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Chapter 9
Coherent States and Norm Correspondence

Finally, we prove the lower bound for the operator norm of a Berezin—Toeplitz
operator. In order to do so, we use the so-called coherent states.

9.1 Coherent Vectors

Let P C L be the set of elements u € L such that ||ul| = 1, and denote by 7: P — M
the natural projection.

Lemma 9.1.1. Fiz u € P. For every k > 1, there exists a unique vector &} in Hy,
such that

Vo € i, ¢(m(u)) = (¢, & )ru’
Definition 9.1.2. The vector {;; € H, is called the coherent vector at w.

Proof of Lemma 9.1.1. Consider the linear form Fj, defined on Hj, by

Vo € M, Fr(e) = hi(6(m(u)), ub).

Since H;, is finite-dimensional, F}, is continuous, so the Riesz representation theorem
implies that there exists a unique vector &} € Hj, such that Fi(¢) = (¢, &) for all ¢
in H},. But since u* is an orthonormal basis of Lfr(u), we have ¢ (m(u)) = Fy(¢)u*. O
Lemma 9.1.3. Let T}, be an operator C> (M, L¥) — C>® (M, L*) with kernel Ty(-, )
and such that I, Ty I, = T),. Then

(1) Vo € M, (Tp&) (z) = Ty (z, m(u)) - u¥,
(2) (TW&p, &) = 0% - Tio ((v), w(u)) - uF,

where we recall that the dot stands for contraction with respect to hy.
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Proof. Let (¢i)1<i<a, be an orthonormal basis of Hj. By proposition 6.3.3, we can
write the Schwartz kernel of the restriction of T} to H; as

dy
i,j=1
Therefore, for x € M we have that
dy
Ty (2, m(w) - u = 3 (T, o)l (w8, 61(n(w)) ) 5(2),
i,j=1

which we can rewrite, because hy, (uk, i (w(u))) = (&, di)k, as

du du
Ty (2, w(w)) - u¥ = (Ti (Z@?, ¢i>k¢i> s 93 kd;(2),

j=1 i=1
which yields that
dp,
T (z,7w(w)) - uf = (Th&ht, 6,0k (x) = (Tt (x).
j=1

This corresponds to the first claim. For the second claim, we use the first one to
write for z in M that hy, (Tp&p) (), &8 (2)) = hi(Tk (2, 7(w)) -u®, €2 (). Integrating
this equality leads to

<Tk€g’£z>7{k = <Tk( : ,W(U)),&?)k,

but the right-hand side of this equation is equal to hy (T) (7w (v), 7(u)) - u*, & (x))
by definition of £}, and this term is in turn equal to 0" - T (7 (v), 7(u)) - u®. O

By taking T}, = IIj in this proposition, we immediately get the following prop-
erties.
Corollary 9.1.4. For every u,v € P,

(1) for every x in M, & (z) = I, (z, w(u)) - uF,
(2) (€4, &0) = 0% - 1T}, (W(v),w(u)) -uF, so I, (7‘(’(’1})771'(’(1,)) = (&8, &) o* @ u*,
(3) 1€k 1% = M ((u), m(u))

9.2 Operator Norm of a Berezin—Toeplitz Operator

In this section, we prove Theorem 5.2.1. By the above corollary and Theorem 7.2.1,
we have that for every u € P,
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when k goes to infinity, the estimate being uniform in w. In particular, there exists
ko > 1 such that for every u € P, &' # 0 whenever £ > ko. For k > ko, we
set " = &1 /||€¢ ||k Observe also that this means that the class of & in the
projective space P(Hj) is well-defined. In fact, this class only depends on 7(u)
(because for A € C, &) = AFEH) and is called the coherent state at x = 7(u).

Proposition 9.2.1. There exists C > 0 such that for every x € M, for everyu € P
such that x = m(u) and for every f € C*(M,R) having x as a critical point,

1T (£)E™™ = F@)& ™™ Ik < CET|fll2
for every k > k.

Proof. Let (U;)1<i<m be an open cover of M by trivialisation open sets, and let
(Vi)i<i<m be a refinement of (U;)1<i<m such that Vi C U; is compact. Then it is
enough to show that for every i € [1,m], there exists C; > 0 such that for every
x € V;, for every u € P such that = m(u) and for every f € C?>(M,R) having z as
a critical point,

T ()€™ = f(@)e ™™ e < CEH £l

for every k > ky. Indeed it will then suffice to take C' = maxi<;<y, C;. So let us
choose i € [1,d] and let us take x € V;, and set A = f(z). Then

=61 = [ 1) = AR 6 ) Pity)
[ 180 =PI WP utw)
M\V;
We will estimate both integrals. Let us introduce some coordinates ¥, ..., Y2, on
U; such that z = (0,...,0), and set q(y) = Zfil y;. By Taylor’s formula, there

exists a constant a > 0, not depending on f, such that |f(y) — A| < & fl2¢(y) for
every y € V;. Therefore,

/ F@) = A€ ) Pu(y) < o?[£]2 / €27 () 124(4)? ).
Vi

In order to estimate this integral, we write:

ISk @) _ Ty, @) - u¥]|

1 W= Teal = el

We claim that ||ITy(y, ) -u”|| = ||ITx(y, z)||. This is easily proved by fixing y, taking
v € L, with unit norm, and writing ITx(y, ) in the orthonormal basis v* @ uF of
L’; ® L*. But it follows from (8.7) that there exists 3 > 0 such that for every y € V;,
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I1E(y, )| < exp(—ﬂq(y)). Therefore, using Theorem 7.2.1 and remembering that

X2 ~ (k/(27r))n, we obtain that there exists v > 0 independent of f, z and u
such that

Yy € Vi, €™ (y)||? < vh™ exp(—28kq(y))-

Now, on U; we can write y = gdy; A --- A dya, for some smooth function g. So, if
6 = maxy-|g|, we have that

/ €50 () |2g(y)2paly) < A0k / exp(—28ka(y))a(y)? dy.

R2n

By performing the change of variable w = vk y, we finally obtain that

/ €m0 () 2q()2 () < k2

for some € > 0, not depending on f,z,u. Consequently,

[ 1#6) = AP ) Pto) < 0?6l 115

It remains to estimate the integral on M \ V;. Since for every y € M, we have that
[F () = Al < 2|Ifllo < 2| fll2, we immediately obtain that

/ F@) — A€ ) Pu(y) < 4] £ / €2 ()2 ().
M M\V;

i

We claim that this last integral is a O(k*2). This comes again from the fact that
16" (W) = [ 1Tk (y, )|/ 1|65\, since there exists r < 1 such that ||E(y,z)|| <r
whenever y belongs to M \ V;. So we finally get that

ICF = 2&" " e < Cill fll2k ™

for some C; > 0 independent of f,z,u. Since the operator norm of I} is smaller
than one, this yields

(T (f) = NE ™ e = 1Tk (f = NG Ik < Cill fll2k7,
which concludes the proof. U

To prove Theorem 5.2.1, we assume that the maximum of |f| is f(zo) for some
xo € M (otherwise, we work with — f), and we apply the previous result to zy and
w € Ly,. This gives

T3 (F)E™™ = FIIE™ ™I < CETH| £ll2-

This implies that the distance between ||f|| and the spectrum of Ty (f) satisfies
dist (Ifl,Sp(T%(f))) < Ck™*| f[l2- Indeed, it is an easy consequence of the spectral
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theorem that if A is a bounded self-adjoint operator acting on a Hilbert space, then

1
A- N < ——7—
I s dist (A, Sp(A))
for every A ¢ Sp(A). So there exists A € Sp(T(f)) such that A > || f|| — Ck~| f]l2.
Therefore, we have that

T = max > —Ck! .
laneall Mesp(Tk(f))lu\ >[I fll [ £]l2

9.3 Positive Operator-Valued Measures

Let us show how the coherent states that we have introduced can be used to describe
Berezin—Toeplitz operators in terms of integrals against a positive operator-valued
measure. Firstly, let us recall what this term means. Let H be a complex Hilbert
space, and let S(H) be the space of bounded self-adjoint operators on H. Let X be
a set endowed with a o-algebra C.

Definition 9.3.1. A positive operator-valued measure on X with values in S(H) is
a map G: C — S(H) which satisfies the following properties:

(1) for every A € C, G(A) is a positive operator, i.e. (A&, &) > 0 for every & € H,

(2) G(@) =0 and G(X) =1d,

(3) G is o-additive: for any sequence (A;);>1 of disjoint elements of C, G(Uj21 Aj) =
ZjZl G(Aj)~

Such a positive operator-valued measure defines a probability measure p¢ on X
for every £ € H, by the formula pe(A) = (G(A), ) for A € C. Given a bounded
measurable function f : X — R, we define an operator [, fdG € S(H) charac-
terised by the following property:

vEEH, <</deG>£,§>/deug-

Coming back to the context of Berezin—Toeplitz operators, we consider X = M
with the o-algebra generated by its Borel sets, and H = Hp = H°(M, L*). As
before, for x € M and u € L, with unit norm, let £ be the coherent vector at wu.
Recall that there exists ky > 1 such that £! # 0 whenever k£ > ko. We claim that
the function

pr: M =R,z |IEe7

is well-defined, i.e. only depends on z. Indeed, if v is another unit vector in L.,
then v = Au for some A € S'. But then we have that £/ = AF¢¥, so [|€2]12 = [|€4]12.
For k > kg, p is a positive function. Furthermore, the projection
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<¢7 €E>k

€315

P]?:Hk%Hk7 d)’_> fg

is also only dependent on .

Lemma 9.3.2. For k > ko, the map Gj such that dGy = pi(z)PFp defines a
positive operator-valued measure on M.

Proof. The positivity and o-additivity are immediate from the form of Gy. Let us
prove the fact that Gy (M) = 1d. Let ¢ € Hy and y € M; we have that

GON6) = [ n@FEOwn).

M

Recall that £} (y) = Hx(y, ) - u*. Thus,

(@) (PE D) (y) = (¢, it (y) = iy, ) - ({6, &) iul).

But £} satisfies the reproducing property (7.2), hence (¢, &) pu* = ¢(x). So finally

(GL(M)P)(y) = /M iy, 2) - 6(@)p(z) = (Txd)(y) = 6(y). =

Proposition 9.3.3. Let k > ko. For any f € C*°(M,R), Tp(f) = [,, f dGy.

Proof. Let Si(f) = fM fdGy, and let ¢ € Hy. Then by definition,

(Sk(/)d Bk = /M F(2) (P2, S)wpn()la).

We claim that for every x € M, (Pf¢, ¢)ppr(x) = hi(¢(x), ¢(2)). Indeed, on the
one hand, since ¢} satisfies the reproducing property (7.2), we have that ¢(z) =
(¢, &1y u”. Therefore

hie(6(x), 6(x)) = [(¢, & il *hu(u®, u*) = (6, €5l

But on the other hand, we have that

P, = —
Feo o = ez = )

which proves the claim. Consequently,

(Sk(f)b, D) = /M hi((F (@) (), &) () = (Tk( )b, D).

which proves the result. O
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9.4 Projective Embeddings

The coherent states construction gives a way to embed M into a complex projective
space. Remember that given a unit vector v € L, the coherent state & € Hy at u
is the holomorphic section of L¥ — M given by

&) = i (y, m(u)) - u”,

and that there exists kg > 1 such that for every k > kg and for every unit vector
uw € L, & # 0. Hence for k > ko (from now on, we will assume that it is the case),
the class [§}] of &} in P(Hy) is well-defined, and we saw that this class only depends
on m(u) where 7 is the projection from L to M. Thus we obtain a map

Deon: M — P(Hy), = [&], ue 7 (x).

Since I1(-, -) is anti-holomorphic on the right variable, this map is anti-holomorphic.
To get a holomorphic map, we consider

Prot: M = P(H;),  a— [(-,&0%], uwer '(a)
By Lemma 9.1.1, we have the alternative expression @po1(z) = [a,] for any u €
771 (x) with norm one, where a,(¢) = ¢(x) - u* for every ¢ € Hy,.

In order to identify P(Hj) with CP%, let us choose an orthonormal basis
(¢j)o<j<d, of Hy, di = dim(Hy) — 1, and let us write for any unit vector u € L

dy,
&= Ni(u)p;
=0

for some complex numbers Ag(u), ..., Ag, (u). Then, using homogeneous coordinates,

Deon(x) = [Ao(u) 1 -+ Ag, (0)], Proi(z) = [)\O(u) Dot Ady (u)}
The latter is obtained by decomposing (-,{}) in the dual basis (¢7)o<j<d, -
Proposition 9.4.1. The maps Pcon and Py are embeddings for k large enough.

Proof. Since L* is very ample for k large enough because L is positive, this follows
from the fact that &y, is the embedding considered in Kodaira’s embedding the-
orem [24, Section 5.3]. Indeed, for j € [0, dx]] and & € M, we have that for any unit
vector u € w1 (z):

pi(x) = (5, Epuf = N (w)u”. 0

As before, let pp: M — R be the function sending z € M to ||| for any
u € L, with norm one. This function is often called Rawnsley’s function, since
it was introduced in [40] (see also [39]); however, the reader may encounter this
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terminology for a slightly different function, since many authors work with elements
u # 0 € L instead of unit vectors.

Proposition 9.4.2. The pullback of the Fubini-Study form by Py is given by
&r wps = kw + 100 log py.
Proof. As in Example 2.5.9, introduce, for j € [1,d], the open subset
Uj={[z0: - za,] € CP% | 2; # 0}

of CP?% . Then on U;,

B k P 2
wpg = 100 log = .
m=0 Zj
Therefore, we have that, on Uj:
~ d A 2 B B
By Wps = i@@log(Z o ) =190 log pi, — 100 log|\;|?. (9.1)
m=0 J

Now, let u; be a local section of L over U; such that u;(z) is a unit vector of L, for
every z € U;. Then ¢;(z) = \;j(u;(x))u;(x)" is a local non-vanishing holomorphic
section of L, thus, remembering the proof of Proposition (3.5.4), we get that

Ve =B ® ¢, B =0logH,
on Uj, with H; = hy(¢;,p;) = |Aj(u;)|>. Therefore
—ikw = curv(V*) = 9dlog H; = 9dlog|\;(u;)|?
on Uj, which, in view of (9.1), yields the result. O

Thus &} ,wpg = kw whenever py is constant. In this case, applying Proposi-
tion 9.3.3 to f = 1, we get that

dim Hy = / prp(x) = vol(M)py,
M

therefore py, = dim Hy,/ vol(M).

Ezample 9.4.3 (The complex projective line). Let us come back to Example 7.2.5.
On Uy = {[20 : 21]| 20 # 0}, we have the following expression for the kernel of ITj:

kE+1 _ .
1y (z, w) = 7(1 +20)" 15 (2) © g (w).

Considering the unit vector
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u(z) = L to(z) = /14 |22 to(2)

h(to(2), to(2))/”

we get that the coherent state at u(z) has value at w

) () = k;1(1+| )21 + 2w)kh(to(2), to(2)) " th(w)
k+1 (1+zw)"

2T (1+|Z|2)k/2

t6 (w).

Exercise 9.4.4. Check that pi(z) = ||§Z(Z)Hk (k+1)/(2m).

To understand the coherent states embedding, we expand this coherent state to

get a linear combination of the e;(w) = 1/ (k + 1)(5)/(2@ wh= ik (w), 0 < 0 < ke
k
2 (k+1)
fk ) — Z 1/ z ee(w).
m(14212)" =0
This means that ) )
k
Deon(z)=|1:---: <£)Zf:~~~:5k
and finally
k
Proi(z) = |1+ (€>ze:~~:zk

is the Veronese embedding of CP! into CP*.
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