
Chapter 7
Weakly Consistent Regularisation
Methods for Ill-Posed Problems

Erik Burman and Lauri Oksanen

Abstract This Chapter takes its origin in the lecture notes for a 9 h course at
the Institut Henri Poincaré in September 2016. The course was divided in three
parts. In the first part, which is not included herein, the aim was to first recall some
basic aspects of stabilised finite element methods for convection-diffusion problems.
We focus entirely on the second and third parts which were dedicated to ill-posed
problems and their approximation using stabilised finite element methods. First we
introduce the concept of conditional stability. Then we consider the elliptic Cauchy-
problem and a data assimilation problem in a unified setting and show how stabilised
finite element methods may be used to derive error estimates that are consistent with
the stability properties of the problem and the approximation properties of the finite
element space. Finally, we extend the result to a data assimilation problem subject
to the heat equation.

7.1 Introduction

In these notes we will give an overview of some recent work on finite element
methods for ill-posed problems. For well-posed problems it is known that, in the
presence of non-symmetric operators, approximation using Galerkin finite element
methods may have poor accuracy, due to the lack of H 1-coercivity. A popular
remedy is then to add some stabilising terms that should be balanced in such a way
that they cure the stability issue, but vanish quickly enough under mesh-refinement
so that optimal error estimates can be obtained. For ill-posed problems on the other
hand the state of the art is to add some regularising terms on the continuous level to
obtain a well-posed continuous problem that can then typically be discretised using
standard finite element methods.

E. Burman (�) · L. Oksanen
Department of Mathematics, University College London, London, UK
e-mail: e.burman@ucl.ac.uk; l.oksanen@ucl.ac.uk

© Springer Nature Switzerland AG 2018
D. A. Di Pietro et al. (eds.), Numerical Methods for PDEs,
SEMA SIMAI Springer Series 15, https://doi.org/10.1007/978-3-319-94676-4_7

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94676-4_7&domain=pdf
mailto:e.burman@ucl.ac.uk
mailto:l.oksanen@ucl.ac.uk
https://doi.org/10.1007/978-3-319-94676-4_7


172 E. Burman and L. Oksanen

Here our aim is to make the ideas from the former class of problems carry
over to the ill-posed case, using weakly consistent regularisation that is defined
on the discrete level. Indeed prior to discretisation no regularisation is applied,
instead the ill-posed problem and associated data are discretised in the form of a
minimisation problem, where some suitable distance between the discrete solution
and the measured data is minimised under the constraint of the discrete form of the
partial differential equation. Regularisation terms may then be devised that are in
some sense the minimal choice necessary to achieve a well-posed discrete system.
To analyse the resulting approximation we rely on conditional stability estimates for
the continuous problem, typically obtained through Carleman estimates.

Compared to the state of the art methods such as the quasi-reversibility method
by Lattès and Lions (and the recent improvements on this technique by Bourgeois
et al. [7, 8, 21]) or the penalty method by Kohn and Vogelius [4, 30], the present
framework has some attractive features. Since no regularised continuous problem is
involved the only (nontrivial) regularisation parameter present is the mesh size. This
is not the case for more traditional methods where the discretisation parameter and
the regularisation parameter must be matched carefully, or as is usually assumed, the
mesh size is chosen substantially smaller than the regularisation parameter. Maybe
more importantly, in the present framework, the regularisation is independent of the
stability of the underlying physical problem while still having a convergence order
with respect to the mesh size that is consistent with the stability of the physical
problem. On the contrary, balancing regularisation and discretisation errors in the
framework of conventional Tikhonov regularisation appears to inevitably lead to a
nontrivial relation between the regularisation, the mesh size and the specific form of
the stability of the physical problem.

With the recent increased understanding of the stability properties of ill-posed
problems, in particular, in the context of inverse and data assimilation problems,
we believe that these considerations are important. For instance, data assimilation
problems with Hölder, or even Lipschitz, stability will have that precise order
reproduced for the convergence order of the approximation error. To the best of
our knowledge, apart from the work reviewed here, there exists no results in the
literature reporting on such estimates even in Lipschitz stable cases that allow error
estimates as good as those for classical well-posed problems. For other work on
regularized methods for the Cauchy problem we refer to [2, 3, 6, 29].

The paper consists of two main parts. In the first we consider stationary ill-
posed elliptic problems, such as the elliptic Cauchy problem and the so-called data
assimilation problem, where measured data is available in some subdomain of the
bulk, but not on the boundary. For these problems interior estimates with Hölder
stability are known to hold and we show how to make these estimates translate into
error estimates for the computational method. In the second chapter we consider the
extension of these ideas to a data assimilation problem subject to the heat equation.
In this case a Lipschitz-continuous stability estimate holds for the reconstruction
of the solution away from the (unknown) initial datum. Also in this case we show,
in a space semi-discretised framework, error estimates that reflect the stability of
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the physical problem. In this second case the estimates obtained are optimal with
respect to the approximation order of the finite element space.

7.2 Preliminary Results

In this section we will introduce the geometrical setting of the problems that we will
consider, the associated finite element spaces and some technical results, including
discrete inequalities and approximation results. We will stay in the simplest of
settings, considering only piecewise affine finite element spaces.

Let Ω ⊂ R
d , d = 2, 3, be a convex polygonal (polyhedral) domain, with

boundary ∂Ω and outward pointing normal n. By T we denote a quasi-uniform
decomposition of Ω in simplices T such that the intersection of two simplices
in T is either the empty set, a shared vertex, a shared face or a shared edge. We
also introduce the mesh parameter associated to T, hT = diam(T ) where the
diameter of T is defined as the diameter of the smallest ball circumscribing T .
Setting h = maxT ∈T hT we consider the family of tesselations {T}h indexed by
h. The simplices are shape regular in the sense that the ratio between the smallest
circumscribed ball and the largest inscribed ball of any T ∈ T is bounded uniformly,
with a constant independent of h. The boundary of T will be denoted ∂T with
outward pointing normal nT . We denote the set of element faces by F and let Fi

and Fb denote the set of faces in the interior of Ω and on its boundary, respectively.
To each interior face we associate a normal nF that is fixed, but with arbitrary
orientation. The normal on faces on the boundary will be chosen pointing outwards.

We define the finite dimensional space

Vh = {vh ∈ H 1(Ω) : v|T ∈ P1(T ), ∀T ∈ T},
with P1(T ) the set of polynomials of degree less than or equal to 1. For a subspace
V ⊂ H 1(Ω), we denote by Vh the intersection Vh ∩ V . In particular, we use the
notation V 0 = H 1

0 (Ω) and

V 0
h := Vh ∩ V 0.

We will denote the L2 scalar product over a set Ξ by

(v,w)Ξ :=
ˆ

Ξ

xy dΞ, ∀v,w ∈ L2(Ω),

and the associated norm by

‖x‖Ξ := (x, x)
1
2
Ξ.

The subscript will be dropped whenever Ξ ≡ Ω .
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7.2.1 Inequalities

We will need a few auxiliary results on how different norms or semi norms are
related. In particular we will need the following so-called inverse inequality and
trace inequalities (see for instance [22])

‖∇vh‖T ≤ Cih
−1
T ‖vh‖T ∀vh ∈ Pk(T ), k ≥ 0 (7.1)

‖v‖∂T ≤ Cth
−1/2
T (‖vh‖T + hT ‖∇v‖T ), ∀v ∈ H 1(T ) (7.2)

‖vh‖∂T ≤ Cth
−1/2
T ‖vh‖T , ∀vh ∈ Pk(T ), k ≥ 0. (7.3)

We also define the broken norm

‖v‖h :=
⎛
⎝∑

T ∈T
‖v‖2

T

⎞
⎠

1
2

.

7.2.2 Interpolants and Approximation

We will use an interpolant ih : H 1(Ω) → Vh, that preserves homogeneous
boundary conditions and satisfies the following estimates [33]

‖u − ihu‖ + h‖∇(u − ihu)‖ ≤ Chs‖u‖Hs(Ω), s = 1, 2. (7.4)

Combining (7.4) and (7.2) allows us to prove the estimates

‖h− 1
2 (u − ihuh)‖F + ‖h 1

2 ∇(u − uh)‖F ≤ Chs−1‖u‖Hs(Ω), s = 1, 2. (7.5)

We will also make use of the H 1-projection πh : H 1
0 (Ω) → V 0

h defined by

(∇πhu,∇vh) = (∇u,∇vh), ∀vh ∈ V 0
h . (7.6)

We note that under the assumption of quasi uniformity and convexity of the domain
also this approximation satisfies (7.4) and (7.5).
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7.3 Ill-Posed Problems

It is well known that instabilities may cause suboptimality for approximations
of convection-diffusion equations when the standard Galerkin method is applied.
Examples of how stabilised methods can improve on the situation include the
Galerkin Least Squares method [10, 27], subgrid viscosity [26] or the continuous
interior penalty method [15]. This is an example of a problem that is well-posed
on the continuous level, but where the discrete system may be ill-conditioned and
produce poor quality approximations, unless all the scales of the problem have been
resolved, something which may be difficult to achieve in practice. The arguments to
analyse such methods use the positivity of the bilinear operator a(·, ·) defining the
problem.

In many practical cases however the problem is indefinite, for instance, this is the
case for Helmholtz equation and for non-coercive convection-diffusion. Then the
bilinear form does not satisfy such a positivity property, and the inf-sup condition
that underpins well-posedness on the continuous level can be difficult to reproduce
on the discrete level. This led the first author to develop a method which does not
rely on coercivity or inf-sup stability for its analysis [11]. As the method does not
rely on the well-posedness structure for its design, it can also be applied to ill-posed
problems. This case was then analysed in [12] and applied to a series of different
ill-posed problems in [13, 16, 17, 19].

In this section we will discuss how to apply stabilised finite elements to the
approximation of ill-posed problems. Of course the class of ill-posed problems
is very large and most of these problems are not tractable to the type of high
resolution methods that we wish to apply here, so first we will discuss what type
of ill-posed problems we are interested in and give some examples. For readers
interested in delving deeper into the theory of inverse and ill-posed problems and
their regularisation, we refer to [5, 24, 28, 31, 34].

Ill-posed problems are those problems that fail to be well-posed in the sense
of the definition due to Hadamard. In order to make this precise we introduce the
abstract problem

Ku = f (7.7)

where K : V → X is a linear map between two Hilbert (or Banach) spaces and
f ∈ X.

Definition 7.1 (Well-Posed Problem) The problem (7.7) is well-posed if

1. For every f ∈ X there exists u ∈ V satisfying (7.7). This means that X is the
range of L.

2. The solution u is unique in V . That is, L−1 exists.
3. The solution u depends continuously on data.

‖u‖V ≤ C‖f‖X.
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Definition 7.2 (Ill-Posed Problem) The problem (7.7) is said to be ill-posed if at
least one of the three points in Definition 7.1 fails.

It was recognised by Tikhonov that some ill-posed problems are better behaved than
others, and conditionally stable problems are an important class of such problems.
We give a definition that is a variation of [28, Def. 4.3].

Definition 7.3 (Conditionally Stable Problem) The problem (7.7) is said to be
conditionally stable with respect to a semi-norm | · | on V if

1. For all f in the range of K the solution u of (7.7) is unique.
2. There is a non-decreasing function CE : [0,∞) → [0,∞) and a modulus of

continuity Φ : [0,∞) → [0,∞) such that for all f in the range of K,

|u| ≤ CE(‖u‖V )Φ(‖f‖X).

Here Φ being a modulus of continuity means that it is continuous and satisfies
Φ(0) = 0.

We restrict our attention to conditionally stable problems where K and X consist
of two components

K = (L,R), X = W ′ × M.

Here, for the Sobolev spaces V and W , W ′ is the dual of W and L is a differential
operator, mapping V to W ′ when interpreted in weak form. For the part related to
data we let R : V → M denote a restriction operator, possibly composed with a
differential operator. To summarize, we will consider problems of the form

Lu = f̃ , Ru = q̃ (7.8)

where it is assumed that (f̃ , q̃) is in a neighbourhood of the range of K. We will
prove estimates that depend on the distance

‖δf ‖W ′ + ‖δq‖M, δf = f̃ − f, δq = q̃ − q,

where (f, q) is in the range of K. Observe that this means that we do not assume
that the problem (7.8) admits a unique solution, we only assume that it can be solved
for some point in a neighbourhood of the data (f̃ , q̃). This allows for perturbed data
to be used.

We will now proceed to give examples of problems that are conditionally stable
in the above sense.

Example 7.1 (The Elliptic Cauchy Problem and Its Ill-Posedness) Let L = −Δ+σ

where σ ∈ R and assume that the boundary of Ω consists of two parts Γ and Γ ′.
Consider the problem of finding u ∈ H 1(Ω) such that

Lu = f in Ω (7.9)
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u = g on Γ (7.10)

∇u · n = ψ on Γ. (7.11)

For simplicity, we consider below only the case g = 0, and refer to [14] for the case
with non-vanishing g. Then

Ru = ∇u · n|Γ , M = H−1/2(Γ ). (7.12)

Following a classical counter-example by Hadamard, let us exemplify the failure
of continuous dependence for this problem. Let Ω := {(x, y) ∈ R

2 : x > 0} and
Γ = {(x, y) ∈ R

2 : x = 0}, σ = 0, f = 0, g = 0 and

ψ(y) = 1

n
sin(ny).

It is easy to verify that the solution in that case is

u(x, y) = 1

2n2 sin(ny)(enx − e−nx).

Clearly as n becomes large ‖ψ‖L∞(Γ ) goes to zero, but u(x, y) blows up for any x >

0 and any y outside a countable set, showing the failure of continuous dependence.

Example 7.2 (The Elliptic Data Assimilation Problem and Its Uniqueness) Let
L = −Δ and assume that measurements uM of u are available in some open subset
of Ω , ω ⊂ Ω , then we can formulate the data assimilation problem as

Lu = f in Ω (7.13)

u = uM in ω. (7.14)

Here we choose

Ru = u|ω, M = L2(ω). (7.15)

This problem is often called also a unique continuation problem.
Assume that uM, f are such that there exists a solution u ∈ H 1(Ω) to (7.13)–

(7.14). Then this solution is unique which can be proven by using elementary
properties of harmonic functions. Indeed, assume that there exists two solutions
and let ν be their difference. Then

Lν = 0 in Ω (7.16)

ν = 0 in ω. (7.17)
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This means that ν is a harmonic function in Ω and hence real analytic. But ν

vanishes in the non-empty open set ω, and hence by analytic continuation, ν ≡ 0
in Ω .

Remark 7.1 For the problem (7.13)–(7.14) to have a solution, it is of course
necessary that the compatibility condition LuM |ω = f |ω is satisfied. Using this one
may show that, for sufficiently smooth f , (7.13)–(7.14) is equivalent to the Cauchy
problem

Lu = f in Ω \ ω (7.18)

u = uM on ∂ω (7.19)

∇u · n = ∇uM · n on ∂ω. (7.20)

The conditional stability for the problems in Examples 7.1 and 7.2 is classical,
and we discuss it further in Sect. 7.3.2 below. Let us now turn to weak formulation
of these problems on which the associated finite element methods will be based.

7.3.1 Weak Formulations of the Model Problems

Let us first consider the Cauchy problem in Example 7.1 and introduce the spaces

V Γ := {v ∈ H 1(Ω) : v|Γ = 0} and WΓ := {v ∈ H 1(Ω) : v|Γ ′ = 0}(= V Γ ′
).

Now observe that the solution of (7.9)–(7.11), with g = 0, can be sought in V Γ .
Multiply (7.9) by v ∈ WΓ and integrate by parts to obtain

(Lu, v) = (∇u,∇v) + (σu, v) −
ˆ

Γ

∇u · n︸ ︷︷ ︸
=−ψ

v ds −
ˆ

Γ ′
∇u · n v︸︷︷︸

=0

ds

By defining

a(u, v) := (∇u,∇v) + (σu, v)

we arrive at the weak formulation: find u ∈ V Γ such that

a(u, v) = (f, v) + (ψ, v)Γ , ∀v ∈ WΓ . (7.21)

This weak formulation looks deceptively like the weak formulation for the Poisson
problem, but observe that the choice v = u is not allowed since u �∈ WΓ .

Let us now turn to the data assimilation problem in Example 7.2. Recall from
Sect. 7.2 that V 0 = H 1

0 (Ω), and observe that we may multiply (7.13) with v ∈ V 0
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to obtain

(Lu, v) = (∇u,∇v) −
ˆ

∂Ω

∇u · n v︸︷︷︸
=0

ds.

This time we define

a(u, v) := (∇u,∇v)

and obtain the weak formulation: find u ∈ H 1(Ω) such that u|ω = uM and

a(u, v) = (f, v) ∀v ∈ V 0. (7.22)

Once again it is not allowed to take v = u due to the different choices of spaces.

7.3.2 Conditional Stability

To unify the treatment of the two examples, we will write V for the primal space and
W for the test space. That is, V = V Γ and W = WΓ in the case of Example 7.1, and
V = H 1(Ω) and W = V 0 in the case of Example 7.2. Observe that W ′ = H−1(Ω)

in the case of Example 7.2.
We refer to the review paper [1] for thorough discussion of conditional stability

estimates for the two example problems. In particular, the following conditional
stability estimate can be deduced from the paper.

Theorem 7.1 Let u ∈ V be such that, with l ∈ W ′,

a(u, v) = l(v).

Let R : V → M be defined by (7.12) for the Cauchy problem in Example 7.1, and
by (7.15) for the data assimilation problem in Example 7.2. Write uM = Ru in both
the cases. Then for every open simply connected ω′ ⊂ Ω such that dist(∂ω′, ∂Ω) >

0 there holds

‖u‖ω′ ≤ CE(‖u‖)Φ(|uM |M + ‖l‖W ′ ),

where CE(R) = CR1−τ and Φ(η + ε) = (η + ε)τ . Here C > 0 and τ ∈ (0, 1) are
constants that depend on ω′.

For a proof of this result with full detail on involved constants see [1, Theorem 1.7]
for the Cauchy problem and [1, Theorem 4.4] for the data assimilation case. Let
us remark that we state the conditions on ω′ in slightly simplified form, for more
precise conditions on ω′ see [1]. Note that here ‖·‖ω′ is viewed as a semi-norm
on V .
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Remark 7.2 A similar result for global stability of u on the form

‖u‖Ω ≤ CE(‖u‖V )Φ(|uM |M + ‖l‖W ′ ),

with Φ(η + ε) = | log(η + ε)|−τ , τ ∈ (0, 1), is also derived in [1] and may be used
to derive global error estimates using the techniques below.

Remark 7.3 Conditional stability has been used before to tune the regularisation
parameters for Tikhonov regularisation methods see for instance [20]. What is new
in the approach that we advocate is that it does not depend on the form of the
modulus of continuity Φ, but still allows us to obtain the best possible accuracy
with respect to the approximation error and the actual form of Φ.

7.4 Finite Element Approximation of Ill-Posed Problems

The aim of the present section is present a finite element method that draws on our
experience of stabilised FEM for convection-diffusion equations. The ideas that are
presented below are mainly taken from [13, 19].

We wish to attempt to discretise a conditionally stable ill-posed problem of the
form: find u ∈ V such that

a(u, v) = l(w), ∀w ∈ W (7.23)

|u − uM |M = 0. (7.24)

Let us consider, for the moment, the case of Cauchy problem and suppose that l is
such that there exists a solution u ∈ V to (7.23).

Recall the notation defined in Sect. 7.2, and define the finite element spaces

V Γ
h := Vh ∩ V Γ and WΓ

h := Vh ∩ WΓ .

We are assuming here that the mesh is fitted to the subsets of the boundary Γ and
Γ ′. We then have the discrete formulation of the Cauchy problem in Example 7.1:
find uh ∈ V Γ

h such that

a(uh,wh) = (f,wh) + (ψ,wh)Γ , ∀wh ∈ WΓ
h . (7.25)

Observe that the corresponding linear system can not be invertible in general,
because there is no reason that the system matrix is square. Indeed this only holds
in the special case when the number of vertices in Γ is the same as the number
of vertices in Γ ′. Similarly the matrix corresponding to a naive finite element
discretisation of the data assimilation problem in Example 7.2 is not square and
in general the system is singular even if we impose uh|ω = 0.
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The idea is then to reformulate (7.23)–(7.24), on the discrete level, as the problem
to minimise (7.24) under the constraint (7.23). This will allows us also to treat the
case of perturbed data that is outside the range of the map K = (L,R). In some
cases | · |M may not be the most efficient choice for minimisation purposes and may
be replaced by another norm | · |Mh

that is equivalent on the discrete spaces. Then
an additional step is required to show that the minimisation with respect to | · |Mh

indeed leads to a bound in | · |M.
Below we will mainly focus on the data assimilation problem in Example 7.2 and

use

|uh − ũM |2
Mh

:=
ˆ

ω

hα(uh − ũM)2 dx, (7.26)

where α is a constant in the interval [−2, 0]. Here it is assumed that the mesh is
fitted to the domain ω, which can always be easily achieved by replacing ω with a
slightly smaller polygonal domain. For the Cauchy problem in Example 7.1, we can
take

|uh − ũM |2
Mh

:=
ˆ

Γ

h(∇uh · n − ψ̃)2 ds. (7.27)

In what follows it is important that, in both the cases and for all α ∈ [−2, 0], there
holds for u ∈ H 2(Ω) that

|u − ihu|Mh
≤ Ch|u|H 2(Ω).

We form the tentative Lagrangian

Ł(uh, zh) := 1

2
γM |uh − ũM |2

Mh
+ a(uh, zh) − l̃(zh),

where ũM = uM + δu is the perturbed data available and l̃(zh) = l(zh)+ δl(zh) is a
perturbed right hand side. Observe that if u is a solution to (7.23) and (7.24) then it
will minimise the Lagrangian (if δu = δl = 0) with the associated multiplier z = 0.
Unfortunately the associated minimisation problem may not be well-posed on the
discrete level due to the ill-posedness of a(·, ·), even if the data of the continuous
problem is in the range of K. It follows that we need some regularisation.

7.4.1 Regularisation by Stabilisation

The classical way of obtaining a well-posed optimisation problem is through
Tikhonov regularisation. In this case the natural choice would be to add regularising
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terms in the H 1-semi-norm for both the primal and the dual variable to obtain

Ł(uh, zh) := 1

2
γM |uh − ũM |2

Mh
+ γ1‖∇uh‖2 − γ2‖∇zh‖2 + a(uh, zh) − l̃(zh).

Computing the Euler-Lagrange equations for this Lagrangian we obtain the system:
find (uh, zh) ∈ Vh × Wh such that

a(uh,wh) − γ2(∇zh,∇wh) = l̃(wh) ∀wh ∈ Wh (7.28)

a(vh, zh) + γ1(∇uh,∇vh) + γM(uh, vh)Mh
= γM(ũM, vh)Mh

∀vh ∈ Vh

(7.29)

Here it is assumed that the norm | · |Mh
is associated to an inner product (·, ·)Mh

.
This is of course the case for both (7.26) and (7.27).

Remark 7.4 This system bears a strong resemblance to the quasi-reversibility
method for the Cauchy problem in the mixed form as proposed on the continuous
level in [7]. Therein it was proven that if the exact solution exists, and the data are
unperturbed, then letting γ1 → 0 for bounded γ2 (that may tend to zero, but at a
lower rate than γ1) the regularised solution converges to the exact solution.

Drawing on our experience from stabilised finite element methods we would like to
modify the regularisation terms, so that they vanish at an optimal rate in the limit
uh → u ∈ H 2(Ω), zh → 0, while keeping the regularisation parameters γ1 and γ2
fixed. We therefore introduce the abstract regularisation operators s : Vh × Vh �→ R

and s∗ : Wh × Wh �→ R in the Lagrangian

Ł(uh, zh) := 1

2
γM |uh − ũM |2

Mh
+ 1

2
s(uh, uh) − 1

2
s∗(zh, zh) + a(uh, zh) − l̃(zh).

(7.30)

The corresponding Euler-Lagrange equations then reads

a(uh,wh) − s∗(zh,wh) = l̃(wh) (7.31)

a(vh, zh) + s(uh, vh) + γM(uh, vh)Mh
= γM(ũM, vh)Mh

. (7.32)

The primal stabilisation operator should be weakly consistent, in the sense that,

s(ihu, ihu)
1
2 ≤ Ch|u|H 2(Ω). (7.33)

We also require s to be bounded, s(vh, vh) ≤ C‖vh‖2
V . The dual stabilisation on the

other hand must be equivalent with the W norm

c1(h)‖wh‖2
W ≤ s∗(wh,wh) ≤ C‖wh‖2

W ,
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where the lower bound is not required to be uniform in h. No condition analogous
to (7.33) is required from s∗, the reason being that z = 0 is the solution to the
unperturbed problem where data are such that a unique solution u ∈ V exists. Thus
any bilinear form s∗ is weakly consistent in the sense that it vanishes in (7.31) when
(uh, zh) is replaced by the solution to the unperturbed problem.

Anticipating the results in the next section we give the following examples of
stabilisation operators,

s(vh, vh) := γ1‖hσuh‖2 + γ1

∑

F∈Fi

(hF �∇vh�, �∇vh�)F =: γ1|vh|2V (7.34)

s∗(vh, vh) := γ2(∇vh,∇vh)Ω =: γ2‖vh‖2
W . (7.35)

We emphasize that, contrary to typical Tikhonov regularisation, the stabilisation
parameters γ1, γ2 > 0 will not change during computation.

Observe that for u ∈ H 2(Ω) there holds s(u, vh) = γ1(h
2σ 2u, vh)Ω for

all vh ∈ Vh, since the jump term vanishes when applied to sufficiently smooth
functions. The remaining L2-term, is weakly consistent to the right order for
piecewise affine elements. For higher order polynomial approximation of order k,
the primal stabilisation operator in the Lagrangian (7.30) must be replaced by a
strongly consistent residual based stabilisation of the form

s(vh, vh) := ‖hk∇vh‖2
Ω +γ1‖h(f +Δvh −σvh)‖2

h +γ1

∑

F∈Fi

(hF �∇vh�, �∇vh�)F ,

(7.36)

for details see the discussion in [13]. The weak consistency takes a different form
in this case, since the presence of the source term f leads to a contribution on the
form

∑
K∈Th

(f, h2(−Δvh + σvh))K in the right hand side of (7.32). Observe also

that s defines a semi-norm on Vh + H 2(Ω) but that s∗ defines a norm on W .
Let us now introduce the mesh dependent norm

|‖(uh, zh)‖|2 := γM |uh|2Mh
+ γ1|uh|2V + γ2‖zh‖2

W + min(γ1, γM)h2‖uh‖2
H 1(Ω)

.

(7.37)

As the parameters γM, γ1, γ2 are fixed we could omit including them in the
above norm, however, we will keep track of the dependence of the constants in
Proposition 7.2 below on these parameters, and for this reason it is convenient to
include the parameters in the above norm.

Observe that using (7.4) and (7.5) it is straightforward to prove the interpolation
inequality

|‖(u − ihu, 0)‖| ≤ Ch|u|h2(Ω). (7.38)

To include the last term in the definition (7.37) we can apply a discrete Poincaré
inequality.
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Lemma 7.1 (Discrete Poincaré Inequality) There exists cp > 0 such that for all
vh ∈ Vh there holds

cP h‖uh‖H 1(Ω) ≤ |uh|Mh
+ |uh|V .

In the case of the Cauchy problem where | · |Mh
is defined by (7.27) and uh|Γ = 0

this is a consequence of the Poincaré inequalities of [9] and for the data assimilation
case where | · |Mh

is defined by (7.26) the result was proved in [19].
The system (7.31)–(7.32) can be cast on the compact form, find (uh, zh) ∈ Vh ×

Wh such that

Ah[(uh, zh), (vh,wh)] = l̃(wh) + γM(ũM, vh)Mh
, ∀(vh,wh) ∈ Vh × Wh,

(7.39)
where

Ah[(uh, zh), (vh,wh)] := a(uh,wh) − s∗(zh,wh) + a(vh, zh) + s(uh, vh)

+ γM(uh, vh)Mh
.

Proposition 7.1 The system (7.39) admits a unique unique solution (uh, zh) ∈ Vh×
Wh.

Proof By construction, for all (vh,wh)

γM |vh|2Mh
+ γ1|vh|2V + γ2‖wh‖2

W = Ah[(vh,wh), (vh,−wh)]

and therefore by Lemma 7.1 there exists C > 0 such that

|‖(vh,wh)‖|2 ≤ C Ah[(vh,wh), (vh,−wh)]. (7.40)

The linear system (7.39) is square, and by the above positivity there are no zero
eigenvalues. We conclude that the system is invertible.

Comparing with the exact problem (7.23)–(7.24) and assuming that u ∈ H 2(Ω), we
see that the formulation (7.39) satisfies the following consistency relation

Ah[(uh − u, zh), (vh,wh)] = δl(wh) + γM(δu, vh)Mh
, ∀(vh,wh) ∈ Vh × Wh.

(7.41)

7.4.2 Error Analysis Using Conditional Stability

First we will introduce some continuity properties of the bilinear form using the
stabilisations. Assume that u ∈ H 2(Ω), then there holds

a(u − ihu, vh) ≤ Ch|u|H 2(Ω)‖vh‖W (7.42)
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and for all uh ∈ Vh and all w ∈ W , ihw ∈ Wh

a(uh,w − ihw) ≤ (Ch‖u‖H 2(Ω) + |‖(u − uh, 0)‖|)‖w‖W , (7.43)

where and the constants are allowed to depend on the parameters γ1, γ2 and γM .
For the data assimilation problem Eq. (7.42) follows by an application of the

Cauchy-Schwarz inequality and (7.4), and (7.43) follows by the integration by parts
followed by (7.4) and (7.5) leading to

a(uh,w − ihw) ≤ |(σuh,w − ihw)| +
∑

F∈Fi

ˆ
F

|h 1
2 �∇uh�|h− 1

2 |w − ihw| ds

≤ Cγ
− 1

2
1 (|u − uh|V + ‖σhu‖)‖w‖W .

The results for the Cauchy problem are obtained in a similar fashion and we refer to
[14] for the details.

We are now ready to prove a first error estimate that holds independently of the
stability properties of the continuous model.

Proposition 7.2 If (uh, zh) is the solution of (7.39) and u ∈ H 2(Ω) is the solution
of (7.23)–(7.24) then there holds

|‖(u − uh, zh)‖| ≤ Cγ h|u|H 2(Ω) + δγ (7.44)

where δγ := γ
−1/2
2 ‖δl‖W ′ + γ

1/2
M |δu|Mh

and Cγ := C(1 + γ
1
2

1 + γ
− 1

2
2 ).

Proof To prove (7.44) we observe that by (7.38) and the triangle inequality it is
enough to consider the discrete error ξh = ihu − uh. By (7.40) we have

|‖(ξh, zh)‖|2 ≤ C Ah[(ξh, zh), (ξh,−zh)].

Using the Galerkin orthogonality (7.41) we may write

Ah[(ξh, zh), (ξh,−zh)] = Ah[(ihu − u, 0), (ξh,−zh)] − δl(zh) + γM(δu, ξh)Mh
.

By the continuity (7.42) there holds

Ah[(ihu−u, 0), (ξh,−zh)] = a(u−ihu, zh)+s(ihu−u, ξh)+γM(ihu−u, ξh)Mh

≤ Chγ
− 1

2
2 |u|H 2(Ω)γ

1
2

2 ‖zh‖W +γ
1
2

1 |ihu − u|V︸ ︷︷ ︸
≤Chγ

1
2

1 |u|
H2(Ω)

γ
1
2

1 |ξh|V +γM |ihu−u|Mh
|ξh|Mh

.
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Bounding also the perturbation terms

δl(wh) ≤ γ
− 1

2
2 ‖δl‖W ′γ

1
2

2 ‖zh‖W

and

(δu, ξh)Mh
≤ |δu|Mh

|ξh|Mh

we arrive at

Ah[(ξh, zh), (−ξh, zh)] ≤ Cγ h|u|H 2(Ω)|‖(ξh, zh)‖| + δγ |‖(ξh, zh)‖|.

We conclude by dividing by |‖(ξh, zh)‖|.
This proof is insufficient to show error estimates. However for unperturbed data

and u ∈ H 2(Ω), it may be used to show that uh → u as h → 0, by a compactness
argument.

Remark 7.5 Note that δγ may depend on h via the quantity |δu|Mh
. This is the case,

for instance, when | · |Mh
is chosen as in (7.26) with α �= 0, and then error in data

is amplified for small h.

To prove error estimates we must rely on the conditional stability estimates in
Theorem 7.1. The idea behind the argument is to consider the error e = u − uh and
observe that this error satisfies

a(e,w) = l(w) − a(uh,w) =: r(w), ∀w ∈ W. (7.45)

We will then use Proposition 7.2 to get bounds for ‖r‖W ′ , |e|Mh
and ‖e‖, so that

the conditional stability can be applied to e.
In the data assimilation case we have |e|M = ‖e‖ω = h−α/2|e|Mh

≤ |e|Mh

so this quantity is immediately bounded by (7.44). For the Cauchy problem the
continuous and discrete data matching terms are not the same, but one can prove
that a suitable bound can be obtained for a perturbed error ẽ by adding a small
perturbation to uh in the interface zone such that

|ẽ|M ≤ |‖e, 0‖|. (7.46)

The error analysis then uses the arguments below together with a perturbation
argument for ẽ, for details see [14]. We will not consider that case here, instead
focussing on the data assimilation case.

Theorem 7.2 Let u be the exact solution to (7.23)–(7.24), with l(w) := (f,w),
f ∈ L2(Ω), and | · |M = ‖ · ‖ω. Let uh be the solution of (7.31)–(7.32) with
the stabilisation operators (7.34)–(7.35). Then, for all ω′ ⊂ Ω satisfying the
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assumptions in Theorem 7.1 there holds

‖u − uh‖ω′ ≤ Chτ (‖u‖H 2(Ω) + h−1δγ ).

where the constant depends on the geometry and the constants γ1, γ2 and γM .

Proof As discussed above, the estimate is shown by applying Theorem (7.1) to the
problem satisfied by the error. We know that e is a solution to (7.23) with l(w) =
r(w) as per Eq. (7.45). By Proposition 7.2 the following bounds hold

|e|Mh
= ‖e‖ω ≤ Cγ h|u|H 2(Ω) + δγ (7.47)

and

‖e‖V ≤ Cγ |u|H 2(Ω) + h−1δγ . (7.48)

Now observe that using Eq. (7.31) we have

r(w) = r(w−ihw)+r(ihw) = l(w−ihw)−a(uh,w−ihw)−s∗(zh, ihw)−δl(ihw).

We estimate the terms on the right hand side, assuming that ‖w‖W = 1,

l(w − ihw) = (f,w − ihw) ≤ ‖f ‖‖w − ihw‖ ≤ Ch‖f ‖,

and using the inequality (7.43)

a(uh,w − ihw) ≤ Ch‖u‖H 2(Ω) + |‖(u − uh, 0)‖|.

Then applying Proposition 7.2 we obtain the bound

a(uh,w − ihw) ≤ γ
− 1

2
1 (Cγ h‖u‖H 2(Ω) + δγ ).

The two remaining terms are handled using the Cauchy-Schwarz inequality in the
first case and the duality pairing H−1 × H 1 in the second, followed by the stability
of the interpolant ih in the W -norm,

s(zh, ihw) ≤ γ2‖zh‖W ‖w‖W ≤ γ
1
2

2 (Cγ h|u|H 2(Ω) + δγ )

δl(ihw) ≤ C‖δl‖W ′

Collecting the terms above we have for all w ∈ W with ‖w‖W = 1,

r(w) ≤ Ch‖f ‖ + (γ
− 1

2
1 + γ

1
2

2 )(Cγ h‖u‖H 2(Ω) + δγ ) + C‖δl‖W ′ . (7.49)
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But then

‖r‖W ′ = sup
w∈W :‖w‖W =1

r(w)

satisfies the same bound. Note also that ‖f ‖ ≤ C‖u‖H 2(Ω). We conclude that e

satisfies the assumptions of Theorem 7.1 by with

R = ‖e‖V ≤ Cγ |u|H 2(Ω) + h−1δγ , η = |e|Mh
≤ Ch|u|H 2(Ω) + δγ ,

ε = ‖r‖W ′ ≤ C(h‖u‖H 2(Ω) + δγ )

c.f. (7.47)–(7.49). In the last step we dropped the dependence on the constants γ1, γ2
and γM , but it can be traced in the proof.

Remark 7.6 We detailed Theorem 7.2 only in the case of the data assimilation
problem, but the same arguments also leads to an analysis for the Cauchy problem,
under the assumption (7.46).

Remark 7.7 One may prove Theorem 7.2 for the data assimilation problem if s∗ is
defined by (7.34). In this case an additional factor h−1 multiplies the term measuring
perturbations in data.

7.4.3 A Numerical Example

We consider the problem in Example 7.1 on the unit square Ω . The exact solution
is u = 30.0 ∗ x ∗ (1 − x) ∗ y ∗ (1 − y), with f = Lu, and the data domain ω is
defined by

ω := {(x, y) ∈ Ω : |x − 0.5| < 0.25; |y − 0.5| < 0.25}.

We use the formulation (7.31)–(7.32) with s(·, ·) given by (7.34) for piecewise
affine approximation and (7.36) for piecewise quadratic approximation. The adjoint
stabiliser s∗(·, ·) was defined by (7.35), and the norm | · |Mh

by (7.26) with α = 0
or −2. (Observe that if α = 0 then γM must have the unit of the square of an inverse
length for the equations to be dimensionally correct.)

We chose γ2 = γM = 1 and γ1 = 10−3 for all computations. The latter value is
similar to that used for computations in the well-posed case. We meshed the domain
using structured meshes that were made to fit the boundary of ω. We performed
computations on a sequence of meshes with nele= 40, 80, 160, 320, elements on
each side of the square, using piecewise affine and piecewise quadratic elements. In
Fig. 7.1, left graphic, we show a computational mesh and on the right graphic we
illustrate the domains ω (the inner square) and ω′ (the middle square). In Fig. 7.2,
left plot, we show the contourlines of an approximate solution and in the right plot
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Fig. 7.1 Left: computational mesh, nele=40. Right: the different subdomains ω and ω′

Fig. 7.2 Left: contour lines of approximate solution, nele=40. Right: contour lines of the
computational error

the contour lines of the computational error. Observe that the error has a form that
is similar to Hadamard’s counter-example discussed in Example 7.1, but growing
exponentially in the radial direction and oscillating in the direction tangential to the
boundary of ω.

In the tables below we report the error in the normalised global L2-error, the
normalised local error for the subset

ω′ := {(x, y) ∈ R
2 : |x − 0.5| < 0.375; |y − 0.5| < 0.375},

the data assimilation term, |u − uh|ω, and the size of the weakly consistent
regularisation

|(u − uh, z)|s := √
s(u − uh, u − uh) + s∗(zh, zh). (7.50)

The experimental convergence rates are given in parenthesis, where appropriate. We
report the results for unperturbed data and α = 0 in Tables 7.1 and 7.5 and for α =
−2 in Tables 7.2 and 7.6. In all cases we observe the expected O(hk) convergence
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Table 7.1 Computed quantities for the data assimilation problem using piecewise affine approx-
imation, α = 0 and unperturbed data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
40 0.211594 (–) 0.050922 (–) 0.00816074 (–) 0.0289235 (–)

80 0.175512 (0.3) 0.0407488 (0.3) 0.00618422 (0.4) 0.0147585 (1.0)

160 0.113346 (0.6) 0.0235298 (0.8) 0.00337103 (0.9) 0.00791309 (0.9)

320 0.0672893 (0.75) 0.0102456 (1.2) 0.00119201 (1.5) 0.0042852 (0.9)

640 0.0510429 (0.4) 0.00529074 (1.0) 0.000342379 (1.8) 0.00221974 (0.9)

Table 7.2 Computed quantities for the data assimilation problem using piecewise affine approxi-
mation, α = −2 and unperturbed data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
40 0.0476335 (–) 0.00481282 (–) 0.000333429 (–) 0.0352793 (–)

80 0.0403148 (0.2) 0.00312934 (0.6) 8.0272e−05 (2.0) 0.0179655 (1.0)

160 0.0304957 (0.4) 0.00188862 (0.7) 1.998e−05 (2.0) 0.00911884 (1.0)

320 0.0227619 (0.4) 0.0009549 (1.0) 4.71016e−06 (2.1) 0.00464924 (1.0)

640 0.0200062 (0.2) 0.000642748 (0.6) 1.15698e−06 (2.0) 0.00234456 (1.0)

Table 7.3 Computed quantities for the data assimilation problem using piecewise affine approxi-
mation, α = 0 and 2.5% perturbation in data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
40 0.206909 0.0490942 0.0148287 0.0289287 (-)

80 0.176546 0.0409112 0.013946 0.0146984 (1.0)

160 0.119693 0.0267951 0.0131763 0.0077906 (0.9)

320 0.0793605 0.0180773 0.0125264 0.00416117 (0.9)

640 0.0640708 0.0158747 0.0124993 0.00214582 (1.0)

of the stabilising terms (7.50), with k = 1 for piecewise affine approximation and
k = 2 in the quadratic case. We also observe that consistently with theory we have
‖u−uh‖ω = O(hk−α/2). The convergence of the data term is more even for α = −2.
For the global and local L2-norms we see that the error is a factor 5−10 larger when
α = 0 compared with the case where α = −2. Most likely this is due to the fact that
the missing length-scale present for α = 0 is not well represented when γM = 1.0.
Indeed the weak penalty does not impose the data sufficiently well compared to the
other terms, when α = −2 on the other hand the data penalty term is so strong
that the data error is very small already on coarse meshes leading to improved local
and global errors. We observe convergence compatible with Hölder stability for all
quantities, indicating that possibly we are not yet in the asymptotic regime on these
scales. Only on the finest meshes in Table 7.6 we see clearly the decreasing orders
characteristic for logarithmic convergence in the global error.

We then make the same sequence of computations but adding a perturbation of
2.5% to the data in ω in the piecewise affine case and 1% in the quadratic case.
The results are reported for affine approximation in Tables 7.3 (α = 0) and 7.4
(α = −2). We observe that although the data assimilation term stagnates, the local
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Table 7.4 Computed quantities for the data assimilation problem using piecewise affine approxi-
mation, α = −2 and 2.5% perturbation in data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
40 0.0520752 0.0145883 0.0124714 0.03529

80 0.0507222 0.014398 0.0125092 0.0186372

160 0.0502568 0.0143645 0.0127194 0.0142032

320 0.0537505 0.0143083 0.0125169 0.0224315

640 0.0427351 0.0138826 0.0125888 0.0434341

Table 7.5 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, α = 0 and unperturbed data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
20 0.0113854 (–) 0.0020353 (–) 0.000272026 (–) 0.00263335 (–)

40 0.00701791 (0.7) 0.000668735 (1.6) 4.36798e−05 (2.6) 0.00067804 (2.0)

80 0.00630128 (0.16) 0.000458704 (0.54) 1.0293e−05 (2.1) 0.000171095 (2.0)

160 0.00457823 (0.5) 0.000278068 (0.72) 5.50828e−06 (1.0) 4.33632e−05 (2.0)

320 0.00275223 (0.7) 9.14176e−05 (1.6) 7.11806e−07 (2.8) 1.10465e−05 (2.0)

Table 7.6 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, α = −2 and unperturbed data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
20 0.00594613 (–) 0.000454428 (–) 1.92029e−05 (–) 0.00269387 (–)

40 0.00364274 (0.7) 0.000194766 (1.2) 3.21386e−06 (-2.6) 0.00069238 (–)

80 0.0023773 (0.6) 6.52831e−05 (1.6) 2.95005e−07 (3.4) 0.000176426 (2.0)

160 0.00159176 (0.6) 2.93421e−05 (1.2) 3.91486e−08 (2.9) 4.45628e−05 (2.0)

320 0.00118008 (0.4) 1.27615e−05 (1.2) 4.3179e−09 (3.2) 1.12277e−05 (2.0)

Table 7.7 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, α = 0 and 1% perturbation in data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
20 0.0146381 0.00619699 0.00510402 0.00260206

40 0.0137215 0.00593519 0.00492976 0.00066236 (2.0)

80 0.0135235 0.00594218 0.00498009 0.000167333 (2.0)

160 0.0110434 0.00593666 0.00497521 4.82896e−05 (1.8)

320 0.00982659 0.0058722 0.00497389 1.23888e−05 (2.0)

and global errors decrease under refinement for α = 0. In this case the stabilisation
norm also converges to optimal order in spite of the perturbation. When α = −2
only the error in the stabilisation semi-norm show any decrease under refinement.
On the finest scale we see that both the global error and the error in the stabilisation
semi-norm has started to grow. For piecewise affine approximation it appears that
the choice α = −2 is superior both for perturbed and unperturbed data (at least for
the choice γM = 1) (Tables 7.5 and 7.6).

For quadratic approximation the results are reported in Tables 7.7 (α = 0) and 7.8
(α = −2). Here the effect of the perturbation is present already on the coarsest mesh
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Table 7.8 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, α = −2 and 1% perturbation in data

nele ‖u − uh‖ ‖u − uh‖ω′ ‖u − uh‖ω |(u − uh, z)|s
20 0.0177247 0.00638777 0.00513258 0.00275637

40 0.026475 0.00628408 0.00495361 0.00164336

80 0.0503314 0.00644259 0.00500485 0.002676516

160 0.159728 0.0079909 0.0050097 0.00510579

320 0.335852 0.00962178 0.0050035 0.0101055

and the amplification of the error clearly much stronger for α = −2. Indeed whereas
for α = 0 all error quantities still decrease under mesh refinement, the errors for
α = −2 all stagnate or increase. For the stabilisation norm we clearly see that
the error doubles under mesh refinement on finer meshes, which is consistent with
theory. In this case it appears that for resolutions where the mesh-size is of similar
order as the perturbation it is advantageous to take α = 0, also in accordance with
theory.

7.5 Time Dependent Problems: Data Assimilation

In this section we consider the extension of the methods in the previous section
to the time dependent case, where several interesting new features appear. In
particular we can consider a problem which has Lipschitz stability and prove that
our method can exploit this in the form of error estimates that are optimal compared
to approximation. We consider a data assimilation problem for the heat equation

∂tu − Δu = f, in (0, T ) × Ω, (7.51)

with homogeneous Dirichlet conditions. Here T > 0 and Ω ⊂ R
n is an open convex

polyhedral domain. Let ω ⊂ Ω be open and let 0 < T1 < T . The data assimilation
problems is of the following form: determine the restriction u|(T1,T )×Ω of a solution
to the heat equation (7.51) given f and the restriction u|(0,T )×ω. In this case we
have the following stability estimate due to Imanuvilov [23], see also [17, 32, 35]
for variations of the estimate.

Theorem 7.3 Let ω ⊂ Ω be open and non-empty, and let 0 < T1 < T . Then there
is C > 0 such that for all u in the space

H 1(0, T ; H−1(Ω)) ∩ L2(0, T ; H 1
0 (Ω)), (7.52)
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it holds that

‖u‖C(T1,T ;L2(Ω)) + ‖u‖L2(T1,T ;H 1(Ω)) + ‖u‖H 1(T1,T ;H−1(Ω))

≤ C(‖u‖L2((0,T )×ω) + ‖Lu‖(0,−1)),

where L = ∂t − Δ and ‖·‖(0,−1) = ‖·‖L2(0,T ;H−1(Ω)).

In what follows, we use the shorthand notations

H(k,m) = Hk(0, T ; Hm(Ω)), H
(k,m)
0 = H(k,m) ∩ L2(0, T ; H 1

0 (Ω)),

‖u‖(k,m) = ‖u‖Hk(0,T ;Hm(Ω)), ‖u‖ = ‖u‖(0,0),

and denote by ‖u‖ω the norm of L2((0, T ) × ω). Moreover, we use the following
notation for the data of the problem

q = u|(0,T )×ω, f = Lu, (7.53)

and write

a(u, z) = (∇u,∇z), Gf (u, z) = (∂tu, z) + a(u, z) − 〈f, z〉, G = G0,

where (·, ·) is the inner product of L2((0, T ) × Ω) and 〈·, ·〉 is the dual pairing
between L2(0, T ; H−1(Ω)) and L2(0, T ; H 1

0 (Ω)). Note that for u ∈ H 1((0, T ) ×
Ω), the equations

Gf (u, z) = 0, z ∈ L2(0, T ; H 1
0 (Ω)), (7.54)

give the weak formulation of ∂tu − Δu = f .

7.5.1 Optimisation Based Finite Element Space
Discretisation

We consider only the problem semi-discretised in space, and show that the time con-
tinuous dynamical system is well-posed for every fixed h. This section summarizes
part of the analysis from [17], where also a problem with weaker stability, similar
to that of the data assimilation problem in the previous section was considered. The
analysis carries over to the fully discrete case, but the stabilisation operators are
not the same. In particular in the fully discrete case, the adjoint stabilisation can be
omitted (see reference [18] for details).

Since the problem is time dependent we introduce the spaces Vh and Wh,

Vh = H 1(0, T ; V 0
h ), Wh = L2(0, T ; V 0

h ).
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Observe that contrary to the developments in the previous section both spaces are
equipped with Dirichlet conditions in space. The difference between the two spaces
here is the regularity in time. Following the development in the previous sections
our approach to solve the data assimilation problem is based on minimizing the
Lagrangian functional

Łq,f (u, z) = 1

2
‖u − q‖2

ω + 1

2
s(u, u) − 1

2
s∗(z, z),+Gf (u, z), (7.55)

where the data q and f are fixed. Here ‖·‖ω is the norm of L2((0, T ) × ω), and s

and s∗ are the primal and dual stabilizers, respectively. Note that minimizing Łq,f

can be seen as fitting u|(0,T )×ω to the data q under the constraint (7.54), z can be
interpreted as a Lagrange multiplier, and s/2 and s∗/2 as regularizing penalty terms.

Let q ∈ L2((0, T ) × ω) and f ∈ H(0,−1). The Lagrangian Łq,f , defined
by (7.55), satisfies

DuŁq,f v = (u − q, v)ω + s(u, v) + G(v, z),

DzŁq,f w = −s∗(z,w) + G(u,w) − 〈f,w〉,

and therefore the critical points (u, z) ∈ Vh × Wh of Łq,f satisfy

A[(u, z), (v,w)] = (q, v)ω + 〈f,w〉, (v,w) ∈ Vh × Wh, (7.56)

where A is the symmetric bilinear form

A[(u, z), (v,w)] =(u, v)ω + s(u, v) + G(v, z) − s∗(z,w) + G(u,w). (7.57)

Note that

A[(u, z), (u,−z)] = s(u, u) + ‖u‖2
ω + s∗(z, z),

Herein we consider only semi-discretisations, that is, we minimize Łq,f on a
scale of spaces that are discrete in the spatial variable but not in the time variable.
As before the spatial mesh size h > 0 will be the only parameter controlling the
convergence of the approximation, and we use piecewise affine finite elements. For
simplicity we have set all the auxiliary regularisation parameters γ1, γ2, γM to one,
and we consider only the case of unperturbed data.

7.5.2 A Framework for Stabilisation

Before proceeding to the analysis of the data assimilation problem, we introduce an
abstract stabilisation framework.
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Let s and s∗ be bilinear forms on the spaces Vh and Wh, respectively. Let | · |V be
a semi-norm on Vh and let ‖·‖W be a norm on Wh. We relax (7.34) and (7.35) by
requiring only that s and s∗ are continuous with respect to | · |V and ‖·‖W, that is,

s(u, u) ≤ C|u|2
V

, s∗(z, z) ≤ C‖z‖2
W

, u ∈ Vh, z ∈ Wh, h > 0. (7.58)

Let ‖·‖∗ be the norm of a continuously embedded subspace H ∗ of the energy
space (7.52). The space H ∗ encodes the a priori smoothness. We assume that the
stabilizations and norms introduced are such that the following continuities hold

G(u, z − πhz) ≤ C|u|V‖z‖(0,1), u ∈ Vh, z ∈ H
(0,1)
0 , (7.59)

G(u − πhu, z) ≤ Ch‖z‖W‖u‖∗, u ∈ H ∗, z ∈ Wh, (7.60)

where πh is an interpolator satisfying

πh : H 1
0 (Ω) → V 0

h , h > 0. (7.61)

‖πhu‖H 1(Ω) ≤ C‖u‖H 1(Ω), u ∈ H 1(Ω), h > 0, (7.62)

‖u − πhu‖Hm(Ω) ≤ Chk−m‖u‖Hk(Ω), u ∈ Hk(Ω), h > 0, (7.63)

where k = 1, 2 and m = 0, k − 1. We assume that the following upper bound holds

|πhu|V ≤ Ch‖u‖∗, u ∈ H ∗, (7.64)

and require that analogously to the stationary case

‖πhz‖W ≤ C‖z‖(0,1), z ∈ H
(0,1)
0 . (7.65)

We assume that

|‖(u, z)‖| = |u|V + ‖u‖ω + ‖z‖W,

is a norm on Vh × Wh. Finally, in the abstract setting, we assume that the s and s∗
are sufficiently strong so that the following weak coercivity holds

|‖(u, z)‖| ≤ C sup
(v,w)∈Vh×Wh

A[(u, z), (v,w)]
|‖(v,w)‖| , (u, z) ∈ Vh × Wh (7.66)

and for all (v,w) ∈ Vh × Wh,

sup
(x, y) ∈ Vh × Wh

x, y �= 0

|A[(x, y), (v,w)]| > 0. (7.67)
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The Babuska-Lax-Milgram theorem implies that Eq. (7.56) has a unique solution in
Vh×Wh. As we shall see below, these design criteria are sufficient to derive optimal
error estimates in the transient case, provided the problem has a conditional stability
property.

7.5.3 The Data Assimilation Problem

We will now proceed to a specific case. We choose the stabilizers and semi-norms
as follows,

s(u, u) = ‖h∇u(0, ·)‖2
L2(Ω)

, s∗ = a, (7.68)

|u|V = s(u, u)1/2 + ‖h∂tu‖, ‖z‖W = s∗(z, z)1/2, (7.69)

and we define H ∗ = H
(1,1)
0 . To counter the lack of primal stabilisation on most

of the cylinder (0, T ) × Ω , we choose πh to be the orthogonal projection πh :
H 1

0 (Ω) → Wh as defined in Sect. 7.2.2. As Ω is a convex polyhedron, it is well
known that this choice satisfies (7.61)–(7.63), see e.g. [25, Th. 3.12–18].

Lemma 7.2 The choices (7.68)–(7.69) satisfy the properties (7.58)–(7.64), (7.65)
and (7.66). Moreover, |‖·‖| is a norm on Vh × Wh.

Proof It is clear that the continuities (7.58) hold. We begin with the lower
bound (7.59). By the orthogonality of πh,

G(u, z − πhz) = (∂tu, z − πhz) ≤ ‖h∂tu‖h−1‖z − πhz‖ ≤ C‖h∂tu‖‖z‖(0,1).

Towards the upper bound (7.60), we use the orthogonality as above,

G(u − πhu, z) = (∂tu − πh∂tu, z) ≤ Ch‖u‖(1,1)‖z‖.

The bound (7.60) then follows from an application of the Poincaré inequality on
‖z‖.

The bound (7.64) follows from the continuity of the trace

‖∇u(0, ·)‖L2(Ω) ≤ ‖u‖(1,1), (7.70)

and the continuity of the projection πh. The bound (7.65) follows immediately from
the continuity of πh.

We turn to the weak coercivity (7.66). The essential difference between the time
dependent case and the stationary case is that in the latter case, the choice w = u
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is prohibited. In this case it is allowed, but due to the time-derivative and the lack
of initial condition it does not lead to stability. Instead we observe that ∂tu ∈ Wh

when u ∈ Vh so that this can be used as a test function w = ∂tu to obtain

A[(u, z), (0, ∂tu)] = −s∗(z, ∂tu) + G(u, ∂tu) = ‖∂tu‖2 + a(u, ∂tu) − a(z, ∂tu),

and thus using bilinearity of A,

A[(u, z), (u, αh2∂tu − z)] = s(u, u) + α‖h∂t u‖2 + ‖u‖2
ω + s∗(z, z) (7.71)

+ αh2a(u, ∂tu) − αh2a(z, ∂tu),

where α > 0. We will establish (7.66) by showing that there is α ∈ (0, 1) such that

|‖(u,w − z)‖| ≤ C|‖(u, z)‖|, (7.72)

|‖(u, z)‖|2 ≤ CA[(u, z), (u,w − z)], (7.73)

where w = αh2∂tu.
Towards (7.72) we observe that

|‖(u,w − z)‖|2 = |‖(u, z)‖|2 − 2s∗(z,w) + s∗(w,w) ≤ 2|‖(u, z)‖|2 + 2s∗(w,w).

We use the discrete inverse inequality (7.1) to bound the second term

s∗(w,w) = α2h4‖∂t∇u‖2 ≤ Cα2h2‖∂tu‖2 ≤ Cα2|‖(u, z)‖|2, α > 0.

It remains to show (7.73). Towards bounding the first cross term in (7.71) we
observe that

2a(u, ∂tu) =
ˆ T

0
∂t‖∇u(t, ·)‖2

L2(Ω)
dt = ‖∇u(T , ·)‖2

L2(Ω)
− ‖∇u(0, ·)‖2

L2(Ω)
.

Hence αh2a(u, ∂tu) ≥ −αs(u, u)/2. We use the arithmetic-geometric inequality,

ab ≤ (4ε)−1a2 + εb2, a, b ∈ R, ε > 0,

and the discrete inverse inequality (7.1) to bound the second cross term in (7.71),

αh2a(z, ∂tu) ≤ α(4ε)−1a(z, z)+ αεh4‖∂t∇u‖2 ≤ α(4ε)−1a(z, z) + Cαε‖h∂t u‖2.
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Choosing ε = 1/(2C) we obtain

A[(u, z), (u,w−z)] ≥ (1−α/2)s(u, u)+α‖h∂tu‖2/2+‖u‖2
ω+(1−Cα/2)s∗(z, z),

and therefore (7.73) holds with small enough α > 0.
The second condition (7.67) follows using the symmetry of A. Indeed, if

(v,w) �= 0, then A[(x, y), (v,w)] = A[(v,w), (x, y)] > 0 for some (x, y) by
(7.66). Finally, using the Poincaré inequality, we see that |‖(u, z)‖| = 0 implies
z = 0 and u(0, ·) = 0. As also ∂tu = 0, we have u = 0, and therefore |‖·‖| is a
norm.

7.5.4 Error Estimates

We are now in a situation to prove an error estimate using the abstract theory.

Theorem 7.4 Let ω ⊂ Ω be open and non-empty and let 0 < T1 < T . Suppose
that (A2) holds. Let u ∈ H ∗ and define f = ∂tu − Δu and q = u|ω. Suppose that
the primal and dual stabilizers satisfy (7.58)–(7.64), (7.65) and (7.66). Then (7.56)
has a unique solution (uh, zh) ∈ Vh × Wh, and there exists C > 0 such that for all
h ∈ (0, 1)

‖uh − u‖C(T1,T ;L2(Ω)) + ‖uh − u‖L2(T1,T ;H 1(Ω)) + ‖uh − u‖H 1(T1,T ;H−1(Ω))

≤ Ch(‖u‖∗ + ‖f ‖).

Proof We begin again by showing the estimate

|‖(uh − πhu, zh)‖| ≤ Ch‖u‖∗. (7.74)

The equations ∂tu − Δu = f and u|ω = q are equivalent with

G(u,w) = 〈f,w〉, w ∈ L2(0, T ; H 1
0 (Ω)), (7.75)

(q − u, v)ω = 0, v ∈ L2((0, T ) × ω),

and Eqs. (7.56) and (7.75) imply for all v ∈ Vh and w ∈ Wh that

A[(uh − πhu, zh), (v,w)] = (u − πhu, v)ω + G(u − πhu,w) − s(πhu, v).

(7.76)

The weak coercivity (7.66) implies that in order to show (7.74) it is enough bound
the three terms on the right hand side of (7.76). For the first of them, that is,
(u − πhu, v)ω , we use (7.63). The upper bound (7.60) applies to the second term
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G(u − πhu,w), and for the third one we use the continuity (7.58) and the upper
bound (7.64),

s(πhu, v) ≤ C|πhu|V|v|V ≤ Ch‖u‖∗|v|V.

We define the residual r as follows. By taking v = 0 in (7.56) we get G(uh,w) =
〈f,w〉 + s∗(zh,w), w ∈ Wh, and therefore

〈r,w〉 = G(uh,w) − 〈f,w〉 − G(uh, πhw) + G(uh, πhw) (7.77)

= G(uh,w − πhw) − 〈f,w − πhw〉 + s∗(zh, πhw), w ∈ H
(0,1)
0 .

We now wish to arrive to the estimate

‖r‖(0,−1) ≤ C(|uh|V + ‖zh‖W + h‖f ‖). (7.78)

To show that (7.78) holds, it is enough to bound the three terms on the right hand
side of (7.77). The upper bound (7.59) applies to the first term G(uh,w − πhw),
for the second term (f,w − πhw) we use (7.63), for the third term we use the
continuity (7.58) and the upper bound (7.65)

s∗(zh, πhw) ≤ C‖zh‖W‖πhw‖W ≤ C‖zh‖W‖w‖(0,1).

The inequalities (7.78), (7.74) and (7.64) imply

‖r‖(0,−1) ≤ C(|uh − πhu|V + |πhu|V + ‖zh‖W + h‖f ‖) ≤ Ch(‖u‖∗ + ‖f ‖).

Finally using the above bound on r , Theorem 7.3 implies that

‖uh − u‖C(T1,T ;L2(Ω)) + ‖uh − u‖L2(T1,T ;H 1(Ω)) + ‖uh − u‖H 1(T1,T ;H−1(Ω))

≤ C‖uh − u‖ω + Ch(‖u‖∗ + ‖f ‖).

The claim follows by using (7.74) and (7.63),

‖uh − u‖ω ≤ ‖uh − πhu‖ω + ‖πhu − u‖ω ≤ Ch‖u‖∗.

Here we used also the assumption that H ∗ is a continuously embedded subspace of
the energy space (7.52), namely, this implies that the embedding H ∗ ⊂ H(0,1) is
continuous.

Remark 7.8 If the data q, f is perturbed in this time-dependent case, the data
assimilation problem behaves like a typical well posed problem, that is, the term

‖δq‖L2(0,T ;L2(ω)) + ‖δf ‖(0,−1)
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needs to be added on the right-hand side of the estimate in Theorem 7.4, but this
time without any negative power of h. The proof is similar as in the stationary case
and we omit it.

7.6 Conclusion

We have shown on some model problems how weakly consistent regularisation may
be applied in the context of finite element approximation of ill-posed problems as a
means to obtain approximations to the exact solution that are optimal with respect
the approximation order of the finite element space and the (conditional) stability
of the physical problem. We have only considered piecewise affine approximation
here but the extension to high order polynomial approximation (and with associated
enhanced accuracy for smooth solutions) is possible using the ideas from [13].
Ongoing work focuses on problems where the stability depends on the parameters
of the physical problem in a more intricate way such as for the convection-diffusion
equation or the Helmholtz equation. Further work will also address the extension to
systems such as the linearised Navier-Stokes’ equations.
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