

XisEntityAssociations (Many-to-many) 0 0 0 0 0

Explicit subclasses 0 0 0 0 0

Explicit superclasses 0 0 0 0 0

Implicit subclasses 0 0 0 0 8

Implicit superclasses 0 0 0 0 4

XisBusinessEntities 14 31 28 23 15

XisBusinessEntities Master Associations 14 31 28 23 15

XisBusinessEntities Detail Associations 42 6 13 32 38

XisBusinessEntities Reference Associations 12 36 27 21 13

XisEntityUseCases 14 31 28 23 15

trial and error approach. In this section we cover two distinct situations, namely
aggregations and then generalizations.

Aggregation
This situation is focused on the assessment of the obtained results using differ-
ent Simple Principal Entity configurations in a blind way, following the defined
evaluation heuristics.

Regarding the Simple Principal Entities selection menu [7], we started by
using the default value (20) to filter entities by the maximum number of rows
that a table can have in the database. And then selected all those entities.

Moreover, a similar process is used in the following situations but with dif-
ferent numbers. To simplify we denote this number as M.

– M=20 - With this configuration, 6 aggregations were identified. However,
regarding the Rule-1, none of the 6 aggregations that were correctly classi-
fied in the Scenario-A were now correctly identified, thus the number of False
Negatives increased to 7. Moreover, the one-to-one association wrongly iden-
tified as aggregation in the Scenario-A, was not classified as an aggregation
this time. Regarding the Rule-2, none of the configuration entities aggregated
a main entity or an association entity. Due to the low number of identified
aggregations, it only makes sense to test again with a lower M number.

– M=10 - With this configuration, 13 aggregations were found. In terms of
the Rule-1, 2 aggregations were correctly identified, thus the number of False
Negatives decreased to 5. This time, the one-to-one association was wrongly
classified as an aggregation, since this time DocumentProject entity was not
selected as Simple Principal Entity (number of False Positives is 1). Moreover,
following the Rule-2, the result was the same as in the previous test. With

Evaluation of XIS-Reverse, a MDRE Approach 35

this new value for M, the number of identified aggregations is still less than
half of the total number of entities. Thus, we will decrease M once again.

– M=5 - With this configuration, the number of aggregations increased to 32.
Following Rule-1, the number of correctly identified aggregations increased by
one, thus there were still 4 aggregations wrongly identified as simple XisEn-
tityAssociations (False Negatives). The number of False Positives remained
the same. Regarding Rule-2, this time one entity (Skill) had aggregation asso-
ciations with main or association entities, likewise in the scenario without con-
figurations. Moreover, since the number of entities with 5 or less attributes
(M = 5) is only one (Process), it does not make sense to try lower M values,
because the results would be the same as we got in the scenario without
configurations.

With these results, we can say that without domain knowledge about the
ProjectIT-Enterprise, in terms of aggregations, we would get the best result
without using the Simple Principal Entities configuration in a blind way.

However, we think that the tests with this kind of configuration did not
show interesting results, mainly due to the reduced application usage, which was
reflected in the low amount of main entities rows, such as project and process.
And, since our heuristic assumes that the number of rows of aggregated entities
is greater or equal to the number of rows of the entities that aggregate them,
and that the number of rows of Simple Principal Entities is usually a lot smaller,
compared with others, we conclude that this configuration did not benefit the
obtained results in this case study.

Generalization
This situation is focused on the identification of implicit generalizations and the
assessment of the obtained results. In order to perform this evaluation we will
activate Generalization discovery and use its configuration points [7]. Moreover,
since our generalization evaluation heuristic tries to maximize both the number
of subclasses and the number of inherited attributes, we will use our two options
to aggregate entities (the third configuration in the Generalization Discovery)
every iteration, i.e. every time we change other configuration points.

Table 4, summarizes the main results during this evaluation, taking into
account, for each configuration, the number of generated subclasses (a), the
sum of inherited attributes (b) and the application of such values in our eval-
uation function. From Scenario-A we could extract that the maximum number
of subclasses that can be found is 31, and the sum of the maximum number of
attributes that can be inherited is 51, so we can rewrite our function as:

Reis′(a, b) = 0.5(
a

31
) + 0.5(

b

51
) (2)

We started our evaluation by using the default value for the minimum number
of shared attributes (5). And then, from the obtained results we decided which
configuration should be used in the next iteration.

Overall, from the first iteration, we got reasonable results (Reis’ = 0.18),
namely 4 subclasses and 12 inherited attributes were found. Then, due to a lower

36 A. Reis and A. R. da Silva

Table 4. Case Study A - Scenario B - evaluation of generalization simulations.

Minimum # of
shared attributes

Aggregated by Ignored names Subclasses (a) Inherited
attributes (b)

Reis’

5 Attributes - 4 12 0.18

5 Entities - 4 12 0.18

4 Attributes - 4 12 0.18

4 Entities - 5 10 0.18

3 Attributes - 8 18 0.31

3 Entities - 10 12 0.28

3 Attributes Name, description 4 8 0.14

3 Entities Name, description 4 8 0.14

2 Attributes Name, description 6 10 0.19

2 Entities Name, description 8 8 0.21

number of subclasses found, it only made sense to iterate with lower numbers for
the minimum number of shared attributes. We, reduced to 4, and we got slightly
similar results, so we decided to reduce again to 3, from which we got better
results (Reis’ = 0.31), namely 8 subclasses found and 18 inherited attributes, by
aggregating our entities by the higher number of shared attributes. Then, we
reduced to 2 and a combinational explosion happened, generating no results.
However, we analyzed the inherited attributes from the last configuration suc-
cessfully used, and we noticed that two attributes (“name” and “description”)
were inherited by almost every superclass, which led is to the decision of doing
more iterations, this time ignoring such attributes. During these iterations, the
best result we got (Reis’ = 0.21) was slightly higher than the firsts we got, but
in no way closer to our best one.

Scenario C: Extraction with Semi-guided Configuration. The main goal
of this scenario is an attempt to improve the results obtained from the two
previous configuration scenarios, by introducing some domain knowledge in the
configuration parameters.

In terms of aggregations, we solely identified the configuration entities as Sim-
ple Principal Entities, from the previously generated Table 1. And as expected,
with that configuration, we got the best results of all the configuration scenar-
ios used, specifically by improving results of Rule-2. As stated before, no matter
how much domain knowledge the user has, the False Negative and the False Pos-
itive problems identified can only be solved manually, since none of the available
configurations can correct such issues.

Regarding generalization discovery, even with a good domain knowledge (e.g.
average number of entity attributes), the user would always need to perform
a similar approach as the blind one, to get good results in terms of implicit
generalizations.

Evaluation of XIS-Reverse, a MDRE Approach 37

To get the best results overall, we had to select the known configuration
entities as Simple Principal Entities and activate Generalization Discovery with
at least 3 shared attributes, ordered by the higher number of shared attributes.

4.2 Case Study B: Social Security Application

During this research period, we worked in the TT-MDD-Mindbury/2015 project,
whose main goal was to develop a real-world Social Security application on top
of an existent legacy one. This was a good opportunity to apply our approach
to a real-world application, already with some usage by its users. Due to privacy
concerns for the client and the development company, details about this appli-
cation must be kept confidential. For that reason, the analysis and evaluation of
this case study are not as detailed as the Case Study A, only highlighting the
most relevant results.

This project lasted for 12 months, allowing us to acquire a deep domain
knowledge of this application and such knowledge is used to guide the reverse
engineering process for this application, to reduce the number of iterations. We
evaluate this application based on this knowledge, since the available documen-
tation of this application was outdated.

In terms of its database, this application was designed with 187 tables, and
most of its tables shared a common set of attributes, namely timestamps for
those entities, etc. Thus, using the XIS-Reverse approach to find implicit gener-
alizations (further XisEntityInheritance transformation rule [7]), can easily lead
to a combinatorial explosion.

This evaluation only stresses 3 different configuration scenarios, namely a
scenario without configuration; one blind configuration scenario, selecting every
entity with 20 or less rows as Simple Principal Entity; and a semi-guided con-
figuration scenario, based on the selection of Simple Principal Entities selection
and on Generalization discovery.

Table 5, shows the overall results obtained from these three configuration
scenarios based on the previously defined metrics.

Scenario A: Extraction Without Configuration. We found that many
entities, that we could classify as Simple Principal Entities, were wrongly aggre-
gating main entities and no explicit generalization was found. The obtained
results were not accurate due to said fact and in general were wrong in terms of
aggregations.

Scenario B: Extraction with Blind Configuration. This scenario was exe-
cuted in order to evaluate if a user could get better results by selecting Simple
Principal Entities in a blind way. In this experiment, every entity with 20 or less
rows in the database was selected as Simple Principal Entity (132 entities). With
our domain knowledge, we were able to identify that from those 132 entities, 14
were wrongly selected and 12 Simple Principal Entities were not selected since
they had more than 20 rows (e.g. country). However the quality of the results

38 A. Reis and A. R. da Silva

Table 5. Case Study B - overall results of the reverse engineering.

Element/scenario A B C

XisEntities 168 168 176

XisEntityAssociations 224 224 224

XisEntityAssociations (Aggregations) 126 38 21

XisEntityAssociations (Many-to-many) 19 19 19

Explicit subclasses 0 0 0

Explicit superclasses 0 0 0

Implicit subclasses 0 0 16

Implicit superclasses 0 0 8

XisBusinessEntities 140 156 161

XisBusinessEntities Master Associations 140 156 161

XisBusinessEntities Detail Associations 82 23 15

XisBusinessEntities Reference Associations 124 190 215

XisEntityUseCases 140 156 161

increased drastically since, overall, most of the Simple Principal Entities (around
91%) were well identified using this approach.

Scenario C: Extraction with Semi-guided Configuration. With the
domain knowledge, we had the ability to improve these results even more, by
identifying every Simple Principal Entity (with the help of the available filters,
due to the large number of entities to select). We knew the average number of
attributes per entity and that some entities shared some properties, so we could
reduce the number of iterations to obtain results in terms of implicit general-
izations. With that, following a semi-guided configuration we got better results,
not only in terms of aggregations that made more sense, but also in terms of
implicit generalizations found.

Furthermore, during this research, this case study was used several times to
support the evaluation of the development iterations. One of the issues that we
encountered by using this complex system, besides the time to realize reverse
engineering, was the combinatorial explosion that a Generalization discovery
could easily trigger while comparing every entity and their attributes.

This issue can happen when there are a large number of entities which share
identical attributes, leading to a large set of entities to be compared which can
exponentially increase the amount of time and memory required to find gener-
alizations. During our experiments, the aforementioned combinatorial explosion
was usually stopped due to memory constraints of the EA application (usual
Windows application constraints), which led to a crash of the application. All
facts considered, the only solution to execute this feature in large domains (like
this one), is to ignore some of the most used attribute names.

Evaluation of XIS-Reverse, a MDRE Approach 39

5 Interoperability with XIS* Frameworks

In this section, an analysis of the XIS-Reverse interoperability with a XIS* frame-
work is performed, to assess how well both tools can work together. Figure 8 illus-
trates the main goal of this evaluation, which is to successfully use XIS-Reverse
to generate XIS* models given a Legacy Application, and use those models to
generate a New Application using a XIS* framework.

Fig. 8. Interoperability with XIS* frameworks.

For this evaluation we used the XIS-Web technology [8], since it is the most
recent XIS* technology. In a nutshell, this framework supports the XIS-Web for-
ward engineering process, which is applied to XIS-Web models. This is accom-
plished by following three steps: (1) Models validation; (2) M2M transformation;
and (3) Model-to-Text (M2T) transformation. Step-1 uses a set of rules (built-
in the framework) to validate the XIS-Web models. Then, step-2 generates the
user-interface views, namely the Interaction Space and Navigation Space views.
Finally, step-3 generates the target application’s source code.

To perform this evaluation, we used the most recent version of the XIS-
Web framework 7. Then, using the XIS-Web specifications from the ProjectIT-
Enterprise (Sect. 4.1), that were extracted with the XIS-Reverse tool, we did our
evaluation step by step:

Models Validation - In this step, we got one relevant error in the first val-
idation, namely that XisEntities had to have at least one XisEntityAttribute.
Since this error can easily occur, for example in subclasses, we believe that the
only viable solution for this mismatch is to update the XIS-Web framework in
order to omit this rule. Additionally, to bypass this problem, we added a fic-
titious XisEntityAttribute to those XisEntities and the second validation was
successful.
M2M Transformation - Then we executed the model generation, which suc-
cessfully produced the contents of the Interaction Space and the Navigation
Space views.
M2T Transformation - In this step, we also got an error during code genera-
tion. The error stated that the same file was generated several times, i.e. some
files were overwritten. This problem occurred due to the limitation of the XIS-
Web framework to generate Interaction Space and the Navigation Space views

7 https://github.com/MDDLingo/xis-web.

https://github.com/MDDLingo/xis-web

40 A. Reis and A. R. da Silva

for XisEntities with many-to-many relationships. Once again, the most logical
solution to this problem is to extend the XIS-Web framework in order to support
that scenario. However, to bypass this problem, we removed each many-to-many
relationship and, for each one of them, we added an association entity (XisEntity
linked to each of those entities through a one-to-many relationship) and after
rerunning the M2T transformation, the M2T transformation was successful.

From these results, we can conclude that we can successfully use the XIS*
specifications generated by the XIS-Reverse tool with the XIS-Web tool. Which
means that it is possible to automate the generation of a new application by
applying those tools to a legacy application.

6 Related Work Discussion

The continuous development of reverse engineering methodologies and tools has
been crucial to mature this topic. More recently, MDE started to be applied to
reverse engineering (MDRE), promoting a more systematic and flexible process.
Likewise, MDRE approaches have been extended in order to completely reengi-
neer a source application into a new target application through model-driven
reengineering techniques.

This section overviews the most relevant research studies, covering data
schema extraction and reverse engineering of databases. Moreover, those con-
tributions are also compared with our approach.

6.1 Data Schema Extraction

The main properties of the research work analyzed in this subsection are shown
in Table 6. This table specifies for each approach, its input, the existence of data
schema extractors, if it extracts all table properties and its output. The last row
categorizes our approach.

Gra2MoL [19] Text-to-Model (T2M) language and MoDisco [3] framework
have been specially tailored for data schema extraction (model injection).

Gra2MoL is a domain specific language (DSL) to write transformations
between any textual artefact which conforms to a grammar (e.g. source code) and
a model which conforms to a target metamodel. On the other hand, MoDisco is a
Java framework intended to facilitate the implementation of MDRE approaches.
Regarding data schema extraction, MoDisco facilitates the implementation of
discoverers (model injectors), and it currently provides discoverers for Java, JSP
and XML. A drawback of both approaches is that they would require the defini-
tion of such transformations and discoverers, respectively, to extract the database
schema.

Schemol [20] is another tool for injecting models.This tool allows injecting
data stored into the database by specifying transformations that express the
correspondence between the source database schema and the target metamodel.

Furthermore, in terms of database model injection (to ease this T2M trans-
formation), it is possible to transform a database schema into a graphical repre-
sentation using a variety of commercial and academic tools. DB-MAIN [21] and

Evaluation of XIS-Reverse, a MDRE Approach 41

Table 6. Classification of some related works on data schema extraction (adapted from
[7]).

Approach Input Output Schema extractors Properties

Gra2Mol [19] Any textual artefact Any model No n.a.

MoDisco [3] Several sources Any model No n.a.

Schemol [20] Data stored into DB Any model No n.a.

DB-MAIN [21] Several sources GER Yes (e.g. ODBC) Yes

SQL2XMI [22] SQL DDL schema UML in XMI Yes (only MySQL) No

EA (XIS-Reverse) Several sources UML Yes (e.g. ODBC) Yes

SQL2XMI [22] are two examples of such academic tools. Firstly, DB-MAIN is a
toolbox that supports database reverse engineering, and includes legacy database
schemas extractors, through several sources such as ODBC drivers or SQL files.
Secondly, SQL2XMI is entitled as a lightweight transformation of data models
from SQL Schemas to UML-ER expressed in XMI. To our knowledge, this tool
is still limited compared with DB-MAIN since it does not infer entity types or
cardinalities, and for now it is only compatible with the MySQL implementation
of the SQL data definition language (DDL).

To sum up, given that a set of existing tools already supports data schema
extraction from several sources, without additional specification of transforma-
tions, we took advantage of such tools, specifically EA.

6.2 Reverse Engineering

A reverse engineering approach can be classified in several ways. Table 7 gives
a properties summary of the analyzed research works. These properties include:
analysis type, output, supported XIS-Reverse contributions (A - Aggregations
Extraction, G - Implicit Generalization Extraction and V - Attribute Values
Extraction), existence of tools automating the approach, automation level of
those tools (regards to the reverse engineering stage), and tool extensibility.

Regarding reverse engineering techniques, several approaches have been pro-
posed, which are usually distinguished by the particular application artefact used
as main information source. The most relevant research works, following such
distinction, are described below.

Schema analysis [23] is mainly focused on spotting similarities in names,
value domains and representative patterns. This technique may help identify
missing constructs (e.g. foreign keys). Additionally, the XIS-Reverse approach
was influenced by the manual process specified in [23]. Making possible to semi-
automatically and automatically identify generalizations and many-to-many
associations, respectively.

Data analysis [24,25] uses content mined from a database. Firstly it can be
used to analyze the database normalization and secondly to verify hypothetical
constructs suggested by other techniques. Given the combinatorial explosion that
can affect the first approach, data analysis technique is mainly used with the

42 A. Reis and A. R. da Silva

Table 7. Classification of some works on reverse engineering (adapted from [7]).

Approach Analysis Output Contrib. Tools Auto. Ext.

[23] Schema OMT class diagram G No n.a. n.a.

[24] Data Extended ER n.a. No n.a. n.a.

NoWARs [25] Data Conceptual schema n.a. Yes Semi n.a.

RAINBOW [26] Screen ER model. n.a. Yes n.a. n.a.

[27] Program (static) Extended ER n.a. No n.a. n.a.

[28] Program (static) Object-Oriented class diagram n.a. No n.a. n.a.

[29] Program (dynamic) n.a. n.a. Yes n.a. n.a.

[30] Program (dynamic) n.a. n.a. Yes n.a. n.a.

Modisco [3] Schema and program (static) KDM or UML n.a. Yes Auto. Yes

Relational Web [31] Schema UML n.a. Yes Auto. Yes

DB-MAIN [21] Schema and program (static) GER G Yes Semi Yes

XIS-Reverse Schema, data and program XIS* and RSLingo’s RSL A;G;V Yes Semi Yes

purpose of the second approach. In addition, our approach uses this technique
in a similar way, however it is applied to classify associations.

Screen analysis [26] state that user interfaces can also be sources of use-
ful information. These user-oriented views over a database may display spatial
structures, meaningful names and, at runtime, data population and errors com-
bined with data-flow analysis may provide information about data structures
and schema properties; our approach did not consider this kind of analysis.

Static [27,28] and Dynamic [29,30] program analysis can easily give valuable
information about field structure and meaningful names, or identifying complex
constraint checking and foreign keys after a complex analysis. A main challenge
of dynamic program analysis is the extraction of highly dynamic interactions
between a program and a database. The analysis of SQL statements is one of
the most powerful variants of source code analysis. Our approach uses static
program analysis in the profiler log file, aiming to classify associations.

Additionally, a set of approaches, concerning the application of MDE, are
also taken into account. Our analysis focused on their injection and reverse
engineering stages.

As previously introduced, MoDisco MDRE framework [3] has a huge poten-
tial regarding the support of reverse engineering activities due to its generic and
extensible properties. Besides its legacy application discoverers (model injectors),
MoDisco also allows the definition of transformations and generators, responsible
for restructuring and forward engineering tasks over the system models, respec-
tively. Our approach could be implemented extending this framework, however
that would require the definition from scratch of all the three stages (discoverers,
transformations and generators) needed to produce the desired artefacts.

Polo et al. propose a method and a tool, called Relational Web [31] specially
designed for database reengineering. The starting point is a relational database,
whose physical schema is reverse engineered into a class diagram representing its
conceptual schema. In the restructuring stage, the class diagram is manipulated
by the user and then passed as input to the forward engineering step. Moreover,
this tool supports the definition of new database managers to be used as input

Evaluation of XIS-Reverse, a MDRE Approach 43

and the implementation of new code generators. On one hand, this approach
only uses as input the physical schema, and user knowledge, and its tool does
not take advantage of the existing MDE techniques nor technologies. On the
other hand, this approach defined foreign key’s semantic extraction techniques,
to identify inheritance relationships and associations, that were adapted and
extended by our approach, in order to identify aggregations.

As previously stated, DB-MAIN [21] is a toolbox that offers a complete func-
tionality to apply database reverse engineering. Regarding reverse engineering,
DB-MAIN includes features such as extractors of legacy database schemas, trans-
formations between schemas, data and code analysis tools, among others. This
tool is one of the most mature ones, used for database reverse engineering, mean-
ing that it includes several features that have been the result of a great number
of research contributions from Namur University. DB-MAIN supports a lot of
common transformations and extraction tools thus, a user with such tools can
handle almost any needed transformation to create a good conceptual schema.
However, this tool requires the user to apply all the needed transformations,
meaning that the degree of automation achieved in our approach is higher. Also,
DB-MAIN supports generalization representation, but once again it must be
identified by the user.

Regarding the main contributions of this paper, we do not find any other app-
roach that specializes associations (e.g. distinguishing between associations and
aggregations), nor any approach that allows the extraction of attribute values
and their representation into the target conceptual schema.

7 Conclusion

XIS-Reverse approach allows to automatically extract high-level models and
specifications from legacy applications. This approach benefits from a flexible
set of configuration points and new features not found in prior work, that allows
to produce more detailed models and specifications, that overall will help the
user get a better understanding of the application domain.

In terms of aggregations detection, at least when using a system with a good
amount of data (usage), our heuristics can correctly identify those relationships
and assist the user in obtaining better results by specifying Simple Principal
Entities (with and without domain knowledge).

Regarding implicit generalizations discovery, our approach proved its ability
to extract accurate results. However, it does not benefit much from user domain
knowledge since several experiments with different configurations scenarios must
be executed to find the best results. In the extreme scenario, if the user has a good
understanding of each attribute of each entity, this feature should be disabled,
since the identification of generalizations can easily be done manually.

Although not evaluated, we assume that extraction of attribute values, inde-
pendently of the user domain knowledge level, can benefit the user if values from
certain entity attributes can be extracted, giving him or her a better understand-
ing of the entity role in the domain.

44 A. Reis and A. R. da Silva

Overall, the evaluation results of XIS-Reverse’s novel features validate that
XIS-Reverse can increase the knowledge and understanding extracted from a
legacy information system.

Additionally, in terms of interoperability with the XIS-Web framework,
despite the aforementioned errors (Sect. 5), which were probably found due to
the size and complexity of the case study, overall, the produced XIS-Web spec-
ifications with the XIS-Reverse tool, are suitable to be used with the XIS-Web
framework.

Regarding future work and considering the extensibility of the proposed pro-
cess, we would like to evaluate the similarity between the combined results of
pipelining XIS-Reverse with XIS-Web processes to generate a new application,
and then compare it with the original legacy application. Additionally, we would
like to extend the XIS-Reverse approach to support new input and output tech-
nologies, include more types of analysis in the reverse engineering process (e.g.
screen), and use a divide-and-conquer approach to manage the complexity of
identifying implicit generalizations (e.g. splitting sets of entities by their schema).

References

1. Garcia, J.M.E.: Requirements change management based on web usage mining.
Ph.D. thesis, University of Porto (2016)

2. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13–17 (1990)

3. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

4. Canfora, G., Di Penta, M., Cerulo, L.: Achievements and challenges in software
reverse engineering. Commun. ACM 54(4), 142–151 (2011)

5. Ruiz, F., et al.: An approach for model-driven data reengineering. Ph.D. disserta-
tion, University of Murcia (2016)

6. da Silva, A.R.: Model-driven engineering: a survey supported by the unified con-
ceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

7. Reis, A., da Silva, A.R.: XIS-Reverse: a model-driven reverse engineering approach
for legacy information systems. In: Proceedings of the 5th International Conference
on Model- Driven Engineering and Software Development, MODELSWARD, vol.
1, pp. 196–207 (2017)

8. Seixas, J.: The XIS-web technology: a model-driven development approach for
responsive web applications. M.Sc. dissertation, Instituto Superior Técnico, Uni-
versity of Lisbon (2016)

9. Baskerville, R.L.: Investigating information systems with action research. Com-
mun. AIS 2(3es), 4 (1999)

10. da Silva, A.R., Saraiva, J., Silva, R., Martins, C.: XIS-UML profile for extreme
modeling interactive systems. In: 2007 Fourth International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, MOMPES 2007, pp.
55–66. IEEE (2007)

11. Ribeiro, A., da Silva, A.R.: XIS-mobile: a DSL for mobile applications. In: 29th
Annual ACM Symposium on Applied Computing, pp. 1316–1323. ACM (2014)

12. Ribeiro, A., da Silva, A.R.: Evaluation of XIS-Mobile, a domain specific language
for mobile application development. J. Softw. Eng. Appl. 7(11), 906 (2014)

Evaluation of XIS-Reverse, a MDRE Approach 45

13. Filipe, P., Ribeiro, A., da Silva, A.R.: XIS-CMS: towards a model-driven approach
for developing platform-independent CMS-specific modules. In: MODELSWARD.
SCITEPRESS (2016)

14. Caramujo, J., da Silva, A.R.: Analyzing privacy policies based on a privacy-aware
profile: the facebook and linkedin case studies. In: 2015 IEEE 17th Conference on
Business Informatics (CBI), vol. 1, pp. 77–84. IEEE (2015)

15. da Silva, A.R.: Linguistic patterns and styles for requirements specification: the
RSL/business-level language. In: Proceedings of the European Conference on Pat-
tern Languages of Programs. ACM (2017)

16. da Silva, A.R., Saraiva, J., Ferreira, D., Silva, R., Videira, C.: Integration of RE
and MDE paradigms: the ProjectIT approach and tools. IET Softw. 1(6), 294–314
(2007)

17. Pinto, M.A.P.: Gestão de Projectos com Processos Ágeis. M.Sc. dissertation, Insti-
tuto Superior Técnico, University of Lisbon (2010)

18. Martins, P.V., da Silva, A.R.: ProjectIT-enterprise: a software process improvement
framework. In: Industrial Proceedings of the 17th EuroSPI Conference, pp. 257–266
(2010)

19. Izquierdo, J.L.C., Cuadrado, J.S., Molina, J.G.: Gra2MoL: a domain specific trans-
formation language for bridging grammarware to modelware in software modern-
ization. In: Workshop on Model-Driven Software Evolution (2008)

20. Dı́az, O., Puente, G., Izquierdo, J.L.C., Molina, J.G.: Harvesting models from web
2.0 databases. Softw. Syst. Model. 12(1), 15–34 (2013)

21. Hainaut, J.-L., et al.: Database evolution: the DB-MAIN approach. In: Loucopou-
los, P. (ed.) ER 1994. LNCS, vol. 881, pp. 112–131. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58786-1 76

22. Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: reverse engineering of UML-
ER diagrams from relational database schemas. In: 15th Working Conference on
Reverse Engineering, pp. 187–191. IEEE (2008)

23. Premerlani, W.J., Blaha, M.R.: An approach for reverse engineering of relational
databases. In: 1993 Proceedings of Working Conference on Reverse Engineering,
pp. 151–160. IEEE (1993)

24. Chiang, R.H., Barron, T.M., Storey, V.C.: Reverse engineering of relational
databases: extraction of an EER model from a relational database. Data Knowl.
Eng. 12(2), 107–142 (1994)

25. Pannurat, N., Kerdprasop, N., Kerdprasop, K.: Database reverse engineering based
on association rule mining. arXiv preprint arXiv:1004.3272 (2010)

26. Ramdoyal, R., Cleve, A., Hainaut, J.-L.: Reverse engineering user interfaces for
interactive database conceptual analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 332–347. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13094-6 27

27. Petit, J.-M., Kouloumdjian, J., Boulicaut, J.-F., Toumani, F.: Using queries to
improve database reverse engineering. In: Loucopoulos, P. (ed.) ER 1994. LNCS,
vol. 881, pp. 369–386. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58786-1 91

28. Di Lucca, G.A., Fasolino, A.R., De Carlini, U.: Recovering class diagrams from
data-intensive legacy systems. In: 2000 Proceedings of the International Conference
on Software Maintenance, pp. 52–63. IEEE (2000)

29. Cleve, A., Meurisse, J.-R., Hainaut, J.-L.: Database semantics recovery through
analysis of dynamic SQL statements. In: Spaccapietra, S. (ed.) Journal on Data
Semantics XV. LNCS, vol. 6720, pp. 130–157. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22630-4 5

https://doi.org/10.1007/3-540-58786-1_76
http://arxiv.org/abs/1004.3272
https://doi.org/10.1007/978-3-642-13094-6_27
https://doi.org/10.1007/978-3-642-13094-6_27
https://doi.org/10.1007/3-540-58786-1_91
https://doi.org/10.1007/3-540-58786-1_91
https://doi.org/10.1007/978-3-642-22630-4_5
https://doi.org/10.1007/978-3-642-22630-4_5

46 A. Reis and A. R. da Silva

30. Cleve, A., Noughi, N., Hainaut, J.-L.: Dynamic program analysis for database
reverse engineering. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011.
LNCS, vol. 7680, pp. 297–321. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35992-7 8

31. Polo, M., Garćıa-Rodŕıguez, I., Piattini, M.: An MDA-based approach for database
re-engineering. J. Softw. Maint. Evol.: Res. Pract. 19(6), 383–417 (2007)

https://doi.org/10.1007/978-3-642-35992-7_8
https://doi.org/10.1007/978-3-642-35992-7_8

Formal and Virtual Multi-level Design
Space Exploration

Letitia W. Li1,3(B), Daniela Genius2(B), and Ludovic Apvrille1(B)

1 Télécom ParisTech, Université Paris-Saclay, Biot, France
{letitia.li,ludovic.apvrille}@telecom-paristech.fr

2 Sorbonne Universités, UPMC Paris 06, LIP6, CNRS UMR 7606, Paris, France
daniela.genius@lip6.fr

3 Institut VEDECOM, Versailles, France

Abstract. With the growing complexity of embedded systems, a sys-
tematic design process and tool are vital to help designers assure that
their design meets specifications. The design of an embedded system
evolves through multiple modeling phases, with varying levels of abstrac-
tion. A modeling toolkit should also support the various evaluations
needed at each stage, in the form of simulation, formal verification,
and performance evaluation. This chapter introduces our model-based
engineering process with the supporting toolkit TTool, with two main
design stages occurring at a different level of abstraction. A system-level
design space exploration selects the architecture and partitions func-
tions into hardware and software. The subsequent software design phase
then designs and assesses the detailed functionality of the system, and
evaluates the partitioning choices. We illustrate the design phases and
supported evaluations with a Smart Card case study.

Keywords: Virtual prototyping · Embedded systems
System-level design · Telecommunications

1 Introduction

A systematic design methodology with supporting toolkit can help designers with
the modeling and evaluation of the system, and involves supporting multiple
design phases at varying levels of abstraction and different evaluation tools.
The design of embedded systems is complicated by the need to design both its
hardware and software components. Their design methodology can therefore be
separated into two main phases.

A system-level design space exploration divides functions into hardware and
software, based on system performance, safety and security requirements. Next,
the software design phase includes the development of the detailed system func-
tionality, and generation of code. However, since partitioning decisions are taken
at a high level of abstraction – e.g., with highly abstracted hardware components
–, it might be useful to validate – and possibly reconsider – partitioning choices
during the software and hardware development phase.
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 47–71, 2018.
https://doi.org/10.1007/978-3-319-94764-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_3&domain=pdf

48 L. W. Li et al.

Several works of research and tools have addressed system-level partitioning
and evaluation of hardware platforms during the software development stage.
However, the lack of integration between partitioning and system development
makes it difficult to reconsider partitioning choices. Also, it is very common
practice to test/execute software components on the local host, and to integrate
them later on the target. Consequently, errors due to the interaction between
hardware and software are discovered very late in the development cycle – e.g.,
during the integration phase. Unfortunately, these errors may lead to reconsid-
ering partitioning decisions. To minimize time needed for a designer to re-do a
partitioning, a toolkit should ideally minimize the manual work needed to take
in consideration those errors and better connect the two abstraction levels.

Thus, our work focuses on the development of a fully integrated model-driven
approach to handle both partitioning and software development. Our contribu-
tion supports both the selection of candidate hardware and software architec-
tures, and a software development approach that allows designers to evaluate
the relevance of the previously selected architectures early in the development
process. Automated model transformation and verification techniques - formal
verification, simulation, virtual prototyping - are supported for that purpose.
Our contribution presents an easy-to-comprehend methodology integrating these
two stages contained within a single modeling framework (TTool) [1]. Previous
work [2] described our design process at multiple levels, but lacked detailed
automated performance analysis regarding performance metrics such as latency.
In Sect. 2, we present the related work of other system-level design toolkits.
Section 3 describes our overall methodology. Section 4 details the Smart Card
case study that is then used to exemplify the high-level design space exploration
(Sect. 5) and the software component design (Sect. 6). Finally, we present dis-
cussion and perspectives on future work in Sect. 7.

2 Design Techniques for Embedded Systems

Many frameworks have been proposed for the design of embedded systems.
They offer modeling capabilities at different levels of abstraction and using vari-
ous approaches, such as Platform-Based Design, Model-Driven Engineering, etc.
These tools offers model edition capabilities and can verify models with differ-
ent simulation and verification tools. Some of them also target executable code
generation.

2.1 Design Space Exploration Approaches (with Simulation and
Formal Techniques)

Ptolemy [3,4] proposes a modeling environment for the integration of diverse
execution models, in particular hardware and software components. If design
space exploration can be performed with Ptolemy, its first intent is the simula-
tion of the modeled systems. The co-simulation facility of Ptolemy II is demon-
strated in [5]. Their approach relies on both a System-C architecture model and

Formal and Virtual Multi-level Design Space Exploration 49

a functional model. The paper describes how to use different abstraction levels
to model systems.

Virtual prototyping of MPSoC is often hampered by slow simulation. Among
approaches generating SystemC code, the virtual prototyping of [6] generates
code for the TLM (transactional) level, which is more efficient to simulate but
less detailed. A team from KIT [7] proposes a methodology for fast parallel
simulation, which is based on TLM and though with lost accuracy, even if clock
cycles can be taken into account. MPSoCSim [8], recently presented, proposes
OVP processor models to simulate NoC-based System-on-chip. Bus simulation
is TLM2.0 based. We chose to perform our simulations on cycle accurate bit
accurate level and use a simulator based on fully static scheduling [9], which
makes it 10 to 20 times faster than the SystemC event-based simulator.

Capella [10] relies on Arcadia, a comprehensive model-based engineering
method. It is intended to check the feasibility of customer requirements, called
needs, for very large systems. Capella provides architecture diagrams allocating
functions to components, and advanced mechanisms to model bit-precise data
structures. Capella is however more business focused, and lacks formal verifica-
tion capabilities.

In POLIS [11], applications are described as a network of state machines.
Each element of the network can be mapped on a hardware or a software node.
This approach is more oriented towards application modeling, even if hardware
components are closely associated to the mapping process. Metropolis [12], an
extension of POLIS, targets heterogeneous systems, and architectural and appli-
cation constraints are closely interwoven. Metropolis is based on a meta-model
of a network of concurrent objects, with a formal semantics. Applications are
described in detail and simulated with the help of instruction set simulators
(ISS). This approach is more oriented towards application modeling, even if hard-
ware components are closely associated to the mapping process. While our app-
roach uses Model-Driven Engineering, Metropolis uses Platform-Based Design.

Sesame [13] proposes modeling and simulation features at several abstrac-
tion levels for Multiprocessor System-on-Chip architectures. Pre-existing virtual
components are combined to form a complex hardware architecture. Models’
semantics vary according to the levels of abstraction, ranging from Kahn pro-
cess networks (KPN [14]) to data flow for model refinement, and to discrete
events for simulation. Currently, Sesame is limited to the allocation of process-
ing resources to application processes. It models neither memory mapping nor
the choice of the communication architecture.

The ARTEMIS [15] project originates from heterogeneous platforms in the
context of research on multimedia applications in particular. It is strongly based
on the Y-chart approach [16]. Application and architecture are clearly separated:
the application produces an event trace at simulation time, which is then read in
by the architecture model. However, behavior depending on timers and interrupts
cannot be taken into account.

MARTE [17] shares many commonalities with our approach, in terms of
the capacity to separately model communications from the pair application-

50 L. W. Li et al.

architecture. However, it intrinsically lacks a separation between control and
message exchange. Even if the UML profile for MARTE adds capabilities to
model Real Time and Embedded Systems, it does not specifically support archi-
tectural exploration. Other works based on UML/MARTE, such as Gaspard2
[18], are dedicated to both hardware and software synthesis, relying on a refine-
ment process based on user interaction to progressively lower the level of abstrac-
tion of input models. However, such a refinement does not completely separate
the application (software synthesis) or architecture (hardware synthesis) models
from communication.

Saxena and Karsai [19] introduce an abstract design space exploration frame-
work, and its integration into design space exploration solvers, thus paving the
way for customized embedded systems explorations. They define metrics (e.g.,
memory size) that are related to WCET. On the contrary, DIPLODOCUS does
not assume any WCET, but closely evaluates possible scenarios with simulation
and formal verification techniques.

The capacity of languages and models to support abstractions for designing
embedded systems is discussed in [20]. In particular, MARTE is evaluated against
the Y-Chart scheme. Our papers enhances their discussion with the refinement
between two abstraction levels (partitioning and prototyping).

2.2 Code Generation Approaches

Rhapsody [21] can automatically generate software, but not hardware descrip-
tions from SysML. MDGen from Sodius [22] adds timing and hardware specific
artifacts such as clock/reset lines automatically to Rhapsody models, generates
synthesizable, cycle-accurate SystemC implementations, and automates explo-
ration of architectures.

The Architecture Analysis & Design Language (AADL [23]), a standard from
the International Society of Automotive engineer (SAE), allows the use of for-
mal methods for safety-critical real-time systems in avionics, automotive among
other domains. It comprises a textual and a graphical representation but does
not a priori contain tool support for code generation, even if specific contribu-
tions proposes code generator for specific domains, e.g. for avionics systems. In
that case, the generated code can be executed for within a specific platforms, for
instance for ARINC653 systems. Similar to our environment, a processor model
can have different underlying implementations and its characteristics can easily
be changed at the modeling stage. Recently, [24] developed a model-based for-
mal integration framework which endows AADL with a language for expressing
timing relationships.

Bombieri et al. [25] propose a method ranging from system specification to
code generation, with an intermediate HW/SW partitioning stage. Their method
is compliant with SW components, device driver generation, a software wrap-
per – e.g., to handle interrupts – and High-level synthesis for HW components.
While being more advanced on code generation issues, simulation and formal
verification, as well as iterations between partitioning and prototyping is not
addressed as deeply as in our contribution.

Formal and Virtual Multi-level Design Space Exploration 51

Batori [26] proposes a design methodology for telecommunication applica-
tions. From use cases, the method proposes several formalisms to capture the
application structure (“interaction model”) and behavior (Finite State Machine)
and for its deployment from which executable code can be generated. The plat-
form seems limited to specific components (“Runes component”) – we could
call it Specific Platform-Based design – and no design exploration seems possi-
ble. Additionally, the code generation process targets a real platform, and not a
prototyping environment.

As we explain in the next section, our approach combines both HW/SW
partitioning and software development and prototyping, with formal verification
and simulation offered for most views and abstraction levels, including safety,
performance and security evaluation.

3 Methodology

3.1 Modeling Phases

The advantages of our methodology lie in its support of multiple phases of
the design process, and its ability to evaluate a design with a diverse range
of tools. These advantages have allowed our methodology to be applied for the
modeling of a wide range of real-world systems, including automotive systems,
telecommunications, security protocols, etc. [27–29]. Our method relies on a set
of UML/SysML views supported with the same environment/toolkit (as shown
in Fig. 1. The method is organized as follows:

Fig. 1. Overall approach.

1. We start with system-level hardware/software partitioning based on design
space exploration techniques. This phase contains three sub-phases: modeling
of the functions to be realized by the system (“functional view”), modeling
of the candidate architecture (“architecture view”) expressed as an assem-
bly of highly abstracted hardware nodes, and the mapping phase (“mapping

52 L. W. Li et al.

view”). A function mapped over a processor is considered a software function.
On the contrary, a function mapped over a hardware accelerator corresponds
to a custom ASIC. At this stage, we are concerned mostly with how com-
munications and function affect the performance of a mapping, so we do not
need to concern ourselves with the exact behavior of internal task behavior
or contents of communications. Logical communication between functions are
also expected to be mapped on a “communication path” consisting of buses,
bridges, memories, Direct Memory Access controllers, networks-on-chip, etc.

2. Once a mapping has been decided, i.e., the system is fully partitioned between
software and hardware functions, the design of the software and the hardware
can start. Our approach offers software modeling while taking into account
hardware parameters. Thus, a software component view is used to build the
system software architecture and behavior, and a deployment view displays
how the software components relate to the hardware components. The model
of software and hardware components is more refined than in partitioning,
which means that simulations and proofs are much more complex and take
more time.

TTool [1], a free and open-source toolkit, supports the entire method with
SysML diagrams. TTool includes UML/SysML diagram editors, compilers to
perform model-to-specifications transformations, model-checkers and simulation
engines.

3.2 Simulation, Verification and Prototyping

During the methodological phases, simulation and formal verification help to
determine if safety, performance and security requirements are fulfilled. TTool
offers a press-button approach for performing these proofs. Model transforma-
tions translate the SysML models into an intermediate form that is sent into
the underlying simulation and formal verification toolkits - some of them are
built into TTool, while others are third party toolkits. In all cases, backtrac-
ing to UML/SysML models is performed to better inform the users about the
verification results.

During functional modeling – our highest abstraction level –, verification
intends to identify general safety properties (e.g., absence of deadlock situations).
At the mapping stage, verification intends to check if performance and security
requirements are met. As researchers demonstrate the increasing number of hacks
on embedded systems, it becomes important to detect their security flaws before
mass-production. The security of communications depends on the architecture,
as we explain in Subsect. 6.2.

During software design, software components can be verified independently
from any hardware architecture in terms of safety and security. For example,
when designing a component implementing a security protocol, the reachability
of the states and absence of security vulnerabilities can be verified. TTool support
for integrated formal verification tools helps a designer ensure the safety and
security of his/her design.

Formal and Virtual Multi-level Design Space Exploration 53

When the software components are more refined, it becomes important to
evaluate performance. Since the target system is commonly not yet available,
our approach offer two facilities. (i) A deployment view is used to map software
components over hardware nodes. Their semantics is much more concrete – i.e.,
less abstract – than the one used for partitioning. (ii) A press-button approach
can transform the deployment view into a SoCLib specification built upon virtual
component models [30].

SoCLib is a public domain library of models written in SystemC, targeting
shared-memory architectures based on the Virtual Component Interconnect pro-
tocol [31]. Hardware is described at several abstraction levels: TLM-DT (Trans-
action level with distributed time), CABA (Cycle/Bit Accurate), and RTL (Reg-
ister Transfer Level). SoCLib also contains a set of performance evaluation tools
[32,33]. CABA level simulation allows measurement of cache miss rates, latency
of memory accesses and of any transactions on the interconnect, fill state of
the buffers, taking/releasing of locks etc. in the context of video streaming and
telecommunication applications [33].

A variety of low level performance measuring tools exist for SoCLib, as
described in [32,34]. However, such approaches are purely based on simulating
on the virtual prototype i.e. at a low level of abstraction, and lack the possibility
to formally verify the application model and give it precise semantics. Moreover,
they are more accessible to researchers than to engineers, nowadays very much
at ease in the UML/SysML world. Hardware elements – i.e. topcells – are either
described by hand, which is error-prone, or generated, making them not easily
readable.

Since SoCLib hardware models are much more precise than partitioning mod-
els, precise timing and hardware mechanisms – e.g. cache miss – can be evaluated.
If the performance results differ too greatly from the results obtained during the
design space exploration stage – e.g., a cache miss ratio – then, the design space
exploration shall be performed again to assess if the selected architecture is still
the best according to the system requirements. If not, the definition of software
components may be (re)designed. Once the iterations over the high-level design
space exploration and the low level virtual prototyping of software components
finished, software code can be generated from the most refined software model.

Fig. 2. Functional view (DIPLODOCUS) of the SmartCard application.

54 L. W. Li et al.

4 Case Study

Our methodology is illustrated by a “Smart Card” application. The smart card
is meant to be plugged into a reader that exchanges information with the interior
of the application by TCP formatted packets. The data transfer can be aborted,
for example, because the smart card was unplugged. The reader (InterfaceDe-
vice) signals the smart card to start, while the smart card controller handles
the initialization of the other functions (e.g., the application and the network
stack). In the next sections, we present modeling and analysis of the Smart Card
application at the different design phases.

5 Partitioning with DIPLODOCUS

5.1 Models

The HW/SW partitioning phase, implemented in the DIPLODOCUS profile of
TTool, models the abstract, high-level functionality of a system [35] and gen-
eral architecture. It follows the Y-chart approach (as shown in the upper right
section of Fig. 1), first modeling the abstract functional tasks (Application View),
candidate architectures (Architectural View), and finally mapping tasks to the
hardware components (Mapping View) [16]. Before the next stage, simulation
and formal verification ensure that our design meets performance, behavioral,
and schedulability requirements.

Application Modeling, Architectural Modeling, and Mapping are presented in
detail in the rest of this section, using the smart card application as an example.

Figure 2 displays the functional view built upon 5 functional blocks: Inter-
faceDevice represents the interface with the reader and the internals of the smart
card. SmartCard features the main controller. Application mostly models data
exchanges that can occur with the reader. TCPIP and its Timer model the
network stack. Exchanges between blocks are modeled with events, requests and
data exchanges.

Application View. The Application View comprises of a set of communicating
tasks, as shown in Fig. 2. The behavior of tasks is described abstractly. Functional
abstraction allows us to ignore the exact computations and data processing of
algorithms, and considers only computation complexity and data transfer size.
Each individual task describes its abstract functional behavior using communi-
cation operators, computation elements, and control elements. Data abstraction
allows us to consider only the size of data sent or received, and ignore details
such as type, values, or names. On the Component Design Diagram, an extension
of the SysML Block Instance Diagram, the designer specifies the list of tasks,
and within the task, attributes and ports indicating communication.

Architectural View. The architectural model (consider only hardware com-
ponents of Fig. 3, i.e. without the artifacts) displays the underlying architecture
as a network of abstract execution nodes, communication nodes, and storage

Formal and Virtual Multi-level Design Space Exploration 55

nodes. Execution nodes consist of CPUs and Hardware Accelerators, defined by
parameters for simulation. All execution nodes must be described by data size,
instruction execution time, and clock ratio. CPUs can further be customized
with scheduling policy, task switching time, cache-miss percentage, etc. Figure 4
shows processor parameters. Communication nodes include bridges and buses.
Buses connect execution and storage nodes for task communication and data
storage or exchange, and bridges connect buses. Buses are characterized by their
arbitration policy, data size, clock ratio, etc., and bridges are characterized by
data size and clock ratio. Storage nodes are Memories, which are defined by data
size and clock ratio.

Mapping View. Mapping partitions the application into software and hard-
ware and also specifies the location of their implementation and of their com-
munication on the architectural model. A task mapped onto a processor will
be implemented in software, and a task mapped onto a hardware accelerator
will be implemented in hardware. The exact physical path of a data/event write
may also be specified by mapping channels to buses and bridges. More complex
communication schemes can be modeled with another view, which is part of
recent work [36]. The mapping of Fig. 3 shows that the InterfaceDevice is mapped
to a specific hardware execution node, while TCPIP, SmartCard and Application

Fig. 3. Mapping view (DIPLODOCUS).

Fig. 4. Adapting processor parameters in DIPLODOCUS.

56 L. W. Li et al.

are mapped to a general purpose processor - actually, the main microcontroller
of the smart card. Also, the timer is implemented with a dedicated execution
node.

5.2 High-Level Simulation and Verification

Simulation of DIPLODOCUS partitioning specifications involves executing tasks
on the different hardware elements. Each computation transaction executes for
a variable time depending on execution cycles, CPU parameters and bus/mem-
ory behavior when transactions require data exchanges. The simulation shows
performance results like bus usage, CPU usage, execution time, etc. Results are
backtraced to the different views, with an example shown in Fig. 5. One can
notice the high average load of the main microcontroller (91%). Also, TTool can
generate a vcd trace to view detailed bus/CPU activity in gtkwave of a single
execution sequence. TTool can also assists the user by automatically generating
all possible architectures and mappings, and summarizes performance results of
each possible mapping. Users are provided with the “best” architecture under
specified criteria, such as minimal latency or bus/CPU load.

For a given mapping, the user can also generate the system reachability
graph. The entire graph along with an enhanced excerpt is given in Fig. 6. All
paths are terminated with a red state. The last actions before each red or ter-
mination state specifies the number of cycles corresponding to the path leading
to that termination state. For example, the termination state “84” is preceded
by an action “allCPUsTerminated<166>” which means that this system path
contains 166 cycles.

TTool also makes it possible to list all termination or deadlock states (see
Fig. 7): the graph contains 10 terminations states with a duration in number of
cycles ranging from 20 to 247. In the shortest path, the connection was aborted
after a few exchanges. On the contrary, in the longest execution path, the smart
card exchanges several TCP packets. These timings are to be confirmed with
more concrete software and hardware components in the design stage.

Fig. 5. Load of CPUs and buses after a simulation.

Formal and Virtual Multi-level Design Space Exploration 57

Fig. 6. Reachability graph of the mapping view. (Color figure online)

6 Software Design with AVATAR/SoCLib

Once partitioning is complete, the AVATAR methodology [37] allows the user to
design the software, perform functional simulation and formal verification, and
finally test the software components in a virtual prototyping environment. Where
partitioning models represent an algorithm as an abstract execution spanning
a duration, the software design models details of algorithms, including their
attributes, int/float operations, control operators, etc.

Fig. 7. List of termination states in the reachability graph. The number of cycles on
each path is given along with the last action before a termination state.

58 L. W. Li et al.

6.1 Software Components

Figure 8 shows the software components of the smart card case study modeled
using an AVATAR block diagram. These modeling elements have been selected as
software elements during the previous modeling stage (partitioning). Software
components are grouped into the different applications running on the Smart
Card using a hierarchical block called SmartCard.

– Interface Device initiates the connection and then communicates with the
Smart Card.

– SmartCard Controller manages communication between the Interface
Device, application, and TCPIP.

– Application communicates with the TCPIP application and sends and
receives packets.

– TCPIP manages the TCP connection.
– TCPPacketManager manages packet transmission and storage.

The AVATAR model can be functionally simulated using the integrated simu-
lator of our toolkit, which takes into account temporal operators but completely
ignores hardware, operating systems and middleware. While being simulated, the
model of the software components is animated. This simulation aims at identify-
ing logical modeling bugs. Figure 9 shows the state machine of the Smart Card
Controller, and Fig. 10 shows a visualization of a generated sequence diagram.
Also, a reachability graph can be generated and analyzed.

6.2 Formal Verification

As previously described, TTool includes its own formal verification tools to e.g.
generate a reachability graph, minimize the graphs, and check if a given reach-
ability of liveness property is satisfied.

Alternatively, UPPAAL [38] may also be used from TTool to evaluate safety
and liveness properties. UPPAAL is a a model checker for networks of timed
automata, the behavioral model of a system to be verified is first translated
into a UPPAAL specification to be checked for desired behavior. For example,
UPPAAL may verify the lack of deadlock, such as two threads both waiting for
the other to send a message. Behavior may also be verified through “Reachabil-
ity”, “Leads to”, and other general statements. The designer can indicate which
states in the Activity Diagram or State Machine Diagram should be checked
if they can be reached in any execution trace. “Leads to” allows us to verify
that one state must always be followed by another. Other user-defined UPPAAL
queries can check if a condition is always true, is true for at least one execution
trace, or if it will be true eventually for all execution traces. These statements
may be entered directly on the UPPAAL model checker, or permanently stored
on the model as pragma to be verified in UPPAAL.

For example, for our case study, we can verify that the TCP Packet Manager
is capable of sending the storePacket signal, that the Application can abort and
thereby stop, and the Smart Card Controller can send a packet. Figure 11 shows

Formal and Virtual Multi-level Design Space Exploration 59

Fig. 8. Avatar block diagram.

Fig. 9. High level simulation: annotated automaton.

the UPPAAL verification window which allows the user to customize which
queries to execute, and then returns the results regarding whether each query is
satisfied or not. In our example, the three states we queried are all reachable.

Formal verification of security is performed using ProVerif, a verification tool
operating on pi-calculus specifications [39]. A ProVerif specification consists of
a set of processes communicating on public and private channels. Processes can
split to create concurrently executing processes, and replicate to model multiple
executions (sessions) of a given protocol. Cryptographic primitives such as sym-
metric and asymmetric encryption or hash can be modeled through constructor
and destructor functions. ProVerif assumes a Dolev-Yao attacker, which is a
threat model in which anyone can read or write on any public channel, create
new messages or apply known primitives.

60 L. W. Li et al.

Fig. 10. High level simulation: generated sequence diagram.

ProVerif verifications query the properties of reachability, confidentiality, and
authenticity. Reachability of an element (within the Activity Diagram or State
Machine) determines if there exists an execution trace of the model in which
this element is reached. Confidentiality of data refers to if the attacker can
recover that data by listening and sending messages, and performing computa-
tions. Authenticity determines if the data received during a message exchange
is necessarily the same as the data sent.

Formal and Virtual Multi-level Design Space Exploration 61

Fig. 11. UPPAAL formal verification.

In DIPLODOCUS models, security modeling and verification determines the
security mechanisms required to secure critical data based on an architecture
and mapping, and also impact on performance due to the added security. Cer-
tain architectural buses can be modeled to be accessible to an attacker. Abstract
security operators then model the encryption/decryption of channel data and the
impact of security on performance. Recent work [40] describes how the architec-
ture and mapping selected during HW/SW Partitioning affects the security of
communications, and security-related operations impacts the safety and perfor-
mance of a system.

AVATAR models describe the detailed implementations of security mecha-
nisms, and verifies the security of critical attributes [41]. The security verification
determines the confidentiality of keys and specific attributes, the authenticity of
encrypted exchanges over public channels accessible to an attacker, and the abil-
ity of a encryption algorithm to terminate correctly.

6.3 Prototyping

To prototype the software components with the other elements of the desti-
nation platform (hardware components, operating system), a user must first
map them to a model of the target system. Mapping can be performed using
the new deployment features introduced in [27]. Our toolkit thus supports use
of AVATAR Deployment Diagrams. It features a set of hardware components,
their interconnection, tasks, and channels.

In the partitioning phase, an architecture with two CPUs was selected. Tasks
destined to become software tasks are mapped onto the CPUs, which is the case
for all tasks in our example; it is also possible to realize other tasks as hard-
ware accelerators. Now, in the prototyping phase, things are different since the

62 L. W. Li et al.

Fig. 12. Smart card deployment diagram.

AVATAR models includes only software tasks that are thus mappable only on
general-purpose processors. Consequently, each hardware accelerator of the pro-
totyping platform in SoCLib needs to be specifically developed. Which requires
a significant effort. We do not consider that case because the smartcard is fully
software implemented.

Fig. 13. AVATAR/SoCLib prototyping environment in TTool.

If the user has to explicitly model several properties pertaining to mapping,
e.g. CPUs and memories parameters, the simulation infrastructure and interrupt
management are added transparently to the top cell during the transformation
into a SoCLib platform.

Formal and Virtual Multi-level Design Space Exploration 63

Figure 12 shows the Deployment Diagram, containing two CPUs, one memory
bank and one TTY. The InterfaceDevice block is mapped onto CPU1, and the
other five blocks are mapped onto CPU0. Each signal between AVATAR blocks
is translated into a software channel mapped to on-chip RAM (for more detail,
see [42]). In the case study, there are twenty-nine such signals, translated into
twenty-nine SoCLib channels, which are all mapped on the single RAM, also
containing the AVATAR runtime and the operating system.

From the Deployment Diagram, a SoCLib prototype is generated as described
in [27]. This prototype consists of a SystemC top cell, the embedded software in
the form of POSIX threads compiled for the target processors, and the embedded
operating system [43]. Figure 13 from [2] shows an overview of the prototyping
tool, with the simulation trace, code generation, and SocLib windows, and model
in the back.

Fig. 14. Panel for varying cache associativity in SoCLib prototype.

6.4 Capturing Performance Information

We now show how performance information can be obtained by running simula-
tions with the SoCLib virtual prototype of the SmartCard use case. The exper-
iments shown here use a MP-SoC based on two general purpose PowerPC 405
processor cores running with 800 MHz. Later on, we plan to rely on a microcon-
troller, which would be more realistic for the SmartCard example. As a central
interconnect, we use the VCI Generic Serial Bus (VGSB).

Although accelerated using the technique described in [9], the cycle accurate
bit accurate (CABA)-level simulation is quite slow. It allows however detailed
measurement of per-processor cache miss rates, latency of any transaction on the
interconnect, etc. Since SoCLib hardware models are much more precise than
the ones used at the design space exploration level, precise timing of the use of
hardware mechanisms such as locks can be evaluated. However, these evaluations
take considerable time compared to high-level simulation/evaluation.

64 L. W. Li et al.

As previously stated, the SoCLib prototype allows a designer to evaluate
each processor separately, which is particularly useful for detecting unbalanced
CPU loads, indicated by the Cycles per Instruction (CPI) metric.

In the following three paragraphs, we investigate three performance metrics:
CPI, cache misses and latencies.

CPI. An overview of performance problems can be obtained using the num-
bers of Cycles per Instruction (CPI). It represents all phenomena that can slow
down execution of instructions by the processors, such as memory access latency,
interconnect contention, overhead due to context switching, etc.

Using these metrics, we can observe that CPU0 has a high average load – this
issue was similarly noticed during the partitioning stage. Figure 15 shows that
this CPU is far more challenged than CPU1 containing only the InterfaceDe-
vice. The reason for this is due to the fact that implementing the semantics of
synchronous channels requires a central request manager. Requests are stored in
waiting queues for synchronous communications, in order to be canceled when
they became obsolete. Requests that observe a delay before execution have to
be waken up. Future work will address a better distribution of this functionality,
called the AVATAR runtime, over the entire MPSoC architecture.

We also observe that adding cache associativity does not automatically
improve the CPI. The application is characterized by an uneven mixture of
small accesses (for example, open or abort signals which take one byte), and
accesses to data of packet type which, as can be seen in the Data Type Block of
the Block Diagram of Fig. 8, are composed of eight integers.

Fig. 15. CPI measured at CABA level.

Cache Misses. One important parameter of the CPU used in DIPLODOCUS
partitioning is the overall cache miss rate, which is initially estimated to be
18% in DIPLODOCUS (see line Cache-miss in Fig. 4). While the estimate of

Formal and Virtual Multi-level Design Space Exploration 65

cache misses includes both data and instruction cache misses, we measure them
separately. Instruction cache miss rates will be higher for the cache of CPU0
because the central request manager runs on this CPU, as noted in the previous
paragraph.

Fig. 16. Data cache miss rates measured at CABA level.

Fig. 17. Instruction cache miss rates measured at CABA level.

We vary associativity of both caches for the same cache size. Figure 14 shows
the processor parameters of the Deployment Diagram. Parameters are the degree
of associativity (instruction/data cache ways, in the Figure set to 2), the number
of lines in the cache (instruction/data cache sets, here set to 16) and the number
of words in a line (instruction/data cache words, here 4). Figure 16 shows the

66 L. W. Li et al.

data cache miss rates, and Fig. 17 shows instruction cache miss rates for set
associativities of 1, 2, 4 and 8, using the same overall cache size, and same block
size.

We observe clearly that from two cache sets onwards, cache misses are divided
by two. The improvement is still around 30% for the instruction cache; we also
note that CPU1 is much less challenged, as already shown for the CPI. In the
worst case of a direct mapped cache, we have an instruction cache miss rate of
25% on the cache of CPU0, less than 1% for CPU1 (which essentially contains
the interface and has a very small memory footprint). Thus, we can provide
significantly more useful detail for a hardware implementation.

A first exploration presented in [2] for a different case study showed that
cache misses can only be imprecisely estimated at the DIPLODOCUS model.
However, that case study lacked the detailed modeling that we present here,
both at the DIPLODOCUS and the AVATAR level. The Smart Card case study
remedies this shortcoming.

We can now go back to the DIPLODOCUS level and customize the CPU
by adapting the cache miss rate (Fig. 4): we were thus able to check that the
partitioning result is still the same.

Latencies. In previous work [2], performance results were limited to those
obtained using the hardware counters of the SoCLib modules. A recent update to
TTool added support for automatically measuring latencies for channel transfer-
s/between events during simulation. Activity elements can be marked as poten-
tial checkpoints on the model.

Events and channels in DIPLODOCUS both translate into signals in
AVATAR. The left side of Fig. 18 shows a DIPLODOCUS activity diagram
for the Application task, with two checkpoints set, one on the open and the
send TCP event. On the right side, it shows the timed automaton of the Appli-
cation block. Again, we place one checkpoint on the open and another on the
send TCP signal.

The latencies panel of DIPLODOCUS is shown in Fig. 19. Our toolkit allows
the user to choose which checkpoints he or she would like to analyze, and then dis-
plays the minimum, maximum, and average latencies in execution cycles between
those two checkpoints.

On the MPSoC prototype for which the code is generated from AVATAR,
latencies can be determined by hardware counters added to the SoCLib models.
These counters allow identification of the processor that triggered the trans-
fer, but not on which of the communication channels it took place. A recent
improvement integrated the SoCLib logging mechanism presented in [34]. Thus,
the MPSoC platform is enhanced with spies that can record all transfers on
the interconnect, retrieve the names of software objects from the loader, and
match them to the steps of the channel access protocol. This module is added to
the VCI interface and does not impact performance results. Thus, we can now
measure latencies on the MPSoC platform that are due to contentions on the
interconnect, to the time spent waiting to obtain a lock, etc.

Formal and Virtual Multi-level Design Space Exploration 67

Fig. 18. Latency checkpoints (left) DIPLODOCUS (right) AVATAR.

Fig. 19. DIPLODOCUS latencies panel.

Table 1 shows the latencies for selected channels corresponding to four signals
in AVATAR. While reset, start and open signals have no parameters, fromTtoP
conveys a packet (eight bytes in the case study).

Table 1. Latencies (milliseconds) for DIPLODOCUS simulation and SoCLib proto-
type.

AVATAR signal DIPLODOCUS MPSoC

Min Max Min Max

SmartCardController reset InterfaceDevice reset 2 2 0.56 0.64

SmartCardController start Application Application

startApplication

4 4 0.56 0.58

Application open TCPIP open 4 4 0.56 0.59

SmartCardController fromTtoP TCPIP fromTtoP 38 75 1.6 1.7

68 L. W. Li et al.

As these first results show, there is no apparent correlation between
the latency measured on the MPSoC platform and the latency obtained by
DIPLODOCUS simulation. In fact for code generated from AVATAR running
multiprocessor platform, cache effects, contention on the interconnect and others
have to be taken into account. In particular, the storing and retrieving time of
packets varies strongly. We are currently working on establishing correlations
where this is possible, together with even more in-depth performance evalua-
tion. It would be important to extend the latency measurement capability to
AVATAR simulations, which should relate more closely to tests in SoCLib.

Other Performance Metrics. As can be seen in the CPU attributes win-
dow of Fig. 4, our toolkit potentially allows a designer to improve estimates of
several more hardware parameters like branch misprediction rate and go idle
time. Channels play a particular role: for asynchronous channels, they may over-
flow or otherwise be empty most of the time, slowing down or even blocking
the application. Dimensioning of the channels is thus an important issue. Better
understanding of the state of communication channels (fill state, evolution of
read and write operations over time etc.) will be achieved by integrating new
performance measuring functionality based on the work described in [32].

7 Discussion and Future Work

Our approach integrates both system-level design space exploration and the
design and prototyping of refined software components in the same toolkit. Using
a Smart Card case study, we show how the different metrics can easily be evalu-
ated at the push of a button in the two abstraction levels. In particular, transfor-
mations of the software component model mapped onto a deployment diagram
help precisely determine the CPI, as well as the finer metrics as cache miss rate
and latencies of the application. From these evaluations, partitioning choices can
be confirmed or invalidated.

We are currently working on a more complete method to determine and
compare performance metrics in particular latencies at the AVATAR and
DIPLODOCUS level and hope to establish correlations. Relating partitioning
and software level simulations may also help us determine the accuracy of the
estimates of execution duration of functions in partitioning.

The close integration of partitioning and software design facilitates the inval-
idation of partitioning decisions. The current backtracing to models assists the
engineer in investigating how to better partition the model or to reconsider
the software components. Ideally, once an invalidation has been encountered, it
would be helpful for the toolkit to automatically suggest another partitioning.
We propose increased automation as part of our future work, to better support
designers between the different stages of the design process.

Formal and Virtual Multi-level Design Space Exploration 69

References

1. Apvrille, L.: Webpage of TTool (2015). http://ttool.telecom-paristech.fr/
2. Genius, D., Li, L.W., Apvrille, L.: Model-driven performance evaluation and for-

mal verification for multi-level embedded system design. In: Conference on Model-
Driven Engineering and Software Development (Modelsward 2017), Porto, Portu-
gal (2017)

3. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for simu-
lating and prototyping heterogeneous systems. In: Readings in Hardware/Software
Co-design, pp. 527–543 (2002)

4. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II.
Ptolemy.org, Berkeley (2014)

5. Kim, H., Guo, L., Lee, E.A., Sangiovanni-Vincentelli, A.: A tool integration app-
roach for architectural exploration of aircraft electric power systems. In: IEEE
Proceedings of the 1st International Conference on Cyber-Physical Systems, Net-
works, and Applications, pp. 38–43. IEEE (2013)

6. Zimmermann, J., Stattelmann, S., Viehl, A., Bringmann, O., Rosenstiel, W.:
Model-driven virtual prototyping for real-time simulation of distributed embed-
ded systems. In: SIES, pp. 201–210. IEEE (2012)

7. Roth, C., Bucher, H., Reder, S., Buciuman, F., Sander, O., Becker, J.: A Sys-
temC modeling and simulation methodology for fast and accurate parallel MPSoC
simulation. In: 2013 26th Symposium on Integrated Circuits and Systems Design
(SBCCI), pp. 1–6. IEEE (2013)

8. Real, M.M., Wehner, P., Rettkowski, J., Migliore, V., Lapotre, V., Göhringer, D.,
Gogniat, G.: MPSoCSim extension: an OVP simulator for the evaluation of cluster-
based multi and many-core architectures. In: Proceedings of the 4th Workshop on
Virtual Prototyping of Parallel and Embedded Systems (ViPES) as Part of the
International Conference on Embedded Computer Systems: Architectures, Model-
ing, and Simulation (SAMOS XVI), Samos, Greece (2016)

9. Buchmann, R., Greiner, A.: A fully static scheduling approach for fast cycle accu-
rate SystemC simulation of MPSoCs. In: Proceedings of the ICEEC, Cairo, Egypt,
pp. 35–39. IEEE (2007)

10. Polarsys: ARCADIA/CAPELLA (2008). https://www.polarsys.org/capella/
arcadia.html

11. Lieverse, P., van der Wolf, P., Vissers, K.A., Deprettere, E.F.: A methodology for
architecture exploration of heterogeneous signal processing systems. VLSI Signal
Process. 29, 197–207 (2001)

12. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Comput. 36, 45–52 (2003)

13. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolu-
tionary algorithms for the application mapping problem in multiprocessor system-
on-chip design. IEEE Trans. Evol. Comput. 10, 358–374 (2006)

14. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing 1974: Proceedings of the IFIP Congress, pp.
471–475. North-Holland, New York (1974)

15. Pimentel, A.D., Hertzberger, L.O., Lieverse, P., van der Wolf, P., Deprettere, E.F.:
Exploring embedded-systems architectures with Artemis. IEEE Comput. 34, 57–63
(2001)

http://ttool.telecom-paristech.fr/
https://www.polarsys.org/capella/arcadia.html
https://www.polarsys.org/capella/arcadia.html

70 L. W. Li et al.

16. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.: A methodology to
design programmable embedded systems. In: Deprettere, E.F., Teich, J., Vassil-
iadis, S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 18–37. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45874-3 2

17. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design app-
roach for embedded system modeling and code generation with UML and MARTE.
In: DATE 2009, pp. 226–231 (2009)

18. Gamatié, A., Beux, S.L., Piel, É., Atitallah, R.B., Etien, A., Marquet, P., Dekeyser,
J.L.: A model-driven design framework for massively parallel embedded systems.
ACM Trans. Embed. Comput. Syst 10, 39 (2011)

19. Saxena, T., Karsai, G.: MDE-based approach for generalizing design space explo-
ration. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS,
vol. 6394, pp. 46–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16145-2 4

20. Gérard, S., Espinoza, H., Terrier, F., Selic, B.: 6 modeling languages for real-time
and embedded systems. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B.
(eds.) MBEERTS 2007. LNCS, vol. 6100, pp. 129–154. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16277-0 6

21. IBM Corporation: Rational Rhapsody. https://www.ibm.com/us-en/marketplace/
rational-rhapsody

22. Sodius Corporation: MDGen for SystemC. http://sodius.com/products-overview/
systemc

23. Feiler, P.H., Lewis, B.A., Vestal, S., Colbert, E.: An overview of the SAE archi-
tecture analysis & design language (AADL) standard: a basis for model-based
architecture-driven embedded systems engineering. In: Dissaux, P., Filali-Amine,
M., Michel, P., Vernadat, F. (eds.) IFIP WCC TC2 2004. IFIP The International
Federation for Information Processing, vol. 176, pp. 3–15. Springer, Boston (2004).
https://doi.org/10.1007/0-387-24590-1 1

24. Yu, H., Joshi, P., Talpin, J.P., Shukla, S.K., Shiraishi, S.: The challenge of inter-
operability: model-based integration for automotive control software. In: DAC, pp.
58:1–58:6. ACM (2015)

25. Bombieri, N., Fummi, F., Vinco, S., Quaglia, D.: Automatic interface generation
for component reuse in HW-SW partitioning. In: 2011 14th Euromicro Conference
on Digital System Design, pp. 793–796 (2011)

26. Batori, G., Theisz, Z., Asztalos, D.: Domain specific modeling methodology for
reconfigurable networked systems. In: Engels, G., Opdyke, B., Schmidt, D.C.,
Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75209-7 22

27. Genius, D., Apvrille, L.: Virtual yet precise prototyping: an automotive case study.
In: ERTSS 2016, Toulouse (2016)

28. Genius, D., Apvrille, L.: System-level design for communication-centric task farm
applications. In: 12th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip, pp. 1–8. IEEE (2017). https://ieeexplore.ieee.org/
document/8016145/

29. Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L., Scheuermann, D.: C2x commu-
nication: securing the last meter. In: The 4th IEEE International Symposium on
Wireless Vehicular Communications, WIVEC 2011, San Francisco, USA (2011)

30. SoCLib Consortium: SoCLib: an open platform for virtual prototyping of multi-
processors system on chip. http://www.soclib.fr (2010)

31. VSI Alliance: Virtual component interface standard (OCB 2 2.0). Technical report,
VSI Alliance (2000)

https://doi.org/10.1007/3-540-45874-3_2
https://doi.org/10.1007/978-3-642-16145-2_4
https://doi.org/10.1007/978-3-642-16145-2_4
https://doi.org/10.1007/978-3-642-16277-0_6
https://www.ibm.com/us-en/marketplace/rational-rhapsody
https://www.ibm.com/us-en/marketplace/rational-rhapsody
http://sodius.com/products-overview/systemc
http://sodius.com/products-overview/systemc
https://doi.org/10.1007/0-387-24590-1_1
https://doi.org/10.1007/978-3-540-75209-7_22
https://ieeexplore.ieee.org/document/8016145/
https://ieeexplore.ieee.org/document/8016145/
http://www.soclib.fr

Formal and Virtual Multi-level Design Space Exploration 71

32. Genius, D., Pouillon, N.: Monitoring communication channels on a shared memory
multi-processor system on chip. In: ReCoSoC, pp. 1–8. IEEE (2011)

33. Genius, D., Faure, E., Pouillon, N.: Mapping a telecommunication application on a
multiprocessor system-on-chip. In: Gogniat, G., Milojevic, D., Morawiec, A., Erdo-
gan, A. (eds.) Algorithm-Architecture Matching for Signal and Image Processing.
LNEE, vol. 73, pp. 53–77. Springer, Dordrecht (2011). https://doi.org/10.1007/
978-90-481-9965-5 3

34. Genius, D.: Measuring memory access latency for software objects in a NUMA
system-on-chip architecture. In: ReCoSoC, pp. 1–8. IEEE (2013)

35. Knorreck, D., Apvrille, L., Pacalet, R.: Formal system-level design space explo-
ration. Concurr. Comput.: Pract. Exp. 25, 250–264 (2013)

36. Enrici, A., Apvrille, L., Pacalet, R.: A model-driven engineering methodology to
design parallel and distributed embedded systems. ACM Trans. Des. Autom. Elec-
tron. Syst. 22, 34:1–34:25 (2017)

37. Pedroza, G., Knorreck, D., Apvrille, L.: AVATAR: a SysML environment for the
formal verification of safety and security properties. In: The 11th IEEE Conference
on Distributed Systems and New Technologies (NOTERE 2011), Paris, France
(2011)

38. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

39. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations,
CSFW 2001, Washington, D.C., USA, p. 82. IEEE Computer Society (2001)

40. Li, L.W., Lugou, F., Apvrille, L.: Security-aware modeling and analysis for
HW/SW partitioning. In: Conference on Model-Driven Engineering and Software
Development (Modelsward 2017), Porto, Portugal (2017)

41. Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R.: SysML models and model
transformation for security. In: Conference on Model-Driven Engineering and Soft-
ware Development (Modelsward 2016), Rome, Italy (2016)

42. Etienne Faure: Communications matérielles-logicielles dans les systèmes sur puce
orientés télécommunications (HW/SW communications in telecommunication ori-
ented MPSoC). Ph.D. thesis, UPMC (2007)

43. Becoulet, A.: MutekH. http://www.mutekh.org

https://doi.org/10.1007/978-90-481-9965-5_3
https://doi.org/10.1007/978-90-481-9965-5_3
https://doi.org/10.1007/978-3-540-27755-2_3
http://www.mutekh.org

Automated Synthesis of a Real-Time
Scheduling for Cyber-Physical

Multi-core Systems

Johannes Geismann1(B), Robert Höttger2, Lukas Krawczyk2, Uwe Pohlmann3,
and David Schmelter3

1 Software Engineering Research Group, Paderborn University,
Zukunftsmeile 1, 33102 Paderborn, Germany

johannes.geismann@upb.de
2 IDiAL Institute, Dortmund University of Applied Sciences and Arts,

Otto-Hahn-Str. 23, 44227 Dortmund, Germany
{robert.hoettger,lukas.krawczyk}@fh-dortmund.de
3 Software Engineering Department, Fraunhofer IEM,

Zukunftsmeile 1, 33102 Paderborn, Germany
{uwe.pohlmann,david.schmelter}@iem.fraunhofer.de

Abstract. Cyber-physical Systems are distributed, embedded systems
that interact with their physical environment. Typically, these systems
consist of several Electronic Control Units using multiple processing cores
for the execution. Many systems are applied in safety-critical contexts
and have to fulfill hard real-time requirements. The model-driven engi-
neering paradigm enables system developers to consider all requirements
in a systematical manner. In the software design phase, they prove the
fulfillment of the requirements using model checking. When deploying
the software to the executing platform, one important task is to ensure
that the runtime scheduling does not violate the verified requirements
by neglecting the model checking assumptions. Current model-driven
approaches do not consider the problem of deriving feasible execution
schedules for embedded multi-core platforms respecting hard real-time
requirements. This paper extends the previous work on providing an app-
roach for a semi-automatic synthesis of behavioral models into a deter-
ministic real-time scheduling. We add an approach for the partitioning
and mapping development tasks. This extended approach enables the
utilization of parallel resources within a single ECU considering the ver-
ification assumptions by extending the open tool platform App4mc. We
evaluate our approach using an example of a distributed automotive
system with hard real-time requirements specified with the Mechatron-
icUML method.

Keywords: CPS · MDSD · Real-time scheduling · Synthesis
Model-transformation · Multi-core · Automotive · Amalthea
APP4MC

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 72–93, 2018.
https://doi.org/10.1007/978-3-319-94764-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_4&domain=pdf

Automated Synthesis of a Real-Time Scheduling 73

1 Introduction

Cyber-physical Systems (CPSs) are executed in physical environments, inter-
act with each other, and are distributed over several Electronic Control Units
(ECUs). Examples of CPSs are modern cars in Car-2-Car and Car-2-X sce-
narios. Often, these systems perform safety-critical tasks under hard real-time
requirements. Heterogeneous hardware architectures consisting of interconnected
multi-core ECUs are increasingly used in order to fulfill the increasing demand
for computing power.

Model-driven development methods like MechatronicUML [7] are applied
to develop the embedded software of interconnected CPSs efficiently, correctly,
and to cope with the overall complexity. For this, a Platform Independent Model
(PIM) is developed consisting of a component-based software architecture. For-
mal verification approaches like timed model checking [1] are applied to ensure
the functional correctness of the modeled behavior. Afterwards, the PIM is
refined to a Platform Specific Model (PSM) in order to map the PIM to the
underlying multi-core platform. Especially, a scheduling needs to be derived for
utilizing a multi-core platform efficiently. Moreover, the verified safety and real-
time requirements need to be preserved in the scheduling. However, a systematic
method to derive a feasible multi-core scheduling for interconnected CPSs that
preserves verified safety and real-time requirements by design is missing.

This paper is an extended version of [14]. We present an approach that
enables a step-wise, semi-automatic synthesis of behavioral models into a deter-
ministic scheduling suited for multi-core target platforms and respects safety and
real-time requirements. In addition to [14], we present in this version sophisti-
cated techniques for grouping software parts into executable units (called parti-
tioning) and for assigning these units to the execution cores respecting all real-
time requirements by design. We embed our approach in the MechatronicUML
[7] and App4mc [2] toolchains and evaluate our results with an automotive
example. MechatronicUML provides a modeling language, a development
process, and an Eclipse-based tooling to design software for interconnected
CPSs. App4mc focuses on the optimization of timing and scheduling in embed-
ded multi- and many-core systems in the context of AUTOSAR [6]. Therefor,
App4mc provides and utilizes the Amalthea model.

In Fig. 1, we give an overview of our synthesis approach by means of a Busi-
ness Process Model and Notation (BPMN) diagram. The upper BPMN pool
represents the PIM modeling. First, the software architecture of the system is
created (BPMN Task 1). Software components with behavior in terms of stat-
echarts are part of this architecture. The resulting architecture is the input of
our approach. Task 2 is the first contribution of this paper. Here, the so-called
segmentation is applied. In the segmentation, the statecharts are split into small
executable parts that allow parallel execution of the modeled software. Cor-
responding to the AUTOSAR specification [6], we call these parts runnables.
Also, runnable properties like a period for periodic execution are determined
which are essential to ensure semantically correct execution as we show in this
paper. The lower BPMN pool represents the PSM modeling. In Task 3, the

74 J. Geismann et al.

Pl
at

fo
rm

 In
de

-
pe

nd
en

t M
od

el
in

g
Model Application

Structure and
Behavior

Segmentation into
Runnables

Allocate
Runnables to

ECUs

Partition
Runnables to

Tasks

Map Tasks to
ECU Cores

Multi-core
Scheduling

1 2

3 4 5

I. Automatic Synthesis
of Runnables

Legend

Task
Annotated
Contribution

Output
Artifact

Pl
at

fo
rm

 S
pe

ci
fic

M

od
el

in
g

II. Automatic Allocation
for Multi-core Platforms

III. Ensure Real-time
Requirements

Fig. 1. Process diagram and contributions (cf. [14]).

generated runnables are automatically allocated to the distributed, intercon-
nected ECUs. This allocation is the second contribution of this paper. In Task 4
and 5, Amalthea tasks are created and mapped to ECU cores by means
of App4mc’s partitioning and mapping algorithms, respectively. The detailed
explanation of partitioning and mapping (cf. Sects. 3.3 and 3.4) are the main
additional contribution of this long version of the paper. The overall result of
the presented process is a deterministic scheduling that is suited for multi-core
target platforms. In Tasks 2 and 3, we ensure the execution semantics and real-
time requirements of the modeled behavior in the resulting scheduling. This is
the third contribution of this paper.

For illustrating our approach, we use the running example shown in Fig. 2.
The upper part of Fig. 2 depicts an autonomous overtaking scenario involving
two cars. The cars communicate to coordinate the overtaking maneuver. In our
example, the overtaker (red) overtakes the overtakee (green) while the overtakee
guarantees that it do not accelerate during the overtaking. This scenario is safety-
critical because an error in the communication can result in an unsafe overtaking
maneuver. We assume that the correctness of the specified software including its
real-time behavior has been formally verified on PIM level by applying model
checking [16].

The remainder of this paper is structured as follows. In the next section,
we introduce the MechatronicUML models that are relevant and used for our
synthesis approach. In Sect. 3, we present our segmentation approach. Addition-
ally, we present our allocation approach for interconnected multi-core ECUs. In
Sect. 4, we evaluate our approach. In Sect. 5, we discuss related work. Finally,
we conclude our paper and discuss future work in Sect. 6.

Automated Synthesis of a Real-Time Scheduling 75

2 Modeling the Application

In this section, we give an introduction to the MechatronicUML modeling
artifacts that we use for the software specification on PIM level. Figure 3 shows
an overview of all used modeling views, artifacts, and their relations.

Software Architecture across
interconnected CPS

Overtaker Overtakee

overtakee:
OvertakeeVehicle

overtaker:
OvertakerVehicle

Deployment to
multi-core ECUs

Fig. 2. Running example autonomous overtaking (cf. [14]). (Color figure online)

The Component Instance Configuration view shows the software architec-
ture in terms of a compositional component model. In the top part, Fig. 3
shows an excerpt of the software architecture realizing the overtaking scenario.
It consists of the component instances overtaker and overtakee. The component
instance overtakee is composed of the instances overtakeeCommunicator and over-
takeeDriver. Component instances have ports that can send and receive typed
messages. Connector instances connect ports and have Quality of Service (QoS)
assumptions like a maximum transmission time. For example, the overtaker sends
the messages request and finished to the overtakee and can receive the messages
accept or decline from the overtakee. Based on the QoS assumptions, the model
checking assumes that messages are transmitted within 100 ms. Furthermore,
component instances can be connected to continuous component instances that
represent sensors and actuators of the CPS. For the reason of comprehensibility,
we omit these components in the diagram.

The component’s behavior is specified in terms of Real-time Statecharts
(RTSCs) which combine UML state machines [27] and timed automata [1].
Figure 3 shows the behavior of component instance overtakee. RTSCs can be
composed of so-called regions that again contain state machines. For instance,
CommunicatorRTSC is composed of the regions communicator and internal. The
region communicator represents the behavior of the communication with the over-
taker and is composed of the states init, overtaking, and requested. The region
internal represents the internal behavior of the component instance that takes the
decision whether the overtaking is safe or not and is composed of the states safe,

76 J. Geismann et al.

Message Types
request, finished
accept, decline

Component Instance Configuration
overtaker:
OvertakerVehicle

overtakee: OvertakeeVehicle

Real-time Statechart

init

re
quested

overtaking

 request /

 unsafe?/decline

done!
finished / 2

1

1
2

communicator

2 invariant
timeout 50

[timeout>25]
done!

internal

safe unsafe

1

 unsafe?
1velocity>100

velocity<=80

in
progress

 safe?

1done? unsafe? 1

2
2

QoS Assumptions
Max. Transmission

Time: 100ms
Reliable: true

overtakeeCommunicator/
communicator :
overtakeeCommunicator

overtakeeDriver/
driver : overtakeeDriver

CommunicatorRTSC ch: done, safe, unsafe
defines behavior ofdefines behavior of

 safe!/ accept
{action}[200ms]
{reset: timeout}

Fig. 3. Overview of software development views (cf. [14]).

unsafe, and in progress. RTSCs may share variables (e.g., velocity in region inter-
nal) and have clocks that measure the time and can be reset to zero within the
statechart, e.g., timeout in the region communicator. Furthermore, each RTSC
has exactly one currently active state. A state may contain an invariant as a real-
time property, which restricts the value of the clock when the state is active. It

Automated Synthesis of a Real-Time Scheduling 77

must be guaranteed during runtime that an invariant is never violated, e.g., the
state overtaking has to be left before the clock timeout reaches 50 ms. A tran-
sition may have a guard ([velocity > 100]), time constraints ([timeout > 25]),
a trigger message (trigger /), and a synchronization channel that restricts the
firing (sender channel! /, receiver channel? /). It is enabled, i.e., it is able to fire,
if its source state is active, its guard evaluates to true, its time constraint eval-
uates to true, and its trigger message is stored within the buffer. Furthermore,
some transitions are connected with each other via synchronization channels;
the transition from the state requested to the state overtaking in region commu-
nicator is synchronized with the transition from state safe to overtaking in region
internal via the synchronization channel safe. Thus, these transitions may only
fire jointly.

We assume that RTSCs are executed step-wise, i.e., in each step the outgoing
transitions of the currently active state (and all synchronized transitions) are
evaluated. If a transition is enabled, the transition with the highest priority fires
and the currently activate state gets updated.

3 Software Distribution and Parallelization

In this section, we explain our proposed approach for segmentation and alloca-
tion in more detail. We assume that models for the PIM are already created
and requirements are verified using model checking (cf. BPMN Task 1, Fig. 1).
The remainder of this section is structured by following the development pro-
cess as shown in Fig. 1. Afterwards, the Partitioning (Sect. 3.3) and Mapping
(Sect. 3.4) approaches are outlined that are used to find a feasible scheduling
for all runnables allocated to an ECU under consideration of diverse constraints
mentioned accordingly.

3.1 Segmentation into Runnables

The segmentation defines which part of the software models are mapped to a
runnable. Runnables are the smallest unit that can be executed by the system
and, therefore, segmenting the PIM into runnables affects the behavior execu-
tion on the target platform directly. Additionally, WCET, period, and deadline
are defined for each runnable. This step is crucial for semantically correct exe-
cution because an invariant might be violated if a runnable is executed too late.
Thus, the segmentation has to fulfill the following requirements. R1: The seg-
mentation has to allow parallel execution. Multi-core environments increase the
performance of a system by using parallelization. Therefore, software has to be
separated into runnables that can be executed in parallel. R2: We aim to gen-
erate as few runnables as possible without degrading the possibility of parallel
execution because with an increasing number of runnables, the complexity of
the partitioning step also increases, which makes it more difficult to find a fea-
sible scheduling and may lead to a decrease in the performance of the system.
R3: Real-time requirements must be fulfilled at runtime. On PIM level, model

78 J. Geismann et al.

checking techniques are used to ensure the fulfillment of these requirements at
design time. Executing the software on a platform adds further parameters that
have not been considered during the verification step on PIM level, e.g., the
activation due to the concrete scheduling. Thus, a requirement for the resulting
scheduling is to ensure that the semantics of the PIM is respected.

In a first step, MechatronicUML software models have to be split into
runnables. RTSCs of the software architecture are the starting point for the
segmentation. The segmentation directly addresses the first and second require-
ment because it defines which parts of the software can be executed in paral-
lel. We propose to generate one runnable per region of every RTSC because it
allows parallel execution of component behavior without increasing the number
of runnables significantly. Furthermore, this segmentation is reasonable because
each port behavior is described in exactly one region. Hence, we generate one
runnable per port behavior and, therefore, the different communication proto-
cols of a component can be executed in parallel. In addition, we generate one
runnable per continuous component that is used to read sensor values periodi-
cally. Executing the runnable for a region executes one step of the corresponding
RTSC, i.e., evaluating and possibly firing outgoing transitions of the currently
active state.

The resulting runnables may have dependencies since they may share RTSC
variables. These dependencies are important for partitioning and mapping
because runnables accessing the same variable are not suitable to be executed
in parallel. Corresponding to AUTOSAR, we call such variables labels. At first,
we define labels and label-accesses of runnables. Furthermore, RTSCs may use
shared variables and real-time clocks, for which labels are generated also. These
label-accesses are specified for every runnable. Figure 4 shows the label accesses
for the example RTSC in Fig. 3.

Current State of
Communicator

Current State of
internal

timeout

velocity

commu
nicator internal

Legend

Label
Runnable
Label
Access
Inherited
Label
Access

Fig. 4. Runnables have to specify label accesses (cf. [14]).

Both runnables define a label access to their current state label. The runnable
for region communicator defines a label access to the label for the clock timeout.
The runnable for region internal defines a label access to the variable velocity.

Additionally, both runnables specify inherited label accesses, which are
needed, if synchronization channels are used. Since two transitions have to be
fired jointly, we propose to extend the models and implementation for runnables

Automated Synthesis of a Real-Time Scheduling 79

by the possibility to evaluate and fire all synchronized transitions. In Fig. 3, the
transition from state overtaking to init in region communicator are synchronized
with the transition from state in progress to safe via the synchronization channel
done. Hence, both runnables inherit the label accesses from the other runnable.

In a second step, we derive runnable properties. Since these properties
directly affect the scheduling, their correct determination is crucial for preserv-
ing model checking results at runtime. Every runnable has to provide a period,
a deadline, and a WCET that are used for partitioning, mapping, and further
analyses. Our approach provides an automatic technique to determine a period
and deadline for each runnable. Determining a platform-specific WCET is a com-
plex topic and out of scope of this paper. In our approach, we assume that the
WCET for each runnable is determined by an appropriate method (e.g., Simple
Scalar [5] or aiT [13]) and provided as an annotation for each runnable.

The period describes how frequently a runnable is executed. We provide an
automatic technique to determine a period, such that all real-time requirements
are fulfilled at runtime without increasing the processor utilization unnecessarily.
Determining the period has to respect the semantics of the transition conditions,
i.e., guards, deadlines, clock constraints, and invariants. Since a runnable is exe-
cuted periodically, we have to guarantee that it is executed whenever a transition
is enabled.

Based on the transition conditions, we can determine an enabling interval
IE which describes the time span when a transition is enabled. We determined
a computation rule how IE can be computed for all combinations of transition
conditions. In general, we define IE = Imax − Imin, where Imin is the first
point in time and Imax is the last point in time when all transition conditions
validate to true. As an example, consider the combination of a clock constraint
and a state invariant, e.g., the transition from state overtaking to init in region
communicator with priority 1 in Fig. 3. The transition has a clock constraint that
is enabled when the clock timeout is greater than 25 ms. Additionally, the state
overtaking has an invariant that is valid when the clock timeout is less or equal
50 ms. Figure 5 shows the time frames when each constraint validates to true.
Hence, Imin is at 25 ms and Imax is at 50 ms. Thus, the valid enabling interval
IE has a length of 25 ms.

time

timeout<= 50
Clock Constraint

Invariant
timeout > 25

25 ms 50 ms

Imin Imax
IE

Fig. 5. Finding the enabling interval of a transition (cf. [14]).

If several clock constraints are used, we can generalize Imin to the infimum
of all greater-or-equal constraints and Imax to the supremum of all less-or-equal
constraints. Similar to this, we defined for all other transition conditions a similar

80 J. Geismann et al.

computation. Since guards can depend on sensor values, guards also depend on
the period of the runnable of the corresponding continuous component. Thus,
guards have to be considered in the computation of Imin and Imax.

It is crucial that the runnable is executed during IE for each transition
because an enabled transition might become disabled again before firing. Oth-
erwise, the assumptions used during model checking would be neglected. Thus,
based on IE we determine a period for the runnable. For this, we set the period
to half of the length of the shortest enabling interval IE . Figure 6 illustrates that
a well-chosen period is essential to guarantee the firing of an enabled transition.
It shows two different cases of the execution for the runnable that handles the
transition of the example above. Each case shows the enabling interval of the
transition, the periodic activation times of the runnable, and the concrete exe-
cution of the runnable. On the left, the period is set to IE . Here, the enabling
interval of the transition is missed because the transition is evaluated too late.
Therefore, the invariant of the state gets violated. On the right, the period is
set to IE

2 which ensures that the runnable is executed at least once during the
enabling interval because a runnable is executed completely before it is activated
again.

time time
Runnable
Is Activated

Legend
Runnable is
Executed

50ms25ms 50ms25ms

Period = IE Period = IE
2

Transition
is Enabled

Fig. 6. Length of period affects the execution (cf. [14]).

Since the period πr has to respect all transitions of the runnable, the period
of a runnable r is defined as the minimum of all period values:

πr = min

{⌈
min(IE)

2

⌉
| ∀ IE ∈ runnable

}
, (1)

The current approach is limited to local (within one region) clocks and to clocks
that get reset when entering the state. Otherwise, the enabling interval cannot
be determined precisely. If global clocks should be supported in the future, a
solution could be to apply a reachability analysis to find all possible clock zones.

Every runnable defines a deadline. Similar to the period of a runnable, the
deadline depends on the execution of each transition of an RTSC since every
transition can define a dedicated deadline. Consequently, the runnable has to be
finished before the deadline of the firing transition expires. Thus, the deadline
of a runnable is defined as the minimum deadline of all transitions that are
evaluated by this runnable. If no deadline is specified, we set the deadline to the
period value of the runnable, since the runnable has to be finished before it is
activated again.

Automated Synthesis of a Real-Time Scheduling 81

3.2 Allocate Runnables to ECUs

After the segmentation, we have to define which runnable is executed on which
ECU (cf. BPMN Task 3, Fig. 1). Furthermore, hard real-time requirements of
the communication have to be respected.

In the following, we derive two constraints that an allocation of runnables to
ECUs has to fulfill: 1. A constraint regarding a necessary condition for schedu-
lability. 2. A constraint that ensures the maximum time for communication at
runtime. Based on runnable properties, the constraints are used to guarantee
the maximum transmission time and schedulability of the system with regard to
the real-time requirements during the allocation.

When allocating runnables to ECUs, it is required that all ECUs have enough
processing capacity to execute all allocated runnables. The runnables for each
allocated component decrease the available processing capacity of the ECU. We
restrict the allocation regarding a necessary condition for schedulability: The
amount of computing time of the executed software must not exceed the pro-
cessing capacity of the ECU. We define the processing capacity of each ECU core
as 1. For simplicity, we assume that all ECUs use homogeneous cores. Thus, all
cores have the same processing capacity and, consequently, the processing capac-
ity of each ECU is defined as CECU = |ECUCores|. The utilization factor of
a runnable Ur describes how much percentage of CECU is needed to execute
this runnable. We define Ur of runnable r for a specific ECU as Ur = WCETr,e

πr
,

where WCETr,e is the upper bound of the execution time of runnable r on ECU
e and πr is the period of runnable r. If the sum of the utilization factors of all
runnables exceeds the processing capacity of the ECU, it is impossible to find
a valid scheduling for a given set of runnables. Hence, this sum has to be less
than the processing capacity of the ECU.

∑
r∈Runnables(ECU)

Ur < k ∗ CECU , k ∈ [0; 1] (2)

k is a constant factor that can be defined by the developer to adjust this con-
straint for her needs, e.g., to restrict the maximal processor utilization.

Another crucial aspect is the communication time between two components.
The allocation affects the communicating time that is needed for communica-
tion. In MechatronicUML, the maximum transmission time is constrained by
the QoS of a connector instance, denoted by TConInst, e.g., 100ms for the com-
munication between component instances overtaker and overtakee in Fig. 3. For
the communication, we assume that each components port behavior (one region
of the RTSC) is executed by one runnable: a sender runnable rS that sends the
message and a receiver runnable rR that receives and processes the message.
Additionally, we assume that a lower layer is used to handle the transmission
of the message from rS to rR, e.g., a middleware. Based on [30], we define that
delivering a message relies on time for generating and sending the message ts,
transmitting it from sender to receiver ttrans, and queuing it until the receiving
process recognizes the message tr. Figure 7 illustrates the derivation of ts, ttrans,
and tr. When a message is sent by rS , we assume that the middleware sends

82 J. Geismann et al.

the message directly after a task has finished. Thus, the message is processed by
the middleware at least before the runnable is executed again. Hence, ts can be
estimated by the period of the runnable πs.

time

Sender Runnable rS Receiver Runnable rR

ts tr

Runnable
Is Activated

Message
Gets Sent
Message Is
Put in Buffer

Runnable
Checks Buffer

LegendRunnable
Is Executed

ttrans

...

Fig. 7. Upper bound of time for sending and receiving (cf. [14]).

ttrans is based on the used middleware and the underlying communication
protocol. We assume that an upper bound constant can be statically determined
for each communication channel and used middleware. tr describes the time it
takes from the point in time when the message is put into the message buffer
until runnable rR recognizes the message. Let us assume that the message is
put into the buffer immediately after rR checked the buffer as depicted in the
right part of Fig. 7. Hence, in this execution, the message is not received by
the runnable. Since rR is activated periodically, it has to be finished completely
within the next period interval. Consequently, the time until the message buffer
is checked again by the runnable is smaller than 2 ∗ πreceiverrunnable. Hence, we
use this time as an upper bound for tr and state the constraint:

πs + ttrans + 2 ∗ πr ≤ TConInst (3)

Both proposed constraints (Eqs. 2 and 3) are implemented using the allo-
cation approach of MechatronicUML [29], which allows specifying allocation
constraints for components, e.g., which components have to be allocated to the
same ECU. Thereby, we introduce additional allocation constraints in order to
realize an automatic allocation of runnables. We use the heuristic that runnables
that belong to the same component instance have to be allocated to the same
ECU because a software component instance has a strong coherence [17]. Hence,
in this step, we still allocate components to ECUs with respect to the runnable
properties.

For each ECU, further actions are needed to refine the models to schedulable
software: A Partitioning of runnables to tasks and Mapping these tasks to ECU
cores such that all constraints are fulfilled (cf. BPMN Task 4 and Task 5, Fig. 1).
Finally, the deployment of the software takes place which includes the generation
of source code for a given multi-core scheduling.

3.3 Partitioning to Tasks

Partitioning in terms of App4mc focuses on identifying software tasks that
can potentially run at different processing cores. Therefore, runnables’ activa-

Automated Synthesis of a Real-Time Scheduling 83

tion parameters, instructions, and dependencies are considered. Publication [19]
describes the corresponding algorithms. Our experience is that causality, i.e., the
runnable order, is the most influencing criterion for the partitioning process. We
represent the causality by modeling runnable order using directed acyclic graphs.
Due to the specific demands of automotive software the used graph algorithms
are extended. Such demands emerge from either communication technologies,
advanced driver assistant systems, safety and security concepts, architectural
approaches, or diverse design decisions and can often be reflected in specifying
and considering constraints. Example for constraints are, among others, core
affinities, ASIL level references, software component tags, runnable pairings or
separations, or timing constraints. Considering these constraints during the soft-
ware parallelization is a further contribution of this paper.

(d) task dependency
 graph (TDG)
 formed out of (c)

1 2

3

4 5

6

7

8

9

10

11

12

13 14

15

16 17

1
2 3

4

5

6

7

8

9

10 11

12
13

14

15

16
17

1 2 3

4
56
7

8

9

11

12

13
14

15

16
17
10

(1)(2)

(3)(4) (5)

(1)(2)

(3) (4)

(5)

(1) (2) (3) (4) (5)

5ms20ms 10ms

 (a) input runnable
 dependency graph (RDG)

(b) RDG grouped by
 activation periods

(c) RDG with split groups
 for 10ms and 20ms

(e) TADG Task
 acyclic
 dependency graph

Runnables with
periodic ms activation

Legend
Cyclic

dependency
Normal

dependency
(x)

Task containing
runnables

Fig. 8. Example partitioning of a Runnable Dependency Graph (RDG) to a Task
Acyclic Dependency Graph (TADG).

Figure 8(a) shows a typical graph structure of runnables as rectangles and
dependencies as arrows. Figure 8(b) depicts the same Runnable Dependency
Graph (RDG) ordered by the runnables’ periods and Fig. 8(c) shows the same
graph whereas runnables for 10 ms and 20 ms are each split once. This partition-
ing can be configured in different ways. Here shown is a strategy to reduce cross
partition dependencies and consider vertical sequences. To maximize parallelism
such that runnables of the same activation rate can be computed on different
cores concurrently, the vertical partitioning that considers sequences and cross
partition dependencies is the prior choice. Another configuration could handle
the topological level of runnables, i.e., horizontal partitioning. This latter case
is preferred if the partitions are assumed to be scheduled sequentially, e.g., due
to the availability of just a few cores. The two different schemes can be con-
figured in App4mc and have to be distinguished carefully to avoid unnecessary
inter-communication overheads. Finally, (d) outlines a Task Dependency Graph
(TDG) that contains the runnables from (c) with merged dependencies and (e)
depicts the same graph as (d) but without any cycles denoted as Task Acyclic
Dependency Graph (TADG). The mechanism to resolve cycles is described in [3].

84 J. Geismann et al.

It is important to note here, that B rectangles outline blocking periods due to
shared resources, i.e., labels across cores are already in use by another running
runnable on a different core. (a) further assumes having three cores dedicated
for runnables with a specific period, i.e., core C0 for 20 ms, C1 for 10 ms, and
C2 for 5 ms. However, this model would also be schedulable for 2 cores as shown
in Fig. 9 (b).

(2)
(1)(4)

(3)

(5) (5)

(5) (3) (5)

(4)
(2)

deadline miss!

(5) (4) (5) (5) (5) (5)(4) (4)

(3) (1) (3) (2)

(5)

(4)

(5) (5) (5) (5)

(4) (4)

(3)

(1)

(3)

(2)

(3)

(3)
eventual

deadline miss!

(2)a(5) (5) (2)b

(a) RMS feasible (with preemption) (b) RMS infeasible I

(c) RMS infeasible II (d) RMS feasible

t t

C0

C1

C0

C1

C0

C0

C1

t
t

Fig. 9. Gantt charts of scheduling for the example that is shown in Fig. 8(e).

In order to have more flexibility in terms of software distribution, partitions
shown in Fig. 8(c) are formed and transformed to task graphs as (e). Figure 9
provides four different task distribution scenarios (a)–(d) whereas only (d) pro-
vides a solution with no preemption and (a) is only feasible with preemption.
If either task 5 is combined with task 2 or task 3 is combined with task 1, no
feasible schedule can be found. The dashed vertical arrows pointing upwards
outline the release of two or more tasks. The scheduling applied to the shown
executions is rate monotonic scheduling (RMS). Since the periods are harmonic,
the schedulability test

u =
n∑

i=1

Ci

Ti
≤ 1 (4)

is sufficient to form schedulable partitions (with Ci denoting the runnable’s
instructions, Ti denoting the runnable’s activation rate, and n representing the
number of runnables). The schedulability test during the partitioning (without
consideration of the hardware topology) prior to the mapping (including consid-
eration of the hardware topology) ensures valid and coherent solutions in oder
to identify the most effective software distribution scenarios.

The challenge in forming partitions like in Fig. 8(c) is not only considering
causality, instructions, and activations, but also the above mentioned constraints.
If, e.g., runnable 15 is paired with runnable 2 due to, e.g., tight functional relation
within the braking system that is not represented by a dependency, partition (2)
would have to be composed differently in order to generate a feasible schedule.
Figure 10 outlines the consideration of runnable pairing constraints via runnable
cumulation.

Any runnable pairing constraint merges the corresponding runnables for the
graph algorithms (cumulation) and decomposes (reconstruction) to the original

Automated Synthesis of a Real-Time Scheduling 85

PrePartitioned Model Cumulation Partitioning Reconstruction

Fig. 10. Runnable cumulation mechanism to consider runnable pairing constraints.

structure after partitions have been formed. Consequently, causality, i.e., the
runnable pairing positions and sequences within partitions are considered.

Other than that, if runnables 12, 9, and 16 were safety relevant, e.g., imple-
ment a braking system, and reference an according ASIL level, they would have
to be separated into an independent partition in order to guarantee freedom
from interference, e.g., resource blocking. Therefore, the dependencies must be
carefully analyzed and possible blocking situations should be identified so that
execution times can be reasoned precisely.

When taking tags, e.g., for software component instances, into account, it
is desired to predefine whether and if yes how many component instances can
be combined within partitions. Tags are an abstract Amalthea model element
that can be referenced by runnables or tasks in order to group them according
to the diverse users’ needs.

R13

R15

R16 R17

R14R1R2

R3

R4R5

R6

R8

R7

R9

R11

R10

R12

R13

R15

R16

R17

R14R1

R2

R3

R4R5

R6

R8

R7

R9

R11

R10

R12
R13

R15

R16

R17

R14

R1

R2

R3

R4
R5

R6

R8

R7

R9

R11

R10

R12

(a) RDG with coloured SWC tags, ordered
by topology and activation

(b) RDG partitioned by SWC tags (c) Result (b) merged for 2
SWCs per partition

Fig. 11. Partitioning with tag consideration for software component instances (SWC).

Figure 11(a) shows the graph from Fig. 8 further extended by colors indi-
cating a specific software component. The runnables are further topologically
ordered. (a) is transformed to (b) in order to group component instance-related
runnables for each activation. Each column represents a group respectively a par-
tition. Finally, (c) shows a possible configuration for two component instances
per partition. This merging process preserves causal relations within a group and
aims at balancing the load across partitions. Obviously, the outcome is quite dif-
ferent from the result shown in Fig. 8 due to the consideration of tags.

ASIL levels and tags (e.g., for software components) are equally considered
such that separate groups are formed prior to the partitioning process, which
always splits the most instructions consuming partition first. Consequently,
generated partitions are aligned regarding their instruction sums as much as

86 J. Geismann et al.

possible. In other words, all runnables referencing the same tag are grouped into
a partition that are may split additionally if the sum of all runnables contained
in this group is higher than other the instruction sums at other partitions. An
important aspect of this mechanism is its influence of the overall software dis-
tribution. In order to keep the amount of generated AccessPrecedencs (i.e., a
dissolution of a direct cause and effect relation of two runnables) low, i.e., to
keep the program’s causality at a high level, existing groups can me merged
with other groups or partitions.

When being scheduled, runnables are called directly after each other if no
delays are implemented between them. This may eventually result in certain
runnables being executed prior to their predecessors. Such behavior can be
accepted if these situations were analyzed and verified accordingly, resulting in
AccessPrecedence model elements, allowing according runnables to execute with
older values provided by their predecessors. If such AccessPrecedence is not
present, system integrators must assure that runnables wait for label updates
provided by their predecessors via events, interrupts, delays, or similar mecha-
nisms.

The difference between runnable pairing and, for instance, tag groups, is that
a runnable pairing also influences the position of the corresponding runnables
within a task whereas groups have no direct sequencing influence.

As soon as the partitions are formed that consider all the above listed con-
straints, partitions are transformed to tasks and their possible mappings to pro-
cessing cores are investigated as described in the following Sect. 3.4.

3.4 Mapping Tasks to Cores

Mapping in the context of App4mc describes the process of finding a valid and
efficient allocation from software elements to hardware components, i.e., of exe-
cutable software (runnables or tasks) to cores, data to (distributed) memories,
and communications to underlying inter-core networks. These allocations, or
mappings, are considered valid if they fulfill all specified constraints, such as
meeting an executables’ deadlines, providing inter-core communication chan-
nels between mapped executables, or being executed on certified hardware. Effi-
cient mappings are achieved by optimizing the distribution w.r.t. one ore more
so called quality attributes, e.g., by minimizing the overall runtime, the total
energy consumption, or maximizing the reliability of a system. The App4mc
OpenMapping plugin implements this functionality and provides several map-
ping approaches that are based on various optimization techniques and feature
multiple quality attributes. A brief description of these approaches can be found
in [21].

In Sect. 3.2, we described the process of allocating runnables to ECUs. Hence,
it is necessary to refine the deployment in order to further distribute the gener-
ated tasks from Sect. 3.3 onto the hardware resources of the corresponding ECU.
Similar to the allocation process of runnables to ECUs, the mapping phase has to
consider, among others, the execution time (or response time) of tasks in order
to ensure that deadlines are met. Due to the heterogeneous nature of embedded

Automated Synthesis of a Real-Time Scheduling 87

systems, the response time of a task mainly depends on the core it is mapped to.
App4mc allows specifying the number of instructions for executing tasks on a
per core basis, i.e., it is necessary to determine the WCET of a task for all valid
mapping targets beforehand, e.g., by means of profiling or appropriate analysis
tooling. Once this information is available, the execution time ete,c for executing
a task e on core c can be calculated as stated in Eq. 5, with INSe,c being the
number of instructions for this concrete mapping, and IPSc being the number
of executable instructions per second. The latter is derived from the Amalthea
HW Model using Eq. 6, with IPCc being the executed instructions per cycle,
PSc the Prescaler (frequency scale or divider), and fc the frequency the core
operates at.

ete,c =
INSe,c

IPSc
∀ e ∈ Tasks, c ∈ Cores (5)

IPSc = IPCc × PSc × fc (6)

For determining valid mapping targets we consider architectural constraints.
Pairing- and separation constraints are treated similarly as in Sect. 3.3, enforc-
ing or prohibiting the co-existence of a task on the same core. Architectural
constraints allow annotating e.g., the required ASIL for a target core, require-
ments on hardware accelerators, or lockstep modes. Each task can be annotated
with features that either are required (enabled) or prohibited (disabled). Accord-
ingly, the final set of valid mapping targets is Cores \ D with E = ∅ and E \ D
otherwise, with Cores being the set of all available cores, E the set of cores with
the required features, and D the set of cores with prohibited features.

Once the solution space is restricted, a mathematical model describing the
mapping problem is automatically generated based on the selected approaches
optimization technique. In addition to the strategies presented in [21], we have
extended this model in order to support communication costs as well as penalty
based constraints. Communication costs are an important aspect in distributing
tasks among cores, since slow interconnections between cores and a high fragmen-
tation of tightly coupled tasks fosters high execution times. The communication
cost is extracted from either the network description or the AccessPaths within
the ECUs Amalthea Hardware Model. AccessPaths represent communication
channels between, e.g., cores and memories along with their latency. In case
AccessPaths are not present within the model, the latency is determined by ana-
lyzing the ECUs internal network structure, i.e., by identifying all participants
within the internal network, determining all possible paths between them, and
evaluating their connection in terms of latency and bit width among each other.
While the latter is more complex to be solved due to the exponentially rising
number of paths, it provides more flexibility in finding alternative routes on,
e.g., NoC architectures.

The extracted communication costs are stored in a m × m communication
matrix T with m being the number of available cores, and Tij the communication
cost for transferring information from core i to core j. Having the software in
terms of a directed acyclic graph (DAG) G(V,E) with interconnected Tasks V ,

88 J. Geismann et al.

and E being a set of edges e(t′, t) with t′ being the source task and t the target
task, the matrix is used as lookup-table for determining the execution time on a
core. For a simple load balancing approach [12], this is done by adding the resp.
communication overheads whenever a task communicates with another over core
boundaries. This overhead commt,c can be determined as shown in Eq. 7

commt,c = Max

(
m∑

c′=1

xt′,c′Tc′,c : t′ ∈ preds(t)

)
(7)

The variable xt′,c′ is set to 1 iff a task t′ is mapped to core c′, with t′ being the
predecessor of task t,m the total number of cores, and preds(t) a function for
determining the predecessors from task t. Since every task can only be mapped to
one core at a time, the sum of the communication overheads always results in the
overhead caused by the predecessors mapping. In case of multiple predecessors
t′, getting the max value ensures that only the highest delay is considered.

4 Evaluation

We conducted a case study to evaluate our approach using the overtaking exam-
ple. In our case study, we focused on the correctness of the synthesis. We
assume the synthesis to be correct if all relevant elements are considered in the
applied transformations and all computed values are correct. We based our case
study on guidelines by Kitchenham et al. [20] and the Goal-Question-Metric
(GQM) method [31] for the structured definition of quality metrics. We state
two hypotheses to be validated by the case study. H1: We expect, that for the
segmentation approach a feasible multi-core scheduling can be found. H2: We
expect that applying the allocation approach, the result is a correct allocation
that respects both stated constraints (cf. Eqs. 2 and 3), if such an allocation
exists. We evaluated schedules for different platforms. In the following, we show
the resulting tasks for one multi-core ECU of the overtaker software component
instance of the running example. The segmentation of the overtaker components
results in 11 runnables, 37 labels, and 39 label accesses.

We applied the segmentation to several additional component models and
compared them to manually created reference models. For each model, the
segmentation resulted in the expected number of runnables, labels, and label
accesses. Additionally, the generated runnable properties were correct and due
to the construction of period and deadline all real-time assumptions hold at
runtime. Executing partitioning and mapping of App4mc resulted in a feasible
scheduling with 7 tasks. 5 tasks are mapped to one core and 2 tasks to the other.
Table 1 shows the resulting tasks, their properties, and the executing ECU core.
Both cores execute runnables of the component instance overtakeeCommunicator
and overtakeeDriver. Hence, the execution of the software uses the benefits of
parallel execution, which reduced the response time of the system. Overall, we
argue that H1 is fulfilled.

Automated Synthesis of a Real-Time Scheduling 89

Table 1. Tasks resulting from partitioning [14].

Core Task Component Period (ms)

Core 1 T3 Communicator 500

T6 Driver 500

Core 2 T0 Driver 25

T1 Communicator 25

T2 Driver 12

T4 Communicator 500

T5 Communicator 500

For evaluating the allocation approach, we considered QoS assumptions of
connectors. For each connector, the expected constraints were generated. Addi-
tionally, we used different values for the periods of the sender runnable and
receiver runnable, as well as for the underlying platform model to test the cases
that (A) a valid allocation with two ECUs is found, (B) a valid allocation with
only one ECU is found, and (C) no valid allocation is found. For each value com-
bination, the results are as expected. Thus, we state that H2 is fulfilled. The case
study shows that our concepts and the implementation work as expected. Due to
the higher degree of automation in the whole development process, there are less
manual steps in comparison to state of the art approaches. Additionally, the sys-
tems engineer needs less domain knowledge for embedded systems and schedul-
ing. The main threats to validity are: 1. We applied our approach to a small
example. 2. We assume that the partitioning and mapping of App4mc consider
all specified constraints correctly, and 3. We assume that the code generation
is correct. Overall, we argue that our approach helps to increase the automa-
tion of finding a feasible scheduling for software with real-time requirements for
multi-core platforms. The concepts are evaluated using MechatronicUML and
App4mc, but can be adopted to other approaches. We provide an Eclipse bundle
that contains our implementation and model files of the running example [15].

5 Related Work

Our approach is related to component-based approaches for CPS and to
approaches for scheduling and safe deployment of CPS. [11,23] survey compo-
nent models in general, whereas [18] survey component models for CPS. Based
on that, we state similarities and differences of approaches that consider at least
partially concepts for partitioning, mapping, or deployment.

ProCom [10] provides a component model for the development of real-time
systems in the automotive and telecommunication domains. ProCom provides a
modeling language that is based on Final State Machines enriched by features of
Timed Automata to compute (real-time related) dependencies of the model that
can affect the scheduling. Additionally, ProCom provides a code synthesis [8]

90 J. Geismann et al.

that aims to preserve the semantics of ProCom at runtime. The code for every
component is executed concurrently. In contrast to our approach, the resulting
system is mainly event-triggered, which does not allow a static timing analysis
like our approach. Since the component behavior is implemented directly in C,
model checking and a model-driven segmentation is not possible. Nevertheless,
in [8] a formalization of the generated code is provided.

MEMCONS (Model-based EMbedded CONtrol Systems) [26] provides a
model-driven framework for embedded systems and supports the interoperation
with AUTOSAR and OSEK models. Since it follows the AUTOSAR method-
ology, it provides platform independent, component-based development of the
system. It also provides an automatic approach for mapping tasks to multi-core
ECUs. Furthermore, an analysis of timing constraints can be applied to the
deployed system. In contrast to our approach, MEMCONS does not focus on
verification of the PIM. Furthermore, the behavior of the software components
is not specified model-driven and cannot be used for segmentation.

Further approaches focus on the modeling of (real-time) operating systems
elements to improve the deployment of the software. In [24] they extend the DSL
RTEPML (Real-time Embedded Platform Modeling Language) [9] to describe
the behavior of the RTOS in a platform model, i.e., tasks and semaphores.
Using this model for the refinement from PIM to PSM, model checking can be
applied, which considers both the application behavior and the behavior of the
underlying system. In contrast to our approach, concrete platform properties like
the maximum transmission delay are not considered. Furthermore, distributed
systems and multi-core ECUs are not taken into account. However, extending
this approach to resource management on multi-core environments might be
useful to improve our allocation approach.

Lukasiewycz et al. [25] present an approach to derive task priorities in event-
triggered systems. The input for the algorithm is a task graph and a mapping.
The task graph describes all tasks of the system and their communication. The
mapping describes the assignment of tasks and messages to resources, e.g., ECUs
or busses. The authors provide an algorithm to find optimal priorities for tasks in
event-triggered systems. In contrast, we focus on time-triggered systems and do
not consider priorities of tasks in our approach explicitly. Hence, this approach
seems to be interesting to improve the task priorities in our approach.

There are also approaches regarding the semantic-preserving generation of
source code for systems with real-time requirements, i.e., approaches for timed
automata. In [4], code is generated for timed automata. The authors state that
the code generation is platform independent since it also generates a runtime-
system that handles task activation and system events. In contrast to our app-
roach, the behavior of the tasks is not generated but implemented manually.
Furthermore, the approach does not consider concepts for segmentation, parti-
tioning, and mapping and, therefore, is not applicable for multi-core systems. In
[28], the authors restrict the timed automata to deterministic features. Hence,
invariants are not supported in this approach. In [22] on the other hand, they
present an approach, where invariants are allowed in the specification. They do

Automated Synthesis of a Real-Time Scheduling 91

not analyze if it all invariants can be guaranteed at runtime. In contrast to our
approach, in both approaches properties of the target platform are not consid-
ered. Furthermore, both approaches do not consider distributed systems.

6 Conclusion and Outlook

In this paper, we presented a systematic approach that enables a step-wise,
semi-automatic synthesis of behavioral models into a deterministic scheduling
suitable for multi-core target platforms. We illustrated our approach based on
an automotive, autonomous overtaking example and evaluated it based on the
MechatronicUML and App4mc platforms.

Firstly, we showed how runnables, runnable properties, and runnable depen-
dencies are synthesized from RTSCs to derive a segmentation that allows paral-
lel execution of software components. We identified limitations in our approach
when using clocks across multiple states. Secondly, we introduced an approach
for the allocation of runnables to interconnected multi-core ECUs. Especially, we
identified and automatically derived necessary conditions an allocation has to ful-
fill in order to guarantee a valid scheduling. Thirdly, we introduced an approach
that preserves verified real-time requirements on PIM level during the synthesis
and in the resulting scheduling. In addition to [14], we presented advanced par-
titioning and mapping approaches considering all real-time constraints derived
from former development steps. We used the App4mc open tool platform to
validate the correctness of the generated results.

In future work, we want to introduce a reachability analysis to cope with
the mentioned limitations regarding clocks. Furthermore, we want to address
dynamic scheduling in case of event-triggered systems. We also plan to extend the
allocation constraints for ECUs that use cores with different processing capaci-
ties and by estimating the transmission time dynamically during the allocation.
Finally, our goal is to combine all presented distribution and parallelization
technologies along with a single example case study that provides the necessary
constraints and reflects industrial needs.

Acknowledgment. This work was partially developed in the Leading-Edge Clus-
ter ‘Intelligent Technical Systems OstWestfalenLippe’ (it’s OWL) and in the ITEA 2
AMALTHEA4public project (Nos. 01IS14029I and 01IS14029K). The IT’S OWL and
the AMALTHEA4public projects are funded by the German Federal Ministry of Edu-
cation and Research.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994)

2. Amalthea: Deliverable: D3.1 concept for a partitioning/mapping/scheduling/timing-
analysis tool. Technical report 3.4, Amalthea, January 2013

3. AMALTHEA4public Consortium: APP4MC Help Documentation (2017). https://
www.eclipse.org/app4mc/help/app4mc-0.8.0/index.html#section4.5.2.3

https://www.eclipse.org/app4mc/help/app4mc-0.8.0/index.html#section4.5.2.3
https://www.eclipse.org/app4mc/help/app4mc-0.8.0/index.html#section4.5.2.3

92 J. Geismann et al.

4. Amnell, T., Fersman, E., Pettersson, P., Yi, W., Sun, H.: Code syn-
thesis for timed automata. Nord. J. Comput. 9(4), 269–300 (2002).
http://dl.acm.org/citation.cfm?id=779110.779112

5. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer
system modeling. Computer 35(2), 59–67 (2002)

6. AUTOSAR: Release 4.2 Overview and Revision History (2014). http://www.
autosar.org/specifications/release-42/

7. Becker, S., et al.: The mechatronicuml design method - process and language for
platform-independent modeling. Technical report tr-ri-14-337, Heinz Nixdorf Insti-
tute, Paderborn University, version 0.4, March 2014

8. Borde, E., Carlson, J.: Towards verified synthesis of ProCom, a component model
for real-time embedded systems. In: Proceedings of the 14th International ACM
Sigsoft Symposium on Component Based Software Engineering, CBSE 2011, pp.
129–138. ACM, New York (2011). https://doi.org/10.1145/2000229.2000248

9. Brun, M., Delatour, J.: Contribution to the software execution platform integration
during an application deployment process. Ph.D. thesis, Ph.D. dissertation, École
Centrale de Nantes, Nantes, France (2010)

10. Bureš, et al.: Procom-the progress component model reference manual. Mälardalen
University, Väster̊as (2008)

11. Crnković, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2011)

12. Drozdowski, M.: Scheduling for Parallel Processing. Computer Communications
and Networks. Springer, Berlin (2009). https://doi.org/10.1007/978-1-84882-310-
5

13. Ferdinand, C., Heckmann, R.: aiT: worst-case execution time prediction by static
program analysis. In: Jacquart, R. (ed.) Building the Information Society. IIFIP,
vol. 156, pp. 377–383. Springer, Boston, MA (2004). https://doi.org/10.1007/978-
1-4020-8157-6 29

14. Geismann, J., Pohlmann, U., Schmelter, D.: Towards an automated synthesis of a
real-time scheduling for cyber-physical multi-core systems. In: Proceedings of the
5th International Conference on Model-Driven Engineering and Software Develop-
ment, MODELSWARD, vol. 1, pp. 285–292. INSTICC/ScitePress (2017)

15. Geismann et al.: Implementation and example models (2016). https://trac.cs.
upb.de/mechatronicuml/wiki/PaperModelsward17, http://workupload.com/file/
rMP2kVG

16. Gerking et al.: Domain-specific model checking for cyber-physical systems. In: Pro-
ceedings of the 12th Workshop on Model-Driven Engineering, Verification and Val-
idation, MoDeVVa 2015, vol. 1514 (2015). http://ceur-ws.org/Vol-1514/

17. Gill, N.S., Grover, P.S.: Component-based measurement: few useful guidelines.
SIGSOFT Softw. Eng. Notes 28(6), 1–6 (2003)

18. Hošek, P., Pop, T., Bureš, T., Hnětynka, P., Malohlava, M.: Comparison of com-
ponent frameworks for real-time embedded systems. In: Grunske, L., Reussner,
R., Plasil, F. (eds.) CBSE 2010. LNCS, vol. 6092, pp. 21–36. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13238-4 2

19. Höttger, R., Krawczyk, L., Igel, B.: Model-based automotive partitioning and map-
ping for embedded multicore systems. In: International Conference on Parallel, Dis-
tributed Systems and Software Engineering, ICPDSSE 2015, vol. 2, pp. 2643–2649.
World Academy of Science, Engineering and Technology (2015)

20. Kitchenham, B., et al.: Case studies for method and tool evaluation. IEEE Softw.
12(4), 52–62 (1995)

http://dl.acm.org/citation.cfm?id=779110.779112
http://www.autosar.org/specifications/release-42/
http://www.autosar.org/specifications/release-42/
https://doi.org/10.1145/2000229.2000248
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-1-4020-8157-6_29
https://trac.cs.upb.de/mechatronicuml/wiki/PaperModelsward17
https://trac.cs.upb.de/mechatronicuml/wiki/PaperModelsward17
http://workupload.com/file/rMP2kVG
http://workupload.com/file/rMP2kVG
http://ceur-ws.org/Vol-1514/
https://doi.org/10.1007/978-3-642-13238-4_2

Automated Synthesis of a Real-Time Scheduling 93

21. Krawczyk, L., Wolff, C., Fruhner, D.: Automated distribution of software to multi-
core hardware in model based embedded systems development. In: Dregvaite, G.,
Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 320–329. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24770-0 28

22. Kristensen, J., Mejholm, A., Pedersen, S.: Automatic translation from UPPAAL to
C. Technical report, Department of Computer Science, Aalborg University (2004)

23. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng. 33(10),
709–724 (2007)

24. Lelionnais, C., et al.: Formal behavioral modeling of real-time operating systems.
In: Proceedings of the 14th International Conference on Enterprise Information
Systems (ICEIS 2012), Wroclaw, Poland, vol. 2, June 2012. https://hal.archives-
ouvertes.fr/hal-01093794

25. Lukasiewycz, F.N., et al.: Priority assignment for event-triggered systems using
mathematical programming. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE 2013, EDA Consortium, San Jose, CA, USA, pp.
982–987 (2013). http://dl.acm.org/citation.cfm?id=2485288.2485524

26. Macher et al.: Filling the gap between automotive systems, safety, and software
engineering. e & i Elektrotechnik und Informationstechnik, 1–7 (2015). https://
doi.org/10.1007/s00502-015-0301-x

27. OMG: Unified Modeling Language, version 2.4.1. Superstructure Specification
(2011). http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

28. Opp, D., Caspar, M., Hardt, W.: Code generation for timed automata system
specifications considering target platform resource-restrictions. In: Proceedings of
the 7th International Conference on Computing and Information Technology 2011,
pp. 144–149 (2011)

29. Pohlmann, U., Hüwe, M.: Model-driven allocation engineering. In: Proceedings of
the 30th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2015), November 2015. ACM/IEEE (2015)

30. Tindell, K., et al.: Analysis of hard real-time communications. Real-Time Syst.
9(2), 147–171 (1995). https://doi.org/10.1007/BF01088855

31. Van Solingen, R., et al.: The Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development. McGraw-Hill, London (1999)

https://doi.org/10.1007/978-3-319-24770-0_28
https://hal.archives-ouvertes.fr/hal-01093794
https://hal.archives-ouvertes.fr/hal-01093794
http://dl.acm.org/citation.cfm?id=2485288.2485524
https://doi.org/10.1007/s00502-015-0301-x
https://doi.org/10.1007/s00502-015-0301-x
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
https://doi.org/10.1007/BF01088855

A Model Based Approach for Complex
Dynamic Decision-Making

Souvik Barat1(&), Vinay Kulkarni1, Tony Clark2, and Balbir Barn3

1 Tata Consultancy Services Research, Pune, India
{souvik.barat,vinay.vkulkarni}@tcs.com

2 Sheffield Hallam University, Sheffield, UK
t.clark@shu.ac.uk

3 Middlesex University, London, UK
b.barn@mdx.ac.uk

Abstract. Current state-of-the-practice and state-of-the-art of decision-making
aids are inadequate for modern organisations that deal with significant uncer-
tainty and business dynamism. This paper highlights the limitations of prevalent
decision-making aids and proposes a model-based approach that advances the
modelling abstraction and analysis machinery for complex dynamic decision-
making. In particular, this paper proposes a meta-model to comprehensively
represent organisation, establishes the relevance of model-based simulation
technique as analysis means, introduces the advancements over actor technology
to address analysis needs, and proposes a method to utilise proposed modelling
abstraction, analysis technique, and analysis machinery in an effective and
convenient manner. The proposed approach is illustrated using a near real-life
case-study from a business process outsourcing organisation.

Keywords: Organisational decision making � Simulation
Model based approach � Conceptual model � Domain specific language

1 Introduction

Modern organisations constantly rely on decision-making to select suitable courses of
action that help in achieving their goals [1]. An effective organisational decision-
making calls for precise understanding of various aspects of organisation such as goals,
organisational structure, operational processes and the historical data describing
operational details along with execution log. The inherent characteristics of modern
organisations that include the socio-technical characteristics [2], complex and dynamic
organisational structure [3], significant uncertainty [4], and emergent behaviour [5]
make the decision-making a complex endeavor i.e., complex dynamic decision making
(CDDM).

We posit that effective CDDM hinges on the availability of: (i) information
required for decision-making in a structured and machine-interpretable form, (ii) suit-
able machineries to interpret the information, and (iii) a method to help identify the
relevant information, capture it in model form, and perform what-if analyses. The
current practice of organisational decision-making that relies heavily on human experts

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 94–118, 2018.
https://doi.org/10.1007/978-3-319-94764-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_5&domain=pdf

typically working with primitive tools such as spreadsheets, word processors, and
diagram editors etc. fares poorly on all the three criteria [6].

A wide range of Enterprise Modelling (EM) techniques, such as ArchiMate [7],
IEM [8], MEMO [9], i* [10], BPMN [11], and System Dynamics (SD) [12], capture
information of interest in a structured and/or machine interpretable form. They also
support varying degree of analyses capabilities on a range of organisational aspects.
However, they are found to be insufficient for CDDM [13, 14]. The actor languages
and frameworks such as Kilim [15], Scala Actors [16], and Akka [17], in contrast,
adopt the actor model of computation [18] to specify socio-technical characteristics.
However, they are inadequate to express complex goal structure, organisational hier-
archies, and behavioural uncertainty [13].

Therefore, it can be said that existing technological support can at best partly meet
only two of the three requirements of effective CDDM i.e., (i) the ability to conve-
niently capture the organisational goals, structure, behaviour, and their inherent char-
acteristics and (ii) the ability to perform required analyses on available information.
However, little is reported on how to use the relevant existing technologies, such as EM
technologies and actor technologies, in a systematic manner for effective CDDM.

This paper presents a model-driven approach to capture necessary aspects of an
organisation, such as goal, structure, and behaviour, along with their inherent char-
acteristics, such as socio-technical characteristics and uncertainty, in a relatable and
machine interpretable form and perform various what-if analyses leading to
evidence-driven CDDM. In particular, this paper hypothesises that model-based sim-
ulation approach is an effective means to address CDDM and claims four contributions:
(i) a conceptual meta-model that represents necessary and sufficient aspects of the
organisation along with the inherent characteristics of CDDM, (ii) a simulation model
that refines conceptual model for specific decision-making context, (iii) a pragmatic
human-assisted technique to ascertain model validity, and (iv) a method to construct
purposive simulatable models leading to what-if analyses for CDDM in a systematic
manner.

The proposed conceptual meta-model caters to specification of why, what, how,
who, where and when aspects [19], socio-technical characteristics as advocated in actor
model of computation [18], and uncertainty [20]. The simulatable model advances the
state-of-the-art actor technology [15–17] by supporting the notion of uncertainty and
“time”. The proposed method refines the management view of decision-making
advocated by Daft [3] while extending the modelling and model validation method
advocated by Sargent [21] so as to realize a simulation based approach to CDDM.

The paper is organized as follows. Section 2 provides background by highlighting
necessary tenets of CDDM and reporting brief overview of existing EM techniques and
actor technologies. It also summarises notable gaps restricting adoption of EM tech-
niques and actor technologies for CDDM. Section 3 presents model-driven
simulation-based approach to CDDM. The approach is illustrated in Sect. 4 using a
case study from business process outsourcing (BPO) domain. Section 5 discusses
evaluation of the approach. The paper concludes with future work.

A Model Based Approach for Complex Dynamic Decision-Making 95

2 Background

This section presents the key requirements for affective CDDM and evaluates the
state-of-the-art techniques and technologies with respect to these requirements.

2.1 CDDM Structure and Requirements

Decision-making is a continuous and indispensable activity for all organisations. It
requires deep understanding of various aspects of an organisation. Zachman Frame-
work [19] recommends six interrogative aspects namely why, what, how, when, where,
and who as necessary and sufficient information to precisely understand an enterprise.
Conforming to Zachman Framework, we visualize an organisation using a set of
concepts as shown in the class diagram in Fig. 1 [22]. An Organisation has objectives
or Goals, i.e., Why aspect, that it aims to achieve. A Goal is typically assessed by
evaluating a set of performance indicators or Measures that are indicative of organi-
sational effectiveness along several dimensions such as time to market, growth rate,
customer satisfaction, employee happiness index, entry into new areas etc. Organisa-
tional effectiveness in an Environment (i.e., where aspect) is largely a function of its
Structure (i.e., What and Who aspects) and Behaviour (How and When aspects).
Behaviour induces State changes thus producing Trace (i.e., historical record of States)
over a period of time. A Lever represents a possible course of action available to
organisation. Typically, applying a lever results in modification of either operational
parameters or Goal or Behaviour or any combination of the three thus leading to
modifications to the Trace. Thus, decision-making is a loop involving evaluation of
possible Levers so as to identify the most promising one – untill the stated goal is
achieved.

The conceptual structure of Fig. 1 though necessary is not sufficient for effective
CDDM. The system of systems structure of an organisation means the decision making
problem can be positioned at various levels of granularity spanning from mega to

Fig. 1. Schema describing decision making concepts.

96 S. Barat et al.

macro to micro. This places additional demands of modularity and compositionality on
the specification. As each [sub] system has own goals and the necessary wherewithal of
achieving them, the specification needs to be capable of supporting intentionality and
autonomy. As each of these [sub] systems operate over protracted time adapting
constantly by responding to events taking place in their operating environments, the
specification needs to be capable of supporting reactive, temporal and adaptive char-
acteristics. Moreover, the specification must be capable of capturing the inherent
uncertainty. Such a specification language along with its simulation engine seems
necessary and sufficient infrastructure to support an iterative decision making loop
wherein application of a Lever leads to modification of one or more Measures thus
helping check whether a Goal (which is a sophisticated conditional expression over
measures) is achieved or not [37]. A list of requirements of CDDM, as presented in
[22], is summarised in Table 1.

From a methodology perspective, effective CDDM witnesses a curious dilemma.
A system of systems structure involving autonomous [sub] systems indicates that
organisation level Goals will be decomposed into various functional unit level Goals
along the organisational Structure thus necessitating a top-down design approach. This
implies that Behaviour of the organisation is known and hence specifiable. However,

Table 1. Requirements of CDDM [22].

Requirement Description

Aspect Why Goals, objectives and intentions of multiple stakeholders
What Structural Specification with complex hierarchy and

interactions
How Behavioural specification with interactions
Who Stakeholders and human actors of the system
Where Information about location
When Temporality in behaviour and adaptation

Socio-technical
Characteristics

Modularity A system can be decomposed into multiple parts
Compositional Multiple parts should be composed to a consistent whole
Reactive Must respond appropriately to its environment
Autonomous Possible to produce output without any external stimulus
Intentional Intent defines the behaviour
Adaptive Adapt itself based on context and situation
Uncertain Precise intention and behaviour are not known a-priori
Temporal Indefinite time-delay between an action and its response

DC Measure Ability to specify what needs to be measured
Lever Ability to specify possible courses of action

Analysis Machine
Interpretable

Models that are interpretable by machine (i.e., support for
simulation/execution)

Top-down and
Bottom-up

Support for top-down and bottom-up modelling and
simulation to support reductionist view and emergentism

A Model Based Approach for Complex Dynamic Decision-Making 97

given the complexity of modern organisations and the inherent uncertainty, it is almost
impossible to know the overall behaviour of organisation. The behaviour is typically
known only for highly localized contexts i.e., functional units thus suggesting a
bottom-up design approach wherein the overall organisation behaviour emerges from
the behaviour of its interacting functional units. As a result, the specification language
and analysis techniques need to be cognizant of top-down and bottom-up approach [23,
24] as described in Table 1. Also, effective CDDM calls for a method providing help
with: (i) evaluating if the desired Goal is achieved, (ii) identifying the most appropriate
Lever amongst many candidates, and (iii) applying the Lever.

2.2 Review of State of the Art and Practice

The state-of-the-art specification and analysis techniques approach the decision-making
problem in two ways namely: data-centric approach and model-centric approach. The
data-centric approach makes use of sophisticated AI-based pattern recognition and
predictive analysis techniques on relevant past data or Trace to predict future outcomes.
This approach has worked well when Trace of an Organisation is comprehensive and
the future is typically a linear extrapolation of the past. However, the two conditions are
increasingly not being met for modern large enterprises thus leading to inappropriate
decisions for emerging business context1.

The model-centric approaches, in contrast, characterise the real organisation in the
form of representative models which span across a wide spectrum. At one extreme of
the spectrum are models that provide a well-defined structure for the organisational
aspects of interest and rely on a variety of visualisation techniques to help humans
obtain the desired understanding of the organisation. For instance, ArchiMate [7] is one
such specification. At the other extreme of the spectrum are machine interpretable
and/or simulatable specifications. They are capable of precise analyses for one or
limited aspects. For instance, BPMN (Business Process Modelling and Notation) [11]
analyses and simulates the behavioural aspect, i* [10] analyses the high level goals and
objectives, and System Dynamic model simulates dynamic behaviour of the system.
The multi-modelling and co-simulation environments, such as DEVS (Discrete EVent
system Specifications) [25], AA4MM (Agent & Artifact for Multi-Modeling) [26],
AnyLogic [27] and MEMO (Multi-perspective enterprise modeling) [9] technology,
demonstrate further advancements by supporting the analysis of multiple aspects.
Principally they adopt a top-down [23] approach to help analyse enterprises where the
mechanistic world view holds. On the other hand, the languages and specifications
advocating an actor model of computation [18] and agent-based systems [28] support
emergentism [24] through bottom-up simulation. They fare better in analysis of sys-
tems comprising of adaptive and socio-technical elements.

Thus, the above mentioned techniques and technologies capture only a fragment of
what ought to be captured and analysed for effective CDDM as illustrated in Table 1
[13]. In particular, the enterprise modeling languages are incapable of specifying
uncertainty as well as emergent behaviour, and actor/agent languages are inadequate to

1 https://hbr.org/2014/09/9-habits-that-lead-to-terrible-decisions.

98 S. Barat et al.

https://hbr.org/2014/09/9-habits-that-lead-to-terrible-decisions

conveniently express required characteristics such as the complex goal structure,
organisational hierarchies, and behavioural uncertainty [22]. Moreover, EM specifi-
cations and actor based languages fall short as an intuitive and closer-to-the-problem
specification as they are not designed for CDDM.

From a methodological viewpoint, the goal specification languages such as i* [10]
and EKD [29] advocate a top-down method. EM languages such as ArchiMate, MEMO,
and 4EM [30] advocate a top-down method and a globalized view of the system to
represent the Goal, Structure and Behaviour of organisation in an integrated manner.
BPMN [11] and SD model [12] predominantly support top-down approach and
reductionist view of analyses [36]. On the other hand, actor languages and frameworks
[15–17] advocate localised view, bottom-up approach, and emergentism. The reported
methodological advancements also fail to support desired design principles. For
example, DESIRE (DEsign Specification of Interacting REasoning components) [31]
and MEMO based decision-making process [32] propose top-down model and reduc-
tionist what-if analysis. On the other hand, [33] advocates bottom-up approach using
Belief-Desire-Intention (BDI) paradigm. Thus, there exists no single approach capable
of combining top-down/bottom-up [23] design principle, reductionist/emergentism
analysis techniques [24], and localized/globalized perspectives as desired. Moreover,
the existing approaches are also found wanting in terms of ensuring model validity [21]
and correlating with the management view of decision-making.

The next section describes our approach that addresses some of the essential
specification limitations, overcomes inadequacy of analysis needs, and bridges the
existing gap in methodical support.

Fig. 2. CMModel – a metamodel to represent organisation.

A Model Based Approach for Complex Dynamic Decision-Making 99

3 Approach

Our approach to CDDM uses a model-based representation of organisation capable of
supporting what-if simulation with a comprehensive design and analysis method pro-
viding the integration glue. In particular, we propose three artefacts that include: (i) a
conceptual meta-model, termed as CMModel, to represent relevant aspects of an
organisation along with the characteristics described in Table 1, (ii) a simulatable
model, termed as ESLMModel, along with simulation machinery to support analyses
needed for CDDM, and (iii) a method to help construct these models so as to perform
what-if analyses leading to evidence-driven CDDM.

3.1 Conceptual Model

The CMModel meta-model is depicted in Fig. 2. As shown in the Figure, the key
abstraction of CMModel is OrgUnit that represents an autonomous self-contained
functional unit having high internal coherence and low external coupling. Each OrgUnit
has its own Goal, contains Data, deals with a set of interacting Events, and may have
specific Behaviour. The Goal represents the intention or objective of an OrgUnit. A Goal
can be decomposed into sub-Goals, sub-sub-Goals to represent hierarchical goal
structure. Data captures the current State and sequence of historical states, i.e., Trace,
using a set of typed entity Variables. An OrgUnit may encapsulate and/or share Data by
encapsulating and/or exposing Variables. OrgUnit responds to three kinds of Events
namely OutgoingEvent, BehaviouralEvent and TimeEvent. The OutgoingEvents are
triggered from an OrgUnit as part of its reactive behaviour. Each OutgoingEvent
specifies the Data that it carries while reacting to an Event. The BehaviouralEvent
specifies behaviour that is a response to an event and the Data it consumes. The
BehaviouralEvent is further classified into two types namely InternalEvent and
IncomingEvent. The IncomingEvents are consumed by OrgUnit, and the InternalEvents
are the events that are internal to an OrgUnit. The TimeEvent is a special event that
represents the concept of “Time” such as “Day”, “Month” or a “Year”.

The Measure and Lever of an OrgUnit represent the Measure that an OrgUnit owns
and the Lever that are relevant for an OrgUnit. Essentially, a Measure can be repre-
sented using a set of Variables and the Lever describes the change specification of
Variables, composition relationships, Behavioural specification and/or Goals. We
visualise the notion of organisation and its environment as specialised OrgUnit namely
Organisation and Environment as shown in Fig. 2.

By the virtue of being composable, OrgUnit abstraction is capable of modelling the
system of systems nature of modern organisation. The composability can be specified
using contains relationship. The meta-model advocates four kinds of Behaviour namely
Deterministic, Stochastic, Temporal and Adaptive. The Deterministic behaviour
describes the behaviour which is known with certainty. Essentially, the known known
kinds of behaviour [20] can be specified using Deterministic Behaviour. The Stochastic
behaviour describes uncertain Behaviour or known unknown kind of behaviour [20].
We use probabilistic distribution to specify Stochastic Behaviour. The Temporal
Behaviour describes the temporal delays in interaction pattern, and the Adaptive
Behaviour describes adaptation rules by describing what will change when.

100 S. Barat et al.

The proposed meta-model is grounded into a set of existing concepts. The mod-
ularisation and unit hierarchy are taken from the notion of component abstraction. The
goal-directed reactive and autonomous behaviour can be traced to actor behaviour [18,
34]. Defining states in terms of a type model is borrowed from UML. An event driven
architecture is introduced for reactive behaviour. The concept of intentional modelling
[10] is adopted to enable specification of goals. The behavioural classification and
uncertainty is defined from the notion of uncertainty defined by Rumsfeld [20].

We argue that CMModel meta-model realises the structure defined in Fig. 1 and
satisfies the requirements stated in Table 1. Event definition, Data, and OrgUnit
structure together specify the what aspect, OrgUnit help specify the who and where
aspects, Goal specification specifies the why aspect, and Behaviour specifies the how
and when aspects. The concept of OrgUnit ensures modularity and encapsulation, the
Event helps to specify reactive nature, InternalEvent and TimeEvent collectively
specify the autonomous behaviour, Stochastic behaviour helps in specifying uncer-
tainty, the Temporal behaviour and TimeEvent specify the temporal behaviour, and
Adaptive behaviour is capable of specifying the adaptive nature of an OrgUnit. We
argue that the contain relationship of OrgUnit and OrgUnit specific localised Behaviour
definition help in bottom-up design, whereas the contain relationship of OrgUnit, Goal
decomposition relationship, and an ability to share Variables using exposes relationship
help in top-down design. The next section introduces a specification that has capability
to represent the information captured using CMModel in a simulatable form.

3.2 Simulatable Model

We extend the notion of traditional actor definition [34] to specify enterprises. The
adopted concepts from actor model of computation and proposed extensions are
depicted using a meta-model, termed as ESLMModel, in Fig. 3. The extended concepts
are highlighted with bolded boxes and extended associations are represented using

Fig. 3. ESL meta-model (ESLMModel).

A Model Based Approach for Complex Dynamic Decision-Making 101

dotted lines. The Enterprise Simulation Language (ESL)2 provides an implementation
for ESLMModel.

As shown in Fig. 3, the notion of traditional Actor encapsulates its State, has
specific Behaviour and interacts with other Actors using a set of Events. The State of an
Actor is defined using a set of typed Variables where each Variable holds Value. The
Behaviour of an Actor principally represents four kinds of behavioural patterns namely
reactive behaviour, autonomous behaviour, adaptive behaviour and emergent beha-
viour. ESLMModel represents supported behavioural patterns using four kinds of
Behaviour namely ReactiveBehaviour, AutonomousBehaviour, AdaptiveBehaviour and
EmergentBehaviour.

The ESL extends the notion of traditional Actor along four dimensions: (i) repre-
sentation of historical state information or Trace, (ii) the notion of “Time”, (iii) the
notion of shared Variables that breaks pure encapsulation without compromising the
correctness of state space of an actor, and (iv) the notion of uncertainty. The extensions
(i), (ii) and (iii) are introduced using a specilised Actor entity named ExtendedActor
and the extension (iv) is introduced as a specialised behavioural type named
StochasticBehaviour in the ESLMModel (see Fig. 3). The notion of “Time” helps
specify temporal behaviour that we represent using a specialised Behaviour named
TemporalBehaviour in ESLMModel.

ESL provides standard language constructs namely assignment, expression evalu-
ation, loop, recursion, message passing, etc., to express Deterministic Behaviour.
Stochastic Behaviour is expressed using ‘probably(p) x y’ construct that evaluates to
x in p% of cases and otherwise to y. ReactiveBehaviour reacts to an Event or a set of
Events, AutonomousBehaviour is typically triggered based on state Variables and/or
Time, and AdaptiveBehaviour has a conditional expression over State and Trace
Variables. The EmergentBehaviour, on the other hand, remains unspecified.

We propose a set of transformation rules to derive ESL specification from
CMModel. The OrgUnit and its specialisation, i.e., Organisation and Environment,
map onto ExtendedActor, interactions among OrgUnits map onto event specifications,
and OrgUnit Variables map onto Variables of ExtendedActor. Measure maps onto
Variables of ExtendedActors, Goal maps onto an expression over Variables of
ExtendedActors, and the behavioural descriptions of OrgUnit map onto the behavioural
specifications of ExtendedActors. The conceptual mapping from CMModel to

Table 2. Conceptual mapping from CMModel to ESLMModel.

CMModel ESLMModel CMModel ESLMModel

OrgUnit ExtendedActor Variable Variable
Data Variables Trace Actor variable
Goal Expression over actor variables Deterministic DeterministicBehaviour
Event Event Stochastic StochasticBehaviour
Measure Expression over actor variables Temporal TemporalBehaviour
Lever ESL specification Adaptive AdaptiveBehavioural

2 https://www.gitbook.com/book/tonyclark/esl/details.

102 S. Barat et al.

https://www.gitbook.com/book/tonyclark/esl/details

ESLMModel is illustrated in Table 2. Next section describes a method to construct
models using CMModel, transform the constructed model into ESL specification, and
perform what-if analysis in a systematic manner.

3.3 Method

We propose an integrated and iterative method to effective CDDM that comprises of
three essential activities: (i) construction of a simulatable model from available
information of an organisation, (ii) ascertain model validity, and (iii) simulate model
for what-if analyses leading to evidence-driven CDDM. The proposed method contains
six steps namely Define Decision Problem [S1], Conceptualisation of Organisation
Model [S2], Implement Simulatable Model [S3], Simulation [S4], Evaluation of Sim-
ulation Results [S5], and Recommendation [S6] as shown in Fig. 4. Step S1 formalises
the decision problem and defines the scope for what-if scenario playing by describing
the Goals, Measures and Levers of an Organisation. Step S2 conceptualises a purposive
model that represents a real system for decision problem defined in S1. Step S3
transforms the conceptual model into a simulatable model. Step S4 simulates the
scenario defined in step S1. Step S5 evaluates the simulation results with step S6
providing recommendations.

Conceptually the proposed method realises the modelling and validation method
proposed by Sargent in [21] (henceforth referred as M&V Method) and adopts
decision-making techniques recommended in management science [3]. From M&V
Method, we adopt the notion of three representations namely problem entity, con-
ceptual model and computerized model, and a two-step model construction process that
includes Conceptualisation and Implementation steps to transform a real-life problem
into valid analysis model as shown in Fig. 4. We also adopt the operational validity

Fig. 4. Overview of modelling and simulation method.

A Model Based Approach for Complex Dynamic Decision-Making 103

[21] described in M&V Method to ascertain model validity. From management science,
we adopt an iterative exploration of decision alternatives as recommended in [3] and
the concept of decision interrupts [35] to explore decision alternatives that emerges
while evaluating other decision alternatives.

In agreement with M&V Method, we consider the problem entity is the real
organisation, the conceptual model is a purpose specific conceptual model that is nec-
essary and sufficient to represent it for decision-making, and the computerised model is a
machine interpretable equivalent of the conceptual model, i.e., simulatable model. From
a method perspective, the Conceptualisation step constructs a conceptual model from
problem entity description (typically described in natural language), and Implementation
step transforms the conceptual model into a simulatable model so as to use model-based
simulation. The detailed activities of five method steps of Fig. 4 are illustrated below:

Conceptualise Organisation Model [S1]: A decision problem typically starts with a
high-level Goal or objective of an organisation. It should be possible to decompose a
high-level Goal into sub-Goals, sub-sub-Goals etc., to the desired level of granularity.
It should be possible to identify a set of variables that need to be observed in order to
determine whether the finest-level goal is met or not, i.e., Measures. It should be
possible to identify a set of course of actions or Levers that may influence the given set
of Measures. The method step Define decision problem defines the Goals, Measures
and Levers of an Organisation from problem entity description using three sub-steps
namely Goal Definition, Measure Identification and Lever Identification.

The Goal Definition sub-step uses a top-down approach to define goals and goal
decomposition structure. Measure Identification sub-step identifies Measures for all
leaf-level Goals of constructed goal model. We use i* specification to visualise the
goals of a decision problem. We represent Goals using the Soft Goal of i* notation,
Measure using i* Task of i* notation, and Goal-to-Measure relationships using
Task-Goal dependency relationship of i* notation [10].

The sub-step Identify Levers focuses on two activities: (i) identify a set of Levers
that may impact identified Measures, and (iii) formulate a table, termed as decision
table, by considering the identified Levers as rows and Measures as illustrated in Fig. 7
in Sect. 4.

Conceptualisation of Organisation Model [S2]: This step captures the Structure,
Behaviour, State and Trace of an organisation and overlays the Goals, Measure and
Levers identified in method step S1 using OrgUnit abstraction defined in CMModel (as
depicted in Fig. 2). Essentially this method step performs four activities namely
(i) Identify OrgUnits, (ii) Define OrgUnit, (iii) Define GM-L, and (iv) Specify Beha-
viour. Activity Identify OrgUnits identifies prospective OrgUnits such as organisational
units, sub-units, stakeholders, resources, and environment from problem entity.
Activity Define OrgUnit forms OrgUnits by specifying Variables to represent State and
Trace information, and the Events that help interacts with other OrgUnits. It also
identifies containment relationship to describe composition and decomposition rela-
tionships of identified OrgUnits. In general, the activity Identify OrgUnit starts with
organisation as an OrgUnit, and iterates over activity Identify OrgUnit and activity
Define OrgUnit by navigating the decomposition and/or composition relationships.

104 S. Barat et al.

Essentially, it uses a middle-out approach that combines top-down and bottom-up
design principles.

The activity Define GM-L identifies the Goals that an OrgUnit owns, the Measures
that it can produce, and the Levers that can be applied on it. The activity Specify
Behaviour captures the behavioural specification of identified OrgUnits.

Implement Simulation Model [S3]: This method step converts a Conceptual
Organisation model defined using CMModel into machine interpretable specification,
i.e., ESL specification. Essentially, S3 transforms all OrgUnits into ExtendedActors by
applying transformation rules defined in Table 2.

Simulation [S4]: We use ESL based simulation to analyse what-if scenario formulated
in method step S1. This step simulates the simulatable organisation model (with or
without Lever), observes Measures from a simulation run, and captures results in a row
of decision table formulated in method step S1.

Evaluation of Simulation Results [S5]: This step evaluates simulation results cap-
tured in decision table. Human expert interprets the simulation results triggering one of
the following possibilities: (i) initiate a Validation Loop that iterates method steps
S2-S3-S4-S5 in case simulation results of known scenario don’t match the expected
outcome (i.e., operation validity is not satisfied), (ii) explore next Lever of a decision
table by triggering an Evaluation Loop that iterates method steps S5-S4-S5, (iii) select
the best possible Lever once all levers are evaluated through simulation (i.e., S5 to S6
transition), (iv) identify a new Lever i.e., add a new entry in decision table and reiterate
the overall method using Decision Interrupt Loop described in Fig. 4.

Recommendation [S6]: This step recommends one or more Levers that can be
implemented in real organisation.

3.4 Validation

Our method uses a validation loop that iterates over method steps S5-S2-S3-S4-S5 and
compares experimental results with real or predicted data to ascertain model validity.
We consider operational graphics [21], i.e., graphical representation of Measures as a
basis for evaluation, and rely on human experts to certify the validity. For model
validation, we rely solely on operational validity through manual certification of
simulation results of known scenarios. Other validation techniques, such as data
validity or conceptual validity, while being effort and time intensive, provide no
additional certainty as discussed in [21]. We next illustrate the proposed method using
a real-life decision-making scenario.

4 Illustration

This section presents a problem entity from business process outsourcing (BPO) in-
dustry and illustrates the execution of proposed method along with their outcomes.

A Model Based Approach for Complex Dynamic Decision-Making 105

4.1 Problem Entity

In BPO, a class of organisations, termed as customers, outsource their business pro-
cesses to another set of organisations, which is termed as vendors. Customers outsource
their business process for a variety of reasons such as reducing Cost (C), increasing
Efficiency (E), bringing about a major transformation, i.e., Delight (D). The vendors
offer value-added services to their customers and earn revenues while servicing out-
sourced business processes. Considering the accruable business benefits of vendors, the
outsourced business processes are classified into three broad buckets namely Sunrise
(SR), Steady (ST) and Sunset (ST). The Transcript Entry process of Healthcare verticals
is one of the early adopters of BPO and has derived almost all potential benefits
accruable from outsourcing (known as Sunset). On the other hand, IT Infrastructure
Management process being a late adopter of BPO, has a large unrealized potential to be
tapped (known as Sunrise). And there are processes such as Help Desk, Account
Opening, Monthly Alerts etc., that fall somewhere in between the two extremes as
regards benefits accrued from BPO (known as Steady). Thus, the outsourced business
processes of the BPO industry can be described using a 3 � 3 matrix as depicted in
Fig. 5 [22].

The business-as-usual (BAU) operational process of a BPO is largely limited to a
set of interactions between customers and vendors. A customer publishes RFP (Request
For Proposal) with an intension to outsource a business process. Interested vendors bid
for RFP. Typically, factors such as Quadrant (i.e. ranking as per independent agency
such as analysts), FTE Count Range (i.e. Full Time Employees to be deployed on the

Fig. 5. Overview of business process outsourcing scenario [22].

106 S. Barat et al.

outsourced process), Billing Rate Range (i.e. per hour rate of FTE), Organisation Size
(the number of employee) and Track Record (i.e., familiarity with the processes being
outsourced), influence who wins the bid. The soft issues such as Market Influence (i.e.
perception of the market as regards delivery certainty with acceptable quality), the
rap-port with the vendor etc., also play a part in bid evaluation. In addition to these
known factors there could be some uncertainty in bid evaluation criteria (in other
words, bid evaluation criteria can’t be fully known a-priori).

It is common observation that BPO outsourced business process engagements come
up for renewal after few years (typically 3 to 5 years). A customer may renew the
contract with the existing vendor on modified terms (typically advantageous to the
customer) or may opt for rebidding. Factors influencing the renewal decision are
reduction offered in FTE Count, Billing Rate, number and degree of escalations, per-
ception that the external agent has as regards ability to meet the process engagement
requirements, inherence uncertainty, etc. Contracts that fail to get renewed become
candidates for later bidding. Figure 5 [22] shows an overview of BPO industry. The
interaction pattern between customer and vendor is depicted in Fig. 6 [22].

Given the above scope or a problem entity, the vendors mostly explore the
decision-making problems that include: Will continuation with the current strategy
keep “Me” viable ‘n’ years hence? What alternative strategies are available? How
effective will a given strategy be? By when will a given strategy start showing positive
impact? Etc.

Fig. 6. Interactions and behaviours [22].

A Model Based Approach for Complex Dynamic Decision-Making 107

In this paper, we consider a BPO vendor who would like be the leader in BPO
industry with respect to the revenue, market share, and realisation (where the term
realisation represents the revenue earned by each employee per hour). The next sub-
sections describe the execution of method steps depicted in Fig. 4 and their outcomes.

4.2 Define Decision Problem

The proposed method starts with a method step Define Decision Problem [S1] that
formulates goal models and a decision table. We consider, a vendor, termed as “WE”
vendor, aims to be the “Leader in BPO Industry”. The method step S1 decomposes
“Leader in BPO Industry” Goal of “WE” vendor into three sub-Goals namely “Increase
Revenue”, “Increase Number-of-Customer”, and “Improve Realisation”. It identifies
three Measures namely “Revenue”, “Number of Customers”, and “Realisation” to
assess three leaf-level Goals. The primary goal, goal decomposition structure and
associated Measures are depicted in Fig. 7(a).

The method step S1 also identifies possible Levers that may influence the Measures
and thus Goals. In this paper, we consider two Levers namely “Improve skillset of
existing employee” and “Introduce Robotic Process Automation (RPA)” as illustration.
Identified Levers and Measures are shown in a form of decision table in Fig. 7(b).

4.3 Conceptualisation of Organisational Model

Method step S2 iteratively forms Conceptual Organisation Model from problem entity
using four activities namely Identify OrgUnit, Define OrgUnit, Define GM-L and Define
Behaviour. The activity Identify OrgUnit initially identifies three key OrgUnits namely
“Customer”, “Vendor”, and “Process”. The next activity Define OrgUnit captures

Fig. 7. Output of method step define decision problem.

108 S. Barat et al.

structural relationships, Variables, and Event definitions of three OrgUnits. The Vari-
able, IncomingEvent and OutgoingEvent of Vendor and Customer OrgUnits are illus-
trated in Fig. 8(b). Essentially the Vendors OrgUnit has a set of Variables to represent
portfolio baskets (i.e., flattened out 3 � 3 matrix), the characteristics Variables such as
Quadrant, Min Billing Rate, Max Billing Rate, FTE Productivity, Proposed FTE
Reduction (during process engagement renewal time), Proposed Billing Rate Reduction
(during project renewal time), Influencer Relationship, Delivery Excellence of the
vendor OrgUnit. The OrgUnit also captures the state Variables that indicate Measure of
Vendor OrgUnit such as Revenue, Number-Of-Customer, and Realisation.

The outcome of the iterative loop involving two activities namely Identify OrgUnit
and Define OrgUnit is depicted using a class diagram in Fig. 8(a). As shown in the
figure, several new OrgUnits are identified and elaborated over iterations. The “Pro-
cess” OrgUnit is specialised into nine OrgUnits to represent business processes

Fig. 8. Conceptual organisation model of BPO industry.

A Model Based Approach for Complex Dynamic Decision-Making 109

described using a 3 � 3 matrix of Fig. 5. The Vendor is specialised into two entities
namely “WE” vendor and “Competitor” vendor. The “WE” vendor represents a vendor
under consideration, and the “Competitor” vendor represents the competitor vendors of
“WE” vendor. There could be several competitors who adopt a range of strategies to
compete in BPO industry. We consider two types of competitors namely “Competitor
1” and “Competitor 2” as shown in Fig. 8(a). The other relationships such as Customer
“contains” various kinds of Processes, Vendor “outsources” Processes, Vendor “con-
tains” a set of Processes and Vendor “services” Processes are defined in this method
step. The interactions patterns between Customer and Vendors are also become explicit
in this method step. The relationships and interaction patterns between OrgUnits are
illustrated in Fig. 8(a).

The next activity Define GM-L defines the Goal and Measures of identified
OrgUnits, and map them with the Goals and Measures of problem entity that are
identified in method step S1. In this example, the “WE” vendor owns the goals,
measures and leavers defined in S1 method step. The generic Goals of Vendor and
Customer are depicted in Fig. 8(b).

The remaining activity of the method step Conceptualisation of Organisation Model
[S2] is Define Behaviour. This activity iterates over identified OrgUnits to define their
behaviours. The typical Behaviours of Vendor and Customer are depicted in the form
of state-machines in Fig. 8(b).

Fig. 9. Realisation of BPO scenario using ESLMModel [22].

110 S. Barat et al.

4.4 Implement Simulatable Model

Method step Implement Simulatable Model (manually) translates the information
captured in method step S1 and method step S2 that collectively describe the Goal,
Measure, Lever, Structure, Behaviour, State and Traces of OrgUnits into ESL speci-
fication by applying the transformation rules defined in Table 2.

A representative ESLMModel that contains two key ExtendedActors namely
Customer and Vendor is shown in Fig. 9 [22]. The Customer ExtendedActor comprises
nine variables where each variables represents a bag of outsourced process of specific
type from the business process classification i.e., {SR, ST, SS} X {C, E, D}. The
vendor ExtendedActor comprises Variables of Vendor OrgUnit that include State
variables, Trace variables and the variables that represent Measures (as shown in
Fig. 9). The Customer and Vendor ExtendedActor also implement the state-machines
depicted in Fig. 8(b).

The table in Fig. 9 shows the initial characteristics of “WE” ExtendedActor. We
make these Variables configurable to attenuate their values, thus these Variables also
act as Lever specification in this example. As shown in the figure, a Vendor is equipped
with a set of negotiation levers namely, the range of Billing Rate, range of FTE
Productivity (percent reduction possible in number of full time employees), range of
FTE Reduction (reduction possible during renewal of a contract), range of Billing Rate
Reduction (reduction possible in billing rate during renewal of a contract), Influence
Relation and Delivery Excellence. The Influence Relation is a qualitative characteristic
that is quantified using four weighted labels namely ‘Excellent’, ‘Good’, ‘Normal’ and
‘Not Good’. Value of Delivery Excellence attribute is a probability distribution. For
instance, “WE” ExtendedActor is confident of delivering ‘Excellent’ quality on 60% of
Cost kind of BPO projects won. The values for ‘Good’, ‘Normal’ and ‘Below Normal’
quality for this kind of BPO projects are 30%, 10% and 0% respectively. Therefore,
one can model different kinds of vendors by setting appropriate values to the initial
setting. The “Competitor” ExtendedActors are also modelled on the same lines as
“WE” ExtendedActor.

The Customer ExtendedActor raises RFP events for outsourcing project. Each RFP
event is characterized by the kind of process being outsourced (i.e., SR or ST or SS),
the objective for outsourcing (i.e., C or E or D), size of the process in terms of FTE
count, and the desired billing rate. Interested vendors respond to the RFP event by
picking suitable values from their characteristics at random. Bid evaluation function is
a weighted aggregate of the various elements of RFP response and a random value to
capture effect of inherent uncertainty. The vendor with the best evaluated value wins
the outsourcing process which gets executed as defined by the characteristics of the
particular vendor. Essentially, an outsourcing process ExtendedActor moves from
customer ExtendedActor to a vendor ExtendedActor (i.e., from customer basket to
vendor portfolio basket) as shown in Fig. 9. The existence of an outsourcing process in
a vendor portfolio impacts vendor’s State variable (and thus Measures) as outsourcing
process contributes the Revenue, the customer count and Realisation. It also impacts
the track record and market influences over the time.

The decision to renew existing contract is specified on similar lines but with a
different set of characteristic variables influencing the decision. Essentially the

A Model Based Approach for Complex Dynamic Decision-Making 111

autonomous outsourcing process ExtendedActor raises Renew event after 3 to 5 “Year”
timeframe. Here too, the evaluation is cognizance of incomplete and uncertain
knowledge renewability criteria.

4.5 Simulation

We use ESL simulator to simulate the business-as-usual operations of the “WE” vendor
and its competitors. The simulation progresses with simulation ticks where each tick
represents a “Month”. The outcome of simulation runs depicting possible states of
“WE” vendor and its competitors at “Now”, after 5 “Years” and after 10 “Years” is
shown in Fig. 10(a). As can be seen, the initial revenue of “WE” (represented using
shades of ‘blue’ ellipses) is 438.98 MUSD from 90 customers with a realization of
nearly 15.5 USD per hour per FTE. Corresponding numbers for competitor 1 and
competitor 2 respectively are <319.97, 78, 13.33> (depicted using shades of ‘violet’
ellipses) and <352.32, 79, 15.1> (depicted using shades of brown ellipses). In short, at
present “WE” vendor is doing much better than competition.

Fig. 10. Simulation results when “WE” vendor continues as-is strategy. (Color figure online)

112 S. Barat et al.

The graph, also shows the goals of “WE” vendor that aim to deliver <750, 200, 17>
after 5 “Year” and <1000, 290, 18> after 10 “Year” (depicted using green ellipses). As
can be seen, by continuing to operate the same way the “WE” vendor will be delivering
<587.58, 160, 13.5> after 5 “Years” and <857.51, 215, 14> after 10 “Year” (as directed
by red line in Fig. 10(a)) thus missing both the targets by a considerable margin.

More importantly, competitor 2 will be overtaking “WE” vendor after 5 “Years”
and both the competitors will be significantly ahead of “WE” vendor after 10 “Years”.

Clearly, “WE” vendor cannot afford to continue with its current way of operation.
A detailed analysis on portfolio of Sunrise, Steady and Sunset kinds of business pro-
cesses, as shown in Fig. 10(b), indicates significant percentage of current revenue of
“WE” vendor is from sunset kinds of outsourced processes (shown in red colour in
Fig. 10(b)). Over time this market is going to shrink considerably as compare to the
steady (depicted using yellow colour) as well as the sunrise (depicted using yellow
green) business processes. Thus “WE” vendor needs to bring about a change in its
characteristics so as to be able to win more bids in this demand situation.

4.6 Validation, Evaluation of Simulation Results and Recommendation

As part of model validation, we simulated the BPO specification by considering a
known set of Vendors and Customers with fixed number of outsourced Processes.
Essentially we initialised Vendors and Customers to known states, simulated the
specification for 2 “Years” and correlated observed simulation results with existing
operational data to ascertain the validity of the constructed models.

After ensuring the operation validity of BPO specification, we explored two Levers
as described in Fig. 5 (b) and captured observed Measure values in the decision table as
depicted in Table 3. Figure 11 and the decision table depicted in Table 3 show the
comparative analysis of two Levers. With the Lever 1, the “WE” vendor is able to beat
revenue target while failing to meet the number of customers and realization targets,
whereas the ‘WE’ vendor is able to beat both revenue and number of customer targets
while failing to meet the realization target narrowly with Lever 2. This clearly shows
that the Lever 2 works well for “WE” vendor in the competitive environment described
in this section.

Table 3. Decision Table.

Lever Revenue (MUSD) Number of
customers

Realisation

After 5
Years

After 10
Years

After 5
Years

After 10
Years

After 5
Years

After 10
Years

No lever 587.58 857.51 160 215 13.55 14
Improve existing
resource

820.63 1165.80 195 287 15.2 15.4

Robotic Process
Automation (RPA)

899.3 1309.87 201 301 15.3 15.7

A Model Based Approach for Complex Dynamic Decision-Making 113

5 Evaluation

For the kind of decision-making problem illustrated in this paper, industry practice
relies extensively on spreadsheets, documents and diagrams. Such an approach typi-
cally represents the influence of Levers onto Measures in terms of static algebraic

Fig. 11. Comparative study of Lever 1 and Lever 2.

Table 4. Evaluation summary.

Requirement EM
specification

Actor
Lang.

Proposed
approach

Enabling concepts in
CMModel

Why
p

⊥
p

Goal
What

p p p
OrgUnit

How
p p p

Event and behaviour
Who

p
⊥

p
OrgUnit

Where
p

⊥ ⊥ OrgUnit
When

p
⊥ ⊥ Time event

Modular
p p p

OrgUni
Compositional ⊥

p p
Composition
relationship

Reactive ⊥
p p

IncomingEvent,
OutgoingEvent

Autonomous � p p
InternalEvent

Intentional
p p p

Goal
Adaptive ⊥

p p
Adaptive behaviour

Uncertainty � ⊥
p

Stochastic behaviour
Temporal ⊥ � p

Temporal behaviour
Measure Spec ⊥ ⊥

p
Measure

Lever Spec ⊥ ⊥
p

Lever
Top-down/Bottom-up Top-down Bottom-up Hybrid Composition

relationship, shared
state variable

Legends:
p

: Supports adequately, ⊥ can be specified with difficulties, � : not supported

114 S. Barat et al.

equations. However, value of a Lever and influence of a Lever onto a set of Measures
can vary over time. This behaviour cannot be captured using spreadsheets. Neither
there is any support for encoding stochastic behaviour.

The proposed approach enables modelling of a system of systems using a set of
hierarchically composable OrgUnits each listening/responding/raising events of inter-
est. Each individual system or OrgUnit encapsulates state (i.e., a set of State variables),
trace (i.e., events it has responded to and raised till now) and behaviour (i.e., encoding
of individual reactions). They interact with each other by sending messages resulting
into emergent behaviour (i.e., the behaviour of system of system emerges from inter-
actions of OrgUnits or systems). The proposed approach further helps in addressing the
scalability issue by reducing the numerous message passing between OrgUnits through
shared variables. Therefore, we claim the proposed approach provides primitives for
creating models that closely mimic reality.

An evaluation of two prominent decision-making aids, i.e., EM based approach and
pure actor language based approach, along with presented approach is summarised in
Table 4. As shown in the table, an EM based approach and an actor language based
approach are complementary in nature. The former one supports aspect (i.e., why, what,
how, etc.) specification and a top-down simulation approach, whereas actor language
based approach is more effective for representing socio-technical characteristics and
bottom-up simulation approach. But, it is not convenient for aspect specification. The
proposed approach bridges the gaps between two classes of specifications by sup-
porting comprehensive aspect specification and socio-technical characteristics as
shown in Table 4. Moreover the explicit support for uncertainty, temporal behaviour,
and the bottom-up and top-down combination make proposed approach suitable for
CDDM.

6 Conclusion

Effective decision-making is a challenge that all modern organisations face. It requires
deep understanding of aspects such as organisational goals, structure, operational
processes. Large size, socio-technical characteristics, and increasing business dynamics
make the decision-making a challenging task for the decision makers.

This paper argued that the efficacy of a complex dynamic decision-making
(CDDM) chiefly depends on the three factors: (i) the availability of necessary and
sufficient information in a machine-interpretable form, (ii) suitable machineries to
process available information, and (iii) a method to capture information in a desired
form and perform what-if analyses in a systematic manner. The paper presented an
analysis of existing techniques and technologies to support a claim that the current state
of the art decision making aids are inadequate for an affective CDDM and highlighted
the gaps. Key aspects of this analysis point to the lacunae and inadequacy of support
for representing necessary aspects of an organisation in a systematic manner,
unavailability of appropriate concepts to represent the decision-making constructs, such
as Goal, Measure, and Lever, and inability to handle inherent uncertainty. Importantly,
the analysis also highlights the nonexistence of a suitable method supporting model
construction, model validation and perform what-if analysis for effective CDDM.

A Model Based Approach for Complex Dynamic Decision-Making 115

To address these gaps, this paper contributed an approach that includes a
meta-model to represent necessary and sufficient information in the form of a con-
ceptual model (i.e., CMModel), a meta-model to represent information in a simulatable
form (i.e., ESLMModel) and a method. The meta-model CMModel mitigates the
identified specification gaps between the available technological capabilities and needs
for CDDM (as highlighted in Table 1). The meta-model ESLMModel realises
CMModel while addressing the analyses needs of CDDM. These models are supported
and used by the proposed method that uses a top-down approach for defining goals,
measure and levers (the GM-L structure), a middle-out approach for defining structural
aspect of an organisation, and a bottom-up approach for behavioural specification,
addresses methodical needs. The method, principally, combines a modelling and val-
idation method defined by Sargent [21] and a management sciences view for
decision-making advocated by Daft [3]. The method is evaluated through an industry
scale case study from the BPO domain.

As part of future research, we intend to validate the proposed approach using real
business scenarios as well as proposing further extensions to CMModel for introducing
game theoretic approaches in simulations for CDDM. Other avenues of exploration
include the use of constrained natural language to describe a problem entity so that a
tool chain can be defined to automate production of the problem entity, conceptual
model and the simulatable model. We expect the transformation chain to be human
guided in the first instance.

References

1. Shapira, Z.: Organizational Decision Making. Cambridge University Press, Cambridge
(2002)

2. McDermott, T., Rouse, W., Goodman, S., Loper, M.: Multi-level modeling of complex
socio-technical systems. Procedia Comput. Sci. 16, 1132–1141 (2013)

3. Daft, R.: Organization Theory and Design. Nelson Education, Toronto (2012)
4. Conrath, D.W.: Organizational decision making behavior under varying conditions of

uncertainty. Manag. Sci. 13(8), B-487 (1967)
5. O’Connor, T., Wong, H.Y.: Emergent properties (2002)
6. Locke, E.: Handbook of Principles of Organizational Behavior: Indispensable Knowledge

for Evidence-Based Management. Wiley, Hoboken (2011)
7. Iacob, M., Jonkers, D.H., Lankhorst, M., Proper, E., Quartel, D.D.: Archimate 2.0

Specification, Van Haren Publishing, Zaltbommel (2012)
8. Bernus, P., Mertins, K., Schmidt, G.: Handbook on architectures of information systems,

ISBN 3-540-64453-9 (2006)
9. Frank, U.: Multi-perspective enterprise modeling (memo) conceptual framework and

modeling languages. In: HICSS. IEEE (2002)
10. Yu, E., Strohmaier, M., Deng, X.: Exploring intentional modeling and analysis for enterprise

architecture. In: EDOCW (2006)
11. OMG Document, Business Process Model and Notation (2011). http://www.omg.org/spec/

BPMN/2.0/. Accessed 03 Jan 2011
12. Meadows, D.H.: Thinking in Systems: A Primer. Chelsea Green Publishing, White River

Junction (2008)

116 S. Barat et al.

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

13. Barat, S., Kulkarni, V., Clark, T., Barn, B.: Enterprise modeling as a decision making aid: a
systematic mapping study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016.
LNBIP, vol. 267, pp. 289–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1_20

14. Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., Krogstie, J., Leue, A., Matthes, F., Opdahl,
A.L., Schwabe, G., Uludag, Ö., Winter, R.: Enterprise modelling for the masses – from elitist
discipline to common practice. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM
2016. LNBIP, vol. 267, pp. 225–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48393-1_16

15. Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for Java. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70592-5_6

16. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.
Theor. Comput. Sci. 410(2), 202–220 (2009)

17. Allen, J.: Effective Akka. O’Reilly Media Inc., Sebastopol (2013)
18. Agha, G.A.: Actors: A model of concurrent computation in distributed systems. No. AI-TR-

844. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1985)
19. Zachman, J., et al.: A framework for information systems architecture. IBM Syst. J. 26(3),

276–292 (1987)
20. Rumsfeld, D.: Known and Unknown: A Memoir. Penguin, London (2011)
21. Sargent, R.G.: Verification and validation of simulation models. In: Winter Simulation,

pp. 130–143, December 2005
22. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A model based realisation of actor model to

conceptualise an aid for complex dynamic decision-making. In: MODELSWARD, pp. 605–
616 (2017)

23. Thomas, M., McGarry, F.: Top-down vs. bottom-up process improvement. IEEE Softw. 11
(4), 12–13 (1994)

24. Beckermann, A., Flohr, H., Kim, J. (eds.): Emergence or Reduction?: Essays on the
Prospects of Nonreductive Physicalism. Walter de Gruyter, Berlin (1992)

25. Camus, B., Bourjot, C., Chevrier, V.: Combining DEVS with multi-agent concepts to design
and simulate multi-models of complex systems. In: Proceedings of the Symposium on
Theory of Modeling & Simulation, pp. 85–90 (2015)

26. Siebert, J., Ciarletta, L., Chevrier, V.: Agents and artefacts for multiple models co-evolution:
building complex system simulation as a set of interacting models. In: 9th International
Conference on Autonomous Agents and Multiagent Systems, pp. 509–516 (2010)

27. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with
AnyLogic 6. AnyLogic North America, Chicago (2013)

28. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4(3),
151–162 (2010)

29. Rolland, C., Selmin, N., Georges, G.: Enterprise knowledge development: the process view.
Inf. Manag. 36(3), 165–184 (1999)

30. Sandkuhl, K., et al.: Enterprise Modeling. Tackling Business Challenges with the 4EM
Method, vol. 309. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43725-4

31. van Langevelde, I., Philipsen, A., Treur, J.: Formal specification of compositional
architectures. In: 10th European Conference on Artificial Intelligence (1992)

32. Bock, A., Frank, U., Bergmann, A., Strecker, S.: Towards support for strategic decision
processes using enterprise models: a critical reconstruction of strategy analysis tools. In:
Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 41–56.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_4

A Model Based Approach for Complex Dynamic Decision-Making 117

http://dx.doi.org/10.1007/978-3-319-48393-1_20
http://dx.doi.org/10.1007/978-3-319-48393-1_20
http://dx.doi.org/10.1007/978-3-319-48393-1_16
http://dx.doi.org/10.1007/978-3-319-48393-1_16
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-662-43725-4
http://dx.doi.org/10.1007/978-3-319-48393-1_4

33. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for systems of
BDI agents. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 56–71. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031846

34. Hewitt, C.: Actor model of computation: scalable robust information systems. arXiv:1008.
1459

35. Langley, A., et al.: Opening up decision making: The view from the black stool. Organ. Sci.
6(3), 260–279 (1995)

36. Kulkarni, V., Barat, S., Clark, T., Barn, B.: Toward overcoming accidental complexity in
organisational decision-making. In: Model Driven Engineering Languages and Systems
(MODELS), pp. 368–377 (2015)

37. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A simulation-based aid for organisational
decision-making. In: ICSOFT-EA 2016: 11th International Conference on Software
Engineering and Applications (2016)

118 S. Barat et al.

http://dx.doi.org/10.1007/BFb0031846
http://arxiv.org/abs/1008.1459
http://arxiv.org/abs/1008.1459

Deterministic High-Level Executable
Models Allowing Efficient Runtime

Verification

Vladimir Estivill-Castro(B) and René Hexel

School of Information and Communication Technology,
Griffith University, Nathan, QLD 4111, Australia
{v.estivill-castro,r.hexel}@griffith.edu.au

http://vladestivill-castro.net, http://www.ict.griffith.edu.au/~rhexel/

Abstract. We present an architecture that enables run-time verification
with executable models of behaviour. Our uniform modelling paradigm
is logic-labelled finite-state machines (LLFSMs). Behaviours are con-
structed by parameterizable, loadable, and suspendable LLFSMs exe-
cuted in predictable sequential schedules, but they are also verified at
run-time by LLFSMs as well. Our architecture enables runtime verifi-
cation (to monitor the quality of software during execution) as well as
set up, tear down, and enforcement of quality behaviour during run-
time. The LLFSMs models are executable and efficient because they are
compiled (not interpreted). The LLFSMs can be derived from require-
ment engineering approaches such as behaviour trees, and also validated
using test-driven development. However, in situations where software
evolves incorporating elements of adaptive systems or machine learning,
the software in execution may have never existed during development.
We demonstrate the features of the architecture with illustrative case
studies from robotics and embedded systems.

Keywords: Run-time verification
Logic-labeled finite state machines · Model-driven software development

1 Introduction

Software quality is critical to ensuring systems will not cause harm to humans
(nor reduce quality of life), or economic loss [10]. The Internet-of-Things (IoT)
demands more reliable software systems [40]. In early 2016, Australia Post com-
pleted its first trials of drone-delivered parcels, and although this technology
will not be everyday practice for some time into the future, many embedded and
robotic systems are already revolutionising transport and communication indus-
tries. Gartner estimates there are 8.4 billion smart devices in the IoT now across
manufacturing, utilities, and transportation. However, insufficient software qual-
ity can cause severe malfunction of smart, embedded systems [53,56,58].

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 119–144, 2018.
https://doi.org/10.1007/978-3-319-94764-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_6&domain=pdf

120 V. Estivill-Castro and R. Hexel

The opportunities for improvement in software quality are enormous: “risks
are becoming salient as our society comes to rely on autonomous or semi-
autonomous computer systems to make high-stakes decisions” [15]. The first and
immediate category to deal with are AI software systems [15]: automated vehi-
cles, home robots, and intelligent cloud services must perform correctly, even
in the presence of surprising or confusing input. Recommendations emerge for
researchers to focus on “self-monitoring architectures in which a meta-level pro-
cess continually observes the actions of the system, checks that its behaviour is
consistent with the core intentions of the designer, and intervenes or alerts if
problems are identified” [15].

Experts suggest that the software models for the behaviour of the IoT and
smart things are likely to be based on state machines [10]. These allow speci-
fying behaviour at a higher level of abstraction than traditional programming
languages, making software development faster. Use-case traces naturally map
to paths through states and transitions. Behavior Engineering [17], a form of
requirements engineering, creates these traces and then integrates them into
Behavior Trees, from which finite-state machines, describing the behaviour of
components, can readily be synthesised.

We will show how to use logic-labelled finite-state machines (LLFSMs)
to model mechanisms that can monitor the software built using the model-
driven development (MDSD) paradigm that LLFSMs offer. The precise seman-
tics of LLFSMs makes them overcome some of the criticisms that MDSD has
received [49] while enhancing its advantages. LLFSMs have been proven very
effective for describing software behaviour [7] and for performing model-checking
and formal verification, both in the value and the time domain [26]. LLFSMs
offer a model of controlled concurrency that scales much better than comparable
event-driven modelling approaches (such as UML-state charts, Behavior Trees,
and teleo-reactive systems). Consequently, changing, improving, and maintaining
behaviours of embedded systems and robots using LLFSMs is more cost-effective.
Modelling at this high level means that the behaviour is closer to the original
set of human-language requirements and therefore easier to understand. In the
systems engineering and robotics communities, state-machines are ubiquitous.
MDSD leads to more uniform quality; the LLFSM compiler produces efficient
executables as it compiles to general, uniform code that minimises overhead.
Because of the use of visual models of LLFSMs, the resulting behaviours are
more transparent, and the gap between business analysts, requirement engineers,
and software developers is reduced. Moreover, to scale to larger systems, LLF-
SMs have the capacity to incorporate Test-Driven-Development (TDD) methods
and derive test suites from use-cases, incorporating such tests as LLFSMs them-
selves [28]. Such TDD can be managed by Continuous Integration Servers [27].

Runtime verification focusses on the design of formal languages for the spec-
ification of properties that must hold during runtime [18]. LLFSMs offer the
architectural elements for runtime verification [23]. In this paper, we take mat-
ters one step further and will create software systems that can monitor the qual-
ity of other software systems as they execute, set-up, tear-down, and enforce

Deterministic High-Level Executable Models 121

behaviour quality on the fly. We demonstrate the progress with concrete case
studies: a network of traffic lights, a robotic vehicle and a legged robot.

We use the fact that LLFSMs are executable models analogous to state
charts, but with transitions labelled by logic predicates. LLFSMs represent deter-
ministic, executable models that enable formal specifications of requirements,
including observable behaviour. We generate agents that can observe and mon-
itor behaviour. This step enables agent technology capable of identifying unde-
sired behaviour, raising warnings, and acting to prevent software malfunction.
We use TDD and MDSD tools for the automatic construction of runtime moni-
toring agents that execute tests, monitor behaviour, and revise software models
as they execute. Our monitoring LLFSMs raise the level by which the software
is aware of its operational state, since the monitoring agents would be able to
report on the behaviour of their underlying software components.

The rest of this paper is organised as follows. Section 2 discusses the three
architectural elements than enable our approach. The first is the sequential
scheduling of arrangements of LLFSMs that are not event-driven, but label tran-
sitions with Boolean expressions instead. The second is the capability to commu-
nicate between LLFSMs with a data-centric, in-memory middleware. The third
element is the use of control/status messages, different from a publish/subscriber
pattern and following a writers/readers pattern. Section 3 illustrates these archi-
tectural elements with a concrete example. This example will be used in Sect. 4
to describe our approach to runtime verification. While the first example [25]
is a simple embedded system, Sect. 5 shows what can be achieved with robotic
systems. Section 6 describes how to automate the generation of monitoring LLF-
SMs, and Sect. 7 discusses the safety and security implications by contrasting
with ROSRV [35]. We benchmark our proposal here with the state of the art from
literature in Sect. 8. In Sect. 9, we summarise and conclude the paper.

2 Architectural Elements

We base our architecture on executable behaviour models, represented by finite-
state machines. Importantly, there are three crucial elements in this architecture.

First, transitions are labelled by Boolean expressions only (and not events),
hence the name logic-labelled finite-state machine (LLFSM). LLFSMs are Com-
municating Extended Finite State Machines (CEFSMs) without events [43]. Sig-
nificantly, the semantics is therefore not that of a software component waiting
for an event triggering the transition to a new state. Instead, the components
form a single thread of LLFSMs under a predefined schedule. The machine that
executes (has the token) evaluates the sequence of transitions associated with its
current state. This evaluation could potentially be quite sophisticated and com-
plex (involving planning and/or reasoning), making LLFSMs, not plain, reac-
tive architectures, but to also blend into deliberative systems [19,25]. Control
remains with one and only one component, resembling a deterministic polling
system (unlike an interrupt handler). If an expression labelling a transition eval-
uates to true, the transition fires, making its target state the current state of

122 V. Estivill-Castro and R. Hexel

the LLFSM. As with ubiquitous models of state machines, states have OnEn-
try, OnExit, and Internal sections. Actions (code) in the OnEntry section
is executed only after a state change. The OnExit section is executed after a
transition fires, while the Internal section is executed only if all transitions
have evaluated to false. After either, it becomes the next machine’s turn in the
arrangement. LLFSMs have a series of mechanisms to handle composition, and
to be suspended, resumed or restarted. In addition to interpreters for Simple C1

and Java, we have efficient LLFSM compilers for C/C++ and Swift under POSIX
systems such as Linux or macOS, for microcontrollers, and ROS. LLFSMs are
akin to UML state charts where transitions are labelled only by guards.

The second crucial element is the communication middleware between LLF-
SMs. Variables may be valid for the whole LLFSM, but states, and even each
section (OnEntry, OnExit, and Internal), can have their own local vari-
ables, not shared with any other scope. However, beyond one LLFSM, variables
reside in an object-oriented whiteboard, implemented in shared memory [24].
The whiteboard can be seen as a data-oriented broker, decoupling information
readers and writers. However, as opposed to most robotic middlewares, where the
paradigm follows a Push approach, we use a Pull approach [22]. With the LLFSM
execution semantics, our gusimplewhiteboard implementation [24] offers fast,
lock-free, atomic reader/writer semantics for multiple readers and even multiple
writers. This OO implementation has proven superior in speed and reliability to
other middlewares such as ROS’ system [24,37].

The third aspect that provides a simpler, clearer semantics, while retaining
modelling power and Turing-complete expressivity, is data-centric communica-
tion between components utilising control and status messages. Thus, the white-
board implements a blackboard control architecture [32]. Control/status messages
are an alternative to the scenarios akin to the rendezvous model [34,50] in the
message passing world, or a synchronous remote procedure call (RPC). By con-
trast, control/status messages follow the readers/writers paradigm as opposed
to producer/consumer or publisher/subscriber. Typically a single class defini-
tion is assigned two message slots, Control for control data, and Status for
responses (e.g., from a sensor). Reader components such as actuators and con-
trollers use the Pull paradigm to query their corresponding messages. This decou-
pling enables components with long or unbounded run time, such as AI planning
and reasoning, to be incorporated without interfering with a deterministic, low-
latency control architecture provided by LLFSMs [25].

3 Illustration of Architectural Elements

We present the principles of our new software architecture with a classical exam-
ple [44] of a system that controls traffic lights on an intersection between roads
going North-South (NS) and East-West (EW). Requirements evolve from an
initial version with no sensors, to a more advanced version with sensors in the
EW-direction that, in the absence of a car, enable NS-priority (keeping the traffic
1 Simple C is a subset of C used in some examples of antlr [48].

Deterministic High-Level Executable Models 123

(a) North-South (NS) controlling LLFSM. (b) East-West (EW) controlling LLFSM.

Fig. 1. Two LLFSMs for traffic lights at an intersection [23, Fig. 1]. Each machine
represents a set of traffic lights for a particular direction (NS or EW). There is an
initial SET UP state, followed by three states representing the colour of the lights.

lights green in the NS-direction). The declarative requirements demonstrate the
integration of reasoning and logic-programming for a reactive system [25]. The
most crucial requirement, of course, is that the lights are never simultaneously
green in both directions.

124 V. Estivill-Castro and R. Hexel

The complete system model consists of three LLFSMs in a single arrange-
ment:2 the Timer LLFSM and two controller LLFSMs. These two controller LLF-
SMs appear in Fig. 1 on the next page. These machines are part of our later
example for run-time verification and are the two traffic-light behaviours for an
intersection of roads going East-West and North-South. The first thing to notice
is that analogous to OMT [51] and UML, these are executable models made of
states and transitions. An arrangement of one or more LLFSMs constitutes a
single, sequential program. That is, they have the semantics of a single thread.
The token of execution rotates, in round-robin fashion, between the LLFSMs in
the arrangement. States have three sections, and when the token of execution
arrives to an LLFSM the corresponding machine resumes execution. It verifies it
has not been suspended, and whether it has executed a transition from another
state the last time it was its turn. If the current state differs from the previ-
ous one, the OnEntry section will be executed, otherwise it is skipped. This
is followed by evaluating, in sequence, the guard for each transition, and if one
becomes true, the execution of the OnExit completes the turn for this LLFSM.
If all guards are false, the turn completes by executing the Internal section.
Note that this sequential semantics is due to the fact that labels for the transi-
tions are not sets of events but a sequence of Boolean expressions. Machines are
compiled into loadable libraries of efficient, executable code.

Boolean expressions such as after(1) are analogous to the predicates that
were used in augmented finite-state machines (AFSM) of the subsumption archi-
tecture. In fact, the LISP language for the subsumption architecture [9] is a sub-
set of LLFSMs. Similarly, teleo-reactive programs [46] label all transitions with
Boolean expressions. Consider the code in the OnEntry section of the state
RED ON NS.

SwitchSubsumptionTrafficLights aConfiguration = wb handler.get();

aConfiguration.set theConfigurations(LIGHT NS RED,slot);

wb handler.set(aConfiguration);

shallGoGreenNS = red EW status t;

and also the Internal section

shallGoGreenNS = red EW status t;

The statement in the Internal section is also the last statement of the OnEn-
try section and illustrates the use of a status message. The Boolean variable
shallGoGreenNS is updated by retrieving a status message. The writer of this
message is a compiled Prolog program that evaluates whether the conditions to
move the North-South traffic light to green have been meet [25]. Thus, if the cur-
rent state is RED ON NS, the machine will evaluate the variable shallGoGreenNS
and, if false, not carry out the transition. But before relinquishing the token of
execution, the code in its Internal section gets run, updating the transition-
labelling variable with the current advice from the Prolog program. This shows
that the models execute the reactive actions of moving to another state in their

2 A GUI facade with avatars for effector and sensor hardware appears in the simulation
at youtu.be/HFm6fbZ6lkg.

https://youtu.be/HFm6fbZ6lkg

Deterministic High-Level Executable Models 125

own time, analogous to a time-triggered approach (and definitely distinctive from
the event-driven approach of UML state charts).

In our middleware, the data structures used to communicate between LLF-
SMs (and other processes or modules, such as Prolog programs) are essentially
any C++ object with a standard C/C++ footprint in memory. This communication
middleware is illustrated in this fragment of code. The statement

SwitchSubsumptionTrafficLights aConfiguration = wb handler.get();

uses a previously declared handler to the middleware to retrieve the instance
of SwitchSubsumptionTrafficLights into the object aConfiguration. The
object-oriented nature of this middleware follows a data-centric whiteboard
paradigm, and thus, all methods of the class SwitchSubsumptionTrafficLights
are available. This is what happens with

aConfiguration.set theConfigurations(LIGHT NS RED,slot);

Here, the corresponding slot for this LLFSM is updated in the data structure that
the switch will use to relay commands for the traffic lights. The next statement
below posts this updated data structure back to the whiteboard without any
need for concurrency synchronisation as the current LLFSMs in the arrangement
knows no other LLFSMs is accessing this object:

wb handler.set(aConfiguration);

In summary, LLFSMs are models compiled into loadable executables, not
interpreted. They have been compared to artefacts and modelling languages such
as Behavior Trees [17], Event-B [1], Teleo-reactive programs [46], Executable
UML [45], or SysML (UML tailored for systems engineering). For formal verifica-
tion and requirements engineering, they compare favourably with Petri Nets [7]
and Timed Automata [27,28]. Software construction with LLFSMs can emulate
architectures based on embedded and reactive control as well as behaviour-based
control, while adding feasible, formal verification [22]. In this paper, we take these
elements further by enabling an architecture for runtime verification.

4 Verification and Reconfiguration

Each controller LLFSM (refer to Fig. 1) is in charge of a traffic direction and thus,
minimally, each is in charge of a set of three lights (a read, green, and amber light
each). Two versions of a declarative Prolog program (youtu.be/HFm6fbZ6lkg)
specify when to switch lights. The Timer machine can be signalled to reset the
time value. It regularly posts the time elapsed, and whether that time is greater
than 5 s, or greater than 30 s.3 The LLFSM for the EW-set of lights (Fig. 1(b))
controls the green, amber, and red light in the EW-direction, cycling through
three states such that only one light is on in each state. Thus, in the state
On RED EW, in the EW-direction, only the red light is on. Symmetrically, the
second controller LLFSM handles the NS-direction (Fig. 1(a)), signalling red,
3 Diagram for the Timer is 40 s into the video (youtu.be/HFm6fbZ6lkg).

https://youtu.be/HFm6fbZ6lkg
https://youtu.be/HFm6fbZ6lkg

126 V. Estivill-Castro and R. Hexel

amber, and green in that direction, also cycling from green via amber to red,
and back to green. All three LLFSMs are scheduled deterministically, and the
decisions as to whether to switch state are inspections of Boolean variables. For
example, shallGoRedNS is evaluated by obtaining the value from the whiteboard
with the statement shallGoRedNS=stopNS status t; that is, the LLFSM acts
as a reader in the Pull architecture of this status message, while the value is
updated by a writer that periodically executes the Prolog program. The Prolog
program is inside a wrapper LLFSM, synthesized from the interface provided by
the Prolog program and running in another process [20,25]. The LLFSMs define
a complete and functional system composed of executable models.

Using the sensor and prioritising the NS-direction is the result of a simple,
localised change, restricted to only the Prolog program. Changing between soft-
ware versions requires swapping between Prolog programs. The LLFSMs can
be subject to formal verification (using standard model-checking tools), as the
corresponding Kripke structure can be derived directly from the model (and the
number of Kripke states is small). In addition, since often expressing proper-
ties about system behaviour to perform formal verification can be complex, it
is possible to create a suite of TDD tests by creating test-LLFSMs that set up,
watch, and tear down behaviour [27,28]. Such testing can validate the system
before investing effort into formal verification, and also can raise the confidence
of system correctness where state explosion makes formal verification impossible.

We focus on the situation where replacing one behaviour component or any
of the four wrappers, at runtime, could result in a faulty system. That is, one
should be able to swap between versions without faults manifesting themselves.
Of course, one way is to formulate these details as a requirement and build
the software accordingly. However, if the decision-making process is learnt while
running (the Prolog program is composed by something akin to inductive logic
programming), then no possible test could have been created originally, as the
logic program would not have existed at the time. Once the logic program is
available, formal verification may be infeasible (due to the complexity of the
system), while testing does not prove the system is correct: it merely shows that
no failures occur in a finite subset of cases. Moreover, if big data technologies and
stream-data analytics were to build, online, sophisticated new rules and software
to decide on the settings of the traffic lights, exhaustive testing would be infeasi-
ble. Thus, monitoring the system while in execution may actually be required, to
correct the effects of traces that lead to failure, but were not discovered earlier.

4.1 Software Architecture for Run-Time Verification of LLFSMs

We propose a revolution of the subsumption architecture [8] to manage the run-
time verification of a system composed of LLFSMs. Our proposal, following the
subsumption architecture principles, constructs behaviour from conceptual lay-
ers of timed, finite-state machines. What we suggest here is a revolution, because
we no longer assume lower layers are correct. The timed aspect means that we
have Boolean primitives, after(t), that only become true after t units of time.
We, however, go beyond a mechanism to just suppress an input, and even beyond

Deterministic High-Level Executable Models 127

Fig. 2. Layered component diagram of the LLFSMs executable software that control
the traffic lights [23, Fig. 2].

the capacity to inhibit the output from an LLFSM. Instead, we extend the mech-
anism to suspend [24] an LLFSM and add a mechanism that dynamically loads
an LLFSM to join the arrangement for execution. Correspondingly, we provide
mechanisms to also dynamically unload a faulty LLFSM and remove it from the
schedule of execution.

The subsumption architecture always assumes that the lower layers are
entirely correct. In stark contrast, we propose that the lower layers may, in
fact, be faulty. In our proposal, higher levels act as behaviour monitors for lower
layers. Realisation that a lower layer is malfunctioning, perhaps violating some
requirement, is sufficient for the higher layer to take action, including one or
several of the following actions.

Fig. 3. Generic architecture of the safety monitor [23, Fig. 3]. (Color figure online)

128 V. Estivill-Castro and R. Hexel

1. Inhibit the output of the lower layers and replacing it with newer, safer output.
2. Provide input to lower-level machines to steer them, suspend them and/or

restart them.
3. Reconfigure the arrangement by unloading some of its LLFSMs and loading

non-faulty replacements.

That is, higher layers can rebuild lower layers that exhibit unstable behaviour.
Figure 2 shows a component diagram (with the inputs and outputs for the traffic
lights and sensor) in the layered style of the subsumption architecture [8]. The
two LLFSMs of Fig. 1 appear in the upper layer in grey. Our approach is to take
such a system (that receives input from sensors drawn on the left and delivers
outputs to actuators) to an expanded and safer level, where a monitor (with a
subsumption switch) ensures fundamental safety properties during runtime. This
is illustrated by the transformation in Fig. 3, where Fig. 3(a) follows [8, p. 17,
Fig. 3] to Fig. 3(b). Note that the original system can be abstracted and treated
as a black box from the perspective of the two new components. The first com-
ponent is a monitor LLFSM, while the second one is a subsumption switch [13]
that can also be modelled/implemented as a (separate) logic-labelled finite-state
machine. The added modules can treat the entire set of output signals of the
system as inputs (“external” signals from their perspective). The added compo-
nents (coloured boxes in Fig. 3(b)) are small and thus their formal verification
becomes feasible. More importantly, the switch LLFSM is capable of inhibiting
dangerous configuration of output signals to the actuators, replacing them with
safer configurations. The monitor LLFSM can perform all the actions suggested
earlier that reconfigure the running system.

Our extension creates a more uniform, layered architecture, whether or not
the system is a subsumption architecture. The LLFSM for the switch4 simply
buffers configurations of effector and actuator commands with a given priority.

If the system is a subsumption architecture, the switches already are part
of the system and do not need to be replicated. The only requirement is that
configurations provided by the monitors have a higher priority. Moreover, the
monitoring LLFSM can have its own API, as we will discuss later.

The generality of the LLFSM approach facilitates that the monitor itself
can be an LLFSM, and consequently, the monitor is also an executable model5.
For the traffic light system, the monitoring LLFSM (Fig. 4) checks that the two
green lights are never on simultaneously. The monitor will inhibit this by loading
a new behaviour, which will trigger blinking amber lights in both directions
(with all red and green lights turned off). Such behaviour signals malfunction
to motorists and to the traffic authorities. When the monitor discovers a fault,
it loads a machine that expresses a new behaviour (both lights blinking amber),
and unloads the current faulty machine, loading default ones. This construction
is the generic machine-monitoring pattern.

4 youtu.be/HFm6fbZ6lkg at 3 m 32 s.
5 From 3 m 40 s in the above video.

https://youtu.be/HFm6fbZ6lkg

Deterministic High-Level Executable Models 129

Fig. 4. The monitoring LLFSM verifying that both directions are not in the light-green
state simultaneously. If this condition is detected, a blinking LLFSM is loaded.

130 V. Estivill-Castro and R. Hexel

5 Robotics Case Studies

5.1 Interaction of Behaviours

Our second case study is inspired by the presentation of the runtime verifica-
tion framework ROSRV [35]. This framework aims at raising the level of safety in
robotic systems under ROS and mainly consists of a node named RVMaster. It
oversees all the peer-to-peer traffic in a ROS environment, blocking messages,
and shielding the actual Master node (usually named roscore). The ROSRV archi-
tecture places a Monitor between every pair of publishers/subscribers, requiring
a large number of monitors. The link between the RVMaster and the ROS Master
is secured with a firewall.

This framework is illustrated using a simulator of the LandShark unmanned
ground vehicle (UGV) robot. The examples represent situations where two mod-
ules responsible for two different tasks (although optimised for their individual
responsibilities), when operating simultaneously, produce an overall deficient
behaviour. One such example is a gun on the turret having a tracker for a tar-
get but when placed on the LandShark UGV body it may hit itself [35]. These
scenarios are common in other robotic software, and another example discussed
with the UGV simulator is combinations of turret positions and accelerations
causing it to tip over [35]. Although there is no public access to the LandShark
simulator, we can reproduce two of the monitoring examples using the ROS
Gazebo simulation of a Komodo, a robot that is also an UGV on wheels with an
articulated arm and gripper. The forbidden runtime conditions we monitor are
actuator commands rather than conditions about forbidden states.

The first scenario is that certain wheel accelerations are not to be set while
the arm is extended, as this causes the robot to tip. Second, certain navigation
commands are not to be performed as they would take the robot into unsafe
terrain. For this example the video youtu.be/MVlghB0JZ1g shows one behaviour
for exploring a region that is faulty, becoming more prone to accelerate and run
into barriers. However, with our runtime verification monitor, when the robot is
close to the obstacles, two new behaviours are loaded, one to spin it back and one
to guide it to its origin before the earlier behaviour is allowed to operate again.
The methodology presented before applies here in a very similar way. We add a
subsumption switch to the original system that wraps the motor commands. We
add monitoring LLFSMs for the conditions. One simply uses location information
directly to track the position of the robot and thus instructing the switch to
inhibit motion commands to motors that would place the robot too close to the
obstacles. For the other example, the monitor LLFSM (refer to Fig. 5) reads the
arm position sensors, to calculate and track the centre of gravity relative to the
base of the robot, adjusting a threshold value in the subsumption switch for the
maximum allowed wheel acceleration.

5.2 Modular Robotics

Scalability of the Internet of Things (IoT) has also prompted modular robots [3],
that is, a robot that can be composed of several physical parts. In such a system,

https://youtu.be/MVlghB0JZ1g

Deterministic High-Level Executable Models 131

Fig. 5. Monitor LLFSM for the arm position that suspends traveling on a circuit and
arm behaviour if arm’s position is dangerous. A behaviour that folds the arm replaces
the exploratory behaviour of the arm.

132 V. Estivill-Castro and R. Hexel

Fig. 6. Basic gaits for walking or spinning.

Fig. 7. Executable model for all legs of an n-legged robots as a parameterised LLFSM
from which walking gaits and spinning gaits are composed.

the number of copies or parts of the same kind can be flexibly adjusted, not only
prior to deployment, but even during operation. Therefore, it is natural to con-
sider that the specified behaviour of such components should also be modular
and would utilise MDSE [3]. We illustrate this with the parameterised behaviour
that controls the repetitive and cyclic motion of an hexapod’s gait. Our presen-
tation should be applicable to an arbitrary number of n > 6 legs placed around
the centre of mass of the robot, because when all the legs are located equidistant
from the centre of the robot as if they were on a regular n-gon, it is easy to
describe behaviour that spins the robot clockwise (Fig. 6(a)). In the first stage,
the even numbered legs raise (shown as shorter lines). Then, odd legs use their
body joint to push the robot clockwise as they actually do a counter-clockwise

Deterministic High-Level Executable Models 133

turn of the body joint. Simultaneously, the even legs are raised and turn clock-
wise, advancing in the direction of the spin. The third phase lowers the even legs
while raising the odd legs and roles are reversed between these groups of legs.
In the fourth phase, it is now the legs on the ground (the even legs) that push
the body by rotating counter-clockwise, while the raised ones (the odd ones)
rotate clockwise. An equivalent gait for counter-clockwise rotation would simply
reverse the direction of joint rotations.

The robot walks in a particular orientation using the same pattern! The
fundamental movement of the legs uses the same four stage movement. However,
as opposed to spinning, legs are now partitioned into two sides (Fig. 6(b)). Those
on the left will be performing motions to spin clockwise, while those on the
right of the center line of motion will spin counter-clockwise. The robot will
walk because odd legs and even legs will have a phase shift of two stages. So
the robot will ‘row’ in the direction of motion with even legs pushing back on
the ground, while the odd legs are raised and move forward, again, with the
odd group of legs replaced by the even in their role of pushing or advancing in
the air. There are many more possible gaits. The point we are illustrating is
that linear and rotational leg movements can be modelled as the fundamental
parameterised motion of each leg. Figure 7 shows the fundamental four states of a
leg, RAISE LEG, LEVEL LEG, SPIN AGAINST DIRECTION OF MOVEMENT, as well
as PUSH OPPOSITE DIRECTION. However, deciding what is a push motion when
the leg is down or what is rotating back the leg when the leg is up depends on
three factors: (1) whether the hexapod is walking or spinning, (2) whether this
particular leg is to the left or right of the direction of movement; and (3) if we
are spinning, then whether the motion is a clockwise or counter-clockwise spin.
Finally, the phase of a leg motion depends on whether it is an odd numbered leg
or an even numbered leg. Figure 7 shows the parameterised executable LLFSM
for the motion of a leg. The motion starts raising a leg or leveling a leg according
to the group of the leg (even or odd). From there on, all legs loop through the
same four states, and adjust the move when the leg is down or up according to the
described calculation. A video of a hexapod driven around an area with spinning
and walking can be seen at youtu.be/60FgjRvZqsc. The parameterised LLFSM
in Fig. 7 are launched as concurrent, non-blocking calls with the corresponding
parameters. That is, the behaviour that conforms to the gait in the case of the
Hexapod invokes six instances of Fig. 7 with the appropriate actual parameters.

This example shows another feature of LLFSMs: the flexible non-blocking
invocation of parameterised LLFSMs. To illustrate the run-time verification
in this setting, we only show the most relevant states of the controller LLF-
SMs that enables driving around of the hexapod as illustrated in the video
mentioned earlier. The setting of the parameters can be seen in the state
RESTART LEG MACHINES. State NUMBER LEGS assigns each invoked LLFSM a
number (Fig. 8). State RESTART LEG MACHINES also calls each LLFSM without
blocking. Thus, it needs to check that all such LLFSMs are running and then
synchronise them, before reading a new action (and new direction) from the
driver.

https://youtu.be/60FgjRvZqsc

134 V. Estivill-Castro and R. Hexel

Fig. 8. Section of the LLFSM that numbers the legs. It enters a loop that checks what is
the new action (and new direction) the driver of the hexapod wants to take. Machine’s
parameters are set and all LLFSMs are launched concurrently without blocking this
caller.

However, since each LLFSM for the legs is launched separately, there is a
need to ensure synchronisation. For example, all even legs (and similarly, all odd
legs) must be in the same state. This verification is rather different from static
verification. In theory, one could write the corresponding temporal logic formula,
but this would be particularly laborious. Nevertheless, we illustrate the virtue of
LLFSMs by presenting an LLFSM that verifies this aspect at run-time. The new
monitoring LLFSM will watch the state changes of the six instances of LLFSMs
for the hexapod. Recall that all these are instances of the Fig. 7 LLFSM, with
common parameters for the action (walking vs spinning), but with a different
leg number. The monitoring LLFSM (different from the controlling LLFSM)
is shown in Fig. 9. The important aspect to notice is that the transition from
state MACHINE STATE CHANGES happens in any of the six LLFSMs has a state
change (the transition is whether the first or the second, or the third odd labelled
LLFSM controlling the leg has a change of state or the first or the second, or
the third even labelled LLFSM has a change of state). But then, the transition
from state SOME CHANGE HAPPENED to ERROR is taken if it is not the case
that all machines had a change. This is also the virtue of LLFSMs’ sequential
schedule, as all LLFSMs in the arrangement receive the token of execution before
the monitoring LLFSM in Fig. 9 receives the execution token again. All LLFSMs
are executing concurrently, and despite non-blocking calls that re-launched the
leg controllers, synchronisation is achieved without further explicit coordination
(as would happened with open concurrency that requires semaphores, monitors,
or other explicit synchronisation mechanisms and which often renders formal
verification impossible [21]). The monitoring LLFSM in Fig. 9 is not necessary
to control the hexapod, but can be incorporated as a safety mechanism using
the architecture described in Sect. 4.1.

Deterministic High-Level Executable Models 135

Fig. 9. A monitoring LLFSM that inspects the states of the instances of LLFSMs in
Fig. 7 and checks the even group and the odd group of legs progress through their
phases synchronised although resumed with no specific synchronisation.

6 Automatic Generation

Any runtime verification formalism [2,57] could be embedded in a monitoring
LLFSM because LLFSMs are Turing complete. However, we have chosen a simple
mechanism that seems to fit most cases and, moreover, enables the construction
of the monitoring LLFSMs from the visualisation of the system LLFSMs. The
idea is to evolve LLFSMs constructed for TDD [27,28] into monitors.

We explain our aproach using the earlier example. The monitored conditions
are rather simple. The LLFSM for TDD verifies that the controller LLFSMs
are not simultaneously in designated states (e.g., turning all lights to green).
This can also be achieved by monitoring the outputs of writer LLFSMs on the
whiteboard. In the traffic light example, this would be the message to actuator
lights for both green lights to be on.

Therefore, we suggest here that we can have a rather strong logic to express
conditions to monitor the runtime validity of LLFSMs that are in the System
box of Fig. 3. Moreover, the monitor LLFSM in Fig. 3 would be a model con-
structed completely from these logic expressions, significantly automating the
implementation of such monitoring LLFSMs. First, we can describe the basic
constructs of the logic to express forbidden conditions by monitoring LLFSMs.
The first building blocks are formulas.

<formula> → <term> | (<formula> <connective> <formula>) | not(<formula>)
<term> → <state formula> | <wb variable formula>
<state formula> → <machine name> @ <state name>
<wb variable formula> → <value> == <wb variable name>
<connective> → ∧ | ∨

An example of the term that expresses that in the LLFSM arrangement of
the traffic lights the two controlling machines cannot both be in their respective
states where they set their respective lights to green is the following formula.

136 V. Estivill-Castro and R. Hexel

light ns subsumption @ GREEN ON NS
∧
light ew subsumption @ GREEN ON EW

Similar formulas can be constructed for many of the safety requirements
of the systems discussed in the literature of formal verification and software
safety. For example, in the case of a microwave, a crucial requirement is the
motor/radiation is not to be on while the door is open:

true == doorOpen ∧ true == motorOn

The microwave is a widely discussed example in the literature of formal verifi-
cation and model checking [4]. We point out here that from forbidden-condition
formulas, the automatic construction of the LLFSM that monitors whether the
formula evaluates to true (realises the forbidden condition) is rather simple. It
consists of a simple loop where the information for the formula is retrieved from
the whiteboard and then the formula is evaluated. Thus, our LLFSM genera-
tor only requires a parameter that indicates the period of the loop (using the
after() construction mentioned before) and what LLFSM to activate in case
the forbidden formula is realised. The designer of our runtime verification LLF-
SMs uses a GUI to choose states from LLFSMs to build 〈state formula〉 and
also to select whiteboard variables to build these formulas from. When white-
board variables refer to objects, the GUI provides a drop-down menu to select
getters to obtain an expression that evaluates to a basic type.

It should be clear that our logic for forbidden formulas is structurally and
semantically equivalent to propositional logic. As we already mentioned, an
LLFSM that checks such a formula is built by basically including the forbidden
formula in a transition from a state that has read the necessary information.
Such monitoring LLFSMs, although synthesised automatically are quite impen-
etrable to human designers. Most of the conditions or rules we have found in case
studies on system safety seem to be of this form. However, we have noted that
in some situations the forbidden scenario more closely corresponds to a trace of
a behaviour. That is, the undesirable behaviour is not that, at a certain point
in time, a certain configuration of variable values or states of sub-LLFSMs is
reached in a system.

More elaborate, forbidden situations are sequences of formulas. For example,
with the traffic lights, control in each direction cycles between green, amber,
and red (then back to green). In this case, the forbidden behaviour can be spec-
ified by the complement of the regular expression (green amber red)*. More-
over, the equivalence of regular expressions and non-deterministic automata (and
thus, deterministic automata) shows that we can construct monitoring LLFSMs
automatically that verify that the system does not have a trace of basic formulas
(about states and whiteboard variables) that belongs to a regular language where
the alphabet are basic formulas. These monitoring LLFSMs are not expected to
be drawn or presented for inspection by human designers, they can be rather
large (even if we apply classical algorithms for DFA minimisation in the building
of the corresponding monitoring LLFSM). However, the corresponding regular
expressions are quite manageable by system designers. Today, for example, many

Deterministic High-Level Executable Models 137

programming languages or (web) search facilities, offer tools to construct and
visualise regular expressions. Thus for now, we consider this aspect less of a
priority except that the architecture proposed here integrates the resulting mon-
itoring LLFSMs quite naturally for expressing a language of forbidden traces in
the running system under verification. Our clfsm tool enables the introspection
of the running system to obtain the trace of the system’s state changes. This is
another aspect in which the deterministic scheduling of arrangements of LLF-
SMs is an advantage, as the traces are not subject to pre-emptive scheduling if,
for example, each LLFSM were to run as a separate thread.

The spot package allows the derivation of monitors (option -M for ltl2tgba);
and we could use the spot libraries to automatically synthesise the monitor for
our architecture directly as an LLFSM. In several robotic systems with plan-
ning and manipulation tasks, the LTL subset named co-safe LTL has been
used [33] because it produces deterministic finite-automata [41]. Here again,
Büchi automata can be directly modelled by LLFSMs. Our architecture can
confirm co-safe LTL formulae, but if the formula has the modal operator for
“eventually”, the monitoring LLFSM can not guarantee when such a condi-
tion is met (in the case of task planning it enables one to recognise a plan has
found a goal meeting the co-safe LTL condition). However, we are studying a
possible form of these logics or their variations for future bounded temporal log-
ics. Note that timed regular expressions are equivalent to timed automata [4].
However, timed automata are non-deterministic in the sense that their execu-
tion/simulation on a computer is only one of the many execution paths. Thus,
at the moment, these other formalisms to specify undesirable behaviours seem
to demand a monitoring instrument that would be resource intensive.

7 Safety and Security Issues

Our architecture provides compile-time type safety because communication
between LLFSMs (and from the subsumption switch to effectors and actua-
tors) are OO-messages on the whiteboard. The only LLFSM that has access to
these message types is the subsumption switch. All other LLFSMs only have
access to the abstraction and interface the subsumption switch offers. Other
LLFSMs cannot access effectors and actuators directly. The subsumption switch
only forwards specific commands (to effectors and actuators) if such commands
are placed in corresponding slots of the hierarchy by the respective LLFSMs of
the system or the monitor. Our compile-time type safety is significantly more
secure than RVMaster [35] because, for RVMaster, the underlying middleware is
in itself ROS, lacking any security mechanisms [35]: ROS allows any node to
read all the available topics and services at runtime.

In our proposal, we restrict which LLFSMs in an arrangement can perform
operations such as load, unload, suspend, and resume. But monitoring LLFSMs
have clearance for such operations on system LLFSMs. We are assuming that
the software would need to exist in an environment isolated from penetration of
malicious users who could plant such malicious LLFSMs in the paths read by the

138 V. Estivill-Castro and R. Hexel

clfsm instance executing the arrangement. The runtime verification here aims
at safety by protecting from Byzantine faults of well-intentioned components
that have evolved though potentially independent constraints and objectives,
and whose synergies could cause malfunction in the system.

Evolving software modules (for learning a walk on a quadruped robot, or for
tracking with a neck or turret with additional degrees of freedom), optimise their
main task and thus they have a restricted range of messages for certain restricted
families of effectors/actuators. We assume that system security is such that vali-
dated LLFSMs cannot be replaced with malicious ones. Moreover, the monitoring
LLFSM is able to reset self-modifying modules by unloading the learnt/evolved,
detrimental behaviour causing poor synergies with other modules and load a
validated behaviour. In our traffic lights example, the video illustrates rebuild-
ing at execution time the default behaviour and unloading the initial faulty
behaviour. Another example is a robot learning to control its arm as it discovers
the environment (see our video www.youtube.com/watch?v= 3VylSPQoEE).

The whiteboard middleware discussed earlier provides a channel to monitor-
ing LLFSMs (monitors). Thus, monitors could receive the suspend command.
This enables testing systems without monitoring (which could be resumed later)
or running the system under different configurations of the properties that are
being monitored. This facility to also configure monitoring systems during run-
time has been used before [35], and in our proposal here is immediately avail-
able through the existing mechanisms of the whiteboard. Thus, it is possible to
extend the subsumption architecture and the hierarchy of clearance classes by
more than one level. Monitoring LLFSMs are also controllable. The suggested
earlier transformation (from Fig. 3(a) to (b)) of adding a subsumption switch
and a monitor (both LLFSMs) can be re-iterated several times as designers
see fit, with higher levels being able to suspend, decommission, reload, and/ or
reconfigure the components of the lower layers underneath.

8 Contrast with Related Work

Runtime Verification [30,38] focusses on how to monitor, analyse, and guide
the execution of software, using lightweight formal methods applied during the
execution of programs. Although formal validation of properties against running
systems has been a long-standing concern in software engineering (for example
instance dynamic typing), our suggestion here follows the current practices in
testing (particularly model-based testing) when used before and during deploy-
ment of fault-tolerant systems. Note that the current practice for detecting and
possibly reacting to observed behaviours satisfying or violating certain proper-
ties is to represent such properties with trace-predicate formalisms, such as finite
state machines, regular expressions, context-free patterns, and linear temporal
logics. LLFSMs are extremely suitable to describe verification properties and
encompass all of the earlier mechanisms, as they are Turing complete [20].

Note that a large number of tools and approaches have been produced for
runtime monitoring of sequential or concurrent programs in traditional cod-
ing languages such as C++, C, and Java [14]; however, essentially no work has

https://www.youtube.com/watch?v=_3VylSPQoEE

Deterministic High-Level Executable Models 139

appeared for carrying out runtime verification using model-driven development
tools. The reliability of time-triggered systems is significantly easier to deter-
mine than that of event-triggered systems [39,42]. Time-triggered systems han-
dle peak-load situations by design, enable software components to communicate
using constant bandwidth and regular overhead even at peak load situations.
By contrast, event-driven systems are inherently unpredictable, they can col-
lapse during peak loads or event showers, and no analytical guarantees can be
given for their performance [39,42]. Surprisingly runtime-verification tools have
been proposed using a modelling approach based on events [5,12] and that their
implementation is made in Java with unrealistic claims regarding real-time ver-
ification (but an admission of this issue is present [12, p. 141]).

Such monitor-oriented programming [11], in the environment of robotic sys-
tems, (in particular the Robotics Operating System ROS) requires ROSRV as
an arbiter [35] of the appropriateness of message passing, introducing additional
message relays and potential critical delays. Nevertheless, as discussed in the pre-
sentation, ROSRV is perhaps the closest approach related to our proposal here,
but our architecture compares favourably. In ROSRV, security, scalability, and
formal verification were identified as issues for further work [35]. With respect
to security, ROSRV solely relies on network routing of trusted IP addresses. More-
over, ROSRV is centralised and policies and monitors need to be established for
each publisher/subscriber pair, which does not scale well. The LLFSMs that act
as the switch and the monitor can be formally verified in our architecture. We
have also identified other advantages of our proposal, namely the specification of
conditions to monitor can naturally and automatically be derived and expressed
from the LLFSM models in model-driven development style.

We would argue that the subsumption architecture [8] and teleo-reactive sys-
tems are now classical mechanisms to produce reactive systems, that, in their
inception, have been logic-labelled (and not event-driven), and in the case of the
former, been significantly revolutionising the software architectures of robotic
systems towards behaviour-based systems. In the case of the latter, several
advances have been made to enable them with formal verification tools [16] or
implementation tools [54]. However, teleo-reactive programs do have the danger
of undefined behaviour [31].

Both, the subsumption architecture and teleo-reactive systems, suffer issues
with their semantics of concurrency analogous to the issues of nested state-
diagrams in UML. Issues such as state nesting [55] or other ambiguities [6,55],
have resulted in several problems with executable UML and its use in model-
driven development. Most tools and approaches on formal methods based on
UML must restrict themselves: for example, restrictions to the consistency
and completeness of the artefact [47] or to Practical Formal Specification’s
(PFS) where events are precluded and component communications happen only
through their declared inputs and outputs [36]. The community seems to largely
follow Harel and Gery’s executable model of hierarchical statecharts [29], which
has an execution semantics akin to a remote procedure call (RPC) under the Run-
to-Completion Execution Model (RTC) [52, p. 2.2.8]: that is, the system keeps

140 V. Estivill-Castro and R. Hexel

queueing events, while handling an earlier event. Such complicated semantics
and runtime uncontrolled concurrency results in much higher complexity (or
impossibility) of runtime verification.

9 Final Remarks

Software systems should be validated and verified prior to deployment. We are
not suggesting here that because of our architecture validation, verification, and
testing should be reduced. Nevertheless, current software systems evolve and
adapt while in execution, and it is critical then to also ensure correctness at run-
time. Artificial intelligence capabilities, such as machine learning, have matured
and large software systems increasingly update their parameters, threshold val-
ues, or entire components on the fly. Software systems in operation generate
large logs for big-data and analytics whose results can generate new versions to
replace systems in operation. However, this logging requires a phase of batch
learning, and off-line data analytics. If the adaption, learning and analytics are
incorporated with the software, the always learning system would be up-to-date
with its latest experiences. However, potentially running software that none of
its developers anticipated. Thus, the relevance of run-time verification.

With our approach, run-time verification excludes the system from some
undesirable states, and enables to decommission LLFSMs in the arrangement.
The temporary inconsistent behaviour is replaced by default safe behavior chosen
by the monitoring LLFSMs. Such a replacement of one or more LLFSMs in a
system could be significantly more organic, depending on particular external
factors that have caused the system to evolve in particular ways, which cannot be
entirely anticipated and verified. We hope that this research inspires the software
engineering community to seek software systems with minimal downtime and
continuous operation. Moreover, we expect this to be a fundamental quality
aspect of robotics and complex, safety-critical real-time systems.

References

1. Abrial, J.R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

3. Arney, D., Fischmeister, S., Lee, I., Takashima, Y., Yim, M.: Model-based
programming of modular robots. In: 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pp. 66–
74, May 2010

4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-642-32759-9_9

Deterministic High-Level Executable Models 141

6. von der Beeck, M.: A comparison of statecharts variants. In: Langmaack, H., de
Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 128–148.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4 163

7. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Requirements engineering
via non-monotonic logics and state diagrams. In: Maciaszek, L.A., Loucopoulos,
P. (eds.) ENASE 2010. CCIS, vol. 230, pp. 121–135. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23391-3 9

8. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986)

9. Brooks, R.: The behavior language; user’s guide. Technical report, AIM-1227, Mas-
sachusetts Institute of Technology - MIT, Artificial Intelligence Lab Publications,
Department of Electronics and Computer Science (1990)

10. Bryce, R., Kuhn, R.: Software testing [guest editors’ introduction]. Computer
47(2), 21–22 (2014)

11. Chen, F., Roşu, G.: Towards monitoring-oriented programming: a paradigm com-
bining specification and implementation. Electr. Notes Theor. Comput. Sci. 89(2),
108–127 (2003)

12. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

13. Côté, C., Brosseau, Y., Létourneau, D., Räıevsky, C., Michaud, F.: Robotic soft-
ware integration using MARIE. Int. J. Adv. Rob. Syst. 3(1), 055–060 (2006)

14. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

15. Dietterich, T.G., Horvitz, E.J.: Rise of concerns about AI: reflections and direc-
tions. Commun. ACM 58(10), 38–40 (2015)

16. Dongol, B., Hayes, I.H., Robinson, P.J.: Reasoning about goal-directed real-time
teleo-reactive programs. Formal Asp. Comput. 26(3), 563–589 (2014)

17. Dromey, R.G., Powell, D.: Early requirements defect detection. TickIT J. 4Q05,
3–13 (2005)

18. Drusinsky, D.: Semantics and runtime monitoring of tlcharts: statechart automata
with temporal logic conditioned transitions. Electr. Notes Theor. Comput. Sci.
113, 3–21 (2005)

19. Estivill-Castro, V., Ferrer-Mesters, J.: Path-finding in dynamic environments with
PDDL-planners. In: 16th International Conference on Advanced Robotics (ICAR),
Montevideo, Uruguay, pp. 1–7 (2013)

20. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines semantics,
simulation, and model checking. In: Hammoudi, S., Ferreira Pires, L., Filipe, J.,
César das Neves, R. (eds.) International Conference on Model-Driven Engineering
and Software Development MODELSWARD, Barcelona, Spain, 19–21 February
2013, pp. 182–189. SCITEPRESS Science and Technology Publications (2013)

21. Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its
application to FMEA in model-driven engineering. In: ENASE 8th International
Conference on Evaluation of Novel Approaches to Software Engineering, Angers
Loire Valley, France, 4th–6th July 2013, pp. 218–225. INSTCC (2013)

22. Estivill-Castro, V., Hexel, R.: Simple, not simplistic – the middleware of behaviour
models. In: ENASE 10 International Conference on Evaluation of Novel Approaches
to Software Engineering, Barcelona, Spain. INSTCC, April 2015

https://doi.org/10.1007/3-540-58468-4_163
https://doi.org/10.1007/978-3-642-23391-3_9
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13

142 V. Estivill-Castro and R. Hexel

23. Estivill-Castro, V., Hexel, R.: Deterministic executable models verified efficiently
at runtime - an architecture for robotic and embedded systems. In: Ferreira Pires,
L., Hammoudi, S., Selic, B. (eds.) Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2017,
19th–21st February 2017, pp. 29–40. SciTePress (2017)

24. Estivill-Castro, V., Hexel, R., Lusty, C.: High performance relaying of C++ objects
across processes and logic-labeled finite-state machines. In: Brugali, D., Broenink,
J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810,
pp. 182–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-
7 16

25. Estivill-Castro, V., Hexel, R., Ramı́rez Regalado, A.: Architecture for logic pro-
graming with arrangements of finite-state machines. In: Cheng, A.M.K. (ed.) First
Workshop on Declarative Cyber-Physical Systems (DCPS) at Cyber-Physical Sys-
tems, pp. 1–8. IEEE, 12 April 2016

26. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient modelling of embedded
software systems and their formal verification. In: Leung, K.R., Muenchaisri, P.
(eds.) The 19th Asia-Pacific Software Engineering Conference (APSEC), Hong
Kong, pp. 428–433. IEEE Computer Society, December 2012

27. Estivill-Castro, V., Hexel, R., Stover, J.: Modeling, validation, and continuous inte-
gration of software behaviours for embedded systems. In: Al-Dabass, D., Romero,
G., Orsoni, A., Pantelous, A. (eds.) 9th IEEE European Modelling Symposium,
Madrid, Spain, 6th–8th October 2015, pp. 89–95 (2015)

28. Estivill-Castro, V., Hexel, R., Stover, J.: Models testing models in continuous inte-
gration of model-driven development. In: Cheng, A.M.K. (ed.) Proceedings of the
IASTED International Symposium Software Engineering and Applications (SEA
2015), Marina del Rey, USA, 26th–27th October 2015. https://doi.org/10.2316/P.
2015.829-016

29. Harel, D., Gery, E.: Executable object modeling with statecharts. In: Proceedings
of the 18th International Conference on Software Engineering, ICSE 1996, Wash-
ington, DC, USA, pp. 246–257. IEEE Computer Society (1996)

30. Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245–264. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 15

31. Hayes, I.J.: Towards reasoning about teleo-reactive programs for robust real-time
systems. In: Guelfi, N., et al. (eds.) SERENE 2008, RISE/EFTS Joint International
Workshop on Software Engineering for REsilient SystEms, Newcastle Upon Tyne,
UK, 17–19 November 2008, pp. 87–94. ACM (2008)

32. Hayes-Roth, B.: A blackboard architecture for control. In: Bond, A.H., Gasser, L.
(eds.) Distributed Artificial Intelligence, pp. 505–540. Morgan Kaufmann Publish-
ers Inc., San Francisco (1988)

33. He, K., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Towards manipulation plan-
ning with temporal logic specifications. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 346–352, May 2015

34. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

35. Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.:
ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 247–254. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11164-3 20

36. Iwu, F., Galloway, A., McDermid, J., Toyn, I.: Integrating safety and formal anal-
yses using UML and PFS. Reliab. Eng. Syst. Saf. 92, 156–170 (2007)

https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.2316/P.2015.829-016
https://doi.org/10.2316/P.2015.829-016
https://doi.org/10.1007/10722468_15
https://doi.org/10.1007/978-3-319-11164-3_20
https://doi.org/10.1007/978-3-319-11164-3_20

Deterministic High-Level Executable Models 143

37. Joukoff, D., Estivill-Castro, V., Hexel, R., Lusty, C.: Fast MAV control by con-
trol/status OO-messages on shared-memory middleware. In: Kim, J.-H., Karray,
F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Appli-
cations 4. AISC, vol. 447, pp. 195–211. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-31293-4 16

38. Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pp. 114–122 (1999)

39. Kopetz, H.: Should responsive systems be event-triggered or time-triggered? IEICE
Trans. Inf. Syst. 76(11), 1325 (1993)

40. Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series, 2nd edn. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-8237-7

41. Kupferman, O., Vardi, Y.M.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001)

42. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Progr. Lang. Syst. 6, 254–280 (1984)

43. Li, J.J., Wong, W.E.: Automatic test generation from communicating extended
finite state machine (CEFSM)-based models. In: Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
(ISORC 2002), pp. 181–185 (2002)

44. Maier, D., Warren, D.S.: Computing with Logic: Logic Programming with Prolog.
Benjamin-Cummings Publishing Co. Inc., Redwood City (1988)

45. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley Publishing Co., Reading (2002)

46. Nilsson, N.J.: Teleo-reactive programs and the triple-tower architecture. Electron.
Trans. Artif. Intell. 5(B), 99–110 (2001)

47. Pap, Z., Majzik, I., Pataricza, A., Szegi, A.: Methods of checking general safety
criteria in UML statechart specifications. Reliab. Eng. Syst. Saf. 87(1), 89–107
(2005)

48. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edn (2013)
49. Picek, R., Strahonja, V.: Model driven development-future or failure of software

development. In: IIS, vol. 7, pp. 407–413 (2007)
50. Pnueli, A., de Roever, W.P., et al.: Rendezvous with ADA - a proof theoretical

view. Vakgroep informatica RUU-CS-82-12, July 1982
51. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-

Oriented Modelling and Design. Prentice-Hall Inc., Englewood Cliffs (1991)
52. Samek, M.: Practical UML Statecharts in C/C++: Event-Driven Programming for

Embedded Systems, 2nd edn. Newnes, Newton (2008)
53. Sametinger, J., Rozenblit, J., Lysecky, R., Ott, P.: Security challenges for medical

devices. Commun. ACM 58(4), 74–82 (2015)
54. Sánchez, P., Alonso, D., Morales, J.M., Navarro, P.J.: From teleo-reactive spec-

ifications to architectural components: a model-driven approach. J. Syst. Softw.
85(11), 2504–2518 (2012)

55. Simons, A.: On the compositional properties of UML statechart diagrams. In:
Rigorous Object-Oriented Methods 2000. Electronic Workshops in Computing
(eWiC), York, UK, January 2000

56. Srivastava, A.N., Schumann, J.: Software health management: a necessity for safety
critical systems. Innov. Syst. Softw. Eng. 9(4), 219–233 (2013)

https://doi.org/10.1007/978-3-319-31293-4_16
https://doi.org/10.1007/978-3-319-31293-4_16
https://doi.org/10.1007/978-1-4419-8237-7

144 V. Estivill-Castro and R. Hexel

57. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Fourth Workshop on Runtime Verification (RV 2004), vol. 113, pp. 145–162
(2005)

58. Weiss, M., Eidson, J., Barry, C., Broman, D., Goldin, L., Iannucci, B., Lee, E.A.,
Stanton, K.: Time-aware applications, computers, and communication systems
(TAACCS). Technical report, Technical Note 1867, The National Institute of Stan-
dards and Technology (NIST), U.S. Department of Commerce, February 2015

A Consistency-Preserving Editing Model
for Dynamic Filtered Engineering
of Model-Driven Product Lines

Felix Schwägerl(B) and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{felix.schwaegerl,bernhard.westfechtel}@uni-bayreuth.de

Abstract. The high cognitive complexity of model-driven software
product line engineering is due to the fact that developers have to man-
ually create, edit, and maintain multi-variant artifacts. As a solution,
the adaptation of filtered editing has been proposed recently. Filtered
editing can be applied in a static or in a dynamic way; in the latter case,
new co-evolution problems occur when considering the evolving relation-
ships between the historical, the variant, and the product dimension.
This paper investigates, formally defines, and demonstrates by examples
nine consistency constraints connected to dynamic filtered editing. Fur-
thermore, we suggest a consistency-preserving editing model comprising
four operations that synchronize a transparent multi-version repository
with a single-version workspace view being presented to the user: check-
out, modify, commit, and a novel operation, migrate, which prepares the
workspace for the subsequent edit session. Several advantages of dynamic
over static filtered or unfiltered editing are confirmed both on a theoret-
ical and on an experimental basis.

Keywords: Model-driven software engineering
Software product line engineering · Filtered editing · Co-evolution
Uniform versioning · Variation control

1 Introduction

In model-driven software engineering (MDSE), software systems are developed
from high level abstractions called models, which are eventually executed by
interpretation or transformed into executable code [1]. A model is an instance
of a metamodel, which defines the abstract syntax of the modeling language.

Software configuration management (SCM) addresses the evolution of soft-
ware systems; version control (VC) lies at its heart [2]. Evolution may occur
along several dimensions, giving rise to a refinement of the term version into
revisions and variants, respectively. State-of-the-art VC systems organize revi-
sions in revision graphs and variants in parallel branches.

Finally, software product line engineering (SPLE) is a paradigm to develop
software applications based on the principle of variability [3]. A platform is
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 145–172, 2018.
https://doi.org/10.1007/978-3-319-94764-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_7&domain=pdf

146 F. Schwägerl and B. Westfechtel

a common set of artifacts from which customized products can be efficiently
derived. A variability model, e.g., feature model [4], describes common and dis-
criminating features of the variants of a product line. The combination model-
driven product line engineering (MDPLE) promises synergy effects [5], but it
demands for creating, editing, and maintaining multi-variant domain models,
which are cognitively complex tasks per se, but tend to become even more diffi-
cult as soon as evolution and collaboration occur.

1. check-out

2. modify

3. commit

Repository

M
ul

ti-
Ve

rs
io

n
D

om
ai

n
M

od
el

Fe
at

ur
e

M
od

el
R

ev
is

io
n

G
ra

ph

R
ev

is
io

n
Fe

at
ur

e
C

on
fig

ur
at

io
n

Fe
at

ur
e

Am
bi

tio
n

Workspace
D

om
ai

n
M

od
el

Fe
at

ur
e

M
od

el

Fig. 1. Architectural and functional sketch of the conceptual framework. From [6,
Fig. 1].

To address this, several approaches to filtered software product line engineer-
ing have recently emerged [7–9]. In accordance with the early ideas of multi-
version text editors [10], variants not relevant for a specific change are hidden
from the workspace. The multi-variant artifacts of the product line are trans-
parent to the developer. Instead, he/she modifies a single-variant view, which
is described using a choice, i.e., a read filter. The modifications are transferred
back to the product line using an ambition, a write filter that defines the set
of variants for which the changes apply. In this way, the change is applied rep-
resentatively in one version – the choice –, but affects multiple versions—those
included in the ambition.

The paper at hand is an extended version of [6]. The contributions presented
here are based on a conceptual framework [11] whose architecture is sketched in
Fig. 1. Tying on VC metaphors, a development iteration is started with check-
out and finished with commit. In addition to a revision graph, which controls the
historical evolution of the product line, a feature model is used for logical ver-
sioning. Selecting a version during check-out involves the selection of a revision
and thereafter the definition of a feature configuration, which altogether form
the choice. During commit, a new revision is created transparently. The logical
component of the write filter is provided as a feature ambition, a partial selection
in the feature model. The editing model is assumed to be dynamic in the sense

A Consistency-Preserving Editing Model 147

that it supports co-evolution of feature and domain model and allows to set or
change the ambition throughout the edit session.

In this paper, we show that dynamic filtered editing requires well-defined
workspace operations complying to a set of consistency constraints. As main
contributions, we formally define these constraints and present algorithms that
provenly preserve them. In addition to CheckOut and Commit, an extra oper-
ation is provided to Migrate the old feature configuration choice such that it
is consistent with the evolved feature model and therefore obviates repeated
check-outs.

Sect. 2 motivates the addressed co-evolution problems by a running exam-
ple. Subsequently, in Sect. 3, formal foundations are explained. Sects. 4 and 5
formally present nine workspace consistency constraints and three algorithms
for consistency-preserving workspace operations, respectively. Next, we sup-
ply proof that the revision graph is managed automatically and consistently.
Sect. 7 presents a generalized editing model, whose amount of dynamism can be
adjusted. Sect. 8 evaluates the dynamic filtered editing model experimentally.
Sect. 9 presents related work. Sect. 10 concludes the paper.

2 Example Scenario

In certain situations caused by co-evolution of feature model, domain model,
choice, and ambition, the dynamism implied by the dynamic filtered editing
(DFE) model becomes problematic. Using the well-known graph library product
line example [12], we informally sketch instances of consistency violations, which
should be avoided by the consistency-preserving editing model. Furthermore, we
sketch how the designated end user repairs the reported inconsistencies. For
simplicity, the revision graph is faded out.

Incomplete or Inconsistent Choice. From the feature model depicted in
Fig. 2(a), a version is to be selected for CheckOut. Then, the feature con-
figuration shown in (b) is incomplete, since features Vertices and Colored do
not have a selection state assigned. Therefore, the choice does not describe a
unique product version. Moreover, (c) represents an inconsistent choice: The
mandatory feature Vertices is deselected.
We contribute a consistency-preserving CheckOut operation, which ensures
that user-selected choices are complete and consistent. This is also true for
the feature configuration shown in (d), thus it is assumed for the subsequent
steps.

Disallowed Feature Model Modification. During modify, the feature model
may be edited, however, not arbitrarily. For example, in (e), features Weighted
and Directed are made mandatory and, at the same time, arranged in an XOR
group. This contradicts the semantics of feature models. A different problem
is illustrated in (f): Feature Weighted, currently selected in the active choice
(d), is deleted. In the workspace, however, elements connected to this features
are still present. As a consequence, the workspace contains elements which
could not be selected by any future choice.

148 F. Schwägerl and B. Westfechtel

(h) ambition not represented
by original choice

(f) deletion of an
active feature

(k) choice made incomplete
by feature model evolution

(d) consistent choice in
original feature model

Vertices

Graph

Edges

Colored DirectedWeighted

(a) original feature model

Vertices

Graph

Edges

Colored DirectedWeighted

(c) inconsistent choice

Vertices

Graph

Edges

Colored DirectedWeighted

(b) incomplete choice

Vertices

Graph

Edges

Colored DirectedWeighted

(e) feature model made
unsatisfiable

Vertices

Graph

Edges

Colored DirectedWeighted

(l) choice made inconsistent
by feature model evolution

Vertices

Graph

Edges

Colored DirectedWeighted

Vertices

Graph

Edges

Colored Directed

Vertices

Graph

Edges

Colored DirectedWeighted

Vertices

Graph

Edges

Colored DirectedWeighted Labeled

(g) inconsistent ambition

Vertices

Graph

Edges

Colored DirectedWeighted

(j) represented and
consistent ambition

Vertices

Graph

Edges

Colored DirectedWeighted

Vertices

Graph

Edges

Colored DirectedWeighted

(m) choice not representing
previous ambition

Fig. 2. Examples of consistency violations connected to feature models, choices, and
ambitions.

The consistency-preserving Modify operation prevents both kinds of disal-
lowed feature model modifications sketched.

Non-representative or Inconsistent Ambition. Moving further on, during
Commit, the user is expected to define a feature ambition that delineates the
scope of the change, i.e., the set of versions to which the performed change is
relevant.
In Fig. 2(g), a user-specified feature ambition is depicted. Since the manda-
tory feature Vertices is bound negatively there, the ambition represents an
inconsistent set of versions. Similarly, the ambition depicted in (h) is not in

A Consistency-Preserving Editing Model 149

(p) choice

Vertices

Graph

Edges

Colored LabeledWeighted

(q) product-level change

Vertices

Graph

Edges

Colored LabeledWeighted

(r) too unspecific ambition

Vertices

Graph

Edges

Colored LabeledWeighted

(s) sufficiently specific ambition

Fig. 3. Example of a non-representative product-level change, described with a too
unspecific ambition. In (q), artifacts belonging to Edges and sub-features thereof are
hidden.

line with the proposition that the choice must be a representative of it: Fea-
ture Weighted, which is positively selected in the choice (d), has a negative
selection state assigned in ambition (g).
The contributed algorithm for Commit ensures that the ambition is weakly
consistent (i.e., that it includes a consistent choice) and represented by the
choice. Below, we assume that the valid ambition depicted in (j) has been
selected.

Choice not Suitable for Next Iteration. Unless the user interrupts this
workflow, the DFE model continues with the next iteration reusing the cur-
rent choice. The choice may, however, become invalid for several reasons.
First, (k) assumes that the original feature model is extended by a new fea-
ture Labeled, for which the original choice, however, does not define a binding.
Similarly, in (l), feature Directed is made mandatory, but excluded from the
current choice, such that this becomes invalid for the next iteration. Last, in
(m), a new user-defined choice is depicted. This choice, however, disagrees
with the ambition in the binding for Weighted, whose corresponding product
artifacts are still present in the workspace. Thus, it becomes necessary to
re-generate the workspace contents by check-out.
In the here presented DFE model, the user is assisted in preparing the cur-
rent choice for the subsequent iteration by a new operation Migrate, which
ensures that the choice becomes complete, strongly consistent, and that it is
included in the ambition used for the preceding Commit.

All the problems discussed above are related exclusively to version concepts,
namely version space (i.e., feature model), choice, and ambition. There exists an
additional potential source of inconsistency that is, in contrast, also connected
to the product space:

150 F. Schwägerl and B. Westfechtel

Too Unspecific Ambition. Figure 3 depicts an iteration based on a choice that
represents a colored graph (p). The product-level-change shown in (q) con-
sists in the introduction of a new constructor to class Vertex. As constructor
parameter type, the existing class Color, whose visibility is restricted to those
versions in which feature Colored is selected, is defined. An attempt to use (r)
as ambition for this change should fail, for the following reason: The choice
should be representative for all versions in which the change can be applied.
Albeit, the constructor would not be valid in versions that exclude feature
Colored, since class Color is not available as parameter type then. A more
specific ambition, which adequately describes the set of versions in which the
change is applicable, should be used; the most general, yet sufficiently specific
ambition is (s).

3 Formal Foundations

Following [11,13], we provide a formalization of the underlying conceptual frame-
work. Internally, versioning concepts exposed at the user interface – revision
graphs and feature models – are mapped to a generic base layer, the formal
foundation of which is propositional logic. Workspace consistency constraints
(Sect. 4) and consistency-preserving algorithms (Sect. 5) are formalized upon the
base layer.

An option oi represents a (logical or historical) property of a software product
that is either present or absent. The option set is defined globally:

O = {o1, . . . , on} (1)

Internally, revisions and features are mapped to options transparently.
A choice is a conjunction over all options, each of which occurs in either

positive or negated form:

c = b1 ∧ . . . ∧ bn, bi ∈ {oi,¬oi} (2)

A choice can also be represented as a binding map, i.e., a set of binding tuples
(oi, si), where si ∈ {true, false}, denotes the boolean selection state of an option
oi. Choices are derived from a user-based selection of a revision and a feature
configuration.

Next, an ambition is an option binding that allows for unbound options:

a = b1 ∧ . . . ∧ bn, bi ∈ {oi,¬oi, true} (3)

When represented as a binding map, tuples for unbound options are omitted.
Ambitions are derived from a selection in the feature model, which may

leave a number of features unbound in order to describe a set of variants to
which a change is applied. In the revision graph, the management of ambitions
is automated.

A Consistency-Preserving Editing Model 151

A version rule is a boolean expression over a subset of options. The rule base
R is a conjunction of rules ρ1, . . . , ρm all of which have to be satisfied by a choice
in order to be consistent:

R = ρ1 ∧ . . . ∧ ρm, ρi is an expression over O (4)

Version rules are derived automatically from revision graph and feature model
[11].

Preferences and defaults have been introduced to ease version selection. A
preference is a tuple of the form pi = (oi, πi), where πi is an initialization
expression for option oi. Defaults di = (oi, si) define a fallback selection state
si ∈ {true, false}. For each option, at most one default is allowed; preferences
have a higher priority.

P = {(oi1 , πi1), . . . (oik , πik)},

πij is an expression over O
(5)

D = {(oi1 , si1), . . . (oil , sil)}, sij ∈ {true, false} (6)

With PDc, we denote a choice c to which preferences P and defaults D
have been applied. The conceptual framework infers preferences and defaults
transparently in order to assist the user in selections in the version space. In
particular, they automate the management of the revision graph.

Each element ei of the product space (i.e., the union of feature and domain
model) carries a visibility vi, a boolean expression over the variables of O. Vis-
ibilities in the feature model are composed only of revision options; visibilities
in the domain model are composed of both revision and feature options. An
element ei is called visible under a given choice c iff applying c to its visibility
vi (written as vi(c)) evaluates to true.

In case the visibility is to be evaluated for an ambition, which is typically not
a complete option binding, three-valued propositional logic has to be applied. In
this case, a third result value, undefined can occur.

The operation filter is applied during check-out. From a base element set E,
those elements ei that do not satisfy the choice are omitted.

E|c = E \ {ei ∈ E | vi(c) = false} (7)

On commit, visibilities must be updated such that inserted (deleted) elements
become (in)visible in all choices included in the ambition a.

v′
i =

⎧
⎨

⎩

a if ei ∈ Eins (insertion)
vi ∧ ¬a if ei ∈ Edel (deletion)

vi otherwise (no change)
(8)

For updates to the domain model, the full ambition a is used; for updates to the
feature model, bindings of feature options are omitted from the ambition.

152 F. Schwägerl and B. Westfechtel

4 Consistency Constraints for Dynamic Filtered Editing

We begin the formalization of the consistency-preserving DFE model with the
description of consistency constraints based on the formal foundations provided
in Sect. 3. We divide a development iteration up into four phases, the first of
which is optional when assuming the DFE model: CheckOut, Modify, Com-
mit, and Migrate.

The dynamic editing model is depicted in abstract form as a state chart in
Fig. 4. Initially, the workspace is in state Pending, i.e., not populated yet. On
CheckOut, a specific version is selected from the repository. After Modifying
the workspace and Committing the changes, the user may either continue with
the subsequent iteration, requiring to Migrate the choice, or migration is can-
celed (by the algorithm or by the user), triggering a transition back into state
Pending. To re-populate the workspace, a new choice must be specified then.

The transitions contain preconditions for the application of the corresponding
transitions. The numerical values correspond to the constraints presented in the
remainder of this section. We use superscripts (ch = check-out, mo = modify,
cm = commit, mi = migrate) to delineate the phases of each iteration.

Pending Unmodified

Modified

Committed

check-out modify

commit

migrate

cancel

modify

disconnect

/ [1 2 3] / [3]

/ [3]

/ [3 4 5 6]

/ [3 4 7 8 9]

Fig. 4. Workspace operations as transitions in a state diagram.

4.1 Check-Out

In filtered editing, a choice designates a unique version to describe the workspace
contents to be checked-out. Therefore, unbound options must not occur.

Constraint 1. The option binding cch specified as choice during check-out must
be complete with respect to the global option set Och defined at check-out time.

∀o ∈ Och : (∃(o, s) ∈ cch : s ∈ {true, false}) (9)

In the following, we assume in all constraints that choices are complete.
Moreover, the choice must comply with the rules derived by feature depen-

dencies:

Constraint 2. The choice cch defined at check-out time must be strongly con-
sistent with the rule base Rch present at check-out time.

Rch(cch) = true (10)

Here, Rch(cch) denotes the evaluation of the rule base Rch under the choice
cch.

A Consistency-Preserving Editing Model 153

4.2 Modify

By editing the feature model, the user indirectly modifies parts of the option set
and of the rule base. It must be avoided that the user introduces rules disallowing
consistent version selection in future check-outs.

Constraint 3. After each modification to the version space, i.e., when saving
the feature model, the rule base Rmo must be satisfiable, such that there exists
any strongly consistent choice:

∃c : (Rmo(c) = true) (11)

The aforementioned restriction, stating that active features must not be
deleted, is beyond the means of formalization available for the base layer, and
therefore not presented as an explicit constraint here. See Sect. 5.2.

4.3 Commit

The ambition defined at commit time describes a set of versions, which should
comply with the rule base: At least one choice c must exist which agrees with
acm in all common option bindings (c ⇒ acm) such that all rules hold under c.

Constraint 4. An ambition acm specified during commit must be weakly con-
sistent with the rule base Rcm available at commit time:

∃c : (c ⇒ acm) ∧ (Rcm(c) = true) (12)

In the version determined by the choice, a change is applied representatively
for the ambition. Thus, there must not be any contradiction between option
bindings of the check-out time choice and the commit time ambition inferred
from feature selections:

Constraint 5. The ambition acm must be represented by the check-out choice
cch.

∀(o, s) ∈ acm : (o,¬s) �∈ cch, s ∈ {true, false} (13)

Requiring no contradictions between choice and ambition does, however, not
guarantee that the modifications performed between check-out and commit are
representative at product space level. To this end, it must be ensured that the
performed change – here represented as a write set unionized by inserted and
deleted elements Emod = Eins∪̇Edel – could have been equally applied in any
other version contained in the ambition:

Constraint 6. The ambition acm must be sufficiently specific to the write
set Emod.

∀e ∈ Emod :
(∀e′ ∈ P cm : (e d−→ e′) ⇒ v′(PDacm) = true

)
(14)

154 F. Schwägerl and B. Westfechtel

The symbols used in the equation above require further clarification. First,
with e′ ∈ P cm, we denote any element in the check-out time product space. The
premise e

d−→ e′ checks whether an element of the write set depends on e′. Last, v′

denotes the visibility of e′ before commit, such that v′(PDacm) evaluates to true
if and only if e′ is visible in all versions included in PDacm, which is obtained by
applying preferences and defaults1 to the original ambition acm. Taken together,
the constraint checks whether all elements on which any inserted or deleted
element depends are visible in all affected versions.

The depends operator e
d−→ e′, where e ∈ Emod and e′ ∈ P , remains to be

defined upon the product space base layer. Informally, e depends on e′ whenever
at least one of the following conditions hold:

– e is a deleted element and e equals e′. (Intuition: Elements must be visible in
order to be deletable.)

– e is an inserted element and e′ contains e. (Intuition: The insertion location,
i.e., the container of an inserted element, must be visible.)

– e is an inserted element and e′ is cross-referenced from e. (Intuition: When
an inserted element represents the applied occurrence of an existing element,
the latter must be visible.)

4.4 Migrate

Transitioning to post-commit time, it is assumed that the operation Migrate, to
be formally defined later, produces a choice that is used for the next iteration.
Therein, the same workspace can be reused in connection with the migrated
choice.

Due to modifications of the rule base, the choice cch specified at check-out
time may become incomplete with respect to the option set Ocm, and/or incon-
sistent with the rule base Rcm at commit time. Such temporary inconsistencies
are explicitly allowed in order to support feature model evolution. However,
before starting the subsequent iteration, it is required that the version to be
modified must be uniquely and consistently identified by cmi.

Constraint 7. The option binding cmi describing the choice after migration
must be complete with respect to the commit time option set Ocm:

∀o ∈ Ocm : (∃(o, s) ∈ cmi : s ∈ {true, false}) (15)

Constraint 8. The migrated choice cmi must remain strongly consistent with
the rule base Rcm available at commit time:

Rcm(cmi) = true (16)

1 In this way, a “more complete” ambition is obtained, which represents, however, the
same set of product versions as acm. The options additionally included in PDacm

may occur in visibilities v′, therefore v′(PDacm) will less likely return undefined.

A Consistency-Preserving Editing Model 155

Apart from this, it is required that the migrated choice cmi must still comply
with ambition acm, which represents changes applied to the current workspace.
Since all newly introduced options are mandatory to be selected or deselected for
the next choice, total inclusion (implemented by propositional logical implication
in the opposite direction) is required:

Constraint 9. An ambition acm must include the migrated choice cmi describ-
ing the workspace contents for the subsequent iteration:

cmi ⇒ acm (17)

5 Consistency-Preserving Algorithms

In this section, we contribute detailed algorithms for the operations CheckOut,
Modify, Commit, and Migrate, which are represented by transitions in Fig. 4.
In addition to algorithmic descriptions, their properties are discussed, supplying
proof where adequate. The algorithms contain interactive statements, which are
underlined in the descriptions below. We use subscripts (r, f , d) to explicitly refer
to different dimensions (revision graph, feature model, domain model) of version
space and product space. Moreover, unless specified differently, we assume that
all variables O, R, c, etc., are initialized with the value of the corresponding
variable at the end of the preceding phase.

5.1 Check-Out

The purpose of CheckOut is to populate an empty (i.e., Pending, cf. Fig. 4)
workspace with a consistent product version uniquely defined by the user with
the help of revision graph and feature model.

Algorithm 1 prompts the user for a revision selection. Using preferences and
defaults introduced during Commit (see below), it is ensured that options of the
selected revision as well as all predecessors are bound to true, whereas remaining
options are bound to false, making the revision choice complete.

Next, the feature model, whose elements’ visibilities exclusively refer to revi-
sion options, is filtered by the revision choice. In the filtered feature model,
the user specifies a feature configuration; invisible options for deleted features
are bound to false by corresponding defaults. The effective choice cch is calcu-
lated by union of revision and feature choice, before preferences and defaults are
applied to it. Next, the feature choice is checked for completeness and strong
consistency.

After a product well-formedness analysis, which is not subject of this paper,
the workspace is populated with filtered versions of feature and domain model.
The feature choice is memorized to enable a later re-construction of the checked-
out workspace.

156 F. Schwägerl and B. Westfechtel

Algorithm 1. Consistency-preserving CheckOut. From [6, Algorithm 1].
procedure CheckOut

rchi ← option in Och
r belonging to a selected revision i

cchr := (rchi , true)
PDcchr ← apply preferences Pr and defaults Dr to (cchr)
P ch
F ← P ch

f |PDcchr
� Filter the feature model; Eq. (7)

Export P ch
F into the workspace

cchf ← select feature configuration in the exported filtered feature model

cch ← cchr ∪ cchf
PDcch ← apply preferences P and defaults D to (cch)
if not (∀o ∈ Och : (∃(o, s) ∈PD cch : s ∈ {true, false})) then � Constraint 1

return error “Choice is not complete.”
else if not (Rch(PDcch) = true) then � Constraint 2

return error “Choice is not strongly consistent.”

P ch
D ← P ch

d |PDcch � Filter the domain model; Eq. (7)
Export (P ch

D) into the workspace
Memorize cchf for the subsequent commit

Properties. If successful, Algorithm 1 transitions the workspace into state
Unmodified and produces a choice both complete and strongly consistent with
respect to the check-out time rule base, such that Constraints 1 and 2 are
ensured. In case the user specifies an incomplete or inconsistent choice, the action
is canceled and the workspace remains in state Pending.

5.2 Modify

The consistency of the domain model is supposed to be ensured by the respec-
tive single-version editing tools employed. Feature model editing, however, is
restricted in order to prevent some conflicting situations during Commit. We
explicitly formulate these restrictions by providing algorithms that redefine the
operations SaveFeatureModel and DeleteFeature.

Feature Model Editing. Constraint 3 must be enforced; otherwise, no con-
sistent variant can be specified at later check-outs. To this end, we redefine the
SaveFeatureModel operation of the feature model editor in Algorithm2 in a
way that only satisfiable feature models can be persisted in the workspace.

Feature Deletion. Furthermore, deletion of features in the workspace ver-
sion of the feature model is redefined (see Algorithm 3): First, the operation is
only applicable to features bound to false in the current choice; otherwise, the
feature model would become unsatisfiable, or choice migration (see Sect. 5.4)
would transfer the positive selection state to the choice to be derived for the
next iteration, where the deleted feature and corresponding realization artifacts
are supposed to be hidden.

A Consistency-Preserving Editing Model 157

Algorithm 2 . Redefined SaveFeatureModel operation in feature model
editor.

procedure Save(Pmo
F)

if not ∃c : (Rmo
f (c) = true) then � Constraint 3

return error “Feature model is not satisfiable.”
else

Persist Pmo
F in its current state

Algorithm 3. Redefined DeleteFeature operation in feature model editor.
procedure DeleteFeature(D)

oD ← option belonging to feature D to be deleted
cchf ← feature choice memorized during preceding check-out or migration

if (oD, true) ∈ cch then
return error “Cannot delete feature active in current choice.”

else
for all C ∈ children of D do

if DeleteFeature(C) �= success then
Undo all modifications related to children of D
return error “Error during deletion of child C.”

set the deleted flag of D to true
Dmo

f := Dmo
f ∪ {(D, false)}

Second, rather than persistently deleting a feature, it is merely hidden from
the user’s display and thus not available in the current and future revisions of the
editable feature model. Nevertheless, its feature option, which still may occur
in visibilities of domain model elements, remains. To maintain completeness of
future choices, a negative default is introduced for the feature option.

In order to maintain the hierarchical consistency of the feature model, feature
deletion is recursively applied to all child features.

Properties. Constraint 3 is actively enforced by Algorithm 2. Whenever the
save operation has been applied successfully, the workspace enters (or remains
in) state Modified.

5.3 Commit

A consistency-preserving Commit operation is formalized in Algorithm4. As a
first step, the revision graph is handled automatically, introducing a new revision
option along with a preference and a default ensuring that a single revision
selection will yield complete and consistent revision choices in future (see Sect. 6).
By using the latest revision as reference point, a linear version history is enforced.
Besides, the user specifies a feature ambition.

158 F. Schwägerl and B. Westfechtel

It is ensured by corresponding checks that feature ambitions must be weakly
consistent with the rule base (Constraint 4) and represented by the previous
choice (Constraint 5).

Next, the checked-out workspace state is reconstructed and differentiated
with its commit time version. Based on the deduced difference, it is now ensured
that the specified ambition is sufficiently specific to the performed change (Con-
straint 6).

In case all checks are passed, inserted elements are added to the product
space. Next, visibilities of inserted and deleted elements are updated as defined
by Eq. 8. For visibility updates applied to the feature model and domain model,
respectively, acm

r and acm are used.

Algorithm 4. Consistency-preserving Commit. From [6, Algorithm 2].
procedure Commit

cchf ← feature choice memorized during preceding check-out or migration
ri ← option of most recently committed revision i (head)
cch ← cchf ∪ {(ri, true)}
PDcch ← Apply preferences and defaults to cch

i + 1 ← new revision, successor of i, with user-specified details (commit message, etc.)
ri+1 ← new revision option for revision i
Ocm

r ← Och
r ∪ {ri+1}

Rcm
r ← Rch

r ∧ (ri+1 ⇒ ri)
Pcm
r ← Pch

r ∪ {(ri, ri+1)}
Dcm

r ← Dch
r ∪ {(ri+1, false)}

P ch
F ← P ch

f |PDcchr
� Reproduce latest revision of feature model

P ch
D ← P ch

d |PDcch � Reproduce latest revision of selected variant of domain model
P cm
F ← Import current workspace version of the feature model

acm
f ← select feature ambition in the current workspace version of the feature model

acm ← acm
f ∪ (ri+1, true)

if not (∃c : (c ⇒ acm) ∧ (Rcm(c) = true)) then
return error “Ambition is not weakly consistent.” � Constraint 4

else if not (∀(o, s) ∈ acm : (o, ¬s) 	∈ cch) then
return error “Ambition is not represented by choice.” � Constraint 5

P cm
D ← Import current workspace version of the domain model

Match and differentiate P cm with P ch.
Eins ← inserted elements according to the difference.
Edel ← deleted elements according to the difference.
PDacm ← Apply preferences and defaults to acm

if not (∀e ∈ Emod : (∀e′ ∈ P cm
D : (e

d−→ e′) ⇒ v′(PDacm) = true)) then
return error “Ambition is not sufficiently specific to the change.” � Constraint 6

P ← P ∪ Eins � Add inserted elements to the repository
for all ei ∈ Eins ∪ Edel do

vi ← v′
i � Update visibilities; see Eq. 8

A Consistency-Preserving Editing Model 159

Properties. If successful, Algorithm 4 transitions the workspace into the state
Committed, while ensuring Constraints 4, 5, and 6 for the specified ambition.

Otherwise, the workspace remains in state Modified; in this case, the user
may re-attempt the commit with a different ambition.

5.4 Migrate

The operation Migrate prepares the workspace choice for the subsequent iter-
ation, proceeding under the assumption that the user prefers to stay in the
current view. Unlike CheckOut and Commit, this operation is not triggered
explicitly by the user, but automatically after commit. Conversely, it makes the
subsequent CheckOut optional, tying on the non-disruptive revision control
workflow.

Algorithm 5 iterates over options that remain unbound in the choice to be
migrated. If a corresponding option has been bound in the ambition, the binding
is transferred to the choice. Otherwise, preferences and defaults are triggered as
far as applicable, with the aim to complete cmi transparently. As a “last resort”,
a binding state is obtained non-deterministically. Since the new option has been
ignored in the ambition, there cannot exist any reference to it in updated visi-
bilities. Therefore, it is immaterial for the subsequent choice whether or not the
option is selected. At this point, it is not known how new (and still unbound) fea-
tures will be incorporated in the next iteration. Therefore, the user may choose
among the set of choices describing the current workspace contents equivalently.

Algorithm 5. Consistency-preserving Migrate. From [6, Algorithm 3].
procedure Migrate

for o ∈ Ocm do
if (o, true) �∈ cmi ∧ (o, false) �∈ cmi then � Never override existing bindings

smi ← undefined
if ∃(o, s) ∈ acm : s ∈ {true, false} then

smi ← s � Infer from ambition
else if a preference p ∈ Pcm is applicable to o then

smi ← apply p to o
else if a default d ∈ Dcm is applicable to o then

smi ← apply d to o
else

smi ← user selection for o
if smi = undefined then

return error “Operation was canceled by the user.”

cmi ← cmi ∪ {(o, smi)}
if not Rcm(cmi) = true then � Constraint 8

return error “Cannot migrate to a consistent choice.”
else

Memorize cmi for the subsequent commit � Obviate check-out

160 F. Schwägerl and B. Westfechtel

Properties. If migration succeeds, a strongly consistent choice (Constraint 8)
is actively enforced by the algorithm. Theorems 1 and 2 prove that Constraints 7
and 9 are satisfied, respectively.

There are three possible causes for failure of this operation. First, there may
be no correct solution regardless of the user selections performed2. Second, the
user might introduce a contradiction although a different selection would have
provided a correct migrated choice. Third, the user may cancel intentionally.

If migration succeeds, the workspace immediately enters state Unmodified.
Otherwise, entering state Pending triggers an exceptional check-out, forcing the
user into specifying a new choice.

Theorem 1. After having applied Migrate successfully, Constraint 7 is satis-
fied.

Proof. The algorithm iterates over all options in Ocm, which equals Omi as no
options can be introduced between commit and migrate by any operation. In
each iteration, either true or false are definitely assigned to missing bindings in
cmi. Therefore, after having processed all available options, cmi is complete (as
required by Constraint 7).

Theorem 2. After having applied Migrate successfully, Constraint 9 is satis-
fied.

Proof. Being its descendant, cmi includes cch. Moreover, acm is weakly consistent
with cch (cf. Constraint 5). Thus, no contradictions exist between cmi and acm.
Bindings for missing options are transferred from the ambition, or if not appli-
cable, in a way that does not contradict with any ambition binding. Altogether,
the migrated choice cmi is included in the ambition acm (such that cmi ⇒ acm,
as required by Constraint 9).

6 Automated and Consistent Revision Graph
Management

Above, it has been claimed that the consistency of the revision graph is guaran-
teed automatically, such that the user is not accosted with constraint violations
in this dimension. As new revisions created during commit are appended as
successor of the latest revision, the here described commit strategy makes the
revision graph degenerate into a sequence.

Below, we supplement proof for the satisfaction of the constraints defined in
Sect. 4 by the historical dimension in isolation. The remainder of this section is
structured by phases, of which Modify has been omitted since it does not affect
the revision graph.
2 In such a case, newly introduced feature model rules prevent the product version

available in the workspace from being reproduced by future check-outs. The per-
formed modifications are, however, valid for different versions included in the ambi-
tion.

A Consistency-Preserving Editing Model 161

6.1 Check-Out

It has to be proved that the choice inferred from the selection of a single revision
in Algorithm 1 satisfies the check-out time consistency constraints.

Theorem 3. A revision choice derived at check-out is complete (Constraint 1).

Proof. Preferences and defaults are applied in advance to filtering. On commit,
a default of the form (ri, false) is introduced for each revision i, such that no
unbound revision option remains after having applied all defaults.

Theorem 4. A revision choice derived at check-out is strongly consistent (Con-
straint 2).

Proof. There are two types of rules to be potentially violated: initial revision
rules (r0) and predecessor rules (ri+1 ⇒ ri).

Except for the selected revision option ri, all revision options are bound
by preferences or defaults. In Algorithm4, it is ensured that for each invariant
ri+1 ⇒ ri, a preference (ri, ri+1) is created. Through repeated application of this
preference, after a revision option ri has been selected, all predecessor revisions
are bound positively. For no predecessor of ri, a negative binding will be created
since defaults have a lower priority than preferences. Therefore, all predecessor
rules are satisfied.

Given the premise of a linearly organized revision graph, repeated application
of predecessor preferences will propagate to r0, regardless of which revision has
been selected. Therefore, (r0, true) will occur in every binding derived this way,
such that the initial revision constraint r0 is satisfied.

6.2 Commit

During Commit (cf. Algorithm 4), a new revision with option ri+1 is introduced
for the successor of the current head revision i. We prove that the derived revision
ambition (ri+1, true) satisfies the constraints associated with the commit phase.

Theorem 5. A revision ambition derived at commit is weakly consistent (Con-
straint 4).

Proof. To be weakly inconsistent, it would be required that (ri+1, true) contra-
dicts with any invariant in Rcm

r . The only invariant in which ri+1 can appear is
the newly introduced ri+1 ⇒ ri. Though, (ri, false) /∈ acm

r , thus weak consis-
tency is given.

Theorem 6. A revision ambition derived at commit is represented by the check-
out time revision choice (Constraint 5).

Proof. Not yet existing at check-out time, ri+1 is unbound in the revision choice
cchr , such that no contradiction with (ri+1, true) can occur.

162 F. Schwägerl and B. Westfechtel

Theorem 7. A revision ambition derived at commit is sufficiently specific to
describe the historical component of a workspace change (Constraint 6).

Proof. We represent the visibilities v of all elements as conjunctions vf ∧ vr.
Furthermore, we assume that all elements e′ on which modified elements e ∈
Emod may depend, have passed the choice: v′

r(c
ch) = true. After applying option

binding completion, PDacm
r ⊃ cchr . As a consequence, v′

r(
PDacm

r) = true for all
v′
r.

6.3 Migrate

During Migrate (cf. Algorithm 4), the binding (ri+1, true) is transferred from
the ambition to the choice. We first consider the common case that the selected
revision equals the head ; for the subsequent proofs, we may therefore presume
cmi
r = cchr ∪ acm

r , hence ccmr ⇒ acm
r .

Theorem 8. The migrated revision choice is complete (Constraint 7).

Proof. cchr is complete with Ocm
r except for the only new option ri+1, which is,

however, bound in the ambition acm
r and therefore transferred from there. Thus,

cmi
r = cchr ∪ acm

r is complete.

Theorem 9. The migrated revision choice is strongly consistent (Constraint 8).

Proof. cchr is consistent with respect to Rch
r . We may assume that Rcm

r = Rch
r ∧

(ri+1 ⇒ ri). From the choice, ri = true. From the ambition, ri+1 = true. Taken
together, the new predecessor invariant is fulfilled (true ⇒ true).

Theorem 10. The migrated revision choice is included in the revision ambition
(Constraint 9).

Proof. Since the binding (ri+1, true) is transferred from the ambition to the
migrated choice, acm

r ⊂ cmi
r .

In case the check-out time choice did not equal the latest revision, however,
Migrate will definitely fail because ri+1 ⇒ ri is violated due to the negative
selection state of ri set by the revision default. In this case, an explicit Check-
Out, including a consistent revision selection, is enforced (cf. Fig. 4).

7 Generalized Editing Model

The functional properties of the here contributed dynamic editing model are
now compared to the so considered conventional approach, static filtered editing
(SFE). Concrete representatives are discussed in the related work section; we
here use the vocabulary used in the own conceptual framework.

A Consistency-Preserving Editing Model 163

Commonalities. The filtered editing (FE) approaches considered here have
in common that they operate in an iterative way, where each iteration is a
transaction begun with check-out and concluded with commit. In between,
workspace contents may be modified. The workspace is defined by a choice
– or read filter –, which is a unique version selection. By an ambition – a
partial write filter –, the versions affected by the change are defined. This way,
the version described by the choice is representative for the set of versions
described by the ambition.

Static Filtered Editing. In SFE, both the choice and the ambition are defined
in one step at the beginning of a workspace transaction, i.e., at check-out.
Typically, an ambition is defined first as a partial version selection, which is
further configured top-down into a unique choice. Both choice and ambition,
as well as the version space itself, are immutable during modify. After commit,
the transaction is closed and the workspace is cleared; subsequent transactions
must be initiated explicitly. Changes to the variability model are allowed when
no workspace transaction is active.

Dynamic Filtered Editing. In DFE, the ambition is specified at commit
time. Furthermore, the variability model is made available for modification
in the workspace. This way, it is possible to introduce those features to which
a change is relevant while the change is actually performed. Moreover, a
new transaction is started immediately after commit. It is assumed that the
same choice as in the previous iteration shall be used—an assumption that is
obtained from generalizing the VCS workflow (and supported by the opera-
tion migrate presented above).

Figure 5 illustrates the different optional and mandatory phases of the respec-
tive iterations and aligns them with the constraints presented in Sect. 4.

The remainder of this section sketches – without providing formal definitions
or proofs – how the editing model assumed so far can be generalized in order
to support static filtered editing as well as blended forms of the editing models.
The here presented framework primarily assumes DFE, but it also allows to step
back to SFE in case a more restrictive workflow is desired.

7.1 Purely Static Filtered Editing

The comparison above makes obvious that SFE requires only a subset of the
constraints investigated here. This is due to the missing evolution of the feature
model, as well as due to the lack of a Migrate operation; a check-out is required
in advance to each iteration. Furthermore, the order of consistency checks is
different because the ambition is selected during check-out already.

The algorithms presented in Sect. 5 can be adjusted for SFE as follows:

– Ambition selection – including the automated revision graph management –
is moved from Commit to CheckOut, more precisely to after filtering the
feature model. Constraint 4 (weak ambition consistency) is preponed accord-
ingly.

164 F. Schwägerl and B. Westfechtel

feature model

check-out modify
domain model commit

define
choice

define
ambition

update
repository

modify feature
model

check-out commit

define
choice

define
ambition

update
repository

migrate
choice

(a)
static

filtered
editing

(b) dy-
namic

filtered
editing

modify domain and

populate
workspace

populate
workspace

check
Constraint

3

check
Constraint

4

check
Constraints

1, 2, 5

check
Constraint

6

check
Constraints

1, 2

check
Constraint

3

check
Constraints

4, 5, 6

check
Constraints

7, 8, 9

Fig. 5. Static vs. dynamic filtered editing by phases and constraints.

– As the feature model is not made available for modification, it is not exported
into the workspace during CheckOut.

– Constraints 1 and 2 are ensured before filtering the domain model as in DFE.
Directly afterwards, Constraint 5 (choice represents ambition) is checked. If
this constraint fails, it is not the ambition, but the choice that has to be
altered.

– During Modify, only the domain model can be edited.
– The only constraint that remains to be checked at Commit is Constraint 6.

If this constraint fails, however, the user cannot be asked for a new ambition.
Rather, the write set representing the product-level changes must be revised
in order to be sufficiently general. This requires dedicated tool support in
addition.

– Migrate (see Algorithm 5) is abandoned entirely.
– Feature model modification is allowed between workspace transactions in an

unfiltered editing mode.

7.2 Restricted Transactions

More restrictive forms of (static or dynamic) filtered editing can be approached
by tailoring DFE towards only one product dimension, the feature model or the
domain model.

Feature Model Transaction. In this form of restricted transaction, only the
feature model is made available in the workspace. Since this is versioned

A Consistency-Preserving Editing Model 165

exclusively by the revision graph, whose consistency is managed automatically
(see Sect. 6), constraint validation becomes entirely transparent to the user,
who is accosted only with selections in the revision graph and, e.g., with
commit messages.

Domain Model Transaction. It is also desirable in many scenarios to remove
the feature model from the workspace, or to make it unmodifiable. Then, the
co-evolution problems motivating Constraints 3, 7, 8, and 9 become irrelevant.

A concrete workflow similar to the one implied by the SFE model can be
realized by applying restricted feature model transactions and domain model
transactions alternatingly. Furthermore, nested transactions are conceivable: A
feature model transaction may aggregate several domain model transactions, all
committed under the same historical scope.

7.3 Earlier Ambition Specification

Without negatively affecting the flexibility of DFE, the action specify ambition
can be preponed to any point in time after specify choice. This allows the user to
fix the scope of the intended change earlier than during commit; furthermore, the
check of Constraints 4 (weak ambition consistency) and 5 (ambition represented
by choice) can be applied earlier, which may prevent a subset of consistency
problems. Constraint 6 (sufficiently specific ambition) still needs to be checked
during commit.

7.4 The Amend Operation

DFE can also be extended in order to allow corrections of the ambition after
commit. We semi-formally define an additional workspace operation Amend,
which behaves as follows:

– The user makes a selection in the revision graph. The chosen revision option
is ri.

– The feature model Pf for revision ri is reconstructed.
– The user is asked to define a new feature ambition a′

f in Of as a substitute
for af .

– Constraint 4 is re-checked using the new ambition a′
f and Rf . If the constraint

is violated, the operation is aborted.
– In the visibilities of elements of the domain model, all occurrences of the term

af are replaced by a′
f .

This operation potentially behaves less consistent than the conventional way
of ambition specification. In particular, Constraints 5 and 6 are ignored.

8 Evaluation

In order to quantitatively evaluate the user-visible properties of the presented
constraints and consistency-preserving algorithms, we report on two data sets

166 F. Schwägerl and B. Westfechtel

extracted from case studies that refer to standard examples from SPL litera-
ture. In addition to the product line for graphs [12,14] considered above, the
second case study refers to a product line for Home Automation Systems (HAS)
originally introduced in [3] and adapted in [15].

Table 1. Aggregate results quantifying the user complexity of the dynamic filtered
editing model.

Graph HAS

Number of iterations 9 38

Feature model size 8 17

Domain model size 26 106

Average ambition complexity 8/9 = 0.89 41/38 = 1.08

% migration interactions 1/9 = 0.11 5/38 = 0.13

% explicit check-outs 3/9 = 0.33 6/38 = 0.16

% commits canceled 0/9 = 0 1/38 = 0.026

Methodology. All results were obtained by analyzing recorded version his-
tories of previously conducted case studies. While the graph product line was
realized by the authors themselves, the HAS study was conducted by a master
student with MDPLE background. In order to foster an incremental style of
development, requirements were communicated to the subjects in consecutive
interview sessions. In the HAS case study, hypothetical customer feedback was
given, such that it became necessary to revise or to newly define features and
their corresponding domain artifacts.

The size of feature model and domain model reported below can be obtained
by analyzing the repository contents manually. The four additional quantities
measured demand for further explanation:

1. Average ambition complexity: The complexity of an ambition is defined as
the number of features bound in it. Negatively bound features are treated as
two bindings (as feature expressions derived from them contain an additional
syntax tree element for the negation). An ambition may also have complexity
0 when no feature is bound for a universal change (case a = true).

2. Migration interactions: The ratio of editing model iterations in which at least
one user interaction is required during migration.

3. Explicit check-outs: The ratio of iterations where the optional check-out oper-
ation is necessary in case the previously applied migration does not produce
the desired choice for the next iteration.

4. Commits canceled: The ratio of commit operations canceled after consistency
violations had been reported, such that further domain or feature model edit-
ing was required.

A Consistency-Preserving Editing Model 167

Results and Conclusions. Table 1 summarizes quantitative results extracted
from both case studies. To begin with, (1) the complexity of ambitions is in aver-
age close to 1, allowing for the assumption that ambitions frequently consist of
only a single feature binding; (2) migration happens transparently for the larger
part of iterations; (3) the check-out operation, which has been made optional by
the dynamic editing model, is necessary only in a small ratio of iterations; (4)
only in one of altogether 47 iterations was it necessary to cancel the commit (in
this case, the feature the subject intended to realize was accidentally missing in
the feature model). In contrast, the larger part of iterations did neither require a
check-out nor user interaction during migrate. When compared to SFE, the low
number of commits canceled suggests that the dynamism gained by the filtered
editing model is not paid with a significant loss of consistency.

Threats to Validity. The significance of the results derived from Table 1 is
potentially limited by two factors. First, it was clearly communicated to the
evaluators that the scope of the changes applied in one iteration should be equal,
leading to comparably short-running iterations. However, in real-world scenar-
ios, inexperienced users may accidentally realize several different features in one
iteration, making it impossible to specify a valid global ambition. Second, coop-
erative versioning was faded out in both case studies. We expect the number of
canceled commits to slightly increase with multi-user support due to problems
such as doubly introduced features.

9 Related Work

This paper ties on previous publications regarding a conceptual framework to
integrate SPLE, MDSE, and VC; see [6,11,14,15]. Below, we refer to approaches
explicitly dealing with workspace consistency problems appearing with filtered
SPL editing.

Fully, Partially, and Temporarily Filtered SPL Editing. Approaches
to filtered editing of (model-driven) software product lines may be categorized
under fully filtered editing, partially filtered editing, and temporarily filtered edit-
ing.

Fully filtered multi-variant editing was influenced by early concepts of multi-
version editors such as P-Edit [10]. They assume that a view – similar to the
workspace in the here considered framework – is created from a multi-variant
document, which corresponds to the repository here. The version available in the
view is defined by a choice that uniquely denotes a representative of the ambition.
The here presented approach realizes fully filtered editing. It does, however, not
assume or require a specific multi-version editor, but allows arbitrary tools to
be used for editing the workspace. To this end, the operations that define and
interpret the choice and ambition are provided by generalized version control
abstractions, which have been extended by SPLE concepts.

168 F. Schwägerl and B. Westfechtel

Partially filtered editing [8] aims at hiding variants to which the current
change is immaterial, without requiring the choice to be unique (Constraints 1
and 7). There is only a single filter serving as choice and ambition simultane-
ously. Variability information referring to non-resolved configuration options is
presented in the view, e.g. in the form of annotations. As a consequence, specific
tools or preprocessor languages are required in order to cope with variability in
the workspace.

A source-code centric approach to temporarily filtered editing of software
product lines is described in [7]. A partial feature configuration can be specified
as write filter. Code fragments immaterial for the so intended change are hidden.
As approximation of a read filter, a context is derived as an extended view
on the write filter. Similarly, the FeatureMapper [16] approach, which is based
on annotative variability, offers a temporary write filter in the multi-variant
view. Having selected one or more features and invoked the record operation,
all changes performed in the MVDM are associated with a feature expression
derived from the provided feature selection.

View-Based vs. Transactional Filtered Editing. An orthogonal distinction
can be made between the categories view-based and transactional filtered editing.
For starting and closing transactions, different metaphors are provided in the
literature.

In the first case, the filter – which may be further decomposed into read and
write filter – can be dynamically changed by fading in and out configuration
options. Altering the filter directly influences the visible workspace contents.
This is realized, e.g., in [7,8]. View-based filtered editing, however, requires spe-
cialized multi-version editors or at least a tight integration into existing editors.
This makes the approach difficult to implement, particularly in model-driven
development environments.

In contrast, the transactional approach assumes well-defined iterations dur-
ing which the read filter remains equal. In the here presented approach as well
as in the precursor UVM [13], transactions are opened and closed by generalized
forms of the VCS metaphors update and commit. The approach presented in
[9] defines similar operations, get and put. P-EDIT [10] relies on the metaphors
of conditional compilation, introducing a write operation that closes a transac-
tion by a specific write filter. In FeatureMapper [16], temporary transactions are
opened and closed by starting and stopping change recording (see above); the
view is inferred from a feature selection similar to feature ambitions.

Static vs. Dynamic Filtered Editing. Representatives of static filtered edit-
ing, e.g., UVM [13], require that the ambition is specified at check-out time;
since the rule base does not evolve, constraints dealing with its evolution are
unnecessary. Similarly, in [8], having a single filter requires that the scope of a
change must be known beforehand, inhibiting the concurrent introduction of a
feature and its realization.

A Consistency-Preserving Editing Model 169

The approach presented by [9] moves the specification of the write filter
from check-out time to commit time, which slightly deviates from strict SFE as
defined above. As the version space is not represented explicitly, no co-evolution
problems may occur, and no dynamism is required for the editing model.

In the presented dynamic filtered editing model, the variability model may
evolve during an iteration embraced by check-out and commit. In particular,
new configuration options and new configuration rules may be introduced this
way. The flexibility implied by this approach is – to the best of the author’s
knowledge – unique in the literature. Correspondingly, the implied consistency
problems described by Constraints 7, 8, and 9, have been described and analyzed
for the first time. Moreover, the operation Migrate contributed in Algorithm5
is novel.

Generality of the Write Set. In the list of dynamism-aware consistency con-
straints provided here, Constraint 6 inhibits a special role, considering not only
the soundness of the version space (i.e., options, rule base, choice, and ambition),
but also of its connection to the product space. Phrased in the vocabulary used
in this paper, this constraint ensures that “the ambition is specific enough to
reproduce the change in all affected variants”, or conversely speaking “the change
is general enough to be reproduced in all variants included in the ambition”.

The potential inconsistencies that may occur by having the user inadvertently
change a larger set of variants than he/she intends to do – namely the variants
that contain those elements visible in the view – have been recognized in the
literature previously. In [10], a distinction is made between fixed and unfixed
fragments made available in the workspace. Fixed fragments are visible in all
variants included in the ambition, whereas unfixed fragments are visible only
in a part of the ambition that includes the choice. Unfixed fragments must be
managed in a more or less restrictive way. P-EDIT graphically highlights unfixed
fragments, such that the developer becomes aware of a potentially unintended
modification of hidden artifacts.

The edit isolation principle described in [8] states that “the only variants
that change in the source are those that can be reached from the view”, where
“source” denotes the multi-version representation. This has been used as the
central design constraint for the specification of an update (here: commit) oper-
ation, which does not only detect, but also repair situations in which the prin-
ciple is violated. When compared to the edit isolation principle, Constraint 6 is
even more restrictive since it disallows, among other, modifications that insert
or destroy cross-links to invisible elements.

10 Conclusion

We have motivated, formally developed, and reflected on a consistency-
preserving dynamic filtered editing model that supports the iterative creation of
model-driven software product lines in a single version view by adopting version
control principles.

170 F. Schwägerl and B. Westfechtel

The following implicit assumptions are underlying the DFE model: First,
the users want to specify all information referring to the version space as late
as possible; therefore, the definition of an ambition is deferred to the Com-
mit phase, and modifications to the feature model need not be performed in
advance to an iteration, but may be incorporated during Modify. Second, the
user wants to be accosted with version specification tasks as seldom as possible,
which vindicates the decision to make the CheckOut operation optional and
to introduce Migrate. Third and last, the editing model should be no more
restrictive than necessary in order to prevent the user from performing changes
that cause product inconsistencies or that cannot be potentially reproduced.

Consistency is checked by explicit constraints assigned to the different editing
model phases. During CheckOut, it is ensured that the specified feature con-
figuration is complete and consistent with respect to the feature model. During
Modify, changes that would make the feature model unsatisfiable are inhib-
ited. The feature ambition defined by the user during Commit is checked for
weak consistency as well as for being represented by the choice. Furthermore, it
must be sufficiently specific for the performed product-level change. The newly
introduced operation Migrate automatically produces a choice for the next
iteration based on the previous choice and the ambition, in order to obviate
repeated check-outs that reproduce the current workspace view. The migrated
choice is checked for completeness and consistency with the evolved version of
the feature model. Furthermore, it must include the ambition.

The correctness of the consistency-preserving operations with respect to the
underlying consistency constraints has been formally proved where adequate.
Furthermore, we have supplied evidence that the revision graph is managed
not only automatically, but also consistently. An experimental evaluation based
on aggregated data from existing version histories of two case studies confirms
that the DFE model performs flexibly and non-disruptively, while the amount
of inconsistencies reported is insignificantly higher than a comparative static
solution to filtered editing.

The decision whether to apply static or dynamic filtered editing is related to
the amount of flexibility (i.e., late ambition specification, co-evolution of feature
model and domain model) and of consistency guarantees (i.e., by preventing
certain co-evolution problems) required by a specific project. In the presented
conceptual framework, it is assumed that DFE is the preferred style, but SFE
can be adopted gradually in case a more restrictive workflow is demanded.

Several ways of generalizing the presented DFE model have been sketched.
To begin with, purely static filtered editing model may be realized by moving
and deleting some version selection statements and constraint checks between
the algorithms. Restricted transactions may ensure that only the feature model
or only the domain model are edited. Furthermore, the ambition may also be
specified at an earlier point in time, which slightly increases the consistency at
the expense of a more restricted editing model. Last, the Amend operation even
allows to retrospectively alter the ambition used for a previous commit, such
that erroneous version specifications can be revised.

A Consistency-Preserving Editing Model 171

The algorithms presented in this paper have been implemented as part of the
Eclipse-based filtered MDPLE tool SuperMod [14]. For modification of feature
models, for defining and migrating feature configurations, as well as for specifying
feature ambitions, dedicated tree-oriented editors and dialogs are provided.

Future work will address the syntactical correctness of single-version domain
models checked-out into the workspace. It has also turned out that Constraint 6
is, in some cases, too restrictive, for instance when it concerns the graphical
representation of model elements; therefore, we will introduce a mechanism to
define exceptions to the corresponding constraint check. Besides, the suitability
of DFE for agile SPLE processes will be examined.

References

1. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Hoboken (2006)

2. Conradi, R., Westfechtel, B.: Version models for software configuration manage-
ment. ACM Comput. Surv. 30, 232–282 (1998)

3. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Berlin (2005). https://doi.org/10.
1007/3-540-28901-1

4. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute (1990)

5. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Boston (2004)

6. Schwägerl, F., Westfechtel, B.: Maintaining workspace consistency in filtered edit-
ing of dynamically evolving model-driven software product lines. In: Proceedings
of the 5th International Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2017, Porto, Portugal, 19–21 February 2017, pp.
15–28. SCITEPRESS (2017)

7. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in
source code. In: Proceedings of the 2nd International SPLC Workshop on Visuali-
sation in Software Product Line Engineering (ViSPLE), pp. 303–313 (2008)

8. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
Generative Programming: Concepts and Experiences, GPCE 2014, Vasteras, Swe-
den, 15–16 September 2014, pp. 29–38 (2014)

9. Stanciulescu, S., Berger, T., Walkingshaw, E., Wasowski, A.: Concepts, opera-
tions and feasibility of a projection-based variation control systems. In: 2016 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, 2–7 October 2016, pp. 323–333. IEEE (2016)

10. Sarnak, N., Bernstein, R.L., Kruskal, V.: Creation and maintenance of multiple
versions. In: Winkler, J.F.H. (ed.) Software Configuration Management. German
Chapter of the ACM, vol. 30, pp. 264–275. Teubner (1988)

11. Schwägerl, F., Buchmann, T., Uhrig, S., Westfechtel, B.: Towards the integration
of model-driven engineering, software product line engineering, and software con-
figuration management. In: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (eds.)
Proceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development, Angers, France, pp. 5–18. SCITEPRESS (2015)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1

172 F. Schwägerl and B. Westfechtel

12. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-
line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44800-4 2

13. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform ver-
sion management. IEEE Trans. Softw. Eng. 27, 1111–1133 (2001)

14. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod - a model-driven tool that
combines version control and software product line engineering. In: Proceedings of
the 10th International Conference on Software Paradigm Trends, Colmar, Alsace,
France, pp. 5–18. SCITEPRESS (2015)

15. Schwägerl, F., Buchmann, T., Westfechtel, B.: Filtered model-driven product line
engineering with SuperMod: the home automation case. In: Lorenz, P., Cardoso,
J., Maciaszek, L.A., van Sinderen, M. (eds.) ICSOFT 2015. CCIS, vol. 586, pp.
19–41. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30142-6 2

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to mod-
els. In: Companion Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pp. 943–944. ACM, New York (2008)

https://doi.org/10.1007/3-540-44800-4_2
https://doi.org/10.1007/978-3-319-30142-6_2

Model-Driven STEP Application Protocol
Extensions Combined with Feature
Modeling Considering Geometrical

Information

Thorsten Koch1(B), Jörg Holtmann1, and Timo Lindemann2

1 Software Engineering Department, Fraunhofer IEM, Paderborn, Germany
thorsten.koch@iem.fraunhofer.de

2 Emmet Software Labs GmbH & Co. KG, Bad Salzuflen, Germany

Abstract. Original equipment manufacturers (OEMs) build mechatro-
nic, variant-rich systems using components from several suppliers in
industry sectors like automation. The OEMs have to integrate the dif-
ferent components to the overall system based on a virtual layout. For
this purpose, the suppliers provide geometrical information via the stan-
dardized exchange format STEP. Beyond the geometrical information,
the OEMs need additional logical and technical information for the inte-
gration task as well as the variant handling. For that reason, STEP
provides an extension mechanism for extending and tailoring STEP to
project-specific needs. However, extending STEP requires extending sev-
eral capabilities of all involved tools, which prevents the project-specific
utilization of the STEP extensions mechanism. In order to cope with
this problem, we presented in previous work a model-driven approach
enabling the flexible specification of STEP extensions and particularly
the automatic derivation of the required capability extensions for two
involved tools. Nevertheless, the OEMs still need to apply several engi-
neering tools from different domains to consider logical as well as geomet-
rical constraints between product variants. In this paper, we hence com-
bine our previous approach with extended feature models that consider
conventional logical and particularly geometrical information, thereby
enabling a holistic product line engineering for mechatronic systems. By
means of an automation production system example, we illustrate how
OEMs can orchestrate their overall supply and development processes
through the combination of both approaches.

Keywords: STEP · Model-driven software development
Meta-modeling · Model transformation · Product line engineering
Feature models · Geometrical constraints

1 Introduction

The development of mechatronic systems in industry sectors like automation
is characterized by complex supply chains, where original equipment manufac-
turers (OEMs) build an overall system using physical components from several
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 173–197, 2018.
https://doi.org/10.1007/978-3-319-94764-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_8&domain=pdf

174 T. Koch et al.

suppliers. An example of such a system is depicted in Fig. 1. The OEM inte-
grates this overall automation production system, a so-called Pick & Place Unit
(PPU) [1]. The PPU encompasses the four components Stack, Ramp, Crane, and
Stamp, which are delivered by suppliers. The Stack works as workpiece input
storage and the Ramp acts as workpiece output storage. The Stamp is respon-
sible for labeling the workpieces, and the Crane is responsible for transporting
the workpieces by picking and placing them between the different working posi-
tions. The Crane transports workpieces from the Stack to the Stamp. After the
Stamp has processed a workpiece, the Crane transports the workpiece finally to
the Ramp.

Fig. 1. Pick & Place Unit as an example for a simple automation production system
[1].

Figure 2 sketches the exchange of product information between the OEM
and different suppliers in the development process of a mechatronic product
line like the PPU. In the course of integrating the overall system, one of the
most important development tasks of the OEM is to geometrically assemble the
overall system based on the particular supplier components. Prior to the actual
production of the overall system, this task is performed by means of a virtual
geometric layout within computer-aided design (CAD) tools. The suppliers geo-
metrically design their particular components within CAD tools, too. Based on
these designs, they provide geometrical information about their components via
the standardized exchange format STandard for the Exchange of Product data
(STEP) [2], such that the OEM is able to virtually layout the overall system (cf.
STEP-based exchange of geometrical information in Fig. 2).

Beyond the geometrical information, the OEM needs additional technical
information (e.g., the admissible payload of the Crane manufactured delivered
by Supplier A and the power consumption of the Stamp delivered by Supplier B
in Fig. 2) to perform his development tasks. For that reason STEP, provides an
extension mechanism for extending and tailoring STEP to project-specific needs.

Model-Driven STEP Application Protocol Extensions 175

Geometrical Information

Technical Information

…
Power Consumption
= 2000 W
…

Technical Engineer

CAD Engineer
Geometrical Information

Technical Information

…
Power Consumption
= 2000 W
…

Technical Information

Supplier A

Supplier B

PDM Tool

OEM

System Integrator

STEP-based exchange of geometrical information

Technical Engineer

CAD Engineer

PPU

Stack

Ramp

Crane

Stamp

Geometrical Information

Power
Consumption

1000 W

Admissible
Payload

20 kg

Geometrical Information

Technical Information

Power
Consumption

1000 W

Admissible
Payload

20 kg

Fig. 2. Overview of the exchange of product information between the OEM and dif-
ferent suppliers.

Typical applications of the STEP extension mechanism have been reported in [3,
4], for example.

However, extending STEP moreover requires extending the capabilities of all
involved tools for the specification, the data exchange, and the interpretation of
the additional technical information. That is for one thing, all affected suppliers
have to extend their CAD tools such that they are able to specify and export
the additional information. For another thing, the OEM has to extend his CAD
tool such that he is able to import and interpret the additional information.
These tool extensions have to be implemented through plugins and application
programming interfaces on the side of all involved organizations, which causes a
high implementation effort. Thus, the application of the STEP extension mech-
anism is restricted to static, one-off, and long-term tool chains, which do not
fulfill the needs of todays and future dynamic business processes (cf. the rec-
ommendations for implementing the feature “digital end-to-end engineering” for
dynamic value chains in the context of Industry 4.0 [5]).

The fixedness of the STEP extension mechanism leads to a tool chain as
exemplary sketched in Fig. 2. Beyond the specification of geometrical information
in CAD tools and the corresponding standardized data exchange via unextended
STEP, the suppliers specify the respective additional technical information out-
side their CAD tools. This additional information is awkwardly exported to
the OEM via different communication channels (e.g., phone, office documents
via mail, or electronic data interchange—EDI—formats [6]). In the example in
Fig. 2, Supplier A specifies the additional product information like the power
consumption and the admissible payload of the component in Excel sheets and

176 T. Koch et al.

exchanges this information via telephone (cf. Manual exchange via Telephone in
Fig. 2). Supplier B documents the power consumption in a Word document and
exports the information via mail (cf. Manual exchange via Mail in Fig. 2). Further-
more, the OEM faces the challenge of component-wisely storing and grouping the
geometrical as well as additional information within a product data management
(PDM) tool.

In order to cope with this problem, we introduced in previous work [7] a com-
plex application of existing meta-modeling and model transformation techniques
that enables the flexible specification of STEP extensions. This particularly
included the automatic derivation of the required capabilities of two involved
tools for the specification, the data exchange, and the interpretation of addi-
tional technical information.

However, the development of mechatronic systems is not only characterized
by complex supply chains, but also by high customer expectations regarding the
product individualization and modularity. This results in a large variety of prod-
uct variants and a lot of logical as well as geometrical constraints. For instance,
the PPU example is able to handle two different kinds of workpieces: metal and
plastic. If a product variant is supposed to handle metal workpieces, it requires
a Crane with an admissible payload larger than 20 kg to handle the workpieces
(logical constraint). Furthermore, as indicated in Fig. 2, the Crane requires a
minimum distance of 2 m to other components to guarantee a safe operation
(geometrical constraint). Whereas the OEMs use approaches from product line
engineering (like feature modeling [8]) for the specification and validation of
logical constraints in their PDM tool, they apply their CAD tool to specify
and validate the geometrical constraints. This leads to awkward redundancies
between both kinds of engineering tools.

In order to cope with the complex data exchange between the OEM and
his suppliers on the one hand, and the mixed specification and validation of
logical as well as geometrical constraints in different engineering tools on the
other hand, we integrate in this paper our model-driven approach for the flexible
specification of STEP extensions with another previous work [9] that extends
feature models to support both logical and geometrical constraints. Based on
the PPU example, we show how the OEM can orchestrate the overall supply
and development process by the combination of both approaches.

The reminder of this paper is structured as follows. In the next section, we
introduce fundamentals about STEP. Afterward, we present our model-driven
data exchange approach integrated with extended feature models in Sect. 3 and
conduct a case study in Sect. 4. Section 5 covers related work. Finally, Sect. 6
concludes this paper with a summary and an outlook on open future work.

2 ISO 10303 - STandard for the Exchange of Product
Data (STEP)

The International Organization for Standardization has published the ISO 10303
- STandard for the Exchange of Product data (STEP) [2] to address the problem

Model-Driven STEP Application Protocol Extensions 177

of exchanging product data between different systems. The overall objective of
STEP is to provide a mechanism that describes a complete and unambiguous
product definition throughout the entire life-cycle of a product. Furthermore,
STEP provides a system independent and computer interpretable file format for
the exchange of product data between different software tools, like computer-
aided design (CAD) or simulation tools [10]. However, STEP especially focuses
on the representation of geometrical information.

To realize the objective of a complete and unambiguous product definition,
STEP defines so-called application protocols [2]. An application protocol is a
data model tailored to the specific needs of an application area. In the scope of
this paper, we use the application protocol STEP AP214. Although the STEP
AP214 is originally designed for the automotive domain, it is broadly used in
practice, since it describes product information like sheet-metal parts of the car
body, mechanical parts of the engine, and glass components. Thereby, the STEP
AP214 is also suitable for the exchange of product information in the application
of automation production systems.

In an application protocol, the description of product data is defined in the
EXPRESS information modeling language [11]. EXPRESS is part of the ISO
10303 and has been defined to model geometry information. EXPRESS consists
of language elements that allow unambiguous data definition and specification of
constraints on the defined data. The most important EXPRESS element is the
entity data type, which defines the objects of interest in the domain being mod-
eled. The entity is characterized by its attributes and constraints. The EXPRESS
information modeling language also supports various kinds of data types, includ-
ing simple types, aggregations types, and constructed types [11].

STEP defines two different file formats for the exchange of product data:
physical file [12] and XML file [13]. Whereas the XML file is an XML encoding
for the product data defined by an application protocol, the physical file is a
purely ASCII encoding for product data. In the scope of this paper, we use the
physical file format, since it is mostly used by exchange systems today to read
and write STEP data [10].

Figure 3 depicts an overview of the relationship between the EXPRESS infor-
mation modeling language, a STEP application protocol, and the actual prod-
uct information contained in a STEP file. The EXPRESS information modeling
language has been developed prior to the Meta Object Facility (MOF) [14] stan-
dard of the OMG. However, in terms of the MOF standard, the EXPRESS
information modeling language is the meta-meta-model used to specify STEP
application protocols by means of a grammar. The STEP application protocol
is the meta-model used to specify the structure of the product information. The
STEP file is the model containing the actual product information following the
structure in the application protocol.

In the remainder of this section, we use the running example of the PPU to
illustrate the different parts of the STEP standard. Therefore, Listing 1 depicts
an excerpt of the STEP AP214 defined by means of the EXPRESS information
modeling language showing the four entities product context, product, line, and
cartesian point. The product context contains the single attribute discipline type

178 T. Koch et al.

EXPRESS

STEP AP

instanceof

STEP File

instanceof

Fig. 3. Overview of the relationship between EXPRESS, STEP application protocols
and STEP files [7].

of the type label. The type label represents a STRING. The product contains the
attribute id, name and description; all of type STRING. Furthermore, it contains
a list of references of product contexts.

Listing 1. Exemplary excerpt of the STEP AP214 defined in EXPRESS [7].

1 TYPE label = STRING;
2 END_TYPE;
3

4 ENTITY product_context;
5 discipline_type : label;
6 END_ENTITY;
7

8 ENTITY product;
9 id:STRING;

10 name:STRING;
11 description:OPTIONAL STRING;
12 frame_of_reference:SET [1:?] OF product_context;
13 END_ENTITY;

Listing 2 depicts an excerpt of the physical file of Crane component of
Pick&Place Unit. As mentioned before, a physical file is a pure ASCII encoded
file with a simple structure. Each line of a physical file encompasses an identi-
fier encoded #id and a key-value par encoding the actual product information.
For example, in Line 1 of Listing 2, the product is defined. The entity has the
identifier #86, the id and name HT L1600. The identifier is also used to encode
cross-references between different entities. For example, the entity product con-
tains a reference to the identifier #91.

Listing 2. Exemplary excerpt of a STEP AP214 file [7].

1 #86=PRODUCT(’HT_L1600’,’HT_L1600’,’’,(#91));
2 #91=PRODUCT_CONTEXT(’ ’,#93,’mechanical’);

3 Flexible Specification of STEP Extensions

In this section, we present the integration of our model-driven approach for the
flexible specification of STEP extensions with an extensions to feature models to
support both logical and geometrical constraints. Figure 4 depicts an overview

Model-Driven STEP Application Protocol Extensions 179

of the approach encompassing four main contributions for the OEM and his sup-
pliers to improve the problematic situation described in Sect. 1. First, the OEM
as well as his suppliers are enabled to specify additional technical information
directly in their tools (cf. -1- Specification of additional technical information in
Fig. 4). For this purpose, we enable the OEM to specify a central data model
that can be tailored to the specific needs of a particular development project.
The central data model acts as an alternative to a PDM tool, which only has the
capability to component-wisely store arbitrary artifacts (like CAD models and
documents) but not to interpret model-based information from different sources.
Furthermore, it contains all geometrical and technical information and is also the
main artifact of our approach from which we derive the other parts using model-
driven techniques. Furthermore, we provide an extension to the CAD tools of the
suppliers and the product line engineering tool of the OEM based on the STEP
extensions specified for the central data model. Second, we are able to derive
an automatic data exchange for the involved tools (cf. -2- Automatic exchange
of product information in Fig. 4). The specification of additional technical infor-
mation as well as the automatic data exchange result in a machine-readable and
processable representation of the product information (cf. -3- Interpretation of
the additional technical information in Fig. 4). Finally, the previous contributions
enable an integrated development process for mechatronic product lines (cf. -4-
Integrated product line engineering in Fig. 4).

In the following section, we describe a systematic model-driven process to
support the creation of the central data model. Furthermore, we present the
technical details of the three process steps Automatic Derivation of the Central
Data Model and Data Import, Generate CAD Extensions, and Generate Feature
Model Extension in the subsequent Sects. 3.2, 3.3, and 3.4, respectively.

Central data model for project-specific product information

OEM

System
Integrator

Supplier B

CAD Engineer

Product Information

#3245=power_consumpti
on(2000,‘W');

CAD Engineer

Supplier A

Product Information

#3256=power_consumpti
on(1000,‘W');
#3457=admissible_paylo
ad(20,‘kg‘);

Product Line Engineering Tool

PPU

StackRampCraneStamp

Geometrical Constraints:
The distance between the crane and the stamp must be greater than 2 meters.

STEP-based exchange
of product information

Integrated product line engineering4

Product Information

#3245=power_consumption
(2000,‘W');

Product Information

#3256=power_consumption
(1000,‘W');
#3457=admissible_payload
(20,‘kg‘);

STEP-based exchange
of product information

Automatic exchange of product information2
Interpretation of the additional technical information3

Specification of additional technical information1

Industry
Sector

Fig. 4. Overview of our model-driven approach for the exchange of product
information.

180 T. Koch et al.

3.1 Process for the Creation of the Central Data Model

Figure 5 depicts our model-driven process to support the creation of the central
data model. The process is specified by means of the Business Process Model
and Notation (BPMN) [15]. The main contributions of this paper are emphasized
in Fig. 5 with gray tasks and artifacts. We visualize manual steps by means of
BPMN manual tasks (hand in the upper left corner of the task). Steps that we
could automate are visualized by means of BPMN service tasks (cogwheel in the
upper left corner of the task). Work results are specified by means of BPMN
data objects (document icons), and persistent models that are subject to update
and retrieval operations are specified by means of BPMN data stores (database
icons).

 Automatic Derivation of the Central Data Model and Data Import

Central Data
Model

Project-specific
STEP-Grammar

Execute M2T-
Transformation

Execute
Derivation
Workflow

Central Data
Model Importer

Execute M2M-
Transformation

Project-specific
STEP AP

Generate Feature
Model Plugin

Analyze
Requirements

Create STEP
Extensions

Select STEP
Extensions

STEP Extensions

Suitable
Extensions exist

Select Base
Application

Protocol

Base STEP AP
Selected

STEP Extensions

N
o

S
ui

ta
bl

e
E

xt
en

si
on

s
ex

is
t

STEP Application
Protocols

Feature Model
Plugin

CAD
Plugin

Generate CAD
Plugin

Fig. 5. Overview of the model-driven process to support the creation of the central
data model.

In the following, we exemplarily perform and explain each process step
depicted in Fig. 5 referring to the PPU as a running example. We design the
model-driven process in such a way that the OEM has to perform it, but may
need to discuss several aspects with his suppliers.

In the first process step Analyze Requirements, the OEM decides which infor-
mation is necessary for the current development project and should be stored in
the central data model. For the development of the PPU, the OEM decides that
the power consumption of all used components and the admissible payload of the
Crane must be stored in the central data model besides the regular geometrical
information.

In the second process step Select Base Application Protocol, the OEM selects
an application protocol from the STEP Application Protocol library that fulfills

Model-Driven STEP Application Protocol Extensions 181

most of the analyzed requirements and that acts as a basis for the central data
model. The library only contains application protocols that are officially defined
in the ISO 10303. In our running example, the OEM decides to use the STEP
AP214 as the Base STEP AP.

As mentioned in Sect. 1, STEP usually does not cover all product information
that is needed for the development of the overall system. Hence, the OEM uses
the next two process steps Create STEP Extensions and Select STEP Extensions
to enrich the selected Base STEP AP with further descriptions of product infor-
mation. For this purpose, we enable the OEM to create new STEP extensions
in an EXPRESS-based textual editor and to store these extensions in a STEP
Extension library. Furthermore, we enable him to select existing STEP extensions
from the library that satisfy his specific needs.

In our running example, the STEP Extension library already contains sev-
eral STEP extensions. While reading through the descriptions of these STEP
extensions, the OEM noticed that the STEP EXTENSION POWER CONSUMPTION

depicted in Listing 3 already satisfies the requirements on the specification of a
component’s power consumption.

Listing 3. STEP extension for the specification of a power consumption [7].

1 SCHEMA STEP_EXTENSION POWER_CONSUMPTION;
2 ENTITY power_consumption;
3 component: product;
4 value: NUMBER;
5 unit: Unit;
6 END_ENTITY;
7 END_SCHEMA;

The STEP EXTENSION POWER CONSUMPTION only contains the entity
power consumption. This entity refers to the entity product (cf. Sect. 2) defined
in the STEP AP214. Furthermore, the entity power consumption contains an
attribute value of the type NUMBER and a reference to a unit. As mentioned
before, this application protocol is sufficient to specify the description of a com-
ponents power consumption in a machine-readable manner. Thus, the OEM
decides to reuse this STEP extension. Since the STEP Extension library does not
contain a suitable STEP extension for the specification of the admissible payload
of a Crane component, the OEM defines a new STEP extension STEP EXTENSION

ADMISSIBLE PAYLOAD as depicted in Listing 4. The structure is analogous to the
previous STEP extension. After the OEM has specified the STEP extension, he
stores it in the STEP Extensions library to enable its reuse in further development
projects.

Listing 4. STEP extension for the specification of an admissible payload [7].

1 SCHEMA STEP_EXTENSION ADMISSIBLE_PAYLOAD
2 ENTITY admissible_payload;
3 component: product;
4 value: NUMBER;
5 unit: Unit;
6 END_ENTITY;
7 END_SCHEMA;

182 T. Koch et al.

After the selection of the required STEP extensions, the automatic derivation
process of the central data model (cf. Automatic Derivation of the Central Data
Model and Data Import in Fig. 5) is executed. The automatic derivation process
encompasses three subprocesses: Execute M2M-Transformation, Execute M2T-
Transformation, and Execute Derivation Workflow. In the first subprocess, Exe-
cute M2M-Transformation, the conceived model-to-model transformation merges
the Selected STEP Extensions into the selected Base STEP AP to derive a Project-
specific STEP AP. This Project-specific STEP AP contains the description of all
product information that should be contained in the central data model. In
the subsequent subprocess Execute M2T-Transformation, the OEM executes our
developed model-to-text transformation to derive a Project-specific STEP Gram-
mar. This grammar enables the automatic derivation of the central data model
and the corresponding import capabilities as described in the subsequent section
(cf. Execute Derivation Workflow in Fig. 5).

The last two process steps Generate CAD Plugin and Generate Feature Model
Plugin are executed in parallel. In the process step Generate CAD Plugin, the
extensions of the CAD tools for the supplier are generated. These extensions
enable the specification of entities of the central data model within the user
interface of the CAD tool. Furthermore, it provides a mechanism to store the
product information and to export it to a physical file (cf. Sect. 2). In the process
step Generate Feature Model Plugin, the extensions for the feature model tool
of the OEM is developed. By means of the Feature Model Plugin, the system
integrator is able to reuse the entities stored in the central data model including
all geometrical and additional information during the specification of the product
line. Therefore, the plugin provides user interface elements to select entities from
the central data model.

Concluding, the introduction of the model-driven process, we obtain the spec-
ification capabilities of geometrical and additional technical product information
by defining flexible STEP extensions. The OEM is enabled to describe a central
data model by selecting an existing STEP application protocol as basis and by
defining and/or selecting STEP extensions to enrich the basis STEP application
protocol. The resulting project-specific STEP application protocol is further used
to automatically derive the required capabilities for the data exchange between
the OEM and his suppliers. Furthermore, it is used to derive extensions for exist-
ing CAD systems on the one hand, and a self-developed feature model tool on
the other hand. While the extensions of CAD systems enable the specification,
storage, and exchange of additional technical product information, the exten-
sions of the feature model tool enable the reuse of additional technical product
information for the specification of logical as well as geometrical constraints.
Both are needed in a holistic product line engineering for mechatronic systems,
like the PPU example.

Model-Driven STEP Application Protocol Extensions 183

3.2 Automatic Derivation of the Central Data Model and the Data
Import

In this section, we describe the realization of the process step Automatic Deriva-
tion of the Central Data Model and Data Import depicted in Fig. 5. For this pur-
pose, we recreated and developed different meta-models, models, and grammars
as depicted in Fig. 6. Meta-models are depicted by means of UML classes. Gram-
mars are depicted by means of UML classes with a small rectangle in the upper
right corner. Finally, we depicted text files as UML classes with a document
icon in the upper right corner and parser as UML classes with a circle in the
upper right corner. As the technology icons indicate, we use the Eclipse Modeling
Framework [16] to specify meta-models by means of Ecore models, and the Xtext
framework [17] to define grammars. While using the Xtext framework, we are
able to automatically derive a parser for a particular grammar. Besides the men-
tioned technologies, we use QVT-O [14] and Xtend1 to realize model-to-model
and model-to-text transformation, respectively.

emof

instanceof
EXPRESS
Grammar
(recreated)

derives

instanceof

instanceof STEP
Grammar

STEP
Text File

derives

EXPRESS
Text File

instanceofderives

instanceof

derives

Legend:

meta-model text filegrammar parser

EXPRESS Parser

STEP Parser

EXPRESS

STEP AP

STEP Model

Fig. 6. Overview of the developed meta-models and their relationships [7].

As mentioned in Sect. 2, the EXPRESS information modeling language has
been developed in the ISO 10303 prior to the Meta Object Facility (MOF) [14]
standard of the OMG. Thus, the EXPRESS information modeling language does
not comply to the OMG standard and modern model-driven development tech-
niques are not yet applicable.
1 http://www.eclipse.org/xtend/.

http://www.eclipse.org/xtend/

184 T. Koch et al.

For this reason, we developed our own MOF-compliant meta-model of the
EXPRESS information modeling language based on the Eclipse Modeling Frame-
work and the Xtext framework. We used the Xtext framework to recreate the
concrete textual syntax of the EXPRESS information modeling language by
means of a grammar (cf. EXPRESS Grammar in Fig. 6). While using the genera-
tion workflow of the Xtext framework, we derive an Ecore-based meta-model
of the EXPRESS information modeling language. Furthermore, we derive a
EXPRESS parser that reads textual STEP application protocol files that cor-
respond to the defined grammar.

As mentioned in Sect. 2, a STEP application protocol is defined by means
of the EXPRESS information modeling language. Thus, after defining the
EXPRESS grammar and deriving its meta-model as well as a corresponding
parser, we are able to read and write STEP application protocols. However,
in the current stage of our implementation, we are only able to process the
basic EXPRESS elements types and entities. The processing of the remaining
EXPRESS elements is left for future work.

A STEP application protocol only defines the structure of the product infor-
mation, and not the product data itself. Hence, we apply the same technologies
to create a grammar representing the product information specified in a STEP
application protocol (cf. STEP Grammar in Fig. 6). Furthermore, the STEP Gram-
mar defines the structure of the STEP Text File following the structure defined
for STEP physical files (cf. Sect. 2). As depicted in Fig. 6, after the execution
of the Xtext workflow, we derive a meta-model for STEP files that reflects the
product information defined in the STEP application protocol.

Figure 7 depicts the execution of the automatic derivation process of the
central data model for our running example by means of a UML Activ-
ity Diagram. After the OEM has performed the process step Select STEP
Extensions depicted in Fig. 5, the specification of the central data model
in our running example encompasses the STEP AP214 as Base STEP AP,
and the two extensions STEP ExtensionPower Consumption : EXPRESS and
STEP ExtensionAdmissible Payload : EXPRESS.

In the first activity M2M-Transformation, the selected Base STEP AP and
the two selected STEP extensions are merged into an Project-specific STEP AP
by using a model-to-model transformation realized by a QVT-O in-place trans-
formation. This model-to-model transformation iterates over all entities in the
different :EXPRESS instances and merges them into the Project-specific STEP
AP. If a naming conflict occurs or some references are not yet resolved, the
transformation resolves these issues.

After the execution of the merging activity, the resulting Project-specific STEP
AP is transformed into an Xtext grammar by means of a model-to-text trans-
formation realized by Xtend (cf. M2T-Transformation). The model-to-text trans-
formation also iterates over all entities and translates them into a grammar
that also fulfills the requirements of the ISO 10303-21 for the structure of the
final STEP File. Listing 5 depicts an excerpt for the resulting Xtext grammar
for the STEP extension shown in Fig. 4. The Xtext grammar defines the entity
power consumption, encompassing an ID, a desc, and as shown in Listing 3 a value,

Model-Driven STEP Application Protocol Extensions 185

Project-specific STEP AP: EXPRESS

SCHEMA Project-Specific STEP AP;
ENTITY product_definition;

id : identifier;
description : OPTIONAL text;
formation : …;
frame_of_reference : …;

END_ENTITY;
ENTITY power_consumption;

component : product_definition;
value : Number;
unit : Unit;

END_ENTITY;
ENTITY admissible_payload;

component : product_definition;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

M2T-Xtext

Project-Specific
Grammar

…
admissible_payload :

name=ID EQUAL_SIGN
desc= "admissible_payload"
LEFT_PARENTHESIS

component = [product | ID]
COMMA
value= EDouble

RIGHT_PARENTHESIS
";";
…
power_consumption :

name=ID EQUAL_SIGN
desc="power_consumption"
LEFT_PARENTHESIS

component = [product | ID]
COMMA
value= Edouble

RIGHT_PARENTHESIS
;";

Xtext-Workflow

Project-specific
STEP File : STEP Model

Project-specific
STEP Model : EXPRESS

-- example step excerpt of the crane
component
#86=product('H-T_L1600 750-1000kg','H-
T_L1600 750-1000kg',' ',(#91));
#91=product_context(' ',#93,'mechanical');
#32456=power_consumption(1000,‘W');
#32457=admissible_payload(20,‘kg‘);

Project-specific
STEP Parser: STEP Parser

STEP AP 214 : EXPRESS

SCHEMA STEP AUTOMOTIVE_DESIGN;
ENTITY product_definition;

id : identifier;
description : OPTIONAL text;
formation : …;
frame_of_reference : …;

END_ENTITY;
END_SCHEMA;

STEP EXTENSION
ADMISSIBLE_PAYLOAD:EXPRESS

SCHEMA STEP_EXTENSION
ADMISSIBLE_PAYLOAD;

ENTITY admissible_payload;
component : product;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

STEP EXTENSION
POWER_CONSUMPTION:EXPRESS

SCHEMA STEP EXTENSION
POWER_CONSUMPTION;

ENTITY power_consumption;
component : product_definition;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

M2M-Merge

reads

Fig. 7. Overview of the automatic derivation of the central data model and the data
import [7].

and a unit. In the final STEP File, the ID corresponds to the line number and acts
as an identifier. The desc attribute indicates which entity is currently parsed.

Listing 5. Excerpt of the Xtext grammar for the STEP extension shown in Listing 3
[7].

1 power_consumption:
2 name=ID "="
3 desc="power_consumption"
4 "("
5 component = [product | ID] ","
6 value= EDouble
7 ")"
8 ",";

186 T. Koch et al.

Finally, the workflow of the Xtext framework is executed and as a result,
we derive the central data model (cf. Project-Specific STEP Model in Fig. 7).
Furthermore, we derive an Project-specific STEP Parse that reads STEP files
and creates data models conforming to the central data model.

3.3 Automatic Derivation of the CAD Plugin

In this section, we describe the realization of the process step Automatic Deriva-
tion of the CAD Plugin depicted in Fig. 5. The automatic derivation approach
has been prototypically implemented for the CAD tool SolidWorks.

We started the development of the automatic derivation approach with an
examination of the plugin mechanism of SolidWorks and implemented a refer-
ence plugin for an extended user-interface representing further technical product
information and for exchanging this information.

After implementing the reference architecture, we generalized the reference
plugin, and divided the resulting code into platform, individual, and repetitive
code. The platform code is provided by the CAD tool SolidWorks to enable the
development of plugins using internal functionality of SolidWorks. We encap-
sulated the CAD tool dependent code by writing a wrapper and refer to it as
individual code. Finally, the repetitive code is used to create an extended user-
interface and to create the storage functionality. Since this code only uses oper-
ations provided by our own individual code, the repetitive code is independent
of the used CAD tool.

In the next development step, we developed a CAD plugin generator based
on the individual code. The CAD plugin generator uses the Selected STEP Exten-
sions as input and generates the required user-interface elements for the addi-
tional technical information. Furthermore, the CAD plugin generator also gen-
erates the required code-fragments to support the exchange of the additional
information.

Figure 8 depicts the automatic derivation of the CAD Plugin for our running
example. The CAD plugin generator uses the two Selected STEP Extensions
STEP ExtensionPower Consumption : EXPRESS and STEP ExtensionAdmissible
Payload : EXPRESS and produces the user-interface elements on the right.

3.4 Automatic Derivation of the Feature Model Plugin

In this section, we describe the realization of the process step Automatic Deriva-
tion of the Feature Model Plugin depicted in Fig. 5. The automatic derivation
approach has been prototypically implemented for a self-developed product line
engineering tool based on feature models. The development of the feature model
plugin generator follows the same approach as presented for the CAD plugin
generator in the previous section. First, we started with a reference implemen-
tation for an extended user-interface representing and accessing technical com-
ponents stored in the central data model. Second, we generalized the reference
implementation, and divided the resulting code into platform, individual, and
repetitive code. Finally, we developed a feature model plugin generator based on

Model-Driven STEP Application Protocol Extensions 187

STEP EXTENSION
POWER_CONSUMPTION:EXPRESS

SCHEMA STEP EXTENSION
POWER_CONSUMPTION;

ENTITY power_consumption;
component : product;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

STEP EXTENSION
ADMISSIBLE_PAYLOAD:EXPRESS

SCHEMA STEP_EXTENSION
ADMISSIBLE_PAYLOAD;

ENTITY admissible_payload;
component : product;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

Plugin Generation

Fig. 8. Overview of the automatic derivation of the CAD plugin [7].

the individual code. The feature model plugin generator uses the Selected STEP
Extensions as input and generates the required user-interface elements for the
different kinds of entities including their additional technical information.

Figure 9 depicts the automatic derivation of the feature model plugin for our
running example. The feature model plugin generator uses the two Selected STEP
Extensions STEP ExtensionPower Consumption : EXPRESS and STEP Extension
Admissible Payload : EXPRESS and generates the required user-interface elements
to access the geometrical and additional product information. Furthermore, the
Feature Model plugin generator also generates the required code-fragments to
support the exchange of the additional information. the user-interface elements
on the right.

STEP EXTENSION
POWER_CONSUMPTION:EXPRESS

SCHEMA STEP EXTENSION
POWER_CONSUMPTION;

ENTITY power_consumption;
component : product;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

STEP EXTENSION
ADMISSIBLE_PAYLOAD:EXPRESS

SCHEMA STEP_EXTENSION
ADMISSIBLE_PAYLOAD;

ENTITY admissible_payload;
component : product;
value : Number;
unit : Unit;

END_ENTITY;
END_SCHEMA;

Feature Model
Plugin Generation

Fig. 9. Overview of the automatic derivation of the Feature Model plugin.

By integrating our model-driven approach for the flexible specification of
STEP extensions with our feature model approach, we prevent the OEM from

188 T. Koch et al.

the mixed specification and validation of logical as well as geometrical constraints
in different engineering tools. Our feature model tool supports a variety of feature
model extensions like feature attributes and properties [18], logical constraints
between features and feature properties [19], and the distinction between features
and feature realizations. Furthermore, we enable the configuration of a particular
product variant and the verification of its correctness based on the information
in the feature model [20,21].

Beyond the specification and verification of logical constraints, we covered
the challenge of geometrical constraints in the development of mechatronic prod-
uct lines and enabled their specification within our feature model tool sup-
port. Therefore, we, first, introduced a new kind of realization, a so-called 3D-
Realization. The 3D-Realization is an abstraction of a concrete technical com-
ponent and encompasses all geometrical information concerning the component,
like the width, the height, or the overall boundary. In our feature model plugin,
we exploit the concept of the 3D-Realization to enable the access of geomet-
rical information stored in central data model (cf. Fig. 10). Furthermore, by
sub-classing the 3D-Realization for each entity in the central data model, we
enable the access of the additional technical information stored in the central
data model. This additional technical information could be used in logical con-
straints. For instance, as depicted in Listing 6, if the product variant is supposed
to handle metal workpieces, it requires a Crane with an admissible payload larger
than 20 kg to handle the workpieces. Thus, in the configuration of such a prod-
uct variant, the additional technical information of each available Crane could
be used to only allow the selection of Cranes that fulfill this constraint.

Listing 6. Example of a logical constraint for the PPU.

1 Metal implies Crane . admi s s ib l e payload ≥ 15

Second, we introduced a geometrical constraint language based on propo-
sitional logic for product line engineering [22]. Our geometrical constraint lan-
guage enables the specification of so-called assembly constraints [23]. Assembly
constraints are used to arrange components relative to each other. Typical exam-
ples are the allowed minimum and maximum distance between two components
or whether two components intersect. By using our geometrical constraint lan-
guage, we are able to formalize the geometrical constraints that the Crane and
the Stamp must have a minimum distance of 2 m (cf. Listing 7); without that
distance, the Crane would not be able to transport the workpieces and would
collide with the Stamp:

Listing 7. Example of a geometrical constraint for the PPU.

1 MinimumDistance (Crane , Stamp) ≥ 2m

For the configuration of a mechatronic product variant, it is not sufficient to
only configure the logical part, but also to virtually layout the product variant
according to the geometrical constraints induced by the different components.
For this purpose, we defined in [9] a research roadmap, which we recap in the
following.

Model-Driven STEP Application Protocol Extensions 189

Legend

Feature Mandatory Op onal

RampStamp
Crane

admissible payload
power consumpion

Stack

Pick&Place Unit

Crane Realization

x Unit PropertyRealization

Plastic

Workpiece

Metal

#3256=power_consumption
(1000,‘W');
#3457=admissible_payload
(20,‘kg‘);

OR

Fig. 10. Integration of feature models with the central data model.

First, we are going to integrate our tool support for the logical configuration
of product variants with tool support for the virtual layout of a variant, e.g. in
an e-commerce system. Figure 11 depicts the integration sketch. At first, a cus-
tomer is able to select the technical components for this automation production
system in our variant editor. If the product variant is correct, the information
of the selected technical units is provided to the tool support for the virtual
layout. The CAD model of each selected technical component is loaded from
the central data model to enable the virtual layout of the product variant. To
obtain the position of each technical component, the tool support for the vir-
tual layout provides this information and stores it in the variant configuration.
Thus, the variant configuration contains a complete description of the logical
and geometrical configuration of a particular product variant.

Second, we are going to implement a verification of the layout against the
specified geometrical constraints. Therefore, we have to implement basic algo-
rithms that calculate the distance between two 3D-Realizations. Furthermore, we
want to integrate the verification with a geometric modeling kernel [24], which
is used within conventional CAD tools. By means of the geometric modeling
kernel, we are able to realize operations that are more complex, for example,
whether two lines or areas of two 3D-Realizations intersect. The algorithm uses
the layout information stored in the variant configuration and the specified con-
straints as input. After reaching these two milestones, a potential customer will
be able to configure a product variant and virtually layout it according to the
assembly constraints.

190 T. Koch et al.

Fig. 11. Sketch for the integration of the tool support for the virtual layout and the
variant configuration.

4 Case Study

In this section, we conduct a case study based on the guidelines by [25] for the
evaluation of our approach. In our case study, we investigate the applicability
and usefulness in practice of our approach. We perform the case study based on
the running example in this paper and do not aim at generalizing the case study
conclusions to all possible development projects using STEP for the exchange of
product information.

4.1 Case Study Context

The objective of our case study is to evaluate whether our model-driven approach
for the creation of a central data model is applicable and useful for the OEM and
his suppliers, i.e., whether it reduces the manual effort in deriving tool support
for the overall information exchange. For this purpose, we use the two STEP
extensions of the running example and different STEP application protocols. We
concentrate on the investigation of the applicability and usefulness in practice of
our approach especially for the automatic derivation of the central data model
and the resulting import capabilities, since the effort for extending the user-
interface of the CAD tool compared to the effort of writing a correct parser is
much smaller.

Model-Driven STEP Application Protocol Extensions 191

4.2 Setting the Hypothesis

We define two evaluation hypotheses for our case study. The first evaluation
hypothesis H1 is that our model-driven approach for the exchange of product
information between the OEM and his suppliers presented in Sect. 3 reduces the
manual effort in deriving tool support for the information exchange. For the
evaluation of H1, we define response variables measuring the amounts of entities
contained in the input Base STEP AP including its extensions as well as response
variables measuring the code size and the generation time of the parser output.
That is, we determine the number of entities contained in the selected Base STEP
AP plus the number of entities contained in the used STEP extensions (response
variable H1.inputSize), the amount of lines of code generated in particular for
the parser of the central data model (H1.outputSize), and the time needed for
generating the different code fragments (H1.outputTime).

The second evaluation hypothesis H2 is that our model-driven approach for
the exchange of product information produces correct models and correct parser
for existing STEP application protocols like STEP AP214 and STEP AP203,
and that the parsers process their input files in reasonable time. For the evalu-
ation of H2, we define a response variable for measuring the number of STEP
files used as input for the parser (response variable H2.inputSize). That is, we
determine the number of files that are correctly processed without an exception
(H2.outputSize), and the time needed for processing each file (H2.outputTime).
To draw conclusion of the processing time, we also determine the time needed
to process the same files in SolidWorks (H2.SWTime). We used a typical office
computer2 for all test runs.

4.3 Validating the Hypothesis

For the validation of the first evaluation hypothesis H1, we executed the model-
driven approach several times with different input configurations. First, we used
the STEP AP214 as Base STEP AP and the STEP AP203 as Base STEP AP
without any further STEP extensions. Furthermore, we used the STEP exten-
sions of the running example in combination with the STEP AP214 and STEP
AP203. Finally, we used the STEP AP203 as an extension in combination with
STEP AP214 to draw conclusions about the scalability of the approach. The
determination of the number of entities contained in the Base STEP AP as well
as in the used STEP extensions, the needed generation time, and the lines of
code for the parser yields the results as listed in Table 1.

For the validation of the second evaluation hypothesis H2, we used the STEP
parser generated for STEP AP214 and STEP AP203. As input files, we used
free available CAD examples (http://www.steptools.com). This leads to 20 files
corresponding to the STEP AP214 and 44 files corresponding to the STEP
AP203. The determination of the number of correctly parsed files and the needed
parsing time yields the results as listed in Table 2.
2 Intel Core i7-4600U @2.10 GHZ, 8GB DDR3 1066MHz, 500 GB HDD, Windows 7

Pro 64 bit, Java JDK8u66, Eclipse 4.5.

http://www.steptools.com

192 T. Koch et al.

4.4 Analyzing the Results

The results for H1 show two aspects. First, depending on the number of entities
used for the description of the central data model, the resulting parser encom-
passes a huge amount of source code. Without a proper tool support, no software
developer would be able to produce the parser in the relatively short time. For
example, the execution of the model-driven approach uses overall 915 entities and
generates 357775 lines of code within 12 min (cf. first row of Table 1). Although
the generation takes some time to complete, this does not affect the applicability
of the approach, since the generation has be performed only once in the whole
development project. Second, the model-driven approach scales with the num-
ber of entities used in the central data model. Thus, we consider H1 as fulfilled.
The results for H2 show that the generated parser for the STEP AP214 and
STEP AP203 is able to read original STEP files, thus, we conclude that our
model-driven approach generates correct parsers. Furthermore, the comparison
of H2.outputTime and H2.SolidWorksTime shows that our parser is not signifi-
cant slower than the processing of SolidWorks. Thus, we consider H2 as fulfilled.
Concluding the case study, the fulfilled hypotheses indicate that our proposed
model-driven approach reduces the manual effort in deriving tool-support for
the creation of a central data model and the corresponding import/export capa-
bilities. This gives rise to the assumption that out approach is applicable and
useful in practice for the OEM and his suppliers.

The most important threats to validity are as follows: First, we only consid-
ered one development example and thus cannot generalize the fulfillment of the
statements. Nevertheless, the example represents a typical development project
and thus we do not expect large deviations for other examples. Second, the
amount of lines of code generated by the approach is only a superficial met-
ric and, therefore, might not reflect the actual development effort. Especially
for small extensions like the definition of power consumption, the conceptual
complexity of our approach might exceed the effort for the manual extension
and/or the manual exchange of this information via another communication
channel. However, the manual extension has to be performed for each develop-
ment project.

Table 1. Results of the analysis for H1 [7].

Base # STEP H1.inputSize H1.outputSize H1.outputTime

STEP AP extensions (# Entities) (LOC) (Gen. Time)

STEP AP214 - 915 357775 ≈12 min

STEP AP203 - 254 108144 ≈2 min

STEP AP214 2 917 358237 ≈16 min

STEP AP203 2 256 108626 ≈3 min

STEP AP214 1 (STEP AP203) 1169 465101 ≈20 min

Model-Driven STEP Application Protocol Extensions 193

Table 2. Results of the analysis for H2 [7].

Base H2.inputSize H2.outputSize H2.outputTime H2.SWTime

STEP AP (# files) (# correct files) (parsing time) (parsing time)

STEP AP214 20 20 ∅ 57 s ∅ 48 s

STEP AP203 44 44 ∅ 46 s ∅ 39 s

5 Related Work

STEP provides a standardized mechanism for representing and exchanging prod-
uct data, and is therefore, considered as a promising product modeling resource.
As mentioned in Sect. 1, the STEP extension mechanism has been used in several
applications to describe or analyze a certain aspect of a system and to exchange
the corresponding product data. For example, [3] presents an object-oriented
product model based on STEP AP224, which defines a standard set of machin-
ing features. The authors used their object-oriented product model to support
a computer-aided process planning (CAPP) analysis. [4] present a product data
exchange using a STEP-based assembly model for the concurrent integrated
design and assembly planning. Concluding this paragraph, STEP is widely used
in industry and academic to organize product data in a standardized represen-
tation. However, in contrast to our approach, most approaches are tailored to
one particular use case and are not reusable or interoperable.

To overcome the inflexibility and interoperability, a generic product modeling
system has been proposed in [26,27]. These two approaches belong to the most
related approaches using STEP to provide a generic product modeling system.
However, in contrast to our approach, they do not use model-driven techniques
to realize their approach, and, thus, a lot of manual effort has be done for their
practical realization.

Other work has focused on applying model-driven development techniques
to product data modeling in the design of mechanical systems for the purpose
of collaboration and interoperability. For example, [28] present a model-driven
architecture for bringing together various product data into a model-driven engi-
neering environment. The engineering environment is used to transform, share,
and export the product data enabling the collaboration between different depart-
ments and companies involved in the design of mechanical products. [29] build
a bridge between STEP/EXPRESS and the Eclipse Modeling Framework. The
bridge is used to transform models based on the Industry Foundation Classes
(IFC), a standardized modeling language, into a format suitable for a partic-
ular CAD tool. Beyond the pure storing and sharing of STEP-based product
data in a model-driven environment based on the Eclipse Modeling Framework,
our approach enables the systematic extension of the STEP standard to provide
the exchange of additional technical product data. Furthermore, the OMG has
published a standard for a reference meta-model for the EXPRESS informa-
tion modeling language [30]. This meta-model has been devolved in the so-called

194 T. Koch et al.

Mexico project. However, the standard only focuses on the meta-model for the
EXPRESS information modeling language, and does not describe how existing
STEP application protocols can be transformed to an instance of the reference
model.

Finally, Yildiz et al. [31] present ongoing work on a model-driven approach
for the specification of product information in the context of PDM. As in our
work, the authors state that the initial implementation of a PDM tool, usually
does not cover all information needed by the user and that the required exten-
sions to a PDM tool are extensive to implement. Thus, they propose a model-
driven approach enabling companies to specify their own business concepts for a
PDM tool, resulting in tool extensions to cover the additional information. Our
approach and the approach of Yildiz et al. mainly differ in their aim. We use
project-specific STEP extensions for the data exchange of product information,
whereas Yildiz et al. focus on the extension of the storage capabilities of PDM
tools but do not consider data exchange. However, the OEM typically applies
a PDM tool with a plain artifact storage mechanism nowadays, as sketched in
the introduction. Thus, a complementary combination of both approaches would
lead to a more holistic tool chain, as we point out in the future work.

6 Conclusion and Future Work

In previous work [7], we presented a model-driven approach for the flexible spec-
ification of STEP application protocol extensions. Our model-driven approach
exploited the STEP extension mechanism to enable the specification and tai-
loring of STEP application protocols to project-specific needs. Furthermore, our
approach included the automatic derivation of the required tool capability exten-
sions for both the OEM and the suppliers. On the one hand, we derived a central
data model as well as a STEP parser for the import and interpretation tool capa-
bility extension on the OEM side. On the other hand, we derived a plugin for
the CAD tool SolidWorks for the specification and the export tool capability
extension on the supplier side. Furthermore, our approach supported reusing
once specified STEP application protocol extensions.

In this paper, we integrated the model-driven STEP application protocol
extensions with a feature modeling approach [9] that particularly considers the
constraints on the geometrical information exchanged via STEP. Beyond the
STEP parser and the CAD tool export plugin, we derive a feature model plugin
based on the central data model that is generated from the STEP application
protocol extensions. Thereby, the feature model gains access to the logical as
well as geometrical information stored in the central data model. In addition to
the specification of logical constraints and validation well-known from feature
models, we introduce a geometrical constraint language that enables to specify
and validate assembly constraints on the geometrical information in the central
data model.

Our model-driven approach significantly reduces the manual effort that had
to be spend on the whole tool chain otherwise. Thereby, we enable the utilization

Model-Driven STEP Application Protocol Extensions 195

of STEP application protocol extensions for project-specific needs. Moreover, the
possibility of reusing extensions reduces the effort on the actual specification of
the particular STEP application protocol extensions if an extension was con-
ceived in prior projects. The generality of the approach enables to handle other
parts of the STEP standard beyond the one that we exemplarily extended in this
paper. The integration with the feature modeling approach considering logical
as well as geometrical constraints further reduces redundancies between differ-
ent engineering tools. In summary, the combination of both approaches enable
OEMs to orchestrate their overall supply and development processes.

The future work is twofold. First, we want to improve the creation of STEP
application protocols to support the remaining EXPRESS elements like where-
clauses and rules in the resulting Ecore-based meta-model by means of Object
Constraint Language (OCL) [32] expressions. Second, we want to apply the
feature model together with a geometric modeling kernel [24], which is used
within conventional CAD tools. Thereby, we can achieve the same algorithmic
power for the verification of geometrical layouts w.r.t. assembly constraints as
known from CAD tools. This will enable a potential OEM customer to configure
a product variant and virtually layout it according to the assembly constraints
in an e-commerce-system.

Acknowledgment. This research is partially funded by the German Federal Ministry
of Education and Research (BMBF) under the grant ZIM and is managed by the
AiF Projekt GmbH. Furthermore, this research is partially funded by the German
Federal Ministry of Education and Research (BMBF) within the Leading-Edge Cluster
“Intelligent Technical Systems OstWestfalenLippe” (it’s OWL) and is managed by the
Project Management Agency Karlsruhe (PTKA).

References

1. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: Scenarios and documentation of the pick and place
unit. Technical report, Institute of Automation and Information Systems, Technis-
che Universität München (2014)

2. ISO: ISO 10303–1:1994: Industrial automation systems and integration - Product
data representation and exchange - Part 1: Overview and fundamental principles
(1994)

3. Usher, J.M.: A STEP-based object-oriented product model for process planning.
Comput. Ind. Eng. 31, 185–188 (1996)

4. Zha, X., Du, H.: A PDES/STEP-based model and system for concurrent integrated
design and assembly planning. Comput.-Aided Des. 34, 1087–1110 (2002)

5. Industrie 4.0 Working Group: Recommendations for implementing the strategic
initiative INDUSTRIE 4.0. Final report (2013)

6. Min, H.: Electronic data interchange in supply chain management. In: Swamidass,
P.M. (ed.) Encyclopedia of Production and Manufacturing Management, pp. 177–
183. Springer, Boston (2000). https://doi.org/10.1007/1-4020-0612-8 284

https://doi.org/10.1007/1-4020-0612-8_284

196 T. Koch et al.

7. Koch, T., Holtmann, J., Lindemann, T.: Flexible specification of STEP application
protocol extensions and automatic derivation of tool capabilities. In: Proceedings
of the 5th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD) (2017)

8. Kang, K.C., Lee, K., Lee, J.: Feature-oriented product line software engineering:
principles and guidelines. In: Domain Oriented Systems Development - Practices
And Perspectives, pp. 29–46. Taylor & Francis (2003)

9. Koch, T., Holtmann, J., Schubert, D., Lindemann, T.: Towards feature-based
product line engineering of technical systems. In: 3rd International Conference
on System-Integrated Intelligence: New Challenges for Product and Production
Engineering (SysInt), pp. 447–454. Elsevier (2016)

10. Kramer, T., Xu, X.: STEP in a nutshell. In: Xu, X., Nee, A. (eds.) Advanced
Design and Manufacturing Based on STEP, pp. 1–22. Springer, London (2009).
https://doi.org/10.1007/978-1-84882-739-4 1

11. ISO: ISO 10303–11:2004: Industrial automation systems and integration - Product
data representation and exchange - Part 11: Description methods: The EXPRESS
language reference manual (2004)

12. ISO: ISO 10303–21:2002: Industrial automation systems and integration - Product
data representation and exchange - Part 21: Implementation methods: Clear text
encoding of the exchange structure (2002)

13. ISO: ISO 10303–28:2007: Industrial automation systems and integration - Prod-
uct data representation and exchange - Part 28: Implementation methods: XML
representations of EXPRESS schemas and data, using XML schemas (2007)

14. OMG: Meta Object Facility (MOF) Core Specification: Version 2.5.1 (2016)
15. OMG: Business Process Model and Notation (BPMN): Version 2.0.2 (2013)
16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd edn. Addison-Wesley, Boston (2008)
17. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: OOPSLA 2010, pp. 307–309. ACM (2010)
18. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-

els. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855 34

19. Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, Applica-
tions. Addison-Wesley, Boston (2000)

20. Vierhauser, M., Grünbacher, P., Heider, W., Holl, G., Lettner, D.: Applying a con-
sistency checking framework for heterogeneous models and artifacts in industrial
product lines. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MOD-
ELS 2012. LNCS, vol. 7590, pp. 531–545. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33666-9 34

21. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: Using java CSP solvers in
the automated analyses of feature models. In: Lämmel, R., Saraiva, J., Visser, J.
(eds.) GTTSE 2005. LNCS, vol. 4143, pp. 399–408. Springer, Heidelberg (2006).
https://doi.org/10.1007/11877028 16

22. Mannion, M.: Using first-order logic for product line model validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45652-X 11

23. Anderl, R., Mendgen, R.: Modelling with constraints: theoretical foundation and
application. Comput.-Aided Des. 28, 155–168 (1996)

24. Shah, J.J., Mantyla, M.: Parametric and Feature Based CAD/CAM: Concepts,
Techniques, and Applications, 1st edn. Wiley, New York (1995)

https://doi.org/10.1007/978-1-84882-739-4_1
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/978-3-642-33666-9_34
https://doi.org/10.1007/978-3-642-33666-9_34
https://doi.org/10.1007/11877028_16
https://doi.org/10.1007/3-540-45652-X_11

Model-Driven STEP Application Protocol Extensions 197

25. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation. IEEE Softw. 12, 52–62 (1995)

26. Gu, P., Chan, K.: Product modelling using STEP. Comput.-Aided Des. 27, 163–
179 (1995)

27. Xie, S.Q., Chen, W.L.: A generic product modelling framework for rapid devel-
opment of customised products. In: Xu, X., Nee, A. (eds.) Advanced Design and
Manufacturing Based on STEP, pp. 331–352. Springer, London (2009). https://
doi.org/10.1007/978-1-84882-739-4 15

28. Iraqi Houssaini, M., Kleiner, M., Roucoules, L.: Tools interoperability in engineer-
ing design using model-based engineering. In: ASME 2012, pp. 615–623 (2012)

29. Steel, J., Duddy, K., Drogemuller, R.: A transformation workbench for build-
ing information models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol.
6707, pp. 93–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21732-6 7

30. OMG: Reference Metamodel for the EXPRESS Information Modeling Language
(EXPRESS): Version 1.1 (2015)

31. Yildiz, O., et al.: MDA based tool for PLM’ models building and evolving. In:
Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014.
IAICT, vol. 438, pp. 315–322. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44739-0 39

32. OMG: Object Constraint Language (OCL): Version 2.4 (2014)

https://doi.org/10.1007/978-1-84882-739-4_15
https://doi.org/10.1007/978-1-84882-739-4_15
https://doi.org/10.1007/978-3-642-21732-6_7
https://doi.org/10.1007/978-3-642-21732-6_7
https://doi.org/10.1007/978-3-662-44739-0_39
https://doi.org/10.1007/978-3-662-44739-0_39

A Model Driven Engineering Approach
for Heterogeneous Model Composition

Fazle Rabbi1,2(B), Yngve Lamo1, and Lars Michael Kristensen1

1 Western Norway University of Applied Sciences, Bergen, Norway
{fra,yla,lmkr}@hvl.no

2 University of Oslo, Oslo, Norway

Abstract. Diagrammatic modeling plays an important role in model
driven software engineering as it can be used to define domain-specific
modeling languages. During the modeling phase, software designers
encode domain knowledge into models. Complex models of software sys-
tems often consist of heterogeneous models representing various aspects
of a system such as structure, behavior, security, and resources. In this
paper, we present a formal modeling approach for the composition of
heterogeneous models. We apply the technique for modeling the opti-
mization of distributed resources using game theory.

Keywords: Model composition · Diagrammatic modeling
Epistemic game theory · Model transformation · Optimization
Distributed systems

1 Introduction

Today’s software systems are more complex and involves interaction among sev-
eral devices and applications using heterogeneous platforms. For modeling soft-
ware systems we need to consider various aspects of systems. In order to deal
with the complexity of software systems, software engineers usually separate
the aspects of software systems which leads to different models. Decomposing a
system based on aspects (such as structure and behavior) facilitate abstraction
and provides flexibility in updating the decomposed sub-modules. However, to
reason about the system as an integrated whole we need to coordinate models
that are representing different aspects of a system and represent distributed
systems. Requirements for integrating heterogeneous distributed systems are
increasing with the rapid technological advancements. Therefore, model com-
position is becoming a key issue in requirements analysis and design of complex
systems. This requires formalization to understand and develop satisfactory solu-
tions. The study of integrating heterogeneous systems is a complex process con-
sisting of information and expert knowledge management, modeling, simulation,
and decision making support [1]. It becomes a challenging task to compose dif-
ferent software models in a coherent way as it requires combining models having
different syntax.
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 198–221, 2018.
https://doi.org/10.1007/978-3-319-94764-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_9&domain=pdf

A Model Driven Engineering Approach 199

The modeling concerns for the representation of complex systems require
techniques for handling composition of heterogeneous artefacts. Efforts have
been made in [2,3] to specify the integration of heterogeneous systems by the
integration of heterogeneous modeling languages. They categorized the need for
language integration into three groups: language aggregation, language embed-
ding, and language inheritance. An algebraic approach for integrating languages
have been studied in [4,5] where the authors used a Common Algebraic Spec-
ification Language (CASL) for the specification and development of modular
software systems. However, these approaches are based on textual languages.
In this paper, we focus on diagrammatic approaches for modeling complex soft-
ware systems and propose a formal modeling approach to compose heterogeneous
models in a coherent way. We demonstrate its application for the optimization
of distributed resources. The formal modeling approach is presented by means
of composition schema which provide reusable patterns for the structural com-
position of software models. It can be used for modeling in the small in a sense
that it can deal with modeling artefacts such as models, metamodel elements
and relations between them; it can also be used for modeling in the large in a
sense that we can coordinate heterogeneous modeling systems with composition
schema.

The formal approach for model composition presented in this paper shows
how distributed systems may be coordinated to optimize their resources respect-
ing a distributed set of local constraints. Merging of models is an important
concern of analyzing distributed systems as there are situations where loosely
coupled distributed systems have to deal with a set of global constraints. For
instance, patients scheduled appointment time for getting a healthcare service
should not conflict with scheduled appointments for other healthcare services.
This paper is an extended version of a previously published article [6] where we
presented an example from the healthcare domain and proposed to use epistemic
game theory for optimizing the use of distributed resources and add resource con-
straints to game theory. In this paper, we present a formal treatment of modeling
heterogeneous systems and distributed resource constraints in a coherent way.

The paper is organized as follows: In Sect. 2, we present a formal model-
ing approach for composing software models by means of reusable composi-
tion schema. Section 3 presents the construction of small software models with
constraints. In Sect. 4 we present how the composition schema can be used
for merging metamodels and models. In Sect. 5, we present an application of
the proposed model composition for the optimization of distributed healthcare
resources. Section 6 presents related works and Sect. 7 concludes the paper.

2 Composition Schema

The formalization of composition schema is discussed as an approach for con-
structing complex software models. In this formalization, we integrate several
modeling artefacts to define software structures. Composition schema can be
used for constructing the structure of individual software models as well as

200 F. Rabbi et al.

correlating complex structures of distributed software models. As a motivation
consider the following model integration problem. Consider two distributed sys-
tems for an orthopedic department and a radiology department in a hospital.
To model these distributed systems we need to define different domain concepts
and constraints. These two systems share some resources and we need to model
the interdependency of the system with an integrated system model. There are
some overlapping of concepts and constraints in these two systems and we need
to specify inter-model constraints representing the global constraints governing
the overall system. To model the resource allocation of the distributed systems
and their optimization we wish to use a game theory model. Therefore we need to
model the game theoretic perspective of the distributed resource allocations and
link them with the distributed software models. To cope with this situation, we
require a modeling framework that allows heterogeneous model integration and
supports both modeling small and large distributed systems. In this section and
subsequent sections we introduce a modeling formalism with so-called compo-
sition schema that supports such model composition requirements. Inter-model
constraints of heterogeneous systems can be specified using composition schema
and it provides a building block for integrating software models in a coherent
way. Composition schema may have numerous applications in software engineer-
ing as various applications can be modeled by combining different combination
of models and/or modeling artefacts.

2.1 Formalization

We adapt the formalization of the Diagram Predicate Framework (DPF) [7,8]
by generalizing the components of diagrammatic specifications. DPF uses the
concept of diagram predicates to specify constraints on a diagrammatic speci-
fication. A DPF predicate signature Σ = (PΣ , αΣ) consists of a collection of
predicate symbols and a mapping of the predicate symbols to their arity. In
DPF, a diagrammatic specification S = (S,CS : Σ) is given by a graph S
and a set of atomic constraints CS : Σ. The shape graph S is given by a col-
lection of nodes, edges, source, and target maps. The atomic constraints are
added to the graph S by means of graph homomorphism from the shape of a
predicate to S, δ : αΣ(p) → S. In this paper, we generalize the concepts of
diagrammatic specification and propose to use composition schema for modeling
heterogeneous systems. Composition schema is formalized as a set of objects,
relationship among the objects, and a set of structural constraints. The objects
may be of heterogeneous classes and may consist of complex structures with
internal objects; the relationships may consist of relations among the objects
and/or internal objects. The objects and relationships constitute the shape of
a composition schema. Similar to DPF, structural constraints are added to the
shape of a composition schema by a structure preserving map from the arity of
a predicate.

Definition 1 (Composition Schema). Given a predicate signature Σ =
(PΣ , αΣ), a composition schema C consists of

A Model Driven Engineering Approach 201

– a set of objects Ob,
– a set of morphisms Mor between the objects or its internal components,
– a set SC of atomic constraints on the shape of C with p ∈ PΣ

where the objects may be of heterogeneous classes, each morphism f has a source
object A and a target object B, written as f: A → B.

A Composition Schema describes the structure of a model which allow us to
compose modeling elements through substitution. Complex structures may be
formulated with composition schemata by specifying structural constraints. In
order to be a valid composition, the structural constraints must be satisfied.

We obtain a modeling language MC for model composition by means of a
composition schema. The meaning of a composition schema is given by explaining
it in a semantic domain. Any model m ∈ MC is mapped to the systems which
obey the constraints that the model imposes. Similar to [9], we use a Set-valued
semantics for the language MC. Given a set of all systems S , the semantic
domain is the power set P(S) and each instance m ∈ MC will be mapped by a
semantic mapping, sm to the largest set of systems which fulfill the constraints:

sm : MC → P(S)

Models are usually underspecified in the early phases and therefore we need
to define models with abstract information. Composition schemata are often
defined with underspecification such that there is usually not a single system that
realizes a model, but a larger set of realizations is allowed. Further refinement of a
composition schema is achieved by replacing abstract information with concrete
modeling elements. A model m2 refines another model m1 if sm(m2) ⊆ sm(m1);
thus if we add more specific information into model m2, it further constraints
the resulting set of systems. The loose semantic approach is useful in this regard
as it can be used for developing a library of schemata for model composition.

In this paper, we first show how the composition schema may be used to
construct small models and later on we demonstrate how it can be used to
merge heterogeneous models. In this section and in the following sections, we
consistently use similar structures in the form of composition schemata. This
makes it simpler to construct a new composition schema based on an existing one.
Here we present a construction of typing composition for models representing
the categorization of objects into classes or types which is one of the typical
situations encountered in software modeling.

Definition 2 (Typing Schema). Given a predicate signature with a predicate
<commutative>, a typing schema Ctyping is specified by

– a set of objects Ob = {G, H} where G =
{
GV , GE , srcG : GE → GV , trgG :

GE → GV

}
and H =

{
HV ,HE , srcH : HE → HV , trgH : HE → HV

}
are

graphs,
– a set of morphisms Mor = { ϕ : G → H } where ϕ is given by two single

valued component functions ϕV : GV → HV and ϕE : GE → HE.

202 F. Rabbi et al.

– a set of constraints SC = { δ1, δ2 } added into the shape of Ctyping with
the <commutative> predicate. The constraints are used to specify that the
following two diagrams on the right are commutative:

Predicate, p Arity, α (p)

<commutative> D

B

C

A

k

j

f

HV

GV

HE

GE

srcH

srcG

φ
E φV

[=]

HV

GV

HE

GE

trgH

trgG

φE φ
V

[=]

δ1

δ2

∑

g

Definition 2 defines an algebraic structure of typing schema where G, H are
variables. Only directed graph structures can be assigned to these variables. The
semantic of Ctyping consists of systems with typed graphs. Given two graphs G1

and H1 and a map ϕ1 : G1 → H1, there exists a typing composition between
G1 and H1 (i.e., G1 is typed by H1) if the structural constraints of Ctyping are
satisfied when G is assigned to G1, H is assigned to H1 and ϕ is assigned to
ϕ1. This is represented as Ctyping1 = Ctyping(Ob = {G := G1,H := H1},Mor =
{ϕ := ϕ1}) and Ctyping1 |= SC(Ctyping). Note that Ctyping1 is representing a
refined model of Ctyping. In the rest of this article, we use CAr

to represent a
refined model of CA where r is any name.

Since a composition schema can be used inside another composition schema,
it can be complicated to address the elements of a nested composition schema.
To resolve this issue, we adopt the dot notation from object oriented pro-
gramming languages to access elements of a composition schema. For instance,
we can access the graph H1 of the composition schema Ctyping1 by using the
notation Ctyping1 .Ob[H1]. Similarly, to access the map ϕ1 we use the notation
Ctyping1 .Mor[ϕ1].

3 Modeling in the Small

We now show how composition schema can be used to specify a model with
metamodels and constraints. For metamodel specification of a system, we adapt
the formalization of DPF and present composition schema to represent DPF
modeling concepts. DPF is suitable for metamodeling as in DPF, models at
any level are formalized as diagrammatic specifications. In DPF, a metamodel
specification consists of concepts provided in a type graph and a set of constraints
specified by means of graph morphisms: Similarly, a model consists of concepts
defined as a graph and the typing is specified by graph morphisms. In DPF
metamodeling formalization, a model must be typed by its metamodel and must
satisfy all the constraints specified in its metamodel in order to conform to
its metamodel. Semantics of predicates can be given in different ways such as

A Model Driven Engineering Approach 203

the fibred manner [7] or using graph constraints [10]. The purpose of using
composition schema is to provide a coherent pattern for metamodeling.

Definition 3 (Metamodel). Given a predicate signature Σ = (PΣ , αΣ), a
composition schema for metamodel CMM = (Ob,Mor, SC) is specified by

– a set of objects Ob consisting of an underlying graph S =
{
SV , SE ,

srcS , trgS
}
, where SV , SE are sets of vertices and edges; srcS : SE → SV

and trgS : SE → SV are the source and target maps of the edges,
– an empty set of morphisms Mor,
– a set of constraints SC added into S from the predicates by graph homomor-

phisms.

In DPF, an instance of a metamodel is represented by a graph and a typing
morphism. Similar to DPF instances, we define a model composition schema by
composing a graph with a metamodel schema.

Definition 4 (Model). Given a predicate signature with a predicate
<commutative>, a composition schema for model CM = (Ob,Mor, SC) is spec-
ified by

– a set of objects Ob consisting of a graph I = {IV , IE , srcI , trgI} and a meta-
model schema CMM , where IV , IE are sets of vertices and edges; srcI : IE →
IV and trgI : IE → IV are the source and target maps of the edges,

– a set of morphisms Mor = {ι : I → S} where S is the underlying graph of
CMM (i.e., S = CMM .Ob[S]) and ι is given by two single valued component
functions ιV : IV → SV and ιE : IE → SE.

– a set of constraints SC = { δ1, δ2 } added into the shape of CM with the
<commutative> predicate. The constraints are used to specify that the fol-
lowing two diagrams on the right are commutative:

Predicate, p Arity, α (p)

<commutative> D

B

C

A

k

j

f

SV

IV

SE

IE

srcS

srcI

ιE ι
V

[=]

SV

IV

SE

IE

trgS

trg I

ιE ι V[=]

δ1

δ2

g

∑

A valid model composition schema must satisfy all the constraints specified
in its metamodel. To check that a constraint specified in a metamodel composi-
tion schema is satisfied in a given model, it is sufficient to inspect only the part

204 F. Rabbi et al.

of the metamodel which is affected by the constraint. This checking is performed

by a pullback construction on αΣ(p) δ−→ CMM
CM .Mor[ι]←−−−−−−− CM .Ob[I] for each con-

straint specified in the metamodel.

Example. An example of a model CM1 = CM (Ob = {I := I1,CMM :=
CMM1},Mor = {ι := ι1}) is shown in Fig. 1 consisting of a graph I1, a meta-
model CMM1 and a typing morphism ι1. The graph I1 of CM1 is typed by
the underlying graph S1 of CMM1 . The model represents the following situ-
ation: Bryan is a caregiver, who is involved in Ward#10; John is a patient
who is admitted to Ward#10; and Bryan has data-access to John’s records. The
underlying graph S1 is constrained by the predicate <composite> by a graph
morphism δ. By constraining the graph S1 with the predicate <composite>,
we are essentially specifying the following constraint: ‘Caregivers involved in a
ward must have data-access to the patients admitted into the same ward’. The
model CM1 is satisfying the constraint specified in the metamodel composition
as Bryan has data-access to John’s records; therefore, CM1 is a valid model i.e.,
CM1 |= SC(CM).

3.1 Category of Model Compositions

To define a category of model composition schemas we need to define the mor-
phism between metamodel composition schemas. Following [7], we provide the
following definition of metamodel morphism.

Predicate, p Arity, α (p)

<composite>

ZX h

f g
Y

∑
MM1

Caregiver Department

Ward

Patient

wardDepswardPats

wardEmps

empDepsdataAccess

[comp]
Constraint, δ

Underlying graph, S

M1

Bryan Emergency

Ward#10
:wardDeps

:wardEmps

Typing, ι

Graph, I

John

:wardPats

:dataAccess

1

1

1

Fig. 1. Example of a model.

Definition 5 (Metamodel Morphism). Given two metamodel composition
schemata CMM1 and CMM2 , a metamodel morphism φ : CMM1 → CMM2 is a
graph homomorphism φ : CMM1 → CMM2 such that for each constraint δ ∈
CMM1 .SC there exists a constraint δ′ ∈ CMM2 .SC where δ′ = δ;α.

A Model Driven Engineering Approach 205

ФSα (p)∑
S’

= MM1S .Ob[S]
= MM2S’ .Ob[S]

δ

δ; Ф

δ'
=

Definition 6 (Category of Model Compositions). The category of model
compositions is given by:

– a set of objects Ob consisting of models,
– morphisms: any morphism g : CM2 → CM1 is given by a pair of morphisms

(φ1, ψ1) from model CM2 to CM1 such that there exists a metamodel morphism
from CMM2 to CMM1 and the following diagram commutes:

=

Ф1

ѱ1

S

I

MM2

M2

2ι

S

I

1

MM1

M1

ι
= MM1S .Ob[S]MM1
= MM2S .Ob[S]MM2

= M1I .Ob[I]M1
= M2I .Ob[I]M2
= M1.Mor[ι]
= M2.Mor[ι]

1ι

2ι

– composition: the composition f ; g : CM3 → CM1 of two morphisms f : CM3 →
CM2 and g : CM2 → CM1 is given by the composition of graph morphisms
illustrated below:

2Ф ; Ф

2ѱ ;ѱ1

1

=

Ф1

ѱ1

S

I

MM2

M2

2ι

S

I

1

MM1

M1

ι

= MM1S .Ob[S]MM1
= MM2S .Ob[S]MM2

= M1I .Ob[I]M1
= M2I .Ob[I]M2

= M1.Mor[ι]
= M2.Mor[ι]

1ι

2ι

=

Ф2

ѱ2

S

I

MM3

M3

3ι

= MM3S .Ob[S]MM3
= M3I .Ob[I]M3 = M33ι .Mor[ι]

– identity: for any object CM1 , the identity morphism id : CM1 → CM1 is given
by the identity graph morphism.

4 Modeling in the Large

We now address how composition schema can be used for modeling in the large,
including merging metamodels and models. There are various ways of merging
metamodels [11–14]. Diskin et al. presented an approach of merging metamod-
els by making metamodels explicit and by introducing a correspondence span
between component metamodels [15,16]. Following [15] we present a metamodel
merging composition that includes an overlapping model specifying the overlap
between component models.

206 F. Rabbi et al.

Definition 7 (Metamodel Merging). Given a predicate signature with
a predicate <pushout>, a composition schema for metamodel merging
CMeta−Merge = (Ob,Mor, SC) is specified by

– a set of objects Ob consisting of two component metamodels (CMM1 , CMM2),
an overlap metamodel CMM0 and a merged metamodel (CMM+),

– a set of morphisms Mor consists of the following metamodel morphisms
where SMM0 = CMM0 .Ob[S], SMM1 = CMM1 .Ob[S], SMM2 = CMM2 .Ob[S],
SMM+ = CMM+ .Ob[S] are the underlying graphs of metamodels

• ψ1 : SMM0 → SMM1 ,
• ψ2 : SMM0 → SMM2 ,
• ϕ1 : SMM1 → SMM+ ,
• ϕ2 : SMM2 → SMM+ ,

– a set of constraints SC = {δ} added into the shape of CMeta−Merge with the
<pushout> predicate. The constraint specifies that the underlying graph of
CMM+ and morphisms ϕ1, ϕ2 are obtained by the pushout of ψ1 and ψ2 as
illustrated below:

Ф1

ѱ1 ѱ2

Ф2

SMM0

SMM1 SMM2

SMM+

Predicate, p Arity, α (p)

<pushout> B

D

A

C

k

j

f
[PO]

∑

δ

Inter-metamodel constraints are specified in the merged metamodel. Meta-
model morphisms between CMM1 and CMM+ , CMM2 and CMM+ ensure that
the constraints specified in the component metamodels are preserved into the
merged metamodel specification. However, it is possible that the constraints
when preserved in a merged metamodel may conflict with each other or may
become redundant. Some research has been done in this direction and there
exists algorithms to detect these problems automatically. The reader interested
in specification analysis may wish to consult [10].

Example. An example of a merged metamodel is shown in Fig. 2 consisting of
two metamodels CMM1 and CMM2 that we wish to merge. CMM1 and CMM2 are
representing entity models of a radiology department and an orthopedic depart-
ment of a hospital. CMM0 is an overlap metamodel representing the overlap of
concepts from CMM1 and CMM2 . The merged metamodel is shown in CMM+ .
Table 1 shows the predicates of a signature Σ′ used by these metamodel compo-
sitions. Below is a list of constraints specified in CMM1 and CMM2 :

– C1. A patient must have exactly one birthdate in an instance of CMM1 (spec-
ified by <mult(1 , 1))>

A Model Driven Engineering Approach 207

Ф1

TS@Dept

assigned
Doctor

[1..1]

belongsTo

birthdate

Imaging
Exam

hasOrder

admittedTo

Doctor

Patient DepartmentDate

Prescription

[comp]

TS@Lab

checkin

[1..1]
birthdate

Imaging
Exam

hasOrder

Registration

Person DeptDate

Report

[Pcond]

[Pcond]

ѱ
1 ѱ

2
birthdate

Imaging
Exam

hasOrder

Patient DeptDate

Ф2

(i) (iii) (ii)

TS@Dept

assigned
Doctor

[1..1]

belongsTo

checkin

admittedTo

orderingDept

Doctor

Patient

Dept

Registration

Imaging
Exam

[comp]

Prescription

Date
birthdate

Report

[Pcond]

[Pcond]

TS@Lab

(iv)

[1..1]

MM1 MM0 MM2

MM+

Fig. 2. Example of a merged metamodel composition [6].

Table 1. Predicates of a signature, Σ′ [6].

p Arity Visualization Semantic interpretation

f must have 1 instance for
each instance of X

For each instance of f there
exists an instance of g with the
same source node

For each composiƟon of
instances f;g, there exists an
instance of h

If there are instances of f and g
with the same source node,
then there exists an ordering of
values between instances of Y
and Z

Instances of f never maps
disƟnct elements of its domain
to the same element of its
codomain

<m
u

lt
(1

,1
)>

<p
re

-
co

n
di

ti
on

>
<c

om
po

si
te

>
<p

re
ce

de
>

1

1 2

1 2

3

1 2

3

f

g
h

f

g

f

h

X Y

Z

f

g

X Y

Z

f

g [Pcond]

X
f

Y[1..1]

[comp]

X Y

Z

f

g
[prcd]

3

f

g

2

1 2
f

X
f

Y
[inj]

<i
n

je
ct

iv
e>

α (p)∑

– C2. A person must have exactly one birthdate in an instance of CMM2 (spec-
ified by <mult(1 , 1))>

– C3. An appointment time-slot (i.e., TS@Dept) allocated to a patient in an
instance of CMM1must belong to that patients assigned doctor (specified by
<composite>)

208 F. Rabbi et al.

– C4. A person can only check-in for an examination in an instance of CMM2

if the person has an imaging order (specified by <pre-condition>)
– C5. Only registered persons are allocated with examination time-slots (i.e.,

TS@Lab) in an instance of CMM2 (specified by <pre-condition>)
– C6. An appointment time-slot in an instance of CMM1must not be allocated

to more than one patient (specified by <injective>)
– C7. An exam time-slot in an instance of CMM2 must not be allocated to more

than one person (specified by <injective>)

Moreover, an inter-metamodel constraint is specified in the merged meta-
model. The inter-metamodel constraint (C8) specifies that ‘orthopedic patients
time-slot at the radiology department must be preceded by the time-slot at the
orthopedic department’. The <precede> predicate is used to specify this con-
straint. The overlap metamodel declares the common concepts of both CMM1

and CMM2 and the legs of the span CMM1

ψ1←−− CMM0

ψ2−−→ CMM2 are metamodel
morphisms.

Definition 8 (Model Merging). Given a predicate signature with a predicate
<van-kampen-square>, a model merging schema CModel−Merge = (Ob,Mor, SC)
is specified by

– a set of objects Ob consisting of a metamodel merging schema (CMeta−Merge),
a merged model (CM+), two component models (CM1 , CM2), and an overlap
model CM0 ,

– a set of morphisms Mor consists of the following where IM0 = CM0 .Ob[I],
IM1 = CM1 .Ob[I], IM2 = CM2 .Ob[I], IM+ = CM+ .Ob[I] are the underlying
graph of models

• g1 : IM0 → IM1 ,
• g2 : IM0 → IM2 ,
• h1 : IM1 → IM+ ,
• h2 : IM2 → IM+ ,

– a set of constraints SC = { δ } added into the shape of CModel−Merge with
the <van-kampen-square> predicate. The constraint specifies that the diagram
below on the right constitute a commuting cube and the top face constitute a
van Kampen square.

S

Predicate, p Arity, α (p)

<van-kampen-
square> (1)H0

H1

H2

H3

G0

G1

G2

G3

u1
u

u4
u3

(2)v1
v0 v3

v2

w1
w3

w4

w2

2

∑

δ

SMM0

S MM1

MM2

SMM+

I M0

IM1

I M2

IM+

ѱ1

ѱ2

φ1

φ2

ι1
ι0 ι+

ι2

g1
h2

h1

g2

A Model Driven Engineering Approach 209

5 Modeling the Optimization of Resource Allocation

To illustrate the application of our model composition approach, we consider
a scenario of how resources of distributed systems can be optimized. Here, we
continue the example presented in Fig. 2. Figure 3 shows a merged model CM+

of the merged metamodel CMM+ of Fig. 2. The typing of the modeling elements
are not explicitly represented in the figure. In the figure, Peter and Barbara are
instances of Patient, Peter’s assigned doctor is Dr.Logan and Barbara’s assigned
doctor is Dr.Bryan. Dr. Logan has two available time-slots: 0950−1010@Logan
and 1200 − 1220@Logan and Dr. Bryan has one available time-slot: 1030 −
1050@Bryan. There are two available time-slots at the radiology department:
0945− 1000@Lab and 0930− 0945@Lab. In time-slot 0950− 1010@Logan, 09:50
is the start time and 10:10 is the end time. The merged model CM+ need to
be completed with resource allocation for Peter and Barbara at the radiology
and orthopedic department. One can find that there are four possible choices of
resource allocation for Peter and two possible choices of resource allocation for
Barbara with the available resources.

:assigned
Doctor

:belongsTo

:checkin

:admittedTo

:orderingDept

Dr. Logan

Peter

Orthopedics

:Registration

:Imaging
Exam 01.01.1990

0945-1000
@Lab

:assigned
Doctor

:belongsTo

:checkin

:admittedTo

:orderingDept

Dr. Bryan

Barbara

Orthopedics

:Registration

:Imaging
Exam 02.11.1991

0930-0945
@Lab

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

1030-1050
@Bryan

:assigned
Doctor

:belongsTo

Dr. Logan

Peter

0945-1000
@Lab

0930-0945
@Lab

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

:examTime

:apptTime

:assigned
Doctor

:belongsTo

Dr. Logan

Peter

0945-1000
@Lab

0930-0945
@Lab

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

:assigned
Doctor

:belongsTo

Dr. Logan

Peter

0945-1000
@Lab

:assigned
Doctor

:belongsTo

Dr. Bryan

Barbara

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

1030-1050
@Bryan

:a
pp

tT
im

e

:assigned
Doctor

:belongsTo

Dr. Logan

Peter

0945-1000
@Lab

:assigned
Doctor

:belongsTo

Dr. Bryan

Barbara

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

1030-1050
@Bryan

:apptTime

:examTime

:a
pp

tT
im

e

p1

p3

p2

p4
0930-0945

@Lab

0930-0945
@Lab

:examTime

0945-1000
@Lab

0930-0945
@Lab

0945-1000
@Lab

0930-0945
@Lab

b1

b2

M+

Fig. 3. A merged model CM+ of CMM+ (top) and individual resource allocation [6].

We use a transformation approach for allocating resources to the patients. We
use standard double pushout approach [17] for the composition of transforma-
tion rules. In the double pushout approach, a transformation rule is defined by
an input graph, an output graph, and a gluing graph to coordinate the transfor-
mation. Transformation rules can be composed in various ways such as untyped
rule, typed rule, typed rule with application conditions. These variations on
transformations differ in their expressive power. Transformation rules are often

210 F. Rabbi et al.

described with application conditions to restrict the application intentionally.
Negative application conditions are typically used in graph transformation to
prohibit an infinite number of rule applications. Here we present a composi-
tion schema for transformation rule with a set of negative application conditions
similar to the transformation rule proposed by Lambers et al., in [18].

Definition 9 (Typed Transformation Rule with NACs). Given a predi-
cate signature with a 3-way commutative predicate <commute-3>, a typed trans-
formation rule with NACs CRule−N = (Ob,Mor, SC) is specified by

– a set of objects Ob consisting of a type graph (TG), a matching pattern (L), a
gluing graph (K), a replacement pattern (R) and a set of negative application
conditions N = {Ni | i = 0 . . . n},

– a set of morphisms Mor consisting of:
• a bundle of injective graph morphisms (ni : L → Ni)i=0...n,
• K

l−→ L: l is an injective graph morphism,
• K

r−→ R: r is an injective graph morphism,
• L

tL−→ TG, K
tK−−→ TG, R

tR−→ TG, where ιL, ιK , ιR are graph morphisms,
• a bundle of graph morphisms (tNi

: Ni → TG)i=0...n

– a set of constraints SC = { δ1, δ2, δ3 } added into the shape of CRule−N with
the 3-way commutative predicate <commute-3> as illustrated below:

R

Predicate, p Arity, α (p)

<commute-3> D

B

A
g

h
f

∑

LN n K r

tR

l

TG

[=] tKtL

tN

ii

i
[=] [=]δ1

δ2

δ3

In this transformation rule the graph L represents the input pattern or pre-
condition, R represents the output pattern or postcondition, and K represents
the common interface of L and R, i.e. their intersection which has to exist to
apply the rule. In a double pushout approach, two pushouts are used to describe
graph changes by first deleting graph elements and then creating new elements
in the input graph. L \ K describes the part which is to be deleted and R \ K
describes the part which is to be created by the application of the rule. For
an input graph G, the rule is applied if an injective match m : L → G (i.e.,
structure preserving) is found from the input pattern L to the host graph G
and a certain gluing condition [17] is satisfied. The gluing condition states that
all dangling points of L, i.e., the nodes x in L such that m(x) is the source or
target of an edge e in m(L\K) must be in graph K. Figure 4 illustrates a double
pushout graph transformation where m represents a match from L to G and m∗
represents a comatch from R to H.

A match m : L → G of a rule satisfies a negative application condition
ni : L → Ni if there does not exist an injective morphism q : Ni → G with

A Model Driven Engineering Approach 211

G HD

(PO2)(PO1)m m*

L K R

Fig. 4. Double Pushout (DPO) graph transformation [17].

ni; q = m. Figure 5 illustrates a rule r1 typed by the merged metamodel CMM+ .
The typing information of a modeling element in r1 appears after a colon (:).
The rule specifies that a patient pt1 is allocated with an appointment time-slot
t1 and an exam time-slot t2 if t1 belongs to pt1’s assigned doctor d and t1, t2 are
not allocated to any other patient. The green color is used to indicate elements
that the rule is going to produce. Negative application conditions (NACs) are
typically used in graph transformation to prohibit an infinite number of rule
applications.

pt :Patient

t1:TS@Dept pt :Patientf2:apptTime

pt :Patient t2:TS@Lab

f1:apptTime

b:belongsTo
t1:TS@Dept

g1:examTime

d:Doctor

:assigned
Doctor

f1:apptTime

g1:examTimept :Patient t2:TS@Lab

pt :Patient

g2:examTime

Transformation rule r1

NAC

NAC

NACr1

b:belongsTo

d:Doctor

:assigned
Doctor

b:belongsTo

d:Doctor

:assigned
Doctor

t1:TS@Dept

t2:TS@Lab

1

1

1

2

3

Fig. 5. Transformation rule r1 for individual resource allocation of patients [6].

The rule can be applied over the model CM+ in six different ways since there
are six matches. Figure 3 shows the choices of resource allocation for Peter in
p1 − p4 and for Barbara in b1, b2. p1 shows a resource allocation where Peter
is assigned with exam time-slot 0930 − 0945@Lab at the radiology department
and appointment time-slot 0950 − 1010@Logan at the orthopedics department
with Dr. Logan. This resource distribution is valid since it is not violating any
constraints. Similarly, other valid resource distributions are p2, p3, b1 and b2.
However p4 is not valid as it is violating the distributed resource constraint
C8: the exam time-slot 0945− 1000@Lab must be preceded by the appointment
time-slot 0950 − 1010@Logan.

We apply epistemic game theory for the optimization of resources over the
valid choices of resource allocation. Epistemic game theory is a broad area of
research that formalizes the assumptions about rationality and mutual beliefs
in a formal language to analyze games. It introduces a Bayesian perspective on
decision-making in strategic situations. This model of interdependent decision

212 F. Rabbi et al.

making can essentially represent a wide array of social interactions. A metamodel
for modeling epistemic aspects of a system as presented in [19] is shown in Fig. 6.
In this healthcare context, the players’ choices are representing resource alloca-
tion options for patients. The surjective constraint imposed on the hasChoice
relation ensures that instances of Choice must be associated with players. An
instance of Belief connects the choices of a player with other players’ choices
denoting the choice combination of players. In game theory, utility represents
the motivation or satisfaction of players. In an optimization problem the goal
is to either maximize or minimize the utility for all the players. We use the
<utility(n)> predicate to assign utility to an instance of a belief. A utility
assigned to an instance of a belief denotes the utility obtained from the outcome
induced by the choice combination. We use the <prob(r)> predicate to annotate
an instance of a belief with probability. In our healthcare setting, patients do not
have to know about each others choices. We propose to construct a strategy pro-
file for them indirectly with the aim to optimize resource allocation respecting
the preferences of patients.

MMEp

Constraint

Player Choice Belief
source

[1..*]

hasChoice
[surj]

target

[1..*]

<mult(1,*)>

<surjective>

<prob(n)>

<utility(n)>

1 2

1 2

1 2

1 2

∑Arity, α (p)Predicate, p

Fig. 6. A metamodel for modeling epistemic aspects [6].

Here we present a composition schema for modeling game theoretic concerns
of a system. Resource allocation options are represented by a set of entity models
as shown in Fig. 3. Epistemic choices in the game-theory model are coordinated
with the entity models by morphisms.

Definition 10 (Composition of a Game-theory Model and Entity Mod-
els). Given a predicate signature with predicates <surjective> and <non-
commutative>, a composition of a game-theory model and entity models Cgte =
(Ob,Mor, SC) is specified by

– a set of objects Ob consisting of a game-theory model CMGT
= CM (Ob =

{I,CMM := CMMEp
}) and a set of models (Entities) specified with model

composition schema (see Definition 4),
– a set of morphisms Mor = {CMGT

.Ob[I]
ge−→ Entities},

A Model Driven Engineering Approach 213

– a set of constraints SC { δ1, δ2 } added into the shape of Cgte with
<surjective> and <non-commutative> predicates. The constraint δ1 spec-
ifies that if X and Y are two different choices of a player P , the following
right diagram must not commute. The constraint δ2 is added on the map ge
by the <surjective> predicate and specifies that all the elements of Entities
must be linked to some choice instances as illustrated below:

EntitiesP: Player

X: Choice

Y: Choice

ι (hasChoice)-1

ι (hasChoice)-1

ge

ge

Predicate, p Arity, α (p)

<non-
commutative>

∑

D

B

C

A

k

j

f g

[≠]

δ1

The graph I in the game theory model CMGT
of Cgte needs to be refined

with an instance of a graph typed by the shape graph of CMMEp
.Ob[S]. Figure 7

shows a composition of a game theory model with a set of entities. The graph I
is representing a game theory model where Peter and Barbara are two instances
of Player. There are three options to make appointments for Peter represented
by p1, p2 and p3; two options to make appointments for Barbara represented by
b1 and b2. The choice instances in the game theory model are linked to the entity
models via the coordinating edges ge. These game theory models can be used
for optimizing the resources of distributed systems. Techniques related to the
optimization may be found from [19].

Doctor

Barbara
:examTime

:a
pp

tT
im

e

0930-0945
@Labb2

Barbara

:a
pp

tT
im

e

0930-0945
@Labb1

Doctor

Peter
0930-0945

@Labp3

Peterp2
0930-0945

@Lab
:examTime

Entity models (representing resource
allocation options)Epistemic model

Barbara

:hasChoice

:hasChoice

p1

:assigned
Doctor

:belongsTo

Dr. Logan

Peter

0945-1000
@Lab

0930-0945
@Lab

0950-1010
@Logan

1200-1220
@Logan

:belongsTo

:examTime

:apptTime

Peter :hasChoice

:hasChoice

:hasChoice

p ()0930-0945@Lab
0950-1010@Logan1

p ()0930-0945@Lab
1200-1220@Logan2

p ()0945-1000@Lab
1200-1220@Logan3

b ()0945-1000@Lab
1030-1050@Bryan1

b ()0930-0945@Lab
1030-1050@Bryan2

Fig. 7. Composition example of a game theory model with entities (adapted from [6]).

214 F. Rabbi et al.

We show how resource allocation of distributed systems may be optimized
using epistemic game theory. In our example, the patients were asked to come
to the hospital at 9am. We calculate the utility based on the time spent at the
hospital by the patients to get healthcare services. If a patient spends m minutes
in total to get services, then her utility is m. Therefore, the longer the patients
are waiting, the higher utility they get. Our target is to optimize the resource
allocation for the patients so that their wait time will be reduced. Consider the
option p1 for Peter, which represents the resource allocation of 0930−0945@Lab
and 0950 − 1010@Logan. This gives a utility of 70 as Peter is spending only
70 min at the hospital to get services. Similarly, we can calculate Barbara and
Peter’s utilities and complete the epistemic model shown in Fig. 7 with belief
instances by performing a Cartesian product of Barbara and Peter’s options as
shown in Fig. 8. Curved arrows in Fig. 8 are representing belief instances which
will be referred to as belief arrows. The belief arrow from p1 to b1 with an
attribute 70 is representing an instance of Belief with utility 70.

Barbara

Peter

:hasC
hoice

p ()0930-0945@Lab
0950-1010@Logan1

p ()0930-0945@Lab
1200-1220@Logan2

p ()0945-1000@Lab
1200-1220@Logan3

b ()0945-1000@Lab
1030-1050@Bryan1

b ()0930-0945@Lab
1030-1050@Bryan2

70
110

70
110

200
110

200
110

200
110

200
110

Fig. 8. Epistemic model with combination of beliefs (adapted from [6]).

An essential element of epistemic game theory analysis is the notion of belief
hierarchies which are used to characterize solution concepts. We obtain belief
hierarchies from an epistemic model by following belief arrows starting from any
choice of a player. In our epistemic model we are only considering simple belief
hierarchies. The idea of a simple belief hierarchy states that the whole belief hier-
archy may be summarized by a combination of beliefs about players’ choices. A
belief hierarchy is simple if it contains at most one belief of each player. The epis-
temic model in Fig. 8 represents six simple belief hierarchies: (i) p1

70−→ b1
110−−→ p1;

(ii) p1
70−→ b2

110−−→ p1; (iii) p2
200−−→ b1

110−−→ p2; (iv) p2
200−−→ b2

110−−→ p2; (iii)
p3

200−−→ b1
110−−→ p3; (iii) p3

200−−→ b2
110−−→ p3. In the healthcare context, a belief

hierarchy represents the choice combination of resource allocation for patients.
The belief hierarchy p1

70−→ b1
110−−→ p1 can be read as: the system believes that

Peter will consider making appointments represented in p1 if Barbara considers
making appointments represented in b1; and Barbara considers making appoint-
ments represented in b1 if Peter considers making appointments represented in

A Model Driven Engineering Approach 215

p1. Healthcare systems need to be equipped with uncertainty management as
many patients attending do not have an obvious diagnosis at presentation; also
there are varieties of uncertainty in healthcare [20]. In our approach, uncertainty
can be modeled by assigning probability to the belief arrows.

An important concern regarding the belief hierarchies is their consistency. A
consistent belief hierarchy represents a solution concept that satisfies all the con-
straints specified in the metamodel specifications. Following [19] we determine
how inconsistent combination of beliefs can be automatically removed from an
epistemic model. If a combination of beliefs includes choices from a homogeneous
metamodel, then the models are merged into a single model. For instance, if we
wish to check if the combination of beliefs represented by the belief hierarchy
p1

70−→ b1
110−−→ p1 is consistent, then we need to merge the models linked to

p1 and b1 since they are typed by the merged metamodel CMM+ . The merged
model is then checked for consistency and if it violates any constraint specified
in its metamodel, we conclude that the combination of beliefs is inconsistent and
should be discarded from the epistemic model.

The combination of beliefs represented by the belief hierarchy p1
70−→ b2

110−−→
p1 is inconsistent as the merged instance is violating constraint C7 (see Sect. 4).
The reason is that according to the injective constraint imposed on the refer-
ence examTime, patients cannot have the same time-slot. Therefore, assigning
time-slot 0930 − 0945@Lab to both Peter and Barbara is making the merged
instance inconsistent. To check that a constraint is satisfied in a given model of
a metamodel, we inspect the part of a model which is affected by the constraint.
This is checked by projecting out the part of the model which is affected by the
constraint. This is formally defined as a pullback operation in category theory.

Similarly, we can show that the combination of beliefs represented by the
belief hierarchies p2

200−−→ b2
110−−→ p2, p3

200−−→ b1
110−−→ p3 are inconsistent. Figure 9

shows an epistemic model with only consistent combination of beliefs.

Barbara

Peter

:hasC
hoice

p ()0930-0945@Lab
0950-1010@Logan1

p ()0930-0945@Lab
1200-1220@Logan2

p ()0945-1000@Lab
1200-1220@Logan3

b ()0945-1000@Lab
1030-1050@Bryan1

b ()0930-0945@Lab
1030-1050@Bryan2

70
110

200
110

200
110

Fig. 9. Epistemic model with consistent combination of beliefs (adapted from [6]).

The epistemic choice p2 which represents the resource allocation of 0930 −
0945@Lab and 1200 − 1220@Logan is not a rational choice since this is not
optimal for any of the epistemic choices for Barbara. If Peter is allocated with

216 F. Rabbi et al.

Barbara

Peter

:hasC
hoice

p ()0930-0945@Lab
0950-1010@Logan1

p ()0930-0945@Lab
1200-1220@Logan2

p ()0945-1000@Lab
1200-1220@Logan3

b ()0945-1000@Lab
1030-1050@Bryan1

b ()0930-0945@Lab
1030-1050@Bryan2

70
110

200
110

Fig. 10. Epistemic model with rational combination of beliefs (adapted from [6]).

time-slot 0930 − 0945@Lab at the radiology department, it will be optimal for
Peter to see the doctor in appointment time-slot 0950−1010@Logan. Therefore,
the epistemic choice p2 is dominated by p1. The epistemic choice p3 is a rational
choice since this is optimal if Barbara is allocated with time-slot 0930−0945@Lab
at the radiology department.

Figure 10 shows belief combinations with rational choices. The combination of
beliefs is rational as the choices consist of the belief combinations are all rational
choices with respect to the choice combination represented by the combination
of beliefs.

Following [19,21], a simple belief hierarchy generated by a combination of
beliefs leads to a Nash equilibrium if the combination of beliefs is rational.
Therefore, we obtain two Nash equilibria from the epistemic model represented
in Fig. 10:

– Allocating time-slot 0930 − 0945@Lab and 0950 − 1010@Logan for Peter is
rational if time-slot 0945 − 1000@Lab and 1030 − 1050@Bryan are allocated
to Barbara gives a total utility of (70 + 110) = 180;

– Allocating time-slot 0945 − 1000@Lab and 1200 − 1220@Logan for Peter is
rational if time-slot 0930 − 0945@Lab and 1030 − 1050@Bryan are allocated
to Barbara gives a total utility of (200 + 110) = 310.

However, the first equilibrium has a lower total utility for the system.

6 Related Work

We provide a survey of existing approaches for modeling the composition of
system that includes merging models, metamodels, views and megamodeling.
Our approach of modeling in the small and modeling in the large is heavily
influenced by all these approaches where we have generalized the concepts and
presented a formal foundation that can be used for modeling composition of
heterogeneous systems.

Sabetzadeh and Easterbrook [11] presented an algebraic approach for merging
multiple views. In their approach, large models are constructed by manipulat-
ing individual views representing information relevant to different development

A Model Driven Engineering Approach 217

concerns. The view merging framework proposed in [11] is based on a colimit
construction. The proposed method can be applied to a variety of graphical
modeling languages as the underlying syntactic structure of the views follows a
graph-based formalism. The merge framework incorporates a systematic anno-
tation scheme which can be used to identify a potential inconsistent portion of
a view. While modeling a view, a modeler can express inconsistencies that arise
due to stakeholders’ conflicting beliefs during the requirement analysis phase.
Stakeholders’ beliefs about the content of views are represented using anno-
tations denoting the degree of knowledge. The formalization of the degree of
knowledge is based on knowledge orders [22,23]. The annotation scheme allows
a modeler to hypothesize possible interconnections for a set of views. An imple-
mentation of the framework exists as a proof of concept in the Java tool called
iVuBlender [24]. The framework can be used to explicitly model inconsistencies
and capture typing constraints to some degree, but cannot capture constraints
whose articulation rely on the semantics of the modeling language being used.

The multimodeling approach refers to a set of heterogeneous models where
each model captures a specific view of the system and is represented by a set
of domain concepts and local constraints [25]. Diskin et al. [25,26] presented
a framework for multimodeling based on category theory. In their approach,
software models are formalized as typed graphs and a multimodel consists of
(i) component models; (ii) an overlap specification; and (iii) inter-metamodel
constraints. A model is defined as a triple with a type graph (MA), a graph
specifying the data of the model (GA), and a graph morphism from GA to MA

called typing. Overlap between models is specified by a pair of model mappings
with a common source model representing common concepts of the component
models. The mappings show how the common concepts are represented in each
of the component models. This configuration of models and mappings is called
a span and represents an overlap specification of a multimodel. An overlap spec-
ification can be further decomposed into two graph spans: a metamodel span
M1

r1M←−− M0
r2M−−→ M2 and a data span G1

r1G←−− G0
r2G−−→ G2. Component meta-

models are merged automatically by performing a pushout (PO) of morphisms
r1G and r2G in the category of graphs. Local constraints defined on the com-
ponent metamodels are directly carried into the merged graph along with the
maps r1G and r2G. Inter-metamodel (i.e., global) constraints are specified over
the component models of a multimodel [25,27]. Even if the component mod-
els of a multimodel are consistent according to their metamodels, they may
become inconsistent after merging. Checking global consistency is challenging as
it requires building big and possibly unfeasible merged metamodels and mod-
els. König and Diskin provided a mechanism for efficiently checking global con-
straints by reducing the workload for matching [28].

A conceptual framework of megamodeling was presented in [12–14] for mod-
eling and reasoning about large-scale software evolution processes without enter-
ing into the details of the technological space involved. A megamodel is used to
describe MDE by explaining the concept of model, language, metamodel, and
transformation. The core of an MDE megamodel centered around four relations.

218 F. Rabbi et al.

The DecomposedIn relation (δ) in the megamodel is used to decompose a com-
plex system into subsystems or parts. For instance, S1 δ S2 indicates that system
S2 is a part of the system S1. The DecomposedIn relation can be represented as
a δ association in a UML object diagram. The μ association (RepresentationOf
relation) is used to represent a relationship between a model and the system
under study. The notion of model is relative and a system could play the role
of a model. In the megamodel, a system can play the role of a language by
associating a set of systems with the relation ElementOf (∈). A grammar can
be referred to as a model of a language. This concept leads to the definition of
a metamodel. In the megamodel, metamodels are models of languages of mod-
els. By this definition, a metamodel ensures that a model must conform to its
metamodel.

Favre and NGuyen [14] introduces the IsTransformedIn (τ) association in
the megamodel to represent model transformation. A IsTransformedIn relation
has a source and a target model. For instance, msrc δ mtrg indicates that the
model msrc is transformed to model mtrg. The pair (msrc,mtrg) of a IsTrans-
formedIn relation is called a transformation instance. A transformation instance
can be further considered as a system and can be used as a first-class entity in
the megamodel. Software evolution processes can be modeled as a graph using
the megamodel where the graph is composed by a combination of τ links and
other kind of links specifying a mega-pattern. A set of mega-patterns have been
provided in [14] representing various kinds of evolution and co-evolution trans-
formations. This approach of megamodeling is inherently abstract and lacking
structural details of the models and intermodel relations.

In [29], Diskin et al. addressed this abstraction gap with a new type of meg-
amodel, called a mapping aware (MA-)megamodel and presented a mathematical
framework based on category theory. A (MA-)megamodel provides additional
internal structure to a megamodel and remains abstract and independent of
any particular modeling language. It provides different level of abstraction to
a megamodel designer. A megamodel designer can zoom into a megamodel’s
nodes and edges and disassemble them into elementary building blocks. These
elementary blocks are composed to build classical megamodeling constructs: con-
formance, overlapping, consistency, and transformation relationships. Complex
megamodeling constructs are built by the composition of the same elementary
blocks, e.g., bidirectional transformations and heterogeneous merge. A list of
usable design patterns have been formalized in [29] for megamodel engineering
including model; model mappings; model overlap; descriptive views; prescrip-
tive views; model transformation; incremental update. The approach outlines a
mathematical framework based on graph and category theory that can be used
to provide formal semantics of the patterns. The patterns include declarative
aspects of megamodeling operations which is being reflected in the view and
transformation definition mappings.

The abstraction gap has been addressed in a different way in [30] by a lin-
guistic architecture where models and relationships of a megamodel are linked
to illustrative software artifacts. Linked resources are described with linguistic

A Model Driven Engineering Approach 219

relationships concerning dataflow, language membership, schema/type confor-
mance, and correspondence. With the linguistic architecture, linked resources
can be explored and validated. The megamodeling approach has been demon-
strated for analyzing Object/XML mappings (O/X mapping).

7 Conclusion

In this paper we presented a formal framework for model composition. We stud-
ied a variety of composition patterns and formalize them by means of reusable
composition schemata. We showed how composition schemata can be used for
both modeling in the small and modeling in the large. The approach can be
used to specify abstract specifications of modeling constructs which can then
be enhanced with further refinement. To show the applicability of the proposed
method, we presented an application of model composition for optimizing dis-
tributed resource allocations in a healthcare context. Distributed systems are
often loosely connected and inter-dependencies are not defined into their software
model. This limits the scope of optimization of distributed resources. We there-
fore proposed to use a model composition approach for articulating distributed
resource constraints. We proposed to apply model-driven engineering and use
model transformation rules to construct a game theoretic model with purpose of
optimizing distributed resource allocation. We presented a diagrammatic app-
roach for modeling the constraints and conflicting situations of a strategic game.
In particular, producing resource allocation choices by applying model transfor-
mation rules is an automated process. This means that it alleviates the effort
required by the modeler to manually enter the choices.

References

1. Bagdasaryan, A.: Systems theoretic techniques for modeling, control, and decision
support in complex dynamic systems. CoRR abs/1008.0775 (2010)

2. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions, LDTA 2012, pp. 7:1–7:8. ACM, New York (2012)

3. Haber, A., Look, M., Perez, A.N., Nazari, P.M.S., Rumpe, B., Völkel, S., Wort-
mann, A.: Integration of heterogeneous modeling languages via extensible and com-
posable language components. In: Proceedings of the 3rd International Conference
on Model-Driven Engineering and Software Development. MODELSWARD 2015,
Portugal, pp. 19–31. SCITEPRESS - Science and Technology Publications, Lda
(2015)

4. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brckner, B., Mosses, P.D., Sannella,
D., Tarlecki, A.: CASL: the common algebraic specification language. Theor. Com-
put. Sci. 286, 153–196 (2002)

5. Mossakowski, T.: Relating CASL with other specification languages: the institution
level. Theor. Comput. Sci. 286, 367–475 (2002)

220 F. Rabbi et al.

6. Rabbi, F., Kristensen, L.M., Lamo, Y.: Optimizing distributed resource allocation
using epistemic game theory: a model-driven engineering approach. In: Pires, L.F.,
Hammoudi, S., Selic, B. (eds.): Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2017,
19–21 February 2017, Porto, Portugal, pp. 41–52. SciTePress (2017)

7. Rutle, A.: Diagram predicate framework: a formal approach to MDE. Ph.D. thesis,
Department of Informatics, University of Bergen, Norway (2010)

8. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: Computer and informa-
tion science 2012. In: Lee, R. (ed.) DPF Workbench: A Diagrammatic Multi-layer
Domain Specific (Meta-)Modelling Environment. Studies in Computational Intel-
ligence, vol. 429, pp. 37–52. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30454-5 3

9. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view
on the semantics of model composition. In: Akehurst, D.H., Vogel, R., Paige, R.F.
(eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 99–113. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72901-3 8

10. Wang, X.: Towards correct modelling and model transformation in DPF. Ph.D.
thesis, Department of Informatics, University of Bergen, Norway (2016)

11. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: 13th International Requirements Engineering Confer-
ence, RE 2005, pp. 306–315 (2005)

12. Favre, J.: Foundations of model (driven) (reverse) engineering: models - episode
I: stories of the fidus papyrus and of the solarus. In: Bézivin, J., Heckel, R. (eds.)
Language Engineering for Model-Driven Software Development, Dagstuhl Seminar
Proceedings, 29 February–5 March 2004, vol. 04101. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2004)

13. Favre, J.M.: Foundations of meta-pyramids: languages vs. metamodels - episode ii:
story of thotus the baboon1. In: Bezivin, J., Heckel, R. (eds.) Language Engineer-
ing for Model-Driven Software Development, Dagstuhl Seminar Proceedings, no.
04101. Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany (2005)

14. Favre, J.M., NGuyen, T.: Towards a megamodel to model software evolution
through transformations. In: Electronic Notes in Theoretical Computer Science,
vol. 127, pp. 59–74 (2005). Proceedings of the Workshop on Software Evolu-
tion through Transformations: Model-Based vs. Implementation-Level Solutions
(SETra 2004) (2004)

15. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: Proceedings of the First International Workshop
on Model-Driven Interoperability. MDI 2010, pp. 42–51. ACM, New York (2010)

16. Diskin, Z.: Model synchronization: mappings, tiles, and categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
92–165. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18023-1 3

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

18. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and confluence of graph
transformations with negative application conditions. In: Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 162–177.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 12

https://doi.org/10.1007/978-3-642-30454-5_3
https://doi.org/10.1007/978-3-642-30454-5_3
https://doi.org/10.1007/978-3-540-72901-3_8
https://doi.org/10.1007/978-3-642-18023-1_3
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-87405-8_12

A Model Driven Engineering Approach 221

19. Rabbi, F., Lamo, Y., Yu, I.C.: Towards a categorical approach for meta-modelling
epistemic game theory. In: Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems. MODELS 2016, pp.
57–64. ACM, New York (2016)

20. Han, P.K.J., Klein, W.M.P., Arora, N.K.: Varieties of uncertainty in health care.
Med. Decis. Making 31, 828–838 (2011). PMID: 22067431

21. Perea, A.: Epistemic Game Theory: Reasoning and Choice. Cambridge University
Press, Cambridge (2012)

22. Belnap, N.D.: Modern uses of multiple-valued logic. In: Dunn, J.M., Epstein, G.
(eds.) A Useful Four-Valued Logic, vol. 2, pp. 5–37. Springer, Netherlands, Dor-
drecht (1977). https://doi.org/10.1007/978-94-010-1161-7 2

23. Ginsberg, M.L.: Bilattices and modal operators. J. Log. Comput. 1, 41–69 (1990)
24. Sabetzadeh, M., Easterbrook, S.: iVuBlender: a tool for merging incomplete and

inconsistent views. In: 13th IEEE International Conference on Requirements Engi-
neering (RE 2005), pp. 453–454 (2005)

25. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: Proceedings of the First International Workshop
on Model-Driven Interoperability. MDI 2010, pp. 42–51. ACM, New York (2010)

26. Diskin, Z., König, H.: Incremental consistency checking of heterogeneous multi-
models. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol.
9946, pp. 274–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50230-4 21

27. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M.: Consistency
checking of conceptual models via model merging. In: 15th IEEE International
Requirements Engineering Conference (RE 2007), pp. 221–230 (2007)

28. König, H., Diskin, Z.: Advanced local checking of global consistency in hetero-
geneous multimodeling. In: Wasowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS,
vol. 9764, pp. 19–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42061-5 2

29. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-aware megamodeling: design pat-
terns and laws. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 322–343. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02654-1 18

30. Favre, J.-M., Lämmel, R., Varanovich, A.: Modeling the linguistic architecture
of software products. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 151–167. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33666-9 11

https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-3-319-50230-4_21
https://doi.org/10.1007/978-3-319-50230-4_21
https://doi.org/10.1007/978-3-319-42061-5_2
https://doi.org/10.1007/978-3-319-42061-5_2
https://doi.org/10.1007/978-3-319-02654-1_18
https://doi.org/10.1007/978-3-319-02654-1_18
https://doi.org/10.1007/978-3-642-33666-9_11

Generative versus Interpretive
Model-Driven Development: Moving Past

‘It Depends’

Michiel Overeem1(B), Slinger Jansen2, and Sven Fortuin2

1 Department of Architecture and Innovation,
AFAS Software, Leusden, The Netherlands

m.overeem@afas.nl
2 Department of Information and Computing Sciences, Utrecht University,

Utrecht, The Netherlands
{slinger.jansen,s.e.fortuin}@uu.nl

Abstract. Model-driven development practices are used to improve
software quality and developer productivity. However, the design and
implementation of an environment with which software can be pro-
duced from models is not an easy task. One part of such an environ-
ment is the model execution approach: how is the model processed and
translated into running software? Experts state that code generation
and model interpretation are functionally equivalent. However, a survey
that we conducted among several organizations shows that there is a
lack of knowledge and guidance in designing the execution approach. In
this article we present the results of a literature study on the advan-
tages of both interpretation and generation. We also show, using a case
study, how these results can be utilized in the design decisions. Finally,
a decision support framework is proposed that can provide the guid-
ance and knowledge for the development of a model-driven engineering
environment.

Keywords: Model-driven development · Model-driven architecture
Software architecture · Code generation
Run-time model interpretation · Decision support

1 Introduction

Model-driven development (MDD) is used by software producing organizations
(SPOs) to improve software quality and developer productivity. According to

This work is a result of the AMUSE project. See https://amuse-project.org for more
information. An earlier version of this work was published as Overeem and Jansen
[1]. This article adds the motivating survey that we have conducted among sixteen
organizations. The literature study is extended with literature published since the
original study. The case study is expanded with more in-depth observations on the
decision making process.

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 222–246, 2018.
https://doi.org/10.1007/978-3-319-94764-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_10&domain=pdf
https://amuse-project.org

Generative versus Interpretive Model-Driven Development 223

Dı́az et al. [2] these improvements in quality and productivity are achieved
because a well designed model raises the abstraction level of the software devel-
opment process. The abstracted model allows for an expressiveness that can
be more concise than general-purpose programming languages. Domain-specific
modeling improves that even further by catering the model to a certain domain.
The expressiveness causes both the increase of productivity (more can be done
with less) and the quality (there will be fewer mistakes, because there is a smaller
model). The models can be used in different manners, Brown [3] shows a mod-
eling spectrum with, among others, roundtrip engineering, model-centric, and
model only. We are especially interested in the model-centric approach: the model
is the source of truth and the application follows from the model. The model-
centric approach is implemented in Model Driven Engineering Environments
(MDEE), an environment that is similar to an Integrated Development Envi-
ronment (IDE) used for software development. Modelers create models using
modeling languages in a specific modeling environment, just as developers write
software in their IDE. These models are translated according to well defined
semantics, into an application. Together these components (from modeling envi-
ronment up to and including the application) form the MDEE (visualized in
Fig. 1). The translation process that reads the model and produces an applica-
tion is defined as the model execution approach, and implemented in the model
execution engine.

Fig. 1. A model-driven engineering environment enables a modeler to create a model in
a modeling environment. The model is subsequently translated by the model execution
engine (using a model execution approach) into an application.

Our experiences are that the development of a MDEE is by no means an
easy task. The initial investment is large, because there are many technical chal-
lenges. One of these technical challenges that is of particular interest to us, is the
design and development of the model execution approach. SPOs can choose for
code generation, run-time interpretation, or a hybrid form that combines both
approaches (Fig. 2). As in every design challenge, there are numerous decisions
to make (with their specific trade-offs) that influence the overall quality of the
MDEE.

224 M. Overeem et al.

Just like any other (architectural) design question, the design questions for
the model execution approach can be answered with “it depends”. In this article
we show that the design depends on desired quality characteristics and the con-
text of the MDEE. Moreover, we show how SPOs can take these characteristics
into account. It might be regarded as an implementation detail, but the model
execution approach, like any other component in the system has its influence
on the quality characteristics (such as run-time behavior and maintainability) of
the whole system. As in any system that consists of multiple components work-
ing together, the model execution approach should not be designed individually
(i.e., not be out of the context of the MDEE). The influence of the model exe-
cution approach is similar to, for example, the influence of a specific database
on the quality of a data intensive system. While users may not see a difference
in functionality between two different databases, the quality of the system is
affected by it, for example, in terms of performance, stability, and availability.
SPOs can deliver the same functionality, whether they choose code generation
or run-time interpretation, but the quality of the MDEE will differ significantly.

The main research question of this article is How can SPOs make an informed
decision between a generative or interpretive model execution approach?. In
Sect. 2 we explain the different model execution approaches in more depth, and
discuss the work already done in this area. We motivate our research question in
Sect. 3 by presenting the results of a survey among SPOs applying model-driven
development. This survey shows that there is no “one size fits all” solution. It also
shows that many SPOs do not have a clear rationale for the model execution app-
roach that is used. Therefore, decision support and clear guidance is necessary to
improve the overall design and implementation of MDEEs. Section 4 discusses
the results of the literature study that we have performed on the advantages
and disadvantages of the generative and interpretive approach. There are many
hybrid model execution approaches that combine the generative and interpre-
tive approach. We show the preference for the two pure approaches in terms of
percentages. These percentages can be used by the SPO to find the right balance
in designing their own hybrid model execution approach. Section 5 describes a
case study, in which we observe the design of a fitting model execution app-
roach. We conclude that the design of a fitting model execution approach is not
detached of the overall design of the MDEE. We reflect on the case study and our
observations in Sect. 6. We observed three general areas of design decisions that
influence the model execution approach, and we present a design support frame-
work based on the case study. Finally, Sects. 7 and 8 evaluates and discusses the
study, and presents our conclusion respectively.

2 Context and Related Work

There are several model execution approaches, many of them are a hybrid form
of the two pure approaches. We discuss the two pure approaches, and describe
two groups of hybrid approaches, shown in Fig. 2. The first pure model exe-
cution approach is code generation. During code generation a model is parsed,

Generative versus Interpretive Model-Driven Development 225

Fig. 2. The four main types of execution approaches are generation, interpretation,
simplification, and mix-and-match. The darker boxes show the execution process. With
the two hybrid approaches, the execution process can be split up and divided between
build-time and run-time. The model is created at design-time, but is used at build-time
and/or run-time.

interpreted and transformed into source code. The generated source code gen-
erally results in running software. This approach is not exclusive to MDD, and
is formalized and defined by Czarnecki and Eisenecker [4] as Generative Pro-
gramming. According to their definition, it is a paradigm based on modeling
facilities to automatically manufacture customized and optimized intermediate
and/or end-products. Applying generative programming within MDD results in
generative MDD. Although nothing in the definition states that the output can
not be changed manually before the final software product is delivered, we only
regard full code generation that does not need manual changing the generated
code. This does not imply that every part should be generated; the generated
code can be combined with frameworks or base libraries, as pointed out by Kelly
and Tolvanen [5].

The second pure model execution approach is run-time interpretation, or
interpretive MDD. The idea is similar to code generation, but the timing is
different: the parsing and interpretation of the model are done at run-time.
There is no need to first generate source code, the running software executes its
functions directly based on the model. In this case the model execution approach
becomes part of the application, the application interprets the model before
offering functionality based on the model. Further manual coding is not possible
with this approach, because there is no time to intervene in the execution of the

226 M. Overeem et al.

software. However, as we see in Sect. 3 it is possible to combine custom code with
an interpreter. The model needs to be deployed along with the running software,
while in the generative approach, the model is not part of the running software.

These two approaches form the extremes of the execution spectrum, and
many hybrid forms are possible. We see two groups of hybrid approaches. The
first group is simplification: a model is transformed into a second model before
deploying it for run-time interpretation. In this approach there is both a gen-
eration step and an interpretation step, instead of generating source code. The
generation step transforms the model into a second model that can be inter-
preted at run-time. This can be achieved by transforming high-level concepts to
low-level concepts, or by transforming into a model with fewer constructs. The
results of this approach are manifold: (1) The interpreter is easier to develop
and better maintainable, because it has to support fewer constructs. (2) The
translation is less complex, so the interpreter is faster. And finally, (3) the inter-
preter becomes more reusable, because there can be many different models that
can be transformed into the intermediate model. This approach is also used by
programming languages that compile into an intermediate language that is in
turn interpreted by a runtime environment, such as the approach Meijler et al.
[6] discuss. They generate Java source code, but use a customized class loader
that acts as a run-time interpreter.

The second group of hybrid approaches is a match-and-mix approach: some
parts of the platform use code generation, while others use interpretation. This
approach can be used both from an architectural perspective as well as from a
model perspective. The MDEE could use a different approach in different com-
ponents, for instance the user interface could be interpreted, while the database
access layer is generated. Different approaches could also be chosen based on
model dynamics, where the more stable parts can be generated into source code
and the more dynamic parts are interpreted.

Figure 2 shows the four described approaches, marking out the time at which
the execution takes place. In the generative approach, the execution is done at
build-time, as opposed to the interpretive approach in which the execution takes
place at run-time. Both the simplification and mix-and-match approach show
that they have part of the execution at build-time, and part at run-time. This
makes them flexible, because SPOs can decide how much happens at what time.
These hybrid approaches can also be combined, the mix-and-match approach can
combine the interpretive, generative, and simplification approach into a single
encompassing model execution approach.

There is some work done on the challenge of designing a fitting model execu-
tion approach discussed in this article. A multi-criteria analysis of the different
approaches is performed by Batouta et al. [7] with as goal the support of the
decision-making. Their analysis results in a decisive statement about the best
approach (based on their list of ten criteria). However, they do not take the con-
text of the MDEE into account. Fabry et al. [8] address a number of advantages
regarding the different model execution approaches, but they do not give any sup-
port for the decision-making. Zhu et al. [9] researches the decision-making within

Generative versus Interpretive Model-Driven Development 227

MDD applied to game development, however, he only looks at other architectural
decisions than the model execution approach within a MDEE. Code generators
and the interaction with developers is researched by Guana and Stroulia [10],
only without making a comparison with the interpretive approach. All of the
mentioned work is incorporated in the literature study in Sect. 4.

The design of software and their architectures is a thoroughly researched
topic. Capilla et al. [11] show how design decisions play a role in software archi-
tecture, and that it is important to capture them. Jansen and Bosch [12] define
“software architecture as the composition of a set of architectural design deci-
sions”, and formalize this in the Archium approach which is further extended
in Ven et al. [13]. Svahnberg et al. [14] present a decision process that, based
on desired quality attributes, supports a SPO in finding the architecture variant
that shows the most potential. We combine the definition of software architecture
as a set of design decisions with the approach to support a decision with quality
attributes, and apply this to MDD. Because of this we are able to uncover the
rationale of either a generative or interpretive approach, and support SPOs in
their design process.

3 How SPOs Design and Develop MDEEs

We interviewed twenty-two product experts of sixteen different SPOs that
develop MDEEs. All of the experts had either five or more years experience
with the product or were working with the product since its start. They served
in different roles at the time: twelve of them as chief executive, the others in
different roles such as lead developer, business developer, and sales manager.
These experts were asked questions on the design and implementation of their
company’s MDEE. The SPOs were identified by an Internet search, exploiting
our network, and asking interviewed product experts.

We identified 36 qualifiable case companies with representatives in Belgium,
The Netherlands, or Luxembourg. For sixteen companies we found experts that
were willing and able to cooperate in our research1. The companies differ in
size (ranging from ten employees to thousands of employees), in market (some
operate only in The Netherlands, while others operate worldwide), and maturity
(some MDEEs are almost twenty years old, while others only two years). After we
processed the answers, every expert had the opportunity to correct any mistaken
interpretations. The answers are summarized in Table 1.

The first topic of interest is the target users of the MDEE and its modeling
language. We asked the experts what the target group of users for the MDEE
are, and what kind of expertise they expect from them. Their answers resulted
in four categories of users:

1 Some needed to be excluded due to confidentially issues or the lack of (technical)
knowledge.

228 M. Overeem et al.

Table 1. Anonymized results of the survey among SPOs. The target users and the
model execution approach are shown, a long with the company size (in terms of number
of employees) and maturity (in terms of number of development years). The cells
marked with an * identify MDEEs that support two distinct web platforms.

– Laymen are people without any technical knowledge.
– Technical business users are those that have some knowledge of software

development, but are no developers. They are expected to have knowledge
about software concepts such as data models, and data types. An informal
description would be people more knowledgeable than layman, but less knowl-
edgeable than developers.

– SQL experts are a specific set of users that are able to write SQL queries.
They are not able to write software in other programming languages. This
specific category was added after the review with SPO4, because the category
developers did not match their target description.

– Developers are those users that are able to write software in a programming
language. MDEEs that target developers expect them to be familiar with
IDEs and other programming concepts.

A third of the SPOs specifically target laymen, while the others require some
form of technical knowledge of their users. There is no correlation found between

Generative versus Interpretive Model-Driven Development 229

the model execution approach and the targeting of laymen. In the case study
we conducted (see Sect. 5) we also observe the design of a MDEE that targets
laymen. A third of the SPOs that target technical business users also target
developers, their MDEEs support custom programming, because the model is
not able to express al required functionality. The six SPOs that target developers
all use an interpretive approach, four of them also use code generation.

Five SPOs (SPO2, SPO6, SPO9, SPO13, and SPO16) state that a reason
for their model execution approach is a certain required build-time behavior.
As an example, the expert of SPO16 states “You can’t generate code again in
an end application that is already generated. To allow workflow modeling in the
end application, we were forced to make use of an interpretative solution.”. All
of the five mentioned SPOs explain that users are able to change the model,
and expect that their changes are (near) instantly applied and visible in the
application. Four of them use run-time interpretation, while the other one uses
a simplification approach. The SPOs that use a generative approach did not
mention such a requirement for build-time behavior.

All of the SPOs target a web platform, meaning that they support at least
back-end and front-end applications. Three of the SPOs, however, support two
different back-end platforms, one also supports mobile applications, and two
others also support native desktop applications. Effectively, we can conclude
that all SPOs support multiple platforms. The interpretive approach is motivated
three times by the advantage of platform independence, or portability.

We have found little reasoning behind the implemented approaches, one
expert even stated “We just had to go with one of the two.”. An expert of SPO6

refers to an advantage in portability for interpretation, a correlation that we will
see again in Sect. 4: “By interpreting the UI and generating the remaining parts
of the application, we are able to share models between different platforms.”. A
reference to resource utilization is made by an expert of SPO14: “We don’t want
to regenerate an entire database every time the model changes, because this can
potentially cause a lot of problems with data migration.”. The interviews show
that all approaches are used, and nearly half of them use a hybrid form. This
supports our claim that the model execution approach depends on many factors
and is context specific. We cannot give a simple answer such as “web platforms
should use an interpreter”, Table 1 shows that other approaches are used for web
platforms as well. Like Capilla et al. [11] we believe that it is important for SPOs
to document the rationale behind important architectural decisions. In the next
Section we will show that the model execution approach influences the quality
of the MDEE, and that it is important to capture the rationale of the design.

4 Quality Characteristics of Model Execution Approaches

We started the literature study by executing a literature review on the advan-
tages and disadvantages of both code generation and run-time interpretation.
The literature review was done with the snowballing approach as described by
Wohlin [15]. The snowballing approach uses references between articles as a

230 M. Overeem et al.

means to discover other relevant literature. The first step is to select a start set
from which the references can be followed. This approach was chosen because
the research areas to be covered in this review are broad. We expected litera-
ture from the MDD field as well as Domain-Specific Language engineering and
compiler design. The second reason was that the literature that we had found in
earlier explorations never mentioned the advantages or disadvantages directly,
but they where often hidden in implementation details.

Our start set was created by earlier informal explorations with the Google
Scholar engine, using “interpretation versus code generation” and “interpreta-
tion vs. code generation” as keywords. We selected five articles as the start
set: van Deursen et al. [16], Meijler et al. [6], Mernik et al. [17], Tanković [18],
and Voelter [19]. These papers represent the different research areas and have a
broad research question, resulting in many references (both backwards and for-
wards). With this start set we executed several steps, following both backward
and forward references. The found literature was included when it mentioned
advantages or disadvantages on model execution approaches, and we ended up
with 35 studies.

The literature was classified using the ISO standard 25010:2011 for software
product quality [20]. This standard is used to asses the quality of software sys-
tems, and matches our intent to asses the quality of MDEEs. The ISO standard
consists of eight categories with 31 characteristics. We found evidence for differ-
ences in quality fulfillment for five out of these eight categories, summarized in
Table 2. The summary of all the found evidence is presented in Table 3. There
was no evidence found for the categories functional suitability, usability, and reli-
ability. The first two categories match the statement of Stahl et al. [21] “code
generation and model interpretation are functionally equivalent”. For category
reliability no evidence was found as well, which was expected. Reliability is the
degree to which the system performs its functions under certain conditions. We
assume the generative and interpretive approach to be functionally equivalent,
and in both approaches it is possible to build a reliable functioning system.

Table 3 presents every mention of an advantage or disadvantage in relation
to its source and the quality characteristics. A G stands for a preference of
generation over interpretation, while an I stands for the opposite. When we
encountered statements on the two approaches without a preference, we marked
the corresponding cell with both G and I. The total number of preferences
are used to calculate the percentage of the two alternatives with respect to
the quality characteristic. The evidence we found is presented in relation to
the generative and interpretive approach. This does not mean that the hybrid
approaches are not mentioned by authors (as discussed in Sect. 2). However, the
advantages and disadvantages we found were always in terms of the generative
and interpretive aspects of an approach.

Generative versus Interpretive Model-Driven Development 231

Table 2. The categories and characteristics from the software product quality model in
ISO standard 25010:2011. For the emphasized items we found evidence of a preference
for either code generation or model interpretation.

Category Characteristics

Functional
suitability

Functional completeness, Functional correctness, Functional
appropriateness

Performance
efficiency

Time behaviour, Resource utilization, Capacity

Compatibility Co-existence, Interoperability

Usability Appropriateness recognizability, Learnability, Operability,
User error protection, User interface aesthetics, Accessibility

Reliability Maturity, Availability, Fault tolerance, Recoverability

Security Confidentiality, Integrity, Non-repudiation, Accountability,
Authenticity

Maintainability Modularity, Reusability, Analysability, Modifiability,
Testability

Portability Adaptability, Installability

4.1 ISO: Performance Efficiency

The characteristics in the category Performance efficiency describe the perfor-
mance of a system: how the system utilizes resources, responds to requests, and
meets the capacity requirements. For two of the characteristics evidence was
found.

Time Behavior - The first characteristic for which we found evidence is the
time behavior of the system. For MDEEs, this is a special characteristic, because
there are two main use cases for which the response and processing time is
important. The run-time time behavior describes the response time of the func-
tionality offered in the application. However, the second important use case for
which response time is important, is the translation from model to application.
When a generative approach is used, the model execution approach takes up time
between model changes and software updates. When an interpretive approach
is used, there is no time between model changes and software updates, because
the execution happens during execution of normal system functions. These two
distinct use cases are confirmed by the literature that we studied: we found com-
ments in relation to both approaches. Therefore this characteristic is split into
two separate characteristics. Both build-time time behavior and run-time time
behavior are used as two separate characteristics in our study.

Twenty-two out of the 32 papers mention the time behavior characteristic, it
is one of the most frequently commented characteristics. Because of the possibil-
ity of doing upfront analysis during code generation, more efficient code can be
generated. On the other hand, interpreters add overhead to run-time functional-
ity and thus are slower. While that is the general sentiment, Klint [34] remarked

232 M. Overeem et al.

Table 3. The results of the literature review and basis for the ranking of the two
approaches. G corresponds with a preference for code generation over interpretation.
I identifies where a paper shows a preference for interpretation over generation. G I
indicates papers did not present a preference, but did give advantages or disadvantages.

IS
O
:
P
er
fo
rm

an
ce

be
ha

vi
or

R
un
-t
im

e
tim

e
be
ha
vi
or

B
ui
ld
-t
im

e
tim

e
be
ha
vi
or

R
es
ou
rc
e
ut
ili
za
tio

n

IS
O
:
C
om

pa
ti
bi
lit
y

C
o-
ex
is
te
nc
e

In
te
ro
pe
ra
bi
lit
y

IS
O
:
Se
cu
ri
ty

C
on
fid

en
tia
lit
y

IS
O
:
M
ai
nt
ai
na

bi
lit
y

M
od
ul
ar
ity

A
na
ly
sa
bi
lit
y

M
od
ifi
ab
ili
ty

Te
st
ab
ili
ty

IS
O
:
P
or
ta
bi
lit
y

A
da
pt
ab
ili
ty

In
st
al
la
bi
lit
y

Batouta et al. [7] G I G G I G G
Brady and Hammond [22] G I I I I
Cleenewerck [23] G G I
Consel and Marlet [24] G I I I
Cook et al. [25] G G I G
Cordy [26] I I
Czarnecki and Eisenecker [4] G I
Daz et al. [2] G I I G
Ertl and Gregg [27] G I I I I
Fabry et al.[8] G G I I
Gaouar et al. [28] G I
Gregg and Ertl [29] G G I I I I I
Guana and Stroulia [10] I I I
Hinkel et al. [30] I
Inostroza and Van Der Storm [31] I
Jones et al. [32] G I I G
Jrges [33] I I I
Klint [34] G I G I I G I I
Meijler et al. [6] G I G G G G
Mernik et al. [17] I I G I
Ousterhout [35] G I I G
Pessoa et al. [36] G I
Riehle et al. [37] I
Romer et al. [38] G I
Schramm et al. [39] I
Stahl et al. [21] I G I I I
Sundharam et al. [40] I I I I
Tankovi [18] G I G I I
Tankovi et al. [41] G I G I I
Thibault et al. [42] G I
Thibault and Consel [43] I I
Varr et al. [44] G I I
Voelter [19] G I G G G G G
Voelter and Visser [45] G I G G G
Zhu[46] G I G G
% in favor of generation 88 0 87.5 0 0 100 20 20 15 55.5 30 50
% in favor of interpretation 12 100 12.5 100 100 0 80 80 85 44.5 70 50

Generative versus Interpretive Model-Driven Development 233

that the overhead of interpreters will diminish with the advent in hardware.
Both Ertl and Gregg [27] and Romer et al. [38] show that there is nothing that
makes interpreters inherently slow.

The reduced build times that an interpretive approach gives are an advantage,
such as enabling of agile development and better prototyping. This advantage is
stated by Consel and Marlet [24] and Riehle et al. [37] among many others.

Resource Utilization - The general comment that code generation results in
improved run-time behavior can be extended to resource utilization as well. Mei-
jler et al. [6] state that generators can optimize for more than run-time behavior
only, something that is useful in for instance embedded systems and game envi-
ronments. A difference can also be seen in how generators or interpreters compete
with the running application for resources. A generator might use more memory,
but could be running on different hardware than the application. Interpreters are
part of the application, so it could be hard to run them on different hardware.
Gregg and Ertl [29] comment that interpreters often require less memory, but
confirms the competition for resources with the application.

Another view on resource utilization is the data storage for an application.
Meijler et al. [6] point out that the interpretive approach often leads to a less opti-
mal data schema. The schema might depend on the model and thus can change
at run-time, therefore, the schema has to be flexible enough. This requirement
often conflicts with optimizations that might be achievable otherwise.

4.2 ISO: Compatibility

The category Compatibility contains characteristics that express the quality of
co-existence and operability of the system.

Co-existence - Only two papers contain evidence for a preference between
interpretation or generation based on this characteristic. Gaouar et al. [28] share
their experiences on making dynamic user interfaces and point out how the
interpretive approach enabled them to use platform native elements. A different
side is shown in Jörges [33]: the late binding that interpretation offers makes it
possible to re-use the same application instance for different tenants.

Interoperability - Interpreters have access to the dynamic context of the appli-
cation at run-time. Fabry et al. [8], Ousterhout [35], and Varró et al. [44] state
this as a preference for interpreters, because it allows them to communicate with
the application in a way that is not possible by generators.

4.3 ISO: Security

Security describes the quality in terms of integrity, authentication, and confi-
dentiality. The literature only contained evidence for the characteristic confiden-
tiality.

Confidentiality - Tanković [18] and Tanković et al. [41] describe the models
used in a MDEE as intellectual property. The interpretive approach exposes

234 M. Overeem et al.

the model to the application, making it more vulnerable for exposure. In the
generative approach the models do not need to be shipped which makes that
approach more secure.

4.4 ISO: Maintainability

Maintainability is an important aspect in the quality of software products. Char-
acteristics in this category that were mentioned by literature comment on the
testability, modifiability, analysability, and modularity of the platform.

Modularity - Most literature favors interpreters over generation when looking
at the modularity characteristic. Inostroza and Van Der Storm [31] and Consel
and Marlet [24] propose solutions for modularization within interpreters. Clee-
newerck [23] is the only one who argues that generators are more preferred than
interpreters when it comes to modularization.

Analysability - An important aspect in MDEEs is the analysis of the resulting
application. It should conform to the model and the defined semantics, which is
not an easy task. When a generative approach is used, the model is translated
in a separate language, without losing the semantics of the model. Proving that
translation to be correct is hard, according to Guana and Stroulia [10]. According
to Jörges [33], the interpreter can play the role of a reference implementation,
used to document the semantics of the model. This improves the analysability
of the platform.

Debugging is partly analyzing the run-time behavior of an application.
According to Voelter [19] and Voelter and Visser [45] this process is easier in a
generative approach, because the generated application can be debugged as if it
were a normal application.

Modifiability - Many papers, Cook et al. [25] and Dı́az et al. [2] among others,
claim that interpreters are easier to write. We conclude that easier to write
software is also easier to modify. Cordy [26] describes the process of a compiler
as being heavy-weight, making it harder to modify. Cleenewerck [23] and Voelter
and Visser [45] argue that generators give more freedom to developers, giving
them room for better solutions.

Testability - The literature was far from conclusive on the testability of both
approaches. On the one hand, interpreters can be embedded in test frameworks,
this makes them easier to test. Generators on the other hand add indirection
in the testing, because they are a function from model to code. Asserting the
correctness of the output becomes fragile when just looking at the written code,
the easiest way is to determine the correctness by running the code. Voelter
[19] and Voelter and Visser [45] prefer generation when it comes to debugging,
because the model translation can be left out of the testing.

4.5 ISO: Portability

Portability covers the characteristics adaptability and installability.

Generative versus Interpretive Model-Driven Development 235

Adaptability - The separation between generation environment and applica-
tion environment makes the generative approach preferred according to Meijler
et al. [6], Batouta et al. [7], and Voelter [19]. The two environments can be
evolved at a different pace when adaption needed, which makes it more flexi-
ble. In an interpretive approach the whole interpreter needs to be rewritten and
although this might be easy, it is more work. However, Tanković [18], Tanković
et al. [41], and Gregg and Ertl [29] state that porting an interpreter to a new
platform is no problem when platform independent technologies (such as pro-
gramming languages and environments that run on multiple platforms) are used.
This matches the results from Sect. 3, where three SPOs stated portability as
the rationale for the interpretive approach.

Installability - The two separated environments in the generative approach
not only have a clear advantage for adaptability, it is also an advantage with
respect to installability. Meijler et al. [6], Cook et al. [25], Batouta et al. [7], and
Voelter [19] prefer code generation because it can target any platform, it does
not constrain the target application. The initial installation is, however, not all
that is important, when the MDEE is updated, re-installations are needed too.
The interpretive approach makes re-installations less frequent, because in many
cases only the model needs to be updated. This advantage is pointed out by
Tanković [18] and Mernik et al. [17].

4.6 Utilizing the Preferences

The results of the literature study as presented in Table 3 can be used by SPOs
to design their execution approach. But before SPOs can use these results, they
have to prioritize the quality characteristics, i.e., they have to determine which
characteristics are most important for them. When priorities are assigned, the
preference for either the generative or the interpretive approach can be calculated
by the following formulas:

Pgenerative =
12∑

i=1

PiGi and Pinterpretive =
12∑

i=1

PiIi

The formulas summarize over all twelve characteristics i, and applies the prior-
ity (Pi) on the corresponding preference (from Table 3) for both the generative
(Gi) and the interpretive (Ii) approach. All priorities add up to a total of 1,
and because for every characteristic i Gi Ii add up to 100%, Pgenerative and
Pinterpretive add up to 100%. The outcome shows for a certain set of priorities
what the preference for either the generative or interpretive approach is.

How the priorities are determined is not prescribed, however, in the case
study described in the next Section we will show two possibilities. The first
option is by informally giving a weight to every characteristic, dividing 100%
among the different characteristics. By doing this informally, the SPO takes the
risk of calculating a preference with inaccurate data. Therefore, we also show
a second option to prioritize the characteristics: the analytic hierarchy process

236 M. Overeem et al.

(AHP) method described by Saaty [47]. Falessi et al. [48] shows that the AHP
method is helpful in protecting against two difficulties that are relevant for this
study. The first is a too coarse grained indication of the solution. When the
priorities are determined informally it becomes easy to overlook certain char-
acteristics. The second difficulty is that there are many quality attributes that
need to be prioritized, and many attributes have small and subtle differences.
The AHP method helps by prioritizing in a pairwise manner, the priorities are
only determined relative to other characteristics.

5 Case Study

We conducted a case study by observing the design of a MDEE at a Dutch
SPO, AFAS Software. The NEXT version of AFAS’ ERP software is completely
model-driven, cloud-based and tailored for a particular enterprise, based on an
ontological model of that enterprise. The ontological enterprise model (OEM, see
Schunselaar et al. [49]) will be expressive enough to fully describe the real-world
enterprise of virtually any business. The platform initially used a generative
approach, generating many lines of C# and JavaScript. However, during the
course of 2016 a shift was put into motion towards a hybrid form with more
parts being interpreted at run-time. We took part in the discussions surrounding
this shift and observed the team while they designed and implemented parts of
the MDEE.

We already explained that the context of the MDEE influences the design of
the execution approach. This can be seen if we approach the architecture as a set
of design decisions as described by Jansen and Bosch [12] and van der Ven et al.
[13]. These decisions are made during the software development life cycle. Every
requirement is satisfied by first creating one or more solutions, from which the
SPO selects the best fitting alternative. This is done by assessing the solutions,
for instance in terms of quality, cost, and feasibility. After a solution is selected,
the preferred solution is incorporated in the existing architecture. This process
is continuous and will be repeated for every new requirement that needs to be
satisfied.

The complete architecture of a MDEE is too large to present in this paper,
therefore, we present the most important and guiding requirements and deci-
sions. These are presented in two distinct phases, to illustrate two different uti-
lizations of the results from Table 3. The requirements and decisions that form
the architecture and are input for the prioritization are summarized in Table 4.

The initial requirement that guided the design of the MDEE is the envisioned
target audience for the modeling language (R1). By choosing laymen as the
target audience, it becomes possible for non-technical business users to model
their own ERP solution. This requirement is driven by years of experience in
the development of an ERP solution, and the knowledge that is accumulated in
those years. The resulting design decision is that the modeling language should
be a model with a high level of abstraction, an ontological enterprise model
(OEM) (D1). This model abstracts from the many details that are needed for

Generative versus Interpretive Model-Driven Development 237

Table 4. Summary of the requirements and decisions from the design of the MDEE.

Requirements

R1 Target audience for the modeling language are laymen

R2 Users do not manage or maintain the MDEE themselves

R3 Cost effectiveness of the MDEE is important

R4 Use a technology that the developers are familiar with

R5 The MDEE should handle the load from the existing customer base

R6 End users can change the model without intervention

Decisions

D1 Develop an ontological enterprise model

D2 Use a SaaS delivery model

D3 Use multi-tenancy to gain resource sharing

D4 The MDEE should run on the .NET runtime

D5 Deploy the MDEE as a distributed application

D6 Use a hybrid execution approach

creating software, those details are added by the platform (the generator or
interpreter) when the model is transformed. A second requirement is that the
hosting and management of the MDEE is done by the SPO (R2). Delivering
the MDEE through a Software-as-a-Service (SaaS) model is the second design
decision (D2) that satisfies requirement R2. A third important requirement is
cost effectiveness of the MDEE (R3), and multi-tenancy is one of the ways of
achieving that as stated by Kabbedijk et al. [50]. The decision for a variant of
multi-tenancy forms the last important decision (D3) of this initial phase.

After the design of the initial architecture, that solved among many other
requirements R1, R2, and R3, the execution approach is designed. At the time
of this design, the literature study as presented in Sect. 4 was not yet done. After
discussion with the team, we concluded and verified that in hindsight four qual-
ity characteristics were especially important for this phase of the development.
Run-time time behavior and resource utilization followed from the decision for
SaaS (D2) and multi-tenancy (D3). Testability and analysability were important
for AFAS to secure the quality of the new MDEE. With the data from Table 3
and the priorities that we assigned in hindsight allow us to calculate the prefer-
ence for an approach. The possible calculation is shown as an illustration. The
first two characteristics (resource utilization and run-time time behavior) are
assigned a priority (or weight) of 35%, the other 30% is split between the other
two characteristics (testability and analysability). The resulting preferences can
then be calculated by combining the priorities of the characteristics with their
weights (expressed in percentages, summing up to a total of 100%). We apply
formulas Pgenerative and Pinterpretive on the percentages from Table 3 and the
priorities, resulting in the following calculations:

238 M. Overeem et al.

Pgenerative = 0.35 ∗ 0.88 + 0.35 ∗ 0.875 + 0.15 ∗ 0.55.5 + 0.15 ∗ 0.20 = 0.729

Pinterpretive = 0.35 ∗ 0.12 + 0.35 ∗ 0.125 + 0.15 ∗ 0.44.5 + 0.15 ∗ 0.80 = 0.271

The outcome of the calculation matches the decision that AFAS made: their
initial execution approach was the generative approach. This initial phase of
requirements, decision making, and design of the architecture can be summarized
in three statements.

– R1 leads to D1
– R2 in the context of D1 leads to D2
– R3 in the context of D1 and D2 leads to D3

As the design of the MDEE advanced new requirements needed to be real-
ized. First of all the technology that is used to develop the MDEE was selected.
The requirement was that a technology should be used that is familiar to the
development team (R4). This fourth requirement led to the decision for the
.NET runtime (D4) as the technology to develop the platform on. The next
requirement formulated expected load requirements: AFAS has a large existing
customer base that needs to be transferred to this new platform. There is an
expected load known from the existing customer base that needs to be han-
dled (R5). As a result of this requirement, the decision was made to design and
deploy the application as a distributed system (D5).

Table 5. Summary of the priorities of quality characteristics determined by applying
AHP as described by Saaty [47]. Columns Generative and Interpretive show the prefer-
ences for code generation and model interpretation from Table 3. The final preferences
are calculated with the formulas Pgenerative and Pinterpretive.

Priority Generative Interpretive

Run-time time behavior 0.059 0.88 0.12

Build-time time behavior 0.278 0.00 1.00

Resource utilization 0.098 0.875 0.125

Co-existence 0.045 0.00 1.00

Interoperability 0.012 0.00 1.00

Confidentiality 0.012 1.00 0.00

Modularity 0.062 0.20 0.80

Analysability 0.023 0.20 0.80

Modifiability 0.150 0.15 0.85

Testability 0.085 0.555 0.445

Adaptability 0.155 0.30 0.70

Installability 0.021 0.50 0.50

Preference 0.293 0.707

Generative versus Interpretive Model-Driven Development 239

The sixth requirement reopened the design of the model execution approach.
Therefore, the team decided to backtrack on the earlier decision for the genera-
tive approach. AFAS envisioned that customers are able to customize the model
without intervention from AFAS (R6). This requirement leads to other require-
ments, such as the expected turn around time between model changes and appli-
cation updates. Based on requirement R6 and the decisions D1-D5 the quality
characteristics were prioritized. Characteristics build-time time behavior, adapt-
ability, and modifiability became more important. This time the prioritization
was done by applying the AHP method: all the characteristics were pair-wise
compared and ranked according to the method described by Saaty [47]. The
results are shown in Table 5, combined with the preferences from Table 3. The
final outcome preferred interpretation over generation with 71%.

The team decided to implement a simplification approach: the OEM is simpli-
fied into a simpler model by the generator. This way the team was able to satisfy
the build-time time requirements, without sacrificing performance. Because the
MDEE itself already grew quite large, the team decided to also switch to a mix-
and-match approach. The simplification approach was first implemented in a
specific component: the messages that are past between the different parts of
the distributed system.

An architecture consists of many decisions, both large and small, both impor-
tant and non-essential. Our case study only shows the five most important
requirements. In the next Section we will reflect on the case study and derive a
proposed decision support framework for the design of a model execution app-
roach.

6 Case Study Reflection

In Sect. 5 we observed a SPO during the design of a MDEE. We have shown how
design decisions from the architecture determine the priorities of the quality
characteristics. The existing architecture of the MDEE and the design decisions
that are present together form the context of the model execution approach. It
shows that, just as with any component in a larger system, the design of an
execution approach does not stand on its own, but needs to be embedded in the
overall architecture. Some design decisions might constrain the execution app-
roach, other design decisions might even mitigate the problems that an execution
approach give. As an example we look at build-time time behavior, a require-
ment that was described in the previous Section. From Table 3 we learn that the
interpretive approach is preferred when a specific build-time time behavior is
required. However, when the MDEE will be built using a programming language
and platform that uses interpretation, such as JavaScript, the decrease in build
times with a generative approach might be mitigated. An interpreted language
does not need a separate compile step that needs to be executed by the genera-
tor, and that reduces the build time. This shows that the design decisions that
are already present influence the execution approach.

240 M. Overeem et al.

We have distilled three areas from the decisions described in Sect. 5 that
steered the design of the model execution approach. The decisions described in
Sect. 5, and summarized in Table 4 are used to illustrate the areas.

6.1 The Metamodel

The metamodel and its features and requirements have an influence on the most
fitting model execution approach. This is illustrated by decision D1: OEM and
requirement R6: Customize the model.

A model with a high-level of abstraction (such as D1: OEM) will require
a more complex model execution, because the distance in terms of abstraction
between a programming language and the model is larger. With an interpretive
approach, the application will require more resources to perform this model exe-
cution. This influences the run-time behavior of the model execution approach,
and thus the application itself.

On the other hand, requirement R6: Customize the model increases the
priority of the build-time time behavior characteristic. This leads to a preference
for run-time interpretation, because that approach is preferred if build-time time
behavior is important.

6.2 The Architecture

The chosen architecture for the application forms a second area of influence on
the most fitting model execution approach. A multi-tenant, distributed applica-
tion (as defined by D3: Multi-tenancy and D5: Distributed application)
can result in conflicting requirements for the most fitting model execution app-
roach.

On the one hand, multi-tenancy prefers interpretation, because it allows the
sharing of a single application instance for multiple tenants (see characteristic
co-existence in Sect. 4). This maximizes the resource sharing, and enables fast
unloading and loading of changes, which decreases the build times. On the other
hand, a distributed application might not benefit from interpretation, because
every process has to do the interpretation. Figure 2 shows that the interpretation
process is part of the application, and is thus duplicated when the application
is separated in multiple components and processes. This adds of course resource
utilization to the platform.

The decision for a distributed application (D5: Distributed application),
makes it possible to design a hybrid model execution approach. A distributed
application consists of different (distributed) components that can use their own
execution approach, shown in Sect. 5 where only the messages were re-designed.

6.3 The Platform

Although Kelly and Tolvanen [5] make no distinction between the architecture,
framework, the operating system, or the runtime environment, we see a dif-
ferent influence from the operating system or runtime environment. As deci-
sion D4: .NET platform illustrates, the lack of support for dynamic software

Generative versus Interpretive Model-Driven Development 241

updating requires a different model execution approach to satisfy the requested
build-time time behavior. This matches the approaches of Meijler et al. [6] with
their customized Java class loader and Czarnecki and Eisenecker [4] using the
extension object pattern.

The SaaS delivery model (D2: SaaS delivery model) removes most of the
problems around installability and co-existence: the platform is controlled by the
SPO.

6.4 The Decision Support Framework

From the observations we see three distinct areas that influence the model exe-
cution approach. The metamodel and its features and requirements lead to deci-
sions that influence the execution approach. The architecture and the platform
can both constrain the execution approach as well as mitigate challenges. Deter-
mining the priorities for the quality characteristics can be a difficult task.

The design of the best fitting model execution approach for a MDEE is not
different from other parts of the MDEE; it is not possible without knowledge
of the context. The description of the design process that we gave in Sect. 5
is generic for the software development life cycle. We propose, based on the
observations made during the case study, a tailored version of the process for
the design of a model execution approach (shown in Fig. 3). It shows that the
current architecture is input for the prioritization of the quality characteristics.
The priorities can then be used to asses the possible execution approaches. How
the priorities are determined is not prescribed by the framework, however, we
have shown two possible methods to determine them: an informal method and
the AHP method.

Fig. 3. The process of selecting a best fitting model execution approach. The process
starts with the design of possible execution approaches. The current architecture is
the input for the prioritization of quality characteristics. The priorities can be used in
assessing possible execution approaches.

242 M. Overeem et al.

The framework offers guidance for SPOs in the design of their model execu-
tion approach. By formalizing their architecture in a set of design decisions, and
by prioritizing the quality characteristics, SPOs can calculate the preference for
either the generative or the interpretive approach. This can then in turn be used
to design a fitting hybrid model execution approach.

7 Discussion

The validity of our research is threatened by several factors. The internal validity
of our study is threatened because the correlation between quality characteris-
tics on te one hand and the execution approach on the other hand are not
straightforward. The claims in the reviewed literature, however, do show a con-
vergence towards each other. Some characteristics lack a significant number of
references, making them volatile. However, we regard the claims that are made
not as controversial, but in line with existing research. The data that we found
in literature consists of anecdotal argumentation, based on the experience of
the authors. The claims that were made, were not validated and not supported
with empirical evidence. To create a more trustworthy decision support frame-
work, the data presented in Table 3 should be validated by empirical research.
Experiments or large case studies should provide more quantitative data on the
fulfillment of the different quality characteristics.

The construct validity of our case study is threatened by the fact that one
of the authors is involved in the object of the study, resulting in a possible bias
in our observations. However, the observations were made during a period of
several months in which the model execution was actively designed. Our obser-
vations were reviewed and commented on by other team members involved. The
descriptions of the observations, and the described requirements and decisions
were correctly described according to these comments.

The external validity of our research is threatened because our case study is
done at a single company. The observations, however, were done over an extensive
period of time, and the results were discussed with the team. We argue that the
conclusions and observations are in line with existing literature. The decision
support framework, however, should be further strengthened by additional case
studies.

8 Conclusion

We present two contributions to the research on MDD, and in particular the
development of MDEEs. The survey in Sect. 3 illustrates that there is a lack of
guidance and knowledge for SPOs. Although the SPOs show that indeed many
forms of model execution approaches are used, they do not have an explicit
rationale for their design.

In Sect. 4 we studied and summarized existing literature to correlate qual-
ity characteristics with model execution approach. Although this knowledge was

Generative versus Interpretive Model-Driven Development 243

already available, it was scattered over many papers. Our study makes the expe-
rience and knowledge of many authors available to MDD researchers and practi-
tioners. We summarized the results in Table 3, which can be used as a reference
in the design of a fitting model execution approach. In Sect. 5 we demonstrate
how these results can be used as input for the decision making in selecting alter-
natives.

The second contribution that we present is the decision support framework
as presented in Sect. 6. With this framework, SPOs have a structured process for
the design of the model execution approach By making these design decisions
explicit, and by adding the results from Table 3 as input to the decision making
process, SPOs can design the best fitting execution approach. The influence of
the context of the MDEE as shown in Sect. 6, and the interplay between existing
design decisions and the model execution approaches is made explicit and can
lead to better designs.

Although we are not able to relieve SPOs from the hard work of designing a
model-driven engineering environment, we argue that our research brings them
closer to the best fitting design. By making existing knowledge and experience
accessible, the solutions in the decision making process can be assessed with
more confidence. In Sect. 3 we show that many SPOs already use a hybrid form
of model execution, but do not have a strong rationale. However, our research also
uncovers the need for more empirical research to support SPOs in the design and
development of MDEEs. Table 3 is primarily based on anecdotes, and often not
backed by real evidence. Experiments and case studies should be conducted to
strengthen the evidence used in our decision support framework. The framework
itself is created by observing a single SPO designing a model execution approach,
and it should be evaluated by applying it at other SPOs.

Many questions in the design of software can be answered with “it depends”,
leaving the questioner puzzled as to what he should do. We present how the
context of the MDEE influences the design of a model execution approach for
MDEEs. Existing design decisions determine the priorities of quality character-
istics, which in term steer the design of the model execution approach. We also
show how SPOs can utilize the knowledge presented in this paper to allow them
to steer their design process towards the most fitting model execution approach.

Acknowledgements. This research was supported by the NWO AMUSE project
(628.006.001): a collaboration between Vrije Universiteit Amsterdam, Utrecht Univer-
sity, and AFAS Software in the Netherlands. The NEXT Platform is developed and
maintained by AFAS Software. Further more, the authors like to thank Jurgen Vinju,
Tijs van der Storm, and their colleagues for their feedback and knowledge early on in
the writing process. Finally we thank the team at AFAS Software for their opinions,
feedback, and reviews.

References

1. Overeem, M., Jansen, S.: An exploration of the ‘It’ in ‘It Depends’: generative
versus interpretive model-driven development. In: 5th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD (2017)

244 M. Overeem et al.

2. Dı́az, V.G., Valdez, E.R.N., Espada, J.P., Bustelo, B.C.P.G., Lovelle, J.M.C.,
Maŕın, C.E.M.: A brief introduction to model-driven engineering. Tecnura 18, 127–
142 (2014)

3. Brown, A.W.: An Introduction to Model Driven Architecture. The Rational Edge,
pp. 1–16 (2004)

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, Boston (2000)

5. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, Hoboken (2008)

6. Meijler, T.D., Nytun, J.P., Prinz, A., Wortmann, H.: Supporting fine-grained gen-
erative model-driven evolution. Softw. Syst. Model. 9(3), 403–424 (2010)

7. Batouta, Z.I., Dehbi, R., Talea, M., Hajoui, O.: Multi-criteria analysis and
advanced comparative study between automatic generation approaches in software
engineering. J. Theor. Appl. Inf. Technol. 81, 609–620 (2015)

8. Fabry, J., Dinkelaker, T., Noye, J., Tanter, E.: A taxonomy of domain-specific
aspect languages. ACM Comput. Surv. 47, 1–44 (2015)

9. Zhu, L., Aurum, A., Gorton, I., Jeffery, R.: Tradeoff and sensitivity analysis in
software architecture evaluation using analytic hierarchy process. Softw. Qual. J.
13(4), 357–375 (2005)

10. Guana, V., Stroulia, E.: How do developers solve software-engineering tasks on
model-based code generators? An empirical study design. In: First International
Workshop on Human Factors in Modeling (2015)

11. Capilla, R., Rey, U., Carlos, J., Dueñas, J.C., Madrid, U.P.D.: The decision view’s
role in software architecture practice. IEEE Softw. 26(2), 36–43 (2009)

12. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA
2005), pp. 109–120 (2005)

13. van der Ven, J.S., Jansen, A.G.J., Nijhuis, J.A.G., Bosch, J.: Design decisions: the
bridge between rationale and architecture. In: Dutoit, A.H., McCall, R., Mistŕık,
I., Paech, B. (eds.) Rationale Management in Software Engineering, pp. 329–348.
Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-30998-7 16

14. Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A quality-driven decision-
support method for identifying software architecture candidates. Int. J. Softw. Eng.
Knowl. Eng. 13, 547–573 (2003)

15. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE 2014), pp. 1–10 (2014)

16. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35, 26–36 (2000)

17. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (2005)

18. Tanković, N.: Model driven development approaches: comparison and opportuni-
ties. Technical report (2011)

19. Voelter, M.: Best practices for DSLs and model-driven software development. J.
Object Technol. 8, 79–102 (2009)

20. ISO: ISO/IEC 25010:2011 Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality
models. Standard, International Organization for Standardization, Geneva, CH
(2011)

21. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management (2006)

https://doi.org/10.1007/978-3-540-30998-7_16

Generative versus Interpretive Model-Driven Development 245

22. Brady, E.C., Hammond, K.: Scrapping your inefficient engine. ACM SIGPLAN
Not. 45, 297 (2010)

23. Cleenewerck, T.: Modularizing language constructs: a reflective approach. Ph.D.
thesis (2007)

24. Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. Princ. Declar. Program. 1490, 170–194 (1998)

25. Cook, W.R., Delaware, B., Finsterbusch, T., Ibrahim, A., Wiedermann, B.: Model
transformation by partial evaluation of model interpreters. Technical report (2008)

26. Cordy, J.R.: TXL - a language for programming language tools and applications.
In: Proceedings of the ACM 4th International Workshop on Language Descriptions,
Tools and Applications, pp. 1–27 (2004)

27. Ertl, M.A., Gregg, D.: The structure and performance of efficient interpreters. J.
Instr.-Level Parallelism 5, 1–25 (2003)

28. Gaouar, L., Benamar, A., Bendimerad, F.T.: Model driven approaches to cross
platform mobile development. In: Proceedings of the International Conference on
Intelligent Information Processing, Security and Advanced Communication, pp.
19:1–19:15 (2015)

29. Gregg, D., Ertl, M.A.: A language and tool for generating efficient virtual machine
interpreters. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-
Specific Program Generation. LNCS, vol. 3016, pp. 196–215. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25935-0 12

30. Hinkel, G., Denninger, O., Krach, S., Groenda, H.: Experiences with model-driven
engineering in neurorobotics. In: W ↪asowski, A., Lönn, H. (eds.) ECMFA 2016.
LNCS, vol. 9764, pp. 217–228. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42061-5 14

31. Inostroza, P., Van Der Storm, T.: Modular interpreters for the masses implicit
context propagation using object algebras. ACM SIGPLAN Not. 51(3), 171–180
(2015)

32. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall International (1993)

33. Jörges, S.: Construction and Evolution of Code Generators: A Model-Driven and
Service-Oriented Approach, vol. 7747. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36127-2

34. Klint, P.: Interpretation techniques. Softw.: Pract. Exp. 11, 963–973 (1981)
35. Ousterhout, J.K.: Scripting: higher-level programming for the 21st century. Com-

puter 31, 23–30 (1998)
36. Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G.N., Carvalho, H.:

Building reliable and maintainable dynamic software product lines: an investigation
in the body sensor network domain. Inf. Softw. Technol. 86, 54–70 (2017)

37. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The architecture of a
UML virtual machine. In: International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOSPLA), pp. 327–341 (2001)

38. Romer, T.H., Lee, D., Voelker, G.M., Wolman, A., Wong, W.A., Baer, J.L., Ber-
shad, B.N., Levy, H.M.: The structure and performance of interpreters. ACM SIG-
PLAN Not. 31, 150–159 (1996)

39. Schramm, A., Preußner, A., Heinrich, M., Vogel, L.: Rapid UI development for
enterprise applications: combining manual and model-driven techniques. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 271–
285. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 19

https://doi.org/10.1007/978-3-540-25935-0_12
https://doi.org/10.1007/978-3-319-42061-5_14
https://doi.org/10.1007/978-3-319-42061-5_14
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/978-3-642-16145-2_19

246 M. Overeem et al.

40. Sundharam, S.M., Altmeyer, S., Navet, N.: Model interpretation for an AUTOSAR
compliant engine control function. In: 7th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS) (2016)

41. Tanković, N., Vukotić, D., Žagar, M.: Rethinking model driven development: analy-
sis and opportunities. In: Proceedings of the ITI 2012 34th International Conference
on Information Technology Interfaces (ITI), pp. 505–510 (2012)

42. Thibault, S.A., Marlet, R., Consel, C.: Domain-specific languages: from design to
implementation application to video device drivers generation. IEEE Trans. Softw.
Eng. 25, 363–377 (1999)

43. Thibault, S., Consel, C.: A framework for application generator design. ACM SIG-
SOFT Softw. Eng. Notes 22, 131–135 (1997)

44. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9 28

45. Voelter, M., Visser, E.: Product line engineering using domain-specific languages.
In: 15th International Software Product Line Conference, pp. 70–79 (2011)

46. Zhu, M.: Model-driven game development addressing architectural diversity and
game engine-integration. Ph.D. thesis (2014)

47. Saaty, T.: How to make a decision: the analytic hierarchy process. Eur. J. Oper.
Res. 48, 9–26 (1990)

48. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques
for software architecture design. ACM Comput. Surv. 43, 1–28 (2011)

49. Schunselaar, D.M.M., Gulden, J., Schuur, H.V.D., Reijers, H.A.: A systematic eval-
uation of enterprise modelling approaches on their applicability to automatically
generate software. In: 18th IEEE Conference on Business Informatics, pp. 290–299
(2016)

50. Kabbedijk, J., Bezemer, C.P., Jansen, S., Zaidman, A.: Defining multi-tenancy: a
systematic mapping study on the academic and the industrial perspective. J. Syst.
Softw. 100, 139–148 (2015)

https://doi.org/10.1007/978-3-642-31491-9_28

Applying Integrated Domain-Specific
Modeling for Multi-concerns

Development of Complex Systems

Reinhard Pröll, Adrian Rumpold(B), and Bernhard Bauer

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{reinhard.proell,adrian.rumpold,bauer}@informatik.uni-augsburg.de

Abstract. Current systems engineering efforts are increasingly driven
by trade-offs and limitations imposed by multiple factors: Growing prod-
uct complexity as well as stricter regulatory requirements in domains
such as automotive or aviation necessitate advanced design and develop-
ment methods. At the core of these influencing factors lies a considera-
tion of competing non-functional concerns, such as safety and reliability,
performance, and the fulfillment of quality requirements. In an attempt
to cope with these aspects, incremental evolution of model-based engi-
neering practice has produced heterogeneous tool environments without
proper integration and exchange of design artifacts. In order to over-
come these shortcomings of current engineering practice, we propose a
holistic, model-based architecture and analysis framework for seamless
design, analysis, and evolution of integrated system models. We describe
how heterogeneous domain-specific modeling languages can be embedded
into a common general-purpose model in order to facilitate the integra-
tion between previously disjoint design artifacts. A case study demon-
strates the suitability of this methodology for the design of a safety-
critical embedded system, a hypothetical gas heating, with respect to
reliability engineering and further quality assurance activities.

Keywords: Domain-specific modeling · Model transformation
Model-based analysis · Model-based testing

1 Introduction

A clear trend towards increasing complexity is visible in modern embedded sys-
tems, both with respect to hardware and software. This development is fueled
by a variety of factors, with one major driver being the advent of stricter reg-
ulatory guidelines in diverse domains such as automotive (with the ISO 26262
standard), aviation (ARP4754A and DO-178C/DO-254), and industrial automa-
tion (IEC 61508, IEC 61511, among others).

Two major strategies have emerged that attempt to let system designers cope
with this rise in product complexity:
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 247–271, 2018.
https://doi.org/10.1007/978-3-319-94764-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_11&domain=pdf

248 R. Pröll et al.

More stringent engineering methodologies, notably model-based techniques,
are becoming essential for the design of complex systems. However, most existing
model-based methods place disproportionate focus on functional requirements,
mostly disregarding non-functional and quality aspects, such as reliability, safety,
and security.

At the same time, tooling vendors have provided a sizable amount of prod-
ucts for the analysis and management of non-functional engineering concerns
(compare Chap. 4.1.2 of [1]). No clear strategy exists as to how these hetero-
geneous tools can be integrated in a seamless workflow, in order to make their
information base available throughout the entire product life cycle.

Due to these shortcomings caused by partial adoption of model-based tech-
niques and inconsistent tooling environments, establishing traceability and con-
sequent change management have emerged as two main challenges in systems
engineering. The importance of these concerns can be seen clearly in the con-
text of safety-critical systems: Here, regulatory standards and norms necessitate
careful management of development processes and artifacts with respect to con-
sistent traceability throughout the product life cycle. Non-compliance with these
requirements may pose a significant financial risk (in the form of late changes
required to attain safety certification) as well as a liability hazard for the man-
ufacturer.

A similar argument holds for quality assurance activities during the develop-
ment of such complex systems. Here, focus lies on a high degree of test coverage
– some safety standards even mandate specific coverage requirements (e.g. the
aviation norm DO-178C). The resulting need for careful manual review and man-
agement of traceability and consistency leads to sub-optimal process efficiency
and ultimately a potential negative impact on product quality.

Problem Statement

Despite the advantages that stem from the use of state-of-the-art model-based
engineering practice, a tighter integration between techniques and tools for func-
tional and quality aspects is needed in order to conquer the difficulties of ever-
increasing product complexity.

Some effort has been made towards artifact exchange between model-based
engineering tools, e.g. through standardized interchange formats like XMI. How-
ever, the vision of truly seamless tool integration remains a fundamental chal-
lenge. The resulting need for manual process steps can delay quality-related
design activities and consequently reduce overall product quality. As a result,
quality defects discovered late in the development process drive costs and pose
a hazard to timely product release (see [2]).

A consistent seamless design methodology is crucial when considering pro-
cess artifacts such as documentation required for certification of safety-critical
systems. It is immediately evident that consistency between the actual product
and its supporting artifacts is of crucial importance. However, although com-
mon modeling tools allow for generation of technical documentation from system

Applying Integrated Domain-Specific Modeling 249

models, the generation of more complex textual artifacts exceeds their limited
capabilities.

In order to overcome the identified weaknesses we propose an approach which
aims for a tight integration of all system modeling artifacts and a shift towards
(semi-)automated integrated architecture analyses.

Based on an extensible set of domain-specific modeling languages, which
make up a solid foundation for a more suitable description of quality aspects,
we aim for a co-evolution of functional and quality architectures of the system
under development. These modeling languages cover the domains of common
non-functional requirements for embedded systems, for instance safety, reliabil-
ity, and system integration. Further, we describe a reliable mechanism for quality
assurance of systems developed using such heterogeneous modeling languages.
Our approach aims to reuse existing design methodologies, as long as they gen-
erate artifacts that adhere to a formalized metamodel.

The model-level integration of multiple domain-specific aspects additionally
enables developers to generate purpose-specific data from the system model,
which offers the necessary flexibility for the development of complex embedded
systems.

We foresee that this integrated modeling approach will lead to increased
product quality and can thus support the development of safety-critical and
similarly regulated systems.

Outline

This article is an extended and revised version of our earlier conference paper
[3].

As a starting point, Sect. 2 introduces the modeling concepts underlying our
approach and describes their application in analysis scenarios within our pro-
posed framework. Starting with general-purpose modeling languages, which are
actively maintained by the system engineer, we describe a set of essential domain-
specific views on the system and their embedding into the general-purpose lan-
guage. Based on this definition of embedded domain-specific languages, we pro-
pose a model-based analysis framework in Sect. 3, providing some insight into
its technical background and implementation. In Sect. 4, we demonstrate the
feasibility of our approach using a realistic use case. There, we perform some
exemplary design and analysis steps utilizing the previously introduced frame-
work. Section 5 discusses related work regarding the integration of heterogeneous
modeling tools, domain-specific modeling, and model-based analysis. Section 6
summarizes the key results of this paper and briefly outlines future applications
extending our research.

2 A Domain-Aware Modeling Approach for Embedded
System Engineering

To overcome the challenges identified in the introduction, we have developed
a concept designed to integrate legacy development and modeling techniques

250 R. Pröll et al.

with a new kind of domain-aware modeling approach and analysis framework.
Based on the information embedded in an integrated system model, purpose-
specific artifacts (e.g. certification- or test-related documentation), which had to
be maintained manually before, can now be generated automatically. In order to
switch between these representations and generate documents, we make use of
model-to-model (M2M) and model-to-text (M2T), As a special case, we consider
x-to-code (X2C) transformations, where X may stand for text (T2C) or model
(M2C).

The high-level concepts and their relationships are illustrated in Fig. 1 and
will be elaborated in the following sections.

Fig. 1. Conceptual overview of the domain-aware integrated system modeling app-
roach.

Applying Integrated Domain-Specific Modeling 251

2.1 General Purpose Modeling Languages

Following our goal of easy application and seamless integration into state-of-
the-art development processes, we have decided to embed all relevant data for
the development process within a General Purpose Modeling Language (GPML),
such as UML or Ecore.

Using such modeling languages improves the applicability of our presented
approach: GPMLs are widely accepted as state of the art, with many practi-
tioners being familiar with their proper use. This familiarity allows for easier
and faster adoption of new approaches based on general-purpose modeling lan-
guages. On the other hand, the general applicability of GPMLs has created a
huge variety of available CASE tools for creating and viewing models. This rich
tool environment can be reused within our newly proposed methodology, rather
than developing yet another immature modeling tool.

In our scenario, these general-purpose languages serve a two-fold purpose:
First, they provide a common modeling basis for all domain-specific models, as
described in the following section. Second, the GPML can itself be used to cover
certain subsets of the domain-specific modeling disciplines, if their expressive
power is sufficient for a specific use case. We will see an example for this sim-
plified domain modeling in the case study in Sect. 4, where UML component
diagrams and state machines are used to describe parts of the system architec-
ture. Similarly, an extended version of the native UML activity chart is used for
modeling of functional test models.

Our approach does not prescribe a certain GPML to be used for modeling
the integrated system model. The only necessary requirement is the possibility
to enhance the general-purpose language with metamodel extensions. In the case
of UML this is achieved by defining profiles that leverage the stereotype mecha-
nism. Similarly, we can extend the expressive capabilities of modeling languages
which are themselves specified as UML profiles, for example SysML. Within the
widely popular Eclipse Modeling Framework (EMF), metamodel extensions can
be easily defined due to the reflexivity of the Ecore modeling language, which
itself is its own meta-model.

2.2 Domain-Specific Modeling Languages

In order to accurately describe domain-specific aspects of the system under devel-
opment, we embed them into the GPML mentioned above as Domain-Specific
Modeling Languages (DSML). Our approach allows for any number of DSMLs
to be used in conjunction with a general-purpose modeling tool to obtain an
integrated system model (ISM) or Omni model.

These DSMLs preserve the separation of concerns, but enable developers to
link information across domains in order to build up a holistic view of the sys-
tem under development (SUD) and facilitate analyses based on domain-specific
information. By using M2M transformations between the GPML and DSML
representations, the distinct components of the ISM are in sync throughout the
development process, yielding the best of both worlds.

252 R. Pröll et al.

In this section we briefly introduce some common domains pertinent to devel-
opment of embedded systems and their focus. This lays the conceptual founda-
tion for the following sections that will provide additional detail and demonstrate
the application of these concepts.

The Requirements Domain (RQD) is related to the foremost engineering tasks
of every modern software development process. As a result of these tasks, a set of
requirements is extracted, which describes the desired system from a functional
as well as a quality perspective.

Depending on the role of requirement specifications in the development pro-
cess, an appropriate way of serialization must be chosen. In the early days of
requirements engineering, Roman [4] pointed out its importance and already
identified the need for knowledge integration.

In order to further make use of the generated set of requirements, a certain
DSML needs to be specified. Natural language requirements with additional
structuring capabilities as well as fully machine-processable requirement models
are thinkable. For example, a ReqIF-based DSML (see [5]) can be used with
most common CASE tools.

More advanced efforts propose ontologies as a suitable way of specifying
requirements (e. g. [6]), which are also compatible with the basic concepts under-
lying our framework.

Being able to reference specific requirements in a model or parts of them,
enables developers to use this semi-formal specification of the system for cross-
domain traceability, thus extending the information base. For example, the avail-
ability of requirements information for a test engineer may result in a more trans-
parent and effective test of the system under development. We give an example
for this beneficial interaction in our case study in Sect. 4.

The System Structure Domain (SSD) contains the structural model of the sys-
tem under development and reflects the architectural decomposition of the solu-
tion.

Our approach allows for a high degree of freedom regarding the actual imple-
mentation of the SSD model. For simple projects, the underlying GPML (see
Sect. 2.1) itself may be sufficiently expressive to model the system structure
without any domain-specific additions. For more complex systems, a modeling
language with more powerful abstractions, such as SysML, can be integrated to
describe the structural domain more adequately.

It should be noted that the SSD model may also be derived from a prior
system description in case of a brown-field project. Here, it is feasible to use
either existing architecture models as a basis for the newly defined integrated
system model, or to reverse engineer a system description from its code artifacts.

The System Behavior Domain (SBD) contains models that describe the func-
tional behavior of the system under development. As described above for the
SSD, a range of modeling languages can be used to implement the behavioral

Applying Integrated Domain-Specific Modeling 253

domain within our approach. Natural choices are the behavior diagrams found
in the Unified Modeling Language or its SysML extension.

If further usage includes the simulation or any kind of abstract interpreta-
tion of the behavioral parts of the system, an executable variant of UML, like
Foundational UML (fUML, [7]), may provide suitable types of model artifacts.

However, different domain-specific modeling languages might be more famil-
iar to designers of certain embedded systems; one example is the Function
Block Diagram (FBD) notation for programmable logic controllers defined in
the IEC 61131-3 and IEC 61499 international standards.

Given a suitable technology integration bridge (e.g. OSLC or ModelBus), it is
conceivable to integrate behavioral models from widely used simulation tools like
Simulink or Stateflow, as an intermediate step during re-engineering of legacy
systems.

The Test Domain (TD) reflects the information specific to a tester’s viewpoint
on the system under development.

On the one hand, it is used to simply formalize artifacts related to traditional
quality assurance activities, such as test plans, test cases, and test execution
reports. Depending on the expressiveness of the modeling languages used for the
system description in the SSD and SBD, the test domain can sometimes be seen
as an extension of these domains.

On the other hand, the benefit of a separate test domain can only fully be
appreciated within a strict Model-Based Testing (MBT) approach. The main
difference in this scenario is the purpose of the model artifacts: The artifacts
related to a traditional testing process often represent the intermediate results
of mostly manual, atomic steps. MBT in contrast, attempts to reduce the number
of manual steps and the amount implicit knowledge in testing, thereby raising the
efficiency, correctness, and reusability of artifacts. In this case it is conceivable
to embed model languages specific to the testing domain, such as the OMG-
maintained UML Testing Profile (UTP), which provides modeling facilities for
test behavior description as well as quality assurance management activities. The
UTP-affiliated Testing and Test Control Language (TTCN-3) may complete the
palette of DSMLs of this domain in order to improve testing.

These considerations demonstrate only one possible solution and choice of
DSMLs for the test domain – many others are conceivable, depending on the
concrete use case. A possibly more intuitive solution is given by GPML-based
test behavior specification via UML activity charts representing a set of test
cases, i.e. a test suite. Once again, hybrids of the solutions mentioned above
pose viable solutions for this domain and again encourage the use of our overall
integrative approach.

Depending on whether test cases are generated or implemented manually,
data specified or generated by other domain specific models, e.g. safety consid-
erations, may guide this process. Further information on this topic can be found
in Sect. 2.2.

254 R. Pröll et al.

The Safety and Reliability Domain (SRD) covers the modeling and analysis of
system reliability. Such analyses are invaluable and often mandated by regula-
tions to demonstrate the system’s expected failure behavior and obtain measures
of reliability and availability, for example for safety-critical systems.

In order to quantify the reliability of a system, a thorough analysis of poten-
tial hazards and their associated risks is required. These hazard analyses require
profound domain knowledge and experience and are therefore frequently per-
formed as team efforts. Despite the interactive nature of these activities, their
results can be formalized as a hazard model that describes identified hazards and
the risks as well as possible faults and failures that can cause these hazardous
events.

A major task in the design of safety-critical systems is the classification
of hazards based on their associated risk. Risks that are deemed intolerable,
either by societal or regulatory standards, have to be mitigated by deliberate
risk reduction measures. Based on the necessary level of risk reduction, levels of
safety integrity and associated safety requirements can be allocated to protective
system components (safety functions in the terminology of the functional safety
norm IEC 61508). This SIL allocation process requires the quantitative analysis
of failure occurrence likelihoods.

Traditionally, quantitative reliability models are maintained in separate tool
environments, decoupled from the actual system model. This disjoint setup can
lead to inconsistencies in reliability models and decisions made based on them,
unless proper care is taken during ongoing development of the system. However,
many traditional reliability approaches can easily be adapted for use in model-
based environments. For example, the widely used Fault Tree Analysis (FTA)
technique defines a set of graphical elements to analyze failure causes in a system
[8], and proves a suitable candidate for a domain-specific modeling language with
a familiar graphical representation.

By embedding the reliability and hazard analysis models into the integrated
system model, our approach allows to easily maintain full traceability between
these models and their associated system model counterparts in the SSD and
SBD. Moreover, change impact analyses can be easily performed based on this
traceability information, whenever a modification to any part of the system
model is made.

In the context of model-based systems engineering, it makes sense to move
beyond the traditional FTA technique and incorporate a component-based exten-
sion, such as the Component Fault Trees as proposed in [9]. This hierarchical
structuring of reliability information creates synergies with the end-to-end trace-
ability provided by our modeling approach.

The Integration Model Domain (IMD), as illustrated in Fig. 1, embodies the cen-
tral mechanism to establish domain-specific model linking, mapping of artifacts,
and cross-domain data accessibility.

In order to achieve this ambitious goal, its high-level structure represents
an abstract, hierarchical breakdown of the instantiated system in a component-
like fashion. Based on this abstract structure, cross-domain linking, represented

Applying Integrated Domain-Specific Modeling 255

as bidirectional connectors in the model, on the one hand enables developers to
make use of a solid and consistent traceability mechanism applicable throughout
all development phases. On the other hand, the IM provides additional informa-
tion to e.g. improve test related activities, previously out of scope. This holds for
various combinations of domain-specific model data. Note that the IMD does not
duplicate any information that has already been modeled in one of its connected
domains.

Beside the linking and description of model interfaces, the IM holds analysis
results generated by any kind of analysis executed by our proposed framework
(see Sect. 3 for a description of the framework). These results may represent the
basis for ongoing processing steps, e.g. the scoping of a certain test model part,
based on a set of criteria to be met.

In addition to the functionality of the IM presented above, it also plays the
role of a early phase design artifact, reflecting an abstract decomposition of the
proposed system functionality. For this reason, the IM may undergo constant
change until it is connected to a concrete instantiation of SSD and SBD models
and subsequently linked with other participating domain models.

Other Domains. The above modeling domains cover a wide range of engineering
artifacts relevant during the design and construction of embedded and/or safety-
critical systems. However, our modeling approach does not prescribe a fixed set
of domain-specific modeling languages or domains and can easily be extended
and tailored to a particular specific modeling use case.

The set of modeling domains presented above are especially relevant to the
design of embedded systems. However, our framework may also take into account
aspects of business and other applications. To this end, we envision domains
addressing security and privacy considerations (e.g. to model information flows),
timing models, description of data persistence, as well as usability models.

The next logical step based on such integrated domains is a holistic multi-
concern consideration and a tightly coupled derivation of architecture optimiza-
tion guidelines. These are beyond the scope of our current work and thus remain
open as future topics.

2.3 Purpose-Specific Data

While the domain-specific models described above are derived from the GPML
data through model-to-model transformations, our approach also covers the gen-
eration of purpose-specific data artifacts through model-to-text and model-to-
model transformations. In contrast to the bidirectional transformation between
GPML and DSML artifacts, the transformation into purpose-specific data (PSD)
is unidirectional. This limitation is by design, since the GPML/DSML model
should be regarded as the true information source, from which derived artifacts
can be regenerated automatically.

Previous considerations only took into account the varying focus of domain-
specific (human) developers. In order to address the increasing amount of gen-
erative (i.e. machine-based processing) steps, another distinction is chosen for

256 R. Pröll et al.

this information base: PSD artifacts fall into either two categories; Human-
Consumable Artifacts and Machine-Consumable Artifacts, as shown at the bot-
tom of Fig. 1.

Human-Consumable Artifacts

As the name suggests, this kind of data centers on processing of information by
humans. One can imagine a variety of scenarios where a tailored subset of the
modeled information is desirable:

Views, a concept from software architecture, can be found again in our method-
ology. Since a system specified across several domain-specific models is not easily
understood by non-technical stakeholders, a processed and condensed excerpt of
the integrated system model is preferable. These views focus on specific aspects
of the entire system and facilitate a better understanding and clearer communi-
cation.

Besides this more dynamic use case, which requires tool support, we also
propose another variant of human-consumable artifacts:

Documentation, and in particular its automated generation, is an important
factor in tightly integrated system engineering processes and plays a crucial role
in quality-driven architecture.

The holistic nature of our proposed integrated system modeling approach
facilitates document generation on a high abstraction level. For example, a
common documentation requirement in safety-critical systems calls for seam-
less forward and backward traceability from system requirements down to the
implementation level, and its proper documentation. Since the Omni model con-
tains all necessary architectural elements and their relationships, generating such
documentation consistently and in an easily navigable format (for example as
hyperlinked HTML documents) is an effortless automated task. Using hypertext
formats elegantly solves the traditional problem of limited traceability of these
documents and makes them easily navigable.

The availability of usable, consistent, and up-to-date textual artifacts can
help to reduce cost of safety certification by supporting high quality and early
review of certification-related documents. Additionally, the same model-based
document generation approach can be used to capture the results domain-specific
analyses of the system that cover individual stakeholders’ interests, leading to
the next category of human-consumable artifacts:

Metrics are the concept of choice during analysis of certain Key Performance
Indicators (KPI) of the system. From a project management perspective, we
envision this approach to be useful for specification of (among others) test and
requirement coverage metrics as an indicator of overall project progress.

A wholly different application scenario for metrics in the context of human-
consumable artifacts is their use as a decision guidance in development processes:
For example, a safety engineer may propose a change to the system model based

Applying Integrated Domain-Specific Modeling 257

on the evaluation of a certain set of metrics. A similar use case is the improvement
of test-related model artifacts based on a metric, reflecting the insights of a
multi-concern consideration of the current application.

Machine-Consumable Artifacts

Our framework may also be used to export highly-specific data for further com-
putation by external tools from the integrated system model. In contrast to
the previous use case of human-consumable artifacts, this data is stored in a
format optimized for machine processing. However, it also is subject to the limi-
tation of unidirectionality, meaning that machine-consumable artifacts may not
be part of a round-trip engineering approach. Such functionality is provided by
the model-based analysis framework described in the following section.

We can distinguish different kinds of export formats, according to their
intended application.

Intermediate Data, whose main purpose is to easily adapt to other tooling or
the integration of libraries used for dedicated problem solving. For example, a
processing step might provide input to an external optimization engine for the
comparison of different architecture alternatives in the form of such intermediate
data.

The term intermediate emphasizes the ephemeral nature of this kind of arti-
facts, representing a temporary result of a deterministic computation step based
on the permanent information in the Omni model.

Refined Models, represent a special application of the previously mentioned
Intermediate Data, where a domain-specific model is taken as a computational
basis.

This model is either reduced to a limited scope, or enriched with supple-
mentary information from another domain. For example, early applications of
model-based testing did not separate the application model and the test model
and instead only used the application model to generate test cases. Domain-
aware approaches on the other hand favor the use of additional data in order to
interface with existing tools to harness beneficial synergies.

While out of the immediate scope of our research, it should be noted that the
final integrated system model is a suitable basis for generation of source code,
as indicated by transformation steps on the right side of Fig. 1. The integrated
nature of the Omni model as well as purpose-specific data allows the code gen-
eration engine to make more educated decisions about the context of the source
code to be synthesized. A possible scenario could be the automated application
of defensive programming techniques in generated code, e.g. assertion of pre-
and post-conditions or calculation of checksums, based on component contracts
or safety requirements from the integrated system model.

258 R. Pröll et al.

3 A Model-Based Architecture and Analysis Framework

Based on the modeling approaches introduced in the previous section, we have
developed a reference technology platform geared towards the domain-aware
modeling of safety-critical systems and their quality attributes. In addition to the
domain-specific metamodels, the prototype includes a framework for definition
of model-based architecture analyses, introduced below in Sect. 3.3.

3.1 Technical Foundations and Tooling

As shown in Fig. 2, the analysis framework consists of three major components:

Enterprise Architect. The commercially available Enterprise Architect (EA)
is as a general-purpose modeling tool, providing the full range of UML mod-
eling capabilities to the system designer. Domain-specific metamodels are
integrated via EA’s Model-Driven Technologies (MDG) feature

Model Repository. A relational database system is used for persistent storage
of the model repository and allows for external access to the system model
without the need for tight coupling with EA.

Architecture and Analysis Framework. The actual architecture and analy-
sis framework, which offers model analysis services via a web service interface.
Section 3.2 below describes the concrete execution model within the analysis
framework.

For details on the various technologies involved and their interactions, see Sect. 3
of [3].

Fig. 2. Technical overview of the reference technology platform architecture.

Applying Integrated Domain-Specific Modeling 259

Fig. 3. Execution workflow within the architecture and analysis framework.

3.2 Analysis Execution Workflow

In order to execute an analysis request by the user, the Architecture and Analysis
Framework passes through multiple execution phases. This section will give an
overview of the necessary processing steps, as summarized in the activity diagram
in Fig. 3.

Validation. Before any further processing takes place, the framework validates
the analysis configuration supplied through the web service interface. This con-
figuration adheres to a custom textual DSL and determines the types of analyses
to be executed, their input model elements, as well as any additional parameters
required to run the analysis.

The validation is carried out on the dependency graph between the analyses
requested as part of the configuration. In order to qualify as a valid configura-
tion, this graph must be acyclic and be closed under the transitive dependency
relation. The second criterion assures that for each analysis, all its (transitive)
prerequisites are also part of the configuration. If the configuration is found to
violate these soundness assumptions, the execution engine aborts processing of
the request and reports an error.

The actual execution order for all configured analysis is then calculated as
a topological sorting of the dependency graph. As a subsequent optimization,
the execution graph can be decomposed into its connected components to allow
for parallel execution of multiple analyses: By definition, no dependencies exist
between two analyses in different connected components, hence they are eligible
to be processed by the framework simultaneously.

Figure 4 shows an example for such an execution graph from the case study
described in detail in Sect. 4. Transformations are shown as parallelograms, rect-
angles represent the requested analyses together with their position in the calcu-
lated execution ordering. Dashed arrows indicate a dependency on transforma-
tion outputs, while solid arrows denote the prerequisite relation between analy-
ses. For readability reasons, transitive prerequisite arrows are omitted from the
graph.

Transformation Execution. The Enterprise Architect input UML model is
transformed into the corresponding domain-specific representations using a set of
model-to-model transformations for each modeling domain. We have chosen the

260 R. Pröll et al.

Fig. 4. Execution graph for the case study example (see Sect. 4).

QVT Operational language (QVTo, see [10,11] for details) as the M2M transfor-
mation language for our prototype. Each domain-specific model can be obtained
from the integrated system model by applying its associated transformation,
mapping the extended general purpose modeling language (see Sect. 2.1) onto
the domain-specific modeling languages (Sect. 2.2).

In order to simplify integration with the Eclipse EMF-based QVTo engine
used for implementation of the transformation phase and model-based analyses,
all domain-specific metamodels have been described using the Ecore metamod-
eling facilities.

Post-processing. Optionally, an analysis may define arbitrary post-processing
steps to be executed after the M2M transformation phase. Since the post-
processing is implemented as regular application code, it can be used for addi-
tional calculations beyond the expressive capabilities of the transformation lan-
guage. Examples include the handling of Java enumeration types and transfor-
mation of non-primitive value types into proper objects.

Analysis Execution. After inputs in the form of M2M transformation outputs
are available, the execution engine iterates the pre-calculated execution order
and runs all analyses specified by the configuration. Additional input parameters
from the analysis configuration will be forwarded to the respective analysis.

For analyses that require functionality for data-flow based processing of a
model, the execution phase can also delegate to the Model Analysis Framework
(MAF in Fig. 2). This framework allows the use of data-flow techniques originally
researched in compiler construction for iterative, model-based analysis of design
artifacts (see [12] for details).

Analyses report their execution status back to the framework, and may create
or modify arbitrary model elements to represent the results of their calculation.

Applying Integrated Domain-Specific Modeling 261

Result Aggregation and Persistence. The execution engine tracks all mod-
ifications (object creation/deletion, attribute modification) to model elements
performed in the analysis execution phase, as mentioned above. We have speci-
fied a compact domain-specific language for the description of reverse transfor-
mations of domain-specific models, while maintaining the integrity constraints
of the original EA general-purpose model.

Note that only the general-purpose model is persisted in the model repository
to remedy the problem of consistency across the transformation steps.

3.3 Processing of Integrated Model Data

Based on the execution mechanism previously described, we have developed a
range of model analyses that can be applied to the integrated system model
and its embedded domain-specific models. Consequently, one specific processing
step is possibly made up out of multiple analyses, chained together. Most of
the use cases mentioned in Sect. 2 use this mechanism as a technical basis for
intermediate computations.

Conceptually, we have identified three major classes of model analyses that
can be distinguished by their responsibilities as well as the type of input and
output models:

Validation Analyses consume one or multiple input domain-specific models, but
do not generate any new model elements as their output. Rather, a validation
analysis verifies the syntactic and semantic well-formedness of its input models.
In case this validation fails, the analysis produces a report of the identified
violations and returns it as a separate result to the client.

Therefore, the purpose of validation analyses is the assurance of model
integrity and quality. They are feasible candidates for tighter integration with the
modeling tools used, and can be executed continuously without user interaction
to provide rapid feedback about the state and quality of the model.

Note that the existence of this class of analyses is a testament to the state of
metamodel extensibility in current general-purpose modeling tools. This short-
coming has previously been identified as the primary driver for so-called descrip-
tive stereotypes [13]. If GPML tools provided first-class support for restrictive
stereotypes or even full restrictive metamodel extensions instead, the syntactic
and semantic constraints for a DSML could be directly validated as part of the
metamodel extension.

Calculation Analyses consume one or more input domain-specific models and
calculate additional attributes for existing model elements, but do not add new
elements.

These analyses can be seen as the formalization of a function application to
their input models. Examples for this class of analysis are numerous, e.g. the
automated update of probability information in reliability models, risk classifi-
cation, or the analysis of timing bounds in behavioral models.

262 R. Pröll et al.

In our analysis framework, calculation analyses are an obvious application
point for the Model Analysis Framework (see above), since its feature set is well
suited to the iterative nature of function evaluation on complex models.

Generative Analyses both consume and produce model elements in one or more
domain-specific metamodels. As such, they are similar to model-to-model trans-
formations. However, they serve a broader purpose, and hence should be consid-
ered separately.

Generative analyses offer a consistent interface for the programmatic modifi-
cation of the integrated system model as part of the execution workflow described
in Sect. 3.2 above. As opposed to ephemeral M2M transformations, their results
are stored persistently.

Possible uses of this class of analyses are very broad: One possible example is
the support of the system designer through wizard-type functionality, for exam-
ple to generate skeleton reliability models from an existing structural model of a
system. A different application scenario is the automated creation of a test model
and test cases from the abstract description of system structure and functionality
in the integration model.

While some generative analyses produce results that are intended for use
inside the modeling loop centered on the integrated system model, the results
of other analyses targets consumption outside the context of the analysis frame-
work. This class of analyses is referred to as downstream transformations in Fig. 2
and corresponds to the concept of purpose-specific data introduced previously
in Sect. 2.3.

The generation of source code from the integrated system model is a prime
example for a downstream transformation. While the resulting code artifacts can
still be regarded as a form of model, they are not persisted within the model
repository and their main purpose lies outside the analysis framework.

Another important member of this class are model-to-text transformations in
the form of document generators. They can make the creation of textual artifacts
transparent to the client and encapsulate the actual invocation of the underlying
M2T transformation engine.

As stated before, the three types of analyses can also be combined in order
to handle more complex tasks. The processing of test model artifacts with the
goal of reducing the final level of test complexity, for example composes an anal-
ysis for cross-domain calculation with a second analysis for generation of more
specific test model artifacts. Again, this represents a common case of data pre-
processing for further external use, subsumed under the category of downstream
transformations.

4 Case Study: Design and Evaluation of a Gas
Heating System

In the following section we will demonstrate the use of our domain-specific mod-
eling approach to the reliability analysis of a gas heating system. Further, we

Applying Integrated Domain-Specific Modeling 263

take a closer look on related testing activities, which in turn benefit from the
integrated model basis.

Gas boilers are commonly found in residential buildings to provide central
heating by combustion of natural gas in a burner. A common extension to such
heating systems is a reservoir to buffer a suitable amount of hot water. In case of
a malfunction of the system, personal injury might arise. Therefore, the design
of such a system must encompass an evaluation of the safety risks and include
appropriate protection systems to reduce potential risks to an acceptable level.

The model artifacts shown in this paper represent a simplified version of a
standard heating system to limit complexity to a manageable level. However,
they nicely illustrate the application of our integrated modeling approach, its
suitability for the development of safety-critical systems, and the improved effi-
cacy of related quality assurance mechanisms.

4.1 System Structure and Behavior

Since our point of view on the system architecture is on a very abstract level, a
plain UML component diagram is sufficiently expressive to describe the system
structural domain for this case study. Figure 5 shows the main components of
our exemplary gas heating system. Such a coarse-grained model can be derived
in early design stages, as soon as the operational context of the system has been
determined.

Fig. 5. Architecture of the gas heating system with integrated water heating circuit

We use UML state machines as well as other behavioral UML diagrams
to model the internal functionalities of the elementary building blocks of the
presented system. As an example, Fig. 6 describes the main operating states of
the burner controller, which can be either operational or shut down in case a
malfunction of the flame supervision mechanism has been detected.

264 R. Pröll et al.

Fig. 6. Behavior model of the burner control logic.

4.2 Reliability Model

An important early step during development of a safety-critical system is the
assessment of potential hazards and risks associated with the system under devel-
opment (see Sect. 7.4 of [14] for details). This hazard and risk assessment, per-
formed by a team of domain experts, can be documented inside the integrated
system model.

As an illustrative example, we have chosen to analyze a potentially hazardous
failure of the heating system, namely the presence of uncombusted gas in the
burner chamber following a flameout. This situation can lead to rupture of the
heating vessel due to over-pressurization as well as rapid deflagration or explosion
of the uncombusted gas in the presence of an igniting spark. This hazard is
assumed to occur with an intolerably high likelihood, which prompts the addition
of a flame detection mechanism and an automatic safety shutdown valve as safety
functions to the heating system.

The presence of a hot water reservoir in the heating system introduces an
additional, unrelated hazard: If the filling valve malfunctions and becomes stuck
in the open position, the reservoir might spill, posing the risk of severe scalding
for anybody in its immediate vicinity.

A multitude of established engineering techniques exist for assessing the risk
associated with a hazardous event and establishing the necessary risk reduction
for an acceptable level of safety in the form of safety integrity levels. For this
example, we have selected the risk graph technique described in appendix E
of the IEC 61508-5 norm [15]. As shown in Fig. 7, the results of a qualitative
assessment of each hazard are embedded inside the hazard analysis model as
RiskGraphSpecification instances.

The introduction of these new system components demands for another iter-
ation of the hazard and risk assessment, to ensure an acceptable safety level.

4.3 Requirements Model

Given the initial qualitative hazard and risk assessment, the analysis framework
is able to automatically identify the necessary risk reduction for each hazard

Applying Integrated Domain-Specific Modeling 265

Fig. 7. Excerpt of hazard analysis and risk assessment model for the burner.

and generate appropriate safety function and safety integrity requirements (see
Sects. 7.5 and 7.6 of [14] for the regulatory background). The system engineer
can subsequently allocate these requirements to appropriate safety functions.

Figure 8 shows a part of the safety requirements model for the previously dis-
cussed risk of uncombusted gas as well as the risk of a spillover of the respective
reservoir. A safety function with a specified safety integrity level has been intro-
duced to mitigate these risks, and is allocated to the related system components
described earlier via the integration model. Both of the mentioned system com-
ponents are implicitly tied together via the more abstract system component,
the heating itself.

Fig. 8. Safety requirements model.

Note that beside this domain-specific model of safety requirements, a com-
plete integrated system model of the gas heating would also contain all functional
requirements that govern the regular operation of the system.

4.4 Integration Model

The integration model for our use case ties together the system structure and
behavioral domain with all additional domain-specific models like the reliability
or related test models. Additionally this artifact forms a hierarchy of abstract

266 R. Pröll et al.

components with the entire system under development at its root. Furthermore,
the IM reflects the allocation of abstract functionality, e.g. the logic of the burner
controller, to components and contains traceability information into the con-
crete behavioral model. In our example, the integration model associates the
state machine for the burner control (see Fig. 6) with the abstract control logic
functionality.

Fig. 9. Excerpt from Integration Model with links to SSD, SBD and TD.

We can see this contribution of the integration model to seamless model
traceability in Fig. 10. The diagram emphasizes the trace relationship between
the non-functional domains of the integrated system model for the heating sys-
tem, in particular the requirements and hazard analysis domains. This traceabil-
ity information is preserved by the model-based analysis framework and down-
stream transformations, especially during generation of source code. Therefore,
based on this information, accompanying documentation can be generated that
serves as evidence in safety certification of the burner control system.

4.5 Test Model

Beside the use case of generating comprehensive documentation for certifica-
tion purposes, the results of such a safety and reliability analysis may also be
utilized for test complexity reduction purposes. One might imagine a scenario,
where a management decision cuts down on the amount of time available for
test-related activities. However, certification requires that safety-critical soft-
ware components need to be tested extensively, achieving a certain degree of
test coverage. It is evident that these two conflicting restrictions cannot be met
by simultaneously, necessitating a trade-off. To overcome this problem, the tester

Applying Integrated Domain-Specific Modeling 267

Fig. 10. Excerpt from Integration Model with trace links to reliability and requirements
domains.

makes use of the central model artifact, the integration model, specifically its
aspect capabilities described earlier in this paper. This mechanism enables the
tester to disregard certain parts of the holistic test model, thereby producing
a reduced model for further test case generation. An integrated view on Figs. 8
and 9 illustrates the path of information flow across the domain-specific models.
Applying the previously outlined scenario of focusing tests on safety-relevant
system parts, for example might drop the test model for the Level Sensor, since
its safety impact has been marked as uncritical (see Fig. 8).

A combination of these flexible aspect configurations allows us to scope highly
specific excerpts of the system model and thus focus on dedicated test cases with
high impact on overall system quality.

5 Related Work

Our work relates to previous research in three related, but separate fields: Firstly,
our approach provides a means of integrating various engineering disciplines into
a coherent tool environment. Each of these disciplines brings with it its own set
of domain-specific engineering artifacts and modeling languages. Finally, our
implementation of an architecture analysis framework based on an integrated
system model relates to prior work in the field of model-based analysis.

The following sections give a short overview of the relevant literature in these
three fields, as they relate to our current research.

268 R. Pröll et al.

5.1 Modeling Tool Integration

In his seminal work, Wassermann [16] describes an approach for integration
of heterogeneous tools in a software engineering tool chain. He describes an
integrated software engineering framework based on three cardinal dimensions
of interoperability – presentation, data, and platform integration.

The EU-funded iFEST project (Industrial Framework for Embedded Systems
Tools1) was aimed at developing an integrated framework for embedded systems,
addressing both software and hardware concerns. The iFEST approach specifies
a tool integration framework that leverages the OSLC specification to allow data
exchange between heterogeneous modeling tools. Since it is focused exclusively
on the aspect of tool integration, this approach does not address the field of
model-based analyses of the integrated system model.

5.2 Domain-Specific Modeling

Zschaler et al. [17] propose a generalization of DSLs to domain-specific modeling
languages, in order to capture common concepts found in families of related DSLs
and facilitate automation.

Similarly, de Lara et al. [18] describe an approach for domain-specific multi-
level metamodeling languages, allowing for the definition of deep language hier-
archies. Their approach contains a set of reusable metamodel transformations
for management of multi-level metamodeling languages and describes approaches
for code generation in such a setting.

The use of UML as a graphical visualization language for domain-specific
modeling languages is proposed by Graaf and van Deursen [19]. Their work
proposes model-to-model transformations as a means of deriving a visual rep-
resentation from a domain-specific model. Conceptually, these transformations
can be regarded as an embedding of the DSML into a generic-purpose modeling
language, specifically into UML.

As stated by Dias et al. [20], this also holds for the testing domain. Their
seminal survey showed that the majority of MBT approaches makes use of UML
behavioral modeling capabilities, sometimes extended by certain domain-specific
data. One of their conclusive remarks mentions the active use of UML-like lan-
guages due to the wide distribution of basic skills in this area.

5.3 Model-Based Analysis

Papadopoulos and McDermid [21] introduce HiP-HOPS (Hierarchically Per-
formed Hazard Origin and Propagation Studies), a methodology for model-based
hierarchical reliability analysis of component-based systems. Based on the archi-
tecture of the system under analysis and certain failure annotations, HiP-HOPS
allows for bottom-up generation of Fault Trees and so-called interface-focused
FMEA results for a system. Under the HiP-HOPS methodology, components are

1 http://www.artemis-ifest.eu/.

http://www.artemis-ifest.eu/

Applying Integrated Domain-Specific Modeling 269

enriched with additional model information about their failure behavior. Various
classes of interface failures are defined that can be used to describe the black-box
failure model of a system on a component level.

This approach has subsequently been extended to accommodate aspects of
automatic architecture optimization. Papadopoulos et al. [22] further describe a
conceptual approach for the automatic allocation of safety integrity levels to com-
ponents of safety-critical systems. This work focuses on the automotive domain
and uses the EAST-ADL2 modeling language for architecture description. Sim-
ilarly, the authors propose a more generic architecture optimization technique
based on the HiP-HOPS methodology and the use of genetic algorithms [23].

A complementary approach can be found in the EU-funded MBAT project
(Combined Model-based Analysis and Testing of Embedded Systems2). This
project aimed to provide a methodology and technology platform for specifica-
tion of system analysis and V&V activities in the context of embedded system
engineering. The central element of the proposed methodology is the so-called
A&T model (short for [static] analysis and [model-based] testing), highlighting
the focus of the approach to the quality-assurance domain.

An alternative path to overcome the constantly rising complexity of testing
by utilizing information from other domains was proposed by Gebizli et al. [24].
The use of risk ratings of system components in combination with MBT in order
to iteratively refine test models showed promising results. The resulting test
suite boasts better fault detection capabilities in contrast to traditional MBT
approaches, whereas the amount of time for testing was reduced.

6 Conclusions

We have proposed a valuable approach for integrated system modeling and
model-based architecture analysis.

Our work introduces a solution to the challenge of integrating both sys-
tem modeling and quality-related artifacts in the design and implementation
of embedded systems. The resulting integrated system model or Omni model
establishes explicit traceability between domain-specific modeling artifacts and
enables consistent change management and change impact analyses.

This domain-centered view of systems engineering incorporates the funda-
mental challenge of multi-concerns design by unifying previously disjoint mod-
eling domains.

Based on this holistic, model-based view on the system under development,
complex model analyses can be performed to validate, process, or enhance the
integrated system model. Analyses may also generate textual or model content
for further processing outside our proposed methodology, for example as gener-
ated source code or management reports.

We have developed a reference technology platform that combines our pro-
posed integrated system modeling approach with a model-based analysis frame-
work. The suitability of this prototype is demonstrated through a case study,
2 http://www.mbat-artemis.eu/.

http://www.mbat-artemis.eu/

270 R. Pröll et al.

which illustrates the use of the framework to model the reliability and testing
aspects of a residential gas heating burner, a simple safety-critical embedded
system.

We envision a variety of possible application fields for our approach as a
basis for future research work: The seamless availability of information across
domain boundaries makes the integrated system model open for use in automated
systems engineering processes. For example, suitable analyses could be developed
to support the (semi-)automated optimization of certain architecture aspects
under consideration of reliability and safety aspects. In order to better support
these optimization heuristics, the system model can be enhanced with stricter,
machine-comprehensible formalization, such as component safety contracts.

Overall, we predict that the consequent application of model-based design
methodologies will help to cope with the current challenges of systems engineer-
ing and help to create safe and maintainable products.

Acknowledgements. The research in this paper was funded by the German Federal
Ministry for Economic Affairs and Energy under the Central Innovation Program for
SMEs (ZIM), grant numbers KF 2751303LT4 and 16KN044120.

References

1. Sommerville, I.: Software Engineering, 9th edn. Pearson Education, New York
(2011)

2. Boehm, B.W.: Software Engineering. Technical report, TRW Systems and Energy
Group (1976)

3. Rumpold, A., Pröll, R., Bauer, B.: A domain-aware framework for integrated
model-based system analysis and design. In: Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD), pp. 157–168. SCITEPRESS (2017)

4. Roman, G.C.: A taxonomy of current issues in requirements engineering. Computer
18, 14–23 (1985)

5. Requirements Interchange Format (ReqIF), Version 1.2. Specification, Object Man-
agement Group (OMG), Needham (2016)

6. Siegemund, K., Thomas, E.J., Zhao, Y., Pan, J., Assmann, U.: Towards ontology-
driven requirements engineering. In: Workshop Semantic Web Enabled Software
Engineering at 10th International Semantic Web Conference (ISWC), Bonn (2011)

7. Semantics of a Foundational Subset for Executable UML Models, Version 1.2.1.
Specification, Object Management Group (OMG), Needham (2016)

8. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Technical report, DTIC Document (1981)

9. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software, vol. 33, pp. 37–46. Australian Computer Society, Inc. (2003)

10. Kurtev, I.: State of the art of QVT: a model transformation language standard.
In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp.
377–393. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-
1 26

https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1007/978-3-540-89020-1_26

Applying Integrated Domain-Specific Modeling 271

11. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Ver-
sion 1.3. Specification, Object Management Group (OMG), Needham (2016)

12. Saad, C., Bauer, B.: Data-flow based model analysis and its applications. In: Mor-
eira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 707–723. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41533-3 43

13. Schleicher, A., Westfechtel, B.: Beyond stereotyping: metamodeling approaches for
the UML. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences, 10 p. IEEE (2001)

14. Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 1: General requirements. Standard, International Electrotechnical
Commission, Geneva (2010)

15. Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 5: Examples of methods for the determination of safety integrity
levels. Standard, International Electrotechnical Commission, Geneva (2010)

16. Wasserman, A.I.: Tool integration in software engineering environments. In:
Long, F. (ed.) Software Engineering Environments. LNCS, vol. 467, pp. 137–149.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53452-0 38

17. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific
metamodelling languages for software language engineering. In: van den Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12107-4 23

18. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. Softw. Syst. Model. 14, 429–459 (2015)

19. Graaf, B., van Deursen, A.: Visualisation of domain-specific modelling languages
using UML. In: 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS 2007), pp. 586–595. IEEE (2007)

20. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies, pp. 31–36. ACM (2007)

21. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0 13

22. Papadopoulos, Y., et al.: Automatic allocation of safety integrity levels. In: Pro-
ceedings of the 1st Workshop on Critical Automotive Applications: Robustness &
Safety, pp. 7–10. ACM (2010)

23. Papadopoulos, Y., et al.: Engineering failure analysis and design optimisation with
HiP-HOPS. Eng. Fail. Anal. 18, 590–608 (2011)

24. Gebizli, C.S., Metin, D., Sozer, H.: Combining model-based and risk-based testing
for effective test case generation. In: 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pp. 1–4.
IEEE (2015)

https://doi.org/10.1007/978-3-642-41533-3_43
https://doi.org/10.1007/978-3-642-41533-3_43
https://doi.org/10.1007/3-540-53452-0_38
https://doi.org/10.1007/978-3-642-12107-4_23
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/3-540-48249-0_13

A Domain-Specific Modeling Approach
for Testing Environment Emulation

Jian Liu1(&), John Grundy2, Mohamed Abdelrazek2,
and Iman Avazpour2

1 Swinburne University of Technology, Hawthorn, VIC 3122, Australia
jianliu@swin.edu.au

2 Deakin University, Burwood, VIC 3125, Australia
{j.grundy,mohamed.abdelrazek,

iman.avazpour}@deakin.edu.au

Abstract. Software integration testing is a critical step in the software devel-
opment lifecycle, as modern software systems often need to interact with many
other distributed and heterogeneous systems. However, conducting integration
testing is a challenging task because application production environments are
generally neither suitable nor available to enable testing services. Additionally,
replicating such environments for integration testing is usually very costly.
Testing environment emulation is an emerging technique for creating integration
testing environments with executable models of server side production-like
behaviors. Aiming to achieve high development productivity and ease of use for
business users, we propose a novel domain-specific modeling approach for
testing environment emulation. Our approach is based on model-driven engi-
neering, and abstracts software service interfaces, or endpoints, into different
request message processing layers. Each of these layers represents a modeling
problem domain. To model endpoints, we develop a suite of domain-specific
visual languages for modeling these interface layers. To build a testing envi-
ronment, we have created a supporting toolset to transform endpoint models to
executable forms automatically. We provide a set of example scenarios to
demonstrate the capabilities of our approach. We have also conducted a user
study that demonstrates the acceptance of our approach by IT professionals and
business users.

Keywords: Model-driven engineering
Domain-specific visual modeling language � Software integration testing
Testing environment emulation

1 Introduction

1.1 Software Integration Testing

Emerging computing strategies, such as cloud computing and social networking,
represent an ongoing shift from monolithic applications to highly distributed, hetero-
geneous and shared computing environments [1]. Most software systems need to
interact with other systems to provide composite services to their clients or end users.

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 272–299, 2018.
https://doi.org/10.1007/978-3-319-94764-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_12&domain=pdf

Thus, the performance of a software system is no longer determined only by its own
internal components, but is also subject to its increasingly complicated interactions
with external systems in its operational environment. This means that for effective
testing of a software system, testing interconnections (static communication aspects)
and interoperability (dynamic communication aspects) with other systems that it
communicates with in its realistic production environment is critical.

System Integration Testing (SIT) is a testing process that exercises a software
system’s behaviors when interacting with other inter-connected systems. It tests the
interactions between different systems and verifies the proper execution of the system
in its deployment environment [2]. To test the interactions of a System Under Test
(SUT) with the systems (that we call “endpoints”) in an enterprise environment, the
testing environment must provide a test-bed, that encompasses all services of the
endpoints the SUT will invoke in the environment.

Endpoints deployed to a testing environment have some unique characteristics.
First, a SUT often interacts with many different types of applications in its environ-
ment. Therefore, it is desirable that each endpoint development cycle should be short
and the development approach should have high development productivity. Second,
SIT is normally conducted by testing engineers or business users. Most of them have
rich business domain knowledge, but may lack programming skills. They prefer to
model endpoints using problem domain concepts, rather than code them using a textual
language. Last, endpoints, as server-side applications to provide testing services to their
SUTs, do not necessarily provide accurate results under all circumstances. Therefore,
we may simplify some internal implementations, in return for quick development.

1.2 Testing Environment Emulation

Testing Environment Emulation (TEE) is an emerging technique to develop SIT
environments for SUTs that interact with many external systems. The main idea is to
model the interactive behaviors of each system in a environment and replace the
systems by instances of the corresponding models in the emulation environment [3].
The goal is to make the emulated testing environment rich enough to “fool” SUTs into
behaving as though they are talking to the real external systems. Other components that
sit underneath or in the background are ignored from the emulated environment per-
spective whenever possible. Particularly, an emulated endpoint is a simplified version
of a real system with three assumptions:

• As an endpoint is used to provide test-bed for SUT integration testing, only the
external behaviors of the endpoint application are considered and its internal
implementations will be ignored;

• An endpoint is specifically developed for the integration testing of a SUT. There-
fore, a subset of the endpoint application operations invoked by the SUT are
provided;

• Serving as a defect detection tool for system debugging, an endpoint should be able
to capture all SUT interface defects, together with their types, origins and other
information.

A Domain-Specific Modeling Approach for Testing Environment Emulation 273

The key benefits from using TEE include:

• It provides a production-like test-bed for provisioning of testing functionality to
SUTs in a much more cost-effective way than application replication;

• Development of such a testing environment could be quick and easy, as some
internal logic implementations and auxiliary modules are ignored;

• The test-bed is easily configured and monitored for performing Quality-of-Service
(QoS) aspects testing, such as simulating different numbers of instances of a same
endpoint type for performance test;

• Software interface defects can be captured and the defect cause information can be
reported.

1.3 A Domain-Specific Approach to Testing Environment Emulation

Domain-Specific Modeling (DSM) achieves high development productivity and ease of
use by focusing on a narrowed problem domain, so that specific high-level abstraction
modeling languages and supporting toolsets can be created. To develop our DSM
approach to emulate testing environment, we proposed a new software interfaces
description framework, where software interfaces are abstracted into logically separated
signature, protocol and behavior layers. We use modular development approach to
model endpoints, and each module represents one interface layer.

Our DSM approach consists of an endpoint modeling environment and a runtime
environment to provide testing services to SUTs (see Fig. 1). The modeling environ-
ment includes a suite of domain-specific Visual Modeling Languages for Testing
environment emulation (TeeVML) to model endpoints in interface layers. The runtime
environment is hosted in Axis2 SOAP engine [4], and is generated automatically by

System Under
Test

ProtocolSignature Behavior

Message Processing Layers

Endpoint Runtime Environment

Endpoint Modeling Environment

Code Generators

Signature
Modeling

Protocol
Modeling

Behavior
Modeling

Domain
Expert

Axis2 Web Service platform

TeeVML

Fig. 1. Endpoint modeling and runtime environment.

274 J. Liu et al.

transforming the endpoint signature model. Testing service is enabled through Web
Service provided by Tomcat Servlet Container [5].

This research paper is an extended version of our MODELSWARD 2017 paper [6],
and we add the following contents in addition to enriching the covered topics: (1) a
brief discussion on SIT characteristics and the benefits from using a model-driven
approach to develop endpoints; (2) a description of our visual language notation design
for achieving high usability; and (3) an introduction to our Domain-Specific Visual
Languages (DSVLs) for modeling endpoints.

This rest of the paper is organized as follows: Sect. 2 motivates our research by a
case study, followed by an introduction to our DSM approach in Sect. 3. In Sect. 4, we
briefly discuss our visual symbol design and introduce our TeeVML. We show how an
endpoint is modeled and then describe the steps to convert endpoint models into testing
runtime environment in Sect. 5. In Sect. 6, we evaluate our approach and discuss the
key findings from the results of a technical comparison and a user survey. This is
followed by a review of related work in Sect. 7. Finally, we conclude this paper and
identify some key future work in Sect. 8.

2 Motivation

We select a typical business case of a company integrating its legacy system with a
public cloud application and use this case to describe the potential interactions between
an endpoint and its SUT. The company currently has an in-house Enterprise Resource
Planning (ERP) system (such as PeopleSoft Finance [7]) to support its daily operations.
For the purpose of streamlining its sales process and improving operational efficiency,
the company plans to introduce a public cloud Customer Relationship Management
(CRM) service (such as salesforce.com [8]) as its frontend application. From operation
and data security considerations, all company data will be kept in-house in the ERP.
Therefore, the CRM application must interact with the ERP system intensively for
accessing persistent data and processing business logics.

The activity sequence diagram in Fig. 2 illustrates a typical sales process flow
among users, the CRM application and the ERP system. Users access the CRM
application for handling their client Purchase Order (PO). For every user request, the
CRM must invoke a corresponding ERP operation using Remote Procedure Call
(RPC) communication style [9]. Our main interest is on the interactions between the
client CRM and the server ERP as described below.

Whenever the ERP receives a logon request from the CRM, it transits from idle
state to home state and an interactive session starts. The next valid operation is
porequest, followed by inventorycheck. The returned value of inventorycheck will
determine whether supplier chain related steps will be executed. If the purchase item
has enough stock for the PO, the process flow will jump over the supplier purchasing
steps and directly go to paymentrequest. Otherwise, we should go through the purchase
steps (#4, #5, #6 and #7) to buy the missing quantity of the item. supplierpoapproval
and approvalnotification are iteration operations, informing all approvers one-by-one to
give their approvals. If all required approvals for the supplier PO are obtained, the rest

A Domain-Specific Modeling Approach for Testing Environment Emulation 275

http://salesforce.com

of purchasing steps will be executed in the order as in Fig. 2. Otherwise, the sales
process will be aborted without success.

To ensure the interconnectivity and mutual interoperability between the ERP and
CRM, SIT must be carried out before putting the CRM in production. For this study,
we treat the ERP as the endpoint that we need to develop, and the CRM as the SUT.
Just as any other software development tools, users’ primary concerns about our
endpoint modeling approach will be: What can it do for their service emulation
modeling and generation? Will it improve endpoint development productivity? How
easily can it be used? From these assumptions, we defined three key research questions
for guiding the development of our approach:

RQ1 – Can we emulate a functioning integration testing environment capable of
capturing all interface defects of an existing or a non-existing system under test from
an abstract service model?
RQ2 – Would our model-based approach improve testing environment development
productivity, compared to using third-generation languages (e.g. Java) to implement
endpoints?
RQ3 – Can we develop a user centric approach, easy to learn and use to specify testing
endpoints by domain experts?

Fig. 2. The example ERP and CRM interactions process flow diagram [6].

276 J. Liu et al.

3 Our Approach

To identify software interfaces common concepts and determine their relationships, we
conducted our TEE domain analysis by investigating three applications interacting with
their clients. These applications were the ERP system introduced in the motivation
section, a LDAP server [10], and a core banking system [11]. These applications
represent a variety of application domains in a typical enterprise environment. From
this domain analysis, we proposed a layered software interfaces description framework
for TEE, and defined interface defect types to be captured by endpoints. Consecutively,
we then designed our Domain-Specific Languages (DSLs) to model endpoints in
interface layers.

3.1 Software Interfaces Description Framework

There are three reasons for having a software interfaces description framework. First,
we need to abstract software interfaces into different interactive aspects, so corre-
sponding DSLs can be developed with a clearly defined problem domain boundary.
Second, we can adopt a modular development architecture to model endpoints in
layers. We may also be able to model a few versions of an endpoint type for different
SUTs. Third, some of these interface modules may be shared among endpoints, if they
have the exact same functionality.

Our framework abstracts software interfaces into three logically separated layers:

• Signature – following RPC communication style specification, this layer specifies
the requests and responses of endpoint operations, their parameters and properties;

• Protocol – this layer defines the validity of a temporal sequence of endpoint
operations, which can depend on either endpoint states (static protocol behavior) or
runtime constraint conditions (dynamic protocol behavior), or both;

• Behavior – this layer abstractly describes endpoint internal operation request pro-
cess and response generation, and the returned values in response messages are used
to capture dynamic protocol defects.

A SUT operation request is processed by an endpoint step-by-step from signature,
protocol, and down to behavior layers. Whenever an error occurs, the request pro-
cessing will be terminated. Signature and protocol layers act as message pre-processors
for checking the correctness of operation request syntax and temporal sequence, before
handing the request over to behavior layer for generating a suitable response message.

3.2 Service Request Defects

To develop DSLs for endpoint layers, we must know all the defect types first. Table 1
lists and describes the possible interface defects types that a SUT request may have.
The SUT request defects can be grouped into static and dynamic categories, depending
on whether they will always cause interactive failures or under certain runtime con-
ditions only. Normally, a software application has an interface specification to specify
its provided operations and their parameters. A client SUT must send its requests to the
application in accordance with the interface specification. Otherwise, interface fault

A Domain-Specific Modeling Approach for Testing Environment Emulation 277

will occur due to a static interface defect. On the other hand, a dynamic defect happens
under certain business scenarios. An example is the validity of the next request after
inventorycheck, which is subject to the inventory result returned by the inventorycheck
operation. In general, static defects can be found by code review against interface
specification and SIT; while dynamic defects can only be captured by SIT.

We do not list any behavior defects in Table 1. This is because a SUT’s obligation
is to send correct requests to an endpoint and the way these requests are to be processed
is defined internally by the endpoint. The reason why we still model the endpoint
behavior layer is that the validity of alternative next operation requests may depend on
what values are returned in the response message it has received based on a previous
request.

3.3 Endpoint Metamodeling

A Metamodel defines all concepts and their relationships within a specific application
domain. The key semantics and constraints associated with these domain concepts are
also specified. The main inputs to our software interface metamodels are the software
interface description framework and the software interface defects listed in Table 1.

Table 1. Service request defect types [6].

Type Description

Signature
Sig1 An operation request is not an operation provided by endpoint
Sig2 The parameters in an operation request are not matched with the parameters of the

corresponding operation provided by endpoint, in terms of parameters’ name, data
type and order in the operation request

Sig3 One or more operation request mandatory parameter(s) is (are) missing
Sig4 One or more parameters in an operation request is (are) beyond the defined value

range of the corresponding endpoint operation
Protocol
Pro1 An operation request is invalid for the current endpoint state
Pro2 An operation request is invalid for the current endpoint state, as one or more

parameter(s) violate(s) the defined constraint condition(s)
Pro3 An operation request is invalid for the current endpoint state, as one or more

returned value(s) from a previous operation request violate(s) the defined constraint
condition(s)

Pro4 An operation request is invalid, due to endpoint state transition driven by some
internal event, such as time out

Pro5 An operation request is invalid, as endpoint is in processing a synchronous operation
request

Pro6 An operation request is invalid, as one such request for an unsafe operation (i.e. not
an idempotent operation that will produce the same results if executed once or
multiple times) has been received by endpoint

278 J. Liu et al.

Signature Metamodel
Endpoint signature layer models operations provided by endpoint and their parameters.
Each parameter has some static properties, such as name, data type, order and
mandatoriness. Some parameters with integer, float or date data type may also have
upper and lower limits in dynamic nature.

Web Service Description Language (WSDL) specification describes the public
interface exposed by a web operation, including what an operation does, where it
resides, and how to invoke it [12]. Figure 3 illustrates the signature metamodel that our
signature DSL is based on. The metamodel adopts a three-level architecture design.
The top-level DSL (see Fig. 3a) uses WSDL 1.1 specification as its metamodel. It
specifies the relationships among a root definition entity and other 5 entities: service,
port, binding, porttype and operation. The middle-level Operation DSL (see Fig. 3b) is
to define request and/or response message(s) in an endpoint operation. The operation
communication pattern determines whether it contains a request message only, a
response message only or both request and response messages. The bottom-level DSL
(see Fig. 3c) is based on W3C XML Schema 1.1 for defining complex elements in a
message.

The signature defects Sig1 to Sig3 in Table 1 can be detected by the Axis2 SOAP
engine itself, transformed from signature model. To specify the upper and lower limits
of a number or a date element (refer to Sig4 defect in Table 1), we add two properties
to element type to detect any invalid request parameters beyond defined value limits.

Fig. 3. Endpoint signature metamodel [6].

A Domain-Specific Modeling Approach for Testing Environment Emulation 279

Protocol Metamodel
To capture both static and dynamic protocol defects, we designed an Extended Finite
State Machine (EFSM) to enrich endpoint protocol modeling capability (refer to
Fig. 4). Our EFSM adds one entity type and two entity properties to a standard
operation driven endpoint state transition Finite State Machine (FSM) (the items we
added are marked yellow in Fig. 4). Entity type is the InternalEvent which is used to
define state transitions triggered by time event. One of the entity properties is the
StateTransitionConstraint of the transition entity, and it is for specifying either static or
dynamic constraints on state transition function. Another one is the StateTimeProperty
of the state entity, which allows users to simulate synchronous and unsafe operations.
As endpoint protocol modeling is relatively simpler than other two interface layers, we
use a flat view presentation structure.

All protocol defects listed in Table 1 can be detected by an endpoint, modeled
using the EFSM model: (1) Pro1 – the operation-driven state transition FSM; (2) Pro2
and Pro3 – the StateTransitionConstraint property; (3) Pro4 – the InternalEvent entity;
and (4) Pro5 and Pro6 – the StateTimeProperty. Protocol modeling is only applied to
stateful applications. This is because an endpoint uses its current state to validate the
next coming operation. If an endpoint is a stateless application, its protocol modeling
will be skipped, as all requests to the endpoint must necessarily contain the required
information.

Behavior Metamodel
Our behavior metamodel is based on the Data Flow Diagram (DFD) programming
paradigm [13]. We chose this metaphor as it allows for complex specification of
behavior models but has also been shown to be understandable by a wide range of

Fig. 4. Endpoint protocol metamodel [6] (Color figure online)

280 J. Liu et al.

software stakeholders. DFD programming execution model is represented by a directed
graph; nodes of the graph are data processing units, and directed arcs between the
nodes represent data dependencies. A node starts to process and convert the data
whenever it has the minimum required parameters available on its input connector. The
node then places its execution results onto its output connector for the next nodes in the
chain.

To handle complicated business logic, we designed our behavior DSL using a
hierarchical tree structure. The benefits of using the hierarchical structure are two-fold:
First, we can reuse some of the nodes, if they perform exactly the same task but are
located at different components. Second, it can help us manage diagram complexity
problem. On the top level of node tree structure, discrete service nodes are used to
represent the operations provided by an endpoint. At the bottom level, each node
consists of some primitive programming constructs for performing operations on data
and flow controls for directing execution sequence.

4 Our Domain-Specific Languages

A DSL realizes the concepts and their relationships defined in its domain metamodel by
mapping them to corresponding programming constructs. A Visual Programming
Language (VPL) lets users create programs by manipulating programming constructs
graphically rather than by specifying them textually. Although there is no fundamental
difference in expressivity, visual languages are generally easier to learn and use than
textual languages [14]. To achieve ease of use for domain experts, we designed our
TeeVML as a VPL.

4.1 Visual Symbol Design

Visual symbols have a profound effect on the usability and effectiveness of a visual
language. Visual symbols are human thought representations for facilitating commu-
nications and problem solving among individuals. To be most effective in doing this,
they need to be optimized for processing by human mind. For this reason to evaluate
the “goodness” of a visual symbol, Larkin et al. defined the term cognitive effectiveness
as “the speed, ease, and accuracy with which a representation can be processed by the
human mind” [15]. The cognitive effectiveness determines the ability of visual symbols
to communicate among a wide range of software stakeholders.

To establish a scientific foundation for visual symbols’ design, Moody proposed
the Physics of Notations (PoN) and defined a set of principles to evaluate, compare, and
construct visual symbols by using a synthesis approach based on theory and empirical
evidence about the cognitive effectiveness of visual symbols [16]. Some of these
principles are related to a visual language as a whole, such as Complexity Manage-
ment, Cognitive Integration and Graphic Economy. While others focus on individual
visual symbol’s properties, such as Semiotic Clarity, Visual Expressiveness and Per-
ceptual Discriminability.

To maximize the cognitive effectiveness of our DSVLs, we applied Moody’s PoN
principles to design our visual symbols. Among these principles, we put more emphasis

A Domain-Specific Modeling Approach for Testing Environment Emulation 281

on those that are subject to DSVL’s characteristics. When multiple entities are to be
used, the Perceptual Discriminability principle will be our primary design considera-
tion. This principle is assessed by the visual distance between symbols, measured by
the number of visual variables on which they differ and the size of these differences. In
contrast, there is no meaning to consider visual distance, if a DSVL contains only one
entity. We would focus on the Semantic Transparency principle instead.

In addition to the cognitive effectiveness of visual symbols, there are also some
other factors to be considered when designing DSVLs for this research such as
reusability. To maximize the reusability, we should make models simple enough to be
reused or easily assembled with others as a reusable component. This is the main
reason why we have designed some single entity sub-DSVLs.

In the following sections, we introduce the designs of some TeeVML visual con-
structs. Interested readers can refer to our earlier publications [17, 18] for all the details.

4.2 Signature DSVL

Our Signature DSVL consists of three sub DSVLs: WSDL, Operation and Message.
Table 2 describes the visual constructs for the five entities used in WSDL sub-DSVL.
To provide sufficient visual distance for making them easily distinguishable, we used
shape as the primary visual variable, supplemented with color and textual annotation.

4.3 Protocol DSVL

Protocol DSVL consists of three state entities for representing endpoint idle, home and
working states and four transition relationships for managing endpoint state transitions.
Table 3 provides our Protocol DSVL design details of the working state and rela-
tionships visual constructs. To distinguish between the relationship visual constructs,
their visual variables include shapes at both ends, color, line type and textual
annotation.

4.4 Behavior DSVL

Our Behavior DSVL has 9 visual constructs used for describing different types of tasks:
(1) Service Node and Node for processing an operation or a task, (2) Arc and
Entrance/Exit bars for directing dataflow, (3) Variable and Variable Array for holding
intermediate results, (4) Conditional Operator and Loop for controlling process flows,
and (5) Evaluator for performing arithmetic operations. To provide a general feeling of
how Behavior DSVL is designed, we describe some of these constructs below.

Service Node
A service node specifies the process of an operation request and generates response. It
imports the request and response parameters from the endpoint signature model. Fig-
ure 5a shows the visual construct of a service node. Its main design consideration is to
display all request and response parameters for helping users to model the operation
behavior. To manage behavior model view complexity, service nodes can be collapsed
to hide parameters and reduce their symbol size (see Fig. 5b).

282 J. Liu et al.

Entrance and Exit Bars
Entrance and exit bars (see Fig. 6) specify the input and output parameters and define
where execution starts and ends within a service node or a node. The entrance bar has
one “out” port underneath, and the exit bar has a normal “in” and an exceptional “in”
ports on it. The parameters for both bars can be displayed or hidden by users,
depending on whether users need to know these parameters.

Evaluator
Evaluator (see Fig. 7) is use to perform arithmetic operations. The evaluator visual
construct has three lines for defining a formula. The first line specifies a result variable
to be assigned after the evaluator’s execution. The second line lists all variables to be
used by the evaluator, separated by commas. The last line is the arithmetic formula with
parameters in as “P” array. The order of the “P” array elements follows the sequence of
the parameters in the second line.

Table 2. WSDL sub-DSVL visual constructs.

Con-
struct Visual Symbol Description Property

Service
A set of system operations that
are exposed to the Web-based
protocols.

Name: A Service instance name.

Port

Address or connection point to a
Web Service. It is typically
represented by a simple HTTP
URL string.

Name: A Port instance name.
Address: The network address at
which the Service is offered.

Binding
Binding entity specifies inter-
face, SOAP binding style and
transport protocol.

Name: A Binding instance name.
Type: To identify the kind of
binding details contained in a
Binding entity instance.

PortType

PortType entity defines a Web
Service, operations that can be
performed, and the messages that
are used to perform the opera-
tion.

Name: A PortType instance name.
Extends: A lists of PortType
entities that this PortType derives
from.

Operation

A Web Service action and the
way a message is encoded. An
operation is like a method or
function call in a traditional
programming language.

Name: Operation instance name.
Pattern: A template for the ex-
change of one or more messages.

A Domain-Specific Modeling Approach for Testing Environment Emulation 283

Table 3. Protocol DSVL visual constructs.

Con-
struct

Visual Sym-
bol Description Property

Working
State

It presents an endpoint state,
which normally uses operation
as its default name.

Name: State entity instance name;
Synchronous Operation: Is the state opera-
tion in synchronous mode?
Processing Time: Simulated operation
processing time in seconds.
Safe Operation: Is the state operation safe?
Transmission Time: Simulated operation
request transmission time in seconds.

Timeout
Relation-

ship

It links a “from” state to a “to”
state for representing endpoint
state change, if no valid opera-
tion request is received within
a defined timeout period.

Time: The time in seconds for an automatic
state transition.

Transition
Relation-

ship

It links a “from” state to a “to”
state for representing a state
transition.

OperationName: The operation triggers the
state transition.

Constraint
Transition
Relation-

ship

It links a “from” state to a “to”
state for representing a state
transition;
The transition is subject to a
constraint condition, defined
by its dialog box (see Figure
4.7).

Trigger Operation: The operation triggers
the state transition;
Operation Name1 + Field Name1: To
defines the first state transition condition;
Condition Operator: It is used to compare
the two conditions;
Operation Name2 + Field Name2: To
defines the second state transition condi-
tion.

[a] A service node definition [b] A collapsed service node

Fig. 5. Behavior DSVL service node’s visual construct.

284 J. Liu et al.

4.5 Code Generators and a Domain Framework

To make an endpoint executable to provide testing services to its SUT, endpoint
models must be transformed to executable code by code generators. This code must
then be integrated into a domain framework for providing infrastructure support.
Ideally, the transformed code must be complete and in production quality, and should
not require manual rewriting, inspection or additions.

Code Generators
A code generator accesses models, extracts information from them, and transforms the
models into output in a specific form. This process is guided by the concepts, semantics
and rules of the modeling language. Our TeeVML includes five code generators to
transform endpoint signature, protocol and behavior models to corresponding codes:

• WSDL (signature) – To transform an endpoint signature model to WSDL 1.1
specification in XML format;

• SQL Script (signature) – To navigate through all operations and search for the
parameters of the types of “int”, “float” or “date”. If such parameters are found, their
“Minimum” and “Maximum” properties will be stored in an operation parameter
table for verifying these parameters’ ranges;

• Groovy Code Generator (protocol) – To access and navigate the entire protocol
model for extracting endpoint protocol information. The extracted data are stored in
a state transition table for validating the operation request and determining state
transition;

• Java (protocol) – To generate Java code to query protocol information from the
state transition table for each operation request and validate the operation request by
several “if-else” statements;

• Java (behavior) – To define the interdependences among nodes and primitive visual
constructs and specify internal implementations within the primitive constructs.

Fig. 6. Behavior DSVL entrance and exit bars’ visual constructs.

Fig. 7. Behavior DSVL evaluator’s visual construct.

A Domain-Specific Modeling Approach for Testing Environment Emulation 285

A Domain Framework
A domain framework normally serves for four purposes [19]: (1) to remove duplica-
tions from generated code, (2) to provide an interface for code generators, (3) to
integrate with existing code; and (4) to hide target environment and execution platform.
In addition, our domain framework also plays another important role – to provide a
network infrastructure for facilitating message exchange between endpoints and SUTs.

As it is not our research focus, we have not developed our own but used
Axis2 SOAP engine [4] instead. Axis2 brings some benefits to our endpoint modeling
approach including: (1) Axis2 facilitates Design by Contract (DbC) programming style
[20], and the implementations on both the endpoint and SUT sides are bound to a
service contract defined by signature WSDL file; (2) Axis2 allows users to modify its
SOAP message header by adding some QoS attributes to simulate a variety of business
scenarios; and (3) Axis2 is a popular open-source tool, many IT professionals familiar
with it.

To implement DbC programming, Axis2 generates linkage codes for both service
provider and service client from a signature definition WSDL file. The service provider
linkage code takes the form of a service specific implementation skeleton, along with a
message receiver class that implements the org.apache.axis2.engine.MessageReceiver
interface. The service client linkage code is in the form of a stub class, which always
extends the Axis2 org.apache.axis2.client.Stub class. Both the service provider
skeleton class and client stub class are generated by the wsdl2java tool.

5 Case Study

We use the motivating example ERP system as a case study to demonstrate how
endpoint can be modeled by using our TeeVML in interface layers. We also describe
the steps to convert the endpoint models to executable forms and integrate them to the
domain framework in a target environment.

5.1 Signature Modeling

Signature modeling starts from specifying endpoint level properties. Then, WSDL
sub-DSVL is used to instantiate the five WSDL entities by providing their names and
relevant information. They are linked together by using either a composition or an
association relationship. All the entities have just one instance, except for the operation.
The number of the operation instances depends on the services provided by the
endpoint.

We use the operation paymentrequest as an example to show how an operation can
be modeled. The operation is instantiated by assigning the operation name as pay-
mentrequest and pattern as “in-out”. Then, Operation sub-DSVL is used to specify the
paymentrequest_request and paymentrequest_response messages in the operation. The
request message label is “in”, and response message label is “out”.

Message sub-DSVL is used to define message elements. The request message
contains only one element pono, and it is defined as integer and mandatory. Since a
valid pono is a five-digit integer, the element’s minimum field is specified as 10000 and

286 J. Liu et al.

maximum field as 99999. The response message consists of three elements: amount,
errorcode and errormessage. They are placed in the message in alphabetic order. The
amount is a float data type, errorcode integer and errormessage string.

Figure 8 shows the ERP system endpoint signature model. It contains the top-level
WSDL model (refer to Fig. 8a, we only show five operations for a better view rep-
resentation), the middle-level paymentrequest operation model (Fig. 8b), and the
bottom-level request and response message models (Fig. 8c).

5.2 Protocol Modeling

Figure 9 shows the endpoint protocol model, where a purchase process progresses in
clockwise direction. To demonstrate how to model the endpoint protocol layer, we
select three typical protocol behaviors of interactive session management, constraint
state transition and transition iteration. They are marked as A, B and C in the diagram,
respectively.

A – Session management: Endpoint protocol modeling starts from specifying an
interactive session by using a logon transition relationship from Idle state to Home
state. To terminate the session, a logout transition relationship is used in the opposite
direction. The session can also be terminated by a timeout event, which is specified by
using a timeout relationship linking a “from” state to a “to” state.

B – Constraint transition relationship: When the endpoint is at inventorycheck
state, there are alternative flows either to supplierpo or paymentrequest and the choice
of the flows depends on whether the purchase item stock can meet the PO requirement.
To specify this type of state transitions, the constraint transition relationship is used and
it links the inventorycheck state to the supplierpo state. The constraint condition is
specified using the relationship dialog box by comparing the quantity parameter of

Fig. 8. The example endpoint signature model [6].

A Domain-Specific Modeling Approach for Testing Environment Emulation 287

porequest request with the inventory parameter of inventorycheck response. If the
former is greater than the latter, the state transition will happen. Similarly, we specify
another constraint transition from the inventorycheck state to the paymentrequest state,
and the constraint condition is the item stock greater than or equal to the PO quantity.

C – Transition iteration: A loop relationship is used to specify that all the opera-
tions between the “from” state and “to” state of the loop relationship will be executed
repeatedly. The approval process of a supplier PO is an iteration, which includes an
approvalnotification and a supplierpoapproval operations. The approval process starts
from the immediate manager of the purchaser until the manager with authority for the
PO amount.

5.3 Behavior Modeling

An endpoint behavior model consists of unrelated service nodes for all provided
operations, and we use one operation paymentrequest as example to explain how
endpoint behavior is modeled. Figure 10a shows the paymentrequest service node,
which consists of two sub nodes: poinformationretrieve to retrieve the PO information
from tables and poamountcalculation to work out the total PO amount. These two
nodes are placed between an entrance and exit bars.

We select the poinformationretrieve node to show how Behaviour DSVL primitive
visual constructs are used to implement business logics. Figure 10b illustrates the data
query operations and dataflows within the poinformationretrieve node. The node has
one input “pono”, and generates four outputs: “quantity”, “unitprice”, “discount” and
“FatalError”. The node contains three data query operations: (1) to retrieve PO “cat-
egory”, “item”, “quantity” and “client” from PurchaseOrderTable by the “pono”; (2) to
retrieve “unitprice” from ProductTable by the “category” and “item”; and (3) to retrieve
“discount” from ClientTable by the “client”. If searching records are found, searching
results will be placed on the normal output port (black circle) of data store operator.

Fig. 9. The example endpoint protocol model [6].

288 J. Liu et al.

Otherwise, an “FatalError” variable will be assigned by following the exceptional
output port (yellow circle).

5.4 Testing Environment Generation

Our approach provides a very simple and easy way to generate operational endpoints
from their models. There are three tasks including: (1) to create two Java project folders
for hosting server side and client side codes; (2) to transform models to codes by code
generators and copy them to the server project folder; and (3) to run our supporting
toolset for packaging Tomcat service and providing testing service to SUTs. To
automate endpoint generation process, we have created an Apache Ant build file.

Figure 11 illustrates a deployment view on how an endpoint provides integration
testing service to a SUT. The left-hand side is the emulated endpoint hosted in a
Tomcat application server, its protocol and behavior classes are integrated into the
Axis2 Skeleton class for performing SUT operation requests validation. The grey areas
at the bottom of both sides are the Axis2 Web Service engine for encoding and
decoding SOAP messages exchanged between the endpoint and the SUT. A SUT is
located on the right-hand side at the top, communicating with the Axis2 Stub class
through an API class. The SUT invokes the endpoint service through accessing Tomcat
Axis2 service URL using SOAP over HTTP application protocol. To capture and see
the exchanged messages, we use TCPMon tool [21] to act as an intermediary between
the SUT and endpoint. TCPMon accepts connection from the SUT on one port and
forwards the incoming traffic to the endpoint running on another port.

Fig. 10. The example endpoint Paymentrequest operation behavior model. (Color figure online)

A Domain-Specific Modeling Approach for Testing Environment Emulation 289

6 Evaluation

To assess how well the issues related to the three research questions have been
addressed by our approach, we have developed three evaluation criteria:

• Testing functionality (addressing RQ1) – the approach should be able to develop a
wide variety of endpoints, which could be used to capture all the interface defects of
a new or an existing system under test;

• Development productivity (addressing RQ2) – the approach should have high
endpoint development productivity with less development effort and time;

• Ease of use (addressing RQ3) – the approach should be easy to learn and adapt by
non-technical background users.

These criteria were first assessed by a technical comparison of our approach with
the currently available endpoint emulation approaches. This comparison motivated our
new DSM approach to address the shortcomings of the existing approaches. After our
approach was ready to use, we also conducted a user survey to evaluate the extent to
which our approach was accepted by software testing experts and developers.

6.1 Technical Comparison

Currently, there are two types of TEE approaches to develop integration testing
environments: specification-based by manual coding (also called “manual coding”) and
interactive trace data record-and-replay (also called “interactive tracing”). The manual
coding approaches are used by IT professionals to develop simplified versions of
applications with external behavior manually [22, 23]. They perform this using
available knowledge of the underlying message syntax, interaction protocol and

Behavior Classes

SOAP Process

Skeleton Class

Axis2 Web Servicce Engine
(Server Side)

SOAP Process

Stub Class

Axis2 Web Service Engine
(Client Side)

Emulated Testing Endpoint

Java API InterfaceProtocol Class

SOAP over HTTP

System Under Test

Fig. 11. The deployment view of an endpoint and its SUT.

290 J. Liu et al.

behavior. The interactive tracing approaches create endpoint models from recorded
request-response pairs between the endpoint system and an earlier version of a SUT
automatically [24, 25]. Each endpoint’s simulated response is generated by finding a
closely matched request in the recorded trace database.

To compare these two types of approaches with our new TeeVML, we use the three
defined evaluation criteria and look into what and how some key techniques these
approaches adopt to meet these criteria. Table 4 presents the comparison. From the
development productivity and ease of use point of view, the interactive tracing
approaches are the highest, as endpoints are created automatically. However, these
approaches have two key shortcomings in terms of the testing functionality. One is
their usability, which is subject to the availability of interactive tracing data. Another
one is that they cannot report defect type and cause information. In contrast, the manual
coding approaches and TeeVML need to develop endpoints by IT professionals. As
TeeVML uses higher level abstraction models than code to express design intent, it
achieves better endpoint development productivity and ease of use.

Table 4. The comparison of TEE approaches’ techniques.

Manual coding Interactive tracing TeeVML

Testing functionality
The key motivation of these
approaches is to provide
performance testing by
emulating large number of
endpoints. To achieve this
objective, these approaches
adopt a light-weight
architecture design and
some testing features are
deliberately neglected.
Dynamic protocol behavior
cannot be modeled, as state
transition is triggered only
by an operation. Unless
great effort is made,
behavior layer modeling
will be limited

To provide integration
testing, these approaches
search for the right request
matching on data byte level
without any knowledge
about upper-level message
syntax. They can only tell
whether a test is passed or
failed, but cannot provide
any defect information.
These approaches are not
usable for testing a new
application, as its trace data
are not available

Endpoints modeled by
TeeVML provide integration
testing functionality from
signature, protocol and
behavior abstraction layers.
The signature layer model
supports all RPC
communication styles; the
protocol layer can model both
static and dynamic protocol
behaviors; and the behavior
layer uses a hierarchical
structure dataflow
programming for modeling
complicated logic
implementations

Development productivity
The approaches adopt a
modular architecture
design, where an endpoint
type dependent message
engine module is separated
from an endpoint type
independent network and a
system configuration

Endpoint is created by
recording the interactive
tracing data between the
endpoint application and an
earlier version of the SUT
application. These
approaches do not need any
endpoint development

An endpoint is modeled by
layers, and layer models are
transformed to executable
code. The key solution to
productivity improvement is
to maximize components
reusability. We have adopted
multi-level design for

(continued)

A Domain-Specific Modeling Approach for Testing Environment Emulation 291

6.2 User Survey

User surveys incorporate a list of questions to extract specific data from a particular
group of people. They provide a comprehensive mechanism for collecting information
to describe, compare and explain knowledge, attitudes and behaviors of survey par-
ticipants [26]. Survey results are used to improve products’ quality and functionality by
guiding and correcting the design, development and refinement.

Experiment Setup
We conducted our user survey in two phases. In the first phase, we extracted testing
experts’ opinions on what testing features they valued in endpoints and what func-
tionality TeeVML should provide to develop endpoints. We introduced our TeeVML
and endpoint testing functionality to the participants by using a PowerPoint presen-
tation, then interviewed them and answered their queries. Sixteen testing experts were
invited to participate in the survey, and most of them (94%) had more than one year
solid testing experience and were knowledgeable about SIT. In the second phase, we
assessed TeeVML’s usability by collecting software developers’ experience with the
tool to work on an assigned task. We wanted them to compare TeeVML with a
third-generation language they were familiar with, as the way the manual coding
approaches do. Total of 19 software developers and IT research students took part in
the survey. Most of them (95%) had IT background and (63%) were familiar with
software modeling.

All the participants were asked to fill an online questionnaire, after finishing their
user survey. The questionnaires include 5-point Likert Scale (5 to 1 representing
strongly agree to strongly disagree), single-choice, multiple-choice, and open ended
questions. For the 5-point Likert Scale questions, in favour responses encompass the
answers of either 5 or 4 for a positive question, and 1 or 2 for a negative question. We
counted the number of in favour responses to measure the degree of acceptance to a
question statement. There were total 58 questions for both Phase One and Two, and we

Table 4. (continued)

Manual coding Interactive tracing TeeVML

modules. However, as the
message engine is coded
manually, significant
amount of development
effort is needed for each
new endpoint type

work, but some effort on
trace data recording

Signature DSVL and node
hierarchical structure for
Behavior DSVL

Ease of use
To develop an endpoint,
developers must have both
business domain
knowledge and
programming skills

Neither business domain
knowledge nor
programming skills are
required. But, users must be
trained to use the tool

Developers must have
business domain knowledge,
and some modeling skill is
preferred

292 J. Liu et al.

only select some of them for this paper results presentation. The full result reports can
be accessed at: https://sites.google.com/site/teevmlapsec/.

Survey Results Analysis – Phase One
We select a few typical questions in Table 5 to analyze them from two different angles:
One is about participants’ acceptance of an endpoint as a whole and by each interface
layer from functionality point of view. Another is to find out the possible reasons why
participants would consider using (or not using) our endpoints in their future projects.

Q8 reflects the overall usefulness of endpoints for conducting SIT. The responses to
this question are quite positive with 14 out of 16 (87.5%) participants in favour. This is
a good indication of the participants’ acceptance of endpoints modeled by TeeVML.

Table 5. Selected questions and responses from Phase One survey report.

[a] Likert scale questions

No Statement Frequency
5 4 3 2 1

Q8 In your opinion, an emulated testing environment is
useful for an application inter-connectivity and
inter-operability test

8 6 0 1 1

Q17 It is useful for an emulated testing environment to
provide signature testing functionality to its system
under test

7 7 1 1 0

Q21 It is useful for an emulated testing environment to
provide interactive protocol testing functionality to its
system under test

12 4 0 0 0

Q25 It is useful for an emulated testing environment to
provide interactive behavior testing functionality to its
system under test

6 8 1 1 0

[b] Multiple choice questions
No Question statement and choices Frequency

Q13 What are the main motivations for you to use emulated testing environment?
Cost saving on application software and hardware investment 14
Effort saving on application installation and maintenance 10
Lack of application knowledge 5
Early detection of interface defects 15

Q14 What are your main concerns, which could prevent you from using emulated
testing environment?
Extra development effort on testing endpoints 6
Learning a new technology 6
Inadequate testing functionality 7
Emulation accuracy 7
Result reliability 12

A Domain-Specific Modeling Approach for Testing Environment Emulation 293

https://sites.google.com/site/teevmlapsec/

To further investigate each interface layer, Q17, Q21 and Q25 are used to get partic-
ipants’ opinion on the usefulness of modeling signature, protocol, behavior layers,
respectively. We can see that the protocol layer (Q21) received in favour responses
from all participants. We believe one of the main reasons why all participants wanted to
have protocol testing is that most applications do not have a well-documented protocol
specification. Therefore, protocol related defects can only be found by SIT. On the
other hand, the signature layer (Q17) had slightly less in favour response rate compared
to the protocol layer. The signature correctness is a must for a client to access oper-
ations provided by a server. However, a few participants might have thought that
endpoint signature could be easily coded and verified against product interface spec-
ification, hence actual testing would be unnecessary.

Q13 is a multiple-choice question, and lists four reasons why users want to use
endpoints. Responses to Q13 indicate that the top reason for using endpoints was early
detection of interface errors. In current practice, SIT is normally conducted during the
later stages of software development lifecycle. This is partly because integration testing
environment is not available before then. If a rapid and cheap solution for testing
environment deployment was available, developers might have preferred to conduct at
least part of SIT earlier. Q14 indicates that most participants’ concerns were on the
reliability of endpoint testing results. The main reason could be that software devel-
opers are used to using real applications for their SIT. However, an endpoint is actually
a simplified version of its real application. Often, some implementation aspects of the
application are neglected and treated as useless for SIT. This might have some impacts
on SUT testing results. Our survey results indicate the importance of conducting
endpoint functionality design before modeling it.

Survey Results Analysis – Phase Two
Giving that the participants have used our tool to model an endpoint operation, we want
them to provide their opinions on whether the tool is ease of use and how much
endpoint development productivity can be improved. The former uses the 10 questions
from System Usability Scale (SUS), and the latter is based on two questions of the
actual time spending on the task and a subjective comparison with a third-generation
language.

SUS is a simple, 10 5-point Likert Scale questions (see Table 6) to give a global
view of the subjective assessment of a product’s usability [27]. SUS yields a single
number by adding up the score contributions from each question and multiplying by
2.5 to represent a composite measurement of the overall usability of the system being
studied. By a statistic study over a large number of products, the overall SUS mean
score was 68 [28]. By this survey, TeeVML overall SUS score is calculated as 78.3 out
of 100 points, which is equal to 83% from a percentile ranks for raw SUS scores table
[28]. From another angle, our SUS score falls between “Good” and “Excellence” in the
adjective ranges of the “Acceptability” scoring system proposed by Bangor et al. from
a study on numerous products [29].

294 J. Liu et al.

Table 7 represents survey results for TeeVML’s productivity to model endpoints.
For Q9, 79% participants could finish their task within 30 min, which is a typical
endpoint operation modeling. Based on this result, we can generalize that it is possible
to model a relatively complex endpoint with more than 10 operations within a day
through using our TeeVML. From Q22 we can see that more than half of respondents
(57.8%) agreed that using TeeVML would reduce “50%–80%” or “80%+” of the time
duration they use for endpoint development. No participant voted “Almost the same”.
As the results from these two questions, we can conclude that most participants agree
that our TeeVML could increase endpoint development productivity significantly
comparing with traditional manual coding approaches.

Table 6. System Usability Scale questions [27].

No Statement

Q12 You would like to use the tool in your future project
Q13 You found the tool unnecessarily complex
Q14 You found the tool was easy to use
Q15 You would need support to be able to use the tool
Q16 You found the various features of the tool were well integrated
Q17 You found there was too much inconsistency in the tool
Q18 You would image that most people would learn to use the tool very quickly
Q19 You found the tool very cumbersome to use
Q20 You felt very confident using the tool
Q21 You needed to learn a lot of things before you could get going with the tool

Table 7. Phase Two survey results for development productivity.

No Statement Frequency

Q9 How long did it take you to complete
the task?
10–15 min 1
16–20 min 4
21–25 min 7
26–30 min 3
30+ min 4

Q22 In your opinion, comparing to a third
generation language (e.g. Java) you
are familiar with, how much would a
typical endpoint development effort
be reduced by using the tool?
Almost the same 0
10–25% 2
26–50% 6
51–80% 9
81%+ 2

A Domain-Specific Modeling Approach for Testing Environment Emulation 295

7 Related Work

Over the years, many approaches have been proposed to develop testing environments.
Hardware virtualization tools, such as VMWare [30] and VirtualBox [31], provide
management and control over virtual testing servers and they are capable in hosting
many endpoint systems in one or a few machines. However, some applications need to
be run in shared memory space and they cannot be virtualized. Method stubs [32] and
mock objects [33] are programming approaches to mimic testing applications. Their
key advantages are low cost and quick deployment. But these approaches abstract away
from communication complexities which may significantly impact on the results
encountered in the real deployment.

To address both static and dynamic issues related to software components inter-
actions, Han first proposed a rich interface definition framework with logically sepa-
rated layers [34]: signature, constraints, configurations, and a quality aspect across the
three layers. Han’s framework defines how to select and reuse a software component,
not just based on static component signature, but also on other runtime aspects as well.
From a service viewpoint, Beugnard et al. defined a four-level software component
contract template with increasingly negotiable properties along with the levels [35].
Our approach on the other hand, focuses on how requests are to be processed in a
layered manner and interface defects are captured by endpoints.

For protocol modeling, some researchers used a FSM [36, 37] or a formal protocol
specification [38, 39] to validate operations sequence for different endpoint states.
However, Wehrheim et al. argued that the use of operation name alone might not be
sufficient to trigger a state transition for a realistic endpoint [40]. To deal with the
so-called incomplete protocol specification, an EFSM-based protocol modelling cal-
culus were proposed for specifying operation parameters and return values as runtime
constraints. Although, various notions for protocol specification have been suggested,
there are still some issues to be solved. One is the lack of concrete implementation
solutions to capture endpoint runtime aspects. Another one is the textual form they used
for writing state transition rules, and this will make protocol modeling difficult.

Software interactive behaviors can be modeled either externally or internally.
Software behavioral interface specification [41] and programming from specification
[42] are the external approaches, they model interactive behaviors by defining pre/post
conditions to bind servers and their clients. As internal approaches, Business Process
Model and Notation (BPMN) [43] and DataFlow Programming (DFP) [13] provide
graphical notations for specifying internal data processes and flow controls. In general,
external approaches and BPMN require extensive modeling and programming work.
While, DFP languages are ease of use with user-friendly interface. But, they are less
expressive and only suitable for a specific domain. In contrast to these approaches, our
behavior DSVL is ease of use by dragging-and-dropping visual symbols. To handle
complicated business logics, hierarchical nodes tree structure is adopted.

UML is a widely used general purpose modeling language, focusing on the defi-
nition of system static and dynamic behaviors [44]. Specifically related to our work,
UML provides: (1) a testing profile to provide a generic extension mechanism for the
automation of test generation processes [45], (2) state charts to simulate finite-state

296 J. Liu et al.

automaton [46], and (3) activity diagrams to graphically represent workflows of
stepwise activities and actions [47]. Two main problems with using UML to define new
modeling languages [48] are that it is usually hard to remove parts of UML that are not
relevant or need to be restricted in a specialized language and all the diagram types
have restrictions based on the UML semantics.

8 Conclusion and Future Work

Aiming to achieve high development productivity and ease of use for domain experts,
we have proposed a DSM approach for testing environment emulation. Our approach is
based on a new software interfaces description framework to abstract an endpoint into
three message processing layers, and a suite of DSVLs have been developed for
modeling these layers. Using this layered modeling, our approach supports partial
endpoint development, where an endpoint may have only one or two of these layers to
meet SUT testing requirements. For a SUT without dynamic interactive aspects, the
endpoint behavior layer could be ignored.

A fully functional endpoint should also be able to test SUT’s QoS aspects. These
QoS aspects may include security, performance, robustness, etc. For example, appli-
cations may put extra security constraints on the validity of operation requests. Some of
the constraints are role-based, so that some operations are accessible only to a certain
group of users. Other constraints are security policy related, such as restriction on
available time or specific pattern required for some operation parameters.
Object-oriented programming has higher expressive power than imperative and pro-
cedural programming by supporting inheritance, polymorphism, encapsulation, etc.
Making our Behavior DSVL object-oriented can simplify behavior modeling, increase
development productivity and output accuracy, and have a better diagrammatic view of
behavior model. Furthermore, to reduce modeling overhead in effort and time, some
special purpose utility nodes should be provided with Behavior DSVL for common
modeling features. These and others could be part of our future work.

Acknowledgements. Support for this work from an Australian Postgraduate Award for the first
author and partial support for this work from ARC Discovery Project DP140102185 is greatly
acknowledged.

References

1. Accenture: Accenture Technology Vision 2015 (2015)
2. Dustin, E.: Effective Software Testing: 50 Ways to Improve Your Software Testing.

Addison-Wesley Longman Publishing Co., Boston (2002)
3. Liu, J., Grundy, J., Avazpour, I., Abdelrazek, M.: TeeVML: tool support for semi-automatic

integration testing environment emulation. Presented at the IEEE/ACM International
Conference on Automated Software Engineering, Singapore (2016)

4. Jayasinghe, D.: Quickstart Apache Axis2. Packt Publishing Ltd, Birmingham (2008)
5. Vukotic, A., Goodwill, J.: Apache Tomcat 7. Apress, New York City (2011)

A Domain-Specific Modeling Approach for Testing Environment Emulation 297

6. Liu, J., Grundy, J., Abdelrazek, M., Avazpour, I.: Testing environment emulation - a
model-based approach. Presented at the 5th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), Porto, Portugal (2017)

7. Yadav, R.: Oracle PeopleSoft Enterprise Financial Management 9.1 Implementation: An
Exhaustive Resource for PeopleSoft Financials Application Practitioners to Understand Core
Concepts, Configurations, and Business Processes. Packt Pub., Birmingham (2011)

8. Wong, T.: Salesforce.com For Dummies, 4th edn. Wiley, Hoboken (2010)
9. Thurlow, R.: RPC: Remote Procedure Call Protocol Specification Version 2. Edited by The

Internet Engineering Task Force (2009)
10. IETF: Lightweight Directory Access Protocol (LDAP) v3. Edited by The Internet

Engineering Task Force (2006)
11. Dorsten, G.J.V., Spruit, A., Barendsen, A.: Core Banking Systems Survey (2008). https://

www.nl.capgemini.com/resource-file-access/resource/pdf/Core_Banking_Systems_Survey_
2008_0.pdf

12. Christensen, E., Curbera, F., Meredith, G.: Web Services Description Language (WSDL)
1.1. W3C. Note 15 (2001). www.w3.org/TR/wsdl2001

13. Sousa, T.B.: Dataflow programming concept, languages and applications. In: Doctoral
Symposium on Informatics Engineering (2012)

14. Boshernitsan, M., Downes, M.: Visual programming languages: a survey. Computer Science
(2004)

15. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cognit.
Sci. 11, 65–100 (1987)

16. Moody, D.L.: The “Physics” of notations: towards a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng. 35, 756–779 (2009)

17. Liu, J., Grundy, J., Avazpour, I., Abdelrazek, M.: A domain-specific visual modeling
language for testing environment emulation. Presented at the IEEE Symposium on Visual
Languages and Human-Centric Computing, Cambridge, UK (2016)

18. Liu, J.: Model-driven endpoint development for testing environment emulation. Ph.D. thesis,
Swinburne University of Technology, Melbourne, Australia (2017)

19. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation.
Wiley, Hoboken (2008)

20. Dai, G., Bai, X., Wang, Y., Dai, F.: Contract-based testing for web services. In: 31st Annual
International Computer Software and Applications Conference, COMPSAC (2007)

21. Apache TCPMon (2013). https://ws.apache.org/tcpmon/index.html
22. Hine, C., Schneider, J.-G., Han, J., Versteeg, S.: Scalable emulation of enterprise systems.

In: Software Engineering Conference, Australian (2009)
23. Yu, J., Han, J., Schneider, J.-G., Hine, C., Versteeg, S.: A virtual deployment testing

environment for enterprise software systems. Presented at the Proceedings of the 8th
International ACM SIGSOFT Conference on Quality of Software Architectures, Italy (2012)

24. Du, M., Schneider, J.-G., Hine, C., Grundy, J., Versteeg, S.: Generating service models by
trace subsequence substitution. Presented at the Proceedings of the 9th International ACM
Sigsoft Conference on Quality of Software Architectures, Canada (2013)

25. Giudice, D.L.: The Forrester Wave™: Service Virtualization And Testing Solutions (2014)
26. Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research: part 1: turning lemons into

lemonade. SIGSOFT Softw. Eng. Notes 26, 16–18 (2001)
27. Brooke, J.: SUS-a quick and dirty usability scale. In: Usability evaluation in industry (1996)
28. Sauro, J., Lewis, J.R.: Quantifying the User Experience: Practical Statistics for User

Research. Morgan Kaufmann Publishers Inc., Burlington (2012)
29. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale.

Int. J. Hum.–Comput. Interact. 24, 574–594 (2008)

298 J. Liu et al.

https://www.nl.capgemini.com/resource-file-access/resource/pdf/Core_Banking_Systems_Survey_2008_0.pdf
https://www.nl.capgemini.com/resource-file-access/resource/pdf/Core_Banking_Systems_Survey_2008_0.pdf
https://www.nl.capgemini.com/resource-file-access/resource/pdf/Core_Banking_Systems_Survey_2008_0.pdf
http://www.w3.org/TR/wsdl2001
https://ws.apache.org/tcpmon/index.html

30. Sugerman, J., Venkitachalam, G., Lim, B.-H.: Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor. Presented at the Proceedings of the General
Track: USENIX Annual Technical Conference (2001)

31. Watson, J.: VirtualBox: bits and bytes masquerading as machines. Linux J. (2008)
32. Gibbons, P.B.: A stub generator for multilanguage RPC in heterogeneous environments.

IEEE Trans. Softw. Eng. 13, 77–87 (1987)
33. Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, objects. Presented at the in

Companion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, Canada (2004)

34. Han, J.: Rich Interface Specification for Software Components. Peninsula School of
Computing and Information Technology Monash University, McMahons Road Frankston,
Australia (2000)

35. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components contract
aware. Computer 32, 38–45 (1999)

36. De Alfaro, L., Henzinger, T.A.: Interface automata. In: ACM SIGSOFT Software
Engineering Notes (2001)

37. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based agents. In:
IJCAI (2003)

38. Plasil, F., Visnovsky, S., Besta, M.: Bounding component behavior via protocols. In:
Technology of Object-Oriented Languages and Systems, TOOLS 30 Proceedings (1999)

39. Jin, Y., Han, J.: Specifying interaction constraints of software components for better
understandability and interoperability. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS,
vol. 3412, pp. 54–64. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30587-3_16

40. Wehrheim, H., Reussner, R.H.: Towards more realistic component protocol modelling with
finite state machines. UNU-IIST (2006)

41. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Muller, P., Parkinson, M.: Behavioral interface
specification languages. ACM Comput. Surv. 44, 16 (2012)

42. Morgan, C.: Programming from SPECIFICATIONS. Prentice-Hall Inc., Upper Saddle River
(1990)

43. von Rosing, M., White, S., Cummins, F., de Man, H.: Business Process Model and Notation
—BPMN (2015)

44. Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., Booch, G.: The unified software
development process. Addison-wesley Reading, Boston (1999)

45. Schieferdecker, I., Dai, Z.R., Grabowski, J., Rennoch, A.: The UML 2.0 testing profile and
its relation to TTCN-3. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644,
pp. 79–94. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44830-6_7

46. Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state machines. In:
Fourth International Conference on Secure Software Integration and Reliability Improve-
ment Companion (SSIRI-C) (2010)

47. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specification
language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1_7

48. Abouzahra, A., Bézivin, J., Del Fabro, M.D., Jouault, F.: A practical approach to bridging
domain specific languages with UML profiles. In: Proceedings of the Best Practices for
Model Driven Software Development at OOPSLA (2005)

A Domain-Specific Modeling Approach for Testing Environment Emulation 299

http://dx.doi.org/10.1007/978-3-540-30587-3_16
http://dx.doi.org/10.1007/978-3-540-30587-3_16
http://dx.doi.org/10.1007/3-540-44830-6_7
http://dx.doi.org/10.1007/3-540-45441-1_7

A Framework for UML-Based
Component-Based Design and Code

Generation for Reactive Systems

Van Cam Pham, Ansgar Radermacher(B), Sébastien Gérard, and Shuai Li

CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
P.C. 174, Gif-sur-Yvette 91191, France

{vancam.pham,ansgar.radermacher,sebastien.gerard,shuai.li}@cea.fr

Abstract. One way to design complex systems is to use an event-driven
architecture. Model Driven Engineering (MDE) promotes the use of
different abstract concepts, among which are the UML state machine,
composite structure elements and their associated visualizations, as a
powerful means to design such an architecture. MDE seeks to increase
software productivity by automatically generating executable code from
state machines and composite structures. To this end, a code genera-
tion approach in MDE should support all model elements used at the
design level. However, existing code generation approaches and tools are
still limited, especially when considering concurrency, event types, and
pseudo states such as history and junction. Furthermore, in the literature,
the combination of component-based design and UML state machines is
supported by only a few existing approaches. This paper explores this
combination and provides code generation patterns and framework-based
tooling support for the combination and complete and efficient code
generation from UML state machines. We extend a well-known state
machine code generation pattern with concurrency support. In order to
verify the semantics of generated code, we execute code generated by the
proposed framework with a set of state-machine examples that are part
of a test-suite described in the recent OMG standard Precise Seman-
tics Of State Machine. The traced execution results comply with the
standard and are a good hint that the execution is semantically correct.
Regarding code efficiency, the code generated by our approach supports
multi-thread-based concurrency, and the size of the generated code is
smaller compared to considered approaches. Moreover, we demonstrate
the practicality, feasibility, and scalability of the proposed approach with
two case studies.

Keywords: UML state machine · Code generation
Semantics-conformance · Efficiency · Events · C++
Composite structures · Component-based design · Flow ports
Service ports · Components

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 300–327, 2018.
https://doi.org/10.1007/978-3-319-94764-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_13&domain=pdf

A Framework for UML-Based Component-Based Design 301

1 Introduction

The UML state machine (USM) and composite structure (diagram) elements [1]
and their associated visualizations are an efficient means to describe the behav-
ior of event-driven architecture [2,3]. In Model-Driven Engineering (MDE) [4],
the system architecture can be represented as models by using the UML (model)
elements (e.g. states and transitions of UML state machine, and ports and con-
nectors for component-based modeling). Existing tools and approaches automat-
ically translate models into executable code. However, despite many advantages
of MDE and the UML elements, they are not widely adopted as a recent survey
revealed [5]. This is partially due to poor support for code generation [6].

On one hand, the usefulness of these model elements, especially the UML
state machine elements, is being enriched by OMG by providing more concepts
and their precise semantics such as pseudo states and composite state machines.
On the other hand, existing code generation tools and approaches have some
issues regarding completeness, semantics and efficiency of generated code. Exist-
ing approaches either support a subset of UML state machine modeling concepts
or handle composite state machines by flattening into simple ones with a com-
binatorial explosion of states, and excessive generated code [7]. Furthermore, in
the literature, the processes of generating code from UML state machines and
composite structures are often found separately from each other. The combina-
tion of these elements for component-based reactive system modeling are not
clearly explored. In particular, the following issues are identified.

Completeness: Existing tools and approaches mainly focus on the sequential
aspect while the concurrency of state machines is limitedly supported. Pseudo
states are not rigorously supported by existing tools such as Rhapsody [8].
Designers are then restricted to a subset of UML state machine concepts during
design.

Efficiency: Code generated from tools such as Rhapsody [3] and FXU [9]
depends on the libraries provided by the tool vendor. Event processing speed
and executable size of generated code are not optimized [10].

Semantics: The semantics of UML state machine is defined by a recent OMG-
standardized: Precise Semantics of state machine (PSSM) [11]. This standard is
not (yet) taken into account for validating the runtime execution semantics of
generated code.

Combination of State Machine and Component-Based Design: The
composite structure elements such as ports and connectors are used for
component-based design. A state machine can model the behavior of a com-
ponent. However, how the state machine-related elements such as events are
related to parts and ports for modeling a complete software system is supported
by only a few existing approaches [2].

Given the above issues, the objectives of this article are to (1) present a novel
code generation pattern for UML state machine elements and composite struc-
ture elements; (2) to explore the collaboration between the UML state machine

302 V. C. Pham et al.

and composite structure diagrams for modeling reactive systems; and (3) to
provide a tooling support into the Papyrus modeling tool. The latter offers effi-
cient code generated from UML state machines with full concepts to reduce the
modeling-implementation gap. The proposed pattern for state machines extends
IF-ELSE constructions with our support for concurrency. Runtime execution of
generated code is experimented with the PSSM test suite.

To sum up, the contributions of this paper are: (1) an approach and tooling
support for code generation from UML composite structure elements and state
machines with full features; (2) an empirical study on the semantic-conformance
and efficiency of generated code; (3) evaluation of the practicality and usability
of UML state machine and composite structure elements for modeling a Traffic
Light Controller (TLC) simulation case study; and (4) a real case study using
code generation for an embedded system - Lego Car factory.

We assume that readers of this paper have knowledge about UML composite
structure, UML state machine elements, and their basic execution semantics.

Compared to the previous version of the paper presented in the 5th Interna-
tional Conference on Model-Driven Engineering and Software Development [12],
this present paper contains two completely new sections (Sects. 6 and 9), which
discuss modeling and code generation for composite structure elements and a
Lego Car case study, respectively. A new subsection (Subsect. 2.2) discusses the
use of composite structures and state machines for component-based design of
reactive systems is also added. Furthermore, Sects. 1 and 10 are entirely modified
for added contributions.

The remaining of this paper is organized as follows: Sect. 2 describes the
modeling of applications using UML state machines and composite structure
elements and their combination. Section 3 mentions the code generation features
of our extension of Papyrus. Section 4 shows thread-based concurrency. Based
on this latter, the code generation patterns for state machines and composite
structures are proposed in Sects. 5 and 6, respectively. The implementation and
empirical evaluation are reported in Sect. 7. The applications of our extension
to the TLC and Lego Car factory case study are presented in Sects. 8 and 9,
respectively. Section 10 discusses related work. The conclusion and future work
are presented in Sect. 11.

2 UML State Machine, Composite Structure and Events

This section presents overview of using UML state machines and composite
structures, especially ports and connectors, for modeling and designing reactive
software applications.

2.1 UML State Machine and Events

A state machine is used for describing the behavior of either a class or a compo-
nent in component-based design using the composite structure elements. In the
following, we commonly use the term class for either class or component.

A Framework for UML-Based Component-Based Design 303

The state machine accepts external and internal events. In UML, there are
four event types: CallEvent, SignalEvent, TimeEvent, and ChangeEvent. A call
event, which is associated with an operation/method, is emitted if the operation
is invoked. Call events are processed synchronously meaning that it runs within
the thread of the operation caller. Other events are asynchronously processed
meaning that these events received by the class are stored in an event queue
which is maintained by the class at runtime for later processing. A simple usage
of call events is in user interaction (UI) applications, in which users click on
a button. The click then emits an event and calls user code for synchronously
processing the event to respond to the users.

A signal event is associated with a UML signal and is emitted if the class/-
component receives an instance of the signal type. The signal instance can be
sent from either environment code or other classes to the reception class/compo-
nent via one of the ports of the reception component (see Subsect. 2.2 for more
details).

A time event specifies the time of occurrence relative to a starting time. The
latter is defined as the time when a state with an outgoing transition triggered
by the time event is entered. The time event is emitted if this accepting state
remains active longer that the relative time of occurrence. The transition is
then triggered once the event is emitted. In other words, the source state of a
transition triggered by a time event will remain active for a maximal amount
of time specified by the time event. A change event has a boolean expression
and is fired if the expression’s value changes from false to true. Note that unlike
call and signal events, time and change events are automatically fired inside the
class.

Deferred Events: A state can specify to one or more deferred events. If an
event specified as deferred by a state, it will be not processed while the state
remains active. The deference of events is used to postpone the processing of
some low-priority events while the state machine is in a certain state.

2.2 Combination of State Machines and Ports and Connectors

The UML composite structure diagram provides notations for modeling
component-based software. Each component can own ports, which can com-
municate with other ports via connectors. A connector connects two ports. It
represents a link between components. We show how ports, connectors and state
machine elements can be combined.

As previously discussed, call and signal events are external, meaning that
instances of these events are sent from other components. The state machine of
the component, that receives the events, then processes them. Specifically, ports
with interfaces are combined with call events and flow ports are combined with
signal events. We explain the combination in the following.

Service Port and Call Event: In UML, a port can have required and/or pro-
vided interfaces. We call this port a service port, which requests and/or provides
services as invocations of the operations of the interfaces. A service port in our

304 V. C. Pham et al.

approach can have only one required and/or a provided interface. For example,
Fig. 1(a) shows a very simple system consisting two component parts compA
and compB. compA has a pA port with IExample as its required interface, which
is provided by the pB port and implemented by compB. There is a connector
between the two ports. The compA component can request services of compB
via the pA port. Assuming that the behavior of the compB is described by a
state machine CompBMachine as in Fig. 1(b) and one of the transitions of the
state machine is triggered by a call event CE Add. If the latter is, for example,
associated with an add operation of IExample and implemented by compB, a
call to add via pA emits an instance of the call event, which might drive the
state machine to change its active state. For example, the active state can be
changed from Idle to Working.

System

compA :
CompA

compB:
CompBIExample

a

pA pB

b

Fig. 1. Example illustrating combination of a service ports and a call event.

Flow Port and Signal Event: UML standard ports only provide method call-
based interactions between components. Some UML extensions such as MARTE
[13] define flow ports. The latter enable message-driven and data flow oriented
communication between components, where messages exchanged between ports
represent data items. The direction of the data flow of a flow port can be in/out/
inout. The messages are modeled in terms of UML signals.

To describe our combination of flow ports and signal events, we reuse the
example as in Fig. 1 with some modifications: pA and pB become out and in flow
ports with SigEx as their signal, respectively; the event triggering the transition
from Idle to Working is a signal event SE SigEx. An instance of the SigEx
signal can be sent from compA through its pA port to pB of compB. Upon the
reception of the signal instance, an instance of the SE SigEx event is then emitted
and saved in an event queue managed by compB for asynchronous processing.
The CompBMachine state machine then asynchronously processes the event and
might change its active state from Idle to Working.

Our approach and tool support all of these events and the combination of
state machines with composite structure elements to model event-driven reactive
applications.

3 Features

Our approach and its associated tool have some features compared to other tools
as follows:

A Framework for UML-Based Component-Based Design 305

Completeness: Our tool supports all state machine vertexes and transitions
including all pseudo states and transition kinds such as external, local, and
internal. Therefore, the tool improves flexibility of using UML state machines to
express architecture behavior.

Event Support: Our tool favors the use of four UML event types and a event
deference mechanism, which are able to express synchronous and asynchronous
behaviors and exchange data between components/classes.

UML State Machine Conformance: We have experimented code generated
by our tool with a test suite for state machines. The test suite is defined by
a recent specification under standardization of the OMG that formalizes the
Precise Semantics of UML state machine (PSSM). The latter defines a test suite
consisting of 66 test cases for validating the conformance of runtime execution of
code generated from UML state machines. Traced execution results of 62/66 test
cases comply with the standard and are, therefore, a good hint that the execution
is semantically correct. For the moment, our tool cannot deal with transitions
from an entry point to an exit point. We believe that these transitions are not
used in reality. This is because the contradictory semantics of entry points and
exit points (see [12] for more information).

State Machine Configuration: Asynchronously processed events including
signal events, change events, and time events are stored in an event queue. A
signal event can transfer data (message). We allow for the configuration of the
event queue size and the maximal size of signals. The configuration is not spec-
ified by the UML specification because this latter wants to be abstract. We
allow to determine these values through a specific profile. This configuration
might not be needed in dynamic memory allocation. The latter, however, is not
recommended in embedded systems.

Efficiency: We conducted experiments with two benchmarks (see Sect. 7 for
detailed information). The results show that code generated by our tool is effi-
cient and can be used to develop resource-constrained embedded software. Specif-
ically, event processing is fast and the size of executable files compiled from
generated code is small.

Event API: Generated code in our tool provides APIs for environment code
to invoke operations or send data signals to reactive classes via their ports.
The invocations and sending will automatically fire events for state machines to
process.

Concurrency: Concurrency aspects in state machines including doActivity of
states, orthogonal regions, event detection, and event queue management are
handled by the execution of multiple threads. Currently, we use POSIX threads
for concurrency.

Portability: Currently, our tool generates C++ (prior to C++11) code. The
generated code can run on POSIX systems such as Ubuntu without installing
any additional libraries to be able to compile and execute the code. Our code

306 V. C. Pham et al.

generation pattern and tool can be extended to generate code in more recent
C++ versions (e.g. C++11 and C++14) with C++ native threads or in other
programming languages such as Java, which supports thread-like and mutex-like
mechanisms for multi-thread synchronization.

Combination of Composite Structure Elements and State Machine
Elements: As previously discussed in Subsect. 2.2, this paper explores the use
of UML composite structures and state machines for component-based design for
reactive systems. This design semantics is automatically translated to code. We
provide APIs for interactions between components, ports, and state machines.
For the example of service ports shown in Fig. 1, we generate an attribute, namely
pA req, typed by the IExample interface, for the pA port. The code automatically
binds this attribute to the implementation in CompB, in which every call of the
add method will fire an event to the state machine.

In the next sections, we describe how our approach provides these features.

4 Concurrency

This section describes our design of concurrency aspects of state machines in
generated code at runtime.

4.1 Thread-Based Design

The concurrency of state machines is designed based upon multiple threads
including permanent and spontaneous threads. Permanent threads are created
once and live as long as the state machine is running. On the other hand, spon-
taneous threads are spawned and active for a while. Each permanent thread is
initialized upon the initialization of the state machine. The execution of perma-
nent threads follows the paradigm “wait-execute-wait”. In the latter, a thread
waits for a signal to execute its associated method and goes back to the wait
point if it receives a stop signal or its associated method completes. Each of the
following actions is associated with a permanent thread:

– doActivity of each state if has any.
– Sleep function associated with a time event which counts ticks and emits the

event once completes.
– Change detection function associated with a change event which observes a

variable or a boolean expression and pushes an event to the queue if a change
occurs.

– State machine main thread, which reads events from the event queue, and
sends start and stop signals to other permanent1.

1 Some approaches call the method of this thread as a super loop reading events from
the queue.

A Framework for UML-Based Component-Based Design 307

Spontaneous threads are spawned by a parent thread. During execution, these
threads are destroyed once the associated methods complete. The spontaneous
threads follow a paradigm in which the spawning parent thread must wait until
its children complete their associated methods. The following cases are associated
with spontaneous threads:

– A thread is created for each effect of transitions outgoing from a fork or
incoming to a join.

– Entering a concurrent state, after the entry action of the state, a thread is
created for each orthogonal region.

– Exiting a concurrent state, before the exit action of the state, a thread is
created for each region to exit the corresponding active sub-state.

4.2 Thread Communication

Each permanent thread is associated with a mutex for synchronization in the
multi-thread-based generated code. The mutex must be locked before the method
associated with the thread is executed.

Run-to-Completion: The processing of events must follow the run-to-
completion semantics of UML state machines. This semantics requires that the
state machine must finish the processing of each event before processing the
next event. If all events are asynchronous, the main thread processes events by
simply reading one-by-one from the event queue. However, because call events
are synchronously processed, the processing of synchronous and asynchronous
events can violate the run-to-completion semantics. To avoid it, a main mutex
is associated with the main thread to protect the run-to-completion semantics.
Each event processing must lock the main mutex before executing the actual
processing. In generated code, lock and unlock are implemented using signals
and conditions in POSIX [14].

5 Code Generation Pattern for UML State Machines

This section describes our code generation for states, regions, events, transitions,
and pseudo states.

5.1 State

A common state type IState is created. This is particularly different from exist-
ing approaches, which represent states either as separate classes [15–17] or as
enumerations [18]. The state type contains two attributes called actives, to pre-
serve the hierarchy of composite states, and previousActives to refer to current
and previous active sub-states in case of the presence of history pseudo states.
Each UML state is translated into an instance of IState and a state identifier is
assigned to each state. During initialization of the state machine, each instance
initializes its attributes to a default value that represents an inactive state.

308 V. C. Pham et al.

In the following sections, we consider C++ as a specific generated language.
The discussion of other object-oriented languages is similar since these share the
same concepts.

Listing 1.1 shows the state type and its instances with STATE MAX as the
number of states. STATE MAX is calculated for each state machine2. The state
actions such as entry/exit/doActivity are translated to corresponding methods
that contain action codes. For example, the state action entry in the listing
implements the entry actions of all of the states.

State doActivities of active states, as specified by UML, are run concurrently.
Each doActivity is then run within a permanent thread and a mutex is created for
controlling the wait-execute-wait paradigm. Listing 1.2 shows a code segment for
doActivity threads. The method doActivityThread takes as input a state identifier
to use and call the appropriate doActivity of the active state. The method does
nothing but stays in a waiting point if the state corresponding to the input
parameter state identifier is inactive (line 5). If the state becomes active, a start
signal is sent to this thread method to start the execution of doActivity. The
generated code typically uses the common paradigm in POSIX threads [14].

Listing 1.1. IState interface in C++.

1 typedef struct IS ta t e {
int prev iousAct ive s [2] ;

int a c t i v e s [2] ;
3 } IS ta t e ;

c lass C {
5 private :

I S ta t e s t a t e s [STATE MAX] ;
7 public :

void entry (State Id id) {
9 switch{ id} {

case S0 ID :
11 // act ion code f o r each s t a t e

break ;
13 // code f o r other s t a t e a c t i on s

}
15 }

}

Listing 1.2. Example code for doActivity.

while (true) {
2 pthread mutex lock(&mutex [s t a t e Id])

;
while (! i s S t a r t s [s t a t e Id]) {

4 // await s t a r t s i g n a l
pthread cond wait (

&cond ,&mutex [s t a t e Id] ; }
6 doAct iv i ty (s t a t e Id) ;

i s S t a r t s [s t a t e Id]= f a l s e ; // r e s e t
f l a g

8 pthread mutex unlock (
&mutex [s t a t e Id]) ;

i f (! i s S top s [s t a t e Id]) {
10 i f (s t a t e Id==S0 ID

| | . . .) {// atomic
s t a t e s
pushCompletionEvent (s t a t e Id) ;

12 }
}

14 }

5.2 Region

Our approach treats a variety of ways how transitions can enter and exit a region.
For each region, a method for entering and exiting is generated. The entering
method controls how a region r is entered from an outside transition, the exiting
method executes exit actions of sub-states from innermost to outermost.

A region can be entered in two different ways: (1) entering by default: the
transition ends at the border of a composite state; and (2) cross transition:
the transition ends at a direct or indirect sub-vertex of a composite state. The
two entering ways execute the entry action of the containing composite state
after the transition effect. The subsequent executions are usually different for

2 To avoid runtime memory allocation, STATE MAX is for each state machine, rather
than for all state machines, which will waste resource small state machines.

A Framework for UML-Based Component-Based Design 309

Fig. 2. Example illustrating different ways entering a composite state [12].

each way. In order to illustrate this, let us use the example in Fig. 2 with S1 as
target composite state. t1 corresponds to way (1) while t2, t5, t6 corresponds
to way 2.

The entering method associated with the region of S1 has a parameter
enter mode that indicates how the entering should be executed. The param-
eter enter mode takes values depending on the number of transitions targeting
the composite state. The details of how these modes are implemented in specific
languages are not discussed here. Listing 1.3 shows the generated C++ code.

Listing 1.3. Example code generated for the region of S1.

void S1Region1Enter (i n t enter mode){
2 i f (enter mode == DEFAULT) {

s t a t e s [S1 ID] . a c t i v e s [0] = S3 ID ;
4 entry (S3 ID) ; s endSta r tS i gna l (S3 ID) ;

S3Region1Enter (DEFAULT) ;
6 } else i f (enter mode == S2 MODE) {

/ / . .
8 } i f (enter mode == SH MODE) {

StateIDEnum h i s ;
10 i f (s t a t e s [S1 ID] . p r ev i ousAct ive s [0] !=STATEMAX){

h i s=s t a t e s [S1 ID] . p r ev i ousAct ive s [0] ;
12 } else {

h i s = S2 ID ;
14 }

s t a t e s [S1 ID] . a c t i v e s [0] = h i s ;
16 entry (h i s) ; s endSta r tS i gna l (h i s) ;

i f (S3 ID == h i s) {
18 S3Region1Enter (S3 REGION1 DEFAULT) ;

}
20 } else i f (enter mode == S4 MODE) {

s t a t e s [S1 ID] . a c t i v e s [0] = S3 ID ;
22 entry (S3 ID) ; s endSta r tS i gna l (S3 ID) ;

S3Region1Enter (S4 MODE) ;
24 } else i f (enter mode == ENPMODE) { . . . }

}

By default, the active sub-state of a region is assigned after the completion of
the execution of any effect associated with the initial transition. Therefore, S3 is
set as active sub-state of S1. Entering at (S2) implies that the state S2 becomes
the active sub-state of S1. In case of an indirect sub-state (S4), the entry action
of S3 is executed before S4 is set as the active-sub state of S3 and the execution
of the entry action of S4. It is worth noting that after the execution of each

310 V. C. Pham et al.

entry action, a start signal is sent to activate the waiting thread associated with
doActivity of the corresponding states.

The code generation for a transition from a vertex to a sub-vertex of the
composite state is not as simple as that of two states (the transition from the
S0 state to the SH shallow history state is a particular case). This is detailed
in the next subsections.

The method generated for exiting a region is simpler than that of enter-
ing because it basically executes the exit actions of all active sub-states from
innermost, specified by the current active sub-state, to outermost.

5.3 Event

In our approach, one method is generated for each event similar to the approach
in [15]. Each event is also associated with an identifier. The event list of a state
machine contains explicitly defined events and a special event called completion
event. A completion event is fired when either the execution of the doActivity of
a simple/atomic state completes or all regions of a composite state have reached
a final state. For each event type, the pattern is realized as follows:

CallEvent: When its associated operation is called, the event processing waits
and locks the main mutex protecting the run-to-completion semantics as previ-
ously mentioned, and executes the event processing (see Subsect. 4.2).

SignalEvent: In the generated code, an API push is created. The invocation
of this method (from the environment) implies that an instance of the signal
associated with the event is created and written into the event queue.

TimeEvent: A thread associated with the event is created and initialized. The
thread method starts sleeping for a specified duration, once it receives a signal
which is sent after the execution of the entry of an accepting state. When the
relative time expires, the event is emitted and written to the event queue if the
state is still active.

ChangeEvent: Similarly to time events, a thread is initialized and its method
waits for a re-evaluation signal. The method checks whether the value of the
boolean expression of the event changes from false to true. If so, the event is
sent to the event queue. The expression is composed of attributes of the class
owning the state machine. The starting signal is sent if one of the expression’s
constituents (attributes of the class) changes. We track changes of the attributes’
values by using setters of the attributes. For example, for an expression x+ y >
10, x and y are constituents. The setters (setX and setY) are automatically
generated. These methods do not only affect the value of x and y but also send
the starting signal to the thread.

As previously presented, all asynchronous incoming events are stored in a
runtime priority queue, in which each event type has a priority. The completion
event has always the highest priority, the priorities of other events are equal by
default. Event type, priority, identifier, the associated state stateId of completion
events, and signal data are specified in an internal structure. The associated

A Framework for UML-Based Component-Based Design 311

state is responsible to specify which atomic/simple state completes its doActivity
execution or the composite state whose sub-states have reached final states.

5.4 Transitions and Pseudo States

Each event triggers a list of transitions. We suppose Ttrig(e) is the transition
list triggered by the event e, and Strig(e) is a depth-ordered (from innermost to
outermost) set of the source states of the transitions in Ttrig(e).

Algorithm 1 describes how to generate the body of an event method. It first
finds the innermost active states which are able to react e by orderly looping over
Strig(e). This is to ensure that, in case of multiple transitions triggered by the
event, the generated code for the transitions outgoing from innermost states will
be executed. For each transition from an innermost state, code for active states
and deferred events, guard checking, and transition code segments are generated
by GEN CHECK, GEN GUARD(t) and GEN TRANS, respectively. If the
identifier of e is equal to one of the deferred event list of the corresponding
state (not shown in this paper), GEN CHECK generates code, which checks
whether should be deferred and - if yes - pushes the event to a deferred event
queue managed by the runtime main thread. The latter also pushes the deferred
events back to the main queue once one of the pending events is processed and
the active state is changed.

Algorithm 1. Code generation for events.

Require: Event e
Ensure: Code generation process for event method
1: procedure EventGenProcess(e)
2: for ∀ s ∈ Strig(e) do
3: Ts = {t ∈ Ttrig(e)|src(t) = s}
4: for ∀t ∈ Ts do
5: GEN CHECK(s, t, e)
6: GEN GUARD(t)
7: GEN TRANS(s, t, tgt(t))

For a transition t, GEN CHECK can generate single or multiple active state
checking code. The latter occurs if the target of the transition is the pseudo state
join because the transitions incoming to a join are fired if and only if all of their
source states are active. The detailed discussion on these is not presented due
to space limitation.

312 V. C. Pham et al.

Listing 1.4. Example code generated for completion events triggering transitions t14
and t15.

1 i f (event . s t a t e I d==S6 ID | | event . s t a t e I d==S7 ID){
i f (s t a t e s [S6 ID] . a c t i v e s [0]==S7 ID &&

3 s t a t e s [S6 ID] . a c t i v e s [1]==S8 ID) {
th read r1=FORK(S6Region1Exit) ;

5 th read r2=FORK(S6Region2Exit) ;
JOIN(thread r1) ; JOIN(thread r2) ;

7 sendStopSigna l (S6 ID) ; exit S6 () ;
thread t14=FORK(e f f e c t (t14)) ;

9 thread t15=FORK(e f f e c t (t15)) ;
JOIN(thread t14) ; JOIN(thread t15) ;

11 e f f e c t t 1 6 () ;
ac t iveState ID=STATEMAX; // i n a c t i v e

13 }
}

Algorithm 2. Code generation for transition.

Require: A source vs, a target vertex vt and a transition t
Ensure: Code generation for transition
1: procedure gen Trans(vs, vt, t)
2: Find sex and sen as vertexes in the same region and directly or indirectly con-

taining/being vs and vt.
3: Generate IF-ELSE statements for junctions
4: if sex is a state then
5: for r ∈ regions of sex do
6: FORK(RegionExit(r)) //exiting region threads
7: Generate JOIN for threads created above
8: Generate sendStopSignal to sex
9: exit(sex) //exit the state

10: if vt is a pseudo state join then
11: for in ∈ incoming transitions of vt do
12: FORK(effect(in)) //transition effect threads
13: Generate JOIN for threads created above
14: else
15: effect(t) //execute transition effect
16: if sen is a state then
17: entry(sen) //state entry
18: Generate sendStartSignal to sen
19: if sen is a composite state then
20: for r ∈ regions of sen do
21: FORK(RegionEnter(r))//enter region threads
22: Generate JOIN for threads created above
23: else
24: Generate for pseudo states by patterns

Listing 1.4, lines 2–3 show a portion of the code with multiple checking gen-
erated for the completion event processing method. The transitions t14 and t15
incoming to Join1 are executed if S6 and S7 are active. In addition, the code
portion checks the state associated with the current completion event emitted
upon the completion of either S6 ’s or S7 ’s doActivity. In lines 4–6, the code
concurrently exits the sub-states of S6 by using FORK and JOIN, which are
respectively used to spawn and wait for a thread, for the region methods associ-
ated with S6 ’s orthogonal regions, which actually exit S7 and S8. Then, exit(S6)

A Framework for UML-Based Component-Based Design 313

is executed before the concurrency of transition effects t14 and t15 is taken into
account.

Listing 1.5. Example code generated for Fork1 and junc.

i f (act iveRootState==S1 ID) {
2 junc = 0 ; // t r a n s i t i o n t9 o f junc

i f (guard) { junc = 1;}
4 //Exit sub s ta t e s o f S1 and S1

e f f e c t (t9) ;
6 i f (junc==0) {

e f f e c t (t11) ;
8 } else {

e f f e c t (t10)
10 }

FORK(e f f e c t (t12)) ; FORK(e f f e c t (t3)) ;
12 //JOIN...=> concurrent execut ion

//Enter s t a t e S6 , S7 and S8
14 }

GEN TRANS is able to generate code for transitions between two vertexes.
Algorithm 2 shows how it works. The generated code is contained by the code
for checking the deferral events, active states, and guards.

Firstly, Algorithm 2 looks for the sex and sen vertexes, that are contained in
the same region. And sex and sen also contain the source and target vertexes
of the transition t, respectively. For example, sex and sen in case of the t3
transition are S0 and S1 contained by the top region. If the transition t is part
of a compound transition (we use the algorithm presented in [19,20] to compute
compound transitions), which involves some junctions, IF-ELSE statements for
junctions are generated first (as PSSM says junction is evaluated before any
action). The composite state is exited by calling the associated exiting region
methods (FORK and JOIN for orthogonal regions) in lines 4–9 and followed
by the generated code of transition effects (lines 10–15). If the parent state
sen of the target vertex vt is a state (composite state), the associated entry is
executed (lines 16–18). Entering region methods are then called once the above
code completes its execution (lines 19–24). If the target vt of the transition t is
a pseudo state, the generation pattern corresponding to the pseudo-state types
is called. These patterns are as follows:

– Join: Use GEN TRANS for v’s outgoing transition (Listing 1.4, lines 4–6).
– Fork: Use FORK and JOIN for each of outgoing transitions of v (see List-

ing 1.5, lines 11–12).
– Choice: For each outgoing transition, an IF − ELSE is generated for its

guard together with code generated by GEN TRANS.
– Junction: As a static version choice, a junction is transformed into an

attribute juncattr and evaluated before any action executed in compound
transitions (see Listing 1.5, lines 2–3 and 6–10). The value of juncattr is then
used to choose the appropriate transition at the place of junction.

– Shallow History: The identifiers of states to be exited are kept in
previousActives of IState. Restoring the active states using the history is
exampled as in Listing 1.3. The entering method is executed as default mode
at the first time the composite state is entered (lines 9–19). previousActives

314 V. C. Pham et al.

is updated with the active state identifier before exiting the region containing
the history.

– Deep History: The save and restoration of active states are done at all state
hierarchy levels from the composite state containing the deep history down
to atomic states. Updating previousActives is committed before exiting the
region, which is directly or indirectly contained by a parent state, in which a
deep history is present.

– Entry Point: If an entry point has no outgoing transition, the composite
state is entered by default. Otherwise said, GEN TRANS is called to gener-
ate code for each outgoing transition. If the entry point has multiple outgoing
transitions, the code generation process is similar to that of a fork, except
that the outgoing transitions must be activated after the entry action (if any)
of the containing state completes.

– Exit Point: The code for each transition outgoing from an exit point is
generated by using GEN TRANS. If the exit point has multiple incoming
transitions from orthogonal regions, it is generated similarly to a join to
multiple-check the source states of these incomings, except transitions incom-
ing from the exit point are activated before the exiting of the containing state
of the exit point.

– Terminate: The code executes the exit action of the innermost active state,
the effect of the transition and destroys the state machine object.

Note that, the procedure in Algorithm 2 only applies to external transitions.
Due to space limitations, the detail of generating local and internal transitions
is not discussed here but the only difference is that the composite state, that
contains the local or internal transitions is not exited.

Non-deterministic Transitions: It is possible multiple transitions from the
same source vertex (state or pseudo state) are triggered by the same event. In
this case, only one of the enabled transitions should be activated. Consider the
example in Fig. 2 and assume that the transitions t1, t2, and t5 with guard1,
guard2, and guard5 as their respective expression guard, can be triggered by the
same event eS0. If S0 is active and an instance of eS0 is received by the state
machine, non-determinism occurs if at least two of the three guard expressions
become true. We assume the values of guard1 and guard5 are true at runtime in
this case. Only t1 or t5 should be activated and the next active configuration of
the state machine is different from each activation. S3 is active if t1 is activated
and S2 is active otherwise. For transition selection in this situation, we propose
three options to deal with the non-deterministic transition selection, as follows:

– Priority by creation: Among the enabled transitions, the transition created
(by modelers) first is chosen to be activated. If t1 is created before t5, it is
selected for activation.

– Random selection: A transition is randomly selected to be activated.
– User configuration: A UML profile is created and allows users/modelers to

explicitly specify which transition has higher priority. The transition has the
highest priority in the enabled set is selected.

In the next section, we present how code can be generated from UML
composite structures.

A Framework for UML-Based Component-Based Design 315

6 Code Generation for Composite Structure

This section presents our code generation for composite structure elements, espe-
cially for ports and connectors, and their combination with UML state machine
elements as previously discussed.

Service Port and Call Event: For each service port p of the component class,
structural members of the corresponding classes are generated as follows:

– If p has a required interface IReq, an attribute, namely name of p + “ req”,
typed by IReq and a setter method for setting the attribute are generated.

– If p has a provided interface IProvide, an attribute, namely name of p +
“ provide”, typed by IProvide and a getter method for returning the interface
implementation are generated.

– If p has a required interface IReq and a provided interface IProvide, two
attributes and methods are generated for required and for provided.

The created attributes corresponding to the required ports allow user-code
embedded as blocks of text within the model, to call methods/operations pro-
vided by its component from the required ports.

Listing 1.6. Example code for service
ports and call events.

c lass CompA {
2 public :

IExample∗ pA req ;
4 void connect PA (IExample∗ r e f) {

pA req = r e f ;
6 }

}
8 c lass CompB: public IExample{

public :
10 IExample∗ pB provide ;

IExample∗ get PB () {
12 pB provide=this ;

return this ;
14 }

int add (int a , int b) {
16 processCE Add (a , b) ;

return a+ b ;
18 }

void processCE Add (int& a , int& b)
{

20 // code f o r event p roce s s i ng
}

22 }
c lass System {

24 public :
CompA compA ;

26 CompB compB ;
void createConnect ions () {

28 compA . connect PA (compB . get PB ()) ;
}

30 }

Listing 1.7. Example code for flow ports
and signal events.

c lass CompA {
2 public :

IPush<SigEx>∗ pA out ;
4 void connect PA (IPush<SigEx>∗ r e f){

pA in = r e f ;
6 }

}
8 c lass CompB: public IPush<SigExample>{

public :
10 IPush<SigEx>∗ pB in ;

IPush<SigEx>∗ get PB () {
12 pB in=this ;

return this ;
14 }

void push (SigEx& s i g){
16 // c r ea t e a s i g n a l event

//put the event to the queue
18 }

void processSE SigEx (SigEx& s i g){
20 // code f o r event p roce s s i ng

}
22 }

c lass System {
24 public :

CompA compA ;
26 CompB compB ;

void createConnect ions () {
28 compA . connect PA (compB . get PB ()) ;

}
30 }

Listing 1.6 shows the code generated from the example in Fig. 1. Attributes
and methods in the code are created for the pA and pB ports in the model. The
CompB class implements the IExample interface, which has the add method,
provided by its pB port. The implementation of add calls the processCE Add
method for processing the CE Add event before it executes the user-code (line
17). By this way, any invocation of add of CompB follows the execution semantics
as described in Sect. 2.

316 V. C. Pham et al.

The connector between the pA and pB ports is transformed into a state-
ment. The latter uses the getters and setters generated above to refer required
attributes (pA req) to appropriate provided attributes (pB provide) (see line 28
in Listing 1.6).

Flow Port and Signal Event: The code generation for flow ports in combina-
tion with signal events is much similar to that of service ports and call events.
Required and provided service ports are replaced by out and in flow ports,
respectively. An attribute generated for a flow port is typed by an IPush<S>
interface, in which S is the signal type of the flow port. The IPush<S> interface
has a push method for sending signal instances in the implementation.

Listing 1.7 shows a code portion for using flow ports in the example in
Sect. 2.2. Attributes are generated for the pA and pB flow ports at lines 3 and 10.
The IPush<SigEx> interface is implemented by CompB, which creates a signal
event instance and puts it to the event queue of CompB. This event instance will
be asynchronously processed (lines 19–21) by the state machine code of CompB
generated using the pattern in Sect. 5.

In the next section, we present our empirical study to evaluate the proposed
approach.

7 Empirical Study

The pattern is implemented in Papyrus Designer [21], which is an extension of
the UML modeling tool Papyrus [22]. Papyrus Designer supports component-
based modeling and code generation. The behavior of a component in Papyrus
Designer is described by using UML state machines. The tool allows to use
some time notions from the MARTE profile to specify time events. C++ code is
generated and runs within POSIX systems such as Ubuntu, in which pthreads
are used for implementing threads for concurrency. This section reports our
experiments with Papyrus Designer on the semantic-conformance and efficiency
of generated code.

7.1 Semantic Conformance of Runtime Execution

This section presents our results found during experiments with our tool to
answer the following research question.

Research question 1: Is the runtime execution of code generated from USMs by
our tool semantic-conformant to PSSM?

To evaluate the semantic conformance of runtime execution of generated
code, we use a set of examples provided by Moka [23], which is a model execution
engine offering PSSM (and also part of the Papyrus modeler). Figure 3 shows
our method. The latter consists of the following steps:

Step 1. For a State machine from the Moka example set, we use our code
generation tool to generate code.

A Framework for UML-Based Component-Based Design 317

Step 2. We simulate the execution of the State machine using Moka and then
extract the sequence Trace 1 of observed traces including executed actions.

Step 3. The sequence (Traces 2) is obtained through the runtime execution of
the code generated in Step 1.

Step 5. Trace 1 and Trace 2 are compared. The code is semantic-conformant
if Traces 1 and Traces 2 are the same [24].

The PSSM test suite consists of 66 test cases for different state macchine
element types. The results are promising: our tool passes 62/66 tests including:
behavior (5/6), choice (3/3), deferred events (6/6), entering (5/5), exiting (4/5),
entry(5/5), exit (3/3), event (9/9), final state (1/1), fork (2/2), join (2/2), tran-
sition (11/14), terminate (3/3), others (2/2). In fact, our tool fails with some
tests containing transitions (1) from an entry point to an exit point or (2) from
an entry point/exit point to itself. This is, as our observation, rarely used in
practice because of the contradictory semantics of entry points and exit points
as previously discussed.

State machine

Code

Traces 1

Traces 2

RunƟme execuƟonMOKACode
generaƟon
1 Trace

comparison
4

SimulaƟon2

ExecuƟon3

Fig. 3. Semantic conformance evaluation methodology [12].

The results of this evaluation are not enough to prove that our pattern and
tooling support preserve the UML state machine execution properties but are a
good hint that runtime execution of generated code is semantically correct (for
all but the case identified above).

This evaluation methodology has the limitation that it is dependent on
PSSM. Currently, for event support, PSSM only specifies signal events. His-
tory pseudo states are not supported. Thus, our evaluation result is limited to
the current specification of PSSM.

Threats to Validity: Operation behaviors in PSSM are defined by activities
while our prototype requires fine-grained behavior as blocks of code embedded
into models. Therefore, we manually re-create these tests and convert activities
into programming language code. A potential threat is that the conversion might
change the semantics of the model.

7.2 Benchmarks

In this section, we present the results obtained through the experiments on
efficiency aspects of generated code to answer the following question.

318 V. C. Pham et al.

Research question 2: Runtime performance and memory usage are undoubtedly
critical in real-time and embedded systems. Particularly, in event-driven systems,
the performance is measured by event processing speed. Are the performance and
memory usage of code generated by our tool comparable to existing approaches?

Two state machine examples are obtained by the preferred benchmark used by
the Boost C++ libraries [25,26]. One simple example only consists of atomic
states and the other both atomic and composite states. We compared our tool
with tools such as Sinelabore (which generates efficient code for Magic Draw
[27], Enterprise Architect [28]), Quantum Modeling (QM) [29] (which generates
code for event-driven active object frameworks [30]) , Boost Statechart [31], Meta
State Machine (MSM) [32], C++ 14 MSM-Lite [26], and functional programming
like-EUML [33].

We used a Ubuntu virtual machine 64 bit hosted by a Windows 7 machine.
For each tool, we created two applications corresponding to the two examples,
generated C++ code and compiled it in two modes: normal (N), by default GCC
compiler; and optimal (O) with GCC optimization options -O2 -s. 11 millions
of events are generated and processed by the simple example and more than 4
millions for the composite example. Processing time is measured for each case.

Performance. Figure 4 shows the event processing performance of the
approaches for the two benchmarks. In the normal compilation mode (postfix
N), Boost Statechart, MSM, MSMLite, EUML are quite slow and not displayed
in the box-plot.

In both of the simple and composite benchmarks, in optimization mode (post-
fix O) MSMLite and our tool run faster than the others in the scope of the
experiment. The figure also shows that the optimization of GCC is significant.
In normal mode only the performance of Sinelabore, QM, and our tool is accept-
able. The event processing speed of MSM, MSM Lite and EUML is too slow
without GCC optimizations.

Fig. 4. Event processing speed for the
benchmarks [12].

Fig. 5. Event processing performance
in optimization mode [12]. (Color figure
online)

Memory Usage. Table 1 shows the executable size for the examples compiled in
two modes. Without optimization, Sinelabore generates the smallest executable

A Framework for UML-Based Component-Based Design 319

size while our approach takes the second place. In GCC optimization mode,
MSMLite, Sinelabore and our approach require less static memory than the
others.

Let’s look closer at the event processing performance in optimization mode
in terms of time medians. Figure 5 shows the figures of the two benchmarks,
relative to the performance of Sinelabore (normalized to 100%). For the simple
(blue) benchmark, our approach (51.3%) is the fastest. For the composite (red)
benchmark, with the support of C++14, the performance in MSMLite (42.7%)
is the fastest and ours is the second.

For runtime memory consumption, we use the Valgrind Massif profiler [34,35]
to measure memory usage. Table 2 shows the memory consumption measure-
ments including stack and heap usage for the composite example. Compared to
others, code generated by our approach requires a slight overhead with regard to
runtime memory usage (0.35 KB). This is predictable since the major part of the
overhead is used for C++ multi-threading using POSIX Threads and resource
control using POSIX Mutex and Condition. However, the overhead is small and
acceptable (0.35 KB).

Table 1. Executable size in KB.

Test MSM MSM-Lite EUML Sinelabore QM Our tool

N O N O N O N O N O N O

Simple 414,6 22,9 107,3 10,6 2339 67,9 16,5 10,6 22,6 16,6 21,5 10,6

Composite 837,4 31,1 159,2 10,9 4304,8 92,5 16,6 10,6 23,4 21,5 21,6 10,6

Table 2. Runtime memory consumption in KB. Columns from left to right are SC,
MSM, MSM-Lite, EUML, Sinelabore, QM, and Our tool, respectively.

SC MSM MSM-Lite EUML Sinelabore QM Papyrus

76.03 75.5 75.8 75.5 75.8 75.7 76.38

8 Traffic Light Controller Simulation

In order to assess the feasibility of using UML state machines and events for the
design of an event-driven architecture, we applied our tool to a simplified Traffic
Light Controller (TLC) system. This case-study originally appeared in [36] and
its design is available in [37].

The TLC system controls an intersection of a busy highway and a little-used
farm-way as shown in Fig. 6. Detectors are placed along the farm-way to raise
the signal C as long as a vehicle is waiting to cross the highway. The highway
lights remain green as long as no vehicle is detected on the farm-way. If a vehicle
is detected, the highway lights should change from yellow to red, allowing the

320 V. C. Pham et al.

farm-way lights to become green. In addition, the farm-way lights never stay
green longer than a set interval to allow the traffic to flow along the highway. If
there is no vehicle, or the timeout is expired, the farm-way lights change from
green to yellow to red, allowing the highway lights to return to green. Even if
vehicles are waiting to cross the highway, the highway should remain green for
a set interval.

Fig. 6. Traffic Light Controller (left) and its class diagram (right) [12].

The object-oriented class diagram3 follows the design in Yasmine [37], a
C++11 state machine framework. The diagram is shown in Fig. 6 (right). Each
class has a behavior described by a state machine. The state machines of Inter-
section and TrafficLight are shown in Fig. 7 (left and right, respectively). Except
for FarmwayOpen, all of the states of IntersectionStateMachine are composite.
The details of SwitchingHighwayToFarmroad and SwitchingFarmroadToHighway
are actually shown on the Yasmine website [37].

IntersecƟonStateMachine

HighwayOpen SwitchingHighwayToFarmroad

SwitchingFarmroadToHighway FarmwayOpen

IniƟal1
TrafficLightStateMachine

IniƟal1
Red

Red_Yellow

Yellow

Green

OnRed_Yellow

OnGreen
OnYellow

OnRed

Fig. 7. State machines for describing the behavior of Intersection (left) and TrafficLight
(right) [12].

The conditions for switching from the state HighwayOpen to SwitchingHigh-
wayToFarmroad are: (1) a minimum time for the highway open is elapsed; and
(2) the sensors emit a signal.

In terms of UML events, two alternative designs can be specified by using
time events and change events. These alternatives are shown in Fig. 8(a) and (b)
respectively. The first design in Fig. 8(a) uses a time event. The time event trig-
gers the transition from WaitingForHighwayMinimum to MinimumTimeElapsed.
3 Component-based design can be used, but the purpose of this case study is to show

the usability and practicality of UML state machines and events.

A Framework for UML-Based Component-Based Design 321

The first design also uses a signal event deferred by the WaitingForHighwayMin-
imum state. When HighwayOpen becomes active, its active sub-state remains
WaitingForHighwayMinimum for as long as the minimum time (e.g. the latter is
5 s in this case.) If a signal C is fired from the detector, a signal event DetectorOn
is sent to the state machine. The event is, however, not immediately processed
but delayed until the active sub-state becomes MinimumTimeElapsed in case
the time event is fired. The signal event is then processed to finish the execution
of HighwayOpen and activate the farm-way.

To switch from WaitForPreconditions to a final state, the second design uses
a change event instead of deferred events. Two flags timeFlag and detectFlag
are used. The WaitForPreconditions state has two internal transitions. One is
triggered by a signal event associated with the signal C and calls a transition
effect to update detectFlag to true. The other one is triggered by a time event
that sets timeFlag to true. Once two flags timeFlag and detectFlag are set to
true, the expression associated with the change event updates from false to true.
The periodic evaluation time is configured as 10 ms.

Fig. 8. Alternative state machine designs for the HighwayOpen state [12].

For the simulation of TLC, we reuse the detector class developed in [37] to
automatically generate DetectorOn/DetectorOff signals.

Using UML events (change events and time events) and deferred events does
not only provide designers with more options to specify their system, but it
also simplifies the system behaviors. Indeed, the alternative designs reduce the
number of states. For example, the numbers of sub-states of HighwayOpen with
the use of deferred events and chang4e events are two and one, respectively, while
Yasmine requires three states. However, because of its specialized semantics,
deferred events may make the design more difficult to understand.

9 Lego Car Factory

This section presents the application of our approach for modeling and gener-
ating code for a real case study. The objective of this application is to evaluate

322 V. C. Pham et al.

the feasibility and scalability of the proposed approach. The case study is an
embedded software for LEGO. The LEGO car factory consists of small LEGO
cars used for simulating an industrial process [38]. It is chosen for the evaluation
because it is a real world embedded system with enough complexity and it is
developed within our lab for demonstrating the Papyrus capabilities.

Fig. 9. Composite structure diagram of the front module for flow ports.

A LEGO car is composed of four modules: chassis, front, back, and roof.
The communication between these modules is based on Bluetooth and master-
slave like. In the latter, the chassis acts as master while the other modules act
as slaves. Each slave module consists of five components: bluetooth communi-
cation controller, conveyor, robotic arm, press, and shelf. The behavior of each
component is described by a UML state machine.

We use flow ports to exchange data items/signals between the components
within a module. API invocations from a component to other components are
designed by using service ports. Figure 9 shows the composite structure diagram
for the front module without showing detailed structures of each of its compo-
nents. For simplification, only flow ports are shown in the figure. The names of
the signals/messages exchanged between flow ports of the components are anno-
tated to the connectors between the flow ports as shown in Fig. 9. The three
flow port types are used. For example, the controller can send the StopProcess
signal to the other four components through its ports. The robotic arm compo-
nent can send/receive StopProcess instances to the conveyor/from the controller

A Framework for UML-Based Component-Based Design 323

through its bidirectional flow port respectively. Note that the processing of sig-
nals incoming to a component via its ports is realized by the component’s state
machine.

Table 3. Lego car factory metrics.

Module Lines of code Binary size (KB)

Chassis 11193 264

Front 12246 268

Roof 12232 268

Back 12245 256

The code for the four models were generated and successfully compiled with
an ARM C++ cross compiler. Table 3 shows the lines of code and binary size of
the modules. Around 50000 lines of code were totally generated. This assesses
the feasibility and scalability of the proposed approach.

10 Related Work

Code generation from state machines and composite structures has received a
lot of attention in automated software development. This section mentions some
existing code generation patterns and how our approach differs from them. A
systematic review of code generation proposals for state machines is presented
in [39].

Switch/if is the most intuitive technique for implementing a “flat” state
machine. It either uses a scalar variable [18] and a method for each event, or
two variables as the active state and the incoming event used as the discrimina-
tors of an outer switch statement to select between states and an inner one/if
statement, respectively. The state table approach [40] uses one dimension for
representing states and the other one for all possible events. These approaches
require a transformation from hierarchical to flat state machines. However, these
approaches are hardly applied to state machines containing pseudo states such
as deep history or join/fork while taking concurrent states into account.

The object-oriented state pattern [16,40] transforms a state into a class and
an event into a method. Events are processed by delegating from the class con-
taining the state machine to its sub-state classes. Separation of states in classes
makes the code more readable and maintainable. Unfortunately, this technique
only supports flat state machines. This pattern is extended in [15] to support
hierarchical state machines. Recently, a double-dispatch (DD) pattern presented
in [17] extends [15] to support maintainability by representing states and events
as classes, and transitions as methods. However, as the results show in [17],
these patterns require much memory because of an explosion of the number of
classes and the use of dynamic memory allocation, which is not preferred in

324 V. C. Pham et al.

embedded systems. It is worth noting that none of these approaches provides
implementation for all of state machine pseudo states as well as events.

Tools such as [3,41] apply different patterns to generate code. However, as
mentioned in Sect. 1, true concurrency, some pseudo-states, and UML events are
not supported. FXU [9] is the most complete tool but generated code is heavily
dependent on their own library and C# is generated.

Umple [7] is a textual UML programming language, which supports code
generation for different languages such as C++ and Java from state machines.
However, Umple does not support pseudo states such as fork, join, junction, and
deep history, and local transitions. Furthermore, only call events and time events
are specified in Umple. The ThingML [42] modeling language for embedded
and distributed systems relies on non-UML state machines and connectors and
supports code generation from these elements to various programming languages.

PapyrusRT [2] is the most similar to our approach, which uses UML compos-
ites structures and state machines for modeling, designing, and code generation
for embedded systems. The difference between the two approaches is that our
approach conforms to the UML specification and generated code does not rely
on an additional runtime library while PapyrusRT conforms to the UML Real-
Time Profile (UML-RT) [43]. This latter addresses modeling concepts suitable
for modeling complex real-time systems [44]. Code generated by PapyrusRT
relies on a runtime library - the PapyrusRT runtime. Furthermore, PapyrusRT
does not support concurrent states, shallow history pseudo states, and transi-
tions from a vertex at the outside of a composite state to one of its sub-vertexes,
e.g. the t5 transition from S0 to S2 in Fig. 2.

Our approach for state machine code generation combines the classical
switch/if pattern, to produce small footprint, and the pattern in [15], to pre-
serve state hierarchy. Furthermore, we define a pattern to transform all USM
concepts including states, pseudo states, transitions, and events. Therefore, users
are flexible to create their USMs conforming to UML without restrictions.

11 Conclusion

We presented an approach for the design and code generation for component-
based reactive systems, by providing a complete, efficient, and UML-compliant
code generation approach from UML state machines along with a code genera-
tion pattern for UML composite structures. We extended the IF-ELSE/SWITCH
patterns and used a hierarchical structure for implementing state machines. Fur-
thermore, code generation for composite structures provides a means for develop-
ing reactive systems that combine component-based design and state machines.

The approach is integrated into the Papyrus modeling tool. Multiple experi-
ments were conducted to evaluate our approach with respect to different aspects,
including the semantic-conformance and efficiency of generated code. Sixty-two
of sixty-six PSSM test cases are passed the conformance test. The results are
a good hint that our tool preserves the UML state machine semantics during
code generation. For efficiency, the benchmarks defined by the Boost library are

A Framework for UML-Based Component-Based Design 325

used to compare code generated by our tool to other approaches. The results
show that code generated by our approach features fast event processing speed
and small executable size. A Traffic Light Controller case study was used in the
experiments to show the usability and practicality of UML state machines. To
demonstrate the scalability and feasibility of the whole approach for component-
based design of reactive systems, we used our approach to develop the Lego Car
Factory software case study. This latter was successfully developed.

One of the limitations of the proposed approach is that, code produced for
state machines by our tool consumes slightly more memory than that of the
others at runtime. In future work, we will fix this issue by making the multi-
thread part of generated code more concise. Furthermore, we will adapt the
patterns to supporting code generation from UML state machines to Java and
C++11 with thread support.

References

1. OMG Available Specification without Change Bars. OMG Unified Modeling Lan-
guage (OMG UML), pp. 1–212 (2007)

2. Posse, E.: PapyrusRT: modelling and code generation (invited presentation). In:
Proceedings of the International Workshop on Open Source Software for Model
Driven Engineering Co-located with ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2015), Ottawa,
Canada, 29 September 2015, pp. 54–63 (2015)

3. IBM: IBM Rhapsody (2016). Accessed 4 July 2016
4. Mussbacher, G., et al.: The relevance of model-driven engineering thirty years

from now. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 183–200. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11653-2 12

5. Whittle, J., Hutchinson, J., Rouncefield, M.: Model-driven engineering practices
in industry: social, organizational and managerial factors that lead to success or
failure. Sci. Comput. Program. 89, 144–161 (2014)

6. Forward, A., Lethbridge, T.C., Badreddin, O.: Perceptions of software modeling:
a survey of software practitioners. In: 5th Workshop from Code Centric to Model
Centric: Evaluating the Effectiveness of MDD (C2M: EEMDD). Citeseer (2010).
http://www.esi.es/modelplex/c2m/papers.php

7. Badreddin, O., Lethbridge, T.C., Forward, A., Elaasar, M., Aljamaan, H., Garzon,
M.A.: Enhanced code generation from UML composite state machines. In: 2014 2nd
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 235–245. IEEE (2014)

8. IBM: IBM Rhapshody and UML Differences (2016). http://www-01.ibm.com/
support/docview.wss?uid=swg27040251. Accessed 4 July 2016

9. Pilitowski, R., Dereziñska, A.: Code Generation and Execution Framework for
UML 2.0 Classes and State Machines. In: Sobh, T. (ed.) Innovations and Advanced
Techniques in Computer and Information Sciences and Engineering, pp. 421–427.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6268-1 75

10. Charfi, A., Mraidha, C., Boulet, P.: An optimized compilation of
UML state machines. In: 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pp.
172–179 (2012)

https://doi.org/10.1007/978-3-319-11653-2_12
https://doi.org/10.1007/978-3-319-11653-2_12
http://www.esi.es/modelplex/c2m/papers.php
http://www-01.ibm.com/support/docview.wss?uid=swg27040251
http://www-01.ibm.com/support/docview.wss?uid=swg27040251
https://doi.org/10.1007/978-1-4020-6268-1_75

326 V. C. Pham et al.

11. OMG: Precise Semantics of UML State Machines (PSSM) Revised Submission
(2016). Revised Submission, ad/16-11-01

12. Pham, V.C., Radermacher, A., Gérard, S., Li, S.: Complete code generation from
UML state machine. In: Proceedings of the 5th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2017, Porto, Por-
tugal, 19–21 February 2017, pp. 208–219 (2017)

13. OMG: A UML Profile for MARTE: Modeling and Analysis of Real- Time Embed-
ded Systems, version 1.1 formal/2011-06-02 (2011)

14. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Professional,
Boston (1997)

15. Niaz, I.A., Tanaka, J., et al.: Mapping UML statecharts to Java code. In: IASTED
Conference on Software Engineering, pp. 111–116 (2004)

16. Shalyto, A., Shamgunov, N.: State machine design pattern. In: Proceedings of the
4th International Conference on .NET Technologies (2006)

17. Spinke, V.: An object-oriented implementation of concurrent and hierarchical state
machines. Inf. Softw. Technol. 55, 1726–1740 (2013)

18. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, vol. 3 (1998)

19. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification
of UML state machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM
2004. LNCS, vol. 3308, pp. 434–448. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30482-1 36

20. Knapp, A.: Semantics of UML State Machines (2004)
21. LISE: Papyrus Software Designer. https://wiki.eclipse.org/Papyrus Software

Designer
22. Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: 19 papyrus: a UML2 tool for

domain-specific language modeling. In: Giese, H., Karsai, G., Lee, E., Rumpe,
B., Schätz, B. (eds.) MBEERTS 2007. LNCS, vol. 6100, pp. 361–368. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16277-0 19

23. Papyrus: Moka Model Execution (2016). https://wiki.eclipse.org/Papyrus/
UserGuide/ModelExecution. Accessed 1 Nov 2016

24. Blech, J.O., Glesner, S.: Formal verification of Java code generation from UML
models. In: Proceedings of the 3rd International Fujaba Days, pp. 49–56 (2005)

25. Boost Library: Boost C++ (2016). http://www.boost.org/. Accessed 4 July 2016
26. Jusiak, K.: State Machine Benchmark (2016). https://github.com/boost-

experimental. Accessed 20 Oct 2016
27. Magic, N.: Magic Draw (2016). https://www.nomagic.com/products/magicdraw.

html. Accessed 14 Mar 2016
28. SparxSysems: Enterprise Architect (2016). http://www.sparxsystems.com/

products/ea/. Accessed 14 Mar 2016
29. Quantum Leaps: Quantum Modeling (2016). http://www.state-machine.com/qm/.

Accessed 14 May 2016
30. Lavender, R.G., Schmidt, D.C.: Active object. Context, pp. 1–12 (1996)
31. Boost Library: The Boost Statechart Library (2016). Accessed 4 July 2016
32. Boost Library: Meta State Machine (2016). http://www.boost.org/doc/libs/1 59

0 b1/libs/msm/doc/HTML/index.html. Accessed 4 July 2016
33. Boost Library: State Machine Benchmark (2016). http://www.boost.org/doc/libs/

1 61 0/libs/msm/doc/HTML/ch03s04.html
34. Valgrind: Valgrind Massif (2016). http://valgrind.org/docs/manual/ms-manual.

html. Accessed 20 Nov 2016

https://doi.org/10.1007/978-3-540-30482-1_36
https://doi.org/10.1007/978-3-540-30482-1_36
https://wiki.eclipse.org/Papyrus_Software_Designer
https://wiki.eclipse.org/Papyrus_Software_Designer
https://doi.org/10.1007/978-3-642-16277-0_19
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://www.boost.org/
https://github.com/boost-experimental
https://github.com/boost-experimental
https://www.nomagic.com/products/magicdraw.html
https://www.nomagic.com/products/magicdraw.html
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://www.state-machine.com/qm/
http://www.boost.org/doc/libs/1_59_0_b1/libs/msm/doc/HTML/index.html
http://www.boost.org/doc/libs/1_59_0_b1/libs/msm/doc/HTML/index.html
http://www.boost.org/doc/libs/1_61_0/libs/msm/doc/HTML/ch03s04.html
http://www.boost.org/doc/libs/1_61_0/libs/msm/doc/HTML/ch03s04.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html

A Framework for UML-Based Component-Based Design 327

35. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN Notices, vol. 42, pp. 89–100. ACM (2007)

36. Katz, R.H., Borriello, G.: Contemporary Logic Design (2005)
37. Yasmine: The classic farmroad example (2016). http://yasmine.seadex.de/yasmine.

html. Accessed 20 Nov 2016
38. LEGO Car Factory. http://robotics.benedettelli.com/lego-car-factory/. Accessed

22 Mar 2017
39. Domı́nguez, E., Pérez, B., Rubio, A.L., Zapata, M.A.: A systematic review of code

generation proposals from state machine specifications. Inf. Softw. Technol. 54(10),
1045–1066 (2012)

40. Douglass, B.P.: Real-Time UML: Developing Efficient Objects for Embedded Sys-
tems (1999)

41. SparxSystems: Enterprise Architect (2016). http://www.sparxsystems.eu/start/
home/. Accessed 20 Nov 2016

42. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, pp. 125–135. ACM (2016)

43. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling, vol. 2
(1994)

44. Cheng, S.W., Garlan, D.: Mapping Architectural Concepts to UML-RT (2001)

http://yasmine.seadex.de/yasmine.html
http://yasmine.seadex.de/yasmine.html
http://robotics.benedettelli.com/lego-car-factory/
http://www.sparxsystems.eu/start/home/
http://www.sparxsystems.eu/start/home/

Automatic UI Generation for Aggregated
Linked Data Applications by Using Sharable

Application Ontologies

Michael Hitz1(&), Thomas Kessel1, and Dennis Pfisterer2

1 Cooperative State University Baden-Wuerttemberg, Stuttgart, Germany
michael.hitz@hitznet.de,

thomas.kessel@dhbw-stuttgart.de
2 Institute of Telematics, University of Lübeck, Lübeck, Germany

pfisterer@itm.uni-luebeck.de

Abstract. The ongoing digitalisation efforts of businesses are a driving force to
expose processes as services to third parties to enable the integration into third-
party applications (e.g., booking of a trip or requesting the quote for a complex
product). To standardize processes and related data, increasingly semantic web
technologies are used. This leads to a shared conceptualization of the business
domains and results in a linked data service ecosystem for domain-specific
services, allowing third parties to aggregate services to novel applications - even
across different domains. Using semantic web technologies enables the stan-
dardized communication on machine level. But the integration of the user into
the overall process is still a manual task. The aggregation of services to complex
applications is mostly done at the service level. The User Interfaces (UI) for
collecting input data for the processes are usually still hand-crafted for different
user groups and environments.
Our claim is, that given a linked data service ecosystem, the UI for a business

process can be modelled once and be automatically generated for the integration
into different contexts. The models can be combined to automatically build
complex UIs for combined linked data applications – thus, supporting the
aggregation of applications on the user interface level. This paper presents an
ontology-based, model-driven approach for modelling UIs for the automatic
generation of dialog-based applications, providing output understood by asso-
ciated linked data services. In addition, the paper shows that the approach is
suited to combine UI models as components to build aggregated linked data
service UIs.

Keywords: User interface ontologies � Model driven user interfaces
Linked data application modelling � Application aggregation

1 Introduction

The digitalisation of business processes and the increasing need to expose business
functionality to be used in different contexts led to a strong adoption of service oriented
concepts for enterprise information systems. Companies offer their services (e.g., as
web services) that are driven by user input data and invoke processes like ordering

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 328–353, 2018.
https://doi.org/10.1007/978-3-319-94764-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_14&domain=pdf

goods or services. This opens new business opportunities for third parties that aggre-
gate services to novel applications. Examples are Uber (developer.uber.com) or
Amazon Marketplaces (developer.amazonservices.com) who expose their offerings
through proprietary APIs.

Emerging business models such as Distributed Market Spaces in an Internet of
Everything (IoE) context (e.g., [18]) go beyond that proprietary solution. They use a
generic, non-proprietary data format by incorporating semantic web/linked data
approaches (i.e., ontologies) to describe the semantics of the expected input data. This
creates a shared conceptualization of the domain and thus allows multiple suppliers to
participate in a transaction (e.g., providing information for the comparison of offer-
ings). The participants can rely on the same input data, based on strictly defined
semantics leading to a unified view on the processes; and thus, create a linked data
services ecosystem. The industry begins adopting these principles by defining reliable
data interchange semantics for different domains (e.g., the BiPRO initiative, www.
bipro.net that standardizes business processes and data for the insurance domain).

Although there exists a clear concept on the technical level for machines to work
on and communicate with semantically specified data (i.e., linked data technologies
such as RDF/OWL) there is still a lack of approaches for the integration of the
human user. Non-trivial user interfaces (UIs) are needed to collect user input for the
business processes while supporting a platform-specific user experience (e.g., web
frontends, mobile apps or rich client desktop apps). To provide novel applications,
different variants of user interfaces are required, that aggregate multiple services from
different domains within a single UI (e.g., a travel booking application, combining
services for flight-, transportation-, hotel-, and event bookings). Currently, these UI
variants are mostly developed manually for each application context.

Given the above-mentioned environment of a linked data ecosystem as a prereq-
uisite, the assumption of this paper is that UIs for dialog based linked data applications
can be (1) automatically generated serving linked data services and can be (2)
reused and shared in different contexts (e.g., portals or rich client applications).
Moreover, they can (3) be aggregated to build combined, functionally augmented
applications.

The prerequisite for this approach is that linked data services provide a definition of
the semantics of the expected input data (e.g., by using ontologies). Hence, UIs pro-
viding the expected input data can be used as a frontend for these services. In addition,
if UIs are modelled in a technology-agnostic way, they can be shared, reused and even
aggregated.

To automatically generate UIs for that purpose, the following major requirements
have to be met: (1) an abstract UI description is needed to generate UIs for different
technical platforms. The description needs to be (2) modelled in a non-proprietary,
standardized way to make it sharable and reusable. Finally, (3) the UI needs to
produce output data that complies to the expected input of targeted business pro-
cesses to be used in conjunction with linked data services.

Although there already exist approaches for model-driven UI generation (cf. related
work, Sect. 9), there is - to the best of our knowledge - no widely accepted approach or
UI modelling technique that meets all of the aforementioned requirements (cf., [16]).
Traditional approaches (e.g., user interface description languages - UIDL) rely on

Automatic UI Generation for Aggregated Linked Data Applications 329

http://www.bipro.net
http://www.bipro.net

proprietary UI technology focused models. They are strong in producing technological
variants of UIs. The downside in their applicability in a linked data context is the
proprietary, UI-focused nature of the modelled artefacts, which impedes their use in
different contexts [4]. In addition, the mapping of input to target data - if possible at all
- encompasses the creation of many related artefacts and thus is very complex (e.g.
UWE [13]). Current research on ontology-based generation of UIs mainly focuses on
providing general editors for arbitrary ontologies. The resulting generic interfaces are
technical in nature and not suitable for presentation to a customer - as they do not focus
on user experience.

The paper presents a novel approach for the automatic UI generation of linked data
applications that bridges the gap between the traditional and ontological approaches. It
contributes to the field of automatic UI generation applied to linked data concepts.

The content is structured as followed: First, the problem is demonstrated in more
detail along with an illustrative example used throughout the paper. Section 3 outlines
the proposed solution. Sections 4 and 5 provide details for the proposed Application
Ontology. Section 6 outlines the process for derivation of UIs and resulting instance
data. This is followed by an application of the results to build aggregated applications
in Sect. 7 and the current state of evaluation of the concept. The paper closes with
related work and a conclusion pointing out future work.

Remark: The paper is based on a contribution for the MODELSWARD 2017 Con-
ference [10]. It extends the original publication by focussing on the aspect of the
aggregation of applications.

2 Problem, Motivational Example and Requirements

To generate high-quality UIs for dialog applications, a data-model alone (e.g., a model
of the input data for the underlying business process) is not sufficient. For example, UIs
usually group information in a meaningful way, which is different from the target data
structure of a consuming service. Most UIs include dynamic behaviour to guide the
user through the data gathering process in an intuitive way (e.g., prefilling related
information as a city name given a zip code or showing/hiding information based on
provided data). The information needed to build these aspects are usually not part of a
pure data-model [8] and thus need to be modelled separately.

Example: Consider a (simplified) process collecting quotes for a flight booking.
A customer wants to request a quote from a target business service and thus needs to
specify data about the intended flight. He supplies information about dates, number of
tickets, return/open-yaw-flight and customer-related information (e.g., name, billing
address etc.)

An excerpt of the possible request data (target data) based on a user’s input is
shown in Listing 1. It is intentionally simplified and represented in RDF/Turtle notation
as instance of an (assumed) flightbooking ontology. It contains information about the
flight (3 tickets from Hamburg to Stutgart), return flight (to Hamburg) as an open-yaw-
flight (from Munich) along with data about the customer.

Figure 1 shows possible UI variants for the user input dialogs: (a) a desktop appli-
cation for an agent and (b) a mobile application for end customers. The information is

330 M. Hitz et al.

structured in meaningful succession of groups and questions (e.g., Basic travel data,
Flight Information and Your information) and might have hierarchical relations (e.g.,
Address data being part of Your information). The questions are presented in a reason-
able order, using type-related input controls allowing an intuitive user interaction.

@prefix : <hƩp://mimesis.soluƟons/bookers/flightbooking/individuals#> .
@prefix owl: ... ,rdf: ..., xml:..., xsd, ..., rdfs:...
@prefix ĩo: <hƩp://mimesis.soluƟons/bookers/flightbooking/v1#> .
@prefix foaf: <hƩp://xmlns.com/foaf/0.1#> .
@base <hƩp://mimesis.soluƟons/bookers/flightbooking/individuals> .
 <hƩp://mimesis.soluƟons/bookers/flightbooking/individuals>

rdf:type owl:Ontology .

:flightbookingrequest_i1474371413428
rdf:type <ĩo:FlightBookingRequest> , owl:NamedIndividual ;

<ĩo:childƟckets> "1"^^<xmls:number> ;
<ĩo:adulƫckets> "2"^^<xmls:number> ;
<ĩo:customerinfo> :customerinfo_i1474371413428 ;
<ĩo:flight> :flight_i1474371413428 .

:flight_i1474371413428 rdf:type <Flight> ,owl:NamedIndividual ;
<ĩo:returndate> "2016-09-20T22:00:00.000Z"^^<xmls:date> ;
<ĩo:startdate> "2016-11-09T23:00:00.000Z"^^<xmls:date> ;
<ĩo:fromdesƟnaƟon> "HAM"^^<xmls:string> ;
<ĩo:todesƟnaƟon> "STR"^^<xmls:string>;
<ĩo:openyawstartdate> "2016-11-25T23:00:00.000Z"^^<xmls:date> ;
<ĩo:openyawtodesƟnaƟon> "HAM"^^<xmls:string> ;
<ĩo:openyawfromdesƟnaƟon> "MUC"^^<xmls:string> .

:customerinfo_i1474371413428 rdf:type <Customerinfo> , ... ;
<foaf:givenName> "Max"^^<xmls:string> ;
<foaf:familyName> "Mustermann"^^<xmls:string> ;
<foaf:gender> "male"^^<xmls:string> ;
<foaf:email> "max.mustermann@onemail.com"^^<xmls:string> ;
<ĩo:billingaddress> :billingaddress_i1474371413428 .

:billingaddress_i1474371413428 rdf:type <ĩo:BillingAddress> , ... ;
<foaf:buildingNo> "178"^^<xmls:string> ;
<foaf:zip> "70178"^^<xmls:string> ;
<foaf:street> "Reinsburgstraße"^^<xmls:string> ;
<foaf:city> "StuƩgart"^^<xmls:string> ;
<foaf:country> "germany"^^<xmls:string> .

Listing 1. Instance data for a flight request.

In addition to the structural aspects, the UI needs to offer behaviour for a satisfying
user experience: input needs to be validated and errors shown (e.g., if the return date is
before the departure date), data might be prefilled as reaction to previous input (e.g.,
restricting destination airports that are in served by an already selected departure
airport) and information needs to be shown/hidden based on previous selections
(e.g., hiding return flight related information if the user deselects this option).

Automatic UI Generation for Aggregated Linked Data Applications 331

Figure 1, (b) shows a variant of the UI for mobile devices. The structure remains
the same but is rendered for a different target device. In addition it does not offer the
possibility to book an open-yaw-flight to reduce the complexity of the application.

Figure 1, (c) shows an aggregated application that is intended for the booking of
a trip. It incorporates a version of the aforementioned flight booking as a component,
but augments the overall functionality by adding components for booking an overnight
stay and for events during the trip. ◼

a) Desktop version (agent) b) Mobile version (cutomer)

c) Aggregated UI for booking a trip (agent)

Fig. 1. Possible UIs for the flight booking application sample.

332 M. Hitz et al.

The examples show the non-trivial nature of UIs, which is not inferable from
simple data models: additional structural and behavioural information is needed (e.g.,
sequence and rules for showing additional questions when input changes). Further-
more, the structure presented to the user for input differs from the structure of the actual
request required by the backend service.

The goal of the presented approach is to provide a sharable way for describing UIs
in a technology-agnostic manner, suited for the automatic derivation of UIs for different
contexts. Thus, the following requirements need to be considered:

• Req. 1: A UI description is required, addressing the complexity of non-trivial UIs.
It needs to contain all information about the data to be gathered and for the auto-
matic generation of UI variants for different technologies and plattforms.

• Req. 2: Information has to be provided, allowing the mapping of entered data to
instances of the target ontology required by consuming services.

• Req. 3: To achieve sharable UI descriptions, a non-proprietary description is
required that contains a minimum set of artefacts to be shared.

• Req. 4: A process for (a) building final UIs and (b) for inferring instance data from
user input that can be processed by linked data driven backend services.

• Req. 5: The targeted UI description needs to be suitable for aggregation into
complex UIs. It needs to be self-contained (i.e., complete regarding generation of a
runnable UI) to be easy to share.

3 Proposed Solution

To meet the requirements, we propose a single, declarative, data-centric application
description. It incorporates the required information (1) to derive non-trivial UIs and
(2) for the mapping of input data to target ontology instances (cf. Req. 1, Req. 2). To be
applicable to multiple contexts, a UI technology-agnostic model is used, which is based
on the data to be processed by the application. For the content of the model the approach
relies on our previous work on data-centric UI description models proposed in [8]. This
approach is applied to ontological concepts (Sect. 4.2) and extended to contain addi-
tional data, required for the mapping of input data onto target instances (Sect. 5).

To meet requirement Req. 3, we rely on RDF/OWL [11] ontologies. RDF/OWL is
used, as it is a well understood, widely adapted technology, already applied to different
contexts and for which tooling is available (e.g. reasoners, APIs). The result is a
sharable Application Ontology (AO) containing the required information needed as
input for the automatic generation (cf. Req. 4).

Figure 2 shows the use of the proposed Application Ontology targeting Req. 5 – i.e.
to build aggregated applications within a linked data environment (Sect. 7). The central
elements are the Target Ontologies (TO) and the corresponding Application Ontologies
(AO) as shared elements between multiple client applications and domain specific
backend services. The TOs define the semantics of possible input data for a business
process. The AOs define variants of the user data to be gathered as outlined above.

An Application Frontend references multiple shared AOs and generates UIs for
each of them according to the required technology base. The UI components can be

Automatic UI Generation for Aggregated Linked Data Applications 333

Fig. 2. UI aggregation of linked data applications.

aggregated within the UI to present a seamless combination presented to the user for
input. Since each of the components produces output conforming to a certain TO, the
outcome of each component can be sent to concrete linked data service instances as
input to execute the requested functionality (i.e. trigger the business processes asso-
ciated with the TO).

The approach has benefits over existing approaches for the automated generation of
UIs for aggregated linked data applications:

• It uses a sharable artefact that allows generating UIs, that can be integrated into
generic linked data applications

• The generated UIs are able to produce output for arbitrary linked data services by
incorporating mapping rules for arbitrary target ontologies

• It uses a single, self-contained artefact to be easily shared, containing all structural
and behavioural information to generate executable frontends

• The resulting UI components can be aggregated to build novel applications

The following sections focus on the details of the approach: first the information
required for UI derivation and its ontological description is outlined, followed by the
enhancement of the model towards information needed to derive a target instance from
user input. Next we outline the processes for UI derivation and target ontology instance
generation. Finally we focus on the use of the model to built aggregated linked data
applications.

4 Application Ontologies for Automatic UI Derivation

The proposed Application Ontology is partially based on results of previous work of the
mimesis project [8]. The approach uses a model of the data processed by the appli-
cation as foundation, which is enhanced by additional information regarding its

334 M. Hitz et al.

semantics. The following sections summarize this information and show its extension
to an ontological application description.

4.1 Information Requirements for Automatic UI Generation

To derive the information required for generating UIs, a set of interaction patterns was
identified by analysing existing, frequently used ‘real-life’ applications along with a
review of related work [8]. Next, the data necessary to build UIs for these patterns was
extracted. Table 1 summarizes the required information along with its usage within a
UI derivation process:

• Type related and Structural Information (I1–I4) is needed to describe data ele-
ments (i.e., types and type restrictions like ranges or allowed values), their structure
(i.e., grouping and hierarchical correlation), and a meaningful temporal sequence
of the questions to gather the data.

• Behavioural Information (I5–I7) is needed to model dynamic aspects of the UI at
runtime. This includes conditions about the existence/activation of elements/groups
bound to the content of other data elements within the model, the indication for
complex validations, operations triggered on changes of the input data (reactions)
or triggered by the user (actions).

Table 1. Information needs and usage for UIs [8].

Ref Information need Usage for UI derivation

Type related & structural information
(I1) Type information for a data element

or group (based on XMLSchema)
Selection of suitable input control based on type
restrictions (e.g. presets and value ranges);
provision of type-related validations

(I2) Hierarchical grouping of elements Grouping of questions into display units;
dependencies and hierarchical inclusion of
groups; derivation of suitable navigation
structures (sequential, tree,…)

(I3) Temporal succession of data- or
group elements

Display order of groups and input controls

(I4) Semantic cohesion of elements Arrangement of controls (e.g. proximity of a zip
code and city); identification of possible
breakpoints for pagination

Behavioural information
(I5) Existence and activation conditions

for data and group elements
Show/hide or de-/activate groups and questions,
triggered on change of already entered data

(I6) Validation operations Trigger (complex) validations operations usually
related to already entered data

(I7) Actions and reactions Trigger operations on change of already entered
data (reaction) or initiated by the user (action)

Automatic UI Generation for Aggregated Linked Data Applications 335

Based on the processed data, a meta model can be created that incorporates the
identified information and serves as a foundation to develop data descriptions for
interview applications. Figure 3 shows this meta model as UML diagram.

Fig. 3. Meta-model in UML notation [8].

Table 2. Facets for Datagroups and Dataitems [10].

Facet Description Contents

DescriptionElement
name* Unique name as identifier for the element [a-zA-Z0-9]+
type Type of the group or data item s. below
existsIf Condition for the existance of the group or element.

if it evaluates to true, the data is relevant and
presented

Boolean expression.
Referencing model items

activeIf Condition for the editability of the group or
element. if it evaluates to true, the data is editable,
else just displayed

Boolean expression.
Referencing model items

DataGroup
type Type of the group
cardinality Possible cardinality of the group. Defines, how

often the group might be repeated. (e.g., used to
express, that a person might have multiple
addresses)

*: no limit
<n>: fixed value
<n> .. <m>: range

(continued)

336 M. Hitz et al.

A data description (DataDescription) consists of a succession of data groups
(DataGroup) that might contain an ordered list of further groups or data elements
(DataItem). This constellation allows to model the requested structural information
regarding cohesion, (hierarchical) grouping and temporal sequence of the elements (I2,
I3, I4). Groups and data items are detailed by attributes/facets. E.g., type information
(I1) and existential and activation conditions (I5) can be specified for each description
element in the model. Further facets are used to specify the element more precisely in
terms of data related aspects, i.e., type restrictions that are usually part of a type system
like XML-Schema (I1). Table 2 summarizes the semantics of the facets for
DataGroups. and DataItems. Additionally, each description element might have
associated validation-, reaction- and action operations (I6, I7), which are comple-
mented by further facets like name of the operation, triggering events, and model
elements required for the execution of the operation (cf., [8]).

The model meets the requirements regarding UI descriptions (Req. 1) as it contains
all structural and behavioural information to derive non-trivial UIs within a single
description.

Table 2. (continued)

Facet Description Contents

DataItem
type Type of the data item

simple datatypes: semantics according XML-
Schema
custom datatypes e.g. domain or context specific.
implies additional behavior (e.g. country specific
validation for a zip code)

simple datatype:
text, number, boolean,
date, float
custom datatype:
email, zipcode, phone,
licenseplate

+ restrictions Additional type specific constraints XMLSchema
(e.g. min/maxInclusive)

Additional facets for
datatypes

restrictedTo Restriction of possible vaules Value ranges, e.g.
dog|cat|mouse

+ multiple Allows multiple values to be selected True, false
required Indicates that the data is not optional True, false
initialValue Initial value of the content Depending on type and

restrictions

Automatic UI Generation for Aggregated Linked Data Applications 337

5 Using Ontologies as Representation

To get a sharable representation, the meta-model is applied to RDF/OWL. The
objective is to map the information requirements (I1–I7) listed in Sect. 4.1 towards
RDF/OWL and hence develop a sharable Application Ontology. This is done by
projecting the elements contained in the meta-model onto RDF/OWL elements.

The general intention of ontologies is to describe entities, relationships, contained
data elements and additional facts. Hence, expressing most of the structural information
with RDF/OWL is straightforward: DataGroups can be modelled as owl:Classes and
their hierarchical relations as owl:ObjectProperties. DataItems are defined as owl:
Data-typeProperties.

Listing 2 shows a fragment of the Application Ontology for the flight booking
example introduced in Sect. 2 as illustration of the mapping. The Classes section
(Listing 2, ➊) declares the DataGroups (e.g., Flightbooking, Flightinfo, CustomerInfo)
as part of the application ontology (i.e., <http://…bookers/flight/v1#>). Examples for
relations appear in the Object Properties section (Listing 2, ➋ - e.g., Flightinfo as an
object property of Flightbooking with range flightinfo). Contained DataItems appear in
the Data Properties section (Listing 2, ➌) with information to which class they belong
to, along with basic type information (e.g., exemplary data associated with a Flight and
ReturnFlight). Using these basic RDF/OWL concepts, the structural information of I2
and I4 and partially I1 are covered.

Not all of the identified information can be expressed with standard RDF/OWL
means. Ontologies in general do not contain information such as the sequence of data
(I3), existential conditions (I5) or functional aspects (I6, I7). To the best of our
knowledge, RDF/OWL does neither include a concept for the description of operations
nor for declaratively modelling conditions/references based on instance data.

To express this information, we use the OWL annotation concept as applied in
Khushraj and Lassila [12] and Gaulke and Ziegler [7] to produce a profiled ontology.
This allows incorporating the information declaratively. This leads to an ontology, that
is (1) still covered by basic RDF/OWL (and thus can be used for standard reasoning)
yet (2) exposes the additional information for reasoners (e.g., UI generators) that
understand the specific profile.

Table 3 lists the used annotations of the proposed profile along with their mapping
to the information needs. As an example, Listing 2 ➍ shows annotations for type,
sequence, existence and reactions applied to elements of the sample ontology.

338 M. Hitz et al.

The result is an ontological description of the UI-specific aspects of the application.
It permits a single artefact incorporating all information contained in the meta model of
Sect. 4.1 needed to derive non-trivial UIs (cf. Sects. 6 and 7). As it contains infor-
mation about relations to model elements, it even allows consistency verification of the
modelled UI. The mapping to RDF/OWL leads to an ontological description for
dialog-based application UIs. It is sharable and thus meets requirements Req. 1 and
Req. 3. The resulting UI is able to collect user input and provide it for further pro-
cessing (i.e., as an instance of the AO).

@prefix mdt: <hƩp://mimesis /datatypes#>.
@prefix owl: <hƩp://www.w3.org/2002/07/owl#>. ...
@prefix ma: <hƩp://mimesis/annotaƟons/v1>
@prefix sa: <hƩp://mimesis/linkeddata/v1>
@base <hƩp://mimesis/bookers/flight/v1> .

❶ Classes :

:Flightbooking rdf:type owl:Class .
:Basictraveldata rdf:type owl:Class .
:FlighƟnfo rdf:type owl:Class .
:Customerinfo rdf:type owl:Class .
:Persons rdf:type owl:Class .
:Flight rdf:type owl:Class .
:Returnflight rdf:type owl:Class .
:OpenjawflighƟnfo rdf:type owl:Class .
:Customer rdf:type owl:Class .
:Address rdf:type owl:Class .
...
❷ Object ProperƟes:

:Flightbooking.basictraveldata rdf:type owl:ObjectProp…;
 rdfs:range :Basictraveldata ; rdfs:domain :Flightbooking
.
: Flightbooking.flighƟnfo rdf:type owl:ObjectProperty ;

rdfs:domain :Flightbooking ; rdfs:range :FlighƟnfo .

:Flightbooking.customerinfo rdf:type owl:ObjectProp…
;

rdfs:range :Customerinfo ; rdfs:domain :Flightbooking
.
:Basictraveldata.persons rdf:type owl:ObjectProperty ;

rdfs:domain :Basictraveldata ; rdfs:range :Persons .
:FlighƟnfo.flight rdf:type owl:ObjectProperty ;

rdfs:range :Flight ; rdfs:domain :FlighƟnfo .
:FlighƟnfo.returnflight rdf:type owl:ObjectProperty ;

rdfs:domain :FlighƟnfo ; rdfs:range :Returnflight .
:Returnflight.openjawflighƟnfo rdf:type owl:ObjectP…;

rdfs:range :OpenjawflighƟnfo ; rdfs:domain:Return…

❸ Data ProperƟes

:Flight.fromdesƟnaƟon rdf:type owl:DatatypeProperty
;

rdfs:domain :Flight ; rdfs:range xsd:string .
:Flight.todesƟnaƟon rdf:type owl:DatatypeP...;

rdfs:domain :Flight ; rdfs:range xsd:string .
:Flight.startdate rdf:type owl:DatatypeProperty ;

rdfs:domain :Flight ; rdfs:range xsd:date .
:Flight.returnflight rdf:type owl: DatatypeProp...;

rdfs:domain :Flight ; rdfs:range xsd:boolean .
:Returnflight.returndate rdf:type owl:Datat...;

rdfs:domain :Returnflight ; rdfs:range xsd:date .

❹ Profile AnnotaƟons

:FlighƟnfo.flight
ma:sequence "1" ;

:Flight.startdate
ma:sequence "1" ;
ma:type "date" ;

:FlighƟnfo.returnflight
ma:existsIf "(returnflight == true)" ;
ma:sequence "2" .

:Flight.returnflight
ma:sequence "4" ;
ma:type "boolean" ;
ma:iniƟalValue "true" .

:Returnflight.returndate
ma:sequence "1" ;
ma:type "date" ;

:Flight.fromdesƟnaƟon
ma:sequence "2" ;
ma:restrictedTo "flightbooking

.getDepartureAirports()" ;
ma:type "text" ;

:Flight.todesƟnaƟon
ma:restrictedTo " " ;
ma:sequence "3" ;
ma:type "text" ;
ma:acƟveIf "fromdesƟnaƟon.length0" ;
ma:reacƟons "fromdesƟnaƟon:flightbooking

.changeDesƟnaƟons(fromdesƟnaƟon,
$todesƟnaƟon)" .

:Returnflight.openjawflighƟnfo
ma:existsIf "(openjawflight == true)" ;
ma:sequence "3" .

Listing 2. Application Ontology (excerpt) in OWL/Turtle notation.

Automatic UI Generation for Aggregated Linked Data Applications 339

Yet, the approach has some limitations regarding its universality. Using a profiled
ontology with proprietary annotations requires a reasoner that is aware of the profile.
The additional information is not interpretable by generic reasoners.

6 Modelling the Relation to Target Ontologies

By this time, the model does not contain information about how to map user input to
instances to the Target Ontology required by a linked data service. This section shows,
how the data entered in the UI can be prepared for further processing.

When the user enters data, he actually builds an instance of the AO (Application
Ontology instance, AOI). To derive a Target Ontology instance (TOI), a transformation
from an AOI to a TOI is required. The main task is to map data elements of the AOI to
the required structure for the TOI.

AOI groups and data elements are related to elements of the TOI - although they
might appear in a different structure. DataGroups are related to objects in the target
ontology. DataItems correspond to data properties of object instances in the TO.
Figure 4 shows this for the flight booking example. It shows that the flightbooking
instance of the AOI is associated with the :flightbookingrequest of the TOI - as is the
flight to the :flight instance. Flight information as the startdate, from- and todestination
need to be mapped as data properties of the :flight instance. The returndate and
additional open-yaw-flight information maps into the :flight instance, despite being part
of a different DataGroup of the AOI (an example for structural differences between AO
and TO).

Table 3. Additional annotations [10].

Annotation Content

Type related & structural information
:sequence Number - position of the element in the flow of questions I3
:type Typeinformation for a group or element I1
:<constraint> typerelated constraints - > XMLSchema, e.g. :restrictedTo,

:initialValue, :max, :min
I1

Behavioural information
:existIf Conditional expression

References data within the hierarchy using path expressions at runtime
for an instance

I5

:activeIf Conditional expression
References data within the hierarchy using path expressions at runtime
for an instance

I5

:validations
:reactTo
:actions

Definition of validation, reaction and action operations
Validations syntax: <trigger>:<operation> (<parameter>*)
Reactions syntax: <element>:<operation> (<parameters>*)
Action syntax: <type>:<trigger>:<operation> (<parameter>*)

I6
I7

340 M. Hitz et al.

Figure 4 shows as well the information needed on the TOI side: to represent an
object instance, its type needs to be known (e.g., rdf:type Flight for the :flight object
instance). For a data property, its property name, type and the instance value is needed
(cf. Listing 1, Sect. 2).

To meet requirement Req. 2, the mapping information needs to be integrated into
the AO. Again we apply the OWL annotation concept to express this information, as
in Sect. 4 for additional data semantics. Hence a profile for expressing the linked data
context is added for the AO.

The profile annotations used for that purpose are summarized in Table 4. For each
DataGroup in the AO, that corresponds to an object instance in the TOI, an instance
name (e.g. :flight) and the type needs to be specified. If the object is associated with
another object (e.g. :flight as part of :flightbookingrequest, Fig. 4), information about the
parent instance and the propertyname within that object needs to be supplied. For a
DataItem, its type and propertyname is needed (e.g. <fbo:startdate> with type
<xmls:date> for the departuredate of the flight, cf. Figure 4) along with the instance, the
dataproperty is associated with (e.g. startdate as part of :flight). Listing 3 shows the
annotations for the flight example.

Given an AOI and the AO, the TOI can now be generated by traversing the AOI
tree nodes: If passing a GroupItem node with annotated TO information, an RDF triple
for an instance is created exploting the DataGroup annotations (cf. Table 4, :swIndi-
vidual, :swClass). If there is a relation to another instance, an ObjectProperty triple is

Fig. 4. Mapping AOI data to TOI [10].

Automatic UI Generation for Aggregated Linked Data Applications 341

generated to reflect the relation (:swForIndividual, :swProperty). If passing a DataItem
node, a RDF triple for a DataProperty is created, using (a) the type, name and relation
annotations and (b) the instance data entered by the user for the corresponding field in
the AOI.

This approach allows the automatic generation of a suitable TOI from an AOI based
on information contained in the AO and thus meets Req. 2 and Req. 3.

Our approach uses a simplified method for mapping AO instance data to the TOI,
allowing only a unidirectional mapping of the data onto the TOI. This restricts the
contained data to the use case we focus on, but does not allow mapping back from TOI
to an AOI (for example, this could be used to preset data). There exists research on
bidirectional tree transformations (e.g. [6]), which can be applied to extend the pro-
posed solution in future work. Additionally, since a profiled ontology is used, the
restrictions discussed in Sect. 4 also apply here.

Table 4. Linked data profile annotations.

Annotation Description

DataGroup/ObjectProperty annotations
:swIndividual Name of the instance to

be generated
:swClass Object type/class of the

group in target ontology
:swForIndividual* Name of the instance,

this item is associated
with

:swProperty* Object property name,
this item has in the
associated instance

* = for nested object properties only
DataItem/DataProperty annotations
:swType Type of the data

property in the target
ontology

:swForIndividual Name of the instance
this data item is
associated with

:swProperty Data property name, this
item has in the
associated instance

:Flightbooking.flightinfo
sa:swClass "fbo:FlightBookingRequest" ;
sa:swIndividual "flightbookingrequest" .

:Flightinfo.flight
sa:swClass "fbo:Flight" ;
sa:swProperty "fbo:flight" ;
sa:swIndividual "flight" ;
sa:swForIndividual "flightbookingrequest" .

:Flight.startdate
sa:swProperty "fbo:startdate" ;
sa:swForIndividual "flight" ;

 sa:swType "xmls:date" .
:Flight.fromdestination

sa:swProperty "fbo:fromdestination" ;
sa:swForIndividual "flight" ;
sa:swType "xmls:string" .

... .
:Returnflight.returndate

sa:swProperty "fbo:returndate" ;
sa:swForIndividual "flight" ;

 sa:swType "xmls:date" .
:Openjawflightinfo.openyawfromdestination

sa:swProperty "fbo:openyawfromdestination" ;
sa:swForIndividual "flight" ;
sa:swType "xmls:string" .

:Openjawflightinfo.departuredate
sa:swProperty "fbo:openyawstartdate" ;
sa:swForIndividual "flight" ;
sa:swType "xmls:date" .

Listing 3. Linked Data Annotations.

342 M. Hitz et al.

7 Generating the UI- and Target Ontology Instances

As outlined in Sect. 3, two transformations are needed to bring an application to life:
(1) a User Interface Transformation to generate the final UI to be presented to the user,
and (2) a Target Instance Transformation building a Target Ontology instance when
user input is ready. Figure 5 shows the transformation steps needed for the overall
solution. To generate a UI based on the AO, the approach presented by mimesis [8] is
used. It is based on the concepts of the CAMELEON framework introduced by Calvary
et al. [3].

Table 1 in Sect. 4.1 showed the information contained in the AO and how it is used
for the derivation of UIs. Figure 5 (c.f., User Interface Transformation) outlines the
steps for this transformation. The process starts with an instance of the data-centric
core model, which is built from the information contained in the AO. The core model
describes the processed data of the application according to the structure and properties
presented in Sect. 4.

• Step 1: the core model is transformed to an abstract UI (AUI) using information
about the context of use to concretize the information contained in the model. This
step is crucial to generate usable UIs from a solely data-centric model that inten-
tionally omits technical details. This includes enrichment with labels and texts
depending on the language context, the mapping of data types to concrete types of
the AUI (e.g., to map a German zip code to a text field restricted to 5 digits) and

Fig. 5. Derivation process [10].

Automatic UI Generation for Aggregated Linked Data Applications 343

abstract UI input elements to be used. The information here is derived from I1, I2, I3
and I4 (cf. Table 1)

• Step 2: derives a concrete UI from the AUI description by incorporating the device
context for which the UI is intended. It maps fields to pages by using information
about device restrictions and cohesion information contained in the model. The
latter indicates how a flow of questions may be split up and positioned on pages for
different device categories. The information needed here is derived from I2 and I4.

• Step 3: Depending on the technological context the final UI is derived by gener-
ating now concrete UI Widgets for the abstract controls of the AUI and by
implementing the functional aspects for the specific platform. This exploits the
behavioural information contained in the basic application model. The information
needed here is derived from I1, I5, I6 and I7.

These steps transform the model to a final UI, which is presented to the user on a
specific platform. After the user finishes input, an AOI containing the input data is
available. That needs to be mapped to an instance of the TO as outlined in Sect. 5. This
results in the last, deferred step of the process (Fig. 5., Target Instance
Transformation).

• Step 4: Traversal of the instance data tree within the AOI and generation of a TOI
based on the instance mapping annotations contained in the AO. The resulting data
object can be consumed by a linked data service following the target ontology.

8 Aggregation of Sharable Application Ontologies: A Novel
Paradigm for Composite Applications

The presented approach enables the description and automatic generation of a UI for a
single business process in a sharable way. It also offers the opportunity for a novel kind
of composite applications, that integrate services on the UI level.

8.1 Aggregation Scenario

In Fig. 6 a generic solution scenario is shown for the use of the proposed Application
Ontology to build aggregated frontends in a linked data environment (introduced in
Sect. 3). The central elements are the Target Ontologies (TO) and the corresponding
Application Ontologies (AO) - both sharable as reusable artefacts. The TOs define the
semantics of the input data for a business processes and thus are the connecting link
between an application and its backend. The AOs define variants of the user data to be
gathered as input for a specific business process and contain the information to produce
output conforming the Target Ontologies.

344 M. Hitz et al.

Figure 6 shows the process for aggregating multiple business processes into one
common UI based on the AO and the TO. In the depicted scenario, a Composed Client
Application selects multiple AOs ➊ from an arbitrary source (e.g. a local repository or
public resources on the internet).

For each of the selected AOs, the UI is generated ➋. To achieve this, a generic User
Interface Transformation is used, that derives the UI based on the UI related infor-
mation contained in the AO (structure, dynamics, etc.) following steps 1 to 4 outlined
in Sect. 6.

The resulting UI-components are then aggregated into a final composed UI of the
client application. The combination is presented to the user for input.

When the user finished entering information, the collected data for each AO
component (i.e., an instance of the AO) is sent to a Target Instance Transformation,
which exploits the mapping-related information available in the AOs to generate an
instance of the corresponding TO ➌ (outlined in Sect. 6, step 4).

The result is a collection of Target Ontology instances. Since the TOIs comply to
the expected data of the associated linked data services in the backend, they can be
used as input for the business process. The last step of the process would be to select a
concrete linked data service as target and to submit the TOI for further processing.

8.2 A Novel Application Integration Paradigm

The above approach has an impact on the way applications are built. It results in a
novel way to integrate application components as it may completely decouple the UI
from the targeted backends – at design time and at runtime. This is possible by
exploiting the benefits of semantic web and linked data approaches. Both, the Appli-
cation- and the Target Ontologies are shared knowledge in that scenario. They have
clearly defined semantics accessible and interpretable by everyone.

Fig. 6. Generic Solution Scenario architecture.

Automatic UI Generation for Aggregated Linked Data Applications 345

Benefits at Design Time
Since data is semantically specified by ontologies as common knowledge, providers of
services and application frontends can be freely exchanged. Both can provide reusable
artefacts based on the common vocabulary:

• Service providers can offer their domain service by implementing a shared and
commonly standardized API (i.e. the Target Ontology) by clearly indicating what
data is expected from a consumer of the service.

• Application UI providers can specify application variants (i.e. Application
Ontologies) relying on the Target Ontologies. Since common linked data tech-
nologies are used for the descriptions, they can be shared and reused by anyone.

• Aggregators can select from an arbitrary collection of Application Ontologies to
aggregate functionality and generate the frontend they need by using generic
Transformations.

Using the approach, Service Providers (e.g. businesses or other organisations) are
enabled to participate in an open linked data ecosystem. They are not responsible for
providing UIs for their services. Anyone can provide UI variants as an Application UI
provider and expose them to be used by anyone (e.g. through local, public or com-
munity based repositories providing AOs for certain domains). Finally, Aggregators
(e.g. businesses, third party businesses or even end users) can freely choose from the
shared AOs and are even free to choose the service providers, that process the business
functionality in the end.

Benefits at Run Time
Even runtime components might be shared within this ontology-driven scenario. User
Interface Transformation and the Target Instance Transformation mostly rely on
information available within the shared Application- and Target Ontology – which is
common knowledge. Hence, even transformation services might be supplied by any-
one, that perform the transformation to a specific UI based on the common vocabulary:

• Application Ontology Repository Providers might offer services to manage and
offer for example user group focused, reviewed and quality tested AOs for reuse.

• User Interface Transformation Providers might offer generators for different
technologies, platforms or user groups (e.g. outdoor workforce, disabled-persons)
relying on the informations in the Application Ontology.

• Aggregators can decide which Transformation Provider to choose to derive a
specific UI for the targeted user group/technology.

Application Ontology Repository Providers (e.g. companies, organisations, com-
munities) may play the role of distributors for AOs. They can offer AOs for selection
based on specific criteria (e.g., community-, quality- or domain related) and hence ease
the selection process for Aggregators. User Interface Transformation Providers (e.g.
businesses, organisations, communities) are enabled to contribute to UI generation for
the linked data ecosystem. They can provide UI transformations for e.g. very specific
situations and contexts reusable by everyone. Aggregators are enabled reuse a variety
and to provide a multitude of – literally generic - UIs.

346 M. Hitz et al.

This novel approach leads to a high degree of freedom in service aggregation on UI
level and enables the development of business model concepts that combine services
from different domains – like the aforementioned Distributed Marketspaces (e.g., [18]).

9 Validation

This section focuses on the validation of the stated objectives to show, that (1) on-
tologies can be used to describe application UIs in a non-proprietary way, which
(2) can be used to produce output conforming a target ontology. It shows as well, that
Application Ontologies provide (3) a sharable, reusable representation, which (4) can
be combined to generate aggregated UIs for arbitrary linked data applications.

The validation was carried out in association with a major German insurance
company from which we got data for the evaluation and which already uses parts of our
implementation results in production environments (i.e., to generate UIs of electronic
risk acceptance check applications for different products on customer and agent
portals).

For the analysis phase and evaluation of the implementation, the company provided
a set of typical ‘real-life’ dialog-based applications. From this set, relevant applications
were selected that cover the interaction patterns identified during analysis and to
demonstrate the usefulness of the automated process and the proposed Application
Ontology.

To allow a deeper investigation, a DOI is provided below1. It points to sample
resources for the flightbooking application used throughout this paper. It presents a
working example of application variants and the complete application models.

Basic Setting and Preparation
As basic design for the evaluation, we chose the architecture and building blocks
outlined in Sect. 7 (cf. Fig. 6) and implemented the required components for that
setting to be used in further validation steps.

First, the User Interface Transformation component was implemented as outlined
in Sect. 6, which resulted in a UI Transformation Service (exposed as a web service).
The implementation is based on available components from previous work [8]. We
reused the transformation and – for a comparative evaluation – an import module for a
proprietary application DSL (Domain Specific Language) that was developed as part of
the previous work. The UI Transformation Service transforms a data-centric core
model to a final UI for different platforms. It focuses on web-based dialog applications
(using HTML, JavaScript, CSS) for different device categories (mobile, desktop).

As a second step, an import module was implemented, reading the proposed
Application Ontology and converting it into the core data model of the Transformation
Service. Third, the Target Instance Transformation (cf. Figure 6) was implemented as
a web service. It consumes an AO and instance data as input, producing a TOI based on
the contained data as outlined in Sect. 5.

1 https://doi.org/10.13140/RG.2.2.24909.23520.

Automatic UI Generation for Aggregated Linked Data Applications 347

http://dx.doi.org/10.13140/RG.2.2.24909.23520

Applicability of Ontologies
To validate the applicability of the ontological approach, a comparative evaluation was
chosen based on the implementation of the UI Transformation Service. Figure 7 shows
the basic setting for the evaluation. The goal is to demonstrate that the proposed
ontology has the same expressive power as the mimesis DSL, which was already
evaluated in previous work. To achieve this, the same applications were modelled
using (1) the mimesis DSL and (2) the Application Ontology. Both were transformed to
the core model of the transformation service and the generated output was compared.

Results: The results show that both kinds of descriptions can be mapped to the same
core model and bear the same expressive power. The implementation shows that the
proposed approach for using Application Ontologies to describe UIs leads to the same
results as the solution using the proprietary mimesis DSL. While not being a formal
proof, the results indicate that the data-centric approach may be applied to ontological
descriptions of dialog applications. The evaluation showed as well, that the DSL (as
proprietary approach) was much easier to use and less error prone than manually
building AOs from scratch. But since the expressive power of both approaches is the
same, it is possible to use the DSL for modelling and automatically transform the
model into the proposed AO – preserving the benefits of both approaches.

Aggregation of Sharable and Reusable Application Descriptions
For the suitability of the proposed ontology as sharable, reusable application descrip-
tions for aggregated linked data applications, we applied the approach to a concept for
Distributed Market Spaces working with generic UIs for the specification of complex
product requests. This concept is already published in [9] and summarized here. The
objective is to show that Application Ontologies can be (1) shared and used to
generically build aggregated UIs and (2) can produce linked data requests – in this case
to build a complex product request from user input.

Figure 8 shows the basic architecture of the demonstrator. As generic user frontend
a Complex Product Builder (CPB) application was implemented, that lets users search
and select arbitrary Application Ontologies (AO) as proposed in this paper (Fig. 8, ➊).
These were drawn from a shared UI description repository containing AOs for different

Fig. 7. Basic setting for comparison [10].

348 M. Hitz et al.

product components (e.g., booking a concert ticket or a flight). The user-selected AOs
are sent to the Transformation Service (Fig. 8, ➋), which returns generated UIs for
each AO. These were aggregated to a final UI (Fig. 8, right). Since the UIs are gen-
erated from the elements contained in the AO, the user input relates to the corre-
sponding ontology elements. This allows building an instance model for each
presented AO containing the input data of the user using an Ontology Mapper (Fig. 8,
➌). The result is a set of ontology instances on which a reasoner can build a complex
product request, which is sent to the Market Space for further processing (i.e. gener-
ating a quote for the requested product components).

Results: Despite the demonstrator is still a proof-of-concept it shows that sharing
application descriptions is possible. In future work, AOs could be assembled from
arbitrary sources (e.g., topic-related repositories for insurance, travel planning, etc.)
and hence UIs for arbitrary domains might be generated. In addition, it shows that
target ontology instances can be derived from user input data using the mapping
information contained in the AO.

Although the approach lead to satisfying results and is easy to implement, we
observed a drawback regarding the user friendliness in modelling the mapping for
bigger AOs: hence the approach is focused on the AO, the information of the TOI is
scattered all over the AO model and thus hard to grasp and maintain. Future work
might focus on better tool support for this task or advanced mapping concepts.

10 Related Work

The research on the automatic generation of UIs covers many contributions during the
last years that are based on model-driven concepts.

User Interface Description Languages (UIDL) focus mainly on the description of
concrete UIs in a technology independent way. Examples are JavaFX (Fedortsova [5]),

Fig. 8. Generic UIs for complex product requests [10].

Automatic UI Generation for Aggregated Linked Data Applications 349

UIML (Abrams et al. [1]), UsiXML (Limbourg [14]) and XForms (W3C). The basic idea
is to model dialogs and forms by using technology independent descriptions of in-/
output controls and relations between elements (e.g. visibility) within a concrete UI.
Task-/conversation-based approaches describe applications by dialog flows which
are derived from task models – e.g. CAP3 (Van den Bergh et al. [21]), MARIA (Paterno
et al. [17]) and conversation-based approaches e.g. (Popp et al. [19]). They focus on a
concrete model of the dialog flows. To generate an application frontend, the steps in a
dialog flow are associated with technology independent UI descriptions displayed to
the user. Data-centric approaches can be found in JANUS (Balzert et al. [2]) and
Mecano (Puerta et al. [20]) which use a domain model as starting point for the
derivation of UIs. While JANUS was designed to only provide CRUD-like interfaces
for applications that work on a persisted domain model that does not support much
dynamics in the UI, Mecano adds these aspects to its description.

Existing Ontology-based approaches generally rely on the concepts of the men-
tioned approaches and use ontologies to represent the information about concrete UIs.
For instance, in analogy of UIDL approaches, Liu et al. [15] propose an ontology
driven framework to describe UIs based on concepts stored in a knowledge base.
Khushraj and Lassila [12] uses web service descriptions to derive UI descriptions based
on a UI ontology, adding UI related information to the concept descriptions (profile). In
analogy with task-based approaches, Gaulke and Ziegler [7] use a profiled domain
model enriched with UI related data to describe a UI and associate it with an ontology
driven task model.

Dissociation: The major requirements for the proposed model stated in in Sect. 2,
were to use a sharable representation that can be reused in different contexts. It has to
be used for UI derivation, must contain information for the mapping of user input to
target data and needs to be a self-contained description, suitable for aggregation on the
UI-level. (Req. 1 to Req. 5).

Although the models of the aforementioned approaches usually are suitable to
derive technical variants for specific environments (e.g. web applications), they do not
contain enough semantical information, that could be used for deriving UI variants for
different contexts of use (e.g. platforms, user groups). The UIs are manually modelled
using a occasionally large number of artefacts which usually are proprietary and UI-
specific. In addition, most approaches do not offer concepts for declaratively specifying
the mapping to associated backend services. This impedes the reuse as shared, self-
contained artefacts and their generic aggregation to more complex applications

The solution proposed in this paper is based on the application’s processed data and
enriches its model by additional semantics. This leads to a single, central description
for the application that serves as a knowledge base for the automatic derivation of
functional UI variants. The data-centric approach allows the reuse of the models in
different contexts and - by using a non-proprietary representation for the model - the
sharing and integration into different environments. Since the descriptions contain both
the information to derive UIs and the mapping to standardized linked data services, it is
possible to automatically generate fully functional applications for existing linked data
service ecosystems.

350 M. Hitz et al.

11 Conclusion and Future Work

In this paper an ontology-based, model-driven approach for modelling and automatic
generation of UIs for linked data services is presented. It allows a technology-agnostic,
sharable and reusable description of UIs for arbitrary domain-specific services relying
on linked data principles. The paper presents an approach for the reuse of such
descriptions, allowing to build novel applications by aggregation of services on the UI
level.

The novelty of this apporach lies in the complete decoupling of the UI- and the
service provider – taking benefit of semantic web and linked data approaches. It is a
clear shift away from solely describing specific UIs towards a description of combined
application components - which is a major differentiator to existing approaches.

The approach is based on an ontological model of the processed application data,
enhanced by type-related, structural and behavioural information needed to generate
non-trivial UIs. It contains additional information on how input data maps to input data
of targeted linked data services. The model represents a self-contained, ontological
description of the application data for a business process. The contained information is
used to generate UIs and to transform user data to input data of the targeted service.
Since the model is self-contained, it can be combined with other services.

In the course of the paper, we first identified the information needed to generate
non-trivial UIs and presented a meta-model, that contains the information generating
the application frontend. From this, an ontological model for applications was derived
by applying RDF/OWL to get a non-proprietary, sharable representation. The infor-
mation needed to map input data to target service data was identified and used to
enhance the model. Next, the process for UI- and target data transformation was
outlined, showing the steps to derive a final UI and the generation of the requested
target data based on the user input. An approach for the aggregation is outlined, that
reuses and combines the aforementioned artefacts as components for integration on the
UI level. Finally, the evaluation is presented which provides an implementation of the
generation process for UIs from an Application Ontology and a demonstrator for the
aggregation approach.

The results of the evaluation indicate the applicability of the proposed Application
Ontology for generating UIs for linked data applications: the evaluation demonstrated,
that (1) non-trivial UIs can be automatically generated based on a (2) sharable
Application description, which (3) may be aggregated to build novel applications with
augmented functionality. As the demonstrator shows, it is possible to automatically
generate aggregated UIs that may span different domains. The final UI is able to
produce an output that can be processed by related linked data services using the
information contained in instances of the proposed Application Ontology.

Future work: Currently the approach is intentionally limited to dialog based appli-
cations, as being a very important and frequently used application type in enterprise
information systems. Since a limited set of applications was used for analysis, we do
not claim completeness of the identified interaction patterns. The practical use of the
approach might bring forth additional interaction patterns, extending the basic infor-
mation set in future. Regarding the concept for aggregated applications, our research

Automatic UI Generation for Aggregated Linked Data Applications 351

does not cover all aspects yet. Currently, application descriptions are considered to be
separate, self-contained parts - ignoring possible dependencies between them on the
data level. Furthermore, it does not consider a wider user-related context that com-
ponents and their UIs may share and react to. Future work might focus on these
interaction aspects on the data level, which might add additional dependency and
context information to the proposed Application Ontologies.

References

1. Abrams, M., et al.: UIML: an appliance-independent XML user interface language. In:
WWW 1999 Proceedings of the Eighth International Conference on World Wide Web,
pp. 1695–1708 (1999)

2. Balzert, H., Hofmann, F., Kruschinski, V.: The JANUS application development environ-
ment - generating more than the user interface. In: Computer Aided Design of User
Interfaces, vol. 96, pp. 183–206 (1996)

3. Calvary, G., et al.: The CAMELEON Reference Framework, Components, vol. 60 (2002).
http://giove.isti.cnr.it/projects/cameleon.html

4. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In: EICS 2010
Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 1–8 (2010)

5. Fedortsova, I., Brown, G.: JavaFX Mastering FXML, Release 8. JavaFX Documentation
(2014). http://docs.oracle.com/javase/8/javafx/fxml-tutorial/preface.htm

6. Foster, J., Greenwald, M., Moore, J.: Combinators for bi-directional tree transformations: a
linguistic approach to the view update problem. ACM Sigplan 3, 1–64 (2005)

7. Gaulke, W., Ziegler, J.: Using profiled ontologies to leverage model driven user interface
generation. In: Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems – EICS 2015, pp. 254–259 (2015)

8. Hitz, M.: mimesis: Ein datenzentrierter Ansatz zur Modellierung von Varianten für
Interview-Anwendungen. In: Nissen, V., et al. (eds.) Proceedings - Multikonferenz
Wirtschaftsinformatik (MKWI) 2016. pp. 1155–1165 (2016)

9. Hitz, M., Radonjic-Simic, M., Reichwald, J., Pfisterer, D.: Generic UIs for requesting
complex products within distributed market spaces in the internet of everything. In:
Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016.
LNCS, vol. 9817, pp. 29–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45507-5_3

10. Hitz, M., Kessel, T. & Pfisterer, D., 2017. Towards Sharable Application Ontologies for the
Automatic Generation of UIs for Dialog based Linked Data Applications. In Proceedings of
the 5th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2017), pages 65–77, 2017

11. Hitzler, P. et al.: OWL 2 Web Ontology Language Primer. W3.org (2009). http://www.w3.
org/TR/2009/REC-owl2-primer-20091027/

12. Khushraj, D., Lassila, O.:. Ontological approach to generating personalized user interfaces
for web services. In: The Semantic Web–ISWC 2005, pp. 916–927 (2005)

13. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in UWE.
In: Proceedings of 3rd International Wsorkshop on Model-Driven Web Engineering
(MDWE 2007). CEUR-WS, p. 261 (2003)

352 M. Hitz et al.

http://giove.isti.cnr.it/projects/cameleon.html
http://docs.oracle.com/javase/8/javafx/fxml-tutorial/preface.htm
http://dx.doi.org/10.1007/978-3-319-45507-5_3
http://dx.doi.org/10.1007/978-3-319-45507-5_3
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

14. Limbourg, Q.: USIXML: a user interface description language supporting multiple levels of
independence. In: Matera, M., Comai, S., (eds.) ICWE Workshops. Rinton Press, pp. 325–
338 (2004)

15. Liu, B., Chen, H., He, W.: Deriving user interface from ontologies: a model-based approach.
In: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 2005,
pp. 254–259 (2005)

16. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, present, and future of model-based user
interface development. i-com. 10(3), 2–11 (2011)

17. Paterno, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiquitous environment. ACM Trans.
Comput.-Hum. Inter. 16(4), 19 (2009)

18. Pfisterer, D., Radonjic-Simic, M., Reichwald, J.: Business model design and architecture for
the internet of everything. J. Sens. Actuator Netw. 5(2), 7 (2016)

19. Popp, R., et al.: Automatic generation of the behavior of a user interface from a high-level
discourse model. In: Proceedings of the 42nd Annual Hawaii International Conference on
System Sciences, HICSS (2009)

20. Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A.: Beyond data models for automated
user interface generation. In: Proceedings British HCI 1994 (1994)

21. Van den Bergh, J., Luyten, K., Coninx, K.: CAP3: context-sensitive abstract user interface
specification. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems – EICS 2011, pp. 31–40 (2011)

Automatic UI Generation for Aggregated Linked Data Applications 353

Surveying Co-evolution in Modeling
Ecosystems

Jürgen Etzlstorfer1, Elisabeth Kapsammer1, Wieland Schwinger1,
and Johannes Schönböck2(B)

1 Johannes Kepler University, Linz, Austria
{juergen.etzlstorfer,elisabeth.kapsammer,wieland.schwinger}@cis.jku.at

2 Upper Austrian University of Applied Sciences, Hagenberg, Austria
johannes.schoenboeck@fh-hagenberg.at

Abstract. Metamodels, defining the determinant concepts of a domain,
constitute the core components in Model-Driven Engineering. Together
with their depending artifacts, e.g., models and transformations, they
form modeling ecosystems. To be operable, it is essential for a modeling
ecosystem to be in a valid state with respect to the various interde-
pendencies between the metamodel and its depending artifacts as well
as among the depending artifacts. Consequently, in case of metamodel
evolution, caused by, e.g., changing requirements, the depending arti-
facts have to be co-evolved accordingly to keep the system in a valid
state. With respect to modeling ecosystems, special effort has to be laid
to a consistent co-evolution across the different kinds of artifacts and
their relationships. Although several approaches for the co-evolution of
depending artifacts have been proposed, there was no special focus on
an ecosystem-wide perspective of co-evolution, yet. Therefore, this paper
focuses on co-evolution in modeling ecosystems by discussing the various
components of a modeling ecosystem and their relationships, depicting
the respective co-evolution process, proposing an evaluation framework
for co-evolution, and applying this framework to current approaches.
Based on this evaluation we derive lessons learned and present future
research directions.

Keywords: Model-driven engineering · Evolution · Co-evolution
Modeling ecosystem

1 Introduction

Software systems have become more and more complex with a rising number
of features, execution environments and platform dependencies [30,32]. In order
to cope with the ever growing complexity of software systems, the development
thereof has to be conducted on a steadily increasing level of abstraction. A
promising paradigm which raises the level of abstraction has been proposed by
the introduction of Model-Driven Engineering (MDE) [37]. MDE promotes a
shift from the “everything is an object” paradigm to an “everything is a model”
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 354–376, 2018.
https://doi.org/10.1007/978-3-319-94764-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_15&domain=pdf

Surveying Co-evolution in Modeling Ecosystems 355

paradigm [2], putting models as the central artifacts during the complete software
development life-cycle.

As the cornerstones in MDE, metamodels define the basic concepts and rela-
tionships in between for a certain domain. Their importance is further under-
lined by the fact that a diversity of different kinds of artifacts depends on a
metamodel, e.g., models, instantiating the concepts of the metamodel [2], trans-
formations, being comparable to compilers in high-level programming languages,
operating on models that refer to concepts of the metamodel, [8,39], concrete
syntaxes, defining how modeling concepts are rendered visually [1] or textually
expressed [4], and even tools, building upon the metamodel [40]. All these arti-
facts together build a so-called modeling ecosystem, i.e., “a metamodel-centered
environment whose entities are traditionally subject to distinct evolutionary
pressures but cannot have independent life-cycles” [10]. In a more general per-
spective, a software ecosystem “consists of the set of software solutions that
enable, support, and automate the activities and transactions by the actors in
the associated social or business ecosystem and the organizations that provide
these solutions” [3]. The different kinds of artifacts in a modeling ecosystem have
different kinds of relationships and dependencies to the metamodel and among
each other. In this context, it is of utmost importance that all artifacts are in
a valid state, i.e., they have to satisfy the given relationships and dependencies,
both, with respect to the metamodel as well as to each other in a consistent way,
in order to preserve validity of the whole modeling ecosystem.

As a matter of course, metamodels are not static. In the course of evolution,
e.g., caused by changing requirements, metamodels might change. For illustrat-
ing metamodel evolution, a small, but indeed realistic example is shown in Fig. 1.
As one can see, class Type has been extracted from class Attribute and cor-
responds to attribute Attribute.type of MetamodelV 0, resulting in the classes
Attribute and Type of MetamodelV 1, being connected by the new reference
Attribute.type. As a consequence, referring to attribute Attribute.type is
no longer consistent with MetamodelV 1, necessitating all depending artifacts,
e.g., all models that instantiate MetamodelV 0, in the ecosystem to be migrated
to be again valid, i.e., they have to co-evolve (cf. Fig. 1). Due to their differ-
ent nature and since the distinct kinds of artifacts existing in an ecosystem
may hold different kinds of relationships, each kind of artifact has to be treated
specifically. Consequently, migration is not limited to one kind of artifact, only,
but in fact has to be performed for all kinds of depending artifacts and their
respective instances, entailing the risk of introducing divergence between the var-
ious migrations leading to inconsistencies [26]. Discovering and resolving already
introduced inconsistencies is a tedious task, since they might spread across all
artifacts in the ecosystem. Thus, comprehensive tool support is indispensable.

Although several approaches for the co-evolution of modeling artifacts have
been proposed, e.g., [20,35] for models and [27,29] for transformations, they
differ substantially from each other regarding their capabilities with respect to
modeling ecosystems. This is since there are several aspects in co-evolution that
are specific in the context of an ecosystem-wide perspective, in contrast to an

356 J. Etzlstorfer et al.

Fig. 1. Evolution and co-evolution in a modeling ecosystem.

isolated view on a single kind of artifact, only. Thus, an in-depth investigation
of existing co-evolution approaches is needed to discover their adequacy in the
context of a modeling ecosystem.

Therefore, in this paper four major contributions are provided: (i) the rela-
tionships between artifacts in modeling ecosystems are presented, (ii) a respec-
tive co-evolution process is depicted, which further builds the basis for (iii)
an evaluation framework for the comparison of co-evolution approaches with
special respect to modeling ecosystems. Finally, (iv) the evaluation framework
is applied to state-of-the-art co-evolution approaches and lessons learned are
drawn from the evaluation which outline current drawbacks and possible future
research lines. With respect to evolving and depending artifacts, this paper
focuses on metamodels as evolving artifacts and models as well as transfor-
mations as depending artifacts, respectively. This is due to the fact that most of
the related research as well as existing approaches focus on such a scenario. Nev-
ertheless, the findings of this paper as well as the general parts of the evaluation
framework are also applicable to other modeling artifacts (e.g., concrete textual
or graphical syntax). The work presented in this paper bases on and extends our
previous work discussed in [11].

The paper is organized as follows: The next section explores modeling ecosys-
tems and the relationships between artifacts in these ecosystems, while in Sect. 3
the according co-evolution process is depicted and the evaluation framework is
presented as well as applied to current approaches. In Sect. 4 we discuss lessons
learned, while Sect. 5 presents related work. Finally, Sect. 6 concludes the paper
by summarizing and presenting future research directions.

Surveying Co-evolution in Modeling Ecosystems 357

2 Evolving Modeling Ecosystem

In the following, we discuss artifacts in a modeling ecosystem and specially focus
on the relationships between the involved artifacts.

2.1 Modeling Ecosystem

In the course of MDE, a model is tightly interwoven with a diversity of different
artifacts that may depend on each other, thereby building a modeling ecosys-
tem [10]. With respect to evolution of modeling ecosystems, metamodels take
an outstanding position among the artifacts. This is since the metamodel can
be seen as a central artifact, defining the determinant concepts of a domain,
which are utilized in other artifacts, that therefore depend on the metamodel.
The metamodel may be expressed in terms of a meta-metamodel (e.g., MOF or
Ecore), consequently, a metamodel itself needs to conform to a meta-metamodel
as shown in Fig. 2. As further depicted, we differentiate the artifacts in metamod-
els and their depending artifacts, being again specialized into different kinds of
artifacts, like models, transformations, concrete syntax, tools, and other artifacts
(cf. Fig. 2).

Fig. 2. Artifacts and relationships in a modeling ecosystem.

The general dependsOn relationship between a metamodel and its depending
artifacts may be refined for each kind of artifact within the modeling ecosys-
tem. For example, in case of models it is required that they conform to their
respective metamodel. In this respect, this conformance relationship is a refine-
ment of the more general dependsOn relationship. Regarding transformations,

358 J. Etzlstorfer et al.

they need to conform to their transformation metamodel defining the syntactic
constraints of transformation definitions, but additionally, have dependencies on
the source domain and target domain employed in the transformation definition.
Furthermore, other depending artifacts, like concrete syntax specifications and
tools assisting the modeler in diverse tasks, might exhibit specific dependencies
on the metamodel.

Just like any other piece of software, artifacts in a modeling ecosystem are
subject to constant evolution, e.g., due to changing requirements [19]. Each arti-
fact might undergo changes which might impact depending artifacts. As one
might see, an evolution of a model metamodel, i.e., ModelMM, impacts all con-
forming models, i.e., instances of this ModelMM, as well as all transformations,
if the source or target domain conforms to a metamodel under evolution. Addi-
tionally, since most transformation languages themselves rely on metamodels,
changes to these transformation metamodels, i.e., TrafoMM, might impact the
conformance of all depending transformations. In this context, we do not explic-
itly differ between graph transformations, bi-directional transformations, or plain
text-based transformations, since the conceptual work presented in this paper
is applicable to all of them. In general, the kind of dependency determines the
impact of a metamodel change on the depending artifact, thus, the impacts are
specific for each kind of depending artifact.

To keep the modeling ecosystem in a consistent state it is vital that all
artifacts hold valid relationships (i) to their respective metamodels as well as
(ii) among each other. Due to their dependencies the co-evolution of artifacts
may influence each other, e.g., when changes are applied on one artifact in the
ecosystem it might induce an inconsistency in the ecosystem, necessitating a cor-
responding migration of the affected depending artifacts. The inter-dependencies
between the artifacts demand for an ecosystem-wide perspective and, thus, an
ecosystem-wide co-evolution across all artifacts to re-establish the consistency
and preserve the operability of the modeling ecosystem is needed.

2.2 Relationships in a Modeling Ecosystem

In order to understand the inter-dependencies between the different kinds of
artifacts responsible for impacts of evolution, in the following, the relationships
in a modeling ecosystem are identified and discussed, based on studied literature
(e.g., [2,9,29,36]) as well as our own experiences and findings. Therefore, the
most generic relationship is presented first, while refinements for models and
transformations are subsequently discussed.

– dependsOn. Since a metamodel defines the abstract syntax all artifacts in
the modeling ecosystem depend on a metamodel in general. However, this kind
of dependency has to be specialized for each kind of artifact, since the depend-
sOn relationship does not impose any specific constraints on the validity of
this relationship between the metamodel and other depending artifacts. This
kind of relationship might not have a formalized representation, but can relate

Surveying Co-evolution in Modeling Ecosystems 359

arbitrary artifacts to the metamodel in general, as for example GMF models1

[9]. Artifacts connected via this relationship are affected by the metamodel
definition in an arbitrary way. Consequently, the dependsOn relationship is
the most generic dependency relationship between artifacts in the ecosystem
and is refined by other dependency relationships.

– conformsTo. The most prominent refinement of the dependsOn relationship
in a modeling ecosystem holds between a model and its according metamodel.
More strictly, a model conforms to a metamodel, if only concepts that are
defined in the metamodel are used, according to the rules and constraints
specified in the metamodel [38], e.g., multiplicity constraints. Furthermore,
metamodels themselves have to conform to their meta-metamodels, e.g., MOF
[33] or its open-source implementation Ecore as basis of the Eclipse Model-
ing Framework2. Moreover and as already highlighted in [2], model transfor-
mations themselves can be seen as models that conform to their respective
transformation metamodel, e.g., the ATL metamodel [22]. Thus, an evolution
of a metamodel has impact on the conformsTo relationship of all its depend-
ing artifacts, which in response have to co-evolve to re-establish a broken
conformsTo relationship. Additionally, artifacts taking part in this kind of
relationship typically strongly drive the definition of the metamodel.

Fig. 3. Detailed relationships for transformations.

– sourceDomainConformsTo and targetDomainConformsTo. Playing a
vital role in MDE, transformations, comparable to compilers in high-level pro-
gramming languages [23], take source models conforming to a source meta-
model as input and generate target models conforming to a target metamodel
as output (cf. Fig. 3), thus, specializing domainConformsTo in (cf. Fig. 2). A

1 https://eclipse.org/modeling/gmp/.
2 https://eclipse.org/modeling/emf/.

https://eclipse.org/modeling/gmp/
https://eclipse.org/modeling/emf/

360 J. Etzlstorfer et al.

transformation itself has two different kinds of relationships to the source and
target metamodel, respectively. First, the sourceDomainConformsTo rela-
tionship states that in the source domain of the transformation definition
concepts from the source metamodel are permitted, only. In contrast, the
targetDomainConformsTo relationships only holds, if in the target domain of
the transformation definition concepts from the target metamodel are used,
only. In this context, the domain conformances can be seen as specifications
the input and output has to conform to.
Although in [29] the term domainConformsTo for the relationship between
the source metamodel and the source domain of a transformation has been
introduced (and analogously the term coDomainConformsTo for the target
representatives), we stick to the terms proposed in this paper – sourceDo-
mainConformsTo and targetDomainConformsTo – being more intuitive and
precise, since they clearly explicate the respective source or target roles of the
involved metamodels.
Regarding an evolution of a metamodel involved in a transformation specifi-
cation as source or target domain, its impact is determined by both, the role
of the metamodel as source or target and the actual models the transforma-
tion operates on, since impacts might not only reveal at specification time,
but also during execution.

– operatesOn. Having model transformations as part of the modeling ecosys-
tem, they are eventually executed on models, thus, they operate on them,
i.e., a transformation is executed processing a specific model. An important
aspect for this relationship is, that it has to be ensured that the metamodel
of the source model is the same metamodel as for the sourceDomainConform-
sTo relationship of the transformation, i.e., the transformation operates on a
model which is conform to the source domain of the transformation. An evo-
lution of a metamodel affects the operatesOn relationship, since the models
as well as the transformations depending on the metamodel are affected, hav-
ing a transitive effect on the operatesOn relationship. Thus, by co-evolving
the depending artifacts, the operatesOn relationship is re-established as a
result thereof. It is of utmost importance, however, that the co-evolution of
models and transformations is performed consistently, i.e., following the same
strategy, to successfully re-establish this relationship.

In summary, one might see that modeling ecosystems not only comprise dif-
ferent kinds of artifacts, but also different kinds of relationships between the
artifacts and the metamodel as well as between the artifacts themselves, which
are affected by an evolution of the metamodel. Consequently, an ecosystem-wide
perspective on evolution and co-evolution is necessary to keep the system in a
valid state and to maintain the operability of the entire modeling ecosystem.

3 Aspects of Co-evolution

In the following, aspects of co-evolution with respect to modeling ecosystems are
discussed. Therefore, we present (i) the overall co-evolution process (cf. Sect. 3.1)

Surveying Co-evolution in Modeling Ecosystems 361

which is then used to (ii) propose a set of criteria for a corresponding evaluation
framework (cf. Sect. 3.2). This evaluation framework and its criteria serve (iii)
for an evaluation of existing approaches addressing co-evolution presented in
Sect. 3.3.

3.1 Co-evolution Process

In the context of modeling ecosystems, as shown in Fig. 4, the process of co-
evolution spans over four phases. Supposing the modeling ecosystem is in a
consistent state V0, in line with [17], evolution of the metamodel triggers the
following phases: (i) change detection, (ii) propagation specification and execu-
tion, (iii) impact analysis, and optionally (iv) validation (not depicted in Fig. 4).

Thereby, change detection, essentially determining the succeeding phases,
addresses the identification of actual changes applied during metamodel evo-
lution. It has to be noted, that this phase operates on the metamodel, only,
whereas subsequent phases have to be performed on each kind of artifact. Most
often, specific tools such as EMF Refactor3 or EMF Compare4 may be applied
in order to conduct the evolution or to detect changes to the metamodel.

Based on the results of the change detection phase, the actual specification
of propagation semantics takes place. Often specific co-evolution languages are
provided that ease this kind of specification. The specification should take place
on a level, which is independent of the kind of artifact. Based on this specifica-
tion, however, artifact dependent co-evolution scripts should be derived in order
to make use of existing engines to actually execute the propagation semantics to
accomplish co-evolution.

In between the specification and the execution of the propagation semantics,
the impact analysis determines, which impacts the previously specified propa-
gation semantics has on diverse kinds of depending artifacts. In this respect,
tracelinks between original and evolved versions of the metamodel as well as
meta data on the affected depending artifacts may serve as a basis in order to
estimate the potential problems and costs, e.g., how many elements are affected
by a change or how many manual changes are required after propagation to
ensure a consistent co-evolution. These results should be presented to the user
to provide a solid basis for deciding, if the change is worth the effort and, con-
sequently, the propagation semantics should be executed or even the respective
change to the metamodel should be set back.

Finally, an optional validation of the migrated artifacts may follow, checking
whether the modeling ecosystem is again in a consistent state in its migrated
version V1.

3.2 Evaluation Framework

In the following, specific aspects of co-evolution in the context of modeling
ecosystems are discussed based on the co-evolution process presented before.
3 https://www.eclipse.org/emf-refactor/.
4 http://www.eclipse.org/emf/compare.

https://www.eclipse.org/emf-refactor/
http://www.eclipse.org/emf/compare

362 J. Etzlstorfer et al.

In form of an evaluation framework these aspects will serve as criteria for evalu-
ating and comparing existing co-evolution approaches (cf. Sect. 3.3). The criteria
have been derived top-down from the modeling ecosystem co-evolution process
(cf. Fig. 4) as well as in bottom-up manner by considering related criteria that
have been discussed in literature like [21,34]. The evaluation framework may eas-
ily be extended for other kinds of artifacts. In the scope of this paper, however,
it is elaborated in detail for models as well as transformations.

Propagation
ExecutionImpact AnalysisPropagation Specification

Co-Evolution
Specification

Dependent
ArtifactsV0

Dependent
ArtifactsV1

Problem and
Cost Evaluator

dependsOn

dependsOn

Co-Evolution
Scripts

Execution
Engine

Co-Evolution
Code

Generators

Co-Evolution

Problem
and Cost

Estimation

Artifact-
specific

Artifact-
independent

Library of
Analysis

Functions

refer to

type 1..1
Type

type: String

Attribute
name: String

MetamodelV0 MetamodelV1

Evolution

Attribute
name : String
type : String

Tracelinks

Artifact-
independent

1 3

ExtractClass

OR

O
pe

ra
tio

n-
ba

se
d

St
at

e-
ba

se
d

…

Recorded
Changes

AddClass +
MoveAttribute +
AddReference

ExtractClass

Reconstructed
Changes

Change Log

EMFCompare

…EMF
Refactor

Refactoring Tool

Edapt

Artifact-
independent

2.1 2.2Change Detection

Fig. 4. Co-evolution process of a modeling ecosystem.

General Criteria. At the beginning, the first set of criteria covers general
characteristics of co-evolution approaches with respect to modeling ecosystems.

– Evolving Artifact. This criterion investigates which artifacts are considered
for evolution by a particular approach. Specifically, it indicates which meta-
models are considered, acting as metamodel for either models, i.e., ModelMM,
or transformations, i.e., TrafoMM. In case of a ModelMM, it identifies further,
whether it acts as source metamodel or target metamodel of a transformation.
Finally, also support for other evolving artifacts is investigated.

– Depending Artifact. As already discussed in Sect. 2.2 the kind of depen-
dency is specific for each kind of artifact. Depending artifacts that are explic-
itly focused in this evaluation comprise models and transformations as well as
other artifacts, that are affected by changes, e.g., concrete textual or graphical
syntax.

Surveying Co-evolution in Modeling Ecosystems 363

– Automatic Monitoring. In order to inform the user about changes, it would
be advantageous for maintaining or re-establishing consistency by automat-
ically monitoring the modeling ecosystem. In this respect this criteria gives
indication whether or not an approach monitors any artifact in the ecosystem
to alert the user in case of changes. co

– Transactions. This criterion tests whether co-evolution is considered as
transaction, ensuring that artifacts are either completely migrated to their
new version or set back to their initial state [16]. If supported it is indicated
whether transactions may span over different ranges of artifacts and phases
of the co-evolution process. Regarding the range, it is indicated whether a
transaction spans over one artifact (i.e., ensuring that all references to the
evolved metamodel within one artifact are considered), all instances of one
kind of artifact (i.e., ensuring that all instances of a particular kind of depen-
dent artifact are considered in their entirety), or all instances of all kinds of
artifacts (i.e., ensuring that all instances of all kinds of dependent artifact
are considered in their entirety). Considering the phases of the co-evolution
process, it is investigated, to which extent the detailed phases of change appli-
cation, change detection, impact analysis, and change propagation are consid-
ered within transactional support.

– Version Management. Since evolution yields various versions of artifacts
(either as evolution branches or due to intermediate co-evolution states), this
criterion identifies if and to which extent handling of different versions in the
modeling ecosystem is explicitly supported. In addition to common features
of version management systems, e.g., going back to a previous version of a
modelling ecosystem, it should be possible to identify which artifacts depend
on which version of the metamodel(s) and other artifacts, respectively.

Change Detection. The second set of criteria covers the change detection
phase of the co-evolution process (cf. Fig. 4) and is employed to determine in
detail how and which changes can be detected.

– Kind of Detection. This criterion identifies on which basis changes may be
detected, either state-based or operation-based [24]. State-based means that
changes are identified by comparing the original version and the evolved one in
order to infer a set of changes applied during evolution. Alternatively, changes
can be detected by recording the actually applied changes, which is termed
operation-based. However, this scenario requires specific tool support during
evolution, i.e. an editor that either provides predefined evolution operations
or that tracks changes. Finally, there is the option that the changes to be
considered for evolution are specified manually and thus explicitly stated.
Finally, hybrid forms combining the different change detection options are
possible as well.

– Granularity of Change. This criterion explicates the level of granularity
at which changes are detected. Specifically, it is indicated whether atomic
or composite changes may be detected [5]. Atomic change detection recog-
nizes changes on the level of adding, updating, or deleting elements but does

364 J. Etzlstorfer et al.

not respect eventual inter-connections between changes, which would provide
more semantics for an adequate co-evolution strategy. In contrast, compos-
ite change detection explicitly considers semantically connected sequences of
changes, e.g., refactorings like introducing a base class or vertical partition-
ing (as applied in our evolution scenario in Fig. 4). It has to be noted that
approaches employing a state-based identification of changes would need to
infer composite changes based on differences of individual metamodel ele-
ments in the compared versions while operation-based approaches typically
provide specific predefined operations for such more coarse-grained changes.

– Target of Change. The criterion target of change identifies whether changes
are identified with respect to syntactical changes on the evolving artifact (i.e.,
syntax) or whether the semantics of the metamodel element is considered for
the change as well. The latter would be the case if changes to the interpre-
tation of what is expressed with a metamodel element are considered. For
example changing the unit in which a value of an attribute is expressed does
not have an effect on the syntax and, thus, the syntactical conformance of
depending artifacts is not violated. Nevertheless, model as well as transforma-
tion co-evolution could be necessary. This is since the values of the particular
model element, however, would have to be changed and transformations could
be affected, e.g., in case that attribute values are interpreted and treated
incorrectly, when processing the migrated models.

Propagation Specification and Execution. The third set of criteria expli-
cates how, depending on the identified changes from the change detection phase,
an according propagation semantics is specified and eventually propagated to
the depending artifacts.

– Specification Language. In order to enable the user to specify the actual
propagation semantics either (i) a specific co-evolution DSL may be provided
or (ii) standard transformation or programming languages may be employed.
On the one hand, a DSL reduces the specification effort but, on the other
hand, probably limits the possibilities for co-evolution to a restricted set of
predefined operators.

– Propagation Strategy. This criterion explicates if built-in, predefined
strategies for metamodel changes are provided to perform co-evolution. If such
strategies are provided it is further investigated if only one fixed strategy is
provided or if alternative propagation strategies are provided. As discussed in
[38] and shown in Fig. 5 more than one alternative might exist to re-establish
consistency for depending artifacts. For instance, the vertical partitioning
presented in our example might be resolved for models either by creating a
Type object for every element or by creating a Type object only for distinct
values of the corresponding attribute Attribute.type.
Besides providing a number of alternatives, it may also be possible to allow
the user to customize (e.g., adaptation, parametrization or overwriting) pro-
vided propagation strategies. Finally, since it is hardly possible to consider
all possible scenarios upfront, a comprehensive co-evolution tool should allow

Surveying Co-evolution in Modeling Ecosystems 365

Fig. 5. Migration alternatives.

the user to incorporate new migration strategies independently of predefined
ones (i.e., user-definable).

– Automation. This criterion evaluates the grade of automation provided
for co-evolution with respect to propagation. Thereby, propagation can be
either performed automatic, i.e., operating without user intervention or semi-
automatic, i.e., incorporating user intervention during propagation. In this
respect, semi-automatic approaches often only generate some stubs for co-
evolution but require the user to complete the specification.

– Consistency. This criterion identifies to which extent the approach consid-
ers the modeling ecosystem’s consistency during propagation. Without an
ecosystem-wide perspective the focus in a co-evolution process is on a single
kind of depending artifact, only. However, if we consider that the modeling
ecosystem comprises various kinds of depending artifacts with potentially
multiply instances, the co-evolution process gets extensive. Please note, that
although change propagation is performed on each depending artifact individ-
ually, it has to be in accordance across all different kinds of artifacts in order to
allow for a comprehensive co-evolution (cf. Fig. 6). In this respect approaches
may either ensure intra-artifact or inter-artifact consistency. Intra-artifact
means that a correct co-evolution is ensured for all instances of a certain
kind of artifact, only, e.g., it ensures that all models are co-evolved in the
same manner. However, potential relationships to transformations are not
considered and thus a different co-evolution strategy might be employed for
transformations leading to an inconsistent state within the modeling ecosys-
tem. In contrast, inter-artifact consistency means that the same propagation
semantics should be ensured for all kinds of depending artifacts within a mod-

366 J. Etzlstorfer et al.

ModelV0

Source MMSource MM

conformsTo conformsTo

Evolution

demands for

Transformation

sourceDomain
ConformsTo

Transformation

ModelModel Migration

Transformation Migration

Inter-Artifact Consistency

M
2

sourceDomain
ConformsTo

V0 V1

V1

Intra-Artifact ConsistencyV0 V1
M
1

Fig. 6. Consistency in co-evolution in context of a modeling ecosystem.

eling ecosystem, e.g., by deriving artifact specific co-evolution scripts on the
basis of an artifact independet co-evolution DSL, as envisioned in Fig. 4.

Impact Analysis. This set of criteria determines if and at which level of detail
impacts are identified.

– Explicated Analysis. This criterion identifies to which extent the impact
analysis is explicated with respect to the different kinds of dependency rela-
tionships. It has to be noted that this criterion is dependent on the kind of
artifact supported by the approach, since each kind yields different specific
dependency relationships. Thus this criterion identifies explicated analysis for
conforms-to in case of models, source-domain-conforms-to and target-domain-
conforms-to in case of transformations, and finally, on other relationships for
other kinds of depending artifacts in the ecosystem.

– Level. This criterion identifies at which level the impact is analyzed. Thereby,
the impact analysis can be either performed on type level, i.e., an analysis of
potential impacts on models or transformations of metamodel changes, or
on instance level, i.e., revealing the impacts on the actual instances in the
ecosystem that are affected.

– Granularity. Impacts of metamodel changes on the artifacts may be detected
on different level of granularity which again is dependent on the kind of
depending artifact supported. In case of models this criterion spans from fea-
ture level, i.e., fine-grained, over class level to package level, i.e., the more
coarse-grained level. In case of transformations, granularity spans over the
levels of bindings, rules, and modules. Furthermore, if the transformation
employs OCL for querying model elements, impacts may even be detected
on OCL level.

– Impact Severeness Scoring. This criterion identifies whether the impact
analysis yields information on the severeness of the changes’ impact on the
dependent artifacts. Such impact severeness scoring would allow users to dis-
tinguish changes causing costly migration effects on the modeling ecosystem
(e.g., a large number of affected depending artifacts) from changes having

Surveying Co-evolution in Modeling Ecosystems 367

little or no effect on migrating the depending artifacts (e.g., so-called non-
breaking changes). This would allow the user’s reflecting on the changes to the
metamodel, possibly reverting changes and turning to other changes implying
less severe implications on the depending artifacts.

– Processing Impacts. This criterion identifies whether, in case of executable
artifacts like transformations, impacts that only occur at processing time
(i.e., running the transformation logic) are considered. An example of such
an impact is changing a feature from mandatory to optional. This might
cause transformations that assume the existence of this feature to operate
incorrectly, if the value for this feature is not set, or even to break at run-
time similarly to null-pointer exceptions in programming languages.

Validation. Related to the final and optional phase of validation, this set of
criteria is employed to determine if and to which extent the performed change
propagation is validated to ensure a consistent ecosystem.

– Type of Validation. This criterion explicates on the type of validation
offered after the propagation is performed. Thereby, the propagation might
be validated syntactically, e.g., for models conformance may be validated with
EMF, while for transformations the syntactical correctness may be validated
with the compiler specific for the transformation language. Additionally, the
semantical correctness may be validated, e.g., with regression testing [12].

– Range of Validation. This criterion gives indication whether validation
ranges over one instance of an artifact, all instances of one kind of artifact,
or all instances of all kinds of artifact.

Based on the presented evaluation framework in the next section contempo-
rary co-evolution approaches will be evaluated.

3.3 Evaluation

To give an overview on the current state of the art with respect to the evolution
and co-evolution of a modeling ecosystem, in the following eleven contempo-
rary approaches have been selected and evaluated according to the evaluation
framework presented in the previous section. Approaches selected for this eval-
uation either directly support co-evolution or provide a language or framework
for defining and performing co-evolution on models, transformations, or other
depending artifacts. Reviewing the literature dealing with model-driven engi-
neering topics in terms of proceedings of conferences and workshops as well as
journals, we identified eleven approaches that provide for such support. Work
that describes application of proposed approaches, only, however, has not been
included in this selection. Investigating these approaches yields the results as
summarized in Table 1 and discussed in the following.

368 J. Etzlstorfer et al.

Table 1. Evaluation of co-evolution approaches (based on [11]).

Surveying Co-evolution in Modeling Ecosystems 369

General Criteria. Out of the evaluated eleven approaches, most approaches
thereby focus on a specific kind of depending artifact, only. Six approaches,
namely [6,13,17,20,35,41], aim at model co-evolution whereas three approaches,
[14,15,25], focus solely at co-evolution of transformations. Two of the investi-
gated approaches [10,26], however, take up a more ecosystem-wide perspective
by supporting, both, models as well as transformations. Thereby, [10] serves as
a framework for co-evolution of an even wider range of modeling artifacts, e.g.,
GMF models.

Of all five approaches dealing with transformation co-evolution, three
approaches [10,14,15] consider the evolution of, both, source and target meta-
models. The approach of [25] also supports co-evolution of transformations in
reaction to source and target metamodel evolution, but in case of copy trans-
formations, a specific form of a model transformation, only. Evolution of the
transformation metamodel or other modeling artifacts is not considered in the
surveyed approaches. A sole exception therefrom is [10], since they provide a
framework instead of a concrete approach.

The automatic monitoring of the evolution of the respective supported arti-
facts is not supported by any of the approaches evaluated. Likewise none of the
approaches supports transactions or version management.

Change Detection. Regarding change detection, five approaches rely on a
state-based changed detection ([6,13–15,17]), whereas four approaches employ
operation-based change detection ([20,25,26,41]). Only two approaches do not
provide any means for automatic change detection and base on manual change
specifications ([10,35]).

Almost all approaches support, both, atomic as well as composite changes.
The only exception is [17], which does not support composite changes. Inter-
estingly, [26], instead of dealing with composite changes by predefining a fixed
set, considers composite changes as pure composition from atomic changes, thus
being open to allowing for new, self-defined composites. Since [10,35] rely on
manual detection, only, this criterion is not applicable for those approaches.

As expected, all of the examined approaches focus on syntax as target of
changes. Semantic changes are currently not considered.

Propagation. Concerning the specification of changes, only four approaches
rely on a dedicated co-evolution DSL. The other approaches employ standard
transformation or programming languages, aggravating the specification of the
co-evolution semantics.

Regarding the actual propagation of changes, all but two approaches [10,35]
support a predefined migration strategy. Only [26], however, allows for the spec-
ification of alternative propagation semantics and, thus, enables users to specify
their intent more precisely. All approaches except [17] allow for customization
of the migration process. Only five out of eleven approaches, however, allow for
user-definable propagation of changes. Only the approach of [26] provides dedi-

370 J. Etzlstorfer et al.

cated means for easing the specification within the DSL. The other approaches
require dealing with the low level details of the co-evolution approach.

Eight approaches allow for an automatic migration process [6,10,13,15,17,
26,35,41], while the other three target transformation co-evolution in a semi-
automatic way [14,15,25], requiring user intervention during the co-evolution
process. The approach presented in [14] bases on a so-called mapping model
which needs to be further refined by the user. In contrast, in [15] only code
stubs are generated which have to be completed during the co-evolution process
by the user. A similar approach is followed in [25]. It has to be noted, that
despite inducing a specification overhead for users, these approaches allow them
to influence the co-evolution process according to their desired intent.

Concerning consistency, only two approaches [14,26] ensure intra-artifact
consistency. Notably, only one approach also provides inter-artifact consis-
tency [26]. Inter-artifact consistency is achieved by providing a single DSL for
evolving depending artifacts. Based on this DSL, artifact-specific co-evolution
scripts are automatically derived, which execute the specified semantics and
propagate the changes to a specific depending artifact, e.g., an ATL HOT is
used to co-evolve transformations defined using ATL.

Impact Analysis. Considering impact analysis, two approaches provide an
explicated analysis of changes with respect to the conforms-to relationship
between models and metamodels [17,26], two approaches consider the source-
domain-conforms-to relationship [15,26], and a single approach regards the
target-domain-conforms-to relationship [15].

Impact analysis is performed on type level by seven approaches [7,14,15,
17,20,25,26], while impact analysis on instance level is supported by none of
the examined approaches. Results of the impact analysis, however, can not be
directly employed for user intervention by any of the examined approaches.
Approaches that support impact analysis on models provide analysis on feature,
class, and package level [6,17,20,26]. In case of transformations, the level of bind-
ings, rules, and modules is supported by three approaches [15,25,26], whereas
only two approach additionally detect impacts on OCL level [15,26]. None of the
examined approaches, however, is capable of detecting run-time effects before the
actual execution of artifacts, e.g., by running a transformation.

Validation. Up to now, validation of the co-evolution process is just sparsely
supported. Only the approach presented in [26] supports validation of migrated
artifacts, both, syntactically and semantically. In this context, the approach is
able to validate all instances of all supported kinds of artifacts, i.e., models and
transformations [26]. For the validation the PaMoMo language is used [18].

The evaluation of these eleven contemporary co-evolution approaches yields
some lessons learned that are presented in the next section.

Surveying Co-evolution in Modeling Ecosystems 371

4 Lessons Learned

After having evaluated existing co-evolution approaches with the presented eval-
uation framework, in the following, lessons learned drawn from the evaluation
are discussed.

Need for Ecosystem-Wide Perspective. As one might see from the eval-
uation in Sect. 3.3, most current co-evolution approaches tackle either models
or transformations as depending artifacts, but miss an ecosystem-wide perspec-
tive, spanning over several kinds of modeling artifacts and supporting an overall
co-evolution process. Consequently, a systematic and consistent co-evolution is
hindered due to the fact, that diverse tools or approaches have to be employed
to co-evolve a complete modeling ecosystem. This may lead to an inter-artifact
inconsistency, i.e., different kinds of artifacts are co-evolved differently, thus, the
operability of the modeling ecosystem may be broken.

Support for Alternative Propagation Strategies Required. There may
be different ways to propagate metamodel changes to depending artifacts. There-
fore, co-evolution approaches should provide alternative propagation strategies
as well as means for exploration and selection of appropriate ones, fitting to the
intention of the concrete metamodel change. Considering an evolution scenario
consisting of more than one metamodel change, this need becomes even more
important, since propagation alternatives of different metamodel changes have
to be combined in a reasonable way, preventing senseless or even contradictory
combinations.

Increased Effort in Evolution May Reduce Effort in Co-evolution. As
shown in Fig. 7, a limited set of changes reduces the specification effort during
evolution. However, intra- and inter-artifact inconsistencies may be introduced.
Thus, in order to resolve these inconsistencies, increased effort is needed during
actual co-evolution process. This is even more aggravated if several dependent
artifacts and numerous instances of a specific artifact are considered. In contrast,
a more feature-rich change set might increase the effort for specifying the evolu-
tion. This overhead, however, is overhauled by a limited effort in the co-evolution
phase since no inconsistencies need to be resolved.

Incorporation of Semantical Changes Needed. As discussed earlier,
changes in a modeling ecosystem might be of semantical nature, thus, not affect-
ing the syntax of a metamodel. As an example, a modeler might intrinsically
assign the unit centimeter to a “height” attribute of a person. Thus, a change of
centimeter to millimeter affects all depending artifacts, since the actual values
in the models or potential calculations in transformations have to be adapted. A
change of unit, however, can not be explicitly expressed in current co-evolution
approaches, thus, hindering an automated co-evolution of depending artifacts.
Consequently, means to express semantical changes are needed.

372 J. Etzlstorfer et al.

M

low

high

Evolution Co-Evolution

Ef
fo

rt T

A

Intra-Artifact
Consistency

Inter-Artifact
Consistency

Change Set

Artifacts

M

low

high

Evolution Co-Evolution

Ef
fo

rt

T A
Intra-Artifact
Consistency

Inter-Artifact
Consistency

Change Set

Artifacts

Fig. 7. Comparison of efforts for co-evolution.

Transactional Execution Beneficial for Consistency. Since transactions
are currently not supported in any of the surveyed approaches, errors that occur
during co-evolution have to be identified and corrected manually. In order to
mitigate this burden, transactions spanning over all phases of the co-evolution
process including the actual propagation of changes enable consistency of the
ecosystem, since either all artifacts are co-evolved or the whole ecosystem is set
back to its initial state.

Enabling Run-Time Effects Detection by Employing Code Analysis
Techniques. Changes on the metamodels might impact the ecosystem not only
at design-time, but also at run-time, e.g., when a transformation queries the value
of an element which is no longer set. However, by employing static code analysis
techniques [28] to detect errors, e.g., potential null-pointer references, before
executing the transformation, run-time effects can be detected and corrected in
an earlier stage, i.e., before execution. Consequently, a more sophisticated impact
analysis that reveals potential run-time effects helps the evolution designer in
deciding if one or more changes should be applied on the metamodel.

5 Related Work

This section discusses related work that focuses on comparing and evaluating
co-evolution approaches in the area of MDE.

In a survey published in [21], the authors utilize a comprehensive criteria
catalog to compare several approaches for co-evolution of models after evolution
of their metamodels. In comparison to our contribution in this work, the related
survey in [21] considers models as depending artifacts, only. Recent work dis-
cusses state-of-the-art techniques and approaches for co-evolution in MDE [34],
thereby outlining future research challenges. In contrast to the contributions of

Surveying Co-evolution in Modeling Ecosystems 373

our paper, however, they neither pursue a concrete focus on modeling ecosystems
as a whole nor provide a comparison of concrete co-evolution approaches. [35]
conducts a comparison between co-evolution of models and transformations in
response to evolution of metamodels. The authors discuss the differences between
the migration of models and the migration of transformations and highlight the
demand for a more uniform, i.e., consistent, co-evolution of both kinds of arti-
facts. Within that work, however, no concrete approaches are compared in con-
trast to the contribution of this paper. In [31] the authors propose a framework
for the evolution of metamodels and co-evolution of various kinds of depend-
ing artifacts, including models and transformations. A taxonomy for metamodel
evolution is proposed, which is applicable to existing approaches. An evaluation
of co-evolution approaches, however, as given herein, is not part of their work.

Summarizing, this work presents a unique contribution advocating an
ecosystem-wide perspective regarding co-evolution and the consideration of dif-
ferent kinds of depending artifacts, thereby particularly focusing on models and
transformations.

6 Conclusion and Future Work

In this work, we focused on co-evolution in modeling ecosystems, emphasiz-
ing that evolution of metamodels requires an ecosystem-wide perspective with
respect to co-evolution of depending artifacts. The ultimate goal in this respect
is to re-establish consistency not only intra-artifact-wide, but also across differ-
ent kinds of depending artifacts to keep the whole system in a valid state and,
thus, ensure an operable modeling ecosystem. To substantiate this concern, we
discussed artifacts as well as relationships among them, typical for ecosystems
in MDE, comprising metamodels in different roles as well as different kinds of
depending artifacts, like models and transformations. Further, we proposed a
respective co-evolution process and an evaluation framework for co-evolution in
the context of modeling ecosystems, which was built upon the process. We then
utilized the evaluation framework to evaluate and compare current co-evolution
approaches. Thereof, we derived lessons learned which, finally, lead us to future
research directions.

As the findings of our evaluation demonstrate, future work may focus on
enhancements to co-evolution approaches with respect to an ecosystem-wide
perspective. This would include, e.g., the support of more than one kind of
depending artifact, the provision of alternative propagation strategies, the possi-
bility to shift propagation semantics to changes applied during evolution, as well
as the incorporation of transaction mechanisms to cope with problems during
the overall co-evolution process and to enable the user to set back to a previ-
ous state in case of, e.g., not acceptable costs detected during impact analysis.
Further important issues would be a support for detection and incorporation of
semantic changes as well as strengthening impact analysis by employing static
code analysis techniques.

374 J. Etzlstorfer et al.

References

1. Baar, T.: Correctly defined concrete syntax for visual modeling languages. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS,
vol. 4199, pp. 111–125. Springer, Heidelberg (2006). https://doi.org/10.1007/
11880240 9

2. Bézivin, J.: On the unification power of models. SoSym 4(2), 171–188 (2005)
3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of

the 13th International Software Product Line Conference, SPLC 2009, pp. 111–
119. Carnegie Mellon University, Pittsburgh, PA, USA (2009). http://dl.acm.org/
citation.cfm?id=1753235.1753251

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, Los Altos (2012)

5. Brosch, P., et al.: An example is worth a thousand words: composite operation
modeling by-example. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol.
5795, pp. 271–285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04425-0 20

6. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of the EDOC 2008, pp. 222–231 (2008)

7. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing dependent changes in cou-
pled evolution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02408-5 4

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45(3), 621–645 (2006). https://doi.org/10.1147/sj.453.
0621

9. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: Proceedings of the International Workshop on Model Com-
parison in Practice, pp. 30–38. ACM (2011)

10. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: how to man-
age coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 20–37.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-6 2

11. Etzlstorfer, J., Kapsammer, E., Schwinger, W.: On the evolution of modeling
ecosystems: an evaluation of co-evolution approaches. In: Proceedings of the 5th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD, vol. 1, pp. 90–99. SCITEPRESS (2017)

12. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, Reading (1999)

13. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4 4

14. Garcés, K., Vara, J.M., Jouault, F., Marcos, E.: Adapting transformations to meta-
model changes via external transformation composition. SoSym 13, 1–18 (2013)

15. Garćıa, J., Diaz, O., Azanza, M.: Model transformation co-evolution: a semi-
automatic approach. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol.
7745, pp. 144–163. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36089-3 9

16. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Elsevier,
Amsterdam (1992)

https://doi.org/10.1007/11880240_9
https://doi.org/10.1007/11880240_9
http://dl.acm.org/citation.cfm?id=1753235.1753251
http://dl.acm.org/citation.cfm?id=1753235.1753251
https://doi.org/10.1007/978-3-642-04425-0_20
https://doi.org/10.1007/978-3-642-04425-0_20
https://doi.org/10.1007/978-3-642-02408-5_4
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/978-3-642-33654-6_2
https://doi.org/10.1007/978-3-642-02674-4_4
https://doi.org/10.1007/978-3-642-36089-3_9
https://doi.org/10.1007/978-3-642-36089-3_9

Surveying Co-evolution in Modeling Ecosystems 375

17. Gruschko, B., Kolovos, D., Paige, R.: Towards synchronizing models with evolv-
ing metamodels. In: Proceedings of the International Workshop on Model-Driven
Software Evolution (2007)

18. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. J. Autom. Softw. Eng. 20(1), 5–46 (2012)

19. Hebig, R., Giese, H., Stallmann, F., Seibel, A.: On the complex nature of MDE evo-
lution. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 436–453. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41533-3 27

20. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0 4

21. Herrmannsdörfer, M., Wachsmuth, G.: Coupled evolution of software metamodels
and models. In: Mens, T., Serebrenik, A., Cleve, A. (eds.) Evolving Software Sys-
tems, pp. 33–63. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45398-4 2

22. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

23. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke,
M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations.
LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28279-9 15

24. Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., David, J.: Comparing state-
and operation-based change tracking on models. In: 2010 14th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pp. 163–172. IEEE
(2010)

25. Kruse, S.: On the use of operators for the co-evolution of metamodels and transfor-
mations. In: International Workshop on Models and Evolution @ MODELS (2011)

26. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schwinger, W.,
Schönböck, J.: Consistent co-evolution of models and transformations. In: Pro-
ceedings of Models, pp. 116–125 (2015)

27. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel app-
roach to semi-automated evolution of DSML model transformation. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12107-4 4

28. Louridas, P.: Static code analysis. IEEE Softw. 23(4), 58–61 (2006)
29. Méndez, D., Etien, A., Muller, A., Casallas, R.: Towards transformation migration

after metamodel evolution. In: Proceedings of International Workshop on Models
and Evolution @ MODELS (2010)

30. Mens, T.: On the complexity of software systems. Computer 45(8), 79–81 (2012)
31. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages.

Sci. Comput. Program. 76(12), 1223–1246 (2011)
32. Myers, C.R.: Software systems as complex networks: structure, function, and evolv-

ability of software collaboration graphs. Phys. Rev. E 68(4) (2003)
33. Object Management Group: Meta Object Facility (MOF) 2 Core Specification

(2011). www.omg.org/spec/MOF/2.4.1

https://doi.org/10.1007/978-3-642-41533-3_27
https://doi.org/10.1007/978-3-642-41533-3_27
https://doi.org/10.1007/978-3-642-03013-0_4
https://doi.org/10.1007/978-3-642-03013-0_4
https://doi.org/10.1007/978-3-642-45398-4_2
https://doi.org/10.1007/978-3-642-45398-4_2
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-12107-4_4
www.omg.org/spec/MOF/2.4.1

376 J. Etzlstorfer et al.

34. Paige, R., Matragkas, N., Rose, L.: Evolving models in model-driven engineer-
ing: state-of-the-art and future challenges. J. Syst. Softw. 111, 272–280 (2016).
http://www.sciencedirect.com/science/article/pii/S0164121215001909

35. Rose, L., Kolovos, D., Paige, R., Polack, F.: Model migration with epsilon flock.
In: Proceedings of ICMT, pp. 184–198 (2010)

36. Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., Polack, F.: Comparing
model-metamodel and transformation-metamodel co-evolution. In: Proceedings of
Models and Evolution Workshop (2010)

37. Schmidt, D.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

38. Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wim-
mer, M., Wischenbart, M.: CARE - a constraint-based approach for re-establishing
conformance-relationships. In: Proceedings of APCCM (2014)

39. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

40. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2009)

41. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73589-2 28

http://www.sciencedirect.com/science/article/pii/S0164121215001909
https://doi.org/10.1007/978-3-540-73589-2_28

Functional Decomposition for Software
Architecture Evolution

David Faitelson1, Robert Heinrich2(B), and Shmuel Tyszberowicz3

1 Afeka Tel-Aviv Academic College of Engineering, Tel Aviv, Israel
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

robert.heinrich@kit.edu
3 The Academic College Tel Aviv Yaffo, Tel Aviv, Israel

Abstract. Software systems need to evolve continuously in order to
avoid becoming less useful. However, repeated changes in the software
may impede the inner quality of the system. Modularity is considered an
important aspect of a good inner quality, and the functional decomposi-
tion is an approach that enables to achieve good modularity. Neverthe-
less, existing approaches for functional decomposition ignore implemen-
tation efforts, and this may cause a situation where the required changes
are too costly to implement. In this paper we describe an approach to
employ functional decomposition for software architecture evolution con-
sidering also the implementation efforts.

1 Introduction

Software systems must evolve over time, otherwise they progressively become
less useful [1]. Once a system is released, it continuously changes, e.g. due to
emerging user requirements (perfective changes), bug fixes (corrective changes),
platform alterations (adaptive changes), or correction of latent faults before they
become operational faults (preventive changes). Consequently, the system drifts
away from its initial architecture due to the evolutionary changes.

Knowledge about the software architecture is essential for predicting main-
tenance efforts. Developers must produce software that can be changed without
the risk of degrading its architecture [2]. However, ensuring that the system sat-
isfies its requirements while keeping the integrity of its architecture (i.e. keeping
the requirements and the architecture synchronized) is a challenging task [3].

An important aspect of a good software architecture is its modularity. A
system may initially consist of highly cohesive subsystems with low coupling
between them. However, as more functionality is added to the system, their
coupling tends to increase and their cohesion decreases. Thus the system becomes
less understandable for developers, resulting in decreased quality and a system
that is more difficult to maintain.

In a previous work [4] we have described a technique for systematically
decomposing a system into subsystems. Each time the system needs to change
we can use this technique to find an ideal functional decomposition. However, if

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 377–400, 2018.
https://doi.org/10.1007/978-3-319-94764-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_16&domain=pdf

378 D. Faitelson et al.

we ignore the implementation efforts, it might be that the implementation cost
will be too high. Therefore, we must assess implications of the suggested decom-
positions and find a compromise that balances both the functional modularity
of the system and the implementation effort. This, however, is one of the major
challenges in software evolution [5].

There are two views on software evolution that need to be considered: the
what and why perspectives versus the how perspective [5]. The former perspec-
tives study the nature of the software evolution phenomenon, the latter studies
pragmatic aspects, i.e. technology, methods, and tools that provide the means
to control software evolution.

In this paper we describe an approach to handle evolving systems, while
maintaining good modularity and keeping track of the efforts of implementing
a change. This is achieved by using the KAMP approach to architecture-based
change impact analysis, that provides insight into how much the architecture
will be impacted in order to handle changing requirements [6].

Within this work we use a parking lot management system as a running
example. This example helps us to demonstrate our ideas about using a formal
model of system decomposition that takes relations as atomic units of design
and how those ideas support the change impact propagation approach as used
in KAMP. The parking lot has a set of parking spaces, a camera that detects
license plate numbers, and an entrance gate that may open (or close) to allow
cars to enter the parking lot. Cars leave the parking lot through a separate
one way exit gate. In addition, it maintains a registry of authorized cars—only
authorized cars may enter the parking lot.

Our contribution consists of a technique that combines functional decom-
position analysis with architectural change impact analysis. This combination
ensures a good balance of functional modularity concerns with implementation
efforts. We illustrate the technique by showing how, given a set of new functional
requirements, we can select a good subsystem decomposition while staying within
the budget allocated for implementing the new requirements.

This paper significantly extends the work reported in [7]. We have added
a discussion on the relational model of software systems that is used as our
means of system specification, elaborating the explanation on those Alloy ele-
ments that are relevant to our approach. We expand previous explanations and
provide the rational of our approach regarding modeling the system decompo-
sition and the visualization process. A detailed description of how to translate
a subsystem decomposition diagram into a component diagram that is suitable
for KAMP approach and an elaborated explanation of the KAMP approach to
change impact analysis have been added.

In the following section we present a formal model of software systems. This
model takes relations as atomic units of design. Next, in Sect. 3, we illustrate
our functional decomposition approach to produce the initial structure of the
parking lot management system and explain how we visualize the subsystem
decomposition. Then, in Sect. 4, we explain how we transform the decompo-
sition notation into a notation that the KAMP approach can understand. In

Functional Decomposition for Software Architecture Evolution 379

Sect. 5 we describe the KAMP approach. In Sect. 6 we describe a hypothetical
set of changes to the system, the new functional decomposition that results from
these changes, and the KAMP analysis of their cost. This section is the heart
of the paper. It shows how we can combine KAMP functional decomposition
to select a reasonable functional decomposition that can be implemented within
the given budget. Section 7 describes work related to functional decomposition
and architectural-based change propagation. We conclude with a summary in
Sect. 8.

2 A Relational Model of Software Systems

The relational state based model is a familiar approach to the specification of
software systems (see, e.g., [8–11]). Indeed, it is the underlying theory behind
relational databases [12]. In essence, a relational model consists of:

– a finite collection of sets of atomic entities (basic sets in Z [13], atoms in
Alloy [11],

– a finite set of state variables, each being a relation between the basic sets,
– an invariant predicate that constrains the sets and relational variables to fit

the requirements of the system that we model, and
– a finite set of operation-specifications, each a predicate that defines the effect

of an operation by describing the relation of the state variables before the
operation begins to their value after it ends.

Since we use Alloy to specify the systems, we now briefly explain the main
concepts of Alloy and the modeling style that we use. Full details can be found
in [11].

The Alloy language describes constraints over relational variables that range
over relations between sets of atoms. The constraints are first order predicates on
the variables. These concepts are presented in a syntax similar to that of popular
object oriented languages, thus making Alloy more friendly to software engineers.
For instance, the (partial) Alloy model of the parking lot management system
in Fig. 1 looks similar to a class model with two classes: The class Car with
the fields atGate, inside, authorized, and parked, and the class Space
with the available and occupiedBy fields. This model actually defines two
sets of atoms (Car and Space) and six relational variables. Each relational
variable of type T defined in a sig S is a relation between the set S and the
set T . For example, atGate is a relation between Car and State, specifying in
which states a car has approached the gate. Inside a signature S the notation
v : X → Y means that v is a ternary relation between the sets S, X, and Y .
For instance, the variable parked is a ternary relation between Car, Space, and
State—parked : Car → Space → State. Its tuples describe in which states a car
has parked at a particular space.

Alloy has no predefined notion of a software system, hence we have to adopt
a style and a set of conventions for writing such models. This style is explained
in detail in [11, Chap. 6]. In this style, each system variable that represents a

380 D. Faitelson et al.

Fig. 1. An Alloy fragment of the parking lot system model. It shows the definitions
of two signatures (Car and Space), six relational variables (atGate, inside, authorized,
parked, available, and occupiedBy) and one system operation, ParkingLot Enter. Note
that in Alloy, predicates on separate lines are implicitly conjoined.

relation of arity n is modeled as a relational variable with an arity of n + 1,
where the extra dimension represents the system’s state at a particular moment
in time, in which the variable held this particular value. The signature State
represents the state of the system at particular moments in time. For instance,
given a particular state s which represents a particular moment in time, the
expression atGate.s (that is, the relational composition of the relation atGate
with the singleton set that contains s) gives the set of cars that are waiting in
front of the gate at time s. Similarly, the expression parked.s is a binary relation
that describes which cars are parked at which spaces at that moment of time.
To illustrate, the following relations

atGate.s10 = c0
inside.s10 = c1, c2
parked.s10 = (c1,p1), (c2,p3)
authorized.s10 = c1, c2, c3, c4

Functional Decomposition for Software Architecture Evolution 381

Fig. 2. A subsystem diagram that summarizes the entire parking lot system. The
system is displayed as a box with its name at the top and the list of state variables
inside the box. System operations appear as line segments emanating from the box,
each labeled with the operation name. We have removed the State component from the
relations to avoid cluttering the diagram. There is no need to write it here, as we show
only state variables inside the box and we know that each state variable is a function
of state. (Taken from [7]).

describe a moment in time (s10) in which car c0 waits in front of the gate, cars
c1 and c2 are inside the parking lot, car c1 is parked at location p1, and car c2
is parked at location p3. We can also see that the cars c1, c2, c3, and c4 are
authorized to enter the parking lot.

In general, given a system with n state variables v1, . . . , vn, the state of the
system at a particular moment s is defined as the values of all the state variables
at moment s, that is as v1.s, . . . , vn.s.

Facts are predicates that define constraints on the basic sets and the relational
variables of the model. These constraints may represent domain properties that
are either facts of our universe (for example only one car may be in front of the
gate at any particular moment in time) or assumptions that we consider to hold
in the environment of our system (e.g., that a car occupies only one parking
space). Some facts can be expressed more economically, as constraints directly
in the definition of a variable. For instance, the keyword lone in the definition
of parked indicates that in any particular state a car may park at most in one
parking space.

The pred definitions of Alloy are a general purpose tool for specifying param-
eterized predicates. We use them to model the system’s invariant and operations.
For example, the ParkingLot Enter predicate models the operation that allows
a car to enter the parking lot. The states s and s′ represent the system state just
before the operation begins (s) and immediately after it finishes (s′). We can see
that the operation is enabled only when the car is at the gate and is authorized
to enter. The meaning of this predicate is that when car c is authorized to enter
and in front of the gate, then after it enters it is inside, no car is currently in front
of the gate, and nothing else changes. All other system operations are described
in a similar way.

382 D. Faitelson et al.

Table 1. A summary of the operations provided by the parking lot management sys-
tem [7].

Operation Description

approach A car is detected by the entry sensor

leave A car at the gate drives away

enter A car enters the parking lot

exit A car exits the parking lot

park A car parks at a parking space

depart A car departs from its parking space

add Authorize a car to enter the lot

remove Unauthorize a car

As a system model can be long, we summarize it in a subsystem diagram. A
subsystem diagram represents the system as a box with its state variables inside,
and its operations as short line segments protruding from the edges of the box.
Figure 2 is a subsystem diagram that summarizes the operations that the parking
lot management system model supports. When we have a single component we do
not need a diagram, a simple table would do just as well. However, in the general
case this diagram is very useful to describe the structure of subsystem models,
as it clearly shows which parts of the state space belong to which subsystems,
and how the subsystem operations are used to support the system operations.
The complete model of the parking lost management system can be found in the
website [14]. A summary of the system operations used in our example is shown
in Table 1.

Note that there are two important differences between the way the state
variables appear in the model and in the diagram. First, in the diagram they
appear as relations without using the sig keyword (remember that a field x: T
in signature A is a relation x: A->T). Second, as each state variable has a final
State component we omit it from the diagram. Thus, for example, the field
authorized: set State of sig Car (i.e., the authorized: Car->State
relation) becomes, after removing State, the variable free: set Car that
represents the set of cars that are authorized to enter the parking lot at a par-
ticular state. As we will see in the next section, the subsystem diagram is very
useful for describing the structure of subsystem models.

Now we can rephrase the problem of decomposition a system in precise terms:
given a system model that consists of a state space, an invariant, and a finite set
of operations, how can we partition it into subsystems—each with its own state
space, invariant, and operations—such that when these subsystems communicate
with each other, the result refines [15] the original system?

Functional Decomposition for Software Architecture Evolution 383

3 Modeling the Subsystem Decomposition

We model a system decomposition as a syntactical partition of the state space;
i.e., the subsystems partition the set of system state variables. The operations
of each subsystem may access only the subsystem’s variables. Whereas each
subsystem operation is a predicate on the entire state space, it refers only to
the variables of the subsystem—leaving the other variables unspecified. This
facilitates composition of subsystems by conjoining their operations (note that
in Alloy predicates on separate lines are implicitly conjoined).

3.1 System Decomposition

As we have argued in a previous work [16], the traditional object-oriented app-
roach that assumes that classes are atomic design units leads to fundamental
difficulties, and it is better instead to consider individual relations (associations
and attributes) as atomic units, and allocate them to the components accord-
ing to how they are used by the system operations. For example, the parking
lot management system has a list of authorized cars, and also keeps track of
where cars are parked. Because these are two separate areas of functionality, it
is reasonable to partition the system into two components: one for managing the
authorization registry and the other to keep track of the location of parked cars.
The concept of a car is of course essential to this application, and therefore we
define a class to model it. But in which component should we put this class? In
the component that is responsible for managing the list of authorized cars or in
the component that keeps track of which cars park in which places? Or should
we create a special component to hold the class?

It is better to break the conceptual classes into individual attributes and
associations (considering them as relational state variables), and allocate them to
the authorization registry and to the parked cars subsystems. As we have shown
in [16], this approach also facilitates selection of ‘good’ decompositions (meaning
they have low coupling and high cohesion). In our approach, we visualize the
relationships between the system operations and the state variables that they
read and write in such a way that we can recognize clusters of dense relationships
that are weakly connected to other clusters. Each such cluster is a good candidate
for a component.

In the rest of this section we illustrate how we use our approach to partition
the parking lot management system into subsystems. In the previous section we
have seen a relational model of this system. We now focus on revealing the struc-
ture of the major subsystems in our parking lot management system example.

3.2 Visualizing Subsystem Decompositions

A good decomposition partitions a system into loosely coupled, yet cohesive
subsystems. Our approach to finding such a decomposition is to visualize the
relationships between the system operations and the state variables that they
use, in such a way that we can recognize clusters of dense relationships that are

384 D. Faitelson et al.

weakly connected to other clusters. Each such cluster is a good candidate for a
subsystem for two reasons:

1. the amount of information it shares with the rest of the system is small, thus
it is protected from changes in the rest of the system and vice versa, and

2. its internal relationships are relatively dense which in most cases indicates a
cohesive unit of functionality.

Table 2. An operation/relation table for the parking lot system. Each column repre-
sents one state variable and each row represents one operation. If the operation in the
i-th row reads(writes) the state variable in the j-th column, the table’s (i, j) entry will
contain r (w). For example, the add operation writes only to the authorized variable
and does not read any other variable. (Taken from [7]).

Operation State variable (relation)

inside atGate authorized parked

approach r w

leave w

add w

remove r w

enter w w r

exit w r

park r w

depart w

To create a visualization, we record in an operation/relation table the rela-
tionships between the system operations and the state variables that they read
and write. The information for this table is taken from the functional specifi-
cation of the system. For each system operation we note which relational state
variables it reads and writes. Table 2 provides the operation/relation dependen-
cies in the parking lot system. An operation reads a variable if the operation’s
predicate includes only references to the variable at the current system state.
An operation writes to a variable if the variable is referenced in the next system
state. For example, the operation ParkingLot Enter only reads the variable
authorized as it uses this variable to check that the input car c is authorized to
enter, but it does not change its value (in fact it insists that it remains the same).
The operation changes the variable inside as it insists that c will be added to
inside in the next system state.

We now use the table to build an undirected bipartite graph whose ver-
tices are the system’s state variables and operations. (Building the graph could
be easily automated.) An edge connects operation p to variable v if and only
if p uses v (either reads or writes to v). In addition, we assign a weight to
each edge, depending on the nature of the connection. A read connection has
the lowest weight (currently 1) and a write connection has the highest weight

Functional Decomposition for Software Architecture Evolution 385

Fig. 3. An operation/relation dependency diagram of the parking lot system. Thin
edges represent read relationships; thick edges represent write relationships. Circles
represent operations; squares represent state variables.

(currently 2). This choice tends to cluster together data with operations that
change the data, thus preferring read interfaces between clusters. A write inter-
face has a stronger coupling than a read interface because it actively engages
both subsystems whereas a read interface affects only the reader. Finally, we use
NEATO [17]—a spring model based drawing algorithm [18]—to visualize the
graph. The algorithm draws undirected graphs such that nodes that are close to
each other in graph theoretic space (i.e. shortest path) are drawn closer to each
other (see Fig. 3). In NEATO, the weight of the edge, affects the force of the
spring that connects the edge’s nodes. A higher weight causes the nodes to be
placed closes to each other. This visualization can now be used in three ways:

1. to suggest low dependency partitions,
2. to evaluate partitions that are dictated by non-functional constraints, and
3. to explore changes to the system model that reduce the dependencies between

areas that we consider as good subsystem candidates.

Figure 4 shows a partition based on the visualized graph, and it illustrates the
first usage. We have decomposed the parking lot management system into three
subsystems: Parking keeps track of which cars park in which parking space,
Authorized is responsible for managing the authorized list, and Gate manages
the entry of cars to the parking lot and their exit from the parking lot. The other
two are illustrated in the following sections.

386 D. Faitelson et al.

Fig. 4. An operation/relation dependency diagram of the parking lot system with a
suggested partition. Each subsystem candidate is enclosed in an ellipse. The edges that
cross the partitions (when they exist) are few and weak. This partition corresponds to
the subsystem decomposition we have described earlier: one subsystem (marked as P)
manages the information concerning which car parks in which space, one (R) manages
the authorized list, and one (G) manages the entry and exit to and from the parking
lot. (Taken from [7]).

Note that we have developed our own notation for subsystem diagrams, as
we believe that diagrams such as UML component diagrams are not well suited
for illustrating our notion of subsystem decomposition. It is possible to draw the
subsystems using UML’s component diagrams, but then we have to abuse the
diagram’s semantics to show which subsystem operations collaborate to support
a system operation. This is because in order to connect the subsystem operations
to the system operation we must use a delegation connector. But the standard
UML semantics of delegation connectors is that of forwarding [19]. The infor-
mation is forwarded from the system’s boundary to the subsystems. In most
cases, however, this is not how the operations are used in our decomposition.
We would also have to further abuse the diagram’s notation to show the state
variables of each subsystem. UML components do not have a notion of relational
state variables. While there are benefits to a standard and popular notation, we
think that in this case it is better to use a different notation, one that perfectly
suits our purpose, and not to risk the confusion that may arise from abusing the
syntax and semantics of existing notations.

Functional Decomposition for Software Architecture Evolution 387

Fig. 5. A subsystem diagram of the parking lot management system. Each subsystem
box contains a subset of the system’s state variables and operations. All the system
operations must appear in the subsystem diagram. When a system operation is sup-
ported by a single subsystem, we draw a line on the border of the subsystem and label
it with the operation’s name. When several subsystems collaborate to support a sys-
tem operation, we connect the operations of each subsystem to the system operation’s
line segment. Any subsystem operation whose purpose is to support a system opera-
tion must be connected to the system operation that it supports. For example, there
are arrows going from the gate enter and registry isAuth operations to the system
enter operation because enter requires the cooperation of the gate and the registry
subsystems. (Taken from [7]).

4 Mapping Decomposition to Components

Our purpose is to apply the KAMP (Karlsruhe Architectural Maintainability
Prediction Method) approach [6] to the decompositions we have found in the pre-
vious section, to assess the effects of change requests during the evolution of the
system. However, KAMP requires a UML component model but our diagrams
have a different structure. We must therefore transform them into compatible
UML component diagrams before we can apply KAMP.

The presentation of the system when decomposing it into subsystems (Fig. 5)
is different from that of a UML component model (Fig. 6), yet their are semanti-
cally identical. When decomposing a system into subsystems, we have an implicit
system component that contains the subsystems. If we will draw a UML compo-
nent diagram of the decomposition, we will see that the subsystems never use the
requires symbol, as they are entirely decoupled from each other. Whatever infor-
mation a subsystem requires, it is supplied by the system level component, which
provides the interface to the outer world. KAMP, on the other hand, needs an
explicit representation of the system component (a.k.a. manager or controller).

388 D. Faitelson et al.

Fig. 6. Component model of the initial parking lot system. (Taken from [7]).

Fig. 7. Component model of the evolved parking lot management system. (Taken
from [7]).

Taking the subsystem diagram, we can create a component diagram which
serves as input to KAMP. Every operation that is provided to the system (Fig. 2)
is mapped to a manager component, which in turn delegates the operation to the
appropriate subsystems (Fig. 5). For example, the enter operation is delegated to
the manager. The manager delegates it to the Registry subsystem which checks
whether the car is authorized to enter the parking lot, and when it is—the
manager tells the gate to open.

Functional Decomposition for Software Architecture Evolution 389

To translate a subsystem decomposition diagram into a component diagram
that is suitable for KAMP, we have to perform the following steps:

1. Create a system component with a provides interface for all system opera-
tions.

2. In the system component, create a component for each subsystem with a
provides interface for all subsystems operations.

3. In the system component, create a manager component with a provides inter-
face for all system operations and a requires interface for all the interfaces
provided by the subsystems.

4. Connect each subsystem operation to the appropriate requires interface of
the manager component.

5. Use a delegation connector to connect each system operation to the corre-
sponding manager operation.

This process is illustrated at the subsystem diagram in Fig. 5 and the corre-
sponding component diagram in Fig. 6.

5 Component-Based Change Impact Analysis

The KAMP approach [6] aims at supporting software architects assessing the
effects of change requests on technical and organizational work areas during
software evolution. KAMP supports modeling the initial software architecture,
named the base architecture, and the architecture after a certain change request
has been implemented in the model, the target architecture. Examples of such
modifications may be adding new features for guest visitors and reserved park-
ing spaces in the parking lot management system. Then, the KAMP tooling
calculates the differences between the base and the target architecture models,
analyses the propagation of changes in the change request analysis phase, and
generates a maintenance task list as depicted in Fig. 8. This figure reflects the
structural propagation of changes as well as corresponding maintenance tasks
such as test case development and execution, build and deployment configura-
tion updates. KAMP basically comprises three contributions:

– meta-models to describe system parts and their dependencies based on an
established software architecture description language [20],

– a procedure to automatically identify system parts to be changed for a given
change request, and

– a procedure to automatically derive required change tasks, to simplify the
identification of a change effort and thus the maintainability estimation.

KAMP has been applied in the past for analyzing change propagation in
architecture models for solving performance bottlenecks, e.g. by replacing a
database [21] or by splitting an interface [22]. Furthermore, there are extensions
to KAMP for change impact analysis in business processes [23] and automated
production systems [24]. In this paper we use KAMP to identify change tasks
required to transfer an initial software architecture into an architecture restruc-
tured according to the decomposition approach described in Sect. 3.1.

390 D. Faitelson et al.

Fig. 8. Overview of the KAMP change impact analysis approach.

6 Impact Analysis Example

After the parking lot management system has been working for a while, the
customer asked to extend its functionality with two major features. The first
feature is the ability to reserve parking spaces in advance, and the second one
is to support occasional, visiting, guests. Guests must ask for an entrance per-
mit for a specific date. The budget provided for these changes is limited to 17
Man/Months.

We have added these two features to the original parking lot model. The
system diagram of the updated parking lot management system is shown in
Fig. 9. Then we have updated the operation/relation table, from which we rebuilt

Fig. 9. A subsystem diagram that summarizes the entire updated parking lot system.
We have added operations for reserving parking spaces, and state variables that record
guests and reserved parking spaces.

Functional Decomposition for Software Architecture Evolution 391

Fig. 10. The dependency diagram of the parking lot after it was extended with two
features: guest visitors and reserved parking spaces. We also provide the partition that
we have selected. We can see that the old structure was preserved, but that subsystem
R has additional functionality to support the management of guests, and in order to
to manage the reservations, a new subsystem was introduced. (Taken from [7]).

the bipartite graph which then was visualized. Figure 10 shows a partition based
on the visualized graph.

After performing the decomposition, the system has changed as follows. We
have added a new subsystem (Reservations) to manage the reserved parking
spaces, and we have added to the registry subsystem a new variable (guest)
to keep track of guests. The new variable keeps track of the dates on which
guest cars may enter the parking lot. The Gate and Parking subsystems were
not affected by these changes. Figure 11 presents the subsystem diagram of the
evolved system after adding the two new features.

The application of KAMP comprises three phases, preparation phase, analysis
phase and interpretation phase. In the preparation phase, an architecture model
is created by using a meta-modeled architecture description languages [20]. In
our running example, this model represents the initial parking lot system (base
architecture), as depicted in Fig. 6. Each component in the base architecture
is annotated with several test cases, a build script, and deployment informa-
tion. Furthermore, another architecture model (target architecture) is created

392 D. Faitelson et al.

Fig. 11. Subsystem diagram of the evolved system. The registry subsystem has an
additional variable (guest) that records which guest cars may enter at which dates. In
addition there is a new subsystem that manages parking space reservations. Reserving
a car requires cooperation with the registry and parking subsystems. (Taken from [7]).

to reflect the parking lot system after modification, as depicted in Fig. 7. This
architecture model reflects the restructuring, if necessary, according to our app-
roach.

In the analysis phase, KAMP automatically calculates the expected struc-
tural changes and their propagation, while transferring the base architecture into
the target architecture. First the delta between the initial architectural model
and the evolved architectural model is determined automatically by a model diff.
Each of the deltas results in a change request to the system which is the starting
point of the change propagation in KAMP.

In Step 1, changes are propagated through the system along the interfaces
between components. Details on the change propagation of KAMP are described
in [6]. The result of the change propagation is a task list of detailed maintenance
tasks for each change request. See the middle column in Tables 3 and 4.

In Step 2, annotations to the components—i.e., test cases, built scripts, and
deployment information—are applied to extend the task list for additional main-
tenance tasks. For the new component Reservations three test cases must be
added, one for each of the methods reserve(), unreserve(), and isReserved().
Moreover, a build script and the deployment of the new component must be
specified. The task list is extended by the corresponding tasks.

Functional Decomposition for Software Architecture Evolution 393

Table 3. List of maintenance tasks produced by the application of KAMP for the new
reservation change request, and their associated (hypothetical) cost. (Taken from [7]).

Step Maintenance task Cost (Man/Month)

1 add Component Reservation 4

add Provided Interface of Reservations 1

add Required Interface of Manager 1

modify Component Manager 2

modify Provided Interface of Manager 1

modify Provided Interface of System 1

2 add test cases for reserve(), 1

unreserve(), and isReserved()

Total cost 11

Table 4. List of maintenance tasks produced by the application of KAMP for the guest
parking change request, and their associated (hypothetical) cost. (Taken from [7]).

Step Maintenance task Cost (Man/Month)

1 modify Provided Interface of Registry 1

modify Component Registry 2

modify Required Interface of Manager 1

modify Component Manager 2

modify Provided Interface of Manager 1

modify provided Interface of System 1

2 modify test cases for park(), 1

reserve(), and depart()

Total cost 9

The test cases for the methods of the Parking component must be modified as
the Parking component in the evolved systems requires the Reservations com-
ponent. Furthermore, the Registry component in the evolved system provides
functionality for guest parking. Thus, existing test cases may be modified, and
new test cases must be added. The task list is extended by tasks for adding and
modifying the test cases.

In the interpretation phase, change efforts are estimated by software devel-
opers based on the task list identified by KAMP. In addition, we provide hypo-
thetical cost estimates for each task. These estimates are not a part of KAMP,
however, they are important for determining if we can implement the changes
within the given budget. We have determined the costs by considering the effort
it takes to implement not only the functionality but also the user interface, test-
ing, optimization etc. The estimates we provide are only used to illustrate the

394 D. Faitelson et al.

approach, one may come up with different estimates, in which case the decisions
may be different but the approach remains the same.

The maintenance tasks and costs for the change request of a new reserva-
tion functionality appear in Table 3. The maintenance tasks and costs for the
change request of guest parking appear in Table 4. Unfortunately, the maintain-
ability analysis reveals that the cost of decomposing the system according to the
functional analysis is too high. This result demonstrates a typical situation in
the engineering of complex systems. We cannot use a greedy approach to solve
the problem because optimizing one aspect (functional decomposition) without
regard for others (cost of implementation) may result in a bad solution, in this
case it will cost too much to implement. Instead we must find a compromise
that results in a good overall solution. That is, a solution that improves the
system and can be implemented within the given budget. One reasonable com-
promise is to merge the reservation and registry subsystems. The result can be
seen in Fig. 12 that presents the subsystem diagram of the alternative decompo-
sition, grouping together reservations with the registry, and in Fig. 13, showing
the revised component model. Note the difference to the prior figures is the
introduction of the guest attribute.

Whereas merging the two subsystems reduces the cohesion of the result, it
also reduces the cost to an acceptable level. We replace the 4 Man/Month units
of work that went into the development of a new reservations component with

Fig. 12. Subsystem diagram of the alternative decomposition that groups reservations
with the registry.

Functional Decomposition for Software Architecture Evolution 395

1 Man/Month of work for adding the guest functionality to the existing registry
subsystem. The rest of the work is not changed. As a result the total cost is
reduced to 17 Man/Months, exactly as allowed by the budget.

Fig. 13. A revised component model of the evolved parking lot management system.

7 Related Work

Vanya et al. [25] suggest to assess the current decomposition by considering
its past evolution, searching for components that often changed together. This
approach is useful for assessing the current state of the system; however, unlike
our work, it cannot be used to evaluate the impact of future changes.

Streekmann [26] introduces an approach to restructuring software architec-
tures, meant to support engineers with modernizing existing legacy systems.
There are two important differences between this work and our work. First, it
expects the user to manually supply dependency weights between the original
system elements. Second, it takes the target decomposition as a given goal. Thus
this work is more relevant for the actual process of implementing the transfor-
mation whereas our work is more relevant for initially exploring the space of
possible transformations.

We divide the rest of this section into work that is related to functional
decomposition and into work that is related to Architecture-based change impact
propagation.

396 D. Faitelson et al.

Functional Decomposition

Parnas [27] argued that modules should hide parts of the system that may change
in the future, thus protecting the rest of the system from the effects of these
changes. We consider information hiding to be orthogonal to our work, as in
essence it argues for implementing systems using high level abstractions, while
we consider the problem of decomposing a system model (i.e., already at a high
level of abstraction) into coherent subsystems at the same level of abstraction.
Both techniques are examples of the principle of separation of concerns. But
while information hiding separates the concerns of purpose from implementation,
we separate different functional concerns into separate subsystems.

Event-B [28] supports a notion of process refinement, where an abstract
atomic event is refined to a sequence of events at a more concrete level. It is
possible to reason about subsystems in Event-B using events, but we show that
they are not necessary, as simple propositional logic is enough.

UML component diagrams describe what services one subsystem requires
from another, but they do not show how several subsystems collaborate to imple-
ment the system. In contrast, our subsystem diagram shows which subsystems
(and which subsystem operations) collaborate to implement every system oper-
ation. In addition, our subsystem diagram can be formally derived from a formal
model and thus serve as a guiding and organizing map of the model.

There exists a large body of research on computing coupling and cohesion
metrics for object oriented systems [29–34]. These works focus on assessing the
quality of existing decompositions, by measuring properties of the code. As a
result they cannot be used at the early design phase.

Subsystem decomposition is similar in many ways to component identifica-
tion. Researchers have suggested several approaches for identifying components
(see [35] for a survey). These approaches are essentially elaborations of the heuris-
tic mentioned in the introduction. They define a metric for measuring the sim-
ilarity between use cases [36] (or classes [37]) and use clustering algorithms to
collect groups of similar use cases (or classes) into components. When a class
participates in several use cases, a conflict resolution algorithm decides which
component is allocated the class (no work considers the possibility of partition-
ing the class itself between the components). And none of these works discuss
the problems that we have raised. Indeed it is not even clear what is meant by
allocating a class to a component. Does it mean that the class is entirely hidden
inside the component? if so, what happens to the components whose use cases
(or objects) refer to instances of this class? and what happens when a use case
requires the cooperation of several components (for example, sitting a guest at a
table requires the cooperation of the checkin and reservation subsystems)? None
of these works consider these problems. In fact, we could not compare these
approaches with ours, because they either lack examples entirely (e.g. [36]) or
use examples that lack key details such as the actual uses cases (e.g. [37–39]).

The work most relevant to our approach is [40]. It describes a cluster-
ing technique for software requirements based on how they reference common
attributes, where an attribute is any descriptive property or object associated

Functional Decomposition for Software Architecture Evolution 397

with a requirement. The requirements and the attributes are written in a table,
then the requirements are clustered based on their similarity with respect to the
attributes that they use. The result is displayed as a dendrogram—a tree whose
leaves are the requirements and the degree of similarity is higher the deeper the
nodes are in the tree. The requirements are then partitioned into subsystems
by selecting subtrees of the dendrogram. Compared with our approach, only the
functional requirements are clustered, there is no rule to cluster the attributes.
This is problematic when attributes are shared between requirements from differ-
ent components. Second, the technique does not consider relationships between
the attributes. Next, it offers no way to check correctness. Finally, because the
dependencies between the suggested subsystems are not visible, it is more diffi-
cult to explore different alternatives.

Architecture-Based Change Propagation

Work related to change effort identification and maintainability estimation can
be put into four categories sketched in the following. Detailed description is given
in [6].

(i) Task-based Project Planning such as Hierarchical Task Analysis (HTA) [41]
for decomposing a high-level task into a hierarchy of subtasks or the Com-
prehensive Cost Model (COCOMO) II [42] for estimating costs during
requirements phase and architectural design phase by applying the abstract
measure of applications points (i.e. function points) based on an informal
requirements description. Yet, if used at all, these techniques only apply
coarse-grained architectural artifacts which make accurate predictions dif-
ficult.

(ii) Architecture-based Project Planning such as Architecture-Centered Soft-
ware Project Planning (ACSPP) [43] deem software architecture as an arte-
fact in project planning while combining top-down and bottom-up effort
estimation techniques. Existing approaches on architecture-based project
planning, however, do not support estimating change efforts based on a
given architecture and do not allow for automated change impact analysis
and derivation of change activities [6].

(iii) Architecture-based Software Evolution such as Garlan et al. [44] propose a
pattern-based approach to assist in expressing architectural evolution and
for reasoning about the correctness and quality of evolution paths. As dis-
cussed before, work on architecture-based software evolution does not sup-
port change effort estimation and impact analysis.

(iv) Scenario-based Architecture Analysis such as Software Architecture Anal-
ysis Method (SAAM) citeclements2002evaluating evaluates software archi-
tectures regarding modifiability by using an informal architecture descrip-
tion (mainly the structural view). Architecture-Centric Project Manage-
ment (ACPM) [43] takes software architecture as the central artifact for
planning and management activities. For architecture-based cost estima-
tion, the architecture is applied to decompose planned software changes
into various tasks to realize the changes.

398 D. Faitelson et al.

8 Conclusion

Software systems need to evolve continuously to avoid becoming less useful. In
this paper we have presented an approach that employs functional decomposition
for software architecture evolution, considering also non-functional constraints—
namely implementation efforts.

We have used a formal technique to model and reason about software sub-
system decomposition. A diagram notation is used to show how the system state
variables and operations are partitioned into subsystems, and how the subsys-
tems collaborate to implement the system operations. The visualization tech-
nique that we have presented can be applied to informal models (such as UML
class diagrams), provided that those models can be described in relational terms.

We have used a systematic functional decomposition to achieve good mod-
ularity in terms of low coupling and high cohesion, thus obtaining good inner
quality. However, when deciding on a system architecture, it is not enough to
consider only the functional requirements of the system. Using the KAMP app-
roach we can refer also to implementation efforts, avoiding situations where the
required changes are too costly to implement. A system decomposition can be
detected automatically, yet we can change the model of the system in order to
reduce coupling when the decomposition is forced by non-functional constraints.

We have avoided calculating explicit metrics for the quality of decomposi-
tions. Deciding on a decomposition must involve integrating much more infor-
mation and knowledge about the system, information that currently does not
exist in the diagrams. We also plan to extend our theory to support concurrent
execution of subsystems.

Acknowledgement. This work has been partially supported by GIF (grant No. 1131-
9.6/2011) and the DFG (German Research Foundation) under the Priority Programme
SPP1593.

References

1. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw. 1, 213–221 (1980)

2. Williams, B.J., Carver, J.C.: Characterizing software architecture changes: a sys-
tematic review. Inf. Softw. Technol. 52, 31–51 (2010)

3. Yskout, K., Scandariato, R., Joosen, W.: Change patterns - co-evolving require-
ments and architecture. Softw. Syst. Model. 13, 625–648 (2014)

4. Faitelson, D., Tyszberowicz, S.: Improving design decomposition (extended ver-
sion). Form. Asp. Comput. 29, 601–627 (2017)

5. Breivold, H.P., Crnkovic, I., Larsson, M.: A systematic review of software archi-
tecture evolution research. Inf. Softw. Technol. 54, 16–40 (2012)

6. Rostami, K., Stammel, J., Heinrich, R., Reussner, R.: Architecture-based assess-
ment and planning of change requests. In: 11th International ACM SIGSOFT
Conference on Quality of Software Architectures, QoSA, pp. 21–30 (2015)

Functional Decomposition for Software Architecture Evolution 399

7. Faitelson, D., Heinrich, R., Tyszberowicz, S.: Supporting software architecture evo-
lution by functional decomposition. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.)
5th International Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), Porto, Portugal, pp. 435–442 (2017)

8. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Upper Saddle River (1996)

9. Abrial, J.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

10. Abrial, J., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete
models: application to Event-B. Fundam. Inform. 77, 1–28 (2007)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

12. Codd, E.: The Relational Model for Database Management. Addison-Wesley Long-
man Publishing, Boston (1990)

13. Spivey, J.M.: Z Notation - A Reference Manual, 2nd edn. Prentice Hall, Upper
Saddle River (1992)

14. Subsystem decomposition. http://goo.gl/m5gnW3. Accessed Apr 2018
15. Morgan, C.: Programming from Specifications. Prentice-Hall, Inc., Upper Saddle

River (1990)
16. Faitelson, D., Tyszberowicz, S.: Improving design decomposition. In: Li, X., Liu,

Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 185–200. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25942-0 12

17. North, S.C.: Drawing graphs with NEATO. NEATO User’s Manual (2004)
18. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.

Process. Lett. 31, 7–15 (1989)
19. OMG: UML superstructure specification, v2.4.1. Technical report, OMG (2011)
20. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,

Kramer, M., Krogmann, K.: Modeling and Simulating Software Architectures: The
Palladio Approach. MIT Press, Cambridge (2016)

21. Heinrich, R., Rostami, K., Stammel, J., Knapp, T., Reussner, R.: Architecture-
based analysis of changes in information system evolution. In: 17th Workshop
Software-Reengineering & Evolution, SWT-Trends, vol. 34 (2015)

22. Heger, C., Heinrich, R.: Deriving work plans for solving performance and scalability
problems. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp.
104–118. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10885-8 8

23. Rostami, K., Heinrich, R., Busch, A., Reussner, R.: Architecture-based change
impact analysis in information systems and business processes. In: 2017 IEEE
International Conference on Software Architecture (ICSA), pp. 179–188 (2017)

24. Vogel-Heuser, B., Heinrich, R., Cha, S., Rostami, K., Ocker, F., Koch, S., Reuss-
ner, R., Ziegltrum, S.: Maintenance effort estimation with kamp4aps for cross-
disciplinary automated production systems - a collaborative approach. In: 20th
IFAC World Congress, Toulouse, France (2017)

25. Vanya, A., Klusener, S., Premraj, R., van Vliet, H.: Supporting software architects
to improve their software system’s decomposition - lessons learned. J. Softw.: Evol.
Process 25, 219–232 (2013)

26. Streekmann, N.: Clustering-Based Support for Software Architecture Restructur-
ing. Software Engineering Research. Vieweg+Teubner Verlag, Wiesbaden (2011).
https://doi.org/10.1007/978-3-8348-8675-0

27. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 1–6. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-642-59412-0 26

http://goo.gl/m5gnW3
https://doi.org/10.1007/978-3-319-25942-0_12
https://doi.org/10.1007/978-3-319-10885-8_8
https://doi.org/10.1007/978-3-8348-8675-0
https://doi.org/10.1007/978-3-642-59412-0_26

400 D. Faitelson et al.

28. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

29. e Abreu, F.B., Goulão, M.: Coupling and cohesion as modularization drivers: are
we being over-persuaded? In: 5th European Conference on Software Maintenance
and Reengineering, CSMR, pp. 47–57 (2001)

30. Al-Dallal, J.: Measuring the discriminative power of object-oriented class cohesion
metrics. Trans. Softw. Eng. 37, 788–804 (2011)

31. Moser, M., Misic, V.B.: Measuring class coupling and cohesion: a formal metamodel
approach. In: 4th Asia-Pacific Software Engineering and International Computer
Science Conference, APSEC, pp. 31–40 (1997)

32. Mayer, T., Hall, T.: Measuring OO systems: a critical analysis of the MOOD
metrics. In: TOOLS, pp. 108–117 (1999)

33. Darcy, D.P., Kemerer, C.F.: Software complexity: toward a unified theory of cou-
pling and cohesion. In: Friday Workshops, Information Systems Research Center,
Carlson School of Management, University of Minnesota (2002)

34. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented sys-
tems. In: International Symposium on Applied Corporate Computing (ISACC),
pp. 1–10 (1995)

35. Birkmeier, D., Overhage, S.: On component identification approaches – classifica-
tion, state of the art, and comparison. In: Lewis, G.A., Poernomo, I., Hofmeister,
C. (eds.) CBSE 2009. LNCS, vol. 5582, pp. 1–18. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02414-6 1

36. Kim, S.D., Chang, S.H.: A systematic method to identify software components. In:
11th Asia-Pacific Software Engineering Conference (APSEC), pp. 538–545 (2004)

37. Lee, J.K., Jung, S.J., Kim, S.D., Jang, W.H., Ham, D.H.: Component identification
method with coupling and cohesion. In: APSEC, pp. 79–86 (2001)

38. Jang, Y.-J., Kim, E.-Y., Lee, K.-W.: Object-oriented component identification
method using the affinity analysis technique. In: Konstantas, D., Léonard, M.,
Pigneur, Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp. 317–321. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45242-3 33

39. Fan-Chao, M., Den-Chen, Z., Xiao-Fei, X.: Business component identification of
enterprise information system: a hierarchical clustering method. In: IEEE Interna-
tional Conference on e-Business Engineering, ICEBE, pp. 473–480 (2005)

40. Lung, C.H., Xu, X., Zaman, M.: Software architecture decomposition using
attributes. Softw. Eng. Knowl. Eng. 17, 599–613 (2007)

41. Kirwan, B., Ainsworth, L.: A Guide To Task Analysis: The Task Analysis Working
Group. Taylor & Francis, Abingdon (2003)

42. Boehm, B.W., et al.: Software Cost Estimation with Cocomo II with Cdrom. Pren-
tice Hall, Upper Saddle River (2000)

43. Paulish, D.J.: Architecture-Centric Software Project Management: A Practical
Guide. AW, Boston (2002)

44. Garlan, D., et al.: Evolution styles: foundations and tool support for software
architecture evolution. In: Software Architecture, WICSA/ECSA, pp. 131–140.
IEEE (2009)

https://doi.org/10.1007/978-3-642-02414-6_1
https://doi.org/10.1007/978-3-540-45242-3_33

Model-Driven Approach to Handle Evolutions
of OLAP Requirements and Data Source

Model

Said Taktak1(&), Jamel Feki2, Abdulrahman Altalhi3,
and Gilles Zurfluh4

1 FSEGS Faculty, Miracl Laboratory, University of Sfax, Sfax, Tunisia
said.taktak@fsegs.rnu.tn

2 Faculty of Computing and IT, University of Jeddah,
Jeddah, Saudi Arabia
jfeki@uj.edu.sa

3 Faculty of Computing and IT, King Abdelaziz University,
Jeddah, Saudi Arabia

ahaltalhi@kau.edu.sa
4 IRIT Laboratory, University of Toulouse 1 Capitole, Toulouse, France

gilles.zurfluh@ut-capitole.fr

Abstract. Data Warehouse (DW) evolution is becoming a critical research
topic for several organizations mainly because their analytical data change
permanently and rapidly due to changes in the data source and decision-makers’
requirements. This paper presents an MDA-compliant (Model Driven Archi-
tecture) approach and a software tool for propagating automatically the evolu-
tions of the data source model and OLAP (On-Line Analytical Processing)
requirements towards the multidimensional DW model. More accurately, we
propose a DWE (Data Warehouse Evolution) framework. Being MDA com-
pliant, we perform this DW evolution through Model-To-Model transformation
rules we have defined as QVT (Query/View/Transformation) along with M2T
(Model-To-Text) transformations realized using Acceleo templates. Thus, the
evolution operations (Create table, Add column…) are firstly modeled, secondly
transformed into multidimensional evolution operations (Create dimension,
hierarchy…), and then are used with Acceleo templates for generating the DW
alteration code.

Keywords: Data warehouse � Evolution modeling � Data source model
OLAP requirements � MDA � M2M � M2T

1 Introduction

Nowadays the DW is a powerful technology for strengthening the decision-making
process within organizations. It gathers synthesis information from internal and/or
external operational data sources.

DW modeling has been considered, for more than one decade, as a real challenging
research topic for which several approaches were proposed. Three major categories of

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 401–425, 2018.
https://doi.org/10.1007/978-3-319-94764-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_17&domain=pdf

approaches for designing a DW schema (i.e., data-model) are well known in the
literature: Top-down [1], bottom-up [2, 3], and mixed [4] approaches.

All these DW design approaches rely on a rigid assumption; they consider that the
conceptual model of the DW is time-invariant. However, in practice, this assumption is
unrealistic most of the time, and therefore restricts the evolution of the real world. In
fact, the DW model may evolve due to internal and/or external factors (e.g., business
processes changes, organization environment evolution). Furthermore, it is difficult to
fix definitively the DW model at the design phase; in fact, for sustainability issues, the
DW model should often undergo changes after its implementation. These changes are
due to two main reasons namely (a) Evolution of the analytical needs: changes in these
needs might require extending the DW model (e.g. adding new axes or subjects of
analysis), and (b) Evolution of the data source model (DS) due to the evolution of the
business processes (e.g., adding/removing conceptual entities). To the best of our
knowledge, we can claim that the problem of changes in the DW model needs more
research investigations and appropriate software features. Indeed, all evolution strate-
gies proposed in the DW literature are at a single level of modeling: schemas before
and after changes conform to the same meta-model. In the DW domain, the evolution
of schemas expressed in different models has not yet received its full share of the
investigation.

To alleviate this problem, we propose in this paper an MDA (Model Driven
Architecture) approach [14] that automates the propagation of the evolution of the DS
model and the evolution of decision-makers’ requirements (OLAP-requirements in the
remaining of the paper) towards its associated DW model. In this context, we suggest
an approach based on a classification of the evolution scenarios and a set of trans-
formation rules to identifying the evolution operations to apply to the DW model.

This paper is organized as follows. Section 2 provides a review of works dealing
with the DW evolution problem. Section 3 describes our MDA-based approach for the
propagation of OLAP-requirements and DS evolution towards the multidimensional
DW model. Section 4 discusses the effect of the evolution of the DS model on the DW.
Section 5 introduces our classification of evolutions of OLAP-requirements; it devel-
ops algorithms to derive the appropriate changes that should apply on the DW model.
Section 6 describes the implementation of the DW evolution through MDA transfor-
mations at two levels: Model-To-Model (M2M) and Model-To-Text (M2T). Finally,
Sect. 7 concludes the paper and enumerates its perspectives.

2 Related Works

The DW evolution problem is considered from two main viewpoints: (a) Evolution of
data source model, and (b) Evolution of business requirements of decision-makers.
Hereafter, we review the approaches for each trends.

2.1 Approaches Based on DS Evolution Model

Organizations’ business processes evolve over time due to the modification of existing
processes or the emergence of new ones that may create new real world objects.

402 S. Taktak et al.

Naturally, these evolutions affect the data-model of the DS (i.e., information system)
that feeds the DW with data. In turn, the DW cannot be immunized against the
evolutions of its DS; consequently this evolution deserves to be studied in order to
semi-(automatically) propagate towards the DW data-model and the ETL (Extract
Transformed and Load) process. This evolution problem has been addressed from
different perspectives; we classify the related works into three main categories:
(i) Evolution of the DW multidimensional model, (ii) Maintenance of materialized
views, and (iii) Adaptation of the ETL process.

Works addressing views maintenance consider the DW as a set of materialized
views directly built on, and loaded from, the DS. In this category of approaches, any
change in the DS data-model requires views maintenance efforts. As a practical
extension, [5, 6] proposed approaches for a dynamic adaptation of materialized views
in response to the evolution of the DS/DW. These approaches maintain not only the
schema views but also their content; they mainly attempt to avoid recalculating views
after DS changes by deriving a new schema view from the old one. More details on
views maintenance in multidimensional context are available in [7].

Other research works adapt the ETL process when the DS data-model evolve.
Among these works, the authors in [8, 9] provide a mechanism for adapting the ETL
tasks to the changes occurred in the DS data-model. However, this study was restricted
to the ETL process without tackling the impact of the DS evolution on the DW model
components (Dimensions, facts, hierarchies…).

To lighten these shortcomings, the authors in [10] have defined a formal model for
a multi-version DW. They presented a set of evolution operations that affect the DW
schema and content. These authors have distinguished two types of DW versions: real
version and alternative version. The DW real version reflects the changes in the real
world environment of the organization whereas the DW alternative version simulates
the change process; to do so, “What-If” analysis strategy was adopted. Furthermore, the
authors have developed the MVDW (Multi-Version Data Warehouse) prototype for the
DW maintenance and versions management. A major drawback of this contribution is
the manual identification of the DW evolution operations; this identification requires
high expertise of the DW administrator and, therefore, is out of reach of end-users.

2.2 Approaches Based on Business Requirement Evolution

Let us note that in mixed DW design approaches [4], the design of the DW relies, from
the one hand, on the DS model and, from the other hand, on the OLAP-requirements.
Obviously, OLAP-requirements could not be static in time; therefore, the DW-design
driven by user requirements may become obsolete and no longer comply the new
requirements. To overcome this issue, it is necessary to consider the new analytical
requirements and then adapt the DW to encompass them. Among the research works of
this category, the authors in [11] suggested an approach for the customization of
analyses based on “If-Then” rules model; this model allows users to integrate their own
knowledge in order to enlarge the panoply of analysis on the DW by changing the DW
schema. The suggested evolution operations affect only two components of the DW:
dimensions and hierarchies. The authors have developed a prototype called WEDriK
(Warehouse Evolution Driven by Knowledge) based on a set of DW evolution

Model-Driven Approach to Handle Evolutions of OLAP Requirements 403

algorithms to create new analytical axes. The analytical requirements introduced by
each user are processed and transformed into DW evolution operations. Nevertheless,
the authors assume that the DW users are skilled enough to express properly their
requirements. Moreover, the supported changes are simple: they do not cover all cases
that decision-makers may ask for.

To overcome this problem, in [12] the authors studied the evolution of complex
hierarchies (multiple alternative hierarchies, dependent and independent parallel hier-
archies). They defined constraint-based evolution operations to ensure data integrity
and schema consistency of the new DW model. Operations and constraints are defined
in ULD (Uni-Level Description language) and MDD (Multilevel Dictionary Defini-
tion). This study is an extension of the work in [12] where the authors presented a
conceptual requirement-oriented framework called DWEVOLVE for DW evolution. It
analyzes the changes in the requirements specified by stakeholders as well as devel-
opers, and then incorporates them into the DW by performing appropriate additions,
deletions and updates. Nevertheless, the authors do not suggest mechanism for auto-
matic inference of evolution operations from OLAP-requirements. In fact, this task is
borne entirely by the DW administrator.

In the same context, in [13] authors have also investigated the problem of business
requirements evolution. They defined a formalism for modeling the new analytical
needs and proposed a semi-automatic approach to adjust and create a new version for
the DW model. However, the evolution operations supported by this solution are
simple and lack accuracy. For instance, when adding an attribute, the proposed algo-
rithm is able to identify just the dimension to change but cannot find the role of the new
attribute in the dimension, i.e., whether it creates a hierarchy or inserts a level into an
existing hierarchy… How to find the role of the new component is really a hard task
left to a skilled user.

2.3 Discussion

In the related works section we have focused on two complementary categories of
evolutions in DW systems, namely evolution of the DS model and evolution of OLAP
needs. We have identified three deficiencies concerning (i) complementarity, (ii) com-
plexity of the evolutions, and (iii) automatic propagation of changes from the DS
toward the DW.

First, concerning the complementarity, to the best of our knowledge, no solution
has combined the DS evolution with business requirements evolution so far. Indeed,
contributions have addressed these two evolutions separately.

Secondly, few works were interested in studying the DS evolution effect on the
multidimensional model. Moreover, most of these works provide solutions touching a
few isolated aspects and treating simple evolution cases (i.e., Dimension evolution,
Fact evolution, ETL evolution).

Thirdly, automatic propagation was not a main concern in these works, and where
addressed, it was carried out according to traditional modeling and programming
approaches.

Finally, from the technological viewpoint, we note that all proposed solutions were
realized in a conventional software engineering context; therefore, implementations are

404 S. Taktak et al.

platform-dependent. Obviously, using the MDA approach allows benefiting from its
multiple advantages.

The objective of this paper is to propose a Data Warehouse Evolution framework
(DWE) as a complete solution covering the DS evolution and the OLAP-requirements
evolution. Our proposal is MDA compliant, it promotes the automatic propagation of
changes occurred in the DS model along with business requirements changes towards
the multidimensional DW. Relying DWE on the MDA technology is really a chal-
lenging proof. In fact, MDA facilitates realizing our proposed approach, which inherits
benefits from this technology (i.e. platform-independent, reduced efforts, and improved
quality of results). We define one for the OLAP needs and one model for the DS
evolution. In the remaining of this paper, we present our approach that addresses the
DW model evolution problem.

3 Overview of the Proposed Approach

Our MDA-based approach aims to automate the propagation of the changes raised by
decision-makers (as new needs) and DS model (as new evolution operations) towards
the DW multidimensional model. Figure 1 depicts our approach where the evolution of
the DW model is due either to an evolution of its DS model (Fig. 1, panel A), or to an
evolution of OLAP needs (panel B). To do so, we define an appropriate evolution
model for the new OLAP needs; this enables us reusing our on-hand DW evolution
model [15]: we keep the same M2T transformation rules for code generation.

Our approach relies on three evolution models: (i) DS Evolution Model (DSEM),
(ii) DW Evolution Model (DWEV), and (iii) Requirements Evolution Model (REM). In
addition, it applies M2M and M2T transformations:

– DSEM: This model describes all evolution operations that may affect the relational
DS elements (table, column…).

– DWEM: It describes all operations that may affect the multidimensional structures
(dimensions, facts…). These operations should be derived from the DSEM model.

Fig. 1. Overview of our MDA-based DW evolution approach.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 405

– REM: This model describes the new needs of decision-makers in terms of subject
and axes of analysis. It also allows defining knowledge introduced by the user (e.g.
rules, formulas). This model will be transformed into a DWEM model.

– M2M transformation: It generates the DWEM model from REM model. It relies on
automatic mapping between these two models. M2M transformation rules are
implemented in QVT (Query-View-Transformation), and use a set of meta-models
stored upstream as Ecore files.

– M2T transformation: It generates the code that performs the DW model alteration;
the generated code results from the DWEM previously generated by applying a set
of transformation rules we have formalized in MOF2Text. M2T process takes as
input the physical model (PSM) along with the DW evolution models; it produces
SQL script file(s) for creating or modifying the DW model. We have defined
Acceleo templates for transforming DWEM operations into an executable script.
This transformation process is valid as well for processing the DS evolution as for
processing the needs evolution. In fact, this reuse is feasible because these two
transformations start from the same DWEM evolution model.

4 Evolution Inferred by the DS Model

The DW schema may evolve over time due to the evolution of its DS data-model.
Naturally, the evolution frequency is domain-dependent. As an illustration, in the
banking domain the DS of a DW changes every 2–4 weeks on average, also the DS of a
telecommunication company is less stable since its schema changes every 7–13 days on
average [16].

Two crucial questions arise when the DS evolve: (1) What are the changes to apply
to the DW model (i.e., adding a dimension, fact, level of analysis…), and (2) How to
perform these changes efficiently and quickly; rapidity is an imperative factor for some
decisional systems as argued before. A trivial solution rebuilds the DW from the new
DS data-model starting from scratch; but this is a poor approach because the DW
reconstruction is a heavy and complex task requiring a lot of time and effort, and is
therefore costly. Furthermore, rebuild from scratch cannot be envisaged especially in
frequently changing domains. In order to address this evolution issue, we have pro-
posed a model-driven approach for propagating changes from the relational DS towards
its DW in an almost-automatic way, thus avoiding the need for the full reconstruction
of the DW model (and later its full-reloading process). To do so, we have proposed an
MDA-based architecture [14] for propagating the evolution operations occurred on the
DS model towards the DW data-model. We have identified sets of evolution operations
on the DS and their transformation rules. These operations concern tables, columns,
keys…; their execution is not systematic (a precondition should be satisfied). Table 1
lists the evolution operations that could affect the relational DS, and gives for each one
the corresponding set of plausible evolution operations we may apply on the DW. For
example, in line 1 when we “Add new table” to the DW the effect of this evolution
operation may create a “New Fact”, “New Dimension”, “New Hierarchy” and/or “New
Level” within an existing hierarchy.

406 S. Taktak et al.

In order to define the transformation rules we adopt the following notation:

– DS: a third normal form relational DS schema
– t: a relational table belonging to DS
– t.pk: the set of primary key columns of table t
– t.Cols: the set of non-primary key columns of t (t.pk \ t.Cols = Ø)
– ti ! tj: table ti references table tj via a foreign key belonging to ti
– DW: a multidimensional data warehouse schema loadable from tables in DS
– f: a fact table belonging to DW
– d: a dimension belonging to DW
– di.hj: a hierarchy hj of dimension di
– di.hj.lk: a level lk belonging to di.hj
– di.dj.lk.p: a parameter at level di.hj.lk
– di.hj.lk.p.W: a possibly empty set of weak attributes associated with parameter di.hj.

lk.p
– f.M: the set of measures of fact f
– f.D: the set of dimensions of fact f
– Load (t, d): A Boolean function returning True if table t loads dimension d.

In this section, we limit ourselves to detail two transformation rules:

– Transforming a table into a dimension,
– Transforming a table into a fact,

Table 1. DS evolution operations and their corresponding evolution operations on the DW.

DS evolution operation Plausible DW evolution operation

Add new table New fact
New dimension

New hierarchy
New level

Add new column New measure
New hierarchy
New level

New parameter
New weak attribute*

Modify column type Modify weak attribute type*

Modify parameter type
Modify parameter type
Modify measure type

Drop table Delete fact
Delete dimension

Delete level
Delete parameter

Remove column Delete measure
Delete level

Delete weak attribute*

Delete hierarchy
Add new constraint New fact

New dimension
New hierarchy
New level

Drop constraint Delete fact
Delete dimension

Delete level
Delete parameter

Split table New fact
New dimension
Delete measure
Delete level

New hierarchy
New level
Delete weak attribute*

Delete hierarchy

*Less significant operation

Model-Driven Approach to Handle Evolutions of OLAP Requirements 407

Other transformation rules are available in [15].
We illustrate these transformation rules using the DS and DW of Fig. 2.

4.1 Transforming a Table into a Dimension

The creation of a table tnew in the DS may create a new dimension dnew in the DW by
calling the Add_dimension(dnew) operation. This performs through rule T2D.

Input:
- tnew: table added to the DS via the Add_Table (t: Table) operation
- DS, DW
Condition:
- DS.ti DS.tnew -- tnew is referenced by a table ti in the DS
- Load (DS.ti, DW.fj) -- table ti (which references tnew) loads a fact fj

Processing: /*Create a new dimension dnew*/
- Find F’ -- the set of all facts loaded from tables that reference tnew
- dnew.F := F’ -- link dnew with all facts in F’
- dnew.name:= “D_” + tnew.name -- + denotes the string concatenation operator.
- dnew.H := {hnew} -- create a hierarchy hnew for dimension dnew

- dnew.hnew.L:= {lnew} -- create a level lnew within hnew

- dnew.hnew.lnew.p := tnew.pk -- parameter of lnew is tnew.pk
- dnew.hnew.lnew.W := tnew.Cols -- weak attributes of lnew are columns of tnew

Output:
- dnew: new dimension added to the DW using Add_dimension (d: Dimension).

Rule T2D: Table-To-Dimension

Fig. 2. A relational Data source model and its multidimensional DW model [17].

408 S. Taktak et al.

In our running example (Fig. 2), let us create the table RETAIL_OUTLET (Id_Ro,
Ro_name, Ro_zone…) that is referenced by the DS table SALE that feeds the fact
F_SALE. Applying rule T2D, the new table creates a new dimension called
D_RETAIL_OUTLET linked to the F_SALE fact.

4.2 Transforming a Table into a Fact

The creation of table tnew in the DS using Add_table(tnew) may create a new fact fnew in
the DW by calling the Add_fact(fnew) operation. This evolution is realized by applying
rule T2F hereafter.

Rule T2F: Table-To-Fact
Input:
- tnew: table added to the DS via Add_Table (t: Table)
- DS, DW
Condition:
- tnew DS.t1 …, DS.tk with k ≥ 2 -- tnew references k tables in the DS
- Numeric (tnew) ≠ -- tnew has numeric attributes
- Load (DS.ti, DW.dj) with 1≤i≤k -- each table ti referenced by tnew loads a dim dj

Processing: /*Create a new fact fnew*/
- Find D’, the set of all dimensions loaded from tables referenced by tnew
- fnew.D := D’ -- link fnew with dimensions in D’
- fnew.M := Numeric (Tnew.Cols) -- numeric columns of tnew become Measures in fnew

- fnew.name := “F_” + tnew.name -- name of the new fact.
Output:
- fnew: new fact added to DS via the Add_Fact (f: Fact) operation.

Continuing with our example, we create the table SCORE_PROD (#Id_Prod,
#Id_Cust, ScoreNumeric…) that references two tables PRODUCT and CUSTOMER in
the DS. These tables feed respectively the two dimensions D_PRODUCT and
D_CUSTOMER. Applying rule T2F, the new table creates a fact called F_SCOR-
E_PROD with Score as a measure, related to D_CUSTOMER and D_PRODUCT
dimensions.

5 Evolution Implied by the Decision Makers Needs

The evolution of the OLAP-requirements leads to several cases of evolution on the DW
model. We group these evolution cases into three classes namely: Evolution by
derivation, Evolution by reorganization, and Evolution by extension. More details
about this classification are available in [17]. We clarify these classes and we textually
explain the transformation rules that generate the modifications operations to apply on
the DW model when the OLAP-requirements evolve.

– Statico: Nothing to change if the current DW model meets a new requirement.
– Reorganization: Applies when the necessary elements (i.e., measure or attribute) for

the new requirement already exist in the DW model but their current roles are not

Model-Driven Approach to Handle Evolutions of OLAP Requirements 409

adequate. We change the role of such elements by creating new links between some
elements of the DW model. This reorganization mainly affects temporal and spatial
dimensions.

– Derivation: If an element is vital for a new requirement but is not in the DW model,
therefore, we check if it is derivable from an existing DW element; the derivation
uses knowledge introduced by the DW administrator as rules or formulae. Other-
wise, if the vital element is derivable from the DS, then we extend the DW model
with the derived element.

– Extension: This alternative is the most delicate. In fact, when the DW model cannot
satisfy the new requirement, either by derivation or by re-formulation, we have to
identify which element from the DS we should add to the DW and define its role,
and then we expand the DW model with the new element.

In order to decide which alternative of evolution - from above -to apply to the DW
model, we develop the Main algorithm (Algorithm 1).

Note that we use these alternatives independently or combined. In the following,
we detail each one and specify the evolution operations to perform it. To do so, we use
the notation below:

– Req: a new requirement
– A: set of attributes describing Req; A divides into two subsets A = Aquant[Aqual

– Aqual: all qualitative attributes of Req
– Aquant: all quantitative attributes of Req,
– DW: set of elements of the DW multidimensional model (i.e., schema)
– DS: set of elements of the DS model.

The Main algorithm depicts the principle of defining the evolution strategy. It calls
three algorithms Reorganize (Algorithm 2), Derive (Algorithm 3) and Extend (Algo-
rithm 4).

Algorithm 1: Main.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Input:
 Req, DW, DS
Begin:
if DW_answer(Req) then

Null // No changes to do on the DW model
else if A DW then

Reorganize() // see Reorganize algorithm
else

for each a A
 if a DW and (Rule(a) or Formula(a)) then

Derive() // see Derive algorithm
 else if a DW and a DS then

Extend() // see Extend algorithm
end if
end for

 end if
end if
End.

410 S. Taktak et al.

DW_answer(Req) is a Boolean function that returns True if the DW model meets the
new requirement (Req): Statico alternative, and False otherwise.

Rule(a) is a Boolean function True if attribute a is defined through a rule, and False
otherwise.

Formula(a) is a Boolean function True if attribute a is defined through a formula,
and False otherwise.

5.1 Reorganization

The reorganization process (see Algorithm 2) begins with the identification of the DW
elements (fact, dimensions) for the new requirement. It calls two functions Find_Fact
and Find_Dimension; these functions return respectively the fact containing quantita-
tive attributes Aquant, and dimensions containing qualitative attributes Aqual. The fact
fnew will be enriched with the set of measures Aquant attributes. Dimensions containing
Aqual attributes are refined using the Refine function before their link to the new fact.
This function prunes hierarchies by eliminating unnecessary attributes for the new
requirement.

Algorithm 2: Reorganize.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Input:
Aquant , Aqual
Begin:

f = Find_Fact(Aquant)
D = Find_Dimensions(Aqual)
if f == ∅ Then

fnew.M = Aquant

else
fnew = f

end if
for each d D

dnew = Refine(d)
dnew.f = fnew

Add_Dimension(dnew)
end for
Add_Fact(fnew)

End.

5.2 Derivation

The Derive algorithm describes the derivation process; it takes as input the attribute to
derive as well as the knowledge given by the DW administrator as rules or formulae.
We treat differently qualitative and quantitative attributes of this class.

If the derived attribute ad is quantitative, and if there is, a fact f related to the
dimension that contains the qualitative attributes of the new requirement, then we add
ad to f as new measure mnew. Otherwise, we create a new fact fnew for the derived
attribute ad.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 411

If ad is a qualitative attribute, it necessarily belongs to a dimension where its
position generally depends on the asource attribute in the rules. If asource belongs to a
terminal level lt then anew becomes a terminal level lnew in the same hierarchy as lt.
Otherwise, we create a new hierarchy hnew that contains level ls and all its predecessor
levels. lnew adds to the new hierarchy as a terminal level.

Algorithm 3: Derive.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Input:
ad: a derived attribute
asource: an attribute of DS model used within a rule or formula
Aquant , Aqual.
Begin:
if ad Aquant and formula(ad) then
 f = Find_Fact(Aqual) //find the fact linked to dimensions containing Aqual

 if f ==∅ then
fnew.M = fnew.M∪ ad // define the measure of the new fact
fnew.D = Find_Dimensions(Aqual) //find dimensions containing Aqual

Add_Fact (fnew)
else

mnew = ad ; mnew.fact = f
Add_Measure (mnew)

 end if
else if ad Aqual and Rule(ad) then

 return level containing asource

 if Terminal_Level(ls) then
lnew.h = ls.h //hierarchy of level lnew is ls hierarchy
lnew.p = ad // parameter of lnew is the derived attribute ad

lnew.pred = ls // the predecessor level of lnew is ls
else
hnew.d = ls.h.d //dimension of hnew is the dimension of ls

//the levels of hnew are all ls predecessor levels
 Add_ hierarchy (hnew)

lnew.p = ad ; lnew.pred = ls ; lnew.h = hnew

 end if
 Add_ Level(lnew)
end if
End.

5.3 Extension

The Extend algorithm states the principle of the extension, which enriches the DW
model with elements extracted from the DS to satisfy the new OLAP-requirement. We
assume that a semi-automatic association between attributes of the new requirement
and the DS attributes is provided; this treatment could use a semantic resource or a
dictionary of the DS attributes. The role of each element depends on the type (quan-
titative or qualitative) of its associated attribute and its membership table in the DS.

412 S. Taktak et al.

Algorithm 4: Extend.

Input:
DW, DS,

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

ae : attribute to retrieve from the data source
Begin:
t = Find_Table(ae) // returns the table that contains ae

if ae Aqual then
returns the level which is loaded from t

if l == null then
t’ = ref(t) // returns the table which references table t
t” = IsRef (t) // returns the table which is referenced by t

 if t’ not null and t” not null then
l’= Load_Level(t’)
l” = Load_Level(t”)

if l”.pred == l’ then
lnew.h = l’.h ; lnew.pred = l’ ; lnew.succ = l”
Add_Level(lnew) // add level lnew

end if
 else if t’ is not null then

l’ = Load_Level (t’)
if Terminal_Level (l’) then // add terminal level
lnew.p = ae ; lnew.pred = l’ ; lnew.h = l’.h

else // add hierarchy and a new level
hnew.d = ls.h.d
hnew.L = l1.. l’ // the level in the new hierarchy

 Add_Hierarchy (hnew)
lnew.p = ae ; lnew.pred = l’ ; lnew.h = hnew

 Add_Level (lnew)
end if

 end if
else
anew.p = l.p
Add_Attribute(anew)

 end if
else

f = Load_Fact(t)
if f not null then

mnew = ae ; mnew.fact = f
Add_Measure (mnew) // add measure mnew to the fact I
else
fnew. M = ae ; Add_Fact(fnew) // add fact I

 end if
end if
End.

If the attribute to extract ae (ae belongs to a table t) is qualitative, four situations
arise to define the role of ae in the multidimensional model:

– If table t feeds a level l then it becomes a low attribute by applying the Add_At-
tribute evolution operation.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 413

– If t feeds no levels, and if t is referenced by a table t’ which feeds a terminal level l’,
then ae becomes an attribute for a new terminal level lnew by applying the
Add_Level evolution operation.

– If t does not feed any level, and if t is a table referenced by t’ and refers to a table t”
- t’ and t” respectively feed the two successive levels l’ and l”- ae can then feed a
hierarchical level inserted between the two levels l’ and l”.

– If t does not feed any level and if t is referenced by table t’ which feeds a
non-terminal level l’ then ae creates a new hierarchy hnew by calling the
Add_Hierarchy evolution operation. hnew contains the level l’ and all its predecessor
levels in the hierarchy of l’. Then, we create a new terminal level lnew for the new
hierarchy hnew.

When the extracted attribute ae is quantitative, if t (table of ae) feeds a fact f, then ae
becomes a measure of f. Otherwise, we create a new fact with the new measure ae.

6 Implementation

To validate our approach, we have developed a DWE (Data Warehouse Evolution)
software prototype under the EMF (Eclipse Modeling Framework) platform that is a
complete environment for MDA. Figure 3 shows the DWE overall architecture that
offers two evolution features: (i) Evolution of the DW model as a result of changes in
its DS model; (ii) Evolution of the DW model to meet new OLAP-requirements.

The DW evolution process starts with the modelling of the new requirements or
changes occurred in the DS model; it aims to generate respectively the requirement
evolution model (REM) and the DS evolution model (DSEM). The next step is the
M2M that transforms the REM and the DSEM into DWEM. Once the DWEM is
generated, thereafter the new DW model displays graphically; this enables the DW

Fig. 3. Architecture of the DWE prototype [17].

414 S. Taktak et al.

administrator to observe and study the effects (i.e., computed changes) of the
DW-evolutions operations. At this stage, the DW administrator can accept the sug-
gested changes or even adapt them. Finally, the M2T process transforms the DWEM
into script for DW alteration. In what follows, we detail these steps.

6.1 Modeling of Evolution

We use UML (Unified Modeling Language) class diagrams to define the evolution
models DSEM, REM and DWEM. The static property list in the classes define the
models of the DS, Requirements and the DW whereas the operations define the
changes that may affect each of these structures. Next, we detail these three evolution
models.

DS Evolution Model (DSEM)
The DSEM model is the basic model for deducing the DWEM model. It defines the
relational DS schema (tables, constraints…) through class properties as well as the
evolution operations (add table, add column…).

The DSEM conforms to its Meta-Model in Fig. 4. The latter has two components:
(i) The DS Meta-Model (enclosed within the dashed area) stores the DS schema; and
(ii) The Meta-Model of the DS Schema Evolution Operations that stores the DS schema
evolution operations.

Modeling Decision-makers Requirements
This step takes as input the new requirements expressed as queries, rules or formulae
and returns a Requirements Evolution Model (REM) compliant to the Meta-Model in
[13] depicted in Fig. 5. A new requirement has quantitative and qualitative attributes,
arithmetic operations (i.e., formula) and logical expressions (i.e., rules).

Fig. 4. DS evolution meta-model.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 415

DW Evolution Model
The DW Evolution Meta-Model has two components (cf. Fig. 6): (i) The DW
Meta-Model (dashed area) that stores the DW Schema, and (ii) The Meta-Model of the
DW Schema Evolution Operations that stores the DW Schema Evolution Operations.
This latter will be deduced automatically from the DSEM using transformation rules.

Fig. 5. Requirements evolution meta-model [13].

Fig. 6. DW evolution meta-model.

416 S. Taktak et al.

6.2 M2M Transformations in QVT: REM to DWEM

The first aim of our approach is to determine the evolution operations to apply on the
DW model after the appearance of new analytical needs. Figure 7 lists transformations
potentially applicable to the DW according to the evolution strategies.

Due to space limitation, we define the rules that transform a new requirement into
the Add_Fact evolution operation that adds a fact into the DW.

Each new requirement, defined using an appropriate model, is converted auto-
matically into a set of evolution operations on the target model (DW evolution model).

The relationMain is the entry point of the transformation process; it has elements of
the two following models (cf. Fig. 8):

– « rem » model conform to REMM (Requirement Evolution Meta-Model),
– « dwem » model conform to DWEMM (DW Evolution Meta-Model).

Fig. 7. DW evolution operations for new requirements [17].

Fig. 8. Graphical representation of the QVT relation Main [17].

Model-Driven Approach to Handle Evolutions of OLAP Requirements 417

The Domain element of the « rem » model is marked with « C » (Checkonly); this
means when a transformation occurs in this direction (i.e. the direction of a Checkonly
domain) it simply checks if there is a valid match in the relevant model that satisfies the
relationship. The domain of the « dwem » model is marked with « E » (Enforce); this
means when a transformation occurs in this direction (i.e. the direction of the model of
an enforced domain) if the checking fails then the target model « dwem » is modified
to satisfy this relation. The left side of this relation describes the elements of the source
model « rem » , which transforms into elements of the target model « dwem » . More
specifically, a new requirement from the left « nr: New_Requirement » transforms into
evolution operation(s) for the DW « dweo: Dw_Evol_Operation » by invoking the
relation New_Requirement_TO_Dw_Evolution_Operation (nr, dweo) specified in the
where clause. Consequently, the following relations executes:

– New_Requirement_TO_AddDimension,
– New_Requirement_TO_AddLevel,
– New_Requirement_TO_AddFact,
– New_Requirement_TO_AddMeasure,
– New_Requirement_TO_AddParameter, and
– New_Requirement_TO_AddAttribute.

Let us focus on the New_Requirement_TO_Add_Fact relation. Figure 9 describes
the relation that transforms a new requirement « nr » into the DW evolution operation
Add_Fact.

Fig. 9. QVT relation NewRequirement_TO_AddFact [17].

418 S. Taktak et al.

Since we are treating the DW evolution problem according to the extension
strategy, we have elements from the DS model (« Domain: Ds_Schema ») in the
New_Requirement_ TO_Add_Fact relation. Truthfully, a quantitative attribute aQuant
(in a new requirement nr) that belongs to a table t of the DS model « dss » may create
a new fact newf in the DW model « dws » if table t does not load any fact of the «
dws » . Then, the aQuant attribute feeds a measure of the new fact newf via the relation
AttributeQuant_ to_Measure(aQuant,m). The dimensions of newf will be deducted from
the qualitative attributes present in the new nr requirement using the relation
AttributeQual_To_Dimension (aQual,d).

6.3 M2M Transformations in QVT: DSEM to DWEM

Here, we define our QVT rules to transform the DS evolution model into a DW
evolution model. Figure 10 depicts how the evolution operations performed on the DS
model will be transformed into evolution operations on the DW model. Among these
relations, we have selected to detail AddTable_TO_AddDimension and AddTable_
TO_AddFact.

Relation AddTable_TO_AddDimension.
Note that in multidimensional modeling, each fact f is associated with a finite set of n
(n > 1) dimensions; each dimension is an analysis axes of the measures in f. Dimen-
sions are loaded from the DS tables directly or indirectly related to the table that feeds
f [18, 19]. Hence, if a new table newt is added to the DS and is referenced by a table
that feeds f, then newt transforms into a dimension for f.

Fig. 10. Principle of transforming DS-evolution operations into DW-evolution operations.

Model-Driven Approach to Handle Evolutions of OLAP Requirements 419

This AddTable evolution operation is achieved through the QVT relation
AddTable_TO_AddDimension in Fig. 11 that transforms the operation « AddTable » on
the DS data-model into the operation « AddDimension » on the DW data-model. The
When clause specifies the condition to check for executing this relation. It means if the
new table noted « newt » is referenced by a table noted « reft » that feeds a fact «
f » through the relation « Load(reft, f) » then « newt » will be transformed into a new
dimension « newd » via the relation « Table_TO_Dimension(newt, newd) » specified
in the Where clause.

Relation AddTable_TO_AddFact
In DW design approaches, an n-ary relationship having non-(prime and foreign key)
numeric columns transforms into a fact [20, 21].

This heuristic helps us to decide whether a new table added to the DS will trans-
form into a fact or not. Thus, the relation AddTable_TO_AddFact transforms the
AddTable operation into AddFact operation on the DW. Figure 12 gives its formal-
ization in QVT explained hereafter. If the new table « newt » refers to two tables «
ta » and « tb » that feed two dimensions « da » and « db » respectively, and if «
newt » has numeric columns then « newt » is likely to transform into fact via the
relation « Table_To_Fact (newt, newf) » . Numeric columns in newt transform into
measures through a relation called « Column_To_Measure (c, m) » not defined in this
paper.

Fig. 11. QVT relation AddTable_TO_AddDimension.

420 S. Taktak et al.

6.4 Validation and Adaptation Module

Once the DWEM is generated, thereafter the new DW model could be visualized
graphically; this enables the DW Administrator (DWA) to follow/study the effects (i.e.,
suggested changes) of the DS-evolutions operations on the original DW model. Fig-
ure 13 shows the DWE graphical interface after adding the Retail_Outlet table to the
DS model. At this stage, the DWA can validate these changes or adapt them according
to the evolution requirements. Consequently, the DWEM is automatically modified and
then the M2T process generates the code.

Fig. 12. Relation AddTable_TO_AddFact in QVT.

Added Table
RETAIL_OUTLET

Fig. 13. Sample DWE interfaces (graphical and code).

Model-Driven Approach to Handle Evolutions of OLAP Requirements 421

6.5 Implementing M2t Transformations

We use Acceleo plugin that implements the MOFM2T standard of the OMG [22].
Acceleo provides tools for generating codes from models. This generation of code
conforms to a template-based approach.

A template is a text containing placeholders to fill with information extracted from
the input model (Fig. 14). For our running example, the input model is the DW
evolution model issued from the Requirement Evolution Model (REM) or DS Evo-
lution Model (DSEM). For M2T transformations, we developed a PSM (Platform
Specific Model) as an Acceleo template for generating the code [17] for the target
platform Oracle Warehouse Builder (OWB). Our Template generates OMB (Oracle
MetaBase) script that runs under OMB-Plus with Oracle JDeveloper or OMB-Plus
console. The execution of this template generates the code to connect to OWB and
propagates the changes to the DW data-model (Fig. 13).

7 Preliminary Results and Evaluation

Using the case study of Fig. 2, we have conducted a preliminary assessment by con-
sidering a significant set of DS and OLAP-requirements evolution scenarios leading to
changes on the DW model, as the creation of new facts and dimensions. The achieved
results are very promising. Hereafter, we present four evolution scenarios:

7.1 Evolution Scenarios of the DS

The creation of the DS-table RETAIL_OUTLET (Id_Ro, Ro_name, Ro_zone…) with
a reference from the SALES DS-table to the RETAIL_OUTLET DS-table causes
applying rule T2D that creates a dimension D_RETAIL_OUTLET linked to the
F_SALE fact.

Adding the DS-table SCORE_PROD (#Id_Prod, #Id_Cust, ScoreNumeric…) refer-
encing tables PRODUCT and CUSTOMER has caused applying rule T2F that creates
the fact F_SCORE_PROD referring dimensions D_CUSTOMER and D_PRODUCT
and having Score as a measure.

Script file (e.g., OMB)

Acceleo Template

Model

Fig. 14. Acceleo schema for the generation of OMB script.

422 S. Taktak et al.

7.2 Evolution Scenarios Due to OLAP Requirements

Assume the decision-maker wants to analyze the Sales by Category (analysis param-
eter) of products. The Category is in the DS but not in the multidimensional model. To
do so, he gives a rule indicating that the last digit of the product identifier (Id_Prod)
codifies the Category of the product. Because of this evolution in requirement, a new
parameter “Category” is created within a new hierarchy Id_Prod ! Category for the
D_PRODUCT dimension.

Suppose the decision-maker needs to analyze The Sales by product provider.
The DW does not exist in the DW but the Provider table exists in the DS. The
prototype creates a new parameter Id_Prov within a new hierarchy Id_Prod !
Id_Prov for the D_PRODUCT dimension.

Actually, DWE offers the DW administrator the ability to graphically view the
changes suggested on the DW model, adjust these changes, and automatically generate
the DW alteration script. This allows a considerable grain in terms of quality and time.
Further experiments are in progress to improve the quality of the propagations
obtained, for example, the systematic addition of any weak attributes to be associated
with a new inserted parameter.

8 Conclusion

In this paper, we have proposed a model-driven based approach in order to automate
the propagation of the evolution of OLAP-requirements and the data source model
towards its associated data warehouse. To do so we have defined three evolution
models: DSEM (DS Evolution Model), REM (Requirement Evolution Model) and
DWEM (DW Evolution Model). Furthermore, we have defined a set of transformation
rules and formalized them in QVT (Query/View/Transformation) language; these rules
implement the transformation process for the passage between these models; they
support the propagation of changes due to changes occurred in the data source or to
new OLAP-requirements.

In order to validate our approach, we have developed a software prototype called
DWE (Data Warehouse Evolution). DWE is compliant to the Model Driven Approach.
Moreover, we have presented the functional architecture of DWE based on two levels
of transformations. The first is Model-to-Model (M2M) which transforms the DS and
the requirements evolution data-models into a DW evolution data-model. The second
transformation is Model-To-Text (M2T), which generates the script for the DW
alteration using Acceleo templates that we have defined for generating OMB (Oracle
MetaBase) code. The execution of this template allows log in to Oracle Warehouse
Builder and executing the OMB scripts that alter the DW data-model.

Our DWE prototype differs from the literature solutions mainly because it provides
(semi-)automatic propagation of evolutions applied to the OLAP-requirements and DS
data-model towards the DW data-model. Indeed, DWE covers the whole cycle of the
DW evolution starting from the identification of the DW evolutions and extends to
code generation. Additionally, being MDA-based, DWE allows benefits offered by this

Model-Driven Approach to Handle Evolutions of OLAP Requirements 423

technology (i.e. independence of platforms, reduction of efforts, reuse of models, and
improvement of the quality of result).

This work is currently opening up many perspectives. As a further step, we intend
to study the effect of such evolutions on the ETL (Extract-Transform-Load) process.
Obviously, the ETL process must evolve to consider the effects of the DS-DW changes
on the existing loading procedures. We are also planning a case study for efficiency
measurement and performance evaluation of the transformation rules.

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley, New York (2002)
2. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources. In:

Proceedings of ACM International Workshop on Data Warehousing and OLAP (DOLAP
2001), Atlanta, GA, USA, pp. 40–47 (2001)

3. Rusu, L.I., Rahayu, W., Taniar, D.: A methodology for building XML DW. Int. J. Data
Warehous. Min. 1(2), 67–92 (2005)

4. Nabli, A., Soussi, A., Feki, J., Ben Abdallah, H., Gargouri, F.: Towards an automatic data
warehouse and data mart design. In: 7th International Conference on Enterprise Information
Systems (ICEIS 2005), Miami, USA, pp. 226–231 (2005)

5. Rundensteiner, E.A., Nica, A., Lee, A.J.: On preserving views in evolving environments. In:
The 4th International Workshop Knowledge Representation Meets Databases, pp. 131–141
(1997)

6. Bellahsene, Z.: Schema evolution in data warehouses. Knowl. Inf. Syst. 4(3), 283–304
(2002)

7. Thakur, G., Gosain, A.: A comprehensive analysis of materialized views in a data warehouse
environment. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(5), 76–82 (2011)

8. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T., Vassiliou, Y.: Rule-based
management of schema changes at ETL sources. In: Grundspenkis, J., Kirikova, M.,
Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp. 55–62. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12082-4_8

9. El Akkaoui, Z., Zimànyi, E., Mazón, J.N., Trujillo. J.: A model-driven framework for ETL
process development. In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP (DOLAP 2011), New York, USA, pp. 45–52 (2011)

10. Wrembel, R., Bębel, B.: Metadata management in a multiversion data warehouse. In:
Spaccapietra, S., et al. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 118–
157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70664-9_5

11. Favre, C., Bentayeb, F., Boussaid, O.: Dimension hierarchies updates in data warehouses: a
user-driven approach. In: 9th International Conference on Enterprise Information Systems
(ICEIS 2007), Madeira, Portugal, pp. 206–211 (2007)

12. Thakur, G., Gosain, A.: DWEVOLVE: a requirement based framework for DW evolution.
SIGSOFT Softw. Eng. Notes 36(6), 1–8 (2011)

13. Solodovnikova, D., Niedrite, L., Kozmina, N.: Handling evolving data warehouse
requirements. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol.
539, pp. 334–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-0_35

14. Object Management Group (OMG): Model Driven Architecture (MDA) (2004)
15. Taktak, S., Feki, J., Zurfluh, G.: Toward evolution models for data warehouses. In: 2nd

International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2014), Lisbon, Portugal, pp. 472–479 (2014)

424 S. Taktak et al.

http://dx.doi.org/10.1007/978-3-642-12082-4_8
http://dx.doi.org/10.1007/978-3-540-70664-9_5
http://dx.doi.org/10.1007/978-3-319-23201-0_35

16. Bellatreche, L., Wrembel, R.: Evolution and versioning in semantic data integration systems.
J. Data Semant. 2, 57–59 (2013)

17. Taktak S., Alshomrani S., Feki J., Zurfluh G.: The power of a model-driven approach to
handle evolving data warehouse requirements. In: Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD
2017), pp. 169–181 (2017). ISBN 978-989-758-210-3

18. Hachaichi, Y., Feki, J., Ben-Abdallah, H.: Designing data marts from XML and relational
data sources. In: Design and Advanced Engineering Applications: Methods for Complex
Construction. Advances in Data Warehousing and Mining Series, pp. 55–80. IGI Global
(2009). Bellatreche Edition

19. Taktak, S., Alshomrani, S., Feki, J., Zurfluh, G.: An MDA approach for the evolution of data
warehouses. Int. J. Decis. Support Syst. Technol. (IJDSST) 7(3), 65–89 (2015)

20. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data
warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

21. Hachaichi, Y., Feki, J.: An automatic method for the design of multidimensional schemas
from object oriented databases. Int. J. Inf. Technol. Decis. Mak. 12(06), 1223–1259 (2013)

22. Object Management Group (OMG): MOF Model to Text Transformation Language, v1.0
(2008). http://www.omg.org/spec/MOFM2T/1.0/

Model-Driven Approach to Handle Evolutions of OLAP Requirements 425

http://www.omg.org/spec/MOFM2T/1.0/

Complex Event Processing for
User-Centric Management of IoT Systems

Moussa Amrani1, Fabian Gilson2(B), and Vincent Englebert1

1 PReCISE Research Center, University of Namur, Namur, Belgium
{moussa.amrani,vincent.englebert}@unamur.be

2 Computer Science and Software Engineering, University of Canterbury,
Christchurch, New Zealand

fabian.gilson@canterbury.ac.nz

Abstract. The amount of available connectible devices and Internet of
Things (IoT) solutions is increasing as such equipments are becoming
popular and widely available on the market. This growth in popularity
goes together with a keen interest for smart homes where individuals
deploy ad hoc solutions in their houses. However, the task to translate
the users’ needs into a concrete IoT infrastructure is not straightforward
and often require to deal with proprietary APIs, complex interconnection
protocols, and various technical details, so that the link to user require-
ments may be lost, hampering the validity of their interaction properties.
In order to define and manipulate devices deployed in domestic environ-
ments, we propose IoTDSL, a Domain-Specific Language relying on a
high-level rule-based language. Users in charge of the deployment of IoT
infrastructures are able to describe and combine in a declarative manner
structural configurations as well as event-based semantics for devices.
Modellers are then freed from technical aspects, playing with high-level
representations of devices. The events orchestration is transferred to a
dedicated component where high-level rules are automatically translated
into a Complex Event Processing (Cep) facility meant to evaluate and
trigger runtime events. Additionally, simulation code can be generated
to play with user-defined configurations.

1 Introduction

Facing the explosion of available connected devices, many vendors are jumping
into the market, proposing a large spectrum of products ranging from connected
devices to associated end-user services [16]. This results in a wide heterogeneity
in software and hardware implementations, as well as an ever growing list of con-
cerns and opportunities in terms of interoperability, data management, privacy
and scalability [8].

As the Internet of Things (IoT) infiltrates many aspects of people’s life
through their cars, homes or business buildings, phones and so forth, a criti-
cal challenge is to provide end-users the possibility to benefit from the plethora
of connected devices and configure them for their particular needs. Such config-
urations should address needs captured by user-defined workflows, or scenarios,
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 426–448, 2018.
https://doi.org/10.1007/978-3-319-94764-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_18&domain=pdf

Complex Event Processing for User-Centric Management of IoT Systems 427

that are unlikely to stay unchanged for long. Besides, the infinite possibilities
offered by even simple combinations of a small number of devices already brings
a combinatorial explosion that cannot be captured by configurations that remain
static. One possible path towards mastering this complexity is to put the config-
uration tools directly in the end users’ hands, so that they become in charge of
managing the workflows they are interested in. This calls for a radical raise in the
abstraction level devices are manipulated through, since end users cannot keep
up with the ever-evolving IoT market. However, they usually feels comfortable
with basic devices functionalities: a temperature sensor is supposed to capture
the temperature, an alarm should buzz in case of emergency, a smart vent or
thermostat is supposed to switch on at some predefined conditions, no matter
how they communicate with the home, and no matter which vendor manufac-
tured them. Hiding the underlying complexity of protocol communication, data
exchange and technical Apis for device manipulation is a key enabler of large
adoption of smart devices, especially in the context of smart homes.

Model-Driven Engineering (Mde) has been recognised during the last decade
as a software engineering technique dedicated to the design, management and
evolution of computer languages enabling automatic generation of production
code, diverse types of analysis and early verifications [17]. In particular, Domain-
Specific (Modelling) Languages (Dsls) allow straight manipulation of domain
concepts, thus allowing experts to directly deal with notions they are familiar
with. Over the years, the Mde community put an effort to automate many
aspects necessary to facilitate the daily use of such languages, particularly by
fading away the distinction between textual and visual language syntaxes, and
by bringing appropriate tools to developers to simply and quickly design their
own, new Dsls.

Following this trend, we introduce IoTDSL, a prototype Domain-Specific Lan-
guage (Dsl) meant to allow end users drive the IoT devices installed in their
homes. IoTDSL has two major concepts at its heart. First, it promotes separation
of concerns by properly distinguishing the phases an IoT system is composed
of, namely capturing the devices capabilities, then deploying them through the
house in an interconnected network, and defining scenarios to drive the over-
all system to achieve end users’ goals. Second, it relies on events to describe
devices capabilities and combine them into rule-based definitions for scenarios
[10,21]. Rule-based systems are widely used in a vast range of domains like
finance [27], disaster monitoring [7], social threats discovery [3] and so forth.
Rules are particularly suitable to express composition of events because of their
declarative nature and their high-level of abstraction, thus in IoTDSL, user sce-
narios are expressed in a rule-based language that empowers reusability and
automatic translation into a runnable Complex Event Processing (Cep)-based
language [11].

Compared to [2], we present in this extension paper a full compilation scheme
for IoTDSL: any instance of the language could then be translated into an exe-
cutable framework, namely TRex [12], that can be embedded in a middle-
ware that orchestrate devices intercommunication by centralising information

428 M. Amrani et al.

delivered by sensors and taking the appropriate decisions to activate reactions
according to end users scenarios.

Outline. We start in Sect. 2 by presenting an archetypal scenario of a smart
house to highlight the usefulness to bring end-users back in control of their
own domestic IoT environment. We also extract crucial IoT challenges specific
to the use of Dsls and Mde techniques to realise this vision. In Sect. 3, we
introduce IoTDSL, our prototype Dsl to specify and interconnect devices in an
intuitive and general way and illustrate its benefits through use cases extracted
from our smart house example. Then, in Sect. 4, we detail how we translate
IoTDSL rules into a concrete Cep engine and how we generate simulation facilities
meant to test and validate the IoT deployment. We discuss our approach and
the remaining challenges to tackle in Sect. 5. We overview in Sect. 6 the use
of Dsls for IoT, comparing existing approaches with ours and assessing them
against the challenges we identified. Finally, we conclude in Sect. 7 and present
the main lines of work ahead to transform our prototype in a fully functional
Dsl framework.

2 Motivation and Challenges

A major issue for IoT is the rapid growth of the offer, spanning from very simple
devices (e.g., temperature, light or sound sensors) to more elaborate objects that
interact with their environment (e.g. building security or multimedia solutions).
For domestic usage however, it is likely that devices would have simpler capabil-
ities, while responding to various scenarios that are specific to their inhabitants.
Therefore, taming the complexity of smart homes requires handling interactions
between devices, rather than their own, specific capabilities.

Even in this context, simple devices could be manipulated in a plethora of
scenarios: for example, a sensor that reports temperature values might be paired
with a heating system that regulates rooms temperature and keeps them in
comfortable ranges, where in other configurations, it might detect fire situations.

At technical level, driving such devices for realising end-users scenarios is
hampered by, among others, the complexity of vendors and their proprietary
data formats, the plethora of Apis that are quickly evolving, and the large variety
of communication protocols. This overburden the work of IoT technicians when
dealing with end user requirements. Besides the need for more standardization
in IoT specifications, there is also a crucial need for abstract definition of the
semantics of IoT configurations [24].

Our proposal consists of two facets. First, we clearly separate the responsibil-
ities of technicians who deal with technical details relative to a specific solution
deployed in a smart home, and end users, who control the devices according
to their evolving needs. Second, we offer end users a way to interact with their
home at an abstract level: far from knowing how each device works, users manip-
ulate them through abstract events describing their interactions. To this end, we
propose a Domain-Specific Language (Dsl) to describe on the one hand, smart
home configurations and on the other hand, events’ intercommunications.

Complex Event Processing for User-Centric Management of IoT Systems 429

In this section, we show a typical smart home installation with affordable and
simple devices. We then outline the main components of a Dsl that captures
IoT systems, and from such archetypal configuration, we list the main challenges
such a Dsl for IoT should address to effectively provide a viable solution.

2.1 Typical IoT Scenarios

Figure 1 describes a typical configuration at Alice’s smart home, the fictional
character we use in our case study. Alice asked her technician to deploy light
sensors and bulbs to lighten the rooms, motion and door detectors to detect
human activity, an alarm used in case of emergency and a toggle button placed
in the balcony for security purposes.

Fig. 1. Hypothetical Alice’s smart-home configuration of IoT devices.

Alice is interested in simple scenarios for her comfort and her little boy’s
security: she wants the entrance lights to automatically switch on to welcome
her when she arrives home. Also since her boy often plays in the balcony, or
sometimes wakes up at night and walks through the apartment, she needs to
ensure he does not fall or injure himself. Those scenarios may be meet with
her current equipment as we will illustrate in Sect. 3.3 with a set of rule-based
specifications.

430 M. Amrani et al.

2.2 Challenges

Many challenges arise directly from the previous hypotheses, in order to pro-
vide a feasible, tractable and realistic IoT solution. Many contributions already
investigated the various challenges IoT systems pose, but we revisit the litera-
ture in order to extract those directly relevant to the definition of Dsls for the
IoT.

Capability Discovery. Providing the ability to drive interconnected devices
assumes the capacity of automatically discovering devices’ capabilities in a stan-
dardised and uniform way [8]. Similar processes exist for other technologies, like
Usb devices plugged into computers that automatically expose their natures and
capabilities. Classifying those capabilities should be useful to build an ontology of
normalised functions that could result in powerful Apis to manipulate devices.
A Dsl for IoT would then directly benefit from this kind of Apis to expose
dynamically connected devices without any preliminary configuration step.

Reusability. Knowledge exchange and reusability of devices’ definitions and
interaction specifications are essential prerequisites to the adoption of a Dsl for
the IoT. It is not uncommon to reuse existing scenarios that involve a set of
devices in different configurations. Those partial IoT structures with their event
orchestrations should be externalisable, despite the large amount of standards,
APIs or hardware [19].

Complex Event Processing (CEP). Letting end users deal with devices
through their low-level capability interfaces could lead to confusion and stiff
complexity for defining usage scenarios [18]. Rather, providing a way of reifying
low-level device computations into high-level events could help end users lever-
age the complexity of devices networks and pave the way to manipulate them
freely and transparently [12]. Since Cep consists of deriving meaningful conclu-
sions from a stream of events occurring within a system and responding to them
as quickly as possible, it provides a solution to extract meaningful events from
low-level computations. However, for a solution to be complete and useful, the
reverse operation should be addressed: high-level actions should be adequately
translated into low-level actuations and interactions to link the high-level events
manipulated by a Dsl to the actual hardware infrastructure of devices.

Protocol Interoperability. A smart-home solution with heterogeneous devices
would often integrate elements from various providers, thus communicating
through disparate protocols. In order to make them interact efficiently with-
out forcing end users to stick with one vendor, a powerful Dsl should provide
ways for interoperability over multiple communication protocols, without requir-
ing end-users to understand the protocols’ intricacies, versions and technical
restrictions [14]. An adequate Dsl for IoT should completely hide and automate
this aspects, and would possibly rely on multi-protocol solutions like OpenRe-
mote (http://www.openremote.com) or EnOcean (https://www.enocean.com),
to name a few of them.

Scalability. As the number of application domains increases, the amount of
connected devices is expected to rise exponentially. When updating existing

http://www.openremote.com
https://www.enocean.com

Complex Event Processing for User-Centric Management of IoT Systems 431

IoT configurations, current solutions may not collapse when adding more ele-
ments [22]. Furthermore, a Dsl must provide a way to absorb scalability prob-
lems, hiding as much as possible purely technical constraints regarding increases
in size and complexity of operating configurations.

Data Management. Analogously to scalability issues, the massive increase in
connected devices will produce more and more data to be processed, stored and,
for some of them, post processed [16]. More data means seemingly more storage
capabilities and the required space to handle such flow of information will be at
its highest ever. Furthermore, the multiplication of available (sensors) sources
is creating a whole new world of data processing and mining possibilities, but
also a profusion of divergent concrete data types that sooner or later must be
mapped to equivalent concepts. Although the kind of Dsl we are targeting comes
earlier in this general scheme, it would eventually benefit from the knowledge
acquired by mining the collected data to drive and guide users through their
daily scenarios.

Non-functional Properties. A powerful Dsl should encompass typical non-
functional properties of device networks to ensure long-life and secure realisation
of scenarios. Performance is crucial, and depends both on the devices capabil-
ities but also on the quality of the communication network. Resource availabil-
ity, both in terms of computation and memory capability, but also in terms
of energy, is another crucial bottleneck for the adoption of Dsls as a solution
for defining scenarios. The generated code from the Dsl should not overload
the devices with repetitive communications or unnecessary computations that
would drain the device’s battery. Security is yet another concern with respect to
two aspects. First, sensitive data could be exposed through the communication
network, endangering users privacy. Second, some functionalities could be locked
and only accessible to authorised users [30].

This challenges will be revisited in Sect. 5 in the light of our proposal, to
discuss which and to what extent our Dsl offers potential solutions.

2.3 Components for an IoT Language

We argue that a good way of capturing the many variations of scenarios relying
on a specific IoT system deployed at home would consists in offering end users,
i.e. home inhabitants like Alice, and technicians in charge of configuring such
systems and effectively deploying them, a Dsl that provides at least the following
components:

Device Description. We need facility to make a precise inventory of the
devices used in a specific deployment as well as the high-level capabilities
of these devices, described in terms that are immediately understandable by
end-users, as opposed to conveying technical details about how those devices
precisely operate;

Network Description. A way to capture where each device is located and how
it is possible to communicate with it, in order to receive or send data to it;

432 M. Amrani et al.

Dynamics. A way to describe the interactions wished by end-users, i.e. how to
leverage the functionalities of the devices to effectively realise one or several
scenarios that are convenient for the end-users.

Those components are obviously not sufficient to obtain a fully-fledged solu-
tion that becomes adaptable to any situation, but they still represent necessary
steps to provide end-users the capacity to manipulate a collection of devices
without relying on specific technologies. Defining such Dsls should encompass a
series of facilities dedicated to hide hardware- and protocol-related constraints,
and high-level models of devices should somehow be easily transformable and
traceable into concrete infrastructures with simulation and verification possibil-
ities.

3 IoTDSL

Based on the challenges identified in Sect. 2, we now introduce IoTDSL, our Dsl
devoted to facilitate the high-level manipulation of IoT systems. At the heart
of IoTDSL are two governing principles. First, we promote a clean separation of
concerns for all aspects the Dsl has to handle, by specifying one sublanguage for
each concern. We believe this approach to be scalable, and to support indepen-
dent evolutions of each concern without impacting the other aspects, since those
aspects are composed through well-defined interfaces. Second, our Dsl relies on
events, a natural paradigm for specifying various models of interactions that
is widely used in embedded and critical systems, and where a clear separation
between the system and its environment is performed, further empowering the
separation of concerns. Despite its early stage of development, IoTDSL shows its
ability to capture the definition of small-scale IoT systems appropriately.

Building a well-calibrated Dsl is known to be difficult and error-prone. It
usually requires a broad expertise of the domain under consideration before a
consensus emerges on the domain’s key concepts and how to effectively rep-
resent them. Fortunately, Mde technologies operated substantial breakthrough
over the past decade, allowing language designers to define their own Dsl struc-
tures and user interfaces more easily. Adopting such a trend, we have built an
early prototype for our Dsl under GeMoC [5, http://gemoc.org], a Mde frame-
work that supports both visual and textual representations as concrete syntaxes
and maintains a full synchronisation between them. Since we are at early devel-
opment stage, only a textual syntax is currently available to modellers, but other
syntaxes, even graphical ones, can be smoothly added thanks to GeMoc.

To illustrate our proposal, we show how IoTDSL is built by describing each
sublanguage, following the Dsl components identified in Sect. 2.3, and illustrate
them by providing the full implementation for Alice’s apartment as depicted in
Sect. 2.1.

3.1 Type Definition

The first task is to provide a description of which capabilities each device pos-
sess, how each device may provide information about the environment through

http://gemoc.org

Complex Event Processing for User-Centric Management of IoT Systems 433

Fig. 2. Metamodel of IoTDSL, separated in three concerns: Type Definition captures
devices’ capabilities (top-right green part), Network Configuration details how device
instances are connected to each others (middle-left purple part), Business Rules defines
the functionalities expected from the IoT installation (bottom yellow part). (Color
figure online)

a sensing operation, and how it could react and influence it through actua-
tions. Our framework currently requires that an advanced user extract rele-
vant information regarding devices’ exposed features, but it is flexible enough to
accommodate automation in the future, so that such pieces of information could
be automatically extracted from pre-existing devices databases (either from a
knowledge database the IoT system is connected to, or from a library of off-the-
shelf devices).

The concepts dedicated to type definition are shown in Fig. 2 (top-right part
in green background). This part is similar to the notion of Classifier in Mof-like
languages: a Type is either a PrimitiveType, or a user-defined DeclaredType. We
distinguish between general Gateways, which centralise information and process-
ing, and Nodes deployed in the environment and communicating with Gateways,
and which possess capabilities to interact with the environment. A Capability is

434 M. Amrani et al.

basically a parametrised event that drives the node to either capture data from
the environment, act on it, or perform both. This abstract view of a “thing”
allows us to manipulate any device at a high level of abstraction, exhibiting
a clean and uniform interface for end-users based on device capabilities. Since
Nodes are Types themselves, they may be referenced as parameters for the pur-
pose of dynamic discovery across devices.

Listing 1 illustrates how the devices in Fig. 1 are declared in IoTDSL. Each
device is introduced by the keyword device, possesses a name and lists capabilities
that correspond to reporting events (sensing) or operating over the environment
(actuating).

Table 1. Type declarations in IoTDSL: capabilities as high-level events.

Any IoT system should declare a special device, introduced with the keyword
gateway, that centralises data from all devices connected to it, as we will show
in Sect. 3.2. This device will be responsible of the event orchestration and will
host the Cep engine that embeds the implementation of the business rules. Also
note that the above model is the user-defined part of IoTDSL. In the background,
abstract events attached to all devices will need to be mapped to concrete low-
level Apis events using a dedicated mapping language that is out of the scope
of this paper.

3.2 Network Configuration

The configuration constructs of IoTDSL are specified in the middle-left purple
part of Fig. 2. Since we use an architecture centralised around gateways, a net-
work Configuration is a graph-like structure where vertices are Gateways and
NodeInstances (so that instances may communicate with each others), while edges
represent CommunicationPaths (or channels). Such paths define, among others,
one or more protocols used to interact. We actually rely on existing platforms,
such as OpenRemote (http://www.openremote.org) or SmartThings (https://
www.smartthings.com) to handle the intricate details of the protocols since such
details are, from an end-user point of view, technical aspects rather than essen-
tial matters of the configuration itself. By knowing which protocols are used
between each pair of devices, we can automatically perform data conversion in

http://www.openremote.org
https://www.smartthings.com
https://www.smartthings.com

Complex Event Processing for User-Centric Management of IoT Systems 435

the proper format required by the protocols: most of those protocols are already
implemented in General-Purpose Programming Languages (Gpls), like Java or
C.

Listing 2 shows an instantiation as well as the connection that conforms to
the types given in Listing 1 and the configuration presented in Fig. 1.

Table 2. Network configuration in IoTDSL for our smart house.

A specific device is considered as an instance of a defined type such that
particular devices with the same set of capabilities may be distinguished via
identifiable unique references. Communications are purely declarative and only
mention the protocol type (introduced by the via keyword). In our example, we
simply decided to use an IP protocol for all bindings. Note that a similar mapping
process that the one described at the end of Sect. 3.1 is required to reify abstract
connections between NodeInstances to physical ports and protocols, but again,
these mapping statements are outside of the scope of this paper.

3.3 Business Rules

Business rules are the core of the manipulation of IoT systems and compose the
third part of IoTDSL as detailed in the bottom yellow part of Fig. 2. This last
sub-language relies on an event-based framework that allows to specify a set of
Rules expressing the many functionalities an end-user wants to achieve in his/her
concrete configuration.

An IoTDSL Business Rule is identified by the keyword rule followed by an
unique identifier, and a body of the form «when trigger do reaction». Rules’
triggers are cyclically evaluated against the surrounding environment and spec-
ify the conditions under which the corresponding reactions have to be per-
formed to realise the end-users’ scenarios. A reaction defines actuations on the
IoT system to send or require data of identified devices, or issues events that are
internally used to synchronise rules.

436 M. Amrani et al.

Our approach is currently purely middleware-oriented: all rules are evalu-
ated inside a single gateway that supposedly possesses enough processing power.
We leave as future work the exploration of parallelisation techniques to sup-
port multiple gateways that communicate appropriately, or the possibility to
decentralise parts of the computation into nodes with sufficient processing and
power resources to optimise resource consumption and lighten communication
exchanges.

We now illustrate how the scenarios Alice is concerned about (cf. Sect. 2.1)
can be translated into business rules in IoTDSL with the devices’ definitions
detailed in Listings 1 and 2.

Switching Entrance Lights On when Coming In. When Alice gets home
(and thus opens the front door), she wants the lights to be automatically switched
on in the foyer and in the living room.
1 rule SwitchLightsWhenEntering:
2 when (foyerMotion.moving after frontDoor.opened) do {
3 foyerBulb.on
4 livingBulb.on
5 }

Listing 1.1. Rule to switch on the lights at home incoming.

This rule introduces what we call facilitators, i.e. keywords that define an unspec-
ified time window in which a sequence of events should be observed. This time
window is system-specific and needs to be defined independently in configura-
tion files independent of descriptions in IoTDSL. In this case, the foyerMotion
should detect movement nearly after the frontDoor detects an opening.

Note that reactions are defined as a sequence that does not matter: the order
in which the foyerBulb and the livingBulb switch on largely depends on the
platform capacities, i.e. they can be actuated synchronously or sequentially (in
which case, no guarantee is given that the definition order will be respected). At
the abstraction level IoTDSL operates, it is irrelevant since the end user wishes to
see both switched on at some point, without having to consider low-level details
that would enforce such behaviour.

Illuminate bathroom when children wake up at night. When Alice’s little
boy wakes up at night, she would like to have the light in the bathroom to be
switched on to prevent him from falling or injuring himself. Analogously, she
wants the light to be switched off when he gets back to sleep afterwards.
1 rule SwitchBathroomLightOnAtNight:
2 when (not livingLight.light and
3 (hallMotion.moving after childDoor.opened)) do {
4 bathroomBulb.on
5 }
6
7 rule SwitchBathroomLightOffAtNight:
8 when (not hallMotion.moving within 3 min from childDoor.closed) do {
9 bathroomBulb.off

10 }

Listing 1.2. Rules to switch on/off lights in the corridor at night.

Complex Event Processing for User-Centric Management of IoT Systems 437

The rule SwitchBathroomLightOnAtNight introduces a new keyword not,
which represents the absence of a certain event type, here livingLight.light.
This is different than simply observing some events occuring. Note also that the
second part of the rule trigger uses parenthesis to relate the facilitator after to
the closest event childDoor.open, instead of spanning on the whole condition.

The rule SwitchBathroomLightOffAtNight presents a combination of nega-
tion with an explicit time window with the construct within ... from: it indi-
cates that no event of type movement from the hall motion sensor should occur
in a three-minute time window after observing the closed event from the boy’s
door, in order to trigger the rule. IoTDSL defines several useful time units to
cope with simpler definitions (seconds, minutes, hours, or a combination of the
three).

Report Unsupervised Children on Balcony. Alice considers that it is a
critical situation if a child enters into the balcony without her knowledge, because
of fall risks. To avoid that, she placed a switch button high enough that only
an adult could press when accompanying a child outside. If the button is not
pressed within 3 s after someone enters the balcony, an alarm should sound.
1 rule AlarmWhenChildOnBalcony:
2 when (not toggle.toggled within 5 sec from
3 (balconyMotion.moving after balconyDoor.opened)) do {
4 alarm.sound
5 }

Listing 1.3. Rules to sound the alarm in case of an unsupervised child on the balcony.

This last rules states that once the balcony door has been opened and
movements are detected on the balcony, the alarm should sound unless the
toogle button is pressed in a five-second time window. This rule is similar
to SwitchBathroomLightOffAtNight, except that the baseline of the time win-
dow is here a composite event using a facilitator: once an opening followed by
movements on the balcony is observed, we expect the toggle button to be pressed.

To summarise, an end-user uses the Business Rules sublanguage to spec-
ify the scenarios of interest in the form of when (trigger)do {actuations}:
the trigger condition specifies the event (non-) occurrence pattern under which
the actuations are performed, by using common boolean connectors as well as
time windows to observe delayed events; whereas the actuations are undeter-
ministically performed independently to their definition order.

From a qualitative point of view, adopting a rule-based language presents
the advantage of mimicking the cognitive process of establishing a scenario,
which should ease the adoption of IoTDSL. However, we are conscious that this
requires a further examination and actual validation with end-users that are not
aware of the underlying Dsl mechanisms, but we believe that presenting a visual
representation for rules and powerful analysis of rule activation could ease the
adoption process and facilitate scenario definitions.

438 M. Amrani et al.

4 General Architecture and Code Generation

Fundamentally, IoTDSL describes a real-time reactive system: information is reg-
ularly reported to the middleware where it is processed in order to react on the
environment. However, in the context of IoT systems, the environment cannot
be controlled, but it is perceived through the many deployed devices, that allow
at the same time to react on it. The key task is then to process events quickly
enough to ensure appropriate reactions, although it it not critical to react in a
precise timeframe. In this section, we first describe the general architecture of
our tool as well as the technical choices for processing events in an IoT system,
then provide a compilation schema to translate IoTDSL business rules into Tesla
rules, the entry language of TRex [12], the Cep engine we have chosen in our
architecture.

4.1 General Architecture

Our proposal relies on a middleware that embeds a Cep engine for handling
event processing, as depicted in Fig. 3. Our tool offers a simulation mode, where
devices are simulated as software components mimicking their actual execution,
thus allowing to test IoT scenarios without physical devices.

Fig. 3. General architecture of IoTDSL framework.

The central element is the automatic code generator process: it produces
executable code from IoTDSL models and configuration files that define platform-
specific details on the execution timing of devices (that the technicians set once
and for all), and, for the purpose of our prototype, simulation code used to
emulate the behaviour of the devices. The executable code is deployed into the

Complex Event Processing for User-Centric Management of IoT Systems 439

Cep engine running on a middleware, which reuses in simulation mode the code
for communicating with the (abstract) devices.

We are currently investigating how business rules could be broken down into
smaller clusters that might be deployed directly into devices, assuming they
offer sufficient battery and computation power. When addressing non-functional
properties of devices, we envision the possibility of expressing technical speci-
fications relative to the energy consumption and computation capabilities in a
separate file that IoTDSL would take into consideration to identify distributable
rules.

4.2 TRex as Cep Engine

To enable efficient event processing from distributed connected things, we rely
on TRex, a powerful and highly optimised Cep engine developed by Cugola and
Margara [12]. TRex relies on Tesla [11], an entry language that is expressive
enough to address most of the necessary patterns for capturing complex events
definitions. As a consequence, the expression language used for IoTDSL triggers
is directly inspired from Tesla. This allows us to offer end-users the expressibility
they need, while at the same time simplifying the translation of IoTDSL rules
into Tesla rules.

TRex offers a queueing mechanism to overcome bursts of incoming events:
when deploying the IoT system on site, it becomes possible to customise the
queue size, thus balancing between event loss and treatment latency.

TRex is conveniently organised as a Client/Server architecture in a
«publish / subscribe » way, and relies on the Tesla language to define the
necessary components: event notifications (or occurrences, or simply events);
subscriptions and rules. TRex, as the Cep engine, permanently receives
event notifications from sources, and redistribute them to subscribers. An
event notification is produced by a source and sent to the Cep system,
and is typed by an event type that possesses typed attributes: for exam-
ple, Temp@100(location = ‘‘Living’’, value = 25.0) defines a notifica-
tion of type Temp with two attributes and a timestamp (noted after
the @) that records the moment in time the notification is produced.
A subscription by sinks (or, event consumers) is submitted to the Cep
system in order to receive notifications that things happened: for exam-
ple, Subscribe(Temp, location = ‘‘Living’’ and value > 20) indicates
a subscription to Temp notification that matches the filtering condition on its
location and value. Tesla rules define complex events from simpler ones, which
may emanate from actual sources, or be complex events defined by other rules,
thus leading to a hierarchy of events.

A rule has the following form:
define CE(attr1 : Type1, ..., attrN : TypeN)
from Pattern
where attr1 := f1, ..., attrN := fN

Intuitively, a rule defines a complex event CE together with its signa-
ture (i.e. an ordered list of typed attributes) that issues CE notifications

440 M. Amrani et al.

whenever the Pattern is matched, assigning values to CE attributes
from the functions defined in the where clause (that may depend
on elements of the Pattern). Valid patterns include event occurrences
that filter attribute values (e.g., from Temp.val > 20), event composi-
tions that combine events together with boolean operators or time win-
dows (e.g., from Rain and Temp.val > 20 within 5 min from Smoke, indi-
cating that a temperature reading above 20 ◦C should occur within
five minutes from a Smoke notification, while raining); event negation
(e.g., from not Rain between Temp and Smoke, indicating that it should not
rain between an elevated temperature reading and a smoke notification). Tesla
proposes more powerful patterns like aggregation and iterations, but we will not
use them in our examples. Note that the server is interactive so that clients can
(un-)subscribe while the engine is running and rules may be added or deleted at
runtime without affecting the overall infrastructure.

From the perspective of IoTDSL, TRex offers several benefits as a Cep engine.
TRex is powerful enough to handle typical IoT scenarios like the one described
in Sect. 2, thanks to the expressive power of Tesla. It adopts a decentralised
architecture that directly reflects our design choices, and supports distributed
processing of events to reduce the cost of communication and to optimise resource
usage. It is developed in C, so it is even suitable for small form factor middle-
wares. Finally, on top of an API written in C, Java libraries have been developed
on which we rely to generate devices’ simulation code.

4.3 Compiling IoTDsl Rules

We now describe how we obtain the final code deployed into the gateway using
TRex, and illustrate our compilation scheme on the Business Rules of Sect. 3.3.

In IoTDSL, a Business Rule has the following general form: rule R: when
(trigger)do reaction. The scheme for producing Tesla code relies on a three-

step process:

1. For traceability purposes, we map each rule name R to the resulting Tesla
rule(s), to be able to trace results directly from IoTDSL rules in future analysis.

2. The second step requires a preliminary task: since Tesla does not handle
instances (in the form of our dot-like notation for events), we need to add a
predefined attribute E(_inst : Instance) to each event E used in IoTDSL

Business Rules, and link the type Instance to simple strings; unicity of
instance names is ensured by IoTDSL while checking Network Configurations.
The rest of the second step depends on the nature of the reaction:
(a) If it is not a composite, i.e. the rule consists of only one actuation of the

form inst.actuation(<param1, ..., paramN>), we translate it in a
simple rule of the form

define actuation(param1, ..., paramN)
from transformedTrigger
where param1 := f1, ..., paramN := fN

Complex Event Processing for User-Centric Management of IoT Systems 441

where the actuation parameters are computed in the where line, and
the trigger condition is transformed into transformedTrigger with
the process in Step 3.

(b) If the reaction is composite, i.e. it consists of several
actions a1, . . . , aN, we issue n+1 Tesla rules: one rule for each actuation
aI, and one additional rule to bind things together.
define R(Rparam1, ..., RparamM)
from transformedTrigger
where Rparam1 := g1, ..., RparamM := gn
...
define aI(AIparam1, ..., AIparamN)
from R(Rparam1, ..., RparamM)
where AIparam1 := f1, ..., AIparamN := fn
...

When the event pattern for rule R is detected, the first rule issues the
complex event R, which is immediately produced by the Cep engine to
trigger the subsequent rules. This way, all actuations are processed at the
same time, leaving the platform dealing with the actuations. Note that
in the additional Tesla rule R, no _inst parameter appears (as it is not
needed), but all parameters necessary to the n actuations are part of event
R’s signature, so that functions f1, ..., fN rematches the parameters of

each actuation (aIparamK) correctly from R’s parameters.
3. So there remains to compute the transformedTrigger appearing in Tesla

rules, which depends on whether facilitators (like after or before) have
been used. In the absence of facilitators, the transformation is straightforward
since the same expressions are natively available in Tesla. Otherwise, we rely
on an external configuration file that describe the expected latency delays
specific to devices and their communication paths, to translate such triggers
into appropriate time windows. Producing this file is not the responsibility
of end-users, since it rather belongs to knowledge pertaining to IoT system
installation and deployment.

Let us now apply this compilation scheme to the three Business Rules
described in Sect. 3.3. Rule SwitchBathroomLightOffAtNight is the simplest
one: it contains only one actuation, and its trigger has a regular Tesla time win-
dow expression. Applying our compilation scheme results in the following Tesla
rule:

define Off (_inst : Instance)
from not Movement(_inst = hallMotion) within 3 min from Closed(_inst = childDoor)
where _inst = bathroomBulb

Note that all event names are capitalised to cope with Tesla entry language,
and that the from clause only binds the _inst attributes to their respective
instances in the source IoTDSL rule.

Rule SwitchLightsWhenEntering is a good illustration of IoTDSL rules with
multiple actuations. Applying the compilation scheme results in three rules, one
for each actuation, and an additional one that glues things together.

define SwitchLightsWhenEntering
from Moving(_inst = foyerMotion) within 10 sec from Opened(_inst = frontDoor)

442 M. Amrani et al.

define On(_inst : Instance)
from SwitchLightsWhenEntering
where _inst = foyerBulb

define On(_inst : Instance)
from SwitchLightsWhenEntering
where _inst = livingBulb

The additional rule defining the SwitchLightsWhenEntering event does
not define an _inst attribute, and converts the event facilitator after into
a time window from a predefined value (i.e 10 s in this case). The two other
rules originate from the actuators that have the particularity to activate the
same event on two different devices, namely foyerBulb and livingBulb: this
results in the same rule with different bindings for _inst.

Rule SwitchBathroomLightOnAtNight is the trickiest one as it combines
negation outside a time window. Applying the compilation scheme results in
only one rule, since there is only one actuation, but the trigger condition is more
complicated that the first rule. Since Tesla does not support negation operators
outside of time windows, we need to integrate it inside one. Intuitively, the
starting point of this scenario is the opening of the door room: at this point, the
bathroom light should be switch on if movements are detected shortly after and
there is currently no light in the living room. Such trigger patterns are detected
and refactored as follows:

define On(_inst : Instance)
from (Light(_inst = livingLight) within 2 sec from Opened(_inst = childDoor))

and
(Moving(_inst = hallMotion) within 10 sec from Opened(_inst = childDoor))

where _inst = bathroomBulb

5 Discussion and Remaining Challenges

The IoTDSL framework has been designed to empower non-experts with facilities
regarding the requirements of smart home IoT solutions. Coupled to IoT devices
and network specifications, the framework offers a rule-based language compil-
able into a concrete Cep infrastructure in charge of event orchestration. IoTDSL

users are then able to describe their own configurations and needs in terms of
conditional events and reactions to the manifestation of such conditions.

Tracing back to the features and challenges identified in Sect. 2.2, IoTDSL cur-
rently covers most of these aspects. We created a description language that cap-
tures devices capabilities at a high-level of abstraction, describing them as enti-
ties that produce and consume (typed) events, relieving end users from acquiring
the low-level knowledge to manipulate them. Based on these specifications, users
become able to represent smart home configurations easily by describing links
between devices and declaring which protocols are used for communication from
a set of predefined and widely used protocols. Device interactions are simply
expressed as conditions triggering other events that may react on the environ-
ment, inducing physical actions on the real world. These three sublanguages
defined in IoTDSL cover the language components identified as necessary for any
Dsl dedicated to IoT systems.

Complex Event Processing for User-Centric Management of IoT Systems 443

Based on the literature, we also identified seven important challenges an
IoT modelling solution should tackle, most of them being considered in IoTDSL.
Devices are seen through their high-level capabilities, which basically correspond
to an ontological device description: it describes the interface of devices in a
general way, facilitating Capability Discovery as it becomes available. By sepa-
rating device descriptions from how they are connected to each others, IoTDSL

empowers Reusability of devices through different IoT systems. Furthermore,
since partial configurations may be defined and imported in IoTDSL models,
partial definitions and behavioural specifications may also be shared between
various installation.

We notably rely on a powerful Cep engine to handle event orchestrations and
deliver physical actions through the system. Our framework processes abstract
business rules and transforms them automatically into executable code and pro-
duces sample code for simulation purposes. The scalability issue is almost exclu-
sively concentrated in the device intercommunication and the rule processing,
making the Cep engine dealing with scalability issues. TRex, the engine we have
chosen, already offers parallelisation mechanisms that we will leverage to divide
monolithic solutions into smaller entities that would collaborate, assuming an
IoT system becomes too large to handle within a single engine instance, so that
part of the business rules might be deployed on distinct parts of the system
to minimise the middleware workload. In turn, these could generate even more
events through the network and result in a congestion with data transmissions.
An appropriate tradeoff needs to be found between having more one-to-one com-
munications or grouping more logics inside a particular node.

There is however three challenges that we scarcely target with IoTDSL, even
if they are partially encompassed in some way, mostly because they represent
orthogonal aspects or concerns that comes after the domain targeted by our
language. IoTDSL targets the manipulation of device interactions, but already
provides, through Cep, a limited paradigm for Data Manipulation that scales.
However, as usual, a dedicated Dsl could be more relevant since the operations
required for such operations are somehow different. An interesting discussion
would then to identify the interface needed to exchange information between
data retrieved from device interactions and data processed offline with higher
processing capabilities. For now, IoTDSL hides the intricacies of protocol commu-
nication interoperability by implementing simple connectors to each protocol we
handle, and reusing existing infrastructures for protocols that we do not han-
dle natively. However, it could be interesting to propose a generic infrastructure
for protocol communication by separating the transport layer from the message
representation. This is a specific expertise domain on its own that we will later
tackle. For IoTDSL to handle non-functional properties, we first need to have pre-
cise description of the devices hardware properties, which is an active research
domain on its own. From that, we could integrate information that would guide
the automatic code generation process to specialise the code to either decen-
tralise parts of the processing activities, ensure better performance or integrate
best practices for security.

444 M. Amrani et al.

6 Related Work

A series of overviews have been recently conducted on several aspects of IoT.
In [1,31], the authors reviewed the applications, protocols and technologies used
in the distinct IoT layers, while [14,29] focused on architectural aspects and
[30,32] reviewed security ones. Most of these contributions identify a number
of challenges crossing the application domain of a Dsl for IoT, from which we
identified the most relevant ones to our contribution in Sect. 2 and to which we
confront our framework in Sect. 5.

Capturing variations of a domain with explicit constructs close to the domain
concepts resides at the essence of Dsls. In that regard, many Dsls were proposed
for various purposes in the IoT stack. Chariot [25] addresses Cyber-Physical
Systems by providing a component model that clearly distinguishes between
communication and computation, while ensuring resilience features in highly
reconfigurable systems. In [6] is presented a Dsl aimed at facilitating the deploy-
ment of applications, based on a component model of the environment used to
locate the architecture nodes where business logic can be leveraged. Alph [23]
is a Dsl for ubiquitous healthcare that focuses on three concerns: mobility, by
helping users to manage frequent devices disconnections; context-awareness to
adapt application behaviour to environmental changes; and infrastructure, for
managing the heterogeneity of communication protocols. Midgar [13] offers a
visual interface to support end-users in controlling interconnected devices and
generate the glue application making these devices interoperate. In [26], the
authors present a visual Dsl for capturing the features and intercommunica-
tions of devices distributed in various application domains spanning from smart
homes to patient monitoring. These contributions target different application
domains at different abstraction levels, but possess every key features we identi-
fied in Sect. 2 in a more or less explicit way. Since IoTDSL targets end-users with
no prior knowledge in programming, we contrast with these contributions by
offering a more intuitive, declarative style for expressing the system’s dynamics
through semantics rules that are compilable into a runnable Cep engine.

ThingML [15] is the closest contribution to our Dsl: it uses a similar device
description with messages and communication ports attached to devices, but
describes the dynamics of devices and systems through state machines, which
appear to be more obscure for end-users. However, the conceptual drawbacks
are similar in both paradigms: state machines need to be deterministic on their
transitions, while rules have to avoid multiple concurrent firing to avoid executing
several rules at the same time.

Other approaches, e.g. [4,9], relying on the Event Condition Action (ECA)
paradigm, share a similar view for IoT devices orchestration through Cep,
though not having the same expressiveness for devices’ definition as we pro-
pose, especially with time frames and event compositions. In [28], the authors
add pre- and post-conditions to ECA rules but they still do not address time
frames constraints too.

All previous contributions take advantages of Mde technologies and tools.
More general Mde framework like GeMoC [5] or ThingML allow to specialise the

Complex Event Processing for User-Centric Management of IoT Systems 445

description of interconnected devices, for example to describe Arduino systems
specifically in ArduinoML [20]. On contrary, IoTDSL framework concentrates on
generating executable rules from user-defined requirements.

7 Conclusion and Future Work

The Internet of Things promotes the usage of various interconnected devices that
promise to help end users achieve more automation in daily life recognisable sce-
narios. As such, a smart home could automatically close doors and switch off
lights when the inhabitants leave, or facilitate life routines by assisting in tasks
like preparing coffee just in time. The flip side of the coin resides in the ever grow-
ing spectrum of connected devices proposed by vendors that spot the market as
a good opportunity to make profit, without ensuring a minimal interoperability
between their products and those available from other merchants. As a result,
the promise seems far from happening in the near future without powerful solu-
tions to catalogue connected devices, to make them exchange relevant data and
act in a disciplined way. Furthermore, without bringing end users at the heart
of their own story and providing them tools to define, drive and adapt their own
scenarios, vendors will always keep a grasp at the IoT market.

In this paper, we explore a first step towards achieving this large challenge
by proposing a prototype that aims at raising end users as main actors of how
smart home devices interact for their own needs. Aware of the many challenges
surrounding IoT systems including reusability, interoperability, scalability and
non-functional properties, we designed our solution as an evolving and decen-
tralised tool that allows end users to specify their own scenarios based on so-
called rule-based definitions. Our prototype takes the form of a Domain-Specific
Language (Dsl) associated with a code generator that produces executable code
designed to run on a Complex Event Processing (Cep) engine, as well as emu-
lation code dedicated to simulate the whole system before effectively deploying
it with concrete devices.

Our prototype IoTDSL clearly separates three necessary aspects when describ-
ing solutions for IoT systems. First, it captures devices capabilities as high-level
events that are meaningful to end users, thus hiding the intricacies of low-level
manipulation of Dsls into our platform. Second, it describes device intercon-
nections in a declarative language with predefined communication protocols,
leaving the burden of translating data in the appropriate format and transfer-
ring them to technicians familiar with those technological details (and who only
need to provide links once per protocol). Third, users specify their own scenar-
ios through rules that observe events produced in the environment and trigger
reactions when relevant conditions are met. For that purpose, we rely on TRex
[12], a powerful, decentralised Cep engine and we automatically generate the
necessary code transparently. Our solution takes advantages of Model-Driven
Engineering (Mde) to design a Dsl that is simple enough while capturing the
relevant concepts appropriately and making it flexible enough to rebuild proto-
types as the language evolves. In particular, our prototype currently relies upon

446 M. Amrani et al.

a textual syntax, but we plan to design a more intuitive visual syntax for end
users.

Despite the promising results we experimented while using IoTDSL on small
examples with our industrial partners, we acknowledge that many challenges
remain. First, reconciling high-level descriptions with low-level devices’ Apis, as
well as ensuring proper configuration of protocols from declarative intentions,
necessitates glue code that is not trivial. Fortunately, many initiative already
exist, e.g. we could rely on platforms like OpenRemote (http://www.openremote.
com), SmartThings (https://www.smartthings.com) or EnOcean (https://www.
enocean.com) that abstract away several widely used protocols under the same
Api. Here again, the use of dedicated Dsls could help designing robust and auto-
matic solutions for these technical challenges. Second, our prototype is still at its
early stage of development and many improvement directions remain. We must
assess the relevance of our Dsl against various users and bigger cases to come up
with a solution that can be widely adopted. Also, the aforementioned technical
challenges need an appropriate answer to widen the automation capabilities of
our solution, making it more relevant and usable. Deepening the understanding
of each field (low-level devices Apis and communication protocols) would help
implementing interesting, reusable solutions. Finally, at the long run, integrating
specific properties of IoT systems to guide the code generation while ensuring
non-functional properties is necessary in such distributed and vulnerable IoT
systems.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutor. 17(4), 2347–2376 (2015, Fourthquarter)

2. Amrani, M., Gilson, F., Debieche, A., Englebert, V.: Towards user-centric DSLs to
manage IoT systems. In: International Conference on Model-Driven Engineering
and Software Development (Modelsward) (2017)

3. Baran, M., Ligęza, A.: Rule-based knowledge management in social threat monitor.
In: Dziech, A., Czyżewski, A. (eds.) MCSS 2013. CCIS, vol. 368, pp. 1–12. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38559-9_1

4. Bhandari, S.R., Bergmann, N.W.: An internet-of-things system architecture based
on services and events. In: 2013 IEEE Eighth International Conference on Intel-
ligent Sensors, Sensor Networks and Information Processing, pp. 339–344, April
2013

5. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the GEMOC studio (tool demo). In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineer-
ing, SLE 2016, pp. 84–89. ACM, New York (2016). http://doi.acm.org/10.1145/
2997364.2997384

6. Brandtzæg, E., Mohagheghi, P., Mosser, S.: Towards a domain-specific language
to deploy applications in the clouds. In: Third International Conference on Cloud
Computing, GRIDs, and Virtualization, pp. 213–218 (2012)

http://www.openremote.com
http://www.openremote.com
https://www.smartthings.com
https://www.enocean.com
https://www.enocean.com
https://doi.org/10.1007/978-3-642-38559-9_1
http://doi.acm.org/10.1145/2997364.2997384
http://doi.acm.org/10.1145/2997364.2997384

Complex Event Processing for User-Centric Management of IoT Systems 447

7. Broda, K., Clark, K., Miller, R., Russo, A.: SAGE: a logical agent-based environ-
ment monitoring and control system. In: Tscheligi, M., de Ruyter, B., Markopoulus,
P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009.
LNCS, vol. 5859, pp. 112–117. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05408-2_14

8. Chaqfeh, M.A., Mohamed, N.: Challenges in middleware solutions for the internet
of things. In: 2012 International Conference on Collaboration Technologies and
Systems (CTS), pp. 21–26, May 2012

9. Cheng, B., Zhu, D., Zhao, S., Chen, J.: Situation-aware IoT service coordination
using the event-driven SOA paradigm. IEEE Trans. Netw. Serv. Manag. 13(2),
349–361 (2016)

10. Cristea, V., Pop, F., Dobre, C., Costan, A.: Distributed architectures for event-
based systems. In: Helmer, S., Poulovassilis, A., Xhafa, F. (eds.) Reasoning in
Event-Based Distributed Systems, vol. 347, pp. 11–45. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19724-6_2

11. Cugola, G., Margara, A.: Tesla: a formally defined event specification language.
In: Proceedings of the 4th Conference on Distributed and Event-Based Systems
(2010)

12. Cugola, G., Margara, A.: Complex event processing with T-REX. J. Syst. Softw.
85(8), 1709–1728 (2012). https://doi.org/10.1016/j.jss.2012.03.056

13. García, C.G., G-Bustelo, B.C.P., Espada, J.P., Cueva-Fernandez, G.: Midgar: gen-
eration of heterogeneous objects interconnecting applications. A domain specific
language proposal for internet of things scenarios. Comput. Netw. 64, 143–158
(2014). http://www.sciencedirect.com/science/article/pii/S1389128614000528

14. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010

15. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2016, pp. 125–135. ACM, New York (2016). http://doi.acm.org/
10.1145/2976767.2976812

16. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and
challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015). http://www.
sciencedirect.com/science/article/pii/S0007681315000373

17. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G., Syriani, E.,
Wimmer, M.: Model transformation intents and their properties. J. Softw. Syst.
(SoSyM) 15(3), 647–684 (2014)

18. Ma, M., Wang, P., Chu, C.H.: Data management for internet of things: challenges,
approaches and opportunities. In: 2013 IEEE International Conference on Green
Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, pp. 1144–1151, August 2013

19. Ma, M., Wang, P., Chu, C.H.: Ontology-based semantic modeling and evaluation
for internet of things applications. In: 2014 IEEE International Conference on
Internet of Things (iThings), and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), pp.
24–30, September 2014

https://doi.org/10.1007/978-3-642-05408-2_14
https://doi.org/10.1007/978-3-642-05408-2_14
https://doi.org/10.1007/978-3-642-19724-6_2
https://doi.org/10.1016/j.jss.2012.03.056
http://www.sciencedirect.com/science/article/pii/S1389128614000528
https://doi.org/10.1016/j.future.2013.01.010
http://doi.acm.org/10.1145/2976767.2976812
http://doi.acm.org/10.1145/2976767.2976812
http://www.sciencedirect.com/science/article/pii/S0007681315000373
http://www.sciencedirect.com/science/article/pii/S0007681315000373

448 M. Amrani et al.

20. Mosser, S., Collet, P., Blay-Fornarino, M.: Exploiting the internet of things to teach
domain-specific languages and modeling: the ArduinoML project. In: Demuth, B.,
Stikkolorum, D.R. (eds.) Proceedings of the MODELS Educators Symposium co-
located with the ACM/IEEE 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014), Valencia, Spain, 29 September
2014, CEUR Workshop Proceedings, vol. 1346, pp. 45–54. CEUR-WS.org (2014).
http://ceur-ws.org/Vol-1346/edusymp2014_paper_3.pdf

21. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer,
Secaucus (2006). https://doi.org/10.1007/3-540-32653-7

22. Mukhopadhyay, S.C., Suryadevara, N.K.: Internet of Things: Challenges and
Opportunities. In: Mukhopadhyay, S.C. (ed.) Internet of Things. SSMI, vol. 9,
pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04223-7_1

23. Munnelly, J., Clarke, S.: A domain-specific language for ubiquitous healthcare. In:
2008 Third International Conference on Pervasive Computing and Applications,
vol. 2, pp. 757–762, October 2008

24. Park, H., Kim, H., Joo, H., Song, J.: Recent advancements in the Internet-of-
Things related standards: a oneM2M perspective. ICT Express 2(3), 126–129
(2016). http://www.sciencedirect.com/science/article/pii/S2405959516300911.
Special Issue on ICT Convergence in the Internet of Things (IoT)

25. Pradhan, S.M., Dubey, A., Gokhale, A., Lehofer, M.: Chariot: a domain specific
language for extensible cyber-physical systems. In: Proceedings of the Workshop on
Domain-Specific Modeling, DSM 2015, pp. 9–16. ACM, New York (2015). http://
doi.acm.org/10.1145/2846696.2846708

26. Salihbegovic, A., Eterovic, T., Kaljic, E., Ribic, S.: Design of a domain specific lan-
guage and IDE for internet of things applications. In: 2015 38th International Con-
vention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), pp. 996–1001, May 2015

27. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event pro-
cessing with query rewriting. In: Proceedings of the Third ACM International Con-
ference on Distributed Event-Based Systems, DEBS 2009, pp. 4:1–4:12. ACM, New
York (2009). http://doi.acm.org/10.1145/1619258.1619264

28. Shimokura, M., Nakanishi, S., Ohta, T.: Home network service programs described
in a rule-based language. In: International Conference on Software Engineering
Advances (ICSEA 2007), pp. 62–62, August 2007

29. Singh, D., Tripathi, G., Jara, A.J.: A survey of internet-of-things: future vision,
architecture, challenges and services. In: 2014 IEEE World Forum on Internet of
Things (WF-IoT), pp. 287–292, March 2014

30. Tan, L., Wang, N.: Future internet: the Internet of Things. In: 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE), vol. 5
(2010)

31. Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans.
Ind. Inform. 10(4), 2233–2243 (2014)

32. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and
opportunities. In: 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 417–423, November 2014

http://ceur-ws.org/Vol-1346/edusymp2014_paper_3.pdf
https://doi.org/10.1007/3-540-32653-7
https://doi.org/10.1007/978-3-319-04223-7_1
http://www.sciencedirect.com/science/article/pii/S2405959516300911
http://doi.acm.org/10.1145/2846696.2846708
http://doi.acm.org/10.1145/2846696.2846708
http://doi.acm.org/10.1145/1619258.1619264

Efficient Distributed Execution of
Multi-component Scenario-Based Models

Shlomi Steinberg1, Joel Greenyer2, Daniel Gritzner2, David Harel1, Guy Katz3,
and Assaf Marron1(B)

1 The Weizmann Institute of Science, Rehovot, Israel
assaf.marron@weizmann.ac.il

2 Leibniz Universität Hannover, Hannover, Germany
3 Stanford University, Stanford, USA

Abstract. In scenario-based programming (SBP), the semantics, which
enables direct execution of these intuitive specifications, calls, among oth-
ers, for synchronizing concurrent scenarios prior to every event-selection
decision. Doing so even when the running scenarios are distributed across
multiple physical system components, may degrade system performance
or robustness. In this paper we describe a technique for automated dis-
tribution of an otherwise-centralized specification, such that much of
the synchronization requirement may be relaxed. The technique calls for
replicating the entire scenario-based executable specification in each of
the components, locally transforming it in a component-specific manner,
and reducing the synchronization requirements to very specific and well-
defined points during execution. Our evaluation of the technique shows
promising results. Given that relaxed synchronization can lead to what
appears as different runs in different components we discuss various cri-
teria for what would constitute acceptable differences, or divergence, in
the parallel, distributed runs of almost-identical copies of a single speci-
fication.

This paper incorporates and substantially extends the material of
the paper published in MODLESWARD’17 Distributing Scenario-Based
Models: A Replicate-and-Project Approach by the same authors [37].

Keywords: Software engineering · Scenario-based modeling
Concurrency · Distributed systems

1 Introduction

With modern reactive systems becoming both pervasive and highly complex,
modeling them is becoming increasingly difficult. Modelers are forced to spend
ever-larger amounts of time and effort in order to reconcile two goals: (1) accu-
rately describe complex real-world systems and phenomena; and (2) do so using
models that are simple, comprehensible and intuitive to humans. These two
goals are often conflicting: it is difficult to describe the properties of such sys-
tems accurately, while at the same time avoiding clutter, which makes it harder
for humans to comprehend the resulting models.
c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 449–483, 2018.
https://doi.org/10.1007/978-3-319-94764-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_19&domain=pdf

450 S. Steinberg et al.

Over the recent two decades, an approach termed Scenario-Based Model-
ing [6] has emerged as an attempt to tackle these difficulties. The idea at its
core is to model systems in a way that is more intuitive and understandable
to humans—by defining scenarios that describe desirable or undesirable sys-
tem behavior—and then to automatically combine these scenarios in a way that
produces a cohesive, global model. Appropriate scenario-based approaches and
tools have executable semantics, thus helping to streamline the deployment of
scenario-based models in the real world.

A scenario-based approach has been claimed to be more intuitive for humans
to understand (see, e.g., [11]). It allows the modeler to specify different but pos-
sibly interrelated behavioral aspects as separate scenarios, reducing the inherent
complexities of the modeling process. However, by default and as explained later,
a scenario-based execution requires that all scenarios synchronize at every step,
for the purpose of joint event selection. When executing scenario-based spec-
ifications in a distributed architecture, inter-scenario synchronization induces
inter-component synchronization, which may be undesirable in real-world sys-
tems, where communication is often costly, slow, or unreliable. This difficulty
constitutes a serious barrier when considering the use of scenario-based model-
ing in a real-world distributed setting.

We seek to address this problem by proposing an automated technique for
the transformation of classical, highly synchronous scenario-based models into
equivalent models with a greatly reduced level of synchronization. The basis of
our approach is a rather straightforward replicate-and-project (R&P) technique
but with some subtle facets: we replicate the full set of scenarios in all the
distributed components, but project them in a component-specific fashion, so
that each component is made responsible only for the actions that fall within
its the local scope. Other, external actions, are assumed to be performed by
projections running on other components.

The scenarios then progress asynchronously, each selecting and triggering
events almost completely at its own pace. In order to make the replicated-
and-projected scenarios behave the same as their non-distributed version, the
distributed components broadcast the local actions they perform to all other
components. At times a situation arises that forces some of the distributed com-
ponents to mutually agree on the next action to perform. This might happen
either due to an exclusive choice among multiple enabled actions (i.e., events), or
due to communication latency that might result in different orders of broadcast
actions as observed by different components. In these cases, the affected sce-
narios indeed synchronize and reach a joint decision. An important part of the
work in this paper is dedicated to classifying these cases, understanding when
they arise, automatically detecting their occurrence in a program, and proposing
practical approaches for resolving them.

This process is handled automatically by our distribution algorithm and
infrastructure, and, as we discuss and demonstrate later, it aims to generate
a distributed model that has as few synchronization points as possible.

Efficient Distributed Execution of Multi-component Scenario-Based Models 451

The motivation behind the approach is to retain the modeler’s ability to use
classical scenario-based modeling, with its associated advantages, but to be able
to then transform the model into a version that is more amenable to distribution
and deployment in the real world. We prove that, under certain restrictions, our
proposed transformation preserves the behavior of the original model. This gives
rise to a methodology for developing distributed scenario-based models, where
one models a distributed system as if it were centralized, and the model is then
automatically adjusted to more accurately simulate (or even run in) its final
setting.

Automatic distribution of general models (i.e., not just scenario-based ones)
or synthesizing distributed models from specifications have been long-standing
goals of the software modeling and engineering community. Specifically, dis-
tributed synthesis is known to be undecidable in general [36]. We contribute
to this effort by studying the problem in the context of scenario-based modeling,
and leveraging some of the paradigm’s properties of naturalness and relative sim-
plicity. However, difficulties nevertheless arise. We classify and describe them,
and explain how they can still be addressed. Our experimental results indicate
that the technique holds much potential for becoming practical.

The rest of the paper is organized as follows. In Sect. 2 we provide a brief
introduction to the scenario-based approach. In Sect. 3 we present an example
of a distributed execution of a scenario-based specification for a light show to
be performed by light-equipped drones. This general description is used in the
rationale and explanation of various technical details throughout the paper. and
a variant of the example is used in the technical evaluation. In Sect. 4 we dis-
cuss variations, which may or may not be allowed when transforming a fully
synchronized execution into one where some synchronization requirements are
relaxed and certain actions may occur in a different order. In Sect. 5 we describe
the replicate-and-project technique for automatically generating an executable
distributed scenario-based model from a non-distributed one. In this section we
also prove the correctness of this transformation according to the criteria set
in Sect. 4. Section 6 describes how the approach can be applied when different
components in the model operate on different time scales. An example imple-
mentation and its evaluation appear in Sect. 7. In Sect. 8, we discuss related work
that has been carried out on automatic distribution, both in the general setting
and in the context of scenario-based modeling, Sect. 9 contains a discussion of
our ongoing and planned future work. We conclude in Sect. 10.

2 Background: Scenario-Based Specifications

Scenario-based specifications were introduced with the Live Sequence Charts
(LSC) formalism [6,25]. The approach, aimed at developing executable models
of reactive systems, shifts the focus from describing individual objects of the
system into describing individual behaviors thereof. The basic building block in
this approach is the scenario: an artifact that describes a single behavior of the
system, possibly involving multiple different components thereof. Scenarios can

452 S. Steinberg et al.

describe desirable behaviors of the system or undesirable ones, and their com-
binations. A set of user-defined scenarios is then interwoven into one cohesive,
potentially complex, system behavior.

Several facets of scenario-based modeling have been discussed and handled
in different ways: scenarios can be represented graphically, as in the original
LSC approach, or textually, embedded within conventional programming lan-
guages [13,27]; scenario-based models can be executed by näıve play-out [26], by
smart play-out with lookahead [23] or via controller synthesis (see, e.g., [13,29]).
The modeling process can be augmented by a variety of automated verification,
synthesis and repair tools [16,21]. Research has shown that the basic principles at
the core of the approach, shared by all flavors, are naturalness and incremental-
ity—in the sense that scenario-based modeling is easy to learn and understand,
and that it facilitates the incremental development of complex models [1,11].
These properties stem from the fact that modeling is done in a way similar to
the way humans explain complex phenomena to each other, detailing the various
steps and behaviors one at a time.

For the remainder of the paper, we focus on a particularly simple variant
of scenario-based modeling, called behavioral programming (BP) [27]. Despite
its simplicity, BP has been successfully used in developing medium scale
projects [18,20], and is also known to be particularly amenable to automatic
analysis tools [22]. These properties render BP a good candidate for demon-
strating our approach. The rest of this section is dedicated to demonstrating
and formally defining BP.

In BP, a model is a set of scenarios, termed also behavior threads, or b-threads,
and an execution is a sequence of points, in which all the scenarios synchronize.
At every behavioral-synchronization point (abbreviated bSync) each scenario
pauses and declares events that it requests and events that it blocks. Intuitively,
these two sets encode desirable system behaviors (requested events) and undesir-
able ones (blocked events). Scenarios can also declare events that they passively
wait-for—stating that they wish to be notified if and when these events occur.
The scenarios do not communicate their event declarations directly to each other;
rather, all event declarations are collected by an execution infrastructure com-
mon to all b-threads, termed the event selection mechanism (ESM), after its
main function. Then, at every synchronization point during execution, the ESM
selects (triggers) an event that is requested by some scenario and not blocked by
any scenario. The ESM notifies every scenario that requested or is waiting for the
triggered event about this selection. The b-threads can then update their inter-
nal states, and proceed to their next synchronization point. When all affected
b-threads synchronize again (with each other and with the b-threads that were
not affected) the ESM repeats the event selection process. In BP, this notifica-
tion of all affected b-threads is the essence of event triggering. Any additional
action that the designer wishes to associate with an event (e.g., opening a water
tap, turning car’s steering wheel, or flashing a light) is to be carried out by the
individual b-threads, using arbitrary method calls, as they transition from one
synchronization point to another (by contrast, in the LSC language, the trigger-

Efficient Distributed Execution of Multi-component Scenario-Based Models 453

Fig. 1. Incrementally modeling a controller for the water level in a tub. The tub has
hot and cold water sources, and either may be turned on in order to increase/reduce
the water temperature. Each scenario is given as a transition system, where the nodes
represent synchronization points. The scenario AddHotWater repeatedly waits for
WaterLow events and requests three times the event AddHot. Scenario AddCold-
Water performs a similar action with the event AddCold, capturing a separate
requirement, which was introduced when adding three water quantities for every sensor
reading proved to be insufficient. When a model with scenarios AddHotWater and
AddColdWater is executed, the three AddHot events and three AddCold events
may be triggered in any order. When a new requirement is introduced, to the effect that
the water temperature be kept stable, the scenario Stability is added, enforcing the
interleaving of AddHot and AddCold events by using event blocking. The execution
trace of the resulting model is depicted in the event log.

ing of an event also drives the invocation of a corresponding method provided by
the application). Figure 1 (borrowed from [20]) demonstrates a simple behavioral
model.

Formally, BP’s semantics are defined as follows. A scenario, also referred to
as a behavior thread (abbreviated b-thread), is defined as a tuple

BT = 〈Q, q0, δ, R,B〉
and with respect to a global set of events Σ. The components of the tuple are:
a set of states Q representing synchronization points; an initial state q0 ∈ Q; a
deterministic transition function δ : Q × Σ → Q that specifies how the thread
changes states in response to the triggering of events; and, two labeling functions,
R : Q → P(Σ) and B : Q → P(Σ), which specify the events that the thread
requests (R) and blocks (B) in a given synchronization point.

A behavioral model M is defined as a collection of b-threads

M = {BT 1, . . . , BTn},

all of them with respect to the same event set Σ. Denoting the individual b-
threads as

BT i = 〈Qi, qi0, δ
i, Ri, Bi〉,

an execution of model M starts at the initial state 〈q10 , . . . , qn0 〉. Then, at every
state 〈q1, . . . , qn〉, the model progresses to the next state 〈q̄1, . . . , q̄n〉 by:

454 S. Steinberg et al.

1. selecting an event e ∈ Σ that is enabled, i.e. requested by at least one b-thread
and blocked by none:

e ∈
(

n⋃
i=1

Ri(qi)

)
\

(
n⋃

i=1

Bi(qi)

)

2. triggering event e and advancing the individual b-threads according to their
transition systems:

∀i, q̄i = δi(qi, e)

For reactive systems, executions are usually considered to be infinite, although
BP can also be used to model systems with finite executions.

The BP definitions above are generic, making it easier to reason about behav-
ioral models. However, for practical purposes, the BP modeling principles have
been integrated into a variety of high-level languages such as Java, C++, Erlang
and Javascript (see the BP website at http://www.b-prog.org/). These frame-
works allow engineers to integrate reactive scenarios into their favorite program-
ming or modeling environments. Further, the same principles that underly BP
play a significant role in several popular modeling frameworks, such as publish-
subscribe architectures [8] and supervisory control [35].

We conclude the section by defining the global state (the cut) of a behavioral
model that is being executed:

Definition 1. Given a behavioral model M = {BT 1, . . . , BTn}, the program
cut r ∈ Q1 × · · · × Qn is defined to be the current model state: r = 〈q1, . . . , qn〉
where qi is the current state of b-thread BT i.

3 A Running Example

In many complex multi-participant operations, the participants, be they mechan-
ical entities or people, have to carry out actions in turns, one participant after
the other. A typical example is the all-way-stop traffic intersection (a.k.a. four-
way stop). When there are queues in each of the intersecting roads, the cars
cross the intersection one at a time, in a round-robin fashion, each coming from
the front of the next queue. Another example is an audience in a packed stadium
‘doing the wave’, where groups of people stand up briefly and then sit down, in
sequential order. These behaviors are very easily described using scenario-based
specifications, where the most basic behavior can be described with a single sce-
nario showing all the relevant entities performing their required actions in turn.
(Of course, there are also other kinds of scenarios; e.g., for passing a all-way-
stop intersection when you are the only car, or for the starting or the ending of
a stadium wave by an audience.)

The example that we will use both to illustrate our general considerations
and as the subject of our detailed analysis, is a simple drone-based light show (see
elaborate shows by Disney in www.youtube.com/watch?v=gYr-PO9meHY, and

http://www.b-prog.org/
www.youtube.com/watch?v=gYr-PO9meHY

Efficient Distributed Execution of Multi-component Scenario-Based Models 455

by Intel in www.youtube.com/watch?v=teQwViKMnxw). In our case, a set of
drones form a circle and flash their respective lights in successive turns, creating
the appearance of a point of light moving in a circle. More details are provided in
Sect. 7. The basic, single-cycle example is then expanded into repeating the cycle,
stopping the cycle and then restarting it with a different, arbitrarily-selected
drone, and having multiple concurrent cycles where each drone is equipped with
multiple lights, perhaps of different colors.

In considering this example one may also think of analogies to human behav-
ior: replacing the programmer or designer with a show director, the drones with
people, perhaps children, who play roles in the show, and the computerized
scenarios or programs (as well as the underlying SBP infrastructure), with the
instructions given by the director to the participants about what they should do,
and when. The autonomous starting of a new cycle at arbitrarily-selected drones
may also be considered as reacting to an uncontrolled environment event, e.g.,
when the show-director decides on their own and unpredictably, at run time,
which drone will be the first in the next cycle, and then signals it to do so.

4 Distributing a Centralized SBP Execution: Success
Criteria

4.1 Success Criteria

In order to assess the properties of a distributed execution of a specification that
was originally written with centralized-execution semantics assumptions, we first
discuss (a) formalization assumptions, namely: which physical properties of the
distributed environment will be reflected in the formal solution and which will
be abstracted away, and (b) criteria for what constitutes a correct, desirable, or
perhaps just acceptable, distributed execution.

In a centralized system the concept of a run is well defined and intuitive as the
sequence of system states and generated events. In a distributed environment,
especially one that includes replication, this very definition is no longer without
question. E.g., is the distributed run the collection of local runs as executed and
observed in each component? Or perhaps it is a sequence of only the triggered
events, without state transitions, ordered according to the occurrence of events
in the real world, e.g., according to a time order as defined by fully synchronized
component-specific clocks? Or should yet another definition be applied?

Once defined, what would be the desired properties of such a distributed run?
Clearly, our goal is that it be materially different from a run where all distributed
components fully synchronize before every event, and that some independent
local progress will be allowed in each component. So the question we are facing
is this: how much should the execution of the various components be allowed to
vary from each other?

In subsequent sections we offer a particular set of principles for the sought-
for solution, and a distribution mechanism that satisfies them. But beforehand
we first discuss a broader list of candidate principles from which the above

www.youtube.com/watch?v=teQwViKMnxw

456 S. Steinberg et al.

were chosen. Some of these can be formally defined and then examined both by
model-checking and by run-time monitoring. Each of the candidate principles
is accompanied by two examples - one demonstrating its desirability, and one
showing that acceptable distributed executions exist that do not satisfy this
principle, and hence it cannot be required of all distributed executions.

Constant Composite-State Consistency. This principle assumes that all
scenarios are replicated in all components (as proposed in the present paper),
and requires that the all components go through exactly the same orchestrated
state transitions, and hence observe the same runs (even if not exactly at the
same time). The replicated run is also a legal run of a centralized or fully syn-
chronized execution. This could be desired and applicable, for example, in an
application that has only pre-programmed actuation (as in the most basic drone
light show example). Clearly this could not be demanded in a case of a reactive
application with distributed input sensors, where two environment events can
occur in two distinct components, one after the other, but with a time difference
that is smaller than the inter-component communication delay, and where the
sensing component has to acknowledge the event receipt even before all other
components learned about it. As a result, the runs of the two sensing compo-
nents will be different—each having a state where its own sensing scenario has
sensed the event and changed its state, but none of the others have done so.

Always Eventually Reaching Composite-State Consistency. Under this
principle, the entire specification is replicated as before, but components’ runs
are allowed to diverge as long as there is at least one composite state that
each component reaches infinitely often. In other words, the components may
diverge, as long as sooner or later they maintain the same view of reality (not
necessarily at the same time). An example of such an application can be seen in
a distributed application of industrial robots performing manufacturing tasks in
parallel on a large piece of sheet metal, where the order of events across robots
is not critical as long as all components are occasionally synchronized and are at
the same state (e.g., when releasing the finished piece of sheet metal and moving
on to the next one). This however will not satisfy what is needed for a highly
orchestrated robotic collaboration (and not even for the basic drone light show).

Distinguishing What and How Scenarios. This principle views specifica-
tions as being divided into scenarios that specify the criteria for success of the
system’s operation, i.e., what the system should accomplish, and scenarios that
specify how the system should accomplish these goals. In classical programming
the what scenarios appear in requirements documents and test plans, and the
how instructions constitute the application. Research in areas such as automated
program synthesis attempts to automatically generate the details of the how from
the specification of the what. Here we propose to specify and retain both sets
of scenarios, but require that only the what scenarios must be complied with
in the distributed run, while the how scenarios can be violated in the distribu-
tion process. In the light-show example, the show director wants to achieve the
appearance of cycles, or perhaps even just the appearance of pretty patterns. He

Efficient Distributed Execution of Multi-component Scenario-Based Models 457

or she may not care if certain drones flash their lights out of order, especially if
they are in close proximity, the successive inter-drone flash delays are short, and
the duration of each flash is much longer than this inter-drone delay; a drone
that misses its cue may also be allowed to avoid flashing altogether in a given
cycle; a drone whose battery runs out may leave the show altogether; and, neigh-
bors of a failing drone may change their behavior as well. Thus, the divergence
of runs among various components may be unbounded, while the show goes on
successfully.

An example of when this approach cannot be applied can be seen in the
following: a show director and an engineer created an elaborate show whose
specification contains many scenarios. For testing purposes the show was imple-
mented on a single computing component with multiple physical lights. The
show is elaborate and its specification gradually evolved to have many scenarios.
The director has now left, and the engineer has been tasked with distributing
the implementation to the separate drones. As far as the engineer is concerned,
the entire specification is the what, everything that was done in the centralized
execution should be done in the same way in the distributed version—he or she
does not know which of properties were considered essential by the director, and
which can be compromised.

Language Equivalence. Under this principle we do not care about run vari-
ation among the components. Instead, we only look at the sequence of events
produced (triggered) by the system, in all components, as ordered in the real
world, according to some global time stamp. In this case, we do not require
that a particular run of the distributed environment, defined in this manner, be
equivalent to a particular run of the single-component system, but assume that
there is some nondeterminism in both implementations, and simply require that
the two languages, each containing all runs of the implementation, be equal.
Thus the nondeterminism implied by the underspecification that is already built
into the original requirements will be exploited by the variation imposed by the
non-synchronized, sometimes-delayed, distributed execution. This can indeed be
viewed as a variant of the previous principle, where the existence (in the central-
ized execution) of synchronization points where more than one event is enabled,
is taken to be an explicit specification that selecting any of them would be
acceptable. (We assume that the event selection strategy is random, and that
the application was verified with all possible combinations of event selection.)

4.2 Semantic Consideration

It goes without saying that a success criteria to be added to the above is that
the execution should comply with the basic BP semantics, in that, e.g., only
requested events are triggered, and events that are blocked are not to be trig-
gered. The solution that we propose in the coming sections satisfies this basic
requirement with one exception: There is no reliance on cross-component block-
ing of already-enabled events. Clearly, when an event is triggered, two b-threads
may change their states, where one will start requesting a particular event e1,

458 S. Steinberg et al.

and another will start blocking that same e1. The effect of such blocking is imme-
diate. This semantics is generally preserved in the solution we will describe, e.g.,
when these two b-threads change states together, in response to a single event,
within a single component. However, we introduce an assumption that relaxes
this requirement in that it allows event blocking to not take hold in the following
case: An event e0 causes a b-thread BT1 to change states and start requesting
event e1. An event e2 is then triggered, and causes b-thread BT2 to change
state and start blocking e1. If after event e2 occurred in one component, but
before this event reaches a component requesting e1, e1 is already triggered in
that component, we do not consider it a violation of the specification or of the
BP semantics. Another way to look at this relaxation of the semantics is that
it assumes that the application does not rely on the ability of one component
to force the blocking of already-enabled, not-previously blocked events in other
components, in time, before they are triggered.

For illustration, consider the following example: a robot-driven car is
approaching an intersection, and in order to avoid collisions it must communicate
with other cars. However, if the communication happens just before entering the
intersection, any delay or missed messages could result in an accident.

In order to avoid this kind of issue, programs designed for distribution should
employ design patterns and methods that take a realistic communication delay
into account. E.g., checking for other cars early, while approaching the intersec-
tion, rather than, say, relying on scenarios to block all events of cars entering the
intersection following the occurrence of an event reporting that one car already
entered that intersection. We feel that this is a valid assumption in designing
distributed systems and does not contradict or make redundant the advantages
of BP.

This assumption, formalized in Sect. 5, can thus be seen as a restriction on
how the application should be coded, or on features that must be added to the
application if not already written in this manner.

4.3 Additional Considerations

As distributed implementations introduce new risks, additional responsibilities
have to be imposed both on the distribution mechanism and on the application
scenarios themselves.

Robustness. There is a desire to minimize the probability of error and of fail-
ure. First, we would like the scenarios governing the behavior to be as simple
as possible. Second, ‘the show must go on’ even if one of the participants made
a mistake or missed their cue. For the latter, specific scenarios can probably be
added. In the light show example, we could add “when a drone observes that
a predecessor drone has failed or is delayed, it should nevertheless continue the
cycle.”. Efficiency. Often, the joint operation should also be required to be effi-
cient. Consider for example the case when many bricks have to be moved from
point A to point B over a narrow passage. A group of robots may be arranged
in a row—passing bricks from one to the next, rather than each one travel-
ing the entire distance. The scenarios should be designed so that inter-scenario

Efficient Distributed Execution of Multi-component Scenario-Based Models 459

synchronization and coordination is minimized, or decreased, and both scenario
progression and the physical motion of bricks occur in parallel, asynchronously.
Such measures of efficiency are evaluated in the example in Sect. 7

5 Distribution via Replicate-and-Project

The execution of a classical BP model, as described in Sect. 2, is highly syn-
chronized and centralized by nature: at every step along the execution, the ESM
gathers the sets of requested and blocked events from each individual b-thread,
selects an enabled event (i.e., requested by some b-thread but blocked by none),
and broadcasts it back to the b-threads. While this underlies some of the bene-
fits of BP [27], it also results in limited scalability and distributability. Excessive
synchronization tends to add unnecessary complexity, impact performance, and
create inter-component dependencies that reduce robustness. For example, hav-
ing a scenario wait for an event that is supposed to be requested by a scenario
running on a separate, failed component might result in deadlock. Furthermore,
synchronization forces b-threads to execute in lockstep, which can be undesirable
if they are to model phenomena that occur at different timescales.

In this section we propose a distribution process that, given a centralized
(undistributed) behavioral model, generates a distributed one: It creates multiple
component models—subsets of the original, centralized behavioral model—each
a behavioral program, designed to be run on a separate machine. Run simul-
taneously, these behavioral component models (or simply, component models)
mimic the behavior of the original system, but require much less synchroniza-
tion. Below we elaborate on the abstract concepts and formal definitions of the
proposed process.

Each of the component models produced by our distribution process is a
behavioral model in its own right, intended to be responsible for a certain subset
of the events of the original model, which are uniquely owned and controlled by
it—meaning that no other component can request or block them. The behavioral
component models are intended to be executed in an asynchronous manner in
a distributed system, resulting in a natural, robust and simple extension of the
scenario-based paradigm.

The main difficulty in this approach is to ensure that the distributed com-
ponents behave in the same way as the original model although they are not
synchronized at every step. In mitigating this difficulty, the crux of our distri-
bution process is the replication of the entire set of original scenarios in each of
the distributed components, granting the components the ability to follow what
other components are doing, but avoiding synchronization whenever possible.
First, there is no central, coordinating ESM. Every component runs a separate,
local, ESM, which by default, performs local event selection without synchro-
nizing with other components. However, at every synchronization point where
multiple components have to agree on the particular event to select, the ESMs
of these components do synchronize.

The communication between components is asynchronous, and they notify
each other about chosen events as they progress through the scenarios. Keeping

460 S. Steinberg et al.

track of each scenario state is simply a matter of listening to incoming broadcasts
and updating the current state. This asynchrony is a cornerstone of the process,
allowing us to generate true concurrent distributed models.

The classical problem of multicasting or broadcasting a message efficiently in
a distributed network is well studied (for example, the authors of [33] present an
approach for minimum-energy-broadcasts in distributed networks with limited
resources and unknown topology). However it is beyond the scope of this paper.
For simplicity we assume that the cost of those broadcasts and bookkeeping
is small. Note that even in systems with a large number of components and
scenarios, a component often needs to keep track of only a small subset of the
other components; for example, an autonomous car considers other cars only
when they are in its immediate vicinity, and does not have to keep track of all
the vehicles in the world. Still, this dynamic registering and unregistering of
components is also beyond the scope of this paper and is left for future work.

In the remainder of the section we formalize these notions and the distribution
process itself.

5.1 Defining Event Components

Let M denote a behavioral model over event set Σ. An event component E is
a subset of the global event set, E ⊆ Σ. Intuitively, each subset E reflects (or
is implicitly defined by) a physical component of the distributed system and its
responsibility in terms of physical capabilities and/or environment interfaces,
i.e., sensors and actuators, that this component has. An event e ∈ E is said to
be a local event of E; otherwise, if e /∈ E then e is external to E.

A collection of event components {E1, . . . , Ek} is an event separation of Σ if⋃k
i=1 Ei = Σ. An event separation is strict if it also forms a partition of Σ:

∀ i, j, 1 ≤ i 	= j ≤ k =⇒ Ei ∩ Ej = ∅.

In the remainder of the paper we will only deal with strict event separations and
assume that they are provided by the user. Automated ways of generating an
event separation are discussed in Sect. 8.

5.2 Creating Behavioral Component Models by Replication
and Projection

Given a behavioral model M = {BT 1, . . . , BTn} over event set Σ and a strict
event separation {E1, . . . , Ek}, each event component E gives rise to a behav-
ioral component model C, in the following way. C is the behavioral model
C = {BT 1

E , . . . , BTn
E}, obtained by projecting each of the original b-threads onto

event component E. The projection operation, denoted as C = project(M,E),
transforms each of the original b-threads as follows. If BT i = 〈Qi, qi0, δ

i, Ri, Bi〉
then

BT i
E = 〈Qi, qi0, δ

i, Ri
E , Bi

E〉

Efficient Distributed Execution of Multi-component Scenario-Based Models 461

is defined as follows: The state set Qi, the initial state qi0 and, most importantly,
the transition function δi which specifies how events cause state transitions,
are replicated by the projection process without change. The original labeling
functions Ri and Bi, namely the sets of requested and blocked events in each
state, are projected onto the respective Ri

E and Bi
E according to the rules:

Ri
E(q) = Ri(q) ∩ E

Bi
E(q) = Bi(q) ∩ E

That is, the projected b-threads are modified to request and block only events
that are in E; but because δi is unchanged they continue to respond in the same
way to the triggering of all events, including those not in E. Consequently, where
an external event is requested in a b-thread, it is modified to only be waited-for.

Now, given a (strict) event separation {E1, . . . , Ek}, our distribution process
entails projecting the model M onto each of the event components, producing a
set of component models {C1, . . . , Ck} such that

∀i 1 ≤ i ≤ k, Ci = project(M,Ei)

By treating each component Ci as a separate behavioral model that per-
forms event selection and scenario advancement (i.e., state transition) locally,
the components can be run independently and in a distributed manner. This
is, however, qualified by the fact that, in order to keep the execution consis-
tent between components, at certain points two or more components need to
synchronize with each other. This is discussed in detail in the next subsection.

The following useful corollary is a direct conclusion that arises from the
definition of the distribution process, when applied in the context of strict event
separations.

Corollary 1. An event e ∈ Σ can be selected by at most one component.

Proof. {E1, . . . , Ek} is a strict event separation, hence there is only one value of
i such that e ∈ Ei. Only Ci can request e, since, by the definition, in all other
components Cj , j 	= i, the requests for e are replaced by waiting for it. Therefore
only Ci can select e.
�

5.3 Distributed Execution of Replicated-and-Projected Component
Models

As discussed in Sect. 4, despite their parallel asynchronous execution, it is our
goal that component-model execution be consistent with each other and with
that of the original model. Since in the specification more than one event may
be requested at a given state, occasionally these distributed runs need to be
synchronized. In this subsection and the next we describe the mechanics of par-
allel distributed execution of component models, and the specific synchronization
constraints this execution is subjected to.

462 S. Steinberg et al.

The R&P approach includes using in each component a modified BP execu-
tion infrastructure. The component’s ESM is different from the one described
in Sect. 2, in that it broadcasts to other components its local independent deci-
sions, it processes similar messages received from other components, and, when
required, it synchronizes with other components to make a joint decision.

Specifically, the following rules govern each component’s ESM and the dis-
tributed execution.

1. Each component has an event queue, to the end of which the component’s
ESM can push (i.e., add) events, and from the front of which it can pop (i.e.,
remove and process) events.

2. When a b-thread enters a new state, the execution infrastructure determines
whether or not it is an inter-component decision point (ICDP), i.e., whether or
not it should induce synchronization with certain other components (ICDPs
are defined in the next subsection).

3. When a component’s ESM receives an event that was broadcast by another
component, the event is pushed to the end of the component’s event queue.

4. When a component enters a new state (either initially, or following re-
synchronization of all b-threads following the triggering of an event that
affected at least one b-thread), the ESM does the following:
(a) If the component’s event queue has at least one event, the ESM pops the

first event from the queue, and triggers it (i.e., notifies affected b-threads,
who then change states and re-synchronize).

(b) If the queue is empty, then
i. If one of the b-threads is in an ICDP, the ESM waits for the compo-

nents specified in the ICDP to reach the corresponding ICDP and/or
confirms that they are already at that point (note that no compo-
nent goes past an ICDP without synchronizing with the others). If
two ICDPs are in effect concurrently, they are handled, separately,
in arbitrary order. Hence, all the components involved in an inter-
component decision consider the same sets of requested and blocked
events. The components then synchronize and mutually agree upon
the triggered event. This event is then broadcast to all components
(including the ones involved in the decision itself). Note that the cho-
sen event may or may not be one of those that induced the need
for inter-component decision. In the latter case, the b-threads that
induced the ICDP will not react to the chosen event, and the compo-
nent will be at an ICDP at the next synchronization point as well.

ii. If there is an event that is in the local requested event set and not in
the local blocked event set (for the current composite, synchronized
state of all b-threads in the specification as modified locally under
R&P), the ESM triggers that event, and broadcasts it to all other
components.

iii. If the event queue is empty and there is no event that is locally
enabled, the ESM waits for external events to arrive via broadcast
from other components.

Efficient Distributed Execution of Multi-component Scenario-Based Models 463

iv. Otherwise, that is, if the event queue is empty and there is no event
that is locally enabled, the ESM waits for external events to arrive
via broadcast from other components.

5. When b-threads are notified of selected events they change their states accord-
ing to their local state-transition function (which is identical in all components
and is the same as in the original non-distributed specification).

We observe that deadlock-detection needs to be treated differently in the
distributed case compared to the centralized case. According to the semantics
given in Sect. 2, the system can detect a deadlock if the ESM determines at
some point that all requested events are blocked, so that none can be selected.
This, of course, holds only in the case of static scenarios, and where simulation
of environment behavior is already included in the model. By contrast, in the
distributed case this is no longer the case, as components begin to serve as
each other’s environment: If one of the local b-threads waits for an event that
is external to the component, another component might broadcast that event.
Thus, the component should just be stalled until such a broadcast arrives.

Definition 2. A distributed model produced from a behavioral model M , with
respect to a strict event separation, S = {E1, . . . , Ek}, denoted as D(M,S),
is defined to be the set of projections of M along the components of the event
separation:

D(M,S) = {project(M,E1), . . . , project(M,Ek)}.

Executing a distributed model means executing the component models (i.e., the
projections) according to the operational semantics defined in this section.

5.4 Conditions for Inter-component Synchronization

The following definition is useful in identifying the points during the execution
in which multiple components need to synchronize:

Definition 3. Given a component model Cj = project(M,Ej), a b-thread BT i

and some state q ∈ Qi. We say that BT i is controlled by Cj at state q if one
or more of Ej’s local events is requested or waited-for in q; i.e., if ∃e ∈ Ej such
that δi(q, e) 	= q or e ∈ Ri(q).

Definition 4. Given a component model Cj = project(M,Ej), we call a state
q ∈ Qi in a component’s b-thread BT i an inter-component decision point (ICDP)
if and only if q is controlled by multiple components and ∃e ∈ Ej such that
e ∈ Ri(q).

The R&P distribution process dynamically determines when a b-thread is in
a state that is an inter-component decision point per Definition 4.

For example, assume that in the original specification for a four-wheel vehicle
a single b-thread requests two events (e.g., steerRight and steerLeft), allowing
the ESM to non-deterministically choose one, as would be the case if a ‘random

464 S. Steinberg et al.

walk’ were desired. Then, in the distributed implementation, if the two events
end up in a single physical component, this will not be an ICDP. But, if they
are in separate components, coordination will be required, naturally, and this
will be an ICDP. Consider also the case where these two events are requested
by two separate b-threads. In a centralized implementation this will be valid,
especially if each of the two b-threads also waits at this point for the other b-
thread’s event and stops requesting its own if it sees that the other’s request is
selected. Moreover, if the two events are in distinct components as before, then
the requesting and waiting (in a single b-thread) would cause the corresponding
state, which appears in the replicated b-thread in both components, to be marked
as an ICDP, yielding the same sets of runs. Alternatively, if the events are indeed
in physically independent components, as would be the case when steerRight is
implemented by advancing (rolling forward) the left front wheel, (and steerLeft,
respectively, by advancing the right wheel), then the developer has the option
of removing the waiting-for-the-other-event from the bSync call in that state.
In this case, these states will no longer be ICDPs, and one of the possible runs
is that both requested events will be selected (one after the other), both front
wheels will be advanced, and the vehicle will advance forward rather than turn.
We note however, that here the specification and the set of runs has changed
dramatically to accommodate, or take advantage of, some new capabilities of
the distributed environment, and we no longer attempt to preserve the set of
original runs.

It is important to note that the properties that induce the existence of an
ICDP are properties of a single state of a single b-thread and not of the entire
specification: the set of a all b-threads may, at the same time (i.e., at a given
synchronization point), request and/or wait for events controlled by multiple
components, but if no single b-thread is controlled by two components, this
will not force an inter-component decision. However, at any synchronization
point in any component (which means synchronization of all b-threads in that
component), if a single b-thread is in an ICDP, the ESM will synchronize the
entire component with the other affected components.

When at an ICDP, the actual joint decision of multiple, already-synchonized
ESMs, can be performed, e.g., via a distributed leader election protocol [10].
Once a specific ESM is selected as the leader, it chooses the next triggered event
based on the local requested and blocked events in its current state.

Note that Definition 4 mandates that the requested-events set not be empty.
This restriction reduces the scope of when an ICDP is called for. Consider for
example a logger scenario that, obliviously to any synchronization implications,
waits for all possible events in the system and writes the relevant data to a log
file (without requesting any behavioral event). Without the requirement that at
least one event be requested by the b-thread causing the ICDP, such a simple
logger would cause the entire execution to synchronize at every event selection.
However, this feature, which enables more asynchronous execution, has its price.
E.g., two such simple logger scenarios running in two separate components may
observe differently the order of a given sequence of events. The issue of seeing

Efficient Distributed Execution of Multi-component Scenario-Based Models 465

different orders may be resolved either by programming the application such that
it induces an ICDP only when it is called for explicitly by the requirements, or by
order-enforcing infrastructure, such as the one as described below in Subsect. 5.5
and Assumption 1.

5.5 Equivalence to Centralized Executions

As described above, given a centralized behavioral model M over an event set
Σ and a strict event separation {E1, . . . , Ek}, our distribution process produces
a set of component models {C1, . . . , Ck}, whose execution then follows a very
particular protocol. We would like to prove that, under certain assumptions, this
distributed model behaves like the centralized model, i.e. the set of all possible
executions of the distributed model is identical to those of the centralized model.

First, we present the following assumptions.

Assumption 1 (Strict and Total Event Ordering). Given D (M,S) (Defi-
nition 2), we assume that there exists a strict total ordering of all selected events,
and this ordering is global and visible to all components (see Sect. 4). I.e., for
any pair of events a, b selected by any one or two components, exactly one of the
following is true:

– a happened before b, or
– b happened before a

and, all components observe these events in the same order.
Stating the above more formally, we assume that in each component model

Ci = project(M,Ei), the event queue described in the R&P execution seman-
tics is subsumed by a virtual queue, termed VQueue and denoted Q̂i, with the
following properties as well as communication and execution semantics. After
an event e is selected by a component C, the event is pushed atomically and
simultaneously onto all VQueues of all components (including the one where it
was selected). Notice that the atomicity here regards all pushes onto all queues,
and any event selection or other important behavioral processing action (includ-
ing another collective push) occurs either before or after such a collective-push
action of one selected event. Each component processes events by popping them,
one at a time, from its VQueue, and announcing the event to the b-threads
running in that component (which are, in fact, all the b-threads in the specifica-
tion, as modified/projected locally by R&P). The b-threads then change states
according to BP semantics and resynchronize locally. The next event selection
at this component can occur at any time during this process as long as all events
previously selected by this component (and pushed onto its VQueue and onto
the VQueues of all the other components), have been popped from the local
VQueue Q̂i and fully processed. However, the local VQueue does not need to
be empty when the event selection occurs, i.e., it may contain events that were
pushed onto it by other components, since the previous local event selection.

One may consider this assumption as limiting the class of applications covered
by the formal argument to those where notification of events to components is

466 S. Steinberg et al.

serialized by some virtual central controller, and, where each component waits
for the arrival of all events that were triggered in any component after its own
last event selection, before the next event selection. In Sects. 8 and 9 we discuss
why these limitations are not of great concern and do not diminish from the
power of R&P and of reduction of synchronization requirements.

Assumption 2 (No Reliance on Cross-component Blocking
of Already-enabled Events). Let D(M,S) be a distributed model that is
being executed. For a given component Cj , let Q̂i be the totally ordered set
{e1, e2, . . . em}, i.e., these are the pending events in its VQueue. Let r =
〈q1, . . . , qn〉 be the component’s current program cut (Definition 1). The com-
ponent’s enabled events are:

Er =

(⋃
i

Ri
j(q

i)

)
\

(⋃
i

Bi
j(q

i)

)

We assume that popping events from the queue does not remove elements from
Er, i.e.,

∀l ≤ m, Let q̇il = δi(. . . δi(δi(qi, e1), e2) . . . , el) and

Er

⋂ (⋃
i

Bi
j(q̇

i
l)

)
= ∅ (1)

This is in line with the discussion of not relying on cross-component blocking
of already-enabled events in Subsect. 4.2. In other words, we assume blocking is
done sufficiently in advance to avoid race conditions.

Lemma 1. Under Assumptions 1 and 2, the set of all possible executions (the
language) of M is identical to the set of all possible executions produced by the
component models {C1, . . . , Ck} when run jointly in a distributed fashion.

This lemma, which is the main proven result of this work, is of practical
importance, as it implies that the proposed R&P distribution process will not
cause the model to behave in unexpected ways. As discussed under the Language
Equivalence principle in Subsect. 4.1, note that the lemma is about the collection
of all runs, and does not claim that if the distributed and centralized models are
run side-by-side, they will always produce the same run. The main reason is that
in a cut where more than one event is enabled, we cannot guarantee that two
side-by-side runs of the executable specification will make the same choice; and,
this holds independently of whether either of them is centralized or distributed.
Given the language equivalence result, one can study and analyze the centralized
version of the model (which is far easier for humans to grasp and comprehend,
and for tools to analyze) and the conclusions will apply to the distributed setting
too. We will discuss some of the implications of this result in Sect. 9.

Note that for the lemma to hold we also implicitly assume that each enabled
event has a positive probability of being selected. If the event selection is unfair,
in the sense that it always selects certain events and not others in particular

Efficient Distributed Execution of Multi-component Scenario-Based Models 467

situations, then the lemma will not hold. We do not consider this assumption to
be a major constraint on the kind of applications supported by R&P.

Proof of Lemma 1. Assumptions 1 and 2 shape the rest of the proof. Compo-
nents select events based on standard BP execution semantics applied to the
replicated-and-projected specification. Those selected events are immediately
pushed into all the event queues of all components. This operation is instan-
taneous and defines some global order among the selected events. We do not
define when components pop, announce, and process events from their event
queue, but simply assume that they do so at some point, and soon enough as to
not violate Assumption 2.

Claim 1. In a distributed execution of D(M,S), if at any point in time all
components empty their event queues Q̂i (processing the events), then the cuts
of all component models are at the same state.

Proof. Given a component model Ci = project(M,Ei) and its event queue Q̂i,
let {el1 , el2 , . . . , elm} be all the events, in order, popped from the queue and
processed by the component since the execution started. By Assumption 1, the
indices {l1, l2, . . . } are identical for all components. And, since we assume that
selected events are pushed into all event queues instantly, once components
empty their queue the total count of processed events is also the same for all
components.

While it may be obvious that at any instance at most one event will be
selected, in exactly one component (and all components will eventually see this
event), when considering possible causes of divergence it is useful to notice that:

1. Given that components are, in general, not synchronized, their event selec-
tions are always strictly ordered. The event selection in one component is
always before or after any event selection in any other component.

2. In a given cut in a given component, if (after R&P) multiple events are
enabled, then:
(a) If these enabled events are controlled by this same component, then this

is the only component in which they can be enabled. The one event that
will be chosen by this component from this set will be visible identically
to all components.

(b) If the enabled events are controlled by multiple components, then the cut
meets the requirements for ICDP, and all the relevant components are
also synchronized at the cut at hand; a single event will be chosen via a
an agreed-upon decision, made for all of them.

Therefore, all components process the same totally ordered set of events
{el1 , el2 , . . . , elm}.

Observe that in the execution of D(M,S) all components begin at the same
initial program cut 〈q10 , . . . , qn0 〉, and after m steps a projected b-thread BT i

j in
component Cj transitions to some state q̇im = δi(. . . δi(δi(qi0, el1), el2) . . . , elm).
By definition of the projection process, the δi functions are identical across

468 S. Steinberg et al.

components, and hence all projections of each thread proceed to the same state,
∀i, r : q̇rm = q̇im. Therefore all component end up in the same cut. The claim
follows.
�
Corollary 2. Given a distributed model D(M,S), all the components process
the same totally ordered set of events.

Proof. Follows immediately from Claim 1.
�
Using Corollary 2 we can talk about the sequence of events processed by

D(M,S), as all its components process the same sequence (albeit they might do
so at different speeds).

We now define what the formal language generated by a behavioral model is,
and prove that the languages of the distributed model and of the undistributed
model are the same.

Recall that for an undistributed model M an enabled event at some program
cut is an event that is requested by some b-thread and is not blocked by any of
the b-threads. Recall also that under R&P all components run all b-threads but
requesting and blocking of events take place only in components that control
these events. We thus extend the enabled event term to a distributed system
D(M,S) as follows:

Definition 5. In a distributed model D(M,S), an enabled event is one that is
requested by some b-thread of some component in which all b-threads are presently
synchronized (i.e., a component that is at a cut), and, is not blocked by any b-
thread in that component.

Definition 6. Let Δ(r, e) denote the program cut transition function, where
r is a program cut and e ∈ Σ is an event. Δ is fully defined by the b-
threads state transition function δi as follows: for r = 〈q1, . . . , qn〉,Δ(r, e) =
〈δi(q1, e), . . . , δi(qn, e)〉.
Definition 7. The language L of a behavioral model M denoted L(M) is a set
of words defined over the alphabet Σ. A word w = e1e2 . . . is in L(M) if its
letters constitute a legal run of M ; i.e., if we begin in the initial cut and apply
Δ according to the sequence of events in w, the next event is always enabled in
the current cut.

The language of the distributed model D (M) is defined similarly. A word
w is in L(D(M,S)) if and only if there exists a run of L(D(M,S)) where the
components select the totally ordered set of events in w. (We assume that the
environment is incorporated into the behavioral model as b-threads that non-
deterministically request environment events.)

The equality between L(M) and L(D(M,S)) will follow from the following
claim:

Claim 2. L(D(M,S)) ⊆ L(M)

Efficient Distributed Execution of Multi-component Scenario-Based Models 469

Proof. At any time during the execution of distributed model D(M,S), the
enabled events are as determined by the cuts of those components that are
presently in a cut (in fact, one can also conveniently assume that a cut transition
in a component is always atomic in the sense that a component can only be
observed when in a cut, yet not all components may be in the same cut at the
same instance of time). As components cannot block external events, the set of
enabled events at a given instance is the union of sets of enabled events of all
components which are in a cut.

We will denote by EM
m the set of enabled events of a centralized model after

selecting m ≥ 0 events. Likewise, we denote E
Dj
m the set of enabled events of

component Cj in the distributed model D(M,S) after m events have occurred.
We do not specify the number of events l ≤ m that were actually popped and
processed by the component. ED

m = ∪jE
Dj
m is defined as the set of enabled events

in the distributed model after m events were selected and each component Cj

has processed lj ≤ m events. By definition, the set of initial enabled events of
M is

EM
0 = (

⋃
i

Ri(qi0)) \ (
⋃
i

Bi(qi0)) (2)

and after m steps the set of enabled events of M is

EM
m = (

⋃
i

Ri(qi)) \ (
⋃
i

Bi(qi)) (3)

where 〈q1, . . . , qn〉 is M ’s program cut after m events have occurred.
The set of initial enabled events in the distributed model D(M,S) is ED

0 .
Clearly ED

0 = EM
0 .

Consider the distributed model D(M,S) after m steps, i.e., after selection
and VQueue-ing of exactly m events as counted collectively in the entire model,
and examine an arbitrary component Cj . The component has processed l events,
where l ≤ m, and has m − l events in its VQueue. Specifically, it has processed
the sequence of events defined by the totally ordered set {e1, e2, . . . , el} , and
Q̂j = {el+1, . . . , em}.

Let r = 〈q1j , . . . , qnj 〉 be the current program cut of Cj and let ξl be the set
of enabled events of Cj after processing l ≤ m events.

By Assumption 1, if Q̂j contains an event selected by Cj then the compo-
nent will not attempt to select another event, until processing that event, and
therefore, effectively, ξl = ∅. Otherwise, at this stage the set of enabled events is
defined by:

ξl =

[(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)]
∩ Cj =

(⋃
i

Ri
j(q

i
j)

)
\

(⋃
i

Bi
j(q

i
j)

)
. (4)

470 S. Steinberg et al.

Whenever Cj processes any number of the m − l events in Q̂j , no enabled
events will removed from ξl for the following reasons:

– No b-thread will change into a state where it blocks events in E
Dj

l . This
is due to Assumption 2 which claims that the application does not rely on
instantaneous blocking.

– No b-thread that requested an event will change into a state where it no longer
requests this event as this would imply that this b-thread was simultaneously
requesting a local event and waiting for an external one which would then
require an ICDP. As discussed before, an event chosen by an inter-component
decision is considered as selected by all participating components, and we had
assumed that Q̂j contains no event selected by Cj .

Therefore

∀0 ≤ l ≤ m : ξl ⊆ ξm.

By definition, ξm is the set of enabled events in component Cj after processing
all the m events from the VQueue, therefore, as the VQueue is empty, ξm is
simply:

ξm =

[(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)]
∩ Cj ⊆

(⋃
i

Ri(qi)

)
\

(⋃
i

Bi(qi)

)
= EM

m

By the way we defined E
Dj
m the following holds: E

Dj
m = ξl for some l ≤ m,

but as we saw ∀0 ≤ l ≤ m : ξl ⊆ EM
m , therefore E

Dj
m ⊆ EM

m and the following
holds:

∀m ≥ 0 : ED
m = ∪jE

Dj
m ⊆ EM

m .

Therefore L(D(M,S)) ⊆ L(M).
�
Claim 3. The language of a behavioral model L(M) is equal to the language
of its distributed version L(D(M,S)).

Proof. We need to show that L(M) ⊆ L(D(M,S)). That is trivial: Assume
that a run of D(M,S) always empties its VQueues instantly as soon as events
are pushed. In this case the distributed model would behave identically to the
centralized version. Ergo L(M) ⊆ L(D(M,S)).

As L(D(M,S)) ⊆ L(M) by Claim 2 it immediately follows that

L(D(M,S)) = L(M)

�
This concludes the proof of Lemma 1, which also implies that the distributed

model behaves correctly, i.e., produces executions that are allowed under BP
semantics.

Efficient Distributed Execution of Multi-component Scenario-Based Models 471

6 Per-component Timescales

As explained earlier, in a centralized behavioral model, all b-threads must syn-
chronize in order for the ESM to announce the selected event. The b-thread that
takes the longest to reach its synchronization point (e.g., because it performs
slow local calculations or writes to a file) forces the rest of the b-threads to wait
until it synchronizes. This lockstep execution thus results in the slowest b-thread
dictating the timescale for the whole system. This is a common issue in behav-
ioral models that involve multiple scenarios operating on different timescales
(see, e.g., [17]), and it also applies to our distributed variant of BP: for example,
a slower component might experience delays before broadcasting events that a
faster component depends on, forcing the latter to wait. Furthermore, external
events can “pile up”, increasing the processing time of future event selections
and delaying the selection of potentially crucial events.

In this section we discuss how to allow the generated components to operate
efficiently on different timescales.

Previous work [17] has tackled this difficulty in a variety of ways. One app-
roach in [17] introduced an eager execution mechanism for behavioral mod-
els. This technique lessened the severity of the problem by sometimes allowing
the ESM to trigger an event even when some of the b-threads have not yet
synchronized. Our distribution technique lends itself naturally to this kind of
idea, because within a given component, we know that b-threads controlled by
other components, which have not synchonized yet, cannot block local requested
events. Thus, by applying a method similar to eager execution, the ESM does not
have to wait for b-threads which wait only for external events (such b-threads
may be in the original specification, or they may be the projected version of
b-threads with event requests changed to waiting for events).

In our distributed setting, eager execution can be applied as follows. Given a
behavioral model M = {BT 1, . . . , BTn} and its distributed component models
{C1, . . . , Ck}, let q ∈ Qi be a state in which b-thread BT i is not controlled
by component Cj . Observe BT i

j , i.e., the copy of BT i that is running in com-
ponent Cj . Because BT i

j is not controlled by Cj , it does not request or wait
for any local events and must be waiting for an external event e controlled by
some other component Cm. In other words, until such time as e is triggered by
Cm, thread BT i

j will not affect local event selection in component Cj . In such
situations we propose to temporarily detach thread BT i

j from its local ESM,
effectively allowing event selection in component Cj without considering BT i

j .
This allows component Cj to operate in its own pace, while BT i

j can be regarded
as temporarily operating in the same time scale as Cm. Whenever e is finally
triggered and BT i

j reaches a new state q̄ in which it is controlled by Cj , it is reat-
tached to the local ESM. This technique readily enables different components to
simultaneously operate at different timescales.

472 S. Steinberg et al.

To support eager execution within our distributed framework, the external
event queue within each component model needs to be decoupled from the dis-
tributed ESM. Instead, each b-thread in the component receives its own external-
event queue, and at each synchronization point pops all external events and
selects them one at a time. The changes in the BP execution engine are summa-
rized as follows:

– Each b-thread should flag itself as synchronized or unsynchronized with each
bSync call, depending on the state.

– A separate event queue is created in each b-thread, thus allowing b-threads
to process external events independently of the local ESM. A b-thread that
arrives at a state first empties its event queue by repeatedly popping and
selecting an event.

– External events received at a given component are injected into all the b-
thread event queues by the component’s BP execution engine. B-threads that
are already awaiting the local ESM are notified to handle the external events.

7 Example and Evaluation

We now describe in more detail the distributed application upon which we carried
out our evaluation. Specifically, and as introduced in Sect. 3, we implement a
drone-based light show as follows. Each of four drones has a green light and a
red light. Initially, the drones “do the wave”, each flashing its green light briefly,
in turn. This is implemented by the scenario in Algorithm1. The scenario in
Algorithm 2 shows the projection of the scenario in Algorithm1 to Drone1.

i=0;
while true do

bSync(R = {FlashGreen((0 + i)%4)});
bSync(R = {FlashGreen((1 + i)%4)});
bSync(R = {FlashGreen((2 + i)%4)});
bSync(R = {FlashGreen((3 + i)%4)});
nextEvent = bSync(R = {NW0, NW1, NW2, NW3});
i = indexOfWave(nextEvent);

end
Algorithm 1: Pseudocode of a BP scenario demonstrating a simple undistributed

wave example. For each bSync synchronization point, R is set requested events. The

events NW0 through NW3 indicate a request the start a new wave at the corre-

sponding component. These events are requested after each full cycle, and BP event

selection then decides which component starts the new wave. The method index-

OfWave translates an event NWi to the index i.

Efficient Distributed Execution of Multi-component Scenario-Based Models 473

i=0;
while true do

bSync(W = {FlashGreen((0 + i)%4)});
bSync(R = {FlashGreen((1 + i)%4)});
bSync(W = {FlashGreen((2 + i)%4)});
bSync(W = {FlashGreen((3 + i)%4)});
nextEvent = bSync(R = {NW1},W = {NW0, NW2, NW3});
i = indexOfWave(nextEvent);

end
Algorithm 2: Projection of the scenario of Algorithm 1 onto the component

Drone1. Notice that requested events controlled by other components become waited-

for (represented by the W sets).

Our example is a slightly richer scenario, coded as a behavioral program
written in C++. The four drones (labeled Drone0 through Drone3) participate
in “a green wave”, starting with Drone0. After the conclusion of two full cycles,
the drones jointly decide which of the drones will start the next wave. The
next wave will, again, last for two full cycles, and the entire process repeats
five times. For now, the entire specification consists of a single scenario. In this
implementation, the light-flashing events are labeled as FlashGreen0 through
FlashGreen3, each representing the flashing of the light in the respective drone,
in either a centralized or distributed implementation. The selection of the drone
that will start the next wave is carried out by the scenarios requesting four
“new wave” events, NW0 through NW3, and the BP event-selection mechanism
arbitrarily selecting one of these events. We then associate each of the FlashGreen
and the NW events with the corresponding component. In this simplified example
the duration of the flashing of each light is implemented in a delay (sleep) of 250
msec in the b-thread that is about the request a FlashGreen event.

For simplicity, this implementation uses a centralizer component and does
not implement a leader-election mechanism. The centralizer is an infrastructure
component which is responsible for: (i) receiving notifications of events triggered
in any behavior components, and broadcasting this information to all other com-
ponents, and (ii) managing joint decisions, by receiving notices from any com-
ponent ESM that wishes to synchronize, which include the sets of requested and
blocked events, waiting for all other components to reach their corresponding
state, selecting an event which is requested and not blocked, and notifying all
components of the selection. Note that the centralizer serves only in simulations
and studies of the approach, and that in real distributed implementations broad-
casting can be performed by a vartiety of techniques (including the above), and
joint decisions can be reached by classical distributed-processing solutions, such
as leader election.

At this point it is important to distinguish between the concepts of classes
and objects and the concept of components as used here. Events may be self-
standing entities, or they may be associated with objects. In our example, each
drone is a component, and objects may reside within a component, or may span

474 S. Steinberg et al.

multiple component. Such objects can be, e.g., a drone controller, a drone light,
a wave effect (which can have a beginning and end events, or a color property)
or an entire light show. As can be seen in the example given in Algorithm2, each
component executes “the entire specification”, in this case, this one scenario. In
the distributed implementation, when scenarios request or wait for FlashGreen
events, they do not synchronize, but when they request the four new wave events,
they all synchronize. This results in a partially synchronized execution, which
mimics the centralized execution but does so with less inter-component synchro-
nization.

We compare our target, partially synchronized execution of a specification
created with the replicate-and-project implementation (R&P), with a fully syn-
chronized distributed execution (abbr. FS), where each component executes the
same specification, and they synchronize with every event selection. The deci-
sion in each component whether to actually turn on its own light following
its respective FlashGreen event is left as a small implementation detail, i.e.,
the light-switch actuation method skips the operation if there is no direct con-
nection with the device. Both implementations execute the same one-scenario
specification, replicated over four components. The total number of events that
occurred, all of which were broadcast to all components, is 44—the same for FS
and for R&P (five repetitions of two four-event cycles, and four joint decisions).
In the R&P however, only four of these required synchronization. The total exe-
cution time was the same in both cases, dominated by the duration of the light
flashes, but if synchronization delay is artificially increased, total execution time
is increased accordingly (e.g., a 100 msec delay purely due to synchronization,
in addition to any ordinary communication delay, would add 400 msec to the
duration of each cycle of this single wave).

We now extend our mini-light-show example with another wave of flashing
lights. We add a scenario in which, starting with Drone2, each of the drones
briefly flashes a red light, in its turn. This multi-cycle wave continues uninter-
rupted and with no change until the ten cycles of the green wave terminate. The
delay (sleep) before requesting a FlashRed event is 1000 msec. When multiple
events are requested e.g., both a FlashRed together with FlashGreen or NW,
the ESM selects an event at random. The forty FlashGreen events in the ten-
cycles determine the beginning and end of the run, and the number of FlashRed
events selected during this time varies. Since we are presently more interested
in understanding the underlying effects than in measuring improvements over a
large number of runs, we suffice with this artificial example. To highlight these
effects we show in Table 1 a comparison of the two cases when in both FS and
R&P, 44 FlashGreen events were triggered.

The basic communication delay in these experiments is set to 50 msec, result-
ing in 100 msec delay for broadcasting an event occurence via the centralizer.

Some interesting explanations and observations include:

– In FS, at every synhcronization point, both a FlashRed event, and, either a
FlashGreen or NW events are enabled. This is true regardless of sleep delays
and number of components. Hence in such runs, on average, half of the events

Efficient Distributed Execution of Multi-component Scenario-Based Models 475

will be FlashRed. By contrast in R&P, FlashRed is enabled in a component
together with one of the other two events in a way that depends on lengths of
sleep delays and on the number of components in the cycle, yielding, in our
case fewer FlashRed events during the run.

– Common to all runs is a 40 ∗ 250 msec taken by the FlashGreen events, plus
4 ∗ 100 msec minimum number of joint decisions, plus about 3 s of overhead
(total of 13–14 s).

– The 41 s duration of R&P is the result of adding to the above ∼13 s 28∗1000
msec FlashRed events.

– The 67 s duration of FS is the result of adding to the above 41 s of R&P
17∗1000 msec of additional FlashRed events and 85∗100 msec communication
delays due the additional synchronizations, all of which had to occur during
the same ten cycles of the green wave.

– Even though the total number of events triggered in R&P is less than in FS,
the per-second event rate is higher.

– In the worst case, the performance of a distributed system resulting from an
R&P distribution process will be the same as when a replicated specification
executes without local changes in all components, with full synchronization
at every event selection.

Table 1. Comparing an execution of a fully synchronized (FS) implementation of a
two-scenario specification in a four-component configuration, to an execution of the
partially synchronized replicate-and-project implementation (R&P). See discussion in
the Sect. 7 [37].

Measure FS R&P

Number of FlashGreen event notification broadcast 40 40

Number of FlashRed event notification broadcast∗ 45 28

Number of “new wave” event notification broadcast 4 4

Total number of events 89 72

Total number of Inter-component synchronizations 89 4

Run duration (in seconds) 67 41

Events per second 1.32 1.75

While the above examples illustrate and quantify the kind of savings result-
ing from reduced synchronization, we must note that the synchronization delay
itself is sometimes not the main issue. For example, if we were to replace the
FlashGreen event(s) in our design with, e.g., pairs of TurnGreenLightOn and
TurnGreenLightOff events, all scenarios might have had enough time to syn-
chronize with each other following the event TurnGreenLightOn, in parallel to
waiting for the time ticks that would signal the end of the shining of the light. A
relaxed synchronization approach, separating the scenarios of the two waves into
separate modules within each component, would further streamline an otherwise

476 S. Steinberg et al.

fully synchronized implementation. Nevertheless, the reduced inter-component
synchronization still helps in simplifying the designs, and in enhancing system
robustness. For example, consider recovering from loss of a drone, due to bat-
tery running out, while “the show must go on”. It is much easier for all drones
to observe and react to delays in other drones’ behavior, when they are fully
functional as opposed to waiting in a global synchronization point (even when
the latter is enhanced with timeout facilities as in [18]).

8 Related Work and Comparison

Distributed system have been the subject of extensive research and studies;
see, e.g., [3,32]. In general most approaches that aim to distribute a centralized
system fall into one of the following classes:

1. The distribution process employs a kind of orthogonalization (or partition-
ing) process that decomposes the system into independent, orthogonal parti-
tions that form the distributed system. This might be done with some user
intervention and input or using a fully automatic process. The resulting exe-
cutable partitions model parts of the system which can be ran, in parallel, as
a distributed system without ever requiring to synchronize. Typical examples
include the parallelization of an abstract computation, or the execution of a
multi-agent system where an agent may wait for another agent’s messages, or
may even coordinate a joint application decision, but they cannot in any way
depend on synchronizing with each other their own internal computations
and processes.

2. The executable partitions that form the distributed system are given in
advance, and they do not map to logically-orthogonal parts of the specifica-
tion. Instead, they are formed to satisfy other constraints (physical properties,
performance, etc.) Unlike systems with orthogonal partitioning, some syn-
chronization might be required to ensure the distributed system has largely
the same function as the original one. A typical example would be a dis-
tributed database whose components are defined by physical machine capac-
ities and boundaries. The component synchronize as part of their underlying
computation, to ensure properties such as atomicity, consistency, isolation
and durability (ACID).

Each class has a unique difficulty: Orthogonalization or synchronization. In
terms of system design synchronizing distributed systems enjoy a larger degree
of freedom in the way the distributed partitions can be chosen. Behavioral spec-
ifications generally do not expose orthogonal partitions that map to the physical
parts or properties of the system, or at times, none at all. Performance-wise, the
trade-off between an orthogonal and a non-orthogonal approach can be seen as
the trade-off between distribution performance as opposed to execution perfor-
mance.

Within the realm of behavioral programming, the research in [28] suggests
an approach for orthogonal distribution, where the distributed system consists

Efficient Distributed Execution of Multi-component Scenario-Based Models 477

of multiple, manually design, independent programs, termed behavior nodes (b-
nodes), each with its own set of internal events. As this is an orthogonal approach,
those b-nodes never need to synchronize with each other. Similar to our app-
roach the b-nodes communicate by external events, however those events require
manual translation to and from internal events. While in [28] the distributed sys-
tem is generated by a manual partitioning of a model into multiple b-programs,
[15] proposes a synchronizing approach for distributing BP models by manually
partitioning the b-threads of a single b-program into modules, where each mod-
ule runs its set of b-threads and synchronizes with other modules upon choosing
events that might matter to other modules. The set of events that require syn-
chronization as well as which modules each events needs to synchronize with
is known a priori. The research in [15,28] contains examples of an orthogonal
distribution approach and a synchronizing one, respectively, in behavioral pro-
gramming. However, in both approaches the component structure is dynamic
and implied by the specification, in contrast to the present paper where the
component structure is dictated by the physical structure of the system and
external events emerge naturally and automatically from internal events. Fur-
thermore our approach supports more general designs, inter-component scenarios
and fine-grained synchronizations when scenarios give rise to inter-component
decisions.

A different framework for the distributed execution of scenarios is presented
in [12]. The approach there is similar to the one in this paper in that the dis-
tributed components can each choose to execute events that they are responsible
for, and selected events are broadcast to all other components. Further, a coor-
dinator component in [12] forces the situation where, as in Assumption 1, all
components observe a single event order. The main issues with this implemen-
tation relative to R&P are that it requires that individual scenarios are written
to not have states where events of multiple components are enabled. By con-
trast, R&P automatically coordinates all components when reaching a state
where a joint decision is required, and it allows components to advance asyn-
chronously when possible, and in particular, after locally selecting an event. An
advantage, though, of the implementation of always enforcing a common event
order in [12] is that it avoids the risk of sensitivity to different event orders.
While Lemma 1 relies on such enforcement for the proof, R&P in general allows
also for applications that forego this requirement, and solve order-dependencies
in application-specific means. However, we must note that the actual reliance
in the implementation on a physical centralized coordinator for the entire dis-
tributed system carries many disadvantages both in performance and robustness.
The introduction of single order assumption in the proof of Lemma 1, can be
seen more as an abstraction—a requirement that is either guaranteed by some
efficient and robust means or by application-specific properties.

A more general, automatic handling of event-order dependencies in R&P,
and possible generation of additional ICDPs, is left for future research, e.g. using
formal methods, as discussed in Sect. 4.

478 S. Steinberg et al.

The research in [14] describes (though without an implementation) a mech-
anism for the distributed execution of scenarios with dynamic role bindings.
There, synchronization is done only among relevant components, as determined
dynamically.

There has also been work on synthesizing scarcely-synchronizing distributed
controllers from scenario-based specifications [4]. Distributed finite automaton
controllers can be synthesized from scenario specifications in a way that greatly
reduces communication overhead compared to previous approaches, especially
compared to the broadcasts of events as also suggested in this work. However,
the synthesis procedure is computationally complex and does not scale well as
specification and system size increase. In [9], the authors study a similar prob-
lem and present an approach for synthesizing executable implementations from
specifications given in a distributed variant of LSC, termed dLSC.

Another work related to distribution of centralized scenario-based models
(but outside of the realm of BP) is [34], which presents a synchronizing app-
roach for distributing workflow specifications. This work exposes domain-specific
knowledge in order to be able to generate automatically distributed partitions
and synchronization semantics such that the resulting distributed system pre-
serves the execution semantics of the original centralized version.

Outside the scope of scenario-based modeling [7] is an example of distribution
of systems modeled using Petri Nets, specifically High Level Timed Petri Nets
(HLTPN). This research uses the orthogonalization approach where the HLTPN
is decomposed into subnets connected by shared places, nodes that are common
to multiple subnets. Arcs are not allowed to cross subnet boundaries, ensuring
that the decomposing is an orthogonal partitioning of the net. The shared places
can be seen as global memory, shared between multiple subnets, used to control
firing of transitions, however there is no synchronization between the subnets.

Further non-scenario-based research discusses the trade-off between perfor-
mance optimization and communication minimization in parallel and distributed
settings has been studied extensively. These two conflicting goals are discussed,
e.g., in [5,39]. In [38] the author suggests imposing certain limitations on the
communication between the components, thus allowing for execution-time opti-
mization to be performed during compilation.

It is interesting to note that distribution approaches that rely on scenario-
based specifications typically exploit the execution semantics of the model-
ing language to generate synchronized distributed systems. Meanwhile, non-
scenario-based approaches generally employ a form of orthogonalization, and
usually rely on domain-specific knowledge or on high-level temporal specifi-
cations to facilitate the distribution. As discussed above, orthogonalization
approaches are more rigid and are not always possible, feasible or applicable.
To our knowledge there is scarcely any research that involves generating a non-
orthogonal distributed system from a generic non-scenario-based specifications.
It appears that despite (and perhaps due to) the simplicity of behavioral pro-
gramming and of scenario-based specifications in general, it is generally amenable
automated decomposition and distribution.

Efficient Distributed Execution of Multi-component Scenario-Based Models 479

9 Discussion and Future Work

Previous research on scenario based programming has shown the great impor-
tance of formal methods and tools in ensuring that the resulting models, com-
posed of many individual scenarios, perform as intended as a whole. Past
efforts have yielded a large portfolio of tools for model checking [24], automatic
repair [21,30] and compositional verification [16,31], and have even indicated
that scenario-based programming may be more amenable to formal analysis
than other modeling approaches [19,22].

Given the above, applying formal analysis in the distributed case seems even
more vital, as distributed models are inherently more difficult for humans to
comprehend than centralized ones. Fortunately, Lemma1 enables us to immedi-
ately apply existing tools in our setting. Because the centralized and distributed
models present the same behavior, it is possible to apply existing approaches
to the centralized version and use them to draw conclusions regarding the dis-
tributed case.

Future research on new applications of formal methods to distributed imple-
mentations can also distill situations and “critical states” where special handling
is needed. E.g., identify when there are special dependencies on observing a par-
ticular event order, and devise solutions that are automatic, reduce synchroniza-
tion, and reduce the need for a total strict event order, and where the equivalence
of the resulting distributed execution to the centralized one can be proven. For
example, in the present implementation, an application that waits for two events
from two different components in any order, and then transitions into the same
final state, depends on guaranteed event order, and/or on two ICDPs, where, in
fact, neither is required. This research will also include proofs for correctness of
different distribution procedures—e.g., that in cases where the application does
not depend on particular event order, a particular distribution method which
does not guarantee Assumption 1 still works correctly. For example, cars arriv-
ing at an intersection, each detecting all other cars in their environment, do not
have to rely on observing identical event orders. We wish to devise a distribution
methods for scenario-based specifications for handling such situations, and prove
their correctness, namely, that the cars executing these scenarios in a distributed
manner indeed cross the intersection safely.

Nonetheless, in a distributed environment there are some hazards that do not
appear in the fully-synchronized model, and may thus be overlooked by existing
tools:

– Inter-component Deadlock. An inter-component deadlock occurs when
a component C has no enabled local events that it can trigger, and is thus
waiting for certain external event(s). However due to various reasons, these
external events may never arrive. For example, the reason might be that
another component is actually waiting for an event that C needs to trigger.
Note that a situation where a component is waiting for events local to a
crashed component is not an inter-component deadlock, but a soft deadlock,
as restarting the failed component might resolve the issue.

480 S. Steinberg et al.

– External Event Queue Overflow. When a component repeatedly takes
longer to process external events than it takes the other components to trigger
and broadcast these events, could result in exceeding the memory available
for the external event queue. An example of this could be a logger component
that takes too long to post its log entries to a remote location.

– Latency. Communication delays can cause poorly-designed systems to
exhibit undesired behavior. As we discussed in Sect. 5.5, Lemma 1 does not
hold when latency is too high, and so such errors cannot be detected by
existing tools.

We are working on extending the presently available techniques to handle the
issues listed above. For instance, in the latency case an improved model-checking
algorithm might simulate a realistic latency for external event communication,
depending on the communication method used (e.g., wired communications over
a local network will have a much lower latency than a satellite connection). We
are also exploring the use of quantitative approaches to formal verification to
attempt and derive bounds on the maximal size a queue can reach, given certain
constraints on the broadcast and processing times of system components.

In the context of inter-component deadlock, one approach for recovering
from component failure or missed messages could be adding state information
to the external events, permitting components that missed a transition to “fast-
forward” to the correct state in a scenario. Another direction could involve having
multiple instances of critical components, for redundancy.

As an additional future work direction, we would like to study approaches
to choosing a strict event separation. While the components are usually derived
manually from physical system requirements, at times it might be desired to
delineate their boundaries automatically based on other criteria. One approach
is to use clustering algorithms that take as input a function f that assigns,
for every two events e1, e2 ∈ Σ a correlation value f (e1, e2) ∈ [−1,+1]. The
clustering algorithms then attempt to partition the events into a strict separation
into k components (with k either known or unknown beforehand), such that two
events are in the same component if their correlation is high and are in separate
components if their correlation is low. While this problem is known to be NP-
Complete, it can be approximated up to a log-factor [2].

10 Conclusion

The replicate-and-project approach transforms a centralized scenario-based spec-
ification so that it can be executed in a distributed configuration, by creating
component-specific variations, based on each component’s capabilities. We have
shown that the resulting distributed models behave similarly to the centralized
model from which they originated. This important property allows us to carry
out most of the modeling work, including testing and analysis, in the central-
ized setting, which is easier to model-check and reason about. The projected
models retain the naturalness and incrementality traits of behavioral program-
ming. In their avoidance of excessive synchronization, they improve robustness

Efficient Distributed Execution of Multi-component Scenario-Based Models 481

and the ability to model systems with multiple time scales. In addition to the
advantages of this approach in streamlining design and improving performance,
it captures the more general fact that distributed operations that are robust and
efficient often involve the sharing of knowledge between components, such that
each of them knows at least some of the rules that control the behavior of the
others - a concept whose applicability me go beyond scenario-based/behavioral
programming.

Acknowledgements. This work is funded by grants from the German-Israeli Foun-
dation for Scientific Research and Development (GIF) and from the Israel Science
Foundation (ISF).

References

1. Alexandron, G., Armoni, M., Gordon, M., Harel, D.: Scenario-based programming:
reducing the cognitive load, fostering abstract thinking. In: Proceedings of the 36th
International Conference on Software Engineering (ICSE), pp. 311–320 (2014)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

3. B�lażewicz, J., Ecker, K., Plateau, B., Trystram, D.: Handbook on Parallel and
Distributed Processing. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-662-04303-5

4. Brenner, C., Greenyer, J., Schäfer, W.: On-the-fly synthesis of scarcely synchro-
nizing distributed controllers from scenario-based specifications. In: Egyed, A.,
Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 51–65. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46675-9 4

5. Cheng, Y., Robertazii, T.: Distributed computation with communication delay
(distributed intelligent sensor networks). IEEE Trans. Aerosp. Electron. Syst.
24(6), 700–712 (1988)

6. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Formal
Methods Syst. Des. 19(1), 45–80 (2001)

7. De La Puente, J.A., Alonso, A., León, G., Dueñas, J.C.: Distributed execution of
specifications. Real-Time Syst. 5(2), 213–234 (1993)

8. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

9. Fahland, D., Kantor, A.: Synthesizing decentralized components from a variant
of live sequence charts. In: Proceedings of the 1st International Conference on
Model-Driven Engineering and Software Development (MODELSWARD), pp. 25–
38 (2013)

10. Ghosh, S., Gupta, A.: An exercise in fault-containment: self-stabilizing leader elec-
tion. Inf. Process. Lett. 59(5), 281–288 (1996)

11. Gordon, M., Marron, A., Meerbaum-Salant, O.: Spaghetti for the main course?
Observations on the naturalness of scenario-based programming. In: Proceedings of
the 17th Confernce on Innovation and Technology in Computer Science Education
(ITICSE), pp. 198–203 (2012)

12. Greenyer, J., Gritzner, D., Gutjahr, T., Duente, T., Dulle, S., Deppe, F.-D., Glade,
N., Hilbich, M., Koenig, F., Luennemann, J., Prenner, N., Raetz, K., Schnelle, T.,
Singer, M., Tempelmeier, N., Voges, R.: Scenarios@run.time – distributed execu-
tion of specifications on IoT-connected robots. In: Proceedings of the 10th Inter-
national Workshop on Models@Run.Time (MRT), pp. 71–80 (2015)

https://doi.org/10.1007/978-3-662-04303-5
https://doi.org/10.1007/978-3-662-04303-5
https://doi.org/10.1007/978-3-662-46675-9_4

482 S. Steinberg et al.

13. Greenyer, J., Gritzner, D., Katz, G., Marron, A.: Scenario-based modeling and
synthesis for reactive systems with dynamic system structure in ScenarioTools. In:
Proceedings of the 19th International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 16–32 (2016)

14. Greenyer, J., Gritzner, D., Katz, G., Marron, A., Glade, N., Gutjahr, T., König,
F.: Distributed execution of scenario-based specifications of structurally dynamic
cyber-physical systems. In: Proceedings 3rd International Conference on System-
Integrated Intelligence: New Challenges for Product and Production Engineering
(SYSINT), pp. 552–559 (2016)

15. Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral
programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013.
LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45221-5 25

16. Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L., Weiss, G.: On compos-
ing and proving the correctness of reactive behavior. In: Proceedings of the 13th
International Conference on Embedded Software (EMSOFT), pp. 1–10 (2013)

17. Harel, D., Kantor, A., Katz, G., Marron, A., Weiss, G., Wiener, G.: Towards behav-
ioral programming in distributed architectures. Sci. Comput. Program. 98(2), 233–
267 (2015)

18. Harel, D., Katz, G.: Scaling-up behavioral programming: steps from basic principles
to application architectures. In: Proceedings of the 4th International Workshop on
Programming based on Actors, Agents, and Decentralized Control (AGERE!), pp.
95–108 (2014)

19. Harel, D., Katz, G., Lampert, R. Marron, A., Weiss, G.: On the succinctness of
idioms for concurrent programming. In: Proceedings of the 26th International Con-
ference on Concurrency Theory (CONCUR), pp. 85–99 (2015)

20. Harel, D., Katz, G., Marelly, R., Marron, A.: An initial wise development environ-
ment for behavioral models. In: Proceedings of the 4th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), pp.
600–612 (2016)

21. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of reactive pro-
grams. In: Proceedings of the 17th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), pp. 3–12 (2012)

22. Harel, D., Katz, G., Marron, A., Weiss, G.: The effect of concurrent program-
ming idioms on verification. In: Proceedings of the 3rd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), pp.
363–369 (2015)

23. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral require-
ments. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 378–398. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36126-
X 23

24. Harel, D., Lampert, R., Marron, A., Weiss, G.: Model-checking behavioral pro-
grams. In: Proceedings of the 11th International Conference on Embedded Software
(EMSOFT), pp. 279–288 (2011)

25. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-19029-2

26. Harel, D., Marelly, R.: Specifying and executing behavioral requirements: the play
in/play-out approach. Softw. Syst. Model. (SoSyM) 2, 82–107 (2003)

27. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

https://doi.org/10.1007/978-3-642-45221-5_25
https://doi.org/10.1007/978-3-642-45221-5_25
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2

Efficient Distributed Execution of Multi-component Scenario-Based Models 483

28. Harel, D., Marron, A., Weiss, G., Wiener, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Proceedings of the 1st SPLASH Work-
shop on Programming Systems, Languages, and Applications based on Agents,
Actors, and Decentralized Control (AGERE!), pp. 171–182 (2011)

29. Harel, D., Segall, I.: Synthesis from live sequence chart specifications. Comput.
Syst. Sci. (2011, to appear)

30. Katz, G.: On module-based abstraction and repair of behavioral programs. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 518–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45221-5 35

31. Katz, G., Barrett, C., Harel, D.: Theory-aided model checking of concurrent tran-
sition systems. In: Proceedings of the 15th International Conference on Formal
Methods in Computer-Aided Design (FMCAD), pp. 81–88 (2015)

32. Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., Qureshi, A.: Application
partitioning algorithms in mobile cloud computing: taxonomy, review and future
directions. J. Netw. Comput. Appl. 48, 99–117 (2015)

33. Miller, C., Poellabauer, C.: A decentralized approach to minimum-energy broad-
casting in static ad hoc networks. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.)
ADHOC-NOW 2009. LNCS, vol. 5793, pp. 298–311. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04383-3 22

34. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From central-
ized workflow specification to distributed workflow execution. J. Intell. Inf. Syst.
10(2), 159–184 (1998)

35. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25(1), 206–230 (1987)

36. Ştefănescu, A., Esparza, J., Muscholl, A.: Synthesis of distributed algorithms using
asynchronous automata. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 27–41. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45187-7 2

37. Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Distribut-
ing scenario-based models: a replicate-and-project approach. In: 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD) (2017)

38. van Gemund, A.: The importance of synchronization structure in parallel program
optimization. In: Proceedings of the 11th International Conference on Supercom-
puting (ICS), pp. 164–171 (1997)

39. Yook, J., Tilbury, D., Soparkar, N.: Trading computation for bandwidth: reducing
communication in distributed control systems using state estimators. IEEE Trans.
Control Syst. Technol. 10(4), 503–518 (2002)

https://doi.org/10.1007/978-3-642-45221-5_35
https://doi.org/10.1007/978-3-642-45221-5_35
https://doi.org/10.1007/978-3-642-04383-3_22
https://doi.org/10.1007/978-3-540-45187-7_2
https://doi.org/10.1007/978-3-540-45187-7_2

Modelling the World of a Smart Room
for Robotic Co-working

Uwe Aßmann(B), Christian Piechnick, Georg Püschel, Maria Piechnick,
Jan Falkenberg, and Sebastian Werner

Chair of Software Engineering, Fakultät Informatik, Technische Universität Dresden,
Dresden, Germany

{uwe.assmann,christian.piechnick,georg.puschel,maria.piechnick,
jan.falkenberg,sebastian.werner}@tu-dresden.de

http://st.inf.tu-dresden.de/weir

Abstract. Robots come out of the cage. Soon, it will be possible to
interact with free-standing robots along an assembly line or in a manu-
facturing workshop (robotic co-working). New sensitive robot arms have
appeared on the market [1] that slow down or stop when humans enter
their context, which creates rich opportunities for collaboration between
human and robots. But how to program them? This paper contributes an
architectural design pattern to engineer software for robotic co-working
with world-oriented modelling (WOM). We argue that robotic co-working
always has to take place in smart rooms tracking the movements of
humans carefully, so that the robotic system can automatically adapt
to their actions. Because robotic co-working should be safe for humans,
robots, and their work items, the robots should enter safe states before
harmful encounters happen. Based on the safety automata in the style
of [1], we suggest to engineer software for the smart rooms of human-
robotic co-working with an explicit world model, an automaton of the
world’s states, and a software variant space, a software variant fam-
ily, which are related by a total activation mapping. This construction
has the advantage that the world model is split off the software system
to make its construction simpler, avoiding if-bloated code. Also, proofs
about the entire smart system can be split into a proof about the world
model and a proof obligation for the software variant space. Therefore, we
claim that world-oriented modelling (WOM) simplifies the development
of robotic co-working applications, leveraging the principle of separation
of concerns for improved maintainability and quality assurance.

1 The Trend: Robots Come Out of the Cage

Since two years, sensitive robot arms can be bought which stop when humans
touch them. In 2014, the KUKA LBR iiwa appeared, which has been derived
from an arm of the DLR robotics institute [1]. While this robot arm has a
fast mode–too fast to protect humans during an encounter–it also has a safe
mode, in which it stops when its sensors feel a human touch. Similar sensitive

c© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 484–506, 2018.
https://doi.org/10.1007/978-3-319-94764-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94764-8_20&domain=pdf

Modelling the World of a Smart Room for Robotic Co-working 485

functionality is provided by the UR-10 from Universal Robots [2], the ABB
YuMi [3], and the Baxter from Rethink Robotics [4]. These sensitive robot arms
have been designed to collaborate with humans, i.e., to take over simple tasks of
an assembly line or in a manufacturing workshop. In the following, we will call
them robotic co-workers, no matter, whether they are mounted stationary or on
a mobile platform.

Robotic co-workers are much more flexible than classic robotic assembly cells.
They can easily be re-targeted to new tasks by teaching. To mount them in a
workshop does not require a lot of time, and mounting can be done online, while
the work is ongoing. When they need maintenance or repair, they can be replaced
by humans so that such an incident does not stop the entire workshop. Thus,
robotic co-workers can be added to current workshops quite flexibly.

Table 1. The costs of a robotic co-worker with a life-time of 7 years and 24/7 operation.

Investment (total) 100ke 50ke 20ke

Investment/hour (24 h, 7 days, 7 years) 1.66e 0.82e 0.41e

Maintenance/hour 0.11e 0.11e 0.11e

Energy/hour 0.30e 0.30e 0.30e

Total 2.07e 1.23e 0.82e

Robotic co-workers have, already now, a low cost per hour, as a simple
calculation shows (Table 1). Industrial robots have a depreciation of 7 years
and are capable to run 24 h, 7 days a week. At the moment, these robots cost
between 20ke and 100ke, but even in the latter case, investment costs are below
1.7e/hour [5]. (Of course, if the robot only runs for 12 h a day, the costs are
doubled.) Robotic co-workers need energy, but these costs amount to only a
few kilowatt hours per day. Also, they need maintenance, which diminishes the
number of their active hours and adds the costs of a technician. However, their
total operational costs per hour are still quite low, around 2e, and they sink fur-
ther, because the investment costs sink. Thus, in only a small number of years,
sensitive robotic arms will provide an affordable companion to humans in work-
shops of small and medium size companies. Unfortunately, programming them
encounters several problems.

2 State of the Art

Before we discuss these problems, this section presents several related approaches
introducing the terminology required for the WOM pattern, from the areas of
adaptive systems and context-oriented programming.

486 U. Aßmann et al.

2.1 Adaptive Systems

Dynamic Aspect-Oriented Programming (Dynamic AOP). Dynamic AOP lan-
guages can be used to implement adaptive systems. A dynamic aspect system
is able to add or remove crosscutting code slices at run-time to an application.
When such a dynamic aspect is changed, potentially all objects of the application
are being adapted to the new situation. In this paper, we are mainly interested in
the language ECaesarJ [6], which provides component classes, dynamic aspects,
that can be added to and removed from a running application. Additionally, the
language allows for the specification of objects as finite state machines (state-
machine objects), which can describe the configuration of an application. These
features can be used to realize the WOM pattern.

Dynamic Software Product Lines. A dynamic software product line (DSPL) [7]
maintains a set of variants of a software system (e.g., a set of dynamic aspects),
which can dynamically be switched on and off, but which are additionally related
to a set of hierarchical features of a feature model specifying constraints for
their variation. Thus, a DSPL is a simple adaptive system which can adapt to
dynamically changing requirements represented by features. A Featured Transi-
tion System (FTS) annotates a finite automaton to a feature model of a DSPL,
specifying the dynamics of the switching of the features and their related variants
by a regular state space [8]. FTS allow for verifications of qualities of the soft-
ware variants with model checking, i.e., reachability analysis on finite automata.
The WOM pattern generalises FTS to automata over the states of the room in
which the robotic co-working takes place.

Hybrid Automata. A hybrid automaton [9] couples a finite state automaton with
a set of equations for a continuous model of a physical system. The automaton
is discrete, the equations are continuous, thus the automaton is hybrid. Hybrid
automata are useful to describe transitions of continuous behaviour of a physical
system, based on external events or time conditions. Thus, hybrid automata
can be regarded as simple adaptive systems with a finite number of continuous
states. The approach we introduce in this paper is inspired by hybrid automata
in so far that the finite automaton forms the skeleton of the robotic co-working
application, but it does not insist on the coupling continuous equations, instead
on the coupling to hand-programmed variants of a variant family.

Self-Adaptive Systems (SAS) and M@RT. Self-Adaptive Systems (SAS) have a
metalevel architecture, which (self-)adapts the application to changes, for exam-
ple, on changes of context [10]. A specific subclass of SAS are systems that
maintain models at runtime (M@RT) [11] and use the M@RT to decide on
adaptations. An example is the system Genie [12], a flood management sys-
tem, in which the configuration of the software depends on a finite state transi-
tion system describing all architectural states of the flood management system.
Changing a state in this state machine switches to another variant of the flood
management system. Thus, the states denote global configuration states of the

Modelling the World of a Smart Room for Robotic Co-working 487

overall system, not of its selected features, as in a FTS. WOM can be seen as
an adaptive M@RT system maintaining a model of the smart room for robotic
co-working at runtime. However, the architectural pattern of WOM does not
need to be represented as a metalevel architecture, but can be integrated into
the base level as in hybrid automata.

All these adaptation techniques should support well-defined switching points,
run-time states, at which the code variants can safely be switched. To this end,
all software objects of the application must be in a safe state so that this state can
safely be transferred to the objects corresponding to new code variant. Then, the
switching procedure works as follows: At run time of the application, whenever a
new configuration state is entered, via the activation mapping the corresponding
system variant is determined. As soon the switching point is reached, the old
code variant is stopped and the run-time state of all objects is transferred to
new objects conforming to the memory layout of the new code variant. Then, the
newly selected code variant is (re-)started. This requirement of safe switching
points holds for all kind of adaptive systems.

2.2 Programming with Contexts

Some programming paradigms adapt the application if the context of the appli-
cation changes (context-aware programming). These languages usually provide
contexts as first-class programming constructs.

Context-Oriented Programming (COP). COP [13] is a programming technique
for dynamic adaptation of runtime behaviour in reaction to changes of (explicitly
specified) contexts. Contexts are monitored on changes. A context change can
switch software variants, so-called layers, specifically targeted to a particular
context. Layers are composed at runtime, stacked, which makes them somewhat
different from dynamic aspects. A stackable layer consists of a set of method
wrappers for varying the behaviour of a set of methods of a base layer, and a
stacked layer is executed before, after, around or instead of the base layer. Thus,
COP provides important concepts for context-based program adaptation. The
approach has been implemented on top of languages such as Lisp, Smalltalk,
Python, Ruby, and Java; and these COP languages can be used to implement
the WOM pattern.

[14] presents COP for wireless sensor networks (WSN) with an approach
called ContextGroups. The idea is similar to Genie, but generalises it for any
WSN. The contextual states can be grouped into context groups, similar to stat-
echarts. Every context state can be associated to a dynamic aspect, and every
nested context state to a nested dynamic aspect. Therefore, context groups can
also be composed: They can be arranged as communicating automata able to
model interacting contexts and their relationships. For example, several context
groups can be composed to parallel sections, i.e., a set of communicating parallel
nested context states. Due to these points, context groups are well suited for the
WOM pattern.

488 U. Aßmann et al.

Role-Oriented Programming (ROP). Another specific paradigm for context-
adaptive systems is Role-Oriented Programming (ROP), a paradigm providing
relationships and the roles of the objects taking part in the relationship [15].
A role is a dynamic service of an object relative to a relationship. If a rela-
tionship of an object changes, its roles are switched, too. Thus, roles adapt a
set of related objects to changes, e.g., to changes of context. However, only few
role-oriented languages do provide explicit contexts as first-class concepts [16].
In ObjectTeams, the set of roles belonging to one context is called a team [17].
In the Compartment-Role Object Model (CROM), roles belong to a compartment
[16]. Both notions are similar to contexts in COP, but in role-oriented program-
ming, the unit of behaviour is not a method, but a role: A team or compartment
groups all context-specific roles of all related objects, so that the behaviour asso-
ciated to a context can be varied with larger granularity than in COP. The WOM
pattern adds explicit world models to ROP, in order to enable the modelling of
physical contexts of physical objects, and their causal connection to software
contexts and software objects.

3 Programming Problems for Robotic Co-workers

Robotic co-working software must meet special quality requirements. Robots
must be safe to use for humans at any time. Because any harmful collisions
should be avoided, robotic co-working software should track humans, robots,
and their work items, and adapt to their movements and actions. (We call these
physical objects moveables.) Robotic co-working software should adapt to context
changes: whenever a human enters the room or the neighborhood of a robotic
co-worker, the robot has to slow down or stop (sensitive behaviour). On the
contrary, when all humans have left the room, the robotic co-workers should
run faster and complete their jobs without delay. It is easy to see that human-
robotic co-working has to take place in smart rooms that track the actions of all
moveables and automatically adapt to events [1]. In other words, human-robotic
co-working requires adaptive smart rooms.

Knowing these requirements, S. Haddadin suggests in his seminal work on
human-robotic co-working [1] that humans have to interact with robots following
a protocol described by a statechart with four basic modes (Fig. 1):

/Autonomous/. If no human is present in the room, the robot can run at full
speed.

/Human-Friendly/. If a human enters the co-working space, the robot has to
work more carefully; at least, it has to slow down its speed.

/Collaborative/. If a human approaches the robot for collaboration, e.g., for
an interaction on work items, the robot must be particularly sensitive.

/Fault/. Finally, if something fails, e.g., if power fails, the robot must enter
fault mode and stop.

In the statechart, also several structured modes can be defined: Collaborative
and Human-Friendly states form a super-state, the Human-Aware state; Human-
Aware and Autonomous form the Working state.

Modelling the World of a Smart Room for Robotic Co-working 489

Fig. 1. Functional modes of the DLR co-worker [1] (transitions are simplified for read-
ability). In brackets: context states in the context automaton of the smart room of
robotic co-working.

These modes seem to be quite reasonable for all kinds of applications in
human-robotic co-working; however, what do they exactly describe? We consider
two interpretations. Firstly, because the smart room has to track the actions of
all moveables, it can be argued that the Haddadin automaton describes the states
of their relationships in the physical world, as well as their transitions (for this
world-centric interpretation ignore the names in brackets in Fig. 1). Then, the
modes of the automaton are the adaptation modes of the smart room of robotic
co-working - the world in which humans and robots co-work, and this automaton
forms a world automaton for robotic co-working applications (Sect. 5.3).

Secondly, many modes of the Haddadin automaton express the human-robot
relations by describing the current context of the robot, e.g., the human-aware
mode specifies that a human is found in the physical context of the robot (for this
context-centric interpretation, use the names in brackets in Fig. 1). Therefore,
a more specific interpretation of the world automaton is that all working mode
states, the substates of Working, are context states, so that the entire automaton
can be regarded as a context automaton. This interpretation of the automaton
seems to be valid, in particular, if the smart room hosts a single robot, of which
humans and work items are contexts (Sect. 5.1).

It seems also clear that the Haddadin automaton only specifies the minimal
requirements of robotic co-working, in the sense that it must be refined and
elaborated for use in specific applications. For instance, the automaton abstracts
from the state and the flow of work items. In a realistic co-working application,
these should be tracked in a precise manner (see Sect. 6). Also, the teaching of
a robot will require a teaching mode, which must be entered, when new sub-
activities for the autonomous mode should be learned.

490 U. Aßmann et al.

3.1 Technical Requirements for Programming with the Haddadin
Automaton

If any robotic co-working application has to respect a specific form of Haddadin’s
automaton for a safe smart room, the question arises, how the automaton can
be encoded into the application. The modes of the Haddadin automaton, the
states of the smart room, cross-cut the entire application. If the application is
programmed in a classic general purpose programming language (GPL), and the
automaton is encoded with classic implementation patterns, if-bloating results
and verification is hampered.

Context Checks and If-Bloating. First, software development for robotic co-
workers is hampered by ubiquitous tests on the state of the world (world-centric
interpretation) or the contexts of the robot (context-centric interpretation). Usu-
ally, these context checks are intermingled with the application code and pro-
duce if-bloating, the proliferation of if- and case-statements. This phenomenon
is well-known in robotic programming and stems from the fact that the clas-
sic implementation pattern for an automaton realises a complex case analyses
with if-statements. Then, context checks are implemented as if-cascades, and for
an automaton of n states, a complex case analysis of n2 cases is required [18].
When the contexts are nested, see the Human-Aware mode in Fig. 1, a nested
case analysis is required with nested if- or case statements. Alas, advanced pro-
gramming constructs for complex case analysis, such as decision tables, are not
available in mainstream GPL.

AOSD explains that if-bloating is scattering of the context checks over the
code [19], because the concerns of world and application are not separated.
Because scattering can be solved by aspects, it seems clear that the software
architecture of a smart room should employ, in some form, dynamic aspect ori-
entation.

Verification of Safety Features. Second, the safety requirements of a robotic co-
worker must be proven, so that a vendor of a smart room for co-working can
give guarantees on its quality and establish a liability for the software product.
However, proving safety requirements about an adaptive smart room for human-
robotic co-working turns out to be difficult, due to the following reasons.

1. Hidden Context Checks. In a GPL-based implementation, the context
checks are hidden, so that a program verifier cannot easily distinguish them
from other checks. Because the verifier needs to be cautious what to infer
about the context-dependent behaviour of the application, it must make con-
servative assumptions about the control flow, which deteriorates its analysis
results. This is the typical consequence of mingling two concerns, context and
application.

2. Size of Proofs. Second, proofs of the complete code of a system are most
often infeasible. Thus, the reactions of a robot to changes of its context should
be proven on an appropriate model, which is simpler than the code, but which

Modelling the World of a Smart Room for Robotic Co-working 491

captures the essential behaviour. This suggests to employ model-driven soft-
ware development (MDSD) for robotic co-working software, in which models
can be used for verification and later for the generation of the code.

Because of these problems for development and maintenance of smart room
applications, the next section introduces an architectural pattern that separates
the concerns of context and application.

4 The Architectural Pattern “WOM”

This section introduces the architectural pattern of World-Oriented Modelling
(WOM). WOM maintains a model of the world, the smart room, at run-time,
i.e., is a M@RT technique [11]. The robotic co-working software system (the
application) is split into two interrelated dimensions:1

1. A world space (or world model) describing the states of the world, including
all states of the relationships of the physical objects, and thus, implicitly,
their contexts (Fig. 2, left).

2. A software variant space consisting of software variants attributed with dif-
ferent quality features (Fig. 2, right).

3. A total activation mapping which maps a world state to a code variant. A
transition between states in the world triggers a change of the variants in the
software variant space (Fig. 2, middle, mapping expressed by colors).

It is assumed that the world model is simpler than the entire application, that
it lends itself to analysis, and that it can be employed to generate an implemen-
tation. These assumptions are valid if the world model is an automaton, as the
example of the Haddadin automaton suggests. The next assumption is that the
mapping between world and software variant space must be total so that every
state of the world is related to at least one corresponding software variant in the
software variant space, and that the quality attributes of these software variants
hold in the associated state of the world model. As discussed in Sect. 2, it is
important that the programming paradigm of the software variant space enables
the safe switching of code variants at switching points. Finally, if the activation
mapping is injective (i.e., bijective),the state in the world solely inherits those
features of the related variant in the variant space.

The WOM pattern offers two main advantages for the software engineering
of smart rooms for robotic co-working.

Improving Comprehensibility by Avoiding If-Bloating. WOM architectures avoid
if-bloating. In a WOM architecture, the tests on contexts and context changes
are factored out of the software variant space (the code of the application) into

1 These dimensions could also be called aspects, but that could imply that in the
software variant space, dynamic AOP is used as a programming paradigm, which is
not intended.

492 U. Aßmann et al.

Fig. 2. The WOM approach separates world space and software variant space with
variants fitting to the states of the world. The modular variants may overlap, e.g.,
share subcomponents, roles, or subobjects. (Color figure online)

the world space. Context checks are then executed by the implementation of the
world model, while the variants of the application are switched by the run-time
system of the software variant space. For the smart room of robotic co-working,
this means that the application code is not polluted with context monitoring
and checking.

Property 1. The architectural design pattern of World-Oriented Modelling
avoids if-bloating in the software variant space, because tests on the world state
are factored out of the software variant space into the implementation of the
world model. Thus, increasing the number of states in the world model linearly
leads to a linear growth of variants in the software variant space, and does not
increase the number of context tests in the variants.

Splitting Safety Proofs. With WOM, safety proofs can be split into a reachability
proof on the world model (reachability analysis) and a test on a safety feature
for the system variants:

Reachability Analysis. For every state of the world, the associated quality
features of the related software variants hold. If a sequence of state changes
ends up in a state, it is guaranteed that the system variants related to the
state are switched on, while all others variants have been switched off. If
the activation mapping is injective, this set of qualities holding in a state is
uniquely determined by the related variant; if it is non-injective, the qualities
all related variants must be joined. Thus, a reachability analysis on the state-
based world model can prove which system qualities hold in any state.

Proof Obligations for Qualities. Of course, the WOM approach generates,
for every state of the world, a proof obligation that every variant has the
attributed quality feature.

Modelling the World of a Smart Room for Robotic Co-working 493

Fig. 3. The WOM approach applied to Haddadin’s automaton of human-robotic co-
working. (Color figure online)

Consider the example in Fig. 3 in which the Haddadin automaton is coupled
with a software variant space of four variants. The injective activation mapping,
expressed by colours, denotes that the autonomous mode inherits the quality
feature “Fast” from the yellow variant in the software variant space; the state
“Human-friendly mode” inherits the quality feature “Slow”, the state “Collabo-
rative mode” inherits the quality “Very Slow”, and in the fault mode, the system
stops within 5 ms. The proof obligations for the variants must be shown by stan-
dard verification procedures:

1. The attributes “Fast”, “Slow” are soft requirements and can be shown by
benchmarking.

2. For the variant related to the fault mode, it must be proven that the sys-
tem will stop in 5 ms. The proof depends on the programming paradigm in
the software variant space. In a real-time system, a proof can be given, for
example, with Worst Case Execution Time Analysis (WCETA) on the code
variant, delivering a threshold for the maximum delay to a switching point. In
the classic case of a non-real time system, statistical data can be collected with
benchmarking, and the mathematical proof is replaced by a quality assurance
procedure, e.g., extensive regression testing.

However, with WOM, the proof of the proof obligation will be simpler, because
the context checks are factored out from the software variant space to the world
model.

Property 2. The architectural design pattern of World-Oriented Modelling
allows for splitting the verification of quality features of an application into
a reachability analysis on a state-based world model and a quality assurance
procedure of the software variant space.

494 U. Aßmann et al.

5 Flexibility of WOM

The WOM pattern does not fix a specific modelling language for the world space,
nor a specific programming language for the software variant space. Many dif-
ferent modelling languages can be chosen for the world space, as well as many
programming languages for the software variant space. To illustrate this flexi-
bility, this section presents several examples from programming and modelling
languages. First, we discuss the simpler scenario when humans interact with
one robotic co-worker, and the all states of the smart room form contextsof the
robot. In Subsect. 5.3, we discuss extensions to the more complex scenario when
several robotic co-workers co-habitate a smart room and show that modelling
approaches offer advantages for the world space.

5.1 The States of the World as Contexts of a COP Application

As mentioned above, the context-centric interpretation of the world space con-
sists of interpreting the set of states as a set of contexts of one robot (context
automaton). For this context-centric interpretation, languages are appropriate
which provide the explicit modelling of contexts.

WOM and Context-Oriented Programming (COP). In Context-Oriented
Programming (COP), contexts are statically defined (see Sect. 2), i.e., in an
application, a fixed number of contexts exist. Thus, a COP program may repre-
sent the world model as a finite context automaton. The following listing shows
a JCOP pseudocode for the world space of a robotic co-working smart room
derived from Fig. 3. The defined software contexts of the robotic co-worker, Rob-
otAlone, HumanNear, HumanCollaborating and Fault, correspond to the world
states of Haddadin’s automaton, i.e., the physical contexts of the robot (Fig. 1,
names in brackets). Their transitions are implicitly specified by checking the
validity of entry predicates of the contexts.2

1 /∗ World space ∗/
2 context RobotAlone { when (! inContext (human)) {
3 with (Fast) ;
4 without (Defens ive , Slow , Stop) ; }
5 }
6 context HumanNear { when(inContext (human)) {
7 with (De fens ive) ;
8 without (Fast , Slow , Stop) ; }
9 }

10 context HumanCollaborating {
11 when(i nCo l l abo ra t i on (human)) {
12 with (Slow) ;

2 In the following, for simplicity, the listing only specifies the atomic states and their
transitions; transitions to complex states can easily be added.

Modelling the World of a Smart Room for Robotic Co-working 495

13 without (Fast , Defens ive , Stop) ; }
14 }
15 context Fault { when(fau l tOccured ()) {
16 with (Stop) ;
17 without (Fast , Defens ive , Slow) ; }
18 }
19 /∗ Sof tware va r i an t space ∗/
20 layer Fast { /∗ f a s t behav iour ∗/ }
21 layer Slow { /∗ s low behav iour ∗/ }
22 layer Defens ive { /∗ s e n s i t i v e behav iour ∗/ }
23 layer Stop { /∗ immediate h a l t i n g ∗/ }

The JCOP pseudocode defines the reactions of the robot with respect to
the actions of the human being in its physical context. The when conditions
define the conditions for activating a software context. Without a human in the
work area (when (!inContext()), the robot is in RobotAlone context. When a
human appears, the robot switches to HumanNear or HumanCollaborating con-
text, depending on whether the human being is in the near neighbourhood of the
robot (when (inContext()), or collaborating (when (inCollaboration()). When a
fault occurs, e.g., power fails (faultOccured()), the context Fault is activated that
should immediately halt the robot.

All contexts, once they are enabled, activate layers by with and deactivate
other layers by without specifications (activation mapping). In our example, the
four layers Fast, Slow, Defensive, and Stop form the software variant space of the
WOM pattern, because they define the speed of the robot as a function of the
active context. From the analysis of the with and without statements, it can be
seen that only one layer is active for each context. Thus, the mapping between
the world model and the software variant space is bijective.

Therefore, COP is a possible technique to implement the WOM pattern, if
a fixed number of contexts is appropriate to describe the world. However, there
are the following constraints that should be respected:

– Context model and layers should be separately specified. Because contexts
and layers can be mixed in COP languages, this should be enforced by appro-
priate programming rules.

– Overall, the activation mapping must be total, i.e., in every context of the
context automaton of the world space, at least one layer must be set active.
If the activation mapping is not injective, i.e., activates several layers, these
will be composed.

Thus, COP-based languages are useful to realise applications in robotic co-
working, representing their context automata as contexts activating and deacti-
vating layers.

WOM with Dynamic Aspect-Oriented Programming in ECaesarJ. The
language ECaesarJ does not have the ability to specify contexts directly, but

496 U. Aßmann et al.

provides objects realising finite state machines (state-machine objects) by which
context automata can be represented. Additionally, the language allows for the
specification of component classes, cross-cutting code slices used in a similar way
as COP layers. Thus, the world of a robotic smart room can easily be specified
as a state-machine object SmartRoom:

1 class SmartRoom { // World space
2 // Event d e f i n i t i o n s
3 event void inContext () ; event void inCo l l abo ra t i on () ;
4 event void f a u l t () ; event void outOfContext () ;
5 event void conf irm () ; event void co l l abStop () ;
6 event void c o l l a bS t a r t () ;
7 // Context automaton : con t ex t s t a t e s and t r a n s i t i o n s
8 state i n i t i a l RobotAlone =
9 (inContext () => Slow . Behaviour () −> HumanNear

10 | i nCo l l abo ra t i on () =>
11 Defens ive . Behaviour () −> HumanCollaboration) ;
12 state HumanNear = (c o l l a bS t a r t () =>
13 Defens ive . Behaviour () −> HumanCollaboration
14 | outOfContext () => Fast . Behaviour () −> RobotAlone) ;
15 state HumanCollaboration = (co l l abStop () =>
16 Slow . Behaviour () −> HumanCollaboration
17 | outOfContext () => Fast . Behaviour () −> RobotAlone) ;
18 state Fault = (conf i rm () =>
19 Slow . Behaviour () −> HumanNear) ;
20 // Sof tware va r i an t space : Layers as c c l a s s e s
21 cclass Slow { Behaviour () { . . } }
22 cclass Defens ive { Behaviour () { . . } }
23 cclass Fast { Behaviour () { . . } }
24 cclass Stop { Behaviour () { . . } }
25 }

In ECaesarJ, state transitions between context states must be specified
explicitly. For instance, Line 9 specifies that in state RobotAlone, when the
event inContext() occurs, the state should change to HumanNear, and the Slow
behaviour component should be switched on. For one state, several transitions
can be specified, for instance, in state RobotAlone, alternatively, the event inCol-
laboration() triggers the activation of the Defensive behaviour.

With ECaesarJ’s state-machine objects, open, dynamic world models can be
specified, because the number of state-machine objects, their interactions and
their relationship, as well as the number of layers and variants is not bound. With
ECaesarJ, it is possible to realise context automata as communicating state-
machine objects, as well as to build up the world space as a set of communicating
context automata. Thus, ECaesarJ should also be a good language to implement
robotic co-working applications.

Modelling the World of a Smart Room for Robotic Co-working 497

5.2 World Spaces with Context-Oriented Modelling

In the last years, also context-oriented modelling techniques have appeared par-
ticularly suited for the specification of contexts, context switches, and context
automata. Because these approaches can be employed for reachability analy-
sis and verification of the world model, they are ideally suited to model world
spaces in WOM. Essentially, these approaches couple a modelling approach for
the world space with a programming approach for the software variant space,
leading to an model-driven software development (MDSD) approach.

ContextGroups for WSN. ContextGroups provide a model-driven app-
roach [14]: Context statecharts can be translated to a textual notation, the
language ConesC, in which the nested states of a context statechart can be
associated with layers. Thus, the WOM pattern can be realised by specifying a
context statechart for the world space, while coupling it to a software variant
family in ConesC by a total activation mapping. This implies that, in contrast
to COP, the world model is, by construction, separated from the software variant
space.

Instead of automata or statecharts, also Context Petri Nets [20] can be
employed, in which a control Petri net describes the available contexts and their
transitions. Due to the nature of Petri nets, this approach can model parallel
transitions of multiple contexts in the world. Like ContextGroups, Context Petri
Nets can be used to describe world spaces and coupled to a variant family in the
software variant space. When a context is activated, a basic Petri net describing
the software variants is adapted.

Compartment-Role-Oriented Modelling (CROM) and SCROLL.
Section 2.2 showed that role-oriented programming is also a valid approach for
the context-adaptive software of embedded and cyber-physical systems, and
hence, also for robotic co-working. In the following, we discuss an example in
the language Compartment-Role Object Modelling (CROM) language with both
compartments (explicit contexts) and roles as first-class language concepts [16].
As in ContextGroups, CROM can be coupled in an MDSD process with a role-
based programming language SCROLL, an extension of Scala [21]. The model-
driven approach enables to couple nested contexts (in the world space) and
role-oriented programming (in the software variant space).

1 // Nest ing o f con t e x t s
2 compartment SmartRoom {
3 compartment Working {
4 compartment Autonomous {
5 role model : role Fast { . . } . .
6 } ;
7 compartment HumanAware {
8 compartment HumanFriendly {
9 role model : role Defens ive { . . } . .

498 U. Aßmann et al.

10 } ;
11 compartment Co l l abo ra t i v e {
12 role model : role Slow { . . } . .
13 } ;
14 } ;
15 } ;
16 compartment Fault {
17 role model : role Stop { . . }
18 } ;
19 role group AdaptiveBehaviour
20 selecting 1 . . 1 {Fast ; De fens ive ; Slow ; Stop}
21 }

When realising the WOM pattern in CROM, contexts in the world space are
represented by compartments, and the variants of the software variant space are
represented by roles, role groups, and role models (similar to layers) capturing
the interaction of roles. Similar to ContextGroups, CROM provides aggregation
of compartments, so that the nesting of the states of the Haddadin automaton
can easily be specified. Like in Context Petri Nets, several compartments can be
active at the same time. Because in CROM all roles belong to a specific com-
partment, the activation mapping between compartments and roles is total and
injective (see the scope nesting in the Listing). Due to the strong connection of
roles to compartments, it is not possible to specify inactive role models. Thus,
in CROM, it is possible to see the transitions in the world model as transitions
between compartments, switching on and off of compartments, and the switching
of variants as the switching of the role models associated to the compartments.3

On the other hand, CROM supports wellformedness constraints over compart-
ments and roles. Line 19, for example, specifies that only one role model (one
layer) can be active at a time (injective activation mapping). Thus, in CROM,
the activation mapping is simply expressed by the containment relationship of
roles in role models and contexts, as well as further constraints over role-groups.

In CROM+SCROLL, compartments are objects, i.e., the number of com-
partments is not fixed. Thus, infinite world automata can be constructed, as
in ECaesarJ. Because CROM+SCROLL offer a model-driven approach, world
model and software variant space are cleanly separated, offering a good oppor-
tunity for reuse in both worlds.

5.3 WOM in General Smart Rooms

If a smart room for robotic co-working contains a single robot, the above context-
oriented programming and modelling techniques can be used to realise the world

3 At the moment, however, CROM does not support the specification of compart-
ment automata directly. However, from CROM specifications, code in the language
SCROLL can be generated. This code can be extended with transition rules for
switching compartments.

Modelling the World of a Smart Room for Robotic Co-working 499

space of the WOM pattern. However, if several robots need to be coordinated,
the states of the world should be interpreted as global configurations of the
smart room capturing allcontexts of all robots simultaneously. Therefore, the
context automata of the singular robots should be composed to get a full world
automaton (world-centric interpretation). This suggests that for WOM in general
smart rooms, a MDSD approach is more appropriate, in which world spaces
are composable models. Additionally, in this interpretation, the interactions of
the robots must be taken into account, for instance, when they collaborate,
new synchronisations should be added to their context automata. This requires
that other specification languages, e.g., Context Petri Nets, come into play that
can represent the natural parallelism of the robots and their synchronisations
more appropriately than finite automata. Thus, for a full scenario of robotic co-
working, the language in which the world model of the smart room is specified
should support flexible composition and synchronisation of state machines. This
leads to the following observation:

Property 3. For robotic co-working applications with several robots, composi-
tional modelling techniques for the world space offer advantages because the
world model must be composed of the context automata of the singular robots.

Constructing smart rooms with WOM relies on three forms of composition:
composition of context automata, composition of variants in the software variant
space, and composition of the activation mappings. Thus for co-working with sev-
eralrobots in a smart room, MDSD techniques with formal methods supporting
compositionality seem to be adequate. The MDSD techniques discussed above
support composition of world models in different ways.

Programming Paradigms: differ in their support for compositionality:

1. While COP supports the composition of layers, it does not support the com-
position of contexts and context automata, although this does not seem to
be impossible to integrate into a COP language.

2. ECaesarJ state-machine classes and objects can be composed by class com-
position and object composition operators, of which the language provides a
rich set (mixin composition, virtual class composition, wrapper composition,
and more). Thus, more complex world models can easily be programmed in
ECaesarJ, and still, world models and software variant spaces can be kept
disjoint and simple.

Modelling Paradigms: usually provide composition systems:

1. ContextGroups provides nesting of contexts for context composition, synchro-
nisation and communication. Therefore, context statecharts support flexible
composition of contexts and context automata.

2. Context Petri Nets provide the classic composition operators for petri nets,
i.e., sequential or parallel composition, as well as synchronised composition.
Petri nets are made for parallel modelling, also for modelling of parallel robots.
The insertion of a synchronisation protocol or other forms of complex inter-
action between contexts of multiple robots can easily be specified.

500 U. Aßmann et al.

3. CROM+SCROLL provides inheritance and nesting as composition operators
on compartments. However, composition of context automata is not yet sup-
ported.

6 Case Study WEIR

A prototype case study employing WOM for safe co-working robotics is the
WEIR system demonstrated in the KUKA innovation award at the Hanover
fair 20164. WEIR has been designed for the remote teaching of industrial and
service robots by recording the movements of humans wearing of smart clothes
and wearables. The WEIR system includes a smart jacket and a glove equipped
with inertial motion units (IMUs) and bendable resistors. Those sensors measure
the orientation of different body parts such as torso, upper and lower arm, the
hand, and the direction of one ore more fingers. The gathered data is compiled at
run-time to a world model, which specifies the physical conditions and postures
of a human worker. The resulting model is mapped to the inverse kinematics
of a KUKA LBR iiwa robot arm, such that the latter can be controlled the
human movements. Recording these movements, the robot can quickly be taught,
with the purpose of prototyping complex automation tasks without the need of
programming skills. Due to the capability to measure human postures, the WEIR
system is also an example for building safe robotic co-working applications in an
industrial set up.

6.1 Sensor- and Demonstration-Based Teaching

The initial idea of WEIR was to monitor human body postures by sensors and to
map them to the kinematics of an industrial robot arm. Until recently, this prob-
lem was solved by techniques based on direct guidance of the actuator (direct
teaching) or on optical tracking (demonstration-based teaching). The former prin-
ciple is based on the sensitivity feature that modern lightweight robots provide.
Sensitivity is understood as the capability to measure torque within an axis’
motor and to react to a change in real time. For instance, the KUKA LBR iiwa
comes with seven axes, which all contain quite precise torque sensors. The robot
can be configured with safety settings specifying a torque threshold that leads
to a safety stop, by activating the physical brakes within the axes. Besides this
functionality, the torque sensors can be used for direct teaching: A human may
touch the robot and move it to a new position. The navigated trajectories or
positions can be recorded by reading the torque sensor values and, afterwards,
be replayed. This direct teaching by dragging is the standard way of teaching
the KUKA LBR iiwa.

Alternatively to direct teaching, optical tracking of human movements can
be used for the recording of activities (demonstration-based teaching) [22,23].

4 http://st.inf.tu-dresden.de/weir. A video can be found on YouTube: https://www.
youtube.com/watch?v=i4Dmzm1CHwM.

http://st.inf.tu-dresden.de/weir
https://www.youtube.com/watch?v=i4Dmzm1CHwM
https://www.youtube.com/watch?v=i4Dmzm1CHwM

Modelling the World of a Smart Room for Robotic Co-working 501

This requires that the 3-D posture of a human is tracked by a set of stereo cam-
eras, measured, and mapped to the robot’s kinematics. However, optical tracking
suffers from high cost for camera equipment and complex procedures for calibra-
tion and precise setup. Also, since humans should not be present in hazardous,
dirty, poisonous, or heavy-weight environments, tracking-based teaching cannot
be used for many operations in nuclear, coal, or steel industries.

Fig. 4. Hardware components of WEIR.

To overcome these problems, WEIR provides a new variant of demonstration-
based teaching, sensor-based teaching with sensor-equipped wearables (Fig. 4).
With the WEIR jacket and glove, human trainers need not be positioned in the
physical neighbourhood of the robot, but can reside in a safe remote environment
being connected to the actual robot via wireless network for remote control.
The WEIR jacket and glove, equipped with several inertial measurement units
(IMU) connected to each other via bluetooth, assemble and aggregate their data
to measure the spatial position of the arm and the hand. The glove is equipped
with bending stripes (see digit of left glove in Fig. 5) so that it can be monitored
whether a hand is open or closed. The sensor data is aggregated with different
micro-controllers in the jacket (see its pocket, Fig. 4) and then forwarded to a
server, which also assembles the world model, computes the inverse kinematics,
and communicates with the robot actuator.

Besides remote teaching, the WEIR method has several advantages. First,
the sensor-based jacket costs less than 500e, and these costs are going to shrink
a lot in the next years, because sensors and micro-controllers become rapidly
cheaper. Second, setting up and calibrating the system works quite fast: WEIR
expects the demonstrator to take a predefined posture and press a button, after
which the system is calibrated and ready to operate. In consequence, the WEIR

502 U. Aßmann et al.

system is much more flexible to employ in many situations than the optical
approaches, for example, during a shift of workers in a manufacturing workshop.
And finally, because the worker has to put on the wearable cloth explicitly, she
knows precisely when she is tracked and when not. On the one hand, this gives
a lot of self-assurance when collaborating with the robotic co-worker. On the
other hand, if the actions of “entering the room via a door” and “putting on the
wearable jacket” are combined as a complex event for starting the collaboration
with the robot, it can easily be detected whether humans not wearing a jacket
are in the room - with should lead to fault stop. Of course, it is always possible
to combine the sensor-based jacket with image-based tracking, e.g., to provide
better fault-tolerance.

6.2 Safe Robot Co-working in WEIR Smart Spaces

The WEIR case study organises the underlying smart room with the WOM
architectural pattern. The world model is based on a set of automata derived
from Haddadin’s suggestion, but extended with 3-D collaboration zones. The
software variant space of the robot is programmed by a state-based workflow
with variants.

In the context of robotic co-working, the 3-D models of all involved move-
ables form important ingredients of the world model, because they have to be set
in spatial relation to each other to derive the state of their physical relationship.
As a minimum, the 3-D body model of the human should be set into relation
with the 3-D body model of the robot. Also important spots in the smart room,
e.g., boxes or feeder belts, should be modelled as 3-D objects, because they pro-
vide the zones where robot and humans meet. For this purpose, WEIR employs
defines spatial zones of collaboration, 3-D primitives such as spheres or cubes in
the 3-D coordinate system. For the robot, a 3-D collaboration zone is defined,
based on information of its physical posture, which is normalised in the room’s
coordinate system. For the human and other moveables, their collaboration zone
is computed with the help of in-door localisation within the same coordinate
system. All collaboration zones together form the smart room in which robotic
co-working can take place.

As a case study, we used WEIR’s co-working feature to realise a pick-and-
place process with workflow adaptation (Fig. 5). This process can be employed as
a quality-assurance process in production in which the robot automatically sep-
arates defect from intact parts. As an example for the 3-D smart room, compare
the left side of Fig. 5 with its right side. In front of the KUKA LBR robot arm,
four boxes are being placed, of which the two outer ones are sources, whereas
the two inner ones are sinks of the pick-and-place task. In an alternating order,
the robot picks objects from the sources and randomly places them in one of
the sinks. On the right side, the smart room with its collaboration zones and
moveables is shown. The four boxes form four collaboration zones (srcA, srcB,
good, bad), which represent the virtual position of each physical box. They
are included in a fifth one, called awareness, which allows for detection of
human presence. Additionally, the 3-D positions of the human arm are depicted:

Modelling the World of a Smart Room for Robotic Co-working 503

Green dots represent moveables, such as the single body parts (arm1, glove,
hand, center). For the gripper, two positions are tracked: One position indi-
cates where robot is navigating to (GripperTarget), while the other tracks
where it is currently located (GripperReal). From the 3-D model in Fig. 5, it
can be inferred that the human arm does not grip into one of the boxes, i.e., has
not entered a collaboration zone.

/R1/ /R2/

/R3/

Fig. 5. WEIR collaboration zones for pick-and-place case study. (Color figure online)

To adapt the robot’s behaviour, for each collaboration zone of the world
model a Haddadin automaton is specified. Transitions of these state machines
are triggered by either entry or exit events of a tracked moveable. For instance,
the designer may define an state machine for a collaboration zone, which switches
to a new state, if a human hand enters the physical space, and, subsequently,
forces the robot actuator to react on this state change. During the execution of
a transition of a collaboration zone’s state machine, the robotic control system
can be adapted with two types of adaptations:

Parametric Adaptation. A parameter [24] such as speed or maximum torque
to control sensitivity may be set. In this case, the workflow stays the same.

Workflow Adaptation. Another possibility is to change the workflow of the
robot to another variant, based on state conditions of the collaboration zone
automata. The robot’s workflow is also described by a state machine, whose
states refer to a certain movement or posture. The state machines of the robot
and the collaboration zones are linked. The transitions in the robot’s work-
flow can be constrained by state conditions of a collaboration zone automa-
ton. This means that the current state of the specific collaboration zone can
be used as a condition in the workflow of the robot, for instance, to run
another variant of the workflow. Thus, this approach allows for creating com-
plex behaviours that vary according to the monitored physical relations of
moveables.

504 U. Aßmann et al.

For these adaptations, there are four requirements (left side of Fig. 5):

/R0/. As soon as a human enters the robot’s workspace, represented by the
global collaboration zone awareness, its automaton switches to a state, in
which the robot will work with only 30% of its full speed. In this case, a
parametric adaptation is applied (setting speed to 30%).

/R1/. As soon as a human and robot work in the same box, the robot is expected
to stop operation completely. Here, a parametric adaptation is applied (set-
ting speed to 0).

/R2/. When the human removes his hand, the operation is continues (indicated
by the lighted ring around the actuator).

/R3/. If a human operates in a source box, the robot is expected use the source
box on the other side in order to avoid collisions (workflow adaptation).

The WEIR pick-and-place system illustrates how complex robotic co-working
processes can be realised following the WOM pattern. The WEIR smart room
has a WOM world model, which is composed from several collaboration zones
whose behaviours follow the Haddadin automaton. The context checks are per-
formed in the world model, not in the application code. The adaptation of the
software variant space is controlled by the transitions of the world model’s state
space. The adaptation does not only change parameters, but adapts the robot’s
workflow. This makes the robot react to the presence of the human worker and
enables interaction and collaboration.

7 Conclusion

We have argued in this paper that human-robotic co-working always has to
take place in adaptive smart rooms in which the movements of humans have to
be tracked intelligently so that the robotic system can automatically adapt to
them. A particular contribution of the paper is an architectural design pattern,
World-Oriented Modelling (WOM), which is useful for structuring applications
in robotic co-working, because it separates the concerns of world and application.
It models the states of the physical objects in the smart room in a separate
world model and leaves the context checks to its run-time system. Thereby,
it avoids if-bloating in the software variant space of the adaptive application.
Additionally, WOM simplifies the required safety verification procedures to a
reachability analysis on the world model and quality assurance methods for the
software variant space. WOM generalises dynamic SPL and featured transition
systems, combining their principle of separation of concerns with context-aware
programming.

Modelling the World of a Smart Room for Robotic Co-working 505

References

1. Haddadin, S., et al.: Towards the robotic co-worker. In: Pradalier, C., Siegwart,
R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics,
vol. 70, pp. 261–282. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-19457-3 16

2. Pransky, J.: The Pransky interview: Dr Esben Ostergaard, inventor, co-founder
and CTO of Universal Robots. Ind. Robot 42, 93–97 (2015)

3. Kirschner, D., Velik, R., Yahyanejad, S., Brandstötter, M., Hofbaur, M.: YuMi,
come and play with me! A collaborative robot for piecing together a tangram
puzzle. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS
(LNAI), vol. 9812, pp. 243–251. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43955-6 29

4. Ju, Z., Yang, C., Li, Z., Cheng, L., Ma, H.: Teleoperation of humanoid Baxter
robot using haptic feedback. In: International Conference on Multisensor Fusion
and Information Integration for Intelligent Systems (MFI), pp. 1–6. IEEE (2014)

5. Many: Discussion on the web platform reddit (2015)
6. Nunez, A., Gasiunas, V.: ECaesarJ User’s Guide. Technische Universität Darm-

stadt, Germany (2009)
7. Capilla, R., Bosch, J., Trinidad, P., Cortés, A.R., Hinchey, M.: An overview of

dynamic software product line architectures and techniques: observations from
research and industry. J. Syst. Softw. 91, 3–23 (2014)

8. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39, 1069–
1089 (2013)

9. Raskin, J.F.: An introduction to hybrid automata. In: Hristu-Varsakelis, D.,
Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems, pp.
491–518. Birkhäuser (2005)

10. Kramer, J., Magee, J.: Towards robust self-managed systems. Prog. Inf. 5, 1–4
(2008)

11. Bencomo, N., France, R.B., Cheng, B.H.C., Aßmann, U. (eds.): Models@run.time
- Foundations, Applications, and Roadmaps. LNCS, vol. 8378. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08915-7

12. Bencomo, N., Grace, P., Flores-Cortés, C.A., Hughes, D., Blair, G.S.: Genie: sup-
porting the model driven development of reflective, component-based adaptive sys-
tems. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Confer-
ence on Software Engineering (ICSE 2008), Leipzig, Germany, 10–18 May 2008,
pp. 811–814. ACM (2008)

13. Appeltauer, M., Hirschfeld, R., Lincke, J.: Declarative layer composition with the
JCop programming language. J. Object Technol. 12(4), 1–37 (2013)

14. Afanasov, M., Mottola, L., Ghezzi, C.: Context-oriented programming for adap-
tive wireless sensor network software. In: International Conference on Distributed
Computing in Sensor Systems (DCOSS), pp. 233–240. IEEE Computer Society
(2014)

15. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowl. Eng. 35, 83–106 (2000)

16. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for
role-based modeling and programming languages. In: Combemale, B., Pearce, D.J.,
Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 8

https://doi.org/10.1007/978-3-642-19457-3_16
https://doi.org/10.1007/978-3-642-19457-3_16
https://doi.org/10.1007/978-3-319-43955-6_29
https://doi.org/10.1007/978-3-319-43955-6_29
https://doi.org/10.1007/978-3-319-08915-7
https://doi.org/10.1007/978-3-319-11245-9_8

506 U. Aßmann et al.

17. Herrmann, S.: A precise model for contextual roles: the programming language
ObjectTeams/Java. Appl. Ontol. 2, 181–207 (2007)

18. Moret, B.M.E.: Decision trees and diagrams. ACM Comput. Surv. 14, 593–623
(1982)

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0053381

20. Cardozo, N., González, S., Mens, K., Straeten, R.V.D., D’Hondt, T.: Modeling and
analyzing self-adaptive systems with context Petri nets. In: TASE, pp. 191–198.
IEEE Computer Society (2013)

21. Leuthäuser, M.: Pure embedding of evolving objects. In: Ninth International Con-
ference on Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE),
IARIA (2017)

22. Maycock, J., Steffen, J., Haschke, R., Ritter, H.: Robust tracking of human hand
postures for robot teaching. In: 2011 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 2947–2952. IEEE (2011)

23. Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for
humanoid robots by observation. Rob. Auton. Syst. 47, 93–108 (2004)

24. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol.
5525, pp. 27–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02161-9 2

https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2

Author Index

Abdelrazek, Mohamed 272
Altalhi, Abdulrahman 401
Amrani, Moussa 426
Apvrille, Ludovic 47
Aßmann, Uwe 484
Avazpour, Iman 272

Barat, Souvik 94
Barn, Balbir 94
Bauer, Bernhard 247
Brogi, Antonio 1

Clark, Tony 94

da Silva, Alberto Rodrigues 23
Di Tommaso, Antonio 1

Englebert, Vincent 426
Estivill-Castro, Vladimir 119
Etzlstorfer, Jürgen 354

Faitelson, David 377
Falkenberg, Jan 484
Feki, Jamel 401
Fortuin, Sven 222

Geismann, Johannes 72
Genius, Daniela 47
Gérard, Sébastien 300
Gilson, Fabian 426
Greenyer, Joel 449
Gritzner, Daniel 449
Grundy, John 272

Harel, David 449
Heinrich, Robert 377
Hexel, René 119
Hitz, Michael 328
Holtmann, Jörg 173
Höttger, Robert 72

Jansen, Slinger 222

Kapsammer, Elisabeth 354
Katz, Guy 449
Kessel, Thomas 328
Koch, Thorsten 173
Krawczyk, Lukas 72
Kristensen, Lars Michael 198
Kulkarni, Vinay 94

Lamo, Yngve 198
Li, Letitia W. 47
Li, Shuai 300
Lindemann, Timo 173
Liu, Jian 272

Marron, Assaf 449

Overeem, Michiel 222

Pfisterer, Dennis 328
Pham, Van Cam 300
Piechnick, Christian 484
Piechnick, Maria 484
Pohlmann, Uwe 72
Pröll, Reinhard 247
Püschel, Georg 484

Rabbi, Fazle 198
Radermacher, Ansgar 300
Reis, André 23
Rumpold, Adrian 247

Schmelter, David 72
Schönböck, Johannes 354
Schwägerl, Felix 145
Schwinger, Wieland 354
Soldani, Jacopo 1
Steinberg, Shlomi 449

Taktak, Said 401
Tyszberowicz, Shmuel 377

Werner, Sebastian 484
Westfechtel, Bernhard 145

Zurfluh, Gilles 401

	Preface
	Organization
	Contents
	Sommelier: A Tool for Validating TOSCA Application Topologies
	1 Introduction
	2 Background and Motivations
	2.1 Background: TOSCA
	2.2 Motivating Example

	3 Validating TOSCA Application Topologies
	3.1 Validating Sources of Relationships
	3.2 Validating Relationships
	3.3 Validating Targets of Relationships
	3.4 Valid TOSCA Application Topologies

	4 Prototype Implementation
	4.1 Sommelier
	4.2 Unit Testing of Sommelier

	5 Related Work
	6 Conclusions
	References

	Evaluation of XIS-Reverse, a Model-Driven Reverse Engineering Approach for Legacy Information Systems
	1 Introduction
	2 Background
	3 XIS-Reverse Overview
	4 Evaluation
	4.1 Case Study A: ProjectIT-Enterprise
	4.2 Case Study B: Social Security Application

	5 Interoperability with XIS* Frameworks
	6 Related Work Discussion
	6.1 Data Schema Extraction
	6.2 Reverse Engineering

	7 Conclusion
	References

	Formal and Virtual Multi-level Design Space Exploration
	1 Introduction
	2 Design Techniques for Embedded Systems
	2.1 Design Space Exploration Approaches (with Simulation and Formal Techniques)
	2.2 Code Generation Approaches

	3 Methodology
	3.1 Modeling Phases
	3.2 Simulation, Verification and Prototyping

	4 Case Study
	5 Partitioning with DIPLODOCUS
	5.1 Models
	5.2 High-Level Simulation and Verification

	6 Software Design with AVATAR/SoCLib
	6.1 Software Components
	6.2 Formal Verification
	6.3 Prototyping
	6.4 Capturing Performance Information

	7 Discussion and Future Work
	References

	Automated Synthesis of a Real-Time Scheduling for Cyber-Physical Multi-core Systems
	1 Introduction
	2 Modeling the Application
	3 Software Distribution and Parallelization
	3.1 Segmentation into Runnables
	3.2 Allocate Runnables to ECUs
	3.3 Partitioning to Tasks
	3.4 Mapping Tasks to Cores

	4 Evaluation
	5 Related Work
	6 Conclusion and Outlook
	References

	A Model Based Approach for Complex Dynamic Decision-Making
	Abstract
	1 Introduction
	2 Background
	2.1 CDDM Structure and Requirements
	2.2 Review of State of the Art and Practice

	3 Approach
	3.1 Conceptual Model
	3.2 Simulatable Model
	3.3 Method
	3.4 Validation

	4 Illustration
	4.1 Problem Entity
	4.2 Define Decision Problem
	4.3 Conceptualisation of Organisational Model
	4.4 Implement Simulatable Model
	4.5 Simulation
	4.6 Validation, Evaluation of Simulation Results and Recommendation

	5 Evaluation
	6 Conclusion
	References

	Deterministic High-Level Executable Models Allowing Efficient Runtime Verification
	1 Introduction
	2 Architectural Elements
	3 Illustration of Architectural Elements
	4 Verification and Reconfiguration
	4.1 Software Architecture for Run-Time Verification of LLFSMs

	5 Robotics Case Studies
	5.1 Interaction of Behaviours
	5.2 Modular Robotics

	6 Automatic Generation
	7 Safety and Security Issues
	8 Contrast with Related Work
	9 Final Remarks
	References

	A Consistency-Preserving Editing Model for Dynamic Filtered Engineering of Model-Driven Product Lines
	1 Introduction
	2 Example Scenario
	3 Formal Foundations
	4 Consistency Constraints for Dynamic Filtered Editing
	4.1 Check-Out
	4.2 Modify
	4.3 Commit
	4.4 Migrate

	5 Consistency-Preserving Algorithms
	5.1 Check-Out
	5.2 Modify
	5.3 Commit
	5.4 Migrate

	6 Automated and Consistent Revision Graph Management
	6.1 Check-Out
	6.2 Commit
	6.3 Migrate

	7 Generalized Editing Model
	7.1 Purely Static Filtered Editing
	7.2 Restricted Transactions
	7.3 Earlier Ambition Specification
	7.4 The Amend Operation

	8 Evaluation
	9 Related Work
	10 Conclusion
	References

	Model-Driven STEP Application Protocol Extensions Combined with Feature Modeling Considering Geometrical Information
	1 Introduction
	2 ISO 10303 - STandard for the Exchange of Product Data (STEP)
	3 Flexible Specification of STEP Extensions
	3.1 Process for the Creation of the Central Data Model
	3.2 Automatic Derivation of the Central Data Model and the Data Import
	3.3 Automatic Derivation of the CAD Plugin
	3.4 Automatic Derivation of the Feature Model Plugin

	4 Case Study
	4.1 Case Study Context
	4.2 Setting the Hypothesis
	4.3 Validating the Hypothesis
	4.4 Analyzing the Results

	5 Related Work
	6 Conclusion and Future Work
	References

	A Model Driven Engineering Approach for Heterogeneous Model Composition
	1 Introduction
	2 Composition Schema
	2.1 Formalization

	3 Modeling in the Small
	3.1 Category of Model Compositions

	4 Modeling in the Large
	5 Modeling the Optimization of Resource Allocation
	6 Related Work
	7 Conclusion
	References

	Generative versus Interpretive Model-Driven Development: Moving Past `It Depends'
	1 Introduction
	2 Context and Related Work
	3 How SPOs Design and Develop MDEEs
	4 Quality Characteristics of Model Execution Approaches
	4.1 ISO: Performance Efficiency
	4.2 ISO: Compatibility
	4.3 ISO: Security
	4.4 ISO: Maintainability
	4.5 ISO: Portability
	4.6 Utilizing the Preferences

	5 Case Study
	6 Case Study Reflection
	6.1 The Metamodel
	6.2 The Architecture
	6.3 The Platform
	6.4 The Decision Support Framework

	7 Discussion
	8 Conclusion
	References

	Applying Integrated Domain-Specific Modeling for Multi-concerns Development of Complex Systems
	1 Introduction
	2 A Domain-Aware Modeling Approach for Embedded System Engineering
	2.1 General Purpose Modeling Languages
	2.2 Domain-Specific Modeling Languages
	2.3 Purpose-Specific Data

	3 A Model-Based Architecture and Analysis Framework
	3.1 Technical Foundations and Tooling
	3.2 Analysis Execution Workflow
	3.3 Processing of Integrated Model Data

	4 Case Study: Design and Evaluation of a Gas Heating System
	4.1 System Structure and Behavior
	4.2 Reliability Model
	4.3 Requirements Model
	4.4 Integration Model
	4.5 Test Model

	5 Related Work
	5.1 Modeling Tool Integration
	5.2 Domain-Specific Modeling
	5.3 Model-Based Analysis

	6 Conclusions
	References

	A Domain-Specific Modeling Approach for Testing Environment Emulation
	Abstract
	1 Introduction
	1.1 Software Integration Testing
	1.2 Testing Environment Emulation
	1.3 A Domain-Specific Approach to Testing Environment Emulation

	2 Motivation
	3 Our Approach
	3.1 Software Interfaces Description Framework
	3.2 Service Request Defects
	3.3 Endpoint Metamodeling

	4 Our Domain-Specific Languages
	4.1 Visual Symbol Design
	4.2 Signature DSVL
	4.3 Protocol DSVL
	4.4 Behavior DSVL
	4.5 Code Generators and a Domain Framework

	5 Case Study
	5.1 Signature Modeling
	5.2 Protocol Modeling
	5.3 Behavior Modeling
	5.4 Testing Environment Generation

	6 Evaluation
	6.1 Technical Comparison
	6.2 User Survey

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgements
	References

	A Framework for UML-Based Component-Based Design and Code Generation for Reactive Systems
	1 Introduction
	2 UML State Machine, Composite Structure and Events
	2.1 UML State Machine and Events
	2.2 Combination of State Machines and Ports and Connectors

	3 Features
	4 Concurrency
	4.1 Thread-Based Design
	4.2 Thread Communication

	5 Code Generation Pattern for UML State Machines
	5.1 State
	5.2 Region
	5.3 Event
	5.4 Transitions and Pseudo States

	6 Code Generation for Composite Structure
	7 Empirical Study
	7.1 Semantic Conformance of Runtime Execution
	7.2 Benchmarks

	8 Traffic Light Controller Simulation
	9 Lego Car Factory
	10 Related Work
	11 Conclusion
	References

	Automatic UI Generation for Aggregated Linked Data Applications by Using Sharable Application Ontologies
	Abstract
	1 Introduction
	2 Problem, Motivational Example and Requirements
	3 Proposed Solution
	4 Application Ontologies for Automatic UI Derivation
	4.1 Information Requirements for Automatic UI Generation

	5 Using Ontologies as Representation
	6 Modelling the Relation to Target Ontologies
	7 Generating the UI- and Target Ontology Instances
	8 Aggregation of Sharable Application Ontologies: A Novel Paradigm for Composite Applications
	8.1 Aggregation Scenario
	8.2 A Novel Application Integration Paradigm

	9 Validation
	10 Related Work
	11 Conclusion and Future Work
	References

	Surveying Co-evolution in Modeling Ecosystems
	1 Introduction
	2 Evolving Modeling Ecosystem
	2.1 Modeling Ecosystem
	2.2 Relationships in a Modeling Ecosystem

	3 Aspects of Co-evolution
	3.1 Co-evolution Process
	3.2 Evaluation Framework
	3.3 Evaluation

	4 Lessons Learned
	5 Related Work
	6 Conclusion and Future Work
	References

	Functional Decomposition for Software Architecture Evolution
	1 Introduction
	2 A Relational Model of Software Systems
	3 Modeling the Subsystem Decomposition
	3.1 System Decomposition
	3.2 Visualizing Subsystem Decompositions

	4 Mapping Decomposition to Components
	5 Component-Based Change Impact Analysis
	6 Impact Analysis Example
	7 Related Work
	8 Conclusion
	References

	Model-Driven Approach to Handle Evolutions of OLAP Requirements and Data Source Model
	Abstract
	1 Introduction
	2 Related Works
	2.1 Approaches Based on DS Evolution Model
	2.2 Approaches Based on Business Requirement Evolution
	2.3 Discussion

	3 Overview of the Proposed Approach
	4 Evolution Inferred by the DS Model
	4.1 Transforming a Table into a Dimension
	4.2 Transforming a Table into a Fact

	5 Evolution Implied by the Decision Makers Needs
	5.1 Reorganization
	5.2 Derivation
	5.3 Extension

	6 Implementation
	6.1 Modeling of Evolution
	6.2 M2M Transformations in QVT: REM to DWEM
	6.3 M2M Transformations in QVT: DSEM to DWEM
	6.4 Validation and Adaptation Module
	6.5 Implementing M2t Transformations

	7 Preliminary Results and Evaluation
	7.1 Evolution Scenarios of the DS
	7.2 Evolution Scenarios Due to OLAP Requirements

	8 Conclusion
	References

	Complex Event Processing for User-Centric Management of IoT Systems
	1 Introduction
	2 Motivation and Challenges
	2.1 Typical IoT Scenarios
	2.2 Challenges
	2.3 Components for an IoT Language

	3 IoTDSL
	3.1 Type Definition
	3.2 Network Configuration
	3.3 Business Rules

	4 General Architecture and Code Generation
	4.1 General Architecture
	4.2 TRex as Cep Engine
	4.3 Compiling IoTDsl Rules

	5 Discussion and Remaining Challenges
	6 Related Work
	7 Conclusion and Future Work
	References

	Efficient Distributed Execution of Multi-component Scenario-Based Models
	1 Introduction
	2 Background: Scenario-Based Specifications
	3 A Running Example
	4 Distributing a Centralized SBP Execution: Success Criteria
	4.1 Success Criteria
	4.2 Semantic Consideration
	4.3 Additional Considerations

	5 Distribution via Replicate-and-Project
	5.1 Defining Event Components
	5.2 Creating Behavioral Component Models by Replication and Projection
	5.3 Distributed Execution of Replicated-and-Projected Component Models
	5.4 Conditions for Inter-component Synchronization
	5.5 Equivalence to Centralized Executions

	6 Per-component Timescales
	7 Example and Evaluation
	8 Related Work and Comparison
	9 Discussion and Future Work
	10 Conclusion
	References

	Modelling the World of a Smart Room for Robotic Co-working
	1 The Trend: Robots Come Out of the Cage
	2 State of the Art
	2.1 Adaptive Systems
	2.2 Programming with Contexts

	3 Programming Problems for Robotic Co-workers
	3.1 Technical Requirements for Programming with the Haddadin Automaton

	4 The Architectural Pattern ``WOM''
	5 Flexibility of WOM
	5.1 The States of the World as Contexts of a COP Application
	5.2 World Spaces with Context-Oriented Modelling
	5.3 WOM in General Smart Rooms

	6 Case Study WEIR
	6.1 Sensor- and Demonstration-Based Teaching
	6.2 Safe Robot Co-working in WEIR Smart Spaces

	7 Conclusion
	References

	Author Index

