
Chapter 4
An Introduction to Hybrid High-Order
Methods

Daniele Antonio Di Pietro and Roberta Tittarelli

Abstract This chapter provides an introduction to Hybrid High-Order (HHO)
methods. These are new generation numerical methods for PDEs with several
advantageous features: the support of arbitrary approximation orders on general
polyhedral meshes, the reproduction at the discrete level of relevant continuous
properties, and a reduced computational cost thanks to static condensation and
compact stencil. After establishing the discrete setting, we introduce the basics of
HHO methods using as a model problem the Poisson equation. We describe in detail
the construction, and prove a priori convergence results for various norms of the
error as well as a posteriori estimates for the energy norm. We then consider two
applications: the discretization of the nonlinear p-Laplace equation and of scalar
diffusion-advection-reaction problems. The former application is used to introduce
compactness analysis techniques to study the convergence to minimal regularity
solution. The latter is used to introduce the discretization of first-order operators and
the weak enforcement of boundary conditions. Numerical examples accompany the
exposition.

4.1 Introduction

This chapter provides an introduction to Hybrid High-Order (HHO) methods. The
material is closely inspired by a series of lectures given by the first author at Institut
Henri Poincaré in September 2016 within the thematic quarter Numerical Methods
for PDEs (see http://imag.edu.umontpellier.fr/event/ihp-nmpdes).

HHO methods, introduced in [27, 33], are discretization methods for Partial
Differential Equations (PDEs) with relevant features that set them apart from
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classical techniques such as finite elements or finite volumes. These include, in
particular:

1. The support of general polytopal meshes in arbitrary space dimension, paving the
way to a seamless treatment of complex geometric features and unified 1d-2d-3d
implementations;

2. The possibility to select the approximation order which, possibly combined with
adaptivity, leads to a reduction of the simulation cost for a given precision or
better precision for a given cost;

3. The compliance with the physics, including robustness with respect to the
variations of physical coefficients and reproduction at the discrete level of key
continuous properties such as local balances and flux continuity;

4. A reduced computational cost thanks to their compact stencil along with the
possibility to perform static condensation.

As of today, HHO methods have been successfully applied to the discretization
of several linear and nonlinear problems of engineering interest including: variable
diffusion [28, 33, 35], quasi incompressible linear elasticity [26, 27], locally
degenerate diffusion-advection-reaction [34], poroelasticity [9], creeping flows [1]
possibly driven by volumetric forces with large irrotational part [36], electrostat-
ics [31], phase separation problems governed by the Cahn–Hilliard equation [14],
Leray–Lions type elliptic problems [22, 23]. More recent applications also include
steady incompressible flows governed by the Navier–Stokes equations [29] and
nonlinear elasticity [11]. Generalizations of HHO methods and comparisons with
other (new generation or classical) discretization methods for PDEs can be found
in [8, 18]. Implementation tools based on advanced programming techniques have
been recently discussed in [15].

Discretization methods that support polytopal meshes and, possibly, arbitrary
approximation orders have experienced a vigorous development over the last
decade. Novel approaches to the analysis and the design have been developed bor-
rowing ideas from other branches of mathematics (such as topology and geometry),
or expanding past their initial limits the original ideas underlying finite element or
finite volume methods. A brief state-of-the-art is provided in what follows.

Several lowest-order methods for diffusive problems have been proposed to
circumvent the strict conditions of mesh-data compliance required for the consis-
tency of classical (two-points) finite volume schemes; see [38] for a comprehensive
review. We mention here, in particular, the Mixed and Hybrid Finite Volume
methods of [39, 44]. These methods possess local conservation properties on the
primal mesh, and enable an explicit identification of equilibrated numerical fluxes.
Their relation with the lowest-order version of HHO methods has been studied
in [33, Section 2.5] for pure diffusion and in [34, Section 5.4] for advection-
diffusion-reaction. Other families of lowest-order methods have been obtained
by reproducing at the discrete level salient features of the continuous problem.
Mimetic Finite Difference methods are derived by emulating the Stokes theorems
to formulate counterparts of differential operators and of L2-products; cf. [12]
and [40] for a study of their relation with Mixed and Hybrid Finite Volume methods.
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In the Discrete Geometric Approach of [19] as well as in Compatible Discrete
Operators [10], formal links with the continuous operators are expressed in terms of
Tonti diagrams. To different extents, the aforementioned methods owe to the seminal
ideas of Whitney on geometric integration [55]. A different approach to lowest-
order schemes on general meshes consists in extending classical properties of
nonconforming and penalized finite elements as in the Cell Centered Galerkin [21]
and generalized Crouzeix–Raviart [30] methods. We also cite here [54] concerning
the use of classical mixed finite elements on polyhedral meshes (see, in particular,
Section 7 therein). Further investigations have recently lead to unifying frameworks
that encompass the above (and other) methods. We mention, in particular, the
Gradient Schemes discretizations of [41]. Finally, the methods discussed here can
often be regarded as lowest-order versions of more recent technologies.

Methods that support the possibility to increase the approximation order have
received a considerable amount of attention over the last few years. High-order dis-
cretizations on general meshes that are possibly physics-compliant can be obtained
by the discontinuous Galerkin approach; cf., e.g., [2, 25] and also [3]. Discontinuous
Galerkin methods, however, have some practical limitations. For problems in
incompressible fluid mechanics, e.g., a key ingredient for inf-sup stability is a
reduction map that can play the role of a Fortin interpolator. Unfortunately, such
an interpolator is often not available for discontinuous Galerkin methods on non-
standard elements. Additionally, in particular for modal implementations on general
meshes, the number of unknowns can become unbearably large. This has motivated
the introduction of Hybridizable Discontinuous Galerkin methods [13, 17], which
mainly focus on standard meshes (the extension to general meshes is possible in
some cases); see also the very recent M-decomposition techniques [16]. High-
order discretization methods that support general meshes also include Virtual
Element methods; cf. [7] for an introduction. In short, Virtual Element methods
are finite element methods where explicit expressions for the basis functions are not
available at each point, and computable approximations thereof are used instead.
This provides the extra flexibility required, e.g., to handle polyhedral elements.
Links between HHO and the nonconforming Virtual Element method have been
pointed out in [18, Section 2.4]; see also [8] and [37] concerning the links among
HHO, Virtual Element methods, and Gradient Schemes.

We next describe in detail the content of this chapter. We start in Sect. 4.2
by presenting the discrete setting: we introduce the notion of polytopal mesh
(Sect. 4.2.1), formulate assumptions on the way meshes are refined that are suitable
to carry out a h-convergence analysis (Sect. 4.2.2), introduce the local polynomial
spaces (Sect. 4.2.3) and projectors (Sect. 4.2.4) that lie at the heart of the HHO
construction.

In Sect. 4.3 we present the basic principles of HHO methods using as a model
problem the Poisson equation. While the material in this section is mainly adapted
from [33], some results are new and the arguments have been shortened or made
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more elegant. In Sect. 4.3.1 we introduce the local space of degrees of freedom
(DOFs) and discuss the main ingredients upon which HHO methods rely, namely:

1. Reconstructions of relevant quantities obtained by solving small, embarrassingly
parallel problems on each element;

2. High-order stabilization terms obtained by penalizing cleverly designed residu-
als.

In Sect. 4.3.2 we show how to combine these ingredients to formulate local
contributions, which are then assembled element-by-element as in standard finite
elements. The construction is conceived so that only face-based DOFs are globally
coupled, which paves the way to efficient practical implementations where element-
based DOFs are statically condensed in a preliminary step. In Sects. 4.3.3 and 4.3.4
we discuss, respectively, optimal a priori estimates for various norms and seminorms
of the error, and residual-based a posteriori estimates for the energy-norm of the
error. Finally, some numerical examples are provided in Sect. 4.3.5 to demonstrate
the theoretical results.

In Sect. 4.4 we consider the HHO discretization of the p-Laplace equation. The
material is inspired by [22, 23], where more general Leray–Lions operators are
considered. When dealing with nonlinear problems, regularity for the exact solution
is often difficult to prove and can entail stringent assumptions on the data. For this
reason, the h-convergence analysis can be carried out in two steps: in a first step,
convergence to minimal regularity solutions is proved by a compactness argument;
in a second step, convergence rates are estimated for smooth solutions (and
smooth data). Convergence by compactness typically requires discrete counterparts
of functional analysis results relevant for the study of the continuous problem.
In our case, two sets of discrete functional analysis results are needed: discrete
Sobolev embeddings (Sect. 4.4.1) and compactness for sequences of HHO functions
uniformly bounded in a W 1,p-like seminorm (Sect. 4.4.2). The interest of both
results goes beyond the specific method and problem considered here. As an
example, in [29] they are used for the analysis of a HHO discretization of the steady
incompressible Navier–Stokes equations. The HHO method for the p-Laplacian
stated in Sect. 4.4.3 is designed according to similar principles as for the Poisson
problem. Convergence results are stated in Sect. 4.4.4, and numerical examples are
provided in Sect. 4.4.5.

Following [34], in Sect. 4.5 we extend the HHO method to diffusion-advection-
reaction problems. In this context, a crucial property from the numerical point of
view is robustness in the advection-dominated regime. In Sect. 4.5.1 we modify
the diffusive bilinear form introduced in Sect. 4.3.2 to incorporate weakly enforced
boundary conditions. The weak enforcement of boundary conditions typically
improves the behaviour of the method in the presence of boundary layers, since the
discrete solution is not constrained to a fixed value on the boundary. In Sect. 4.5.2
we introduce the HHO discretization of first-order terms based on two novel
ingredients: a local advective derivative reconstruction and an upwind penalty term.
The former is used to formulate the consistency terms, while the role of the latter
is to confer suitable stability properties to the advective-reactive bilinear form.
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The HHO discretization is finally obtained in Sect. 4.5.3 combining the diffusive
and advective-reactive contributions, and its stability with respect to an energy-like
norm including an advective derivative contribution is studied. In Sect. 4.5.4 we
state an energy-norm error estimate which accounts for the dependence of the error
contribution of each mesh element on a local Péclet number. A numerical illustration
is provided in Sect. 4.5.5.

4.2 Discrete Setting

Let Ω ⊂ R
d , d ∈ N

∗, denote a bounded connected open polyhedral domain with
Lipschitz boundary and outward normal n. We assume that Ω does not have cracks,
i.e., it lies on one side of its boundary. In what follows, we introduce the notion of
polyhedral mesh of Ω , formulate assumptions on the way meshes are refined that
enable to prove useful geometric and functional results, and introduce functional
spaces and projectors that will be used in the construction and analysis of HHO
methods.

4.2.1 Polytopal Mesh

The following definition enables the treatment of meshes as general as the ones
depicted in Fig. 4.1.

(a) (b) (c) (d)

Fig. 4.1 Examples of polytopal meshes in two and three space dimensions. The triangular and
nonconforming meshes are taken from the FVCA5 benchmark [47], the polygonal mesh family
from [30, Section 4.2.3], and the agglomerated polyhedral mesh from [31]. (a) Matching triangular,
(b) nonconforming, (c) polygonal, (d) agglomerated
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Definition 4.1 (Polytopal Mesh) A polytopal mesh of Ω is a couple Mh =
(Th,Fh) where:

(i) The set of mesh elements Th is a finite collection of nonempty disjoint open
polytopes T with boundary ∂T and diameter hT such that the meshsize h satisfies
h = maxT ∈Th

hT and it holds that Ω =⋃T ∈Th
T .

(ii) The set of mesh faces Fh is a finite collection of disjoint subsets of Ω such
that, for any F ∈ Fh, F is an open subset of a hyperplane of R

d , the (d−1)-
dimensional Hausdorff measure of F is strictly positive, and the (d−1)-dimensional
Hausdorff measure of its relative interior F\F is zero. Moreover, (a) for each
F ∈ Fh, either there exist two distinct mesh elements T1, T2 ∈ Th such that
F ⊂ ∂T1 ∩ ∂T2 and F is called an interface or there exists one mesh element
T ∈ Th such that F ⊂ ∂T ∩∂Ω and F is called a boundary face; (b) the set of faces
is a partition of the mesh skeleton, i.e.,

⋃
T ∈Th

∂T =⋃F∈Fh
F .

Interfaces are collected in the set F i
h and boundary faces in F b

h , so that Fh =
F i

h ∪ F b
h . For any mesh element T ∈ Th,

FT := {F ∈ Fh | F ⊂ ∂T }

denotes the set of faces contained in ∂T . Similarly, for any mesh face F ∈ Fh,

TF := {T ∈ Th | F ⊂ ∂T }

is the set of mesh elements sharing F . Finally, for all F ∈ FT , nT F is the unit
normal vector to F pointing out of T .

Remark 4.1 (Nonconforming Junctions) Meshes including nonconforming junc-
tions such as the one depicted in Fig. 4.2 are naturally supported provided that each
face containing hanging nodes is treated as multiple coplanar faces.

Fig. 4.2 Treatment of a
nonconforming junction (red)
as multiple coplanar faces.
Gray elements are pentagons
with two coplanar faces,
white elements are squares
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4.2.2 Regular Mesh Sequences

When studying the convergence of HHO methods with respect to the meshsize h,
one needs to make assumptions on how the mesh is refined. The ones provided here
are closely inspired by [25, Chapter 1], and refer to the case of isotropic meshes
with non-degenerate faces. Isotropic means here that we do not consider the case
of elements that become more and more stretched when refining. Non-degenerate
faces means, on the other hand, that the diameter of each mesh face is uniformly
comparable to that of the element(s) it belongs to; see (4.2) below.

Definition 4.2 (Matching Simplicial Submesh) Let Mh = (Th,Fh) be a poly-
topal mesh of Ω . We say that Th is a matching simplicial submesh of Mh if (i) Th

is a matching simplicial mesh of Ω ; (ii) for all simplices τ ∈ Th, there is only one
mesh element T ∈ Th such that τ ⊂ T ; (iii) for all σ ∈ Fh, the set collecting the
simplicial faces of Th, there is at most one face F ∈ Fh such that σ ⊂ F .

If Th itself is matching simplicial and Fh collects the corresponding simplicial
faces, we can simply take Th = Th, so that Fh = Fh. The notion of regularity for
refined mesh sequences is made precise by the following

Definition 4.3 (Regular Mesh Sequence) Denote by H ⊂ R
+∗ a countable set of

meshsizes having 0 as its unique accumulation point. A sequence of refined meshes
(Mh)h∈H is said to be regular if there exists a real number � ∈ (0, 1) such that,
for all h ∈ H, there exists a matching simplicial submesh Th of Mh and (i) for
all simplices τ ∈ Th of diameter hτ and inradius rτ , �hτ ≤ rτ ; (ii) for all mesh
elements T ∈ Th and all simplices τ ∈ Th such that τ ⊂ T , �hT ≤ hτ .

Remark 4.2 (Role of the Simplicial Submesh) The simplicial submesh introduced in
Definition 4.3 is merely a theoretical tool, and needs not be constructed in practice.

Geometric bounds on regular mesh sequences can be proved as in [25, Sec-
tion 1.4.2] (the definition of mesh face is slightly different therein since planarity
is not required, but the proofs are based on the matching simplicial submesh and
one can check that they carry out unchanged). We recall here, in particular, that the
number of faces of one mesh element is uniformly bounded: There is N∂ ≥ d + 1
such that

max
h∈H

max
T ∈Th

card(FT ) ≤ N∂. (4.1)

Moreover, according to [25, Lemma 1.42], for all h ∈ H, all T ∈ Th, and all F ∈ FT

�2hT ≤ hF ≤ hT . (4.2)

Discrete functional analysis results for arbitrary-order methods on regular mesh
sequences can be found in [25, Chapter 1] and [22, 23]. We also refer the reader
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to [43] for a first theorization of discrete functional analysis in the context of lowest-
order finite volume methods, as well as to the subsequent extensions of [42, 44].

Throughout the rest of this work, it is tacitly understood that we work on regular
mesh sequences.

4.2.3 Local and Broken Spaces

Throughout the rest of this chapter, for any X ⊂ Ω , we denote by (·, ·)X and ‖·‖X

the standard L2(X)-product and norm, with the convention that the subscript is
omitted whenever X = Ω . The same notation is used for the vector-valued space
L2(X)d .

Let now the set X be a mesh element or face. For an integer l ≥ 0, we denote
by P

l(X) the space spanned by the restriction to X of scalar-valued, d-variate
polynomials of total degree l. We note the following trace inequality (see [25,
Lemma 1.46]): There is a real number C > 0 only depending on d , �, and l such
that, for all h ∈ H, all T ∈ Th, all v ∈ P

l(T ), and all F ∈ FT ,

‖v‖F ≤ Ch
−1/2

T ‖v‖T . (4.3)

At the global level, we define the broken polynomial space

P
l (Th) :=

{
vh ∈ L2(Ω) | vh|T ∈ P

l (T ) ∀T ∈ Th

}
.

Functions in P
l (Th) belong to the broken Sobolev space

W 1,1(Th) :=
{
v ∈ L1(Ω) | v|T ∈ W 1,1(T ) ∀T ∈ Th

}
.

We denote by ∇h : W 1,1(Th) → L1(Ω)d the usual broken gradient operator such
that, for all v ∈ W 1,1(Th),

(∇hv)|T = ∇v|T ∀T ∈ Th.

4.2.4 Projectors on Local Polynomial Spaces

Projectors on local polynomial spaces play a key role in the design and analysis of
HHO methods.
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4.2.4.1 L2-Orthogonal Projector

Let X denote a mesh element or face. The L2-orthogonal projector (in short, L2-
projector) π

0,l
X : L1(X) → P

l (X) is defined as follows: For all v ∈ L1(X), π
0,l
X is

the unique polynomial in P
l (X) that satisfies

(π
0,l
X v − v,w)X = 0 ∀w ∈ P

l(X). (4.4)

Existence and uniqueness of π
0,l
X v follow from the Riesz representation theorem

in P
l (X) for the standard L2(X)-inner product. Moreover, we have the following

characterization:

π
0,l
X v = arg min

w∈Pl (X)

‖w − v‖2
X.

In what follows, we will also need the vector-valued L2-projector denoted by π
0,l
X

and obtained by applying π
0,l
X component-wise. The following Hs-boundedness

result is a special case of [22, Corollary 3.7]: For any s ∈ {0, . . . , l +1}, there exists
a real number C > 0 depending only on d , �, l, and s such that, for all h ∈ H, all
T ∈ Th, and all v ∈ Hs(T ),

|π0,l
T v|Hs(T ) ≤ C|v|Hs(T ). (4.5)

At the global level, we denote by π
0,l
h : L1(Ω) → P

l(Th) the L2-projector on the
broken polynomial space P

l (Th) such that, for all v ∈ L1(Ω),

(π
0,l
h v)|T := π

0,l
T v|T .

4.2.4.2 Elliptic Projector

For any mesh element T ∈ Th, we also define the elliptic projector π
1,l
T :

W 1,1(T ) → P
l (T ) as follows: For all v ∈ W 1,1(T ), π

1,l
T v is a polynomial in P

l (T )

that satisfies

(∇(π
1,l
T v − v),∇w)T = 0 ∀w ∈ P

l (T ). (4.6a)

By the Riesz representation theorem in ∇P
l (T ) for the L2(T )d -inner product, this

relation defines a unique element ∇π
1,l
T v, and thus a polynomial π

1,l
T v up to an

additive constant. This constant is fixed by writing

(π
1,l
T v − v, 1)T = 0. (4.6b)
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Observing that (4.6a) is trivially verified when l = 0, it follows from (4.6b) that
π

1,0
T = π

0,0
T . Finally, the following characterization holds:

π
1,l
T v = arg min

w∈Pl (T ), (w−v,1)T =0
‖∇(w − v)‖2

L2(T )d
.

4.2.4.3 Approximation Properties

On regular mesh sequences, both π
0,l
T and π

1,l
T have optimal approximation prop-

erties in P
l (T ), as summarized by the following result (for a proof, see Theorem 1,

Theorem 2, and Lemma 13 in [22]): For any α ∈ {0, 1} and s ∈ {α, . . . , l +1}, there
exists a real number C > 0 depending only on d , �, l, α, and s such that, for all
h ∈ H, all T ∈ Th, and all v ∈ Hs(T ),

|v − π
α,l
T v|Hm(T ) ≤ Chs−m

T |v|Hs(T ) ∀m ∈ {0, . . . , s}, (4.7a)

and, if s ≥ 1,

|v − π
α,l
T v|Hm(FT ) ≤ Ch

s−m− 1
2

T |v|Hs(T ) ∀m ∈ {0, . . . , s − 1}, (4.7b)

where Hm(FT ) := {v ∈ L2(∂T ) | v|F ∈ Hm(F) ∀F ∈ FT

}
.

4.3 Basic Principles of Hybrid High-Order Methods

To fix the main ideas and notation, we study in this section the HHO discretization
of the Poisson problem: Find u : Ω → R such that

−Δu = f in Ω, (4.8a)

u = 0 on ∂Ω, (4.8b)

where f ∈ L2(Ω) is a given volumetric source term. More general boundary
conditions can replace (4.8b), but we restrict the discussion to the homogeneous
Dirichlet case for the sake of simplicity. A detailed treatment of more general
boundary conditions including also variable diffusion coefficients can be found
in [35].

The starting point to devise a HHO discretization is the following weak formula-
tion of problem (4.8): Find u ∈ H 1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H 1
0 (Ω), (4.9)
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where the bilinear form a : H 1(Ω) × H 1(Ω) → R is such that

a(u, v) := (∇u,∇v). (4.10)

In what follows, the quantities u and −∇u will be referred to, respectively, as the
potential and the flux.

4.3.1 Local Construction

Throughout this section, we fix a polynomial degree k ≥ 0 and a mesh element T ∈
Th. We introduce the local ingredients underlying the HHO construction: the DOFs,
the potential reconstruction operator, and the discrete counterpart of the restriction
to T of the global bilinear form a defined by (4.10).

4.3.1.1 Computing the Local Elliptic Projection from L2-Projections

Consider a function v ∈ H 1(T ). We note the following integration by parts formula,
valid for all w ∈ C∞(T ):

(∇v,∇w)T = −(v,Δw)T +
∑

F∈FT

(v,∇w·nT F )F . (4.11)

Specializing (4.11) to w ∈ P
k+1(T ), we obtain

(∇π
1,k+1
T v,∇w)T = −(π

0,k−1
T v,Δw)T +

∑

F∈FT

(π
0,k
F v,∇w·nT F )F , (4.12a)

where we have used (4.6a) to insert π
1,k+1
T into the left-hand side and (4.4)

to insert π
0,k−1
T and π

0,k
F into the right-hand side after observing that Δw ∈

P
k−1(T ) ⊂ P

k(T ) and (∇w)|F ·nT F ∈ P
k(F ) for all F ∈ FT . Moreover,

recalling (4.6b) and using the definition (4.4) of the L2-projector, we infer that

(v − π
0,0
T v, 1)T = (π

1,k+1
T v − π

0,max(0,k−1)
T v, 1)T = 0. (4.12b)

The relations (4.12) show that computing the elliptic projection π
1,k+1
T v does not

require a full knowledge of the function v. All that is required is

1. π
0,max(0,k−1)
T v, the L2-projection of v on the polynomial space P

max(0,k−1)(T ).

Clearly, one could also choose π
0,k
T v instead, which has the advantage of not

requiring a special treatment of the case k = 0;
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Fig. 4.3 DOFs in Uk
T for k ∈ {0, 1, 2}

2. for all F ∈ FT , π
0,k
F v|F , the L2-projection of the trace of v on F on the

polynomial space P
k(F ).

4.3.1.2 Local Space of Degrees of Freedom

The remark at the end of the previous section motivates the introduction of the
following space of DOFs (see Fig. 4.3):

Uk
T := P

k(T ) ×
⎛

⎝×
F∈FT

P
k(F )

⎞

⎠ . (4.13)

Observe that naming Uk
T space of DOFs involves a shortcut: the actual DOFs

can be chosen in several equivalent ways (polynomial moments, point values, etc.),
and the specific choice does not affect the following discussion. For a generic vector
of DOFs in Uk

T , we use the underlined notation vT = (vT , (vF )F∈FT
). On Uk

T , we

define the H 1-like seminorm ‖·‖1,T such that, for all vT ∈ Uk
T ,

‖vT ‖2
1,T := ‖∇vT ‖2

T + |vT |21,∂T , |vT |21,∂T :=
∑

F∈FT

h−1
F ‖vF − vT ‖2

F ,

(4.14)

where hF denotes the diameter of F . The negative power of hF in the second term
ensures that both contributions have the same scaling. The DOFs corresponding to a
smooth function v ∈ W 1,1(T ) are obtained via the reduction map Ik

T : W 1,1(T ) →
Uk

T such that

I k
T v := (π

0,k
T v, (π

0,k
F v|F )F∈FT

). (4.15)
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4.3.1.3 Potential Reconstruction Operator

Inspired by formula (4.12), we introduce the potential reconstruction operator
pk+1

T : Uk
T → P

k+1(T ) such that, for all vT ∈ Uk
T ,

(∇pk+1
T vT ,∇w)T = −(vT ,Δw)T +

∑

F∈FT

(vF ,∇w·nT F )F ∀w ∈ P
k+1(T )

(4.16a)

and

(pk+1
T vT − vT , 1)T = 0. (4.16b)

Notice that pk+1
T vT is a polynomial function on T one degree higher than the

element-based DOFs vT . By definition, for all v ∈ W 1,1(T ) it holds that

(pk+1
T ◦ I k

T )v = π
1,k+1
T v, (4.17)

i.e., the composition of the potential reconstruction operator with the reduction
map gives the elliptic projector on P

k+1(T ). An immediate consequence of (4.17)
together with (4.7) is that pk+1

T ◦ Ik
T has optimal approximation properties in

P
k+1(T ).

4.3.1.4 Local Contribution

We approximate the restriction a|T : H 1(T ) × H 1(T ) → R to T of the continuous
bilinear form a defined by (4.10) by the discrete bilinear form aT : Uk

T × Uk
T → R

such that

aT (uT , vT ) := (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ), (4.18)

where the first term in the right-hand side is the usual Galerkin contribution, while
the second is a stabilization contribution for which we consider the following design
conditions, originally proposed in [8]:

Assumption 4.1 (Local Stabilization Bilinear Form sT ) The local stabilization
bilinear form sT : Uk

T × Uk
T → R satisfies the following properties:

(S1) Symmetry and positivity. sT is symmetric and positive semidefinite;
(S2) Stability. There is a real number η > 0 independent of h and of T , but possibly

depending on d , �, and k, such that

η−1‖vT ‖2
1,T ≤ aT (vT , vT ) ≤ η‖vT ‖2

1,T ∀vT ∈ Uk
T ; (4.19)



88 D. A. Di Pietro and R. Tittarelli

(S3) Polynomial consistency. For all w ∈ P
k+1(T ) and all vT ∈ Uk

T , it holds that

sT (I k
T w, vT ) = 0. (4.20)

These requirements suggest that sT can be obtained penalizing in a least square
sense residuals that vanish for reductions of polynomial functions in P

k+1(T ).
Paradigmatic examples of such residuals are provided by the operators δk

T : Uk
T →

P
k(T ) and, for all F ∈ FT , δk

T F : Uk
T → P

k(F ) such that, for all vT ∈ Uk
T ,

δk
T vT := π

0,k
T (pk+1

T vT − vT ), δk
T F vT := π

0,k
F (pk+1

T vT − vF ) ∀F ∈ FT .

(4.21)

To check that δk
T vanishes when vT = Ik

T w with w ∈ P
k+1(T ), we observe that

δk
T I k

T w = π
0,k
T (pk+1

T I k
T w − π

0,k
T w) = π

0,k
T (π

1,k+1
T w − w) = π

0,k
T (w − w) = 0,

where we have used the definition of δk
T in the first equality, the relation (4.17) to

replace pk+1
T I k

T by π
1,k+1
T and the fact that π

0,k
T w ∈ P

k(T ) to cancel π
0,k
T from

the second term in parentheses, and the fact that π
1,k+1
T leaves polynomials of total

degree up to (k + 1) unaltered as a projector to conclude. A similar argument shows
that δk

T F Ik
T w = 0 for all F ∈ FT whenever w ∈ P

k+1(T ).
Accounting for dimensional homogeneity with the Galerkin term, one possible

expression for sT is thus

sT (uT , vT ) := h−2
T (δk

T uT , δk
T vT )T +

∑

F∈FT

h−1
F (δk

T F uT , δk
T F vT )F . (4.22)

This choice, inspired by the Virtual Element literature [6], differs from the original
HHO stabilization of [33], where the following expression is considered instead:

sT (uT , vT ) :=
∑

F∈FT

h−1
F (δk

T FuT − δk
T uT , δk

T F vT − δk
T vT )F . (4.23)

In this case, only quantities at faces are penalized. Both of the above expressions
match the design conditions (S1)–(S3) and are essentially equivalent in terms
of implementation. A detailed proof for sT as in (4.23) can be found in [33,
Lemma 4]. Yet another example of stabilization bilinear form used in the context
of HHO methods is provided by [1, Eq. (3.24)]. This expression results from the
hybridization of the Mixed High-Order method of [28].



4 An Introduction to Hybrid High-Order Methods 89

Remark 4.3 (Original HDG Stabilization) The following stabilization bilinear
form is used in the original Hybridizable Discontinuous Galerkin (HDG) method of
[13, 17]:

sT (uT , vT ) =
∑

F∈FT

h−1
F (uF − uT , vF − vT )F .

While this choice obviously satisfies the properties (S1)–(S2), it fails to satisfy (S3)
(it is only consistent for polynomials of degree up to k). As a result, up to one order
of convergence is lost with respect to the estimates of Theorems 4.1 and 4.2 below.
For a discussion including fixes that restore optimal orders of convergence in HDG
see [18].

4.3.1.5 Consistency Properties of the Stabilization for Smooth Functions

In the following proposition we study the consistency properties of sT when its
arguments are reductions of a smooth function. We give a detailed proof since this
result is a new extension of the bound in [33, Theorem 8] (see, in particular, Eq. (45)
therein) to more general stabilization bilinear forms.

Proposition 4.1 (Consistency of sT ) Let {sT }T ∈Th
denote a family of stabilization

bilinear forms satisfying assumptions (S1)–(S3). Then, there is a real numberC > 0
independent of h, but possibly depending on d , �, and k, such that, for all T ∈ Th

and all v ∈ Hk+2(T ), it holds that

sT (I k
T v, I k

T v)
1/2 ≤ Chk+1

T ‖v‖Hk+2(T ). (4.24)

Proof We set, for the sake of brevity, v̌T := π
1,k+1
T v and abridge as A � B the

inequality A ≤ cB with multiplicative constant c > 0 having the same dependencies
as C in (4.24). Using (S2) and (S3) we infer that

sT (I k
T v, I k

T v)
1/2 = sT (I k

T (v − v̌T ), I k
T (v − v̌T ))

1/2 ≤ η
1
2 ‖I k

T (v − v̌T )‖1,T .

(4.25)
Recalling (4.14), we have that

‖I k
T (v − v̌T )‖2

1,T

= ‖∇π
0,k
T (v − v̌T )‖2

T +
∑

F∈FT

h−1
F ‖π0,k

F (v − v̌T − π
0,k
T (v − v̌T ))‖2

F .

(4.26)
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Using the H 1(T )-boundedness of π
0,k
T resulting from (4.5) with l = k and s = 1

followed by the optimal approximation properties (4.7a) of v̌T (with α = 1, l =
k + 1, s = k + 2, and m = 1), it is inferred that

‖∇π
0,k
T (v − v̌T )‖T � ‖∇(v − v̌T )‖T � hk+1‖v‖Hk+2(T ). (4.27)

On the other hand, for all F ∈ FT it holds that

h
−1/2

F ‖π0,k
F (v − v̌T − π

0,k
T (v − v̌T ))‖F � h

−1/2

T ‖v − v̌T − π
0,k
T (v − v̌T )‖T

� ‖∇(v − v̌T )‖T

� hk+1
T ‖v‖Hk+2(T ),

(4.28)

where we have used the L2(F )-boundedness of π
0,k
F together with (4.2), the trace

approximation properties (4.7b) of π
0,k
T with α = 0, l = k, s = 1, and m = 0 to

pass to the second line, and the optimal approximation properties of v̌T expressed
by (4.7a) with α = 1, l = k + 1, s = k + 2, and m = 1 to conclude. Plugging (4.27)
and (4.28) into (4.26), recalling that card(FT ) � 1 (see (4.1)), and using the
resulting bound to estimate (4.25), (4.24) follows. ��

4.3.2 Discrete Problem

We now show how to formulate the discrete problem from the local contributions
introduced in the previous section.

4.3.2.1 Global Spaces of Degrees of Freedom

We define the following global space of DOFs with single-valued interface
unknowns:

Uk
h :=

⎛

⎝×
T ∈Th

P
k(T )

⎞

⎠×
⎛

⎝×
F∈Fh

P
k(F )

⎞

⎠ .

Notice that single-valued means here that interface values match from one element
to the adjacent one. For a generic element vh ∈ Uk

h, we use the underlined
notation vh = ((vT )T ∈Th

, (vF )F∈Fh
) and, for all T ∈ Th, we denote by vT =

(vT , (vF )F∈FT
) ∈ Uk

T its restriction to T . We also define the broken polynomial
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function vh ∈ P
k(Th) such that

vh|T := vT ∀T ∈ Th.

The DOFs corresponding to a smooth function v ∈ W 1,1(Ω) are obtained via the
reduction map Ik

h : W 1,1(Ω) → Uk
h such that

Ik
hv := ((π

0,k
T v|T )T ∈Th

, (π
0,k
F v|F )F∈Fh

).

We define on Uk
h the seminorm ‖·‖1,h such that, for all vh ∈ Uk

h,

‖vh‖2
1,h :=

∑

T ∈Th

‖vT ‖2
1,T , (4.29)

with local seminorm ‖·‖1,T defined by (4.14). To account for the homogeneous
Dirichlet boundary condition (4.8b) in a strong manner, we introduce the subspace

Uk
h,0 :=

{
vh ∈ Uk

h | vF ≡ 0 ∀F ∈ F b
h

}
.

We recall the following discrete Poincaré inequality proved in [22, Proposition 5.4]:
There exists a real number CP > 0 independent of h, but possibly depending on Ω ,
�, and k, such that, for all vh ∈ Uk

h,0,

‖vh‖ ≤ CP‖vh‖1,h. (4.30)

Proposition 4.2 (Norm ‖·‖1,h) The map ‖·‖1,h defines a norm on Uk
h,0.

Proof The seminorm property being evident, it suffices to prove that, for all
vh ∈ Uk

h,0, ‖vh‖1,h = 0 �⇒ vh = 0h. Let vh ∈ Uk
h,0 be such that

‖vh‖1,h = 0. By (4.30), we have ‖vh‖ = 0, hence vT ≡ 0 for all T ∈ Th. From
the definition (4.14) of the norm ‖·‖1,T , we also have that ‖vF − vT ‖F = 0 for all
T ∈ Th and all F ∈ FT , hence vF = vT |F ≡ 0. Since any mesh face belongs to the
set FT for at least one mesh element T ∈ Th, this concludes the proof. ��

4.3.2.2 Global Bilinear Form

We define the global bilinear forms ah : Uk
h × Uk

h → R and sh : Uk
h × Uk

h → R by
element-by-element assembly setting, for all uh, vh ∈ Uk

h,

ah(uh, vh) :=
∑

T ∈Th

aT (uT , vT ), sh(uh, vh) :=
∑

T ∈Th

sT (uT , vT ). (4.31)



92 D. A. Di Pietro and R. Tittarelli

Lemma 4.1 (Properties of ah) The bilinear form ah enjoys the following proper-
ties:

(i) Stability. For all vh ∈ Uk
h,0 it holds with η as in (4.19) that

η−1‖vh‖2
1,h ≤ ‖vh‖2

a,h := ah(vh, vh) ≤ η‖vh‖2
1,h. (4.32)

(ii) Consistency. There is a real number C > 0 independent of h, but possibly
depending on d , �, and k, such that, for all w ∈ H 1

0 (Ω) ∩ Hk+2(Ω),

sup
vh∈Uk

h,0,‖vh‖1,h=1

Eh(w; vh) ≤ Chk+1‖w‖Hk+2(Ω), (4.33)

with linear form Eh(w; ·) : Uk
h → R representing the conformity error such

that, for all vh ∈ Uk
h,

Eh(w; vh) := −(Δw, vh) − ah(I
k
hw, vh). (4.34)

Proof

(i) Stability. Summing inequalities (4.19) over T ∈ Th, (4.32) follows.
(ii) Consistency. Let vh ∈ Uk

h,0 be such that ‖vh‖1,h = 1. Throughout the proof,
we abridge as A � B the inequality A ≤ cB with multiplicative constant c > 0
having the same dependecies as C in (4.33). For the sake of brevity, we also let
w̌T := pk+1

T I k
T w = π

1,k+1
T w (cf. (4.17)) for all T ∈ Th. Integrating by parts

element-by-element, we infer that

−(Δw, vh) =
∑

T ∈Th

⎛

⎝(∇w,∇vT )T +
∑

F∈FT

(∇w·nT F , vF − vT )F

⎞

⎠ .

(4.35)

To insert vF into the second term in parentheses in (4.35), we have used the fact
that vF ≡ 0 for all F ∈ F b

h while, for all F ∈ F i
h such that F ⊂ ∂T1 ∩ ∂T2 for

distinct mesh elements T1, T2 ∈ Th, (∇w)|T1 ·nT1F + (∇w)|T2 ·nT2F = 0 (since
w ∈ Hk+2(Ω)), so that

∑

T ∈Th

∑

F∈FT

(∇w·nT F , vF )F =
∑

F∈F i
h

(
∑

T ∈TF

(∇w)|T ·nT F , vF )F

+
∑

F∈F b
h

(∇w·n, vF )F = 0.
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On the other hand, plugging the definition (4.18) of aT into (4.31), and
expanding pk+1

T vT according to (4.16) with w = w̌T , it is inferred that

ah(I
k
hw, vh) =

∑

T ∈Th

⎛

⎝(∇w̌T ,∇vT )T +
∑

F∈FT

(∇w̌T ·nT F , vF − vT )F

+sT (I k
T w, vT )

)
. (4.36)

Subtracting (4.36) from (4.35), using the definition (4.6) of π
1,k+1
T to cancel the

first terms in parentheses, and taking absolute values, we get

|Eh(w; vh)| =
∣
∣
∣
∣
∣
∣

∑

T ∈Th

⎛

⎝
∑

F∈FT

(∇(w − w̌T )·nT F , vF − vT )F + sT (I k
T w, vT )

⎞

⎠

∣
∣
∣
∣
∣
∣

≤
⎡

⎣
∑

T ∈Th

(
hT ‖∇(w − w̌T )‖2

∂T + sT (I k
T w, I k

T w)
)
⎤

⎦

1/2

×
⎡

⎣
∑

T ∈Th

(
|vT |21,∂T + sT (vT , vT )

)
⎤

⎦

1/2

.

Using (4.7b) with α = 1, l = k + 1, s = k + 2, and m = 1 together with (4.24)
for the first factor, and the seminorm equivalence (4.19) together with the fact
that ‖vh‖1,h = 1 for the second, we infer the bound

|Eh(w; vh)| � hk+1‖w‖Hk+2(Ω).

Since vh is arbitrary, this yields (4.33). ��

4.3.2.3 Discrete Problem and Well-Posedness

The discrete problem reads: Find uh ∈ Uk
h,0 such that

ah(uh, vh) = (f, vh) ∀vh ∈ Uk
h,0. (4.37)

Lemma 4.2 (Well-Posedness) Problem (4.37) is well-posed, and we have the
following a priori bound for the unique discrete solution uh ∈ Uk

h,0:

‖uh‖1,h ≤ ηCP‖f ‖.
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Proof We check the assumptions of the Lax–Milgram lemma [49] on the finite-
dimensional space Uk

h,0 equipped with the norm ‖·‖1,h. The bilinear form ah is

coercive and continuous owing to (4.32) with coercivity constant equal to η−1. The
linear form vh �→ (f, vh) is continuous owing to (4.30) with continuity constant
equal to CP. ��

4.3.2.4 Implementation

Let a basis Bh for the space Uk
h,0 be fixed such that every basis function is supported

by only one mesh element or face. For a generic element vh ∈ Uk
h,0, denote by Vh

the corresponding vector of coefficients in Bh partitioned as

Vh =
⎡

⎣
VTh

VFh

⎤

⎦ ,

where the subvectors VTh
and VFh

collect the coefficients associated to element-
based and face-based DOFs, respectively. Denote by Ah the matrix representation
of the bilinear form ah and by Bh the vector representation of the linear form vh �→
(f, vh), both partitioned in a similar way. The algebraic problem corresponding
to (4.37) reads

⎡

⎣
AThTh

AThFh

AThFh

T AFhFh

⎤

⎦

︸ ︷︷ ︸
Ah

⎡

⎣
UTh

UFh

⎤

⎦

︸ ︷︷ ︸
Uh

=
⎡

⎣
BTh

0Fh

⎤

⎦

︸ ︷︷ ︸
Bh

. (4.38)

The submatrix AThTh
is block-diagonal and symmetric positive definite, and is

therefore inexpensive to invert. In the practical implementation, this remark can
be exploited by solving the linear system (4.38) in two steps (see, e.g., [18,
Section 2.4]):

1. First, element-based coefficients in UTh
are expressed in terms of BTh

and UFh

by the inexpensive solution of the first block equation:

UTh
= A−1

ThTh

(
BTh

− AThFh
UFh

)
. (4.39a)

This step is referred to as static condensation in the finite element literature;
2. Second, face-based coefficients in UFh

are obtained solving the global skeletal
(i.e., involving unknowns attached to the mesh skeleton) problem

(
AFhFh

− AT
ThFh

A−1
ThTh

AThFh

)
UFh

= −AT
ThFh

A−1
ThTh

BTh
. (4.39b)
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This computationally more intensive step requires to invert the matrix in
parentheses in the above expression. This symmetric positive definite matrix,
whose stencil is the same as that of AFhFh

and only involves neighbours through
faces, has size Ndof × Ndof with

Ndof = card(F i
h) ×

(
k + d − 1

k

)

. (4.39c)

4.3.2.5 Local Conservation and Flux Continuity

At the continuous level, the solution of problem (4.9) satisfies the following local
balance for all T ∈ Th and all vT ∈ P

k(T ):

(∇u,∇vT )T −
∑

F∈FT

(∇u·nT F , vT )F = (f, vT )T , (4.40a)

and the normal flux traces are continuous in the sense that, for all F ∈ F i
h such that

F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1, T2 ∈ Th, it holds (see, e.g., [25,
Lemma 4.3])

(∇u)|T1 ·nT1F + (∇u)|T2 ·nT2F = 0. (4.40b)

We show in this section that a discrete counterpart of the relations (4.40) holds
for the discrete solution. This property is relevant both from the engineering and
mathematical points of view, and it can be exploited to derive a posteriori error
estimators by flux equilibration. It was originally highlighted in [26] and, using
different techniques, in [18] for the stabilization bilinear form sT defined by (4.23).
Here, using yet a different approach, we extend these results to more general
stabilization bilinear forms.

Let a mesh element T ∈ Th be fixed. We define the space

Uk
∂T := ×

F∈FT

P
k(F ), (4.41)

as well as the boundary difference operator Δk
∂T : Uk

T → Uk
∂T such that, for all

vT ∈ Uk
T ,

Δk
∂T vT = (Δk

T F vT )F∈FT
:= (vF − vT |F )F∈FT

. (4.42)

A useful remark is that, for all vT ∈ Uk
T , it holds

vT − Ik
T vT = (vT − π

0,k
T vT , (vF − π

0,k
F vT |F )F∈FT

) = (0,Δk
∂T vT ), (4.43)
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where the conclusion follows observing that, for all T ∈ Th and all F ∈ FT ,
π

0,k
T vT = vT and π

0,k
F vT |F = vT |F since vT ∈ P

k(T ) and vT |F ∈ P
k(F ).

We show in the next proposition that any stabilization bilinear form with a
suitable dependence on its arguments can be reformulated in terms of boundary
differences.

Proposition 4.3 (Reformulation of the Stabilization Bilinear Form) Let T ∈
Th, and assume that sT is a stabilization bilinear form that satisfies assumptions
(S1)–(S3) and that depends on its arguments only through the residuals defined
by (4.21). Then, it holds for all uT , vT ∈ Uk

T that

sT (uT , vT ) = sT ((0,Δk
∂T uT ), (0,Δk

∂T vT )). (4.44)

Proof It suffices to show that, for all vT ∈ Uk
T ,

δk
T vT = δk

T (0,Δk
∂T vT ), δk

T F vT = δk
T F (0,Δk

∂T vT ) ∀F ∈ FT .

Let us start by δk
T . Since vT ∈ P

k(T ), pk+1
T I k

T vT = π
1,k+1
T vT = vT . Hence,

δk
T vT = π

0,k
T (pk+1

T vT − vT )

= π
0,k
T (pk+1

T vT − pk+1
T I k

T vT )

= π
0,k
T pk+1

T (vT − I k
T vT ) = δk

T (0,Δk
∂T vT ),

where we have used the linearity of pk+1
T to pass to the third line and (4.43) to

conclude. Let now F ∈ FT and consider δk
T F . We have

δk
T F vT = π

0,k
F (pk+1

T vT − vF )

= π
0,k
F (pk+1

T vT − pk+1
T I k

T vT + vT − vF )

= π
0,k
F (pk+1

T (0,Δk
∂T vT ) − Δk

T F vT ) = δk
T F (0,Δk

∂T vT ),

where we have introduced vT −pk+1
T I k

T vT = 0 in the second line, used the linearity
of pk+1

T together with (4.43) and the definition (4.41) of Δk
∂T in the third line, and

concluded recalling the definition (4.21) of δk
T F . ��

Define the boundary residual operator Rk
∂T : Uk

T → Uk
∂T such that, for all vT ∈

Uk
T , Rk

∂T vT = (Rk
T F vT )F∈FT

satisfies for all α∂T = (αT F )F∈FT
∈ Uk

∂T

−
∑

F∈FT

(Rk
T F vT , αT F )F = sT ((0,Δk

∂T vT ), (0, α∂T )). (4.45)

Problem (4.45) is well-posed, and computing Rk
T F vT requires to invert the boundary

mass matrix.
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Lemma 4.3 (Local Balance and Flux Continuity) Under the assumptions of
Proposition 4.3, denote by uh ∈ Uk

h,0 the unique solution of problem (4.37) and,
for all T ∈ Th and all F ∈ FT , define the numerical normal trace of the flux

ST F (uT ) := −∇pk+1
T uT ·nT F + Rk

T F uT

with Rk
T F defined by (4.45). Then, for all T ∈ Th we have the following discrete

counterpart of the local balance (4.40a): For all vT ∈ P
k(T ),

(∇pk+1
T uT ,∇vT )T +

∑

F∈FT

(ST F (uT ), vT )F = (f, vT )T , (4.46a)

and, for any interface F ∈ F i
h such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh

elements T1, T2 ∈ Th, the numerical fluxes are continuous in the sense that (compare
with (4.40b)):

ST1F (uT1
) + ST2F (uT2

) = 0. (4.46b)

Proof Let vh ∈ Uk
h,0. Plugging the definition (4.18) of aT into (4.31), using

for all T ∈ Th the definition of pk+1
T vT with w = pk+1

T uT , and recalling the
reformulation (4.44) of sT together with the definition (4.45) of Rk

∂T to write

sT (uT , vT ) = −
∑

F∈FT

(Rk
T F uT , vF − vT )F ∀T ∈ Th, (4.47)

we infer from the discrete problem (4.37) that

∑

T ∈Th

⎛

⎝(∇pk+1
T uT ,∇vT )T +

∑

F∈FT

(∇pk+1
T uT ·nT F − Rk

T F uT , vF − vT )F

⎞

⎠

= (f, vh).

Selecting vh such that vT spans Pk(T ) for a selected mesh element T ∈ Th while
vT ′ ≡ 0 for all T ′ ∈ Th \ {T } and vF ≡ 0 for all F ∈ Fh, we obtain (4.46a). On
the other hand, selecting vh such that vT ≡ 0 for all T ∈ Th, vF spans Pk(F ) for
a selected interface F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements
T1, T2 ∈ Th, and vF ′ ≡ 0 for all F ′ ∈ Fh \ {F } yields (4.46b).

Remark 4.4 (Interpretation of the Discrete Problem) Lemma 4.3 and its proof pro-
vide further insight into the structure of the discrete problem (4.37), which consists
of the local balances (4.46a) (corresponding to the local block equations (4.39a))
and a global transmission condition enforcing the continuity (4.46b) of numerical
fluxes (corresponding to the global skeletal problem (4.39b)).
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4.3.3 A Priori Error Analysis

Having proved that the discrete problem (4.37) is well-posed, it remains to
determine the convergence of the discrete solution towards the exact solution, which
is precisely the goal of this section.

4.3.3.1 Energy Error Estimate

We start by deriving a basic convergence result. The error is measured as the
difference between the exact solution and the global reconstruction obtained from
the discrete solution through the operator pk+1

h : Uk
h → P

k+1(Th) such that, for all
vh ∈ Uk

h,

(pk+1
h vh)|T := pk+1

T vT ∀T ∈ Th. (4.48)

Theorem 4.1 (Energy Error Estimate) Let a polynomial degree k ≥ 0 be fixed.
Let u ∈ H 1

0 (Ω) denote the unique solution to (4.9), for which we assume the
additional regularity u ∈ Hk+2(Ω). Let uh ∈ Uk

h,0 denote the unique solution
to (4.37) with stabilization bilinear form sT in (4.18) satisfying assumptions (S1)–
(S3) for all T ∈ Th. Then, there exists a real number C > 0 independent of h, but
possibly depending on d , �, and k, such that

‖∇h(pk+1
h uh − u)‖ + |uh|s,h ≤ Chk+1‖u‖Hk+2(Ω), (4.49)

where |·|s,h is the seminorm defined by the bilinear form sh on Uk
h.

Proof Let, for the sake of brevity, ûh := Ik
hu and ǔh := pk+1

h ûh. We abridge as
A � B the inequality A ≤ cB with multiplicative constant c > 0 having the same
dependencies as C in (4.49). Using the triangle and Cauchy–Schwarz inequalities,
it is readily inferred that

‖∇h(p
k+1
h uh − u)‖ + |uh|s,h ≤ ‖uh − ûh‖a,h

︸ ︷︷ ︸
T1

+
(
‖∇h(ǔh − u)‖2 + |ûh|2s,h.

)1/2

︸ ︷︷ ︸
T2

.

(4.50)

We have that

T2
1 = ah(uh, uh − ûh) − ah(ûh, uh − ûh)

= (f, uh − ûh) − ah(ûh, uh − ûh) = Eh(u; uh − ûh),

where we have used the definition (4.32) of the ‖·‖a,h-norm together with the
linearity of ah in its first argument in the first line, the discrete problem (4.37) to
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pass to the second line, and the definition (4.34) of the conformity error to conclude.
As a consequence, assuming uh �= ûh (the other case is trivial), we have that

|T1| ≤ Eh

(

u; uh − ûh

‖uh − ûh‖a,h

)

≤ η
1/2Eh

(

u; uh − ûh

‖uh − ûh‖1,h

)

≤ η
1/2 sup
vh∈Uk

h,0,‖vh‖1,h=1

Eh(u; vh),

where we have used the linearity of Eh(u; ·), the first bound in (4.32), and a passage
to the supremum to conclude. Recalling (4.33), we arrive at

|T1| � hk+1‖u‖Hk+2(Ω). (4.51)

On the other hand, using the approximation properties (4.7) of ǔT with α = 1,
l = k + 1, s = k + 2, and m = 1 together with the approximation properties (4.24)
of sT , it is inferred for the second term

|T2| � hk+1‖u‖Hk+2(Ω). (4.52)

Using (4.51) and (4.52) to bound the right-hand side of (4.50), (4.49) follows. ��

4.3.3.2 Convergence of the Jumps

Functions in H 1(Th) := {
v ∈ L2(Ω) | v|T ∈ H 1(T ) ∀T ∈ Th

}
are in H 1

0 (Ω) if
their jumps vanish a.e. at interfaces and their trace is zero a.e. on ∂Ω ; see, e.g., [25,
Lemma 1.23]. Thus, a measure of the nonconformity is provided by the jump
seminorm |·|J,h such that, for all v ∈ H 1(Th),

|v|2J,h :=
∑

F∈Fh

h−1
F ‖π0,k

F [v]F ‖2
F , (4.53)

where [·]F denotes the usual jump operator such that, for all faces F ∈ Fh and all
functions v :⋃T ∈TF

T → R smooth enough,

[v]F :=
{

v|T1 − v|T2 ∀F ∈ FT1 ∩ FT2 ,

v ∀F ∈ F b
h .

(4.54)

A natural question is whether the jump seminorm of pk+1
h uh converges to zero. The

answer is provided by the following lemma.

Lemma 4.4 (Convergence of the Jumps) Under the assumptions and notations
of Theorem 4.1, and further supposing, for the sake of simplicity, that the local
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stabilization bilinear form sT is given by (4.22), there is a real number C > 0
independent of h, but possibly depending on d , �, and k, such that

|pk+1
h uh|J,h ≤ Chk+1‖u‖Hk+2(Ω). (4.55)

Proof Inserting uF inside the jump and using the triangle inequality for every
interface F ∈ F i

h, and recalling that vF = 0 on every boundary face F ∈ F b
h , it

is inferred that

∑

F∈Fh

h−1
F ‖π0,k

F [pk+1
h uh]F‖2

F ≤ 2
∑

F∈Fh

∑

T ∈TF

h−1
F ‖π0,k

F (pk+1
T uT − uF )‖2

F

≤ 2
∑

T ∈Th

∑

F∈FT

h−1
F ‖π0,k

F (pk+1
T uT − uF )‖2

F

≤ 2|uh|2s,h.

Using (4.49) to bound the right-hand side yields (4.55).

4.3.3.3 L2-Error Estimate

To close this section, we state a result concerning the convergence of the error in the
L2-norm. Optimal error estimates require in this context further regularity for the
continuous operator. More precisely, we assume that, for all g ∈ L2(Ω), the unique
solution of the problem: Find z ∈ H 1

0 (Ω) such that

a(z, v) = (g, v) ∀v ∈ H 1
0 (Ω)

satisfies the a priori estimate

‖z‖H 2(Ω) ≤ C‖g‖,

with real number C depending only on Ω . Elliptic regularity holds when the domain
Ω is convex; see, e.g., [46]. The following result, whose detailed proof is omitted,
can be obtained using the arguments of [33, Theorem 10] and [1, Corollary 4.6].

Theorem 4.2 (L2-Error Estimate) Under the assumptions and notations of
Theorem 4.1, and further assuming elliptic regularity and that f ∈ H 1(Ω) if k = 0,
f ∈ Hk(Ω) if k ≥ 1, there exists a real number C > 0 independent of h, but
possibly depending on Ω , d , �, and k, such that

‖pk+1
h uh − u‖ ≤

{
Ch2‖f ‖H 1(Ω) if k = 0,

Chk+2
(‖u‖Hk+2(Ω) + ‖f ‖Hk(Ω)

)
if k ≥ 1.

(4.56)
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Remark 4.5 (Supercloseness of Element DOFs) An intermediate step in the proof
of the estimate (4.56) (see [33, Theorem 10]) consists in showing that the element
DOFs are superclose to the L2-projection of the exact solution on P

k(Th):

‖π0,k
h u − uh‖ ≤

{
Ch2‖f ‖H 1(Ω) if k = 0,

Chk+2
(‖u‖Hk+2(Ω) + ‖f ‖Hk(Ω)

)
if k ≥ 1.

(4.57)

This is done adapting to the HHO framework the classical Aubin–Nitsche technique.

4.3.4 A Posteriori Error Analysis

For smooth enough exact solutions, it is classically expected that increasing the
polynomial degree k will reduce the computational time required to achieve a
desired precision; see, e.g., the numerical test in Sect. 4.3.5.2 below and, in partic-
ular, Fig. 4.6. However, when the regularity requirements detailed in Theorems 4.1
and 4.2 are not met, the order of convergence is limited by the regularity of the
solution instead of the polynomial degree. To restore optimal orders of convergence,
local mesh adaptation is required. This is typically done using a posteriori error
estimators to mark the elements where the error is larger, and locally refine the
computational mesh based on this information. Here, we present energy-norm
upper and lower bounds for the HHO method (4.37) inspired by the residual-based
approach of [31].

4.3.4.1 Error Upper Bound

We start by proving an upper bound of the discretization error in terms of quantities
whose computation does not require the knowledge of the exact solution. We will
need the following local Poincaré and Friedrichs inequalities, valid for all T ∈ Th

and all ϕ ∈ H 1(T ):

‖ϕ − π
0,0
T ϕ‖T ≤ CP,T hT ‖∇ϕ‖T , (4.58)

‖ϕ − π
0,0
T ϕ‖∂T ≤ C

1/2

F,T h
1/2

T ‖∇ϕ‖T . (4.59)

In (4.58), CP,T is a constant equal to dπ−1 if T is convex [4, 52]. In (4.59),
CF,T is a constant which, if T is a simplex, can be estimated as CF,T =
CP,T (hT |∂T |d−1/|T |d)(2/d + CP,T ) (see [25, Section 5.6.2.2]).

Theorem 4.3 (A Posteriori Error Upper Bound) Let u ∈ H 1
0 (Ω) and uh ∈ Uk

h,0
denote the unique solutions to problems (4.9) and (4.37), respectively, with local
stabilization bilinear form sT satisfying the assumptions of Proposition 4.3 for all
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T ∈ Th. Let u∗
h be an arbitrary function in H 1

0 (Ω). Then, it holds that

‖∇h(p
k+1
h uh − u)‖ ≤

⎡

⎣
∑

T ∈Th

(
η2

nc,T + (ηres,T + ηsta,T )2
)
⎤

⎦

1/2

, (4.60)

with local nonconformity, residual, and stabilization estimators such that, for all
T ∈ Th,

ηnc,T := ‖∇(pk+1
T uT − u∗

h)‖T , (4.61a)

ηres,T := CP,T hT ‖(f + Δpk+1
T uT ) − π

0,0
T (f + Δpk+1

T uT )‖T , (4.61b)

ηsta,T := C
1/2

F,T h
1/2

T

⎛

⎝
∑

F∈FT

‖Rk
T FuT ‖2

F

⎞

⎠

1/2

, (4.61c)

where, for all F ∈ FT , the boundary residual Rk
T F is defined by (4.45).

Remark 4.6 (Nonconformity Estimator) To compute the estimator ηnc,T , we can
obtain a H 1

0 (Ω)-conforming function u∗
h by applying a node-averaging operator to

pk+1
h uh. Let an integer l ≥ 1 be fixed. When Th is a matching simplicial mesh and

Fh is the corresponding set of simplicial faces, the node-averaging operator Ilh :
P

l(Th) → P
l (Th) ∩ H 1

0 (Ω) is defined by setting for each (Lagrange) interpolation
node N

Ilhvh(N) :=
⎧
⎨

⎩

1
card(TN)

∑
T ∈TN

(vh)|T (N) if N ∈ Ω,

0 if N ∈ ∂Ω,

where the set TN ⊂ Th collects the simplices to which N belongs. We then set

u∗
h := Ik+1

h pk+1
h uh. (4.62)

The generalization to polytopal meshes can be realized applying the node averaging
operator to pk+1

h uh on a simplicial submesh of Th (whose existence is guaranteed
for regular mesh sequences, see Definition 4.3).

Proof Let the equation residual R ∈ H−1(Ω) be such that, for all ϕ ∈ H 1
0 (Ω),

〈R, ϕ〉−1,1 := (f, ϕ) − (∇hp
k+1
h uh,∇ϕ). The following abstract error estimate

descends from [25, Lemma 5.44] and is valid for any function u∗
h ∈ H 1

0 (Ω):

‖∇h(pk+1
h uh − u)‖2 ≤ ‖∇h(p

k+1
h uh − u∗

h)‖
2 +
⎛

⎝ sup
ϕ∈H 1

0 (Ω),‖∇ϕ‖=1

〈R, ϕ〉−1,1

⎞

⎠

2

.

(4.63)
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Denote by T1 and T2 the addends in the right-hand side of (4.63).
(i) Bound of T1. Recalling the definition (4.61a) of the nonconformity estimator,

it is readily inferred that

T1 =
∑

T ∈Th

η2
nc,T . (4.64)

(ii) Bound of T2. We bound the argument of the supremum in T2 for a generic
function ϕ ∈ H 1

0 (Ω). Using an element-by-element integration by parts, we obtain

〈R, ϕ〉−1,1 =
∑

T ∈Th

(

(f +Δpk+1
T uT , ϕ)T −

∑

F∈FT

(∇pk+1
T uT ·nT F , ϕ)F

)

. (4.65)

Let now ϕ
h

∈ Uk
h,0 be such that ϕT = π

0,0
T ϕ for all T ∈ Th and ϕF = π

0,k
F ϕ|F for

all F ∈ Fh. We have that

∑

T ∈Th

(π
0,0
T (f + Δpk+1

T uT ), ϕ)T

=
∑

T ∈Th

(f + Δpk+1
T uT , ϕT )T

=
∑

T ∈Th

(

aT (uT , ϕ
T
) +

∑

F∈FT

(∇pk+1
T uT · nT F , ϕT )F

)

=
∑

T ∈Th

(

sT (uT , ϕ
T
) +

∑

F∈FT

(∇pk+1
T uT · nT F , ϕ)F

)

,

(4.66)

where we have used definition (4.4) of π
0,0
T in the first line, the discrete prob-

lem (4.37) with vh = ϕ
h

and an element-by-element integration by parts together
with the fact that ∇ϕT ≡ 0 for all T ∈ Th in the second line. In order to
pass to the third line, we have expanded aT according to its definition (4.18)
and used (4.16a) with vT = ϕ

T
and w = pk+1

T uT for the consistency term (in
the boundary integral, we can write ϕ instead of ϕF using the definition (4.4) of
π

0,k
F ).

Summing (4.66) and (4.65), and rearranging the terms, we obtain

〈R, ϕ〉−1,1 =
∑

T ∈Th

(

(f + Δpk+1
T

uT − π
0,0
T

(f + Δpk+1
T

uT ), ϕ − ϕT )T + sT (uT , ϕ
T

)

)

,

(4.67)
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where we have used the definition (4.4) of π
0,0
T to insert ϕT into the first term. Let

us estimate the addends inside the summation, hereafter denoted by T2,1(T ) and
T2,2(T ). Using the Cauchy–Schwarz and local Poincaré (4.58) inequalities, and
recalling the definition (4.61b) of the residual estimator, we readily infer, for all
T ∈ Th, that

|T2,1(T )| ≤ ηres,T ‖∇ϕ‖T . (4.68)

On the other hand, recalling the reformulation (4.47) of the local stabilization
bilinear form sT we have, for all T ∈ Th,

|T2,2(T )| =
∣
∣
∣
∣

∑

F∈FT

(Rk
T F uT , ϕ − ϕT )F

∣
∣
∣
∣ ≤ ηsta,T ‖∇ϕ‖T , (4.69)

where we have used the fact that ϕF = π
0,k
F ϕ and Rk

T F uT ∈ P
k(F ) together

with the definition (4.4) of π
0,k
F to write ϕ instead of ϕF inside the boundary

term, and the Cauchy–Schwarz and local Friedrichs (4.59) inequalities followed by
definition (4.61c) of the stability estimator to conclude. Using (4.68) and (4.69) to
estimate the right-hand side of (4.67) followed by a Cauchy–Schwarz inequality,
and plugging the resulting bound inside the supremum in T2, we arrive at

T2 ≤
∑

T ∈Th

(ηres,T + ηsta,T )2. (4.70)

(iii) Conclusion. Plug (4.64) and (4.70) into (4.63). ��

4.3.4.2 Error Lower Bound

In practice, one wants to make sure that the error estimators are able to correctly
localize the error (for use, e.g., in adaptive mesh refinement) and that they do not
unduly overestimate it. We prove in this section that the error estimators defined
in Theorem 4.3 are locally efficient, i.e., they are locally controlled by the error.
This shows that they are suitable to drive mesh refinement. Moreover, they are also
globally efficient, i.e., the right-hand side of (4.60) is (uniformly) controlled by the
discretization error, so that it cannot depart from it.

Let a mesh element T ∈ Th be fixed and define the following sets of faces and
elements sharing at least one node with T :

FN ,T := {F ∈ Fh | F ∩ ∂T �= ∅}, TN ,T := {T ′ ∈ Th | T
′ ∩ T �= ∅}.

Let an integer l ≥ 1 be fixed. The following result is proved in [48] for standard
meshes: There is a real number C > 0 independent of h, but possibly depending on
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d , �, and l, such that, for all vh ∈ P
l(Th) and all T ∈ Th,

‖vh − Ilhvh‖2
T ≤ C

∑

F∈FN ,T

hF ‖[vh]F ‖2
F , (4.71)

with jump operator defined by (4.54). Following [25, Section 5.5.2], (4.71) still
holds on regular polyhedral meshes when the nodal interpolator is defined on the
matching simplicial submesh of Definition 4.3. We also note the following technical
result:

Proposition 4.4 (Estimate of Boundary Oscillations) Let an integer l ≥ 0 be
fixed. There is a real number C > 0 independent of h, but possibly depending on d ,
�, and l, such that, for all mesh elements T ∈ Th and all functions ϕ ∈ H 1(T ),

h
−1/2

F ‖ϕ − π
0,l
F ϕ‖F ≤ C‖∇ϕ‖T . (4.72)

Proof We abridge as A � B the inequality A ≤ cB with multiplicative constant
c > 0 having the same dependencies as C in (4.72). Let F ∈ FT and observe that

‖ϕ − π
0,l
F ϕ‖F ≤ ‖ϕ − π

0,l
T ϕ‖F + ‖π0,l

F (π
0,l
T ϕ − ϕ)‖F

≤ 2‖ϕ − π
0,l
T ϕ‖F � h

1/2

T ‖∇ϕ‖T ,
(4.73)

where we have inserted ±π
0,l
T ϕ and used the triangle inequality to infer the first

bound, we have used the L2(F )-boundedness of π
0,l
F to infer the second, and

invoked (4.7b) with α = 0, m = 0, and s = 1 to conclude. Using the fact that
hT /hF � 1 owing to (4.2) gives the desired result. ��
Theorem 4.4 (A Posteriori Error Lower Bound) Under the assumptions of
Theorem 4.3, and further assuming, for the sake of simplicity, (i) that the local
stabilization bilinear form sT is given by (4.22) for all T ∈ Th, (ii) that u∗

h is

obtained applying the node-averaging operator to pk+1
h uh on Th if Th is matching

simplicial or on the simplicial submesh of Definition 4.3 if this is not the case, and
(iii) that f ∈ P

k+1(Th), it holds for all T ∈ Th,

ηnc,T ≤ C
(
‖∇h(p

k+1
h uh − u)‖N,T + |uh|s,N,T

)
, (4.74a)

ηres,T ≤ C‖∇(pk+1
T uT − u | T )‖T , (4.74b)

ηsta,T ≤ C|uT |s,T , (4.74c)

where C > 0 is a real number possibly depending on d , �, and on k but independent
of both h, T , and of the problem data. For all T ∈ Th, ‖·‖N,T denotes the L2-norm
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on the union of the elements in TN ,T and we have set

|uT |s,T = sT (uT , uT )
1/2, |uh|2s,N,T

:=
∑

T ′∈TN ,T

|uT |2s,T ′ .

Proof Let a mesh element T ∈ Th be fixed. In the proof, we abridge as A � B the
inequality A ≤ cB with multiplicative constant c > 0 having the same dependencies
as C in (4.74).

(i) Bound (4.74a) on the nonconformity estimator. Using a local inverse inequal-
ity (see, e.g., [25, Lemma 1.44]) and the relation (4.71), we infer from (4.61a) that

η2
nc,T � h−2

T ‖pk+1
T uT − u∗

h‖2
T �

∑

F∈FN ,T

h−1
F ‖[pk+1

h uh]F‖2
F , (4.75)

where we have used the fact that, owing to mesh regularity, hF � hT for all
F ∈ FN ,T . Using the fact [u]F = 0 for all F ∈ Fh (see, e.g., [25, Lemma 4.3])
to write [pk+1

h uh − u]F instead of [pk+1
h uh]F , inserting π

0,k
F [pk+1

h uh]F −
π

0,k
F [pk+1

h uh − u]F = 0 inside the norm, and using the triangle inequality, we
have for all F ∈ Fh[N, T ],

‖[pk+1
h uh]F ‖F ≤ ‖[pk+1

h uh − u]F − π
0,k
F [pk+1

h uh − u]F ‖F + ‖π0,k
F [pk+1

h uh]F‖F

≤
∑

T ′∈TF

‖(pk−1
T ′ uT ′ − u) − π

0,k
F (pk−1

T ′ uT ′ − u)‖F

+ ‖π0,k
F [pk+1

h uh]F‖F ,

where we have expanded the jump according to its definition (4.54) and used a
triangle inequality to pass to the second line. Plugging the above bound into (4.75),
and using multiple times (4.72) with ϕ = (pk−1

T ′ uT ′ − u) for T ′ ∈ TN ,T , we
arrive at

η2
nc,T � ‖∇h(p

k+1
h uh − u)‖2

N,T
+

∑

F∈FN ,T

h−1
F ‖π0,k

F [pk+1
h uh]F ‖2

F .

To conclude, we proceed as in Lemma 4.4 to prove that the last term is bounded by
|uh|2

s,N,T
up to a constant independent of h and of the problem data.

(ii) Bound (4.74b) on the residual estimator. We use classical bubble function
techniques, see e.g. [53]. For the sake of brevity, we let rT := f|T + Δpk+1

T uT .
Denote by Th the simplicial submesh of Th introduced in Definition 4.3, and let
TT := {τ ∈ Th | τ ⊂ T }, the set of simplices contained in T . For all τ ∈ TT ,
we denote by bτ ∈ H 1

0 (τ ) the element bubble function equal to the product of
barycentric coordinates of τ and rescaled so as to take the value 1 at the center of
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gravity of τ . Letting ψτ := bτ rT for all τ ∈ TT , the following properties hold [53]:

ψτ = 0 on ∂τ,

(4.76a)
‖rT ‖τ

2 � (rT , ψτ )τ ,

(4.76b)
‖ψτ ‖τ � ‖rT ‖τ .

(4.76c)

We have that

‖rT ‖2
T =

∑

τ∈TT

‖rT ‖2
τ �

∑

τ∈TT

(rT , ψτ )τ

=
∑

τ∈TT

(∇(u − pk+1
T uT ),∇ψτ )τ

≤ ‖∇(u − pk+1
T uT )‖T

⎛

⎝
∑

τ∈TT

h−2
τ ‖ψτ ‖2

τ

⎞

⎠

1/2

� h−1
T ‖∇(u − pk+1

T uT )‖T ‖rT ‖T ,

(4.77)

where we have used property (4.76b) in the first line, the fact that f = −Δu

together with an integration by parts and property (4.76a) to pass to the second
line, the Cauchy–Schwarz inequality together with a local inverse inequality
(see, e.g., [25, Lemma 1.44]) to pass to the third line, and (4.76c) together
with the fact that h−1

τ ≤ (�hT )−1 for all τ ∈ TT (see Definition 4.3) to
conclude. Recalling the definition (4.61b) of the residual estimator, observing
that ‖rT − π

0,0
T rT ‖T ≤ ‖rT ‖T as a result of the triangle inequality followed by the

L2(T )-boundedness of π
0,0
T , and using (4.77), the bound (4.74b) follows.

(iii) Bound (4.74c) on the stabilization estimator. Using the definition (4.45)
of the boundary residual operator Rk

∂T with vT = uT and α∂T = −hT Rk
∂T uT =

(−hT Rk
T F uT )F∈FT

, the stabilization estimator (4.61c) can be bounded as follows:

η2
sta,T = CF,T sT (uT , (0,−hT Rk

∂T uT )) � |uT |s,T |(0,−hT Rk
∂T uT )|s,T . (4.78)

On the other hand, from property (S2) in Assumption 4.1, the relation (4.2), and the
definition (4.61c) of ηsta,T , it is inferred that

|(0,−hT Rk
∂T uT )|s,T ≤ η

1/2

⎛

⎝
∑

F∈FT

h−1
F ‖hT Rk

T F uT ‖2
F

⎞

⎠

1/2

≤
(

η

�

)1/2

C
−1/2

F,T ηsta,T .

Using this estimate to bound the right-hand side of (4.78), (4.74c) follows. ��
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Corollary 4.1 (Global Lower Bound) Under the assumptions of Theorem 4.4,
there exists a constant C independent of h, but possibly depending on d , � and
k, such that

⎡

⎣
∑

T ∈Th

(
η2

nc,T + (ηres,T + ηsta,T )2
)
⎤

⎦

1/2

≤ C
(
‖∇h(pk+1

h uh − u)‖ + |uh|s,h
)

.

4.3.5 Numerical Examples

We illustrate the numerical performance of the HHO method on a set of model
problems.

4.3.5.1 Two-Dimensional Test Case

The first test case, taken from [33], aims at demonstrating the estimated orders of
convergence in two space dimensions. We solve the Dirichlet problem in the unit
square Ω = (0, 1)2 with

u(x) = sin(πx1) sin(πx2), (4.79)

and corresponding right-hand side f (x) = 2π2 sin(πx1) sin(πx2) on the tri-
angular and polygonal meshes of Fig. 4.1a, c. Figure 4.4 displays convergence
results for both mesh families and polynomial degrees up to 4. Recalling (4.51)
and (4.57), we measure the energy- and L2-errors by the quantities ‖I k

hu − uh‖a,h

and ‖π0,k
h u − uh‖, respectively. In all cases, the numerical results show asymptotic

convergence rates that match those predicted by the theory.

4.3.5.2 Three-Dimensional Test Case

The second test case, taken from [31], demonstrates the orders of convergence in
three space dimensions. We solve the Dirichlet problem in the unit cube Ω = (0, 1)3

with

u(x) = sin(πx1) sin(πx2) sin(πx3),

and corresponding right-hand side f (x) = 3π2 sin(πx1) sin(πx2) sin(πx3) on a
matching simplicial mesh family for polynomial degrees up to 3. The numerical
results displayed in Fig. 4.5 show asymptotic convergence rates that match those
predicted by (4.49) and (4.56). In Fig. 4.6 we display the error versus the total com-
putational time ttot (including the pre-processing, solution, and post-processing). It
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Fig. 4.4 Error vs. h for the test case of Sect. 4.3.5.1. (a) ‖I k
hu − uh‖a,h vs. h, triangular mesh. (b)

‖I k
hu − uh‖a,h vs. h, polygonal mesh. (c) ‖π0,k

h u − uh‖ vs. h, triangular mesh. (d) ‖π0,k
h u − uh‖

vs. h, polygonal mesh

can be seen that the energy- and L2-errors optimally scale as t
(k+1)/d

tot and t
(k+2)/d

tot (with
d = 3), respectively.

4.3.5.3 Three-Dimensional Case with Adaptive Mesh Refinement

The third test case, known as Fichera corner benchmark, is taken from [31] and is
based on the exact solution of [45] on the etched three-dimensional domain Ω =
(−1, 1)3 \ [0, 1]3:

u(x) = 4
√

x2
1 + x2

2 + x2
3 ,
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Fig. 4.5 Error vs. h for the test case of Sect. 4.3.5.2. (a) ‖∇h(pk+1
h uh − u)‖ vs. h. (b)

‖pk+1
h uh − u‖ vs. h
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Fig. 4.6 Error vs. total computational time for the test case of Sect. 4.3.5.2. (a)
‖∇h(pk+1

h uh − u)‖ vs. ttot. (b) ‖pk+1
h uh − u‖ vs. ttot

with right-hand side f (x) = −3/4(x2
1 +x2

2 +x2
3)−3/4. In this case, the gradient of the

solution has a singularity in the origin which prevents the method from attaining
optimal convergence rates even for k = 0. In Fig. 4.7 we show a computation
comparing the numerical error versus Ndof (cf. (4.39c)) for the Fichera problem
on uniformly and adaptively refined mesh sequences for polynomial degrees up
to 3. Clearly, the order of convergence is limited by the solution regularity when
using uniformly refined meshes, while using adaptively refined meshes we recover
optimal orders of convergence of N

(k+1)/d

dof and N
(k+2)/d

dof (with d = 3) for the energy-
and L2-errors, respectively.
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Fig. 4.7 Error vs. Ndof for the test case of Sect. 4.3.5.3. (a) Energy-error vs. Ndof. (b) L2-error vs.
Ndof

4.4 A Nonlinear Example: The p-Laplace Equation

We consider in this section an extension of the HHO method to the p-Laplace
equation. This problem will be used to introduce the techniques for the discretization
and analysis of nonlinear operators, as well as a set of functional analysis results of
independent interest. An additional interesting point is that the p-Laplace problem
is naturally posed in a non-Hilbertian setting. This will require to emulate a Sobolev
structure at the discrete level.

Let p ∈ (1,+∞) be fixed, and set p′ := p
p−1 . The p-Laplace problem reads:

Find u : Ω → R such that

−∇·(σ (∇u)) = f in Ω,

u = 0 on ∂Ω,
(4.80)

where f ∈ Lp′
(Ω) is a volumetric source term and the function σ : Rd → R

d is
such that

σ (τ ) := |τ |p−2τ . (4.81)

The p-Laplace equation is a generalization of the Poisson problem considered in
Sect. 4.3, which corresponds to the choice p = 2.

Classically, the weak formulation of problem (4.80) reads: Find u ∈ W
1,p

0 (Ω)

such that, for all v ∈ W
1,p

0 (Ω),

a(u, v) =
ˆ

Ω

f (x)v(x)dx, (4.82)
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where the function a : W 1,p(Ω) × W 1,p(Ω) → R is such that

a(u, v) :=
ˆ

Ω

σ (∇u(x))·∇v(x)dx. (4.83)

From this point on, to alleviate the notation, we omit both the dependence of the
integrand on x and the measure from integrals.

4.4.1 Discrete W 1,p-Norms and Sobolev Embeddings

In Sect. 4.3, the discrete space Uk
h,0 and the norm ‖·‖1,h have played the role of

the Hilbert space H 1
0 (Ω) and of the seminorm |·|H 1(Ω), respectively (notice that

|·|H 1(Ω) is a norm on H 1
0 (Ω) by virtue of the continuous Poincaré inequality). For

the p-Laplace equation, Uk
h,0 will replace at the discrete level the Sobolev space

W
1,p

0 (Ω). A good candidate for the role of the corresponding seminorm |·|W 1,p(Ω)

is the map ‖·‖1,p,h such that, for all vh ∈ Uk
h,

‖vh‖p
1,p,h

:=
∑

T ∈Th

‖vT ‖p
1,p,T , (4.84)

where, for all T ∈ Th,

‖vT ‖p

1,p,T
:= ‖∇vT ‖p

Lp(T )d
+
∑

F∈FT

h
1−p
F ‖vF − vT ‖p

Lp(F )
. (4.85)

The power of hF in the second term ensures that both contributions have the same
scaling. When p = 2, we recover the seminorm ‖·‖1,h defined by (4.29).

The following discrete Sobolev embeddings are proved in [22, Proposition 5.4].
The proof hinges on the results of [24, Theorem 6.1] for broken polynomial spaces
(based, in turn, on the techniques originally developed in [44] in the context of finite
volume methods). Their role in the analysis of HHO methods for problem (4.82) is
discussed in Remark 4.9.

Theorem 4.5 (Discrete Sobolev Embeddings) Let a polynomial degree k ≥ 0
and an index p ∈ (1,+∞) be fixed. Let (Mh)h∈H denote a regular sequence of

meshes in the sense of Definition 4.3. Let 1 ≤ q ≤ dp
d−p

if 1 ≤ p < d and 1 ≤ q <

+∞ if p ≥ d . Then, there exists a real number C > 0 only depending on Ω , �, l,
p, and q such that, for all vh ∈ Uk

h,0,

‖vh‖Lq(Ω) ≤ C‖vh‖1,p,h. (4.86)
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Remark 4.7 (Discrete Poincaré Inequality) The discrete Poincaré inequality (4.30)
is a special case of Theorem 4.5 corresponding to p = q = 2 (this choice is possible
in any space dimension).

4.4.2 Discrete Gradient and Compactness

The analysis of numerical methods for linear problems is usually carried out in
the spirit of the Lax–Richtmyer equivalence principle: “For a consistent numerical
method, stability is equivalent to convergence”; see for instance [20] for a rigorous
proof in the case of linear Cauchy problems. When dealing with nonlinear problems,
however, some form of compactness is also required; cf. Remark 4.10 for further
insight into this point. In order to achieve it for problem (4.82), we need to introduce
a local gradient reconstruction slightly richer than ∇pk+1

T ; see (4.16).
Let a mesh element T ∈ Th be fixed. By the principles illustrated in Sect. 4.3.1.1,

we define the local gradient reconstruction Gk
T : Uk

T → P
k(T )d such that, for all

vT ∈ Uk
T ,

(Gk
T vT , τ )T = −(vT ,∇·τ )T +

∑

F∈FT

(vF , τ ·nT F )F ∀τ ∈ P
k(T )d . (4.87)

Notice that here we reverted to the L2-product notation instead of using integrals to
emphasize the fact that the definition of Gk

T is inherently L2-based.

Remark 4.8 (Relation Between Gk
T and pk+1

T ) Taking τ = ∇w with w ∈ P
k+1(T )

in (4.87) and comparing with (4.16a), it is readily inferred that

(Gk
T vT − ∇pk+1

T vT ,∇w)T = 0 ∀w ∈ P
k+1(T ), (4.88)

i.e., ∇pk+1
T vT is the L2-orthogonal projection of Gk

T vT on ∇P
k+1(T ) ⊂ P

k(T )d .
In passing, we observe that for k = 0, using the fact that ∇P

1(T ) = P
0(T )d , (4.88)

implies that G0
T vT = ∇p1

T vT .

Choosing a larger arrival space for Gk
T has the effect of modifying the commuting

property as follows (compare with (4.17)): For all v ∈ W 1,1(T ),

(Gk
T ◦ Ik

T )v = π
0,k
T (∇v). (4.89)

At the global level, we define the operator Gk
h : Uk

h → P
k(Th)

d such that, for all
vh ∈ Uk

h,

(Gk
hvh)|T := Gk

T vT ∀T ∈ Th. (4.90)
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The commuting property (4.89) is used in conjunction with the properties of
the L2-projector to prove the following lemma, which states the compactness of
sequences of HHO functions uniformly bounded in a discrete Sobolev norm.

Lemma 4.5 (Discrete Compactness) Let a polynomial degree k ≥ 0 and an index
p ∈ (1,+∞) be fixed. Let (Mh)h∈H denote a regular sequence of meshes in the
sense of Definition 4.3. Let (vh)h∈H ∈ (Uk

h,0)h∈H be a sequence for which there
exists a real number C > 0 independent of h such that

‖vh‖1,p,h ≤ C ∀h ∈ H.

Then, there exists v ∈ W
1,p

0 (Ω) such that, up to a subsequence, as h → 0,

(i) vh → v and pk+1
h vh → v strongly in Lq(Ω) for all 1 ≤ q <

dp
d−p

if 1 ≤ p < d

and 1 ≤ q < +∞ if p ≥ d;
(ii) Gk

hvh → ∇v weakly in Lp(Ω)d .

4.4.3 Discrete Problem and Well-Posedness

The discrete counterpart of the function a defined by (4.83) is the function ah :
Uk

h × Uk
h → R such that, for all uh, vh ∈ Uk

h,

ah(uh, vh) :=
ˆ

Ω

σ (Gk
huh)·Gk

hvh +
∑

T ∈Th

sT (uT , vT ). (4.91)

Here, for all T ∈ Th, sT : Uk
T × Uk

T → R is a local stabilization function which
can be obtained, e.g., by generalizing (4.23) to the non-Hilbertian setting:

sT (uT , vT ):

=
∑

F∈FT

h
1−p
F

ˆ
F

|δk
T F uT − δk

T uT |p−2(δk
T F uT − δk

T uT )(δk
T F vT − δk

T vT ).

(4.92)

The discrete problem reads: Find uh ∈ Uk
h,0 such that

ah(uh, vh) =
ˆ

Ω

f vh ∀vh ∈ Uk
h,0. (4.93)

The following result summarizes [22, Theorem 4.5, Remark 4.7, and Proposi-
tion 6.1].
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Lemma 4.6 (Well-Posedness) Problem (4.93) admits a unique solution, and there
exists a real number C > 0 independent of h, but possibly depending on Ω , d , �,
and k, such that, denoting by p′ := p

p−1 the dual exponent of p, it holds that

‖uh‖1,p,h ≤ C‖f ‖
Lp′

(Ω)

1
p−1 . (4.94)

Remark 4.9 (Role of the Discrete Sobolev Embeddings) The discrete Sobolev
embedding (4.86) with q = p is used in the proof of the a priori bound (4.94) to
estimate the right-hand side of the discrete problem (4.93) after selecting vh = uh

and using Hölder’s inequality:

ˆ
Ω

f uh ≤ ‖f ‖Lp′
(Ω)‖uh‖Lp(Ω) ≤ ‖f ‖Lp′

(Ω)‖uh‖1,p,h.

4.4.4 Convergence and Error Analysis

The following theorem states the convergence of the sequence of solutions to
problem (4.93) on a regular mesh sequence. Notice that convergence is proved for
exact solutions that display only the minimal regularity u ∈ W

1,p

0 (Ω) required by
the weak formulation (4.82). This is an important point when dealing with nonlinear
problems, for which further regularity can be hard to prove, and possibly requires
assumptions on the data too strong to be matched in practical situations.

Theorem 4.6 (Convergence) Let a polynomial degree k ≥ 0 and an index p ∈
(1,+∞) be fixed. Let (Mh)h∈H denote a regular sequence of meshes in the sense

of Definition 4.3. Let u ∈ W
1,p

0 (Ω) denote the unique solution to (4.82), and denote
by (uh)h∈H ∈ (Uk

h,0)h∈H the sequence of solutions to (4.93) on (Th)h∈H. Then, as
h → 0, it holds

(i) uh → u and pk+1
h uh → u strongly inLq(Ω) for all 1 ≤ q <

dp
d−p

if 1 ≤ p < d

and 1 ≤ q < +∞ if p ≥ d;
(ii) Gk

huh → ∇u strongly in Lp(Ω)d .

Remark 4.10 (Convergence by Compactness) Convergence proofs by compactness
such as that of Theorem 4.6 proceed in three steps: (i) an energy estimate on
the discrete solution is established; (ii) compactness of the sequence of discrete
solutions is inferred from the energy estimate; (iii) the limit is identified as being
a solution to the continuous problem. In our context, the first point corresponds to
the a priori bound (4.94), while the second point relies on the compactness result of
Lemma 4.5. The third step is carried out adapting the techniques of [50, 51].

When dealing with high-order methods, it is also important to determine the
convergence rates attained when the solution is regular enough (or when adaptive
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mesh refinement is used, cf. Sect. 4.3.5.3). This makes the object of the following
result, proved in [23, Theorem 7 and Corollary 10].

Theorem 4.7 (Energy Error Estimate) Under the assumptions and notations of
Theorem 4.6, and further assuming the regularity u ∈ Wk+2,p(Ω) and σ (∇u) ∈
Wk+1,p′

(Ω)d with p′ := p
p−1 , there exists a real number C > 0 independent of h

such that the following holds: If p ≥ 2,

‖∇h(p
k+1
h uh − u)‖Lp(Ω)d + |uh|s,h

≤ C

[

hk+1|u|Wk+2,p(Ω) + h
k+1
p−1

(

|u|
1

p−1

Wk+2,p(Ω)
+ |σ (∇u)|

1
p−1

Wk+1,p′
(Ω)d

)]

,

(4.95a)

while, if p < 2,

‖∇h(p
k+1
h uh − u)‖Lp(Ω)d + |uh|s,h

≤ C
(
h(k+1)(p−1)|u|p−1

Wk+2,p(Ω)
+ hk+1|σ (∇u)|

Wk+1,p′
(Ω)d

)
, (4.95b)

where, recalling the definition (4.92) of the local stabilization function, we have
introduced the seminorm on Uk

h such that, for all vh ∈ Uk
h, |vh|s,hp := ∑

T ∈Th

sT (vT , vT ).

Remark 4.11 (Order of Convergence) The asymptotic scaling for the approxima-
tion error in the left-hand side of (4.95) is determined by the leading terms in the
right-hand side. Using the Bachmann–Landau notation,

‖∇h(pk+1
h uh − u)‖Lp(Ω)d + |uh|s,h =

{
O(h

k+1
p−1 ) if p ≥ 2,

O(h(k+1)(p−1)) if p < 2.
(4.96)

For a discussion of these orders of convergence and a comparison with other
methods studied in the literature, we refer the reader to [23, Remark 3.3].

4.4.5 Numerical Example

To illustrate the performance of the HHO method, we solve the p-Laplace problem
corresponding to the exact solution

u(x) = exp(x1 + πx2)
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Fig. 4.8 ‖I k
hu − uh‖1,p,h vs. h for the test case of Sect. 4.4.5. (a) Triangular, p = 7/4. (b)

Hexagonal, p = 7/4. (c) Triangular, p = 4. (d) Hexagonal, p = 4

for p ∈ {7/4, 4}. This test is taken from [22, Section 4.4] and [23, Section 3.5]. The
domain is again the unit square Ω = (0, 1)2, and the volumetric source term f is
inferred from (4.80). The convergence results for the same triangular and polygonal
mesh families of Sect. 4.3.5.1 (see Fig. 4.1a, c) are displayed in Fig. 4.8. Here, the
error is measured by the quantity ‖I k

hu − uh‖1,p,h, for which analogous estimates
as those in Theorem 4.7 hold. The error estimate seem sharp for p = 7/4, and the
asymptotic orders of convergence match the one predicted by the theory. For p = 4,
better orders of convergence than the asymptotic ones in (4.96) are observed. One
possible explanation is that the lowest-order terms in the right-hand side of (4.95)
are not yet dominant for the specific problem data and mesh. Another possibility is
that compensations occur among terms that are separately estimated in the proof.



118 D. A. Di Pietro and R. Tittarelli

4.5 Diffusion-Advection-Reaction

In this section we extend the HHO method to the scalar diffusion-advection-reaction
problem: Find u : Ω → R such that

∇·(−κ∇u + βu) + μu = f inΩ,

u = 0 on ∂Ω,

where (i) κ : Ω → R
∗+ is the diffusion coefficient, which we assume piecewise

constant on a fixed partition of the domain PΩ and uniformly elliptic; (ii) β ∈
Lip(Ω)d (hence, in particular, β ∈ W 1,∞(Ω)d ) is the advective velocity field, for
which we additionally assume, for the sake of simplicity, ∇·β ≡ 0; (iii) μ ∈ L∞(Ω)

is the reaction coefficient such that μ ≥ μ0 > 0 a.e. in Ω for some real number μ0;
(iv) f ∈ L2(Ω) is the volumetric source term.

Having assumed κ uniformly elliptic, the following weak formulation classically
holds: Find u ∈ H 1

0 (Ω) such that

aκ,β,μ(u, v) = (f, v) ∀v ∈ H 1
0 (Ω), (4.98)

where the bilinear form aκ,β,μ : H 1(Ω) × H 1(Ω) → R is such that

aκ,β,μ(u, v) := aκ(u, v) + aβ,μ(u, v),

and the diffusive and advective-reactive contributions are respectively defined by

aκ(u, v) := (κ∇u,∇v), aβ,μ(u, v) := 1
2 (β·∇u, v) − 1

2 (u,β·∇v) + (μu, v).

The first novel ingredient introduced in this section is the robust HHO discretiza-
tion of first-order terms. Problem (4.98) is characterized by the presence of spatially
varying coefficients, which can give rise to different regimes in different regions of
the domain. In practice, one is typically interested in numerical methods that handle
in a robust way locally dominant advection, corresponding to large values of a local
Péclet number. As pointed out in [32], this requires that the discrete counterpart of
the bilinear form aβ,μ satisfies a stability condition that guarantees well-posedness
even in the absence of diffusion. This is realized here combining a reconstruction
of the advective derivative obtained in the HHO spirit with an upwind stabilization
that penalizes the differences between face- and element-based DOFs.

The second novelty introduced in this section is a formulation of diffusive terms
with weakly enforced boundary conditions. A relevant feature of problem (4.98) is
that boundary layers can appear in the vicinity of the outflow portion of ∂Ω when the
diffusion coefficient takes small values. To improve the numerical approximation in
this situation, one can resort to weakly enforced boundary conditions, which do not
constrain the numerical solution to a fixed boundary value.
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The following material is closely inspired by [34], where locally vanishing
diffusion is treated (see Remark 4.15), and more general formulations for the
advective stabilization term are considered.

4.5.1 Discretization of Diffusive Terms with Weakly Enforced
Boundary Conditions

To avoid dealing with jumps of the diffusion coefficient inside the elements when
writing the HHO discretization of problem (4.98) on a mesh Mh = (Th,Fh), we
make the following

Assumption 4.2 (CompatibleMesh) The meshMh = (Th,Fh) is compatible with
the diffusion coefficient, i.e., for all T ∈ Th, there exists a unique subdomain ω ∈
PΩ such that T ⊂ ω. For all T ∈ Th we set, for the sake of brevity, κT := κ |T .

Letting ζ > 0 denote a user-dependent boundary penalty parameter, we define
the discrete diffusive bilinear form aκ,h : Uk

h × Uk
h → R such that

aκ,h(uh, vh) :=
∑

T ∈Th

κT aT (uT , vT )

+
∑

F∈F b
h

{

−(κTF ∇pk+1
TF

uTF
, vF )F + (uF , κTF ∇pk+1

TF
vTF

)F + ζκTF

hF

(uF , vF )F

}

,

(4.99)

where, for all mesh elements T ∈ Th, aT is the local diffusive bilinear form defined
by (4.18) and, for all boundary faces F ∈ F b

h , TF denotes the unique mesh element
such that F ⊂ ∂TF . The terms in the second line of (4.99) are responsible for the
weak enforcement of boundary conditions à la Nitsche.

Define the diffusion-weighted norm on Uk
h such that, for all vh ∈ Uk

h, letting
‖vT ‖2

a,T := aT (vT , vT ),

‖vh‖2
κ,h :=

∑

T ∈Th

κT ‖vT ‖2
a,T +

∑

F∈Fb
h

κTF

hF

‖vF ‖2
F .

It is a simple matter to check that, for all ζ ≥ 1, we have the following coercivity
property for aκ,h: For all vh ∈ Uk

h,

‖vh‖2
κ,h ≤ aκ,h(vh, vh). (4.100)
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4.5.2 Discretization of Advective Terms with Upwind
Stabilization

We introduce the ingredients for the discretization of first-order terms: a local
advective derivative reconstruction and an upwind stabilization term penalizing the
differences between face- and element-based DOFs.

4.5.2.1 Local Contribution

Let a mesh element T ∈ Th be fixed. By the principles illustrated in Sect. 4.3.1.1, we
define the local discrete advective derivative reconstruction Gk

β,T
: Uk

T → P
k(T )

such that, for all vT ∈ Uk
T ,

(Gk
β,T vT ,w)T = −(vT ,β·∇w)T +

∑

F∈FT

((β·nT F )vF ,w)F ∀w ∈ P
k(T ).

The local advective-reactive bilinear form aβ,μ,T : Uk
T × Uk

T → R is defined as
follows:

aβ,μ,T (uT , vT ) := 1

2
(Gk

β,T uT , vT )T − 1

2
(uT ,Gk

β,T vT )T + sβ,T (uT , vT ) + (μuT , vT )T ,

(4.101)

where the bilinear form

sβ,T (uT , vT ) := 1

2

∑

F∈FT

(|β·nT F |(uF − uT ), vF − vT )F , (4.102)

can be interpreted as an upwind stabilization term.

Remark 4.12 (Element-Face Upwind Stabilization) Upwinding is realized here by
penalizing the difference between face- and element-based DOFs. This is a relevant
difference with respect to classical (cell-based) finite volume and discontinuous
Galerkin methods, where jumps of element-based DOFs are considered instead.
With the choice (4.102) for the stabilization term, the stencil remains the same as
for a pure diffusion problem, and static condensation of element-based DOFs in the
spirit of Sect. 4.3.2.4 remains possible. In the context of the lowest-order Hybrid
Mixed Mimetic methods, face-element upwind terms have been considered in [5].

To express the stability properties of aβ,μ,T , we define the local seminorm such that,
for all vT ∈ Uk

T ,

‖vT ‖2
β,μ,T := 1

2

∑

F∈FT

‖|β·nT F |1/2(vF − vT )‖2
F + τ̂−1

T ‖vT ‖2
T ,
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where, letting Lβ,T := max1≤i≤d ‖∇βi‖L∞(T )d , we have introduced the reference
time

τ̂T := {max(‖μ‖L∞(T ), Lβ,T )}−1.

Notice that the map ‖·‖β,μ,T is actually a norm on Uk
T provided that β |F ·nT F is

nonzero a.e. on each F ∈ FT . For all vT ∈ Uk
T , letting uT = vT in (4.101), it can

be easily checked that the following coercivity property holds:

min(1, τ̂T μ0)‖vT ‖2
β,μ,T ≤ aβ,μ,T (vT , vT ). (4.103)

4.5.2.2 Global Advective-Reactive Bilinear Form

The global advective-reactive bilinear form is given by

aβ,μ,h(uh, vh) :=
∑

T ∈Th

aβ,μ,T (uT , vT ) + 1

2

∑

F∈Fb
h

(|β·n|uF , vF )F , (4.104)

where the first term results from the assembly of elementary contributions, while
the second term is responsible for the enforcement of the boundary condition on the
inflow portion of ∂Ω .

Remark 4.13 (Link with the Advective-Reactive Bilinear Form of [34]) The bilinear
form aβ,μ,h defined by (4.104) admits the following equivalent reformulation, which
corresponds to [34, Eq. (16)] when the upwind stabilization discussed in Section 4.2
therein is used:

aβ,μ,h(uh, vh) =
∑

T ∈Th

(

−(uT ,Gk
β,T vT )T +

∑

F∈FT

((β·nT F )−(uF −uT ), vF −vT )F

)

+
∑

T ∈Th

(μuT , vT )T +
∑

F∈F b
h

((β·n)+uF , vF )F , (4.105)

where, for any real number α, we have set α± := 1
2 (|α| ± α). As a matter of fact,

recalling the discrete integration by parts formula [34, Eq. (35)],

∑

T ∈Th

(uT ,Gk
β,T vT )T = −

∑

T ∈Th

(Gk
β,T uT , vT )T

−
∑

T ∈Th

∑

F∈FT

((β·nT F )(uF − uT ), vF − vT )F

+
∑

F∈Fb
h

((β·nT F )uF , vF )F ,



122 D. A. Di Pietro and R. Tittarelli

we can reformulate the first term in the right-hand side of (4.105) as follows:

∑

T ∈Th

−(uT ,Gk
β,T vT )T =

∑

T ∈Th

(

− 1

2
(uT ,Gk

β,T vT )T − 1

2
(uT ,Gk

β,T vT )T

)

=
∑

T ∈Th

(

− 1

2
(uT ,Gk

β,T vT )T + 1

2
(Gk

β,T uT , vT )T

)

+ 1

2

∑

T ∈Th

∑

F∈FT

((β·nT F )(uF − uT ), vF − vT )F

− 1

2

∑

F∈F b
h

((β·nT F )uF , vF )F .

Inserting this equality into (4.105) and rearranging the terms we recover (4.104).
The formulation (4.104) highlights two key properties of the bilinear form aβ,μ,h:
its positivity and the skew-symmetric nature of the consistent term. The reformula-
tion (4.105), on the other hand, has a more familiar look for the reader accustomed
to upwind stabilization terms.

Define the global advective-reactive norm such that, for all vh ∈ Uk
h,

‖vh‖2
β,μ,h :=

∑

T ∈Th

‖vT ‖2
β,μ,T + 1

2

∑

F∈Fb
h

‖|β·n|1/2vF ‖2
F .

The following coercivity result for aβ,μ,h follows from (4.103): For all vh ∈ Uk
h

min
T ∈Th

(1, τ̂T μ0)‖vh‖2
β,μ,h ≤ aβ,μ,h(vh, vh). (4.106)

4.5.3 Global Problem and Inf-Sup Stability

We can now define the global bilinear form aκ,β,μ,h : Uk
h ×Uk

h → R combining the
diffusive and advective-reactive contributions defined above:

aκ,β,μ,h(uh, vh) := aκ,h(uh, vh) + aβ,μ,h(uh, vh).

The HHO approximation of (4.98) then reads: Find uh ∈ Uk
h such that, for all

vh ∈ Uk
h,

aκ,β,μ,h(uh, vh) = (f, vh). (4.107)
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Let us examine stability. In view of (4.100) and (4.106), the bilinear form aκ,β,μ,h

is clearly coercive with respect to the norm

‖vh‖2
�,h := ‖vh‖2

κ,h + ‖vh‖2
β,μ,h,

which guarantees that problem (4.107) has a unique solution. This norm, however,
does not convey any information on the discrete advective derivative. A stronger
stability result is stated in the following lemma, where we consider the augmented
norm

‖vh‖2
�,h := ‖vh‖2

�,h +
∑

T ∈Th,β̂T �=0

hT β̂
−1
T ‖Gk

β,vT
‖2
T ,

with β̂T := ‖β‖L∞(T )d denoting the reference velocity on T and the summand is

taken only if β̂T �= 0.

Lemma 4.7 (Inf-Sup Stability of aκ,β,μ,h) Assume that ζ ≥ 1 and that, for all
T ∈ Th,

hT max(Lβ,T , μ0) ≤ β̂T . (4.108)

Then, there exists a real number C > 0, independent of h, κ,β and μ, but possibly
depending on d , �, and k such that, for all wh ∈ Uk

h,

C min
T ∈Th

(1, τ̂T μ0)‖wh‖�,h ≤ sup
vh∈Uk

h\{0h}

aκ,β,μ,h(wh, vh)

‖vh‖�,h

.

Remark 4.14 (Condition (4.108)) Condition (4.108) means (i) that the advective
field is well-resolved by the mesh and (ii) that reaction is not dominant.

4.5.4 Convergence

For each mesh element T ∈ Th, we introduce the local Péclet number such that

PeT := max
F∈FT

hF ‖β |F ·nT F ‖L∞(F )

κF

,

where κF := minT ∈TF
κT . For the mesh elements where diffusion dominates we

have PeT ≤ hT , for those where advection dominates we have PeT ≥ 1, while
intermediate regimes correspond to PeT ∈ (hT , 1).
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The following error estimate accounts for the variation of the convergence rate
according to the value of the local Péclet number, showing that diffusion-dominated
elements contribute with a term in O(hk+1

T ) (as for a pure diffusion problem),

whereas convection-dominated elements contribute with a term in O(h
k+1/2

T ) (as for
a pure advection problem).

Theorem 4.8 (Energy Error Estimate) Let u solve (4.98) and uh solve (4.107).
Under the assumptions of Lemma 4.7, and further assuming the regularity u|T ∈
Hk+2(T ) for all T ∈ Th, there exists a real number C > 0 independent of h, κ,β ,
and μ, but possibly depending on ρ, d , and k, such that

C min
T ∈Th

(1, τ̂T μ0)‖ûh − uh‖�,h

≤
{ ∑

T ∈Th

[ (
κT ‖u‖2

Hk+2(T )
+ τ̂−1

T ‖u‖2
Hk+1(T )

)
h

2(k+1)
T

+ β̂T min(1, PeT )‖u‖2
Hk+1(T )

h2k+1
T

]}1/2

.

Remark 4.15 (Extension to Locally VanishingDiffusion) It has been showed in [34]
that the error estimate of Theorem 4.8 extends to locally vanishing diffusion
provided that we conventionally set PeT = +∞ for any element T ∈ Th such
that κF = 0 for some F ∈ FT .

4.5.5 Numerical Example

To illustrate the performance of the HHO method, we solve in the unit square Ω =
(0, 1)2 the Dirichlet problem corresponding to the solution (4.79) with β(x) = (1/2−
x2, x1 − 1/2), μ ≡ 1, and a uniform diffusion coefficient κ taking values in {1, 1 ·
10−3, 0}. We take triangular and predominantly hexagonal meshes, as depicted in
Fig. 4.1a and c respectively. The convergence results are depicted in Fig. 4.9. We
observe that the convergence rate decreases with κ , with a loss slightly less than the
half order predicted by the error estimate of Theorem 4.8.
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Fig. 4.9 ‖I k
hu − uh‖�,h vs. h for the test case of Sect. 4.5.5. (a) κ = 1, triangular. (b) κ = 1 ×

10−3, triangular. (c) κ = 0, triangular. (d) κ = 1, polygonal. (e) κ = 1 × 10−3, polygonal. (f)
κ = 0, polygonal
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