
Chapter 6
Generalization of the Pythagorean
Eigenvalue Error Theorem and Its
Application to Isogeometric Analysis

Michael Bartoň, Victor Calo, Quanling Deng, and Vladimir Puzyrev

Abstract This chapter studies the effect of the quadrature on the isogeometric
analysis of the wave propagation and structural vibration problems. The dispersion
error of the isogeometric elements is minimized by optimally blending two standard
Gauss-type quadrature rules. These blending rules approximate the inner products
and increase the convergence rate by two extra orders when compared to those
with fully-integrated inner products. To quantify the approximation errors, we
generalize the Pythagorean eigenvalue error theorem of Strang and Fix. To reduce
the computational cost, we further propose a two-point rule for C1 quadratic
isogeometric elements which produces equivalent inner products on uniform meshes
and yet requires fewer quadrature points than the optimally-blended rules.

6.1 Introduction

Partial differential eigenvalue problems arise in a wide variety of applications,
for example the vibration of elastic bodies (structural vibration) or multi-group
diffusion in nuclear reactors [58]. Finite element analysis of these differential
eigenvalue problems leads to the matrix eigenvalue problem with the entries of the
matrices which are usually approximated by numerical integration. The effect of
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these numerical integration methods on the eigenvalue and eigenfunction errors has
been investigated in the literature; see for example Fix [29], Strang and Fix [58],
and others [8–10]. Sharp and optimal estimates of the numerical eigenfunctions and
eigenvalues of finite element analysis are established in [8, 9].

Hughes et al. [41] unified the analysis of the spectrum properties of the eigen-
value problem with the dispersion analysis for wave propagation problems. They
established a duality principle between them: any numerical scheme that reduces
the dispersion error of the wave propagation problems reduces the eigenvalue errors
of the different eigenvalues problems and vice versa. Moreover, they share the same
convergence property in the sense of convergence rates [15, 43, 54]. In this work,
we focus on developing quadrature rules to optimize the dispersion errors and then
apply these rules to the approximation of differential eigenvalue problems.

The dispersion analysis of the finite element method and spectral element
method has been studied extensively; see for example Thomson and Pinsky[59, 60],
Ihlenburg and Babuska [44], Ainsworth [1–3], and many others [23, 28, 35–
38, 45, 46, 63]. Thomson and Pinsky studied the dispersive effects of using the
Legendre, spectral, and Fourier local approximation basis functions for finite
element methods when applied to the Helmholtz equation [59]. The choice of the
basis functions has a negligible effect on the dispersion errors. Nevertheless, the
continuity of the basis functions has a significant impact. Hughes et al. [41] showed
that high continuities (up to Cp−1 for p-th order isogeometric elements) on the basis
functions result in dramatically smaller dispersion errors than that of finite elements.

Ainsworth [1] and [2] established that the optimal convergence rate, which is
of order 2p, of the dispersion error for the p-th order standard finite elements
and spectral elements, respectively. The work was complete as they established the
analysis for arbitrary polynomial order. The dispersive properties of these methods
have been studied in detail and the most effective scheme was conjectured to be a
mixed one of these two [3, 49, 56]. Ainsworth and Wajid beautifully established the
optimal blending of these two methods for arbitrary polynomial order in 2010 in [3].
The blending was shown to provide two orders of extra accuracy (superconvergence)
in the dispersion error, which includes the fourth order superconvergence result
obtained by a modified integration rule for linear finite elements in [35]. Also,
this blending scheme is equivalent to the use of nonstandard quadrature rules and
therefore it can be efficiently implemented by replacing the standard Gaussian
quadrature by a nonstandard rule [3].

This blending idea can be extended to isogeometric analysis (IGA), a numerical
method that bridges the gap between computer aided design (CAD) and finite
element analysis (FEA). We refer to [13, 19, 21, 40] for its initial development and to
[20, 26, 33, 34, 41–43, 47, 48, 50] for its applications. The feature that distinguishes
isogeometric elements from finite and spectral elements is the fact that the basis
functions have up to p − 1 continuous derivatives across element boundaries, where
p is the order of the underlying polynomial. The publications [4, 19, 20, 41–43, 55]
show that highly continuous isogeometric analysis delivers more robustness and
better accuracy per degree of freedom than standard finite elements. Nevertheless,
a detailed analysis of the solution cost reveals that IGA is more expensive to solve
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on a per degree of freedom basis than the lower continuous counterparts, such as
finite element analysis [16–18, 52]. To exploit the reduction in cost, a set of solution
strategies which control the continuity of the basis functions to deliver optimal
solution costs were proposed [31, 32].

The dispersion analysis of isogeometric elements is studied in [41, 43, 54],
presenting significant advantages over finite elements. Hughes et al. [41] showed
that the dispersion error of the isogeometric analysis with high continuity (up to
Cp−1 for p-th order basis function) on the basis functions is smaller than that
of the lower continuity finite element counterparts. Dedè et al. [24] study the
dispersion analysis of the isogeometric elements for the two-dimensional harmonic
plane waves in an isotropic and homogeneous elastic medium. The anisotropic
curves are represented using NURBS-based IGA and the errors associated with the
compressional and shear wave velocities for different directions of the wave vector
are modeled. Recently, the dispersion error minimization for isogeometric analysis
has been performed numerically in Puzyrev et al. [54] and analytically in Calo et al.
[15].

In this work, we seek blending quadrature rules for isogeometric element to
minimize the dispersion error of the scheme and hence increase its accuracy
and robustness. We focus on the dispersion analysis of isogeometric elements
and apply the blending ideas introduced by [3] for finite and spectral elements
to isogeometric elements by using a modified inner product. The new blending
schemes reduce the errors in the approximation of the eigenvalues (and, in some
cases, the eigenfunctions). Using the optimal blending, convergence rates of the
dispersion error is increased by two additional orders. To analyze the errors, we
characterize the errors in the eigenvalues and the eigenfunctions for all the modes.
The total “error budget” of the numerical method consists of the errors arising
from the approximation of eigenvalues and eigenfunctions. When the stiffness and
mass terms are fully integrated, for each eigenvalue, the sum of the eigenvalue
error and the square of the eigenfunction error in the L2-norm scaled by the exact
eigenvalue equals the square of the error in the energy norm. Once one of these
terms are not fully integrated, this is not true any more. To account for the error
of the approximated/modified inner product, we generalize Strang’s Pythagorean
eigenvalue theorem to include the effect of inexact integration.

The outline of the remainder of this chapter is as follows. We first describe
the model problem in Sect. 6.2. In Sect. 6.3, we present a generalization of the
Pythagorean eigenvalue error theorem that accounts for the error of the modified
inner products. In Sect. 6.4, we describe the optimal blending of finite and spectral
elements and present an optimal blending scheme for isogeometric analysis. In
Sect. 6.5, we develop a two-point quadrature rule for periodic boundaries. Numerical
examples for one-dimensional and two-dimensional problems are given in Sect. 6.6.
Finally, Sect. 6.7 summarizes our findings and describes future research directions.
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6.2 Problem Setting

We begin with the differential eigenvalue problem

−Δu = λu in Ω,

u = 0 on ∂Ω,
(6.1)

where Δ = ∇2 is the Laplacian and Ω ⊂ R
d, d = 1, 2, 3 is a bounded open

domain with Lipschitz boundary. This eigenvalue problem has a countable infinite
set of eigenvalues λj ∈ R

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · (6.2)

and an associated set of orthonormal eigenfunctions uj

(uj , uk) =
ˆ

Ω

uj (x)uk(x) dx = δjk, (6.3)

where δjk is the Kronecker delta which is equal to 1 when i = j and 0 otherwise (see
for example [58]). The normalized eigenfunctions form an L2-orthonormal basis.
Moreover, using integration by parts and (6.1), they are orthogonal also in the energy
inner product

(∇uj ,∇uk) = (−Δuj, uk) = (λj uj , uk) = λj (uj , uk) = λj δjk. (6.4)

Let V be the solution space, a subspace of the Hilbert space H 1
0 (Ω). The

standard weak form for the eigenvalue problem: Find all eigenvalues λj ∈ R and
eigenfunctions uj ∈ V such that,

a(uj ,w) = λj (uj ,w), ∀ w ∈ V (6.5)

where

a(w, v) =
ˆ

Ω

∇w · ∇v dx, (6.6)

and (·, ·) is the L2 inner product. These two inner products are associated with the
following energy and L2 norms

‖w‖E = √
a(w,w), ‖w‖ = √

(w,w). (6.7)
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The Galerkin-type formulation of the eigenvalue problem (6.1) is the discrete
form of (6.5): Seek λh

j ∈ R and uh
j ∈ V h ⊂ V such that

a(uh
j ,w

h) = λh
j (uh

j ,w
h), ∀ wh ∈ V h, (6.8)

which results in the generalized matrix eigenvalue problem

K uh = λhM uh, (6.9)

where K is referred as the stiffness matrix, M is referred as the mass matrix, and
(λh,uh) are the unknown eigenpairs.

We described the differential eigenvalue problem and its Galerkin discretization
above. For dispersion analysis, we study the classical wave propagation equation

− Δu + 1

c2

∂2u

∂2t
= 0, (6.10)

where c is the wave propagation speed. We abuse the notation of unknown u here.
Assuming time-harmonic solutions of the form u(x, t) = e−iωtu(x) for a given
temporal frequency ω, the wave equation reduces to the well-known Helmholtz
equation

− Δu − k2u = 0, (6.11)

where the wavenumber k = ω/c represents the ratio of the angular frequency ω to
the wave propagation speed c. The wavelength is equal to 2π/k. The discretization
of (6.11) leads to the following linear equation system

(
K − k2M

)
uh = 0. (6.12)

The equivalence between (6.1) and (6.11) or (6.9) and (6.12) is established by
setting λ or λh = k2. Based on this equivalence, a duality principle between the
spectrum analysis of the differential eigenvalue problem and the dispersion analysis
of the wave propagation is established in [41]. In practice, the wavenumber is
approximated and we denote it as kh. In general, kh �= k. Then the solution of (6.12)
is a linear combination of plane waves with numerical wavenumbers kh. Hence the
discrete and exact waves have different wavelengths. The goal of the dispersion
analysis is to quantify this difference and define this difference as the dispersion
error of a specific numerical method. That is, dispersion analysis seeks to quantify
how well the discrete wavenumber kh approximates the continuous/exact k. Finally,
in the view of unified analysis in [41], this dispersion error describes the errors of
the approximated eigenvalues to the exact ones for (6.8) or (6.9).
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6.3 Pythagorean Eigenvalue Error Theorem and Its
Generalization

The theorem was first described in Strang and Fix [58] and was referred as the
Pythagorean eigenvalue error theorem in Hughes [43]. In this section, we revisit
this theorem in detail and generalize it.

6.3.1 The Theorem

Following Strang and Fix [58], the Rayleigh-Ritz idea for the steady-state equation
Lu = f (L is a differential operator) was extended to the differential eigenvalue
problem. The idea leads to the finite element approximation of the eigenvalue
problem. Equation (6.5) resembles the variational formulation for the steady-state
equation. Hence, one expects the approximated eigenfunction errors are of the
same convergence rates as those in steady-state problems. Definitely, the a priori
error estimation of the eigenfunction will depend on the index j (as in j -th
eigenvalue) and the accuracy will deteriorate as j increases. In fact, the errors of
the approximated eigenvalues also increase and hence deteriorate the accuracy as j

increases [7, 41, 58].
The a priori error analysis for the approximation of eigenfunctions and eigen-

values has a prominent connection. The motivation to derive the Pythagorean
eigenvalue error theorem as stated below (see also Lemma 6.3 in [58]) is to
elucidate the relation the between the eigenvalue and eigenvector errors to the total
approximation error.

Theorem 6.1 For each discrete mode, with the normalization ‖uj‖ = 1 and
‖uh

j‖ = 1, we have

‖uj − uh
j ‖2

E = λj‖uj − uh
j ‖2 + λh

j − λj . (6.13)

By the Minmax Principle (discovered by Poincaré, Courant, and Fischer; referred
by Strang and Fix), all finite element approximated eigenvalues bound the exact ones
from above, that is

λh
j ≥ λj ∀ j. (6.14)

This allows us to write (6.13) in the conventional Pythagorean theorem formulation

‖uj − uh
j ‖2

E =
(√

λj‖uj − uh
j ‖

)2 +
(√

λh
j − λj

)2
. (6.15)
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This theorem was established with a simple proof in [58]. Alternatively, we
present here

‖uj − uh
j‖2

E = a(uj − uh
j , uj − uh

j )

= a(uj , uj ) − 2a(uj , u
h
j ) + a(uh

j , u
h
j )

= λj (uj , uj ) − 2λj (uj , u
h
j ) + λh

j (uh
j , u

h
j )

= λj

(
(uj , uj ) − 2(uj , u

h
j ) + (uh

j , u
h
j )

) + λh
j − λj

= λj‖uj − uh
j‖2 + λh

j − λj .

(6.16)

This theorem tells that for each discrete mode, the square of the error in the
energy norm consists of the eigenvalue error and the product of the eigenvalue and
the square of the eigenfunction error in the L2-norm. We can rewrite (6.13) as

λh
j − λj

λj

+ ‖uh
j − uj‖2 = ‖uh

j − uj‖2
E

λj

, (6.17)

which implies

λh
j − λj ≤ ‖uh

j − uj‖2
E, (6.18)

‖uh
j − uj‖2 ≤ ‖uh

j − uj‖2
E

λj

. (6.19)

This tells further the relation among the eigenvalue errors, eigenfunction error
in L2 norm, and eigenfunction error in energy norm. Once error estimation for
eigenfunction error in energy norm is established, the other two are obvious.
Also, the inequality (6.19) does not hold for methods that do not approximate
all eigenvalues from above (that is violating (6.14)), for example, the spectral
element method [2]. In general, the spectral element method is realized by using
the Gauss-Legendre-Lobatto nodes to define the interpolation nodes for Lagrange
basis functions in each element. This quadrature rule induces an error in the
approximation of the inner products, but preserves the optimal order of convergence
of the scheme. In fact, these errors in the inner product allow the numerical scheme
to approximate eigenvalues from below. If the discrete method does not fully
reproduce the inner products associated with the stiffness and mass matrices or these
inner products are approximated using numerical integration, this theorem needs to
be extended to account for the errors introduced by the approximations of the inner
products.
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6.3.2 The Quadrature

Now to derive the generalized Pythagorean eigenvalue error theorem, we first
introduce the numerical integration with quadratures. The entries of the stiffness
and mass matrices K and M in (6.9) are given by the inner products

Mij =
ˆ

Ω

φi(x)φj (x) dx, (6.20)

Kij =
ˆ

Ω

∇φi(x) · ∇φj (x) dx, (6.21)

where φi(x) are the piecewise polynomial basis functions. Here, we consider basis
functions for finite elements, spectral elements, and isogeometric analysis. M and K
are symmetric positive definite matrices. Moreover, in the 1D matrices have 2p + 1
diagonal entries.

In practice, the integrals in (6.20) and (6.21) are evaluated numerically, that is,
approximated by quadrature rules. Now we give a brief description of the quadrature
rules for approximating the inner products (6.20) and (6.21). On a reference element
K̂ , an (n + 1)-point quadrature rule for a function f (x) is of the form

ˆ
K̂

f̂ (x̂) dx̂ =
n∑

l=0


̂l f̂ (n̂l) + Ên+1, (6.22)

where 
̂l are the weights, n̂l are the nodes, and Ên+1 is the error of the quadrature
rule. For each element K , there is an invertible affine map σ such that K = σ(K̂),
which leads to the correspondence between the functions on K and K̂. Let JK be
the corresponding Jacobian of the mapping. Then (6.22) induces a quadrature rule
over the element K given by

ˆ
K

f (x) dx ≈
n∑

l=0


l,Kf (nl,K) + En+1, (6.23)

where 
l,K = det(JK)
̂l and nl,K = σ(n̂l).
The quadrature rule is exact for a given function f (x) when the remainder En+1

is exactly zero. For example, the standard (n + 1)-point Gauss-Legendre (GL or
Gauss) quadrature is exact for the linear space of polynomials of degree at most
2n + 1 (see, for example, [12, 57]).

The classical Galerkin finite element analysis typically employs the Gauss
quadrature with p + 1 (where p is the polynomial order) quadrature points per
parametric direction that fully integrates every term in the bilinear forms defined by
the weak form. A quadrature rule is optimal if the function is evaluated with the
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minimal number of nodes (for example, Gauss quadrature with n + 1 evaluations is
optimal for polynomials of order 2n + 1 in one dimension).

Element-level integrals may be approximated using other quadrature rules, for
example the Gauss-Lobatto-Legendre (GLL or Lobatto) quadrature rule that is used
in the spectral element method (SEM). The Lobatto quadrature evaluated at n + 1
nodes is accurate for polynomials up to degree 2n+1. However, selecting a rule with
p + 1 evaluations for a polynomial of order p and collocating the Lagrange nodes
with the quadrature positions renders the mass matrix diagonal in 1D, 2D and 3D
for arbitrary geometrical mappings. This resulting diagonal mass matrix is a more
relevant result than the reduction in the accuracy of the calculation. Particularly,
given that this property preserves the optimal convergence order for these higher-
order schemes. Lastly, the spectral elements possess a superior phase accuracy when
compared with the standard finite elements of the same polynomial order [2].

Isogeometric analysis based on NURBS (Non-Uniform Rational B-Splines) has
been described in a number of papers (e.g. [13, 19, 20, 41]). Isogeometric analysis
employs piecewise polynomial curves composed of linear combinations of B-
spline basis functions. B-spline curves of polynomial order p may have up to
p − 1 continuous derivatives across element boundaries. Three different refinement
mechanisms are commonly used in isogeometric analysis, namely the h-, p- and
k-refinement, as detailed in [20]. We refer the reader to [53] for the definition of
common concepts of isogeometric analysis such as knot vectors, B-spline functions,
and NURBS.

The derivation of optimal quadrature rules for NURBS-based isogeometric
analysis with spaces of high polynomial degree and high continuity has attracted
significant attention in recent years [5, 6, 11, 12, 14, 39, 42]. The efficiency of
Galerkin-type numerical methods for partial differential equations depends on the
formation and assembly procedures, which, in turn, largely depend on the efficiency
of the quadrature rule employed. Integral evaluations based on full Gauss quadrature
are known to be efficient for standard C0 finite element methods, but inefficient for
isogeometric analysis that uses higher-order continuous spline basis functions [51].

Hughes et al. [42] studied the effect of reduced Gauss integration on the finite
element and isogeometric analysis eigenvalue problems. By using p Gauss points
(i.e., underintegrating using one point less), one modifies the mass matrix only (in
1D). By using less than p Gauss points (i.e., underintegrating using several points
less), both mass and stiffness matrices are underintegrated. Large underintegration
errors may lead to the loss of stability since the stiffness matrix becomes singular.
As shown in [42], this kind of underintegration led to the results that were worse
than the fully integrated ones and the highest frequency errors diverged as the mesh
was refined. However, as we show in the next sections, using properly designed
alternative quadratures may lead to more accurate results.

The assembly of the elemental matrices into the global stiffness and mass
matrices is done in a similar way for all Galerkin methods we analyze in this chapter.
Similarly, the convergence rate for all Galerkin schemes we analyze is the same.
However, the heterogeneity of the high-order finite element (C0 elements, i.e., SEM
and FEA) basis functions leads to a branching of the discrete spectrum and a fast
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degradation of the accuracy for higher frequencies. In fact, the degraded frequencies
in 1D are about half of all frequencies, while in 3D this proportion reduces to about
seven eighths. On uniform meshes, B-spline basis functions of the highest p − 1
continuity, on the contrary, are homogeneous and do not exhibit such branching
patterns other than the outliers that correspond to the basis functions with support
on the boundaries of the domain.

6.3.3 The Generalization

Now we consider the generalization. Applying quadrature rules to (6.8), we have
the approximated form

ah(ũ
h
j , w

h) = λ̃h
j (ũh

j , w
h)h ∀ wh ∈ V h, (6.24)

where

ah(w, v) =
∑

K∈Th

Nq∑

l=1



(1)
l,K∇w(n

(1)
l,K) · ∇v(n

(1)
l,K), (6.25)

and

(w, v)h =
∑

K∈Th

Nq∑

l=1



(2)
l,Kw(n

(2)
l,K)v(n

(2)
l,K), (6.26)

where {
(1)
l,K, n

(1)
l,K } and {
(2)

l,K, n
(2)
l,K } specify two (possibly different) quadrature

rules. This leads to the matrix eigenvalue problem

Khũh = λ̃hMhũh, (6.27)

where the superscripts on K and M and the tildes specify the effect of the
quadratures.

Remark 6.1 For multidimensional problems on tensor product grids, the stiffness
and mass matrices can be expressed as Kronecker products of 1D matrices [30]. For
example, in the 2D case, the components of K and M can be represented as fourth-
order tensors using the definitions of the matrices and the basis functions for the 1D
case [22, 30]

Mijkl = M1D
ik M1D

jl , (6.28)

Kijkl = K1D
ik M1D

jl + K1D
jl M

1D
ik , (6.29)
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where M1D
ij and K1D

ij are the mass and stiffness matrices of the 1D problem as given
by (6.20) and (6.21). We refer the reader to [22] for the description of the summation
rules.

To understand the errors of the approximations of eigenvalues and eigenfunctions
when quadratures are applied, we measure the errors they induce in the inner
products. The following theorem generalizes the Pythagorean eigenvalue error
theorem to account for these modified inner products [54].

Theorem 6.2 For each discrete mode, with the normalization ‖uj‖ = 1 and
(̃uh

j , ũ
h
j )h = 1, we have

‖uj − ũh
j‖2

E = λ̃h
j − λj + λj‖uj − ũh

j‖2 + ‖ũh
j ‖2

E − ‖ũh
j ‖2

E,h + λj

(
1 − ‖ũh

j‖2
)
,

(6.30)

where ‖ · ‖E,h is the energy norm evaluated by a quadrature rule.

Proof By definition and linearity of the bilinear forms, we have

‖uj − ũh
j ‖2

E = a(uj − ũh
j , uj − ũh

j ) = a(uj , uj ) − 2a(uj , ũ
h
j ) + a(̃uh

j , ũ
h
j ).

(6.31)

From (6.5), we have

a(uj , uj ) = λj (uj , uj ),

a(uj , ũ
h
j ) = λj (uj , ũ

h
j ).

Thus, adding and subtracting a term λj (ũ
h
j , ũ

h
j ), (6.31) is rewritten as

‖uj − ũh
j‖2

E = λj (uj , uj ) − 2λj (uj , ũ
h
j ) + λj (ũ

h
j , ũ

h
j ) − λj (ũ

h
j , ũ

h
j ) + a(̃uh

j , ũ
h
j )

= λj

(
(uj , uj ) − 2(uj , ũ

h
j ) + (ũh

j , ũ
h
j )

)
− λj‖ũh

j‖2 + ‖ũh
j ‖2

E

= λj‖uj − ũh
j‖2 − λj‖ũh

j ‖2 + ‖ũh
j ‖2

E.

From (6.24) and the definition of the modified energy norm ‖ · ‖E,h, we have

‖ũh
j ‖2

E,h = ah(ũ
h
j , ũh

j ) = λ̃h
j (ũh

j , ũ
h
j )h.

Noting that (̃uh
j , ũ

h
j )h = 1, we have

λ̃h
j − λj =

(
λ̃h

j − λj

)
(̃uh

j , ũ
h
j )h = ‖ũh

j‖2
E,h − λj .
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Thus, adding and subtracting a term λ̃h
j − λj gives

‖uj − ũh
j‖2

E = λj‖uj − ũh
j‖2 − λj‖ũh

j‖2 + ‖ũh
j‖2

E +
(
λ̃h

j − λj

)
−

(
‖ũh

j‖2
E,h − λj

)

= λ̃h
j − λj + λj‖uj − ũh

j‖2 + ‖ũh
j ‖2

E − ‖ũh
j‖2

E,h + λj

(
1 − ‖ũh

j ‖2
)
,

which completes the proof.

The equation in (6.30) can be rewritten as

‖uj − ũh
j‖2

E

λj

= λ̃h
j − λj

λj

+ ‖uj − ũh
j‖2 + ‖ũh

j ‖2
E − ‖ũh

j ‖2
E,h

λj

+
(

1 − ‖ũh
j‖2

)
,

in which the first term on the right-hand side is the relative error of the approximated
eigenvalue, the second term represent the error of eigenfunction in L2 norm, the
third term shows the eigenvalue-scaled error due to the modification of the inner
product associated with the stiffness, and the last term shows the error due to the
modification of the inner product associated with the mass.

The left-hand side and the first two terms on the right-hand side resemble the
Pythagorean eigenvalue error theorem, while the extra two terms reveal the effect
of numerical integration of the inner products associated with the stiffness and the
mass. In the cases when these inner products are integrated exactly, these two extra
terms are zeros. Consequently, Theorem 6.2 reduces to the standard Pythagorean
eigenvalue error theorem.

6.4 Optimal Blending for Finite Elements and Isogeometric
Analysis

Several authors (e.g. [3, 27, 56]) studied the blended spectral-finite element method
that uses nonstandard quadrature rules to achieve an improvement of two orders
of accuracy compared with the fully integrated schemes. This method is based
on blending the full Gauss quadrature, which exactly integrates the bilinear forms
to produce the mass and stiffness matrices, with the Lobatto quadrature, which
underintegrates them. This methodology exploits the fact that the fully integrated
finite elements exhibit phase lead when compared with the exact solutions, while
the underintegrated with Lobatto quadrature methods, such as, spectral elements
have phase lag.

Ainsworth and Wajid [3] chose the blending parameter to maximize the order of
accuracy in the phase error. They showed that the optimal choice for the blending
parameter is given by weighting the spectral element and the finite element methods
in the ratio p

p+1 . As mentioned above, this optimally blended scheme improves by
two orders the convergence rate of the blended method when compared against the
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finite or spectral element methods that were the ingredients used in the blending. The
blended scheme can be realized in practice without assembling the mass matrices
for either of the schemes, but instead by replacing the standard Gaussian quadrature
rule by an alternative rule, as Ainsworth and Wajid clearly explained in [3]. Thus,
no additional computational cost is required by the blended scheme although the
ability to generate a diagonal mass matrix by the underintegrated spectral method is
lost.

To show how an improvement in the convergence rate is achieved, consider, for
example, the approximate eigenfrequencies written as a series in Λ = ωh for the
linear finite and spectral elements, respectively [3]

ωh
FEh = Λ − Λ3

24
+ O(Λ5), (6.32)

ωh
SEh = Λ + Λ3

24
+ O(Λ5). (6.33)

When these two schemes are blended using a blending parameter τ , the
approximate eigenfrequencies become

ωh
BLh = Λ + Λ3

24
(2τ − 1) + O(Λ5). (6.34)

For τ = 0 and τ = 1, the above expression reduces to the ones obtained by
the finite element and spectral element schemes, respectively. The choice of τ =
1/2 allows the middle term of (6.34) to vanish and adds two additional orders of
accuracy to the phase approximation when compared with the standard schemes.
Similarly, by making the optimal choice of blending parameter τ = p

(p+1)
in high-

order schemes, they removed the leading order term from the error expansion.
The numerical examples in Sect. 6.6 show that a similar blending can be applied

to the isogeometric mass and stiffness matrices to reduce the eigenvalue error. For
C1 quadratic elements, the approximate eigenfrequencies are

ωh
GLh = Λ − 1

5!
Λ5

12
+ O(Λ7), (6.35)

ωh
GLLh = Λ + 1

5!
Λ5

24
+ O(Λ7). (6.36)

Similarly, blending these two rules utilizing a parameter τ gives

ωh
BLh = Λ + 3τ − 2

5! · 24
Λ5 + O(Λ7). (6.37)

Thus the optimal ratio of the Lobatto and Gauss quadratures is 2 : 1 (τ = 2/3)
similar to the optimally blended spectral-finite element scheme. For C2 cubic
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elements, we determine that a non-convex blending with τ = 5/2 allows us to
remove the leading error term and thus achieve two additional orders of accuracy.

Remark 6.2 In general, for C0 elements such as the finite elements and spectral
elements, the optimal blending is [3]: τ = p

(p+1)
for arbitrary p. This is, however,

not true for isogeometric Ck elements, where 1 ≤ k ≤ p − 1 and p ≥ 3. Finding
the optimal blending parameter for p ≥ 3 with k > 0 remains an open question. For
p ≤ 7 with k = p − 1 and the discussion on its generalization, we refer the reader
to [15].

Equations (6.32)–(6.36) show that the absolute errors in the eigenfrequencies
converge with the rates of O

(
Λ2p+1

)
and O

(
Λ2p+3

)
for the standard and optimal

schemes, respectively. If we consider the relative eigenfrequency errors, from
Eqs. (6.35) and (6.36), these take the form

ωhh

Λ
= 1 ± Λ4

α
+ · · · , (6.38)

that is, the convergence rate for frequencies computed using IGA approximations is
O

(
Λ2p

)
as shown in [19, 55]. The optimal blending in IGA leads to a O

(
Λ2p+2

)

convergence rate for the relative eigenfrequencies. This superconvergence result
is similar to the one achieved by the optimally-blending of the spectral and finite
element methods of [3].

Remark 6.3 Wang et al. [61, 62] constructed super-convergent isogeometric finite
elements for dispersion by blending two alternative quadrature methods. They used
full Gauss and a method which reduces the bandwidth of the mass and stiffness
method. Although the construction is different, algebraically the resulting algebraic
system is identical for uniform meshes.

6.5 Two-Point Rules for C1 Quadratic Isogeometric Analysis

The optimally-blended rules presented above first introduce an auxiliary parameter
for combining two different standard quadrature rules. Then the parameter is
determined by eliminating the highest order term in the error expansion. We can
achieve a similar result by designing a nonstandard quadrature rule here.

For C1 quadratic isogeometric analysis, the blending requires evaluations of the
function at two sets of quadrature nodes on each element, which is not compu-
tationally efficient. In this section, we present a two-point rule which eliminates
the leading order term in the error expansion hence results in an equivalent but
computationally efficient scheme for the C1 quadratic isogeometric elements.

We consider uniform meshes with periodic boundary conditions for the eigen-
value problem in 1D. In the reference interval [−1, 1], the two point rules are listed
in Table 6.1.



6 Generalized Pythagorean Theorem 161

Table 6.1 Two-point rules in the reference interval [−1, 1] for C1 quadratic isogeometric analysis

Rules n1 n2 
1 
2

Rule 1 −1

5

√

11 − 2
√

266

3

1

5

√

11 + 2
√

266

3
1 + 2

√
266

133
1 − 2

√
266

133

Rule 2
1

5

√

11 − 2
√

266

3
−1

5

√

11 + 2
√

266

3
1 + 2

√
266

133
1 − 2

√
266

133

Rule 3 −1

5

√

11 + 2
√

266

3

1

5

√

11 − 2
√

266

3
1 − 2

√
266

133
1 + 2

√
266

133

Rule 4
1

5

√

11 + 2
√

266

3
−1

5

√

11 − 2
√

266

3
1 − 2

√
266

133
1 + 2

√
266

133
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Fig. 6.1 Isogeometric C1 quadratic B-spline basis functions and their derivatives. (a) Basis
functions. (b) Derivatives of basis functions

These two-point rules share some sense of symmetry and lead to the same matrix
eigenvalue problem. On uniform meshes with periodic boundary conditions, all
these rules give the same dispersion errors.

In a periodic boundary domain discretized with a uniform mesh, we show
numerically that these two-point rules lead to the same set of eigenvalues and
eigenfunctions as these obtained by the optimally-blended schemes. In fact, they
result in the same stiffness and mass matrices. The two-point rules fail when we
use a boundary condition other than periodic, for example, Dirichlet or Neumann
conditions. This happens since the two-point rule does not integrate the stiffness
terms exactly near the boundary elements where the derivatives of the B-splines
basis functions do not vanish; see Fig. 6.1. We will understand and address this
shortcoming in future work.



162 M. Bartoň et al.

For multidimensional cases, we assume that a tensor product grid is placed on
the domain Ω . Then generalize these two-point rules to be 2d -point rules for d-
dimensional problems by simple tensor construction. We conclude that these two-
point rules developed above remain valid for higher dimensional problems. More
details are referred to [15, 25].

6.6 Numerical Examples

In this section, we present numerical examples of the one- and two-dimensional
problems described in Sect. 6.2 to show how the use of optimal quadratures reduce
the approximation errors in isogeometric analysis.

The 1D elliptic eigenvalue problem has the following exact eigenvalues and their
corresponding eigenfunctions

λj = j2π2, uj = √
2 sin(jπx), (6.39)

for j = 1, 2, . . .. The approximate eigenvalues λh
j are sorted in ascending order

and are compared to the corresponding exact eigenvalues λj . The total number of
degrees of freedom (discrete modes) is N = 1000.

Figure 6.2 compares the approximation errors of C1 quadratic isogeometric
elements using the standard Gaussian quadrature and the optimal rule. We show

the relative eigenvalue errors
μh

l −λl

λl
, the L2-norm eigenfunction errors

∥∥ul − vh
l

∥∥2
0

Fig. 6.2 Approximation errors for C1 quadratic isogeometric elements with standard Gauss
quadrature rule (left) and optimal blending (right)
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Fig. 6.3 Convergence of the errors in the eigenvalue approximation using C1 quadratic isogeomet-
ric elements with standard and optimal quadratures. The fifth (left) and tenth (right) eigenvalues
are shown

and the relative energy-norm errors
∥∥ul−vh

l

∥∥2
E

λl
. This format of error representation

clearly illustrates the budget of the generalized Pythagorean eigenvalue theorem.

The error in the L2 norm 1 − ∥∥vh
l

∥∥2
0 is shown only in the case when it is not zero.

In Fig. 6.2, the use of the optimal quadrature leads to more accurate results.
Surprisingly, not only the eigenvalues, but also the eigenfunctions of the problem
are better approximated in this particular case. The optimal ratio of blending of the
Lobatto and Gauss quadrature rules in this case is 2:1, which is the same to the ratio
proposed by Ainsworth and Wajid (2010) for the finite element case.

Figure 6.3 shows the dispersion errors in the eigenvalue approximation with C1

quadratic isogeometric elements. The size of the meshes used in these simulations
increases from 10 to 2560 elements. These results confirm two extra orders of
convergence in the eigenvalue errors.

To study the behavior of discrete eigenfunctions from different parts of the
spectrum, in Fig. 6.4 we compare the discrete and analytical eigenfunctions for
C1 quadratic elements. We show the 200th and the 400th eigenfunctions, where
the error is low, and the 600th and the 800th eigenfunctions, for which the
approximation is worse. As expected, both the fully- and under-integrated methods
provide similar eigenfunctions. There is no loss of accuracy in eigenfunction
approximation due to the use of the non-standard optimal quadrature rules.

We also note that for practical applications, one may look for a scheme that
reduces errors in the desired intervals of wavenumber (frequency) for a given mesh
size. Such blending schemes are also possible and (though not being optimal, i.e.
not delivering superconvergence) they are superior in the eigenvalue approximation
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Fig. 6.4 Discrete 200th (top left), 400th (top right), 600th (bottom left) and 800th (bottom right)
eigenfunctions for C1 quadratic elements. The discrete eigenfunctions resulting from the optimal
(red squares) and the standard scheme (blue line) are compared with the analytical eigenfunctions
(black line). The total number of discrete modes is 1000

compared to the optimal blending in certain ranges of wavenumber that are of
practical interest in wave propagation problems. We refer the reader to [54] for
further details.

Next, we continue our study with the dispersion properties of the two-
dimensional eigenvalue problem on tensor product meshes. Optimal quadratures for
multidimensional problems are formed by tensor product of the one dimensional
case. The exact eigenvalues and eigenfunctions of the 2D eigenvalue problem are
given by

λkl = (k2 + l2)π2, ukl = 2 sin(kπx) sin(lπy), (6.40)

for k, l = 1, 2, . . .. Again, the approximate eigenvalues λh
kl are sorted in ascending

order.
Figure 6.5 compares the eigenvalue errors of the standard Gauss using C1

quadratic elements with the optimal scheme (τ = 2/3). The latter has significantly
better approximation properties.

These results demonstrate that the use of optimal quadratures in isogeometric
analysis significantly improves the accuracy of the discrete approximations when
compared to the fully-integrated Gauss-based method.
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Fig. 6.5 Approximation errors for C1 quadratic isogeometric elements with standard Gauss (left)
and optimal quadrature rule (right). Color represents the absolute value of the relative error

Fig. 6.6 Approximation errors for C2 cubic isogeometric elements with standard Gauss (left) and
optimal quadrature rule (right). Color represents the absolute value of the relative error

Figure 6.6 compares the eigenvalue errors for C2 cubic isogeometric elements.
Again, the optimal scheme has significantly better approximation properties than
the standard method. The scale and representation format are different from those
of Fig. 6.5.

Figure 6.7 compares the dispersion errors of the standard Gauss fully-integrated
method with the optimally-blended scheme and the two-point rule described in the
previous section. In this example, we use periodic knots at the boundaries of the
domain. As can be seen from Fig. 6.7, the two-point rule leads to the same results
as those obtained by the optimally-blended scheme. At the same time, this rule is
computationally cheaper than the three-point Gauss rule or any blended scheme.
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Fig. 6.7 Approximation errors for C1 quadratic isogeometric elements with standard Gauss, the
optimal quadrature rule, and the two-point

6.7 Conclusions and Future Outlook

To understand the dispersion properties of isogeometric analysis and to improve
them, we generalize the Pythagorean eigenvalue error theorem to account for the
effects of the modified inner products on the resulting weak forms. We show that
the blended quadrature rules reduce the phase error of the numerical method for the
eigenvalue problems.

The proposed optimally-blended scheme further improves the superior spectral
accuracy of isogeometric analysis. We achieve two extra orders of convergence in
the eigenvalues by applying these blended rules. We present and test two-point rules
which reduce the number of quadrature nodes and the computational cost, and at
the same time, produce the same eigenvalues and eigenfunctions. We believe that
one can extend the method to arbitrary high-order Cp−1 isogeometric elements
by identifying suitable quadrature rules. Nevertheless, for higher-order polynomial
approximations the only known optimal quadratures are the result of blending a
Gauss rule and a Lobatto quadrature rule. The search for this class of quadratures
that result in super-convergent dispersion properties and use fewer quadrature points
will be the subject of our future work.

Another future direction is the study on the non-uniform meshes and non-
constant coefficient wave propagation problems. The study with variable continuity
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is also of interest. We will study the impact of the variable continuities of the
basis functions on the dispersion properties of the numerical methods and how the
dispersion can be minimized by designing goal-oriented quadrature rules.
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11. Bartoň, M., Calo, V.M.: Gaussian quadrature for splines via homotopy continuation: rules for
C2 cubic splines. J. Comput. Appl. Math. 296, 709–723 (2016)
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