

Chapter 9 Coherent States and Norm Correspondence

Finally, we prove the lower bound for the operator norm of a Berezin–Toeplitz operator. In order to do so, we use the so-called coherent states.

9.1 Coherent Vectors

Let $P \subset L$ be the set of elements $u \in L$ such that $||u|| = 1$, and denote by $\pi: P \to M$ the natural projection.

Lemma 9.1.1. *Fix* $u \in P$ *. For every* $k \geq 1$ *, there exists a unique vector* ξ_k^u *in* \mathcal{H}_k *such that*

$$
\forall \phi \in \mathcal{H}_k, \quad \phi(\pi(u)) = \langle \phi, \xi_k^u \rangle_k u^k.
$$

Definition 9.1.2. The vector $\xi_k^u \in \mathcal{H}_k$ is called the *coherent vector* at *u*.

Proof of Lemma 9.1.1. Consider the linear form F_k defined on \mathcal{H}_k by

$$
\forall \phi \in \mathcal{H}_k, \quad F_k(\phi) = h_k(\phi(\pi(u)), u^k).
$$

Since \mathcal{H}_k is finite-dimensional, F_k is continuous, so the Riesz representation theorem implies that there exists a unique vector $\xi_k^u \in \mathcal{H}_k$ such that $F_k(\phi) = \langle \phi, \xi_k^u \rangle_k$ for all ϕ in \mathcal{H}_k . But since u^k is an orthonormal basis of $L^k_{\pi(u)}$, we have $\phi(\pi(u)) = F_k(\phi)u^k$.

Lemma 9.1.3. Let T_k be an operator $C^{\infty}(M, L^k) \to C^{\infty}(M, L^k)$ with kernel $T_k(\cdot, \cdot)$ *and such that* $\Pi_k T_k \Pi_k = T_k$ *. Then*

 $(1) \ \forall x \in M, \ (T_k \xi_k^u)(x) = T_k(x, \pi(u)) \cdot u^k,$ $(T_k \xi_k^u, \xi_k^v)_k = \overline{v}^k \cdot T_k(\pi(v), \pi(u)) \cdot u^k,$

where we recall that the dot stands for contraction with respect to h_k .

115

Proof. Let $(\phi_i)_{1 \leq i \leq d_k}$ be an orthonormal basis of \mathcal{H}_k . By proposition 6.3.3, we can write the Schwartz kernel of the restriction of T_k to \mathcal{H}_k as

$$
\forall x, y \in M, \quad T_k(x, y) = \sum_{i,j=1}^{d_k} \langle T_k \phi_i, \phi_j \rangle_k \phi_j(x) \otimes \overline{\phi_i(y)}.
$$

Therefore, for $x \in M$ we have that

$$
T_k(x, \pi(u)) \cdot u^k = \sum_{i,j=1}^{d_k} \langle T_k \phi_i, \phi_j \rangle_k h_k(u^k, \phi_i(\pi(u))) \phi_j(x),
$$

which we can rewrite, because $h_k(u^k, \phi_i(\pi(u))) = \langle \xi_k^u, \phi_i \rangle_k$, as

$$
T_k(x, \pi(u)) \cdot u^k = \sum_{j=1}^{d_k} \langle T_k \left(\sum_{i=1}^{d_k} \langle \xi_k^u, \phi_i \rangle_k \phi_i \right), \phi_j \rangle_k \phi_j(x),
$$

which yields that

$$
T_k(x, \pi(u)) \cdot u^k = \sum_{j=1}^{d_k} \langle T_k \xi_k^u, \phi_j \rangle_k \phi_j(x) = (T_k \xi_k^u)(x).
$$

This corresponds to the first claim. For the second claim, we use the first one to write for x in M that $h_k((T_k\xi_k^u)(x), \xi_k^v(x)) = h_k(T_k(x, \pi(u)) \cdot u^k, \xi_k^v(x))$. Integrating this equality leads to

$$
\langle T_k \xi_k^u, \xi_k^v \rangle_{\mathcal{H}_k} = \langle T_k(\cdot, \pi(u)), \xi_k^v \rangle_k,
$$

but the right-hand side of this equation is equal to $h_k(T_k(\pi(v), \pi(u)) \cdot u^k, \xi_k^v(x))$ by definition of ξ_k^v , and this term is in turn equal to $\bar{v}^k \cdot T_k(\pi(v), \pi(u)) \cdot u^k$.

By taking $T_k = \Pi_k$ in this proposition, we immediately get the following properties.

Corollary 9.1.4. *For every* $u, v \in P$ *,*

(1) *for every x in M*, $\xi_k^u(x) = \Pi_k(x, \pi(u)) \cdot u^k$, $(2)\ \langle \xi_k^u,\xi_k^v\rangle_k=\bar{v}^k\cdot\Pi_k\bigl(\pi(v),\pi(u)\bigr)\cdot u^k,\ so\ \Pi_k\bigl(\pi(v),\pi(u)\bigr)=\langle \xi_k^u,\xi_k^v\rangle_kv^k\otimes\bar{u}^k,$ (3) $\|\xi_k^u\|_k^2 = \Pi_k(\pi(u), \pi(u)).$

9.2 Operator Norm of a Berezin–Toeplitz Operator

In this section, we prove Theorem 5.2.1. By the above corollary and Theorem 7.2.1, we have that for every $u \in P$,

$$
\|\xi_k^u\|_k^2\sim\left(\frac{k}{2\pi}\right)^n
$$

when *k* goes to infinity, the estimate being uniform in *u*. In particular, there exists $k_0 \geq 1$ such that for every $u \in P$, $\xi_k^u \neq 0$ whenever $k \geq k_0$. For $k \geq k_0$, we set $\overline{\xi_k}^{u,\text{norm}} = \xi_k^u / \|\xi_k^u\|_k$. Observe also that this means that the class of $\overline{\xi_k^u}$ in the projective space $\mathbb{P}(\mathcal{H}_k)$ is well-defined. In fact, this class only depends on $\pi(u)$ (because for $\lambda \in \mathbb{C}$, $\xi_k^{\lambda u} = \lambda^k \xi_k^u$) and is called the *coherent state* at $x = \pi(u)$.

Proposition 9.2.1. *There exists* $C > 0$ *such that for every* $x \in M$ *, for every* $u \in P$ *such that* $x = \pi(u)$ *and for every* $f \in C^2(M, \mathbb{R})$ *having x as a critical point*,

$$
||T_k(f)\xi_k^{u,\text{norm}} - f(x)\xi_k^{u,\text{norm}}||_k \leq Ck^{-1}||f||_2
$$

for every $k > k_0$.

Proof. Let $(U_i)_{1 \leq i \leq m}$ be an open cover of M by trivialisation open sets, and let $(V_i)_{1 \leq i \leq m}$ be a refinement of $(U_i)_{1 \leq i \leq m}$ such that $\overline{V_i} \subset U_i$ is compact. Then it is enough to show that for every $i \in [1, m]$, there exists $C_i > 0$ such that for every $x \in V_i$, for every $u \in P$ such that $x = \pi(u)$ and for every $f \in C^2(M, \mathbb{R})$ having *x* as a critical point,

$$
||T_k(f)\xi_k^{u,\text{norm}} - f(x)\xi_k^{u,\text{norm}}||_k \leq Ck^{-1}||f||_2
$$

for every $k \geq k_0$. Indeed it will then suffice to take $C = \max_{1 \leq i \leq m} C_i$. So let us choose $i \in [\![1, d]\!]$ and let us take $x \in V_i$, and set $\lambda = f(x)$. Then

$$
\|(f - \lambda)\xi_k^{u,\text{norm}}\|_{k}^2 = \int_{V_i} |f(y) - \lambda|^2 \|\xi_k^{u,\text{norm}}(y)\|^2 \mu(y) + \int_{M \setminus V_i} |f(y) - \lambda|^2 \|\xi_k^{u,\text{norm}}(y)\|^2 \mu(y).
$$

We will estimate both integrals. Let us introduce some coordinates y_1, \ldots, y_{2n} on *U*_i such that $x = (0, \ldots, 0)$, and set $q(y) = \sum_{j=1}^{2n} y_j^2$. By Taylor's formula, there exists a constant $\alpha > 0$, not depending on *f*, such that $|f(y) - \lambda| \leq \alpha ||f||_2 q(y)$ for every $y \in V_i$. Therefore,

$$
\int_{V_i} \lvert f(y) - \lambda \rvert^2 \lVert \xi_k^{u, \mathrm{norm}}(y) \rVert^2 \mu(y) \leq \alpha^2 \lVert f \rVert_2^2 \int_{V_i} \lVert \xi_k^{u, \mathrm{norm}}(y) \rVert^2 q(y)^2 \, \mu(y).
$$

In order to estimate this integral, we write:

$$
\|\xi_k^{u,\text{norm}}(y)\| = \frac{\|\xi_k^u(y)\|}{\|\xi_k^u\|_k} = \frac{\|H_k(y,x) \cdot u^k\|}{\|\xi_k^u\|_k}.
$$

We claim that $||H_k(y, x) \cdot u^k|| = ||H_k(y, x)||$. This is easily proved by fixing *y*, taking $v \in L_y$ with unit norm, and writing $\Pi_k(y, x)$ in the orthonormal basis $v^k \otimes u^k$ of $L_y^k \otimes \tilde{L}_x^k$. But it follows from (8.7) that there exists *β >* 0 such that for every *y* ∈ *V_i*,

 $||E(y, x)|| \le \exp(-\beta q(y)).$ Therefore, using Theorem 7.2.1 and remembering that $\|\xi_k^u\|_k^2 \sim (k/(2\pi))^n$, we obtain that there exists *γ >* 0 independent of *f*, *x* and *u* such that

$$
\forall y \in V_i, \quad \|\xi_k^{u, \text{norm}}(y)\|^2 \le \gamma k^n \exp\left(-2\beta k q(y)\right).
$$

Now, on U_i we can write $\mu = g \, dy_1 \wedge \cdots \wedge dy_{2n}$ for some smooth function *g*. So, if $\delta = \max_{\overline{V_i}} |g|$, we have that

$$
\int_{V_i} \|\xi_k^{u,\text{norm}}(y)\|^2 q(y)^2 \mu(y) \le \gamma \delta k^n \int_{\mathbb{R}^{2n}} \exp\left(-2\beta k q(y)\right) q(y)^2 dy.
$$

By performing the change of variable $w = \sqrt{k} y$, we finally obtain that

$$
\int_{V_i} \|\xi_k^{u,\text{norm}}(y)\|^2 q(y)^2 \mu(y) \le \varepsilon k^{-2}
$$

for some $\varepsilon > 0$, not depending on f, x, u . Consequently,

$$
\int_{V_i} |f(y) - \lambda|^2 \|\xi_k^{u, \text{norm}}(y)\|^2 \mu(y) \le \alpha^2 \varepsilon \|f\|_2^2 k^{-2}.
$$

It remains to estimate the integral on $M \setminus V_i$. Since for every $y \in M$, we have that $|f(y) - \lambda| \leq 2||f||_0 \leq 2||f||_2$, we immediately obtain that

$$
\int_{M\setminus V_i} |f(y)-\lambda|^2 \|\xi_k^{u,\text{norm}}(y)\|^2 \mu(y) \le 4\|f\|_2^2 \int_{M\setminus V_i} \|\xi_k^{u,\text{norm}}(y)\|^2 \,\mu(y).
$$

We claim that this last integral is a $O(k^{-2})$. This comes again from the fact that $\|\xi_k^{u,\text{norm}}(y)\| = \|H_k(y,x)\|/\|\xi_k^u\|_k$, since there exists $r < 1$ such that $\|E(y,x)\| \leq r$ whenever *y* belongs to $M \setminus V_i$. So we finally get that

$$
|| (f - \lambda) \xi_k^{u, \text{norm}} ||_k \le C_i ||f||_2 k^{-1}
$$

for some $C_i > 0$ independent of f, x, u . Since the operator norm of Π_k is smaller than one, this yields

$$
|| (T_k(f) - \lambda) \xi_k^{u, \text{norm}} ||_k = || H_k(f - \lambda) \xi_k^{u, \text{norm}} ||_k \le C_i ||f||_2 k^{-1},
$$

which concludes the proof.

To prove Theorem 5.2.1, we assume that the maximum of $|f|$ is $f(x_0)$ for some $x_0 \in M$ (otherwise, we work with $-f$), and we apply the previous result to x_0 and $u \in L_{x_0}$. This gives

$$
||T_k(f)\xi_k^{u,\text{norm}} - ||f||\xi_k^{u,\text{norm}}|| \leq Ck^{-1}||f||_2.
$$

This implies that the distance between $||f||$ and the spectrum of $T_k(f)$ satisfies dist $(|f|, Sp(T_k(f))) \leq Ck^{-1} ||f||_2$. Indeed, it is an easy consequence of the spectral

$$
\Box
$$

theorem that if *A* is a bounded self-adjoint operator acting on a Hilbert space, then

$$
||(A - \lambda)^{-1}|| \le \frac{1}{\text{dist}(\lambda, \text{Sp}(A))}
$$

for every $\lambda \notin \mathrm{Sp}(A)$. So there exists $\lambda \in \mathrm{Sp}(T_k(f))$ such that $\lambda \geq ||f|| - Ck^{-1}||f||_2$. Therefore, we have that

$$
||T_k(f)|| = \max_{\mu \in \text{Sp}(T_k(f))} |\mu| \ge ||f|| - Ck^{-1}||f||_2.
$$

9.3 Positive Operator-Valued Measures

Let us show how the coherent states that we have introduced can be used to describe Berezin–Toeplitz operators in terms of integrals against a positive operator-valued measure. Firstly, let us recall what this term means. Let $\mathcal H$ be a complex Hilbert space, and let $\mathcal{S}(\mathcal{H})$ be the space of bounded self-adjoint operators on H. Let X be a set endowed with a σ -algebra \mathcal{C} .

Definition 9.3.1. A *positive operator-valued measure* on X with values in $S(\mathcal{H})$ is a map $G: \mathcal{C} \to \mathcal{S}(\mathcal{H})$ which satisfies the following properties:

- (1) for every $A \in \mathcal{C}$, $G(A)$ is a positive operator, i.e. $\langle A\xi, \xi \rangle \geq 0$ for every $\xi \in \mathcal{H}$, $(G) G(\emptyset) = 0$ and $G(X) = Id$,
- (3) *G* is *σ*-additive: for any sequence $(A_j)_{j\geq 1}$ of disjoint elements of $\mathcal{C}, G(\bigcup_{j\geq 1} A_j) = \sum_{i\geq 1} G(A_i).$ $\sum_{i>1} G(A_i)$.

Such a positive operator-valued measure defines a probability measure μ_{ξ} on X for every $\xi \in \mathcal{H}$, by the formula $\mu_{\xi}(A) = \langle G(A)\xi, \xi \rangle$ for $A \in \mathcal{C}$. Given a bounded measurable function $f: X \to \mathbb{R}$, we define an operator $\int_X f dG \in \mathcal{S}(\mathcal{H})$ characterised by the following property:

$$
\forall \xi \in \mathcal{H}, \quad \left\langle \left(\int_X f \, dG \right) \xi, \xi \right\rangle = \int_X f \, d\mu_{\xi}.
$$

Coming back to the context of Berezin–Toeplitz operators, we consider $X = M$ with the σ -algebra generated by its Borel sets, and $\mathcal{H} = \mathcal{H}_k = H^0(M, L^k)$. As before, for $x \in M$ and $u \in L_x$ with unit norm, let ξ_k^u be the coherent vector at *u*. Recall that there exists $k_0 \geq 1$ such that $\xi_k^u \neq 0$ whenever $k \geq k_0$. We claim that the function

$$
\rho_k\colon M\to\mathbb{R},\quad x\mapsto \|\xi_k^u\|_k^2
$$

is well-defined, i.e. only depends on x . Indeed, if v is another unit vector in L_x , then $v = \lambda u$ for some $\lambda \in \mathbb{S}^1$. But then we have that $\xi_k^v = \lambda^k \xi_k^u$, so $\|\xi_k^v\|_k^2 = \|\xi_k^u\|_k^2$. For $k \geq k_0$, ρ_k is a positive function. Furthermore, the projection

120 9 Coherent States and Norm Correspondence

$$
P_k^x \colon \mathcal{H}_k \to \mathcal{H}_k, \quad \phi \mapsto \frac{\langle \phi, \xi_k^u \rangle_k}{\|\xi_k^u\|_k^2} \xi_k^u
$$

is also only dependent on *x*.

Lemma 9.3.2. For $k \geq k_0$, the map G_k such that $dG_k = \rho_k(x)P_k^x\mu$ defines a *positive operator-valued measure on M.*

Proof. The positivity and σ -additivity are immediate from the form of G_k . Let us prove the fact that $G_k(M) = \text{Id}$. Let $\phi \in \mathcal{H}_k$ and $y \in M$; we have that

$$
(G_k(M)\phi)(y) = \int_M \rho_k(x) (P_k^x \phi)(y) \mu(x).
$$

Recall that $\xi_k^u(y) = \Pi_k(y, x) \cdot u^k$. Thus,

$$
\rho_k(x)(P_k^x\phi)(y) = \langle \phi, \xi_k^u \rangle_k \xi_k^u(y) = \Pi_k(y, x) \cdot \big(\langle \phi, \xi_k^u \rangle_k u^k\big).
$$

But ξ_k^u satisfies the reproducing property (7.2), hence $\langle \phi, \xi_k^u \rangle_k u^k = \phi(x)$. So finally

$$
(G_k(M)\phi)(y) = \int_M \Pi_k(y,x) \cdot \phi(x)\mu(x) = (\Pi_k \phi)(y) = \phi(y).
$$

Proposition 9.3.3. *Let* $k \geq k_0$ *. For any* $f \in C^\infty(M, \mathbb{R})$, $T_k(f) = \int_M f dG_k$ *.*

Proof. Let $S_k(f) = \int_M f \, dG_k$, and let $\phi \in \mathcal{H}_k$. Then by definition,

$$
\langle S_k(f)\phi,\phi\rangle_k = \int_M f(x) \langle P_k^x \phi,\phi\rangle_k \rho_k(x)\mu(x).
$$

We claim that for every $x \in M$, $\langle P_k^x \phi, \phi \rangle_k \rho_k(x) = h_k(\phi(x), \phi(x))$. Indeed, on the one hand, since ξ_k^u satisfies the reproducing property (7.2), we have that $\phi(x)$ $\langle \phi, \xi_k^u \rangle_k u^k$. Therefore

$$
h_k\big(\phi(x),\phi(x)\big)=|\langle\phi,\xi_k^u\rangle_k|^2h_k(u^k,u^k)=|\langle\phi,\xi_k^u\rangle_k|^2.
$$

But on the other hand, we have that

$$
\langle P_k^x \phi, \phi \rangle_k = \frac{|\langle \phi, \xi_k^u \rangle_k|^2}{\|\xi_k^u\|_k^2} = \frac{|\langle \phi, \xi_k^u \rangle_k|^2}{\rho_k(x)},
$$

which proves the claim. Consequently,

$$
\langle S_k(f)\phi,\phi\rangle_k = \int_M h_k(\big(f(x)\phi(x),\phi(x)\big)\mu(x) = \langle T_k(f)\phi,\phi\rangle_k,
$$

which proves the result.

9.4 Projective Embeddings

The coherent states construction gives a way to embed *M* into a complex projective space. Remember that given a unit vector $u \in L$, the coherent state $\xi_k^u \in \mathcal{H}_k$ at *u* is the holomorphic section of $L^k \to M$ given by

$$
\xi_k^u(y) = \Pi_k(y, \pi(u)) \cdot u^k,
$$

and that there exists $k_0 \geq 1$ such that for every $k \geq k_0$ and for every unit vector $u \in L$, $\xi_k^u \neq 0$. Hence for $k \geq k_0$ (from now on, we will assume that it is the case), the class $[\xi_k^u]$ of ξ_k^u in $\mathbb{P}(\mathcal{H}_k)$ is well-defined, and we saw that this class only depends on $\pi(u)$ where π is the projection from *L* to *M*. Thus we obtain a map

$$
\Phi_{\text{coh}}\colon M\to \mathbb{P}(\mathcal{H}_k), \qquad x\mapsto [\xi_k^u], \quad u\in \pi^{-1}(x).
$$

Since $\Pi(\cdot, \cdot)$ is anti-holomorphic on the right variable, this map is anti-holomorphic. To get a holomorphic map, we consider

$$
\Phi_{\text{hol}}\colon M\to \mathbb{P}(\mathcal{H}_k^*), \qquad x\mapsto \left[\langle \cdot \, , \xi_k^u \rangle_k\right], \quad u\in \pi^{-1}(x).
$$

By Lemma [9.1.1,](#page-0-0) we have the alternative expression $\Phi_{hol}(x)=[\alpha_u]$ for any $u \in$ $\pi^{-1}(x)$ with norm one, where $\alpha_u(\phi) = \phi(x) \cdot \bar{u}^k$ for every $\phi \in \mathcal{H}_k$.

In order to identify $\mathbb{P}(\mathcal{H}_k)$ with \mathbb{CP}^{d_k} , let us choose an orthonormal basis $(\varphi_i)_{0 \leq j \leq d_k}$ of \mathcal{H}_k , $d_k = \dim(\mathcal{H}_k) - 1$, and let us write for any unit vector $u \in L$

$$
\xi_k^u=\sum_{j=0}^{d_k}\lambda_j(u)\varphi_j
$$

for some complex numbers $\lambda_0(u), \ldots, \lambda_{d_k}(u)$. Then, using homogeneous coordinates,

$$
\Phi_{\text{coh}}(x) = [\lambda_0(u) : \cdots : \lambda_{d_k}(u)], \quad \Phi_{\text{hol}}(x) = [\lambda_0(u) : \cdots : \lambda_{d_k}(u)].
$$

The latter is obtained by decomposing $\langle \cdot, \xi_k^u \rangle$ in the dual basis $(\varphi_j^*)_{0 \le j \le d_k}$.

Proposition 9.4.1. *The maps* Φ_{coh} *and* Φ_{hol} *are embeddings for k large enough.*

Proof. Since L^k is very ample for k large enough because L is positive, this follows from the fact that *Φ*hol is the embedding considered in Kodaira's embedding theorem [24, Section 5.3]. Indeed, for $j \in [0, d_k]$ and $x \in M$, we have that for any unit vector $u \in \pi^{-1}(x)$:

$$
\varphi_j(x) = \langle \varphi_j, \xi_k^u \rangle_k u^k = \overline{\lambda_j(u)} u^k.
$$

As before, let $\rho_k: M \to \mathbb{R}$ be the function sending $x \in M$ to $\|\xi_k^u\|_k^2$ for any $u \in L_x$ with norm one. This function is often called *Rawnsley's function*, since it was introduced in [40] (see also [39]); however, the reader may encounter this terminology for a slightly different function, since many authors work with elements $u \neq 0 \in L$ instead of unit vectors.

Proposition 9.4.2. *The pullback of the Fubini–Study form by Φ*hol *is given by*

$$
\Phi_{\text{hol}}^* \omega_{\text{FS}} = k\omega + i\partial \bar{\partial} \log \rho_k.
$$

Proof. As in Example 2.5.9, introduce, for $j \in [1, d_k]$, the open subset

$$
U_j = \{ [z_0 : \dots : z_{d_k}] \in \mathbb{CP}^{d_k} \mid z_j \neq 0 \}
$$

of \mathbb{CP}^{d_k} . Then on U_j ,

$$
\omega_{\rm FS} = i\partial\bar{\partial}\log\left(\sum_{m=0}^{d_k} \left|\frac{z_m}{z_j}\right|^2\right).
$$

Therefore, we have that, on U_i :

$$
\Phi_{\text{hol}}^* \omega_{\text{FS}} = i\partial \bar{\partial} \log \left(\sum_{m=0}^{d_k} \left| \frac{\lambda_m}{\lambda_j} \right|^2 \right) = i\partial \bar{\partial} \log \rho_k - i\partial \bar{\partial} \log |\lambda_j|^2. \tag{9.1}
$$

Now, let u_j be a local section of *L* over U_j such that $u_j(x)$ is a unit vector of L_x for every $x \in U_j$. Then $\varphi_j(x) = \lambda_j(u_j(x))u_j(x)^k$ is a local non-vanishing holomorphic section of L , thus, remembering the proof of Proposition $(3.5.4)$, we get that

$$
\nabla^k \varphi_j = \beta_j \otimes \varphi_j, \quad \beta_j = \partial \log H_j
$$

on U_j , with $H_j = h_k(\varphi_j, \varphi_j) = |\lambda_j(u_j)|^2$. Therefore

$$
-ik\omega = \operatorname{curv}(\nabla^k) = \bar{\partial}\partial\log H_j = \bar{\partial}\partial\log|\lambda_j(u_j)|^2
$$

on U_j , which, in view of (9.1) , yields the result.

Thus $\Phi_{hol}^* \omega_{FS} = k\omega$ whenever ρ_k is constant. In this case, applying Proposi-tion [9.3.3](#page-5-0) to $f = 1$, we get that

$$
\dim \mathcal{H}_k = \int_M \rho_k \mu(x) = \text{vol}(M)\rho_k,
$$

therefore $\rho_k = \dim \mathcal{H}_k / \mathrm{vol}(M)$.

Example 9.4.3 (*The complex projective line*). Let us come back to Example 7.2.5. On $U_0 = \{ [z_0 : z_1] | z_0 \neq 0 \}$, we have the following expression for the kernel of Π_k :

$$
\Pi_k(z, w) = \frac{k+1}{2\pi} (1 + z\overline{w})^k t_0^k(z) \otimes \overline{t}_0^k(w).
$$

Considering the unit vector

$$
\sqcup
$$

9.4 Projective Embeddings 123

$$
u(z) = \frac{1}{h(t_0(z), t_0(z))^{1/2}} t_0(z) = \sqrt{1+|z|^2} t_0(z),
$$

we get that the coherent state at $u(z)$ has value at w

$$
\xi_k^{u(z)}(w) = \frac{k+1}{2\pi} \left(1+|z|^2\right)^{k/2} \left(1+\bar{z}w\right)^k h\left(t_0(z), t_0(z)\right)^k t_0^k(w)
$$

$$
= \frac{k+1}{2\pi} \frac{\left(1+\bar{z}w\right)^k}{\left(1+|z|^2\right)^{k/2}} t_0^k(w).
$$

Exercise 9.4.4. Check that $\rho_k(z) = ||\xi_k^{u(z)}||_k^2 = (k+1)/(2\pi)$.

To understand the coherent states embedding, we expand this coherent state to get a linear combination of the $e_{\ell}(w) = \sqrt{(k+1)\binom{k}{\ell}}/(2\pi) w^{k-\ell} t_0^k(w)$, $0 \le \ell \le k$:

$$
\xi_k^{u(z)}(w) = \sqrt{\frac{(k+1)}{2\pi (1+|z|^2)^k}} \sum_{\ell=0}^k \sqrt{\binom{k}{\ell}} \,\bar{z}^{\ell} e_{\ell}(w).
$$

This means that

$$
\Phi_{\text{coh}}(z) = \left[1 : \cdots : \sqrt{\binom{k}{\ell}} \ \bar{z}^{\ell} : \cdots : \bar{z}^k\right]
$$

and finally

$$
\Phi_{\text{hol}}(z) = \left[1 : \cdots : \sqrt{\binom{k}{\ell}} \ z^{\ell} : \cdots : z^{k}\right]
$$

is the Veronese embedding of \mathbb{CP}^1 into \mathbb{CP}^k .