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Preface

The present volume contains extended versions of a set of selected papers from the 5th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2017), held in Porto, Portugal, during February 19-21, 2017.

These papers were selected by the event chairs and their selection is based on a
number of criteria that include the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, as well as the program
chairs’ overview of all papers in the technical program. The authors of selected papers
were then invited to submit a revised and extended version of their papers having at
least 30% additional new material.

The purpose of the International Conference on Model-Driven Engineering and
Software Development, MODELSWARD 2017, was to provide a platform for
researchers, engineers, academics as well as industrial professionals from all over the
world to present their research results and development activities in using models and
model-driven engineering techniques for software development. Model-driven devel-
opment (MDD) is an approach to the development of IT systems in which models take
a central role, not only for purposes of analysis and documentation but also for their
construction. MDD has emerged from a number of modeling initiatives, most promi-
nently the model-driven architecture (MDA) adopted by the Object Management
Group (OMG).

The papers selected to be included in this book contribute to the development of
highly relevant research trends in model-driven engineering and software development,
including:

— Methodologies for MDD development and exploitation

— Model-based testing

— Model simulation

— Domain-specific modeling

— Code generation from models

— New MDD tools

— Multi-model management

— Model evolution

— Industrial applications of model-based methods and technologies

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

February 2017 Luis Ferreira Pires
Slimane Hammoudi
Bran Selic
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SOMMELIER: A Tool for Validating TOSCA
Application Topologies

Antonio Brogi, Antonio Di Tommaso, and Jacopo Soldani®)
Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. TOSCA is an OASIS standard for specifying cloud applica-
tions and automating their management. The topology of a cloud appli-
cation can be described as a typed and directed graph. The latter can
then be automatically processed by so-called TOSCA engines to auto-
mate the deployment and management of the described application on
cloud platforms. In this paper we first illustrate the conditions ensur-
ing the validity of a TOSCA application topology. We then introduce
SOMMELIER, an open-source validator of TOSCA application topologies
based on such validity conditions.

1 Introduction

Cloud computing is nowadays characterised by a lack of standardisation, with
different cloud platforms providing similar offerings in different and heteroge-
neous ways [1]. As a result, cloud developers tend to remain locked-in a spe-
cific platform environment because it is practically unfeasible for them, due to
high complexity and cost, to migrate their applications to a different platform.
According to [2], to enable the creation of portable cloud applications, the appli-
cation components, their relations and management should be modelled in a
standardised, machine-readable format. This would also allow the automation
of the deployment and management of modelled applications [3].

In this scenario, OASIS released the Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA [4]). TOSCA permits specifying portable
cloud applications and automating their management. The structure of a cloud
application can be described as a typed and directed topology graph (specified
in a standardised, YAML-based modelling language). In a topology graph, the
nodes model the components of an application (e.g., a web application, an appli-
cation server, a NoSQL database, and a NoSQL DBMS), while the edges model
the relationships occurring between such components (e.g., the web application
runs on the application server and it connects to the NoSQL database, and the
NoSQL database is installed on the NoSQL DMBS).

TOSCA applications can then be declaratively processed by so-called
TOSCA engines to automate their deployment [5]. Such a declarative processing
depends on the inter-node relationships specified in the topology of an applica-
tion [6]. Initially, (i) all nodes without dependencies on other nodes are deployed.

© Springer International Publishing AG, part of Springer Nature 2018
L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 1-22, 2018.
https://doi.org/10.1007/978-3-319-94764-8_1
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Then, (ii) the nodes whose requirements are actually satisfied (by capabilities
offered by the nodes that have been deployed) are deployed, and their outgoing
relationships are properly processed. Step (ii) is repeated until all the nodes in
the application topology have been deployed [7].

web-app connectsTo nosql-db

¥
i

hostedOn hostedOn

app-server

nosql-dbms

Fig. 1. A toy example of application topology

Consider, for instance, the application topology in Fig. 1, whose nodes are a
web application, an application server, a NoSQL database and a NoSQL DBMS.
The inter-node relationships indicate that the web application must be hosted
on the application server and connected to the NoSQL database. They also
indicate that the NoSQL database must be hosted on the NoSQL DBMS. Step
(i) would result in first deploying the application server and the NoSQL DBMS.
Step (ii) would then result in deploying the NoSQL database on the NoSQL
DBMS. Step (ii) would then be repeated, and it would result in deploying the
web application on the application server, and in setting up a connection from
the web application to the NoSQL database.

The above (toy) example demonstrates how the declarative processing of
TOSCA applications heavily depends on the inter-node relationships indicated in
the topology of an application. We must also consider that the actual processing
of each node and relationship relies on configuration information contained in its
specification, which is put into context by indicating constraints on how it can
be interconnected with other nodes and relationships [7]. This makes it crucial
to ensure, at design-time, that TOSCA application topologies are valid, by also
checking that all the relationships interconnecting the nodes in an application
topology have been set properly.

This paper aims at providing a first design-time support for TOSCA appli-
cation developers, by allowing them to validate their application topologies. In
this perspective, the main contributions in this paper are twofold:

— We formalise the conditions that must hold to have valid TOSCA application
topologies, by systematically mapping the interconnection constraints that
can be specified in TOSCA into formal conditions that must hold to ensure
the validity of a TOSCA application topology.

— We propose a first prototype of validator for TOSCA application topologies,
called SOMMELIER. SOMMELIER checks whether the topology of a TOSCA
application satisfies all interconnection constraints, by actually checking all
the proposed validity conditions.
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We believe that SOMMELIER can fruitfully help TOSCA application developers,
as it allows them to automatically validate their TOSCA application topologies
at design time (a task that they currently have to perform manually). Also, as
SOMMELIER fully integrates with the OpenStack TOSCA parser [8], and since
both SOMMELIER and the OpenStack TOSCA parser are open-source, they can
lay the foundations for an open-source toolset for supporting TOSCA application
developers from the design time till the run time [9].

This paper is an extended version of [10], which further motivates the need for
a design-time support for validating of TOSCA application, and which includes
an extended description of the prototype and of its testing.

The rest of this paper is organised as follows. Section 2 provides background
on TOSCA and a motivating example further highlighting the need for validat-
ing TOSCA application topologies. Section 3 illustrates the formal conditions
allowing to validate the topology of a TOSCA application. Sect.4 provides a
detailed description of SOMMELIER, by also showing its testing and how it per-
mits validating TOSCA application topologies. Finally, Sects.5 and 6 discuss
related work and draw some concluding remarks, respectively.

2 Background and Motivations

2.1 Background: TOSCA

The OASIS standard TOSCA [4] aims at enabling the specification of portable
cloud application and at automating their deployment and management. Cloud
applications can be specified in a YAML-based, machine-readable modelling lan-
guage. Obtained specifications can then be declaratively processed by TOSCA
engines, which can automatically deploy and manage specified applications.

In TOSCA, a cloud application is specified as a service_template, which is
in turn composed by a topology_template, and by the types needed to build
such a topology_template (Fig.2). The topology template is a typed directed
graph that describes the topology of a cloud application, viz., its structure.
Its nodes (called node_templates) model the components of an application,
while its edges (called relationship-templates) model the inter-component
relationships.

The node_templates and relationship_templates are typed by means of
node_types and relationship_types, respectively. A node type defines the
requirements of a component, the capabilities that it can offer to satisfy the
requirements of other components, its observable attributes and properties,
and the interfaces through which it offers its management operations. Capa-
bilities are also typed through so-called capability_types, which permit indi-
cating their attributes, properties and valid_source_types (viz., the node
types that can be satisfied by such capabilities).

A relationship type instead describes the attributes and properties of an
inter-component relationship, as well as the interfaces through which it offers
its management operations. A relationship type can also indicate constraints on
the capability types that can be targeted by such type of relationships (through
its clause valid_target_types).
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service template

topology template

relationship
template Legenda
. .type fori ~relationship types @8 Property
node - @ Interface
------- ., template felationship’ Qcapability
; type for ORequirement
\ policy policy_types
~_ type for
targets T T [T

J

Fig. 2. TOSCA service_template [4].

It is worth noting that the TOSCA type system supports inheritance. A node
type can extend another, to inherit all its attributes, properties, requirements,
interfaces, and operations. Analogously, a relationship type or a capability type
can extend another to inherit all its features.

TOSCA application specifications are given in .tosca document, which has
then to be packaged together with all the installable and executable files needed
to properly instantiate the specified applications. To enable this, TOSCA also
prescribes the format (called CSAR—Cloud Service ARchive) to archive appli-
cation specifications together with all such files.!

2.2 Motivating Example

Consider the (toy) web-based application in Fig. 3 (modelled in TOSCA accord-
ing to the Winery graphical notation [11]). The application is composed by three
main components, namely a web-based GUI, a REST API and a Database, which
are hosted on a WebServer, a Server and a DBMS, respectively. The GUI depends
on the availability of the REST API to effectively work, and the REST API in
turn depends on the availability of the Database.

Despite the application specification in Fig. 3 seems valid, there are two wrong
inter-node relationships. Firstly, the REST API explicitly states that it requires a
connection to the back-end Database, but the requirement connection is satisfied
by a relationships of type DependsOn. The latter will be processed by TOSCA-
compliant cloud platforms by only postponing the installation of the REST API
after that of the Database. No connection from the REST API to the Database
will be set up (even if the REST API explicitly requires it).

Also, the Database in our motivating application is NoSQL, and it HostedOn
a MariaDB? DBMS. The latter is however a SQL-based relational DBMS, which
is hence not capable of managing NoSQL databases.

! A more detailed, self-contained introduction to TOSCA can be found in [9].
2 https://mariadb.com/.
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endpoint

N
Database
(NosQl)
{/

feature

GUI
(NodelS)

dependency connection

DependsOn. DependsOn
HostedOn HostedOn
host host
WebServer Server
(Nodels) (Apache) (MariaDB)

Fig. 3. Motivating example.

The above errors are hard to be manually detected, as we need to manually
check that all inter-node relationships in a TOSCA application topology sat-
isfy the interconnection constraints specified in (the types of) the source and
target nodes, as well as those specified in (the type of) the employed relation-
ships. TOSCA application developers should hence be provided with solutions
for automatically validating TOSCA application topologies.

3 Validating TOSCA Application Topologies

The aim of this paper is to provide a first design-time support for TOSCA appli-
cation developers, which allows them to validate the topology of an application.
The topology of an application is given in the form of a topology_template,
viz., a typed directed graph whose nodes represent the components of an appli-
cation, and whose edges model the relationships occurring among such compo-
nents [4]. Each relationship specifies that a requirement of the source node must
be actually satisfied by (a capability of) the target node.

To check whether a TOSCA application topology is valid, we must verify
that all inter-component relationships are properly settled. This in turn means
that we must check all TOSCA elements forming a relationship, namely its
source (viz., a requirement of a node), the relationship itself (viz., a relationship
template), and its target (viz., a node or a capability of a node).

In the following, we show how to systematically map® the interconnection con-
straints that can be specified in TOSCA to formal conditions. We first present

3 We first systematically read the TOSCA specification [4], and we excerpted all por-
tions that describe how to specify interconnection constraints. In the following, we
shall recall all such portions, and we illustrate how to directly map each of them to a
formal condition that must be verified to ensure the validity of a TOSCA application
topology.
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the validation conditions for sources of relationships (Sect.3.1), those for rela-
tionships themselves (Sect. 3.2), and those for targets of relationships (Sect. 3.3).
We finally compose all such conditions to provide a notion of validity for appli-
cation topologies (Sect. 3.4).

3.1 Validating Sources of Relationships

The source of a relationship is a requirement of a node [4]. We must hence
verify that all the relationships outgoing from a requirement do not violate any
constraint indicated in the requirement definition.

In this section, we first recall how requirements can be defined in TOSCA,
by also explaining what the meaning of a requirement definition is (according
to the TOSCA specification [4]). We then single out the formal conditions that
must be verified to ensure that the interconnection constraints indicated in a
requirement definition are all satisfied.

How to define a Requirement in TOSCA

A node type nyp. defines the set of named requirements that can be exposed
by a node template of such type. Requirements can be defined within the
requirements of ny,. with the grammars displayed in Fig. 4. Both grammars
permit specifying the requirement name (req name) and some constraints that
must be fulfilled to actually satisfy the requirement under definition.

req_name: cap_type_name

(a)

req_name:
capability: cap_type_name

node: node_type_name
relationship: rel_type_name
occurrences: [ min_occ, maxz_occ ]

(b)

Fig. 4. (a) Simple and (b) extended grammars for requirement definitions [4].

The simple grammar (a) requires to indicate the name of a valid capability
type that must be used to fulfill the requirement under definition. The extended
grammar (b) allows to specify three additional (optional) constraints.

— node allows to indicate a node type that contains a capability definition that
can be used to fulfill the requirement.
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— relationship allows to indicate a relationship type that can be exploited to
create an outgoing relationship template to fulfill the requirement.

— occurrences allows to indicate the minimum and maximum occurrences of
the requirement in node templates, whose node type is that under definition.*

A node template nemp is an instance of a node type nyype in a TOSCA
application topology, which allows to indicate the requirements that are actually
needed by the application component modelled by 74epmp. Such requirements can
be indicated within the requirements clause of 7y, through so-called require-
ment assignments. Each requirement assignment instantiates a corresponding®
requirement definition in ny,.. Figure5 displays the grammars for requirement
assignments in TOSCA.

req-name: node_temp_name

(a)

reg_-name:

node: node_temp_name | mnode_type_name
relationship: rel_temp_name | rel_type_name
capability: cap_name | cap_type_name
node_filter: node_filter_definition

(b)

Fig.5. (a) Simple and (b) extended grammars for requirement assignments [4].

The simple grammar (a) only allows to indicate (the name of) the node
template satisfying the requirement under assignment. This notation is only
valid if the corresponding requirement definition (in the node type of the node
template that is being specified) indicates at least a valid capability type that
can be found in the target node template.

The extended grammar (b) not only allows to indicate (the name of) the
target node template, but also to specify some additional information.

— node allows to indicate the target node. It can be used to provide either the
name of the node template that is actually fulfilling the requirement under
assignment, or the name of a node type that constrains the type of nodes
that can be used to dynamically satisfy the requirement at run-time.

4 Since the focus of this paper is on validating inter-component dependencies in
TOSCA application topologies, and since occurrences is not giving any constraint
concerning inter-component dependencies, we shall not formalise the trivial condi-
tion to validate occurrences.

5 A node template’s requirement assignment corresponds to a node type’s requirement
definitions if they have the same name req_name.
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— relationship is optional, and it allows to indicate the name of a relationship
template (to relate the source node to the—capability in the—target node
when fulfilling the requirement), or the name of a relationship type (that
constrains the type of relationships that can be used to dynamically settle a
relationship between the source and target nodes at run-time).

— node_filter is also optional, and it allows to indicate additional constraints
on the node/relationship that can be used to dynamically satisfy the require-
ment under assignment at run-time.

How to wvalidate a TOSCA Requirement
We hereby single out the conditions that must hold to validate sources of
relationships at design-time.® In doing so, we exploit some shorthand notation.

Notation. We shall write:

— type(:) and name(-) to denote the type and name of a TOSCA element,

— t/ >t to denote that t' extends’ or is equal to t,

- e.f to denote the field £ of the TOSCA element e (which is L if £ is not
defined in e), and

- C(-) and R(-) to denote the capabilities and the requirements defined in a node
type or assigned by a node template.

Given a TOSCA application topology, the sources of its inter-component rela-
tionships are valid if each of the requirements of its node templates is associated
with a node and a relationship satisfying all constraints indicated in the defini-
tion and assignment of such requirement.

Condition 1. Let nyemp be a node template of type nyype. Then: Vrq €
R(ntemp)73rd € R(”type):

(1) name(r,) = name(rq) A

(2) rq.node # L = type(r,.node) > ry.node A

(3) r,.capability # L = type(r,.capability) > ry.capabilityA

(4) rq.capability = L = Jec € C(r,.node) : type(c) > r4.capabilityA

(5) rq.relationship # 1 A r,.relationship # 1 =
type(r,.relationship) > ry.relationship

The first check (Condition 1.1) ensures that, for each requirement assigned r, in
a node template n¢emp (0f type niype ), there exists a corresponding requirement
definition rq in ngype.

We can then check that no requirement assignment 7, is violating the con-
straints indicated by the corresponding requirement definition ry:

6 Since we focus on design-time, we shall not consider all constraints on how to auto-
matically complete the topology of a TOSCA application (viz., those constraining
the types of node and relationship that can be used to automatically fulfill a require-
ment at run-time). Anyway, our approach can help driving the automatic completion
of TOSCA application topologies, as well as to double-check that automatically com-
pleted topologies are valid.

" Given that t and t' are TOSCA types, t' extends t if ¢’ is (directly or indirectly)
derived_from ¢ [4].
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— A requirement definition r; may indicate the node type that can be used
to validly satisfy a requirement (through the optional field node). Hence,
if node is specified in rg, the type of the node template targeted by each
corresponding requirement assignment 7, has to extend or to be equal to
that indicated in node (Condition 1.2.)

— Each requirement definition specifies the name of a capability type that can be
used to validly satisfy the requirement. This is ensured if each corresponding
requirement assignment 7, directly targets a capability whose type extends or
is equal to that indicated in the requirement definition (Condition 1.3). When
a requirement assignment is instead only indicating the target node template
(without indicating any of its capabilities), we must check whether such node
template is offering at least one type-compatible capability (Condition 1.4).

— A requirement definition 74 may also indicate the relationship type that
can be validly exploited to settle a relationship template outgoing from
the requirement (through the optional field relationship). Hence, if
relationship is specified in 74, the type of a relationship template out-
going from a corresponding requirement assignment r, (if any) extends or is
equal to that indicated in relationship (Condition 1.5).

3.2 Validating Relationships

Inter-component relationships are indicated as typed relationship templates [4].
We must hence verify that the relationship templates in a TOSCA application
topology are instantiating the corresponding relationship types without violating
any of their interconnection requirements.

In this section, we first recall how to specify relationship types in TOSCA, by
also explaining what the meaning of a relationship type definition is (according to
the TOSCA specification [4]). We then single out the formal conditions that must
be verified to ensure that no relationship template is violating the constraints
given by the corresponding relationship type.

How to define a Relationship in TOSCA

TOSCA allows to define a relationship type with the grammar shown in
Fig.6. The latter permits indicating the name of the relationship type under
definition (rel_type_name), and its features and interconnection constraints.

— derived_from is optional, and it allows to indicate (the name of) a parent
relationship type®. If indicated, the relationship type under definition inherits
all the features and constraints of the parent relationship type, and it can over-
ride some of them [7]. For instance, if the relationship type under definition
does not specify a new list of valid_target_types, then it takes that of the
parent relationship type. Otherwise, the parent’s list of valid_target_types
is overridden by that specified in the relationship type under definition.

8 All TOSCA relationship types should be derived (directly or indirectly) from the
tosca.relationships.Root relationship type [4].
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rel_type_name:
derived_from: parent_rel_type_name
version: werstion_number
description: rel_description
properties: property_definitions
attributes: attridbute_definitions
interfaces: interface_definitions
valid_target_types: [ cap-type_names ]

Fig. 6. Grammar for relationship types [4].

— version and description are optional, and they permit versioning and
describing (in natural language) a relationship type.

— properties and attributes are also optional, and they allow to specify the
desired and actual state of a relationship, respectively.

— interfaces is optional, and it allows to indicate the management operations
that can be offered by relationship templates whose relationship type is that
under definition.

— valid_target_types is optional, and it allows to list the capability types that
can be validly used as targets of relationship templates whose relationship
type is that under definition.

How to wvalidate a TOSCA Relationship

We hereby single out the conditions ensuring that a relationship template
is not violating any of the interconnection constraints indicated by the corre-
sponding relationship type. In this perspective, it is worth highlighting that the
only interconnection constraints that can be specified while defining a relation-
ship type are those concerning its valid_target_types (which can be indicated
inline or inherited from the parent relationship type).

Notation. We shall denote with T(-) the set of capability types that are valid
targets for a relationship type. Given a relationship type reliype:

— If relyype.valid_target_types # L, then T(relyype) is the set containing all
types in relype.valid_target_types,

— otherwise, if relyypc.derived from # L, then T(relype) is the set containing
all types in T(reliype.derived_from),

— otherwise, T(relyype) is the set containing all capability types (meaning that
all capability types are valid targets for reliype ).

The relationship templates instantiated in a TOSCA application topology are
valid if all their targets are valid, viz., the targets do not violate the constraints
indicated in the corresponding relationship types.

Condition 2. Let reliemp be a relationship template of type relyype. If there
exists a requirement assignment r, that is source of reliemp, then:
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(1) rq.capability # L =
Jepype € T(relyype): type(ry.capability) > cuype A
(2) rq.capability = L =
Je, € C(rg.node): Jepype € T(reliype) : type(ca) > crype

The above conditions ensure that, if a relationship template targets a spe-
cific capability?, then such capability must be type-compatible with at least one
of those indicated in vaid_target_types (Condition2.1). If a relationship tem-
plate instead targets a node template (but not concretely pointing to any of its
capabilities), then such node template must offer at least one type-compatible
capability (Condition 2.2).

3.3 Validating Targets of Relationships

The target of a relationship can be either a capability or a node template. In
the latter case, the targeted node template must offer at least a capability that
can satisfy the source requirement [4].

In this section, we first recall how to specify capabilities in TOSCA, by also
explaining what their meaning is (according to the TOSCA specification [4]).
We then single out the formal conditions that must be verified to ensure that no
relationship is violating the constraints given by its target.

How to define a Capability in TOSCA

Capability types can be defined in TOSCA according to the grammar shown
in Fig. 7. The latter permits indicating the name of the capability type under
definition (cap_type_name), and its features and interconnection constraints.

cap-type_name:
derived_from: parent_cap_type_name
version: wversion_number
description: capability_description
properties: property_definitions
attributes: attridbute_definitions
valid_source_types: [ node_type_names J

Fig. 7. Grammar for capability types [4].

— derived_from is optional, and it allows to indicate (the name of) a parent
capability type!C. If indicated, the relationship type under definition inherits

9 Please recall that a relationship is outgoing from a requirement assignment r,. The
latter can either indicate the specific capability satisfying r,, or a node template
offering (at least) a capability satisfying r, (see Fig.5).

19 All TOSCA capability types should be derived (directly or indirectly) from the
tosca.capability.Root capability type [4].
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all the features and constraints of the parent relationship type, and it can
override some of them [7]. For instance, if the capability type under definition
does not specify a new list of valid_source_types, then it takes that of the
parent capability type. Otherwise, the parent’s list of valid_source_types is
overridden by that specified in the capability type under definition.

— version and description are optional, and they permit versioning and
describing (in natural language) a capability type.

— properties and attributes are optional, and they allow to indicate the
desired and actual state of a capability, respectively.

— valid_source_types is optional, and it allows to list the node types that can
be validly used as sources of relationships whose target capability is of the
type under definition.

Capability types are then referred by node types. Each node type indeed defines
(within its field capabilities) the set of named capabilities that can be exposed
by node templates of such type. The grammars for capability definitions are
displayed in Fig. 8.

cap_name: cap_type_name

(a)

cap_name:
type: cap_type_name
description: capability_description
properties: property_definitions
attributes: attridbute_definitions
valid_source_types: [ node_type_names ]

(b

Fig. 8. (a) Simple and (b) extended grammars for capability definitions [4].

Both the simple grammar (a) and the extended grammar (b) allow to
indicate the name (cap-name) of the capability under definition, and its
type. The extended grammar (b) also allows to specify some optional fields
(viz.,description, properties, attributes, and valid_source_types), whose
meaning is analogous to that of their homonym fields in the grammar for speci-
fying capability types (Fig. 7).

Node templates are instances of node types, and they also instantiate the
capabilities they define. Node templates can also assign concrete values to the
properties and attributes of such capabilities, to provide additional information
concerning their desired and actual state, respectively. Such a kind of capability
assignments can be provided with the field capabilities of a node template,
with the grammar in Fig.9.
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cap_-name:
properties: property_assignments
attributes: attribute_assignments

Fig. 9. Grammar for capability assignments [4].

How to wvalidate a TOSCA Capability

We hereby single out the conditions ensuring that a relationship template is
not violating any of the interconnection constraints indicated by the capability it
targets. The interconnection constraints concern the valid_source_types, and
they can be indicated while specifying defining a capability type or while defining
a capability in a node type. In the former case, the constraints can be indicated
inline in the specification of capability type, or they can be inherited by the
parent capability type.

Notation. We shall denote with S(-) the set of node types that are valid sources
for a capability type. Given a capability type cype:

— If cyype.valid_source_types # L, then S(ciype) is the set containing all node
types in ciype.valid_source_types,

— otherwise, if cyype.derived from # L, then S(cyype) is the set containing all
node types in S(cyype-derived from),

— otherwise, S(ciype) 15 the set containing all node types (meaning that all node
types are valid targets for cyype ).

TOSCA application topologies are such that (requirement assignments of)
multiple node templates can be sources of relationship templates targeting
the same capability assignment c,. All such node templates must not violate
the interconnection constraints indicated by the capability type of ¢, (Condi-
tion 3.1), nor those indicated in its corresponding capability definition (Condi-
tion 3.2).

Condition 3. Let ¢, be a capability assignment, whose corresponding type and
definition are cyype and cq. For each node template Niemp having a requirement
assignment r, such that r,.capability = ¢,

(1) Intype € S(crype) : type(niemp) > Nype N

(2) 3ntype € S(Cd): type(ntemp) > Ntype

3.4 Valid TOSCA Application Topologies

In the previous sections we have singled out the formal conditions that must
hold to ensure the validity of sources, instances, and targets of relationships in a
TOSCA application topology. For the convenience of readers, all such conditions
are recapped in Table1l. We below define the notion of validity for a TOSCA
application topology, by gathering Conditions 1, 2, and 3 in a single definition.
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Table 1. Formal conditions ensuring the validity of sources, instances, and targets of
relationships in a TOSCA application topology.

Validating
sources of
relationships
(Condition 1)

Let niemp be a node template of type 74ype. Then
v7‘a S R(ntemp)a EI’I’d S R(ntype):

(1.1) name(r,) = name(rq) A
(1.2) rg.node # L = type(ry.node) > rq.node A

(1.3) rg.capability #* 1 =
rq.capability A

type(rq.capability) >
(1.4) rg.capability = 1 =
Je € C(ry.node): type(c) > ry.capability A
(1.5) rg.relationship # L A ry.relationship # L =
type(rq.relationship) > rq.relationship

Validating
relationships
(Condition 2)

Let relemp be a relationship template, and let rely,. be its relationship type. If
there exists a requirement assignment r, that is source of relsemy, then:
(2.1) rq.capability # L =
Ferygpe € T(reliype): type(rq.capability) > cype A
(2.2) rq.capability = 1 =
EIC(;, S C(Tu,~n0de), Ctype € T(relt,ype): type(ca) 2 Ctype

Validating tar-
gets of
relationships
(Condition 3)

Let ¢, be a capability assignment, whose corresponding type and definition are
ctype and cq. For each node template nemp having a requirement assignment 7,
such that r,.capability = ¢4

(3.1) Iniype € S(cCiype) : type(ntemp) > Nuype A

(32) Elntyps: S S(Cd) : type(ntﬁm[)) 2 Ntype

Definition 1. A TOSCA application topology is valid if all its node templates
and relationship templates satisfy Conditions 1, 2, and 3.

4 Prototype Implementation

In this section,

we present SOMMELIER, a Python prototype of validator for

TOSCA application topologies (based on the formal conditions discussed in
Sect. 3. The prototype of SOMMELIER is open-source'!, and it is fully integrated
with the OpenStack TOSCA parser [8].

4.1 SOMMELIER

SOMMELIER validates TOSCA application topologies as illustrated in Fig. 10:

@ SOMMELIER

takes as input a CSAR archive or a .tosca document. The input

contains the application topology to be validated.

® SOMMELIER

forwards the input to the OpenStack TOSCA parser [8].

"' The source code of SOMMELIER is publicly available on GitHub at https://github.
com/di-unipi-socc/Sommelier.
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Fig.10. Workflow followed by SOMMELIER while checking the validity of a TOSCA
application topology [10].

® The OpenStack TOSCA parser checks whether the specified application is
syntactically correct, viz., whether all its elements have been specified by
respecting the grammar of TOSCA, as well as each template has been defined
by respecting the structure indicated by its corresponding type. If this is
the case, the TOSCA parser of OpenStack generates a representation of the
TOSCA application in Python, according to its object-model [8].

@ The OpenStack TOSCA parser returns the Python representation of repre-
senting the TOSCA application to SOMMELIER.

@ SOMMELIER validates the topology of the TOSCA application. More precisely,
SOMMELIER check whether all the conditions listed in Table 1 are satisfied by
all the nodes and relationships of the input topology. The result is a Python
dictionary'? structured as indicated in Fig. 11. The dictionary associates each
requirement of each node template with a list containing all validation errors
affecting its outgoing relationship. Errors are in turn represented with lists,
which head is the error code (e.g., 1.2, if Condition 1.2 is violated) and which
remaining elements provide additional information on the error (e.g., type/-
name of the target node, which is not satisfying Condition 1.2).

® SOMMELIER displays the results of the validation, viz., it states that the
analysed topology is valid, or it provides the list of all violations that make
the topology not valid.

Ezxzample. In this example, we show how SOMMELIER can be fruitfully exploited
to validate TOSCA application topologies. An instance of SOMMELIER can be
run with the following command line instruction:

$ python sommelier.py --template-file=template-file-path

(where template-file-path indicates the absolute path for retrieving the TOSCA
file to be validated).

Figure 12 shows two concrete runs of SOMMELIER, to which we passed as
input two TOSCA application specifications available in the GitHub repository

12 https://docs.python.org/3/tutorial /datastructures.html.
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{
node_templatel_name : {
reql_name : [
[ errorl_code,errorli_info 1],
[ error2_code,error2_info 1],
]
req2_name : [ ... ],
}:
node_template2_name : { ... } ,
}

Fig. 11. Structure of the Python dictionary containing the results of the validation [10].

$ python sommelier.py —template—file=../tosca—parser/toscaparser/
tests/data/topology-template/tosca_-elk.yaml

The application topology is valid.

(a)

$ python sommelier.py —template—file=../tosca—parser/toscaparser/
tests/data/topology_-template/transactionssubsystems.yaml

NODE_TEMPLATE: app

REQUIREMENT: host

1.2 — NODE_TYPE_NOT_COHERENT: The type "tosca.nodes.WebServer"
of the target node "websrv" is not valid (as it differs from
that indicated in the requirement definition).

(b)

Fig. 12. Example of runs of SOMMELIER [10].

of the OpenStack TOSCA parser, viz., tosca_elk.yaml and transactionsubsys-
tem.yaml.'® tosca_elk.yaml turned out to be valid (Fig. 12(a)).

The topology of transactionsubsystem.yaml instead resulted to be not valid.
As shown in Fig.12(b), this is because the relationship outgoing from require-
ment host of the node template app is violating Condition 1.2 (since it targets the
node template websrv, whose type is not compatible with those indicated in the
requirement definition corresponding to host). Without a design-time support

13 The files are developed and maintained by the community around the OpenStack
TOSCA parser. They are publicly available at https://github.com/openstack/tosca-
parser/tree/master/toscaparser/tests/data. We hereby consider the version of the
files available on November 13th, 2016.
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like that offered by SOMMELIER, such a kind of issues would have been hard to
detected, as the validation should have been performed manually. a

4.2 Unit Testing of SOMMELIER

We developed a battery of unit tests covering 99% of the source code of SOMME-
LIER, to double-check that SOMMELIER was capable of recognising all possible
violations of all conditions in Table 1. More precisely, we developed a set of
non-valid TOSCA application specification, each containing a violation of a con-
dition in Table 1. Each specification was obtained by injecting an error in the
valid application topology specified in tosca_elk.yaml (Fig. 12(b)).

To run the unit tests, we must first clone the master branch of the GitHub
repository of SOMMELIER in a host folder. This can be done by running the
following command:

$ git clone https://github.com/di-unipi-socc/Sommelier.git

We can then execute all unit tests by running the following command in the
newly created sommelier folder'*:

$ coverage run --source topologyvalidator \
-m unittest discover

We can then display the source code coverage by running the command in Fig. 13.

$ coverage report

Name Stmts Miss Cover

topologyvalidator.py 227 2 99%

Fig. 13. Source code coverage of SOMMELIER.

5 Related Work

Validation techniques permit checking whether software systems fulfill a set of
specified requirements [12]. Such techniques are crucial nowadays, as software
systems are more and more involved in our everyday life, and ensuring that they
fulfill desired requirements is imperative [13].

The OASIS standard TOSCA [4] recognises the importance of validation.
TOSCA allows to indicate a set of constraints on how to interconnect appli-
cation components, which have to be fulfilled when building the topology of a
cloud application. The design-time support for verifying such constraints is how-
ever currently limited, and this makes the validation of TOSCA applications a
cumbersome and time-consuming process.

14 To run coverage, the coverage-py Python library must be installed on the host. The
latter can be installed by executing sudo pip install coverage.
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OpenStack recently developed a TOSCA parser [8], which can be used to ver-
ify the syntactical correctness of TOSCA application specifications. The Open-
Stack TOSCA Parser indeed allows to check whether all the elements in a
TOSCA specification have been provided in their proper section (e.g., relation-
ship types in the relationship_types section, relationship templates in the
relationship templates section), and that all templates have been specified
coherently with the structure indicated by the corresponding types (e.g., the
properties indicated by a relationship template are also defined in the corre-
sponding relationship type, numeric properties contain numeric values). Even if
it can be used to check that the actual values assigned to the fields of a tem-
plate are of the proper type, the OpenStack TOSCA Parser does not check their
“meaningfulness”. For instance, the OpenStack TOSCA Parser can fruitfully be
exploited to check that the node field of a requirement assignment contains the
name of a node template, but it does not provide any information on whether
the indicated node template satisfies the interconnection constraints defined in
the requirement definition. The objective of this paper (and of SOMMELIER) is
precisely to allow to check such a kind of interconnection constraints.

Similar considerations apply to other TOSCA parsers currently available,
e.g., the brooklyn-tosca parser [14], that employed in SeaClouds [15], or the
TOSCA parser in AliendCloud [16].

The OASIS standard TOSCA is also available in an older, XML-based ver-
sion [17]. TOSCA XML still allows to specify the topology of a cloud applica-
tion and interconnection constraints on application components. It also allows to
define management plans, which can be specified as workflows that orchestrate
the management operations of the components forming an application.

Winery and OpenTOSCA are two open-source tools allowing to edit and exe-
cute cloud applications specified in TOSCA XML. Despite both tools are pro-
vided with parsers verifying the syntactical correctness of TOSCA XML appli-
cations, a support for validating the interconnection forming the topology of an
application is currently lacking.

A first approach exploiting some of the interconnection constraints that can
be expressed in TOSCA XML is that in [18], which proposes a solution for
automatically completing TOSCA XML application topologies. The solution is
based on the idea of exploiting the interconnection constraints to select (from
a set of available components) the components that can be used to satisfy dan-
gling requirements. [18] however differs from our approach mainly due to its
objectives. It indeed relies on TOSCA XML, and it only considers some of the
interconnection constraints that can be specified in TOSCA XML, viz., those
indicating which capability types and relationship types can be used to satisfy a
requirement. Our objective is instead to enable a full validation of TOSCA appli-
cation topologies, by systematically mapping all the interconnection constraints
that can be specified in TOSCA to formal conditions that must be ensured when
building application topologies.

There also exist approaches for validating the management plans indicated in
TOSCA XML application specifications. Such approaches are based on manage-
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ment protocols [19,20], a compositional modelling for specifying the management
behaviour of application components. The behaviour of the components forming
a TOSCA XML application can then be combined (according to the topology of
the application) to automatically derive the management behaviour of the appli-
cation. The latter allows to automate various analyses, including the validation
of management plans. At the same time, even if the topology of an application
is fundamental to derive its management behaviour, it is always assumed to be
valid (because of the lack of a design-time support for validating TOSCA XML
application topologies).

In summary, even if TOSCA allows to indicate interconnection constraints
that must be fulfilled when building application topologies, there is currently a
lack of a design-time support for checking such constraints. The contributions
presented in this paper can help solving this lack, as we systematically map the
interconnection constraints that can be expressed in TOSCA to formal condi-
tions, and we exploit such conditions to provide a first support for validating
TOSCA application topologies.

It is finally worth highlighting that our approach follows the baselines of exist-
ing approaches for validating multi-component systems at design time, e.g., [21-
23], or for automatically synthesizing them, e.g., [24,25]. Similarly to all such
approaches, we start from the specification of a multi-component system, and
we try to enforce that all its components are properly interconnected (viz., that
no interconnection violates the constraints imposed by its source and target
components, and by the interconnection itself). The main difference between
such approaches and ours is given by the context. While [21-25] target the
valid composition of the functionalities offered by a set of components, we focus
on ensuring that the dependencies between the components forming a TOSCA
application are properly specified, as such information is the basis for orches-
trating the management of a TOSCA application.

6 Conclusions

The OASIS standard TOSCA permits specifying cloud applications, and
automating their management. TOSCA permits describing the structure of an
application as a topology graph, which is then exploited by TOSCA-compliant
cloud platforms to automate the management of the components forming an
application. As the automated deployment of TOSCA applications is based
on their topologies [7], it is fundamental to ensure—at design time—that such
topologies are valid.

TOSCA allows to indicate the interconnection constraints that must be ful-
filled when building the topology of a cloud application (e.g., a node can indicate
which types of nodes and relationships can be used to satisfy its requirements).
In this paper we have systematically mapped such constraints to formal condi-
tions that must hold to ensure the validity of a TOSCA application topology
(see Table1). We have also introduced a first prototype of validator based on
such conditions, viz., SOMMELIER.
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SOMMELIER is open-source and it is already integrated with the open-source
TOSCA parser developed by the OpenStack community [8]. SOMMELIER and the
OpenStack TOSCA parser can put the basis for the development of a full-fledged
design time support for TOSCA application developers.

In this perspective, SOMMELIER can be fruitfully exploited for validating
TOSCA application topologies while they are being developed, e.g., by improv-
ing the functionalities of existing graphical editors (such as that in the SeaClouds
platform [15], for instance). Its output could indeed be exploited for suggesting
how to fix errors (e.g., by highlighting a misplaced requirement, and by suggest-
ing which nodes can be used to actually satisfy it) or to drive the development
itself (e.g., by impeding developers to wrongly interconnecting nodes). The inte-
gration of SOMMELIER with an existing graphical editor is left for future work.
This is in line with the research directions indicated in [9], in particular with the
development of tools to support TOSCA developers from the design time till the
run time.

Notice that the version of TOSCA considered in this paper [4] is a simplified
profile of the former, XML-based version of TOSCA [17]. All the interconnec-
tion constraints that can be indicated in the considered version of TOSCA can
also be specified in TOSCA XML. We hence plan to check whether the pro-
posed conditions for validating TOSCA applications can be exploited also for
validating applications specified in TOSCA XML (or whether they need to be
extended). We also plan to implement an extended version of SOMMELIER capa-
ble of validating TOSCA XML application topologies, and to integrate with the
OpenTOSCA open-source environment [5,11].

Notice also that both versions of TOSCA also allow to indicate non-functional
requirements of application components (such as scalability policies or QoS
requirements). All such non-functional requirements should also be enforced,
hence requiring TOSCA application specifications should be validated from a
non-functional perspective. We plan to devise a technique for carrying out such
a validation, and to include it within SOMMELIER.

Acknowledgements. We would like to thank Luca Rinaldi for his valuable help in
preparing the battery of unit tests for SOMMELIER.
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Abstract. Companies have been struggling to manage and maintain
their legacy information systems because upgrading said systems has
been a complex challenge. Many times, requirements changes are difficult
to be properly managed, leading to legacy information system require-
ments deterioration. To overcome or reduce such problems we propose
the XIS-Reverse, a software reverse engineering approach. XIS-Reverse
is a model-driven reverse engineering approach that takes database arte-
facts and user preferences as input, and generates high-level models and
specifications of these legacy information systems. This paper presents
the evaluation of XIS-Reverse using two real-world information systems,
provides an assessment of its interoperability with an existent framework
and discusses its main challenges and benefits.

Keywords: Model-driven engineering
Model-driven reverse engineering - Model-driven reengineering
Database + Legacy system

1 Introduction

One of the main reasons software projects tend to fail is the difficulty to manage
their requirements, mainly due to the fact that requirements changes are diffi-
cult to be managed [1]. Without a proper way to manage requirements, software
projects may have consequences, namely excessive development and manage-
ment costs, the development of a system which does not meet stakeholders needs,
and so on. Although new methods to collect, analyze, document and maintain
requirements have been appearing, their software requirements specifications are
still mainly written in natural language [1]. Those kinds of specifications are usu-
ally hard to keep up to date while the software applications are being developed,
leading to deterioration. To overcome or reduce such problems, software reverse
engineering approaches can be used.

Reverse engineering was initially used in hardware analysis, but it quickly
extended its scope to software systems [2]. Then, following the huge expansion
and advent of software from the end of the 80s, the reverse engineering topic has
© Springer International Publishing AG, part of Springer Nature 2018
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been mainly used in the context of legacy information systems, which are often
still responsible for running crucial and critical operations for companies [3].

Reverse engineering can be defined as the process of examining an already
implemented software system to create a higher abstraction level representation
in a different form [2].

The main objective of such representations is to provide a better understand-
ing of the software system’s current state. These can be used to correct (e.g. fix
bugs), update (e.g. alignment with updated user requirements), upgrade (e.g.
add new capabilities), or even completely reengineer the system under study [3].
These operations are happening now more than ever due to new user require-
ments and expectations, adaptation to emerging business models, updated legis-
lation, new technology innovation and prevention of system structure deteriora-
tion [4]. Since reverse engineering an information system is a time-consuming and
error-prone process, any reverse engineering solution that increases the automa-
tion level of the process will benefit the users of such complex task, and thus
facilitate its larger adoption.

Model-driven engineering (MDE) approaches are increasingly gaining accep-
tance in the software engineering field to tackle software complexity and to
improve software productivity [5,6]. These approaches promote the systematic
use of models, raising the level of abstraction at which software is specified
and increasing the automation level of software development applying model
transformations. Although most of the MDE approaches use forward engineer-
ing techniques to, for instance, transform higher-level models into source code,
MDE can also be used to perform the opposite transformation using reverse
engineering techniques (Model-Driven Reverse Engineering (MDRE)) [3].

XIS-Reverse [7] aims to mitigate requirements deterioration and maintenance
of legacy information systems, reducing human effort and improving productiv-
ity. Such goals can be achieved using reverse engineering techniques based on
a model-driven approach, producing high-level specifications of information sys-
tems through model transformations. This is accomplished using and extending
the Sparx Systems Enterprise Architect (EA) tool with those transformations.

This paper extends the previous work that introduced the XIS-Reverse app-
roach [7] with the following novel contributions: (i) an extensive discussion of the
relevance of this approach based on the evaluation of two real-world cases studies
with large databases (e.g., case study B involves more than 150 data entities and
more than 200 associations); (ii) a discussion showing how to combine the XIS-
Reverse approach with forward engineering approaches, namely the XIS-Web
approach [8], by showing that the extracted models (with the XIS-Reverse) can
then be involved in models validation, model-to-model and model-to-text trans-
formations; (iii) finally, a comparison of the XIS-Reverse with other approaches
and a discussion of the related work.

Furthermore, regarding the main contributions of XIS-Reverse, we have to
highlight the following aspects: (i) semi-automatic heuristics that can identify
certain relationships between entities, namely implicit generalizations and aggre-
gations (specialization of associations), and also (ii) the possibility to extract
values from the source database to enrich the target models or specifications.
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All that combined enhances the understanding of each entity’s role in the
produced models, and consequently the comprehension of the information sys-
tem.

XIS-Reverse was developed in sixteen months following the Action Research
methodology [9]. Over time it was necessary to evaluate the level of detail and
correctness of the XIS-Reverse extracted specifications. This evaluation process
was done in an iterative way. Initially, this was done testing only a subset of
the approach, namely the domain entities extraction with simple case studies.
However, throughout this period, we got the chance to test XIS-Reverse using
real-world applications, increasing the relevance of XIS-Reverse’s results.

The outline of this paper is as follows. Section 2 presents the context. Section 3
gives an overview of the XIS-Reverse. Section4 presents and analyses the eval-
uation performed to XIS-Reverse using two real-world applications. Section 5
presents and analyses the interoperability evaluation of XIS-Reverse with an exis-
tent framework. Section 6 analyses and compares this proposal with the related
work. Finally, Sect. 7 summarizes the main conclusions of this work along with
some future work perspectives.

2 Background

This research has been developed at the Instituto Superior Técnico, Universidade
de Lisboa, in the scope of the MDDLingo! and the RSLingo? initiatives.

MDDLingo is an umbrella researching initiative that aggregates several
projects around MDE topics, namely involving the definition of a family of lan-
guages, also known as XIS*. This set of modelling languages derives from the
XIS-UML profile [10], involving namely XIS-Mobile [11,12], XIS-CMS [13] or
XIS-Web [8]. XIS-UML is a set of coherent constructs defined as an UML profile
that allows a high-level and visual modeling way to design business information
systems. In general these languages include the following views: Entities (which
includes Domain and Business Entities views), UseCases (containing Actors and
Use Cases views), Architectural and User-Interfaces (composed by Interaction
Space and Navigation Space views).

Figurel illustrates a simple XIS* Domain view which aggregates domain
classes (XisEntity), their attributes (XisEntity Attribute) and relationships (Xis-
EntityAssociation and XisEntityInheritance).

«XisEntity» «XisEntity» «XisEntity»
DOCUMENT AUTHOR PERSON
I~
0.* «XisEntityAssociation» 71 «XisEntitylnheritance» «XisEntityAttribute»
+ Name: String

Fig. 1. Example of a XIS* Domain view.

! https://github.com/MDDLingo.
2 https://github.com/RSLingo.


https://github.com/MDDLingo
https://github.com/RSLingo

26 A. Reis and A. R. da Silva

«XisEntity»
PERSOM DOCUMENT «XisEntity»
«XisEntity» USERACCOUNT

AUTHOR Nss E-EntityDetailAssociation »/

«XisBE-EntityMasterAssociation»| «XisBusinessEntity» [ xisgE_EntityReferenceAssociation»
AUTHOR BE

Fig. 2. Example of a XIS* BusinessEntities view.

«XisEntityUseCase

M AUTHOR «XisBusinessEntity»
«XisActor-UCAssociation» «XisEntityUC-BEAssociation» AUTHOR BE
«XisActor»
User

Fig. 3. Example of a XIS* UseCases view.

Figure 2 shows a BusinessEntities view, which allows to define higher-level
entities (XisBusinessEntity), that aggregate XisEntities and that in the context
of a given use case can be easily manipulated.

Figure 3 shows the UseCases View. This view details the operations an actor
can perform over the business entities when interacting with the system [11].

RSLingo is a general approach defined to rigorously specify and validate soft-
ware requirements using lightweight Natural Language Processing techniques to
(partially) translate informal requirements into a rigorous representation pro-
vided by a language specially designed for Requirements Engineering. Over time,
following the RSLingo’s approach, several projects have been developed, namely
RSLingo4Privacy [14] and RSLingo’s RSL? [15]. Moreover, RSLingo’s RSL is a
controlled natural language (restricted use of a natural language grammar and
a set of standardized terms to be used in a restricted grammar) to help the pro-
duction of software requirements specifications in a more systematic, rigorous
and consistent way [15]. Such specifications are usually specified as a set of .rsl
files, and later they can be validated and used by different types of users such
as requirement engineers, business analysts, or domain experts [15]. The most
relevant RSLingo’s RSL concepts regarding our research are: Data Entities, Data
Entity Views, User Stories, Functional Requirements, Goals, Business Processes
and Terms.

3 XIS-Reverse Overview

The XIS-Reverse [7] is a MDRE approach that allows to extract high-level spec-
ifications from legacy application artefacts.

As illustrated in Fig.4, the XIS-Reverse approach starts by extracting the
application data model from an available database, and from that and from the

3 https://github.com/RSLingo/RSL.


https://github.com/RSLingo/RSL

Evaluation of XIS-Reverse, a MDRE Approach 27

l
1
Application || ProfilerLog ||,
Database File '
|
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1
database access
v v

specifications

|
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: | | |
| | | |
vV 1 VvV v
Data Schema Reverse Reverse
Extraction Engineering Engineering
(Injection) Configuration Execution oo
[ A S0 [
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-
V | P E v Extracted Knowledge Modev !
|
Application data model |- i Application = Application = H
(Initial Model) i X1S* models RSLingo's RSL H
1 |
1 1
1

Fig. 4. Overview of the XIS-Reverse approach.

user configuration (second stage), the reverse engineering execution takes place,
by applying several reverse engineering heuristics on those artefacts, and then
generating the extracted knowledge in the form of models and specifications.

XIS-Reverse was implemented on top of the Sparx Systems EA%, as an EA
plug-in. The XIS-Reverse’s first stage (data schema extraction) relies on the
native capability of EA to reverse engineer a database schema through an ODBC
connection. Then, the following stages (reverse engineering configuration and
execution) are supported by the XIS-Reverse tool (available from GitHub®).
The configuration stage provides a user interface (see Fig.5) that can be split
into 4 different areas:

— Input - to specify input artefacts, namely the application data model,
database name and additional artefacts, namely a database access or a profiler
log file;

— Output - to select additional output representations, namely XIS-Web and
RSLingo’s RSL;

— Transformation Rules Guidance - to provide configuration points to
the following features: Simple Principal Entities (to identify aggregations);
Attribute Values Extraction (to extract attribute values); and Generalization
Discovery (to detect implicit generalizations);

— Appearance - to improve the readability of the produced specifications.

Although the number of available input technologies and output specifica-
tions can be extended, for now our approach is able to produce XIS-Web lan-
guage models [8] and RSLingo’s RSL specifications [15] from Microsoft SQL
Server databases.

* http://www.sparxsystems.com/products/eca.
5 https://github.com/MDDLingo/xis-reverse.
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XIS-Reverse Configuration 7 X

Input Appearance
Views

Selected root node Package: [ v\

i views?
Database name: l ‘ Split models into diferrent views

@® No
Choose one o the following oplions o enhance the output specifications: N
O ez lEsicomeckonl] Nottested O By Table Name Prefix Number of Characters or  Split by Character

i Select profiler log fil
O Profiler Log File ( 2 file must be selected) lect profiler logfile | Nofile selected O By Table Name Sufix

Output
Entities name customization

List Tables Name (Before) List Entities Name (After)
[JRSLingo'sRSL | Selectoutputfolder | No folder selected
@® Keep original name

Transfomation Rules Guidance O Regular Expression to remove characters in the name

Simple Principal Ertities O Regular Expression to select the name:

\dentify Simple Principal Entiies O Remove the specified number of characters from the

Attribute Values Extraction

O |4

Select Attributes

Generalization Discovery
[ Use Generalization discovery

Minimum number of shared attributes|5 5 - - =
Reverse Engineering Execution
Aggregate by the higher number of:

Attribute names to ignore in the Generalization Discovery (split by commas, without spaces)

Fig. 5. Main configuration panel of the tool.

Finally, the reverse engineering execution stage is supported by Model-to-
Model (M2M) transformations that use the application data model and user
configurations to generate XIS* models and RSLingo’s RSL specifications. Then,
the user can analyze the produced artefacts and introduce some refinements,
such as changing automatically identified relationships into different ones in the
Entities view, enhancing the Use-Cases views, etc.

4 FEvaluation

In this section, two case studies are introduced and used to assess the XIS-
Reverse approach.

Both applications were supported by SQL Server databases and our experi-
ments only considered database access in order to enhance the output specifica-
tions since it is harder to generate a profiler log file that adequately represents
the normal usage of such applications.

To assess the overall results of each Case Study we divided this evaluation into
three levels of configuration scenarios: Without configuration, Blind configura-
tion and Semi-guided configuration. Within each scenario we extracted: number
of XisEntities (including explicit and implicit superclasses); number of XisAsso-
ciations (also including Aggregations and Many-to-many associations); number
of Aggregations; number of Many-to-many associations; number of explicit and
implicit subclasses and superclasses; number of XisBusinessEntities; number of
each XisBusinessEntity associations and number of XisEntity UseCases.
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Moreover, we defined some heuristics to evaluate the obtained results in a
deeper way, namely in terms of aggregation associations and implicit generaliza-
tions. However, those heuristics will not be applied to the Case Study B due to
privacy constraints.

Regarding aggregations, we defined two rules. The first one requires having
an updated domain model in the available application requirements, in which
entity associations are classified (e.g. one-to-one or aggregation associations).
The second one requires having every entity manually classified as a main entity
(e.g. relevant entity in the domain), configuration entity (e.g. “kind of” entity)
or association entity (e.g. entity whose main purpose is to link two or more
entities).

Rule-1: Number of Associations Well Classified in Terms of Aggre-
gations. We assess this rule by applying the concepts of a confusion matrix
to the results (after the experiment), thus we count the number of: (1) actual
aggregations that were correctly classified as aggregations (true positive); (2)
non-aggregations that were incorrectly classified as aggregations (false positive);
(3) aggregations that were incorrectly marked as non-aggregations (false nega-
tive); (4) all the remaining associations correctly classified as non-aggregations
(true negative).

Rule-2: Number of Configuration Entities that do not Aggregate Main
Nor Association Entities. We assess this rule by counting how many of those
did and did not aggregate main or association entities (after the experiment).

Regarding generalizations, we want to extract implicit generalizations which
maximize both the number of subclasses found (variable x) and the number of
inherited attributes (variable y), based on the following function:

Reis(z,y) = 0.5z + 0.5y (1)

To better explain the Reis function and its variables, a simple domain model
illustrated in Fig.6 will be used.

Variable x is determined by the number of subclasses found (after the exper-
iment), divided by the maximum number of subclasses that could be found
(number of entities without generalization and with at least 1 attribute (before
the experiment), such as A, B, C, F and G (5) in Fig.6).

Taking into account that generalizations with the exact number of two sub-
classes will always maximize the number of superclasses that can be found, and
thus, maximize also the number of inherited attributes:

Variable y is determined by the sum of all the superclass attributes found
(after the experiment), divided by the sum of the maximum number of attributes
that could be inherited (the sum of the maximum number of attributes every
pair of entities can share (before the experiment), taking into account all pairs
of entities that can be grouped, by the descending order of attributes number,
such as 3 in Fig. 6, since pairs A-B share at most 2 attributes and C-F share at
most 1 attribute, for example).
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Fig. 6. Support example to explain the Reis function.

4.1 Case Study A: ProjectIT-Enterprise

The ProjectIT® [16] initiative aggregates several research topics, such as soft-
ware engineering and software development. The main goal behind this initia-
tive is to provide a complete software development workbench, with support
for project management, requirements engineering, analysis, design and code
generation features. Moreover, within this initiative, a collaborative tool with
Web interface was developed. This web application, called ProjectIT-Enterprise
[17,18], provides a mechanism to process definition, collaborative support for
teamwork, emphasizing project management, project-process alignment, work-
flows and documents management.

Although ProjectIT-Enterprise was mainly used and tested in an academic
and research scope, it is mature, with well-defined concepts and requirements.
Since we had the chance to use it, we decided to perform an exhaustive experi-
ment to assess the XIS-Reverse.

Regarding the aggregation rules, since we had access to the domain model
specifications and database of this application (Fig.7), and it was granted
that there were no significant updates in the database since this specifica-
tion was defined, we used the said specification to evaluate against our experi-
ment (required for Rule-1). With that, we established a mapping between every
database table and the corresponding entity in the domain model (Table 1) and
then, with some domain knowledge, we classified those entities/tables as main
entities, configuration entities and association entities (required for Rule-2). This
mapping and classification will be used during the evaluation to compare the
extracted specification (using the XIS-Reverse) with the aforementioned domain
model, shown in Fig. 7.

Moreover, we also identified the direct relationships between the main entities
in the domain, defined as foreign key constraints in the application database
(checked symbols in Fig. 7).

Taking into account Fig. 7, from the total of 8 direct relationships identified,
7 were aggregations (relaxing the composition definition) and 1 was a one-to-one
relationship (not an aggregation).

5 http://isg.inesc-id.pt /alb /ProjectIT.
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Fig. 7. Case Study A - domain model of the project dimension (adapted from [17]).

Table 2 shows the results of applying the aggregation rules using the XIS-
Reverse. These results are analyzed bellow, in each of the configuration scenarios.

Furthermore, to support each scenario, Table 3 presents the overall picture
of the extracted elements.

Scenario A: Extraction Without Configuration. In this scenario, we only
used the minimum required configurations, namely select the root node package,
provide the database name and select database access to enhance the specifica-
tions. With that, our aim was to extract and analyze of the simplest scenario
used with the XIS-Reverse, and then to compare the obtained results with the
scenarios that use configurations (Scenario-B and Scenario-C).

The first execution of this configuration scenario allowed to identify a problem
in our approach, namely the identification of many-to-many associations (rule
E-1 [7]). This problem occurred due to the generic definition of such heuristic
that did not take into account composite primary keys. Moreover, that issue
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Table 1. Case Study A - equivalence between application database and domain model.
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Application database table

Domain model entity

Manual classification

ActivityEffort - Main
ActivityMembers - Association
ActivityProcess Activity Process Main
ActivityProcessSkills - Association
ActivityProject Activity Project Main
ActivityProject Template - Main
ActivityProject TemplateSkills | - Association
Country - Configuration
DisciplineProcess Discipline Process Main
DisciplineProject Template - Main
DocumentProcess Document Process Main
DocumentProject Document Project Main
DocumentProjectTemplate - Main
PrivacyLevel - Configuration
Process Process Main
ProcessDefinition - Main

Project Project Main
ProjectMembers - Association
RoleActivities - Association
RoleProcess Role Process Main
RoleSkills - Association
Skill Skill Configuration
State - Configuration
TimePeriod - Configuration
UserProfile Person Main
UserSkills - Association
WorkPackage Work Package Project | Main
WorkPackageMembers - Association
WorkPeriodProcess Work Period Process | Main
WorkPeriodProject Work Period Project | Main
WorkPeriodProject Template |- Main
WorkProductProcess Work Product Process | Main
WorkProductProject Work Product Project | Main
WorkProductProject Template | - Main
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Table 2. Case Study A - evaluation of aggregation scenarios.

Scenarios Results
Rule-1 Rule-2
True False False True Configs. without |Configs. with
positive |positive |negative negative |aggregations aggregations
A: Without 6 1 1 0 4 1
Configs.
B: M =20 0 0 7 1 5 0
B: M=10 2 1 5 0 5 0
B:M=5 3 1 4 0 4 1
C: Semi-guided |6 1 1 0 5 0

occurred in cases that an entity had at least 2 primary keys (which only one of
them was a foreign key), there was only one attribute and that attribute had
a foreign key constraint. Taking that into account, we redefined that heuristic
(updated listing available on GitHub (see footnote 5)).

After updating that heuristic, a new execution was performed in which 34
XisEntities were found with 45 XisEntity Associations established, from which
42 were classified as aggregations. Regarding our aggregation evaluation Rule-1,
from the 8 direct relationships, 6 aggregations were well identified. However, one
aggregation was misinterpreted as a simple XisEntityAssociation and the one-
to-one relationship was wrongly classified as an aggregation. The first problem
occurred due to the difference of rows’ number of each entity in the database, and
since that difference goes against the rule EA-2-b ([7]) and there is no available
configuration able to correct this problem, this type of issue had to be solved
manually. On the other hand, the second problem was due to the absence of
a Unique Index property in that foreign key, which was probably forgotten or
relaxed.

Moreover, following Rule-2, from all configuration entities, only the Skill
entity had aggregation associations with main or association entities. This can
be solved by classifying this entity as Simple Principal Entity during the config-
uration stage.

There were no many-to-many associations identified, neither explicit gener-
alizations. Thus, to improve the quality of the obtained specifications in this
scenario, the main configurations that make sense to explore, in the following
configuration scenarios, are the identification of Simple Principal Entities and
Generalization discovery.

Scenario B: Extraction with Blind Configuration. After the previous
configuration results, the goal in this scenario is toimprove the results using a
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Table 3. Case Study A - overall results of the reverse engineering.

Element /scenario A BM=20BM=10/BM=5|C
XisEntities 34134 34 34 38
XisEntityAssociations 45|45 45 45 45
XisEntity Associations (Aggregations) 4216 13 32 38
XisEntityAssociations (Many-to-many) 010 0 0 0
Explicit subclasses 00 0 0 0
Explicit superclasses 010 0 0 0
Implicit subclasses 00 0 0 8
Implicit superclasses 0|0 0 0 4
XisBusinessEntities 14|31 28 23 15
XisBusinessEntities Master Associations 1431 28 23 15
XisBusinessEntities Detail Associations 4216 13 32 38
XisBusinessEntities Reference Associations | 12 | 36 27 21 13
XisEntityUseCases 1431 28 23 15

trial and error approach. In this section we cover two distinct situations, namely
aggregations and then generalizations.

Aggregation

This situation is focused on the assessment of the obtained results using differ-
ent Simple Principal Entity configurations in a blind way, following the defined
evaluation heuristics.

Regarding the Simple Principal Entities selection menu [7], we started by
using the default value (20) to filter entities by the maximum number of rows
that a table can have in the database. And then selected all those entities.

Moreover, a similar process is used in the following situations but with dif-
ferent numbers. To simplify we denote this number as M.

— M =20 - With this configuration, 6 aggregations were identified. However,
regarding the Rule-1, none of the 6 aggregations that were correctly classi-
fied in the Scenario-A were now correctly identified, thus the number of False
Negatives increased to 7. Moreover, the one-to-one association wrongly iden-
tified as aggregation in the Scenario-A, was not classified as an aggregation
this time. Regarding the Rule-2, none of the configuration entities aggregated
a main entity or an association entity. Due to the low number of identified
aggregations, it only makes sense to test again with a lower M number.

— M =10 - With this configuration, 13 aggregations were found. In terms of
the Rule-1, 2 aggregations were correctly identified, thus the number of False
Negatives decreased to 5. This time, the one-to-one association was wrongly
classified as an aggregation, since this time DocumentProject entity was not
selected as Simple Principal Entity (number of False Positives is 1). Moreover,
following the Rule-2, the result was the same as in the previous test. With
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this new value for M, the number of identified aggregations is still less than
half of the total number of entities. Thus, we will decrease M once again.

— M =5 - With this configuration, the number of aggregations increased to 32.
Following Rule-1, the number of correctly identified aggregations increased by
one, thus there were still 4 aggregations wrongly identified as simple XisEn-
tity Associations (False Negatives). The number of False Positives remained
the same. Regarding Rule-2, this time one entity (Skill) had aggregation asso-
ciations with main or association entities, likewise in the scenario without con-
figurations. Moreover, since the number of entities with 5 or less attributes
(M =5) is only one (Process), it does not make sense to try lower M values,
because the results would be the same as we got in the scenario without
configurations.

With these results, we can say that without domain knowledge about the
ProjectIT-Enterprise, in terms of aggregations, we would get the best result
without using the Simple Principal Entities configuration in a blind way.

However, we think that the tests with this kind of configuration did not
show interesting results, mainly due to the reduced application usage, which was
reflected in the low amount of main entities rows, such as project and process.
And, since our heuristic assumes that the number of rows of aggregated entities
is greater or equal to the number of rows of the entities that aggregate them,
and that the number of rows of Simple Principal Entities is usually a lot smaller,
compared with others, we conclude that this configuration did not benefit the
obtained results in this case study.

Generalization

This situation is focused on the identification of implicit generalizations and the
assessment of the obtained results. In order to perform this evaluation we will
activate Generalization discovery and use its configuration points [7]. Moreover,
since our generalization evaluation heuristic tries to maximize both the number
of subclasses and the number of inherited attributes, we will use our two options
to aggregate entities (the third configuration in the Generalization Discovery)
every iteration, i.e. every time we change other configuration points.

Table4, summarizes the main results during this evaluation, taking into
account, for each configuration, the number of generated subclasses (a), the
sum of inherited attributes (b) and the application of such values in our eval-
uation function. From Scenario-A we could extract that the maximum number
of subclasses that can be found is 31, and the sum of the maximum number of
attributes that can be inherited is 51, so we can rewrite our function as:

a b
31)+0.5(51) (2)

We started our evaluation by using the default value for the minimum number
of shared attributes (5). And then, from the obtained results we decided which
configuration should be used in the next iteration.

Overall, from the first iteration, we got reasonable results (Reis’=0.18),
namely 4 subclasses and 12 inherited attributes were found. Then, due to a lower

Reis'(a,b) = 0.5(
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Table 4. Case Study A - Scenario B - evaluation of generalization simulations.

Minimum # of Aggregated by | Ignored names Subclasses (a) | Inherited Reis’
shared attributes attributes (b)

5 Attributes - 4 12 0.18
5 Entities - 4 12 0.18
4 Attributes - 4 12 0.18
4 Entities - 5 10 0.18
3 Attributes |- 8 18 0.31
3 Entities - 10 12 0.28
3 Attributes Name, description |4 0.14
3 Entities Name, description |4 0.14
2 Attributes Name, description |6 10 0.19
2 Entities Name, description |8 8 0.21

number of subclasses found, it only made sense to iterate with lower numbers for
the minimum number of shared attributes. We, reduced to 4, and we got slightly
similar results, so we decided to reduce again to 3, from which we got better
results (Reis’=0.31), namely 8 subclasses found and 18 inherited attributes, by
aggregating our entities by the higher number of shared attributes. Then, we
reduced to 2 and a combinational explosion happened, generating no results.
However, we analyzed the inherited attributes from the last configuration suc-
cessfully used, and we noticed that two attributes (“name” and “description”)
were inherited by almost every superclass, which led is to the decision of doing
more iterations, this time ignoring such attributes. During these iterations, the
best result we got (Reis’=0.21) was slightly higher than the firsts we got, but
in no way closer to our best one.

Scenario C: Extraction with Semi-guided Configuration. The main goal
of this scenario is an attempt to improve the results obtained from the two
previous configuration scenarios, by introducing some domain knowledge in the
configuration parameters.

In terms of aggregations, we solely identified the configuration entities as Sim-
ple Principal Entities, from the previously generated Table 1. And as expected,
with that configuration, we got the best results of all the configuration scenar-
ios used, specifically by improving results of Rule-2. As stated before, no matter
how much domain knowledge the user has, the False Negative and the False Pos-
itive problems identified can only be solved manually, since none of the available
configurations can correct such issues.

Regarding generalization discovery, even with a good domain knowledge (e.g.
average number of entity attributes), the user would always need to perform
a similar approach as the blind one, to get good results in terms of implicit
generalizations.
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To get the best results overall, we had to select the known configuration
entities as Simple Principal Entities and activate Generalization Discovery with
at least 3 shared attributes, ordered by the higher number of shared attributes.

4.2 Case Study B: Social Security Application

During this research period, we worked in the TT-MDD-Mindbury/2015 project,
whose main goal was to develop a real-world Social Security application on top
of an existent legacy one. This was a good opportunity to apply our approach
to a real-world application, already with some usage by its users. Due to privacy
concerns for the client and the development company, details about this appli-
cation must be kept confidential. For that reason, the analysis and evaluation of
this case study are not as detailed as the Case Study A, only highlighting the
most relevant results.

This project lasted for 12 months, allowing us to acquire a deep domain
knowledge of this application and such knowledge is used to guide the reverse
engineering process for this application, to reduce the number of iterations. We
evaluate this application based on this knowledge, since the available documen-
tation of this application was outdated.

In terms of its database, this application was designed with 187 tables, and
most of its tables shared a common set of attributes, namely timestamps for
those entities, etc. Thus, using the XIS-Reverse approach to find implicit gener-
alizations (further XisEntityInheritance transformation rule [7]), can easily lead
to a combinatorial explosion.

This evaluation only stresses 3 different configuration scenarios, namely a
scenario without configuration; one blind configuration scenario, selecting every
entity with 20 or less rows as Simple Principal Entity; and a semi-guided con-
figuration scenario, based on the selection of Simple Principal Entities selection
and on Generalization discovery.

Table 5, shows the overall results obtained from these three configuration
scenarios based on the previously defined metrics.

Scenario A: Extraction Without Configuration. We found that many
entities, that we could classify as Simple Principal Entities, were wrongly aggre-
gating main entities and no explicit generalization was found. The obtained
results were not accurate due to said fact and in general were wrong in terms of
aggregations.

Scenario B: Extraction with Blind Configuration. This scenario was exe-
cuted in order to evaluate if a user could get better results by selecting Simple
Principal Entities in a blind way. In this experiment, every entity with 20 or less
rows in the database was selected as Simple Principal Entity (132 entities). With
our domain knowledge, we were able to identify that from those 132 entities, 14
were wrongly selected and 12 Simple Principal Entities were not selected since
they had more than 20 rows (e.g. country). However the quality of the results
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Table 5. Case Study B - overall results of the reverse engineering.

Element /scenario A B |C
XisEntities 168 | 168 | 176
XisEntity Associations 2241224224
XisEntity Associations (Aggregations) 126 138 |21
XisEntity Associations (Many-to-many) 19 (19 |19
Explicit subclasses

Explicit superclasses o 0 |0
Implicit subclasses 0 0 16
Implicit superclasses 0 0 8
XisBusinessEntities 140 | 156 | 161

XisBusinessEntities Master Associations 140 | 156 | 161
XisBusinessEntities Detail Associations 82 123 |15

XisBusinessEntities Reference Associations | 124 | 190 | 215
XisEntity UseCases 140 | 156 | 161

increased drastically since, overall, most of the Simple Principal Entities (around
91%) were well identified using this approach.

Scenario C: Extraction with Semi-guided Configuration. With the
domain knowledge, we had the ability to improve these results even more, by
identifying every Simple Principal Entity (with the help of the available filters,
due to the large number of entities to select). We knew the average number of
attributes per entity and that some entities shared some properties, so we could
reduce the number of iterations to obtain results in terms of implicit general-
izations. With that, following a semi-guided configuration we got better results,
not only in terms of aggregations that made more sense, but also in terms of
implicit generalizations found.

Furthermore, during this research, this case study was used several times to
support the evaluation of the development iterations. One of the issues that we
encountered by using this complex system, besides the time to realize reverse
engineering, was the combinatorial explosion that a Generalization discovery
could easily trigger while comparing every entity and their attributes.

This issue can happen when there are a large number of entities which share
identical attributes, leading to a large set of entities to be compared which can
exponentially increase the amount of time and memory required to find gener-
alizations. During our experiments, the aforementioned combinatorial explosion
was usually stopped due to memory constraints of the EA application (usual
Windows application constraints), which led to a crash of the application. All
facts considered, the only solution to execute this feature in large domains (like
this one), is to ignore some of the most used attribute names.
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5 Interoperability with XIS* Frameworks

In this section, an analysis of the XIS-Reverse interoperability with a XIS* frame-
work is performed, to assess how well both tools can work together. Figure 8 illus-
trates the main goal of this evaluation, which is to successfully use XIS-Reverse
to generate XIS* models given a Legacy Application, and use those models to
generate a New Application using a XIS* framework.

T

Legacy XI1S* models New Application
Application

Fig. 8. Interoperability with XIS* frameworks.

For this evaluation we used the XIS-Web technology [8], since it is the most
recent XIS* technology. In a nutshell, this framework supports the XIS-Web for-
ward engineering process, which is applied to XIS-Web models. This is accom-
plished by following three steps: (1) Models validation; (2) M2M transformation;
and (3) Model-to-Text (M2T) transformation. Step-1 uses a set of rules (built-
in the framework) to validate the XIS-Web models. Then, step-2 generates the
user-interface views, namely the Interaction Space and Navigation Space views.
Finally, step-3 generates the target application’s source code.

To perform this evaluation, we used the most recent version of the XIS-
Web framework 7. Then, using the XIS-Web specifications from the ProjectIT-
Enterprise (Sect. 4.1), that were extracted with the XIS-Reverse tool, we did our
evaluation step by step:

Models Validation - In this step, we got one relevant error in the first val-
idation, namely that XisEntities had to have at least one XisEntityAttribute.
Since this error can easily occur, for example in subclasses, we believe that the
only viable solution for this mismatch is to update the XIS-Web framework in
order to omit this rule. Additionally, to bypass this problem, we added a fic-
titious XisEntityAttribute to those XisEntities and the second validation was
successful.

M2M Transformation - Then we executed the model generation, which suc-
cessfully produced the contents of the Interaction Space and the Navigation
Space views.

M2T Transformation - In this step, we also got an error during code genera-
tion. The error stated that the same file was generated several times, i.e. some
files were overwritten. This problem occurred due to the limitation of the XIS-
Web framework to generate Interaction Space and the Navigation Space views

" https://github.com/MDDLingo/xis-web.
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for XisEntities with many-to-many relationships. Once again, the most logical
solution to this problem is to extend the XIS-Web framework in order to support
that scenario. However, to bypass this problem, we removed each many-to-many
relationship and, for each one of them, we added an association entity (XisEntity
linked to each of those entities through a one-to-many relationship) and after
rerunning the M2T transformation, the M2T transformation was successful.

From these results, we can conclude that we can successfully use the XIS*
specifications generated by the XIS-Reverse tool with the XIS-Web tool. Which
means that it is possible to automate the generation of a new application by
applying those tools to a legacy application.

6 Related Work Discussion

The continuous development of reverse engineering methodologies and tools has
been crucial to mature this topic. More recently, MDE started to be applied to
reverse engineering (MDRE), promoting a more systematic and flexible process.
Likewise, MDRE approaches have been extended in order to completely reengi-
neer a source application into a new target application through model-driven
reengineering techniques.

This section overviews the most relevant research studies, covering data
schema extraction and reverse engineering of databases. Moreover, those con-
tributions are also compared with our approach.

6.1 Data Schema Extraction

The main properties of the research work analyzed in this subsection are shown
in Table 6. This table specifies for each approach, its input, the existence of data
schema extractors, if it extracts all table properties and its output. The last row
categorizes our approach.

Gra2MoL [19] Text-to-Model (T2M) language and MoDisco [3] framework
have been specially tailored for data schema extraction (model injection).

Gra2MoL is a domain specific language (DSL) to write transformations
between any textual artefact which conforms to a grammar (e.g. source code) and
a model which conforms to a target metamodel. On the other hand, MoDisco is a
Java framework intended to facilitate the implementation of MDRE approaches.
Regarding data schema extraction, MoDisco facilitates the implementation of
discoverers (model injectors), and it currently provides discoverers for Java, JSP
and XML. A drawback of both approaches is that they would require the defini-
tion of such transformations and discoverers, respectively, to extract the database
schema.

Schemol [20] is another tool for injecting models.This tool allows injecting
data stored into the database by specifying transformations that express the
correspondence between the source database schema and the target metamodel.

Furthermore, in terms of database model injection (to ease this T2M trans-
formation), it is possible to transform a database schema into a graphical repre-
sentation using a variety of commercial and academic tools. DB-MAIN [21] and
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Table 6. Classification of some related works on data schema extraction (adapted from

[7D)-

Approach Input Output Schema extractors | Properties
Gra2Mol [19] Any textual artefact | Any model | No n.a.
MoDisco [3] Several sources Any model | No n.a.
Schemol [20] Data stored into DB | Any model |No n.a.
DB-MAIN [21] Several sources GER Yes (e.g. ODBC) | Yes
SQL2XMI [22] SQL DDL schema UML in XMI| Yes (only MySQL) | No
EA (XIS-Reverse) | Several sources UML Yes (e.g. ODBC) | Yes

SQL2XMI [22] are two examples of such academic tools. Firstly, DB-MAIN is a
toolbox that supports database reverse engineering, and includes legacy database
schemas extractors, through several sources such as ODBC drivers or SQL files.
Secondly, SQL2XMI is entitled as a lightweight transformation of data models
from SQL Schemas to UML-ER expressed in XMI. To our knowledge, this tool
is still limited compared with DB-MAIN since it does not infer entity types or
cardinalities, and for now it is only compatible with the MySQL implementation
of the SQL data definition language (DDL).

To sum up, given that a set of existing tools already supports data schema
extraction from several sources, without additional specification of transforma-
tions, we took advantage of such tools, specifically EA.

6.2 Reverse Engineering

A reverse engineering approach can be classified in several ways. Table 7 gives
a properties summary of the analyzed research works. These properties include:
analysis type, output, supported XIS-Reverse contributions (A - Aggregations
Extraction, G - Implicit Generalization Extraction and V - Attribute Values
Extraction), existence of tools automating the approach, automation level of
those tools (regards to the reverse engineering stage), and tool extensibility.

Regarding reverse engineering techniques, several approaches have been pro-
posed, which are usually distinguished by the particular application artefact used
as main information source. The most relevant research works, following such
distinction, are described below.

Schema analysis [23] is mainly focused on spotting similarities in names,
value domains and representative patterns. This technique may help identify
missing constructs (e.g. foreign keys). Additionally, the XIS-Reverse approach
was influenced by the manual process specified in [23]. Making possible to semi-
automatically and automatically identify generalizations and many-to-many
associations, respectively.

Data analysis [24,25] uses content mined from a database. Firstly it can be
used to analyze the database normalization and secondly to verify hypothetical
constructs suggested by other techniques. Given the combinatorial explosion that
can affect the first approach, data analysis technique is mainly used with the
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Table 7. Classification of some works on reverse engineering (adapted from [7]).

Approach Analysis Output Contrib.  Tools|Auto.|Ext.
[23] Schema OMT class diagram G No |n.a. |n.a.
[24] Data Extended ER n.a. No |n.a. |n.a.
NoWARs [25] Data Conceptual schema n.a. Yes |Semi |n.a.
RAINBOW [26] Screen ER model. n.a. Yes |n.a. |n.a.
[27] Program (static) Extended ER n.a. No |n.a. |n.a.
[28] Program (static) Object-Oriented class diagram|n.a. No |n.a. |n.a.
[29] Program (dynamic) n.a. n.a. Yes |n.a. |n.a.
[30] Program (dynamic) n.a. n.a. Yes |n.a. |n.a.
Modisco [3] Schema and program (static)]KDM or UML n.a. Yes |Auto.| Yes
Relational Web [31]|/Schema UML n.a. Yes |Auto.|Yes
DB-MAIN [21] Schema and program (static)|GER G Yes |Semi |Yes
XIS-Reverse Schema, data and program |XIS* and RSLingo’s RSL A;G;V  |Yes |[Semi |Yes

purpose of the second approach. In addition, our approach uses this technique
in a similar way, however it is applied to classify associations.

Screen analysis [26] state that user interfaces can also be sources of use-
ful information. These user-oriented views over a database may display spatial
structures, meaningful names and, at runtime, data population and errors com-
bined with data-flow analysis may provide information about data structures
and schema properties; our approach did not consider this kind of analysis.

Static [27,28] and Dynamic [29,30] program analysis can easily give valuable
information about field structure and meaningful names, or identifying complex
constraint checking and foreign keys after a complex analysis. A main challenge
of dynamic program analysis is the extraction of highly dynamic interactions
between a program and a database. The analysis of SQL statements is one of
the most powerful variants of source code analysis. Our approach uses static
program analysis in the profiler log file, aiming to classify associations.

Additionally, a set of approaches, concerning the application of MDE, are
also taken into account. Our analysis focused on their injection and reverse
engineering stages.

As previously introduced, MoDisco MDRE framework [3] has a huge poten-
tial regarding the support of reverse engineering activities due to its generic and
extensible properties. Besides its legacy application discoverers (model injectors),
MoDisco also allows the definition of transformations and generators, responsible
for restructuring and forward engineering tasks over the system models, respec-
tively. Our approach could be implemented extending this framework, however
that would require the definition from scratch of all the three stages (discoverers,
transformations and generators) needed to produce the desired artefacts.

Polo et al. propose a method and a tool, called Relational Web [31] specially
designed for database reengineering. The starting point is a relational database,
whose physical schema is reverse engineered into a class diagram representing its
conceptual schema. In the restructuring stage, the class diagram is manipulated
by the user and then passed as input to the forward engineering step. Moreover,
this tool supports the definition of new database managers to be used as input
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and the implementation of new code generators. On one hand, this approach
only uses as input the physical schema, and user knowledge, and its tool does
not take advantage of the existing MDE techniques nor technologies. On the
other hand, this approach defined foreign key’s semantic extraction techniques,
to identify inheritance relationships and associations, that were adapted and
extended by our approach, in order to identify aggregations.

As previously stated, DB-MAIN [21] is a toolbox that offers a complete func-
tionality to apply database reverse engineering. Regarding reverse engineering,
DB-MAIN includes features such as extractors of legacy database schemas, trans-
formations between schemas, data and code analysis tools, among others. This
tool is one of the most mature ones, used for database reverse engineering, mean-
ing that it includes several features that have been the result of a great number
of research contributions from Namur University. DB-MAIN supports a lot of
common transformations and extraction tools thus, a user with such tools can
handle almost any needed transformation to create a good conceptual schema.
However, this tool requires the user to apply all the needed transformations,
meaning that the degree of automation achieved in our approach is higher. Also,
DB-MAIN supports generalization representation, but once again it must be
identified by the user.

Regarding the main contributions of this paper, we do not find any other app-
roach that specializes associations (e.g. distinguishing between associations and
aggregations), nor any approach that allows the extraction of attribute values
and their representation into the target conceptual schema.

7 Conclusion

XIS-Reverse approach allows to automatically extract high-level models and
specifications from legacy applications. This approach benefits from a flexible
set of configuration points and new features not found in prior work, that allows
to produce more detailed models and specifications, that overall will help the
user get a better understanding of the application domain.

In terms of aggregations detection, at least when using a system with a good
amount of data (usage), our heuristics can correctly identify those relationships
and assist the user in obtaining better results by specifying Simple Principal
Entities (with and without domain knowledge).

Regarding implicit generalizations discovery, our approach proved its ability
to extract accurate results. However, it does not benefit much from user domain
knowledge since several experiments with different configurations scenarios must
be executed to find the best results. In the extreme scenario, if the user has a good
understanding of each attribute of each entity, this feature should be disabled,
since the identification of generalizations can easily be done manually.

Although not evaluated, we assume that extraction of attribute values, inde-
pendently of the user domain knowledge level, can benefit the user if values from
certain entity attributes can be extracted, giving him or her a better understand-
ing of the entity role in the domain.
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Overall, the evaluation results of XIS-Reverse’s novel features validate that
XIS-Reverse can increase the knowledge and understanding extracted from a
legacy information system.

Additionally, in terms of interoperability with the XIS-Web framework,
despite the aforementioned errors (Sect.5), which were probably found due to
the size and complexity of the case study, overall, the produced XIS-Web spec-
ifications with the XIS-Reverse tool, are suitable to be used with the XIS-Web
framework.

Regarding future work and considering the extensibility of the proposed pro-
cess, we would like to evaluate the similarity between the combined results of
pipelining XIS-Reverse with XIS-Web processes to generate a new application,
and then compare it with the original legacy application. Additionally, we would
like to extend the XIS-Reverse approach to support new input and output tech-
nologies, include more types of analysis in the reverse engineering process (e.g.
screen), and use a divide-and-conquer approach to manage the complexity of
identifying implicit generalizations (e.g. splitting sets of entities by their schema).
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Abstract. With the growing complexity of embedded systems, a sys-
tematic design process and tool are vital to help designers assure that
their design meets specifications. The design of an embedded system
evolves through multiple modeling phases, with varying levels of abstrac-
tion. A modeling toolkit should also support the various evaluations
needed at each stage, in the form of simulation, formal verification,
and performance evaluation. This chapter introduces our model-based
engineering process with the supporting toolkit TTool, with two main
design stages occurring at a different level of abstraction. A system-level
design space exploration selects the architecture and partitions func-
tions into hardware and software. The subsequent software design phase
then designs and assesses the detailed functionality of the system, and
evaluates the partitioning choices. We illustrate the design phases and
supported evaluations with a Smart Card case study.

Keywords: Virtual prototyping - Embedded systems
System-level design - Telecommunications

1 Introduction

A systematic design methodology with supporting toolkit can help designers with
the modeling and evaluation of the system, and involves supporting multiple
design phases at varying levels of abstraction and different evaluation tools.
The design of embedded systems is complicated by the need to design both its
hardware and software components. Their design methodology can therefore be
separated into two main phases.

A system-level design space exploration divides functions into hardware and
software, based on system performance, safety and security requirements. Next,
the software design phase includes the development of the detailed system func-
tionality, and generation of code. However, since partitioning decisions are taken
at a high level of abstraction — e.g., with highly abstracted hardware components
—, it might be useful to validate — and possibly reconsider — partitioning choices
during the software and hardware development phase.
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Several works of research and tools have addressed system-level partitioning
and evaluation of hardware platforms during the software development stage.
However, the lack of integration between partitioning and system development
makes it difficult to reconsider partitioning choices. Also, it is very common
practice to test/execute software components on the local host, and to integrate
them later on the target. Consequently, errors due to the interaction between
hardware and software are discovered very late in the development cycle — e.g.,
during the integration phase. Unfortunately, these errors may lead to reconsid-
ering partitioning decisions. To minimize time needed for a designer to re-do a
partitioning, a toolkit should ideally minimize the manual work needed to take
in consideration those errors and better connect the two abstraction levels.

Thus, our work focuses on the development of a fully integrated model-driven
approach to handle both partitioning and software development. Our contribu-
tion supports both the selection of candidate hardware and software architec-
tures, and a software development approach that allows designers to evaluate
the relevance of the previously selected architectures early in the development
process. Automated model transformation and verification techniques - formal
verification, simulation, virtual prototyping - are supported for that purpose.
Our contribution presents an easy-to-comprehend methodology integrating these
two stages contained within a single modeling framework (7' Tool) [1]. Previous
work [2] described our design process at multiple levels, but lacked detailed
automated performance analysis regarding performance metrics such as latency.
In Sect.2, we present the related work of other system-level design toolkits.
Section 3 describes our overall methodology. Section4 details the Smart Card
case study that is then used to exemplify the high-level design space exploration
(Sect.5) and the software component design (Sect.6). Finally, we present dis-
cussion and perspectives on future work in Sect. 7.

2 Design Techniques for Embedded Systems

Many frameworks have been proposed for the design of embedded systems.
They offer modeling capabilities at different levels of abstraction and using vari-
ous approaches, such as Platform-Based Design, Model-Driven Engineering, etc.
These tools offers model edition capabilities and can verify models with differ-
ent simulation and verification tools. Some of them also target executable code
generation.

2.1 Design Space Exploration Approaches (with Simulation and
Formal Techniques)

Ptolemy [3,4] proposes a modeling environment for the integration of diverse
execution models, in particular hardware and software components. If design
space exploration can be performed with Ptolemy, its first intent is the simula-
tion of the modeled systems. The co-simulation facility of Ptolemy II is demon-
strated in [5]. Their approach relies on both a System-C architecture model and
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a functional model. The paper describes how to use different abstraction levels
to model systems.

Virtual prototyping of MPSoC is often hampered by slow simulation. Among
approaches generating SystemC code, the virtual prototyping of [6] generates
code for the TLM (transactional) level, which is more efficient to simulate but
less detailed. A team from KIT [7] proposes a methodology for fast parallel
simulation, which is based on TLM and though with lost accuracy, even if clock
cycles can be taken into account. MPSoCSim [8], recently presented, proposes
OVP processor models to simulate NoC-based System-on-chip. Bus simulation
is TLM2.0 based. We chose to perform our simulations on cycle accurate bit
accurate level and use a simulator based on fully static scheduling [9], which
makes it 10 to 20 times faster than the SystemC event-based simulator.

Capella [10] relies on Arcadia, a comprehensive model-based engineering
method. It is intended to check the feasibility of customer requirements, called
needs, for very large systems. Capella provides architecture diagrams allocating
functions to components, and advanced mechanisms to model bit-precise data
structures. Capella is however more business focused, and lacks formal verifica-
tion capabilities.

In POLIS [11], applications are described as a network of state machines.
Each element of the network can be mapped on a hardware or a software node.
This approach is more oriented towards application modeling, even if hardware
components are closely associated to the mapping process. Metropolis [12], an
extension of POLIS, targets heterogeneous systems, and architectural and appli-
cation constraints are closely interwoven. Metropolis is based on a meta-model
of a network of concurrent objects, with a formal semantics. Applications are
described in detail and simulated with the help of instruction set simulators
(ISS). This approach is more oriented towards application modeling, even if hard-
ware components are closely associated to the mapping process. While our app-
roach uses Model-Driven Engineering, Metropolis uses Platform-Based Design.

Sesame [13] proposes modeling and simulation features at several abstrac-
tion levels for Multiprocessor System-on-Chip architectures. Pre-existing virtual
components are combined to form a complex hardware architecture. Models’
semantics vary according to the levels of abstraction, ranging from Kahn pro-
cess networks (KPN [14]) to data flow for model refinement, and to discrete
events for simulation. Currently, Sesame is limited to the allocation of process-
ing resources to application processes. It models neither memory mapping nor
the choice of the communication architecture.

The ARTEMIS [15] project originates from heterogeneous platforms in the
context of research on multimedia applications in particular. It is strongly based
on the Y-chart approach [16]. Application and architecture are clearly separated:
the application produces an event trace at simulation time, which is then read in
by the architecture model. However, behavior depending on timers and interrupts
cannot be taken into account.

MARTE [17] shares many commonalities with our approach, in terms of
the capacity to separately model communications from the pair application-
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architecture. However, it intrinsically lacks a separation between control and
message exchange. Even if the UML profile for MARTE adds capabilities to
model Real Time and Embedded Systems, it does not specifically support archi-
tectural exploration. Other works based on UML/MARTE, such as Gaspard2
[18], are dedicated to both hardware and software synthesis, relying on a refine-
ment process based on user interaction to progressively lower the level of abstrac-
tion of input models. However, such a refinement does not completely separate
the application (software synthesis) or architecture (hardware synthesis) models
from communication.

Saxena and Karsai [19] introduce an abstract design space exploration frame-
work, and its integration into design space exploration solvers, thus paving the
way for customized embedded systems explorations. They define metrics (e.g.,
memory size) that are related to WCET. On the contrary, DIPLODOCUS does
not assume any WCET, but closely evaluates possible scenarios with simulation
and formal verification techniques.

The capacity of languages and models to support abstractions for designing
embedded systems is discussed in [20]. In particular, MARTE is evaluated against
the Y-Chart scheme. Our papers enhances their discussion with the refinement
between two abstraction levels (partitioning and prototyping).

2.2 Code Generation Approaches

Rhapsody [21] can automatically generate software, but not hardware descrip-
tions from SysML. MDGen from Sodius [22] adds timing and hardware specific
artifacts such as clock/reset lines automatically to Rhapsody models, generates
synthesizable, cycle-accurate SystemC implementations, and automates explo-
ration of architectures.

The Architecture Analysis & Design Language (AADL [23]), a standard from
the International Society of Automotive engineer (SAE), allows the use of for-
mal methods for safety-critical real-time systems in avionics, automotive among
other domains. It comprises a textual and a graphical representation but does
not a priori contain tool support for code generation, even if specific contribu-
tions proposes code generator for specific domains, e.g. for avionics systems. In
that case, the generated code can be executed for within a specific platforms, for
instance for ARINC653 systems. Similar to our environment, a processor model
can have different underlying implementations and its characteristics can easily
be changed at the modeling stage. Recently, [24] developed a model-based for-
mal integration framework which endows AADL with a language for expressing
timing relationships.

Bombieri et al. [25] propose a method ranging from system specification to
code generation, with an intermediate HW /SW partitioning stage. Their method
is compliant with SW components, device driver generation, a software wrap-
per — e.g., to handle interrupts — and High-level synthesis for HW components.
While being more advanced on code generation issues, simulation and formal
verification, as well as iterations between partitioning and prototyping is not
addressed as deeply as in our contribution.
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Batori [26] proposes a design methodology for telecommunication applica-
tions. From use cases, the method proposes several formalisms to capture the
application structure (“interaction model”) and behavior (Finite State Machine)
and for its deployment from which executable code can be generated. The plat-
form seems limited to specific components (“Runes component”) — we could
call it Specific Platform-Based design — and no design exploration seems possi-
ble. Additionally, the code generation process targets a real platform, and not a
prototyping environment.

As we explain in the next section, our approach combines both HW/SW
partitioning and software development and prototyping, with formal verification
and simulation offered for most views and abstraction levels, including safety,
performance and security evaluation.

3 Methodology

3.1 Modeling Phases

The advantages of our methodology lie in its support of multiple phases of
the design process, and its ability to evaluate a design with a diverse range
of tools. These advantages have allowed our methodology to be applied for the
modeling of a wide range of real-world systems, including automotive systems,
telecommunications, security protocols, etc. [27-29]. Our method relies on a set
of UML/SysML views supported with the same environment/toolkit (as shown
in Fig. 1. The method is organized as follows:

1. Partitioning Functional view Architecture view
with & N = | i

Design Space ﬁ =1

Exploration o

K techniques
' (DIPLODOCUS)
L}

1 Reconsideration

1+ of partitioning Hardware
decisions model
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| 2. Software
', Design and Abstractions Hardware
* Prototyping design

(AVATAR) = P Ny

Simulation L Abstractions
L‘ Final software code

Formal verification E
VHDL/Verilog
Fig. 1. Overall approach.

and simulation

1. We start with system-level hardware/software partitioning based on design
space exploration techniques. This phase contains three sub-phases: modeling
of the functions to be realized by the system (“functional view”), modeling
of the candidate architecture (“architecture view”) expressed as an assem-
bly of highly abstracted hardware nodes, and the mapping phase (“mapping
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view”). A function mapped over a processor is considered a software function.
On the contrary, a function mapped over a hardware accelerator corresponds
to a custom ASIC. At this stage, we are concerned mostly with how com-
munications and function affect the performance of a mapping, so we do not
need to concern ourselves with the exact behavior of internal task behavior
or contents of communications. Logical communication between functions are
also expected to be mapped on a “communication path” consisting of buses,
bridges, memories, Direct Memory Access controllers, networks-on-chip, etc.

2. Once a mapping has been decided, i.e., the system is fully partitioned between
software and hardware functions, the design of the software and the hardware
can start. Our approach offers software modeling while taking into account
hardware parameters. Thus, a software component view is used to build the
system software architecture and behavior, and a deployment view displays
how the software components relate to the hardware components. The model
of software and hardware components is more refined than in partitioning,
which means that simulations and proofs are much more complex and take
more time.

TTool [1], a free and open-source toolkit, supports the entire method with
SysML diagrams. TTool includes UML/SysML diagram editors, compilers to
perform model-to-specifications transformations, model-checkers and simulation
engines.

3.2 Simulation, Verification and Prototyping

During the methodological phases, simulation and formal verification help to
determine if safety, performance and security requirements are fulfilled. TTool
offers a press-button approach for performing these proofs. Model transforma-
tions translate the SysML models into an intermediate form that is sent into
the underlying simulation and formal verification toolkits - some of them are
built into TTool, while others are third party toolkits. In all cases, backtrac-
ing to UML/SysML models is performed to better inform the users about the
verification results.

During functional modeling — our highest abstraction level — verification
intends to identify general safety properties (e.g., absence of deadlock situations).
At the mapping stage, verification intends to check if performance and security
requirements are met. As researchers demonstrate the increasing number of hacks
on embedded systems, it becomes important to detect their security flaws before
mass-production. The security of communications depends on the architecture,
as we explain in Subsect. 6.2.

During software design, software components can be verified independently
from any hardware architecture in terms of safety and security. For example,
when designing a component implementing a security protocol, the reachability
of the states and absence of security vulnerabilities can be verified. TTool support
for integrated formal verification tools helps a designer ensure the safety and
security of his/her design.
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When the software components are more refined, it becomes important to
evaluate performance. Since the target system is commonly not yet available,
our approach offer two facilities. (i) A deployment view is used to map software
components over hardware nodes. Their semantics is much more concrete — i.e.,
less abstract — than the one used for partitioning. (ii) A press-button approach
can transform the deployment view into a SoCLib specification built upon virtual
component models [30].

SoCLib is a public domain library of models written in SystemC, targeting
shared-memory architectures based on the Virtual Component Interconnect pro-
tocol [31]. Hardware is described at several abstraction levels: TLM-DT (Trans-
action level with distributed time), CABA (Cycle/Bit Accurate), and RTL (Reg-
ister Transfer Level). SoCLib also contains a set of performance evaluation tools
[32,33]. CABA level simulation allows measurement of cache miss rates, latency
of memory accesses and of any transactions on the interconnect, fill state of
the buffers, taking/releasing of locks etc. in the context of video streaming and
telecommunication applications [33].

A variety of low level performance measuring tools exist for SoCLib, as
described in [32,34]. However, such approaches are purely based on simulating
on the virtual prototype i.e. at a low level of abstraction, and lack the possibility
to formally verify the application model and give it precise semantics. Moreover,
they are more accessible to researchers than to engineers, nowadays very much
at ease in the UML/SysML world. Hardware elements — i.e. topcells — are either
described by hand, which is error-prone, or generated, making them not easily
readable.

Since SoCLib hardware models are much more precise than partitioning mod-
els, precise timing and hardware mechanisms — e.g. cache miss — can be evaluated.
If the performance results differ too greatly from the results obtained during the
design space exploration stage — e.g., a cache miss ratio — then, the design space
exploration shall be performed again to assess if the selected architecture is still
the best according to the system requirements. If not, the definition of software
components may be (re)designed. Once the iterations over the high-level design
space exploration and the low level virtual prototyping of software components
finished, software code can be generated from the most refined software model.

reset, pTS|

SmartCard

TCP_CTRL

+ a: Natural;
+ state : Natural;

InterfaceDevice

+ resetType = 0 : Natural;
+ x = 0: Natural;
+i=0: Natural;
+ nbOfCompPckts : Natural;

temp|

+ x = 0 : Naturai;
+ tepetrl : TCP_CTRL;

Fig. 2. Functional view (DIPLODOCUS) of the SmartCard application.
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4 Case Study

Our methodology is illustrated by a “Smart Card” application. The smart card
is meant to be plugged into a reader that exchanges information with the interior
of the application by TCP formatted packets. The data transfer can be aborted,
for example, because the smart card was unplugged. The reader (InterfaceDe-
vice) signals the smart card to start, while the smart card controller handles
the initialization of the other functions (e.g., the application and the network
stack). In the next sections, we present modeling and analysis of the Smart Card
application at the different design phases.

5 Partitioning with DIPLODOCUS

5.1 Models

The HW/SW partitioning phase, implemented in the DIPLODOCUS profile of
TTool, models the abstract, high-level functionality of a system [35] and gen-
eral architecture. It follows the Y-chart approach (as shown in the upper right
section of Fig. 1), first modeling the abstract functional tasks (Application View),
candidate architectures (Architectural View), and finally mapping tasks to the
hardware components (Mapping View) [16]. Before the next stage, simulation
and formal verification ensure that our design meets performance, behavioral,
and schedulability requirements.

Application Modeling, Architectural Modeling, and Mapping are presented in
detail in the rest of this section, using the smart card application as an example.

Figure 2 displays the functional view built upon 5 functional blocks: Inter-
faceDevice represents the interface with the reader and the internals of the smart
card. SmartCard features the main controller. Application mostly models data
exchanges that can occur with the reader. TCPIP and its Timer model the
network stack. Exchanges between blocks are modeled with events, requests and
data exchanges.

Application View. The Application View comprises of a set of communicating
tasks, as shown in Fig. 2. The behavior of tasks is described abstractly. Functional
abstraction allows us to ignore the exact computations and data processing of
algorithms, and considers only computation complexity and data transfer size.
Each individual task describes its abstract functional behavior using communi-
cation operators, computation elements, and control elements. Data abstraction
allows us to consider only the size of data sent or received, and ignore details
such as type, values, or names. On the Component Design Diagram, an extension
of the SysML Block Instance Diagram, the designer specifies the list of tasks,
and within the task, attributes and ports indicating communication.

Architectural View. The architectural model (consider only hardware com-
ponents of Fig. 3, i.e. without the artifacts) displays the underlying architecture
as a network of abstract execution nodes, communication nodes, and storage
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nodes. Execution nodes consist of CPUs and Hardware Accelerators, defined by
parameters for simulation. All execution nodes must be described by data size,
instruction execution time, and clock ratio. CPUs can further be customized
with scheduling policy, task switching time, cache-miss percentage, etc. Figure 4
shows processor parameters. Communication nodes include bridges and buses.
Buses connect execution and storage nodes for task communication and data
storage or exchange, and bridges connect buses. Buses are characterized by their
arbitration policy, data size, clock ratio, etc., and bridges are characterized by
data size and clock ratio. Storage nodes are Memories, which are defined by data
size and clock ratio.

Mapping View. Mapping partitions the application into software and hard-
ware and also specifies the location of their implementation and of their com-
munication on the architectural model. A task mapped onto a processor will
be implemented in software, and a task mapped onto a hardware accelerator
will be implemented in hardware. The exact physical path of a data/event write
may also be specified by mapping channels to buses and bridges. More complex
communication schemes can be modeled with another view, which is part of
recent work [36]. The mapping of Fig. 3 shows that the InterfaceDevice is mapped
to a specific hardware execution node, while TCPIP, SmartCard and Application

<<CPURR>> <<CPURR>>
CPU2 <<MEMORY>> CPUO
Memory0 AppC::TCPIP
——— T
<<C(E:Hl|}]|:-{>> ] <<BUS>> _AppC::SmartCard ’
AppC::InterfaceDevicej Bus0 AppC::AppIicationlj

Fig. 3. Mapping view (DIPLODOCUS).
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B Save and Close | . Cancel ‘

Fig. 4. Adapting processor parameters in DIPLODOCUS.
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are mapped to a general purpose processor - actually, the main microcontroller
of the smart card. Also, the timer is implemented with a dedicated execution
node.

5.2 High-Level Simulation and Verification

Simulation of DIPLODOCUS partitioning specifications involves executing tasks
on the different hardware elements. Each computation transaction executes for
a variable time depending on execution cycles, CPU parameters and bus/mem-
ory behavior when transactions require data exchanges. The simulation shows
performance results like bus usage, CPU usage, execution time, etc. Results are
backtraced to the different views, with an example shown in Fig.5. One can
notice the high average load of the main microcontroller (91%). Also, TTool can
generate a ved trace to view detailed bus/CPU activity in gtkwave of a single
execution sequence. TTool can also assists the user by automatically generating
all possible architectures and mappings, and summarizes performance results of
each possible mapping. Users are provided with the “best” architecture under
specified criteria, such as minimal latency or bus/CPU load.

For a given mapping, the user can also generate the system reachability
graph. The entire graph along with an enhanced excerpt is given in Fig.6. All
paths are terminated with a red state. The last actions before each red or ter-
mination state specifies the number of cycles corresponding to the path leading
to that termination state. For example, the termination state “84” is preceded
by an action “allCPUsTerminated<166>" which means that this system path
contains 166 cycles.

TTool also makes it possible to list all termination or deadlock states (see
Fig. 7): the graph contains 10 terminations states with a duration in number of
cycles ranging from 20 to 247. In the shortest path, the connection was aborted
after a few exchanges. On the contrary, in the longest execution path, the smart
card exchanges several TCP packets. These timings are to be confirmed with
more concrete software and hardware components in the design stage.

CPURR 0%
== CPU2 - — <<CPURR>>
ST <<MEMORY>>
AppC::Timer 3 Memory0
\ 22%
<<CPURR>>
CPUL <<BUS>>
B BusO AppC::Application D

Fig. 5. Load of CPUs and buses after a simulation.
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Fig. 6. Reachability graph of the mapping view. (Color figure online)

6 Software Design with AVATAR/SoCLib

Once partitioning is complete, the AVATAR methodology [37] allows the user to
design the software, perform functional simulation and formal verification, and
finally test the software components in a virtual prototyping environment. Where
partitioning models represent an algorithm as an abstract execution spanning
a duration, the software design models details of algorithms, including their
attributes, int/float operations, control operators, etc.

@ shortest Paths r @ Longest Paths I
@ Generalinfo. | @ statistics ||_® Deadlocks |

States {origin, action)
108 (107, i{allCPUsTerminated=211=}} |[0] --i{CPUl O
116 (115, i{allCPUsTerminated=166>}) |[0] --i{CPUL O
138 (137, i{allCPUsTerminated=131=}) |[0] - i{CPUl_0O_ AppC
155 (154, i(allCPUsTerminated=23=))  |[0] - i{CPUl_0_ AppC
161 (160, i{allCPUsTerminated=20=)) [0] --i{CPUl_O_ AppC,
Q
Q
Q
a
Q

AppC
AppC

60 (59, i{allCPUsTerminated=247=]) [0] - i{CPUL AppC
68 (67, i{allCPUsTerminated=195=)) [0] —-i{CPUL AppC
76 (75, ifallCPUsTerminated<=166=)] [0] --i{CPUL AppC.
84 (83, i{allCPUsTerminated=166>)) [0] --i{CPUL AppC
92 (91, i{allCPUsTerminated=166=)) [0] - i{CPUL AppC

Fig. 7. List of termination states in the reachability graph. The number of cycles on
each path is given along with the last action before a termination state.
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6.1 Software Components

Figure 8 shows the software components of the smart card case study modeled
using an AVATAR block diagram. These modeling elements have been selected as
software elements during the previous modeling stage (partitioning). Software
components are grouped into the different applications running on the Smart
Card using a hierarchical block called SmartCard.

— Interface Device initiates the connection and then communicates with the
Smart Card.

— SmartCard Controller manages communication between the Interface
Device, application, and TCPIP.

— Application communicates with the TCPIP application and sends and
receives packets.

— TCPIP manages the TCP connection.

— TCPPacketManager manages packet transmission and storage.

The AVATAR model can be functionally simulated using the integrated simu-
lator of our toolkit, which takes into account temporal operators but completely
ignores hardware, operating systems and middleware. While being simulated, the
model of the software components is animated. This simulation aims at identify-
ing logical modeling bugs. Figure9 shows the state machine of the Smart Card
Controller, and Fig. 10 shows a visualization of a generated sequence diagram.
Also, a reachability graph can be generated and analyzed.

6.2 Formal Verification

As previously described, TTool includes its own formal verification tools to e.g.
generate a reachability graph, minimize the graphs, and check if a given reach-
ability of liveness property is satisfied.

Alternatively, UPPAAL [38] may also be used from TTool to evaluate safety
and liveness properties. UPPAAL is a a model checker for networks of timed
automata, the behavioral model of a system to be verified is first translated
into a UPPAAL specification to be checked for desired behavior. For example,
UPPAAL may verify the lack of deadlock, such as two threads both waiting for
the other to send a message. Behavior may also be verified through “Reachabil-
ity”, “Leads to”, and other general statements. The designer can indicate which
states in the Activity Diagram or State Machine Diagram should be checked
if they can be reached in any execution trace. “Leads to” allows us to verify
that one state must always be followed by another. Other user-defined UPPAAL
queries can check if a condition is always true, is true for at least one execution
trace, or if it will be true eventually for all execution traces. These statements
may be entered directly on the UPPAAL model checker, or permanently stored
on the model as pragma to be verified in UPPAAL.

For example, for our case study, we can verify that the TCP Packet Manager
is capable of sending the storePacket signal, that the Application can abort and
thereby stop, and the Smart Card Controller can send a packet. Figure 11 shows
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Fig. 8. Avatar block diagram.
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Fig. 9. High level simulation: annotated automaton.

the UPPAAL verification window which allows the user to customize which
queries to execute, and then returns the results regarding whether each query is

satisfied or not. In our example, the three states we queried are all reachable.

Formal verification of security is performed using ProVerif, a verification tool
operating on pi-calculus specifications [39]. A ProVerif specification consists of
a set of processes communicating on public and private channels. Processes can
split to create concurrently executing processes, and replicate to model multiple
executions (sessions) of a given protocol. Cryptographic primitives such as sym-
metric and asymmetric encryption or hash can be modeled through constructor
and destructor functions. ProVerif assumes a Dolev-Yao attacker, which is a
threat model in which anyone can read or write on any public channel, create
new messages or apply known primitives.
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Fig. 10. High level simulation: generated sequence diagram.

ProVerif verifications query the properties of reachability, confidentiality, and
authenticity. Reachability of an element (within the Activity Diagram or State
Machine) determines if there exists an execution trace of the model in which
this element is reached. Confidentiality of data refers to if the attacker can
recover that data by listening and sending messages, and performing computa-
tions. Authenticity determines if the data received during a message exchange
is necessarily the same as the data sent.
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Formal verification with UPPAAL
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Fig.11. UPPAAL formal verification.

In DIPLODOCUS models, security modeling and verification determines the
security mechanisms required to secure critical data based on an architecture
and mapping, and also impact on performance due to the added security. Cer-
tain architectural buses can be modeled to be accessible to an attacker. Abstract
security operators then model the encryption/decryption of channel data and the
impact of security on performance. Recent work [40] describes how the architec-
ture and mapping selected during HW/SW Partitioning affects the security of
communications, and security-related operations impacts the safety and perfor-
mance of a system.

AVATAR models describe the detailed implementations of security mecha-
nisms, and verifies the security of critical attributes [41]. The security verification
determines the confidentiality of keys and specific attributes, the authenticity of
encrypted exchanges over public channels accessible to an attacker, and the abil-
ity of a encryption algorithm to terminate correctly.

6.3 Prototyping

To prototype the software components with the other elements of the desti-
nation platform (hardware components, operating system), a user must first
map them to a model of the target system. Mapping can be performed using
the new deployment features introduced in [27]. Our toolkit thus supports use
of AVATAR Deployment Diagrams. It features a set of hardware components,
their interconnection, tasks, and channels.

In the partitioning phase, an architecture with two CPUs was selected. Tasks
destined to become software tasks are mapped onto the CPUs, which is the case
for all tasks in our example; it is also possible to realize other tasks as hard-
ware accelerators. Now, in the prototyping phase, things are different since the
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Fig.12. Smart card deployment diagram.

AVATAR models includes only software tasks that are thus mappable only on
general-purpose processors. Consequently, each hardware accelerator of the pro-
totyping platform in SoCLib needs to be specifically developed. Which requires
a significant effort. We do not consider that case because the smartcard is fully

software implemented.
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If the user has to explicitly model several properties pertaining to mapping,
e.g. CPUs and memories parameters, the simulation infrastructure and interrupt
management are added transparently to the top cell during the transformation

into a SoCLib platform.

) san

@ cose |

AVATAR/SoCLib prototyping environment in TTool.
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Figure 12 shows the Deployment Diagram, containing two CPUs, one memory
bank and one TTY. The InterfaceDevice block is mapped onto CPU1, and the
other five blocks are mapped onto CPUOQ. Each signal between AVATAR blocks
is translated into a software channel mapped to on-chip RAM (for more detail,
see [42]). In the case study, there are twenty-nine such signals, translated into
twenty-nine SoCLib channels, which are all mapped on the single RAM, also
containing the AVATAR runtime and the operating system.

From the Deployment Diagram, a SoCLib prototype is generated as described
in [27]. This prototype consists of a SystemC top cell, the embedded software in
the form of POSIX threads compiled for the target processors, and the embedded
operating system [43]. Figure 13 from [2] shows an overview of the prototyping
tool, with the simulation trace, code generation, and SocLib windows, and model
in the back.

CPU attributes

CPU name: [cPu1

Nb Of IRQs R

Nb of inst. cache ways: ‘2

Nb of inst. cache sets: 16 |

Nb of inst. cache words: ’47

Nb of data cache ways: ]

Nb of data cache sets: 16

Nb of data cache words: ’47
E\ Save and Close | . Cancel

Fig. 14. Panel for varying cache associativity in SoCLib prototype.

6.4 Capturing Performance Information

We now show how performance information can be obtained by running simula-
tions with the SoCLib virtual prototype of the SmartCard use case. The exper-
iments shown here use a MP-SoC based on two general purpose PowerPC 405
processor cores running with 800 MHz. Later on, we plan to rely on a microcon-
troller, which would be more realistic for the SmartCard example. As a central
interconnect, we use the VCI Generic Serial Bus (VGSB).

Although accelerated using the technique described in [9], the cycle accurate
bit accurate (CABA)-level simulation is quite slow. It allows however detailed
measurement of per-processor cache miss rates, latency of any transaction on the
interconnect, etc. Since SoCLib hardware models are much more precise than
the ones used at the design space exploration level, precise timing of the use of
hardware mechanisms such as locks can be evaluated. However, these evaluations
take considerable time compared to high-level simulation/evaluation.
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As previously stated, the SoCLib prototype allows a designer to evaluate
each processor separately, which is particularly useful for detecting unbalanced
CPU loads, indicated by the Cycles per Instruction (CPI) metric.

In the following three paragraphs, we investigate three performance metrics:
CPI, cache misses and latencies.

CPI. An overview of performance problems can be obtained using the num-
bers of Cycles per Instruction (CPI). It represents all phenomena that can slow
down execution of instructions by the processors, such as memory access latency,
interconnect contention, overhead due to context switching, etc.

Using these metrics, we can observe that CPUO has a high average load — this
issue was similarly noticed during the partitioning stage. Figure 15 shows that
this CPU is far more challenged than CPU1 containing only the InterfaceDe-
vice. The reason for this is due to the fact that implementing the semantics of
synchronous channels requires a central request manager. Requests are stored in
waiting queues for synchronous communications, in order to be canceled when
they became obsolete. Requests that observe a delay before execution have to
be waken up. Future work will address a better distribution of this functionality,
called the AVATAR runtime, over the entire MPSoC architecture.

We also observe that adding cache associativity does not automatically
improve the CPI. The application is characterized by an uneven mixture of
small accesses (for example, open or abort signals which take one byte), and
accesses to data of packet type which, as can be seen in the Data Type Block of
the Block Diagram of Fig. 8, are composed of eight integers.

cpuO 8 sets —+—
cpul 8 sets —x—

3.5 cpuO 4 sets -
T cpul 4 sets
O cpuO 2 sets
3 cpul 2 sets —O—

cpu0 1 set —@—
cpul 1set —A— |

mio. simulation cycles

Fig. 15. CPI measured at CABA level.

Cache Misses. One important parameter of the CPU used in DIPLODOCUS
partitioning is the overall cache miss rate, which is initially estimated to be
18% in DIPLODOCUS (see line Cache-miss in Fig.4). While the estimate of
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cache misses includes both data and instruction cache misses, we measure them
separately. Instruction cache miss rates will be higher for the cache of CPUOQ
because the central request manager runs on this CPU, as noted in the previous
paragraph.
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Fig. 17. Instruction cache miss rates measured at CABA level.

We vary associativity of both caches for the same cache size. Figure 14 shows
the processor parameters of the Deployment Diagram. Parameters are the degree
of associativity (instruction/data cache ways, in the Figure set to 2), the number
of lines in the cache (instruction/data cache sets, here set to 16) and the number
of words in a line (instruction/data cache words, here 4). Figure 16 shows the
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data cache miss rates, and Fig. 17 shows instruction cache miss rates for set
associativities of 1, 2, 4 and 8, using the same overall cache size, and same block
size.

We observe clearly that from two cache sets onwards, cache misses are divided
by two. The improvement is still around 30% for the instruction cache; we also
note that CPU1 is much less challenged, as already shown for the CPI. In the
worst case of a direct mapped cache, we have an instruction cache miss rate of
25% on the cache of CPUO, less than 1% for CPU1 (which essentially contains
the interface and has a very small memory footprint). Thus, we can provide
significantly more useful detail for a hardware implementation.

A first exploration presented in [2] for a different case study showed that
cache misses can only be imprecisely estimated at the DIPLODOCUS model.
However, that case study lacked the detailed modeling that we present here,
both at the DIPLODOCUS and the AVATAR level. The Smart Card case study
remedies this shortcoming.

We can now go back to the DIPLODOCUS level and customize the CPU
by adapting the cache miss rate (Fig.4): we were thus able to check that the
partitioning result is still the same.

Latencies. In previous work [2], performance results were limited to those
obtained using the hardware counters of the SoCLib modules. A recent update to
TTool added support for automatically measuring latencies for channel transfer-
s/between events during simulation. Activity elements can be marked as poten-
tial checkpoints on the model.

Events and channels in DIPLODOCUS both translate into signals in
AVATAR. The left side of Fig.18 shows a DIPLODOCUS activity diagram
for the Application task, with two checkpoints set, one on the open and the
send_TCP event. On the right side, it shows the timed automaton of the Appli-
cation block. Again, we place one checkpoint on the open and another on the
send_TCP signal.

The latencies panel of DIPLODOCUS is shown in Fig. 19. Our toolkit allows
the user to choose which checkpoints he or she would like to analyze, and then dis-
plays the minimum, maximum, and average latencies in execution cycles between
those two checkpoints.

On the MPSoC prototype for which the code is generated from AVATAR,
latencies can be determined by hardware counters added to the SoCLib models.
These counters allow identification of the processor that triggered the trans-
fer, but not on which of the communication channels it took place. A recent
improvement integrated the SoCLib logging mechanism presented in [34]. Thus,
the MPSoC platform is enhanced with spies that can record all transfers on
the interconnect, retrieve the names of software objects from the loader, and
match them to the steps of the channel access protocol. This module is added to
the VCI interface and does not impact performance results. Thus, we can now
measure latencies on the MPSoC platform that are due to contentions on the
interconnect, to the time spent waiting to obtain a lock, etc.
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Table 1 shows the latencies for selected channels corresponding to four signals
in AVATAR. While reset, start and open signals have no parameters, fromTtoP
conveys a packet (eight bytes in the case study).

Table 1. Latencies (milliseconds) for DIPLODOCUS simulation and SoCLib proto-
type.

AVATAR signal DIPLODOCUS | MPSoC
Min | Max Min | Max

SmartCardController_reset__InterfaceDevice_reset 2 2 0.56 | 0.64

SmartCardController_start_Application__Application_ 4 4 0.56 | 0.58

startApplication

Application_open__TCPIP_open 4 4 0.56 | 0.59

SmartCardController_fromTtoP__TCPIP_fromTtoP 38 |75 1.6 |1.7
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As these first results show, there is no apparent correlation between
the latency measured on the MPSoC platform and the latency obtained by
DIPLODOCUS simulation. In fact for code generated from AVATAR running
multiprocessor platform, cache effects, contention on the interconnect and others
have to be taken into account. In particular, the storing and retrieving time of
packets varies strongly. We are currently working on establishing correlations
where this is possible, together with even more in-depth performance evalua-
tion. It would be important to extend the latency measurement capability to
AVATAR simulations, which should relate more closely to tests in SoCLib.

Other Performance Metrics. As can be seen in the CPU attributes win-
dow of Fig.4, our toolkit potentially allows a designer to improve estimates of
several more hardware parameters like branch misprediction rate and go idle
time. Channels play a particular role: for asynchronous channels, they may over-
flow or otherwise be empty most of the time, slowing down or even blocking
the application. Dimensioning of the channels is thus an important issue. Better
understanding of the state of communication channels (fill state, evolution of
read and write operations over time etc.) will be achieved by integrating new
performance measuring functionality based on the work described in [32].

7 Discussion and Future Work

Our approach integrates both system-level design space exploration and the
design and prototyping of refined software components in the same toolkit. Using
a Smart Card case study, we show how the different metrics can easily be evalu-
ated at the push of a button in the two abstraction levels. In particular, transfor-
mations of the software component model mapped onto a deployment diagram
help precisely determine the CPI, as well as the finer metrics as cache miss rate
and latencies of the application. From these evaluations, partitioning choices can
be confirmed or invalidated.

We are currently working on a more complete method to determine and
compare performance metrics in particular latencies at the AVATAR and
DIPLODOCUS level and hope to establish correlations. Relating partitioning
and software level simulations may also help us determine the accuracy of the
estimates of execution duration of functions in partitioning.

The close integration of partitioning and software design facilitates the inval-
idation of partitioning decisions. The current backtracing to models assists the
engineer in investigating how to better partition the model or to reconsider
the software components. Ideally, once an invalidation has been encountered, it
would be helpful for the toolkit to automatically suggest another partitioning.
We propose increased automation as part of our future work, to better support
designers between the different stages of the design process.
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Abstract. Cyber-physical Systems are distributed, embedded systems
that interact with their physical environment. Typically, these systems
consist of several Electronic Control Units using multiple processing cores
for the execution. Many systems are applied in safety-critical contexts
and have to fulfill hard real-time requirements. The model-driven engi-
neering paradigm enables system developers to consider all requirements
in a systematical manner. In the software design phase, they prove the
fulfillment of the requirements using model checking. When deploying
the software to the executing platform, one important task is to ensure
that the runtime scheduling does not violate the verified requirements
by neglecting the model checking assumptions. Current model-driven
approaches do not consider the problem of deriving feasible execution
schedules for embedded multi-core platforms respecting hard real-time
requirements. This paper extends the previous work on providing an app-
roach for a semi-automatic synthesis of behavioral models into a deter-
ministic real-time scheduling. We add an approach for the partitioning
and mapping development tasks. This extended approach enables the
utilization of parallel resources within a single ECU considering the ver-
ification assumptions by extending the open tool platform Arp4mc. We
evaluate our approach using an example of a distributed automotive
system with hard real-time requirements specified with the Mechatron-
icUML method.
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1 Introduction

Cyber-physical Systems (CPSs) are executed in physical environments, inter-
act with each other, and are distributed over several Electronic Control Units
(ECUs). Examples of CPSs are modern cars in Car-2-Car and Car-2-X sce-
narios. Often, these systems perform safety-critical tasks under hard real-time
requirements. Heterogeneous hardware architectures consisting of interconnected
multi-core ECUs are increasingly used in order to fulfill the increasing demand
for computing power.

Model-driven development methods like MECHATRONICUML [7] are applied
to develop the embedded software of interconnected CPSs efficiently, correctly,
and to cope with the overall complexity. For this, a Platform Independent Model
(PIM) is developed consisting of a component-based software architecture. For-
mal verification approaches like timed model checking [1] are applied to ensure
the functional correctness of the modeled behavior. Afterwards, the PIM is
refined to a Platform Specific Model (PSM) in order to map the PIM to the
underlying multi-core platform. Especially, a scheduling needs to be derived for
utilizing a multi-core platform efficiently. Moreover, the verified safety and real-
time requirements need to be preserved in the scheduling. However, a systematic
method to derive a feasible multi-core scheduling for interconnected CPSs that
preserves verified safety and real-time requirements by design is missing.

This paper is an extended version of [14]. We present an approach that
enables a step-wise, semi-automatic synthesis of behavioral models into a deter-
ministic scheduling suited for multi-core target platforms and respects safety and
real-time requirements. In addition to [14], we present in this version sophisti-
cated techniques for grouping software parts into executable units (called parti-
tioning) and for assigning these units to the execution cores respecting all real-
time requirements by design. We embed our approach in the MECHATRONICUML
[7] and ApP4MC [2] toolchains and evaluate our results with an automotive
example. MECHATRONICUML provides a modeling language, a development
process, and an FEclipse-based tooling to design software for interconnected
CPSs. App4Mc focuses on the optimization of timing and scheduling in embed-
ded multi- and many-core systems in the context of AUTOSAR [6]. Therefor,
AppP4MC provides and utilizes the AMALTHEA model.

In Fig. 1, we give an overview of our synthesis approach by means of a Busi-
ness Process Model and Notation (BPMN) diagram. The upper BPMN pool
represents the PIM modeling. First, the software architecture of the system is
created (BPMN Task 1). Software components with behavior in terms of stat-
echarts are part of this architecture. The resulting architecture is the input of
our approach. Task 2 is the first contribution of this paper. Here, the so-called
segmentation is applied. In the segmentation, the statecharts are split into small
executable parts that allow parallel execution of the modeled software. Cor-
responding to the AUTOSAR specification [6], we call these parts runnables.
Also, runnable properties like a period for periodic execution are determined
which are essential to ensure semantically correct execution as we show in this
paper. The lower BPMN pool represents the PSM modeling. In Task 3, the
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Fig. 1. Process diagram and contributions (cf. [14]).

generated runnables are automatically allocated to the distributed, intercon-
nected ECUs. This allocation is the second contribution of this paper. In Task 4
and 5, AMALTHEA tasks are created and mapped to ECU cores by means
of App4MC’s partitioning and mapping algorithms, respectively. The detailed
explanation of partitioning and mapping (cf. Sects.3.3 and 3.4) are the main
additional contribution of this long version of the paper. The overall result of
the presented process is a deterministic scheduling that is suited for multi-core
target platforms. In Tasks 2 and 3, we ensure the execution semantics and real-
time requirements of the modeled behavior in the resulting scheduling. This is
the third contribution of this paper.

For illustrating our approach, we use the running example shown in Fig. 2.
The upper part of Fig.2 depicts an autonomous overtaking scenario involving
two cars. The cars communicate to coordinate the overtaking maneuver. In our
example, the overtaker (red) overtakes the overtakee (green) while the overtakee
guarantees that it do not accelerate during the overtaking. This scenario is safety-
critical because an error in the communication can result in an unsafe overtaking
maneuver. We assume that the correctness of the specified software including its
real-time behavior has been formally verified on PIM level by applying model
checking [16].

The remainder of this paper is structured as follows. In the next section,
we introduce the MECHATRONICUML models that are relevant and used for our
synthesis approach. In Sect. 3, we present our segmentation approach. Addition-
ally, we present our allocation approach for interconnected multi-core ECUs. In
Sect. 4, we evaluate our approach. In Sect. 5, we discuss related work. Finally,
we conclude our paper and discuss future work in Sect. 6.
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2 Modeling the Application
In this section, we give an introduction to the MECHATRONICUML modeling

artifacts that we use for the software specification on PIM level. Figure 3 shows
an overview of all used modeling views, artifacts, and their relations.

e [z -

)4
Software Architecture across

multi-core ECUs

Fig. 2. Running example autonomous overtaking (cf. [14]). (Color figure online)

The Component Instance Configuration view shows the software architec-
ture in terms of a compositional component model. In the top part, Fig.3
shows an excerpt of the software architecture realizing the overtaking scenario.
It consists of the component instances overtaker and overtakee. The component
instance overtakee is composed of the instances overtakeeCommunicator and over-
takeeDriver. Component instances have ports that can send and receive typed
messages. Connector instances connect ports and have Quality of Service (QoS)
assumptions like a maximum transmission time. For example, the overtaker sends
the messages request and finished to the overtakee and can receive the messages
accept or decline from the overtakee. Based on the QoS assumptions, the model
checking assumes that messages are transmitted within 100 ms. Furthermore,
component instances can be connected to continuous component instances that
represent sensors and actuators of the CPS. For the reason of comprehensibility,
we omit these components in the diagram.

The component’s behavior is specified in terms of Real-time Statecharts
(RTSCs) which combine UML state machines [27] and timed automata [1].
Figure3 shows the behavior of component instance overtakee. RTSCs can be
composed of so-called regions that again contain state machines. For instance,
CommunicatorRTSC is composed of the regions communicator and internal. The
region communicator represents the behavior of the communication with the over-
taker and is composed of the states init, overtaking, and requested. The region
internal represents the internal behavior of the component instance that takes the
decision whether the overtaking is safe or not and is composed of the states safe,
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Fig. 3. Overview of software development views (cf. [14]).

unsafe, and in progress. RT'SCs may share variables (e.g., velocity in region inter-
nal) and have clocks that measure the time and can be reset to zero within the
statechart, e.g., timeout in the region communicator. Furthermore, each RTSC
has exactly one currently active state. A state may contain an invariant as a real-
time property, which restricts the value of the clock when the state is active. It
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must be guaranteed during runtime that an invariant is never violated, e.g., the
state overtaking has to be left before the clock timeout reaches 50 ms. A tran-
sition may have a guard ([velocity > 100]), time constraints ([timeout > 25]),
a trigger message (trigger /), and a synchronization channel that restricts the
firing (sender channel! /, receiver channel? /). It is enabled, i.e., it is able to fire,
if its source state is active, its guard evaluates to true, its time constraint eval-
uates to true, and its trigger message is stored within the buffer. Furthermore,
some transitions are connected with each other via synchronization channels;
the transition from the state requested to the state overtaking in region commu-
nicator is synchronized with the transition from state safe to overtaking in region
internal via the synchronization channel safe. Thus, these transitions may only
fire jointly.

We assume that RTSCs are executed step-wise, i.e., in each step the outgoing
transitions of the currently active state (and all synchronized transitions) are
evaluated. If a transition is enabled, the transition with the highest priority fires
and the currently activate state gets updated.

3 Software Distribution and Parallelization

In this section, we explain our proposed approach for segmentation and alloca-
tion in more detail. We assume that models for the PIM are already created
and requirements are verified using model checking (cf. BPMN Task 1, Fig.1).
The remainder of this section is structured by following the development pro-
cess as shown in Fig. 1. Afterwards, the Partitioning (Sect.3.3) and Mapping
(Sect. 3.4) approaches are outlined that are used to find a feasible scheduling
for all runnables allocated to an ECU under consideration of diverse constraints
mentioned accordingly.

3.1 Segmentation into Runnables

The segmentation defines which part of the software models are mapped to a
runnable. Runnables are the smallest unit that can be executed by the system
and, therefore, segmenting the PIM into runnables affects the behavior execu-
tion on the target platform directly. Additionally, WCET, period, and deadline
are defined for each runnable. This step is crucial for semantically correct exe-
cution because an invariant might be violated if a runnable is executed too late.
Thus, the segmentation has to fulfill the following requirements. R1: The seg-
mentation has to allow parallel execution. Multi-core environments increase the
performance of a system by using parallelization. Therefore, software has to be
separated into runnables that can be executed in parallel. R2: We aim to gen-
erate as few runnables as possible without degrading the possibility of parallel
execution because with an increasing number of runnables, the complexity of
the partitioning step also increases, which makes it more difficult to find a fea-
sible scheduling and may lead to a decrease in the performance of the system.
R3: Real-time requirements must be fulfilled at runtime. On PIM level, model
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checking techniques are used to ensure the fulfillment of these requirements at
design time. Executing the software on a platform adds further parameters that
have not been considered during the verification step on PIM level, e.g., the
activation due to the concrete scheduling. Thus, a requirement for the resulting
scheduling is to ensure that the semantics of the PIM is respected.

In a first step, MECHATRONICUML software models have to be split into
runnables. RTSCs of the software architecture are the starting point for the
segmentation. The segmentation directly addresses the first and second require-
ment because it defines which parts of the software can be executed in paral-
lel. We propose to generate one runnable per region of every RTSC because it
allows parallel execution of component behavior without increasing the number
of runnables significantly. Furthermore, this segmentation is reasonable because
each port behavior is described in exactly one region. Hence, we generate one
runnable per port behavior and, therefore, the different communication proto-
cols of a component can be executed in parallel. In addition, we generate one
runnable per continuous component that is used to read sensor values periodi-
cally. Executing the runnable for a region executes one step of the corresponding
RTSC, i.e., evaluating and possibly firing outgoing transitions of the currently
active state.

The resulting runnables may have dependencies since they may share RTSC
variables. These dependencies are important for partitioning and mapping
because runnables accessing the same variable are not suitable to be executed
in parallel. Corresponding to AUTOSAR, we call such variables labels. At first,
we define labels and label-accesses of runnables. Furthermore, RTSCs may use
shared variables and real-time clocks, for which labels are generated also. These
label-accesses are specified for every runnable. Figure 4 shows the label accesses
for the example RTSC in Fig. 3.

urren ate o

Communicator|[€ ™ Legend—

[] Label
------- © Runnable

internal
Label
--------- N

internal Inherited

- ---» Label

Fig. 4. Runnables have to specify label accesses (cf. [14]).

Both runnables define a label access to their current state label. The runnable
for region communicator defines a label access to the label for the clock timeout.
The runnable for region internal defines a label access to the variable velocity.

Additionally, both runnables specify inherited label accesses, which are
needed, if synchronization channels are used. Since two transitions have to be
fired jointly, we propose to extend the models and implementation for runnables
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by the possibility to evaluate and fire all synchronized transitions. In Fig. 3, the
transition from state overtaking to init in region communicator are synchronized
with the transition from state in progress to safe via the synchronization channel
done. Hence, both runnables inherit the label accesses from the other runnable.

In a second step, we derive runnable properties. Since these properties
directly affect the scheduling, their correct determination is crucial for preserv-
ing model checking results at runtime. Every runnable has to provide a period,
a deadline, and a WCET that are used for partitioning, mapping, and further
analyses. Our approach provides an automatic technique to determine a period
and deadline for each runnable. Determining a platform-specific WCET is a com-
plex topic and out of scope of this paper. In our approach, we assume that the
WCET for each runnable is determined by an appropriate method (e.g., Simple
Scalar [5] or aiT [13]) and provided as an annotation for each runnable.

The period describes how frequently a runnable is executed. We provide an
automatic technique to determine a period, such that all real-time requirements
are fulfilled at runtime without increasing the processor utilization unnecessarily.
Determining the period has to respect the semantics of the transition conditions,
i.e., guards, deadlines, clock constraints, and invariants. Since a runnable is exe-
cuted periodically, we have to guarantee that it is executed whenever a transition
is enabled.

Based on the transition conditions, we can determine an enabling interval
Ir which describes the time span when a transition is enabled. We determined
a computation rule how Ir can be computed for all combinations of transition
conditions. In general, we define Ip = I,40 — Imin, Where I, is the first
point in time and I,,4; is the last point in time when all transition conditions
validate to true. As an example, consider the combination of a clock constraint
and a state invariant, e.g., the transition from state overtaking to init in region
communicator with priority 1 in Fig. 3. The transition has a clock constraint that
is enabled when the clock timeout is greater than 25 ms. Additionally, the state
overtaking has an invariant that is valid when the clock timeout is less or equal
50 ms. Figure 5 shows the time frames when each constraint validates to true.
Hence, I,,;, is at 25ms and I,,,4, is at 50 ms. Thus, the valid enabling interval
Ig has a length of 25 ms.

— ge—
/ IminT T Imax
Invariant] _ timeout<=50 |
Clock Constraint [ timeout > 25 | «
I I .
25 ms 50 ms time

Fig. 5. Finding the enabling interval of a transition (cf. [14]).

If several clock constraints are used, we can generalize I,,;, to the infimum
of all greater-or-equal constraints and I, to the supremum of all less-or-equal
constraints. Similar to this, we defined for all other transition conditions a similar
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computation. Since guards can depend on sensor values, guards also depend on
the period of the runnable of the corresponding continuous component. Thus,
guards have to be considered in the computation of I,,;, and I,,4z-

It is crucial that the runnable is executed during Ip for each transition
because an enabled transition might become disabled again before firing. Oth-
erwise, the assumptions used during model checking would be neglected. Thus,
based on Ig we determine a period for the runnable. For this, we set the period
to half of the length of the shortest enabling interval I'g. Figure 6 illustrates that
a well-chosen period is essential to guarantee the firing of an enabled transition.
It shows two different cases of the execution for the runnable that handles the
transition of the example above. Each case shows the enabling interval of the
transition, the periodic activation times of the runnable, and the concrete exe-
cution of the runnable. On the left, the period is set to Ig. Here, the enabling
interval of the transition is missed because the transition is evaluated too late.
Therefore, the invariant of the state gets violated. On the right, the period is
set to %E which ensures that the runnable is executed at least once during the
enabling interval because a runnable is executed completely before it is activated

again.

de

Period = Ig Period = 2
Tt artul a
25ms 50ms time 25ms 50ms  time

Leﬁd_‘rransition 4 Runnable g Runnable is

Fig. 6. Length of period affects the execution (cf. [14]).

Since the period 7, has to respect all transitions of the runnable, the period
of a runnable r is defined as the minimum of all period values:

Tp = Min { {mmz(IE)-‘ |V Ig € runnable} , (1)

The current approach is limited to local (within one region) clocks and to clocks
that get reset when entering the state. Otherwise, the enabling interval cannot
be determined precisely. If global clocks should be supported in the future, a
solution could be to apply a reachability analysis to find all possible clock zones.

Every runnable defines a deadline. Similar to the period of a runnable, the
deadline depends on the execution of each transition of an RTSC since every
transition can define a dedicated deadline. Consequently, the runnable has to be
finished before the deadline of the firing transition expires. Thus, the deadline
of a runnable is defined as the minimum deadline of all transitions that are
evaluated by this runnable. If no deadline is specified, we set the deadline to the
period value of the runnable, since the runnable has to be finished before it is
activated again.
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3.2 Allocate Runnables to ECUs

After the segmentation, we have to define which runnable is executed on which
ECU (cf. BPMN Task 3, Fig. 1). Furthermore, hard real-time requirements of
the communication have to be respected.

In the following, we derive two constraints that an allocation of runnables to
ECUs has to fulfill: 1. A constraint regarding a necessary condition for schedu-
lability. 2. A constraint that ensures the maximum time for communication at
runtime. Based on runnable properties, the constraints are used to guarantee
the maximum transmission time and schedulability of the system with regard to
the real-time requirements during the allocation.

When allocating runnables to ECUs, it is required that all ECUs have enough
processing capacity to execute all allocated runnables. The runnables for each
allocated component decrease the available processing capacity of the ECU. We
restrict the allocation regarding a necessary condition for schedulability: The
amount of computing time of the executed software must not exceed the pro-
cessing capacity of the ECU. We define the processing capacity of each ECU core
as 1. For simplicity, we assume that all ECUs use homogeneous cores. Thus, all
cores have the same processing capacity and, consequently, the processing capac-
ity of each ECU is defined as Cgcy = |ECUCores|. The utilization factor of
a runnable U, describes how much percentage of Cgcyp is needed to execute
this runnable. We define U, of runnable r for a specific ECU as U,. = %
where WCET, . is the upper bound of the execution time of runnable r on ECU
e and 7, is the period of runnable r. If the sum of the utilization factors of all
runnables exceeds the processing capacity of the ECU, it is impossible to find
a valid scheduling for a given set of runnables. Hence, this sum has to be less
than the processing capacity of the ECU.

ZrGRunnables(ECU) UT <kx CECU, ke [07 1] (2)
k is a constant factor that can be defined by the developer to adjust this con-
straint for her needs, e.g., to restrict the maximal processor utilization.
Another crucial aspect is the communication time between two components.
The allocation affects the communicating time that is needed for communica-
tion. In MECHATRONICUML, the maximum transmission time is constrained by
the QoS of a connector instance, denoted by Tconrnst, €-8., 100 ms for the com-
munication between component instances overtaker and overtakee in Fig. 3. For
the communication, we assume that each components port behavior (one region
of the RTSC) is executed by one runnable: a sender runnable rg that sends the
message and a receiver runnable rp that receives and processes the message.
Additionally, we assume that a lower layer is used to handle the transmission
of the message from rg to rg, e.g., a middleware. Based on [30], we define that
delivering a message relies on time for generating and sending the message t;,
transmitting it from sender to receiver ti,qns, and queuing it until the receiving
process recognizes the message t,.. Figure 7 illustrates the derivation of g, t¢rans,
and t,.. When a message is sent by rg, we assume that the middleware sends
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the message directly after a task has finished. Thus, the message is processed by
the middleware at least before the runnable is executed again. Hence, ¢, can be
estimated by the period of the runnable 7.

Sender Runnabile rg Receiver Runnable rg
Tt it 1, Tl
t T O e
T L — T “time
tS tlrans tr
Legend
Runnable l Message Runnable
Is Executed Gets Sent Checks Buffer
Runnable TMessa els
Is Activated Put in Buffer

Fig. 7. Upper bound of time for sending and receiving (cf. [14]).

tirans 1S based on the used middleware and the underlying communication
protocol. We assume that an upper bound constant can be statically determined
for each communication channel and used middleware. t, describes the time it
takes from the point in time when the message is put into the message buffer
until runnable rr recognizes the message. Let us assume that the message is
put into the buffer immediately after rr checked the buffer as depicted in the
right part of Fig.7. Hence, in this execution, the message is not received by
the runnable. Since 7y is activated periodically, it has to be finished completely
within the next period interval. Consequently, the time until the message buffer
is checked again by the runnable is smaller than 2 * Ty cceiverrunnable. Hence, we
use this time as an upper bound for ¢, and state the constraint:

Ts + ttrans + 2 % T S TConInst (3)

Both proposed constraints (Egs.2 and 3) are implemented using the allo-
cation approach of MECHATRONICUML [29], which allows specifying allocation
constraints for components, e.g., which components have to be allocated to the
same ECU. Thereby, we introduce additional allocation constraints in order to
realize an automatic allocation of runnables. We use the heuristic that runnables
that belong to the same component instance have to be allocated to the same
ECU because a software component instance has a strong coherence [17]. Hence,
in this step, we still allocate components to ECUs with respect to the runnable
properties.

For each ECU, further actions are needed to refine the models to schedulable
software: A Partitioning of runnables to tasks and Mapping these tasks to ECU
cores such that all constraints are fulfilled (cf. BPMN Task 4 and Task 5, Fig. 1).
Finally, the deployment of the software takes place which includes the generation
of source code for a given multi-core scheduling.

3.3 Partitioning to Tasks

Partitioning in terms of ApP4MC focuses on identifying software tasks that
can potentially run at different processing cores. Therefore, runnables’ activa-
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tion parameters, instructions, and dependencies are considered. Publication [19]
describes the corresponding algorithms. Our experience is that causality, i.e., the
runnable order, is the most influencing criterion for the partitioning process. We
represent the causality by modeling runnable order using directed acyclic graphs.
Due to the specific demands of automotive software the used graph algorithms
are extended. Such demands emerge from either communication technologies,
advanced driver assistant systems, safety and security concepts, architectural
approaches, or diverse design decisions and can often be reflected in specifying
and considering constraints. Example for constraints are, among others, core
affinities, ASIL level references, software component tags, runnable pairings or
separations, or timing constraints. Considering these constraints during the soft-
ware parallelization is a further contribution of this paper.

Legend
Runnables with Normal Cyclic Task containing
periodic ms activation  dependency dependency runnables
— hilg ®)

=

(a) input runnable (b) RDG grouped by (c) RDG with split groups (d) task dependency  (e) TADG Task
dependency graph (RDG) activation periods for 10ms and 20ms graph (TDG) acyclic
formed out of (c) dependency graph

Fig. 8. Example partitioning of a Runnable Dependency Graph (RDG) to a Task
Acyclic Dependency Graph (TADG).

Figure 8(a) shows a typical graph structure of runnables as rectangles and
dependencies as arrows. Figure8(b) depicts the same Runnable Dependency
Graph (RDG) ordered by the runnables’ periods and Fig. 8(c) shows the same
graph whereas runnables for 10 ms and 20 ms are each split once. This partition-
ing can be configured in different ways. Here shown is a strategy to reduce cross
partition dependencies and consider vertical sequences. To maximize parallelism
such that runnables of the same activation rate can be computed on different
cores concurrently, the vertical partitioning that considers sequences and cross
partition dependencies is the prior choice. Another configuration could handle
the topological level of runnables, i.e., horizontal partitioning. This latter case
is preferred if the partitions are assumed to be scheduled sequentially, e.g., due
to the availability of just a few cores. The two different schemes can be con-
figured in ApP4MC and have to be distinguished carefully to avoid unnecessary
inter-communication overheads. Finally, (d) outlines a Task Dependency Graph
(TDG) that contains the runnables from (c¢) with merged dependencies and (e)
depicts the same graph as (d) but without any cycles denoted as Task Acyclic
Dependency Graph (TADG). The mechanism to resolve cycles is described in [3].
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It is important to note here, that B rectangles outline blocking periods due to
shared resources, i.e., labels across cores are already in use by another running
runnable on a different core. (a) further assumes having three cores dedicated
for runnables with a specific period, i.e., core CO for 20 ms, C1 for 10ms, and
C2 for 5ms. However, this model would also be schedulable for 2 cores as shown
in Fig.9 (b).

*
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(a) RMS feasible (with preemption) (b) RMS infeasible |
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Fig. 9. Gantt charts of scheduling for the example that is shown in Fig. 8(e).

In order to have more flexibility in terms of software distribution, partitions
shown in Fig.8(c) are formed and transformed to task graphs as (e). Figure9
provides four different task distribution scenarios (a)—(d) whereas only (d) pro-
vides a solution with no preemption and (a) is only feasible with preemption.
If either task 5 is combined with task 2 or task 3 is combined with task 1, no
feasible schedule can be found. The dashed vertical arrows pointing upwards
outline the release of two or more tasks. The scheduling applied to the shown
executions is rate monotonic scheduling (RMS). Since the periods are harmonic,
the schedulability test

n
w=2
i=1

is sufficient to form schedulable partitions (with C; denoting the runnable’s
instructions, T; denoting the runnable’s activation rate, and n representing the
number of runnables). The schedulability test during the partitioning (without
consideration of the hardware topology) prior to the mapping (including consid-
eration of the hardware topology) ensures valid and coherent solutions in oder
to identify the most effective software distribution scenarios.

The challenge in forming partitions like in Fig.8(c) is not only considering
causality, instructions, and activations, but also the above mentioned constraints.
If, e.g., runnable 15 is paired with runnable 2 due to, e.g., tight functional relation
within the braking system that is not represented by a dependency, partition (2)
would have to be composed differently in order to generate a feasible schedule.
Figure 10 outlines the consideration of runnable pairing constraints via runnable
cumulation.

Any runnable pairing constraint merges the corresponding runnables for the
graph algorithms (cumulation) and decomposes (reconstruction) to the original

Q

t<1 (4)

~
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PrePartitioned Model Cumulation Partitioning Reconstruction Without AffinityConstraints

Fig. 10. Runnable cumulation mechanism to consider runnable pairing constraints.

structure after partitions have been formed. Consequently, causality, i.e., the
runnable pairing positions and sequences within partitions are considered.

Other than that, if runnables 12, 9, and 16 were safety relevant, e.g., imple-
ment a braking system, and reference an according ASIL level, they would have
to be separated into an independent partition in order to guarantee freedom
from interference, e.g., resource blocking. Therefore, the dependencies must be
carefully analyzed and possible blocking situations should be identified so that
execution times can be reasoned precisely.

When taking tags, e.g., for software component instances, into account, it
is desired to predefine whether and if yes how many component instances can
be combined within partitions. Tags are an abstract AMALTHEA model element
that can be referenced by runnables or tasks in order to group them according
to the diverse users’ needs.
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Fig. 11. Partitioning with tag consideration for software component instances (SWC).

Figure 11(a) shows the graph from Fig.8 further extended by colors indi-
cating a specific software component. The runnables are further topologically
ordered. (a) is transformed to (b) in order to group component instance-related
runnables for each activation. Each column represents a group respectively a par-
tition. Finally, (c) shows a possible configuration for two component instances
per partition. This merging process preserves causal relations within a group and
aims at balancing the load across partitions. Obviously, the outcome is quite dif-
ferent from the result shown in Fig.8 due to the consideration of tags.

ASIL levels and tags (e.g., for software components) are equally considered
such that separate groups are formed prior to the partitioning process, which
always splits the most instructions consuming partition first. Consequently,
generated partitions are aligned regarding their instruction sums as much as
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possible. In other words, all runnables referencing the same tag are grouped into
a partition that are may split additionally if the sum of all runnables contained
in this group is higher than other the instruction sums at other partitions. An
important aspect of this mechanism is its influence of the overall software dis-
tribution. In order to keep the amount of generated AccessPrecedencs (i.e., a
dissolution of a direct cause and effect relation of two runnables) low, i.e., to
keep the program’s causality at a high level, existing groups can me merged
with other groups or partitions.

When being scheduled, runnables are called directly after each other if no
delays are implemented between them. This may eventually result in certain
runnables being executed prior to their predecessors. Such behavior can be
accepted if these situations were analyzed and verified accordingly, resulting in
AccessPrecedence model elements, allowing according runnables to execute with
older values provided by their predecessors. If such AccessPrecedence is not
present, system integrators must assure that runnables wait for label updates
provided by their predecessors via events, interrupts, delays, or similar mecha-
nisms.

The difference between runnable pairing and, for instance, tag groups, is that
a runnable pairing also influences the position of the corresponding runnables
within a task whereas groups have no direct sequencing influence.

As soon as the partitions are formed that consider all the above listed con-
straints, partitions are transformed to tasks and their possible mappings to pro-
cessing cores are investigated as described in the following Sect. 3.4.

3.4 Mapping Tasks to Cores

Mapping in the context of APP4MC describes the process of finding a wvalid and
efficient allocation from software elements to hardware components, i.e., of exe-
cutable software (runnables or tasks) to cores, data to (distributed) memories,
and communications to underlying inter-core networks. These allocations, or
mappings, are considered valid if they fulfill all specified constraints, such as
meeting an executables’ deadlines, providing inter-core communication chan-
nels between mapped executables, or being executed on certified hardware. Effi-
cient mappings are achieved by optimizing the distribution w.r.t. one ore more
so called quality attributes, e.g., by minimizing the overall runtime, the total
energy consumption, or maximizing the reliability of a system. The App4McC
OpenMapping plugin implements this functionality and provides several map-
ping approaches that are based on various optimization techniques and feature
multiple quality attributes. A brief description of these approaches can be found
in [21].

In Sect. 3.2, we described the process of allocating runnables to ECUs. Hence,
it is necessary to refine the deployment in order to further distribute the gener-
ated tasks from Sect. 3.3 onto the hardware resources of the corresponding ECU.
Similar to the allocation process of runnables to ECUs, the mapping phase has to
consider, among others, the execution time (or response time) of tasks in order
to ensure that deadlines are met. Due to the heterogeneous nature of embedded
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systems, the response time of a task mainly depends on the core it is mapped to.
Aprpr4Mmc allows specifying the number of instructions for executing tasks on a
per core basis, i.e., it is necessary to determine the WCET of a task for all valid
mapping targets beforehand, e.g., by means of profiling or appropriate analysis
tooling. Once this information is available, the execution time et. . for executing
a task e on core c can be calculated as stated in Eq.5, with INS, . being the
number of instructions for this concrete mapping, and I PS,. being the number
of executable instructions per second. The latter is derived from the AMALTHEA
HW Model using Eq. 6, with IPC, being the executed instructions per cycle,
PS,. the Prescaler (frequency scale or divider), and f. the frequency the core
operates at.

INS..
etec = TIPS, V e € Tasks,c e Cores (5)
IPS.=1PC, x PS. x f. (6)

For determining valid mapping targets we consider architectural constraints.
Pairing- and separation constraints are treated similarly as in Sect. 3.3, enforc-
ing or prohibiting the co-existence of a task on the same core. Architectural
constraints allow annotating e.g., the required ASIL for a target core, require-
ments on hardware accelerators, or lockstep modes. Each task can be annotated
with features that either are required (enabled) or prohibited (disabled). Accord-
ingly, the final set of valid mapping targets is Cores \ D with £ =@ and E \ D
otherwise, with C'ores being the set of all available cores, E the set of cores with
the required features, and D the set of cores with prohibited features.

Once the solution space is restricted, a mathematical model describing the
mapping problem is automatically generated based on the selected approaches
optimization technique. In addition to the strategies presented in [21], we have
extended this model in order to support communication costs as well as penalty
based constraints. Communication costs are an important aspect in distributing
tasks among cores, since slow interconnections between cores and a high fragmen-
tation of tightly coupled tasks fosters high execution times. The communication
cost is extracted from either the network description or the AccessPaths within
the ECUs AMALTHEA Hardware Model. AccessPaths represent communication
channels between, e.g., cores and memories along with their latency. In case
AccessPaths are not present within the model, the latency is determined by ana-
lyzing the ECUs internal network structure, i.e., by identifying all participants
within the internal network, determining all possible paths between them, and
evaluating their connection in terms of latency and bit width among each other.
While the latter is more complex to be solved due to the exponentially rising
number of paths, it provides more flexibility in finding alternative routes on,
e.g., NoC architectures.

The extracted communication costs are stored in a m X m communication
matrix 7" with m being the number of available cores, and T;; the communication
cost for transferring information from core ¢ to core j. Having the software in
terms of a directed acyclic graph (DAG) G(V, E) with interconnected Tasks V/,
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and F being a set of edges e(t',t) with ¢’ being the source task and ¢ the target
task, the matrix is used as lookup-table for determining the execution time on a
core. For a simple load balancing approach [12], this is done by adding the resp.
communication overheads whenever a task communicates with another over core
boundaries. This overhead comm; . can be determined as shown in Eq.7

commy . = Maz (Z 2y Tt € preds(t)) (7)

=1

The variable zy s is set to 1 iff a task ¢’ is mapped to core ¢/, with ¢’ being the
predecessor of task t,m the total number of cores, and preds(t) a function for
determining the predecessors from task ¢. Since every task can only be mapped to
one core at a time, the sum of the communication overheads always results in the
overhead caused by the predecessors mapping. In case of multiple predecessors
t', getting the max value ensures that only the highest delay is considered.

4 FEvaluation

We conducted a case study to evaluate our approach using the overtaking exam-
ple. In our case study, we focused on the correctness of the synthesis. We
assume the synthesis to be correct if all relevant elements are considered in the
applied transformations and all computed values are correct. We based our case
study on guidelines by Kitchenham et al. [20] and the Goal-Question-Metric
(GQM) method [31] for the structured definition of quality metrics. We state
two hypotheses to be validated by the case study. H1: We expect, that for the
segmentation approach a feasible multi-core scheduling can be found. H2: We
expect that applying the allocation approach, the result is a correct allocation
that respects both stated constraints (cf. Egs.2 and 3), if such an allocation
exists. We evaluated schedules for different platforms. In the following, we show
the resulting tasks for one multi-core ECU of the overtaker software component
instance of the running example. The segmentation of the overtaker components
results in 11 runnables, 37 labels, and 39 label accesses.

We applied the segmentation to several additional component models and
compared them to manually created reference models. For each model, the
segmentation resulted in the expected number of runnables, labels, and label
accesses. Additionally, the generated runnable properties were correct and due
to the construction of period and deadline all real-time assumptions hold at
runtime. Executing partitioning and mapping of APP4MC resulted in a feasible
scheduling with 7 tasks. 5 tasks are mapped to one core and 2 tasks to the other.
Table 1 shows the resulting tasks, their properties, and the executing ECU core.
Both cores execute runnables of the component instance overtakeeCommunicator
and overtakeeDriver. Hence, the execution of the software uses the benefits of
parallel execution, which reduced the response time of the system. Overall, we
argue that H1 is fulfilled.
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Table 1. Tasks resulting from partitioning [14].

Core | Task | Component Period (ms)

Core 1| T3 | Communicator | 500

T6 | Driver 500
Core 2| TO | Driver 25
T1 | Communicator | 25
T2 | Driver 12

T4 | Communicator | 500
T5 | Communicator | 500

For evaluating the allocation approach, we considered QoS assumptions of
connectors. For each connector, the expected constraints were generated. Addi-
tionally, we used different values for the periods of the sender runnable and
receiver runnable, as well as for the underlying platform model to test the cases
that (A) a valid allocation with two ECUs is found, (B) a valid allocation with
only one ECU is found, and (C) no valid allocation is found. For each value com-
bination, the results are as expected. Thus, we state that H2 is fulfilled. The case
study shows that our concepts and the implementation work as expected. Due to
the higher degree of automation in the whole development process, there are less
manual steps in comparison to state of the art approaches. Additionally, the sys-
tems engineer needs less domain knowledge for embedded systems and schedul-
ing. The main threats to validity are: 1. We applied our approach to a small
example. 2. We assume that the partitioning and mapping of APP4MC consider
all specified constraints correctly, and 3. We assume that the code generation
is correct. Overall, we argue that our approach helps to increase the automa-
tion of finding a feasible scheduling for software with real-time requirements for
multi-core platforms. The concepts are evaluated using MECHATRONICUML and
Aprpr4Mc, but can be adopted to other approaches. We provide an Eclipse bundle
that contains our implementation and model files of the running example [15].

5 Related Work

Our approach is related to component-based approaches for CPS and to
approaches for scheduling and safe deployment of CPS. [11,23] survey compo-
nent models in general, whereas [18] survey component models for CPS. Based
on that, we state similarities and differences of approaches that consider at least
partially concepts for partitioning, mapping, or deployment.

ProCom [10] provides a component model for the development of real-time
systems in the automotive and telecommunication domains. ProCom provides a
modeling language that is based on Final State Machines enriched by features of
Timed Automata to compute (real-time related) dependencies of the model that
can affect the scheduling. Additionally, ProCom provides a code synthesis [8]
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that aims to preserve the semantics of ProCom at runtime. The code for every
component is executed concurrently. In contrast to our approach, the resulting
system is mainly event-triggered, which does not allow a static timing analysis
like our approach. Since the component behavior is implemented directly in C,
model checking and a model-driven segmentation is not possible. Nevertheless,
in [8] a formalization of the generated code is provided.

MEMCONS (Model-based EMbedded CONtrol Systems) [26] provides a
model-driven framework for embedded systems and supports the interoperation
with AUTOSAR and OSEK models. Since it follows the AUTOSAR method-
ology, it provides platform independent, component-based development of the
system. It also provides an automatic approach for mapping tasks to multi-core
ECUs. Furthermore, an analysis of timing constraints can be applied to the
deployed system. In contrast to our approach, MEMCONS does not focus on
verification of the PIM. Furthermore, the behavior of the software components
is not specified model-driven and cannot be used for segmentation.

Further approaches focus on the modeling of (real-time) operating systems
elements to improve the deployment of the software. In [24] they extend the DSL
RTEPML (Real-time Embedded Platform Modeling Language) [9] to describe
the behavior of the RTOS in a platform model, i.e., tasks and semaphores.
Using this model for the refinement from PIM to PSM, model checking can be
applied, which considers both the application behavior and the behavior of the
underlying system. In contrast to our approach, concrete platform properties like
the maximum transmission delay are not considered. Furthermore, distributed
systems and multi-core ECUs are not taken into account. However, extending
this approach to resource management on multi-core environments might be
useful to improve our allocation approach.

Lukasiewycz et al. [25] present an approach to derive task priorities in event-
triggered systems. The input for the algorithm is a task graph and a mapping.
The task graph describes all tasks of the system and their communication. The
mapping describes the assignment of tasks and messages to resources, e.g., ECUs
or busses. The authors provide an algorithm to find optimal priorities for tasks in
event-triggered systems. In contrast, we focus on time-triggered systems and do
not consider priorities of tasks in our approach explicitly. Hence, this approach
seems to be interesting to improve the task priorities in our approach.

There are also approaches regarding the semantic-preserving generation of
source code for systems with real-time requirements, i.e., approaches for timed
automata. In [4], code is generated for timed automata. The authors state that
the code generation is platform independent since it also generates a runtime-
system that handles task activation and system events. In contrast to our app-
roach, the behavior of the tasks is not generated but implemented manually.
Furthermore, the approach does not consider concepts for segmentation, parti-
tioning, and mapping and, therefore, is not applicable for multi-core systems. In
[28], the authors restrict the timed automata to deterministic features. Hence,
invariants are not supported in this approach. In [22] on the other hand, they
present an approach, where invariants are allowed in the specification. They do
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not analyze if it all invariants can be guaranteed at runtime. In contrast to our
approach, in both approaches properties of the target platform are not consid-
ered. Furthermore, both approaches do not consider distributed systems.

6 Conclusion and Outlook

In this paper, we presented a systematic approach that enables a step-wise,
semi-automatic synthesis of behavioral models into a deterministic scheduling
suitable for multi-core target platforms. We illustrated our approach based on
an automotive, autonomous overtaking example and evaluated it based on the
MECHATRONICUML and App4MC platforms.

Firstly, we showed how runnables, runnable properties, and runnable depen-
dencies are synthesized from RTSCs to derive a segmentation that allows paral-
lel execution of software components. We identified limitations in our approach
when using clocks across multiple states. Secondly, we introduced an approach
for the allocation of runnables to interconnected multi-core ECUs. Especially, we
identified and automatically derived necessary conditions an allocation has to ful-
fill in order to guarantee a valid scheduling. Thirdly, we introduced an approach
that preserves verified real-time requirements on PIM level during the synthesis
and in the resulting scheduling. In addition to [14], we presented advanced par-
titioning and mapping approaches considering all real-time constraints derived
from former development steps. We used the APP4MC open tool platform to
validate the correctness of the generated results.

In future work, we want to introduce a reachability analysis to cope with
the mentioned limitations regarding clocks. Furthermore, we want to address
dynamic scheduling in case of event-triggered systems. We also plan to extend the
allocation constraints for ECUs that use cores with different processing capaci-
ties and by estimating the transmission time dynamically during the allocation.
Finally, our goal is to combine all presented distribution and parallelization
technologies along with a single example case study that provides the necessary
constraints and reflects industrial needs.
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Abstract. Current state-of-the-practice and state-of-the-art of decision-making
aids are inadequate for modern organisations that deal with significant uncer-
tainty and business dynamism. This paper highlights the limitations of prevalent
decision-making aids and proposes a model-based approach that advances the
modelling abstraction and analysis machinery for complex dynamic decision-
making. In particular, this paper proposes a meta-model to comprehensively
represent organisation, establishes the relevance of model-based simulation
technique as analysis means, introduces the advancements over actor technology
to address analysis needs, and proposes a method to utilise proposed modelling
abstraction, analysis technique, and analysis machinery in an effective and
convenient manner. The proposed approach is illustrated using a near real-life
case-study from a business process outsourcing organisation.

Keywords: Organisational decision making - Simulation
Model based approach - Conceptual model - Domain specific language

1 Introduction

Modern organisations constantly rely on decision-making to select suitable courses of
action that help in achieving their goals [1]. An effective organisational decision-
making calls for precise understanding of various aspects of organisation such as goals,
organisational structure, operational processes and the historical data describing
operational details along with execution log. The inherent characteristics of modern
organisations that include the socio-technical characteristics [2], complex and dynamic
organisational structure [3], significant uncertainty [4], and emergent behaviour [5]
make the decision-making a complex endeavor i.e., complex dynamic decision making
(CDDM).

We posit that effective CDDM hinges on the availability of: (i) information
required for decision-making in a structured and machine-interpretable form, (ii) suit-
able machineries to interpret the information, and (iii) a method to help identify the
relevant information, capture it in model form, and perform what-if analyses. The
current practice of organisational decision-making that relies heavily on human experts
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typically working with primitive tools such as spreadsheets, word processors, and
diagram editors etc. fares poorly on all the three criteria [6].

A wide range of Enterprise Modelling (EM) techniques, such as ArchiMate [7],
IEM [8], MEMO [9], i* [10], BPMN [11], and System Dynamics (SD) [12], capture
information of interest in a structured and/or machine interpretable form. They also
support varying degree of analyses capabilities on a range of organisational aspects.
However, they are found to be insufficient for CDDM [13, 14]. The actor languages
and frameworks such as Kilim [15], Scala Actors [16], and Akka [17], in contrast,
adopt the actor model of computation [18] to specify socio-technical characteristics.
However, they are inadequate to express complex goal structure, organisational hier-
archies, and behavioural uncertainty [13].

Therefore, it can be said that existing technological support can at best partly meet
only two of the three requirements of effective CDDM i.e., (i) the ability to conve-
niently capture the organisational goals, structure, behaviour, and their inherent char-
acteristics and (ii) the ability to perform required analyses on available information.
However, little is reported on how to use the relevant existing technologies, such as EM
technologies and actor technologies, in a systematic manner for effective CDDM.

This paper presents a model-driven approach to capture necessary aspects of an
organisation, such as goal, structure, and behaviour, along with their inherent char-
acteristics, such as socio-technical characteristics and uncertainty, in a relatable and
machine interpretable form and perform various what-if analyses leading to
evidence-driven CDDM. In particular, this paper hypothesises that model-based sim-
ulation approach is an effective means to address CDDM and claims four contributions:
(i) a conceptual meta-model that represents necessary and sufficient aspects of the
organisation along with the inherent characteristics of CDDM, (ii) a simulation model
that refines conceptual model for specific decision-making context, (iii) a pragmatic
human-assisted technique to ascertain model validity, and (iv) a method to construct
purposive simulatable models leading to what-if analyses for CDDM in a systematic
manner.

The proposed conceptual meta-model caters to specification of why, what, how,
who, where and when aspects [19], socio-technical characteristics as advocated in actor
model of computation [18], and uncertainty [20]. The simulatable model advances the
state-of-the-art actor technology [15—-17] by supporting the notion of uncertainty and
“time”. The proposed method refines the management view of decision-making
advocated by Daft [3] while extending the modelling and model validation method
advocated by Sargent [21] so as to realize a simulation based approach to CDDM.

The paper is organized as follows. Section 2 provides background by highlighting
necessary tenets of CDDM and reporting brief overview of existing EM techniques and
actor technologies. It also summarises notable gaps restricting adoption of EM tech-
niques and actor technologies for CDDM. Section 3 presents model-driven
simulation-based approach to CDDM. The approach is illustrated in Sect. 4 using a
case study from business process outsourcing (BPO) domain. Section 5 discusses
evaluation of the approach. The paper concludes with future work.
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Fig. 1. Schema describing decision making concepts.

2 Background

This section presents the key requirements for affective CDDM and evaluates the
state-of-the-art techniques and technologies with respect to these requirements.

2.1 CDDM Structure and Requirements

Decision-making is a continuous and indispensable activity for all organisations. It
requires deep understanding of various aspects of an organisation. Zachman Frame-
work [19] recommends six interrogative aspects namely why, what, how, when, where,
and who as necessary and sufficient information to precisely understand an enterprise.
Conforming to Zachman Framework, we visualize an organisation using a set of
concepts as shown in the class diagram in Fig. 1 [22]. An Organisation has objectives
or Goals, i.e., Why aspect, that it aims to achieve. A Goal is typically assessed by
evaluating a set of performance indicators or Measures that are indicative of organi-
sational effectiveness along several dimensions such as time to market, growth rate,
customer satisfaction, employee happiness index, entry into new areas efc. Organisa-
tional effectiveness in an Environment (i.e., where aspect) is largely a function of its
Structure (i.e., What and Who aspects) and Behaviour (How and When aspects).
Behaviour induces State changes thus producing Trace (i.e., historical record of States)
over a period of time. A Lever represents a possible course of action available to
organisation. Typically, applying a lever results in modification of either operational
parameters or Goal or Behaviour or any combination of the three thus leading to
modifications to the Trace. Thus, decision-making is a loop involving evaluation of
possible Levers so as to identify the most promising one — untill the stated goal is
achieved.

The conceptual structure of Fig. 1 though necessary is not sufficient for effective
CDDM. The system of systems structure of an organisation means the decision making
problem can be positioned at various levels of granularity spanning from mega to
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macro to micro. This places additional demands of modularity and compositionality on
the specification. As each [sub] system has own goals and the necessary wherewithal of
achieving them, the specification needs to be capable of supporting intentionality and
autonomy. As each of these [sub] systems operate over protracted time adapting
constantly by responding to events taking place in their operating environments, the
specification needs to be capable of supporting reactive, temporal and adaptive char-
acteristics. Moreover, the specification must be capable of capturing the inherent
uncertainty. Such a specification language along with its simulation engine seems
necessary and sufficient infrastructure to support an iterative decision making loop
wherein application of a Lever leads to modification of one or more Measures thus
helping check whether a Goal (which is a sophisticated conditional expression over
measures) is achieved or not [37]. A list of requirements of CDDM, as presented in
[22], is summarised in Table 1.

Table 1. Requirements of CDDM [22].
Requirement | Description
Aspect Why Goals, objectives and intentions of multiple stakeholders
What Structural Specification with complex hierarchy and
interactions
How Behavioural specification with interactions
Who Stakeholders and human actors of the system
Where Information about location
When Temporality in behaviour and adaptation
Socio-technical Modularity A system can be decomposed into multiple parts
Characteristics Compositional | Multiple parts should be composed to a consistent whole
Reactive Must respond appropriately to its environment
Autonomous | Possible to produce output without any external stimulus
Intentional Intent defines the behaviour
Adaptive Adapt itself based on context and situation
Uncertain Precise intention and behaviour are not known a-priori
Temporal Indefinite time-delay between an action and its response
DC Measure Ability to specify what needs to be measured
Lever Ability to specify possible courses of action
Analysis Machine Models that are interpretable by machine (i.e., support for
Interpretable simulation/execution)
Top-down and | Support for top-down and bottom-up modelling and
Bottom-up simulation to support reductionist view and emergentism

From a methodology perspective, effective CDDM witnesses a curious dilemma.
A system of systems structure involving autonomous [sub] systems indicates that
organisation level Goals will be decomposed into various functional unit level Goals
along the organisational Structure thus necessitating a top-down design approach. This
implies that Behaviour of the organisation is known and hence specifiable. However,
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given the complexity of modern organisations and the inherent uncertainty, it is almost
impossible to know the overall behaviour of organisation. The behaviour is typically
known only for highly localized contexts i.e., functional units thus suggesting a
bottom-up design approach wherein the overall organisation behaviour emerges from
the behaviour of its interacting functional units. As a result, the specification language
and analysis techniques need to be cognizant of top-down and bottom-up approach [23,
24] as described in Table 1. Also, effective CDDM calls for a method providing help
with: (i) evaluating if the desired Goal is achieved, (ii) identifying the most appropriate
Lever amongst many candidates, and (iii) applying the Lever.

2.2 Review of State of the Art and Practice

The state-of-the-art specification and analysis techniques approach the decision-making
problem in two ways namely: data-centric approach and model-centric approach. The
data-centric approach makes use of sophisticated Al-based pattern recognition and
predictive analysis techniques on relevant past data or Trace to predict future outcomes.
This approach has worked well when Trace of an Organisation is comprehensive and
the future is typically a linear extrapolation of the past. However, the two conditions are
increasingly not being met for modern large enterprises thus leading to inappropriate
decisions for emerging business context'.

The model-centric approaches, in contrast, characterise the real organisation in the
form of representative models which span across a wide spectrum. At one extreme of
the spectrum are models that provide a well-defined structure for the organisational
aspects of interest and rely on a variety of visualisation techniques to help humans
obtain the desired understanding of the organisation. For instance, ArchiMate [7] is one
such specification. At the other extreme of the spectrum are machine interpretable
and/or simulatable specifications. They are capable of precise analyses for one or
limited aspects. For instance, BPMN (Business Process Modelling and Notation) [11]
analyses and simulates the behavioural aspect, i* [10] analyses the high level goals and
objectives, and System Dynamic model simulates dynamic behaviour of the system.
The multi-modelling and co-simulation environments, such as DEVS (Discrete EVent
system Specifications) [25], AAAMM (Agent & Artifact for Multi-Modeling) [26],
AnyLogic [27] and MEMO (Multi-perspective enterprise modeling) [9] technology,
demonstrate further advancements by supporting the analysis of multiple aspects.
Principally they adopt a top-down [23] approach to help analyse enterprises where the
mechanistic world view holds. On the other hand, the languages and specifications
advocating an actor model of computation [18] and agent-based systems [28] support
emergentism [24] through bottom-up simulation. They fare better in analysis of sys-
tems comprising of adaptive and socio-technical elements.

Thus, the above mentioned techniques and technologies capture only a fragment of
what ought to be captured and analysed for effective CDDM as illustrated in Table 1
[13]. In particular, the enterprise modeling languages are incapable of specifying
uncertainty as well as emergent behaviour, and actor/agent languages are inadequate to

! https://hbr.org/2014/09/9-habits-that-lead-to-terrible-decisions.
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conveniently express required characteristics such as the complex goal structure,
organisational hierarchies, and behavioural uncertainty [22]. Moreover, EM specifi-
cations and actor based languages fall short as an intuitive and closer-to-the-problem
specification as they are not designed for CDDM.

From a methodological viewpoint, the goal specification languages such as i* [10]
and EKD [29] advocate a top-down method. EM languages such as ArchiMate, MEMO,
and 4EM [30] advocate a top-down method and a globalized view of the system to
represent the Goal, Structure and Behaviour of organisation in an integrated manner.
BPMN [11] and SD model [12] predominantly support top-down approach and
reductionist view of analyses [36]. On the other hand, actor languages and frameworks
[15-17] advocate localised view, bottom-up approach, and emergentism. The reported
methodological advancements also fail to support desired design principles. For
example, DESIRE (DEsign Specification of Interacting REasoning components) [31]
and MEMO based decision-making process [32] propose top-down model and reduc-
tionist what-if analysis. On the other hand, [33] advocates bottom-up approach using
Belief-Desire-Intention (BDI) paradigm. Thus, there exists no single approach capable
of combining top-down/bottom-up [23] design principle, reductionist/emergentism
analysis techniques [24], and localized/globalized perspectives as desired. Moreover,
the existing approaches are also found wanting in terms of ensuring model validity [21]
and correlating with the management view of decision-making.
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The next section describes our approach that addresses some of the essential
specification limitations, overcomes inadequacy of analysis needs, and bridges the
existing gap in methodical support.
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3 Approach

Our approach to CDDM uses a model-based representation of organisation capable of
supporting what-if simulation with a comprehensive design and analysis method pro-
viding the integration glue. In particular, we propose three artefacts that include: (i) a
conceptual meta-model, termed as CMModel, to represent relevant aspects of an
organisation along with the characteristics described in Table 1, (ii) a simulatable
model, termed as ESLMModel, along with simulation machinery to support analyses
needed for CDDM, and (iii) a method to help construct these models so as to perform
what-if analyses leading to evidence-driven CDDM.

3.1 Conceptual Model

The CMModel meta-model is depicted in Fig. 2. As shown in the Figure, the key
abstraction of CMModel is OrgUnit that represents an autonomous self-contained
functional unit having high internal coherence and low external coupling. Each OrgUnit
has its own Goal, contains Data, deals with a set of interacting Events, and may have
specific Behaviour. The Goal represents the intention or objective of an OrgUnit. A Goal
can be decomposed into sub-Goals, sub-sub-Goals to represent hierarchical goal
structure. Data captures the current State and sequence of historical states, i.e., Trace,
using a set of typed entity Variables. An OrgUnit may encapsulate and/or share Data by
encapsulating and/or exposing Variables. OrgUnit responds to three kinds of Events
namely OutgoingEvent, BehaviouralEvent and TimeEvent. The OutgoingEvents are
triggered from an OrgUnit as part of its reactive behaviour. Each OutgoingEvent
specifies the Data that it carries while reacting to an Event. The BehaviouralEvent
specifies behaviour that is a response to an event and the Data it consumes. The
BehaviouralEvent is further classified into two types namely InternalEvent and
IncomingEvent. The IncomingEvents are consumed by OrgUnit, and the InternalEvents
are the events that are internal to an OrgUnit. The TimeEvent is a special event that
represents the concept of “Time” such as “Day”, “Month” or a “Year”.

The Measure and Lever of an OrgUnit represent the Measure that an OrgUnit owns
and the Lever that are relevant for an OrgUnit. Essentially, a Measure can be repre-
sented using a set of Variables and the Lever describes the change specification of
Variables, composition relationships, Behavioural specification and/or Goals. We
visualise the notion of organisation and its environment as specialised OrgUnit namely
Organisation and Environment as shown in Fig. 2.

By the virtue of being composable, OrgUnit abstraction is capable of modelling the
system of systems nature of modern organisation. The composability can be specified
using contains relationship. The meta-model advocates four kinds of Behaviour namely
Deterministic, Stochastic, Temporal and Adaptive. The Deterministic behaviour
describes the behaviour which is known with certainty. Essentially, the known known
kinds of behaviour [20] can be specified using Deterministic Behaviour. The Stochastic
behaviour describes uncertain Behaviour or known unknown kind of behaviour [20].
We use probabilistic distribution to specify Stochastic Behaviour. The Temporal
Behaviour describes the temporal delays in interaction pattern, and the Adaptive
Behaviour describes adaptation rules by describing what will change when.
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The proposed meta-model is grounded into a set of existing concepts. The mod-
ularisation and unit hierarchy are taken from the notion of component abstraction. The
goal-directed reactive and autonomous behaviour can be traced to actor behaviour [18,
34]. Defining states in terms of a type model is borrowed from UML. An event driven
architecture is introduced for reactive behaviour. The concept of intentional modelling
[10] is adopted to enable specification of goals. The behavioural classification and
uncertainty is defined from the notion of uncertainty defined by Rumsfeld [20].

We argue that CMModel meta-model realises the structure defined in Fig. 1 and
satisfies the requirements stated in Table 1. Event definition, Data, and OrgUnit
structure together specify the what aspect, OrgUnit help specify the who and where
aspects, Goal specification specifies the why aspect, and Behaviour specifies the how
and when aspects. The concept of OrgUnit ensures modularity and encapsulation, the
Event helps to specify reactive nature, InternalEvent and TimeEvent collectively
specify the autonomous behaviour, Stochastic behaviour helps in specifying uncer-
tainty, the Temporal behaviour and TimeEvent specify the temporal behaviour, and
Adaptive behaviour is capable of specifying the adaptive nature of an OrgUnit. We
argue that the contain relationship of OrgUnit and OrgUnit specific localised Behaviour
definition help in bottom-up design, whereas the contain relationship of OrgUnit, Goal
decomposition relationship, and an ability to share Variables using exposes relationship
help in top-down design. The next section introduces a specification that has capability
to represent the information captured using CMModel in a simulatable form.
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3.2 Simulatable Model

We extend the notion of traditional actor definition [34] to specify enterprises. The
adopted concepts from actor model of computation and proposed extensions are
depicted using a meta-model, termed as ESLMModel, in Fig. 3. The extended concepts
are highlighted with bolded boxes and extended associations are represented using
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Table 2. Conceptual mapping from CMModel to ESLMModel.

CMModel | ESLMModel CMModel ESLMModel

OrgUnit | ExtendedActor Variable Variable

Data Variables Trace Actor variable

Goal Expression over actor variables | Deterministic | DeterministicBehaviour
Event Event Stochastic StochasticBehaviour
Measure | Expression over actor variables | Temporal TemporalBehaviour
Lever ESL specification Adaptive AdaptiveBehavioural

dotted lines. The Enterprise Simulation Language (ESL)” provides an implementation
for ESLMModel.

As shown in Fig. 3, the notion of traditional Actor encapsulates its State, has
specific Behaviour and interacts with other Actors using a set of Events. The State of an
Actor is defined using a set of typed Variables where each Variable holds Value. The
Behaviour of an Actor principally represents four kinds of behavioural patterns namely
reactive behaviour, autonomous behaviour, adaptive behaviour and emergent beha-
viour. ESLMModel represents supported behavioural patterns using four kinds of
Behaviour namely ReactiveBehaviour, AutonomousBehaviour, AdaptiveBehaviour and
EmergentBehaviour.

The ESL extends the notion of traditional Actor along four dimensions: (i) repre-
sentation of historical state information or Trace, (ii) the notion of “Time”, (iii) the
notion of shared Variables that breaks pure encapsulation without compromising the
correctness of state space of an actor, and (iv) the notion of uncertainty. The extensions
(i), (i1) and (iii) are introduced using a specilised Actor entity named ExtendedActor
and the extension (iv) is introduced as a specialised behavioural type named
StochasticBehaviour in the ESLMModel (see Fig. 3). The notion of “Time” helps
specify temporal behaviour that we represent using a specialised Behaviour named
TemporalBehaviour in ESLMModel.

ESL provides standard language constructs namely assignment, expression evalu-
ation, loop, recursion, message passing, efc., to express Deterministic Behaviour.
Stochastic Behaviour is expressed using ‘probably(p) x y’ construct that evaluates to
x in p% of cases and otherwise to y. ReactiveBehaviour reacts to an Event or a set of
Events, AutonomousBehaviour is typically triggered based on state Variables and/or
Time, and AdaptiveBehaviour has a conditional expression over State and Trace
Variables. The EmergentBehaviour, on the other hand, remains unspecified.

We propose a set of transformation rules to derive ESL specification from
CMModel. The OrgUnit and its specialisation, i.e., Organisation and Environment,
map onto ExtendedActor, interactions among OrgUnits map onto event specifications,
and OrgUnit Variables map onto Variables of ExtendedActor. Measure maps onto
Variables of ExtendedActors, Goal maps onto an expression over Variables of
ExtendedActors, and the behavioural descriptions of OrgUnit map onto the behavioural
specifications of ExtendedActors. The conceptual mapping from CMModel to

2 https://www.gitbook.com/book/tonyclark/esl/details.
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ESLMModel is illustrated in Table 2. Next section describes a method to construct
models using CMModel, transform the constructed model into ESL specification, and
perform what-if analysis in a systematic manner.

3.3 Method

We propose an integrated and iterative method to effective CDDM that comprises of
three essential activities: (i) construction of a simulatable model from available
information of an organisation, (ii) ascertain model validity, and (iii) simulate model
for what-if analyses leading to evidence-driven CDDM. The proposed method contains
six steps namely Define Decision Problem [S1], Conceptualisation of Organisation
Model [S2], Implement Simulatable Model [S3], Simulation [S4], Evaluation of Sim-
ulation Results [S5], and Recommendation [S6] as shown in Fig. 4. Step S1 formalises
the decision problem and defines the scope for what-if scenario playing by describing
the Goals, Measures and Levers of an Organisation. Step S2 conceptualises a purposive
model that represents a real system for decision problem defined in S1. Step S3
transforms the conceptual model into a simulatable model. Step S4 simulates the
scenario defined in step S1. Step S5 evaluates the simulation results with step S6
providing recommendations.

Conceptually the proposed method realises the modelling and validation method
proposed by Sargent in [21] (henceforth referred as M&V Method) and adopts
decision-making techniques recommended in management science [3]. From M&V
Method, we adopt the notion of three representations namely problem entity, con-
ceptual model and computerized model, and a two-step model construction process that
includes Conceptualisation and Implementation steps to transform a real-life problem
into valid analysis model as shown in Fig. 4. We also adopt the operational validity
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[21] described in M&V Method to ascertain model validity. From management science,
we adopt an iterative exploration of decision alternatives as recommended in [3] and
the concept of decision interrupts [35] to explore decision alternatives that emerges
while evaluating other decision alternatives.

In agreement with M&V Method, we consider the problem entity is the real
organisation, the conceptual model is a purpose specific conceptual model that is nec-
essary and sufficient to represent it for decision-making, and the computerised model is a
machine interpretable equivalent of the conceptual model, i.e., simulatable model. From
a method perspective, the Conceptualisation step constructs a conceptual model from
problem entity description (typically described in natural language), and Implementation
step transforms the conceptual model into a simulatable model so as to use model-based
simulation. The detailed activities of five method steps of Fig. 4 are illustrated below:

Conceptualise Organisation Model [S1]: A decision problem typically starts with a
high-level Goal or objective of an organisation. It should be possible to decompose a
high-level Goal into sub-Goals, sub-sub-Goals etc., to the desired level of granularity.
It should be possible to identify a set of variables that need to be observed in order to
determine whether the finest-level goal is met or not, i.e., Measures. It should be
possible to identify a set of course of actions or Levers that may influence the given set
of Measures. The method step Define decision problem defines the Goals, Measures
and Levers of an Organisation from problem entity description using three sub-steps
namely Goal Definition, Measure Identification and Lever Identification.

The Goal Definition sub-step uses a top-down approach to define goals and goal
decomposition structure. Measure Identification sub-step identifies Measures for all
leaf-level Goals of constructed goal model. We use i* specification to visualise the
goals of a decision problem. We represent Goals using the Soft Goal of i* notation,
Measure using i* Task of i* notation, and Goal-to-Measure relationships using
Task-Goal dependency relationship of i* notation [10].

The sub-step Identify Levers focuses on two activities: (i) identify a set of Levers
that may impact identified Measures, and (iii) formulate a table, termed as decision
table, by considering the identified Levers as rows and Measures as illustrated in Fig. 7
in Sect. 4.

Conceptualisation of Organisation Model [S2]: This step captures the Structure,
Behaviour, State and Trace of an organisation and overlays the Goals, Measure and
Levers identified in method step S1 using OrgUnit abstraction defined in CMModel (as
depicted in Fig. 2). Essentially this method step performs four activities namely
(1) Identify OrgUnits, (ii) Define OrgUnit, (iii) Define GM-L, and (iv) Specify Beha-
viour. Activity Identify OrgUnits identifies prospective OrgUnits such as organisational
units, sub-units, stakeholders, resources, and environment from problem entity.
Activity Define OrgUnit forms OrgUnits by specifying Variables to represent State and
Trace information, and the Events that help interacts with other OrgUnits. It also
identifies containment relationship to describe composition and decomposition rela-
tionships of identified OrgUnits. In general, the activity Identify OrgUnit starts with
organisation as an OrgUnit, and iterates over activity Identify OrgUnit and activity
Define OrgUnit by navigating the decomposition and/or composition relationships.



A Model Based Approach for Complex Dynamic Decision-Making 105

Essentially, it uses a middle-out approach that combines top-down and bottom-up
design principles.

The activity Define GM-L identifies the Goals that an OrgUnit owns, the Measures
that it can produce, and the Levers that can be applied on it. The activity Specify
Behaviour captures the behavioural specification of identified OrgUnits.

Implement Simulation Model [S3]: This method step converts a Conceptual
Organisation model defined using CMModel into machine interpretable specification,
i.e., ESL specification. Essentially, S3 transforms all OrgUnits into ExtendedActors by
applying transformation rules defined in Table 2.

Simulation [S4]: We use ESL based simulation to analyse what-if scenario formulated
in method step S1. This step simulates the simulatable organisation model (with or
without Lever), observes Measures from a simulation run, and captures results in a row
of decision table formulated in method step S1.

Evaluation of Simulation Results [S5]: This step evaluates simulation results cap-
tured in decision table. Human expert interprets the simulation results triggering one of
the following possibilities: (i) initiate a Validation Loop that iterates method steps
S2-S3-S4-S5 in case simulation results of known scenario don’t match the expected
outcome (i.e., operation validity is not satisfied), (ii) explore next Lever of a decision
table by triggering an Evaluation Loop that iterates method steps S5-S4-S5, (iii) select
the best possible Lever once all levers are evaluated through simulation (i.e., S5 to S6
transition), (iv) identify a new Lever i.e., add a new entry in decision table and reiterate
the overall method using Decision Interrupt Loop described in Fig. 4.

Recommendation [S6]: This step recommends one or more Levers that can be
implemented in real organisation.

3.4 Validation

Our method uses a validation loop that iterates over method steps S5-S2-S3-S4-S5 and
compares experimental results with real or predicted data to ascertain model validity.
We consider operational graphics [21], i.e., graphical representation of Measures as a
basis for evaluation, and rely on human experts to certify the validity. For model
validation, we rely solely on operational validity through manual certification of
simulation results of known scenarios. Other validation techniques, such as data
validity or conceptual validity, while being effort and time intensive, provide no
additional certainty as discussed in [21]. We next illustrate the proposed method using
a real-life decision-making scenario.

4 Tlustration

This section presents a problem entity from business process outsourcing (BPO) in-
dustry and illustrates the execution of proposed method along with their outcomes.
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4.1 Problem Entity

In BPO, a class of organisations, termed as customers, outsource their business pro-
cesses to another set of organisations, which is termed as vendors. Customers outsource
their business process for a variety of reasons such as reducing Cost (C), increasing
Efficiency (E), bringing about a major transformation, i.e., Delight (D). The vendors
offer value-added services to their customers and earn revenues while servicing out-
sourced business processes. Considering the accruable business benefits of vendors, the
outsourced business processes are classified into three broad buckets namely Sunrise
(SR), Steady (ST) and Sunset (ST). The Transcript Entry process of Healthcare verticals
is one of the early adopters of BPO and has derived almost all potential benefits
accruable from outsourcing (known as Sunset). On the other hand, IT Infrastructure
Management process being a late adopter of BPO, has a large unrealized potential to be
tapped (known as Sunrise). And there are processes such as Help Desk, Account
Opening, Monthly Alerts etc., that fall somewhere in between the two extremes as
regards benefits accrued from BPO (known as Steady). Thus, the outsourced business
processes of the BPO industry can be described using a 3 x 3 matrix as depicted in
Fig. 5 [22].
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Fig. 5. Overview of business process outsourcing scenario [22].

The business-as-usual (BAU) operational process of a BPO is largely limited to a
set of interactions between customers and vendors. A customer publishes RFP (Request
For Proposal) with an intension to outsource a business process. Interested vendors bid
for RFP. Typically, factors such as Quadrant (i.e. ranking as per independent agency
such as analysts), FTE Count Range (i.e. Full Time Employees to be deployed on the
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outsourced process), Billing Rate Range (i.e. per hour rate of FTE), Organisation Size
(the number of employee) and Track Record (i.e., familiarity with the processes being
outsourced), influence who wins the bid. The soft issues such as Market Influence (i.e.
perception of the market as regards delivery certainty with acceptable quality), the
rap-port with the vendor etc., also play a part in bid evaluation. In addition to these
known factors there could be some uncertainty in bid evaluation criteria (in other
words, bid evaluation criteria can’t be fully known a-priori).

It is common observation that BPO outsourced business process engagements come
up for renewal after few years (typically 3 to 5 years). A customer may renew the
contract with the existing vendor on modified terms (typically advantageous to the
customer) or may opt for rebidding. Factors influencing the renewal decision are
reduction offered in FTE Count, Billing Rate, number and degree of escalations, per-
ception that the external agent has as regards ability to meet the process engagement
requirements, inherence uncertainty, etc. Contracts that fail to get renewed become
candidates for later bidding. Figure 5 [22] shows an overview of BPO industry. The
interaction pattern between customer and vendor is depicted in Fig. 6 [22].
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Fig. 6. Interactions and behaviours [22].

Given the above scope or a problem entity, the vendors mostly explore the
decision-making problems that include: Will continuation with the current strategy
keep “Me” viable ‘n’ years hence? What alternative strategies are available? How
effective will a given strategy be? By when will a given strategy start showing positive
impact? Etc.
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Fig. 7. Output of method step define decision problem.

In this paper, we consider a BPO vendor who would like be the leader in BPO
industry with respect to the revenue, market share, and realisation (where the term
realisation represents the revenue earned by each employee per hour). The next sub-
sections describe the execution of method steps depicted in Fig. 4 and their outcomes.

4.2 Define Decision Problem

The proposed method starts with a method step Define Decision Problem [S1] that
formulates goal models and a decision table. We consider, a vendor, termed as “WE”
vendor, aims to be the “Leader in BPO Industry”. The method step S1 decomposes
“Leader in BPO Industry” Goal of “WE” vendor into three sub-Goals namely “Increase
Revenue”, “Increase Number-of-Customer”, and “Improve Realisation”. It identifies
three Measures namely “Revenue”, “Number of Customers”, and “Realisation” to
assess three leaf-level Goals. The primary goal, goal decomposition structure and
associated Measures are depicted in Fig. 7(a).

The method step S1 also identifies possible Levers that may influence the Measures
and thus Goals. In this paper, we consider two Levers namely “Improve skillset of
existing employee” and “Introduce Robotic Process Automation (RPA)” as illustration.
Identified Levers and Measures are shown in a form of decision table in Fig. 7(b).

4.3 Conceptualisation of Organisational Model

Method step S2 iteratively forms Conceptual Organisation Model from problem entity
using four activities namely Identify OrgUnit, Define OrgUnit, Define GM-L and Define
Behaviour. The activity Identify OrgUnit initially identifies three key OrgUnits namely
“Customer”, “Vendor”, and “Process”. The next activity Define OrgUnit captures
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structural relationships, Variables, and Event definitions of three OrgUnits. The Vari-
able, IncomingEvent and OutgoingEvent of Vendor and Customer OrgUnits are illus-
trated in Fig. 8(b). Essentially the Vendors OrgUnit has a set of Variables to represent
portfolio baskets (i.e., flattened out 3 x 3 matrix), the characteristics Variables such as
Quadrant, Min Billing Rate, Max Billing Rate, FTE Productivity, Proposed FTE
Reduction (during process engagement renewal time), Proposed Billing Rate Reduction
(during project renewal time), Influencer Relationship, Delivery Excellence of the
vendor OrgUnit. The OrgUnit also captures the state Variables that indicate Measure of
Vendor OrgUnit such as Revenue, Number-Of-Customer, and Realisation.

The outcome of the iterative loop involving two activities namely Identify OrgUnit
and Define OrgUnit is depicted using a class diagram in Fig. 8(a). As shown in the
figure, several new OrgUnits are identified and elaborated over iterations. The “Pro-
cess” OrgUnit is specialised into nine OrgUnits to represent business processes
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(b) Definition of Vendor and Customer OrgUnits

Fig. 8. Conceptual organisation model of BPO industry.
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described using a 3 x 3 matrix of Fig. 5. The Vendor is specialised into two entities
namely “WE” vendor and “Competitor” vendor. The “WE” vendor represents a vendor
under consideration, and the “Competitor” vendor represents the competitor vendors of
“WE” vendor. There could be several competitors who adopt a range of strategies to
compete in BPO industry. We consider two types of competitors namely “Competitor
1”” and “Competitor 2” as shown in Fig. 8(a). The other relationships such as Customer
“contains” various kinds of Processes, Vendor “outsources” Processes, Vendor “con-
tains” a set of Processes and Vendor “services” Processes are defined in this method
step. The interactions patterns between Customer and Vendors are also become explicit
in this method step. The relationships and interaction patterns between OrgUnits are
illustrated in Fig. 8(a).

The next activity Define GM-L defines the Goal and Measures of identified
OrgUnits, and map them with the Goals and Measures of problem entity that are
identified in method step S1. In this example, the “WE” vendor owns the goals,
measures and leavers defined in S1 method step. The generic Goals of Vendor and
Customer are depicted in Fig. 8(b).

The remaining activity of the method step Conceptualisation of Organisation Model
[S2] is Define Behaviour. This activity iterates over identified OrgUnits to define their
behaviours. The typical Behaviours of Vendor and Customer are depicted in the form
of state-machines in Fig. 8(b).

(ExtendedActor) :: Customer

State attributes Time
EDEDEDEDED) EI3) <"¢°"‘)h'
ear
ExtendedActor,
(ExtendedActor) :: ( ) (ExtendedActor)::
. i ry
Vendor ‘Competitor 1 Vendor ‘Competitor 2’
= Bid
RFP |
Bid w0 ©
Process
(ExtendedActor) ::Vendor ‘WE’
State attributes =
[
E))E0)EDED)ED) ED) @D | 3
Revenue
(Goal 4
‘ Revenue (Measure) ‘ Customer Count (Measure) ‘ Realisation (Measure)
Billing Rate (S/Hr FTE Negotiation Levers after term
Quardant per FTE) Productivity completion Delivery Excellence
Ration of
Less FTE (in Proposal of Billing [Excellent,Good,
%) in Bid | Proposed FTE| Rate Reduction |Influencer| Normal, Below | I
Min Max Quotation | Reduction (%) (%) Relation Normal]
Cost Leader 8 12 8 2 5 Excellent 60, 30,10, 0
Efficiency | Visionary 18 22 6 (] 5 Good 40,10, 0]
Delight | Contender | 110 130 3 5 0 Normal 20, 60,20, 0

Fig. 9. Realisation of BPO scenario using ESLMModel [22].



A Model Based Approach for Complex Dynamic Decision-Making 111

4.4 Implement Simulatable Model

Method step Implement Simulatable Model (manually) translates the information
captured in method step S1 and method step S2 that collectively describe the Goal,
Measure, Lever, Structure, Behaviour, State and Traces of OrgUnits into ESL speci-
fication by applying the transformation rules defined in Table 2.

A representative ESLMModel that contains two key ExtendedActors namely
Customer and Vendor is shown in Fig. 9 [22]. The Customer ExtendedActor comprises
nine variables where each variables represents a bag of outsourced process of specific
type from the business process classification i.e., {SR, ST, SS} X {C, E, D}. The
vendor ExtendedActor comprises Variables of Vendor OrgUnit that include State
variables, Trace variables and the variables that represent Measures (as shown in
Fig. 9). The Customer and Vendor ExtendedActor also implement the state-machines
depicted in Fig. 8(b).

The table in Fig. 9 shows the initial characteristics of “WE” ExtendedActor. We
make these Variables configurable to attenuate their values, thus these Variables also
act as Lever specification in this example. As shown in the figure, a Vendor is equipped
with a set of negotiation levers namely, the range of Billing Rate, range of FTE
Productivity (percent reduction possible in number of full time employees), range of
FTE Reduction (reduction possible during renewal of a contract), range of Billing Rate
Reduction (reduction possible in billing rate during renewal of a contract), Influence
Relation and Delivery Excellence. The Influence Relation is a qualitative characteristic
that is quantified using four weighted labels namely ‘Excellent’, ‘Good’, ‘Normal’ and
‘Not Good’. Value of Delivery Excellence attribute is a probability distribution. For
instance, “WE” ExtendedActor is confident of delivering ‘Excellent’ quality on 60% of
Cost kind of BPO projects won. The values for ‘Good’, ‘Normal’ and ‘Below Normal’
quality for this kind of BPO projects are 30%, 10% and 0% respectively. Therefore,
one can model different kinds of vendors by setting appropriate values to the initial
setting. The “Competitor” ExtendedActors are also modelled on the same lines as
“WE” ExtendedActor.

The Customer ExtendedActor raises RFP events for outsourcing project. Each RFP
event is characterized by the kind of process being outsourced (i.e., SR or ST or SS),
the objective for outsourcing (i.e., C or E or D), size of the process in terms of FTE
count, and the desired billing rate. Interested vendors respond to the RFP event by
picking suitable values from their characteristics at random. Bid evaluation function is
a weighted aggregate of the various elements of RFP response and a random value to
capture effect of inherent uncertainty. The vendor with the best evaluated value wins
the outsourcing process which gets executed as defined by the characteristics of the
particular vendor. Essentially, an outsourcing process ExtendedActor moves from
customer ExtendedActor to a vendor ExtendedActor (i.e., from customer basket to
vendor portfolio basket) as shown in Fig. 9. The existence of an outsourcing process in
a vendor portfolio impacts vendor’s State variable (and thus Measures) as outsourcing
process contributes the Revenue, the customer count and Realisation. It also impacts
the track record and market influences over the time.

The decision to renew existing contract is specified on similar lines but with a
different set of characteristic variables influencing the decision. Essentially the
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(b) Distribution of Sunrise, Steady and Sunset at “Now”, After 5
“Years” and after 10 “Years”

Fig. 10. Simulation results when “WE” vendor continues as-is strategy. (Color figure online)

autonomous outsourcing process ExtendedActor raises Renew event after 3 to 5 “Year”
timeframe. Here too, the evaluation is cognizance of incomplete and uncertain
knowledge renewability criteria.

4.5 Simulation

We use ESL simulator to simulate the business-as-usual operations of the “WE” vendor
and its competitors. The simulation progresses with simulation ticks where each tick
represents a “Month”. The outcome of simulation runs depicting possible states of
“WE” vendor and its competitors at “Now”, after 5 “Years” and after 10 “Years” is
shown in Fig. 10(a). As can be seen, the initial revenue of “WE” (represented using
shades of ‘blue’ ellipses) is 438.98 MUSD from 90 customers with a realization of
nearly 15.5 USD per hour per FTE. Corresponding numbers for competitor 1 and
competitor 2 respectively are <319.97, 78, 13.33> (depicted using shades of ‘violet’
ellipses) and <352.32, 79, 15.1> (depicted using shades of brown ellipses). In short, at
present “WE” vendor is doing much better than competition.
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The graph, also shows the goals of “WE” vendor that aim to deliver <750, 200, 17>
after 5 “Year” and <1000, 290, 18> after 10 “Year” (depicted using green ellipses). As
can be seen, by continuing to operate the same way the “WE” vendor will be delivering
<587.58, 160, 13.5> after 5 “Years” and <857.51, 215, 14> after 10 “Year” (as directed
by red line in Fig. 10(a)) thus missing both the targets by a considerable margin.

Table 3. Decision Table.

Lever Revenue (MUSD) Number of Realisation
customers
After 5 After 10 | After 5 After 10 | After 5 After 10
Years Years Years Years Years Years
No lever 587.58 857.51 160 215 13.55 14
Improve existing 820.63 1165.80 195 287 15.2 15.4
resource
Robotic Process 899.3 1309.87 201 301 153 15.7
Automation (RPA)

More importantly, competitor 2 will be overtaking “WE” vendor after 5 “Years”
and both the competitors will be significantly ahead of “WE” vendor after 10 “Years”.

Clearly, “WE” vendor cannot afford to continue with its current way of operation.
A detailed analysis on portfolio of Sunrise, Steady and Sunset kinds of business pro-
cesses, as shown in Fig. 10(b), indicates significant percentage of current revenue of
“WE” vendor is from sunset kinds of outsourced processes (shown in red colour in
Fig. 10(b)). Over time this market is going to shrink considerably as compare to the
steady (depicted using yellow colour) as well as the sunrise (depicted using yellow
green) business processes. Thus “WE” vendor needs to bring about a change in its
characteristics so as to be able to win more bids in this demand situation.

4.6 Validation, Evaluation of Simulation Results and Recommendation

As part of model validation, we simulated the BPO specification by considering a
known set of Vendors and Customers with fixed number of outsourced Processes.
Essentially we initialised Vendors and Customers to known states, simulated the
specification for 2 “Years” and correlated observed simulation results with existing
operational data to ascertain the validity of the constructed models.

After ensuring the operation validity of BPO specification, we explored two Levers
as described in Fig. 5 (b) and captured observed Measure values in the decision table as
depicted in Table 3. Figure 11 and the decision table depicted in Table 3 show the
comparative analysis of two Levers. With the Lever 1, the “WE” vendor is able to beat
revenue target while failing to meet the number of customers and realization targets,
whereas the ‘WE’ vendor is able to beat both revenue and number of customer targets
while failing to meet the realization target narrowly with Lever 2. This clearly shows
that the Lever 2 works well for “WE” vendor in the competitive environment described
in this section.
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Fig. 11. Comparative study of Lever 1 and Lever 2.

Table 4. Evaluation summary.
Requirement EM Actor Proposed Enabling concepts in
specification | Lang. approach CMModel

Why V4 L Vv Goal

What Vv Vv Vv OrgUnit

How vV Vv N4 Event and behaviour

Who v L Vv OrgUnit

Where v L L OrgUnit

When v L L Time event

Modular V4 Vv Vv OrgUni

Compositional L Vv Vv Composition
relationship

Reactive L Vv N4 IncomingEvent,
OutgoingEvent

Autonomous X Vv v InternalEvent

Intentional Vv Vv Vv Goal

Adaptive L Vv Vv Adaptive behaviour

Uncertainty X 4 Vv Stochastic behaviour

Temporal L X Vv Temporal behaviour

Measure Spec 1 1 Vv Measure

Lever Spec L L Vv Lever

Top-down/Bottom-up | Top-down Bottom-up | Hybrid Composition
relationship, shared
state variable

Legends: +/ : Supports adequately, L can be specified with difficulties, X : not supported

5 Evaluation

For the kind of decision-making problem illustrated in this paper, industry practice
relies extensively on spreadsheets, documents and diagrams. Such an approach typi-
cally represents the influence of Levers onto Measures in terms of static algebraic
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equations. However, value of a Lever and influence of a Lever onto a set of Measures
can vary over time. This behaviour cannot be captured using spreadsheets. Neither
there is any support for encoding stochastic behaviour.

The proposed approach enables modelling of a system of systems using a set of
hierarchically composable OrgUnits each listening/responding/raising events of inter-
est. Each individual system or OrgUnit encapsulates state (i.e., a set of State variables),
trace (i.e., events it has responded to and raised till now) and behaviour (i.e., encoding
of individual reactions). They interact with each other by sending messages resulting
into emergent behaviour (i.e., the behaviour of system of system emerges from inter-
actions of OrgUnits or systems). The proposed approach further helps in addressing the
scalability issue by reducing the numerous message passing between OrgUnits through
shared variables. Therefore, we claim the proposed approach provides primitives for
creating models that closely mimic reality.

An evaluation of two prominent decision-making aids, i.e., EM based approach and
pure actor language based approach, along with presented approach is summarised in
Table 4. As shown in the table, an EM based approach and an actor language based
approach are complementary in nature. The former one supports aspect (i.e., why, what,
how, etc.) specification and a top-down simulation approach, whereas actor language
based approach is more effective for representing socio-technical characteristics and
bottom-up simulation approach. But, it is not convenient for aspect specification. The
proposed approach bridges the gaps between two classes of specifications by sup-
porting comprehensive aspect specification and socio-technical characteristics as
shown in Table 4. Moreover the explicit support for uncertainty, temporal behaviour,
and the bottom-up and top-down combination make proposed approach suitable for
CDDM.

6 Conclusion

Effective decision-making is a challenge that all modern organisations face. It requires
deep understanding of aspects such as organisational goals, structure, operational
processes. Large size, socio-technical characteristics, and increasing business dynamics
make the decision-making a challenging task for the decision makers.

This paper argued that the efficacy of a complex dynamic decision-making
(CDDM) chiefly depends on the three factors: (i) the availability of necessary and
sufficient information in a machine-interpretable form, (ii) suitable machineries to
process available information, and (iii) a method to capture information in a desired
form and perform what-if analyses in a systematic manner. The paper presented an
analysis of existing techniques and technologies to support a claim that the current state
of the art decision making aids are inadequate for an affective CDDM and highlighted
the gaps. Key aspects of this analysis point to the lacunae and inadequacy of support
for representing necessary aspects of an organisation in a systematic manner,
unavailability of appropriate concepts to represent the decision-making constructs, such
as Goal, Measure, and Lever, and inability to handle inherent uncertainty. Importantly,
the analysis also highlights the nonexistence of a suitable method supporting model
construction, model validation and perform what-if analysis for effective CDDM.
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To address these gaps, this paper contributed an approach that includes a
meta-model to represent necessary and sufficient information in the form of a con-
ceptual model (i.e., CMModel), a meta-model to represent information in a simulatable
form (i.e., ESLMModel) and a method. The meta-model CMModel mitigates the
identified specification gaps between the available technological capabilities and needs
for CDDM (as highlighted in Table 1). The meta-model ESLMModel realises
CMModel while addressing the analyses needs of CDDM. These models are supported
and used by the proposed method that uses a top-down approach for defining goals,
measure and levers (the GM-L structure), a middle-out approach for defining structural
aspect of an organisation, and a bottom-up approach for behavioural specification,
addresses methodical needs. The method, principally, combines a modelling and val-
idation method defined by Sargent [21] and a management sciences view for
decision-making advocated by Daft [3]. The method is evaluated through an industry
scale case study from the BPO domain.

As part of future research, we intend to validate the proposed approach using real
business scenarios as well as proposing further extensions to CMModel for introducing
game theoretic approaches in simulations for CDDM. Other avenues of exploration
include the use of constrained natural language to describe a problem entity so that a
tool chain can be defined to automate production of the problem entity, conceptual
model and the simulatable model. We expect the transformation chain to be human
guided in the first instance.
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Abstract. We present an architecture that enables run-time verification
with executable models of behaviour. Our uniform modelling paradigm
is logic-labelled finite-state machines (LLFSMs). Behaviours are con-
structed by parameterizable, loadable, and suspendable LLFSMs exe-
cuted in predictable sequential schedules, but they are also verified at
run-time by LLFSMs as well. Our architecture enables runtime verifi-
cation (to monitor the quality of software during execution) as well as
set up, tear down, and enforcement of quality behaviour during run-
time. The LLFSMs models are executable and efficient because they are
compiled (not interpreted). The LLFSMs can be derived from require-
ment engineering approaches such as behaviour trees, and also validated
using test-driven development. However, in situations where software
evolves incorporating elements of adaptive systems or machine learning,
the software in execution may have never existed during development.
We demonstrate the features of the architecture with illustrative case
studies from robotics and embedded systems.

Keywords: Run-time verification
Logic-labeled finite state machines + Model-driven software development

1 Introduction

Software quality is critical to ensuring systems will not cause harm to humans
(nor reduce quality of life), or economic loss [10]. The Internet-of-Things (IoT)
demands more reliable software systems [40]. In early 2016, Australia Post com-
pleted its first trials of drone-delivered parcels, and although this technology
will not be everyday practice for some time into the future, many embedded and
robotic systems are already revolutionising transport and communication indus-
tries. Gartner estimates there are 8.4 billion smart devices in the IoT now across
manufacturing, utilities, and transportation. However, insufficient software qual-
ity can cause severe malfunction of smart, embedded systems [53,56,58].
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The opportunities for improvement in software quality are enormous: “risks
are becoming salient as our society comes to rely on autonomous or semi-
autonomous computer systems to make high-stakes decisions” [15]. The first and
immediate category to deal with are AT software systems [15]: automated vehi-
cles, home robots, and intelligent cloud services must perform correctly, even
in the presence of surprising or confusing input. Recommendations emerge for
researchers to focus on “self-monitoring architectures in which a meta-level pro-
cess continually observes the actions of the system, checks that its behaviour is
consistent with the core intentions of the designer, and intervenes or alerts if
problems are identified” [15].

Experts suggest that the software models for the behaviour of the IoT and
smart things are likely to be based on state machines [10]. These allow speci-
fying behaviour at a higher level of abstraction than traditional programming
languages, making software development faster. Use-case traces naturally map
to paths through states and transitions. Behavior Engineering [17], a form of
requirements engineering, creates these traces and then integrates them into
Behavior Trees, from which finite-state machines, describing the behaviour of
components, can readily be synthesised.

We will show how to use logic-labelled finite-state machines (LLFSMs)
to model mechanisms that can monitor the software built using the model-
driven development (MDSD) paradigm that LLFSMs offer. The precise seman-
tics of LLFSMs makes them overcome some of the criticisms that MDSD has
received [49] while enhancing its advantages. LLFSMs have been proven very
effective for describing software behaviour [7] and for performing model-checking
and formal verification, both in the value and the time domain [26]. LLFSMs
offer a model of controlled concurrency that scales much better than comparable
event-driven modelling approaches (such as UML-state charts, Behavior Trees,
and teleo-reactive systems). Consequently, changing, improving, and maintaining
behaviours of embedded systems and robots using LLFSMs is more cost-effective.
Modelling at this high level means that the behaviour is closer to the original
set of human-language requirements and therefore easier to understand. In the
systems engineering and robotics communities, state-machines are ubiquitous.
MDSD leads to more uniform quality; the LLFSM compiler produces efficient
executables as it compiles to general, uniform code that minimises overhead.
Because of the use of visual models of LLFSMs, the resulting behaviours are
more transparent, and the gap between business analysts, requirement engineers,
and software developers is reduced. Moreover, to scale to larger systems, LLF-
SMs have the capacity to incorporate Test-Driven-Development (TDD) methods
and derive test suites from use-cases, incorporating such tests as LLFSMs them-
selves [28]. Such TDD can be managed by Continuous Integration Servers [27].

Runtime verification focusses on the design of formal languages for the spec-
ification of properties that must hold during runtime [18]. LLFSMs offer the
architectural elements for runtime verification [23]. In this paper, we take mat-
ters one step further and will create software systems that can monitor the qual-
ity of other software systems as they execute, set-up, tear-down, and enforce
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behaviour quality on the fly. We demonstrate the progress with concrete case
studies: a network of traffic lights, a robotic vehicle and a legged robot.

We use the fact that LLFSMs are executable models analogous to state
charts, but with transitions labelled by logic predicates. LLFSMs represent deter-
ministic, executable models that enable formal specifications of requirements,
including observable behaviour. We generate agents that can observe and mon-
itor behaviour. This step enables agent technology capable of identifying unde-
sired behaviour, raising warnings, and acting to prevent software malfunction.
We use TDD and MDSD tools for the automatic construction of runtime moni-
toring agents that execute tests, monitor behaviour, and revise software models
as they execute. Our monitoring LLFSMs raise the level by which the software
is aware of its operational state, since the monitoring agents would be able to
report on the behaviour of their underlying software components.

The rest of this paper is organised as follows. Section 2 discusses the three
architectural elements than enable our approach. The first is the sequential
scheduling of arrangements of LLFSMs that are not event-driven, but label tran-
sitions with Boolean expressions instead. The second is the capability to commu-
nicate between LLFSMs with a data-centric, in-memory middleware. The third
element is the use of control/status messages, different from a publish/subscriber
pattern and following a writers/readers pattern. Section 3 illustrates these archi-
tectural elements with a concrete example. This example will be used in Sect. 4
to describe our approach to runtime verification. While the first example [25]
is a simple embedded system, Sect.5 shows what can be achieved with robotic
systems. Section 6 describes how to automate the generation of monitoring LLF-
SMs, and Sect. 7 discusses the safety and security implications by contrasting
with ROSRV [35]. We benchmark our proposal here with the state of the art from
literature in Sect. 8. In Sect. 9, we summarise and conclude the paper.

2 Architectural Elements

We base our architecture on executable behaviour models, represented by finite-
state machines. Importantly, there are three crucial elements in this architecture.

First, transitions are labelled by Boolean expressions only (and not events),
hence the name logic-labelled finite-state machine (LLFSM). LLFSMs are Com-
municating Extended Finite State Machines (CEFSMs) without events [43]. Sig-
nificantly, the semantics is therefore not that of a software component waiting
for an event triggering the transition to a new state. Instead, the components
form a single thread of LLFSMs under a predefined schedule. The machine that
executes (has the token) evaluates the sequence of transitions associated with its
current state. This evaluation could potentially be quite sophisticated and com-
plex (involving planning and/or reasoning), making LLFSMs, not plain, reac-
tive architectures, but to also blend into deliberative systems [19,25]. Control
remains with one and only one component, resembling a deterministic polling
system (unlike an interrupt handler). If an expression labelling a transition eval-
uates to true, the transition fires, making its target state the current state of
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the LLFSM. As with ubiquitous models of state machines, states have ONEN-
TRY, ONEXIT, and INTERNAL sections. Actions (code) in the ONENTRY section
is executed only after a state change. The ONEXIT section is executed after a
transition fires, while the INTERNAL section is executed only if all transitions
have evaluated to false. After either, it becomes the next machine’s turn in the
arrangement. LLFSMs have a series of mechanisms to handle composition, and
to be suspended, resumed or restarted. In addition to interpreters for Simple C!
and Java, we have efficient LLFSM compilers for C/C++ and Swift under POSIX
systems such as Linux or macOS, for microcontrollers, and ROS. LLFSMs are
akin to UML state charts where transitions are labelled only by guards.

The second crucial element is the communication middleware between LLF-
SMs. Variables may be valid for the whole LLFSM, but states, and even each
section (ONENTRY, ONEXIT, and INTERNAL), can have their own local vari-
ables, not shared with any other scope. However, beyond one LLFSM, variables
reside in an object-oriented whiteboard, implemented in shared memory [24].
The whiteboard can be seen as a data-oriented broker, decoupling information
readers and writers. However, as opposed to most robotic middlewares, where the
paradigm follows a Push approach, we use a Pull approach [22]. With the LLFSM
execution semantics, our gusimplewhiteboard implementation [24] offers fast,
lock-free, atomic reader/writer semantics for multiple readers and even multiple
writers. This OO implementation has proven superior in speed and reliability to
other middlewares such as ROS’ system [24,37].

The third aspect that provides a simpler, clearer semantics, while retaining
modelling power and Turing-complete expressivity, is data-centric communica-
tion between components utilising control and status messages. Thus, the white-
board implements a blackboard control architecture [32]. Control/status messages
are an alternative to the scenarios akin to the rendezvous model [34,50] in the
message passing world, or a synchronous remote procedure call (RPC). By con-
trast, control/status messages follow the readers/writers paradigm as opposed
to producer/consumer or publisher/subscriber. Typically a single class defini-
tion is assigned two message slots, Control for control data, and Status for
responses (e.g., from a sensor). Reader components such as actuators and con-
trollers use the Pull paradigm to query their corresponding messages. This decou-
pling enables components with long or unbounded run time, such as Al planning
and reasoning, to be incorporated without interfering with a deterministic, low-
latency control architecture provided by LLFSMs [25].

3 Illustration of Architectural Elements

We present the principles of our new software architecture with a classical exam-
ple [44] of a system that controls traffic lights on an intersection between roads
going North-South (NS) and East-West (EW). Requirements evolve from an
initial version with no sensors, to a more advanced version with sensors in the
EW-direction that, in the absence of a car, enable NS-priority (keeping the traffic

! Simple C is a subset of C used in some examples of antlr [48].



123

Deterministic High-Level Executable Models

(ewsoruy

Hx3zuo
Anuz uo

J31PUEYTGM = uoTyeanbTiu0de SIYBTTITS 4RI UOTIAUNSGNSYIITMS

~

{17sn1e1s"M3dols = MIPaYo911LYS

f17sn1e1s”M3dols = MIpayooiieys
{(uoT3EUNBTUO)R)T:
1015 “438WY M3 LHIIT)SUOTIRINBTLU0)3Y] 13s *uoTIenbT yuode

{9nJ1 = 17sSN1e3S  JSWT 11353

J

MINO¥IENY A

M3payoolieys

\_m:..m:._

Ix3juo
Anuz uo

(.

£37sn3e1s TSN paJ = M3ua3.49091)BYS,

£37Sn3e1STSN pPaJ = M3u33490911BYsS

Jeusayu]
£37Sn1e1sTM3uJeM = MJuJeM11BYS

Huxjuo

Anuzuo

JAIuieMmiiey f17sn1e1sTM3ulem = MJuJemyleys

fanJ1 = 17SN1e1STJBWT 1953

MINONIIHO A

Eu:msocw_,m;m\eixt

/}«Emuc_

Hx3j uo

Anuzuo
(0g)swJaye

fz=1015

dn13s A

MINOQIY A
)

|eusau]

Huxzuo
Anuzuo

£17sn1e1s"GNd01S = SNP3XHOI 1 euS

£17sn1e1s SNd01S = SNPaY0911eys
f(uoT3eJnbTLUO)R)T:
1S ‘¥IEWY SN LHOIT) SUOTIRJNBTSU0)3Y1 39S "uoTeanbTU0DE

fanJ} = 37SN3}e}S JSWT 39S

SN'NO¥IEWY A

mZuchozmﬁ

\

Jeusaju;

X3 uo
Anuzuo

£()i86

£17SN1e1STMITpaJ = SNU23J9H09]1BYS

f17snie1sTMITpad =
¢ (uoT1e4nbTLUODR)
015034 SN LHOI1)SUOTIRINBTLU0)3Y3 33S *UOTIeINbT Juo)e

SNU39190911 84S

SN'NOQ3¥ A

U221909)1845%78

R S

\_m:‘_Uu:_ /
£37Sn3e}s T GNUJBM = SNUJBM)1BYS
ux3auo
Anuz uo
£17SN1e1STSNUJBM = SNUJBML1BYS

uem|leys|
——

1S ‘N33¥9 SN LHOIT)SuOTIeanBTIu0)ay3~1as *uoTieanbruode

£()3I867457plBdM = uotieanbTiuode sIYBTIOT 4RI LUOTIAWNSGNSYIITMS
f9nJ1 = 17SN1e1s JaWT]1959J

" SN'NO'N3ZHO A )

™ amx”iz:

\_m—:w—:_ /

Hxguo

Anuzuo

{(uoTyeJnbBTIUODR): puey—gmM

! (3015 ‘4407SNLHOTT) SUOTIBJINBTSU0)IYI 335 *UOTIRINBT JU0IR
£()386775pUB"GM = uoTyeanbTju0)e SIYBTTOTS B LUOTIAUNSGNSYIITMS
{1=101s

dn13s A

- J

o’

(b) East-West (EW) controlling LLFSM.

(a) North-South (NS) controlling LLFSM.

Fig. 1. Two LLFSMs for traffic lights at an intersection [23, Fig.1]. Each machine

represents a set of traffic lights for a particular direction (NS or EW). There is an

initial SET_UP state, followed by three states representing the colour of the lights.

lights green in the NS-direction). The declarative requirements demonstrate the

25]. The

[
of course, is that the lights are never simultaneously

integration of reasoning and logic-programming for a reactive system

most crucial requirement,

both directions.

green 1n
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The complete system model consists of three LLFSMs in a single arrange-
ment:? the Timer LLFSM and two controller LLFSMs. These two controller LLF-
SMs appear in Fig.1 on the next page. These machines are part of our later
example for run-time verification and are the two traffic-light behaviours for an
intersection of roads going East-West and North-South. The first thing to notice
is that analogous to OMT [51] and UML, these are executable models made of
states and transitions. An arrangement of one or more LLFSMs constitutes a
single, sequential program. That is, they have the semantics of a single thread.
The token of execution rotates, in round-robin fashion, between the LLFSMs in
the arrangement. States have three sections, and when the token of execution
arrives to an LLFSM the corresponding machine resumes execution. It verifies it
has not been suspended, and whether it has executed a transition from another
state the last time it was its turn. If the current state differs from the previ-
ous one, the ONENTRY section will be executed, otherwise it is skipped. This
is followed by evaluating, in sequence, the guard for each transition, and if one
becomes true, the execution of the ONEXIT completes the turn for this LLFSM.
If all guards are false, the turn completes by executing the INTERNAL section.
Note that this sequential semantics is due to the fact that labels for the transi-
tions are not sets of events but a sequence of Boolean expressions. Machines are
compiled into loadable libraries of efficient, executable code.

Boolean expressions such as after(1) are analogous to the predicates that
were used in augmented finite-state machines (AFSM) of the subsumption archi-
tecture. In fact, the LISP language for the subsumption architecture [9] is a sub-
set of LLFSMs. Similarly, teleo-reactive programs [46] label all transitions with
Boolean expressions. Consider the code in the ONENTRY section of the state
RED_ON_NS.

SwitchSubsumptionTrafficLights aConfiguration = wb_handler.get();
aConfiguration.set_theConfigurations(LIGHT_NS_RED,slot);
wb_handler.set (aConfiguration);

shallGoGreenNS = red_EW_status_t;

and also the INTERNAL section
shallGoGreenNS = red_EW_status_t;

The statement in the INTERNAL section is also the last statement of the ONEN-
TRY section and illustrates the use of a status message. The Boolean variable
shallGoGreenNS is updated by retrieving a status message. The writer of this
message is a compiled Prolog program that evaluates whether the conditions to
move the North-South traffic light to green have been meet [25]. Thus, if the cur-
rent state is RED_ON_NS, the machine will evaluate the variable shallGoGreenNS
and, if false, not carry out the transition. But before relinquishing the token of
execution, the code in its INTERNAL section gets run, updating the transition-
labelling variable with the current advice from the Prolog program. This shows
that the models execute the reactive actions of moving to another state in their

2 A QUI facade with avatars for effector and sensor hardware appears in the simulation
at youtu.be/HFm6fbZ6lkg.
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own time, analogous to a time-triggered approach (and definitely distinctive from
the event-driven approach of UML state charts).

In our middleware, the data structures used to communicate between LLF-
SMs (and other processes or modules, such as Prolog programs) are essentially
any C++ object with a standard C/C++ footprint in memory. This communication
middleware is illustrated in this fragment of code. The statement

SwitchSubsumptionTrafficLights aConfiguration = wb_handler.get();

uses a previously declared handler to the middleware to retrieve the instance
of SwitchSubsumptionTrafficLights into the object aConfiguration. The
object-oriented nature of this middleware follows a data-centric whiteboard
paradigm, and thus, all methods of the class SwitchSubsumptionTrafficLights
are available. This is what happens with

aConfiguration.set_theConfigurations(LIGHT_NS_RED,slot) ;

Here, the corresponding slot for this LLFSM is updated in the data structure that
the switch will use to relay commands for the traffic lights. The next statement
below posts this updated data structure back to the whiteboard without any
need for concurrency synchronisation as the current LLFSMs in the arrangement
knows no other LLFSMs is accessing this object:

wb_handler.set(aConfiguration);

In summary, LLFSMs are models compiled into loadable executables, not
interpreted. They have been compared to artefacts and modelling languages such
as Behavior Trees [17], Event-B [1], Teleo-reactive programs [46], Executable
UML [45], or SysML (UML tailored for systems engineering). For formal verifica-
tion and requirements engineering, they compare favourably with Petri Nets [7]
and Timed Automata [27,28]. Software construction with LLFSMs can emulate
architectures based on embedded and reactive control as well as behaviour-based
control, while adding feasible, formal verification [22]. In this paper, we take these
elements further by enabling an architecture for runtime verification.

4 Verification and Reconfiguration

Each controller LLFSM (refer to Fig. 1) is in charge of a traffic direction and thus,
minimally, each is in charge of a set of three lights (a read, green, and amber light
each). Two versions of a declarative Prolog program (youtu.be/HFm6fbZ6lkg)
specify when to switch lights. The Timer machine can be signalled to reset the
time value. It regularly posts the time elapsed, and whether that time is greater
than 5s, or greater than 30s.®> The LLFSM for the EW-set of lights (Fig. 1(b))
controls the green, amber, and red light in the EW-direction, cycling through
three states such that only one light is on in each state. Thus, in the state
On_RED_EW, in the EW-direction, only the red light is on. Symmetrically, the
second controller LLFSM handles the NS-direction (Fig.1(a)), signalling red,

3 Diagram for the Timer is 40s into the video (youtu.be/HFm6fbZ6lkg).
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amber, and green in that direction, also cycling from green via amber to red,
and back to green. All three LLFSMs are scheduled deterministically, and the
decisions as to whether to switch state are inspections of Boolean variables. For
example, shallGoRedNS is evaluated by obtaining the value from the whiteboard
with the statement shallGoRedNS=stopNS_status_t; that is, the LLFSM acts
as a reader in the Pull architecture of this status message, while the value is
updated by a writer that periodically executes the Prolog program. The Prolog
program is inside a wrapper LLFSM, synthesized from the interface provided by
the Prolog program and running in another process [20,25]. The LLFSMs define
a complete and functional system composed of executable models.

Using the sensor and prioritising the NS-direction is the result of a simple,
localised change, restricted to only the Prolog program. Changing between soft-
ware versions requires swapping between Prolog programs. The LLFSMs can
be subject to formal verification (using standard model-checking tools), as the
corresponding Kripke structure can be derived directly from the model (and the
number of Kripke states is small). In addition, since often expressing proper-
ties about system behaviour to perform formal verification can be complex, it
is possible to create a suite of TDD tests by creating test-LLFSMs that set up,
watch, and tear down behaviour [27,28]. Such testing can validate the system
before investing effort into formal verification, and also can raise the confidence
of system correctness where state explosion makes formal verification impossible.

We focus on the situation where replacing one behaviour component or any
of the four wrappers, at runtime, could result in a faulty system. That is, one
should be able to swap between versions without faults manifesting themselves.
Of course, one way is to formulate these details as a requirement and build
the software accordingly. However, if the decision-making process is learnt while
running (the Prolog program is composed by something akin to inductive logic
programming), then no possible test could have been created originally, as the
logic program would not have existed at the time. Once the logic program is
available, formal verification may be infeasible (due to the complexity of the
system), while testing does not prove the system is correct: it merely shows that
no failures occur in a finite subset of cases. Moreover, if big data technologies and
stream-data analytics were to build, online, sophisticated new rules and software
to decide on the settings of the traffic lights, exhaustive testing would be infeasi-
ble. Thus, monitoring the system while in execution may actually be required, to
correct the effects of traces that lead to failure, but were not discovered earlier.

4.1 Software Architecture for Run-Time Verification of LLFSMs

We propose a revolution of the subsumption architecture [8] to manage the run-
time verification of a system composed of LLFSMs. Our proposal, following the
subsumption architecture principles, constructs behaviour from conceptual lay-
ers of timed, finite-state machines. What we suggest here is a revolution, because
we no longer assume lower layers are correct. The timed aspect means that we
have Boolean primitives, after(t), that only become true after ¢ units of time.
We, however, go beyond a mechanism to just suppress an input, and even beyond
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Fig. 2. Layered component diagram of the LLFSMs executable software that control
the traffic lights [23, Fig. 2].

the capacity to inhibit the output from an LLFSM. Instead, we extend the mech-
anism to suspend [24] an LLFSM and add a mechanism that dynamically loads
an LLFSM to join the arrangement for execution. Correspondingly, we provide
mechanisms to also dynamically unload a faulty LLFSM and remove it from the
schedule of execution.

The subsumption architecture always assumes that the lower layers are
entirely correct. In stark contrast, we propose that the lower layers may, in
fact, be faulty. In our proposal, higher levels act as behaviour monitors for lower
layers. Realisation that a lower layer is malfunctioning, perhaps violating some
requirement, is sufficient for the higher layer to take action, including one or
several of the following actions.

SYSTEM
LAYER 4
T
LAYER 3 I
) 2

%) = 2 I 5
e |l cvens : 1| = g
: 1Y gy ™ :
B LAYER 1 g <L =5 :

(a) Illustration of the layered sub- (b) With a monitor LLFSM (and po-

sumption architecture. tentially another switch), properties of
the system can be monitored at run
time.

Fig. 3. Generic architecture of the safety monitor [23, Fig. 3]. (Color figure online)
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1. Inhibit the output of the lower layers and replacing it with newer, safer output.

2. Provide input to lower-level machines to steer them, suspend them and/or
restart them.

3. Reconfigure the arrangement by unloading some of its LLFSMs and loading
non-faulty replacements.

That is, higher layers can rebuild lower layers that exhibit unstable behaviour.
Figure 2 shows a component diagram (with the inputs and outputs for the traffic
lights and sensor) in the layered style of the subsumption architecture [8]. The
two LLFSMs of Fig. 1 appear in the upper layer in grey. Our approach is to take
such a system (that receives input from sensors drawn on the left and delivers
outputs to actuators) to an expanded and safer level, where a monitor (with a
subsumption switch) ensures fundamental safety properties during runtime. This
is illustrated by the transformation in Fig. 3, where Fig.3(a) follows [8, p. 17,
Fig. 3] to Fig. 3(b). Note that the original system can be abstracted and treated
as a black box from the perspective of the two new components. The first com-
ponent is a monitor LLFSM, while the second one is a subsumption switch [13]
that can also be modelled /implemented as a (separate) logic-labelled finite-state
machine. The added modules can treat the entire set of output signals of the
system as inputs (“external” signals from their perspective). The added compo-
nents (coloured boxes in Fig.3(b)) are small and thus their formal verification
becomes feasible. More importantly, the switch LLFSM is capable of inhibiting
dangerous configuration of output signals to the actuators, replacing them with
safer configurations. The monitor LLFSM can perform all the actions suggested
earlier that reconfigure the running system.

Our extension creates a more uniform, layered architecture, whether or not
the system is a subsumption architecture. The LLFSM for the switch* simply
buffers configurations of effector and actuator commands with a given priority.

If the system is a subsumption architecture, the switches already are part
of the system and do not need to be replicated. The only requirement is that
configurations provided by the monitors have a higher priority. Moreover, the
monitoring LLFSM can have its own API, as we will discuss later.

The generality of the LLFSM approach facilitates that the monitor itself
can be an LLFSM, and consequently, the monitor is also an executable model®.
For the traffic light system, the monitoring LLFSM (Fig. 4) checks that the two
green lights are never on simultaneously. The monitor will inhibit this by loading
a new behaviour, which will trigger blinking amber lights in both directions
(with all red and green lights turned off). Such behaviour signals malfunction
to motorists and to the traffic authorities. When the monitor discovers a fault,
it loads a machine that expresses a new behaviour (both lights blinking amber),
and unloads the current faulty machine, loading default ones. This construction
is the generic machine-monitoring pattern.

* youtu.be/HFm6fbZ6lkg at 3m 32s.
5 From 3m 40s in the above video.
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5 Robotics Case Studies

5.1 Interaction of Behaviours

Our second case study is inspired by the presentation of the runtime verifica-
tion framework ROSRV [35]. This framework aims at raising the level of safety in
robotic systems under ROS and mainly consists of a node named RVMaster. It
oversees all the peer-to-peer traffic in a ROS environment, blocking messages,
and shielding the actual Master node (usually named roscore). The ROSRV archi-
tecture places a Monitor between every pair of publishers/subscribers, requiring
a large number of monitors. The link between the RVMaster and the ROS Master
is secured with a firewall.

This framework is illustrated using a simulator of the LandShark unmanned
ground vehicle (UGV) robot. The examples represent situations where two mod-
ules responsible for two different tasks (although optimised for their individual
responsibilities), when operating simultaneously, produce an overall deficient
behaviour. One such example is a gun on the turret having a tracker for a tar-
get but when placed on the LandShark UGV body it may hit itself [35]. These
scenarios are common in other robotic software, and another example discussed
with the UGV simulator is combinations of turret positions and accelerations
causing it to tip over [35]. Although there is no public access to the LandShark
simulator, we can reproduce two of the monitoring examples using the ROS
Gazebo simulation of a Komodo, a robot that is also an UGV on wheels with an
articulated arm and gripper. The forbidden runtime conditions we monitor are
actuator commands rather than conditions about forbidden states.

The first scenario is that certain wheel accelerations are not to be set while
the arm is extended, as this causes the robot to tip. Second, certain navigation
commands are not to be performed as they would take the robot into unsafe
terrain. For this example the video youtu.be/MVIghB0JZ1g shows one behaviour
for exploring a region that is faulty, becoming more prone to accelerate and run
into barriers. However, with our runtime verification monitor, when the robot is
close to the obstacles, two new behaviours are loaded, one to spin it back and one
to guide it to its origin before the earlier behaviour is allowed to operate again.
The methodology presented before applies here in a very similar way. We add a
subsumption switch to the original system that wraps the motor commands. We
add monitoring LLFSMs for the conditions. One simply uses location information
directly to track the position of the robot and thus instructing the switch to
inhibit motion commands to motors that would place the robot too close to the
obstacles. For the other example, the monitor LLFSM (refer to Fig. 5) reads the
arm position sensors, to calculate and track the centre of gravity relative to the
base of the robot, adjusting a threshold value in the subsumption switch for the
maximum allowed wheel acceleration.

5.2 Modular Robotics

Scalability of the Internet of Things (IoT) has also prompted modular robots [3],
that is, a robot that can be composed of several physical parts. In such a system,
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Fig. 5. Monitor LLFSM for the arm position that suspends travel

arm behaviour if arm’s position is dangerous. A behaviour that folds the arm replaces

the exploratory behaviour of the arm.
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(a) We use V-REP’s Hexapod robot to show  (b) Sequence of the groups of legs on two si-

the pattern for clockwise rotation. The lon-  des of a direction of motion. Left side spins

ger legs are on the ground while raised legs  the robot clockwise while right side spins the

are shown shorter. robot counter-clockwise, but in phases bet-
ween odd and even legs.

Fig. 6. Basic gaits for walking or spinning.

RAISE_LEG

VrepHexapodHotion a_motion = hexapod_motion->get();
VrepHexapodLegMotion legMotion =
VrepHexapodLegMot ion (V_REP_HEXAPOD_RATSE) ;
a_motion.set_theLegMotions(legtotion , I_am );
hexapod_motion->post (a_motion); On Entry

after_ms(FREQUERCY)&80==1_am%2

PUSH_OPPOSITE_DIRECTION SPIN_INTO_DIRECTION_OF_MOVEMENT
VrepHexapodiotion a_motion = hexapod_motion->get(); VrepHexapodiotion a_motion = hexapod_motion->get();
VRepHexapodHot ionCommand a_move = VRepHexapodHot ionConmand a_move =

(V_REP_HEXAPOD_WALK== spin_vs_walk) ? (V_REP_HEXAPOD_WALK== spin_vs_walk)?
reverse_move(I_am,direction) move(I_am,direction) :
((V_REP_HEXAPOD_SPIN_BODY_COUNTER_CLOCKWISE== spin_vs_walk) ? ((V_REP_HEXAPOD_SPIN_BODY_COUNTER _CLOCKWISE== spin_vs_walk) ?
V_REP_HEXAPOD_CLOCKWISE : V_REP_HEXAPOD_COUNTER_CLOCKWISE ); V_REP_HEXAPOD_COUNTER_CLOCKWISE :

VrepHexapodLegMotion legMotion = VrepHexapodLegtiotion(a_move); V_REP_HEXAPOD_CLOCKWISE) ;

a_motion.set_theLegMotions (legtotion , I_am ); ghotion leghotion = eghotion(a_move) ;
hexapod_motion->post (a_motion) ; a_motion.set_thelLegMotions (leghotion , I_am );

OnEntry | \ hexapod_notion->post (a_motion); ChETS7,

LEVEL LEG

VrepHexapadiotion a_motion = hexapod_motion->get();
VrepHexapodLegMotion legMotion =
VrepHexapodLegMot ion (V_REP_HEXAPOD_LEVEL) ;
a_motion.set_theLegMotions(legtotion , I_am );

after_ms(FREQUENDY&&01=Lam2

hexapod_mot ion->post (a_motion) ; On Entry

Fig. 7. Executable model for all legs of an n-legged robots as a parameterised LLFSM
from which walking gaits and spinning gaits are composed.

the number of copies or parts of the same kind can be flexibly adjusted, not only
prior to deployment, but even during operation. Therefore, it is natural to con-
sider that the specified behaviour of such components should also be modular
and would utilise MDSE [3]. We illustrate this with the parameterised behaviour
that controls the repetitive and cyclic motion of an hexapod’s gait. Our presen-
tation should be applicable to an arbitrary number of n > 6 legs placed around
the centre of mass of the robot, because when all the legs are located equidistant
from the centre of the robot as if they were on a regular n-gon, it is easy to
describe behaviour that spins the robot clockwise (Fig.6(a)). In the first stage,
the even numbered legs raise (shown as shorter lines). Then, odd legs use their
body joint to push the robot clockwise as they actually do a counter-clockwise
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turn of the body joint. Simultaneously, the even legs are raised and turn clock-
wise, advancing in the direction of the spin. The third phase lowers the even legs
while raising the odd legs and roles are reversed between these groups of legs.
In the fourth phase, it is now the legs on the ground (the even legs) that push
the body by rotating counter-clockwise, while the raised ones (the odd ones)
rotate clockwise. An equivalent gait for counter-clockwise rotation would simply
reverse the direction of joint rotations.

The robot walks in a particular orientation using the same pattern! The
fundamental movement of the legs uses the same four stage movement. However,
as opposed to spinning, legs are now partitioned into two sides (Fig. 6(b)). Those
on the left will be performing motions to spin clockwise, while those on the
right of the center line of motion will spin counter-clockwise. The robot will
walk because odd legs and even legs will have a phase shift of two stages. So
the robot will ‘row’ in the direction of motion with even legs pushing back on
the ground, while the odd legs are raised and move forward, again, with the
odd group of legs replaced by the even in their role of pushing or advancing in
the air. There are many more possible gaits. The point we are illustrating is
that linear and rotational leg movements can be modelled as the fundamental
parameterised motion of each leg. Figure 7 shows the fundamental four states of a
leg, RAISE_LEG, LEVEL_LEG, SPIN_AGAINST_DIRECTION_OF_MOVEMENT, as well
as PUSH_OPPOSITE_DIRECTION. However, deciding what is a push motion when
the leg is down or what is rotating back the leg when the leg is up depends on
three factors: (1) whether the hexapod is walking or spinning, (2) whether this
particular leg is to the left or right of the direction of movement; and (3) if we
are spinning, then whether the motion is a clockwise or counter-clockwise spin.
Finally, the phase of a leg motion depends on whether it is an odd numbered leg
or an even numbered leg. Figure 7 shows the parameterised executable LLFSM
for the motion of a leg. The motion starts raising a leg or leveling a leg according
to the group of the leg (even or odd). From there on, all legs loop through the
same four states, and adjust the move when the leg is down or up according to the
described calculation. A video of a hexapod driven around an area with spinning
and walking can be seen at youtu.be/60FgjRvZqgsc. The parameterised LLFSM
in Fig.7 are launched as concurrent, non-blocking calls with the corresponding
parameters. That is, the behaviour that conforms to the gait in the case of the
Hexapod invokes six instances of Fig. 7 with the appropriate actual parameters.

This example shows another feature of LLFSMs: the flexible non-blocking
invocation of parameterised LLFSMs. To illustrate the run-time verification
in this setting, we only show the most relevant states of the controller LLF-
SMs that enables driving around of the hexapod as illustrated in the video
mentioned earlier. The setting of the parameters can be seen in the state
RESTART_LEG_MACHINES. State NUMBER_LEGS assigns each invoked LLFSM a
number (Fig. 8). State RESTART_LEG_MACHINES also calls each LLFSM without
blocking. Thus, it needs to check that all such LLFSMs are running and then
synchronise them, before reading a new action (and new direction) from the
driver.


https://youtu.be/60FgjRvZqsc
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¥ NUMBER_LEGS
CHECK_DIRECTION
for {unsigned Int leg_mus uner < NIRBER_(£G5 ; \eg nunber++)
after_ms(40) {4 stat. ( +1);
legcontru\ \eg macnme tatic_caste \egcontrn\ (tneLegMacmnes[\eg nunber]) ;
1eg_machine->I_an cast<HEXAPOD_LEGS>( leg_number )
b On Entry
afte )
aft AN

afteyfs(50)
(4

¥ RESTART_LEG_MACHINES

_number < NUMBER_LEGS ; leg_number-++)

tatic_cast<int>(leg_numbers+1);

st<legControl x>(theLegMachines [leg_number]);

leg_machine->directio <float>(new_direction) ;
Lo machine-spin_vs walk snew action;

t )

:_of_machine_at_. >_index));

On Entry

Fig. 8. Section of the LLFSM that numbers the legs. It enters a loop that checks what is
the new action (and new direction) the driver of the hexapod wants to take. Machine’s
parameters are set and all LLFSMs are launched concurrently without blocking this
caller.

However, since each LLFSM for the legs is launched separately, there is a
need to ensure synchronisation. For example, all even legs (and similarly, all odd
legs) must be in the same state. This verification is rather different from static
verification. In theory, one could write the corresponding temporal logic formula,
but this would be particularly laborious. Nevertheless, we illustrate the virtue of
LLFSMs by presenting an LLFSM that verifies this aspect at run-time. The new
monitoring LLFSM will watch the state changes of the six instances of LLFSMs
for the hexapod. Recall that all these are instances of the Fig.7 LLFSM, with
common parameters for the action (walking vs spinning), but with a different
leg number. The monitoring LLFSM (different from the controlling LLFSM)
is shown in Fig.9. The important aspect to notice is that the transition from
state MACHINE_STATE_CHANGES happens in any of the six LLFSMs has a state
change (the transition is whether the first or the second, or the third odd labelled
LLFSM controlling the leg has a change of state or the first or the second, or
the third even labelled LLFSM has a change of state). But then, the transition
from state SOME_CHANGE _HAPPENED to ERROR is taken if it is not the case
that all machines had a change. This is also the virtue of LLFSMs’ sequential
schedule, as all LLFSMs in the arrangement receive the token of execution before
the monitoring LLFSM in Fig. 9 receives the execution token again. All LLFSMs
are executing concurrently, and despite non-blocking calls that re-launched the
leg controllers, synchronisation is achieved without further explicit coordination
(as would happened with open concurrency that requires semaphores, monitors,
or other explicit synchronisation mechanisms and which often renders formal
verification impossible [21]). The monitoring LLFSM in Fig.9 is not necessary
to control the hexapod, but can be incorporated as a safety mechanism using
the architecture described in Sect. 4.1.
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v initial

half_legs = NUMBER_LEGS<<1;
odd_Tsms = new CLMachinex [half_legs];

W MACHINE_STATE_CHANGES
for (int 1=0; i< halt_legs; 1++)

{ current_state_odd[i] = current_state_of_machine(odd_fsms[il);
next_current_state_odd[i] = current_state_of_machine(odd_fsms[il);
current_state_even[i] = current_state_of_machine(even fsms[il);
;ext current_state_even[i] = current_state_of_machine(even fsms[il);

new ClMachinex [half_legs];
current_state_even = new CLStatex [half_legs];
next_current_state_even = new CLStatex [nalf Tegs;
current_state_odd = new CLStatex [half_legs];
next_current_state_odd = new CLStatex [half_legs];

odo.fehtar0

A
for (int i=0; i< half_legs; i++) og_fsms(21>0

On Entry

©On Exit

TOr (INT 1505 1< NalT_legs; 1++)
{next_current_state_odd[i] = current_state_of_machine(odd_fsms[il);
next_current_state_even[i] = current_state_of_machine(even fsms[il¥f

&
odd_fsms, [i] = machine_at_index(EVEN+2); even fsms(0}

even fsms[il = machine_at_index(0DD+2); even_fsms[11>0
¥ s

On Entry
on exit

even_fsms[21>0

(current_state_odd{0)1>nExt_current_state_odd[0)
1
(current_state-Gdd(1]t=next_current_state_odd[1])
1

trie \
atgr (1 SOME_CHANGE_HAPPENED {CTrrent_state_odd(2]1=next_current_state_odd(2])
1
I( (current_state_odd[0)t=next_curreat_state_odd(0]) (current_state_even[0}i=next_current_state_even(0])
a8 — 1
(current_state_odd(1]1=next_current_state_odd[1)) (current_state_even[1]i=next_current state_even(1)
a& |

I
(current_state_odd[2]:=next_current_state_odd[2]) (current_state._even(2]i=next_current_state_even(2])
&

(current_state_even[0]!=next_current_state_even(0])

a&

after_ms(30)

(current_state_even(1]!=next_current_state_even(1])
a&

(current_state_even(2)t=next_current_state_even(2J))

Fig. 9. A monitoring LLFSM that inspects the states of the instances of LLFSMs in
Fig.7 and checks the even group and the odd group of legs progress through their
phases synchronised although resumed with no specific synchronisation.

6 Automatic Generation

Any runtime verification formalism [2,57] could be embedded in a monitoring
LLFSM because LLFSMs are Turing complete. However, we have chosen a simple
mechanism that seems to fit most cases and, moreover, enables the construction
of the monitoring LLFSMs from the visualisation of the system LLFSMs. The
idea is to evolve LLFSMs constructed for TDD [27,28] into monitors.

We explain our aproach using the earlier example. The monitored conditions
are rather simple. The LLFSM for TDD verifies that the controller LLFSMs
are not simultaneously in designated states (e.g., turning all lights to green).
This can also be achieved by monitoring the outputs of writer LLFSMs on the
whiteboard. In the traffic light example, this would be the message to actuator
lights for both green lights to be on.

Therefore, we suggest here that we can have a rather strong logic to express
conditions to monitor the runtime validity of LLFSMs that are in the System
box of Fig.3. Moreover, the monitor LLFSM in Fig.3 would be a model con-
structed completely from these logic expressions, significantly automating the
implementation of such monitoring LLFSMs. First, we can describe the basic
constructs of the logic to express forbidden conditions by monitoring LLFSMs.
The first building blocks are formulas.

<formula> — <term> | (<formula> <connective> <formula>) | not(<formula>)
<term> — <state_formula> | <wb_variable_formula>

<state_formula> — <machine_name> @ <state_name>

<wb_variable_formula> — <value> == <wb_variable_name>

<connective> — A | V

An example of the term that expresses that in the LLFSM arrangement of
the traffic lights the two controlling machines cannot both be in their respective
states where they set their respective lights to green is the following formula.
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light ns_subsumption @ GREEN_ON_NS
A
light_ew_subsumption @ GREEN_ON_EW

Similar formulas can be constructed for many of the safety requirements
of the systems discussed in the literature of formal verification and software
safety. For example, in the case of a microwave, a crucial requirement is the
motor /radiation is not to be on while the door is open:

true == doorOpen A true == motor(On

The microwave is a widely discussed example in the literature of formal verifi-
cation and model checking [4]. We point out here that from forbidden-condition
formulas, the automatic construction of the LLFSM that monitors whether the
formula evaluates to true (realises the forbidden condition) is rather simple. It
consists of a simple loop where the information for the formula is retrieved from
the whiteboard and then the formula is evaluated. Thus, our LLFSM genera-
tor only requires a parameter that indicates the period of the loop (using the
after() construction mentioned before) and what LLFSM to activate in case
the forbidden formula is realised. The designer of our runtime verification LLF-
SMs uses a GUI to choose states from LLFSMs to build (state_formula) and
also to select whiteboard variables to build these formulas from. When white-
board variables refer to objects, the GUI provides a drop-down menu to select
getters to obtain an expression that evaluates to a basic type.

It should be clear that our logic for forbidden formulas is structurally and
semantically equivalent to propositional logic. As we already mentioned, an
LLFSM that checks such a formula is built by basically including the forbidden
formula in a transition from a state that has read the necessary information.
Such monitoring LLFSMs, although synthesised automatically are quite impen-
etrable to human designers. Most of the conditions or rules we have found in case
studies on system safety seem to be of this form. However, we have noted that
in some situations the forbidden scenario more closely corresponds to a trace of
a behaviour. That is, the undesirable behaviour is not that, at a certain point
in time, a certain configuration of variable values or states of sub-LLFSMs is
reached in a system.

More elaborate, forbidden situations are sequences of formulas. For example,
with the traffic lights, control in each direction cycles between green, amber,
and red (then back to green). In this case, the forbidden behaviour can be spec-
ified by the complement of the regular expression (green amber red)*. More-
over, the equivalence of regular expressions and non-deterministic automata (and
thus, deterministic automata) shows that we can construct monitoring LLFSMs
automatically that verify that the system does not have a trace of basic formulas
(about states and whiteboard variables) that belongs to a regular language where
the alphabet are basic formulas. These monitoring LLFSMs are not expected to
be drawn or presented for inspection by human designers, they can be rather
large (even if we apply classical algorithms for DFA minimisation in the building
of the corresponding monitoring LLFSM). However, the corresponding regular
expressions are quite manageable by system designers. Today, for example, many
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programming languages or (web) search facilities, offer tools to construct and
visualise regular expressions. Thus for now, we consider this aspect less of a
priority except that the architecture proposed here integrates the resulting mon-
itoring LLFSMs quite naturally for expressing a language of forbidden traces in
the running system under verification. Our c1fsm tool enables the introspection
of the running system to obtain the trace of the system’s state changes. This is
another aspect in which the deterministic scheduling of arrangements of LLF-
SMs is an advantage, as the traces are not subject to pre-emptive scheduling if,
for example, each LLFSM were to run as a separate thread.

The spot package allows the derivation of monitors (option -M for 1t12tgba);
and we could use the spot libraries to automatically synthesise the monitor for
our architecture directly as an LLFSM. In several robotic systems with plan-
ning and manipulation tasks, the LTL subset named co-safe LTL has been
used [33] because it produces deterministic finite-automata [41]. Here again,
Biichi automata can be directly modelled by LLFSMs. Our architecture can
confirm co-safe LTL formulae, but if the formula has the modal operator for
“eventually”, the monitoring LLFSM can not guarantee when such a condi-
tion is met (in the case of task planning it enables one to recognise a plan has
found a goal meeting the co-safe LTL condition). However, we are studying a
possible form of these logics or their variations for future bounded temporal log-
ics. Note that timed regular expressions are equivalent to timed automata [4].
However, timed automata are non-deterministic in the sense that their execu-
tion/simulation on a computer is only one of the many execution paths. Thus,
at the moment, these other formalisms to specify undesirable behaviours seem
to demand a monitoring instrument that would be resource intensive.

7 Safety and Security Issues

Our architecture provides compile-time type safety because communication
between LLFSMs (and from the subsumption switch to effectors and actua-
tors) are OO-messages on the whiteboard. The only LLFSM that has access to
these message types is the subsumption switch. All other LLFSMs only have
access to the abstraction and interface the subsumption switch offers. Other
LLFSMs cannot access effectors and actuators directly. The subsumption switch
only forwards specific commands (to effectors and actuators) if such commands
are placed in corresponding slots of the hierarchy by the respective LLFSMs of
the system or the monitor. Our compile-time type safety is significantly more
secure than RVMaster [35] because, for RVMaster, the underlying middleware is
in itself ROS, lacking any security mechanisms [35]: ROS allows any node to
read all the available topics and services at runtime.

In our proposal, we restrict which LLFSMs in an arrangement can perform
operations such as load, unload, suspend, and resume. But monitoring LLFSMs
have clearance for such operations on system LLFSMs. We are assuming that
the software would need to exist in an environment isolated from penetration of
malicious users who could plant such malicious LLFSMs in the paths read by the
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clfsm instance executing the arrangement. The runtime verification here aims
at safety by protecting from Byzantine faults of well-intentioned components
that have evolved though potentially independent constraints and objectives,
and whose synergies could cause malfunction in the system.

Evolving software modules (for learning a walk on a quadruped robot, or for
tracking with a neck or turret with additional degrees of freedom), optimise their
main task and thus they have a restricted range of messages for certain restricted
families of effectors/actuators. We assume that system security is such that vali-
dated LLFSMs cannot be replaced with malicious ones. Moreover, the monitoring
LLFSM is able to reset self-modifying modules by unloading the learnt/evolved,
detrimental behaviour causing poor synergies with other modules and load a
validated behaviour. In our traffic lights example, the video illustrates rebuild-
ing at execution time the default behaviour and unloading the initial faulty
behaviour. Another example is a robot learning to control its arm as it discovers
the environment (see our video www.youtube.com/watch?v=_3VylSPQoEE).

The whiteboard middleware discussed earlier provides a channel to monitor-
ing LLFSMs (monitors). Thus, monitors could receive the suspend command.
This enables testing systems without monitoring (which could be resumed later)
or running the system under different configurations of the properties that are
being monitored. This facility to also configure monitoring systems during run-
time has been used before [35], and in our proposal here is immediately avail-
able through the existing mechanisms of the whiteboard. Thus, it is possible to
extend the subsumption architecture and the hierarchy of clearance classes by
more than one level. Monitoring LLFSMs are also controllable. The suggested
earlier transformation (from Fig.3(a) to (b)) of adding a subsumption switch
and a monitor (both LLFSMs) can be re-iterated several times as designers
see fit, with higher levels being able to suspend, decommission, reload, and/ or
reconfigure the components of the lower layers underneath.

8 Contrast with Related Work

Runtime Verification [30,38] focusses on how to monitor, analyse, and guide
the execution of software, using lightweight formal methods applied during the
execution of programs. Although formal validation of properties against running
systems has been a long-standing concern in software engineering (for example
instance dynamic typing), our suggestion here follows the current practices in
testing (particularly model-based testing) when used before and during deploy-
ment of fault-tolerant systems. Note that the current practice for detecting and
possibly reacting to observed behaviours satisfying or violating certain proper-
ties is to represent such properties with trace-predicate formalisms, such as finite
state machines, regular expressions, context-free patterns, and linear temporal
logics. LLFSMs are extremely suitable to describe verification properties and
encompass all of the earlier mechanisms, as they are Turing complete [20].
Note that a large number of tools and approaches have been produced for
runtime monitoring of sequential or concurrent programs in traditional cod-
ing languages such as C++, C, and Java [14]; however, essentially no work has
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appeared for carrying out runtime verification using model-driven development
tools. The reliability of time-triggered systems is significantly easier to deter-
mine than that of event-triggered systems [39,42]. Time-triggered systems han-
dle peak-load situations by design, enable software components to communicate
using constant bandwidth and regular overhead even at peak load situations.
By contrast, event-driven systems are inherently unpredictable, they can col-
lapse during peak loads or event showers, and no analytical guarantees can be
given for their performance [39,42]. Surprisingly runtime-verification tools have
been proposed using a modelling approach based on events [5,12] and that their
implementation is made in Java with unrealistic claims regarding real-time ver-
ification (but an admission of this issue is present [12, p. 141]).

Such monitor-oriented programming [11], in the environment of robotic sys-
tems, (in particular the Robotics Operating System ROS) requires ROSRV as
an arbiter [35] of the appropriateness of message passing, introducing additional
message relays and potential critical delays. Nevertheless, as discussed in the pre-
sentation, ROSRV is perhaps the closest approach related to our proposal here,
but our architecture compares favourably. In ROSRV, security, scalability, and
formal verification were identified as issues for further work [35]. With respect
to security, ROSRV solely relies on network routing of trusted IP addresses. More-
over, ROSRV is centralised and policies and monitors need to be established for
each publisher/subscriber pair, which does not scale well. The LLFSMs that act
as the switch and the monitor can be formally verified in our architecture. We
have also identified other advantages of our proposal, namely the specification of
conditions to monitor can naturally and automatically be derived and expressed
from the LLFSM models in model-driven development style.

We would argue that the subsumption architecture [8] and teleo-reactive sys-
tems are now classical mechanisms to produce reactive systems, that, in their
inception, have been logic-labelled (and not event-driven), and in the case of the
former, been significantly revolutionising the software architectures of robotic
systems towards behaviour-based systems. In the case of the latter, several
advances have been made to enable them with formal verification tools [16] or
implementation tools [54]. However, teleo-reactive programs do have the danger
of undefined behaviour [31].

Both, the subsumption architecture and teleo-reactive systems, suffer issues
with their semantics of concurrency analogous to the issues of nested state-
diagrams in UML. Issues such as state nesting [55] or other ambiguities [6,55],
have resulted in several problems with executable UML and its use in model-
driven development. Most tools and approaches on formal methods based on
UML must restrict themselves: for example, restrictions to the consistency
and completeness of the artefact [47] or to Practical Formal Specification’s
(PFS) where events are precluded and component communications happen only
through their declared inputs and outputs [36]. The community seems to largely
follow Harel and Gery’s executable model of hierarchical statecharts [29], which
has an execution semantics akin to a remote procedure call (RPC) under the Run-
to-Completion Execution Model (RTC) [52, p. 2.2.8]: that is, the system keeps



140 V. Estivill-Castro and R. Hexel

queueing events, while handling an earlier event. Such complicated semantics
and runtime uncontrolled concurrency results in much higher complexity (or
impossibility) of runtime verification.

9 Final Remarks

Software systems should be validated and verified prior to deployment. We are
not suggesting here that because of our architecture validation, verification, and
testing should be reduced. Nevertheless, current software systems evolve and
adapt while in execution, and it is critical then to also ensure correctness at run-
time. Artificial intelligence capabilities, such as machine learning, have matured
and large software systems increasingly update their parameters, threshold val-
ues, or entire components on the fly. Software systems in operation generate
large logs for big-data and analytics whose results can generate new versions to
replace systems in operation. However, this logging requires a phase of batch
learning, and off-line data analytics. If the adaption, learning and analytics are
incorporated with the software, the always learning system would be up-to-date
with its latest experiences. However, potentially running software that none of
its developers anticipated. Thus, the relevance of run-time verification.

With our approach, run-time verification excludes the system from some
undesirable states, and enables to decommission LLFSMs in the arrangement.
The temporary inconsistent behaviour is replaced by default safe behavior chosen
by the monitoring LLFSMs. Such a replacement of one or more LLFSMs in a
system could be significantly more organic, depending on particular external
factors that have caused the system to evolve in particular ways, which cannot be
entirely anticipated and verified. We hope that this research inspires the software
engineering community to seek software systems with minimal downtime and
continuous operation. Moreover, we expect this to be a fundamental quality
aspect of robotics and complex, safety-critical real-time systems.

References

1. Abrial, J.R.: Modeling in Event-B — System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74-106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

3. Arney, D., Fischmeister, S., Lee, I., Takashima, Y., Yim, M.: Model-based
programming of modular robots. In: 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pp. 66—
74, May 2010

4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172-206
(2002)

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68-84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_9


https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-642-32759-9_9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Deterministic High-Level Executable Models 141

von der Beeck, M.: A comparison of statecharts variants. In: Langmaack, H., de
Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 128-148.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_163
Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Requirements engineering
via non-monotonic logics and state diagrams. In: Maciaszek, L.A., Loucopoulos,
P. (eds.) ENASE 2010. CCIS, vol. 230, pp. 121-135. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23391-3_9

Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14-23 (1986)

Brooks, R.: The behavior language; user’s guide. Technical report, AIM-1227, Mas-
sachusetts Institute of Technology - MIT, Artificial Intelligence Lab Publications,
Department of Electronics and Computer Science (1990)

Bryce, R., Kuhn, R.: Software testing [guest editors’ introduction]. Computer
47(2), 21-22 (2014)

Chen, F., Rosu, G.: Towards monitoring-oriented programming: a paradigm com-
bining specification and implementation. Electr. Notes Theor. Comput. Sci. 89(2),
108-127 (2003)

Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135-149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0-13

Coté, C., Brosseau, Y., Létourneau, D., Ralevsky, C., Michaud, F.: Robotic soft-
ware integration using MARIE. Int. J. Adv. Rob. Syst. 3(1), 055-060 (2006)
Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859-872 (2004)
Dietterich, T.G., Horvitz, E.J.: Rise of concerns about AI: reflections and direc-
tions. Commun. ACM 58(10), 38-40 (2015)

Dongol, B., Hayes, [.H., Robinson, P.J.: Reasoning about goal-directed real-time
teleo-reactive programs. Formal Asp. Comput. 26(3), 563-589 (2014)

Dromey, R.G., Powell, D.: Early requirements defect detection. TickIT J. 4Q05,
3-13 (2005)

Drusinsky, D.: Semantics and runtime monitoring of tlcharts: statechart automata
with temporal logic conditioned transitions. Electr. Notes Theor. Comput. Sci.
113, 3-21 (2005)

Estivill-Castro, V., Ferrer-Mesters, J.: Path-finding in dynamic environments with
PDDL-planners. In: 16th International Conference on Advanced Robotics (ICAR),
Montevideo, Uruguay, pp. 1-7 (2013)

Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines semantics,
simulation, and model checking. In: Hammoudi, S., Ferreira Pires, L., Filipe, J.,
César das Neves, R. (eds.) International Conference on Model-Driven Engineering
and Software Development MODELSWARD, Barcelona, Spain, 19-21 February
2013, pp. 182-189. SCITEPRESS Science and Technology Publications (2013)
Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its
application to FMEA in model-driven engineering. In: ENASE 8th International
Conference on Evaluation of Novel Approaches to Software Engineering, Angers
Loire Valley, France, 4th-6th July 2013, pp. 218-225. INSTCC (2013)
Estivill-Castro, V., Hexel, R.: Simple, not simplistic — the middleware of behaviour
models. In: ENASE 10 International Conference on Evaluation of Novel Approaches
to Software Engineering, Barcelona, Spain. INSTCC, April 2015


https://doi.org/10.1007/3-540-58468-4_163
https://doi.org/10.1007/978-3-642-23391-3_9
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13

142

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

V. Estivill-Castro and R. Hexel

Estivill-Castro, V., Hexel, R.: Deterministic executable models verified efficiently
at runtime - an architecture for robotic and embedded systems. In: Ferreira Pires,
L., Hammoudi, S., Selic, B. (eds.) Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2017,
19th—21st February 2017, pp. 29-40. SciTePress (2017)

Estivill-Castro, V., Hexel, R., Lusty, C.: High performance relaying of C+-+ objects
across processes and logic-labeled finite-state machines. In: Brugali, D., Broenink,
J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810,
pp. 182-194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-
7-16

Estivill-Castro, V., Hexel, R., Ramirez Regalado, A.: Architecture for logic pro-
graming with arrangements of finite-state machines. In: Cheng, A.M.K. (ed.) First
Workshop on Declarative Cyber-Physical Systems (DCPS) at Cyber-Physical Sys-
tems, pp. 1-8. IEEE, 12 April 2016

Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient modelling of embedded
software systems and their formal verification. In: Leung, K.R., Muenchaisri, P.
(eds.) The 19th Asia-Pacific Software Engineering Conference (APSEC), Hong
Kong, pp. 428-433. IEEE Computer Society, December 2012

Estivill-Castro, V., Hexel, R., Stover, J.: Modeling, validation, and continuous inte-
gration of software behaviours for embedded systems. In: Al-Dabass, D., Romero,
G., Orsoni, A., Pantelous, A. (eds.) 9th IEEE European Modelling Symposium,
Madrid, Spain, 6th—8th October 2015, pp. 89-95 (2015)

Estivill-Castro, V., Hexel, R., Stover, J.: Models testing models in continuous inte-
gration of model-driven development. In: Cheng, A.M.K. (ed.) Proceedings of the
TASTED International Symposium Software Engineering and Applications (SEA
2015), Marina del Rey, USA, 26th—27th October 2015. https://doi.org/10.2316/P.
2015.829-016

Harel, D., Gery, E.: Executable object modeling with statecharts. In: Proceedings
of the 18th International Conference on Software Engineering, ICSE 1996, Wash-
ington, DC, USA, pp. 246-257. IEEE Computer Society (1996)

Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245-264. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468_15
Hayes, 1.J.: Towards reasoning about teleo-reactive programs for robust real-time
systems. In: Guelfi, N., et al. (eds.) SERENE 2008, RISE/EFTS Joint International
Workshop on Software Engineering for REsilient SystEms, Newcastle Upon Tyne,
UK, 17-19 November 2008, pp. 87-94. ACM (2008)

Hayes-Roth, B.: A blackboard architecture for control. In: Bond, A.H., Gasser, L.
(eds.) Distributed Artificial Intelligence, pp. 505-540. Morgan Kaufmann Publish-
ers Inc., San Francisco (1988)

He, K., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Towards manipulation plan-
ning with temporal logic specifications. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 346-352, May 2015

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.:
ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 247-254. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11164-3_20

Iwu, F., Galloway, A., McDermid, J., Toyn, I.: Integrating safety and formal anal-
yses using UML and PFS. Reliab. Eng. Syst. Saf. 92, 156-170 (2007)


https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.2316/P.2015.829-016
https://doi.org/10.2316/P.2015.829-016
https://doi.org/10.1007/10722468_15
https://doi.org/10.1007/978-3-319-11164-3_20
https://doi.org/10.1007/978-3-319-11164-3_20

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Deterministic High-Level Executable Models 143

Joukoff, D., Estivill-Castro, V., Hexel, R., Lusty, C.: Fast MAV control by con-
trol/status OO-messages on shared-memory middleware. In: Kim, J.-H., Karray,
F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Appli-
cations 4. AISC, vol. 447, pp. 195-211. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-31293-4_16

Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, 1., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: Proceedings of the 11th
Euromicro Conference on Real-Time Systems, pp. 114-122 (1999)

Kopetz, H.: Should responsive systems be event-triggered or time-triggered? IEICE
Trans. Inf. Syst. 76(11), 1325 (1993)

Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series, 2nd edn. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-8237-7

Kupferman, O., Vardi, Y.M.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291-314 (2001)

Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Progr. Lang. Syst. 6, 254-280 (1984)

Li, J.J., Wong, W.E.: Automatic test generation from communicating extended
finite state machine (CEFSM)-based models. In: Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
(ISORC 2002), pp. 181-185 (2002)

Maier, D., Warren, D.S.: Computing with Logic: Logic Programming with Prolog.
Benjamin-Cummings Publishing Co. Inc., Redwood City (1988)

Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley Publishing Co., Reading (2002)

Nilsson, N.J.: Teleo-reactive programs and the triple-tower architecture. Electron.
Trans. Artif. Intell. 5(B), 99-110 (2001)

Pap, Z., Majzik, 1., Pataricza, A., Szegi, A.: Methods of checking general safety
criteria in UML statechart specifications. Reliab. Eng. Syst. Saf. 87(1), 89-107
(2005)

Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edn (2013)
Picek, R., Strahonja, V.: Model driven development-future or failure of software
development. In: IIS, vol. 7, pp. 407413 (2007)

Pnueli, A., de Roever, W.P., et al.: Rendezvous with ADA - a proof theoretical
view. Vakgroep informatica RUU-CS-82-12; July 1982

Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-
Oriented Modelling and Design. Prentice-Hall Inc., Englewood Cliffs (1991)
Samek, M.: Practical UML Statecharts in C/C++: Event-Driven Programming for
Embedded Systems, 2nd edn. Newnes, Newton (2008)

Sametinger, J., Rozenblit, J., Lysecky, R., Ott, P.: Security challenges for medical
devices. Commun. ACM 58(4), 74-82 (2015)

Sénchez, P., Alonso, D., Morales, J.M., Navarro, P.J.: From teleo-reactive spec-
ifications to architectural components: a model-driven approach. J. Syst. Softw.
85(11), 2504-2518 (2012)

Simons, A.: On the compositional properties of UML statechart diagrams. In:
Rigorous Object-Oriented Methods 2000. Electronic Workshops in Computing
(eWiC), York, UK, January 2000

Srivastava, A.N., Schumann, J.: Software health management: a necessity for safety
critical systems. Innov. Syst. Softw. Eng. 9(4), 219-233 (2013)


https://doi.org/10.1007/978-3-319-31293-4_16
https://doi.org/10.1007/978-3-319-31293-4_16
https://doi.org/10.1007/978-1-4419-8237-7

144

57.

58.

V. Estivill-Castro and R. Hexel

Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Fourth Workshop on Runtime Verification (RV 2004), vol. 113, pp. 145-162
(2005)

Weiss, M., Eidson, J., Barry, C., Broman, D., Goldin, L., Tannucci, B., Lee, E.A.,
Stanton, K.: Time-aware applications, computers, and communication systems
(TAACCS). Technical report, Technical Note 1867, The National Institute of Stan-
dards and Technology (NIST), U.S. Department of Commerce, February 2015



®

Check for
updates

A Consistency-Preserving Editing Model
for Dynamic Filtered Engineering
of Model-Driven Product Lines

Felix Schwiigerl®™) and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{felix.schwaegerl,bernhard.westfechtel}@uni-bayreuth.de

Abstract. The high cognitive complexity of model-driven software
product line engineering is due to the fact that developers have to man-
ually create, edit, and maintain multi-variant artifacts. As a solution,
the adaptation of filtered editing has been proposed recently. Filtered
editing can be applied in a static or in a dynamic way; in the latter case,
new co-evolution problems occur when considering the evolving relation-
ships between the historical, the variant, and the product dimension.
This paper investigates, formally defines, and demonstrates by examples
nine consistency constraints connected to dynamic filtered editing. Fur-
thermore, we suggest a consistency-preserving editing model comprising
four operations that synchronize a transparent multi-version repository
with a single-version workspace view being presented to the user: check-
out, modify, commit, and a novel operation, migrate, which prepares the
workspace for the subsequent edit session. Several advantages of dynamic
over static filtered or unfiltered editing are confirmed both on a theoret-
ical and on an experimental basis.

Keywords: Model-driven software engineering
Software product line engineering - Filtered editing + Co-evolution
Uniform versioning - Variation control

1 Introduction

In model-driven software engineering (MDSE), software systems are developed
from high level abstractions called models, which are eventually executed by
interpretation or transformed into executable code [1]. A model is an instance
of a metamodel, which defines the abstract syntax of the modeling language.

Software configuration management (SCM) addresses the evolution of soft-
ware systems; version control (VC) lies at its heart [2]. Evolution may occur
along several dimensions, giving rise to a refinement of the term wversion into
revisions and variants, respectively. State-of-the-art VC systems organize revi-
sions in revision graphs and variants in parallel branches.

Finally, software product line engineering (SPLE) is a paradigm to develop
software applications based on the principle of wvariability [3]. A platform is
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a common set of artifacts from which customized products can be efficiently
derived. A variability model, e.g., feature model [4], describes common and dis-
criminating features of the variants of a product line. The combination model-
driven product line engineering (MDPLE) promises synergy effects [5], but it
demands for creating, editing, and maintaining multi-variant domain models,
which are cognitively complex tasks per se, but tend to become even more diffi-
cult as soon as evolution and collaboration occur.

1. check-out §
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Fig. 1. Architectural and functional sketch of the conceptual framework. From [6,
Fig. 1].

To address this, several approaches to filtered software product line engineer-
ing have recently emerged [7-9]. In accordance with the early ideas of multi-
version text editors [10], variants not relevant for a specific change are hidden
from the workspace. The multi-variant artifacts of the product line are trans-
parent to the developer. Instead, he/she modifies a single-variant view, which
is described using a choice, i.e., a read filter. The modifications are transferred
back to the product line using an ambition, a write filter that defines the set
of variants for which the changes apply. In this way, the change is applied rep-
resentatively in one version — the choice —, but affects multiple versions—those
included in the ambition.

The paper at hand is an extended version of [6]. The contributions presented
here are based on a conceptual framework [11] whose architecture is sketched in
Fig. 1. Tying on VC metaphors, a development iteration is started with check-
out and finished with commit. In addition to a revision graph, which controls the
historical evolution of the product line, a feature model is used for logical ver-
sioning. Selecting a version during check-out involves the selection of a revision
and thereafter the definition of a feature configuration, which altogether form
the choice. During commit, a new revision is created transparently. The logical
component of the write filter is provided as a feature ambition, a partial selection
in the feature model. The editing model is assumed to be dynamic in the sense
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that it supports co-evolution of feature and domain model and allows to set or
change the ambition throughout the edit session.

In this paper, we show that dynamic filtered editing requires well-defined
workspace operations complying to a set of consistency constraints. As main
contributions, we formally define these constraints and present algorithms that
provenly preserve them. In addition to CHECKOUT and COMMIT, an extra oper-
ation is provided to MIGRATE the old feature configuration choice such that it
is consistent with the evolved feature model and therefore obviates repeated
check-outs.

Sect. 2 motivates the addressed co-evolution problems by a running exam-
ple. Subsequently, in Sect. 3, formal foundations are explained. Sects.4 and 5
formally present nine workspace consistency constraints and three algorithms
for consistency-preserving workspace operations, respectively. Next, we sup-
ply proof that the revision graph is managed automatically and consistently.
Sect. 7 presents a generalized editing model, whose amount of dynamism can be
adjusted. Sect.8 evaluates the dynamic filtered editing model experimentally.
Sect. 9 presents related work. Sect. 10 concludes the paper.

2 Example Scenario

In certain situations caused by co-evolution of feature model, domain model,
choice, and ambition, the dynamism implied by the dynamic filtered editing
(DFE) model becomes problematic. Using the well-known graph library product
line example [12], we informally sketch instances of consistency violations, which
should be avoided by the consistency-preserving editing model. Furthermore, we
sketch how the designated end user repairs the reported inconsistencies. For
simplicity, the revision graph is faded out.

Incomplete or Inconsistent Choice. From the feature model depicted in

Fig.2(a), a version is to be selected for CHECKOUT. Then, the feature con-
figuration shown in (b) is incomplete, since features Vertices and Colored do
not have a selection state assigned. Therefore, the choice does not describe a
unique product version. Moreover, (¢) represents an inconsistent choice: The
mandatory feature Vertices is deselected.
We contribute a consistency-preserving CHECKOUT operation, which ensures
that user-selected choices are complete and consistent. This is also true for
the feature configuration shown in (d), thus it is assumed for the subsequent
steps.

Disallowed Feature Model Modification. During modify, the feature model
may be edited, however, not arbitrarily. For example, in (e), features Weighted
and Directed are made mandatory and, at the same time, arranged in an XOR
group. This contradicts the semantics of feature models. A different problem
is illustrated in (f): Feature Weighted, currently selected in the active choice
(d), is deleted. In the workspace, however, elements connected to this features
are still present. As a consequence, the workspace contains elements which
could not be selected by any future choice.
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Fig. 2. Examples of consistency violations connected to feature models, choices, and
ambitions.

The consistency-preserving MODIFY operation prevents both kinds of disal-
lowed feature model modifications sketched.

Non-representative or Inconsistent Ambition. Moving further on, during
CoMMIT, the user is expected to define a feature ambition that delineates the
scope of the change, i.e., the set of versions to which the performed change is
relevant.

In Fig.2(g), a user-specified feature ambition is depicted. Since the manda-
tory feature Vertices is bound negatively there, the ambition represents an
inconsistent set of versions. Similarly, the ambition depicted in (h) is not in
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Fig. 3. Example of a non-representative product-level change, described with a too
unspecific ambition. In (q), artifacts belonging to Edges and sub-features thereof are
hidden.

line with the proposition that the choice must be a representative of it: Fea-
ture Weighted, which is positively selected in the choice (d), has a negative
selection state assigned in ambition (g).

The contributed algorithm for COMMIT ensures that the ambition is weakly
consistent (i.e., that it includes a consistent choice) and represented by the
choice. Below, we assume that the valid ambition depicted in (j) has been
selected.

Choice not Suitable for Next Iteration. Unless the user interrupts this

workflow, the DFE model continues with the next iteration reusing the cur-
rent choice. The choice may, however, become invalid for several reasons.
First, (k) assumes that the original feature model is extended by a new fea-
ture Labeled, for which the original choice, however, does not define a binding.
Similarly, in (1), feature Directed is made mandatory, but excluded from the
current choice, such that this becomes invalid for the next iteration. Last, in
(m), a new user-defined choice is depicted. This choice, however, disagrees
with the ambition in the binding for Weighted, whose corresponding product
artifacts are still present in the workspace. Thus, it becomes necessary to
re-generate the workspace contents by check-out.
In the here presented DFE model, the user is assisted in preparing the cur-
rent choice for the subsequent iteration by a new operation MIGRATE, which
ensures that the choice becomes complete, strongly consistent, and that it is
included in the ambition used for the preceding COMMIT.

All the problems discussed above are related exclusively to version concepts,
namely version space (i.e., feature model), choice, and ambition. There exists an
additional potential source of inconsistency that is, in contrast, also connected
to the product space:
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Too Unspecific Ambition. Figure 3 depicts an iteration based on a choice that
represents a colored graph (p). The product-level-change shown in (q) con-
sists in the introduction of a new constructor to class Vertex. As constructor
parameter type, the existing class Color, whose visibility is restricted to those
versions in which feature Colored is selected, is defined. An attempt to use (r)
as ambition for this change should fail, for the following reason: The choice
should be representative for all versions in which the change can be applied.
Albeit, the constructor would not be valid in versions that exclude feature
Colored, since class Color is not available as parameter type then. A more
specific ambition, which adequately describes the set of versions in which the
change is applicable, should be used; the most general, yet sufficiently specific
ambition is (s).

3 Formal Foundations

Following [11,13], we provide a formalization of the underlying conceptual frame-
work. Internally, versioning concepts exposed at the user interface — revision
graphs and feature models — are mapped to a generic base layer, the formal
foundation of which is propositional logic. Workspace consistency constraints
(Sect. 4) and consistency-preserving algorithms (Sect. 5) are formalized upon the
base layer.

An option o; represents a (logical or historical) property of a software product
that is either present or absent. The option set is defined globally:

O={o1,...,0n} (1)

Internally, revisions and features are mapped to options transparently.
A choice is a conjunction over all options, each of which occurs in either
positive or negated form:

C:bl/\.../\bn, biE{Oh_'Oi} (2)

A choice can also be represented as a binding map, i.e., a set of binding tuples
(0i, 8i), where s; € {true, false}, denotes the boolean selection state of an option
0;. Choices are derived from a user-based selection of a revision and a feature
configuration.

Next, an ambition is an option binding that allows for unbound options:

a=>by A... Nby, b; € {o;,0;,true} (3)

When represented as a binding map, tuples for unbound options are omitted.

Ambitions are derived from a selection in the feature model, which may
leave a number of features unbound in order to describe a set of variants to
which a change is applied. In the revision graph, the management of ambitions
is automated.
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A wersion rule is a boolean expression over a subset of options. The rule base
‘R is a conjunction of rules p1, ..., py, all of which have to be satisfied by a choice
in order to be consistent:

R=p1A...NApm, p;is an expression over O (4)

Version rules are derived automatically from revision graph and feature model
[11].

Preferences and defaults have been introduced to ease version selection. A
preference is a tuple of the form p; = (o0;,7;), where m; is an initialization
expression for option o;. Defaults d; = (0, s;) define a fallback selection state
s; € {true, false}. For each option, at most one default is allowed; preferences
have a higher priority.

P:{(Oi1a77i1>7~"(Oikvﬂ-ik)}y (5)
m;, is an expression over O

D = {(0i,,5i,),--- (04, 84,)}, si; € {true, false} (6)

With PP¢, we denote a choice ¢ to which preferences P and defaults D
have been applied. The conceptual framework infers preferences and defaults
transparently in order to assist the user in selections in the version space. In
particular, they automate the management of the revision graph.

Each element e; of the product space (i.e., the union of feature and domain
model) carries a visibility v;, a boolean expression over the variables of O. Vis-
ibilities in the feature model are composed only of revision options; visibilities
in the domain model are composed of both revision and feature options. An
element e; is called wvisible under a given choice c iff applying c¢ to its visibility
v; (written as v;(c)) evaluates to true.

In case the visibility is to be evaluated for an ambition, which is typically not
a complete option binding, three-valued propositional logic has to be applied. In
this case, a third result value, undefined can occur.

The operation filter is applied during check-out. From a base element set E,
those elements e; that do not satisfy the choice are omitted.

E|l.=FE \ {e; € E|vi(c) = false} (7

On commit, visibilities must be updated such that inserted (deleted) elements
become (in)visible in all choices included in the ambition a.

a if e; € E;y,s (insertion)
vi=1< v; A-a if e; € Ege; (deletion) (8)
v;  otherwise (no change)

For updates to the domain model, the full ambition a is used; for updates to the
feature model, bindings of feature options are omitted from the ambition.
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4 Consistency Constraints for Dynamic Filtered Editing

We begin the formalization of the consistency-preserving DFE model with the
description of consistency constraints based on the formal foundations provided
in Sect.3. We divide a development iteration up into four phases, the first of
which is optional when assuming the DFE model: CHECKOUT, MODIFY, COM-
MIT, and MIGRATE.

The dynamic editing model is depicted in abstract form as a state chart in
Fig. 4. Initially, the workspace is in state Pending, i.e., not populated yet. On
CHECKOUT, a specific version is selected from the repository. After MODIFYing
the workspace and CoMMITting the changes, the user may either continue with
the subsequent iteration, requiring to MIGRATE the choice, or migration is can-
celed (by the algorithm or by the user), triggering a transition back into state
Pending. To re-populate the workspace, a new choice must be specified then.

The transitions contain preconditions for the application of the corresponding
transitions. The numerical values correspond to the constraints presented in the
remainder of this section. We use superscripts (“* = check-out, ™° = modify,
“m — commit, ™ = migrate) to delineate the phases of each iteration.

check-out
/[123]

modify

Unmodified
/113]
¥__ modify

/34789 Modified
. /13]
commit

Committed
/[3456]

Pending
A

migrate
disconnect

o—

Fig. 4. Workspace operations as transitions in a state diagram.

cancel

A

4.1 Check-Out

In filtered editing, a choice designates a unique version to describe the workspace
contents to be checked-out. Therefore, unbound options must not occur.

Constraint 1. The option binding c" specified as choice during check-out must
be complete with respect to the global option set O°" defined at check-out time.

Vo € O : (3(o0,8) € ¢ : s € {true, false}) (9)

In the following, we assume in all constraints that choices are complete.
Moreover, the choice must comply with the rules derived by feature depen-
dencies:

Constraint 2. The choice ¢ defined at check-out time must be strongly con-
sistent with the rule base R°" present at check-out time.

R (M) = true (10)

Here, R"(c") denotes the evaluation of the rule base R°* under the choice

et
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4.2 Modify

By editing the feature model, the user indirectly modifies parts of the option set
and of the rule base. It must be avoided that the user introduces rules disallowing
consistent version selection in future check-outs.

Constraint 3. After each modification to the version space, i.e., when saving
the feature model, the rule base R™° must be satisfiable, such that there exists
any strongly consistent choice:

Jde: (R™(c) = true) (11)

The aforementioned restriction, stating that active features must not be
deleted, is beyond the means of formalization available for the base layer, and
therefore not presented as an explicit constraint here. See Sect. 5.2.

4.3 Commit

The ambition defined at commit time describes a set of versions, which should
comply with the rule base: At least one choice ¢ must exist which agrees with
a®™ in all common option bindings (¢ = a“™) such that all rules hold under c.

Constraint 4. An ambition a™ specified during commit must be weakly con-
sistent with the rule base R™ available at commit time:

Jde: (e= a®™) A (R (c) = true) (12)

In the version determined by the choice, a change is applied representatively
for the ambition. Thus, there must not be any contradiction between option
bindings of the check-out time choice and the commit time ambition inferred
from feature selections:

Constraint 5. The ambition a“™ must be represented by the check-out choice
ch.

Y(o,s) € a™ : (0,s) € ", s € {true, false} (13)

Requiring no contradictions between choice and ambition does, however, not
guarantee that the modifications performed between check-out and commit are
representative at product space level. To this end, it must be ensured that the
performed change — here represented as a write set unionized by inserted and
deleted elements E,,0q = EinsUE4e — could have been equally applied in any
other version contained in the ambition:

Constraint 6. The ambition a“™ must be sufficiently specific to the write
set Bod-

Ve € Epoa : (Ve € P : (e 4, ) = v'(PPa"™) = true) (14)
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The symbols used in the equation above require further clarification. First,
with ¢/ € P we denote any element in the check-out time product space. The

premise e 4, ¢ checks whether an element of the write set depends on ¢’. Last, v’
denotes the visibility of ¢’ before commit, such that v'(PPa™) evaluates to true
if and only if € is visible in all versions included in #Pa®", which is obtained by
applying preferences and defaults® to the original ambition a®™. Taken together,
the constraint checks whether all elements on which any inserted or deleted
element depends are visible in all affected versions.

The depends operator e LN e', where e € E,,,q and €’ € P, remains to be
defined upon the product space base layer. Informally, e depends on ¢ whenever
at least one of the following conditions hold:

— e is a deleted element and e equals ¢’. (Intuition: Elements must be visible in
order to be deletable.)

— e is an inserted element and €’ contains e. (Intuition: The insertion location,
i.e., the container of an inserted element, must be visible.)

— e is an inserted element and e’ is cross-referenced from e. (Intuition: When
an inserted element represents the applied occurrence of an existing element,
the latter must be visible.)

4.4 Migrate

Transitioning to post-commit time, it is assumed that the operation MIGRATE, to
be formally defined later, produces a choice that is used for the next iteration.
Therein, the same workspace can be reused in connection with the migrated
choice.

Due to modifications of the rule base, the choice ¢ specified at check-out
time may become incomplete with respect to the option set O™, and/or incon-
sistent with the rule base R"™ at commit time. Such temporary inconsistencies
are explicitly allowed in order to support feature model evolution. However,
before starting the subsequent iteration, it is required that the version to be
modified must be uniquely and consistently identified by ¢™.

Constraint 7. The option binding c™ describing the choice after migration
must be complete with respect to the commit time option set O™ :

Yo € O™ : (I(o,s) € ¢™ : s € {true, false}) (15)

Constraint 8. The migrated choice ¢™ must remain strongly consistent with
the rule base R°™ available at commit time:

RE™ (™) = true (16)

! In this way, a “more complete” ambition is obtained, which represents, however, the

same set of product versions as a“™. The options additionally included in 7P ga™

may occur in visibilities v’, therefore v’ (7P a™) will less likely return unde fined.
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Apart from this, it is required that the migrated choice ¢™ must still comply
with ambition ¢, which represents changes applied to the current workspace.
Since all newly introduced options are mandatory to be selected or deselected for
the next choice, total inclusion (implemented by propositional logical implication
in the opposite direction) is required:

Constraint 9. An ambition a°™ must include the migrated choice c™ describ-
ing the workspace contents for the subsequent iteration:

M= gm (17)

5 Consistency-Preserving Algorithms

In this section, we contribute detailed algorithms for the operations CHECKOUT,
Mobiry, COMMIT, and MIGRATE, which are represented by transitions in Fig. 4.
In addition to algorithmic descriptions, their properties are discussed, supplying
proof where adequate. The algorithms contain interactive statements, which are
underlined in the descriptions below. We use subscripts (, f, ¢) to explicitly refer
to different dimensions (revision graph, feature model, domain model) of version
space and product space. Moreover, unless specified differently, we assume that
all variables O, R, ¢, etc., are initialized with the value of the corresponding
variable at the end of the preceding phase.

5.1 Check-Out

The purpose of CHECKOUT is to populate an empty (i.e., Pending, cf. Fig.4)
workspace with a consistent product version uniquely defined by the user with
the help of revision graph and feature model.

Algorithm 1 prompts the user for a revision selection. Using preferences and
defaults introduced during COMMIT (see below), it is ensured that options of the
selected revision as well as all predecessors are bound to true, whereas remaining
options are bound to false, making the revision choice complete.

Next, the feature model, whose elements’ visibilities exclusively refer to revi-
sion options, is filtered by the revision choice. In the filtered feature model,
the user specifies a feature configuration; invisible options for deleted features
are bound to false by corresponding defaults. The effective choice ¢°" is calcu-
lated by union of revision and feature choice, before preferences and defaults are
applied to it. Next, the feature choice is checked for completeness and strong
consistency.

After a product well-formedness analysis, which is not subject of this paper,
the workspace is populated with filtered versions of feature and domain model.
The feature choice is memorized to enable a later re-construction of the checked-
out workspace.
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Algorithm 1. Consistency-preserving CHECKOUT. From [6, Algorithm 1].
procedure CHECKOUT

" — option in OF" belonging to a selected revision i

<t = (r$h true)

PPeeh  apply preferences P, and defaults D, to (c2*)

P — P}:h|‘PDC;{h > Filter the feature model; Eq. (7)
Export PE" into the workspace

cjch «— select feature configuration in the exported filtered feature model

CCh - Cf‘h U C(J:ch

PPceh  apply preferences P and defaults D to (c")

if not (Yo € O : (3(0,s) €”P ¢ : s € {true, false})) then > Constraint 1
return error “Choice is not complete.”

else if not (R"(¥Pc") = true) then > Constraint 2
return error “Choice is not strongly consistent.”
P — P o en > Filter the domain model; Eq. (7)

Export (Pg") into the workspace
Memorize cjch for the subsequent commit

Properties. If successful, Algorithm 1 transitions the workspace into state
Unmodified and produces a choice both complete and strongly consistent with
respect to the check-out time rule base, such that Constraints1 and 2 are
ensured. In case the user specifies an incomplete or inconsistent choice, the action
is canceled and the workspace remains in state Pending.

5.2 Modify

The consistency of the domain model is supposed to be ensured by the respec-
tive single-version editing tools employed. Feature model editing, however, is
restricted in order to prevent some conflicting situations during CoMMIT. We
explicitly formulate these restrictions by providing algorithms that redefine the
operations SAVEFEATUREMODEL and DELETEFEATURE.

Feature Model Editing. Constraint 3 must be enforced; otherwise, no con-
sistent variant can be specified at later check-outs. To this end, we redefine the
SAVEFEATUREMODEL operation of the feature model editor in Algorithm 2 in a
way that only satisfiable feature models can be persisted in the workspace.

Feature Deletion. Furthermore, deletion of features in the workspace ver-
sion of the feature model is redefined (see Algorithm 3): First, the operation is
only applicable to features bound to false in the current choice; otherwise, the
feature model would become unsatisfiable, or choice migration (see Sect.5.4)
would transfer the positive selection state to the choice to be derived for the
next iteration, where the deleted feature and corresponding realization artifacts
are supposed to be hidden.



A Consistency-Preserving Editing Model 157

Algorithm 2. Redefined SAVEFEATUREMODEL operation in feature model
editor.
procedure SAVE(Pz?)

if not 3c: (R7°(c) = true) then > Constraint 3
return error “Feature model is not satisfiable.”
else

Persist Pp'° in its current state

Algorithm 3. Redefined DELETEFEATURE operation in feature model editor.

procedure DELETEFEATURE(D)
op < option belonging to feature D to be deleted
cjch « feature choice memorized during preceding check-out or migration
if (op,true) € ¢ then
return error “Cannot delete feature active in current choice.”
else
for all C € children of D do
if DELETEFEATURE(C) # success then
Undo all modifications related to children of D
return error “Error during deletion of child C.”
set the deleted flag of D to true
D} =D U{(D, false)}

Second, rather than persistently deleting a feature, it is merely hidden from
the user’s display and thus not available in the current and future revisions of the
editable feature model. Nevertheless, its feature option, which still may occur
in visibilities of domain model elements, remains. To maintain completeness of
future choices, a negative default is introduced for the feature option.

In order to maintain the hierarchical consistency of the feature model, feature
deletion is recursively applied to all child features.

Properties. Constraint 3 is actively enforced by Algorithm 2. Whenever the
save operation has been applied successfully, the workspace enters (or remains
in) state Modified.

5.3 Commit

A consistency-preserving COMMIT operation is formalized in Algorithm4. As a
first step, the revision graph is handled automatically, introducing a new revision
option along with a preference and a default ensuring that a single revision
selection will yield complete and consistent revision choices in future (see Sect. 6).
By using the latest revision as reference point, a linear version history is enforced.
Besides, the user specifies a feature ambition.



158 F. Schwéger]l and B. Westfechtel

It is ensured by corresponding checks that feature ambitions must be weakly
consistent with the rule base (Constraint4) and represented by the previous
choice (Constraint 5).

Next, the checked-out workspace state is reconstructed and differentiated
with its commit time version. Based on the deduced difference, it is now ensured
that the specified ambition is sufficiently specific to the performed change (Con-
straint 6).

In case all checks are passed, inserted elements are added to the product
space. Next, visibilities of inserted and deleted elements are updated as defined
by Eq. 8. For visibility updates applied to the feature model and domain model,
respectively, aZ™ and a®™ are used.

Algorithm 4. Consistency-preserving CoMMIT. From [6, Algorithm 2].

procedure COMMIT
c¢P — feature choice memorized during preceding check-out or migration

r; < option of most recently committed revision ¢ (head)
el — c;h U {(rs, true)}

PDech  Apply preferences and defaults to c¢*

i+ 1 < new revision, successor of 4, with user-specified details (commit message, etc.)
ri4+1 < new revision option for revision %

O™ — Oﬁh @] {7’1'4,_1}

R — R A (rig1 = 1)

P — P U {(ri,mign)}

DEm — DR U{(ri41, false)}

P;h — P;hlPDc?h > Reproduce latest revision of feature model
Pg‘ — P;h|7?’DCC}L > Reproduce latest revision of selected variant of domain model

PE™ « Import current workspace version of the feature model

a$™ « select feature ambition in the current workspace version of the feature model
a®™ — aS™ U (rit1,true)

if not (3c: (¢ = a®™) A (R (c) = true)) then

return error “Ambition is not weakly consistent.” > Constraint 4
else if not (V(o,s) € a®™ : (0,-s) € c°") then
return error “Ambition is not represented by choice.” > Constraint 5

Pp™ « Import current workspace version of the domain model
Match and differentiate P with P¢",
E;ns < inserted elements according to the difference.
FEg4e; < deleted elements according to the difference.
PDgem  Apply preferences and defaults to ac™
if not (Ve € Epyoq : (Ve € P : (e 4, e/) = v/(PPa®m) = true)) then
return error “Ambition is not sufficiently specific to the change.” > Constraint 6
P «— PUE;,s > Add inserted elements to the repository
for all e; € E;ps U Ege; do
v — v} > Update visibilities; see Eq. 8
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Properties. If successful, Algorithm 4 transitions the workspace into the state
Committed, while ensuring Constraints4, 5, and 6 for the specified ambition.

Otherwise, the workspace remains in state Modified; in this case, the user
may re-attempt the commit with a different ambition.

5.4 Migrate

The operation MIGRATE prepares the workspace choice for the subsequent iter-
ation, proceeding under the assumption that the user prefers to stay in the
current view. Unlike CHECKOUT and COMMIT, this operation is not triggered
explicitly by the user, but automatically after commIT. Conversely, it makes the
subsequent CHECKOUT optional, tying on the non-disruptive revision control
workflow.

Algorithm 5 iterates over options that remain unbound in the choice to be
migrated. If a corresponding option has been bound in the ambition, the binding
is transferred to the choice. Otherwise, preferences and defaults are triggered as
far as applicable, with the aim to complete ¢™ transparently. As a “last resort”,
a binding state is obtained non-deterministically. Since the new option has been
ignored in the ambition, there cannot exist any reference to it in updated visi-
bilities. Therefore, it is immaterial for the subsequent choice whether or not the
option is selected. At this point, it is not known how new (and still unbound) fea-
tures will be incorporated in the next iteration. Therefore, the user may choose
among the set of choices describing the current workspace contents equivalently.

Algorithm 5. Consistency-preserving MIGRATE. From [6, Algorithm 3].

procedure MIGRATE
for o € O™ do
if (o,true) € c™ A (o, false) & c™ then > Never override existing bindings
s™ — undefined
if 3(o,s) € a®™ : s € {true, false} then

s — s > Infer from ambition

else if a preference p € P°™ is applicable to o then
s™ «— apply p to o

else if a default d € D™ is applicable to o then
s™ «— apply d to o

else
s™® — user selection for o
if s = undefined then

return error “Operation was canceled by the user.”
sz — le U {(07 sz)}

if not R°™(c™") = true then > Constraint 8
return error “Cannot migrate to a consistent choice.”
else

Memorize ¢™ for the subsequent commit > Obviate check-out
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Properties. If migration succeeds, a strongly consistent choice (Constraint 8)
is actively enforced by the algorithm. Theorems 1 and 2 prove that Constraints 7
and 9 are satisfied, respectively.

There are three possible causes for failure of this operation. First, there may
be no correct solution regardless of the user selections performed?. Second, the
user might introduce a contradiction although a different selection would have
provided a correct migrated choice. Third, the user may cancel intentionally.

If migration succeeds, the workspace immediately enters state Unmodified.
Otherwise, entering state Pending triggers an exceptional check-out, forcing the
user into specifying a new choice.

Theorem 1. After having applied MIGRATE successfully, Constraint 7 is satis-

fied.

Proof. The algorithm iterates over all options in O™, which equals O™ as no
options can be introduced between commit and migrate by any operation. In
each iteration, either true or false are definitely assigned to missing bindings in
¢™ . Therefore, after having processed all available options, ¢™ is complete (as
required by Constraint 7).

Theorem 2. After having applied MIGRATE successfully, Constraint 9 is satis-

fied.

Proof. Being its descendant, ¢™ includes c“". Moreover, a®™ is weakly consistent
with ¢ (cf. Constraint 5). Thus, no contradictions exist between ¢™® and a“™.
Bindings for missing options are transferred from the ambition, or if not appli-
cable, in a way that does not contradict with any ambition binding. Altogether,
the migrated choice ¢™ is included in the ambition a“™ (such that ¢™ = a“™,
as required by Constraint 9).

6 Automated and Consistent Revision Graph
Management

Above, it has been claimed that the consistency of the revision graph is guaran-
teed automatically, such that the user is not accosted with constraint violations
in this dimension. As new revisions created during commit are appended as
successor of the latest revision, the here described commit strategy makes the
revision graph degenerate into a sequence.

Below, we supplement proof for the satisfaction of the constraints defined in
Sect. 4 by the historical dimension in isolation. The remainder of this section is
structured by phases, of which MODIFY has been omitted since it does not affect
the revision graph.

2 In such a case, newly introduced feature model rules prevent the product version
available in the workspace from being reproduced by future check-outs. The per-
formed modifications are, however, valid for different versions included in the ambi-
tion.
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6.1 Check-Out

It has to be proved that the choice inferred from the selection of a single revision
in Algorithm 1 satisfies the check-out time consistency constraints.

Theorem 3. A revision choice derived at check-out is complete (Constraint 1).

Proof. Preferences and defaults are applied in advance to filtering. On commit,
a default of the form (r;, false) is introduced for each revision i, such that no
unbound revision option remains after having applied all defaults.

Theorem 4. A revision choice derived at check-out is strongly consistent (Con-
straint 2).

Proof. There are two types of rules to be potentially violated: initial revision
rules (r9) and predecessor rules (ri41 = r;).

Except for the selected revision option r;, all revision options are bound
by preferences or defaults. In Algorithm 4, it is ensured that for each invariant
ri+1 = 1, a preference (r;,7;11) is created. Through repeated application of this
preference, after a revision option r; has been selected, all predecessor revisions
are bound positively. For no predecessor of r;, a negative binding will be created
since defaults have a lower priority than preferences. Therefore, all predecessor
rules are satisfied.

Given the premise of a linearly organized revision graph, repeated application
of predecessor preferences will propagate to rg, regardless of which revision has
been selected. Therefore, (rg, true) will occur in every binding derived this way,
such that the initial revision constraint rq is satisfied.

6.2 Commit

During ComMIT (cf. Algorithm4), a new revision with option ;14 is introduced
for the successor of the current head revision . We prove that the derived revision
ambition (r;41,true) satisfies the constraints associated with the commit phase.

Theorem 5. A revision ambition derived at commit is weakly consistent (Con-
straint /).

Proof. To be weakly inconsistent, it would be required that (r;11,true) contra-
dicts with any invariant in R¢™. The only invariant in which ;41 can appear is
the newly introduced 7,11 = r;. Though, (r;, false) ¢ a®™, thus weak consis-
tency is given.

Theorem 6. A revision ambition derived at commit is represented by the check-
out time revision choice (Constraint5).

Proof. Not yet existing at check-out time, ;41 is unbound in the revision choice

¢ such that no contradiction with (7,41, true) can occur.
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Theorem 7. A revision ambition derived at commit is sufficiently specific to
describe the historical component of a workspace change (Constraint6).

Proof. We represent the visibilities v of all elements as conjunctions vf A v,.
Furthermore, we assume that all elements ¢’ on which modified elements e €
FE,n0q may depend, have passed the choice: v”.(c“") = true. After applying option
binding completion, PPa™ > ¢, As a consequence, v.(PPa™) = true for all

/
vl

6.3 Migrate

During MIGRATE (cf. Algorithm 4), the binding (r;41,true) is transferred from

the ambition to the choice. We first consider the common case that the selected

revision equals the head; for the subsequent proofs, we may therefore presume
S , , ,

' =cd*Uad™, hence ci™ = a™.

Theorem 8. The migrated revision choice is complete (Constraint 7).

Proof. ¢ is complete with O™ except for the only new option r;,;, which is,
however, bound in the ambition a¢™ and therefore transferred from there. Thus,
™ = P U af™ is complete.

Theorem 9. The migrated revision choice is strongly consistent (Constraint8).

Proof. c¢" is consistent with respect to R¢". We may assume that RE™ = R A
(rix1 = 7;). From the choice, r; = true. From the ambition, r;; = true. Taken
together, the new predecessor invariant is fulfilled (true = true).

Theorem 10. The migrated revision choice is included in the revision ambition
(Constraint 9).

Proof. Since the binding (r;1,true) is transferred from the ambition to the
migrated choice, ai™ C ™.

In case the check-out time choice did not equal the latest revision, however,
MIGRATE will definitely fail because r;+1 = 7; is violated due to the negative
selection state of r; set by the revision default. In this case, an explicit CHECK-
OurT, including a consistent revision selection, is enforced (cf. Fig. 4).

7 Generalized Editing Model

The functional properties of the here contributed dynamic editing model are
now compared to the so considered conventional approach, static filtered editing
(SFE). Concrete representatives are discussed in the related work section; we
here use the vocabulary used in the own conceptual framework.
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Commonalities. The filtered editing (FE) approaches considered here have
in common that they operate in an iterative way, where each iteration is a
transaction begun with check-out and concluded with commit. In between,
workspace contents may be modified. The workspace is defined by a choice
— or read filter —, which is a unique version selection. By an ambition — a
partial write filter — the versions affected by the change are defined. This way,
the version described by the choice is representative for the set of versions
described by the ambition.

Static Filtered Editing. In SFE, both the choice and the ambition are defined
in one step at the beginning of a workspace transaction, i.e., at check-out.
Typically, an ambition is defined first as a partial version selection, which is
further configured top-down into a unique choice. Both choice and ambition,
as well as the version space itself, are immutable during modify. After commit,
the transaction is closed and the workspace is cleared; subsequent transactions
must be initiated explicitly. Changes to the variability model are allowed when
no workspace transaction is active.

Dynamic Filtered Editing. In DFE, the ambition is specified at commit
time. Furthermore, the variability model is made available for modification
in the workspace. This way, it is possible to introduce those features to which
a change is relevant while the change is actually performed. Moreover, a
new transaction is started immediately after commit. It is assumed that the
same choice as in the previous iteration shall be used—an assumption that is
obtained from generalizing the VCS workflow (and supported by the opera-
tion migrate presented above).

Figure 5 illustrates the different optional and mandatory phases of the respec-
tive iterations and aligns them with the constraints presented in Sect. 4.

The remainder of this section sketches — without providing formal definitions
or proofs — how the editing model assumed so far can be generalized in order
to support static filtered editing as well as blended forms of the editing models.
The here presented framework primarily assumes DFE, but it also allows to step
back to SFE in case a more restrictive workflow is desired.

7.1 Purely Static Filtered Editing

The comparison above makes obvious that SFE requires only a subset of the
constraints investigated here. This is due to the missing evolution of the feature
model, as well as due to the lack of a MIGRATE operation; a check-out is required
in advance to each iteration. Furthermore, the order of consistency checks is
different because the ambition is selected during check-out already.

The algorithms presented in Sect. 5 can be adjusted for SFE as follows:

— Ambition selection — including the automated revision graph management —
is moved from COMMIT to CHECKOUT, more precisely to after filtering the
feature model. Constraint 4 (weak ambition consistency) is preponed accord-

ingly.
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Fig. 5. Static vs. dynamic filtered editing by phases and constraints.

— As the feature model is not made available for modification, it is not exported
into the workspace during CHECKOUT.

— Constraints 1 and 2 are ensured before filtering the domain model as in DFE.
Directly afterwards, Constraint5 (choice represents ambition) is checked. If
this constraint fails, it is not the ambition, but the choice that has to be
altered.

— During MoDIFY, only the domain model can be edited.

— The only constraint that remains to be checked at CoMMIT is Constraint 6.
If this constraint fails, however, the user cannot be asked for a new ambition.
Rather, the write set representing the product-level changes must be revised
in order to be sufficiently general. This requires dedicated tool support in
addition.

— MIGRATE (see Algorithm 5) is abandoned entirely.

— Feature model modification is allowed between workspace transactions in an
unfiltered editing mode.

7.2 Restricted Transactions

More restrictive forms of (static or dynamic) filtered editing can be approached
by tailoring DFE towards only one product dimension, the feature model or the
domain model.

Feature Model Transaction. In this form of restricted transaction, only the
feature model is made available in the workspace. Since this is versioned
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exclusively by the revision graph, whose consistency is managed automatically
(see Sect.6), constraint validation becomes entirely transparent to the user,
who is accosted only with selections in the revision graph and, e.g., with
commit messages.

Domain Model Transaction. It is also desirable in many scenarios to remove
the feature model from the workspace, or to make it unmodifiable. Then, the
co-evolution problems motivating Constraints 3, 7, 8, and 9 become irrelevant.

A concrete workflow similar to the one implied by the SFE model can be
realized by applying restricted feature model transactions and domain model
transactions alternatingly. Furthermore, nested transactions are conceivable: A
feature model transaction may aggregate several domain model transactions, all
committed under the same historical scope.

7.3 Earlier Ambition Specification

Without negatively affecting the flexibility of DFE, the action specify ambition
can be preponed to any point in time after specify choice. This allows the user to
fix the scope of the intended change earlier than during commit; furthermore, the
check of Constraints 4 (weak ambition consistency) and 5 (ambition represented
by choice) can be applied earlier, which may prevent a subset of consistency
problems. Constraint 6 (sufficiently specific ambition) still needs to be checked
during commit.

7.4 The Amend Operation

DFE can also be extended in order to allow corrections of the ambition after
commit. We semi-formally define an additional workspace operation AMEND,
which behaves as follows:

— The user makes a selection in the revision graph. The chosen revision option
is r;.

— The feature model Py for revision r; is reconstructed.

— The user is asked to define a new feature ambition a} in Oy as a substitute
for ay.

— Constraint 4 is re-checked using the new ambition a’f and Ry. If the constraint
is violated, the operation is aborted.

— In the visibilities of elements of the domain model, all occurrences of the term
ay are replaced by a’y.

This operation potentially behaves less consistent than the conventional way
of ambition specification. In particular, Constraints 5 and 6 are ignored.

8 Evaluation

In order to quantitatively evaluate the user-visible properties of the presented
constraints and consistency-preserving algorithms, we report on two data sets
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extracted from case studies that refer to standard examples from SPL litera-
ture. In addition to the product line for graphs [12,14] considered above, the
second case study refers to a product line for Home Automation Systems (HAS)
originally introduced in [3] and adapted in [15].

Table 1. Aggregate results quantifying the user complexity of the dynamic filtered
editing model.

Graph HAS

Number of iterations 9 38

Feature model size 8 17

Domain model size 26 106

Average ambition complexity | 8/9 = 0.89 | 41/38 = 1.08
% migration interactions 1/9=0.115/38 =0.13
% explicit check-outs 3/9=0.33/6/38 =0.16
% commits canceled 0/9=0 1/38 = 0.026

Methodology. All results were obtained by analyzing recorded version his-
tories of previously conducted case studies. While the graph product line was
realized by the authors themselves, the HAS study was conducted by a master
student with MDPLE background. In order to foster an incremental style of
development, requirements were communicated to the subjects in consecutive
interview sessions. In the HAS case study, hypothetical customer feedback was
given, such that it became necessary to revise or to newly define features and
their corresponding domain artifacts.

The size of feature model and domain model reported below can be obtained
by analyzing the repository contents manually. The four additional quantities
measured demand for further explanation:

1. Awverage ambition complexity: The complexity of an ambition is defined as
the number of features bound in it. Negatively bound features are treated as
two bindings (as feature expressions derived from them contain an additional
syntax tree element for the negation). An ambition may also have complexity
0 when no feature is bound for a universal change (case a = true).

2. Migration interactions: The ratio of editing model iterations in which at least
one user interaction is required during migration.

3. Eaxplicit check-outs: The ratio of iterations where the optional check-out oper-
ation is necessary in case the previously applied migration does not produce
the desired choice for the next iteration.

4. Commits canceled: The ratio of commit operations canceled after consistency
violations had been reported, such that further domain or feature model edit-
ing was required.
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Results and Conclusions. Table 1 summarizes quantitative results extracted
from both case studies. To begin with, (1) the complexity of ambitions is in aver-
age close to 1, allowing for the assumption that ambitions frequently consist of
only a single feature binding; (2) migration happens transparently for the larger
part of iterations; (3) the check-out operation, which has been made optional by
the dynamic editing model, is necessary only in a small ratio of iterations; (4)
only in one of altogether 47 iterations was it necessary to cancel the commit (in
this case, the feature the subject intended to realize was accidentally missing in
the feature model). In contrast, the larger part of iterations did neither require a
check-out nor user interaction during migrate. When compared to SFE, the low
number of commits canceled suggests that the dynamism gained by the filtered
editing model is not paid with a significant loss of consistency.

Threats to Validity. The significance of the results derived from Tablel is
potentially limited by two factors. First, it was clearly communicated to the
evaluators that the scope of the changes applied in one iteration should be equal,
leading to comparably short-running iterations. However, in real-world scenar-
ios, inexperienced users may accidentally realize several different features in one
iteration, making it impossible to specify a valid global ambition. Second, coop-
erative versioning was faded out in both case studies. We expect the number of
canceled commits to slightly increase with multi-user support due to problems
such as doubly introduced features.

9 Related Work

This paper ties on previous publications regarding a conceptual framework to
integrate SPLE, MDSE, and VC; see [6,11,14,15]. Below, we refer to approaches
explicitly dealing with workspace consistency problems appearing with filtered
SPL editing.

Fully, Partially, and Temporarily Filtered SPL Editing. Approaches
to filtered editing of (model-driven) software product lines may be categorized
under fully filtered editing, partially filtered editing, and temporarily filtered edit-
ing.

Fully filtered multi-variant editing was influenced by early concepts of multi-
version editors such as P-Edit [10]. They assume that a view — similar to the
workspace in the here considered framework — is created from a multi-variant
document, which corresponds to the repository here. The version available in the
view is defined by a choice that uniquely denotes a representative of the ambition.
The here presented approach realizes fully filtered editing. It does, however, not
assume or require a specific multi-version editor, but allows arbitrary tools to
be used for editing the workspace. To this end, the operations that define and
interpret the choice and ambition are provided by generalized version control
abstractions, which have been extended by SPLE concepts.
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Partially filtered editing [8] aims at hiding variants to which the current
change is immaterial, without requiring the choice to be unique (Constraints 1
and 7). There is only a single filter serving as choice and ambition simultane-
ously. Variability information referring to non-resolved configuration options is
presented in the view, e.g. in the form of annotations. As a consequence, specific
tools or preprocessor languages are required in order to cope with variability in
the workspace.

A source-code centric approach to temporarily filtered editing of software
product lines is described in [7]. A partial feature configuration can be specified
as write filter. Code fragments immaterial for the so intended change are hidden.
As approximation of a read filter, a contexrt is derived as an extended view
on the write filter. Similarly, the FeatureMapper [16] approach, which is based
on annotative variability, offers a temporary write filter in the multi-variant
view. Having selected one or more features and invoked the record operation,
all changes performed in the MVDM are associated with a feature expression
derived from the provided feature selection.

View-Based vs. Transactional Filtered Editing. An orthogonal distinction
can be made between the categories view-based and transactional filtered editing.
For starting and closing transactions, different metaphors are provided in the
literature.

In the first case, the filter — which may be further decomposed into read and
write filter — can be dynamically changed by fading in and out configuration
options. Altering the filter directly influences the visible workspace contents.
This is realized, e.g., in [7,8]. View-based filtered editing, however, requires spe-
cialized multi-version editors or at least a tight integration into existing editors.
This makes the approach difficult to implement, particularly in model-driven
development environments.

In contrast, the transactional approach assumes well-defined iterations dur-
ing which the read filter remains equal. In the here presented approach as well
as in the precursor UVM [13], transactions are opened and closed by generalized
forms of the VCS metaphors update and commit. The approach presented in
[9] defines similar operations, get and put. P-EDIT [10] relies on the metaphors
of conditional compilation, introducing a write operation that closes a transac-
tion by a specific write filter. In FeatureMapper [16], temporary transactions are
opened and closed by starting and stopping change recording (see above); the
view is inferred from a feature selection similar to feature ambitions.

Static vs. Dynamic Filtered Editing. Representatives of static filtered edit-
ing, e.g., UVM [13], require that the ambition is specified at check-out time;
since the rule base does not evolve, constraints dealing with its evolution are
unnecessary. Similarly, in [8], having a single filter requires that the scope of a
change must be known beforehand, inhibiting the concurrent introduction of a
feature and its realization.
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The approach presented by [9] moves the specification of the write filter
from check-out time to commit time, which slightly deviates from strict SFE as
defined above. As the version space is not represented explicitly, no co-evolution
problems may occur, and no dynamism is required for the editing model.

In the presented dynamic filtered editing model, the variability model may
evolve during an iteration embraced by check-out and commit. In particular,
new configuration options and new configuration rules may be introduced this
way. The flexibility implied by this approach is — to the best of the author’s
knowledge — unique in the literature. Correspondingly, the implied consistency
problems described by Constraints 7, 8, and 9, have been described and analyzed
for the first time. Moreover, the operation MIGRATE contributed in Algorithm 5
is novel.

Generality of the Write Set. In the list of dynamism-aware consistency con-
straints provided here, Constraint 6 inhibits a special role, considering not only
the soundness of the version space (i.e., options, rule base, choice, and ambition),
but also of its connection to the product space. Phrased in the vocabulary used
in this paper, this constraint ensures that “the ambition is specific enough to
reproduce the change in all affected variants”, or conversely speaking “the change
is general enough to be reproduced in all variants included in the ambition”.

The potential inconsistencies that may occur by having the user inadvertently
change a larger set of variants than he/she intends to do — namely the variants
that contain those elements visible in the view — have been recognized in the
literature previously. In [10], a distinction is made between fized and unfized
fragments made available in the workspace. Fixed fragments are visible in all
variants included in the ambition, whereas unfixed fragments are visible only
in a part of the ambition that includes the choice. Unfixed fragments must be
managed in a more or less restrictive way. P-EDIT graphically highlights unfixed
fragments, such that the developer becomes aware of a potentially unintended
modification of hidden artifacts.

The edit isolation principle described in [8] states that “the only variants
that change in the source are those that can be reached from the view”, where
“source” denotes the multi-version representation. This has been used as the
central design constraint for the specification of an update (here: commit) oper-
ation, which does not only detect, but also repair situations in which the prin-
ciple is violated. When compared to the edit isolation principle, Constraint 6 is
even more restrictive since it disallows, among other, modifications that insert
or destroy cross-links to invisible elements.

10 Conclusion

We have motivated, formally developed, and reflected on a consistency-
preserving dynamic filtered editing model that supports the iterative creation of
model-driven software product lines in a single version view by adopting version
control principles.
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The following implicit assumptions are underlying the DFE model: First,
the users want to specify all information referring to the version space as late
as possible; therefore, the definition of an ambition is deferred to the Com-
MIT phase, and modifications to the feature model need not be performed in
advance to an iteration, but may be incorporated during MODIFY. Second, the
user wants to be accosted with version specification tasks as seldom as possible,
which vindicates the decision to make the CHECKOUT operation optional and
to introduce MIGRATE. Third and last, the editing model should be no more
restrictive than necessary in order to prevent the user from performing changes
that cause product inconsistencies or that cannot be potentially reproduced.

Consistency is checked by explicit constraints assigned to the different editing
model phases. During CHECKOUT, it is ensured that the specified feature con-
figuration is complete and consistent with respect to the feature model. During
MODIFY, changes that would make the feature model unsatisfiable are inhib-
ited. The feature ambition defined by the user during CoMMIT is checked for
weak consistency as well as for being represented by the choice. Furthermore, it
must be sufficiently specific for the performed product-level change. The newly
introduced operation MIGRATE automatically produces a choice for the next
iteration based on the previous choice and the ambition, in order to obviate
repeated check-outs that reproduce the current workspace view. The migrated
choice is checked for completeness and consistency with the evolved version of
the feature model. Furthermore, it must include the ambition.

The correctness of the consistency-preserving operations with respect to the
underlying consistency constraints has been formally proved where adequate.
Furthermore, we have supplied evidence that the revision graph is managed
not only automatically, but also consistently. An experimental evaluation based
on aggregated data from existing version histories of two case studies confirms
that the DFE model performs flexibly and non-disruptively, while the amount
of inconsistencies reported is insignificantly higher than a comparative static
solution to filtered editing.

The decision whether to apply static or dynamic filtered editing is related to
the amount of flexibility (i.e., late ambition specification, co-evolution of feature
model and domain model) and of consistency guarantees (i.e., by preventing
certain co-evolution problems) required by a specific project. In the presented
conceptual framework, it is assumed that DFE is the preferred style, but SFE
can be adopted gradually in case a more restrictive workflow is demanded.

Several ways of generalizing the presented DFE model have been sketched.
To begin with, purely static filtered editing model may be realized by moving
and deleting some version selection statements and constraint checks between
the algorithms. Restricted transactions may ensure that only the feature model
or only the domain model are edited. Furthermore, the ambition may also be
specified at an earlier point in time, which slightly increases the consistency at
the expense of a more restricted editing model. Last, the AMEND operation even
allows to retrospectively alter the ambition used for a previous commit, such
that erroneous version specifications can be revised.
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The algorithms presented in this paper have been implemented as part of the

Eclipse-based filtered MDPLE tool SuperMod [14]. For modification of feature
models, for defining and migrating feature configurations, as well as for specifying
feature ambitions, dedicated tree-oriented editors and dialogs are provided.

Future work will address the syntactical correctness of single-version domain

models checked-out into the workspace. It has also turned out that Constraint 6
is, in some cases, too restrictive, for instance when it concerns the graphical
representation of model elements; therefore, we will introduce a mechanism to
define exceptions to the corresponding constraint check. Besides, the suitability
of DFE for agile SPLE processes will be examined.
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Abstract. Original equipment manufacturers (OEMs) build mechatro-
nic, variant-rich systems using components from several suppliers in
industry sectors like automation. The OEMs have to integrate the dif-
ferent components to the overall system based on a virtual layout. For
this purpose, the suppliers provide geometrical information via the stan-
dardized exchange format STEP. Beyond the geometrical information,
the OEMs need additional logical and technical information for the inte-
gration task as well as the variant handling. For that reason, STEP
provides an extension mechanism for extending and tailoring STEP to
project-specific needs. However, extending STEP requires extending sev-
eral capabilities of all involved tools, which prevents the project-specific
utilization of the STEP extensions mechanism. In order to cope with
this problem, we presented in previous work a model-driven approach
enabling the flexible specification of STEP extensions and particularly
the automatic derivation of the required capability extensions for two
involved tools. Nevertheless, the OEMs still need to apply several engi-
neering tools from different domains to consider logical as well as geomet-
rical constraints between product variants. In this paper, we hence com-
bine our previous approach with extended feature models that consider
conventional logical and particularly geometrical information, thereby
enabling a holistic product line engineering for mechatronic systems. By
means of an automation production system example, we illustrate how
OEMs can orchestrate their overall supply and development processes
through the combination of both approaches.

Keywords: STEP - Model-driven software development
Meta-modeling - Model transformation - Product line engineering
Feature models - Geometrical constraints

1 Introduction

The development of mechatronic systems in industry sectors like automation
is characterized by complex supply chains, where original equipment manufac-
turers (OEMs) build an overall system using physical components from several
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suppliers. An example of such a system is depicted in Fig.1. The OEM inte-
grates this overall automation production system, a so-called Pick & Place Unit
(PPU) [1]. The PPU encompasses the four components Stack, Ramp, Crane, and
Stamp, which are delivered by suppliers. The Stack works as workpiece input
storage and the Ramp acts as workpiece output storage. The Stamp is respon-
sible for labeling the workpieces, and the Crane is responsible for transporting
the workpieces by picking and placing them between the different working posi-
tions. The Crane transports workpieces from the Stack to the Stamp. After the
Stamp has processed a workpiece, the Crane transports the workpiece finally to
the Ramp.

Fig. 1. Pick & Place Unit as an example for a simple automation production system

1.

Figure2 sketches the exchange of product information between the OEM
and different suppliers in the development process of a mechatronic product
line like the PPU. In the course of integrating the overall system, one of the
most important development tasks of the OEM is to geometrically assemble the
overall system based on the particular supplier components. Prior to the actual
production of the overall system, this task is performed by means of a virtual
geometric layout within computer-aided design (CAD) tools. The suppliers geo-
metrically design their particular components within CAD tools, too. Based on
these designs, they provide geometrical information about their components via
the standardized exchange format STandard for the Exchange of Product data
(STEP) [2], such that the OEM is able to virtually layout the overall system (cf.
STEP-based exchange of geometrical information in Fig. 2).

Beyond the geometrical information, the OEM needs additional technical
information (e.g., the admissible payload of the Crane manufactured delivered
by Supplier A and the power consumption of the Stamp delivered by Supplier B
in Fig. 2) to perform his development tasks. For that reason STEP, provides an
extension mechanism for extending and tailoring STEP to project-specific needs.
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Fig. 2. Overview of the exchange of product information between the OEM and dif-
ferent suppliers.

Typical applications of the STEP extension mechanism have been reported in [3,
4], for example.

However, extending STEP moreover requires extending the capabilities of all
involved tools for the specification, the data exchange, and the interpretation of
the additional technical information. That is for one thing, all affected suppliers
have to extend their CAD tools such that they are able to specify and export
the additional information. For another thing, the OEM has to extend his CAD
tool such that he is able to import and interpret the additional information.
These tool extensions have to be implemented through plugins and application
programming interfaces on the side of all involved organizations, which causes a
high implementation effort. Thus, the application of the STEP extension mech-
anism is restricted to static, one-off, and long-term tool chains, which do not
fulfill the needs of todays and future dynamic business processes (cf. the rec-
ommendations for implementing the feature “digital end-to-end engineering” for
dynamic value chains in the context of Industry 4.0 [5]).

The fixedness of the STEP extension mechanism leads to a tool chain as
exemplary sketched in Fig. 2. Beyond the specification of geometrical information
in CAD tools and the corresponding standardized data exchange via unextended
STEP, the suppliers specify the respective additional technical information out-
side their CAD tools. This additional information is awkwardly exported to
the OEM via different communication channels (e.g., phone, office documents
via mail, or electronic data interchange—EDI—formats [6]). In the example in
Fig.2, Supplier A specifies the additional product information like the power
consumption and the admissible payload of the component in Excel sheets and
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exchanges this information via telephone (cf. Manual exchange via Telephone in
Fig. 2). Supplier B documents the power consumption in a Word document and
exports the information via mail (cf. Manual exchange via Mail in Fig. 2). Further-
more, the OEM faces the challenge of component-wisely storing and grouping the
geometrical as well as additional information within a product data management
(PDM) tool.

In order to cope with this problem, we introduced in previous work [7] a com-
plex application of existing meta-modeling and model transformation techniques
that enables the flexible specification of STEP extensions. This particularly
included the automatic derivation of the required capabilities of two involved
tools for the specification, the data exchange, and the interpretation of addi-
tional technical information.

However, the development of mechatronic systems is not only characterized
by complex supply chains, but also by high customer expectations regarding the
product individualization and modularity. This results in a large variety of prod-
uct variants and a lot of logical as well as geometrical constraints. For instance,
the PPU example is able to handle two different kinds of workpieces: metal and
plastic. If a product variant is supposed to handle metal workpieces, it requires
a Crane with an admissible payload larger than 20kg to handle the workpieces
(logical constraint). Furthermore, as indicated in Fig.2, the Crane requires a
minimum distance of 2 m to other components to guarantee a safe operation
(geometrical constraint). Whereas the OEMs use approaches from product line
engineering (like feature modeling [8]) for the specification and validation of
logical constraints in their PDM tool, they apply their CAD tool to specify
and validate the geometrical constraints. This leads to awkward redundancies
between both kinds of engineering tools.

In order to cope with the complex data exchange between the OEM and
his suppliers on the one hand, and the mixed specification and validation of
logical as well as geometrical constraints in different engineering tools on the
other hand, we integrate in this paper our model-driven approach for the flexible
specification of STEP extensions with another previous work [9] that extends
feature models to support both logical and geometrical constraints. Based on
the PPU example, we show how the OEM can orchestrate the overall supply
and development process by the combination of both approaches.

The reminder of this paper is structured as follows. In the next section, we
introduce fundamentals about STEP. Afterward, we present our model-driven
data exchange approach integrated with extended feature models in Sect.3 and
conduct a case study in Sect.4. Section5 covers related work. Finally, Sect.6
concludes this paper with a summary and an outlook on open future work.

2 1ISO 10303 - STandard for the Exchange of Product
Data (STEP)

The International Organization for Standardization has published the ISO 10303
- STandard for the Exchange of Product data (STEP) [2] to address the problem
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of exchanging product data between different systems. The overall objective of
STEP is to provide a mechanism that describes a complete and unambiguous
product definition throughout the entire life-cycle of a product. Furthermore,
STEP provides a system independent and computer interpretable file format for
the exchange of product data between different software tools, like computer-
aided design (CAD) or simulation tools [10]. However, STEP especially focuses
on the representation of geometrical information.

To realize the objective of a complete and unambiguous product definition,
STEP defines so-called application protocols [2]. An application protocol is a
data model tailored to the specific needs of an application area. In the scope of
this paper, we use the application protocol STEP AP214. Although the STEP
AP214 is originally designed for the automotive domain, it is broadly used in
practice, since it describes product information like sheet-metal parts of the car
body, mechanical parts of the engine, and glass components. Thereby, the STEP
AP214 is also suitable for the exchange of product information in the application
of automation production systems.

In an application protocol, the description of product data is defined in the
EXPRESS information modeling language [11]. EXPRESS is part of the ISO
10303 and has been defined to model geometry information. EXPRESS consists
of language elements that allow unambiguous data definition and specification of
constraints on the defined data. The most important EXPRESS element is the
entity data type, which defines the objects of interest in the domain being mod-
eled. The entity is characterized by its attributes and constraints. The EXPRESS
information modeling language also supports various kinds of data types, includ-
ing simple types, aggregations types, and constructed types [11].

STEP defines two different file formats for the exchange of product data:
physical file [12] and XML file [13]. Whereas the XML file is an XML encoding
for the product data defined by an application protocol, the physical file is a
purely ASCII encoding for product data. In the scope of this paper, we use the
physical file format, since it is mostly used by exchange systems today to read
and write STEP data [10].

Figure 3 depicts an overview of the relationship between the EXPRESS infor-
mation modeling language, a STEP application protocol, and the actual prod-
uct information contained in a STEP file. The EXPRESS information modeling
language has been developed prior to the Meta Object Facility (MOF) [14] stan-
dard of the OMG. However, in terms of the MOF standard, the EXPRESS
information modeling language is the meta-meta-model used to specify STEP
application protocols by means of a grammar. The STEP application protocol
is the meta-model used to specify the structure of the product information. The
STEP file is the model containing the actual product information following the
structure in the application protocol.

In the remainder of this section, we use the running example of the PPU to
illustrate the different parts of the STEP standard. Therefore, Listing 1 depicts
an excerpt of the STEP AP214 defined by means of the EXPRESS information
modeling language showing the four entities product_context, product, line, and
cartesian_point. The product_context contains the single attribute discipline_type
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EXPRESS

/|\ instanceof
|

STEP AP
N
|

instanceof

STEP File

Fig. 3. Overview of the relationship between EXPRESS, STEP application protocols
and STEP files [7].

of the type label. The type label represents a STRING. The product contains the
attribute id, name and description; all of type STRING. Furthermore, it contains
a list of references of product_contexts.

Listing 1. Exemplary excerpt of the STEP AP214 defined in EXPRESS [7].

TYPE label = STRING;
END_TYPE;

ENTITY product_context;
discipline_type : label;
END_ENTITY;

[o I B S N

ENTITY product;

9 1d:STRING;

10 name : STRING;

11 description:OPTIONAL STRING;

12 frame_of_reference:SET [1:?] OF product_context;
13 END_ENTITY;

Listing 2 depicts an excerpt of the physical file of Crane component of
Pick&Place Unit. As mentioned before, a physical file is a pure ASCII encoded
file with a simple structure. Each line of a physical file encompasses an identi-
fier encoded #id and a key-value par encoding the actual product information.
For example, in Line 1 of Listing 2, the product is defined. The entity has the
identifier #86, the id and name HT_LL.1600. The identifier is also used to encode
cross-references between different entities. For example, the entity product con-
tains a reference to the identifier #91.

Listing 2. Exemplary excerpt of a STEP AP214 file [7].

#86=PRODUCT ('HT_L1600’, "HT_L1600", ", (#91));
#91=PRODUCT_CONTEXT (' ', #93, 'mechanical’);

S

3 Flexible Specification of STEP Extensions

In this section, we present the integration of our model-driven approach for the
flexible specification of STEP extensions with an extensions to feature models to
support both logical and geometrical constraints. Figure4 depicts an overview
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of the approach encompassing four main contributions for the OEM and his sup-
pliers to improve the problematic situation described in Sect. 1. First, the OEM
as well as his suppliers are enabled to specify additional technical information
directly in their tools (cf. -1- Specification of additional technical information in
Fig.4). For this purpose, we enable the OEM to specify a central data model
that can be tailored to the specific needs of a particular development project.
The central data model acts as an alternative to a PDM tool, which only has the
capability to component-wisely store arbitrary artifacts (like CAD models and
documents) but not to interpret model-based information from different sources.
Furthermore, it contains all geometrical and technical information and is also the
main artifact of our approach from which we derive the other parts using model-
driven techniques. Furthermore, we provide an extension to the CAD tools of the
suppliers and the product line engineering tool of the OEM based on the STEP
extensions specified for the central data model. Second, we are able to derive
an automatic data exchange for the involved tools (cf. -2- Automatic exchange
of product information in Fig.4). The specification of additional technical infor-
mation as well as the automatic data exchange result in a machine-readable and
processable representation of the product information (cf. -3- Interpretation of
the additional technical information in Fig.4). Finally, the previous contributions
enable an integrated development process for mechatronic product lines (cf. -4-
Integrated product line engineering in Fig.4).

In the following section, we describe a systematic model-driven process to
support the creation of the central data model. Furthermore, we present the
technical details of the three process steps Automatic Derivation of the Central
Data Model and Data Import, Generate CAD Extensions, and Generate Feature
Model Extension in the subsequent Sects. 3.2, 3.3, and 3.4, respectively.

o PPU
STEP-based exchange

w &G of produclinforma!ion ,_/
0 el Industry
#3256=power_consum tll
CAD Engineer 'on(1000pW) P f Stamp | Crane | | Ramp | | Stack | Sector
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Fig.4. Overview of our model-driven approach for the exchange of product
information.
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3.1 Process for the Creation of the Central Data Model

Figure 5 depicts our model-driven process to support the creation of the central
data model. The process is specified by means of the Business Process Model
and Notation (BPMN) [15]. The main contributions of this paper are emphasized
in Fig.5 with gray tasks and artifacts. We visualize manual steps by means of
BPMN manual tasks (hand in the upper left corner of the task). Steps that we
could automate are visualized by means of BPMN service tasks (cogwheel in the
upper left corner of the task). Work results are specified by means of BPMN
data objects (document icons), and persistent models that are subject to update
and retrieval operations are specified by means of BPMN data stores (database
icons).

—

e
STEP Appllcatlon ,,,,,,,,,,,,,,,
Protocols STEP Extensions

= = =
Analyze SEIS"?Q B?SE Select STEP
Requirements Application Extensions
<4 Protocol
ﬁ Selected Eﬁ
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Extensions exist

Extensions exist

@
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Model Plugin

‘:IQ} Automatic Denvanon of the Central Data Model and Data Import
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Derivation

Transformation Transformation
Workflow

&
Generale CAD
Plugin

Project-specific E Project-specific m Central Data E Feature Model E CAD E
STEP AP STEP-Grammar Model Importer u ode Plugin Plugin

Fig. 5. Overview of the model-driven process to support the creation of the central
data model.

In the following, we exemplarily perform and explain each process step
depicted in Fig.5 referring to the PPU as a running example. We design the
model-driven process in such a way that the OEM has to perform it, but may
need to discuss several aspects with his suppliers.

In the first process step Analyze Requirements, the OEM decides which infor-
mation is necessary for the current development project and should be stored in
the central data model. For the development of the PPU, the OEM decides that
the power consumption of all used components and the admissible payload of the
Crane must be stored in the central data model besides the regular geometrical
information.

In the second process step Select Base Application Protocol, the OEM selects
an application protocol from the STEP Application Protocol library that fulfills
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most of the analyzed requirements and that acts as a basis for the central data
model. The library only contains application protocols that are officially defined
in the ISO 10303. In our running example, the OEM decides to use the STEP
AP214 as the Base STEP AP.

As mentioned in Sect. 1, STEP usually does not cover all product information
that is needed for the development of the overall system. Hence, the OEM uses
the next two process steps Create STEP Extensions and Select STEP Extensions
to enrich the selected Base STEP AP with further descriptions of product infor-
mation. For this purpose, we enable the OEM to create new STEP extensions
in an EXPRESS-based textual editor and to store these extensions in a STEP
Extension library. Furthermore, we enable him to select existing STEP extensions
from the library that satisfy his specific needs.

In our running example, the STEP Extension library already contains sev-
eral STEP extensions. While reading through the descriptions of these STEP
extensions, the OEM noticed that the STEP_LEXTENSION POWER_CONSUMPTION
depicted in Listing 3 already satisfies the requirements on the specification of a
component’s power consumption.

Listing 3. STEP extension for the specification of a power consumption [7].

SCHEMA STEP_EXTENSION POWER_CONSUMPTION;
ENTITY power_consumption;
component: product;
value: NUMBER;
unit: Unit;
END_ENTITY;
END_SCHEMA ;

AW N

N o w

The STEP_EXTENSION POWER_CONSUMPTION only contains the entity
power_consumption. This entity refers to the entity product (cf. Sect.2) defined
in the STEP AP214. Furthermore, the entity power_consumption contains an
attribute value of the type NUMBER and a reference to a unit. As mentioned
before, this application protocol is sufficient to specify the description of a com-
ponents power consumption in a machine-readable manner. Thus, the OEM
decides to reuse this STEP extension. Since the STEP Extension library does not
contain a suitable STEP extension for the specification of the admissible payload
of a Crane component, the OEM defines a new STEP extension STEP_EXTENSION
ADMISSIBLE_PAYLOAD as depicted in Listing 4. The structure is analogous to the
previous STEP extension. After the OEM has specified the STEP extension, he
stores it in the STEP Extensions library to enable its reuse in further development
projects.

Listing 4. STEP extension for the specification of an admissible payload [7].

SCHEMA STEP_EXTENSION ADMISSIBLE_PAYLOAD
ENTITY admissible_payload;
component: product;
value: NUMBER;
unit: Unit;
END_ENTITY;
END_SCHEMA ;

N o U A W N e
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After the selection of the required STEP extensions, the automatic derivation
process of the central data model (cf. Automatic Derivation of the Central Data
Model and Data Import in Fig.5) is executed. The automatic derivation process
encompasses three subprocesses: Execute M2M-Transformation, Execute M2T-
Transformation, and Execute Derivation Workflow. In the first subprocess, Exe-
cute M2M-Transformation, the conceived model-to-model transformation merges
the Selected STEP Extensions into the selected Base STEP AP to derive a Project-
specific STEP AP. This Project-specific STEP AP contains the description of all
product information that should be contained in the central data model. In
the subsequent subprocess Execute M2T-Transformation, the OEM executes our
developed model-to-text transformation to derive a Project-specific STEP Gram-
mar. This grammar enables the automatic derivation of the central data model
and the corresponding import capabilities as described in the subsequent section
(cf. Execute Derivation Workflow in Fig. 5).

The last two process steps Generate CAD Plugin and Generate Feature Model
Plugin are executed in parallel. In the process step Generate CAD Plugin, the
extensions of the CAD tools for the supplier are generated. These extensions
enable the specification of entities of the central data model within the user
interface of the CAD tool. Furthermore, it provides a mechanism to store the
product information and to export it to a physical file (cf. Sect. 2). In the process
step Generate Feature Model Plugin, the extensions for the feature model tool
of the OEM is developed. By means of the Feature Model Plugin, the system
integrator is able to reuse the entities stored in the central data model including
all geometrical and additional information during the specification of the product
line. Therefore, the plugin provides user interface elements to select entities from
the central data model.

Concluding, the introduction of the model-driven process, we obtain the spec-
ification capabilities of geometrical and additional technical product information
by defining flexible STEP extensions. The OEM is enabled to describe a central
data model by selecting an existing STEP application protocol as basis and by
defining and/or selecting STEP extensions to enrich the basis STEP application
protocol. The resulting project-specific STEP application protocol is further used
to automatically derive the required capabilities for the data exchange between
the OEM and his suppliers. Furthermore, it is used to derive extensions for exist-
ing CAD systems on the one hand, and a self-developed feature model tool on
the other hand. While the extensions of CAD systems enable the specification,
storage, and exchange of additional technical product information, the exten-
sions of the feature model tool enable the reuse of additional technical product
information for the specification of logical as well as geometrical constraints.
Both are needed in a holistic product line engineering for mechatronic systems,
like the PPU example.
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3.2 Automatic Derivation of the Central Data Model and the Data
Import

In this section, we describe the realization of the process step Automatic Deriva-
tion of the Central Data Model and Data Import depicted in Fig. 5. For this pur-
pose, we recreated and developed different meta-models, models, and grammars
as depicted in Fig. 6. Meta-models are depicted by means of UML classes. Gram-
mars are depicted by means of UML classes with a small rectangle in the upper
right corner. Finally, we depicted text files as UML classes with a document
icon in the upper right corner and parser as UML classes with a circle in the
upper right corner. As the technology icons indicate, we use the Eclipse Modeling
Framework [16] to specify meta-models by means of Ecore models, and the Xtext
framework [17] to define grammars. While using the Xtext framework, we are
able to automatically derive a parser for a particular grammar. Besides the men-
tioned technologies, we use QVT-O [14] and Xtend! to realize model-to-model
and model-to-text transformation, respectively.

emof ©crnf
| instanceof
EXPRESS [
EXPRESS'a . derives: Grammar
2 (recreated) xres]
N
| instanceof derives :instanceof
| |
]
STEP AP EXPRESS Parser EXPRESS [
©cmf Text File
R \ ‘
| derives
:. . ‘ STEP [
| Instanceo Grammar .,
| derives IVinstanceof
| |
]
©cnf Text File
Legend:
<]
L . LY [ 9 | |
meta-model grammar text file parser

Fig. 6. Overview of the developed meta-models and their relationships [7].

As mentioned in Sect.2, the EXPRESS information modeling language has
been developed in the ISO 10303 prior to the Meta Object Facility (MOF) [14]
standard of the OMG. Thus, the EXPRESS information modeling language does
not comply to the OMG standard and modern model-driven development tech-
niques are not yet applicable.

! http://www.eclipse.org/xtend /.
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For this reason, we developed our own MOF-compliant meta-model of the
EXPRESS information modeling language based on the Eclipse Modeling Frame-
work and the Xtext framework. We used the Xtext framework to recreate the
concrete textual syntax of the EXPRESS information modeling language by
means of a grammar (cf. EXPRESS Grammar in Fig. 6). While using the genera-
tion workflow of the Xtext framework, we derive an Ecore-based meta-model
of the EXPRESS information modeling language. Furthermore, we derive a
EXPRESS parser that reads textual STEP application protocol files that cor-
respond to the defined grammar.

As mentioned in Sect.2, a STEP application protocol is defined by means
of the EXPRESS information modeling language. Thus, after defining the
EXPRESS grammar and deriving its meta-model as well as a corresponding
parser, we are able to read and write STEP application protocols. However,
in the current stage of our implementation, we are only able to process the
basic EXPRESS elements types and entities. The processing of the remaining
EXPRESS elements is left for future work.

A STEP application protocol only defines the structure of the product infor-
mation, and not the product data itself. Hence, we apply the same technologies
to create a grammar representing the product information specified in a STEP
application protocol (cf. STEP Grammar in Fig. 6). Furthermore, the STEP Gram-
mar defines the structure of the STEP Text File following the structure defined
for STEP physical files (cf. Sect.2). As depicted in Fig. 6, after the execution
of the Xtext workflow, we derive a meta-model for STEP files that reflects the
product information defined in the STEP application protocol.

Figure 7 depicts the execution of the automatic derivation process of the
central data model for our running example by means of a UML Activ-
ity Diagram. After the OEM has performed the process step Select STEP
Extensions depicted in Fig.5, the specification of the central data model
in our running example encompasses the STEP AP214 as Base STEP AP,
and the two extensions STEP_ExtensionPower_Consumption : EXPRESS and
STEP_ExtensionAdmissible_Payload : EXPRESS.

In the first activity M2M-Transformation, the selected Base STEP AP and
the two selected STEP extensions are merged into an Project-specific STEP AP
by using a model-to-model transformation realized by a QVT-O in-place trans-
formation. This model-to-model transformation iterates over all entities in the
different :EXPRESS instances and merges them into the Project-specific STEP
AP. If a naming conflict occurs or some references are not yet resolved, the
transformation resolves these issues.

After the execution of the merging activity, the resulting Project-specific STEP
AP is transformed into an Xtext grammar by means of a model-to-text trans-
formation realized by Xtend (cf. M2T-Transformation). The model-to-text trans-
formation also iterates over all entities and translates them into a grammar
that also fulfills the requirements of the ISO 10303-21 for the structure of the
final STEP File. Listing 5 depicts an excerpt for the resulting Xtext grammar
for the STEP extension shown in Fig.4. The Xtext grammar defines the entity
power_consumption, encompassing an ID, a desc, and as shown in Listing 3 a value,
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formation : ...;

frame_of_reference : ...;
END_ENTITY;

ENTITY power_consumption;
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value : Number;
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END_ENTITY;

ENTITY admissible_payload;
component : product_definition;
value : Number;
unit : Unit;

END_ENTITY;
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Fig. 7. Overview of the automatic derivation of the central data model and the data
import [7].

and a unit. In the final STEP File, the ID corresponds to the line number and acts
as an identifier. The desc attribute indicates which entity is currently parsed.

Listing 5. Excerpt of the Xtext grammar for the STEP extension shown in Listing 3
[7].
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Finally, the workflow of the Xtext framework is executed and as a result,
we derive the central data model (cf. Project-Specific STEP Model in Fig.7).
Furthermore, we derive an Project-specific STEP Parse that reads STEP files
and creates data models conforming to the central data model.

3.3 Automatic Derivation of the CAD Plugin

In this section, we describe the realization of the process step Automatic Deriva-
tion of the CAD Plugin depicted in Fig.5. The automatic derivation approach
has been prototypically implemented for the CAD tool SolidWorks.

We started the development of the automatic derivation approach with an
examination of the plugin mechanism of SolidWorks and implemented a refer-
ence plugin for an extended user-interface representing further technical product
information and for exchanging this information.

After implementing the reference architecture, we generalized the reference
plugin, and divided the resulting code into platform, individual, and repetitive
code. The platform code is provided by the CAD tool SolidWorks to enable the
development of plugins using internal functionality of SolidWorks. We encap-
sulated the CAD tool dependent code by writing a wrapper and refer to it as
individual code. Finally, the repetitive code is used to create an extended user-
interface and to create the storage functionality. Since this code only uses oper-
ations provided by our own individual code, the repetitive code is independent
of the used CAD tool.

In the next development step, we developed a CAD plugin generator based
on the individual code. The CAD plugin generator uses the Selected STEP Exten-
sions as input and generates the required user-interface elements for the addi-
tional technical information. Furthermore, the CAD plugin generator also gen-
erates the required code-fragments to support the exchange of the additional
information.

Figure 8 depicts the automatic derivation of the CAD Plugin for our running
example. The CAD plugin generator uses the two Selected STEP Extensions
STEP _ExtensionPower_Consumption : EXPRESS and STEP_ExtensionAdmissible_
Payload : EXPRESS and produces the user-interface elements on the right.

3.4 Automatic Derivation of the Feature Model Plugin

In this section, we describe the realization of the process step Automatic Deriva-
tion of the Feature Model Plugin depicted in Fig.5. The automatic derivation
approach has been prototypically implemented for a self-developed product line
engineering tool based on feature models. The development of the feature model
plugin generator follows the same approach as presented for the CAD plugin
generator in the previous section. First, we started with a reference implemen-
tation for an extended user-interface representing and accessing technical com-
ponents stored in the central data model. Second, we generalized the reference
implementation, and divided the resulting code into platform, individual, and
repetitive code. Finally, we developed a feature model plugin generator based on
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Fig. 8. Overview of the automatic derivation of the CAD plugin [7].

the individual code. The feature model plugin generator uses the Selected STEP
Extensions as input and generates the required user-interface elements for the
different kinds of entities including their additional technical information.

Figure 9 depicts the automatic derivation of the feature model plugin for our
running example. The feature model plugin generator uses the two Selected STEP
Extensions STEP_ExtensionPower_Consumption : EXPRESS and STEP_Extension
Admissible_Payload : EXPRESS and generates the required user-interface elements
to access the geometrical and additional product information. Furthermore, the
Feature Model plugin generator also generates the required code-fragments to
support the exchange of the additional information. the user-interface elements
on the right.
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component : product;
value : Number;
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END_ENTITY;
END_SCHEMA;
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Fig. 9. Overview of the automatic derivation of the Feature Model plugin.

By integrating our model-driven approach for the flexible specification of
STEP extensions with our feature model approach, we prevent the OEM from



188 T. Koch et al.

the mixed specification and validation of logical as well as geometrical constraints
in different engineering tools. Our feature model tool supports a variety of feature
model extensions like feature attributes and properties [18], logical constraints
between features and feature properties [19], and the distinction between features
and feature realizations. Furthermore, we enable the configuration of a particular
product variant and the verification of its correctness based on the information
in the feature model [20,21].

Beyond the specification and verification of logical constraints, we covered
the challenge of geometrical constraints in the development of mechatronic prod-
uct lines and enabled their specification within our feature model tool sup-
port. Therefore, we, first, introduced a new kind of realization, a so-called 3D-
Realization. The 3D-Realization is an abstraction of a concrete technical com-
ponent and encompasses all geometrical information concerning the component,
like the width, the height, or the overall boundary. In our feature model plugin,
we exploit the concept of the 3D-Realization to enable the access of geomet-
rical information stored in central data model (cf. Fig.10). Furthermore, by
sub-classing the 3D-Realization for each entity in the central data model, we
enable the access of the additional technical information stored in the central
data model. This additional technical information could be used in logical con-
straints. For instance, as depicted in Listing 6, if the product variant is supposed
to handle metal workpieces, it requires a Crane with an admissible payload larger
than 20 kg to handle the workpieces. Thus, in the configuration of such a prod-
uct variant, the additional technical information of each available Crane could
be used to only allow the selection of Cranes that fulfill this constraint.

Listing 6. Example of a logical constraint for the PPU.

1 Metal implies Crane.admissible payload > 15

Second, we introduced a geometrical constraint language based on propo-
sitional logic for product line engineering [22]. Our geometrical constraint lan-
guage enables the specification of so-called assembly constraints [23]. Assembly
constraints are used to arrange components relative to each other. Typical exam-
ples are the allowed minimum and maximum distance between two components
or whether two components intersect. By using our geometrical constraint lan-
guage, we are able to formalize the geometrical constraints that the Crane and
the Stamp must have a minimum distance of 2 m (cf. Listing 7); without that
distance, the Crane would not be able to transport the workpieces and would
collide with the Stamp:

Listing 7. Example of a geometrical constraint for the PPU.

1 MinimumDistance (Crane ,Stamp) > 2m

For the configuration of a mechatronic product variant, it is not sufficient to
only configure the logical part, but also to virtually layout the product variant
according to the geometrical constraints induced by the different components.
For this purpose, we defined in [9] a research roadmap, which we recap in the
following.
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Fig. 10. Integration of feature models with the central data model.

First, we are going to integrate our tool support for the logical configuration
of product variants with tool support for the virtual layout of a variant, e.g. in
an e-commerce system. Figure 11 depicts the integration sketch. At first, a cus-
tomer is able to select the technical components for this automation production
system in our variant editor. If the product variant is correct, the information
of the selected technical units is provided to the tool support for the virtual
layout. The CAD model of each selected technical component is loaded from
the central data model to enable the virtual layout of the product variant. To
obtain the position of each technical component, the tool support for the vir-
tual layout provides this information and stores it in the variant configuration.
Thus, the variant configuration contains a complete description of the logical
and geometrical configuration of a particular product variant.

Second, we are going to implement a verification of the layout against the
specified geometrical constraints. Therefore, we have to implement basic algo-
rithms that calculate the distance between two 3D-Realizations. Furthermore, we
want to integrate the verification with a geometric modeling kernel [24], which
is used within conventional CAD tools. By means of the geometric modeling
kernel, we are able to realize operations that are more complex, for example,
whether two lines or areas of two 3D-Realizations intersect. The algorithm uses
the layout information stored in the variant configuration and the specified con-
straints as input. After reaching these two milestones, a potential customer will
be able to configure a product variant and virtually layout it according to the
assembly constraints.
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Provide additional
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Central data model for project-specific product information
Provide geometrical
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Fig. 11. Sketch for the integration of the tool support for the virtual layout and the
variant configuration.

4 Case Study

In this section, we conduct a case study based on the guidelines by [25] for the
evaluation of our approach. In our case study, we investigate the applicability
and usefulness in practice of our approach. We perform the case study based on
the running example in this paper and do not aim at generalizing the case study
conclusions to all possible development projects using STEP for the exchange of
product information.

4.1 Case Study Context

The objective of our case study is to evaluate whether our model-driven approach
for the creation of a central data model is applicable and useful for the OEM and
his suppliers, i.e., whether it reduces the manual effort in deriving tool support
for the overall information exchange. For this purpose, we use the two STEP
extensions of the running example and different STEP application protocols. We
concentrate on the investigation of the applicability and usefulness in practice of
our approach especially for the automatic derivation of the central data model
and the resulting import capabilities, since the effort for extending the user-
interface of the CAD tool compared to the effort of writing a correct parser is
much smaller.
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4.2 Setting the Hypothesis

We define two evaluation hypotheses for our case study. The first evaluation
hypothesis HI is that our model-driven approach for the exchange of product
information between the OEM and his suppliers presented in Sect. 3 reduces the
manual effort in deriving tool support for the information exchange. For the
evaluation of H1, we define response variables measuring the amounts of entities
contained in the input Base STEP AP including its extensions as well as response
variables measuring the code size and the generation time of the parser output.
That is, we determine the number of entities contained in the selected Base STEP
AP plus the number of entities contained in the used STEP extensions (response
variable Hl.inputSize), the amount of lines of code generated in particular for
the parser of the central data model (HI.outputSize), and the time needed for
generating the different code fragments (H1.outputTime).

The second evaluation hypothesis H2 is that our model-driven approach for
the exchange of product information produces correct models and correct parser
for existing STEP application protocols like STEP AP214 and STEP AP203,
and that the parsers process their input files in reasonable time. For the evalu-
ation of H2, we define a response variable for measuring the number of STEP
files used as input for the parser (response variable H2.inputSize). That is, we
determine the number of files that are correctly processed without an exception
(H2.outputSize), and the time needed for processing each file (H2.outputTime).
To draw conclusion of the processing time, we also determine the time needed
to process the same files in SolidWorks (H2.SWTime). We used a typical office
computer? for all test runs.

4.3 Validating the Hypothesis

For the validation of the first evaluation hypothesis H1, we executed the model-
driven approach several times with different input configurations. First, we used
the STEP AP214 as Base STEP AP and the STEP AP203 as Base STEP AP
without any further STEP extensions. Furthermore, we used the STEP exten-
sions of the running example in combination with the STEP AP214 and STEP
AP203. Finally, we used the STEP AP203 as an extension in combination with
STEP AP214 to draw conclusions about the scalability of the approach. The
determination of the number of entities contained in the Base STEP AP as well
as in the used STEP extensions, the needed generation time, and the lines of
code for the parser yields the results as listed in Table 1.

For the validation of the second evaluation hypothesis H2, we used the STEP
parser generated for STEP AP214 and STEP AP203. As input files, we used
free available CAD examples (http://www.steptools.com). This leads to 20 files
corresponding to the STEP AP214 and 44 files corresponding to the STEP
AP203. The determination of the number of correctly parsed files and the needed
parsing time yields the results as listed in Table 2.

2 Intel Core i7-4600U @2.10 GHZ, 8 GB DDR3 1066 MHz, 500 GB HDD, Windows 7
Pro 64 bit, Java JDK8u66, Eclipse 4.5.


http://www.steptools.com
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4.4 Analyzing the Results

The results for H1 show two aspects. First, depending on the number of entities
used for the description of the central data model, the resulting parser encom-
passes a huge amount of source code. Without a proper tool support, no software
developer would be able to produce the parser in the relatively short time. For
example, the execution of the model-driven approach uses overall 915 entities and
generates 357775 lines of code within 12min (cf. first row of Table1). Although
the generation takes some time to complete, this does not affect the applicability
of the approach, since the generation has be performed only once in the whole
development project. Second, the model-driven approach scales with the num-
ber of entities used in the central data model. Thus, we consider H1 as fulfilled.
The results for H2 show that the generated parser for the STEP AP214 and
STEP AP203 is able to read original STEP files, thus, we conclude that our
model-driven approach generates correct parsers. Furthermore, the comparison
of H2.outputTime and H2.SolidWorksTime shows that our parser is not signifi-
cant slower than the processing of SolidWorks. Thus, we consider H2 as fulfilled.
Concluding the case study, the fulfilled hypotheses indicate that our proposed
model-driven approach reduces the manual effort in deriving tool-support for
the creation of a central data model and the corresponding import/export capa-
bilities. This gives rise to the assumption that out approach is applicable and
useful in practice for the OEM and his suppliers.

The most important threats to validity are as follows: First, we only consid-
ered one development example and thus cannot generalize the fulfillment of the
statements. Nevertheless, the example represents a typical development project
and thus we do not expect large deviations for other examples. Second, the
amount of lines of code generated by the approach is only a superficial met-
ric and, therefore, might not reflect the actual development effort. Especially
for small extensions like the definition of power consumption, the conceptual
complexity of our approach might exceed the effort for the manual extension
and/or the manual exchange of this information via another communication
channel. However, the manual extension has to be performed for each develop-
ment project.

Table 1. Results of the analysis for H1 [7].

Base # STEP H1.inputSize | H1l.outputSize | Hl.outputTime
STEP AP extensions (# Entities) | (LOC) (Gen. Time)
STEP AP214 |- 915 357775 ~12 min

STEP AP203 |- 254 108144 ~2 min

STEP AP214 |2 917 358237 ~16 min

STEP AP203 |2 256 108626 ~3 min

STEP AP214 |1 (STEP AP203) | 1169 465101 ~20 min
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Table 2. Results of the analysis for H2 [7].
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Base H2.inputSize | H2.outputSize | H2.outputTime | H2.SWTime
STEP AP (# files) (# correct files) | (parsing time) | (parsing time)
STEP AP214 |20 20 57 s & 48 s

STEP AP203 |44 44 & 46 s 39 s

5 Related Work

STEP provides a standardized mechanism for representing and exchanging prod-
uct data, and is therefore, considered as a promising product modeling resource.
As mentioned in Sect. 1, the STEP extension mechanism has been used in several
applications to describe or analyze a certain aspect of a system and to exchange
the corresponding product data. For example, [3] presents an object-oriented
product model based on STEP AP224, which defines a standard set of machin-
ing features. The authors used their object-oriented product model to support
a computer-aided process planning (CAPP) analysis. [4] present a product data
exchange using a STEP-based assembly model for the concurrent integrated
design and assembly planning. Concluding this paragraph, STEP is widely used
in industry and academic to organize product data in a standardized represen-
tation. However, in contrast to our approach, most approaches are tailored to
one particular use case and are not reusable or interoperable.

To overcome the inflexibility and interoperability, a generic product modeling
system has been proposed in [26,27]. These two approaches belong to the most
related approaches using STEP to provide a generic product modeling system.
However, in contrast to our approach, they do not use model-driven techniques
to realize their approach, and, thus, a lot of manual effort has be done for their
practical realization.

Other work has focused on applying model-driven development techniques
to product data modeling in the design of mechanical systems for the purpose
of collaboration and interoperability. For example, [28] present a model-driven
architecture for bringing together various product data into a model-driven engi-
neering environment. The engineering environment is used to transform, share,
and export the product data enabling the collaboration between different depart-
ments and companies involved in the design of mechanical products. [29] build
a bridge between STEP/EXPRESS and the Eclipse Modeling Framework. The
bridge is used to transform models based on the Industry Foundation Classes
(IFC), a standardized modeling language, into a format suitable for a partic-
ular CAD tool. Beyond the pure storing and sharing of STEP-based product
data in a model-driven environment based on the Eclipse Modeling Framework,
our approach enables the systematic extension of the STEP standard to provide
the exchange of additional technical product data. Furthermore, the OMG has
published a standard for a reference meta-model for the EXPRESS informa-
tion modeling language [30]. This meta-model has been devolved in the so-called
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Mexico project. However, the standard only focuses on the meta-model for the
EXPRESS information modeling language, and does not describe how existing
STEP application protocols can be transformed to an instance of the reference
model.

Finally, Yildiz et al. [31] present ongoing work on a model-driven approach
for the specification of product information in the context of PDM. As in our
work, the authors state that the initial implementation of a PDM tool, usually
does not cover all information needed by the user and that the required exten-
sions to a PDM tool are extensive to implement. Thus, they propose a model-
driven approach enabling companies to specify their own business concepts for a
PDM tool, resulting in tool extensions to cover the additional information. Our
approach and the approach of Yildiz et al. mainly differ in their aim. We use
project-specific STEP extensions for the data exchange of product information,
whereas Yildiz et al. focus on the extension of the storage capabilities of PDM
tools but do not consider data exchange. However, the OEM typically applies
a PDM tool with a plain artifact storage mechanism nowadays, as sketched in
the introduction. Thus, a complementary combination of both approaches would
lead to a more holistic tool chain, as we point out in the future work.

6 Conclusion and Future Work

In previous work [7], we presented a model-driven approach for the flexible spec-
ification of STEP application protocol extensions. Our model-driven approach
exploited the STEP extension mechanism to enable the specification and tai-
loring of STEP application protocols to project-specific needs. Furthermore, our
approach included the automatic derivation of the required tool capability exten-
sions for both the OEM and the suppliers. On the one hand, we derived a central
data model as well as a STEP parser for the import and interpretation tool capa-
bility extension on the OEM side. On the other hand, we derived a plugin for
the CAD tool SolidWorks for the specification and the export tool capability
extension on the supplier side. Furthermore, our approach supported reusing
once specified STEP application protocol extensions.

In this paper, we integrated the model-driven STEP application protocol
extensions with a feature modeling approach [9] that particularly considers the
constraints on the geometrical information exchanged via STEP. Beyond the
STEP parser and the CAD tool export plugin, we derive a feature model plugin
based on the central data model that is generated from the STEP application
protocol extensions. Thereby, the feature model gains access to the logical as
well as geometrical information stored in the central data model. In addition to
the specification of logical constraints and validation well-known from feature
models, we introduce a geometrical constraint language that enables to specify
and validate assembly constraints on the geometrical information in the central
data model.

Our model-driven approach significantly reduces the manual effort that had
to be spend on the whole tool chain otherwise. Thereby, we enable the utilization
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of STEP application protocol extensions for project-specific needs. Moreover, the
possibility of reusing extensions reduces the effort on the actual specification of
the particular STEP application protocol extensions if an extension was con-
ceived in prior projects. The generality of the approach enables to handle other
parts of the STEP standard beyond the one that we exemplarily extended in this
paper. The integration with the feature modeling approach considering logical
as well as geometrical constraints further reduces redundancies between differ-
ent engineering tools. In summary, the combination of both approaches enable
OEMs to orchestrate their overall supply and development processes.

The future work is twofold. First, we want to improve the creation of STEP
application protocols to support the remaining EXPRESS elements like where-
clauses and rules in the resulting Ecore-based meta-model by means of Object
Constraint Language (OCL) [32] expressions. Second, we want to apply the
feature model together with a geometric modeling kernel [24], which is used
within conventional CAD tools. Thereby, we can achieve the same algorithmic
power for the verification of geometrical layouts w.r.t. assembly constraints as
known from CAD tools. This will enable a potential OEM customer to configure
a product variant and virtually layout it according to the assembly constraints
in an e-commerce-system.
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