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An Introduction to Recent Developments
in Numerical Methods for Partial
Differential Equations

Daniele Antonio Di Pietro, Alexandre Ern, and Luca Formaggia

Abstract Numerical Analysis applied to the approximate resolution of Partial
Differential Equations (PDEs) has become a key discipline in AppliedMathematics.
One of the reasons for this success is that the wide availability of high-performance
computational resources and the increase in the predictive capabilities of the
models have significantly expanded the range of possibilities offered by numerical
modeling.

Novel discretization methods, the solution of ill-posed and nonlinear problems,
model reduction and adaptivity are main topics covered by the contributions of this
volume. This introductory chapter provides a brief overview of the book and some
related references.
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This volume comprises nine chapters reflecting many of the topics covered by
the Ph.D. level courses given during the Thematic Quarter Numerical Methods for
PDEs, held at the Institut Henri Poincaré in the fall 2016.1 These chapters can be
loosely organized into three groups: (1) novel discretisation methods; (2) nonlinear
and ill-posed problems; (3) model reduction and adaptivity.

Over the last few years, new paradigms have appeared to devise discretization
methods supporting polytopal elements and arbitrary approximation orders. One
key motivation is that the use of general element shapes provides an unprecedented
flexibility in mesh generation, which is often the most time-consuming step in
numerical modeling. Two examples of polytopal, arbitrary-order discretization
methods are treated in this volume. On the one hand, the Hybridizable Dis-
continuous Galerkin (HDG) methods introduced in [9], where one central idea
is the devising of local spaces to approximate the flux and the primal variable
using the notion of M-decompositions from [11]. On the other hand, the Hybrid
High-Order (HHO) methods introduced in [12, 13], where one central idea is the
devising of the stabilization operator within a primal formulation. HDG and HHO
methods have been recently bridged in [10]. Another important paradigm for the
development of discretization methods is to reproduce exactly at the discrete level
the fundamental properties of the model problem at hand, leading to so-called
mimetic (or compatible, or structure-preserving) discretizations. This field, which
is at the crossroads of differential geometry, algebraic topology and numerical
analysis, has seen a lot of activity over the last decades; recent reviews with
an historical perspective can be found in [2, 3, 8]. The contributions gathered
in the first four chapters of this volume concern the theory of M-decomposition
and its application to hybridisable discontinuous Galerkin and mixed methods;
Mimetic Spectral Element method where the metric- and material-dependentHodge
operator is built as a mass matrix from tensor-product polynomials on Cartesian and
deformed grids; an introduction to Hybrid High-Order methods able to deal with
generally polytopal grids, with applications to the p-Laplace and diffusion-reaction
equations.

The second group of three chapters concerns nonlinear and ill-posed prob-
lems. The first contribution concerns a numerical investigation of the Distributed
Lagrange Multiplier method for fluid-structure interaction. This method, which has
close links with the Immersed Boundary method [17] as well as with Fictitious
Domain methods with a distributed Lagrange multiplier [14], has been recently
developed and analyzed in [4]. The second contribution deals with the approxima-
tion of the spectrum of an elliptic operator and addresses the benefits of combining
isogeometric analysis [15] with blending quadrature rules [1]. A Pythagorean the-
orem linking eigenvalue and eigenfunction errors, together with numerical results,
are presented. The third contribution considers ill-posed problems as encountered,
for instance, in the context of inverse and data assimilation problems. While state-
of-the-art methods typically rely on the introduction of a regularization at the

1http://imag.edu.umontpellier.fr/event/ihp-nmpdes.
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continuous level, one introduces here only a weakly-consistent regularization at the
discrete level. Using very recent ideas on finite element stabilization [5, 6] leads to
error estimates that are compatible with the (modest, yet provable) stability of the
continuous problem at hand.

The third group of three chapters highlights recent advances in reduced-order
modeling and adaptivity. The increased complexity of the physical models and the
need to use PDE simulators in many-query scenarios (optimisation, inverse prob-
lems, real-time, etc.) has prompted the study of model reduction techniques such
as the Reduced Basis (RB) method [18]. The present contribution, which focuses
on elasticity problems in affinely parameterised geometries with (non-)compliant
output error control [19], describes the RB approximation of such problems and
presents various numerical examples. Finally, the numerical resolution of complex
problems is often feasible only if the computation resources are used judiciously.
This has prompted the study of adaptive resolution algorithms, often based on
a posteriori estimates of the approximation error. Important advances have been
accomplished over the last decade, as discussed among others in [7, 16] and in the
recent textbook [20]. The present contribution develops a relatively less explored
question, namely the adaptive approximation of a given univariate target function
using mesh refinement by bisection. The last chapter gives an introduction on the
possible treatment of defective boundary conditions, which typically appear in the
coupling of PDE problems posed in domains of different geometrical dimensions.
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