
Chapter 9
Coherent States and Norm Correspondence

Finally, we prove the lower bound for the operator norm of a Berezin–Toeplitz
operator. In order to do so, we use the so-called coherent states.

9.1 Coherent Vectors

Let P ⊂ L be the set of elements u ∈ L such that ‖u‖ = 1, and denote by π : P → M
the natural projection.

Lemma 9.1.1. Fix u ∈ P . For every k ≥ 1, there exists a unique vector ξu
k in Hk

such that
∀φ ∈ Hk, φ

(
π(u)

)
= 〈φ, ξu

k 〉kuk.

Definition 9.1.2. The vector ξu
k ∈ Hk is called the coherent vector at u.

Proof of Lemma 9.1.1. Consider the linear form Fk defined on Hk by

∀φ ∈ Hk, Fk(φ) = hk

(
φ

(
π(u)

)
, uk

)
.

Since Hk is finite-dimensional, Fk is continuous, so the Riesz representation theorem
implies that there exists a unique vector ξu

k ∈ Hk such that Fk(φ) = 〈φ, ξu
k 〉k for all φ

in Hk. But since uk is an orthonormal basis of Lk
π(u), we have φ

(
π(u)

)
= Fk(φ)uk. �

Lemma 9.1.3. Let Tk be an operator C∞(M, Lk) → C∞(M, Lk) with kernel Tk(·, ·)
and such that ΠkTkΠk = Tk. Then

(1) ∀x ∈ M , (Tkξu
k )(x) = Tk

(
x, π(u)

) · uk,
(2) 〈Tkξu

k , ξv
k〉k = v̄k · Tk

(
π(v), π(u)

) · uk,

where we recall that the dot stands for contraction with respect to hk.
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Proof. Let (φi)1≤i≤dk
be an orthonormal basis of Hk. By proposition 6.3.3, we can

write the Schwartz kernel of the restriction of Tk to Hk as

∀x, y ∈ M, Tk(x, y) =
dk∑

i,j=1
〈Tkφi, φj〉kφj(x) ⊗ φi(y).

Therefore, for x ∈ M we have that

Tk

(
x, π(u)

) · uk =
dk∑

i,j=1
〈Tkφi, φj〉khk

(
uk, φi(π(u)

))
φj(x),

which we can rewrite, because hk

(
uk, φi

(
π(u)

))
= 〈ξu

k , φi〉k, as

Tk

(
x, π(u)

) · uk =
dk∑

j=1
〈Tk

(
dk∑

i=1
〈ξu

k , φi〉kφi

)

, φj〉kφj(x),

which yields that

Tk

(
x, π(u)

) · uk =
dk∑

j=1
〈Tkξu

k , φj〉kφj(x) = (Tkξu
k )(x).

This corresponds to the first claim. For the second claim, we use the first one to
write for x in M that hk

(
(Tkξu

k )(x), ξv
k(x)

)
= hk

(
Tk

(
x, π(u)

)·uk, ξv
k(x)

)
. Integrating

this equality leads to

〈Tkξu
k , ξv

k〉Hk
= 〈Tk

( · , π(u)
)
, ξv

k〉k,

but the right-hand side of this equation is equal to hk

(
Tk

(
π(v), π(u)

) · uk, ξv
k(x)

)

by definition of ξv
k , and this term is in turn equal to v̄k · Tk

(
π(v), π(u)

) · uk. �

By taking Tk = Πk in this proposition, we immediately get the following prop-
erties.

Corollary 9.1.4. For every u, v ∈ P ,

(1) for every x in M , ξu
k (x) = Πk

(
x, π(u)

) · uk,
(2) 〈ξu

k , ξv
k〉k = v̄k · Πk

(
π(v), π(u)

) · uk, so Πk

(
π(v), π(u)

)
= 〈ξu

k , ξv
k〉kvk ⊗ ūk,

(3) ‖ξu
k ‖2k = Πk

(
π(u), π(u)

)
.

9.2 Operator Norm of a Berezin–Toeplitz Operator

In this section, we prove Theorem 5.2.1. By the above corollary and Theorem 7.2.1,
we have that for every u ∈ P ,
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‖ξu
k ‖2k ∼

(
k

2π

)n

when k goes to infinity, the estimate being uniform in u. In particular, there exists
k0 ≥ 1 such that for every u ∈ P , ξu

k �= 0 whenever k ≥ k0. For k ≥ k0, we
set ξu,norm

k = ξu
k /‖ξu

k ‖k. Observe also that this means that the class of ξu
k in the

projective space P(Hk) is well-defined. In fact, this class only depends on π(u)
(because for λ ∈ C, ξλu

k = λkξu
k ) and is called the coherent state at x = π(u).

Proposition 9.2.1. There exists C > 0 such that for every x ∈ M , for every u ∈ P
such that x = π(u) and for every f ∈ C2(M,R) having x as a critical point,

‖Tk(f)ξu,norm
k − f(x)ξu,norm

k ‖k ≤ Ck−1‖f‖2
for every k ≥ k0.

Proof. Let (Ui)1≤i≤m be an open cover of M by trivialisation open sets, and let
(Vi)1≤i≤m be a refinement of (Ui)1≤i≤m such that Vi ⊂ Ui is compact. Then it is
enough to show that for every i ∈ �1, m�, there exists Ci > 0 such that for every
x ∈ Vi, for every u ∈ P such that x = π(u) and for every f ∈ C2(M,R) having x as
a critical point,

‖Tk(f)ξu,norm
k − f(x)ξu,norm

k ‖k ≤ Ck−1‖f‖2
for every k ≥ k0. Indeed it will then suffice to take C = max1≤i≤m Ci. So let us
choose i ∈ �1, d� and let us take x ∈ Vi, and set λ = f(x). Then

‖(f − λ)ξu,norm
k ‖2k =

∫

Vi

|f(y) − λ|2 ‖ξu,norm
k (y)‖2μ(y)

+
∫

M\Vi

|f(y) − λ|2‖ξu,norm
k (y)‖2μ(y).

We will estimate both integrals. Let us introduce some coordinates y1, . . . , y2n on
Ui such that x = (0, . . . , 0), and set q(y) =

∑2n
j=1 y2

j . By Taylor’s formula, there
exists a constant α > 0, not depending on f , such that |f(y) − λ| ≤ α‖f‖2q(y) for
every y ∈ Vi. Therefore,

∫

Vi

|f(y) − λ|2‖ξu,norm
k (y)‖2μ(y) ≤ α2‖f‖22

∫

Vi

‖ξu,norm
k (y)‖2q(y)2 μ(y).

In order to estimate this integral, we write:

‖ξu,norm
k (y)‖ = ‖ξu

k (y)‖
‖ξu

k ‖k
= ‖Πk(y, x) · uk‖

‖ξu
k ‖k

.

We claim that ‖Πk(y, x) ·uk‖ = ‖Πk(y, x)‖. This is easily proved by fixing y, taking
v ∈ Ly with unit norm, and writing Πk(y, x) in the orthonormal basis vk ⊗ ūk of
Lk

y ⊗ L̄k
x. But it follows from (8.7) that there exists β > 0 such that for every y ∈ Vi,
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‖E(y, x)‖ ≤ exp
(−βq(y)

)
. Therefore, using Theorem 7.2.1 and remembering that

‖ξu
k ‖2k ∼ (

k/(2π)
)n, we obtain that there exists γ > 0 independent of f , x and u

such that
∀y ∈ Vi, ‖ξu,norm

k (y)‖2 ≤ γkn exp
(−2βkq(y)

)
.

Now, on Ui we can write μ = g dy1 ∧ · · · ∧ dy2n for some smooth function g. So, if
δ = maxVi

|g|, we have that
∫

Vi

‖ξu,norm
k (y)‖2q(y)2μ(y) ≤ γδkn

∫

R2n
exp

(−2βkq(y)
)
q(y)2 dy.

By performing the change of variable w =
√

k y, we finally obtain that
∫

Vi

‖ξu,norm
k (y)‖2q(y)2μ(y) ≤ εk−2

for some ε > 0, not depending on f, x, u. Consequently,
∫

Vi

|f(y) − λ|2‖ξu,norm
k (y)‖2μ(y) ≤ α2ε‖f‖22k−2.

It remains to estimate the integral on M \ Vi. Since for every y ∈ M , we have that
|f(y) − λ| ≤ 2‖f‖0 ≤ 2‖f‖2, we immediately obtain that

∫

M\Vi

|f(y) − λ|2‖ξu,norm
k (y)‖2μ(y) ≤ 4‖f‖22

∫

M\Vi

‖ξu,norm
k (y)‖2 μ(y).

We claim that this last integral is a O
(
k−2)

. This comes again from the fact that
‖ξu,norm

k (y)‖ = ‖Πk(y, x)‖/‖ξu
k ‖k, since there exists r < 1 such that ‖E(y, x)‖ ≤ r

whenever y belongs to M \ Vi. So we finally get that

‖(f − λ)ξu,norm
k ‖k ≤ Ci‖f‖2k−1

for some Ci > 0 independent of f, x, u. Since the operator norm of Πk is smaller
than one, this yields

‖(Tk(f) − λ)ξu,norm
k ‖k = ‖Πk(f − λ)ξu,norm

k ‖k ≤ Ci‖f‖2k−1,

which concludes the proof. �

To prove Theorem 5.2.1, we assume that the maximum of |f | is f(x0) for some
x0 ∈ M (otherwise, we work with −f), and we apply the previous result to x0 and
u ∈ Lx0 . This gives

‖Tk(f)ξu,norm
k − ‖f‖ξu,norm

k ‖ ≤ Ck−1‖f‖2.

This implies that the distance between ‖f‖ and the spectrum of Tk(f) satisfies
dist

(‖f‖, Sp
(
Tk(f)

)) ≤ Ck−1‖f‖2. Indeed, it is an easy consequence of the spectral
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theorem that if A is a bounded self-adjoint operator acting on a Hilbert space, then

‖(A − λ)−1‖ ≤ 1
dist

(
λ, Sp(A)

)

for every λ /∈ Sp(A). So there exists λ ∈ Sp
(
Tk(f)

)
such that λ ≥ ‖f‖ − Ck−1‖f‖2.

Therefore, we have that

‖Tk(f)‖ = max
μ∈Sp(Tk(f))

|μ| ≥ ‖f‖ − Ck−1‖f‖2.

9.3 Positive Operator-Valued Measures

Let us show how the coherent states that we have introduced can be used to describe
Berezin–Toeplitz operators in terms of integrals against a positive operator-valued
measure. Firstly, let us recall what this term means. Let H be a complex Hilbert
space, and let S(H) be the space of bounded self-adjoint operators on H. Let X be
a set endowed with a σ-algebra C.

Definition 9.3.1. A positive operator-valued measure on X with values in S(H) is
a map G : C → S(H) which satisfies the following properties:

(1) for every A ∈ C, G(A) is a positive operator, i.e. 〈Aξ, ξ〉 ≥ 0 for every ξ ∈ H,
(2) G(∅) = 0 and G(X) = Id,
(3) G is σ-additive: for any sequence (Aj)j≥1 of disjoint elements of C, G

(⋃
j≥1 Aj

)
=∑

j≥1 G(Aj).

Such a positive operator-valued measure defines a probability measure μξ on X
for every ξ ∈ H, by the formula μξ(A) = 〈G(A)ξ, ξ〉 for A ∈ C. Given a bounded
measurable function f : X → R, we define an operator

∫
X

fdG ∈ S(H) charac-
terised by the following property:

∀ξ ∈ H,

〈(∫

X

f dG

)
ξ, ξ

〉

=
∫

X

f dμξ.

Coming back to the context of Berezin–Toeplitz operators, we consider X = M
with the σ-algebra generated by its Borel sets, and H = Hk = H0(M, Lk). As
before, for x ∈ M and u ∈ Lx with unit norm, let ξu

k be the coherent vector at u.
Recall that there exists k0 ≥ 1 such that ξu

k �= 0 whenever k ≥ k0. We claim that
the function

ρk : M → R, x �→ ‖ξu
k ‖2k

is well-defined, i.e. only depends on x. Indeed, if v is another unit vector in Lx,
then v = λu for some λ ∈ S

1. But then we have that ξv
k = λkξu

k , so ‖ξv
k‖2k = ‖ξu

k ‖2k.
For k ≥ k0, ρk is a positive function. Furthermore, the projection
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P x
k : Hk → Hk, φ �→ 〈φ, ξu

k 〉k

‖ξu
k ‖2k

ξu
k

is also only dependent on x.

Lemma 9.3.2. For k ≥ k0, the map Gk such that dGk = ρk(x)P x
k μ defines a

positive operator-valued measure on M .

Proof. The positivity and σ-additivity are immediate from the form of Gk. Let us
prove the fact that Gk(M) = Id. Let φ ∈ Hk and y ∈ M ; we have that

(Gk(M)φ)(y) =
∫

M

ρk(x)(P x
k φ)(y)μ(x).

Recall that ξu
k (y) = Πk(y, x) · uk. Thus,

ρk(x)(P x
k φ)(y) = 〈φ, ξu

k 〉kξu
k (y) = Πk(y, x) · (〈φ, ξu

k 〉kuk
)
.

But ξu
k satisfies the reproducing property (7.2), hence 〈φ, ξu

k 〉kuk = φ(x). So finally

(Gk(M)φ)(y) =
∫

M

Πk(y, x) · φ(x)μ(x) = (Πkφ)(y) = φ(y). �

Proposition 9.3.3. Let k ≥ k0. For any f ∈ C∞(M,R), Tk(f) =
∫

M
f dGk.

Proof. Let Sk(f) =
∫

M
f dGk, and let φ ∈ Hk. Then by definition,

〈Sk(f)φ, φ〉k =
∫

M

f(x)〈P x
k φ, φ〉kρk(x)μ(x).

We claim that for every x ∈ M , 〈P x
k φ, φ〉kρk(x) = hk

(
φ(x), φ(x)

)
. Indeed, on the

one hand, since ξu
k satisfies the reproducing property (7.2), we have that φ(x) =

〈φ, ξu
k 〉kuk. Therefore

hk

(
φ(x), φ(x)

)
= |〈φ, ξu

k 〉k|2hk(uk, uk) = |〈φ, ξu
k 〉k|2.

But on the other hand, we have that

〈P x
k φ, φ〉k = |〈φ, ξu

k 〉k|2
‖ξu

k ‖2k
= |〈φ, ξu

k 〉k|2
ρk(x) ,

which proves the claim. Consequently,

〈Sk(f)φ, φ〉k =
∫

M

hk(
(
f(x)φ(x), φ(x)

)
μ(x) = 〈Tk(f)φ, φ〉k,

which proves the result. �
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9.4 Projective Embeddings

The coherent states construction gives a way to embed M into a complex projective
space. Remember that given a unit vector u ∈ L, the coherent state ξu

k ∈ Hk at u
is the holomorphic section of Lk → M given by

ξu
k (y) = Πk

(
y, π(u)

) · uk,

and that there exists k0 ≥ 1 such that for every k ≥ k0 and for every unit vector
u ∈ L, ξu

k �= 0. Hence for k ≥ k0 (from now on, we will assume that it is the case),
the class [ξu

k ] of ξu
k in P(Hk) is well-defined, and we saw that this class only depends

on π(u) where π is the projection from L to M . Thus we obtain a map

Φcoh : M → P(Hk), x �→ [ξu
k ], u ∈ π−1(x).

Since Π(·, ·) is anti-holomorphic on the right variable, this map is anti-holomorphic.
To get a holomorphic map, we consider

Φhol : M → P(H∗
k), x �→ [〈 · , ξu

k 〉k

]
, u ∈ π−1(x).

By Lemma 9.1.1, we have the alternative expression Φhol(x) = [αu] for any u ∈
π−1(x) with norm one, where αu(φ) = φ(x) · ūk for every φ ∈ Hk.

In order to identify P(Hk) with CP
dk , let us choose an orthonormal basis

(ϕj)0≤j≤dk
of Hk, dk = dim(Hk) − 1, and let us write for any unit vector u ∈ L

ξu
k =

dk∑

j=0
λj(u)ϕj

for some complex numbers λ0(u), . . . , λdk
(u). Then, using homogeneous coordinates,

Φcoh(x) = [λ0(u) : · · · : λdk
(u)], Φhol(x) =

[
λ0(u) : · · · : λdk

(u)
]
.

The latter is obtained by decomposing 〈 · , ξu
k 〉 in the dual basis (ϕ∗

j )0≤j≤dk
.

Proposition 9.4.1. The maps Φcoh and Φhol are embeddings for k large enough.

Proof. Since Lk is very ample for k large enough because L is positive, this follows
from the fact that Φhol is the embedding considered in Kodaira’s embedding the-
orem [24, Section 5.3]. Indeed, for j ∈ �0, dk� and x ∈ M , we have that for any unit
vector u ∈ π−1(x):

ϕj(x) = 〈ϕj , ξu
k 〉kuk = λj(u)uk. �

As before, let ρk : M → R be the function sending x ∈ M to ‖ξu
k ‖2k for any

u ∈ Lx with norm one. This function is often called Rawnsley’s function, since
it was introduced in [40] (see also [39]); however, the reader may encounter this
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terminology for a slightly different function, since many authors work with elements
u �= 0 ∈ L instead of unit vectors.

Proposition 9.4.2. The pullback of the Fubini–Study form by Φhol is given by

Φ∗
holωFS = kω + i∂∂̄ log ρk.

Proof. As in Example 2.5.9, introduce, for j ∈ �1, dk�, the open subset

Uj = {[z0 : · · · : zdk
] ∈ CP

dk | zj �= 0}

of CPdk . Then on Uj ,

ωFS = i∂∂̄ log
(

dk∑

m=0

∣
∣
∣
∣
zm

zj

∣
∣
∣
∣

2
)

.

Therefore, we have that, on Uj :

Φ∗
holωFS = i∂∂̄ log

(
dk∑

m=0

∣
∣
∣
∣
λm

λj

∣
∣
∣
∣

2
)

= i∂∂̄ log ρk − i∂∂̄ log|λj |2. (9.1)

Now, let uj be a local section of L over Uj such that uj(x) is a unit vector of Lx for
every x ∈ Uj . Then ϕj(x) = λj

(
uj(x)

)
uj(x)k is a local non-vanishing holomorphic

section of L, thus, remembering the proof of Proposition (3.5.4), we get that

∇kϕj = βj ⊗ ϕj , βj = ∂ log Hj

on Uj , with Hj = hk(ϕj , ϕj) = |λj(uj)|2. Therefore

−ikω = curv(∇k) = ∂̄∂ log Hj = ∂̄∂ log|λj(uj)|2

on Uj , which, in view of (9.1), yields the result. �

Thus Φ∗
holωFS = kω whenever ρk is constant. In this case, applying Proposi-

tion 9.3.3 to f = 1, we get that

dim Hk =
∫

M

ρkμ(x) = vol(M)ρk,

therefore ρk = dim Hk/ vol(M).

Example 9.4.3 (The complex projective line). Let us come back to Example 7.2.5.
On U0 = {[z0 : z1]| z0 �= 0}, we have the following expression for the kernel of Πk:

Πk(z, w) = k + 1
2π

(1 + zw)k tk
0(z) ⊗ t̄ k

0 (w).

Considering the unit vector
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u(z) = 1
h

(
t0(z), t0(z)

)1/2 t0(z) =
√

1 + |z|2 t0(z),

we get that the coherent state at u(z) has value at w

ξ
u(z)
k (w) = k + 1

2π

(
1 + |z|2)k/2(1 + z̄w)kh

(
t0(z), t0(z)

)k
tk
0(w)

= k + 1
2π

(
1 + z̄w

)k

(
1 + |z|2)k/2 tk

0(w).

Exercise 9.4.4. Check that ρk(z) = ‖ξ
u(z)
k ‖2k = (k + 1)/(2π).

To understand the coherent states embedding, we expand this coherent state to
get a linear combination of the e�(w) =

√
(k + 1)

(
k
�

)
/(2π) wk−�tk

0(w), 0 ≤ � ≤ k:

ξ
u(z)
k (w) =

√
(k + 1)

2π
(
1 + |z|2)k

k∑

�=0

√(
k

�

)
z̄�e�(w).

This means that

Φcoh(z) =
[

1 : · · · :

√(
k

�

)
z̄� : · · · : z̄k

]

and finally

Φhol(z) =
[

1 : · · · :

√(
k

�

)
z� : · · · : zk

]

is the Veronese embedding of CP1 into CP
k.
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