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Chapter 13
Chickpea Genomics
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Abstract  As precise phenotyping is essential and the cost of generating phenotyp-
ing data at every generation is very expensive, recent advances in genomics tech-
nologies and the availability of a wide range of genotyping platforms have made the 
cost of genotyping much less expensive compared with phenotyping. The recent 
developments in sequencing technologies have manifold increased the repertoire of 
various types of markers that are available in chickpea including SSRs, SNPs, 
DArTs, hundreds of thousands transcript reads and BAC-end sequences saturated 
genetic maps, QTL maps as well as physical maps, and the sequencing of both 
kabuli and desi type has greatly helped in using marker-assisted technologies to be 
applied in plant breeding. Germplasm resequencing for identification of genome-
wide SNPs and their subsequent utilization in genomic selection has the potential to 
break the yield barrier being experienced in chickpea and many other crops. 
Genomic-assisted breeding for marker-assisted backcrossing (MABC) for intro-
gressing QTL region, marker-assisted recurrent selection, gene pyramiding, marker-
assisted selection (MAS), and genomic selection can now be taken up in chickpea. 
The conventional plant breeding should take these tools to make greater genetic 
gains, increase selection potential, and have faster breeding cycles so that the 
genetic improvement gains are increased in chickpea.
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13.1  �Introduction

One of the most pressing problems of the world today is adequate nutrition for 
exploding human population as 870 million people go hungry worldwide (http://
www.fao.org). The growing world population together with the lack of expansion 
or even reduction of available arable lands needed to maintain agricultural sus-
tainability implies that the relative importance of plant breeding to raise crop 
yield potential and adaptiveness is now greater than in the past (Araus et  al. 
2002). Plant adaptation is a key factor that will determine the future severity of 
the effects of climatic change on food grain production. Relatively inexpensive 
changes, such as shifting planting dates or switching to an existing crop variety, 
may moderate the negative impact of climatic change. However, improvements in 
crop productivity to meet the requirement of growing demand mentioned above 
will not be easy without further technological breakthroughs that allow yield ceil-
ings to be shifted through the development of new crop varieties (Rosenzweig 
and Parry 1994).

In India, from time immemorial, many legumes and pulses have been consumed 
as part of a primarily cereal-based diet. In the last 50 years, per capita availability of 
pulses has been steadily coming down from 70 grams/capita/day to 34 grams/cap-
ita/day (http://www.faostat3.fao.org). This is solely on account of stagnant crop 
yields. Annual pulse production has barely crawled in the last 23 years from 13.3 
million tonnes in 1985–1986 to 17.8 million tonnes at present. On the other hand, 
for the majority vegetarian population of India, the sole protein supplement is get-
ting out of reach with a nutritional calamity looming large. The major challenges 
impeding the pulse production and productivity are limited genetic diversity in the 
primary gene pool, genotype and environment interaction, multiple biotic and abi-
otic stresses, and limited screening methods for the precise phenotyping of the tar-
get traits (Kumar et al. 2014).

Chickpea, an oldest and widely cultivated pulse crop of the world, commonly 
known as Bengal gram or Garbanzo (Cicer arietinum L.). It is a highly self-
pollinated crop, with 2n = 2x = 16 (Arumuganathan and Earle 1991) and genome 
size of 738 MB with an estimated 28,269 genes (Varshney et al. 2013b). It belongs 
to genus Cicer, tribe Cicereae, family Fabaceae, and subfamily Papilionaceae. It 
originated in southeastern Turkey (Ladizinsky and Adler 1976). The name Cicer 
is of Latin origin, derived from the Greek word “kikus” meaning force or strength. 
Nutritionally, chickpeas contain 23% protein, 64% total carbohydrates (with 47% 
starch and 6% soluble sugar), 5% fat, 6% crude fiber, and 3% ash. It is also a rich 
source of vitamins, minerals like phosphorus, calcium, magnesium, iron, zinc 
and dietary fiber or Non-Starch Polysaccharides (NSP). Chickpea is grown 
widely for diverse uses throughout the Indian subcontinent, Mediterranean basin, 
the Middle East, and Africa and is becoming an important legume crop in new 
regions like Australia and North America, because of its nutritional value, diver-
sified uses, and ability to grow better with low inputs under harsh edaphic and 
arid environments than many other crops. It is an important component of the 
cropping system of subsistence farmers in the Indian subcontinent, West Asia and 
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North Africa. Some of these attributes together with its ability to derive more 
than 70% of its nitrogen from symbiotic nitrogen fixation (Saxena et al. 1988) 
make chickpea a promising crop for sustainable agriculture.

Chickpea is a major rabi pulse with significant contribution toward pulse econ-
omy of the world. It is cultivated on 13.2 million hectares of land with 11.62 million 
tonnes of production across the world. India is the largest producer of chickpea with 
an area of 7.58 million hectares which produces 8.32 million tonnes of chickpea 
(FAOSTAT 2012; Agriculture statistics at a glance 2013). India accounts nearly 70% 
at a global level and 75% at Asian level in terms of world’s chickpea area and pro-
duction. In spite of being major producer, Indian productivity (912 kg ha−1) is very 
low as compared to other major chickpea-growing countries like Myanmar (1407 kg/
ha), Ethiopia (1549 kg/ha), USA (1825 kg/ha), Canada (1825 kg/ha), and Mexico 
(1500 kg/ha). Productivity enhancement in chickpea can help to release this nega-
tive trade balance as it contributes more than 45% to Indian pulse economy. Many 
approaches have been advocated for much needed chickpea productivity enhance-
ment which can create additional genetic variation especially for traits of economic 
importance and enable effective utilization of available germplasm in chickpea 
improvement programs for enhanced and sustained chickpea production across the 
continents. Various biotic and abiotic stresses hamper chickpea production. Among 
the biotic stresses, Ascochyta blight, Fusarium wilt, Helicoverpa pod borer, and 
Botrytis gray mold are very important yield reducers. Drought, heat, cold, and salin-
ity stress are the major abiotic factors that significantly affect chickpea yields.

As almost all the traits with agronomic values are genetically complex, which are 
affected by many genes, environments, and their interactions (Cramer et al. 2011; 
Grishkevich and Yanai 2013), identification of involved genetic factors such as 
quantitative trait loci (QTL) has been playing a vital role in manipulating the traits 
of interest and understanding of genetic architecture (Holland 2007; Xu 2010). 
However, conventional breeding requires assaying all the individuals for the target 
traits collected from a sample population making it expensive and time-consuming 
and needs to be supplemented with genomic-assisted breeding (GAB) (Varshney 
et al. 2005, 2007). Due to lack of chickpea genomic information until recently, it 
was considered an orphan legume for implementing GAB. On the other hand, recent 
advancements in the comparative genomics and genomic approaches have gener-
ated the genome sequence and genomic resources transforming chickpea to a 
resource-rich crop similar to other major food crops (Thudi et al. 2014).

13.2  �Genomic-Assisted Breeding for Abiotic Stress  
Tolerance in Chickpea

13.2.1  �MAS for Drought Tolerance

Being stable, unaffected by environment, and easily assessable with no disparity of 
growth and developmental stages, molecular markers are now considered ideal for 
diversity studies, QTL identification, fingerprinting, gene tagging, constructing 

13  Chickpea Genomics



292

linkage maps, positional cloning, evolutionary studies, and marker-assisted selec-
tion (Bharadwaj et al. 2010; Shubha et al. 2011; Pooja et al. 2014; Chaudhary et al. 
2014; Maqbool et  al. 2016). The very first chickpea genetic map based on SSR 
markers was developed by Winter et al. (1999), and they reported 174 paired prim-
ers. NIPGR (The National Institute for Plant Genome Research, India) developed 
280 SSR markers with the help of microsatellite enrichment (Sethy et al. 2006). 
SSR markers developed for chickpea have been used for genetic map construction 
(Radhika et al. 2007; Bhardwaj et al. 2002; Shefali et al. 2015), assessment of inter-
specific genetic diversity (Udupa et al. 1999; Bharadwaj et al. 2010; Yadav et al. 
2011), QTL mapping for agronomic parameters (Udupa and Baum 2003; Subodh 
et al. 2015), and assessment of drought tolerance (Maqbool et al. 2016).

Chickpea accession ICC 4958 was used for development of novel 311 SSR 
primers (Nayak et  al. 2010). Expressed sequence tags (ESTs) have also been 
mined for SSR primers (Varshney et al. 2009). Tentative unique sequences (TUSs) 
were used for designing 3172 SSR paired primers out of which 728 were nonre-
dundant SSR paired primers, after identification of 26,252 SSR sequences 
(Hiremath et al. 2011). BAC libraries were used by Lichtenzveig et al. (2005) for 
development of 233 SSR markers. Thudi et al. (2011) designed 1344 SSR primers 
after identification of 6845 SSRs by mining of 46,270 BAC-end sequences. 
Heuttel et al. (1999) developed 28 SSR primers, Winter et al. (1999) developed 
174 SSR primers, Sethy et al. (2003) developed 10, Sethy et al. (2006) developed 
85, Qadir et al. (2007) developed 63, and Nayak et al. (2010) developed 311 SSR 
primers for chickpea. The recent genome sequencing project of chickpea enabled 
the discovery of 81,845 SSRs, of which 48,298 SSRs were found to be suitable for 
development of SSR primers for PCR amplification (Varshney et al. 2013b). These 
SSR markers are exclusively being used for improvement of drought tolerance in 
chickpea. “QTL hotspot” has been successfully introgressed into the genetic back-
ground of the elite varieties JG11, KAK2, and Chefe. Three SSR markers 
(TAA170, ICCM0249, and STMS11) were used for foreground selection, and 10 
amplified fragment length polymorphism (AFLP) primer combinations were used 
for background selection after each generation of backcrossing while introgress-
ing “QTL hotspot” into JG 11 genetic background. A total of 29 introgression 
lines were developed with ~93% recurrent parent genome recovery after three 
backcross cycles followed by two generations of selfing (Varshney et al. 2013c). 
The introgression lines developed from JG11 x ICC 4958 were found to possess 
higher root length density, root dry weight, and rooting depth compared to both 
the donor and recipient parents; these are the most important target traits for 
enhancing drought tolerance in chickpea (Varshney et al. 2013a, b). Furthermore, 
preliminary analysis of phenotypic evaluation of these lines in India (Patancheru, 
Dharwad, Nandyal, Durgapura, and Gulbarga), Kenya, and Ethiopia indicated that 
several lines with >10% increase in yield under rain-fed conditions and ~20% 
increase in yield under irrigated conditions were available. Based on the prelimi-
nary results, other national partners like IIPR, IARI in India, and Egerton 
University (Kenya) and the Ethiopian Institute of Agricultural Research (Ethiopia) 
in sub-Saharan Africa initiated introgressing this region into genetic backgrounds 
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of elite cultivars in their regions. The RILs of ICC 4958 X Annigeri have been 
extensively studied for root traits. An SSR marker (TAA 170) was identified for a 
major QTL that accounted for 33% of the variation for root weight and 33% of the 
variation for root length (Chandra 2006).

For efficient and effective germplasm management and conservation, the con-
cept of core and minicore collections have been advocated (Upadhyaya and Ortiz 
2001), and trait-specific germplasm has been identified to aid breeding and genomic-
assisted selection (Upadhyaya et  al. 2012; Meena et  al. 2010). Further attempts 
were also made to characterize the chickpea germplasm at the molecular level in 
several studies (Iruela et al. 2002; Croser et al. 2003; Nguyen et al. 2004; Rao et al. 
2007; Upadhyaya et al. 2008; Sefera et al. 2011; Choudhary et al. 2012a; Sarika 
et  al. 2014) separately from phenotypic characterization (Krishnamurthy et  al. 
2013a, 2013b; Tapan et  al. 2015; Supriya et  al. 2017; Neeraj et  al. 2016). 
Characterization of chickpea germplasm for targeted trait-specific germplasm and 
genomic-assisted selection (Upadhyaya et al. 2012; Roorkiwal et al. 2013) has been 
reported by numerous researchers. Trait mapping and TILLING approach based on 
next-generation sequencing (Thudi et al. 2014) have been undertaken to identify 
genes involved in drought tolerance.

Screening of the chickpea minicore collection for root traits was recently con-
ducted in two different seasons with the double objective of characterizing the 
genetic variability of drought-avoidance root traits and selecting suitable mapping 
population parents for molecular mapping of these traits. The complete minicore 
germplasm collection of C. arietinum (211 accessions) along with five popular cul-
tivars as references (216 total entries) were evaluated in PVC cylinders in the first 
season, along with an additional seven popular cultivars and ten accessions of wild 
annual species (233 total entries) in the second season. The statistical differences of 
entries were significant (P < 0.001) for both root and shoot traits (Serraj et al. 2004). 
The root and shoot growth of the wild species was relatively poor compared to C. 
arietinum lines. Some of the germplasm accessions with deep root systems were 
ICC1356, ICC 3512, ICC4872, ICC13523, and ICC15697. Germplasm accession 
ICC8261 had the highest root length density and an extremely high root/shoot ratio 
and rooting depth in both seasons. ICC4958 which is previously the only source 
used as a deep and large root system parent or control in most drought avoidance 
studies was confirmed to be an extremely prolific rooting genotype. The new geno-
types identified can be used as valuable alternative sources for diversification of 
mapping populations with varying growth duration and to obtain the required poly-
morphism for successfully mapping root traits in chickpea.

Accumulation of more superior alleles through marker-assisted recurrent selec-
tion (MARS) has also been adopted for enhancing the level of drought tolerance 
(Varshney et al. 2012) that increases the frequency of numerous desirable alleles 
having additive effects in recurrent crosses (Bernardo and Charcosset 2006). MARS 
has proven to be successful in private breeding programs in enhancing genetic gains 
and is effective at improving quantitative traits in maize (Zea mays L.), soybean and 
sunflower (Helianthus annuus L.) (Johnson 2003; Eathington et al. 2007). In brief, 
MARS is a modern breeding approach that enables us to increase the frequency of 
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several beneficial alleles with an additive effect and small individual effects in 
recurrent crosses (Bernardo and Charcosset 2006). Although several multinational 
companies are using MARS in crops like maize and soybean, only a few public sec-
tor institutes have started to use MARS in crops like wheat (Charmet et al. 2001), 
sorghum (Sorghum bicolor (L.) Moench), barley (Abdallah Oukarroum et al. 2009), 
and rice (Grenier et al. 2012). The use of MARS In chickpea breeding has been 
reported only at ICRISAT. Four elite “desi” chickpea genotypes were used in pair-
wise crossing for pyramiding desirable alleles which subsequently led to elite geno-
types with enhanced drought tolerance (Thudi et al. 2014). The four superior desi 
genotypes were selected based on their performance: ICCV 04112, ICCV 05107, 
ICCV 93954 (released as JG 11 in India), and ICCV 94954 (released as JG 130 in 
India). Two crosses were made by using elite by elite lines (JG 11 ICCV 04112 and 
JG 130 ICCV 05107). To pyramid the superior alleles of the favorable QTLs identi-
fied based on F3 genotyping data and F5 phenotyping data (from Ethiopia, Kenya 
and India), a set of eight lines were selected for each cross using OptiMAS ver. 1.0 
(Valente et al. 2013). It is anticipated that at the end of the project, RC3F4 progenies 
will be available for evaluation at multiple locations. These efforts will lead to the 
development of superior lines with more enhanced drought tolerance. Some efforts 
have been initiated to use MARS in the case of chickpea for assembling favorable 
alleles for drought tolerance using ICCV 04112 ICCV 93954 and ICCV 05107 
ICCV 94954 crosses. Nevertheless, IARI and IIPR also have initiated MARS in 
chickpea by using Pusa 372 JG 130 and DCP 92–3 ICCV 10 crosses. These efforts 
are expected to develop superior lines with enhanced drought tolerance for other 
ecological regions.

Nevertheless, for understanding the genetics of complex traits like drought tol-
erance, trait mapping is essential for identifying the genes underlying drought tol-
erance. Based on the evaluation of the minicore collection for terminal drought 
tolerance, germplasm lines with prolific root systems were identified, and three 
recombinant inbred line mapping populations (Annigeri, ICC 4958, ICC 4958 ICC 
1882, and ICC 283 ICC 8261) were developed at ICRISAT (Gaur et  al. 2008). 
Comprehensive QTL analysis has provided several stable, consistent, and robust 
main-effect QTLs for 13 out of 20 drought tolerance traits explaining 10–58.20% 
of phenotypic variation (Varshney et al. 2014b). Markers flanking these QTLs can 
be deployed for enhancing drought tolerance as well as individual trait improve-
ment through MABC breeding. A genomic region referred to as “QTL hotspot,” 
spanning ~29 cM on Cicer arietinum Linkage Group 04 (CaLG04) of an intraspe-
cific genetic map (ICC 4958 ICC 1882), was found to harbor 12 out of 25 main-
effect QTLs for 12 traits explaining ~58.20% of phenotypic variation (Varshney 
et al. 2014b). Seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, 
TR11, GA24, and STMS11) present in QTL hotspot are the most important mark-
ers for marker-assisted introgression of this genomic region into elite genetic back-
grounds for enhancing drought tolerance through MABC. The data were analyzed 
for the estimation of genetic components of variance for root traits. These mapping 
populations are expected to facilitate identification of markers for additional QTLs 
for root traits.
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Similarly, several other mapping populations were also developed for gaining 
insights into most prevalent biotic and abiotic stresses (Gaur et  al. 2014). Next-
generation multiparent advanced generation intercross (MAGIC) population is one 
of a next-generation multiple mapping population comprising of 4–20 parents in 
cross-combination and a good source of increasing genetic variability. A group of 
eight chickpea genotypes from different origins was used as parents for the develop-
ment of a MAGIC population at ICRISAT. Using MAGIC population is beneficial 
because inclusion of several parents ensures the segregation of QTLs for multiple 
traits, deployment for understanding complex traits, and the discovery and charac-
terization of novel genes (Glaszmann et al. 2010).

Sequence information and identification of novel genes for agronomically impor-
tant traits can be done using a number of methods including EST databases 
(Sreenivasulu et al. 2002). Sanger sequencing and next-generation sequencing tech-
niques have been used for transcriptomic studies of chickpea. Initially EST abun-
dance was assessed for tissue-specific expression, stress-responsive expression, and 
development-related expression. Chickpea genotypes were grown under drought 
and salt stresses, and complementary DNA libraries were generated which com-
prised 20,162 ESTs (Varshney et al. 2009). Another transcriptomic library compris-
ing of 103,215 transcripts (Hiremath et al. 2011) and 53,409 contigs (Garg et al. 
2011) have been generated for drought responsiveness. Gene discovery is very lim-
ited in chickpea, and few efforts have been made to identify the ESTs associated 
with stress responses through transcriptomic studies (Varshney et al. 2009). Jain and 
Chattopadhyay (2010) studied the transcript profiling differences between two 
chickpea genotypes under different drought treatments and concluded that highly 
expressing ESTs in tolerant genotypes were encoding proteins involved in tran-
scription, signal transduction, protein metabolism, and cellular organization. 
Differential downregulation and upregulation of transcriptome has been reported by 
Deokar et  al. (2011) in tolerant and susceptible chickpea genotypes subjected to 
drought stress. In silico expression studies were also done to know the differential 
expression of tolerant and susceptible chickpea genotypes under drought stress 
(Varshney et al. 2009).

Microarray, suppression subtractive hybridization, EST sequencing, and super 
serial analysis of gene expression (SAGE) have been used for functional genomic 
analysis of chickpea genotypes in stress-responsive conditions (Buhariwalla et al. 
2005; Matsumura et al. 2005, and Molina et al. 2008). The drought- and salinity-
responsive transcriptome of chickpea was evaluated using the SuperSAGE tech-
nique, reporting that 3000 transcripts were responsive to drought and salinity 
stresses (Kahl et al. 2007). Transcriptome analysis of chickpea roots was carried out 
using deep SuperSAGE (combination of next-generation sequencing techniques 
with SAGE) under normal and water stress conditions, and 17,493 unique tran-
scripts were identified which were drought responsive (Molina et  al. 2008). 
Comprehensive transcriptome analyses demonstrated that osmolyte accumulation, 
transcription regulation, signal transduction, and ROS scavenging were remodeled 
under drought stress and were therefore potential target phenomena for improve-
ment of drought tolerance (Molina et al. 2008).
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Furthermore, for creating novel alleles and for functional validation of candidate 
drought-responsive genes, a “target-induced local lesions in genome” (TILLING) 
population, comprising 10,000 M2 chickpea lines, was also developed by ICRISAT 
and IARI. A next-generation sequence-based TILLING approach is being adopted 
to mine novel and potential alleles for some genes associated with terminal drought 
tolerance (ICRISAT, unpubl. data). Application of marker-assisted selection (MAS) 
for drought tolerance is still low with little success reported (Oyier 2012; Varshney 
2016). The selection based on markers flanking the identified genomic regions in 
chickpea is expected to accelerate efforts in breeding drought-tolerant varieties. 
Twenty introgression lines (IL4s) of chickpea harboring the root QTL hotspot from 
the donor parent ICC 4958 were phenotyped for root and morphological traits under 
rain-fed conditions. Absence of differences among the ILs for morphological traits 
indicates similar genetic background of ILs being derived through marker-assisted 
backcrossing. Marker analysis of the 20 ILs showed presence of the recurrent parent 
allele in most of the ILs with root QTL.

13.2.1.1  �Genomic Selection Approaches for Drought Tolerance

As precise phenotyping is essential and the cost of generating phenotyping data at 
every generation is very expensive, recent advances in genomics technologies and 
the availability of a wide range of genotyping platforms have made the cost of geno-
typing much less expensive compared with phenotyping. Genomic selection is a 
modern breeding approach that is unlike MABC and MARS; it predicts the breed-
ing values (i.e., the genomic as estimated breeding values) of lines based on histori-
cal phenotyping data and the genotyping data. Genomic selection has proven to be 
successful in several animal breeding programs (Schefers and Weigel 2012; Eggen 
2012) as well as in crop plants like maize (Zhao et  al. 2012). Efforts to deploy 
genomic selection in chickpea are underway at ICRISAT. In this regard, a collection 
of 320 elite breeding lines was selected as the “training population.” In addition to 
compiling historical phenotyping data for ~10 years at >10 locations, research has 
extensively phenotyped the training population for several traits of agronomic 
importance at ICRISAT (Patancheru) and IARI (New Delhi) during the cropping 
season of 2011–2012 and 2012–2013 under rain-fed and irrigated conditions. In 
parallel, the training population was genotyped using KBioscience Competitive 
Allele-Specific Polymerase chain reaction (KASPar) assays (651) and diversity 
array technology (15,360 features). Collected phenotypic data and generated 
genome-wide marker profiling data (>3000 markers) were used with a range of 
statistical methods including ridge regression-best linear unbiased prediction, 
kinship-based ridge regression, BayesCp, BayesB, Bayesian least absolute shrink-
age and selection operator (LASSO), and random forest prediction to predict 
genomic-estimated breeding values (Roorkiwal et al. 2013). Resequencing of the 
germplasm lines and parents of different mapping populations will enable the iden-
tification of genome-wide single-nucleotide polymorphism (SNP) markers that can 
be effectively utilized in genomic selection.
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13.2.1.2  �Future Perspectives

As drought is a complex phenomenon, no single approach for all locations may be 
applicable for enhancing drought tolerance. In this context, an integrated effort 
deploying need-based approaches is essential. Furthermore, for accelerating the 
adoption of the molecular breeding for enhanced drought tolerance in chickpea, the 
development of markers that are easily assayable and technically less demanding, 
and that do not require high capital equipment for genotyping, termed “breeder-
friendly markers,” is essential. For instance, conversion of SNPs to Illumina 
Veracode, cleaved amplified polymorphic sequences or KASPar assays will enable 
their wider application in breeding programs. In addition, the development of deci-
sion support tools is essential for enhancing the precision of selection and to accel-
erate GAB in crop plants in general. In this area, ICRISAT has developed several 
important user-friendly decision support tools like the integrated SNP mining and 
utilization pipeline, the molecular breeding design tool, and the genotyping data 
management system. Several other tools that aid in genomic-assisted selection have 
been integrated and made available on an integrated breeding platform (https://
www.integratedbreeding.net/molecular-breeding, accessed 6 June 2014). Further 
well-structured molecular breeding programs are essential for the effective deploy-
ment of GAB approaches for crop improvement (Varshney et al. 2013d). To achieve 
this, training in modern plant breeding skills and fostering integrated breeding strat-
egies and sharing of knowledge and expertise among collaborative partners, espe-
cially in developing countries with limited infrastructure and human resources, are 
the needs of the hour.

13.2.1.3  �Candidate Genes for Abiotic Stress Tolerance

Research has revealed several genes are known to be involved in salinity tolerance; 
the association analysis based on candidate gene sequencing approach is meagerly 
reported. The salinity-tolerant candidate genes which are supposed to play an 
important role include ASR (abscisic acid stress and ripening gene), DREB (drought-
responsive element binding proteins), ERECTA, SuSy (sucrose synthase), DHN, 
AKIN, CAD, EREBP, LEA, and Myb transcription factor.

Abscisic acid Stress and Ripening (ASR) gene-ASR is a stress-inducible gene 
that plays also plays major role in fruit ripening and maturation, has been reported 
exclusively in plants. Iusem et al. (1993) reported the first Asr gene from cultivated 
tomato, and since then Asr genes have been found in various species of dicotyle-
donous and monocotyledonous plants. They also play a vital role in abiotic stress 
mechanisms like drought, salt, cold, and limited light (Schneider et al. 1997; Huang 
et al. 2000; Maskin et al. 2001; Jeanneau et al. 2002; Kalifa et al. 2004). Stress 
endurance through induction of stress-related genes was reported for the 
dehydration-responsive element binding proteins (DREB) transcription factor. 
Both the forms, DREB1 and DREB2, are reported to be involved in two separate 
signal transduction pathways under low temperature and dehydration, respectively. 
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They belong to the ERF (ethylene-responsive element binding factors) family of 
transcription factors. The roles of DREB proteins in biotic and abiotic stress toler-
ance were reviewed in detail by Agarwal et al. (2006). DREB (Dehydration response 
element binding) homologue in chickpea was also amplified using primer pairs 
designed using unigene showing match against DREB gene (Srinivasan et al. 1999; 
Amit et al. 2011). About 1200 bp amplicon for DREB was reported by Roorkiwal 
et al. (2012).

The ERECTA gene codes for a protein kinase receptor, one of a very large and 
complex family of signaling molecules called protein kinases, and their recep-
tors, which mediates plants responses to disease, predation, and stress. ERECTA 
regulates leaf organogenesis and reduces the density of stomata on the leaf 
under-surface, hence reduces the evapotranspiration. In Arabidopsis, the 
ERECTA gene has been shown to control organ growth and flower development 
by promoting cell proliferation (Shpak et  al. 2004). In Arabidopsis ERECTA 
gene is known to be involved in inflorescence development and organ growth by 
promoting cell proliferation. Transgenic Arabidopsis plants that ectopically 
overexpress the ERECTA gene improve plant transpiration efficiency and drought 
tolerance by affecting stomatal density, epidermal cell expansion, mesophyll cell 
proliferation, and cell contact. In addition, Masle et  al. (2005) isolated 
Arabidopsis ERECTA gene, a putative leucine-rich repeat receptor-like kinase 
that regulated transpiration efficiency located on Arabidopsis chromosome 2. 
The ERECTA gene can change both leaf stomatal number and leaf structure, and 
regulate the flowering time, and is proved to regulate plant transpiration effi-
ciency and consequently to have a bright prospect in improving crop drought 
resistance and using water at high efficiency. The role of the ERECTA gene was 
identified by screening Arabidopsis inbred lines and mutant plants, thereby iden-
tifying the ERECTA homologues in both dicot and monocot crop species. The 
contribution of ERECTA gene toward water use efficiency was confirmed using 
complementation assays on wilting mutant Arabidopsis plants (Masle et  al. 
2005). The transformation of ERECTA gene in the crop species would be major 
breakthrough in the area of agriculture, with respect to drought tolerance and 
agronomic performance.

Sucrose synthase (SuSy) and sucrose phosphate synthase (SPS)—sucrose syn-
thase and the sucrose phosphate synthase are the key enzymes involved in the sugar 
metabolism pathway. SuSy enzyme belongs to the family of glycosyltransferases, 
especially, hexosyltransferases. It is also commonly known as UDP glucose-fructose 
glucosyltransferase, sucrose synthase, and uridine diphosphoglucose-fructose glu-
cosyltransferase. The enzyme sucrose synthase (UDP-D- glucose: D-fructose 
2a-glucosyltransferase) catalyzes the reversible conversion of sucrose uridine 
diphosphate into fructose and UDP-glucose. S-adenosylmethionine synthetase1 
gene homologue in chickpea, primers were designed using contig sequence 
showing similarity against S-adenosylmethioninesynthetase 1 (SAM1) gene of 
Arabidopsis thaliana. PCR amplification yielded about 300 bp amplicons across 
eight chickpea genotypes. Serine/threonine protein kinase (STPK) gene homologue 
was amplified using the STPK specific primer pair designed considering unigene 
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sequence having similarity with Arabidopsis thaliana putative serine/threonine pro-
tein kinase. Amplicon size of STPK gene approximately 450 bp STPK has been 
shown to play an important role in response to abiotic stress response and seed 
development in peanut (Rudrabhatla and Rajasekharan 2004).

Although the reaction is reversible, it is thought that the enzyme is mainly 
involved in the breakdown of sucrose (Huber and Huber 1996; Geigenberger and 
Stitt 1993; Geigenberger et al. 1995). Hence the activity of sucrose synthase can be 
important in controlling either starch or cellulose biosynthesis by supplying UDP-
glucose as a precursor or as an immediate substrate (Chourey et al. 1991; Delmer 
and Amor 1995). Ingram et al. (1997) reported the isolation and characterization of 
cDNA clones encoding SPS from Craterostigma plantagineum, a resurrection plant 
in which the accumulation of sucrose is considered to play an important role in 
tolerance to severe protoplasmic dehydration. It is suggested that the overall regula-
tion of SPS is strongly influenced by the changing composition of the cytoplasm in 
C. plantagineum leaves during the dehydration-rehydration cycle.

Researchers have isolated the AKIN homologues in various plant species includ-
ing Arabidopsis, rice, potato, and tobacco and established their role in abiotic stress 
response (Purcell et al. 1998). AKIN homologue was amplified using AKIN specific 
primer pair designed considering unigene sequence showing match with Arabidopsis 
AKIN (SNF-1-related protein kinase) with approximate amplicon size of 1100 bp. 
Amplification of AMADH (aminoaldehyde dehydrogenase) homologue yielded a 
product of ~1200  bp (Roorkiwal and Sharma 2012). Protective/curative role of 
AMADH gene in response to stress events caused by mechanical injury has been 
reported earlier in pea seedlings (Petrivalsky et al. 2007).

DHNs are one of several proteins that have been specifically associated with 
qualitative and quantitative changes in cold hardiness (Close 1996). Dehydrin 
homologue was amplified using primer pair designed for known dehydrin gene 
using chickpea unigene with approximate amplicon size of 380 bp (Roorkiwal and 
Sharma 2012).

The role of plant Myb proteins has been well characterized by using different 
genetic approaches. In most of the cases, the Myb domain binds to a specific DNA 
sequence (C/TAACG/TG) to facilitate transcriptional activation (Biedenkapp et al. 
1988). Myb genes were amplified using unigene sequence showing match against 
Glycine max Myb transcription factor (Roorkiwal and Sharma 2012).

Cinnamyl-alcohol dehydrogenase (CAD) gene homologue was isolated from 
eight chickpea genotypes using primers designed for contig showing match with 
cinnamyl-alcohol dehydrogenase (CAD) gene of Arabidopsis thaliana (Roorkiwal 
and Sharma 2012). CAD is expected to play a key role in plant defense against vari-
ous abiotic and biotic stresses (Raes et al. 2003). For isolation of ethylene-responsive 
element binding protein (EREBP) gene homologue in chickpea, primers were 
designed using contig sequence showing similarity against ethylene-responsive 
transcription factor from Arabidopsis thaliana. Amplification carried out across 
eight chickpea genotypes produced about 400 bp amplicons (Roorkiwal and Sharma 
2012). The AP2/EREBP genes play various roles in developmental processes and in 
stress-related responses in plants.
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Late embryogenesis abundant (LEA) genes represent a gene family that plays 
important role in vegetative tissues in response to drought, salinity, cold stress, and 
exogenous application of abscisic acid (Dure et al. 1989). Primers designed using 
contig showing sequence similarity with LEA domain-containing protein Arabidopsis 
thaliana were used to isolate late embryogenesis abundant (LEA) gene in chickpea 
with approximate amplicon size of 600 bp (Roorkiwal and Sharma 2012).

13.2.2  �Salinity

Large land tracts worldwide are being degraded due to salinity, particularly in irri-
gated areas estimating to about 20 percent (Neeraj et al. 2016). Every day for more 
than 20 years, an average of 2000 hectares of irrigated land in arid and semiarid 
areas across 75 countries have been degraded by salt, according to a study by UN 
University’s Canadian-based Institute for Water, Environment and Health (UNU-
INWEH 2014). Higher salt concentrations severely affected germination, root and 
shoot length, and water uptake in chickpea (Neeraj et al. 2016). There is degradation 
and lysis of germinated root in such salt soils in chickpea. NaCl has more impact 
than Na2SO4. The seeds of chickpea for both landrace have a maximum tolerant 
level of salinity with 10dS/m. At this salt concentration, significant effect is seen in 
the seeds compared to the control. But at concentration of 15ds/m of Na2 SO4, the 
germination and growth of seeds are severely affected, and only few seeds start to 
germinate or raise shoot and root, which dried later (Haileselasie and Teferii 2012).

The tolerance to salinity by chickpea clearly indicated that the sodium to potas-
sium ion concentrations was lower in tolerant lines as compared to sensitive lines. 
Pod abortion was higher in the salt-sensitive genotypes. However, no effect was 
seen on pollen viability, in vitro pollen germination, and in vivo pollen tube growth 
(Turner et al. 2013). The tolerant lines exhibited greater pod number and biomass 
compared to saline sensitive lines.

Vadez et al. (2007) reported a strong relationship (r2 = 0.50) between the seed 
yield and salinity. In a study on the seedling parameters in a diverse set of chickpea 
genotypes under saline stress vs normal conditions, Neeraj et  al. 2016 reported 
maximum reduction in seedling roots weight when germinated in saline conditions. 
The roots play a major role in establishment of seedling and stem growth, and the 
highly susceptible lines failed to germinate in saline soils. There was an overall 
decrease in seedling characters like seedling shoot weight and root biomass. The 
resistant checks CSG 8962 and JG 62 along with the lines ICCV 00104 and ICCV 
06101 showed minimum reduction in seedling characters under salt stress condi-
tions. The yield under saline stress showed a positive correlation with all physiolog-
ical parameters like RWC and MSI but negative correlation with Na:K ratio under 
salt stress condition. The traits like higher mean seed yield per plant under saline 
stress, higher pods per plant, higher RWC, higher MSI, and a low stem Na:K ratio 
are associated with tolerance to salinity in chickpea. Greater genetic gains can be 
obtained by using these parameters in selection for salinity tolerance.

Only few studies have reported the presence of QTLs for salinity tolerance with 
sufficiently large marker interval (Samineni 2016 and Vadez et al. 2012). The nar-
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row genetic base in chickpea further limits the efforts to develop stress-tolerant 
cultivars. The identification of genes associated with salinity stress responses can 
greatly facilitate the development of improved chickpea cultivars with enhanced 
salinity tolerance using molecular breeding approaches. The availability of large-
scale genomic resources is essential for understanding the biology of complex abi-
otic stress-like salinity. The availability of next-generation sequencing technologies 
provides a high-throughput means to study gene expression profiles at the whole-
genome level (Garg et al. 2016; Roorkiwal et al. 2014). It has been realized that 
comparative differential gene expression analysis between genotypes with contrast-
ing response to the stresses can provide a better understanding of the molecular 
mechanisms underlying tolerance and provide better candidate gene information 
involved in imparting tolerance to salt stress (Cotsaftis et  al. 2011; Lenka et  al. 
2011). A total 46 QTLs for salinity tolerance was identified using mapping popula-
tion from ICCV 2 x JG 11. Out of 49 QTLs, 19 QTLs were for phonological traits 
(7 QTL for days to flowering and 12 QTLs for days to maturity) and 27 QTLs for 
yield and yield-related traits. Minor QTLs were detected for harvest index (HI) on 
CaLG04d in salinity treatment, while finding of controlled experiment revealed 
CaLG07 harbors QTLs for yield, pod number, filled pod number, and seed number 
(Pushpavalli et al. 2015). QTLs for salinity tolerance are located in the genomic 
region of CaLG05 flanked by two makers, i.e., CaM0463 and ICCM 272, which 
contained 17 main QTLs for seven traits (DF, DM, ADM, stem and leaf weight, 
100-seed weight, HI, and yield). Genomic region on CaLG07 contains seven QTLs 
for five different traits, viz., DF, DM, seed number, pod number, and yield. Genomic 
region on CaLG08 contained eight QTLs for three traits DF, DM, and HI. Out of the 
abovementioned genomic regions, CaLG05 and CaLG07 genomic regions were 
most important as they contained QTLs for traits that were remarkably related to 
yield under salt stress conditions (Puspavalli et al. 2015).

13.2.3  �Cold/Chilling

Chilling and freezing are the two categories under the cold stress. The genetic 
response of genotypes to different stresses appears to be mostly common (Seki et al. 
2002). Pollen sterility and flower abortion are the most common effects of cold 
stress in chickpea when it occurs in the reproductive phase. Tolerance to cold stress 
becomes all the more important in West Asia and North Africa, Australia, Europe, 
Canada, and Northern India. Freezing (mean daily temperature  < −1.5  °C) and 
chilling temperatures (mean daily temperature between −1.5 and 15 °C) are known 
to affect chickpea at various stages of development from germination to maturation 
(Croser et al. 2003). In these climates and late sown crop of Northern India, chilling 
temperature in the vegetative stage and cold stress at flowering due to sudden frost 
greatly reduce the yield of the crop. The breeding procedures focusing on develop-
ment of cultivars for these regions need to target cold tolerance both at seedling and 
flowering stages. Screening of germplasm at ICARDA has identified several cold-
tolerant lines from the cultivated (Singh et al. 1995) and wild species (Robertson 
et al. 1995).
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Flower abortion due to cold stress at temperatures of 15  °C and below are 
reported in Australia (Siddique and Sedgeley 1986), the Mediterrranean (Singh 
1993), and India (Savithri et al. 1980; Srinivasan et al. 1998). Flower abortion due 
to cold stress in chickpea is associated with lower levels of sucrose, glucose, and 
fructose in anthers and pollen (Nayyar et al. 2005). Total sugars and starch were 
found to be higher in cold-tolerant genotypes compared to the susceptible ones 
whereas oxidative stress was low (Kumar et al. 2014). Sharma and Nayyar (2014) 
analyzing a total of 9205 EST bands in cold-tolerant chickpea genotype ICC16349 
found that the cold stress altered expression of 127 ESTs (90 upregulated, 37 down-
regulated) in anthers. Ninety-two of these (two third proportion) were novel with 
unknown protein identity and function. The remaining about one third (35) belonged 
to several functional categories such as pollen development, signal transduction, ion 
transport, transcription, carbohydrate metabolism, translation, energy, and cell divi-
sion. Limited genes were involved in regulating cold tolerance in chickpea anthers. 
Moreover, the cold tolerance was manifested by upregulation of majority of the 
differentially expressed transcripts. The anthers appeared to employ dual cold toler-
ance mechanism based on their protection from cold by enhancing triacylglycerol 
and carbohydrate metabolism and maintenance of normal pollen development by 
regulating pollen development genes. Functional characterization of about two third 
of the novel genes is needed to have precise understanding of the cold tolerance 
mechanisms in chickpea anthers (Sharma and Nayyar 2014). Chilling temperatures 
during early reproductive growth cause yield losses in chickpea in parts of the 
Indian sub-continent and Australia. The plants continue to produce flowers but fail 
to set pods when mean daily temperature falls below 150 C. ICRISAT scientists have 
developed several breeding lines (e.g., ICCV 88502, ICCV 88503, ICCV 88506, 
ICCV 88510, ICCV 88516) that are able to set pods at lower temperature (mean 
daily temperature between 12and 15 °C). A pollen selection method was developed 
in Australia and applied to transfer chilling tolerance from ICCV 88516 to chilling 
sensitive cultivars, leading to development and release of chilling-tolerant cultivars 
Sonali and Rupali (Clarke and Siddique 2004). RFLP markers for chilling tolerance 
were identified and subsequently converted to SCAR markers. These were used suc-
cessfully to select chilling-tolerant progeny from a cross between Amethyst and 
ICCV 88516 but were ineffective in other crosses (Millan et al. 2006).

13.3  �Genomic-Assisted Breeding for Biotic Stress Tolerance 
in Chickpea

13.3.1  �Fusarium Wilt

Among the biotic stresses that caused major damage to chickpea production, 
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceris is the major yield 
reducer. Losses to the tune of up to 90% have been reported by Singh (1993). Havare 
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and Neme (1982) have given the race distribution of this pathogen in India. Of the 
eight races, they identified only IA, 2, 3, and 4 to be prevalent in India. Lines with 
resistance to this pathogen have been identified and have been used in crop improve-
ment programs. The line WR315 among all the resistant donors is most widely used 
and has been reported to be resistant to all the races except race 3 (Haware et al. 
1997). Molecular markers have been identified for most of the Foc genes (Table 13.1). 
It has been observed that most of these resistant genes are present in two different 
linkage groups on different chromosomes, while Teresa Millan et al. (2006) mostly 
reported it to be present on linkage group 2. Tekeoglu et al. (2000) also reported 
some of these genes to be present on linkage group 3 too. Improvement of Pusa 256 
through marker-assisted backcrossing for introgression of Foc 2 gene using TA37 
and TA110 was done by Pratap et  al. (2017). Similarly, C214 was improved for 
resistance against race 1 by Varshney et al. (2014a). Bharadwaj et al. (2011) also 
reported identification of markers linked to resistance for different races of Fusarium 
wilt and development of introgression lines in a Generation Challenge Project 
(GCP) along with ICRISAT

13.3.2  �Ascochyta Blight

The chickpea-growing regions of higher latitudes, i.e., colder regions with cooler, 
cloudy, and humid weather during reproductive stages, get affected by Ascochyta 
blight (AB). Different workers have reported different pathotypes and subtypes for 
this disease. Udupa et al. (1998) have reported three pathotypes while Nene and 
Reddy (1987) reported five pathotypes. Resistant lines have been identified, and 
some of these like ILC 3279, ILC 195, ILC 482, and ILC 72 developed by ICARDA 
have been released as varieties. Molecular markers for AB-resistant QTLs and 
molecular markers linked to them by large number of workers (Table 13.1). The 
marker-assisted breeding program using the identified QTLs has just been initiated 
at ICAR-Indian Institute of Plant Research (IIPR), Kanpur; Punjab Agricultural 
University (PAU), Ludhiana; and ICAR-Indian Agricultural Research Institute 
(IARI), New Delhi.

13.3.3  �Botrytis Gray Mold

In the recent past, Botrytis gray mold (BGM) is emerging as an important disease of 
chickpea in the eastern part of Indian subcontinent including Nepal and Bangladesh 
and North India including Pakistan and Australia (Haware and Mc Donald 1992). 
This fungus has a very wide host range, and the source of absolute resistance has not 
been found in Cicer arietinum L. germplasm (Pande et al. 2001). Three QTLs were 
mapped on two linkage groups LG3 and LG6 by Anuradha et al. (2011). Resistance 

13  Chickpea Genomics



304

Ta
bl

e 
13

.1
 

L
is

t o
f 

m
ol

ec
ul

ar
 m

ar
ke

rs
 a

ss
oc

ia
te

d 
w

ith
 g

en
e/

Q
T

L
s 

fo
r 

re
si

st
an

ce
 to

 d
if

fe
re

nt
 r

ac
es

 o
f 

FW
 a

nd
 A

B

R
es

is
ta

nc
e 

ge
ne

/Q
T

L
M

ar
ke

r
Fo

rw
ar

d 
pr

im
er

 s
eq

ue
nc

e 
(5
′- 

3′
)

R
ev

er
se

 p
ri

m
er

 s
eq

ue
nc

e 
(5
′- 

3′
)

R
ef

er
en

ce

F
us

ar
iu

m
 w

il
t r

es
is

ta
nc

e

Fo
c-

0/
fo

c-
0

T
R

59
A

A
A

A
G

G
A

 A
C

C
T

C
A

A
G

T
G

A
 C

A
G

A
 A

A
A

T
G

A
 G

G
G

A
 G

T
G

A
 G

A
 T

G
Sh

ar
m

a 
an

d 
M

ue
hl

ba
ue

r 
(2

00
7)

fo
c-

1
TA

59
A

T
C

TA
A

A
G

A
 G

A
 A

A
T

C
A

A
A

A
T

T
G

T
C

G
A

 A
G

C
A

A
A

T
G

T
G

A
 A

G
C

A
T

G
TA

TA
G

A
 

TA
A

A
G

Sh
ar

m
a 

an
d 

M
ue

hl
ba

ue
r 

(2
00

7)

TA
96

T
G

T
T

T
T

G
G

A
 G

A
 A

G
A

 G
T

G
A

 T
T

C
T

G
T

G
C

A
T

G
C

A
A

A
T

T
C

T
TA

C
T

TA
27

G
A

 T
A

A
A

A
T

C
A

T
TA

T
T

G
G

G
T

G
T

C
C

T
T

T
T

T
C

A
A

A
TA

A
T

C
T

T
T

C
A

T
C

A
G

T
C

A
A

A
T

G
fo

c-
2

TA
96

T
G

T
T

T
T

G
G

A
 G

A
 A

G
A

 G
T

G
A

 T
T

C
T

G
T

G
C

A
T

G
C

A
A

A
T

T
C

T
TA

C
T

Sh
ar

m
a 

an
d 

M
ue

hl
ba

ue
r 

(2
00

7)
,

TA
27

G
A

 T
A

A
A

A
T

C
A

T
TA

T
T

G
G

G
T

G
T

C
C

T
T

T
T

T
C

A
A

A
TA

A
T

C
T

T
T

C
A

T
C

A
G

T
C

A
A

A
T

G
T

R
19

T
C

A
G

TA
T

C
A

C
G

T
G

TA
A

T
T

C
G

T
C

A
T

G
A

 A
C

A
T

C
A

A
G

T
T

C
T

C
C

A
Fo

c 
1 

&
 3

G
A

 1
6

C
A

C
C

T
C

G
TA

C
C

A
T

G
G

T
T

T
C

T
G

TA
A

A
T

T
T

C
A

T
C

C
T

C
T

C
C

G
G

C
V

ar
sh

ne
y 

et
 a

l. 
(2

01
4a

)
TA

A
60

T
C

A
T

G
C

T
T

G
T

T
G

G
T

TA
G

C
TA

G
A

A
A

C
A

A
A

G
A

C
A

TA
A

T
C

G
A

G
T

TA
A

A
G

A
A

A
A

TA
19

4
T

T
T

T
T

G
G

C
T

TA
T

TA
G

A
C

T
G

A
C

T
T

T
T

G
C

C
A

TA
A

A
A

TA
C

A
A

A
A

T
C

C
T

S8
2

T
C

A
A

G
A

T
T

G
A

TA
T

T
G

A
T

TA
G

A
TA

A
A

A
G

C
C

T
T

TA
T

T
TA

C
C

A
C

T
T

G
C

A
C

A
A

C
A

C
TA

A
TA

11
0

A
C

A
C

TA
TA

G
G

TA
TA

G
G

C
A

T
T

TA
G

G
C

A
A

T
T

C
T

T
TA

TA
A

A
TA

T
C

A
G

A
C

C
G

G
A

A
A

G
A

T
R

19
T

C
A

G
TA

T
C

A
C

G
T

G
TA

A
T

T
C

G
T

C
A

T
G

A
A

C
A

T
C

A
A

G
T

T
C

T
C

C
A

Fo
c-

3/
fo

c-
3

TA
96

T
G

T
T

T
T

G
G

A
 G

A
 A

G
A

 G
T

G
A

 T
T

C
T

G
T

G
C

A
T

G
C

A
A

A
T

T
C

T
TA

C
T

Sh
ar

m
a 

an
d 

M
ue

hl
ba

ue
r 

(2
00

7)
TA

27
G

A
 T

A
A

A
A

T
C

A
T

TA
T

T
G

G
G

T
G

T
C

C
T

T
T

T
T

C
A

A
A

TA
A

T
C

T
T

T
C

A
T

C
A

G
T

C
A

A
A

T
G

T
R

59
A

A
A

A
G

G
A

 A
C

C
T

C
A

A
G

T
G

A
 C

A
G

A
 A

A
A

T
G

A
 G

G
G

A
 G

T
G

A
 G

A
 T

G
fo

c-
4

TA
59

A
T

C
TA

A
A

G
A

 G
A

 A
A

T
C

A
A

A
A

T
T

G
T

C
G

A
 A

G
C

A
A

A
T

G
T

G
A

 A
G

C
A

T
G

TA
TA

G
A

 
TA

A
A

G
Sh

ar
m

a 
an

d 
M

ue
hl

ba
ue

r 
(2

00
7)

TA
96

T
G

T
T

T
T

G
G

A
 G

A
 A

G
A

 G
T

G
A

 T
T

C
T

G
T

G
C

A
T

G
C

A
A

A
T

T
C

T
TA

C
T

TA
27

G
A

 T
A

A
A

A
T

C
A

T
TA

T
T

G
G

G
T

G
T

C
C

T
T

T
T

T
C

A
A

A
TA

A
T

C
T

T
T

C
A

T
C

A
G

T
C

A
A

A
T

G
T

R
19

T
C

A
G

TA
T

C
A

C
G

T
G

TA
A

T
T

C
G

T
C

A
T

G
A

 A
C

A
T

C
A

A
G

T
T

C
T

C
C

A
TA

19
4

T
T

T
T

T
G

G
C

T
TA

T
TA

G
A

 C
T

G
A

 C
T

T
T

T
G

C
C

A
TA

A
A

A
TA

C
A

A
A

A
T

C
C

C. Bharadwaj et al.



305

(c
on

tin
ue

d)

Fo
c-

5/
fo

c-
5

TA
27

G
A

 T
A

A
A

A
T

C
A

T
TA

T
T

G
G

G
T

G
T

C
C

T
T

T
T

T
C

A
A

A
TA

A
T

C
T

T
T

C
A

T
C

A
G

T
C

A
A

A
T

G
Sh

ar
m

a 
an

d 
M

ue
hl

ba
ue

r 
(2

00
7)

TA
59

A
T

C
TA

A
A

G
A

 G
A

 A
A

T
C

A
A

A
A

T
T

G
T

C
G

A
 A

G
C

A
A

A
T

G
T

G
A

 A
G

C
A

T
G

TA
TA

G
A

 
TA

A
A

G
TA

96
T

G
T

T
T

T
G

G
A

 G
A

 A
G

A
 G

T
G

A
 T

T
C

T
G

T
G

C
A

T
G

C
A

A
A

T
T

C
T

TA
C

T
TA

11
0

A
C

A
C

TA
TA

G
G

TA
TA

G
G

C
A

T
T

TA
G

G
C

A
A

T
T

C
T

T
TA

TA
A

A
TA

T
C

A
G

A
 C

C
G

G
A

 
A

A
G

A
TA

59
A

T
C

TA
A

A
G

A
 G

A
 A

A
T

C
A

A
A

A
T

T
G

T
C

G
A

 A
G

C
A

A
A

T
G

T
G

A
 A

G
C

A
T

G
TA

TA
G

A
 

TA
A

A
G

TA
53

G
G

A
 G

A
 A

A
A

T
G

G
TA

G
T

T
TA

A
A

G
A

 
G

TA
C

TA
A

A
A

A
A

A
TA

T
G

A
 A

G
A

 
C

TA
A

C
T

T
T

G
C

A
T

T
TA

TA
10

3
T

G
A

 A
A

TA
T

C
TA

A
T

G
T

T
G

C
A

A
T

TA
G

G
A

 C
TA

T
G

G
A

 T
C

A
C

A
T

C
A

A
A

G
A

 A
A

TA
A

A
A

T
T

S8
2

C
A

A
A

G
A

 C
A

TA
A

T
C

G
A

 G
T

TA
A

A
G

A
 A

A
A

A
T

G
G

T
TA

G
C

TA
G

A
 A

A
A

T
T

C
A

A
G

G
G

T
R

58
C

T
C

TA
TA

T
T

T
G

T
T

T
G

T
T

T
T

T
C

G
T

T
T

T
G

TA
A

A
A

T
G

T
G

TA
G

G
G

T
G

C
A

G
A

 
A

TA
A

A
TA

A
sc

oc
hy

ta
 b

li
gh

t r
es

is
ta

nc
e

Q
T

L
-1

G
A

A
47

C
A

C
T

C
C

T
C

A
T

G
C

C
A

A
C

T
C

C
T

A
A

A
A

T
G

G
A

 A
TA

G
T

C
G

TA
T

G
G

G
G

Te
ke

og
lu

et
.a

l. 
(2

00
0)

, F
la

nd
ez

-
G

al
ve

z 
et

 a
l. 

(2
00

3a
)

T
S1

2b
T

T
T

T
T

C
T

T
C

C
C

C
T

T
T

T
C

N
A

C
A

T
A

T
T

C
C

C
T

T
C

C
T

T
Y

A
T

T
W

A
T

T
TA

T
T

T
T

T
Fl

an
de

z-
G

al
ve

z 
et

 a
l. 

(2
00

3b
)

ST
M

S2
8

C
C

C
T

T
C

TA
G

T
G

A
 T

A
T

T
T

T
G

A
A

A
T

G
T

G
T

T
T

TA
T

G
G

A
 A

TA
A

G
T

C
A

T
Te

ke
og

lu
 e

t a
l. 

(2
00

0)
, F

la
nd

ez
-

G
al

ve
z 

et
 a

l. 
(2

00
3b

) 
C

ho
 e

t a
l. 

(2
00

4)
ST

M
S1

1
G

TA
T

C
TA

C
T

T
G

TA
A

TA
T

T
C

T
C

T
T

C
T

C
T

A
TA

T
C

A
TA

A
A

C
C

C
C

C
C

A
C

G
A

2
T

G
C

A
T

T
G

G
A

 A
A

TA
C

A
G

C
A

T
G

A
A

A
T

T
T

T
G

G
T

T
C

G
C

C
A

C
A

A
A

C
T

S1
2b

T
T

T
T

T
C

T
T

C
C

C
C

T
T

T
T

C
N

A
C

A
T

A
T

T
C

C
C

T
T

C
C

T
T

Y
A

T
T

W
A

T
T

TA
T

T
T

T
T

T
R

20
A

C
C

T
G

C
T

T
G

T
T

TA
G

C
A

C
A

A
T

C
C

G
C

A
TA

G
C

A
A

T
T

TA
T

C
T

T
C

Q
T

L
-2

TA
3a

A
A

T
C

T
C

A
A

A
A

T
T

C
C

C
C

A
A

A
T

T
A

T
C

G
A

 G
G

A
 G

A
 G

A
 A

G
A

 A
C

C
A

T
Fl

an
de

z-
G

al
ve

z 
et

 a
l. 

(2
00

3b
)

TA
14

6
C

TA
A

G
T

T
TA

A
TA

T
G

T
TA

G
T

C
C

T
TA

A
A

T
TA

T
A

C
G

A
 A

C
G

C
A

A
C

A
T

TA
A

T
T

T
TA

TA
T

T
Q

T
L

-2
/Q

T
L

-3
TA

72
G

A
 A

A
G

A
 T

T
TA

A
A

A
G

A
 T

T
T

T
C

C
A

C
G

T
TA

T
TA

G
A

 A
G

C
A

TA
T

T
G

T
T

G
G

G
A

 T
A

A
G

A
 

G
T

Fl
an

de
z-

G
al

ve
z 

et
 a

l. 
(2

00
3b

)

G
A

2
T

G
C

A
T

T
G

G
A

 A
A

TA
C

A
G

C
A

T
G

A
A

A
T

T
T

T
G

G
T

T
C

G
C

C
A

C
A

A
A

C
TA

3a
/

TA
3b

A
A

T
C

T
C

A
A

A
A

T
T

C
C

C
C

A
A

A
T

T
A

T
C

G
A

 G
G

A
 G

A
 G

A
 A

G
A

 A
C

C
A

T

13  Chickpea Genomics



306

Q
T

L
-3

T
S4

5
T

G
A

 C
A

C
A

A
A

A
T

T
G

T
C

T
C

T
T

G
T

T
G

T
T

C
T

TA
A

C
G

TA
A

C
TA

A
C

C
TA

A
M

ill
an

 e
t a

l. 
(2

00
3)

, I
ru

el
a 

et
 a

l. 
(2

00
6)

, U
du

pa
 a

nd
 B

au
m

 (
20

03
)

TA
3b

A
A

T
C

T
C

A
A

A
A

T
T

C
C

C
C

A
A

A
T

T
A

T
C

G
A

 G
G

A
 G

A
 G

A
 A

G
A

 A
C

C
A

T
TA

19
4

T
T

T
T

T
G

G
C

T
TA

T
TA

G
A

 C
T

G
A

 C
T

T
T

T
G

C
C

A
TA

A
A

A
TA

C
A

A
A

A
T

C
C

T
S8

2
T

C
A

A
G

A
 T

T
G

A
 T

A
T

T
G

A
 T

TA
G

A
 

TA
A

A
A

G
C

C
T

T
TA

T
T

TA
C

C
A

C
T

T
G

C
A

C
A

A
C

A
C

TA
A

T
R

58
C

T
C

TA
TA

T
T

T
G

T
T

T
G

T
T

T
T

T
C

G
T

T
T

T
G

TA
A

A
A

T
G

T
G

TA
G

G
G

T
G

C
A

G
A

 
A

TA
A

A
TA

A
R

2
TA

72
G

A
 A

A
G

A
 T

T
TA

A
A

A
G

A
 T

T
T

T
C

C
A

C
G

T
TA

T
TA

G
A

 A
G

C
A

TA
T

T
G

T
T

G
G

G
A

 T
A

A
G

A
 

G
T

R
ak

sh
it 

et
 a

l. 
(2

00
3)

TA
14

6
C

TA
A

G
T

T
TA

A
TA

T
G

T
TA

G
T

C
C

T
TA

A
A

T
TA

T
A

C
G

A
 A

C
G

C
A

A
C

A
T

TA
A

T
T

T
TA

TA
T

T
ar

1
G

A
16

C
A

C
C

T
C

G
TA

C
C

A
T

G
G

T
T

T
C

T
G

TA
A

A
T

T
T

C
A

T
C

C
T

C
T

C
C

G
G

C
C

ho
 e

t a
l. 

(2
00

4)
ar

1a
G

A
16

C
A

C
C

T
C

G
TA

C
C

A
T

G
G

T
T

T
C

T
G

TA
A

A
T

T
T

C
A

T
C

C
T

C
T

C
C

G
G

C
U

du
pa

 a
nd

 B
au

m
 (

20
03

),
C

ho
 e

t a
l. 

(2
00

4)
G

A
20

TA
T

G
C

A
C

C
A

C
A

C
C

T
C

G
TA

C
C

T
G

A
 C

G
G

A
 A

T
T

C
G

T
G

A
 T

G
T

G
T

ar
1b

TA
37

A
C

T
TA

C
A

T
G

A
 A

T
TA

T
C

T
T

T
C

T
T

G
G

T
C

C
C

G
TA

T
T

C
A

A
A

TA
A

T
C

T
T

T
C

A
T

C
A

G
T

C
A

U
du

pa
 a

nd
 B

au
m

 (
20

03
)

TA
20

0
T

T
T

C
T

C
C

T
C

TA
C

TA
T

TA
T

G
A

 T
C

A
C

C
A

G
T

T
G

A
 G

A
 G

G
G

T
TA

G
A

 
A

C
T

C
A

T
TA

T
G

T
T

T
ar

2a
G

A
16

C
A

C
C

T
C

G
TA

C
C

A
T

G
G

T
T

T
C

T
G

TA
A

A
T

T
T

C
A

T
C

C
T

C
T

C
C

G
G

C
C

ho
 e

t a
l. 

(2
00

4)
G

A
24

T
T

G
C

C
A

A
A

A
C

C
A

A
TA

A
C

T
C

T
G

T
C

C
C

T
T

T
TA

C
A

C
A

A
G

G
C

C
A

G
G

A
A

47
C

A
C

T
C

C
T

C
A

T
G

C
C

A
A

C
T

C
C

T
A

A
A

A
T

G
G

A
 A

TA
G

T
C

G
TA

T
G

G
G

G
ar

2b
TA

13
0

C
A

C
T

C
C

T
C

A
T

G
C

C
A

A
C

T
C

C
T

A
A

A
A

T
G

G
A

 A
TA

G
T

C
G

TA
T

G
G

G
G

C
ol

la
rd

 e
t a

l. 
(2

00
3)

TA
72

G
A

 A
A

G
A

 T
T

TA
A

A
A

G
A

 T
T

T
T

C
C

A
C

G
T

TA
T

TA
G

A
 A

G
C

A
TA

T
T

G
T

T
G

G
G

A
 T

A
A

G
A

 
G

T
T

S7
2

C
A

A
A

C
A

A
T

C
A

C
TA

A
A

A
G

TA
T

T
T

G
C

T
C

T
A

A
A

A
A

T
T

G
A

 T
G

G
A

 
C

A
A

G
T

G
T

TA
T

TA
T

G
A

r1
9

T
R

19
T

C
A

G
TA

T
C

A
C

G
T

G
TA

A
T

T
C

G
T

C
A

T
G

A
 A

C
A

T
C

A
A

G
T

T
C

T
C

C
A

C
ol

la
rd

 e
t a

l. 
(2

00
3)

G
A

16
C

A
C

C
T

C
G

TA
C

C
A

T
G

G
T

T
T

C
T

G
TA

A
A

T
T

T
C

A
T

C
C

T
C

T
C

C
G

G
C

Ta
bl

e 
13

.1
 

(c
on

tin
ue

d)

R
es

is
ta

nc
e 

ge
ne

/Q
T

L
M

ar
ke

r
Fo

rw
ar

d 
pr

im
er

 s
eq

ue
nc

e 
(5
′- 

3′
)

R
ev

er
se

 p
ri

m
er

 s
eq

ue
nc

e 
(5
′- 

3′
)

R
ef

er
en

ce

C. Bharadwaj et al.



307

to this pathogen has been identified in wild Cicer sp. Cicer bijugum (Haware et al. 
1992). Punjab Agricultural University (PAU), Ludhiana, has developed some lines 
through pre-breeding having tolerance/resistance to Botrytis gray mold. 
Comprehensive evaluation of these lines, their derivatives, and previously reported 
sources in field and in controlled conditions for their level of tolerance/resistance is 
being done by ICAR-Indian Institute of Plant Research (IIPR), Kanpur; Punjab 
Agricultural University (PAU), Ludhiana; ICAR-Indian Agricultural Research 
Institute (IARI), New Delhi; and G.B.  Pant University of Agriculture and 
Technology, GBPUA&T (Pantnagar).

13.4  �Molecular Markers

The most recent quindecennial (2002–2017) has seen the advancement of substan-
tial level of genomic assets in chickpea. Simple sequence repeats (SSR) markers, 
most favored markers for molecular breeding, were accessible in exceptionally 
predetermined number in this crop until 2005. Paucity of polymorphic molecular 
markers in chickpea (Cicer arietinum L.) has been a major limitation in the 
improvement of this important legume. However it is not so anymore. The con-
certed efforts by chickpea workers and generous funding and efforts by Indian 
Council of Agricultural Research (ICAR), Generation Challenge Programme, The 
Bill and Melinda Gates Foundation, Department of Biotechnology (DBT), etc. 
have led to the development of large-scale molecular markers, construction of 
comprehensive linkage map, and draft genome sequencing. ICRISAT, NIPGR, 
and NRCPB have been in forefront in the development of marker repertoire (Sethy 
et al. 2006, Varshney et al. BMC Genomics 2009). 2000 genomic SSR markers 
chickpea have been developed (Varshney et  al. 2007; Nayak et  al. 2010; Thudi 
2011), ESTs (Varshney et  al. 2009), 454/FLX transcript reads (Hiremath et  al. 
2011; Garg et  al. 2011,) and BAC-end sequences (Thudi et  al. 2011). 26,082 
potential SNPs have been identified (Hiremath et al. 2011) based on alignment of 
~37 million Illumina/Solexa tags. Similarly, at National Institute of Plant Genome 
Research (NIPGR), a set of 487 novel functional markers including 125 EST-
SSRs, 151 intron-targeted primers (ITPs), 109 expressed sequence tag polymor-
phisms (ESTPs), and 102 SNP markers has been developed (Choudhary et  al. 
2012b). Though DArT markers were developed in pigeon pea, their use was 
mostly restricted to introgression studies as these were very less polymorphic in 
the cultivated pigeon pea (Thudi et al. 2011). KASPar assays for 2005 SNPs in 
chickpea (Hiremath et al. 2012) were developed. High throughput SNP genotyp-
ing platform utilizing DArT and next generation sequencing (NGS) technology 
like pyrosequencing (Alderborn et al. 2000; Ching and Rafalski 2002; Varshney 
et al. 2009), mass spectrum analysis (Rodi et al. 2002), Affymetrix chip (Borevitz 
et al. 2003), Golden Gate assay (Fan et al. 2003; Rostoks et al. 2006), Roche 454/
FLX, AB Biosystem, and Illumina/Solexa are used for whole-genome transcrip-
tion identification techniques to spot genomic regions and genes underlying plant 
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stress responses (Varshney et al. 2009; Varshney et al. 2010) to develop massive 
scale SNPs and using for genotyping to develop highly saturated genetic and tran-
script maps (Gujaria et  al. 2011). Approximately 15300 (by DArT Pvt. Ltd, 
Australia And ICRISAT)DArT are available in chickpea featuring 21500 array, 
300 panel resulted in 5400 polymorphic features and ~200 maker loci on genetic 
map (Varshney et al. 2010) (Table 13.2).

13.5  �Conclusion

Advances in sequencing and genotyping technologies helped in generation of sev-
eral thousand markers including SSRs, SNPs, and DArTs and hundreds of thou-
sands transcript reads and BAC-end sequences in chickpea. Comprehensive 
transcriptome assemblies and genome sequences have either been developed or 
underway for other important traits including quality, herbicide tolerance, salinity, 
etc. Based on these resources, dense genetic maps, QTL maps as well as physical 
maps for chickpea have also been developed. As a result, chickpea graduated from 
“orphan” or “less-studied” crops to “genomic resource-rich” crops. Genomic-
assisted breeding approaches in the form of marker-assisted selection (MAS) and 
marker-assisted backcrossing (MABC) for introgressing QTL region for drought 
tolerance-related traits; Fusarium wilt resistance and Ascochyta blight resistance in 
chickpea have also been initiated. However, it is critical to use other modern breed-
ing approaches like marker-assisted recurrent selection (MARS), advanced-
backcross (AB-backcross) breeding, and genomic selection (GS) to utilize the full 
potential of genomic-assisted breeding for crop improvement.

Table 13.2  Molecular markers in chickpea (Advances in Pulse Research, IIPR 2012)

Marker Number of markers Reference

Genomic 
SSR

2328 Hüttel et al. (1999), Winter et al. (1999), Sethy et al. (2006), 
Lichtenzveig et al. (2005), Choudhary et al. (2006), Eujayl 
et al. (2004), Sethy et al. (2006), Qadir et al. (2007), Nayak 
et al. (2010), ICRISAT-UC Davis, USA

EST-SSR 508 Choudhary et al. (2009), Varshney et al. (2009b),
Gaur et al. (2011)

CAPS 306 Rajesh and Muehlbauer (2008), Varshney et al. (2007), 
Varshney et al. (2009a), Gujaria et al. (2011)

DArT 15,360 DArT Pvt. Ltd, Australia And ICRISAT
SNPs Ca. 9000 identified 

and 768 on Golden 
Gate assay 1893

ICRISAT, UC-Davis, USA and NCGR, USA
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