
Chapter 2
A Short Introduction to Kähler Manifolds

In this chapter, we recall some general facts about complex and Kähler manifolds.
It is not an exhaustive list of such facts, but rather an introduction of objects and
properties that we will need in the rest of the notes. The interested reader might
want to take a look at some standard textbooks, such as [24, 35] for instance.

Let M be a smooth manifold (M will always be paracompact). The tangent
(respectively cotangent) space at a point m ∈ M will be denoted by TmM (respec-
tively T ∗

mM); the tangent (respectively cotangent) bundle will be denoted by TM
(respectively T ∗M). A vector field is a smooth section of the tangent bundle; the
notation C∞(M, TM) will stand for the set of vector fields. Similarly, a differen-
tial form of degree p is a section of the exterior bundle Λp(T ∗M); we will use the
notation Ωp(M) for the set of degree p differential forms. We will write iXα for the
interior product of a vector field X with a differential form α.

2.1 Almost Complex Structures

Definition 2.1.1. An almost complex structure on M is a smooth field j of endo-
morphisms of the tangent bundle of M whose square is minus the identity:

∀m ∈ M, j2m = − IdTmM .

If such a structure exists, we say that (M, j) is an almost complex manifold.

By taking the determinant, we notice that if M is endowed with an almost
complex structure, then its dimension is necessarily even. In what follows, we will
denote this dimension by 2n with n ≥ 1.

Example 2.1.2. Consider M = R
2 with its standard basis, and let j be the endo-

morphism of R2 whose matrix in this basis is

J =
(

0 −1
1 0

)
.
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Then j is an almost complex structure on M ; it corresponds to multiplication by i
on R

2 � C, (x, y) → x+iy. More generally, the endomorphism of R2n whose matrix
in the standard basis is block diagonal with blocks as above is an almost complex
structure on R

2n.

This example is a particular case of a more general fact: if M is a complex
manifold, i.e. a manifold modelled on C

n with holomorphic transition functions,
then it has an almost complex structure. Indeed, let U be a trivialisation open set,
and let z1, . . . , zn be holomorphic coordinates on U . For � ∈ �1, n�, we define the
functions x� = �(z�) and y� = �(z�). Then (x1, y1, . . . , xn, yn) are real coordinates
on M , and

∀� ∈ �1, n�, j∂x�
= ∂y�

, j∂y�
= −∂x�

defines an almost complex structure j on M ; it does not depend on the choice of
local coordinates because the differentials of the transition functions are C-linear
isomorphisms, which means that they commute with this local j.

The converse is not true in general: an almost complex structure does not neces-
sarily come from a structure of complex manifold. When it occurs, the almost com-
plex structure is said to be integrable. We will state some integrability criterion later.

2.2 The Complexified Tangent Bundle

Given an almost complex manifold (M, j), we would like to diagonalise j; since
it obviously has no real eigenvalue, we introduce the complexified tangent bundle
TM ⊗ C of M . We extend all endomorphisms of TM to its complexification by
C-linearity. Then we can decompose the complexified tangent bundle as the direct
sum of the eigenspaces of j.

Lemma 2.2.1. The complexified tangent bundle can be written as the direct sum

TM ⊗ C = T 1,0M ⊕ T 0,1M

where

T 1,0M := ker(j − i Id) = {X − ijX | X ∈ TM}

and

T 0,1M := ker(j + i Id) = {X + ijX | X ∈ TM} = T 1,0M.

We will denote by Y 1,0 (respectively Y 0,1) the component in T 1,0M (respectively
T 0,1M) of an element Y of the complexified tangent bundle in this decomposition.
We have that

Y 1,0 = Y − ijY

2 , Y 0,1 = Y + ijY

2

for such a Y .
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Proof. Since j2 = − Id, j is diagonalisable over C, with eigenvalues ±i:

TM ⊗ C = ker(j − i Id) ⊕ ker(j + i Id).

Since these two eigenspaces correspond to complex conjugate eigenvalues, they are
complex conjugate. Thus, it only remains to show that

ker(j − i Id) = {X − ijX | X ∈ TM}.

A simple computation shows that if Y = X − ijX with X ∈ TM , then jY = iY .
Conversely, let Z ∈ ker(j − i Id), and let us write Z = X + iY with X, Y ∈ TM .
From the equality

jX + ijY = iX − Y,

it follows, by identification of the real parts, that Y = −jX. �

Let us assume that M is a complex manifold and that j is the associated com-
plex structure introduced in the previous section. We consider some local complex
coordinates (z1 = x1 + iy1, . . . , zn = xn + iyn), and define for � ∈ �1, n�

∂z�
= 1

2 (∂x�
− i∂y�

), ∂z̄�
= 1

2 (∂x�
+ i∂y�

);

then (∂z�
)1≤�≤n and (∂z̄�

)1≤�≤n are local bases of T 1,0M and T 0,1M , respectively.
The following statement gives a necessary and sufficient condition for an almost

complex structure to induce a genuine complex structure. Let us recall that a distri-
bution E ⊂ TM is integrable if and only if for any two vector fields X, Y ∈ E, the
Lie bracket [X, Y ] belongs to E (this is actually equivalent to the usual definition as
a consequence of the Frobenius integrability theorem, but we take it as a definition
to simplify).

Theorem 2.2.2 (The Newlander–Nirenberg theorem). Let (M, j) be an al-
most complex manifold. Then j comes from a complex structure if and only if the
distribution T 1,0M is integrable.

A proof of this standard but rather involved result can be found in [25, Section 5.7]
for instance.

2.3 Decomposition of Forms

By duality, the decomposition TM ⊗C = T 1,0M ⊕ T 0,1M induces a decomposition
of the complexified cotangent bundle:

T ∗M ⊗ C = (T ∗M)1,0 ⊕ (T ∗M)0,1

where
(T ∗M)1,0 = {α ∈ T ∗M | ∀X ∈ T 0,1M, α(X) = 0},
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and (T ∗M)0,1 is defined in the same way, replacing T 0,1M by T 1,0M . Similarly to
Lemma 2.2.1, we have the following description.

Lemma 2.3.1. We have that

(T ∗M)1,0 = {α − iα ◦ j | α ∈ T ∗M}, (T ∗M)0,1 = (T ∗M)1,0.

It is well-known that the exterior algebra of a direct sum of two vector spaces
is isomorphic to the tensor product of both exterior algebras of the vector spaces,
and that this isomorphism respects the grading. Consequently, we have that

Λk(T ∗M) ⊗ C �
k⊕

�=0
(Λ�,0M ⊗ Λ0,k−�M)

with Λp,0M := Λp
(
(T ∗M)1,0)

and Λ0,qM := Λq
(
(T ∗M)0,1)

. This can be written as

Λk(T ∗M) ⊗ C �
⊕

p,q∈N

p+q=k

Λp,qM

with Λp,qM := Λp,0M ⊗Λ0,qM . Therefore, this induces a decomposition of the space
of k-forms:

Ωk(M) ⊗ C =
⊕

p,q∈N

p+q=k

Ωp,q(M)

where Ωp,q(M) is the space of smooth sections of Λp,qM . An element of Ωp,q(M)
will be called a (p, q)-form. These forms can be characterised in the following way.

Lemma 2.3.2. A k-form α belongs to Ωk,0(M) if and only if for every vector field
X ∈ C∞(M, T 0,1M), iXα = 0. More generally, a k-form α belongs to Ωp,q(M)
with p + q = k, q = k, if and only if for any q + 1 vector fields X1, . . . , Xq+1 ∈
C∞(M, T 0,1M), iX1 . . . iXq+1α = 0.

By applying complex conjugation, we deduce from this result that a k-form α
belongs to Ωp,q(M) with p + q = k, p = k, if and only if for any p + 1 vector fields
Y1, . . . , Yp+1 ∈ C∞(M, T 1,0M), iX1 . . . iXp+1α = 0.

Proof. Let α ∈ Ωk,0(M). We can write α locally as a sum of terms of the form

α� = β1 ∧ · · · ∧ βk

with β1, . . . , βk ∈ Ω1,0(M). If X ∈ C∞(M, T 0,1M), by using the formula

iX(γ ∧ δ) = (iXγ) ∧ δ + (−1)deg γγ ∧ (iXδ)

for differential forms γ, δ, and the fact that βj(X) = 0, we obtain that iXα = 0. Con-
versely, let α ∈ Ωk(M) ⊗ C whose interior product with every X ∈ C∞(M, T 0,1M)
vanishes. We write as
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α = α(k,0) + α(k−1,1) + · · · + α(0,k)

the decomposition of α in the direct sum Ωk(M) = Ωk,0(M) ⊕ · · · ⊕ Ω0,k(M). For
X ∈ C∞(M, T 0,1M), one has

0 = iXα = iXα(k−1,1) + · · · + iXα(0,k)

since iXα(k,0) = 0 by the first part of the proof. It is easy to check that iXα(k−p,p)

belongs to Ωk−p,p−1(M) for 1 ≤ p ≤ k. Therefore, the previous equality yields that
iXα(k−p,p) = 0 for every p ∈ �1, k�. Now, we take a local basis β1, . . . βn of (T ∗M)1,0

and write

α(k−p,p) =
∑

L={�1,...,�k−p}⊂�1,n�
�1<···<�k−p

∑
M={m1,...,mp}⊂�1,n�

m1<···<mp

fL,M β�1∧ · · · ∧ β�k−p

∧ β̄m1 ∧ · · · ∧ β̄mp

for some smooth functions fL,M . Then

iXα(k−p,p) =
∑

L

∑
M

p∑
r=1

± fL,M β̄�r
(X)β�1 ∧ · · · ∧ β�k−p

∧ β̄m1 ∧ · · · ∧ β̄mr−1 ∧ β̄mr+1 ∧ · · · ∧ β̄mp
,

thus fL,M β̄mr
(X) = 0 for every L, M, mr and every X ∈ C∞(M, T 0,1M), which

finally yields α(k−p,p) = 0. Therefore α = α(k,0) belongs to Ωk,0(M).
The second statement can be proved by induction on q (the first statement is the

q = 0 case). �

We would like to understand the action of the exterior derivative (extended by C-
linearity) with respect to this decomposition. It turns out that it behaves “nicely” if
and only if j is induced by a structure of complex manifold on M . Before explaining
this, let us introduce one more object.

Definition 2.3.3. The Nijenhuis tensor Nj of j is defined as follows: for any vector
fields X, Y ∈ C∞(M, TM),

Nj(X, Y ) = [X, Y ] + j[jX, Y ] + j[X, jY ] − [jX, jY ].

This tensor allows one to express the integrability condition in the Newlander–
Nirenberg theorem in a more algebraic way.

Proposition 2.3.4. Let (M, j) be an almost complex manifold. The following as-
sertions are equivalent:

(1) j comes from a complex structure,
(2) d

(
Ω1,0(M)

) ⊂ Ω2,0(M) ⊕ Ω1,1(M),
(3) ∀p, q ∈ N, d

(
Ωp,q(M)

) ⊂ Ωp+1,q(M) ⊕ Ωp,q+1(M),
(4) Nj = 0.
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Proof. (1) ⇔ (4) : the Newlander–Nirenberg theorem states that j comes from a
complex structure if and only if [C∞(M, T 1,0M), C∞(M, T 1,0M)] ⊂ C∞(M, T 1,0M).
So let X, Y ∈ C∞(M, TM); a straightforward computation yields

[X − ijX, Y − ijY ] = [X, Y ] − [jX, jY ] − i[X, jY ] − i[jX, Y ],

which implies that

[X − ijX, Y − ijY ]0,1 = 1
2
(
Nj(X, Y ) + ijNj(X, Y )

)
.

Therefore, [X −ijX, Y −ijY ] belongs to C∞(M, T 1,0M) if and only if Nj(X, Y ) = 0.
(1) ⇔ (2) : let α ∈ Ω1,0(M), and let X, Y ∈ C∞(M, T 0,1M). Then

dα(X, Y ) = LX

(
α(Y )

) − LY

(
α(X)

) − α([X, Y ]) = −α([X, Y ])

because α(X) = 0 = α(Y ) by definition of Ω1,0(M) (here LX stands for the Lie
derivative with respect to X). Therefore, dα(X, Y ) = 0 if and only if [X, Y ]1,0 ∈
ker α. This means that d

(
Ω1,0(M)

) ⊂ Ω2,0(M) ⊕ Ω1,1(M) if and only if for any
X, Y ∈ C∞(M, T 0,1M), [X, Y ]1,0 = 0, i.e. [X, Y ] belongs to C∞(M, T 0,1M).

(2) ⇔ (3) : the implication (3) ⇒ (2) is obvious. Thus, let us assume that state-
ment (2) holds. By complex conjugation, this implies that

d
(
Ω0,1(M)

) ⊂ Ω1,1(M) ⊕ Ω0,2(M)

as well. Let γ ∈ Ωp,q(M); we can write locally γ as a sum of elements γ̃ of the form

γ̃ = α1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq

with α1, . . . , αp ∈ Ω1,0(M), β1, . . . , βq ∈ Ω0,1(M). Then by the Leibniz rule for
forms

dγ̃ = dα1 ∧ γ̂α1 + · · · + dαp ∧ γ̂αp
+ dβ1 ∧ γ̂β1 + · · · + dβq ∧ γ̂βq

.

where γ̂αj
= α1 ∧ · · · ∧ αj−1 ∧ αj+1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq and γ̂βj

is defined
in the same way. In particular, γ̂αj

belongs to Ωp−1,q(M). Moreover, since αj is
a (1, 0)-form, dαj belongs to Ω2,0(M) ⊕ Ω1,1(M); therefore dαj ∧ γ̂αj

belongs to
Ωp+1,q(M) ⊕ Ωp,q+1(M). It follows from a similar reasoning that dβk ∧ γ̂βk

also
belongs to this direct sum. Consequently, dγ̃ belongs to Ωp+1,q(M) ⊕ Ωp,q+1(M),
and so does dγ. �

Observe that, as a consequence of this result, an almost complex structure on
a surface always comes from a complex structure. Indeed, if M is a surface, then
Ω2,0(M) = Ω0,2(M) = {0},andthereforetheexteriorderivativeofa(1, 0)-formalways
lies in Ω1,1(M).
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2.4 Complex Manifolds

Let us now assume that M is a complex manifold and that j is the induced almost
complex structure. Let (zk = xk + iyk)1≤k≤n be some local complex coordinates on
an open subset U ⊂ M . We get complex-valued forms

dzk = dxk + idyk ∈ Ω1,0(U), dz̄k = dxk − idyk ∈ Ω0,1(U)

which form local bases ( dz1, . . . , dzn), ( dz̄1, . . . , dz̄n) of Ω1,0(M) and Ω0,1(M), re-
spectively; ( dz1, . . . , dzn, dz̄1, . . . , dz̄n) is a local basis of Ω1(M) ⊗Cwhich is dual to
the local basis (∂z1 , . . . , ∂zn

, ∂z̄1 , . . . , ∂z̄n
) introduced above. Therefore, a local basis

of Ωp,q(M) is given by the family

( dzk1 ∧ · · · ∧ dzkp
∧ dz̄�1 ∧ · · · ∧ dz̄�q

)1≤k1<···<kp,�1<···<�q≤n.

This immediately provides one with another proof of the fact that, in this case, the
image of Ωp,q(M) by the exterior derivative is included in Ωp+1,q(M)⊕Ωp,q+1(M).
Because of this fact, we can write d = ∂ + ∂̄ where

∂ : Ωp,q(M) → Ωp+1,q(M), ∂̄ : Ωp,q(M) → Ωp,q+1(M).

The operators ∂, ∂̄ satisfy the Leibniz rule

∂(α ∧ β) = ∂α ∧ β + (−1)deg(α)α ∧ ∂β, ∂̄(α ∧ β) = ∂̄α ∧ β + (−1)deg(α)α ∧ ∂̄β,

which we can prove by writing the Leibniz rule for d and identifying the types.
Let (Uk, ϕk)k∈I be a holomorphic atlas of M . A function f : M → C is called

holomorphic if and only if for every k ∈ I, the function f ◦ ϕ−1
k : Cn → C is

holomorphic.

Lemma 2.4.1. Let f : M → C be a smooth function. The following statements are
equivalent

(1) f is holomorphic,
(2) for every Z ∈ C∞(M, T 0,1M), LZf = 0,
(3) ∂̄f = 0.

Proof. The equivalence of the last two statements is clear because ∂̄f = 0 is equiv-
alent to the fact that df belongs to Ω1,0(M). Now, let (z1, . . . , zn) be the local
complex coordinates defined by ϕk; then f is holomorphic if and only if

∀� ∈ �1, n�,
∂f

∂z̄�
= 0

in these coordinates. This is equivalent to saying that df(∂z̄�
) = 0 for every �; since

(∂z̄�
)1≤�≤n is a local basis of T 0,1M , this amounts to df ∈ Ω1,0(M), which in turn

is equivalent to ∂̄f = 0. �
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Lemma 2.4.2. The following identities hold:

∂2 = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄2 = 0.

Proof. This follows from the equality

0 = d2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2

and the fact that ∂2 : Ωp,q(M) → Ωp+2,q(M), ∂∂̄ + ∂̄∂ : Ωp,q(M) → Ωp+1,q+1(M)
and ∂̄2 : Ωp,q(M) → Ωp,q+2(M).

Following the standard terminology for the exterior derivative, we say that a
complex-valued form α is ∂̄-closed if ∂̄α = 0, and ∂̄-exact if there exists a differential
form β such that α = ∂̄β. The operator ∂̄ defines a cohomology, called Dolbeault
cohomology. The cohomology groups are the quotients of ∂̄-closed forms by ∂̄-exact
forms:

Hp,q(M) = ker
(
∂̄|Ωp,q(M)

)/
∂̄

(
Ωp,q−1(M)

)
.

The following result is an analogue of the Poincaré lemma for the exterior derivative.

Lemma 2.4.3 (Dolbeault–Grothendieck lemma, or ∂̄-Poincaré lemma).
A ∂̄-closed form is locally ∂̄-exact.

For a proof, we refer the reader to standard textbooks, for instance [24, Proposi-
tion 1.3.8]. This result can be used to prove the following property of the operator
i∂∂̄, which will be useful later.

Lemma 2.4.4 (The i∂∂̄-lemma). Let α ∈ Ω1,1(M) be a differential form of type
(1, 1). Then α is closed and real-valued (i.e., α ∈ Ω1,1(M) ∩ Ω2(M)) if and only if
every point m ∈ M has an open neighbourhood U such that α = i∂∂̄φ over U for
some φ ∈ C∞(U,R).

Proof. Assume that α = i∂∂̄φ over some open subset U ⊂ M for some φ ∈ C∞(U,R).
Then

dα = i(∂2∂̄φ + ∂̄∂∂̄φ) = −i∂∂̄2φ = 0,

which proves that α is closed. Moreover,
ᾱ = −i∂̄∂φ̄ = −i∂̄∂φ = i∂∂̄φ = α,

thus α is real-valued.
Conversely, assume that α is closed and real-valued. From the usual Poincaré

lemma, there exists locally a real-valued one-form β such that α = dβ. From the
equality

α = dβ = ∂β(1,0) + ∂̄β(1,0) + ∂β(0,1) + ∂̄β(0,1),

we deduce that α = ∂̄β(1,0) + ∂β(0,1) and ∂̄β(0,1) = 0. Thanks to the Dolbeault–
Grothendieck lemma, we can find a local function f such that β(0,1) = ∂̄f . Since β
is real-valued, the components of β satisfy
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β(1,0) = β(0,1) = ∂f̄ .

We finally obtain that

α = ∂̄∂f̄ + ∂∂̄f = ∂∂̄(f − f̄) = i∂∂̄φ

with φ = 2 �(f). �

2.5 Kähler Manifolds

Let (M, j) be an almost complex manifold.

Definition 2.5.1. A Riemannian metric g on M is said to be compatible with j if

g(jX, jY ) = g(X, Y )

for every X, Y ∈ TM .

Every almost complex manifold can be equipped with a compatible Riemannian
metric. Indeed, take any Riemannian metric g on M and define

h(X, Y ) := g(X, Y ) + g(jX, jY )

for every X, Y ∈ TM ; then h is compatible with j. Given a compatible Riemannian
metric g on (M, j), one defines its fundamental form as

ω(X, Y ) := g(jX, Y )

for every X, Y ∈ TM .

Lemma 2.5.2. The fundamental form ω is a real (1, 1)-form, i.e., it belongs to
Ω1,1(M) ∩ Ω2(M).

Proof. Firstly, we check that ω belongs to Ω2(M):

ω(Y, X) = g(jY, X) = g(j2Y, jX) = −g(Y, jX) = −g(jX, Y ) = −ω(X, Y )

for X, Y ∈ TM . Secondly, to prove that ω is of type (1, 1), it is enough, by
Lemma 2.3.2, to show that it vanishes when applied to a pair of elements of T 1,0M .
Therefore, let X, Y ∈ C∞(M, TM); then

ω(X − ijX, Y − ijY ) = ω(X, Y ) − iω(X, jY ) − iω(jX, Y ) − ω(jX, jY ).

But on the one hand

ω(jX, jY ) = g(j2X, jY ) = −g(X, jY ) = −g(jX, j2Y ) = g(jX, Y ) = ω(X, Y )
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and on the other hand
ω(jX, Y ) = g(j2X, Y ) = −g(X, Y ) = −g(jX, jY ) = −ω(X, jY ).

Consequently, ω(X − ijX, Y − ijY ) = 0. �

To illustrate this, let us assume for a moment that M is a complex manifold and
that j is the induced almost complex structure. We choose some local holomorphic
coordinates (z1, . . . , zn), and define the function

h�,m := g(∂z�
, ∂z̄m

)

where g has been extended to TM ⊗ C by C-bilinearity (and not sesquilinearity!).
One can check that

ω = i
n∑

�,m=1
h�,m dz� ∧ dz̄m

in these coordinates.
Let (M, j) be an almost complex manifold, and let g be a compatible Riemannian

metric. Since j is an isomorphism and g is non-degenerate, it is clear that ω is non-
degenerate. Hence, if it is closed, it is a symplectic form.

Definition 2.5.3. A compatible Riemannian metric on an almost complex manifold
is called a Kähler metric if j is integrable and the fundamental form ω is closed.
A Kähler manifold (M, j, g) is an almost complex manifold (M, j) endowed with a
Kähler metric g.

In this case, the fundamental form is a symplectic form on M . By Lemma 2.4.4,
near each point p ∈ M , there exists a real-valued smooth function φ such that

ω = i∂∂̄φ.

This function φ is called a Kähler potential. In local coordinates, this gives

h�,m = ∂2φ

∂z�∂z̄m

which means that the metric is determined locally by the Kähler potential.
In what follows, we will be more interested in the symplectic point of view. So

let us start with a symplectic manifold (M, ω).

Definition 2.5.4. An almost complex structure j on M is said to be compatible
with ω if

ω(jX, jY ) = ω(X, Y )

for any X, Y ∈ TM and

ω(X, jX) > 0

for every X = 0 ∈ TM .
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One readily checks that, given a compatible almost complex structure j on
(M, ω), the spaces T 1,0M and T 0,1M are Lagrangian (when we extend ω to TM ⊗C

by C-bilinearity).
Assume that M is a complex manifold endowed with the induced complex struc-

ture j, and that ω belongs to Ω1,1(M). In local coordinates (z�)1≤�≤n, the symplectic
form is of the form

ω = i
n∑

�,m=1
h�,m dz� ∧ dz̄m

for some smooth functions h�,m, 1 ≤ �, m ≤ n. Then ω is compatible with j if and
only if all the matrices

(
h�,m(p)

)
1≤�,m≤n

, p ∈ M coming from such local expressions
are positive definite Hermitian matrices.

A symplectic manifold always has a compatible almost complex structure. Indeed,
take any Riemannian metric g on M . By the Riesz representation theorem, we have
two isomorphisms

ω̃ : TM → T ∗M, X �→ iXω and g̃ : TM → T ∗M, X �→ g(X, ·).

Consider a = g̃−1 ◦ ω̃ : TM → TM ; it is an isomorphism, which is moreover anti-
symmetric, in the sense that a∗ = −a (a∗ is the adjoint of a with respect to g).
Indeed,

g(aX, Y ) = ω(X, Y ) = −ω(Y, X) = −g(aY, X) = g(X, −aY )

for any X, Y ∈ TM . Let
a = j(a∗a)1/2

be the polar decomposition of a; j is unitary (with respect to g).

Lemma 2.5.5. j is an almost complex structure which is compatible with ω.

Proof. On the one hand, since j is unitary, j∗j = IdT M . On the other hand, since
(a∗a)1/2 is an isomorphism commuting with a and a is anti-symmetric, we have

j∗ =
(
a(a∗a)−1/2)∗ = (a∗a)−1/2a∗ = −(a∗a)−1/2a = −a(a∗a)−1/2 = −j,

thus j2 = − IdT M . It remains to check the compatibility between j and ω. Firstly,
we have that

ω(jX, jY ) = g(ajX, jY ) = g(jaX, jY ) = g(aX, j∗jY ) = g(aX, Y ) = ω(X, Y )

for any X, Y ∈ TM . Secondly, for every X = 0 ∈ TM ,

ω(X, jX) = g(aX, jX) = g(j∗aX, X) = g
(
(a∗a)1/2X, X

)
> 0

because (a∗a)1/2 is positive definite. �

Observe that, given a symplectic form ω and a compatible almost complex struc-
ture j, the formula
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g(X, Y ) := ω(X, jY )

defines a Riemannian metric on M , which is compatible with j and whose funda-
mental form is equal to ω. The latter is closed by definition; therefore we obtain an
equivalent definition of Kähler manifolds.

Proposition 2.5.6. A symplectic manifold (M, ω) is a Kähler manifold if and only
if there exists an almost complex structure j which is compatible with ω and inte-
grable.

Note that an orientable surface is always a Kähler manifold. Indeed, by the
discussion above, it can be endowed with an almost complex structure compatible
with the symplectic (volume) form. But as we noticed earlier, an almost complex
structure on a surface is always integrable.

Example 2.5.7. On C with its standard complex structure, the standard symplectic
form

ω = i
2

n∑
�=1

dz� ∧ dz̄�

is the fundamental form of the Kähler metric given by the standard scalar product
on R

2n. There is a globally defined Kähler potential given by

φ(z1, . . . , zn, z̄1, . . . , z̄n) = 1
2

n∑
�=1

|z�|2.

Example 2.5.8 (The unit disc). On the open unit disc D
n ⊂ C

n (still with standard
complex structure), we consider the function

φ(z1, . . . , zn, z̄1, . . . , z̄n) = − 1
2 log(1 − ‖z‖2),

where ‖z‖2 = 〈z, z〉 =
∑n

�=1|z�|2 is the square of the norm of z with respect to
the standard Hermitian product on C

n, and introduce the form ω = i∂∂̄φ. This
is a closed real (1, 1)-form; we will show that it is compatible with the complex
structure. We compute

∂̄φ =
−∂̄

(
1 − ∑n

�=1|z�|2
)

2(1 − ‖z‖2) =
∑n

�=1 z� dz̄�

2(1 − ‖z‖2) ,

which yields

∂∂̄φ = 1
2

((∑n
k=1 z̄k dzk

) ∧ (∑n
�=1 z� dz̄�

)
(1 − ‖z‖2)2 +

∑n
�=1 dz� ∧ dz̄�

1 − ‖z‖2
)

.

We finally obtain that

ω = i
2(1 − ‖z‖2)2

n∑
k,�=1

(
z̄kz� +

(
1 − ‖z‖2)

δk,�

)
dzk ∧ dz̄�;
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we claim that the matrix H =
(
z̄kz� +

(
1 − ‖z‖2)

δk,�

)
1≤k,�≤n

is Hermitian positive
definite for every z ∈ D

n, which means that ω is compatible with the complex
structure. Indeed, for a nonzero u in C

n, we have

〈Hu, u〉 = 〈u, z〉〈z, u〉 +
(
1 − ‖z‖2)‖u‖2 = |〈z, u〉|2 +

(
1 − ‖z‖2)‖u‖2 > 0

since 1 − ‖z‖2 > 0.

Example 2.5.9 (The Fubini–Study structure). Let M = CP
n with its standard open

covering CP
n ⊂ ⋃n

k=0 Uk where Uk = {[z0 : · · · : zn] ∈ CP
n | zk = 0} and charts

ϕk : Uk → C
n, [z0 : · · · : zn] �→ (w1, . . . , wn) =

(
z0
zk

, . . . ,
zk−1
zk

,
zk+1
zk

, . . . ,
zn

zk

)
.

On each Uk we can define a function

φk = log
(

n∑
�=0

∣∣∣∣ z�

zk

∣∣∣∣
2
)

= log
(

1 +
n∑

m=1
|wm|2

)
,

which, as we will prove, is a local Kähler potential. We define real (1, 1)-forms ωk

on each Uk by ωk = i∂∂̄φk. Firstly, we check that this defines a global element
ω ∈ Ω1,1(M) ∩ Ω2(M), i.e. that

ωk|Uk∩U�
= ω�|Uk∩U�

;

on Uk ∩ U�, we have

φk = log
(∣∣∣∣∣

z�

zk

∣∣∣∣∣
2 n∑

m=0

∣∣∣∣∣
zm

z�

∣∣∣∣∣
2)

= log
(∣∣∣∣∣

z�

zk

∣∣∣∣∣
2)

+ φ�.

Hence, we only need to show that ∂∂̄ log
(|z�/zk|2)

= 0 on Uk ∩U�. This follows from
the fact that on C

∂∂̄ log|w|2 = ∂

(
w dw

|w|2
)

= ∂

(
dw

w

)
= 0.

Now, a computation similar to the one in the previous example yields

ωk = i
(1 + ‖w‖2)2

n∑
�,m=1

(
(1 + ‖w‖2)δ�,m − w�wm

)
dw� ∧ dwm.

Let H =
(
(1 + ‖w‖2)δ�,m − w�wm

)
1≤�,m≤n

and consider u = 0 in C
n; then

〈Hu, u〉 = ‖u‖2 + ‖w‖2‖u‖2 − |〈w, u〉|2 ≥ ‖u‖2 > 0
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by the Cauchy–Schwarz inequality. Consequently, ωFS = ω is a Kähler form, called
the Fubini–Study form. Sometimes its definition involves a factor ±1/(2π), so that
the integral of ωFS on CP

1 ⊂ CP
n is equal to ±1. In our setting, it is better not to

include this factor, as we will see later.

2.6 A Few Useful Properties

Let (M, ω, j) be a Kähler manifold and let g = ω(·, j·) be the induced Kähler
metric. The gradient with respect to g of a function f and the Hamiltonian vector
field associated with f are related as follows.

Lemma 2.6.1. Let f ∈ C1(M). Then gradg f = −jXf .

Proof. On the one hand, by definition, the gradient of f is such that the equation
df = g(·, gradg f) = ω(·, j gradg f) holds. But on the other hand, the Hamiltonian
vector field of f satisfies df + ω(Xf , ·) = 0.

Like any other Riemannian metric, the Kähler metric g induces a volume form μg

on M . But the symplectic form ω also defines a volume form, namely the Liouville
volume form μ = ω∧n/n!. They are also related.

Lemma 2.6.2. These two volume forms are equal: μ = μg.

Proof. Let us use local complex coordinates (z1, . . . , zn) and let us introduce the
real local coordinates (x1, y1, . . . , xn, yn) satisfying z� = x� +iy� for every � ∈ �1, n�.
Then we can write

ω = i
n∑

�,m=1
h�,m dz� ∧ dz̄m

for some functions h�,m such that H(p) =
(
h�,m(p)

)
is a positive definite Hermitian

matrix for every p. Consequently,

μ = in det(H) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = 2n det(H) dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

Note that 2n det(H) =
√

det g; this is a consequence of the definition of H, because

h�,m = 1
4g(∂x�

− i∂y�, ∂xm
+ i∂ym

).

Therefore, we finally obtain that

μ =
√

det g dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = μg,

which was to be proved. �
In what follows, we will also need the following result, which can be derived from

the Hodge theory of compact Kähler manifolds. We do not want to spend time on
this theory in these notes; therefore we will not give a proof of this result. It is a
consequence of [24, Corollary 3.2.10] for example.
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Lemma 2.6.3 (The global i∂∂̄-lemma). Let (M, ω) be a compact Kähler man-
ifold. Let α be an exact, real-valued form of type (1, 1) on M . Then there exists
a function φ ∈ C∞(M,R) such that α = i∂∂̄φ. This function is unique up to the
addition of a constant.
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