

Chapter 9 Coherent States and Norm Correspondence

Finally, we prove the lower bound for the operator norm of a Berezin–Toeplitz operator. In order to do so, we use the so-called coherent states.

9.1 Coherent Vectors

Let $P \subset L$ be the set of elements $u \in L$ such that ||u|| = 1, and denote by $\pi \colon P \to M$ the natural projection.

Lemma 9.1.1. Fix $u \in P$. For every $k \ge 1$, there exists a unique vector ξ_k^u in \mathcal{H}_k such that

$$\forall \phi \in \mathcal{H}_k, \quad \phi(\pi(u)) = \langle \phi, \xi_k^u \rangle_k u^k.$$

Definition 9.1.2. The vector $\xi_k^u \in \mathcal{H}_k$ is called the *coherent vector* at u.

Proof of Lemma 9.1.1. Consider the linear form F_k defined on \mathcal{H}_k by

$$\forall \phi \in \mathcal{H}_k, \quad F_k(\phi) = h_k(\phi(\pi(u)), u^k).$$

Since \mathcal{H}_k is finite-dimensional, F_k is continuous, so the Riesz representation theorem implies that there exists a unique vector $\xi_k^u \in \mathcal{H}_k$ such that $F_k(\phi) = \langle \phi, \xi_k^u \rangle_k$ for all ϕ in \mathcal{H}_k . But since u^k is an orthonormal basis of $L_{\pi(u)}^k$, we have $\phi(\pi(u)) = F_k(\phi)u^k$. \Box

Lemma 9.1.3. Let T_k be an operator $\mathcal{C}^{\infty}(M, L^k) \to \mathcal{C}^{\infty}(M, L^k)$ with kernel $T_k(\cdot, \cdot)$ and such that $\Pi_k T_k \Pi_k = T_k$. Then

(1) $\forall x \in M, (T_k \xi_k^u)(x) = T_k(x, \pi(u)) \cdot u^k,$ (2) $\langle T_k \xi_k^u, \xi_k^v \rangle_k = \overline{v}^k \cdot T_k(\pi(v), \pi(u)) \cdot u^k,$

where we recall that the dot stands for contraction with respect to h_k .

Proof. Let $(\phi_i)_{1 \leq i \leq d_k}$ be an orthonormal basis of \mathcal{H}_k . By proposition 6.3.3, we can write the Schwartz kernel of the restriction of T_k to \mathcal{H}_k as

$$\forall x, y \in M, \quad T_k(x, y) = \sum_{i,j=1}^{d_k} \langle T_k \phi_i, \phi_j \rangle_k \phi_j(x) \otimes \overline{\phi_i(y)}.$$

Therefore, for $x \in M$ we have that

$$T_k(x,\pi(u)) \cdot u^k = \sum_{i,j=1}^{d_k} \langle T_k \phi_i, \phi_j \rangle_k h_k(u^k, \phi_i(\pi(u))) \phi_j(x),$$

which we can rewrite, because $h_k\left(u^k, \phi_i(\pi(u))\right) = \langle \xi_k^u, \phi_i \rangle_k$, as

$$T_k(x,\pi(u)) \cdot u^k = \sum_{j=1}^{d_k} \langle T_k\left(\sum_{i=1}^{d_k} \langle \xi_k^u, \phi_i \rangle_k \phi_i\right), \phi_j \rangle_k \phi_j(x),$$

which yields that

$$T_k(x,\pi(u)) \cdot u^k = \sum_{j=1}^{d_k} \langle T_k \xi_k^u, \phi_j \rangle_k \phi_j(x) = (T_k \xi_k^u)(x).$$

This corresponds to the first claim. For the second claim, we use the first one to write for x in M that $h_k((T_k\xi_k^u)(x),\xi_k^v(x)) = h_k(T_k(x,\pi(u))\cdot u^k,\xi_k^v(x))$. Integrating this equality leads to

$$\langle T_k \xi_k^u, \xi_k^v \rangle_{\mathcal{H}_k} = \langle T_k \big(\cdot, \pi(u) \big), \xi_k^v \rangle_k,$$

but the right-hand side of this equation is equal to $h_k \left(T_k \left(\pi(v), \pi(u) \right) \cdot u^k, \xi_k^v(x) \right)$ by definition of ξ_k^v , and this term is in turn equal to $\bar{v}^k \cdot T_k \left(\pi(v), \pi(u) \right) \cdot u^k$. \Box

By taking $T_k = \Pi_k$ in this proposition, we immediately get the following properties.

Corollary 9.1.4. For every $u, v \in P$,

(1) for every x in M, $\xi_k^u(x) = \Pi_k(x, \pi(u)) \cdot u^k$, (2) $\langle \xi_k^u, \xi_k^v \rangle_k = \bar{v}^k \cdot \Pi_k(\pi(v), \pi(u)) \cdot u^k$, so $\Pi_k(\pi(v), \pi(u)) = \langle \xi_k^u, \xi_k^v \rangle_k v^k \otimes \bar{u}^k$, (3) $\|\xi_k^u\|_k^2 = \Pi_k(\pi(u), \pi(u))$.

9.2 Operator Norm of a Berezin–Toeplitz Operator

In this section, we prove Theorem 5.2.1. By the above corollary and Theorem 7.2.1, we have that for every $u \in P$,

$$\|\xi_k^u\|_k^2 \sim \left(\frac{k}{2\pi}\right)^n$$

when k goes to infinity, the estimate being uniform in u. In particular, there exists $k_0 \geq 1$ such that for every $u \in P$, $\xi_k^u \neq 0$ whenever $k \geq k_0$. For $k \geq k_0$, we set $\xi_k^{u,\text{norm}} = \xi_k^u / \|\xi_k^u\|_k$. Observe also that this means that the class of ξ_k^u in the projective space $\mathbb{P}(\mathcal{H}_k)$ is well-defined. In fact, this class only depends on $\pi(u)$ (because for $\lambda \in \mathbb{C}$, $\xi_k^{\lambda u} = \lambda^k \xi_k^u$) and is called the *coherent state* at $x = \pi(u)$.

Proposition 9.2.1. There exists C > 0 such that for every $x \in M$, for every $u \in P$ such that $x = \pi(u)$ and for every $f \in C^2(M, \mathbb{R})$ having x as a critical point,

$$||T_k(f)\xi_k^{u,\text{norm}} - f(x)\xi_k^{u,\text{norm}}||_k \le Ck^{-1}||f||_2$$

for every $k \geq k_0$.

Proof. Let $(U_i)_{1 \leq i \leq m}$ be an open cover of M by trivialisation open sets, and let $(V_i)_{1 \leq i \leq m}$ be a refinement of $(U_i)_{1 \leq i \leq m}$ such that $\overline{V_i} \subset U_i$ is compact. Then it is enough to show that for every $i \in [\![1,m]\!]$, there exists $C_i > 0$ such that for every $x \in V_i$, for every $u \in P$ such that $x = \pi(u)$ and for every $f \in C^2(M, \mathbb{R})$ having x as a critical point,

$$||T_k(f)\xi_k^{u,\text{norm}} - f(x)\xi_k^{u,\text{norm}}||_k \le Ck^{-1}||f||_2$$

for every $k \ge k_0$. Indeed it will then suffice to take $C = \max_{1 \le i \le m} C_i$. So let us choose $i \in [\![1,d]\!]$ and let us take $x \in V_i$, and set $\lambda = f(x)$. Then

$$\begin{split} \|(f-\lambda)\xi_{k}^{u,\text{norm}}\|_{k}^{2} &= \int_{V_{i}} |f(y)-\lambda|^{2} \|\xi_{k}^{u,\text{norm}}(y)\|^{2}\mu(y) \\ &+ \int_{M\setminus V_{i}} |f(y)-\lambda|^{2} \|\xi_{k}^{u,\text{norm}}(y)\|^{2}\mu(y). \end{split}$$

We will estimate both integrals. Let us introduce some coordinates y_1, \ldots, y_{2n} on U_i such that $x = (0, \ldots, 0)$, and set $q(y) = \sum_{j=1}^{2n} y_j^2$. By Taylor's formula, there exists a constant $\alpha > 0$, not depending on f, such that $|f(y) - \lambda| \le \alpha ||f||_2 q(y)$ for every $y \in V_i$. Therefore,

$$\int_{V_i} |f(y) - \lambda|^2 \|\xi_k^{u, \text{norm}}(y)\|^2 \mu(y) \le \alpha^2 \|f\|_2^2 \int_{V_i} \|\xi_k^{u, \text{norm}}(y)\|^2 q(y)^2 \, \mu(y).$$

In order to estimate this integral, we write:

$$\|\xi_k^{u,\text{norm}}(y)\| = \frac{\|\xi_k^u(y)\|}{\|\xi_k^u\|_k} = \frac{\|\Pi_k(y,x) \cdot u^k\|}{\|\xi_k^u\|_k}$$

We claim that $\|\Pi_k(y,x) \cdot u^k\| = \|\Pi_k(y,x)\|$. This is easily proved by fixing y, taking $v \in L_y$ with unit norm, and writing $\Pi_k(y,x)$ in the orthonormal basis $v^k \otimes \bar{u}^k$ of $L_y^k \otimes \bar{L}_x^k$. But it follows from (8.7) that there exists $\beta > 0$ such that for every $y \in V_i$,

 $||E(y,x)|| \leq \exp(-\beta q(y))$. Therefore, using Theorem 7.2.1 and remembering that $||\xi_k^u||_k^2 \sim (k/(2\pi))^n$, we obtain that there exists $\gamma > 0$ independent of f, x and u such that

$$\forall y \in V_i, \quad \|\xi_k^{u, \text{norm}}(y)\|^2 \le \gamma k^n \exp\left(-2\beta k q(y)\right).$$

Now, on U_i we can write $\mu = g \, dy_1 \wedge \cdots \wedge dy_{2n}$ for some smooth function g. So, if $\delta = \max_{\overline{V_i}} |g|$, we have that

$$\int_{V_i} \|\xi_k^{u,\operatorname{norm}}(y)\|^2 q(y)^2 \mu(y) \le \gamma \delta k^n \int_{\mathbb{R}^{2n}} \exp\left(-2\beta k q(y)\right) q(y)^2 \,\mathrm{d}y.$$

By performing the change of variable $w = \sqrt{k} y$, we finally obtain that

$$\int_{V_i} \|\xi_k^{u,\text{norm}}(y)\|^2 q(y)^2 \mu(y) \le \varepsilon k^{-2}$$

for some $\varepsilon > 0$, not depending on f, x, u. Consequently,

$$\int_{V_i} |f(y) - \lambda|^2 \|\xi_k^{u, \text{norm}}(y)\|^2 \mu(y) \le \alpha^2 \varepsilon \|f\|_2^2 k^{-2}.$$

It remains to estimate the integral on $M \setminus V_i$. Since for every $y \in M$, we have that $|f(y) - \lambda| \leq 2||f||_0 \leq 2||f||_2$, we immediately obtain that

$$\int_{M \setminus V_i} |f(y) - \lambda|^2 \|\xi_k^{u, \text{norm}}(y)\|^2 \mu(y) \le 4 \|f\|_2^2 \int_{M \setminus V_i} \|\xi_k^{u, \text{norm}}(y)\|^2 \, \mu(y).$$

We claim that this last integral is a $O(k^{-2})$. This comes again from the fact that $\|\xi_k^{u,\text{norm}}(y)\| = \|\Pi_k(y,x)\|/\|\xi_k^u\|_k$, since there exists r < 1 such that $\|E(y,x)\| \le r$ whenever y belongs to $M \setminus V_i$. So we finally get that

$$\|(f-\lambda)\xi_k^{u,\text{norm}}\|_k \le C_i \|f\|_2 k^{-1}$$

for some $C_i > 0$ independent of f, x, u. Since the operator norm of Π_k is smaller than one, this yields

$$\|(T_k(f) - \lambda)\xi_k^{u,\text{norm}}\|_k = \|\Pi_k(f - \lambda)\xi_k^{u,\text{norm}}\|_k \le C_i \|f\|_2 k^{-1},$$

which concludes the proof.

To prove Theorem 5.2.1, we assume that the maximum of |f| is $f(x_0)$ for some $x_0 \in M$ (otherwise, we work with -f), and we apply the previous result to x_0 and $u \in L_{x_0}$. This gives

$$||T_k(f)\xi_k^{u,\text{norm}} - ||f||\xi_k^{u,\text{norm}}|| \le Ck^{-1}||f||_2.$$

This implies that the distance between ||f|| and the spectrum of $T_k(f)$ satisfies dist $(||f||, \operatorname{Sp}(T_k(f))) \leq Ck^{-1}||f||_2$. Indeed, it is an easy consequence of the spectral

theorem that if A is a bounded self-adjoint operator acting on a Hilbert space, then

$$\|(A - \lambda)^{-1}\| \le \frac{1}{\operatorname{dist}(\lambda, \operatorname{Sp}(A))}$$

for every $\lambda \notin \operatorname{Sp}(A)$. So there exists $\lambda \in \operatorname{Sp}(T_k(f))$ such that $\lambda \geq ||f|| - Ck^{-1}||f||_2$. Therefore, we have that

$$||T_k(f)|| = \max_{\mu \in \operatorname{Sp}(T_k(f))} |\mu| \ge ||f|| - Ck^{-1} ||f||_2.$$

9.3 Positive Operator-Valued Measures

Let us show how the coherent states that we have introduced can be used to describe Berezin–Toeplitz operators in terms of integrals against a positive operator-valued measure. Firstly, let us recall what this term means. Let \mathcal{H} be a complex Hilbert space, and let $\mathcal{S}(\mathcal{H})$ be the space of bounded self-adjoint operators on \mathcal{H} . Let X be a set endowed with a σ -algebra \mathcal{C} .

Definition 9.3.1. A positive operator-valued measure on X with values in $\mathcal{S}(\mathcal{H})$ is a map $G: \mathcal{C} \to \mathcal{S}(\mathcal{H})$ which satisfies the following properties:

- (1) for every $A \in \mathcal{C}$, G(A) is a positive operator, i.e. $\langle A\xi, \xi \rangle \ge 0$ for every $\xi \in \mathcal{H}$, (2) $G(\emptyset) = 0$ and $G(X) = \mathrm{Id}$,
- (3) G is σ -additive: for any sequence $(A_j)_{j\geq 1}$ of disjoint elements of \mathcal{C} , $G(\bigcup_{j\geq 1} A_j) = \sum_{j\geq 1} G(A_j)$.

Such a positive operator-valued measure defines a probability measure μ_{ξ} on X for every $\xi \in \mathcal{H}$, by the formula $\mu_{\xi}(A) = \langle G(A)\xi, \xi \rangle$ for $A \in \mathcal{C}$. Given a bounded measurable function $f : X \to \mathbb{R}$, we define an operator $\int_X f dG \in \mathcal{S}(\mathcal{H})$ characterised by the following property:

$$\forall \xi \in \mathcal{H}, \quad \left\langle \left(\int_X f \, \mathrm{d}G \right) \xi, \xi \right\rangle = \int_X f \, \mathrm{d}\mu_{\xi}.$$

Coming back to the context of Berezin–Toeplitz operators, we consider X = Mwith the σ -algebra generated by its Borel sets, and $\mathcal{H} = \mathcal{H}_k = H^0(M, L^k)$. As before, for $x \in M$ and $u \in L_x$ with unit norm, let ξ_k^u be the coherent vector at u. Recall that there exists $k_0 \geq 1$ such that $\xi_k^u \neq 0$ whenever $k \geq k_0$. We claim that the function

$$\rho_k \colon M \to \mathbb{R}, \quad x \mapsto \|\xi_k^u\|_k^2$$

is well-defined, i.e. only depends on x. Indeed, if v is another unit vector in L_x , then $v = \lambda u$ for some $\lambda \in \mathbb{S}^1$. But then we have that $\xi_k^v = \lambda^k \xi_k^u$, so $\|\xi_k^v\|_k^2 = \|\xi_k^u\|_k^2$. For $k \ge k_0$, ρ_k is a positive function. Furthermore, the projection

9 Coherent States and Norm Correspondence

$$P_k^x \colon \mathcal{H}_k \to \mathcal{H}_k, \quad \phi \mapsto \frac{\langle \phi, \xi_k^u \rangle_k}{\|\xi_k^u\|_k^2} \xi_k^u$$

is also only dependent on x.

Lemma 9.3.2. For $k \ge k_0$, the map G_k such that $dG_k = \rho_k(x)P_k^x\mu$ defines a positive operator-valued measure on M.

Proof. The positivity and σ -additivity are immediate from the form of G_k . Let us prove the fact that $G_k(M) = \text{Id.}$ Let $\phi \in \mathcal{H}_k$ and $y \in M$; we have that

$$(G_k(M)\phi)(y) = \int_M \rho_k(x)(P_k^x\phi)(y)\mu(x).$$

Recall that $\xi_k^u(y) = \Pi_k(y, x) \cdot u^k$. Thus,

$$\rho_k(x)(P_k^x\phi)(y) = \langle \phi, \xi_k^u \rangle_k \xi_k^u(y) = \Pi_k(y,x) \cdot \left(\langle \phi, \xi_k^u \rangle_k u^k \right).$$

But ξ_k^u satisfies the reproducing property (7.2), hence $\langle \phi, \xi_k^u \rangle_k u^k = \phi(x)$. So finally

$$(G_k(M)\phi)(y) = \int_M \Pi_k(y,x) \cdot \phi(x)\mu(x) = (\Pi_k\phi)(y) = \phi(y).$$

Proposition 9.3.3. Let $k \ge k_0$. For any $f \in \mathcal{C}^{\infty}(M, \mathbb{R})$, $T_k(f) = \int_M f \, \mathrm{d}G_k$.

Proof. Let $S_k(f) = \int_M f \, \mathrm{d}G_k$, and let $\phi \in \mathcal{H}_k$. Then by definition,

$$\langle S_k(f)\phi,\phi\rangle_k = \int_M f(x)\langle P_k^x\phi,\phi\rangle_k\rho_k(x)\mu(x)$$

We claim that for every $x \in M$, $\langle P_k^x \phi, \phi \rangle_k \rho_k(x) = h_k(\phi(x), \phi(x))$. Indeed, on the one hand, since ξ_k^u satisfies the reproducing property (7.2), we have that $\phi(x) = \langle \phi, \xi_k^u \rangle_k u^k$. Therefore

$$h_k(\phi(x),\phi(x)) = |\langle\phi,\xi_k^u\rangle_k|^2 h_k(u^k,u^k) = |\langle\phi,\xi_k^u\rangle_k|^2.$$

But on the other hand, we have that

$$\langle P_k^x \phi, \phi \rangle_k = \frac{|\langle \phi, \xi_k^u \rangle_k|^2}{\|\xi_k^u\|_k^2} = \frac{|\langle \phi, \xi_k^u \rangle_k|^2}{\rho_k(x)},$$

which proves the claim. Consequently,

$$\langle S_k(f)\phi,\phi\rangle_k = \int_M h_k((f(x)\phi(x),\phi(x))\mu(x) = \langle T_k(f)\phi,\phi\rangle_k,$$

which proves the result.

120

9.4 Projective Embeddings

The coherent states construction gives a way to embed M into a complex projective space. Remember that given a unit vector $u \in L$, the coherent state $\xi_k^u \in \mathcal{H}_k$ at uis the holomorphic section of $L^k \to M$ given by

$$\xi_k^u(y) = \Pi_k\big(y, \pi(u)\big) \cdot u^k,$$

and that there exists $k_0 \geq 1$ such that for every $k \geq k_0$ and for every unit vector $u \in L, \xi_k^u \neq 0$. Hence for $k \geq k_0$ (from now on, we will assume that it is the case), the class $[\xi_k^u]$ of ξ_k^u in $\mathbb{P}(\mathcal{H}_k)$ is well-defined, and we saw that this class only depends on $\pi(u)$ where π is the projection from L to M. Thus we obtain a map

$$\Phi_{\rm coh}: M \to \mathbb{P}(\mathcal{H}_k), \qquad x \mapsto [\xi_k^u], \quad u \in \pi^{-1}(x).$$

Since $\Pi(\cdot, \cdot)$ is anti-holomorphic on the right variable, this map is anti-holomorphic. To get a holomorphic map, we consider

$$\Phi_{\text{hol}} \colon M \to \mathbb{P}(\mathcal{H}_k^*), \qquad x \mapsto \left[\langle \cdot, \xi_k^u \rangle_k \right], \quad u \in \pi^{-1}(x).$$

By Lemma 9.1.1, we have the alternative expression $\Phi_{\text{hol}}(x) = [\alpha_u]$ for any $u \in \pi^{-1}(x)$ with norm one, where $\alpha_u(\phi) = \phi(x) \cdot \bar{u}^k$ for every $\phi \in \mathcal{H}_k$.

In order to identify $\mathbb{P}(\mathcal{H}_k)$ with \mathbb{CP}^{d_k} , let us choose an orthonormal basis $(\varphi_j)_{0 \leq j \leq d_k}$ of \mathcal{H}_k , $d_k = \dim(\mathcal{H}_k) - 1$, and let us write for any unit vector $u \in L$

$$\xi_k^u = \sum_{j=0}^{d_k} \lambda_j(u)\varphi_j$$

for some complex numbers $\lambda_0(u), \ldots, \lambda_{d_k}(u)$. Then, using homogeneous coordinates,

$$\Phi_{\rm coh}(x) = [\lambda_0(u) : \dots : \lambda_{d_k}(u)], \quad \Phi_{\rm hol}(x) = \left[\overline{\lambda_0(u)} : \dots : \overline{\lambda_{d_k}(u)}\right].$$

The latter is obtained by decomposing $\langle \cdot, \xi_k^u \rangle$ in the dual basis $(\varphi_j^*)_{0 \le j \le d_k}$.

Proposition 9.4.1. The maps Φ_{coh} and Φ_{hol} are embeddings for k large enough.

Proof. Since L^k is very ample for k large enough because L is positive, this follows from the fact that Φ_{hol} is the embedding considered in Kodaira's embedding theorem [24, Section 5.3]. Indeed, for $j \in [0, d_k]$ and $x \in M$, we have that for any unit vector $u \in \pi^{-1}(x)$:

$$\varphi_j(x) = \langle \varphi_j, \xi_k^u \rangle_k u^k = \overline{\lambda_j(u)} u^k.$$

As before, let $\rho_k \colon M \to \mathbb{R}$ be the function sending $x \in M$ to $\|\xi_k^u\|_k^2$ for any $u \in L_x$ with norm one. This function is often called *Rawnsley's function*, since it was introduced in [40] (see also [39]); however, the reader may encounter this

terminology for a slightly different function, since many authors work with elements $u \neq 0 \in L$ instead of unit vectors.

Proposition 9.4.2. The pullback of the Fubini–Study form by Φ_{hol} is given by

$$\Phi_{\rm hol}^* \omega_{\rm FS} = k\omega + i\partial \partial \log \rho_k.$$

Proof. As in Example 2.5.9, introduce, for $j \in [\![1, d_k]\!]$, the open subset

$$U_j = \{ [z_0 : \cdots : z_{d_k}] \in \mathbb{CP}^{d_k} \mid z_j \neq 0 \}$$

of \mathbb{CP}^{d_k} . Then on U_i ,

$$\omega_{\rm FS} = {\rm i}\partial\bar{\partial}\log\left(\sum_{m=0}^{d_k} \left|\frac{z_m}{z_j}\right|^2\right).$$

Therefore, we have that, on U_j :

$$\Phi_{\rm hol}^* \omega_{\rm FS} = i\partial\bar{\partial}\log\left(\sum_{m=0}^{d_k} \left|\frac{\lambda_m}{\lambda_j}\right|^2\right) = i\partial\bar{\partial}\log\rho_k - i\partial\bar{\partial}\log|\lambda_j|^2.$$
(9.1)

Now, let u_j be a local section of L over U_j such that $u_j(x)$ is a unit vector of L_x for every $x \in U_j$. Then $\varphi_j(x) = \lambda_j(u_j(x))u_j(x)^k$ is a local non-vanishing holomorphic section of L, thus, remembering the proof of Proposition (3.5.4), we get that

$$\nabla^k \varphi_j = \beta_j \otimes \varphi_j, \quad \beta_j = \partial \log H_j$$

on U_j , with $H_j = h_k(\varphi_j, \varphi_j) = |\lambda_j(u_j)|^2$. Therefore

$$-ik\omega = \operatorname{curv}(\nabla^k) = \bar{\partial}\partial \log H_j = \bar{\partial}\partial \log |\lambda_j(u_j)|^2$$

on U_i , which, in view of (9.1), yields the result.

Thus $\Phi_{hol}^* \omega_{FS} = k\omega$ whenever ρ_k is constant. In this case, applying Proposition 9.3.3 to f = 1, we get that

$$\dim \mathcal{H}_k = \int_M \rho_k \mu(x) = \operatorname{vol}(M)\rho_k$$

therefore $\rho_k = \dim \mathcal{H}_k / \operatorname{vol}(M)$.

Example 9.4.3 (The complex projective line). Let us come back to Example 7.2.5. On $U_0 = \{[z_0 : z_1] | z_0 \neq 0\}$, we have the following expression for the kernel of Π_k :

$$\Pi_k(z,w) = \frac{k+1}{2\pi} (1+z\overline{w})^k t_0^k(z) \otimes \overline{t}_0^k(w).$$

Considering the unit vector

9.4 Projective Embeddings

$$u(z) = \frac{1}{h(t_0(z), t_0(z))^{1/2}} t_0(z) = \sqrt{1 + |z|^2} t_0(z)$$

we get that the coherent state at u(z) has value at w

$$\xi_k^{u(z)}(w) = \frac{k+1}{2\pi} \left(1+|z|^2\right)^{k/2} (1+\bar{z}w)^k h(t_0(z),t_0(z))^k t_0^k(w)$$
$$= \frac{k+1}{2\pi} \frac{\left(1+\bar{z}w\right)^k}{\left(1+|z|^2\right)^{k/2}} t_0^k(w).$$

Exercise 9.4.4. Check that $\rho_k(z) = \|\xi_k^{u(z)}\|_k^2 = (k+1)/(2\pi).$

To understand the coherent states embedding, we expand this coherent state to get a linear combination of the $e_{\ell}(w) = \sqrt{(k+1)\binom{k}{\ell}/(2\pi)} w^{k-\ell} t_0^k(w), 0 \le \ell \le k$:

$$\xi_k^{u(z)}(w) = \sqrt{\frac{(k+1)}{2\pi (1+|z|^2)^k}} \sum_{\ell=0}^k \sqrt{\binom{k}{\ell}} \bar{z}^\ell e_\ell(w).$$

This means that

$$\Phi_{\rm coh}(z) = \left[1:\cdots:\sqrt{\binom{k}{\ell}}\ \bar{z}^{\ell}:\cdots:\bar{z}^{k}\right]$$

and finally

$$\Phi_{\rm hol}(z) = \left[1:\cdots:\sqrt{\binom{k}{\ell}} z^{\ell}:\cdots:z^{k}\right]$$

is the Veronese embedding of \mathbb{CP}^1 into \mathbb{CP}^k .