
Chapter 8
Proof of Product and Commutator Estimates

The aim of this chapter is to prove Theorems 5.2.2 and 5.2.3.

8.1 Corrected Berezin–Toeplitz Operators

Given a function f ∈ C∞(M,R), we introduce the corrected Berezin–Toeplitz quant-
isation of f :

T c
k (f) = Πk

(
f + 1

ik ∇k
Xf

)
: Hk → Hk (8.1)

where Xf is the Hamiltonian vector field associated with f . The operator

Pk(f) = f + 1
ik ∇k

Xf
: C∞(M, Lk) → C∞(M, Lk)

is called the Kostant–Souriau operator associated with f . The Kostant–Souriau
operators satisfy the following nice properties.

Lemma 8.1.1. For any f, g ∈ C∞(M,R),

Pk(fg) = Pk(f)Pk(g) − 1
ik

(
{f, g} + 1

ik ∇k
Xf

∇k
Xg

)
.

Proof. Since Xfg = fXg + gXf , we have that

Pk(fg) = f

(
g + 1

ik ∇k
Xg

)
+ g

(
1
ik ∇k

Xf

)
= fPk(g) + g

(
1
ik ∇k

Xf

)
.

We can rewrite this as

Pk(fg) = Pk(f)Pk(g) − 1
ik ∇k

Xf
Pk(g) + g

(
1
ik ∇k

Xf

)
.
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Let us simplify the second term of the right-hand side; for φ ∈ C∞(M, Lk), one has

∇k
Xf

(Pk(g)φ) = (LXf
g)φ + g∇k

Xf
φ + 1

ik ∇k
Xf

∇k
Xg

φ.

Using that LXf
g = {f, g}, this implies that

Pk(fg) = Pk(f)Pk(g) − 1
ik

(
{f, g} + 1

ik ∇k
Xf

∇k
Xg

)
. ��

This shows that Pk(fg) differs from Pk(f)Pk(g) by a remainder “of order k−1”. It
turns out that for commutators, however, there is an exact (i.e. without remainder)
correspondence principle for Kostant–Souriau operators.

Lemma 8.1.2. For any f, g ∈ C∞(M,R),

[Pk(f), Pk(g)] = 1
ik Pk({f, g}).

Proof. Since Pk(gf) = Pk(fg), the previous lemma yields

[Pk(f), Pk(g)] = 1
ik

(
{f, g} + 1

ik ∇k
Xf

∇k
Xg

− {g, f} − 1
ik ∇k

Xg
∇k

Xf

)
.

This can be rewritten as

[Pk(f), Pk(g)] = 1
ik

(
2{f, g} + 1

ik [∇k
Xf

, ∇k
Xg

]
)

.

Moreover, by definition of the curvature, we have that

[∇k
Xf

, ∇k
Xg

] = curv(∇k)(Xf , Xg) + ∇k
[Xf ,Xg],

which yields, since curv(∇k) = −ikω, and since [Xf , Xg] is the Hamiltonian vector
field associated with {f, g},

[∇k
Xf

, ∇k
Xg

] = −ik{f, g} + ∇k
X{f,g} .

Putting all these equalities together, we finally obtain that

[Pk(f), Pk(g)] = 1
ik

(
{f, g} + 1

ik ∇k
X{f,g}

)
,

which was to be proved. ��

The idea behind the proof of Theorems 5.2.2 and 5.2.3 is to derive from the
properties above some estimates for the corrected Berezin–Toeplitz operators and
to take profit of these estimates by comparing the corrected operator T c

k (f) with
the usual Berezin–Toeplitz operator Tk(f). In order to do so, we will need a result
due to Tuynman [46], but let us first introduce some notation. Let g = ω(·, j·) be
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the Kähler metric on M , let μg be the associated volume form, let gradg be the
associated gradient, and let Δ be the associated Laplacian. We recall that for any
f ∈ C2(M),

Δf = divg(gradg f)

where the divergence divg(X) of a vector field X on M is the function defined by
the equality

LXμg = divg(X)μg.

Proposition 8.1.3 (Tuynman’s lemma). Let X ∈ C1(M, TM ⊗ C). Then

Πk∇k
XΠk = −Πk divg(X1,0)Πk,

where we recall that X1,0 = (X − ijX)/2. Furthermore, if f ∈ C2(M,R), then

Πk

(
1
ik ∇k

Xf

)
Πk = − 1

2k
Πk(Δf)Πk.

The following corollary is immediate.

Corollary 8.1.4. For every X ∈ C1(M, TM ⊗ C),
∥∥∥∥Πk

(
1
ik ∇k

X

)
Πk

∥∥∥∥ = O
(
k−1)

‖X‖1.

In particular, for every f ∈ C2(M,R),
∥∥∥∥Πk

(
1
ik ∇k

Xf

)
Πk

∥∥∥∥ = O
(
k−1)

‖f‖2.

Consequently, for every f ∈ C2(M,R), ‖T c
k (f) − Tk(f)‖ = O

(
k−1)

‖f‖2.

Proof of Proposition 8.1.3. Set Y = X1,0. By virtue of Lemma 8.1.5 below, proving
the first statement amounts to showing that for every φ ∈ Hk,

〈Πk

(
∇k

Xφ
)
, φ〉k = −〈Πk(divg(Y )φ), φ〉k.

Using the facts that Πk is self-adjoint and that Πkφ = φ whenever φ belongs to
Hk, we only need to prove that

∀φ ∈ Hk, 〈∇k
Xφ, φ〉k = −〈divg(Y )φ, φ〉k. (8.2)

Recall that μg = μ the Liouville measure on M . We have that

〈divg(Y )φ, φ〉k =
∫

M

divg(Y )hk(φ, φ) μg =
∫

M

hk(φ, φ) LY μg. (8.3)

Now, by integrating the equality

LY (hk(φ, φ)μg) = LY

(
hk(φ, φ)

)
μg + hk(φ, φ)LY μg,
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we obtain that ∫
M

hk(φ, φ) LY μg = −
∫

M

LY

(
hk(φ, φ)

)
μg.

Indeed, by Cartan’s formula, and using the fact that hk(φ, φ)μg is closed, we have
that LY (hk(φ, φ)μg) = d

(
iY (hk(φ, φ)μg)

)
, thus its integral on M vanishes. Coming

back to (8.3), this yields

〈divg(Y )φ, φ〉k = −
∫

M

LY

(
hk(φ, φ)

)
μg = −

∫
M

(
hk

(
∇k

Y φ, φ
)

+ hk

(
φ, ∇k

Y
φ

))
μg,

where the second equality comes from the fact that ∇k and hk are compatible. But
Y is a section of T 0,1M , and φ is a holomorphic section of Lk, so ∇k

Y
φ = 0, which

implies that ∇k
Xφ = ∇k

Y φ since X = Y + Y , and (8.2) is proved.
We now want to apply this to Xf where f belongs to C2(M,R). Observe that

divg

(
X1,0

f

)
= 1

2
(
divg(Xf ) − i divg(jXf )

)
.

We claim that divg(Xf ) = 0; indeed, since μg = μ, we have that

divg(Xf )μg = LXf
μg = LXf

μ = 0.

Consequently, divg(X1,0
f ) = −(i/2) divg(jXf ). Thanks to Lemma 2.6.1, this yields

divg(X1,0
f ) = i

2 div(gradg f) = i
2Δf,

and the second statement follows. ��

Lemma 8.1.5. Let T be a bounded operator acting on a complex Hilbert space H.
If 〈Tξ, ξ〉 = 0 for every ξ ∈ H, then T = 0.

Proof. This is a standard exercise but we still prove it. Let ξ, η ∈ H. Then

0 = 〈T (ξ + η), ξ + η〉 = 〈Tξ, ξ〉 + 〈Tξ, η〉 + 〈Tη, ξ〉 + 〈Tη, η〉

which yields
〈Tξ, η〉 = −〈Tη, ξ〉.

Replacing η by iη, this implies that

−i〈Tξ, η〉 = −i〈Tη, ξ〉,

and combining these two equalities yields 〈Tξ, η〉 = 0. ��
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8.2 Unitary Evolution of Kostant–Souriau Operators

The goal of this section is to give an alternate, more geometric proof of Lemma 8.1.2,
and to use this as an excuse to address the topic of the Schrödinger equation for
these operators. More precisely, given a function f ∈ C∞(M,R), we want to look
for solutions of

dΨt

dt
= −ikPk(f)Ψt, t ∈ R, (8.4)

where Ψt is a smooth section of Lk → M and Ψ0 ∈ C∞(M, Lk) is a given initial
condition. We can solve this equation as follows. Given a path γ : [0, T ] → M , let

T k
γ : Lk

γ(0) → Lk
γ(T )

be the parallel transport operator in Lk with respect to ∇k. Moreover, let φt be the
Hamiltonian flow of f at time t.

Proposition 8.2.1. Given Ψ0 ∈ C∞(M, Lk), the family of sections Ψt ∈ C∞(M, Lk)
defined as

Ψt

(
φt(m)

)
= exp

(
−iktf(m)

)
T k
(φs(m))s∈[0,t]

(
Ψ0(m)

)
for every m ∈ M , is a solution of (8.4) with initial condition Ψ0.

This defines an operator Uk(t) : C∞(M, Lk) → C∞(M, Lk) sending Ψ0 to Ψt,
which describes the prequantum evolution of the system.

Proof. We fix m ∈ M and Ψ0 ∈ C∞(M, Lk). We claim that it is enough to prove
the proposition for t so small that for every s ∈ [−t, t], the point φs(m) belongs to
a trivialisation open set V for L. This is because the operator Uk(t) satisfies the
semigroup relation Uk(t1 + t2) = Uk(t2)Uk(t1).

Let u be a local non-vanishing section of L over V , and let ϕ = huk for some
h ∈ C∞(V,R). Moreover, let α be the differential form such that ∇s = −iα ⊗ s.
Then we can write Pk(f)ϕ = (P̃k(f)h)uk with

P̃k(f)h = (f − iXf
α)h + 1

ik LXf
h. (8.5)

Moreover, a standard computation yields

T k
(φs(m))s∈[0,t]

(
ϕ(m)

)
= exp

(
ik

∫ t

0
(φs)∗(iXf

α) ds

)
h(m)uk

(
φt(m)

)
,

and consequently, if Ψ0 = h0sk on V , then Ψt = hts
k on V where

ht(m) = exp
(

ik
(∫ 0

−t

(φs)∗(iXf
α) ds − tf(m)

))
h0

(
φ−t(m)

)
.

for every m ∈ M . We only need to compare the time derivative of ht and P̃k(f)ht.
To simplify notation, we will write
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θ(t, m) =
∫ 0

−t

(φs)∗(iXf
α)(m) ds − tf(m).

On the one hand,

dht

dt
= exp

(
ikθ(t, ·)

)(
−(φ−t)∗(LXf

h0) + ik
(
(φ−t)∗(iXf

α) − f
)
(φ−t)∗h0

)
.

On the other hand, we have that

LXf
ht = exp

(
ikθ(t, ·)

)(
(φ−t)∗(LXf

h0) + ik
(
(φ−t)∗h0

) ∫ 0

−t

LXf

(
(φs)∗(iXf

α)
)

ds

)
.

Using Cartan’s formula, we have that

d
(
(φs)∗(iXf

α)
)

= (φs)∗(
d(iXf

α)
)

= (φs)∗(LXf
α) − (φs)∗(iXf

dα).

Since dα = i curv(L) = ω and (φs)∗(LXf
α) = d(φs)∗α/ds, we can write

∫ 0

−t

LXf

(
(φs)∗(iXf

α)
)

ds = iXf
α − (φ−t)∗(iXf

α),

therefore we finally obtain that

P̃k(f)ht = exp
(
ikθ(t, ·)

)((
f − (φ−t)∗(iXf

α)
)
(φ−t)∗h0 + 1

ik (φ−t)∗(LXf
h0)

)
,

which yields the desired formula −ikP̃k(f)ht = (dht/dt). ��

One can check that Uk(t) extends to a unitary operator on L2(M, Lk). It turns
out that the Kostant–Souriau operators satisfy an exact version of Egorov’s theorem
(Theorem 5.3.2).

Proposition 8.2.2. Let f ∈ C∞(M,R) and let Uk(t) be the evolution operator as-
sociated with Pk(f). Then

Uk(t)∗Pk(g)Uk(t) = Pk(g ◦ φt)

for every g ∈ C∞(M,R), where φt is the Hamiltonian flow of f at time t.

Proof. Again, we can work in a trivialisation open set for L, since

Uk(t1 + t2)∗Pk(g)Uk(t1 + t2) = Uk(t2)∗Uk(t1)∗Pk(g)Uk(t1)Uk(t2),
g ◦ φt1+t2 = g ◦ φt1 ◦ φt2 .

Hence we keep the same notation as in the proof of the previous proposition. If
Uk(t)Ψ0 = htu

k on V , the computations performed in this proof yield
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dht = exp
(
ikθ(t, ·)

)

×
(

(φ−t)∗(dh0) + ik
(

α − (φ−t)∗α −
∫ 0

−t

(φs)∗(iXf
dα) ds − t df

)
(φ−t)∗h0

)
.

We can simplify this further because

(φs)∗(iXf
dα) = (φs)∗(iXf

ω) = −(φs)∗( df) = − d
(
(φs)∗f

)
= − df,

hence we obtain that

LXg
ht = exp

(
ikθ(t, ·)

)(
(φ−t)∗(LXg

h0) + ik
(

iXg
α − iXg

(
(φ−t)∗α

))
(φ−t)∗h0

)
.

Therefore, (8.5) yields

P̃k(g)ht = exp
(
ikθ(t, ·)

)(
1
ik (φ−t)∗(LXg

h0) +
(

g − iXg

(
(φ−t)∗α

))
(φ−t)∗h0

)
.

Consequently, if Uk(t)∗Pk(g)Uk(t) = qtu
k on V , we finally obtain that

qt = 1
ik LXg◦φt h0 +

(
g ◦ φt − iXg◦φt α

)
h0 = P̃k(g ◦ φt)h0. ��

In order to reprove Lemma 8.1.2 with the help of these two results, it suffices to
write the time derivative of φk(t) = Uk(t)∗Pk(g)Uk(t)Ψ0, for Ψ0 ∈ C∞(M, Lk), in
two different ways. On the one hand, by definition of Uk,

dφk

dt

∣∣∣∣
t=0

= ik[Pk(f), Pk(g)]Ψ0.

On the other hand, since φk(t) = Pk(g ◦ φt)Ψ0, Lemma 5.3.3 implies that

dφk

dt

∣∣∣∣
t=0

= Pk({f, g})Ψ0,

and we conclude by comparing these two equalities that the Kostant–Souriau oper-
ators satisfy the exact correspondence principle.

8.3 Product Estimate

We will need the following result, of which we will give a proof in Section 8.5.

Theorem 8.3.1. There exists C > 0 such that for every f ∈ C2(M,R),

‖[Pk(f), Πk]‖ ≤ Ck−1‖f‖2.
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This estimate is fundamental and allows us to obtain product and commutator
estimates. We now use it to prove Theorem 5.2.2. We compute the difference

Tk(f)Tk(g)−Tk(fg) = Πkf [Πk, g]Πk = Πkf [Πk, Pk(g)]Πk −Πkf

[
Πk,

1
ik ∇k

Xg

]
Πk.

Thanks to Theorem 8.3.1, we know that ‖Πkf [Πk, Pk(g)]Πk‖ = O
(
k−1)

‖f‖0‖g‖2.
The other term can be estimated by writing it as

Πkf

[
Πk,

1
ik ∇k

Xg

]
Πk = ΠkfΠk

(
1
ik ∇k

Xg

)
Πk − Πk

(
1
ik ∇k

fXg

)
Πk.

Both terms can be estimated using Corollary 8.1.4. The first one satisfies
∥∥∥∥ΠkfΠk

(
1
ik ∇k

Xg

)
Πk

∥∥∥∥ = O
(
k−1)

‖f‖0‖g‖2,

whereas the second one satisfies∥∥∥∥Πk

(
1
ik ∇k

fXg

)
Πk

∥∥∥∥ = O
(
k−1)

‖fXg‖1 = O
(
k−1)

(‖f‖0‖g‖2 + ‖f‖1‖g‖1).

This proves the first estimate of the theorem. To derive the second one, observe that
Tk(fg) is self-adjoint and that the adjoint of Tk(f)Tk(g) is Tk(g)Tk(f), and use the
fact that the operator norm of the adjoint of an operator is the same as the norm
of the operator.

8.4 Commutator Estimate

We first prove commutator estimates for corrected Berezin–Toeplitz operators.

Proposition 8.4.1. For any f, g ∈ C2(M,R),
∥∥∥∥[T c

k (f), T c
k (g)] − 1

ik T c
k ({f, g})

∥∥∥∥ = O
(
k−2)

‖f‖2‖g‖2.

Proof. We will compare [T c
k (f), T c

k (g)] with [Pk(f), Pk(g)]. In order to do so, we
compute:

Πk[Πk, Pk(f)][Πk, Pk(g)]Πk = ΠkPk(f)[Πk, Pk(g)]Πk − ΠkPk(f)Πk[Πk, Pk(g)]Πk.

Expanding the first term on the right-hand side of this equality, we get

ΠkPk(f)[Πk, Pk(g)]Πk = ΠkPk(f)ΠkPk(g)Πk − ΠkPk(f)Pk(g)Πk

and the second term satisfies
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ΠkPk(f)Πk[Πk, Pk(g)]Πk = ΠkPk(f)ΠkPk(g)Πk − ΠkPk(f)ΠkPk(g)Πk = 0.

Therefore, we have that

Πk[Πk, Pk(f)][Πk, Pk(g)]Πk = T c
k (f)T c

k (g) − ΠkPk(f)Pk(g)Πk.

Thanks to Theorem 8.3.1, the left-hand side is a O(k−2)‖f‖2‖g‖2, thus

[T c
k (f), T c

k (g)] = Πk[Pk(f), Pk(g)]Πk + O(k−2)‖f‖2‖g‖2

which yields, using Lemma 8.1.2,

[T c
k (f), T c

k (g)] = 1
ik T c

k ({f, g}) + O(k−2)‖f‖2‖g‖2. ��

We now prove Theorem 5.2.3. Thanks to Proposition 8.1.3, we have that

Tk(f) = T c
k (f) + 1

2k
Tk(Δf),

and similarly for g. Consequently, [Tk(f), Tk(g)] = [T c
k (f), T c

k (g)] + Rk, with

Rk = 1
2k

[Tk(Δf), T c
k (g)] + 1

2k
[T c

k (f), Tk(Δg)] + 1
4k2 [Tk(Δf), Tk(Δg)].

Let us estimate Rk. Firstly, we have that

[Tk(Δf), T c
k (g)] = [Tk(Δf), Tk(g)] − 1

2k
[Tk(Δf), Tk(Δg)].

Applying Theorem 5.2.2 to Δf ∈ C1(M,R) and g ∈ C3(M,R), we obtain that

[Tk(Δf), Tk(g)] = O
(
k−1)

(‖f‖2‖g‖2 + ‖f‖3‖g‖1) = O
(
k−1)

‖f, g‖1,3.

Moreover, Lemma 5.1.2 implies that

[Tk(Δf), Tk(Δg)] = O
(
1
)
‖Δf‖0‖Δg‖0 = O

(
1
)
‖f‖2‖g‖2. (8.6)

It follows from these estimates that

1
2k

[Tk(Δf), T c
k (g)] = O

(
k−2)

‖f, g‖1,3.

A similar reasoning leads to

1
2k

[T c
k (f), Tk(Δg)] = O

(
k−2)

‖f, g‖1,3.

These two results combined with (8.6) imply that Rk = O
(
k−2)

‖f, g‖1,3. Now,
thanks to the previous proposition, we have that
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[T c
k (f), T c

k (g)] = 1
ik T c

k ({f, g}) + O
(
k−2)

‖f, g‖1,3.

Therefore,

[Tk(f), Tk(g)] = 1
ik Tk({f, g}) + i

2k2 Tk(Δ{f, g}) + O
(
k−2)

‖f, g‖1,3,

and we conclude thanks to the estimate

Tk(Δ{f, g}) = O
(
1
)
‖Δ{f, g}‖0 = O

(
1
)
‖f, g‖1,3,

which follows from Lemma 5.1.2.

8.5 Fundamental Estimates

This section, which follows the same lines as in the article [20], is devoted to the proof
of Theorem 8.3.1; this strongly relies on the asymptotic expansion of the Schwartz
kernel of the projector given by Theorem 7.2.1. Let E ∈ C∞(M × M, Lk � L̄k) be
as in this theorem, that is, satisfying the properties stated in Proposition 7.1.1. Let
U ⊂ M2 be the open set where E does not vanish; observe that U contains the
diagonal ΔM of M2. Define as before a function ϕE ∈ C∞(U) and a differential
form αE ∈ Ω1(U) ⊗ C by the formulas

ϕE = −2 log‖E‖, ∇̃E = −iαE ⊗ E,

where we recall that ∇̃ is the connection induced by ∇ on L � L̄. The function ϕE

vanishes along ΔM and is positive outside ΔM . We derived the following properties
of ϕE and αE in Lemmas 7.1.3 and 7.1.4:

(1) αE vanishes along ΔM ,
(2) ϕE vanishes to second order along ΔM ,
(3) for every x ∈ M , the kernel of the Hessian of ϕE at (x, x) is equal to T(x,x)ΔM ,

and this Hessian is positive definite on the complement of T(x,x)ΔM .

In what follows, we will need the following additional property.

Lemma 8.5.1. Let f ∈ C2(M,R), and let g ∈ C2(U,R) be defined by the formula
g(x, y) = f(x) − f(y). Then the function

u = g − αE(Xf , Xf )

vanishes to second order along ΔM .

Proof. It is clear that u vanishes along ΔM since g and αE do. Now, let Y and Z
be two vector fields on M ; we compute for (y, z) ∈ U

(
L(Y,Z)u

)
(y, z) =

(
LY f

)
(y) −

(
LZf

)
(z) − L(Y,Z)

(
αE(Xf , Xf )

)
(y, z).
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As before, set ω̃ = p∗
1ω−p∗

2ω with p1, p2 the natural projections M2 → M . Therefore
the first two terms in the above equation satisfy

(
LY f

)
(y) −

(
LZf

)
(z) = ω̃

(
(Y, Z), (Xf , Xf )

)
(x, y).

Moreover, since dαE = i curv(∇̃) = ω̃, the last term in the previous equation can
be written as

L(Y,Z)
(
αE(Xf , Xf )

)
= ω̃

(
(Y, Z), (Xf , Xf )

)
+ αE([(Y, Z), (Xf , Xf )])

+ L(Xf ,Xf )
(
αE(Y, Z)

)
.

Thus we finally obtain that

L(Y,Z)u = αE([(Xf , Xf ), (Y, Z)]) − L(Xf ,Xf )
(
αE(Y, Z)

)
.

The first term vanishes along ΔM because αE does. The second term vanishes along
ΔM because αE vanishes along ΔM and (Xf , Xf ) is tangent to ΔM . ��

These properties yield the following result. For u ∈ C0(M2,R), let Qk(u) be the
operator acting on C0(M, Lk) with Schwartz kernel Fk(u) =

(
k/(2π)

)n
Eku.

Lemma 8.5.2. Taking a smaller U still containing ΔM if necessary, for every com-
pact subset K ⊂ U and for every p ∈ N, there exists a constant CK,p > 0 such that
for any u ∈ C0(M2,R) with support contained in K, and for every k ≥ 1,

‖Qk(u)‖ ≤ CK,p|u|K,pk−p/2

where |u|K,p is the supremum of |u|ϕ−p/2
E on K \ ΔM , which may be infinite.

Proof. Assume first that K ⊂ V 2, where V ⊂ M is a trivialisation open set for
M , with coordinates x1, . . . , x2n, such that V 2 ⊂ U . So we may identify V with a
subset of R2n and assume that we are working in a subset of R4n. Since ϕE vanishes
to second order along ΔM , Taylor’s formula with integral remainder yields

ϕE(x, y) = 1
2 d2ϕE(x, x)(v, v) +

∫ 1

0

(1 − t)2

2 d3ϕE

(
(1 − t)(x, x) + t(x, y)

)
(v, v, v) dt

with v = (0, y −x). The last term is a O
(
|x−y|3

)
uniformly on K. Since d2ϕE(x, x)

is positive definite on the orthogonal of {x = y} ⊂ R
4n, we have that

λmin(x)‖v‖2 ≤ d2ϕE(x, x)(v, v) ≤ λmax(x)‖v‖2

whenever y �= x, where λmin(x) (respectively λmax(x)) is the smallest (respectively
largest) positive eigenvalue of d2ϕE(x, x). Therefore, there exists C > 0 such that

‖x − y‖2
C

≤ ϕE(x, y) ≤ C‖x − y‖2 (8.7)
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for every (x, y) ∈ K. Now, let u ∈ C0(M2,R) be compactly supported in K. The
previous estimate shows that for every (x, y) ∈ K, x �= y,

|u(x, y)|
ϕE(x, y)p/2 ≥ |u(x, y)|

Cp/2‖x − y‖p
,

thus |u(x, y)| ≤ Cp/2|u|K,p‖x − y‖p on V 2. If |u|K,p is infinite, the result is obvious.
If not, since ‖E‖ = exp(−ϕE/2), we have that

∫
M

‖Fk(u)(x, y)‖ dx ≤
(

k

2π

)n

Cp/2|u|K,p

∫
V

exp
(

−k‖x − y‖2
2C

)
‖x − y‖p dx.

The integral on V is smaller that the integral on R
2n of the same integrand. The

change of variable v =
√

k/C(x − y) yields
∫

M

‖Fk(u)(x, y)‖ dx ≤ Cp+n

(2π)n
k−p/2|u|K,p

∫
R2n

exp
(

−‖v‖2
2

)
‖v‖p dv,

which implies that
∫

M
‖Fk(u)(x, y)‖ dx ≤ C1

K,pk−p/2|u|K,p. A similar computation
leads to

∫
M

‖Fk(u)(x, y)‖ dy ≤ C2
K,pk−p/2|u|K,p for some C2

K,p > 0. It follows from
the Schur test that

‖Qk(u)‖ ≤ CK,pk−p/2|u|K,p

for some CK,p > 0.
Let us now turn to the general case. Taking a smaller U , still containing the

diagonal, if necessary, let (Vi)1≤i≤d be a finite family of trivialisation sets of M

such that K ⊂
⋃d

i=1 V 2
i ⊂ U . Choose a partition of unity η, (ηi)1≤i≤d subordinate

to the open cover M2 ⊂ (M2 \ K) ∪ (
⋃d

i=1 V 2
i ). Let u ∈ C0(M2,R) be compactly

supported in K; then

u =
d∑

i=1
ηiu, Qk(u) =

d∑
i=1

Qk(ηiu).

It follows from the first part of the proof that

‖Qk(ηiu)‖ ≤ CK,p,ik
−p/2|ηiu|K,p ≤ CK,p,ik

−p/2|u|K,p

for some constants CK,p,i > 0. We conclude by applying the triangle inequality. ��

Proposition 8.5.3. For every p ∈ N, for every u ∈ C∞(M2,R) supported in U
and vanishing to order p along ΔM , there exists Cu > 0 such that for every f ∈
C2(M,R),

‖Qk(u)‖ ≤ Cuk−p/2, ‖[Pk(f), Qk(u)]‖ ≤ Cuk−p/2−1‖f‖2,

where Pk(f) = f +
(
1/(ik)

)
∇k

Xf
: C∞(M, Lk) → C∞(M, Lk) is the Kostant–Souriau

operator associated with f .
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Before proving this result, let us state several lemmas.

Lemma 8.5.4. Let u ∈ C∞(M2,R) be compactly supported in U , and let f ∈
C2(M,R). Let g ∈ C2(M2,R) be defined by the formula g(x, y) = f(x) − f(y) as
before, and define the vector field Yf = (Xf , Xf ) on M2. Then

[Pk(f), Qk(u)] = Qk

((
g − αE(Yf )

)
u

)
+ 1

ik Qk

(
LYf

u
)
.

Proof. We start by writing

[Pk(f), Qk(u)] = fQk(u) − Qk(u)f + 1
ik

(
∇k

Xf
◦ Qk(u) − Qk(u) ◦ ∇k

Xf

)
.

The Schwartz kernel of fQk(u)−Qk(u)f is equal to f(x)Fk(u)(x, y)−Fk(u)(x, y)f(y).
By Lemma 6.4.3, the Schwartz kernel of ∇k

Xf
◦ Qk(u) is equal to

(
∇k

Xf
� id

)
Fk(u).

By Lemma 6.4.4, the Schwartz kernel of Qk(u)◦∇k
Xf

is equal to −
(
id � ∇k

Xf

)
Fk(u)

since div(Xf ) = 0. Therefore, the Schwartz kernel of [Pk(f), Qk(u)] is given by
(

f � id − id � f + 1
ik ∇̃k

(Xf ,Xf )

)
Fk(u).

Remembering the definition of αE , and since u has support in U , we have that

∇̃k
(Xf ,Xf )(E

ku) = u∇̃k
Yf

Ek + (LYf
u)Ek =

(
−ikαE(Yf )u + LYf

u
)
Ek.

Consequently, the Schwartz kernel of [Pk(f), Qk(u)] is equal to

Fk

((
g − αE(Yf )

)
u

)
+ 1

ik Fk

(
LYf

u
)
;

in other words, [Pk(f), Qk(u)] = Qk

((
g − αE(Yf )

)
u

)
+

(
1/(ik)

)
Qk(LYf

u). ��

In order to prove Proposition 8.5.3, we will investigate the two terms in the right-
hand side of the equality obtained in this lemma. The following result will help us
dealing with the first term.

Lemma 8.5.5. Let K be a compact subset of U . Then there exists C > 0 such that
for every f ∈ C2(M,R),

|g − αE(Yf )| ≤ C‖f‖2ϕE

on K, with g(x, y) = f(x) − f(y) and Yf = (Xf , Xf ) as above.

Proof. Assume first that K ⊂ V 2 where V is a trivialisation open set for M such
that V 2 ⊂ U . Introduce some coordinates x1, . . . , x2n on V . By Taylor’s formula and
(8.7), there exist some functions gi ∈ C1(V,R), 1 ≤ i ≤ 2n, such that for x, y ∈ V

g(x, y) =
2n∑

i=1
gi(y)(yi − xi) + O

(
ϕE

)
‖f‖2, (8.8)



110 8 Proof of Product and Commutator Estimates

and the O
(
ϕE

)
is uniform on K. Now, write

αE(x, y) =
2n∑

j=1
(μj(x, y) dxj + νj(x, y) dyj)

for some functions μj , νj ∈ C∞(V 2). Since αE vanishes along ΔM , so does μj .
Therefore, by Taylor’s formula, there exist some functions μji ∈ C∞(V ), 1 ≤ i ≤ 2n,
such that

μj(x, y) =
2n∑

i=1
μji(y)(yi − xi) + O

(
ϕE

)
.

Similarly, there exist some functions νji ∈ C∞(V ), 1 ≤ i ≤ 2n, such that

νj(x, y) =
2n∑

i=1
νji(y)(yi − xi) + O

(
ϕE

)
.

Consequently, we have that

αE(x, y) =
2n∑

i=1

( 2n∑
j=1

μji(y) dxj + νji(y) dyj

)
(yi − xi) + O

(
ϕE

) 2n∑
j=1

( dxj + dyj).

Now, by Taylor’s formula, dxj(Xf )(x) = dxj(Xf )(y) + O
(
ϕ
1/2
E

)
‖f‖2. Thus, the

previous formula implies that

αE(Yf )(x, y) =
2n∑

i=1
κi(y)(yi − xi) + O

(
ϕE

)
‖f‖2 (8.9)

for some smooth functions κi, and the O
(
ϕE

)
is uniform on K. Since, by Lemma 8.5.1,

the function g − αE(Yf ) vanishes to second order along ΔM , it follows from (8.8)
and (8.9) that gi − κi = 0 for every i ∈ �1, 2n�. Therefore

g − αE(Yf ) = O
(
ϕE

)
‖f‖2

uniformly on K.
To handle the general case, we use the same partition of unity argument that we

have used at the end of the proof of Lemma 8.5.2. ��

Finally, the following lemma will take care of the second term in the equality
displayed in Lemma 8.5.4.

Lemma 8.5.6. Let u ∈ C∞(M2,R) be a function vanishing to order p along ΔM .
Then there exists C > 0 such that for any vector field X of M2 of class C1 and
tangent to ΔM , we have that

|LXu| ≤ C‖X‖1ϕ
p/2
E .
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Proof. We start by proving the lemma for vector fields which are compactly sup-
ported in V 2, where V is a trivialisation open set of M , endowed with coordinates
x1, . . . , x2n. Write

du =
2n∑

i=1

(
∂u

∂xi
dxi + ∂u

∂yi
dyi

)
=

2n∑
i=1

(
∂u

∂yi
(dyi − dxi)+

(
∂u

∂xi
+ ∂u

∂yi

)
dxi

)
.

Since u vanishes to order p along ΔM and the vector field ∂xi
+∂yi

is tangent to ΔM ,
the function ∂u/∂xi +∂u/∂yi vanishes to order p along ΔM , so by Taylor’s formula,
it is a O

(
ϕ

p/2
E

)
. Moreover, there exists C1 > 0 such that for any C1 vector field X

compactly supported in V 2, | dxi(X)| ≤ C1‖X‖0. Furthermore, ∂u/∂yi vanishes to
order p − 1 along ΔM , so it is a O

(
ϕ
(p−1)/2
E

)
. We claim that there exists C2 > 0

such that for any C1 vector field X compactly supported in V 2 and tangent to ΔM ,

|( dyi − dxi)(X)| ≤ C2‖X‖1ϕ
1/2
E .

Indeed, take any such vector field X and write it as

X =
2n∑

i=1
αi(x, y)∂xi

+ βi(x, y)∂yi
,

where αi(x, x) = βi(x, x) since X is tangent to ΔM . Now

( dyi − dxi)(X) = βi(x, y) − αi(x, y) =
∫ 1

0
d(βi − αi)

(
(1 − t)(x, x) + t(x, y)

)
v dt

with v = (0, y − x), by Taylor’s formula. This last term is smaller than a constant
not depending on X times ‖X‖1ϕ

1/2
E .

Combining all of the above estimates, we obtain the result for vector fields which
are compactly supported in V 2. We prove the general case by using a partition of
unity argument. ��

Let us now show how to apply all of the above.

Proof of Proposition 8.5.3. Let K denote the support of u. Since u vanishes to
order p along the diagonal, it follows from Taylor’s formula, (8.7) and a partition
of unity argument that |u|K,p is finite. Consequently, the first estimate follows from
Lemma 8.5.2.

To prove the second estimate, recall that it follows from Lemma 8.5.4 that

[Pk(f), Qk(u)] = Qk

((
g − αE(Yf )

)
u

)
+ 1

ik Qk

(
LYf

u
)
.

It follows from Lemma 8.5.5 that |g −αE(Yf )| ≤ C‖f‖2ϕE for some constant C > 0
not depending on f . Moreover, since u vanishes to order p along ΔM , u is a O

(
ϕ

p/2
E

)
.

Thus,
(
g − αE(Yf )

)
u = O

(
ϕ
(p+2)/2
E

)
, and by Lemma 8.5.2,
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∥∥∥Qk

((
g − αE(Yf )

)
u

)∥∥∥ = O
(
k−p/2−1)

‖f‖2.

Similarly, it follows from Lemma 8.5.6 that |LYf
u| ≤ C ′‖f‖2ϕ

p/2
E for some C ′ > 0

not depending on f . Therefore, Lemma 8.5.2 yields

‖Qk

(
LYf

u
)
‖ = O

(
k−p/2)

‖f‖2,

and the result follows. ��
We are now ready to prove Theorem 8.3.1. Write as in Theorem 7.2.1

Πk(x, y) =
(

k

2π

)n

Ek(x, y)u(x, y, k) + Rk(x, y),

and let u ∼
∑

�≤0 k−�u� be the asymptotic expansion of u( · , · , k). Choose a com-
pactly supported function χ ∈ C∞(M2,R) such that supp(χ) ⊂ U and equal to one
near ΔM . Fixing m ∈ N, we write

Πk =
m∑

�=0
k−�Qk(χu�) +

m∑
�=0

k−�Qk

(
(1 − χ)u�

)
+ Qk

(
u −

m∑
�=0

k−�u�

)
+ Rk,

where Rk is the operator with Schwartz kernel Rk(·, ·). We only need to estimate the
commutator of each of these terms with Pk(f). Since χu� is compactly supported
in U , it follows from Proposition 8.5.3 that [Pk(f), Qk(χu�)] = O

(
k−1)

‖f‖2, so
[

Pk(f),
m∑

�=0
k−�Qk(χu�)

]
= O

(
k−1)

‖f‖2.

For the second term, we use the following fact. Let V be a neighbourhood of ΔM ,
and let r = supM2\V ‖E‖ < 1; then for any v ∈ C0(M2) vanishing in V , we have
that

‖Fk(v)‖ ≤ Cknrk‖v‖0
for some C > 0 not depending on v. Therefore this Schwartz kernel is a O

(
k−∞)

‖v‖0
uniformly on M2, and by Proposition 6.4.1, Qk(v) = O

(
k−∞)

‖v‖0. Since 1 − χ
vanishes in a neighbourhood of ΔM , combining this fact with the equality

[Pk(f), Qk

(
(1 − χ)u�

)
] = Qk

(
(1 − χ)

(
g − αE(Yf )

)
u�

)
+ 1

ik Qk

(
LYf

(
(1 − χ)u�

))
,

coming from Lemma 8.5.4, we obtain that
[

Pk(f),
m∑

�=0
k−�Qk

(
(1 − χ)u�

)]
= O

(
k−1)

‖f‖2.

It only remains to estimate the commutator [Pk(f), Sk] where
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Sk = Qk

(
u −

m∑
�=0

k−�u�

)
+ Rk.

The Schwartz kernel Sk( · , · ) of Sk is a O
(
kn−(m+1)). We conclude the proof by

taking m large enough and using the following lemma.

Lemma 8.5.7. There exists C > 0 such that for every f ∈ C2(M,R),

‖[Pk(f), Sk]‖ ≤ Ckn−(m+1)‖f‖2.

Proof. By computing ∇̃k
(
Fk(u −

∑m
�=0 k−�u�)

)
, we obtain that for every vector

field X on M2 of class C0, there exists CX > 0 such that ‖∇̃k
XSk‖ ≤ CXkn−m. This

implies that there exists C > 0 such that for every vector field X on M2 of class C0,
the inequality ‖∇̃k

XSk‖ ≤ Ckn−m‖X‖0 holds. Indeed, let (ηi)1≤i≤q be a partition
of unity subordinate to an open cover (Ui)1≤i≤q of M2 by trivialisation open sets
for TM2, with a local basis (Yij)1≤j≤4n, and write

X =
q∑

i=1
ηiX =

q∑
i=1

4n∑
j=1

λijYij ,

where λij is a continuous function, which satisfies ‖λij‖0 ≤ C ′‖X‖0 for some C ′ > 0.
Consequently,

‖∇̃k
XSk‖ =

∥∥∥∥∥∥
q∑

i=1

4n∑
j=1

λij∇̃k
Yij

Sk

∥∥∥∥∥∥ ≤ C ′(max
i,j

CYij
)‖X‖0.

To finish the proof, we obtain as in the proof of Lemma 8.5.4 that the Schwartz
kernel of [Pk(f), Sk] is equal to

(
f � id − id � f + 1

ik ∇̃k
(Xf ,Xf )

)
Sk.

By the above estimate, ‖∇̃k
(Xf ,Xf )Sk‖ ≤ Ckn−m‖f‖1, and the result follows. ��
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