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Preface

Numerical analysis applied to the approximate resolution of partial differential
equations (PDEs) has become a key discipline in applied mathematics. One of
the reasons for this success is that the wide availability of high-performance
computational resources and the increase in the predictive capabilities of the
models have significantly expanded the range of possibilities offered by numerical
modeling.

With this in mind, in the fall of 2016 the editors of the present volume organized
a thematic quarter at the Institut Henri Poincaré in Paris focusing on various
aspects of numerical analysis. The quarter started with a 1-week introductory school
comprising courses on the virtual element method, the hybridizable discontinuous
Galerkin method, gradient schemes, mimetic spectral methods, low-rank and sparse
tensor methods, reduced-basis methods, a posteriori error estimates, adaptive
finite element methods, and interfacing models of different dimensions. During
the quarter, additional advanced courses were offered on the hybrid high-order
method, eigenvalue problems, ill-posed problems, direct, inverse, and reduced-order
modeling, high-dimensional approximation of parametric PDEs, error control, and
adaptivity.

This volume reflects many of the topics covered during the quarter and provides
up-to-date reference material for graduate students, scientists, and engineers inter-
ested in advanced numerical techniques. Even if the material is of an introductory
nature, it concerns rather state of the art methodologies, so the reader is expected to
have a basic knowledge of the mathematical theory of PDEs and numerical methods.
Additional material can be found at the address:

http://imag.edu.umontpellier.fr/event/ihp-nmpdes

We are thankful to the Scientific Committee of the Institut Henri Poincaré (and
in particular to its Vice-President, Marc Herzlich) for their support of the quarter,


http://imag.edu.umontpellier.fr/event/ihp-nmpdes

vi Preface

to the administrative staff of the IHP for their help during the quarter, and to all
participants for the lively and stimulating mathematical discussions.

Montpellier, France Daniele Antonio Di Pietro
Paris, France Alexandre Ern
Milano, Italy Luca Formaggia

January 2018
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Chapter 1 )
An Introduction to Recent Developments o
in Numerical Methods for Partial

Differential Equations

Daniele Antonio Di Pietro, Alexandre Ern, and Luca Formaggia

Abstract Numerical Analysis applied to the approximate resolution of Partial
Differential Equations (PDEs) has become a key discipline in Applied Mathematics.
One of the reasons for this success is that the wide availability of high-performance
computational resources and the increase in the predictive capabilities of the
models have significantly expanded the range of possibilities offered by numerical
modeling.

Novel discretization methods, the solution of ill-posed and nonlinear problems,
model reduction and adaptivity are main topics covered by the contributions of this
volume. This introductory chapter provides a brief overview of the book and some
related references.

Numerical Analysis applied to the approximate resolution of Partial Differential
Equations (PDEs) has become a key discipline in Applied Mathematics. One
of the reasons for this success is that the wide availability of high-performance
computational resources and the increase in the predictive capabilities of the
models have significantly expanded the range of possibilities offered by numerical
modeling.
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This volume comprises nine chapters reflecting many of the topics covered by
the Ph.D. level courses given during the Thematic Quarter Numerical Methods for
PDEs, held at the Institut Henri Poincaré in the fall 2016.1 These chapters can be
loosely organized into three groups: (1) novel discretisation methods; (2) nonlinear
and ill-posed problems; (3) model reduction and adaptivity.

Over the last few years, new paradigms have appeared to devise discretization
methods supporting polytopal elements and arbitrary approximation orders. One
key motivation is that the use of general element shapes provides an unprecedented
flexibility in mesh generation, which is often the most time-consuming step in
numerical modeling. Two examples of polytopal, arbitrary-order discretization
methods are treated in this volume. On the one hand, the Hybridizable Dis-
continuous Galerkin (HDG) methods introduced in [9], where one central idea
is the devising of local spaces to approximate the flux and the primal variable
using the notion of M-decompositions from [11]. On the other hand, the Hybrid
High-Order (HHO) methods introduced in [12, 13], where one central idea is the
devising of the stabilization operator within a primal formulation. HDG and HHO
methods have been recently bridged in [10]. Another important paradigm for the
development of discretization methods is to reproduce exactly at the discrete level
the fundamental properties of the model problem at hand, leading to so-called
mimetic (or compatible, or structure-preserving) discretizations. This field, which
is at the crossroads of differential geometry, algebraic topology and numerical
analysis, has seen a lot of activity over the last decades; recent reviews with
an historical perspective can be found in [2, 3, 8]. The contributions gathered
in the first four chapters of this volume concern the theory of M-decomposition
and its application to hybridisable discontinuous Galerkin and mixed methods;
Mimetic Spectral Element method where the metric- and material-dependent Hodge
operator is built as a mass matrix from tensor-product polynomials on Cartesian and
deformed grids; an introduction to Hybrid High-Order methods able to deal with
generally polytopal grids, with applications to the p-Laplace and diffusion-reaction
equations.

The second group of three chapters concerns nonlinear and ill-posed prob-
lems. The first contribution concerns a numerical investigation of the Distributed
Lagrange Multiplier method for fluid-structure interaction. This method, which has
close links with the Immersed Boundary method [17] as well as with Fictitious
Domain methods with a distributed Lagrange multiplier [14], has been recently
developed and analyzed in [4]. The second contribution deals with the approxima-
tion of the spectrum of an elliptic operator and addresses the benefits of combining
isogeometric analysis [15] with blending quadrature rules [1]. A Pythagorean the-
orem linking eigenvalue and eigenfunction errors, together with numerical results,
are presented. The third contribution considers ill-posed problems as encountered,
for instance, in the context of inverse and data assimilation problems. While state-
of-the-art methods typically rely on the introduction of a regularization at the

Thttp://imag.edu.umontpellier.fr/event/ihp-nmpdes.
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continuous level, one introduces here only a weakly-consistent regularization at the
discrete level. Using very recent ideas on finite element stabilization [5, 6] leads to
error estimates that are compatible with the (modest, yet provable) stability of the
continuous problem at hand.

The third group of three chapters highlights recent advances in reduced-order
modeling and adaptivity. The increased complexity of the physical models and the
need to use PDE simulators in many-query scenarios (optimisation, inverse prob-
lems, real-time, etc.) has prompted the study of model reduction techniques such
as the Reduced Basis (RB) method [18]. The present contribution, which focuses
on elasticity problems in affinely parameterised geometries with (non-)compliant
output error control [19], describes the RB approximation of such problems and
presents various numerical examples. Finally, the numerical resolution of complex
problems is often feasible only if the computation resources are used judiciously.
This has prompted the study of adaptive resolution algorithms, often based on
a posteriori estimates of the approximation error. Important advances have been
accomplished over the last decade, as discussed among others in [7, 16] and in the
recent textbook [20]. The present contribution develops a relatively less explored
question, namely the adaptive approximation of a given univariate target function
using mesh refinement by bisection. The last chapter gives an introduction on the
possible treatment of defective boundary conditions, which typically appear in the
coupling of PDE problems posed in domains of different geometrical dimensions.
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Chapter 2 )
An Introduction to the Theory Shethie
of M -Decompositions

Bernardo Cockburn, Guosheng Fu, and Ke Shi

Abstract We provide a short introduction to the theory of M-decompositions
in the framework of steady-state diffusion problems. This theory allows us to
systematically devise hybridizable discontinuous Galerkin and mixed methods
which can be proven to be superconvergent on unstructured meshes made of
elements of a variety of shapes. The main feature of this approach is that it reduces
such an effort to the definition, for each element K of the mesh, of the spaces for
the flux, V(K), and the scalar variable, W (K), which, roughly speaking, can be
decomposed into suitably chosen orthogonal subspaces related to the space traces
on 0K of the scalar unknown, M(dK). We begin by showing how a simple a
priori error analysis motivates the notion of an M-decomposition. We then study
the main properties of the M-decompositions and show how to actually construct
them. Finally, we provide many examples in the two-dimensional setting. We end
by briefly commenting on several extensions including to other equations like the
wave equation, the equations of linear elasticity, and the equations of incompressible
fluid flow.

2.1 Introduction

The theory of M-decompositions has been recently introduced as an effective tool
to systematically find the local spaces defining hybridizable discontinuous Galerkin
and mixed methods which can be proven to be superconvergent on unstructured
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meshes made of elements of a variety of shapes. By “superconvergent” we mean
that they can provide a new approximation, computed in an elementwise manner,
which converges optimally and faster than the original approximation.

The general theory of M-decompositions was introduced in [14, 15, 27] in the
framework of steady-state diffusion problems, as a refinement of the work done in
[22]. Using some of these M-decompositions, new commutative diagrams for the
deRham complex were presented in [16]. The extension to the Stokes system of
incompressible fluid flow was done in [25], to the Navier-Stokes equations in [24],
and to linear elasticity with symmetric approximate stresses in [13]. In this paper,
we provide an introduction to the theory of M-decompositions.

We do this for HDG and mixed methods for the following steady-state diffusion
problem:

cg+Vu=0 in §2,
V-g=f in £2,
u=g on 42,

where 2 C R"” (n = 2,3) is a bounded polyhedral domain, c is a uniformly
bounded, uniformly positive definite symmetric matrix-valued function, f € L?(£2)
and g € H 1/2(3£2). The HDG methods have been thoroughly reviewed in [8].
Therein, the M-decompositions were briefly mentioned as a step in the development
of the HDG methods. So, this paper can be considered to be a continuation of such
review.

Our intention is to introduce the main ideas about M-decompositions as simply
as possible; for a brief historical overview of the effort of devising superconvergent
methods defined on unstructured meshes, see [27]. The material of this paper is
based on three papers on the early development of M-decompositions. The first is
the work done in [22], which provides general sufficient conditions for HDG and
mixed methods to be superconvergent. The second is the work done in [27], which
refines the previous work and introduces a general theory of M-decompositions for
steady-state diffusion problems. The third is [14], which is devoted to the actual
construction of M-decompositions in two-space dimensions.

The paper is organized as follows. In Sect. 2.2, we begin by placing the appear-
ance of the idea of M-decompositions into historical perspective. In Sect. 2.3, we
then introduce the notion of spaces admitting an M-decomposition and show how
to use it to define hybridizable discontinuous Galerkin and mixed methods which
can be proven to be superconvergent on unstructured meshes made of elements
of a variety of shapes. In Sect. 2.4, we display our general construction of spaces
admitting an M-decomposition, and in Sect.2.5, we give concrete examples. We
end in Sect. 2.6 by briefly describing past and ongoing extensions of this approach.
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2.2 What Motivated the Appearance of the
M -Decompositions?

Here, we briefly place the appearance of the M-decompositions into historical
perspective. When the first wave of DG methods appeared around the end of last
century, they were criticized because they could not be as efficiently implemented
and could not provide as accurate approximations as the well-known hybridized
version of the mixed methods. The HDG methods were then introduced in order to
address the issue of efficient implementation. In addition, as these HDG methods
were shown to be closely related to the mixed methods, a systematic effort started
to devise HDG methods with the same superconvergence properties of the mixed
methods. The theory of M-decompositions appeared as a tool to systematically do
this.

2.2.1 DG Methods

To begin our discussion, let us define the DG methods for the model steady-
state diffusion problem. Let T}, be a conforming mesh of £2 made of polygonal
(n = 2) or polyhedral (n = 3) elements K. Let d§2;, denote the set of boundaries
0K of the elements K € T, JF, denote the set of faces F of the elements
K € T3, and F(K) denote the set of faces F of the element K. As usual, we write
(n, ;)Th = ZKeTh (n, &)k, where (1, ¢)p denotes the integral of n¢ over the
domain D C R". We also write (1, {)ag-h = ZKeg-h(n, LYok, Where (n, ¢)p
denotes the integral of n¢ over the 1-codimensional domain D. When vector-valued
functions are involved, we use a similar notation.

The DG methods seek an approximation to (u,q), (up,qy), in the finite
dimensional space Wy, x V,, where

Vi :={veL*Ty: vk € V(K), K €Ty},
W, :={w e L3(T)) : wig € W(K), K € Ty},

and determine it as the only solution of the following weak formulation:

cqp, Vg, — p, V-v)q, + Un, v-n)yg, =0,
—(qn, Vw), +@, -V, wyg, =, w,,

for all (w, v, u) € W x V, where the numerical traces i, and gy, - V are suitably
defined functions of the unknown (uy, q).

In the 2002 unified analysis of the DG methods [2], it was shown that, for
elements of general shapes and V(K) x W(K) := Pr(K) x Pr(K), the best orders
of convergence for all the DG methods treated there in were k for the error in the
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flux g — gl L2(q), Which is suboptimal by 1, and k + 1 for the error in the scalar
variable |u — upll 2(p), which is optimal. The same results can also be obtained
with V(K) x W(K) := P;_1(K) x Pr(K).

These orders of converge are obtained, in particular, for the following choice of
numerical traces:

- fur} — C12 - Munll + C2 gyl inFp \ 082,
h g in F;, N 92,

7 Z{{{qh}}-l-clz[[qh]]-l-culluh]] in Fp, \ 042,
4 q, +Cr(up — gn inF,Naw.’

and Cp; positive, of order h=L, Ci2 of order one, and Coy = 0, that is , for the
LDG method [9]. When Ci; and C»; are positive and of order one, and C1 is
also of order one, it was shown in 2000 in [5] that the order of convergence of the
flux increases to k + 1/2 and that of the scalar variable remains k£ 4 1. In 2009
in [18], when the elements are restricted to be simplexes, it was shown in that, if
C11, 1/Cq1, Ca2, 1/C22, |C 12| are positive and uniformly bounded, the order of the
flux and that of the scalar variable are both k 4+ 1 and that the error in the local
averages superconverges with order k + 2, just as happens for the approximations
of the well known RT; and BDM; mixed methods. This result was obtained by
exploiting the relation between these DG methods and the corresponding HDG
methods which we introduce next.

2.2.2 HDG Methods

The HDG methods were introduced in 2009 in [19] with the intention of obtaining
DG methods for which static condensation was guaranteed. As argued in the 2016
review in [8], this resulted in a significant reduction of the number of globally-
coupled degrees of freedom for the DG methods, highlighted the strong link between
the HDG methods and the hybridized mixed methods, and led to new DG methods
with better accuracy than all previously known DG methods.

The HDG methods seek an approximation to (u, ¢, u|3rh), (un, qp, un), in the
finite dimensional space W), x V, x M), where

Vi:={veL*Ty: vk € V(K), K €Ty},
Wy, := {w € L*(Tp) : wlx € W(K), K € Ty},

My :={n e L*(Fn) : ulr € M(F), F € Fp),
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and determine it as the only solution of the following weak formulation:

gy, Vg, — @p, V), + @n, v-n)yy, =0, (2.1a)
—(qp. Yw)g, +@,-n, w)yy, =, wg, (2.1b)

@ n, w700 =0, (2.1¢c)

(h, woe = (g, mag, (2.1d)

for all (w, v, u) € Wy x Vi, x My, where
g, -n=gq, -n+au, —u,) on 37T, (2.1e)

As pointed out in [19], by taking particular choices of the local spaces V (K), W(K)
and

M@K) = {n € L23K) : u|r € M(F) forall F € F(K)},

and of the linear local stabilization function «, different HDG methods are obtained.
If we can take « to be zero, we obtain nothing but the well-known hybridized version
of the mixed methods. This establishes a strong link between the HDG methods,
which use a non-zero stabilization «, and the mixed methods.

It can be shown, see [8, 19], that the very structure of the above weak formulation
guarantees that the only globally-coupled degrees of freedom are those of the
numerical trace u. This results in a very efficient implementation of the method
which provides a significantly smaller stiffness matrix in comparison to that of all
other DG methods.

It can also be shown that the HDG methods are strongly related to previously
introduced DG methods. For example, if we take for V(K) x W(K) := Px(K) x
Pr(K) and M(F) := P;(K), and the stabilization function as a(u) := t , where
T is a constant on each face, it can be easily shown that the resulting HDG method
is nothing but a classic DG methods with the following numerical traces:

+ - .
up = r+r+r*u;lr + r+r+r*uh + r*Jlrr* [gnll  inJn\9s2,
8 inJF,Nas2,

- + _ +o— .
q, = r+r+r*q;tr + r*TJrr*qh + riJ:r* [unll in T\ 942,
g +t(up —g)n inF,Noe. "’

To illustrate the convergence properties of this method, let us consider the model
problem

—Au=f in$2,
u=g onoas2,
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where 2 is a unit square, and the exact solution is u(x, y) = sin(2wx) sin(2wy).
In the table below, we display a history of convergence for the case k = 1 for
three different types of meshes and T = 1. We display the L?(£2)-norm of the error
between the exact solution # and a local postprocessing uZ, see [32, 40, 41], defined
on the element K as the polynomial of degree k + 1 such that

(Vu27 VU))K = _(thv VU))K Y w € j)kJrl(K)v and (MZ, l)K = (u/’lv l)K

For this HDG method, C;; = Cy» = 1, C1p = 0. The results of the first
column fully agree with the theoretical predictions in [18] which, for triangular
meshes, ensures that the flux converges with order k 4 1 and that the local averages
superconverges with order k£ + 2; the local postprocessing thus must converge with
order k + 2, as we see in the table. For polygonal meshes, we cannot rely on the
theoretical predictions in [5] which only guarantee an order of convergence of the
flux of k + 1/2 and that of the scalar variable is k + 1.

Thus, we see that the optimal order of convergence for uj of 3 = k + 2 holds
only for triangular meshes and deteriorates as the number of sides of the element
increases. This raises the question of how to achieve the superconvergence of the
local averages independently of the shape of the elements.

h llu — uj g, Rate lu — uj, ll7, Rate lu — uj, g, Rate
=1
0.1 0.15E—2 - 0.83E—2 - 0.52E—2 -
0.05 0.18E—3 3.06 0.16E—2 2.36 0.10E—2 2.34
0.025 0.23E—4 3.03 0.28E—3 2.52 0.19E—3 2.43
0.0125 0.28E—5 3.02 0.44E—4 2.68 0.35E—4 2.46

2.2.3 Local Spaces or Stabilization Functions

The theory of M-decompositions allows us to answer to this question. Roughly
speaking, this theory provides an explicit construction of the smallest number of
basis functions one has to add to the local spaces of the approximate flux so
that the resulting method becomes superconvergent. Once the new local spaces
are found, the theory automatically constructs two mixed methods whose local
spaces “sandwich” the new found spaces. Thus, we can also consider the theory
of M-decompositions as a systematic way of constructing superconvergent mixed
methods.

The emphasis of the approach based on M-decompositions is on the construction
of the local spaces V (K) x W(K) and the trace space M (0K). It is not on the how to



2 An Introduction to the Theory of M-Decompositions 11

determine a stabilization function o which could render the resulting HDG method
superconvergent. This second approach represents an complementary alternative to
the theory of M-decompositions and is being currently developed. For more details,
we refer the reader to before-the-last paragraph of the Introduction in [27].

Here, let us end by briefly mentioning the main contributions to this alternative.
Lehrenfeld-Schoberl proposed a new, relatively simple stabilization function back
in 2010 in [33, Remark 1.2.4]. The corresponding HDG method was then proven
to be superconvergent by Oikawa in 2015 in [34]; see the extension to Stokes in
[35]. In a parallel, independent effort, a new, sophisticated stabilization function «
was identified in 2015 in [23] which is associated to the hybrid high-order (HHO)
methods introduced in 2014 in [29] and in 2015 in [28] (for linear elasticity). See
also [36] for an extension to the linear elasticity equations with strong symmetric
approximate stresses, and [37] for the Navier-Stokes equations.

2.3 The M-Decompositions

In this section, we show that when the local spaces V (K) x W(K) admitan M (0K )-
decomposition for every element K € T}, the associated HDG or mixed methods
are superconvergent on unstructured meshes.

In what follows, to simplify the notation, when there is no possible confusion,
we do not indicate the domain on which the functions of a given space are defined.
For example, instead of V (K), we simply write V.

2.3.1 Definition

To define the M-decomposition of the space
VxWc{ve Hdiv,K): v-nlpx € L>(0K)} x H'(K),
we need to consider the combined trace operator

r:VxW — L*3K)

(v, w) — (v-n+w)lyx

where n : 9K — R is the unit outward pointing normal field on 3 K .

Definition 2.1 (The M-Decomposition [27] ) We say that V x W admits an M-
decomposition when

(a) t(VxW)ycM,
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and there exists a subspace VxWofVxW satisfying

(b)) VWxV-VCVxW,

(¢) tr:V+x Wt — M isanisomorphism.

Here V- and W+ are the L?(K)-orthogonal complements of Vin V, and of W in
W, respectively.

Although it can be proven that we must have VZ = V .V, the space V is not
unique. However, it is always possible to choose V as indicated in the following
result which is expressed in terms of the following space of solenoidal, H (div, K)-
bubbles:

Vsbb:Z{UGV:V'I)ZO, v-nlaK :0}

Proposition 2.1 (The Canonical M-Decomposition [27]) If the space V x W
admits an M-decomposition, then it admits an M-decomposition based on the
subspaces

V= VW& Vgph (orthogonal sum), W=v.V.

Of course, it is far from obvious that spaces V x W admitting M-decompositions
can lead to superconvergent HDG and mixed methods. To see that, we need to carry
out the error analysis of the methods with the help of a projection we define next.

2.3.2 The HDG-Projection

We define this auxiliary projection in terms of the L?(d K )—projection into M (3 K),
which we denote by Pyy.

Definition 2.2 (The HDG-Projection [22] ) Let (g, #) be smooth enough so that
their boundary traces are in L>(3K). Let V x W admit an M-decomposition. Then,
the pair IT,(q,u) = (Ilyq, [Iwu) € V x W defined by the equations

@ (Twu,wg =@ wyk  YweW,

B) UIyq,v)g =(q.v)k YveV,

(v) (Ivq-n+oa(Ilwu — Pyu), plox =(q-n, n)oxk Y €M,

is the HDG-projection associated to the M-decomposition and to the stabilization
operator « : L>(0K) — L*(3K).

Note that, when the stabilization function « is zero, we obtain nothing but the
well-known projection used for the analysis of the mixed methods. The HDG-
projection is thus an extension of such projection. Indeed, for any w € W, we
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have

(HWV : qs 'LU)K = _(qv VU))K + <q ‘n, w)dK
=—Iyq,Vw)xk +Iyq -n +oa(lIwu — Pyu), w)sg
=(V-IIyq, w)x + (a([Twu — Pyu), w)sk,

and if we define Ly (m) as the element of W such that
(Lw(m), w)x = (m, w)sgg YweW,
we can write
IwV-q =V -Ilyq + Lw(a(ITwu — Pyu)).

This extends to our framework the commutativity properties of the projections ITy
and ITy for the mixed methods, that is, for the case in which we can take o = 0.

Next, we provide a sufficient condition on the stabilization function o ensuring
that the HDG-projection is actually well defined.

Proposition 2.2 (The HDG-Projection [22]) Let V x W admit an M-
decomposition. Then the auxiliary HDG-projection I, is well defined if we take the
linear stabilization operator o : L2(0K) — L*(8K) such that

weWt: (o), whx =0 =—> w=0.

This result shows that we can take the stabilization function « equal to zero
whenever W+ = {0}. In this way, the stabilization function « can be linked to the
gap between W and W = V- V. To measure such a gap, we introduce the following
number, which is nonnegative because of the inclusion property (b).

Definition 2.3 (The S-Index) The S-index (“S” for stabilization) of the space V x
W is the number

Is(Vx W) :=dimW —dimV - V.

Note that by the~inclusion condition (b), Is(V x W) is a natural number. It is
zero if and only if W+ = {0} in which case we can take & = 0.

Proof (of Proposition 2.2) Let us start by noting that the system defining the
projection is square. The number of equations is dim V + dim W + dim M and the
number of unknowns is dim V' + dim W. Let us show that these numbers coincide.
Since V x W admits an M-decomposition, there are spaces V and W satisfying
property (c), and so

dim M = dim V> + dim W+.
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This implies that dim V +dim W +dim M = dim V 4 dim W, and so the system is
square.

Now we only have to set (¢, u) = (0, 0) and prove that the only solution is the
trivial one. In this case, we get that

(ITwu,w)g =0 Yw € W,
(Myg.v)xk =0 VveV,
(Myq -n+a(lyu), n)ogxg =0  Yu e M,

which means that ITy q € V- and that ITyu € W, Since, by property (a), W|yx C
M, we can take p := [Twu in the third equation defining the projection to get

(a(Twu), Mwu)yx = —(Ilvq -n, Mwu)yk
= (V-Ilyq, wyu)x + (Ilyq, VIIwu)g
=0,
by the inclusion properties (b), since V - ITyq € V-V C W and since VITyu €
VW C V. Therefore, by the assumption on the stabilization function «, it follows

that ITwu = 0. Finally, by property (a), since V - n|3x C M, we can take pu :=
ITy q - n in the third equation defining the projection to get

(ITyq -n,ITyq -n)yx =0,

which implies, by property (c), that ITyq = 0 since IIyq € VL. This completes
the proof. [

2.3.3 Estimates of the Projection of the Errors

Next, we find the equations of the projection of the errors:
eq =Ivyq—q,. e, :=Iwu—u,, ezn:=Py(gn)—q,n, eq:= Pyu)—iy.

We show that the definition of an M-decomposition and that of the HDG-projection
are tailored to the numerical schemes under consideration.

Since the exact solution also satisfies the weak formulation defining the HDG
method, we can write that

(c(g—qp). )3, — W@ —up, V-v)ryh—i-(u—iih, v-n),g, =0,
_(q_qhvvw)j'h +(q-n—’q\h-n,w)aj~h :0,
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(g -n—7qy - n, M)a‘]’h\ag =0,

(U —Un, Woo =0,

for all (w, v, u) € Wy, x Vj x My, whereq, -n = q, - n + a(up —uy) on 37T;.

But, we have that

(u —uy , von)yg, = (ea, v-n)yT,
{g-n—q, n, wyg =(eg-n, v,
(u —uy , V~v)r3~h=(eu, V~v)g—h
(@ —q,. Vw)g, = (eq. Vw)g,
e;-n=ey-n+ Pyale,

by property (y), and so, we get that

- (eus V'U)Th + (eﬁs v 'n>a‘Ih

— (eq, Vw)gvh + (e -n, w>a‘J’h

by property (a),
by property (a),
by properties () and (b),
by properties (8) and (b),

—ep) on 07y,

= _(C (‘I _HVq)s v)‘Ihv
=0,

<eii - n, M)a‘]‘h\ag =0,

(em, 1)og

for all (w, v, u) € Wy x Vi, x Mp,.

=0,

We immediately see that if the right-hand side of the first equation is zero, then
the all the projection of the errors are zero. This means that all of them are controlled
by the size of the approximation error ¢ — ITyq. In particular, the standard energy
argument, obtained by setting (v, w, ) := (eq, €4, ez) and adding the equations,

and noting that e|3> = 0, gives that

(ceg. eq)g, + (e — ) . ew — eadyy, = —(c(q — Mvq) . eg)q,

In fact, it is possible to prove the following estimates.

Theorem 2.1 (A Priori Error Estimates) Suppose that for every K € Tj, the
space V(K) x W(K) admits an M (0K )-decomposition and that the stabilization

function o satisfies the following properties:

(i weWhK),

(iii)

(@¢(w), whxk =0 =
() (e(w), n)ax =0 forall p € M(IK),
(@), ok = (A, a(u))ok, forall k., n € M(IK).

w =20,
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Then, we have
legll, =Cllg —Mvql,.
leullq, = CH llg —Myql,.

where H = 1 for general polyhedral domains. For convex polyhedral domains, we
have that H = h provided

Po(K) C VW(K) Y K € Ty

2.3.4 Local Postprocessing

Next, we define an elementwise postprocessing 1} defined to converge faster than
the original approximation uj; we follow [32, 40, 41]. We take the postprocessing
uj in the space

W= {w e L*(Ty) : w|x € W*(K), K € Tn},

and define it as follows. On each element K € T, the function uZ is the element of
W*(K) such that

(Vul, Vw)g = — (cq,. Vw)g Y w e W (K)™,

(up, wyxk = (up, w)g Ywe W*(K).

where W*(K) = W*(K) @ VT/*(K)L and V~V*(K) is any non-trivial subspace of
W (K) containing constant functions. We have the following result which follows
directly from the analysis carried out in [22].

Theorem 2.2 Under the assumptions of the previous result, and if
Po(K) CV-V(K)VY K €Ty,
then

lu = ujlg, < 1 Twu —unlg, +Ch(lg = Mvglg, + inf |V~ 0)lg,).
weEWy

This result states that, once we find spaces V x W spaces admitting M-
decompositions, we still have to check the conditions

J.1 P(K)cV-V,
J.2) Pu(K)cC W,
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in order to achieve the superconvergence of the elementwise averages and the
optimal convergence of the elementwise postprocessing.

It remains to obtain the approximation properties of the HDG-projection. We do
that next.

2.3.5 Approximation Properties of the HDG-Projection

Note that, in view of the second equation defining the auxiliary HDG-projection, one
might think that its approximation properties depend on the choice of the subspace
V. This would be rather unpleasant given that, unlike the subspace W, the subspace
Vofan M -decomposition is not uniquely defined. Fortunately, this is not so as we
see in the next result which is a small variation of a similar result in [22]; for the
sake of completeness, we include a proof in the Appendix. To state it, we need to
introduce the quantities

inf oo @), Wk /el if W2 {0},
00 if wt = {0},

[£2T7AN

and

lell :== sup (D), wyak /UXlak llnellak)-
A, neM\{0}

When Wi = {0}, that is, when W= W, we take a := 0.
In what follows, Pg denotes the Lz(.Q)V—projection into the space S. We use this
notation for § :=V;,, S:=Wand § .= W.

Proposition 2.3 (Approximation Properties of the HDG-Projection) Ler V x W
admit an M-decomposition, and let the stabilization function a satisfy the condition

agr > 0.

Then, we have

lg —Myqllx <|(Id—Py) qlx +Cih(*((Id — Py)q) - nllak

+Cahg (Id — Pi)V - qllx + C3h 2 I(Id — Pw)ullax,
lu — Mwullx < (Id — Pw)ullx + Cahy> (Id — Pw)ullsk

+Cshg |(Id — Py)V - qlx,
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where Cy := CyL and

2
Ci 1 Ci i
Coi= " Cyillal. Cy=(1+ _)Cpilal. Coi= " Jal, Cs:= "

wi Ay L Wi apL
Here
. —1/2 . —-1/2
Cyri= sup hg'"lvlg/lv-nlsx, Cyr:= sup hp " llwlg/lwlak,
veVL\{0) weWL\{0}

Note that the fact that the coercivity constant a1 is positive implies the property of
the stabilization function & used in Proposition 2.2: this is due to the third condition
in the definition of M-decomposition. Note also that, if W = W = V . V, then
C; =0fori =2, 3,4, 5 since in this case we are taking @ = 0 and ajL = 00.

2.4 A Construction of M-Decompositions

Here, we show how to use the notion of M-decompositions to actually construct
spaces admitting M-decompositions. To do that, we begin by establishing a charac-
terization of M-decompositions which is going to be the basis for the construction.
We then apply it to show, given an element K, a space of traces M (dK), and
a the space V; x Wy, how to systematically construct three spaces admitting an
M -decomposition. One of them generates an HDG method whereas the other two
generate mixed methods.

2.4.1 A Characterization of M-Decompositions

We begin by stating the main result of this section, namely, a characterization of
the M-decompositions expressed solely in terms of the spaces V x W. Roughly
speaking, it states that V x W admits an M-decomposition if and only if the space
M is the orthogonal sum of the traces of the kernels of V-in V and of V in W. It is
expressed in terms of a special integer we define next.

Definition 2.4 (The M-Index) The M-index of the space V x W is the number

Iy(VxW):=dmM —dim{v-nlgx : ve V,V-v=0}

—dim{wl|yx : w € W, Vw = 0}.
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Theorem 2.3 (A Characterization of M-Decompositions) For a given space of
traces M, the space V- x W admits an M -decomposition if and only if

(@ tr(VxW)cCM,
b) VWxV-VCVxW,
© In(VxW)=0.

In this case, we have the so-called the kernels’ trace decomposition identity
M={w-njgg:veV,V.-v=0}0{wlyxr : we W,Vw =0},

where the sum is orthogonal.

Note that the subspaces V and W appearing in the definition of an M-
decomposition, which were strongly associated to the very form of the HDG
methods under consideration, are not present anymore in this characterization.
This suggests that the M-decomposition can be considered to be associated to the
operators (V-, V) rather than to a specific numerical method.

Note also that the above result states that, if the space V x W satisfies the
inclusion conditions (a) and (b), we have that

M=Cy®{v-njgx:veV,V-v=0}B{wlsx : we W, Vw =0},

for some subspace Cj; of M. This means that the dimension of Cj; is nothing but
Iy (V x W) and that V x W admits an M-decomposition if and only if Cy; = {0},
that is, if and only if I3/ (V x W) = 0.

2.4.2 The General Construction

Here, we show how to use the above result to construct spaces admitting M-
decompositions. We proceed as follows. First, given the element K and the space of
traces M (0 K), we pick our favorite space V, x W, satisfying the inclusion properties
(a) and (b) of Theorem 2.3. Then, we construct three of spaces admitting an M-
decomposition as follows.

Step 1. We find a space § Vijim such that

@  8Vaum - nlyx = Cpy,
(b) V-8Vaim = {0},
©  dim&Vinm = Iy (V; x W,).

Then, we can verify that (V; ® §Vanm) x W, admits an M-decomposition.
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Step 2. The space (V; @5 Vrnm) x V-V, immediately admits an M-decomposition
provided

{wlag : we W,V =0} ={wlsx : we V-V, Vw =0}

In this case, we can take the stabilization function « equal to zero and so the
corresponding method is a mixed method.
Step 3. Finally, if W, = Cw @ V - V;, we find a space § Vsnnw such that

(@ dVauw -nlyx C M,
(b) V-8Vaw = Cw,
(¢)  diméVanw = Is(V; x Wp).

Then we immediately have that (V; @ §Vinm @ §Vanw) x W, admits an M-
decomposition. Moreover, we can take the stabilization function « equal to zero
and so the corresponding method is a mixed method.

We summarize our construction of spaces admitting M-decompositions in
Tables 2.1, 2.2 and 2.3.

Table 2.1 Construction of spaces V x W admitting an M-decomposition, where the space of
traces M (0 K) includes the constants

14 w V.-V
Ve ® 8Vinm @ 6 Viinw W (f D Po(K)) W,
V, ® §Vinm W, (Gf D Py(K)) c W,
Ve @ 8Vinm V-V, (f D Po(K)) V-V,
The given space V, x W, satisfies the inclusion properties (a) and (b)
Table 2.2 The properties of sV V.8V 8V -nlyx  dimsV
the spaces §V
SVaum {0} Cum In (Vg x Wy)
Vamw Cw cM Is(Vy x Wy)

The computation of the space Cw is fairly
simple and, usually, independent of the shape
of the element. In contrast, the computation of
the space Cjs is the most difficult part of the

construction
Table 2.3 The spaces v W
V x W defining the canonical VW @V W
decomposition of each space g © Vesbb 8
V x W in terms of the space VW, @ Vg sbb A\
V, x W, V(V-V)®Vesn V-V
Here Vo gop :={v € V; : V-

v=0, v-nlyr =0}
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2.5 Examples

Here, we give examples of this construction. We only present the spaces that can
be concisely described and so we restrict ourselves to the two-dimensional case.
First, we show the computation by hand of the whole construction in a very simple
case. We then consider triangular, rectangular and quadrilateral elements and show
the old and new spaces that result from our construction. Finally, we describe and
briefly discuss the case of a general polygonal element.

2.5.1 An Illustration of the Construction

Let us illustrate the general construction just sketched in a very simple case, namely,
when K is the unit square and

M@OK) :={u e L2(8K) : |l € Po(F) for all faces F of K},
V; x Wg := Po(K) x Po(K).
Here, Py denotes the space constant functions, and Pg the space of vectors whose

components lie on Py. Since, it is clear that the inclusion properties (a) and (b) are
satisfied, we can now proceed.

Step 1. Since

0 1
{v-nlpg : veV, V.- v=0}= Span{—l%h,OEl]O},

1
{wlox : w e Wy, Vw =0} = span{l[l]l},

0 0 1 0
M@OK) = span{o%h, 1%]0, 0%]0, 1%]0}

—1
we have that I (V; x We) =4 —2—1 = 1and we can take Cyy = Span{Ogl}.

So, we can take
Vim := span{(x, —y)}.
This means that
(V; ® 8Vinm) x W, = span{(1, 0), (0, 1), (x, —y)} x span{l},

admits an Py (3 K )-decomposition.
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Step 2. The space constructed in this step, namely,
(V; @ 6Vium) x V- Vp = span{(l, 0), (0, 1), (x, —y)} x {0},
does not admit an Py (d K )-decomposition because
{wlak : we W, Vw =0} = span{l} # {0} = {wlsk : w € V-V, Vw = 0}.

Step 3.  Finally, we note that V - V; = {0} and so Iy (V; x Wg) =1—0=1and
Cw = W,. We can then take

Vinw := span{(x, y)}.
This means that the space
(Ve ®8Vam @6 Vianw) x W = span{(1, 0), (0, 1), (x, —y), (x, y)} x span{l},

also admits an Py (0 K )-decomposition. This completes the construction.

2.5.2 Triangular and Quadrilateral Elements

Let us now consider triangular and quadrilateral elements, M := Px(dK) and two
cases of the spaces V; x W,. The first is only associated with rectangles, V; x Wy :=
Qr x Qk; Qk denotes the space of tensor product polynomials of degree at most &,
and Qy denotes the space of vectors whose components lie on Q. The second is
V; x Wq := Py x Pi; Pi denotes the space polynomials of degree at most k, and Py
denotes the space of vectors whose components lie on Px. The results are displayed
in Table 2.4 taken from [14].

In Table 2.4, we use the notation curl p := (—py, py). We also need to define
the linear function A; and the rational function &; associated to the definition of the
spaces for quadrilaterals. Let {V,'};‘:1 be the set of vertices of the quadrilateral K
which we take to be counter-clockwise ordered. Let {€; }?:1 be the set of edges of
K where the edge e; connects the vertices v; and v; 41, where we set vs = vj. Then,
for 1 <i < 4, we define X; to be the linear function that vanishes on edge €; and
reaches maximum value 1 in the closure of K, and &; to be a rational function such
that &;le; € P1(€;) and §;(v;) = §;;, where §;; is the Kronecker delta. A particular
choice of §; is given as follows:

Ai— Ai Aj
-2 ;i where 7; = ? J

& ==1mi-1 1 ; - .
T ) T A () =g+
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Table 2.4 Spaces V x W admitting an M (d K)-decomposition, where M = P, (dK)

| %4 w Method

K is a square and Vg x Wy = Qp x Q

Qi @ curl span{x*t1y, x y*t1} @ spanfx x*y¥} O TNT [22]
Qi @ curl span{x**1y, x y¥t1} Qx HDG[% [22]
Qi @ curl span{x**1y, x yk+1} Qp \ {x* y¥} BDM|;
Kisa t;iangle and Vy x Wy =P x Py

Pr ®x Pr Pr RT; [38]
Py Pr HDG[22]
Pi Pr—1 BDM; [4]
K is a square and Vg x Wy = P x Py

P & curl span{xk“y, xyMth e x 5;{ Pr (new)

P @ curl span{x*tly, x yk+1} Pr (new)

P @ curl span{x*tly, x yk+1} Pr_1 BDMy [4]
K is a quadrilateral and Vg x Wy = P x Py

P @7, curl span{&y Ag‘, &y )Ji} Dx fT’k Pr (new)

P @7, curl span{&y )\’3‘, &y )\’j} Pr (new)

P @7, curl span{&y )\’3‘, &y )\’j} Pr_1 (new)

The rational function »; is constructed in such a way that its trace on 9K is zero
except on the edge e;, where it is equal to one.

2.5.3 General Polygonal Elements

For general polygonal elements, we have the following result.

Theorem 2.4 ([14]) Let K be a polygonal of ne edges such that no consecutive
edges lie on the same line. Then, for M := Py (0K) and Vy x Wy = P (K) x Pr(K),
we have that

1
In(Vy x W) = (ne =3)@ + 1) = 66 — 1), and Is(V; x We) =k + 1.

where 6 := min{k, ne — 3}. Moreover, we have

SVium = EB?ilcurl v,

SVﬁnW =X E]‘)k.
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Here

{0} ifi = 1,2,
W = { span{§; A7 smax{k +3—i,0) <b<k}if3<i=<ne—1,
span{$i+1kf?+1; max{k +4—i, 1} <b <k} if i =ne.

The functions {&;}¢, C H Y(K) are lifting functions that satisfy

(L'l) %‘lle, S ?1(ej)a J = 15 ..., ne,
L2 &) =d5 j=1....ne,

where §; ; is the Kronecker delta.

Thus results gives us an explicit, ready-to-implement description of the three
spaces of our construction.

It is interesting to see how the dimension of these spaces changes when we fix
the polynomial degree k£ and let the number of edges of the element K, ne, vary.
Indeed, although the space § Vajw remains unchanged, this is not true for § Viim.
In fact, when k < ne — 3, for each additional edge in the element, the above result
states that we have to add k + 1 new basis functions to § Vgjvm. In particular, if k = 1,
the dimension of § Vanwm is 2 (ne — 3).

Next, we test the convergence properties of one of them. In the table below, we
retake our earlier example and instead of using V(K) x W(K) = Pr(K) x Pr(K)
and M(0K) = P(dK) as local spaces for elements of all shapes, we consider the
local spaces

V(K) x W(K) = (Pr(K) ® 8Vinm) x Pr(K),

which, by the previous result, admit an M (d K) = P(d K')—decomposition. We now
obtain the optimal convergence order of 3 = k + 2. This is in full agreement with
our theoretical error estimates of Theorems 2.2 and 2.1, given that the approximation
errors of the HDG-projection of Proposition 2.3 are both of order k + 1 for smooth
solutions.

h lu —uj, ||th Rate llu — uj ||rth Rate lu —uj, ||th Rate
t=1
0.1 0.15E-2 - 0.26E—2 - 0.17E-2 -
0.05 0.18E-3 3.06 0.31E-3 3.06 0.21E-3 3.02
0.025 0.23E—4 3.03 0.38E—4 3.03 0.27E—4 2.95
0.0125 0.28E—5 3.02 0.47E-5 3.02 0.35E-5 2.96
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2.6 Extensions

We end by describing extensions of the work presented here.

Curved Elements Note that our general theory of M-decompositions for diffusion
problems can be easily extended to curved elements by following the work done
in [21].

Hanging Nodes Although in Theorem 2.4, we restricted ourselves to the case of
elements with no consecutive edges in the same line, two-dimensional elements
with hanging nodes can be treated by applying the general theory by simply
considering that an edge with a hanging node is in fact two different edges. The
three-dimensional case can be similarly treated. The case of a triangle with a
hanging node is considered in [14, Section 4.2].

Local Postprocessing of the Flux By using our construction, we can locally
compute two H (div)-conforming approximate fluxes, see [27, Section 6.3], for the
HDG approximation. This elementwise postprocessing extends the postprocessing
obtained back in 2003 by Bastian and Riviere [3] (see the variations proposed, for
simplicial meshes, in 2005 [17], in 2007 [31] and in 2010 in [20]). As was argued
therein, see also [1, Section 2.2], H (div)-conforming fluxes seem to be preferable
to the original DG-like approximation, even if both approximations are of the same
accuracy, when used on other convection-diffusion problems in which the fluxes
drive the convection.

2D Versus 3D The three-dimensional case is significantly more involved than the
two-dimensional case, essentially because of the computation of the space

fveV,:V.-v=0,v-nlyx =0},

which is very simple in 2D but very complicated in 3D. This reflects the fact
that, although M-decompositions were explicitly obtained for arbitrary polygonal
elements [14], in the three dimensional case, the explicit construction of M-
decompositions has been done for tetrahedra, prisms, pyramids and hexahedra [15].
The automatic construction of M-decompositions for three-dimensional polyhedral
elements of arbitrary shape constitutes the subject of ongoing research.

New Discrete H 1-Inequalities In [24], new H!-discrete inequalities were intro-
duced which extend to all spaces admitting M-decompositions similar inequalities
obtained in [30, Proposition 3.2], for the well known Raviart-Thomas spaces for
simplexes, and, for smaller spaces, in [7, Theorem 3.2] for the Staggered DG
method.

Other Equations As pointed out in [27], this work can be extended to devise
superconvergent HDG and mixed methods for the heat equation, by following
[6], to the wave equation by following [12], see [26] for a Stormer-Numerov
time-marching method and [39] for symplectic methods, to the velocity gradient-
velocity-pressure formulation of the Stokes problem by following [10], see [25], and
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for methods for the the equations of linear elasticity with weakly symmetric stress
approximations by following [11]. The extension to methods for the equations of
linear elasticity with strongly symmetric stresses was carried out in [13]—the actual
construction of the local spaces in 3D is still an open problem though. The extension
to the incompressible Navier-Stokes equations was done in [24].

The theory of M-decompositions Maxwell equations constitute subject of ongo-
ing research.
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Appendix: Proof of the Characterization of M-Decompositions

In this Appendix, we provide a proof Theorem 2.3, as it sheds light on the nature of
M-decompositions. We closely follow the proof given in [27], and use the existence
of the so-called canonical decomposition of Proposition 2.1.

Step1. We take Vx W given by the canonical M-decomposition and begin by
showing that

dimV+  nlyxk =dim VL and  dim Wt|yx = dim Wt

Let us prove the first equality. If 7+ € V- is such that 7+ - n|yx = 0, for any
w € W, we have that

0= (w, %" -n)sx = (Vw, 7)) + @, V-7hx = @+, V- 7hx

since Vw C V. Since W O V - V, we can take w := V - 71 and conclude that
V - %+ = 0, which means that 71 € Vg, which means that 3+ = 0. Thus, the
first equity holds.

Now, let us prove the second equality. If L € Wt and is zero on 9K , then, for
any v € V, we have

0= (0", v-n)gx = (VI v)g + (@, V-v)x = (Vii, o)k
since W = V- V. Since V > VW, we can now take v := Vit and conclude

that @~ is a constant on K. As a consequence i = 0, and the second equality
follows.
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Step 2. Next, we show that
dimtr(VJ‘ X I;Iv/l) = dimV* -n|yx + dim WllaK.
To do that, we onlz need to show that V< - nlax N WLlaK = {0}. So, if
@@L, ) € VL x Wt we get that
(@, T Yok = (VI 90k + (@, V- Tk =0,

because Virt € VW C V and because V -7+ e V-V C w.

Step 3. By the inclusion property (a), the number

I:= dimM — dim V' — dim W+
= dimM — dim V' - n|yx — dim W |yk.
is always nonnegative and is equal to zero if and only if property (c) holds. Next,

we show that I = Ip;(V x W); this is the key computation of the proof. Indeed,
we have

I :=dim M — dim V* — dim W+
=dimM — (dimV —dim V) — (dim W — dim W)
=dimM — (dimV —dim VW — dim Vgp) — (dimW — dimV - V)
=dimM — (dimV —dimV - V — dim V) — (dim W — dim VW)
=dimM — (dim{ve V:V-v=0}—-dim{ve V:V-v=0,v-n|jx =0})
—dim{w € W : Vw = 0}
=dimM —dim{v-n|gx : ve V,V.v =0} —dim{w|yx : w € W, Vw = 0}
=1 (V x W).

Step 4. Now, by the inclusion property (a), we have that
{fv-njgg :veV,V-v=00{wlhg : we W,Vw =0} C M,
where the sum is L2(0K )-orthogonal since
(v-n,w)yk = (V-v,wg + (v, Vw)g =0
if V.v = 0and Vw = 0. Finally, since the M-index Iy (V x W) is zero by

property (c), the equality holds. This completes the proof of the characterization
Theorem 2.3.
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Chapter 3 )
Mimetic Spectral Element Method Shethie
for Anisotropic Diffusion

Marc Gerritsma, Artur Palha, Varun Jain, and Yi Zhang

Abstract This chapter addresses the topological structure of steady, anisotropic,
inhomogeneous diffusion problems. Differential operators are represented by sparse
incidence matrices, while weighted mass matrices play the role of metric-dependent
Hodge matrices. The resulting mixed formulation is point-wise divergence-free if
the right hand side function f = 0. The method is inf-sup stable; no stabilization is
required and the method displays optimal convergence on orthogonal and deformed
grids.

3.1 Introduction

Anisotropic and inhomogeneous diffusion appears in many applications such as heat
transfer [15], flow through porous media [87], turbulent fluid flow [116], image
processing [98] or plasma physics [112]. In 2D, steady, anisotropic diffusion is
governed by the following elliptic partial differential equation

~V.(KVp)=f. 3.1

Here, p is the flow potential, f the source term, with p = p along I, and
(KVp,n) = u, along I,. Here, for all x, K(x) is a symmetric, positive definite
tensor.
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In the presence of strong anisotropy, i.e. large ratio between the smallest and
largest eigenvalues of the diffusion tensor, the construction of robust and efficient
discretizations becomes particularly challenging. Under these conditions, the con-
vergence rates of the discretization error can be considerably reduced; this effect is
commonly referred in the literature as locking effect, see for example [4, 5, 12, 84].
For sufficiently refined discretizations, the deterioration of the convergence rates
eventually disappears. Unfortunately, this may occur only when the grid cell size is
prohibitively small.

Another important aspect is mesh flexibility. In many applications of diffusion
equations, particularly in porous media flow, typical grids are highly irregular. In
many of these situations the results obtained are strongly dependent on the grid
type, see [11] for a discussion of the use and properties of different grids in reservoir
modelling.

3.1.1 Overview of Standard Discretizations

In order to overcome these limitations and improve the efficiency and robustness
of the discretization of the anisotropic diffusion equations, several approaches have
been proposed.

The discretization of the anisotropic diffusion equations in complex media in
many situations is still a trade-off between, e.g. [89]:

* Accuracy in the representation of the medium (complex grids).
* Accuracy in the discretization of the equations.

The need for such a choice is rooted in the use of numerical schemes based
on two-point flux approximations (TPFA), see for example, [3, 89, 120]. These
methods produce good approximations on orthogonal grids when the diffusion
tensor K is diagonal, but are known to introduce significant discretization errors in
the presence of a non-diagonal diffusion tensor. This introduces severe limitations
into the possible grid choices. Under these conditions, the geometric flexibility
introduced by perpendicular bisector (PEBI) grids, [11, 67, 90], is considerably
limited, for example.

It has been known that the discretization error is related to the misalignment
between the grid and the principal directions of the diffusion tensor K. In fact,
Aavatsmark showed in [3] that for TPFA this misalignment leads to the discretiza-
tion of the wrong diffusion tensor.

These ideas initially led to the construction of grids aligned with the principal
axis of the diffusion tensor, so called K-orthogonal grids, see for example [65, 67].
This approach significantly improves the performance of the numerical method but
substantially limits the geometric flexibility.

More recently, multipoint flux-approximation (MPFA) schemes have been intro-
duced specifically to address these limitations, see e.g. the initial works by Aavats-
mark [4, 5] or a more recent presentation [2], and by Edwards and Rogers [57]. This
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method is based on a cell-centred finite volume formulation and introduces a dual
grid in order to generate shared sub-cells and sub-interfaces. This in turn produces
a discretization of the flux between two cells that involves a linear combination of
several adjacent cells. This method is robust and locally conservative but does not
guarantee a resulting symmetric discrete diffusion operator. More recently, this work
has been connected to the mixed finite element method, [56].

Alternative approaches based on the finite element formulation have also been
proposed by several authors. We briefly mention the work on the control-volume
finite element discretization by Forsyth [60] and Durlofsky [54], on nodal Galerkin
finite elements by Young [122], and on mixed finite elements by Durlofsky [53].

3.1.2 Overview of Mimetic Discretizations

Over the years, the development of numerical schemes that preserve some of
the structures of the differential models they approximate has been identified as
an important ingredient of numerical analysis. One of the contributions of the
formalism of mimetic methods is to identify differential geometry as the proper
language in which to encode these structures/symmetries. Another novel aspect of
mimetic discretizations is the identification and separation of physical field laws
into two sets: (1) topological relations (metric-free), and (2) constitutive relations
(metric dependent). Topological relations are intimately related to conservation laws
and can (and should) be exactly represented on the computational grid. Constitutive
relations include all material properties and therefore are approximate relations. For
this reason, all numerical discretization error should be included in these equations.
A general introduction and overview of spatial and temporal mimetic/geometric
methods can be found in [38, 42, 66, 100].

The relation between differential geometry and algebraic topology in physical
theories was first established by Tonti [117]. Around the same time Dodziuk
[52] set up a finite difference framework for harmonic functions based on Hodge
theory. Both Tonti and Dodziuk introduce differential forms and cochain spaces as
the building blocks for their theory. The relation between differential forms and
cochains is established by the Whitney map (k-cochains — k-forms) and the de
Rham map (k-forms — k-cochains). The interpolation of cochains to differential
forms on a triangular grid was already established by Whitney, [119]. These
generalized interpolatory forms are now known as Whitney forms.

Hyman and Scovel [74] set up the discrete framework in terms of cochains, which
are the natural building blocks of finite volume methods. Later, Bochev and Hyman
[18] extended this work and derived discrete operators such as the discrete wedge
product, the discrete codifferential, and the discrete inner products.

Robidoux, Hyman, Steinberg and Shashkov, [75-78, 107, 108, 111, 113, 114]
used symmetry considerations to construct discretizations on rough grids, within the
finite difference/volume setting . In a more recent paper by Robidoux and Steinberg
[110] a finite difference discrete vector calculus is presented. In that work, the
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differential operators grad, curl and div are exactly represented at the discrete level
and the numerical approximations are all contained in the constitutive relations,
which are already polluted by modeling and experimental error. For mimetic finite
differences, see also the work of Brezzi et al. [31, 36] and Beirdo da Veiga et al.
[45].

The application of mimetic ideas to unstructured triangular staggered grids has
been extensively studied by Perot, [99, 101-103, 123], specially in [100] where the
rationale of preserving symmetries in numerical algorithms is well described. The
most geometric approach is presented in the work by Desbrun et al. [49, 58, 86, 97]
and the thesis by Hirani [72].

The Japanese papers by Bossavit, [25-29], serve as an excellent introduction
and motivation for the use of differential forms in the description of physics and the
use in numerical modeling. The field of application is electromagnetism, but these
papers are sufficiently general to extend to other physical theories.

In a series of papers by Arnold, Falk and Winther, [8-10], a finite element
exterior calculus framework is developed. Higher order methods are described
by Rapetti [104, 105] and Hiptmair [71]. Possible extensions to spectral methods
were described by Robidoux, [109]. A different approach for constructing arbitrary
order mimetic finite elements has been proposed by the authors [30, 64, 92, 94],
with applications to advection problems [95], Stokes’ flow [81], MHD equilibrium
[96], Navier-Stokes [93], and within a Least-Squares finite element formulation
[16, 62, 63, 91].

Extensions of these ideas to polyhedral meshes have been proposed by Ern,
Bonelle and co-authors in [22-24, 40], by Di Pietro and co-authors in [50, 51], by
Brezzi and co-authors in [37], and by Beirdo da Veiga and co-authors in [44, 46—
48]. These approaches provide more geometrical flexibility while maintaining
fundamental structure preserving properties.

Mimetic isogeometric discretizations have been introduced by Buffa et al. [39],
Evans and Hughes [59], and Hiemstra et al. [70].

Another approach to develop a discretization of the physical field laws is based on
a discrete variational principle for the discrete Lagrangian action. This approach has
been used in the past to construct variational integrators for Lagrangian systems, e.g.
[79, 85]. Kraus and Maj [80] have used the method of formal Lagrangians to derive
generalized Lagrangians for non-Lagrangian systems of equations. This allows
to apply variational techniques to construct structure preserving discretizations
on a much wider range of systems. Recently, Bauer and Gay-Balmaz presented
variational integrators for elastic and pseudo-incompressible flows [14].

Due to the inherent challenges in discretizing the diffusion equations with
anisotropic diffusion tensor K, several authors have explored different mimetic
discretizations of these equations. Focussing on generalized diffusion equations we
highlight [13, 69, 75-78, 102, 107, 108, 111, 113, 114] for a finite-difference/finite-
volume setting, [24, 33—35] for polyhedral discretizations, and [19, 20, 94, 106, 121]
for a finite element/mixed finite element setting. For applications to Darcy flow
equations and reservoir modelling see for example [1, 6, 7, 55, 73, 83, 89].
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3.1.3 Outline of Chapter

In Sect. 3.2 the topological structure of anisotropic diffusion problems is discussed.
In Sect.3.3 spectral basis functions are introduced which are compatible with
the topological structure introduced in Sect.3.2. In Sect.3.4 transformation to
curvilinear elements is discussed. Results of the proposed method are presented
in Sect. 3.5.

3.2 Anisotropic Diffusion/Darcy Problem

Let 2 C R? be a contractible domain with Lipschitz continuous boundary 82 =
r,ur,, I'yN I, = @. The steady anisotropic diffusion problem is given by

-V-KVp)=71, (3.2)

with p = p along I', and (—=KV p, n) = u, along I',. Here, for all x, K(x) is a
symmetric, positive definite tensor, i.e. there exist constants ¢, C > 0 such that

atTE <ETK(x)E < CETE .

If I, # @, then (3.2) has a unique solution. If I, = & then (3.2) only possesses

solutions if
/ i, dS = / fds2,
a2 Q

in which case the solution, p, is determined up to a constant.
An equivalent first order system is obtained by introducing # = —KV p in which
case (3.2) can be written as

u+KVp=0in 2 (u,n) = u, along I
P with n @08 Tu (3.3)
Viu=f in £2 p=>o along I
An alternative first-order formulation is given by
v—Vp=0in £
) (u,n) = u, along I,
u+Kv=0in£2 with 3.4
p=p along I',

V-u=f inf
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Formulation (3.3) is generally referred to as the Darcy problem, while the relation
u = —KVpiscalled Darcy’s law, [87]. The Darcy problem plays an important role
in reservoir engineering. In this case u is the flow velocity in a porous medium and
p denotes the pressure.

While the formulations (3.2)—(3.4) are equivalent, (3.2) only has 1 unknown,
p, (3.3) has (d + 1) unknowns, p and the d components of u, and (3.4) has
(2d + 1) unknowns. Formulation (3.4) is of special interest, because it decomposes
the anisotropic diffusion problem into two topological conservation laws and one
constitutive law.! By making a suitable choice where and how to represent the
unknowns on a grid, the topological relations, v — Vp = Oand V-u = f
reduce to extremely simple algebraic relations which depend only on the topology
of the mesh and are independent of the mesh size, independent of the shape of the
mesh, and independent of the order of the numerical scheme. We will refer to such
discretizations as exact discrete representations.

3.2.1 Gradient Relation

Consider two points A, B € §2 and a curve C which connects these two points, then

B B
V—Vp=0 =— f)ezz/ev-dl:/A v-dl:/A Vp-dl = p(B)— p(A) ,

where d/ is a small increment along the curve C.
Suppose that we take another curve € which connects the two points A and B
then we also have

Ppr = /év -dl = p(B) — p(A) , (3.6)

T An even more extended system is, see for instance [16]
v—Vp=0 ing

(3.5)
V-u—y=0in 2

v=f in 2

This seems an unnecessarily complicated system. If we eliminate ¢ from (3.5) we obtain (3.4).
The usefulness of this system lies in the fact that by introducing v, the conservation V - u = f
becomes independent of the data of the PDE, in this case the right hand side function. A similar
situation occurs when K = I, the identity tensor, then the equation u+Kv = 0 in (3.4) seems
redundant, but we have good reason to keep this seemingly redundant equation as we will show in
this paper.

u+Kv=0 in$ . (u,n) = u, along I',
with
p=p along I'
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Fig. 3.1 Relation between pressure in points, integrated velocity along line segments and vorticity
in surfaces

The integral along C is equal to the integral along C. We will refer to ¥ as an
integral value, since it denotes an integral and not a point-wise evaluation of v. The
advantages of integral values are:

1. The velocity-gradient relation is exact. It is not obtained by truncated Taylor-
series expansions or does not depend on the choice of basis functions/interpola-
tions.

2. Does not depend on mesh parameters. The mesh size 4 does not appear in (3.6).
Whether the curve which connects two points is straight or curved is irrelevant
in this relation, therefore this relation is directly applicable on curved domains.

3. Integral quantities are additive.

Consider the points and lines segments as shown in Fig.3.1. In this figure the
arrow along the curves indicates the direction in which v is integrated.” Application
of (3.6) shows, for instance, that

Vig=Ps— P> .

2The points in the grid shown in Fig. 3.1 are also ‘oriented’, in the sense that when we ‘move into
a point following the integration direction’ we assign a positive value and when we ‘leave a point’
we assign a negative value. That is why we have plus P (B) and minus P(A) in (3.6). This is just
a convention. Without loss of generality we could change this sign convention.
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The additivity property implies that

Pr—P=vy+vi5=P3—P,+P,—P;
=vu+vs=P— P+ P;— P,

and even more paths can be constructed that connect P, and P;. The independence
of the path depends critically on the assumption that the space is contractible, i.e.
there are no holes in the domain (Poincaré’s Lemma).

A special case is the curve from a point to itself, say P, — P in Fig.3.1. This
integral is zero and if the integral is independent of the path this implies that, for
instance,

0=52+515—55—514=y§v-dl=//vXU-dSIWz, 3.7

where we once again use the additivity property. We see that the circulation vanishes
if v is a potential flow, which in turn implies that the circulation of the velocity
field over the boundary of any surface vanishes. Or, using Stokes’ theorem, the
integrated vorticity W vanishes. Here the vorticity W is represented as the integral
over a surface.

We can collect all the integrated velocity fields and pressures in Fig. 3.1 in the
following form
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If we store all v; in a vector v and all P; in a vector P and denote the matrix by IEI’O,
we have

v=E'P.

If we now also collect all the integrated vorticities, W;, we can relate them to the
integrated velocities in the following way

vy
3
4
Vs
o6
v7
w; 100-10 0 00 00O 0—-11000U0T0O00T0 00 ;8
w, 0100 —-10 0000 O0O0UO-11000000T0 00 59
w; 0010 0-1000000UO0O0-1100000TU0 00 ﬁ‘“
wy 0001 0 0-10000O0O0O0 00110000 00 '_)”
ws |=]0000 1 0 0-1000000O000-110020 00 512
W 0000 0 1 0 0100000000 O0-11020 00 '_)‘3
wy 0000 0 0O 1 0 0-10000O000TO0O0O0-11 00 '_)'4
wg 0000 0 0 01 0 0-1000O000TO0O00O0-110 ',)'5
W 0000 0 0 00 1 0O0-100U000T0000 0 —11 v::
v
V9
20
vy
2
)3
U4

If we store all vorticity integrals, w; in the vector w, then we can write this as
w=E>lv. (3.8)

The matrices E!:0 and E>! are called incidence matrices. We have E>! . EL.O = 0,
This identity holds for this particular case, but is generally true; it holds when we
would have used triangles or polyhedra instead of quadrilaterals and it holds in any
space dimension d. If E'-0 represents the gradient operation and E>! represents the
curl operation, then E>! . E1.0 = 0 is the discrete analogue of the vector identity
V x V =0,[22, 23, 25, 26, 49, 88, 110].
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Fig. 3.2 Relation between
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If boundary conditions for p are prescribed along 952, then these degrees of
freedom can be removed from the grid in Fig. 3.1.

If p is known along the boundary then the integral of v is also known along
the boundary, so the degrees of freedom for v can also be removed. Relabeling the
remaining unknowns gives the geometric degrees of freedom as shown in Fig. 3.2.
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3.2.2 Divergence Relation

Consider a bounded, contractible volume V C 2 then we have

V.-u= — / u-ndS:/ dv.
f aV Vf

If the boundary 3V can be partitioned into n sub-boundaries, 3V = | J I'; and
i

(O I; = 0, we have
i

iiﬁ;ii/ u-ndS:/de::fV,
i=1 i=1 /T v

where we have the convention that the fluxes, u;, are positive when the flow leaves
the volume and negative when the flow enters the volume. For a 2D case the integral
flux degrees of freedom, u; are depicted in Fig. 3.3. The arrow in this figure indicates
the positive default direction of the fluxes. The integrated values of source function
f are shown in the 2D volumes in Fig. 3.3 as f;. The topological relation between
the fluxes and the integrated source values f;, for the situation shown in Fig. 3.3, is

Fig. 3.3 Stream function, fluxes and the divergence degrees of freedom
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given by
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Collecting all fluxes and source terms in vectors U and f, respectively, we can write

this equation as

E*'u=f.

The matrix E2! is the incidence matrix which represents the divergence operator,
not to be confused with E>! in (3.8) which represents the curl operator.
If, in the 2D case, the flow field is divergence-free, i.e. f = 0, we know that a

stream function ¥ exists which is connected to u by

oy oy

u Uy =
YT By Y ax
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If we represent the stream function in the nodes of the grid shown in Fig. 3.3, then
we have the exact topological equation
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We can write this in terms of incidence matrices as’
u=E""y. (3.11)

3Note that if we performed the same steps in 3D, then the divergence relation (3.10) would be
E32u=f,

and the 2D stream function becomes the 3D stream vector field and we would have
u=E>'y .

So clearly the incidence matrices E depend on the dimension of the space d in which the problem
is posed. Note that this is not the case for the incidence matrices [E. Alternatively, we could refer
to the dimension-dependent incidence matrices as

m2,1 _ 1,0 : __
g1 _ I~E ifd=2 g E-1d-2 _ I~E 1fd—27
E32ifd =3 E2!ifd =3

in which case it is immediately clear that these matrices depend on the d. From now on we will use
the incidence matrices with the d, because then the results are valid for any space dimension d.
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If the flux u is prescribed along the I, the associated edges (2D) or surfaces (3D)
can be eliminated from the system E%¢~'u = f and transferred to the right hand
side.

For the discretization of (3.4) the first and last equation in that system can be
represented on the mesh by

v—E"p =0

B4y =

Prescription of boundary conditions p along I, and u along I';, can be done strongly.
The degrees of freedom can be eliminated and transferred to the right hand side. The
equation between p and v is exact on any grid and the discrete divergence relation
between u and f is exact on any grid. Note the (v, p)-grid is not necessarily the
(u, f)-grid, so in principle we can use different grids for both equations.

Unfortunately, neither of the two problems, v = Vp and V-u = f has a
unique solution on their respective grids. It is the final equation in (3.4), u = —Kbv,
that couples the solution on the two grids and renders a unique solution. It is also
in this equation that the numerical approximation is made; the more accurate we
approximate this algebraic equation, the more accurate the solution to the first order
system (3.4) will be.

For many numerical methods* well-posedness requires that the number of
discrete degrees of freedom v; is equal to the discrete number of degrees of freedom
u;, or more geometrically, that the number of k-dimensional geometric objects on
one grid is equal to the number of (d — k)-dimensional geometric objects on the
other grid. Here k = 0 refers to points in the grid, k = 1 to edges in the grid, k = 2
the faces in the grid, and k = 3 the volumes in the grid.

The requirement #k = #(d — k) cannot be accomplished on a single grid, so this
requires two different grids which are constructed in such a way that #& = #(d — k)
holds, [22, 23, 49, 82, 88, 110].

A dual grid complex is shown in Fig. 3.4. The integral quantities (v, p) can be
represented on the gray grid. If p is prescribed along the entire boundary, then those
degrees of freedom are eliminated (including the gray edges along the boundary for
which the integral value v is then known also), see for instance Fig. 3.2. In that case
flux u along the boundary cannot be prescribed. In Fig. 3.4, the number of points
in the gray grid, 9, equals the number of surfaces in the black grid, the number of
edges in the grey grid is equal to the number of edges on the black grid, 24, and the
number of surfaces on the gray grid equals the number of points in the black grid,
16, therefore, we have #k = #(d — k) ford = 2.

4A notable exception is the class of least-squares formulations which aims to minimize the
expression u + Ko [17].
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Fig. 3.4 The primal grid
(thin gray) where (v, p) are
represented and the dual grid
(thick black) where (u, f) are
represented. Note that

I, = 052 and consequently
r,=9

Alternatively, we could have represented (u, f) on the gray grid with u and the
stream function i prescribed and (v, p) on the black grid. In this case I}, = 952
and I', = @.

3.2.3 Dual Grids

If dual grids, such as described above, are employed then we have two properties:

1. There exists a square, invertible matrix Hl‘fgl’l such that u = H]‘f{l’ v,
2. The incidence matrices on the primal and dual grid satisfy’

Rd—k.d—k=1 _ (Ek,kq)T .

If we use dual grids and these properties hold, we can write (3.4) as

v—Ep =0
u-HE Mv=0 (3.12)
ELO Y = f

where the vectors p, v, U and f contain the integral quantities in the mesh as discussed
in the previous sections.

SThis relation is true if the orientations on primal and dual grid agree. This is not always the case
. T . .
and then the relation reads E¢—%-d—k=1 — _gkk=1" ' A well known example is the duality between

grad and div.
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In the diagram below, we place the various integral values in appropriate ‘spaces’

1,0 2.1
p € H E v € H| £ EeH,

_ 1d—1
H(I,OJ [Ho.d Hé’( 11 J [HK‘_I

fel:ld<—u el:ld,l (—WEI‘NI(],Z
g1o" g217

Here Hj denotes the space of values assigned to k-dimensional objects in the H-grid
fork =0,1,2. If H denotes the dual grid, then I:Il is the space of values assigned
to [-dimensional objects in the H-grid.

For dual grids the number of points in the H-grid is equal to the number of d-
dimensional volumes in the dual grid A. Let H%? and H*¢ be square, invertible
matrices which map between Hy and H; as shown in the diagram above.

If we eliminate v and U from (3.12) we have

ELO HEMEp =t (3.13)

This discretization corresponds to (3.2). We will refer to this formulation as the
direct formulation.
If p € H; we can set up the diffusion problem as

—HY Yy 4+ Bdd-1T0.dy —
K- P . (3.14)
HO,dEd,d—lu —f
This formulation, where we solve for p and u simultaneously, resembles (3.3), and
will be called the mixed formulation, [32].

3.3 Mimetic Spectral Element Method

The incidence matrices introduced in the previous section are generic and only
depend on the grid topology. The matrices H which switch between the primal and
the dual grid representation explicitly depend on the numerical method that is used.
In this section we will introduce spectral element functions which interpolate the
integral values in a grid. With these functions we can construct the H-matrices,
which turn out to be (weighted) finite element mass matrices. The derivation in this
section will be on an orthogonal grid. The extension to curvilinear grids will be
discussed in the next section.
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3.3.1 One Dimensional Spectral Basis Functions

Consider the interval [—1, 1] C R and the Legendre polynomials, Ly (£), of degree
N, & € [—1,1]. The (N + 1) roots, &;, of the polynomial (1 — éz)L;\,(S) satisfy
—1 < & < 1. Here Ly (&) is the derivative of the Legendre polynomial. The roots
&,1 =0,...,N, are called the Gauss-Lobatto-Legendre (GLL) points, [41]. Let
h; (&) be the Lagrange polynomial through the GLL points such that

1 ifi=j
hi(§)) = i,j=0,...N. (3.15)
0 ifis#j
The explicit form of the Lagrange polynomials in terms of the Legendre polynomi-

als is given by

(1 =&)Ly ()

hi(§) = . 3.16
© N(N +DLyGE)GE —§) 610
Let f(¢) be a function defined for & € [—1, 1] by
N
fE =) aihi(€) . (3.17)
i=0

Using property (3.15) we see that f(§;) = aj, so the expansion coefficients in (3.17)
coincide with the value of f in the GLL nodes. We will refer to this expansion as
a nodal expansion, because the expansion coefficients, @; in (3.17) are the value of
f (&) in the nodes &;. The basis functions A; (§) are polynomials of degree N.

From the nodal basis functions, define the polynomials e; (§) by

i—1

dh
PIGEEDY ;f) : (3.18)
k=0

The functions e; (§) are polynomials of degree (N — 1). These polynomials satisfy,
[61, 82, 94]

£ 1 ifi=j
/ ei(§) = i,j=1,...N. (3.19)
St 0 ifi#j

Let a function g(¢) be expanded in these functions

N
g(&) =) bie(&) . (3.20)
i=1
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then using (3.19)

&
/ g&)=>b;.
Ej-1

J

So the expansion coefficients b; in (3.20) coincide with the integral of g over the
edge [&i—1, & 1. We will call these basis functions edge functions and refer to the
expansion (3.20) as an edge expansion, see for instance [16, 82, 94] for examples of
nodal and edge expansions.

Let f(£) be expanded in terms Lagrange polynomials as in (3.17), then the
derivative® of f is given by, [61, 82, 94]

N N
F1E =Y aini©) = (@ —ai_)ei®) . (3.21)

i=0 i=1

If we collect all the expansion coefficients in a column vector and all the basis
functions in a row vector we have

ao
f@& =tlhohy ... hal | ¢ |, (3.22)
an
then the derivative is given by’ (3.21)
-11 0 ... 0 ao ao
Lo 0
fl&) =Tler ... en] -11 0 D | =Tler ... en]EN?
0 0 —-11 an an
(3.23)
5Note that the set of polynomials {h}},i =0,..., N is linearly dependent and therefore does not
form a basis, while the set {¢;},i = 1, ..., N is linearly independent and therefore forms a basis

for the derivatives of the nodal expansion (3.17).

"The matrix E10 is the incidence matrix as was discussed in Sects.3.2.1 and 3.2.2. It takes the
nodal expansion coefficients and maps them to the edge expansion coefficients. The incidence
matrix is the topological part of the derivative. It is independent of the order of the method (the
polynomial degree N) and the size or the shape of the mesh. The incidence matrix only depends on
the topology and orientation of the grid, see [18, 81, 82].
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So taking the derivative essentially consists of two step: Apply the matrix E!-* to
the expansion coefficients and expand in a new basis.

3.3.2 Two Dimensional Expansions
3.3.2.1 Expanding p (Direct Formulation)
In finite element methods the direct finite element formulation for the anisotropic

diffusion problem is given by: For (KVp, n) = 0 along I', and f € H~'(£2), find
peH) 1, (£2) such that

(V5. KVp)=(p. f), VpeH;r(2). (3.24)

where HO{FP ={pe H'(2)p=0onT),}.
Consider [—1, 1]? ¢ R? and let p(&€, n) be expanded as

N N
pEM =YD pijhiEhj@m) . (3.25)
i=0 j=0

From (3.15) it follows that p; ; = p(&;, n;). If we take the gradient of p using (3.21)
we have

Y i = pic1eiE)h;
_— (z,N_ ! ziv_o(pd pi-1,)ei(§) J<n)) (3.26)
2oico 2 j=1(Pi,j — Pi,j-Dhi()e; ()
_(61(§)ho(n)---€N(§)hN(77) 0 .0 )El,o e
0 0 h@®etn) ... AnE)en(n) ox
_<e1(s)ho<n)...eN(s)hN<n) 0 ... 0 )El,op
0 0 ho&)er(n) ... hn(E)en(n) ‘
(3.27)

If we insert this in (3.24), we have

<E1,0>TM]§<1)E1,0p =1, (3.28)
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e1(§)ho(n) 0

M(“:// ex(Ehn() 0
K 2 0 ho(&)e1 ()

0 hy(&)en(n)
K(m(&)ho(n)...eN(s)th) 0o ... 0 )dg

0 e 0 ho(§)e1(n) ... hn(E)en ()
(3.29)

and p is the vector which contains the expansion coefficients of p(&, n) in (3.25).
The vector f in (3.28) is given by

ho(&§)ho(n)
f= : fE,nds.
hn(E)hn ()

If we compare (3.28) with (3.13), we see that the Hﬂd{l’l-matrix from (3.13)

is represented in the finite element formulation by the weighted mass matrix M% )
given by (3.29), see also [18, 115].

3.3.2.2 Expanding u and p (Mixed Formulation)

The mixed formulation for the anisotropic steady diffusion problem is given by: For
p =0along I', and for f € L*(£2),findu € Ho, r, (div; §2) such that

—@,Klw)+(V -, p) = 0 Vi e Hyr,(div; 2
: ( )+ ( p) 0.1, ( )1 (3:30)

(p,V-u) =(p. f) VpelL*R)

where, Ho.r, (div; 2) = {u € H(div; $2)|u - n = 0 along I,}.
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In contrast to the pressure expansion in Sect.3.3.2.1 in the direct formula-

tion, (3.25), in the mixed formulation the pressure is expanded in terms of edge
functions

N N
pE M =" pijeie;m) . (3.31)

i=1 j=1

The velocity u is expanded as

(M) Yoito Yoy uijhi(§)e(m)
u=

= N N (3.32)
v 2521 Zj:O Ui,jei@)hj(n)
uo,1
_ (ho(é)el(n) o hn(E)en(n) 0 0 ) UN,N
0 0 e1(§)ho(m) ... en(E)hn () 1,0
UN,N
Application of the divergence operator to (3.32) and using (3.21) we obtain
N N
Vou=Y "> (i —uiorj+vij—vij-Dei)e;(n) (3.33)
i=1 j=1

uo,1

= (e1®)er1(n) ... en(E)ey(n) ) EH4! uvlr,(j)v

UN,N

= (e1®)er () ... enEen(m) ) EX4u.
Note that E44~! is the incidence matrix which also appeared in (3.10) and
footnote 3.

If we insert the expansion (3.32) in (a, K~'u) we obtain

@K 'w) ="M (3.34)
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M=) (3.35)

ho(§)e1(n) 0

// hy(&)en(n) 0
Q 0 e1(&)ho(n)

0 en(&)hn ()

K- ho(€)er(n) ... hny(E)en(n) 0 0 40
0 0 e1(&ho() ... en(E)hy(n)

(3.36)

Note that pressure is expanded in the same basis as the divergence of the velocity
field, (3.31) and (3.33), therefore we can write

(p,V -u) = pIMPEHI—1y | (3.37)
with
e1(&)e1(n)
M@ = : (e1®)er(n) ... en(Een(n)) ds2 .
en(&)en(n)

With (3.34) and (3.37) we can write (3.30) as

~Mu 4 BT M@p = 0 3.38
M@E4-d-1y =M@f 539
with
e1(§)e1(n)
f= : f(& m)ds2.
en(§)en(n)

Comparison of (3.38) with (3.14) shows that the topological incidence matrices
also appear in the finite element formulation and that the (weighted) mass matrices
ng D and M@ once again play the role of the H-matrices which connect solutions
on dual grids.
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In this section only the discretization on a single spectral element is discussed.
Transformation of the domain [—1, 1] to more general domains will be discussed
in Sect. 3.4. The use of multiple elements follows the general assembly procedure
from finite element methods. Results of this approach are presented in Sect. 3.5.

3.4 Transformation Rules

The basis functions used in the discretization of the different physical field quantities
have only been introduced for the reference domain Q= [—1, 1]2. For these basis
functions to be applicable in a different domain £2, it is fundamental to discuss how
they transform under a mapping @ : (£,7) € 2 — (x,y) € £ C R% Within a
finite element formulation this is particularly useful because the basis functions in
the reference domain 2 can then be transformed to each of the elements £2,, given
a mapping @, : 2 Q..
Consider a smooth bijective map @ : (§,n) € Q2 (x,y) € £ such that

x=0%&,m and y=d'E, n),
and the associated rank two Jacobian tensor J
0P* 9P*
J:— | 98 0n
| 0@Y 09Y
9§  on
The transformation of a scalar function ¢ discretized by nodal values is given by

GE M =(po®)(Em and (x,y)=(God )(x,y), (3.39)

and of a scalar function p discretized by surface integrals is given by

|
detd (Po®@ N)(x,y). (3.40)

p&,n) =detd (po®)(§, 1) and p(x,y) =
The transformation of vector fields v discretized by line integrals is
9Em =dT@wo@)E m and v, =D @od Nx,y), (B4

and of vector fields u discretized by flux integrals is

- _ 1 - _
&, n) =ded J ' (uo @), n) and u(x,y) = etJJ(uo¢’ Hx, y).

(3.42)

d
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These transformations affect only the mass matrices and not the incidence
matrices. This is fundamental to ensure the topological nature of the incidence
matrices.

3.5 Numerical Results

In this section three test cases are presented to illustrate the accuracy of the
discretization scheme developed in this work. The first test case, Sect.3.5.1, is an
analytical solution taken from [68] to assess the convergence rates of the method.
The second test case, Sect.3.5.2, is the flow through a system of sand and shale
blocks with highly heterogeneous permeability in the domain, see for more details
[54]. The third test case, Sect.3.5.3, is a highly anisotropic and heterogeneous
permeability tensor in the domain, see for more details, [53].

3.5.1 Manufactured Solution

We first test the method using the exact solution
Pexact(x, y) = sin(rrx) sin(rry), (3.43)

with the permeability tensor given by

(3.44)

1 (103x2 +y*+a (1073 —1)xy )
(2+y2+a) \ (1077 =1)xy x*4+107%y* +a)’

The mixed formulation (3.3) in the form of (3.38) is then solved in the domain
(x,y) e 2 =10, 17? with the source term f = =V - (KV pexact) and the Dirichlet
boundary condition p|y, = 0. A benchmark of this test case for « = 0 using
multiple numerical schemes can be found in [68].

When o = 0, K is multi-valued at the origin which makes this test case a
challenging one. To see this, we can first convert the Cartesian coordinates (x, y) to
polar coordinates (r, 8) by x = r cosf, y = r sinf. Then we have

1073 cos? 0 +sin®6 (1073 — 1) cos @ sin®
Kla=o = <(1O3 —1)cos@sin@ cos?6 + 1073 sin* @ > ' (345)

It can be seen that we get different K|,_, when we approach the origin along
different angles, 6. It must be noted that inverse of K does not exist at the origin.
The inverse of the tensor term appears in (3.35). We use Gauss integration and thus
the inverse term is not evaluated at the origin.
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Fig. 3.5 Example meshes with 3 x 3 elements of polynomial degree N = 6. Left: ¢ = 0
(orthogonal mesh). Right: ¢ = 0.3 (highly deformed mesh)

The meshes we use here are obtained by deforming the GLL meshes in the
reference domain (&, n) € Q2pr =[—1, 1]2 with the mapping, @, given as

X +

(§ + csin(r§) sin(rn))
, (3.46)

y + _ (n 4+ csin(w€)sin(wn))

1 1
202

1 1
202
where ¢ is the deformation coefficient. The two meshes, for ¢ = 0.0 and ¢ = 0.3,
are shown in Fig. 3.5.

The method is tested for « € {0, 0.01} and ¢ € {0, 0.3}.

In Fig. 3.6, the results for ||V - up — fj|l;2 are presented. They show that the
relation V - u, = f;, is conserved to machine precision even on a highly deformed
and coarse mesh i.e. of 2 x 2 elements with N =2 and ¢ = 0.3.

When o = 0.01, K is no longer multi-valued at the origin. In this case the source
term f is smooth over the domain, see Fig. 3.7 (bottom). For this smooth case, the
method displays optimal convergence rates on both the orthogonal mesh and the
deformed mesh, i.e. see Fig. 3.8 (bottom) and Fig. 3.9 (bottom).

When o = 0, both the h-convergence rate and p-convergence rates are sub-
optimal, see Fig. 3.8 (top) and Fig. 3.9 (top). This is because K is multi-valued and
therefore f becomes singular at the origin when o = 0, see Fig. 3.7 (top left).
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Fig. 3.6 The L?-norm of (V- up — f). Left: K x K elements, K =4,...,250,and N = 2, 4.
Right: 2 x 2,6 x 6 elements, and N = 2, ..., 30. Top: « = 0. Bottom: o = 0.01

3.5.2 The Sand-Shale System

This example is taken from [54, 76, 78]. The domain is a 2D unit square, 2 =
[0, 1]2, with 80 shale blocks, £25, placed in the domain such that the total area
fraction of shale blocks is Agpq1e = 20%, as shown in Fig. 3.10.

We solve the mixed formulation (3.38) with f = 0 in this domain. The flux
across the top and the bottom boundaries is u - n = 0. The flow is pressure driven
with the pressure at the left boundary, p = 1, and the pressure at the right boundary,
p = 0. The permeability in the domain is defined as K = kI, where k is given by:

10°°  in £
1 in Q\‘QS
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Fig. 3.7 Left: the source term f. Right: the log distribution of the projection error of fj, for 3 x 3
elements, N = 10 and ¢ = 0.3. Top: « = 0. Bottom: a = 0.01

For this test case an orthogonal uniform grid of 20 x 20 elements is used.
The polynomial degree is varied to achieve convergence. Streamlines through the
domain for 20 x 20 elements and polynomial degree N = 15 are shown in Fig. 3.11.
It can be seen that the streamlines do not pass through, but pass around the shale
blocks of low permeability.

The ||V - uy||;2 over the entire domain as a function of polynomial degree is
shown in Fig. 3.12. We observe that V - uj, = 0 is satisfied up to machine precision.

The net flux entering the domain (the same as the net flux leaving the domain) is
given in Table 3.1 for varying polynomial degree. A reference value for this solution
is given in [54] as 0.5205, and in [78] as 0.519269. In this work the maximum
resolution corresponds to 20 x 20 elements and a polynomial degree N = 19, for
which the net flux entering the domain is obtained as 0.52010.

In Fig. 3.13 we compare the net flux entering the sand-shale domain, calculated
using the mixed and the direct formulation of equations, as a function of polynomial
degree for different values of k in the shale blocks. The data for these figures is
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Fig. 3.8 The p-convergence for 2 x 2,6 x 6 elements and N = 2,...,30. Left: ¢ = 0. Right:
¢ =0.3. Top: o = 0. Bottom: o = 0.01

given in Table 3.2. Note that the direct formulation converges from above towards
the correct inflow flux, whereas the mixed formulation converges from below.

3.5.3 The Impermeable-Streak System

The next example is from [53, 76, 78]. The physical domain is a 2D unit square,
2 = [0, 1]2. The domain is divided into three different regions, §21, £22, and £23,
as shown in Fig.3.14 (left). For calculations, each region is further divided into
K x K elements. Therefore, the total number of elements in the domain is given by
K x K x 3.1In Fig.3.14 (right) we show the domain with each region divided into
2 x 2 elements.

The mixed formulation (3.38) is solved, with f = 0 and mixed boundary
conditions, such that at the top and the bottom boundaries the net flux # -n = 0, and
at the left and the right boundaries, p = 1 and p = 0, respectively. Permeability in
£21 and £23 is given by K = 1. £2; has a low permeability and defined such that the
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Fig. 3.9 The h-convergence of the L2-error for K x K elements, K = 4,...,250 and N = 2, 4.
Left: ¢ = 0. Right: ¢ = 0.3. Top: a = 0. Bottom: a = 0.01

component parallel to the local streak orientation is k| = 107!, and the component
perpendicular to the local streak orientation is k| = 1073, The analytical expression
for the permeability in terms of Cartesian coordinates is given in [76] as,

_kj(y + 042 + ki(x —0.1)?

Kyx =
(x —0.1)2 4 (y + 0.4)2
k. — ~k kDG =0.D0+04
Xy —
(x —0.1)2 + (y + 0.4)?
kj(x = 0.0 + k1 (y +0.4)>
Kyy =

(x—=0.1)2+ (y+0.4)2

The flow field in the domain is shown in Fig. 3.15. The magnitude of velocity in
£25 is small due to low values of the permeability tensor in this region. The velocity
vectors bend in the direction of the permeability streak §2;. The L?-norm of V - u
over the entire domain as a function of polynomial degree, N, is shown in Fig. 3.16.
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Fig. 3.10 The discretized domain for the sand-shale test case. Black blocks are shale blocks with
k = 107°. White blocks are sand blocks with k = 1

x

Fig. 3.11 Streamlines through the domain of sand-shale test case
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Fig. 3.12 The L%-norm of V - u;, for 20 x 20 elements for a polynomial approximation of N =
1,...,19

Table 3.1 Net flux through

the left boundary of the N  Netflux No. of unknowns
sand-shale dorn;/in for 1049041 1240
k =107%,20 x 20 elements, 2051247 4880
N=1,...,19 3 0.51744 10,920
4 0.51863 19,360
5 0.51931 30,200
6 0.51957 43,440
7 0.51977 59,080
8 0.51985 77,120
9 0.51993 97,560
10 0.51997 120,400
11 0.52001 145,640
12 0.52003 173,280
13 0.52005 203,320
14 0.52007 235,760
15 0.52008 270,600
16 0.52009 307,840
17 0.52009 347,480
18 0.52010 389,520

—
=]

0.52010 433,960
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Fig. 3.13 Convergence of the net flux through the left boundary of the sand-shale domain using
the mixed formulation and the direct formulation for 20 x 20 elements, N = 1, ..., 10. Top left:
k = 10~1. Top right: k = 10=2. Bottom left: k = 10~3. Bottom right: k = 10~*

We can see that the flow field is divergence free up to machine precision because
f=0.

The net flux through the system for varying number of elements and polynomial
degree is given in Table 3.3. In this work the finest resolution corresponds to 12 x
12 x 3 elements and N = 15. For this case the net influx at the left boundary is
0.75668. The net influx and outflux from the region 21, £2> and £23 is given in
Tables 3.4, 3.5, and 3.6, respectively. The net influx for £2; is larger than the net
outflux. And the net outflux for £2; and £23 is larger than the net influx.



3 Mimetic Spectral Element Method for Anisotropic Diffusion 63

Table 3.2 Data of net flux through the left boundary of the sand-shale domain using mixed

formulation and direct formulation for 20 x 20 elements, N = 1,...,10, k = 107! (top-left),
102 (top-right), 10~ (bottom-left) and 10~ (bottom-right)
k=10"" k=1072 k=10"3 k=10"*
N Mixed Direct Mixed Direct Mixed Direct Mixed Direct
1 0.63805 0.74149 0.51384 0.69273  0.49296 0.68699 0.49066 0.68641
2 0.66541 0.69316 0.54101 0.62399 0.51573 0.61572 0.51279 0.61488
3 0.67131 0.68423 0.54906 0.60794 0.52121 0.59856 0.51782  0.59760
4 0.67339 0.68139 0.55208 0.60113  0.52272  0.59099 0.51904 0.58995
5 0.67450 0.68003 0.55436 0.59711 0.52371 0.58639 0.51975 0.58528
6 0.67512 0.67926 0.55568 0.59439 0.52417 0.58320 0.52003  0.58203
7 0.67555 0.67877 0.55690 0.59239  0.52459 0.58079 0.52026  0.57958
8 0.67582 0.67844 0.55772 0.59085 0.52483 0.57890 0.52036 0.57765
9 0.67604 0.67821 0.55852 0.58960 0.52508 0.57734 0.52046  0.57605
10 0.67619 0.67803 0.55910 0.58857 0.52524 0.57603  0.52051 0.57471

0.9 0.9

0.3 0.3
0.2 (O 0.2

0.1 0.1

x T

Fig. 3.14 Three regions of the domain for the impermeable streak test case. The regions are
separated by the dashed lines. The solid lines indicate the element boundaries. Left: 1 x 1 element
in each region. Right: 2 x 2 elements in each region

3.6 Future Work

In the above sections, mixed and direct formulations of mimetic spectral element
method are discussed. The next step is to explore this framework in the direction
of hybrid formulations [21, 32, 43]. Additionally, the focus will be on developing
multiscale methods [118], using these formulations, for reservoir modelling appli-
cations.
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through the domain of
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Table 3.3 Net flux through the left boundary of the permeability streak test case domain for

K x K elements, K =4,6,8,10,12and N =1, ..., 15

_ =
SO0 O U kR W — 2

— =
wn AW

Elements division (K x K)

4 x4

0.74689
0.75268
0.75479
0.75561
0.75600
0.75621
0.75635
0.75643
0.75649
0.75654
0.75657
0.75659
0.75661
0.75662
0.75663

6x6

0.74908
0.75407
0.75548
0.75600
0.75625
0.75639
0.75648
0.75653
0.75657
0.75660
0.75662
0.75663
0.75664
0.75665
0.75666

8 x8

0.75061
0.75479
0.75582
0.75620
0.75638
0.75648
0.75654
0.75658
0.75661
0.75663
0.75664
0.75665
0.75666
0.75667
0.75667

10 x 10
0.75169
0.75522
0.75602
0.75631
0.75645
0.75653
0.75658
0.75661
0.75663
0.75665
0.75666
0.75666
0.75667
0.75668
0.75668

12 x 12
0.75247
0.75550
0.75615
0.75639
0.75650
0.75657
0.75660
0.75663
0.75665
0.75666
0.75667
0.75667
0.75668
0.75668
0.75668
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Chapter 4 )
An Introduction to Hybrid High-Order Shethie
Methods

Daniele Antonio Di Pietro and Roberta Tittarelli

Abstract This chapter provides an introduction to Hybrid High-Order (HHO)
methods. These are new generation numerical methods for PDEs with several
advantageous features: the support of arbitrary approximation orders on general
polyhedral meshes, the reproduction at the discrete level of relevant continuous
properties, and a reduced computational cost thanks to static condensation and
compact stencil. After establishing the discrete setting, we introduce the basics of
HHO methods using as a model problem the Poisson equation. We describe in detail
the construction, and prove a priori convergence results for various norms of the
error as well as a posteriori estimates for the energy norm. We then consider two
applications: the discretization of the nonlinear p-Laplace equation and of scalar
diffusion-advection-reaction problems. The former application is used to introduce
compactness analysis techniques to study the convergence to minimal regularity
solution. The latter is used to introduce the discretization of first-order operators and
the weak enforcement of boundary conditions. Numerical examples accompany the
exposition.

4.1 Introduction

This chapter provides an introduction to Hybrid High-Order (HHO) methods. The
material is closely inspired by a series of lectures given by the first author at Institut
Henri Poincaré in September 2016 within the thematic quarter Numerical Methods
for PDEs (see http://imag.edu.umontpellier.fr/event/ihp-nmpdes).

HHO methods, introduced in [27, 33], are discretization methods for Partial
Differential Equations (PDEs) with relevant features that set them apart from
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classical techniques such as finite elements or finite volumes. These include, in
particular:

1. The support of general polytopal meshes in arbitrary space dimension, paving the
way to a seamless treatment of complex geometric features and unified 1d-2d-3d
implementations;

2. The possibility to select the approximation order which, possibly combined with
adaptivity, leads to a reduction of the simulation cost for a given precision or
better precision for a given cost;

3. The compliance with the physics, including robustness with respect to the
variations of physical coefficients and reproduction at the discrete level of key
continuous properties such as local balances and flux continuity;

4. A reduced computational cost thanks to their compact stencil along with the
possibility to perform static condensation.

As of today, HHO methods have been successfully applied to the discretization
of several linear and nonlinear problems of engineering interest including: variable
diffusion [28, 33, 35], quasi incompressible linear elasticity [26, 27], locally
degenerate diffusion-advection-reaction [34], poroelasticity [9], creeping flows [1]
possibly driven by volumetric forces with large irrotational part [36], electrostat-
ics [31], phase separation problems governed by the Cahn—Hilliard equation [14],
Leray-Lions type elliptic problems [22, 23]. More recent applications also include
steady incompressible flows governed by the Navier—Stokes equations [29] and
nonlinear elasticity [11]. Generalizations of HHO methods and comparisons with
other (new generation or classical) discretization methods for PDEs can be found
in [8, 18]. Implementation tools based on advanced programming techniques have
been recently discussed in [15].

Discretization methods that support polytopal meshes and, possibly, arbitrary
approximation orders have experienced a vigorous development over the last
decade. Novel approaches to the analysis and the design have been developed bor-
rowing ideas from other branches of mathematics (such as topology and geometry),
or expanding past their initial limits the original ideas underlying finite element or
finite volume methods. A brief state-of-the-art is provided in what follows.

Several lowest-order methods for diffusive problems have been proposed to
circumvent the strict conditions of mesh-data compliance required for the consis-
tency of classical (two-points) finite volume schemes; see [38] for a comprehensive
review. We mention here, in particular, the Mixed and Hybrid Finite Volume
methods of [39, 44]. These methods possess local conservation properties on the
primal mesh, and enable an explicit identification of equilibrated numerical fluxes.
Their relation with the lowest-order version of HHO methods has been studied
in [33, Section 2.5] for pure diffusion and in [34, Section 5.4] for advection-
diffusion-reaction. Other families of lowest-order methods have been obtained
by reproducing at the discrete level salient features of the continuous problem.
Mimetic Finite Difference methods are derived by emulating the Stokes theorems
to formulate counterparts of differential operators and of L?-products; cf. [12]
and [40] for a study of their relation with Mixed and Hybrid Finite Volume methods.
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In the Discrete Geometric Approach of [19] as well as in Compatible Discrete
Operators [10], formal links with the continuous operators are expressed in terms of
Tonti diagrams. To different extents, the aforementioned methods owe to the seminal
ideas of Whitney on geometric integration [55]. A different approach to lowest-
order schemes on general meshes consists in extending classical properties of
nonconforming and penalized finite elements as in the Cell Centered Galerkin [21]
and generalized Crouzeix—Raviart [30] methods. We also cite here [54] concerning
the use of classical mixed finite elements on polyhedral meshes (see, in particular,
Section 7 therein). Further investigations have recently lead to unifying frameworks
that encompass the above (and other) methods. We mention, in particular, the
Gradient Schemes discretizations of [41]. Finally, the methods discussed here can
often be regarded as lowest-order versions of more recent technologies.

Methods that support the possibility to increase the approximation order have
received a considerable amount of attention over the last few years. High-order dis-
cretizations on general meshes that are possibly physics-compliant can be obtained
by the discontinuous Galerkin approach; cf., e.g., [2, 25] and also [3]. Discontinuous
Galerkin methods, however, have some practical limitations. For problems in
incompressible fluid mechanics, e.g., a key ingredient for inf-sup stability is a
reduction map that can play the role of a Fortin interpolator. Unfortunately, such
an interpolator is often not available for discontinuous Galerkin methods on non-
standard elements. Additionally, in particular for modal implementations on general
meshes, the number of unknowns can become unbearably large. This has motivated
the introduction of Hybridizable Discontinuous Galerkin methods [13, 17], which
mainly focus on standard meshes (the extension to general meshes is possible in
some cases); see also the very recent M-decomposition techniques [16]. High-
order discretization methods that support general meshes also include Virtual
Element methods; cf. [7] for an introduction. In short, Virtual Element methods
are finite element methods where explicit expressions for the basis functions are not
available at each point, and computable approximations thereof are used instead.
This provides the extra flexibility required, e.g., to handle polyhedral elements.
Links between HHO and the nonconforming Virtual Element method have been
pointed out in [18, Section 2.4]; see also [8] and [37] concerning the links among
HHO, Virtual Element methods, and Gradient Schemes.

We next describe in detail the content of this chapter. We start in Sect. 4.2
by presenting the discrete setting: we introduce the notion of polytopal mesh
(Sect.4.2.1), formulate assumptions on the way meshes are refined that are suitable
to carry out a h-convergence analysis (Sect.4.2.2), introduce the local polynomial
spaces (Sect.4.2.3) and projectors (Sect.4.2.4) that lie at the heart of the HHO
construction.

In Sect.4.3 we present the basic principles of HHO methods using as a model
problem the Poisson equation. While the material in this section is mainly adapted
from [33], some results are new and the arguments have been shortened or made
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more elegant. In Sect.4.3.1 we introduce the local space of degrees of freedom
(DOFs) and discuss the main ingredients upon which HHO methods rely, namely:

1. Reconstructions of relevant quantities obtained by solving small, embarrassingly
parallel problems on each element;

2. High-order stabilization terms obtained by penalizing cleverly designed residu-
als.

In Sect.4.3.2 we show how to combine these ingredients to formulate local
contributions, which are then assembled element-by-element as in standard finite
elements. The construction is conceived so that only face-based DOFs are globally
coupled, which paves the way to efficient practical implementations where element-
based DOFs are statically condensed in a preliminary step. In Sects.4.3.3 and 4.3.4
we discuss, respectively, optimal a priori estimates for various norms and seminorms
of the error, and residual-based a posteriori estimates for the energy-norm of the
error. Finally, some numerical examples are provided in Sect.4.3.5 to demonstrate
the theoretical results.

In Sect. 4.4 we consider the HHO discretization of the p-Laplace equation. The
material is inspired by [22, 23], where more general Leray—Lions operators are
considered. When dealing with nonlinear problems, regularity for the exact solution
is often difficult to prove and can entail stringent assumptions on the data. For this
reason, the h-convergence analysis can be carried out in two steps: in a first step,
convergence to minimal regularity solutions is proved by a compactness argument;
in a second step, convergence rates are estimated for smooth solutions (and
smooth data). Convergence by compactness typically requires discrete counterparts
of functional analysis results relevant for the study of the continuous problem.
In our case, two sets of discrete functional analysis results are needed: discrete
Sobolev embeddings (Sect. 4.4.1) and compactness for sequences of HHO functions
uniformly bounded in a WP like seminorm (Sect.4.4.2). The interest of both
results goes beyond the specific method and problem considered here. As an
example, in [29] they are used for the analysis of a HHO discretization of the steady
incompressible Navier—Stokes equations. The HHO method for the p-Laplacian
stated in Sect.4.4.3 is designed according to similar principles as for the Poisson
problem. Convergence results are stated in Sect. 4.4.4, and numerical examples are
provided in Sect. 4.4.5.

Following [34], in Sect. 4.5 we extend the HHO method to diffusion-advection-
reaction problems. In this context, a crucial property from the numerical point of
view is robustness in the advection-dominated regime. In Sect.4.5.1 we modify
the diffusive bilinear form introduced in Sect. 4.3.2 to incorporate weakly enforced
boundary conditions. The weak enforcement of boundary conditions typically
improves the behaviour of the method in the presence of boundary layers, since the
discrete solution is not constrained to a fixed value on the boundary. In Sect. 4.5.2
we introduce the HHO discretization of first-order terms based on two novel
ingredients: a local advective derivative reconstruction and an upwind penalty term.
The former is used to formulate the consistency terms, while the role of the latter
is to confer suitable stability properties to the advective-reactive bilinear form.
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The HHO discretization is finally obtained in Sect.4.5.3 combining the diffusive
and advective-reactive contributions, and its stability with respect to an energy-like
norm including an advective derivative contribution is studied. In Sect.4.5.4 we
state an energy-norm error estimate which accounts for the dependence of the error
contribution of each mesh element on a local Péclet number. A numerical illustration
is provided in Sect. 4.5.5.

4.2 Discrete Setting

Let 2 C RY, d e N*, denote a bounded connected open polyhedral domain with
Lipschitz boundary and outward normal n. We assume that £2 does not have cracks,
i.e., it lies on one side of its boundary. In what follows, we introduce the notion of
polyhedral mesh of §2, formulate assumptions on the way meshes are refined that
enable to prove useful geometric and functional results, and introduce functional
spaces and projectors that will be used in the construction and analysis of HHO
methods.

4.2.1 Polytopal Mesh

The following definition enables the treatment of meshes as general as the ones
depicted in Fig. 4.1.

() (b) (©)

Fig. 4.1 Examples of polytopal meshes in two and three space dimensions. The triangular and
nonconforming meshes are taken from the FVCAS benchmark [47], the polygonal mesh family
from [30, Section 4.2.3], and the agglomerated polyhedral mesh from [31]. (a) Matching triangular,
(b) nonconforming, (c) polygonal, (d) agglomerated
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Definition 4.1 (Polytopal Mesh) A polytopal mesh of 2 is a couple M;, =
(Ty, Fp) where:

(1) The set of mesh elements Ty, is a finite collection of nonempty disjoint open
polytopes T with boundary 97 and diameter A7 such that the meshsize h satisfies
h = max; g, hr and itholds that 2 = ., T-

(i1) The set of mesh faces F}, is a finite collection of disjoint subsets of 2 such
that, for any F € J, F is an open subset of a hyperplane of R?, the (d—1)-
dimensional Hausdorff measure of F is strictly positive, and the (d —1)-dimensional
Hausdorff measure of its relative interior F\F is zero. Moreover, (a) for each
F € 3y, either there exist two distinct mesh elements 77, 7) € T3 such that
F C 0T N 9T, and F is called an interface or there exists one mesh element
T € Ty suchthat F C dT NdS2 and F is called a boundary face; (b) the set of faces
is a partition of the mesh skeleton, i.e., Uy, T = Upcg, F-

Interfaces are collected in the set F} and boundary faces in F}, so that F), =
F) U FP. For any mesh element T' € Ty,

Fr ={FeJ, | FCoT}

denotes the set of faces contained in 7. Similarly, for any mesh face F € 3,
TJrp:={T €Ty | FCOT}

is the set of mesh elements sharing F. Finally, for all F € J7, nrF is the unit

normal vector to F pointing out of 7'.

Remark 4.1 (Nonconforming Junctions) Meshes including nonconforming junc-
tions such as the one depicted in Fig. 4.2 are naturally supported provided that each
face containing hanging nodes is treated as multiple coplanar faces.

Fig. 4.2 Treatment of a /‘
nonconforming junction (red)

as multiple coplanar faces.
Gray elements are pentagons

with two coplanar faces,
white elements are squares
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4.2.2 Regular Mesh Sequences

When studying the convergence of HHO methods with respect to the meshsize 7,
one needs to make assumptions on how the mesh is refined. The ones provided here
are closely inspired by [25, Chapter 1], and refer to the case of isotropic meshes
with non-degenerate faces. Isotropic means here that we do not consider the case
of elements that become more and more stretched when refining. Non-degenerate
faces means, on the other hand, that the diameter of each mesh face is uniformly
comparable to that of the element(s) it belongs to; see (4.2) below.

Definition 4.2 (Matching Simplicial Submesh) Let M;, = (7, F,) be a poly-
topal mesh of £2. We say that ¥, is a matching simplicial submesh of My, if (i) %5
is a matching simplicial mesh of §2; (ii) for all simplices t € T}, there is only one
mesh element T € T}, such that t C T; (iii) for all 0 € §p, the set collecting the
simplicial faces of ¥y, there is at most one face F € JF, such thato C F.

If T3 itself is matching simplicial and J, collects the corresponding simplicial
faces, we can simply take %5, = T}, so that §, = . The notion of regularity for
refined mesh sequences is made precise by the following

Definition 4.3 (Regular Mesh Sequence) Denote by H C R} a countable set of
meshsizes having 0 as its unique accumulation point. A sequence of refined meshes
M), < 1s said to be regular if there exists a real number ¢ € (0, 1) such that,
for all h € K, there exists a matching simplicial submesh %; of M, and (i) for
all simplices t € ¥, of diameter A, and inradius r;, oph,; < ry; (ii) for all mesh
elements 7' € T}, and all simplices 7 € T suchthatt C T, oht < h;.

Remark 4.2 (Role of the Simplicial Submesh) The simplicial submesh introduced in
Definition 4.3 is merely a theoretical tool, and needs not be constructed in practice.

Geometric bounds on regular mesh sequences can be proved as in [25, Sec-
tion 1.4.2] (the definition of mesh face is slightly different therein since planarity
is not required, but the proofs are based on the matching simplicial submesh and
one can check that they carry out unchanged). We recall here, in particular, that the
number of faces of one mesh element is uniformly bounded: There is Ny > d + 1
such that

max max card(Fr) < Nj. “.1)
heH TET;,

Moreover, according to [25, Lemma 1.42],forallh € J(,all T € Tp,andall F € Ir
o*hr < hp < hr. 4.2)

Discrete functional analysis results for arbitrary-order methods on regular mesh
sequences can be found in [25, Chapter 1] and [22, 23]. We also refer the reader
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to [43] for a first theorization of discrete functional analysis in the context of lowest-
order finite volume methods, as well as to the subsequent extensions of [42, 44].

Throughout the rest of this work, it is tacitly understood that we work on regular
mesh sequences.

4.2.3 Local and Broken Spaces

Throughout the rest of this chapter, for any X C 2, we denote by (-, -)x and ||-||x
the standard L?(X)-product and norm, with the convention that the subscript is
omitted whenever X = £2. The same notation is used for the vector-valued space
L2(X)?.

Let now the set X be a mesh element or face. For an integer / > 0, we denote
by P/(X) the space spanned by the restriction to X of scalar-valued, d-variate
polynomials of total degree I. We note the following trace inequality (see [25,
Lemma 1.46]): There is a real number C > 0 only depending on d, o, and / such
that, forallh € H,all T € Ty, allv € ]P’I(T), and all F € Fp,

Ivllr < Chz P llvllz. (4.3)
At the global level, we define the broken polynomial space
Pl (T}) = {vh € LX(82) | vair € PX(T) VT e ‘.Th] .
Functions in P (J7,) belong to the broken Sobolev space
whiT,) = {v e L'(2) | vr e WHI(T) VT € rrh}.

We denote by V), : WL (T,) — LY(£2)? the usual broken gradient operator such
that, for all v € W11 (73,),

(Vpv)ir = Vur YT € T.

4.2.4 Projectors on Local Polynomial Spaces

Projectors on local polynomial spaces play a key role in the design and analysis of
HHO methods.
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4.2.4.1 L2-Orthogonal Projector

Let X denote a mesh element or face. The L?-orthogonal projector (in short, L>-
projector) n%l - LY(X) — PY(X) is defined as follows: For all v € L'(X), n%l is
the unique polynomial in P (X) that satisfies

@' —v,w)x =0 Vw e P(X). (4.4)

Existence and uniqueness of ng’lv follow from the Riesz representation theorem
in P! (X) for the standard L2(X )-inner product. Moreover, we have the following
characterization:

0., . 2
Ty v=argminfw — v| .

weP!(X)

In what follows, we will also need the vector-valued L2-projector denoted by n())(’l

and obtained by applying ng’l component-wise. The following H*-boundedness
result is a special case of [22, Corollary 3.7]: Forany s € {0, ..., [+ 1}, there exists
a real number C > 0 depending only on d, ¢, [, and s such that, for all 1 € I, all
T € Typ,and all v € H5(T),

0.1
lmr vlgsry < Clolgsr). 4.5)

At the global level, we denote by n,(l)’l . L'(£2) — P!(T7,) the L2-projector on the
broken polynomial space IP!(T73,) such that, forall v € L'(£2),

0,1 01
(T, V) =7 T,

4.2.4.2 Elliptic Projector

For any mesh element T € T3, we also define the elliptic projector n%’l

WLI(T) — PI(T) as follows: For all v € WL-1(T), n}’lv is a polynomial in P(T)
that satisfies

(Vv —v), Vu)r =0 Vw e P/(T). (4.6a)

By the Riesz representation theorem in VP!{(T) for the L2(T)?-inner product, this

relation defines a unique element Vn}’lv, and thus a polynomial n}’lv up to an
additive constant. This constant is fixed by writing

(v —v, Dy =0. (4.6b)
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Observing that (4.6a) is trivially verified when [ = 0, it follows from (4.6b) that

n}’o = 713’0. Finally, the following characterization holds:

1,1 . 2
T[T v= arg min ”V(w - U)”LZ(T)d'
weP!(T), (w—v,1)7=0

4.2.4.3 Approximation Properties

On regular mesh sequences, both 713’[ and n%’l have optimal approximation prop-
erties in P! (T), as summarized by the following result (for a proof, see Theorem 1,
Theorem 2, and Lemma 13 in [22]): Forany o € {0, 1} and s € {«, ..., [+ 1}, there
exists a real number C > 0 depending only on d, o, [, o, and s such that, for all
heXH,allT € Ty,and all v € H*(T),

lv — ﬂ%’lvlym(T) < Cl’l;fmlex(T) vm e {0,...,s}, (4.7a)
and, if s > 1,
P |
v =750 g,y < Chy " Plolasay Yme (0,5 — 1), (4.7b)

where H™ (Fr) := {v € L>(T) | vir € H™(F) VF € r}.

4.3 Basic Principles of Hybrid High-Order Methods

To fix the main ideas and notation, we study in this section the HHO discretization
of the Poisson problem: Find u : £2 — R such that

—Au=f ing, (4.82)
u=0  ondf, (4.8b)

where f € L?(2) is a given volumetric source term. More general boundary
conditions can replace (4.8b), but we restrict the discussion to the homogeneous
Dirichlet case for the sake of simplicity. A detailed treatment of more general
boundary conditions including also variable diffusion coefficients can be found
in [35].

The starting point to devise a HHO discretization is the following weak formula-
tion of problem (4.8): Find u € H(} (£2) such that

a(u,v) = (f,v) Vv e HN(), (4.9)
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where the bilinear form a : Hl(.Q) X Hl(.Q) — R is such that
a(u,v) := (Vu, Vo). (4.10)

In what follows, the quantities ¥ and —Vu will be referred to, respectively, as the
potential and the flux.

4.3.1 Local Construction

Throughout this section, we fix a polynomial degree k > 0 and a mesh element 7 €
JTh. We introduce the local ingredients underlying the HHO construction: the DOFs,
the potential reconstruction operator, and the discrete counterpart of the restriction
to T of the global bilinear form a defined by (4.10).

4.3.1.1 Computing the Local Elliptic Projection from L2-Projections

Consider a function v € H'(T). We note the following integration by parts formula,
valid for all w € C*°(T):

(V. Vw)r = —(v, Aw)r + Y (v, Vwnrp)F. (4.11)
FESFT

Specializing (4.11) to w € P*T1(T"), we obtain

(Vap ™o, Vuyr = —@p* v, Aawyr + Y v, Vwnrp)p, (412a)
FEH:T

where we have used (4.6a) to insert n%’kH into the left-hand side and (4.4)
to insert ng’k_l and ng’k into the right-hand side after observing that Aw €
Pc=1(T) < PXT) and (Vw)r-nrr € PX(F) for all F € Fr. Moreover,

recalling (4.6b) and using the definition (4.4) of the L2-projector, we infer that
g g PIOj
W —np%, Dy = (o — 2p™ Oy =0, (4.12b)

The relations (4.12) show that computing the elliptic projection n}’kﬂv does not
require a full knowledge of the function v. All that is required is

1. n%max(o’k_l)v, the L>-projection of v on the polynomial space P™O:4=D (T,

Clearly, one could also choose ng’kv instead, which has the advantage of not
requiring a special treatment of the case k = 0;
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k=0 k=1 k=2

Fig. 4.3 DOFsin U%. fork € {0, 1,2)

2. for all F € JFr, ng’kvw, the L2-projection of the trace of v on F on the
polynomial space PX(F).

4.3.1.2 Local Space of Degrees of Freedom

The remark at the end of the previous section motivates the introduction of the
following space of DOFs (see Fig.4.3):

Uk =P5T) x | X PR . (4.13)
FEH:T

Observe that naming U ’} space of DOFs involves a shortcut: the actual DOFs
can be chosen in several equivalent ways (polynomial moments, point values, etc.),
and the specific choice does not affect the following discussion. For a generic vector
of DOFs in U’}, we use the underlined notation vy = (vr, (UF)Feff"T)' On U’}, we

define the H !-like seminorm ||-|| 1,7 such that, forall vy € U ]},

2 . 2 2 2 . —1 2
lorlfr = 1VorlF + lvrlfor  lrllar = D hp'lve —vrl,
FES’FT
4.14)

where hr denotes the diameter of F. The negative power of 4 r in the second term
ensures that both contributions have the same scaling. The DOFs corresponding to a
smooth function v € W!1(T) are obtained via the reduction map [ ]} whiry —
U l} such that

I’;v = (n?’kv, (”%kUIF)Fe&"T)- 4.15)
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4.3.1.3 Potential Reconstruction Operator

Inspired by formula (4.12), we introduce the potential reconstruction operator
p’}“ : U’} — PKTI(T) such that, for all vy € U’},

(Vpl;"+1va VU})T = _(UT, AU))T + Z (‘UF, Vw'nTF)F Yw € Pk-l—l(T)
FESFT
(4.16a)

and
(Ps v —vr, D =0. (4.16b)

Notice that p];'HvT is a polynomial function on 7 one degree higher than the
element-based DOFs vr. By definition, for all v € Wb 1(T) it holds that

k+1 7k 1k+1
(pr" olp)v=m;"""v

) 4.17)
i.e., the composition of the potential reconstruction operator with the reduction
map gives the elliptic projector on P¥*!1(7T'). An immediate consequence of (4.17)

together with (4.7) is that p];‘H ol I; has optimal approximation properties in

Pk+l(T).

4.3.1.4 Local Contribution

We approximate the restriction a|r : H (T) x H'(T) — R to T of the continuous
bilinear form a defined by (4.10) by the discrete bilinear form ar : U ’; x U ’} - R
such that

ar (up, vy) = (Vphtlu,, Vi e +sr@uy, vp), (4.18)

where the first term in the right-hand side is the usual Galerkin contribution, while
the second is a stabilization contribution for which we consider the following design
conditions, originally proposed in [8]:

Assumption 4.1 (Local Stabilization Bilinear Form s7) The local stabilization
bilinear form st : UkT X UkT — R satisfies the following properties:

(S1) Symmetry and positivity. sy is symmetric and positive semidefinite;
(S2) Stability. There is a real number n > 0 independent of h and of T, but possibly
depending on d, o, and k, such that

n vzl s <arup.vp) <nllvplly  Yup e UY (4.19)
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(S3) Polynomial consistency. For all w € PKt1(T) and all vy € U, it holds that
st(I5w, vp) = 0. (4.20)

These requirements suggest that sy can be obtained penalizing in a least square
sense residuals that vanish for reductions of polynomial functions in P¥+1(T).
Paradigmatic examples of such residuals are provided by the operators 81} U I; —
IP”‘(T) and, for all F € Fr, SI}F : U’} — IP”‘(F) such that, for all v; € U’},

SI}UT = n?’k(pl}“vT —vr), SI}FUT = ng’k(pl}“vT —vp) VF eJr.
(4.21)

To check that 81} vanishes when vy =1 "‘Tw with w € Pk (T), we observe that

k+1 k+1

SI}Il‘Tw = ng’k(pT I]}w — ng’kw) = ng’k(n}’ w—w)= ng’k(w —w) =0,

where we have used the definition of 5’} in the first equality, the relation (4.17) to

replace p’}“] ’} by n}’kH and the fact that ng’kw e PX(T) to cancel ng’k from

the second term in parentheses, and the fact that n}’kH leaves polynomials of total
degree up to (k + 1) unaltered as a projector to conclude. A similar argument shows
that 81}F11}w =0 forall F € F7 whenever w € P¥1(T).

Accounting for dimensional homogeneity with the Galerkin term, one possible
expression for st is thus

st (up. vy) = hy>Ghup, 5o+ Y hp' Sk pur. 8f pop)r. (4.22)
FEH:T

This choice, inspired by the Virtual Element literature [6], differs from the original
HHO stabilization of [33], where the following expression is considered instead:

sp(ug, vp) 1= Z het (8% pug — 8kuy, 8k por — Shvp)p. (4.23)

FESFT

In this case, only quantities at faces are penalized. Both of the above expressions
match the design conditions (S1)-(S3) and are essentially equivalent in terms
of implementation. A detailed proof for sy as in (4.23) can be found in [33,
Lemma 4]. Yet another example of stabilization bilinear form used in the context
of HHO methods is provided by [1, Eq. (3.24)]. This expression results from the
hybridization of the Mixed High-Order method of [28].
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Remark 4.3 (Original HDG Stabilization) The following stabilization bilinear
form is used in the original Hybridizable Discontinuous Galerkin (HDG) method of
[13,17]:

-1
sT(ug,vy) = Z hyp (up —ur,vp —v7)F.
FES’FT

While this choice obviously satisfies the properties (S1)—(S2), it fails to satisfy (S3)
(it is only consistent for polynomials of degree up to k). As a result, up to one order
of convergence is lost with respect to the estimates of Theorems 4.1 and 4.2 below.
For a discussion including fixes that restore optimal orders of convergence in HDG
see [18].

4.3.1.5 Consistency Properties of the Stabilization for Smooth Functions

In the following proposition we study the consistency properties of sy when its
arguments are reductions of a smooth function. We give a detailed proof since this
result is a new extension of the bound in [33, Theorem 8] (see, in particular, Eq. (45)
therein) to more general stabilization bilinear forms.

Proposition 4.1 (Consistency of s7) Let {st}rc7; denote a family of stabilization
bilinear forms satisfying assumptions (S1)—(S3). Then, there is a real number C > 0
independent of h, but possibly depending on d, o, and k, such that, for all T € Ty,
and all v € H*(T), it holds that

st(I4v, T5v)'? < ChET vl grsa gy (4.24)

Proof We set, for the sake of brevity, vr = n%’kHv and abridge as A < B the
inequality A < ¢ B with multiplicative constant ¢ > 0 having the same dependencies

as C in (4.24). Using (S2) and (S3) we infer that

v v l v
sp(I5v, 1502 = sp (15 (v — Or), 15 (v — 0r) 2 < 2 115 (v = v7) I 7
(4.25)
Recalling (4.14), we have that

k “ N2
17 =)y 7

= |Vap e —op)lF + Y hp'llap e —vr — 72 @ — 9013
FES’FT
(4.26)
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Using the H'(T)-boundedness of ng’k resulting from (4.5) with/ = kand s = 1
followed by the optimal approximation properties (4.7a) of vy (witha = 1,1 =
k+1,s =k +2,and m = 1), it is inferred that

IVay = p)lir S IV —ip)lir Sl gea.- (4.27)
On the other hand, for all F € F7 it holds that

hp Pt = b — 7R = 5r)lle < hy Pl = b1 — 2P @ = vy
S IV =37z
S ]’ll;—~+1 ||U||Hk+2(T),

(4.28)
where we have used the L2(F)-boundedness of ng’k together with (4.2), the trace
approximation properties (4.7b) of ng’k withae =0,/ =k, s = 1l,andm =0 to
pass to the second line, and the optimal approximation properties of vr expressed
by (4.7a) withae =1,/ =k+1,s = k+2,and m = 1 to conclude. Plugging (4.27)
and (4.28) into (4.26), recalling that card(Fr) < 1 (see (4.1)), and using the
resulting bound to estimate (4.25), (4.24) follows. |

4.3.2 Discrete Problem

We now show how to formulate the discrete problem from the local contributions
introduced in the previous section.

4.3.2.1 Global Spaces of Degrees of Freedom

We define the following global space of DOFs with single-valued interface
unknowns:

Uk = X PNT) | x | X PKF)
TE{‘T;, Ferfh

Notice that single-valued means here that interface values match from one element
to the adjacent one. For a generic element v, € U ﬁ, we use the underlined
notation v, = ((vT)TE«Ih, (UF)Feff"h) and, for all T € T3, we denote by vy =

(v, (VF) Feff"r) e U ]} its restriction to 7. We also define the broken polynomial
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function v;, € P¥(T7,) such that
Up|T == VT YT € Tj.

The DOFs corresponding to a smooth function v € W'1(£2) are obtained via the
reduction map Iﬁ wWh(2) > UIZ such that

Iﬁv = ((ng’kvg)kryh, (ng’kv\p)Fegh).

We define on UIZ the seminorm ||-||1,5, such that, for all v, € Uﬁ,

lall =" lorlli 7, (4.29)
TE{‘T;,

with local seminorm |-||1,7 defined by (4.14). To account for the homogeneous
Dirichlet boundary condition (4.8b) in a strong manner, we introduce the subspace

Uloi={on e Ul lve=0 vFesp].

We recall the following discrete Poincaré inequality proved in [22, Proposition 5.4]:
There exists a real number Cp > 0 independent of /4, but possibly depending on 2,
0, and k, such that, for all v, € Uﬁ 0’

llonll < Cellvgll1n- (4.30)

oqs k
Proposition 4.2 (Norm ||-||1,,) The map ||-||1,n defines a norm on Uh’o.

Proof The seminorm property being evident, it suffices to prove that, for all
v, € Upo lypllin = 0 = v, = 0. Letv, € U}, be such that
lv,ll1,n = 0. By (4.30), we have |v,|| = 0, hence vy = O forall T € Tj. From
the definition (4.14) of the norm ||-|[1,7, we also have that [vr — vr||F = O for all
T € Tpand all F € Jr, hence vr = vr|r = 0. Since any mesh face belongs to the
set I for at least one mesh element 7' € T, this concludes the proof. m|

4.3.2.2 Global Bilinear Form

We define the global bilinear forms ay, : U];l X Uﬁ — Randsy : Uﬁ X Uﬁ — R by
element-by-element assembly setting, for all 4, v, € U I;n

an(uy, vy) = Y ar(up,vp),  sa(uy,v,) = Y sp(up,vp). (431
TE‘Th TE‘.Th
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Lemma 4.1 (Properties of a;) The bilinear form aj, enjoys the following proper-
ties:

(i) Stability. For all v, € U’}‘l’0 it holds with n as in (4.19) that

—1 2 2 . 2
n vl < gy n = an(vy, vy) < nllvglly - (4.32)

(ii) Consistency. There is a real number C > 0 independent of h, but possibly
depending on d, o, and k, such that, for all w € Ho1 £2)N Hk+2(.Q),

sup  En(w; vy) < I wl s, (4.33)
vR€U}, g log =1

with linear form Ep(w; ) : Uﬁ — R representing the conformity error such
that, for all v, € U¥,

En(w; vy) 1= —(Aw, vy) — ap (I w, vy). (4.34)

Proof

(i) Stability. Summing inequalities (4.19) over T' € T}, (4.32) follows.

(i) Consistency. Let v, € U}  be such that ||lv,[l1» = 1. Throughout the proof,
we abridge as A < B the inequality A < ¢B with multiplicative constant ¢ > 0
having the same dependecies as C in (4.33). For the sake of brevity, we also let

wr = p’}“]’}w = n}’kHw (cf.(4.17)) for all T € T}. Integrating by parts

element-by-element, we infer that

—(Aw, vp) = Z (Vw, Vur)r + Z (Vwnrp, v —vr)F
TE{‘T;, FGSFT
(4.35)

To insert v into the second term in parentheses in (4.35), we have used the fact
that vp =0 forall F € 3"}? while, for all F € fﬂil such that F C 971 N 3T, for
distinct mesh elements Ty, T € Ty, (Vw)1,-nr r + (Vw) 1, n7y p = 0 (since
w € H2(£2)), so that

Z Z (Vw-nrp,vp)F = Z ( Z (Vw)r-nrp, ve)r

7T, FeFr FGSF;il TeTr

+ ) (Vwn, vp)p =0.
FeFy
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On the other hand, plugging the definition (4.18) of ar into (4.31), and

expanding p’}HvT according to (4.16) with w = wr, it is inferred that

an(Ifw, v,) = Z (Vwr, Vur)r + Z (Vwr-nrp, vF —Vr)F
TET}, FE?T

tsr(Thw, vT)) . (4.36)

Subtracting (4.36) from (4.35), using the definition (4.6) of n}’kH to cancel the
first terms in parentheses, and taking absolute values, we get

Enwivl =Y | D (Vw —br)nre, vr —vr)r +sr(Tw, vp)

TE{‘T;, FESFT

_ 12

= | X (v — by +srdhw, fhw)
_TET;,
1/2
X Z (lle%,aT +s7(vy, vT)>
TE‘Th

Using (4.7b) withe = 1,1 =k +1,s = k+ 2, and m = 1 together with (4.24)
for the first factor, and the seminorm equivalence (4.19) together with the fact
that ||v, ||1,» = 1 for the second, we infer the bound

1€a(w; v S K wll grez -

Since v, is arbitrary, this yields (4.33). O

4.3.2.3 Discrete Problem and Well-Posedness
The discrete problem reads: Find u;, € U ZO such that
an(uy, v) = (fivn) Vv, € U, (4.37)

Lemma 4.2 (Well-Posedness) Problem (4.37) is well-posed, and we have the
following a priori bound for the unique discrete solution u,;, € U];z,o"

luplli,n = nCell £
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Proof We check the assumptions of the Lax—Milgram lemma [49] on the finite-
dimensional space U ’;1’0 equipped with the norm ||-||1 5. The bilinear form ay is

coercive and continuous owing to (4.32) with coercivity constant equal to ! The
linear form v, — (f, vy) is continuous owing to (4.30) with continuity constant
equal to Cp. O

4.3.2.4 Implementation

Let a basis By, for the space U ’;1’0 be fixed such that every basis function is supported

by only one mesh element or face. For a generic element v, € U ];l o» denote by V,
the corresponding vector of coefficients in By, partitioned as

Vv Y7,
h = 9
Vg,

where the subvectors Vg-h and VS",I collect the coefficients associated to element-
based and face-based DOFs, respectively. Denote by A, the matrix representation
of the bilinear form a; and by By, the vector representation of the linear form v,
(f, vn), both partitioned in a similar way. The algebraic problem corresponding
to (4.37) reads

Az,7, AT, || YT, B,
. = : (4.38)
A1,3, A59, || Y, 0z,

The submatrix A‘Th‘Th is block-diagonal and symmetric positive definite, and is
therefore inexpensive to invert. In the practical implementation, this remark can
be exploited by solving the linear system (4.38) in two steps (see, e.g., [18,
Section 2.4]):

1. First, element-based coefficients in Ug—h are expressed in terms of Bg—h and Ugh
by the inexpensive solution of the first block equation:

Uz, = Ay, (B‘.Th —A7,7, U(ﬂ) : (4.39a)
This step is referred to as static condensation in the finite element literature;

2. Second, face-based coefficients in U3r are obtained solving the global skeletal
(i.e., involving unknowns attached to the mesh skeleton) problem

T -1
(A.rfh.rfh o A‘Thﬂ:h A‘J’h‘J‘hAThTfh) US",I Aj’hg:hA Bj’ (4.39b)
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This computationally more intensive step requires to invert the matrix in
parentheses in the above expression. This symmetric positive definite matrix,
whose stencil is the same as that of A::Fh F, and only involves neighbours through
faces, has size Ngof X Ngof With

(4.39¢)

. k+d—1
Ngot = card(F) x ( + )

k

4.3.2.5 Local Conservation and Flux Continuity

At the continuous level, the solution of problem (4.9) satisfies the following local
balance for all T € T, and all vy € ]Pk(T):

(Vu,Vor)r — Y (Vunrp, vr)r = (f,v1)7, (4.40a)
FES’FT

and the normal flux traces are continuous in the sense that, forall F € F ,‘1 such that
F C 0T N T, with distinct mesh elements 77, 7> € Ty, it holds (see, e.g., [25,
Lemma 4.3])

(Vu)m ‘nrr + (Vu)|T2-nT2F =0. (4.40b)

We show in this section that a discrete counterpart of the relations (4.40) holds
for the discrete solution. This property is relevant both from the engineering and
mathematical points of view, and it can be exploited to derive a posteriori error
estimators by flux equilibration. It was originally highlighted in [26] and, using
different techniques, in [18] for the stabilization bilinear form s7 defined by (4.23).
Here, using yet a different approach, we extend these results to more general
stabilization bilinear forms.
Let a mesh element T € T, be fixed. We define the space

Ul == X PR(P), 4.41)
FEH:T

as well lfls the boundary difference operator AgT U ’} - U lgT such that, for all
vr €Uy,

k k .
Ayrvr = (ATFUT)FES'FT = (vF — UT|F)FEEFT‘ 4.42)
A useful remark is that, for all v, € U l}, it holds

vy — hvr = (o — 2ptor, wr — 7P orP) peg,) = 0. Afpvp), (443)
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where the conclusion follows observing that, for all 7 € Jj and all F € I,
n?’va = vr and TL’?;’kUT‘F = vr|F since vy € ]P)k(T) and v |F € Pk(F).

We show in the next proposition that any stabilization bilinear form with a
suitable dependence on its arguments can be reformulated in terms of boundary
differences.

Proposition 4.3 (Reformulation of the Stabilization Bilinear Form) Let T €
T, and assume that st is a stabilization bilinear form that satisfies assumptions
(§1)—(S3) and that depends on its arguments only through the residuals defined
by (4.21). Then, it holds for all uy, vy € U’} that

srup, vy) = st((0, Aspug), (0, Al vp)). (4.44)
Proof 1t suffices to show that, forall v; € U l},

Skvp =850, Ak vp), K v = 85,0, AR uy) VF € T

Let us start by 8’}. Since v € ]P’k(T), p’}“]’} VT = n}’kHvT = vr. Hence,

SI}UT = ng’k(pl;HUT —vr)
=m0y oy — iy or)
= 77 pit (o = hr) = 850, Afpvp),
where we have used the linearity of pl}“ to pass to the third line and (4.43) to
conclude. Let now F € Fr and consider 8’} - We have
85 pop = ﬂg’k(P]}HUT — VF)
= mp (P or — P I or + v — vp)
= mp (P50, Afpvp) — Afpup) = 87200, Afpup),
where we have introduced vy — p];‘H 1 I}UT = 0 in the second line, used the linearity
of pk+1 together with (4.43) and the definition (4.41) of AST in the third line, and

T
concluded recalling the definition (4.21) of 81} r O

Define the boundary residual operator ngT U l} - U lgT such that, for all vy €
Ul}, RSTUT = (RI;FUT)FG?T satisfies for all ay; = (“TF)FESFT € UST

— Y REpvr.arp)r = s7((0, A pvg). (0, ay7)). (4.45)
FES’FT

Problem (4.45) is well-posed, and computing R’} F V7 requires to invert the boundary
mass matrix.
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Lemma 4.3 (Local Balance and Flux Continuity) Under the assumptions of
Proposition 4.3, denote by u;, € U];z,o the unique solution of problem (4.37) and,
forall T € Ty and all F € Fr, define the numerical normal trace of the flux

Str(ur) = —VpI}HuT-nTF + R]}FuT

with Rl} r defined by (4.45). Then, for all T € Ty we have the following discrete
counterpart of the local balance (4.40a): For all vy € P*(T),

(Vo5 ur, Vor)r + Y (Sreug), vr)r = (f,vr)7, (4.462)
FES’FT

and, for any interface F € 3";, such that F C 0T) N 3T, with distinct mesh
elements Ty, T € Ty, the numerical fluxes are continuous in the sense that (compare

with (4.40b)):
St r(ug,) + Styp(ugy) = 0. (4.46b)

Proof Let v, € U’;l o- Plugging the definition (4.18) of ar into (4.31), using
for all T € Tj the definition of pl}HvT with w = pl}HuT, and recalling the
reformulation (4.44) of st together with the definition (4.45) of RgT to write

sr(up,vp) =— Y (Rhpup,vr —vr)p VT €Ty, (4.47)
FESFT

we infer from the discrete problem (4.37) that

Z (VP]}HMT, Vur)r + Z (VPI}HMT-HTF — RY pup, vp —vr)p
7T, FeJr

= (f, vpn).

Selecting v;, such that vy spans PK(T) for a selected mesh element T € Tj, while
vy = O0forall T" € T, \ {T} and vp = O for all F € F, we obtain (4.46a). On
the other hand, selecting v, such that vy = O for all T € T}, vr spans Pk (F) for
a selected interface F € 3",‘1 such that F C 9Ty N a7, for distinct mesh elements
T),T» € Ty, and ver = 0 forall F' € F;, \ {F} yields (4.46b).

Remark 4.4 (Interpretation of the Discrete Problem) Lemma 4.3 and its proof pro-
vide further insight into the structure of the discrete problem (4.37), which consists
of the local balances (4.46a) (corresponding to the local block equations (4.39a))
and a global transmission condition enforcing the continuity (4.46b) of numerical
fluxes (corresponding to the global skeletal problem (4.39b)).
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4.3.3 A Priori Error Analysis

Having proved that the discrete problem (4.37) is well-posed, it remains to
determine the convergence of the discrete solution towards the exact solution, which
is precisely the goal of this section.

4.3.3.1 Energy Error Estimate

We start by deriving a basic convergence result. The error is measured as the

difference between the exact solution and the global reconstruction obtained from

the discrete solution through the operator pﬁ“ U ’;l — PK1(T},) such that, for all
k

v, € Uy,

(P = phto, VT e T (4.48)

Theorem 4.1 (Energy Error Estimate) Ler a polynomial degree k > 0 be fixed.
Let u € H (£2) denote the unique solution to (4.9), for which we assume the
additional regularlty u € H (). Let u, € Uh o denote the unique solution
to (4.37) with stabilization bilinear form st in (4. 18) satisfying assumptions (S1)—
(S3) for all T € Ty. Then, there exists a real number C > 0 independent of h, but
possibly depending on d, o, and k, such that

IVa(py g — )l + luylsn < CE ull s g, (4.49)

where |-|s.p, is the seminorm defined by the bilinear form sy, on Uﬁ.

Proof Let, for the sake of brevity, &1, = I ﬁu and 1y, = pﬁﬂﬁh. We abridge as
A < B the inequality A < ¢B with multiplicative constant ¢ > 0 having the same
dependencies as C in (4.49). Using the triangle and Cauchy—Schwarz inequalities,
it is readily inferred that

k+1 A v 2 ~ 2 1/2
IVi(py " up =l + luplsn < lluy — g llan + (1Y e — w17 + luy, 15 -

~ -

- - -

T )
(4.50)

We have that

2 ~ ~ ~
T =ap(uy, uy — i) — ap(ity,, uy, — i)

where we have used the definition (4.32) of the |||, ,-norm together with the
linearity of aj; in its first argument in the first line, the discrete problem (4.37) to
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pass to the second line, and the definition (4.34) of the conformity error to conclude.
As a consequence, assuming u;, # i, (the other case is trivial), we have that

u, — i u i
1T1] < & (u; b )<n1/28h( he )
||uh - ”h”a,h ””h _”h”l h

< sup  Enu;vy),

v, UL .l llia=1

where we have used the linearity of € (u; -), the first bound in (4.32), and a passage
to the supremum to conclude. Recalling (4.33), we arrive at

1T1] S Wl e .- 4.51)

On the other hand, using the approximation properties (4.7) of ur with & = 1,
Il =k+1,s =k+2,and m = 1 together with the approximation properties (4.24)
of st, it is inferred for the second term

1Tal S Kl s ). (4.52)

Using (4.51) and (4.52) to bound the right-hand side of (4.50), (4.49) follows. |

4.3.3.2 Convergence of the Jumps

Functions in H'(T;) := {v € L*(22) | vir € HY(T) VT € T3} are in HJ(£2) if
their jumps vanish a.e. at interfaces and their trace is zero a.e. on 9£2; see, e.g., [25,
Lemma 1.23]. Thus, a measure of the nonconformity is provided by the jump
seminorm |-|j 5 such that, forall v € Hl(‘J’h),

Wi, = Y hp g el (4.53)
Feth

where [-]r denotes the usual jump operator such that, for all faces F' € F and all
functions v : ([, «J, T — R smooth enough,

— YF € 31, N Fp,,
[U]F = vlTl U‘TZ € El T (454)
v VF e F).

A natural question is whether the jump seminorm of pk‘Irl

answer is provided by the following lemma.

u,, converges to zero. The

Lemma 4.4 (Convergence of the Jumps) Under the assumptions and notations
of Theorem 4.1, and further supposing, for the sake of simplicity, that the local



100 D. A. Di Pietro and R. Tittarelli

stabilization bilinear form st is given by (4.22), there is a real number C > 0
independent of h, but possibly depending on d, o, and k, such that

1oy lin < CH U groa ). (4.55)

Proof Inserting up inside the jump and using the triangle inequality for every
interface F € F;, and recalling that vr = 0 on every boundary face F € F }? , it
is inferred that

S R g el <2 Y0 D hE i o gy — up) i

Feffh FESFh TETF
10k
<2 Y hp e uy —up) |3
TET}, FESFT

2
5 2|”h|s,h'

Using (4.49) to bound the right-hand side yields (4.55).

4.3.3.3 L2-Error Estimate

To close this section, we state a result concerning the convergence of the error in the
L?-norm. Optimal error estimates require in this context further regularity for the
continuous operator. More precisely, we assume that, for all g € L?(£2), the unique
solution of the problem: Find z € Ho1 (£2) such that

a(z,v) = (g,v) Yv € H(}(.Q)
satisfies the a priori estimate

Izl 20 < Clgll,

with real number C depending only on £2. Elliptic regularity holds when the domain
£2 is convex; see, e.g., [46]. The following result, whose detailed proof is omitted,
can be obtained using the arguments of [33, Theorem 10] and [1, Corollary 4.6].

Theorem 4.2 (L%>-Error Estimate) Under the assumptions and notations of
Theorem 4.1, and further assuming elliptic regularity and that f € H' () ifk =0,
f € HX) if k > 1, there exists a real number C > 0 independent of h, but
possibly depending on $2, d, o, and k, such that

(4.56)

Py, —ull < {CthfHHl(ﬂ) ifk=0

Ch*2 (lull gz + 1 f Lk zy)  ifk > 1
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Remark 4.5 (Supercloseness of Element DOFs) An intermediate step in the proof
of the estimate (4.56) (see [33, Theorem 10]) consists in showing that the element
DOFs are superclose to the L2-projection of the exact solution on PX(77,):

Ch? if k =0,
It = unl < : 7o) ) (@57

Chk+2 (||M||Hk+2(_Q) + ||f||Hk(_Q)) ifk > 1.

This is done adapting to the HHO framework the classical Aubin—Nitsche technique.

4.3.4 A Posteriori Error Analysis

For smooth enough exact solutions, it is classically expected that increasing the
polynomial degree k will reduce the computational time required to achieve a
desired precision; see, e.g., the numerical test in Sect. 4.3.5.2 below and, in partic-
ular, Fig. 4.6. However, when the regularity requirements detailed in Theorems 4.1
and 4.2 are not met, the order of convergence is limited by the regularity of the
solution instead of the polynomial degree. To restore optimal orders of convergence,
local mesh adaptation is required. This is typically done using a posteriori error
estimators to mark the elements where the error is larger, and locally refine the
computational mesh based on this information. Here, we present energy-norm
upper and lower bounds for the HHO method (4.37) inspired by the residual-based
approach of [31].

4.3.4.1 Error Upper Bound

We start by proving an upper bound of the discretization error in terms of quantities
whose computation does not require the knowledge of the exact solution. We will
need the following local Poincaré and Friedrichs inequalities, valid for all T € T},
and all ¢ € HY(T):

lo — 72%%ll7 < Co.rhrlVellr, 4.58)

1 1
lp — 75 %llar < Crhi 1V elT. (4.59)

In (4.58), Cp,7 is a constant equal to dn~' if T is convex [4, 52]. In (4.59),
Cr,r is a constant which, if 7 is a simplex, can be estimated as Crr =
Cp,7(h7|0T|4-1/1T1a)(2/d + Cp,T) (see [25, Section 5.6.2.2]).

Theorem 4.3 (A Posteriori Error Upper Bound) Letu € H(} (2)andu;, € U ZO
denote the unique solutions to problems (4.9) and (4.37), respectively, with local
stabilization bilinear form st satisfying the assumptions of Proposition 4.3 for all
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T € Tj. Let uj, be an arbitrary function in Ho1 (£2). Then, it holds that
1/2

VAl uy =l < | D2 (ner + Oresr +00an)?) | . 460
TE‘Th

with local nonconformity, residual, and stabilization estimators such that, for all
T €Ty,

Mne,7 = IV (P up —up)lr, (4.61a)
Mes,7 i= Corhrll(f + ApSTup) — 200 (f + ApkHup)lir, (4.61b)
1/2
1 1
Noar = Clphys | YIRS purl} | 4.61¢)
FE?T

where, for all F € 37, the boundary residual R]}F is defined by (4.45).

Remark 4.6 (Nonconformity Estimator) To compute the estimator nnc,7, we can
obtain a HO1 (§2)-conforming function uj, by applying a node-averaging operator to
pﬁ“u ;- Let an integer [ > 1 be fixed. When T}, is a matching simplicial mesh and
Fy is the corresponding set of simplicial faces, the node-averaging operator JZ :
P! (Tw) = Pl N H(} (£2) is defined by setting for each (Lagrange) interpolation
node N

Yrer, T (N) if N € 2,

1
g4 vp(N) = { cardT)
0 if N € 982,

where the set Ty C T}, collects the simplices to which N belongs. We then set

k+1l/l

wh =I5 pit (4.62)

The generalization to polytopal meshes can be realized applying the node averaging
operator to pﬁ“u ;, on a simplicial submesh of T}, (whose existence is guaranteed
for regular mesh sequences, see Definition 4.3).

Proof Let the equation residual R € H ~1(£2) be such that, for all ¢ € H(} (£2),

(R,o)—11 = (f,9) — (VhpZ“uh, V). The following abstract error estimate
descends from [25, Lemma 5.44] and is valid for any function u} e H(} (£2):

2 2
IVa(Pf g, — )™ < IVA(p ™ uy, —upll” + sup (R, @)-1.1
peH}(2).|Ve|=1

(4.63)
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Denote by ¥y and %5 the addends in the right-hand side of (4.63).
(1) Bound of ¥1.Recalling the definition (4.61a) of the nonconformity estimator,
it is readily inferred that

= Z nﬁc,r- (4.64)

TE{‘T;,

(i1) Bound of ¥>. We bound the argument of the supremum in %5 for a generic
function ¢ € HOl (£2). Using an element-by-element integration by parts, we obtain

(Ro@)11= ((f+ApT up. @)r— Y (Vpitug nTF,wF). (4.65)
7T, Fedr

Let now v, € U o be such that o = nT (p forall T € Tj, and ¢F = nF cp|F for
all F e S"h We have that

Y@+ AP up), o)

TE{‘T;,

=Y (f+ap5ur, or)r

TE{‘T;,

=Y. <ar(uT7<ﬂT)+ > (Vp’%“uT-nTF,soT)F)

TeT), FeJr

(4.66)

=> (ST(”TJ/’T)‘F > (Vp'}“urnTFAp)F),

TE{‘T;, FGSFT

where we have used definition (4.4) of n?’o in the first line, the discrete prob-
lem (4.37) with v, = ¢ b and an element-by-element integration by parts together
with the fact that Vor = 0 for all T € T in the second line. In order to
pass to the third line, we have expanded ar according to its definition (4.18)
and used (4.16a) with vy = @ and w = p];'HuT for the consistency term (in
the boundary integral, we can write ¢ instead of ¢r using the definition (4.4) of
ng’k).

Summing (4.66) and (4.65), and rearranging the terms, we obtain

(Ro@)11= Y. (<f+Ap"“uT — 0 (f + AP ur) 0 — o7 +sT(uT,<pT>),
TeT,
(4.67)



104 D. A. Di Pietro and R. Tittarelli

where we have used the definition (4.4) of 712’0 to insert @7 into the first term. Let
us estimate the addends inside the summation, hereafter denoted by %> 1(7") and
%2.2(T). Using the Cauchy—Schwarz and local Poincaré (4.58) inequalities, and
recalling the definition (4.61b) of the residual estimator, we readily infer, for all
T € Ty, that

T2 ()| < Mres, IV ellT (4.68)

On the other hand, recalling the reformulation (4.47) of the local stabilization
bilinear form sy we have, forall T € Ty,

[%2,2(T)] =

> (Ripur, ¢ —91)F| < nswrlVollr, (4.69)
FESFT

where we have used the fact that g = ng’k(p and R’} Flir € P*(F) together

with the definition (4.4) of ng’k to write ¢ instead of ¢F inside the boundary
term, and the Cauchy—Schwarz and local Friedrichs (4.59) inequalities followed by
definition (4.61c¢) of the stability estimator to conclude. Using (4.68) and (4.69) to
estimate the right-hand side of (4.67) followed by a Cauchy—Schwarz inequality,
and plugging the resulting bound inside the supremum in ¥,, we arrive at

T < Y OresT + Nsta7)’. (4.70)
TET;,
(iii) Conclusion. Plug (4.64) and (4.70) into (4.63). |

4.3.4.2 Error Lower Bound

In practice, one wants to make sure that the error estimators are able to correctly
localize the error (for use, e.g., in adaptive mesh refinement) and that they do not
unduly overestimate it. We prove in this section that the error estimators defined
in Theorem 4.3 are locally efficient, i.e., they are locally controlled by the error.
This shows that they are suitable to drive mesh refinement. Moreover, they are also
globally efficient, i.e., the right-hand side of (4.60) is (uniformly) controlled by the
discretization error, so that it cannot depart from it.

Let a mesh element 7 € T, be fixed and define the following sets of faces and
elements sharing at least one node with 7'

Fnr i ={FeF | FNOT #0},  Tnr:={T"e€Tu| T NT #0}.

Let an integer [ > 1 be fixed. The following result is proved in [48] for standard
meshes: There is a real number C > 0 independent of £, but possibly depending on
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d, 0, and [, such that, for all v;, € P! (Tp) and all T € Ty,

low = Fonllz <€ > helionlelz 4.71)
FeFn.T

with jump operator defined by (4.54). Following [25, Section 5.5.2], (4.71) still
holds on regular polyhedral meshes when the nodal interpolator is defined on the
matching simplicial submesh of Definition 4.3. We also note the following technical
result:

Proposition 4.4 (Estimate of Boundary Oscillations) Letr an integer | > 0 be
fixed. There is a real number C > 0 independent of h, but possibly depending on d,
o, and 1, such that, for all mesh elements T € Tj, and all functions ¢ € HI(T),

—1
h e — 7220l < ClIVlr. (4.72)

Proof We abridge as A < B the inequality A < ¢B with multiplicative constant
¢ > 0 having the same dependencies as C in (4.72). Let F' € F7 and observe that

0, 0, 0,0,_0,
lo —7rollr <l —mp ollr+ng (Tp 0 — @) llF
(4.73)

0,l 1
<2l —72olr S LIV,

where we have inserted :I:rr?’l(p and used the triangle inequality to infer the first

bound, we have used the L2(F )-boundedness of ng’l to infer the second, and
invoked (4.7b) with @ = 0, m = 0, and s = 1 to conclude. Using the fact that
hr/hp < 1 owing to (4.2) gives the desired result. O

Theorem 4.4 (A Posteriori Error Lower Bound) Under the assumptions of
Theorem 4.3, and further assuming, for the sake of simplicity, (i) that the local
stabilization bilinear form st is given by (4.22) for all T € Ty, (ii) that uj is
obtained applying the node-averaging operator to pﬁ“uh on Ty if Ty, is matching
simplicial or on the simplicial submesh of Definition 4.3 if this is not the case, and
(iii) that f € P**Y(Ty), it holds for all T € T,

et < € (V3 = 0l 7+ gl x 7). (4.74a)
Nres.7 < CIV(pstug —u o)z, (4.74b)
Nsta,T = Cl”TlS,Ta (4.74¢)

where C > 0 is a real number possibly depending on d, o, and on k but independent
of both h, T, and of the problem data. For all T € Ty, |||l ; denotes the L%-norm
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on the union of the elements in Tt and we have set

1/2 2 . 2
urlst =stup up)® Juplly = D0 lupllp
T'eTn.T

Proof Let a mesh element T € T}, be fixed. In the proof, we abridge as A < B the
inequality A < ¢ B with multiplicative constant ¢ > 0 having the same dependencies
as C in (4.74).

(1) Bound (4.74a) on the nonconformity estimator. Using a local inverse inequal-
ity (see, e.g., [25, Lemma 1.44]) and the relation (4.71), we infer from (4.61a) that

k+1

e S IPE up —uili7 S0 )RR P, w1 F I (4.75)

FeFn.T

where we have used the fact that, owing to mesh regularity, hp < hr for all

~

F € Fp.r. Using the fact [u]r = 0 for all F € Jj (see, e.g., [25 Lemma 4.3])
k+1 k+1 k+1

to write [p," u, —ulp instead of [p," u,]F, inserting JTF [p uylr —
7l F [karl ] r = 0 inside the norm, and using the triangle inequality, we
have for all F € 3";, [N, T1],
Nk e e < WPy, — ule — 7 Uy, — wlelle + I oy e e
< YN up =) — 2P g — w)lle
T’ETF
k
+ I Loy Il

where we have expanded the jump according to its definition (4.54) and used a
triangle inequality to pass to the second line. Plugging the above bound into (4.75),
and using multiple times (4.72) with ¢ = (p];,_luT, —u) for T" € Tpr.7, we
arrive at

Mot SIVa@L uy =0, + Y el oy uydr i
FeFn T

To conclude, we proceed as in Lemma 4.4 to prove that the last term is bounded by
lu h| N7 UP to a constant independent of 4 and of the problem data.

(11) Bound (4.74b) on the residual estimator. We use classical bubble functlon
techniques, see e.g. [53]. For the sake of brevity, we let rr = fir + ApT uT
Denote by ¥, the simplicial submesh of 7} introduced in Definition 4.3, and let
Tr = {t €%, | v C T}, the set of simplices contained in 7. For all t € %7,
we denote by b, € H(} (t) the element bubble function equal to the product of
barycentric coordinates of T and rescaled so as to take the value 1 at the center of
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gravity of t. Letting ¢y := b.rr forall T € Tr, the following properties hold [53]:

Yr =0ondr, lrrlle S Ors o) I¥elle < ezl
(4.76a) (4.76b) (4.76¢)
We have that
lrrll7 = D Nzl S ) G Yro)e
TeTr e
= > (V- pylup), Vi),
TETT
" (4.77)
< IV = puple | Y b2 1l
TETT
She IV = pr - up)lrirrllr,
where we have used property (4.76b) in the first line, the fact that f = —Au

together with an integration by parts and property (4.76a) to pass to the second
line, the Cauchy-Schwarz inequality together with a local inverse inequality
(see, e.g., [25, Lemma 1.44]) to pass to the third line, and (4.76c) together
with the fact that h7! < (ohr)~! for all T € Tr (see Definition 4.3) to
conclude. Recalling the definition (4.61b) of the residual estimator, observing
that ||rr — n?’OrT I < |lrr|lT as a result of the triangle inequality followed by the
L?(T)-boundedness of 713’0, and using (4.77), the bound (4.74b) follows.

(iii) Bound (4.74c) on the stabilization estimator. Using the definition (4.45)
of the boundary residual operator R%,. with vy = uy and oy = —h7 RS ;uy =
(=hr R’} FUT) pe Fyo the stabilization estimator (4.61c) can be bounded as follows:

Naar = Cerst(ur, (0, —hr Rizup)) S luglsr|O. —hr Ripup)lsr.  (4.78)

On the other hand, from property (S2) in Assumption 4.1, the relation (4.2), and the
definition (4.61c) of 1,7, it is inferred that

1/2

1/2
_ n —1
0. —hr Ry pup)lsr <0 | Y hp'lhr Ry purli | < (Q) Crf Nsta.T-
FES’FT

Using this estimate to bound the right-hand side of (4.78), (4.74c) follows. |
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Corollary 4.1 (Global Lower Bound) Under the assumptions of Theorem 4.4,
there exists a constant C independent of h, but possibly depending on d, o and
k, such that

1/2

> (mer + Gnest +mar?) | = € (IVaGE = 0l + gl )
TE{‘T;,

4.3.5 Numerical Examples

We illustrate the numerical performance of the HHO method on a set of model
problems.

4.3.5.1 Two-Dimensional Test Case

The first test case, taken from [33], aims at demonstrating the estimated orders of
convergence in two space dimensions. We solve the Dirichlet problem in the unit
square £2 = (0, 1)2 with

u(x) = sin(mwxy) sin(wxz), 4.79)

and corresponding right-hand side f(x) = 272 sin(wxq) sin(;rxp) on the tri-
angular and polygonal meshes of Fig.4.1a, c. Figure 4.4 displays convergence
results for both mesh families and polynomial degrees up to 4. Recalling (4.51)
and (4.57), we measure the energy- and L>-errors by the quantities ||/ ﬁu —upllan

and ||71,?’ku — uy ||, respectively. In all cases, the numerical results show asymptotic
convergence rates that match those predicted by the theory.

4.3.5.2 Three-Dimensional Test Case

The second test case, taken from [31], demonstrates the orders of convergence in
three space dimensions. We solve the Dirichlet problem in the unit cube £ = (0, 1)3
with

u(x) = sin(rx) sin(xy) sin(wx3),

and corresponding right-hand side f(x) = 372 sin(wxp) sin(;rx) sin(rx3) on a
matching simplicial mesh family for polynomial degrees up to 3. The numerical
results displayed in Fig.4.5 show asymptotic convergence rates that match those
predicted by (4.49) and (4.56). In Fig. 4.6 we display the error versus the total com-
putational time 7 (including the pre-processing, solution, and post-processing). It
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Fig. 4.4 Error vs. h for the test case of Sect.4.3.5.1. (a) ||Iﬁu — Uy lla,n Vs. h, triangular mesh. (b)

||I’;lu — uylla,n vs. h, polygonal mesh. (c) ||rr;?‘ku — up|| vs. h, triangular mesh. (d) ||rr;?‘ku —up|
vs. h, polygonal mesh

)d *+2)/a

. k+1 .
can be seen that the energy- and L?-errors optimally scale as tt(O: andf, ' (with

d = 3), respectively.
4.3.5.3 Three-Dimensional Case with Adaptive Mesh Refinement

The third test case, known as Fichera corner benchmark, is taken from [31] and is
based on the exact solution of [45] on the etched three-dimensional domain 2 =
(=1, D3\ [0, 17%:

u(x) = C/xl2 +x% —i—x%,
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Fig. 4.6 Error vs. total computational time for the test case of Sect.4.3.5.2. (a)
IV APy g, = 1 vs. tior. ) 1Py — ull vs. tior

with right-hand side f(x) = —3/4(x12 +x% + x%)‘y *, In this case, the gradient of the
solution has a singularity in the origin which prevents the method from attaining
optimal convergence rates even for k = 0. In Fig.4.7 we show a computation
comparing the numerical error versus Ngof (cf.(4.39¢)) for the Fichera problem
on uniformly and adaptively refined mesh sequences for polynomial degrees up
to 3. Clearly, the order of convergence is limited by the solution regularity when
using uniformly refined meshes, while using adaptively refined meshes we recover
optimal orders of convergence of N é’jfl)/ “and N é’jfz)/ “ (with d = 3) for the energy-

and L2-errors, respectively.
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Fig. 4.7 Error vs. Ngor for the test case of Sect. 4.3.5.3. (a) Energy-error vs. Ngof. (b) L2-error vs.
Nqof

4.4 A Nonlinear Example: The p-Laplace Equation

We consider in this section an extension of the HHO method to the p-Laplace
equation. This problem will be used to introduce the techniques for the discretization
and analysis of nonlinear operators, as well as a set of functional analysis results of
independent interest. An additional interesting point is that the p-Laplace problem
is naturally posed in a non-Hilbertian setting. This will require to emulate a Sobolev
structure at the discrete level.

Let p € (1, +400) be fixed, and set p’ := p’i |- The p-Laplace problem reads:
Find u : £2 — R such that

—V-(e(Vu) = f in £2,
u=20 on 052,

(4.80)
where [ € LP/(.Q) is a volumetric source term and the function o : RY — R is
such that

o(1) = |t|P %7, (4.81)

The p-Laplace equation is a generalization of the Poisson problem considered in
Sect. 4.3, which corresponds to the choice p = 2.

Classically, the weak formulation of problem (4.80) reads: Find u € W(} P (2)
such that, for all v € W(}’p(.Q),

a(u,v) = / f®)v(x)dx, (4.82)
Q
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where the functiona : Wh?(£2) x WP (§2) — R is such that
a(u,v) = / o (Vu(x))-Vu(x)dx. (4.83)
Q

From this point on, to alleviate the notation, we omit both the dependence of the
integrand on x and the measure from integrals.

4.4.1 Discrete W-P-Norms and Sobolev Embeddings

In Sect. 4.3, the discrete space UI;L,O and the norm |- , have played the role of
the Hilbert space HO1 (§2) and of the seminorm |-| 1), respectively (notice that
|| z71(2) 18 @ norm on HO1 (£2) by virtue of the continuous Poincaré inequality). For
the p-Laplace equation, U ];t,O will replace at the discrete level the Sobolev space
Wé "P(£2). A good candidate for the role of the corresponding seminorm Ilwir )
is the map -1, .5 such that, for all v, € U¥,

allf =Y Ivrlf , (4.84)
TE{‘T;,
where, forall T € T,
1—
orlly 7 = 1Vr ], e+ Y e Plor = vl p (4.85)
FES’FT

The power of A F in the second term ensures that both contributions have the same
scaling. When p = 2, we recover the seminorm ||-||1,, defined by (4.29).

The following discrete Sobolev embeddings are proved in [22, Proposition 5.4].
The proof hinges on the results of [24, Theorem 6.1] for broken polynomial spaces
(based, in turn, on the techniques originally developed in [44] in the context of finite
volume methods). Their role in the analysis of HHO methods for problem (4.82) is
discussed in Remark 4.9.

Theorem 4.5 (Discrete Sobolev Embeddings) Let a polynomial degree k > 0
and an index p € (1, +00) be fixed. Let (My), g denote a regular sequence of
meshes in the sense of Definition 4.3. Let 1 < q < dd_p fl<p<dandl <qg <
400 if p > d. Then, there exists a real number C > 6 only depending on 2, o, |,
p, and q such that, for all v, € UZO,

lvrliza2y < Cllvglit,pos- (4.86)
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Remark 4.7 (Discrete Poincaré Inequality) The discrete Poincaré inequality (4.30)
is a special case of Theorem 4.5 corresponding to p = g = 2 (this choice is possible
in any space dimension).

4.4.2 Discrete Gradient and Compactness

The analysis of numerical methods for linear problems is usually carried out in
the spirit of the Lax—Richtmyer equivalence principle: “For a consistent numerical
method, stability is equivalent to convergence”; see for instance [20] for a rigorous
proof in the case of linear Cauchy problems. When dealing with nonlinear problems,
however, some form of compactness is also required; cf. Remark 4.10 for further
insight into this point. In order to achieve it for problem (4.82), we need to introduce
a local gradient reconstruction slightly richer than V p];‘H; see (4.16).

Let a mesh element T € T be fixed. By the principles illustrated in Sect. 4.3.1.1,
we define the local gradient reconstruction Gl} U I; — ]Pk(T)d such that, for all
v eU k R

Ghor. Or = =1, V-Or+ ) p.rarp)r Ve e YD (487)
FESFT

Notice that here we reverted to the L?-product notation instead of using integrals to
emphasize the fact that the definition of G/} is inherently L>-based.

Remark 4.8 (Relation Between Gl} and pI}H) Taking T = Vw with w € PAHI(T)
in (4.87) and comparing with (4.16a), it is readily inferred that

(Ghvp — Vi o Vuyr =0 vw e PFI(D), (4.88)
ie., Vpl}“vT is the L2-orthogonal projection of GI}UT on VPM1(T) ¢ PX(T)4.
In passing, we observe that for k = 0, using the fact that VPY(T) = PO(T)4, (4.88)
implies that G(%UT = VplTvT.

Choosing a larger arrival space for Gl} has the effect of modifying the commuting
property as follows (compare with (4.17)): For all v € wbhl(T),

(GE o I5yv = 2%* (Vo). (4.89)

At the global level, we define the operator Gﬁ U ﬁ — Pk (‘.Th)d such that, for all
v,elU k,

(Ghor =Ghvy VT €Ty (4.90)
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The commuting property (4.89) is used in conjunction with the properties of
the L2-projector to prove the following lemma, which states the compactness of
sequences of HHO functions uniformly bounded in a discrete Sobolev norm.

Lemma 4.5 (Discrete Compactness) Let a polynomial degree k > 0 and an index
p € (1, +00) be fixed. Let (Mp), q¢ denote a regular sequence of meshes in the
sense of Definition 4.3. Let (vy), 3¢ € (Uﬁ,o)heﬂf be a sequence for which there
exists a real number C > 0 independent of h such that

lvglli,pn <C  Yh e 3.

Then, there exists v € W(} P (82) such that, up to a subsequence, as h — 0,

(i) v, — vandp,ﬁ“vh — v strongly in L1(82) forall1 < q < dd_pp ifl<p<d
and1 < g < +ooifp>d;

(ii) Gﬁvh — Vv weakly in LP (£2)%.

4.4.3 Discrete Problem and Well-Posedness

The discrete counterpart of the function a defined by (4.83) is the function aj :
Uﬁ X U’;l — R such that, for all u;,, v;, € U’,‘l,

an(uy, vy) ::/ o (Ghu)-Grv, + Y stlug. vy). (4.91)
2
TE‘Th

Here, forall T € Tj, st : U ’} x U ’% — R is a local stabilization function which
can be obtained, e.g., by generalizing (4.23) to the non-Hilbertian setting:

st(ug, vy):
1- -
= 3 h [ W = Shurl? 20 pur — Shup) @ oy — Shup).
FEH:T i
(4.92)
The discrete problem reads: Find u), € U 20 such that
ap(uy, v)) = / fun Vv, €U, (4.93)
2

The following result summarizes [22, Theorem 4.5, Remark 4.7, and Proposi-
tion 6.1].
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Lemma 4.6 (Well-Posedness) Problem (4.93) admits a unique solution, and there
exists a real number C > 0 independent of h, but possibly depending on 2, d, o,
and k, such that, denoting by p' := p’i | the dual exponent of p, it holds that

1
Nl pun < CULL Ny P (4.94)

Remark 4.9 (Role of the Discrete Sobolev Embeddings) The discrete Sobolev
embedding (4.86) with ¢ = p is used in the proof of the a priori bound (4.94) to
estimate the right-hand side of the discrete problem (4.93) after selecting v;, = u,,
and using Holder’s inequality:

/-(2 Sfun < ”f“Lp’(Q)””h”LP(.Q) = ”f“Lp’(Q)”uh”l,p,h-

4.4.4 Convergence and Error Analysis

The following theorem states the convergence of the sequence of solutions to
problem (4.93) on a regular mesh sequence. Notice that convergence is proved for
exact solutions that display only the minimal regularity u € W(}’p (£2) required by
the weak formulation (4.82). This is an important point when dealing with nonlinear
problems, for which further regularity can be hard to prove, and possibly requires
assumptions on the data too strong to be matched in practical situations.

Theorem 4.6 (Convergence) Let a polynomial degree k > 0 and an index p €
(1, +00) be fixed. Let (My);, .5 denote a regular sequence of meshes in the sense

of Definition 4.3. Let u € Wol’p(.Q) denote the unique solution to (4.82), and denote

by (up) e3¢ € (Uﬁ o) ne the sequence of solutions to (4.93) on (Tp), (. Then, as
h — 0, it holds

(i) up — uandpz“uh — u strongly in L1(82) forall1 < g < d”ﬁ’p ifl<p<d
and1 <g <+4ooifp >d;
(ii) Glfluh — Vu strongly in LP (2).

Remark 4.10 (Convergence by Compactness) Convergence proofs by compactness
such as that of Theorem 4.6 proceed in three steps: (i) an energy estimate on
the discrete solution is established; (i) compactness of the sequence of discrete
solutions is inferred from the energy estimate; (iii) the limit is identified as being
a solution to the continuous problem. In our context, the first point corresponds to
the a priori bound (4.94), while the second point relies on the compactness result of
Lemma 4.5. The third step is carried out adapting the techniques of [50, 51].

When dealing with high-order methods, it is also important to determine the
convergence rates attained when the solution is regular enough (or when adaptive
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mesh refinement is used, cf. Sect.4.3.5.3). This makes the object of the following
result, proved in [23, Theorem 7 and Corollary 10].

Theorem 4.7 (Energy Error Estimate) Under the assumptions and notations of
Theorem 4.6, and further assuming the regularity u € W22 () and o(Vu) €
WkH’P/(.Q)d with p’ = ’_’1, there exists a real number C > 0 independent of h
such that the following ho/le.' Ifp>2

k+1
||Vh(ph+ u, — ”)”Lp(g)d + |”h|s,h

k+1 k+ll pll pll
< Clh |M|Wk+2,p(_Q) + hp- |M|Wk+2,p(g) + |6(Vu)|wk+l,p’(9)d ,

(4.95a)
while, if p < 2,
IVi(op uy = )l oy + Lty lsn
5c(M““@*ngghmn+h“ﬂaamnWHwnD0, (4.95b)

where, recalling the definition (4.92) of the local stabilization function, we have
introduced the seminorm on U];l such that, for all v, € U%, |v,lsa? = ZTG‘J’;,

ST(UT1 UT).

Remark 4.11 (Order of Convergence) The asymptotic scaling for the approxima-
tion error in the left-hand side of (4.95) is determined by the leading terms in the
right-hand side. Using the Bachmann—Landau notation,

k+1
Ohr-1) if p>2,

(4.96)
OREEDP=Dy if p < 2.

|Wmﬁ“m;mmwmw+mmﬂ=:

For a discussion of these orders of convergence and a comparison with other
methods studied in the literature, we refer the reader to [23, Remark 3.3].

4.4.5 Numerical Example

To illustrate the performance of the HHO method, we solve the p-Laplace problem
corresponding to the exact solution

u(x) = exp(xy + mwxy)
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Fig. 4.8 ||I’;lu —uyll1,p.n vs. h for the test case of Sect.4.4.5. (a) Triangular, p = 7/4. (b)
Hexagonal, p = 7/4. (c) Triangular, p = 4. (d) Hexagonal, p = 4

for p € {7/4,4}. This test is taken from [22, Section 4.4] and [23, Section 3.5]. The
domain is again the unit square £2 = (0, 1)2, and the volumetric source term f is
inferred from (4.80). The convergence results for the same triangular and polygonal
mesh families of Sect.4.3.5.1 (see Fig.4.1a, c) are displayed in Fig. 4.8. Here, the
error is measured by the quantity ||/ ’;lu — uy|l1, p,n, for which analogous estimates
as those in Theorem 4.7 hold. The error estimate seem sharp for p = 7/4, and the
asymptotic orders of convergence match the one predicted by the theory. For p = 4,
better orders of convergence than the asymptotic ones in (4.96) are observed. One
possible explanation is that the lowest-order terms in the right-hand side of (4.95)
are not yet dominant for the specific problem data and mesh. Another possibility is
that compensations occur among terms that are separately estimated in the proof.
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4.5 Diffusion-Advection-Reaction

In this section we extend the HHO method to the scalar diffusion-advection-reaction
problem: Find u : £2 — R such that

V-(=«Vu+ Bu) +uu=f in$2,
u=2~0 on 442,

where (i) k : 2 — Ri is the diffusion coefficient, which we assume piecewise
constant on a fixed partition of the domain P and uniformly elliptic; (ii) B €
Lip(.Q)d (hence, in particular, 8 € W1’°°(.Q)d) is the advective velocity field, for
which we additionally assume, for the sake of simplicity, V-8 = 0; (iii) u € L*°(£2)
is the reaction coefficient such that & > o > 0 a.e. in §2 for some real number pg;
(v) f € L?($2) is the volumetric source term.

Having assumed « uniformly elliptic, the following weak formulation classically
holds: Find u € H] (£2) such that

aepu(u,v) = (fiv)  Yve Hy(R2), (4.98)
where the bilinear form a, g , : HY(£2) x HY(£2) — R is such that

e, g, v) = ac(u,v) +ag ,(u,v),
and the diffusive and advective-reactive contributions are respectively defined by
a,(u,v) := (kVu, Vv), ag,(u,v) = %(ﬁVu, v) — é(u, B-Vv) 4+ (uu, v).

The first novel ingredient introduced in this section is the robust HHO discretiza-
tion of first-order terms. Problem (4.98) is characterized by the presence of spatially
varying coefficients, which can give rise to different regimes in different regions of
the domain. In practice, one is typically interested in numerical methods that handle
in a robust way locally dominant advection, corresponding to large values of a local
Péclet number. As pointed out in [32], this requires that the discrete counterpart of
the bilinear form ag,, satisfies a stability condition that guarantees well-posedness
even in the absence of diffusion. This is realized here combining a reconstruction
of the advective derivative obtained in the HHO spirit with an upwind stabilization
that penalizes the differences between face- and element-based DOFs.

The second novelty introduced in this section is a formulation of diffusive terms
with weakly enforced boundary conditions. A relevant feature of problem (4.98) is
that boundary layers can appear in the vicinity of the outflow portion of 02 when the
diffusion coefficient takes small values. To improve the numerical approximation in
this situation, one can resort to weakly enforced boundary conditions, which do not
constrain the numerical solution to a fixed boundary value.
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The following material is closely inspired by [34], where locally vanishing
diffusion is treated (see Remark 4.15), and more general formulations for the
advective stabilization term are considered.

4.5.1 Discretization of Diffusive Terms with Weakly Enforced
Boundary Conditions

To avoid dealing with jumps of the diffusion coefficient inside the elements when
writing the HHO discretization of problem (4.98) on a mesh My, = (Tp, Fp), we
make the following

Assumption 4.2 (Compatible Mesh) The mesh My, = (Ty,, F) is compatible with
the diffusion coefficient, i.e., for all T € Ty, there exists a unique subdomain o €
Pg such that T C w. Forall T € T}, we set, for the sake of brevity, kT = Kk|T.

Letting ¢ > 0 denote a user-dependent boundary penalty parameter, we define
the discrete diffusive bilinear form a, , : U ];l x U ﬁ — R such that

e p(uy, vy) = Z krar Uy, vy)
TE‘Th

+Z {_(KTFVPI}:IMTF’ vP)F + (uF, KTFVpgilvTF)F +

K
£ty (ur, UF)F} ,
FefF,?

hr
(4.99)

where, for all mesh elements T € 7}, ar is the local diffusive bilinear form defined
by (4.18) and, for all boundary faces F € J, }L’ , Tr denotes the unique mesh element
such that ¥ C 97TF. The terms in the second line of (4.99) are responsible for the
weak enforcement of boundary conditions a la Nitsche.

Define the diffusion-weighted norm on U ﬁ such that, for all v, € U ’,‘l, letting

ozl == ar vy, vp),

2 . 2 KTp 2
loplZ =Y wrlvzlis + > oy Ir I
7eT), FeFy

It is a simple matter to check that, for all { > 1, we have the following coercivity
property for a, 5: Forall v, € U ’,‘l,

o125 < acn vy, vy). (4.100)
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4.5.2 Discretization of Advective Terms with Upwind
Stabilization

We introduce the ingredients for the discretization of first-order terms: a local
advective derivative reconstruction and an upwind stabilization term penalizing the
differences between face- and element-based DOFs.

4.5.2.1 Local Contribution

Letamesh element T € T}, be fixed. By the principles illustrated in Sect. 4.3.1.1, we
define the local discrete advective derivative reconstruction G; U I; — PK(T)

such that, forall vy € U /},

(Gl rvr, wr = —(r, B-Vw)r + Y (B-nrp)ve, w)r VYw € PT).
FEH:T

The local advective-reactive bilinear form ag , 7 : U% x U% — R is defined as
follows:

1 1
ag 7y, vy) == 2(G';,TMT, V)T — 2(Mr, GIE}_TUT)T +sg. 7y, vy) + (uur, vr)r,
(4.101)

where the bilinear form

1
sprlup,vp) = ) 3 (Bnrplr —ur), vp —vr)r, (4.102)
FEH:T

can be interpreted as an upwind stabilization term.

Remark 4.12 (Element-Face Upwind Stabilization) Upwinding is realized here by
penalizing the difference between face- and element-based DOFs. This is a relevant
difference with respect to classical (cell-based) finite volume and discontinuous
Galerkin methods, where jumps of element-based DOFs are considered instead.
With the choice (4.102) for the stabilization term, the stencil remains the same as
for a pure diffusion problem, and static condensation of element-based DOFs in the
spirit of Sect.4.3.2.4 remains possible. In the context of the lowest-order Hybrid
Mixed Mimetic methods, face-element upwind terms have been considered in [5].

To express the stability properties of ag ,, 7, we define the local seminorm such that,
forall vy € U’},

1
2 . 1 2 ~—1 2
lorllg s =, > Bnrel”r —v)lF + 27 lvr 17
FESFT
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where, letting Lg 7 := maxi<i<g |V Billpoo(rye, We have introduced the reference
time

tr := {max(llull oo (ry, Lp,r))

Notice that the map ||-||g,,,7 is actually a norm on U’} provided that Br-nrF is

nonzero a.e. on each F' € Jr. Forall vy € U’}, letting u; = vy in (4.101), it can
be easily checked that the following coercivity property holds:

min(1, 27 o) lvr I3 7 < a1V, V). (4.103)

4.5.2.2 Global Advective-Reactive Bilinear Form

The global advective-reactive bilinear form is given by

1
ag h(Up, vp) 1= Z ag. .1y, vy)+ ) Z (I8njur, vr)F, (4.104)
Te‘.Th Fe.r:F,?

where the first term results from the assembly of elementary contributions, while
the second term is responsible for the enforcement of the boundary condition on the
inflow portion of 052.

Remark 4.13 (Link with the Advective-Reactive Bilinear Form of [34]) The bilinear
formag ,, ; defined by (4.104) admits the following equivalent reformulation, which
corresponds to [34, Eq. (16)] when the upwind stabilization discussed in Section 4.2
therein is used:

ag u.n(up, vp) = Z (—(MT,GIE,TUT)T+ Z ((ﬂ'nTF)i(”F_”T);UF_UT)F)

7Ty Fedr
+ > ur,vpr+ Y (B Tup,vp)p,  (4.105)
TeT), FeF}

where, for any real number o, we have set oF = é (Ja| & «@). As a matter of fact,
recalling the discrete integration by parts formula [34, Eq. (35)],

> (ur, Gy pop)r =— Y (Gy pug, vr)7
TeT), (S

= > > ((Bnrp)wr —ur). ve — vr)F

TE{‘T;, FESFT

+ Y ((Bnrp)up, ve)r.

FeFy
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we can reformulate the first term in the right-hand side of (4.105) as follows:

1 1
Z —(ur, GIE’TUT)T = Z <— 2(MT, G]E,TUT)T - 2(MT, GIE,TUT)T)
TE‘-Th Te‘.Th

1 k 1 k
> =y wr Gl v+ (Gl g vy
TE{‘T;,

1
+, > > (Bnrp)ur —ur),ve —vr)r

TE{‘T;, FESFT

1
5 > ((Bnrp)urp, ve)F.

FeFy

Inserting this equality into (4.105) and rearranging the terms we recover (4.104).
The formulation (4.104) highlights two key properties of the bilinear form ag , j:
its positivity and the skew-symmetric nature of the consistent term. The reformula-
tion (4.105), on the other hand, has a more familiar look for the reader accustomed
to upwind stabilization terms.

Define the global advective-reactive norm such that, for all v, € U k s

1
loallg pon = D2 Worligur+ 5 D NBnPvrlE.
TeTy Fegf,l,’

The following coercivity result for ag ,, 4 follows from (4.103): For all v, € U¥

min (1, 2710) 10413, < 8,00 (Vs V) (4.106)
TE{‘T;,

4.5.3 Global Problem and Inf-Sup Stability

We can now define the global bilinear form a, g ;. : U ];l x U ﬁ — R combining the
diffusive and advective-reactive contributions defined above:

e, B, h Uy, V) = Ay p(uy,, vy) +ag u n(uy,, vy).

The HHO approximation of (4.98) then reads: Find u;, € U ﬁ such that, for all
k
vy eU N

gy Uy, V) = (f, vn). (4.107)
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Let us examine stability. In view of (4.100) and (4.106), the bilinear form a, g ;. 1
is clearly coercive with respect to the norm

2 . 2 2
”Uh”b,h = ||Uh||,(,h + ||Uh||5,ﬂ,hs

which guarantees that problem (4.107) has a unique solution. This norm, however,
does not convey any information on the discrete advective derivative. A stronger
stability result is stated in the following lemma, where we consider the augmented
norm

2 2 Al k2
lallZn = vl + Y. hrBr IGE, 117,
7T, Br#0

with [} 7 = |IBllp=(r)e denoting the reference velocity on 7' and the summand is
taken only if ii r # 0.

Lemma 4.7 (Inf-Sup Stability of a, g ., ») Assume that { > 1 and that, for all
T €Ty,

hy max(Lg.7, ko) < Br. (4.108)

Then, there exists a real number C > 0, independent of h, k, B and u, but possibly
depending on d, o, and k such that, for all w;, € Uﬁ,

. A a,B,u,h (W, Vp)
C min (1, 2rpo) lwyllzn < sup b

TeJy thUi\{Oh} ”Uh”ﬁ,h

Remark 4.14 (Condition (4.108)) Condition (4.108) means (i) that the advective
field is well-resolved by the mesh and (ii) that reaction is not dominant.
4.5.4 Convergence

For each mesh element T € T}, we introduce the local Péclet number such that

hellBiFTFEllLo(F)

Per := max ,
FeJr KF
where kp (= ming T, KT For the mesh elements where diffusion dominates we

have Per < hrp, for those where advection dominates we have Pey > 1, while
intermediate regimes correspond to Per € (hr, 1).
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The following error estimate accounts for the variation of the convergence rate
according to the value of the local Péclet number, showing that diffusion-dominated
elements contribute with a term in O(h’}“) (as for a pure diffusion problem),

. . . . . 1
whereas convection-dominated elements contribute with a term in O(hkTJr / 2) (as for
a pure advection problem).

Theorem 4.8 (Energy Error Estimate) Let u solve (4.98) and u,, solve (4.107).
Under the assumptions of Lemma 4.7, and further assuming the regularity u| €
H**2(T) for all T € Ty, there exists a real number C > 0 independent of h, k., B,
and |1, but possibly depending on p, d, and k, such that

C min (1, lel«O)”ﬁh - ”h”ﬁ,h
Tely

A—1 2(k+1
5{ > [(wuuui,m(T)HT ||u||§,k+1(T))hT< )
TET},

1/2
+/3Tmin<1,PeT>||u||§,k+1(T)h2T"“}} :

Remark 4.15 (Extension to Locally Vanishing Diffusion) Ithasbeen showed in [34]
that the error estimate of Theorem 4.8 extends to locally vanishing diffusion
provided that we conventionally set Per = +oo for any element 7 € T such
that kg = 0 for some F € JFr.

4.5.5 Numerical Example

To illustrate the performance of the HHO method, we solve in the unit square 2 =
(0, 1)? the Dirichlet problem corresponding to the solution (4.79) with 8(x) = (1/2—
x2,x1 — 1/2), w = 1, and a uniform diffusion coefficient « taking values in {1, 1 -
1073, 0}. We take triangular and predominantly hexagonal meshes, as depicted in
Fig.4.1a and c respectively. The convergence results are depicted in Fig. 4.9. We
observe that the convergence rate decreases with «, with a loss slightly less than the
half order predicted by the error estimate of Theorem 4.8.
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Fig. 4.9 ||I’;lu —uyll4,n vs. h for the test case of Sect.4.5.5. (a) k = 1, triangular. (b) x = 1 x

1073, triangular. (¢) k = 0, triangular. (d) ¥ = 1, polygonal. (e) k = 1 x 1073, polygonal. (f)
k =0, polygonal
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Chapter 5 )
Distributed Lagrange Multiplier Shethie
for Fluid-Structure Interactions

Daniele Boffi, Frédéric Hecht, and Olivier Pironneau

Abstract In this paper we make preliminary numerical tests to assess the perfor-
mance of the scheme introduced in Boffi et al. (STAM J Numer Anal 53(6):2584—
2604, 2015) and analyzed in Boffi and Gastaldi (Numer Math 135(3):711-732,
2017) for the approximation of fluid-structure interaction problems. We show how
to implement the scheme within the FreeFem++ framework (Hecht, J Numer
Math 20(3—4):251-265, 2012) and validate our code with respect to some known
problems and benchmarks. The main conclusion is that a simple implementation
can provide quite accurate results for non trivial applications.

5.1 Introduction

The use of a distributed Lagrange multiplier for the modeling and approximation of
interface problems has a long history within approaches based on fictitious domain
techniques [6].

The applications of this methodology for fluid-structure interaction problems
has been rediscovered and discussed in recent research [1, 4] originating from the
immersed boundary method [2, 9]. The theoretical properties of this approach are
quite good, showing unconditional stability for a semi-implicit time discretization
and inf-sup stability for the global saddle point problem under suitable conditions
on the underlying meshes. Our formulation and some of the main results about it
will be summarized in Sect. 5.2.

In this paper we present a series of numerical tests performed with the help of
FreeFem++ [7]. All results are collected in Sect.5.3. In all tests, the agreement
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with the analytical solution (if known) or with solutions present in the literature is
quite good.

One of the main difficulties in the implementation of any fluid-structure inter-
action model, consists in the appropriate treatment of the exchange of information
between fluid and solid. In our formulation the fluid mesh is fixed, while the solid
mesh is defined on a reference configuration and mapped to the actual solid domain
via the (unknown) transformation which defines the position of the body. It turns out
that some terms in our variational formulation need to combine quantities defined
on the fluid and solid meshes. Actually, FreeFem++ has a built in function that
allows the computation of such terms. Our codes are listed in Appendix 1 and some
comments are provided in Appendix 2.

5.2 Problem Setting

The model introduced in [4] can deal with co-dimension zero (thick) or co-
dimension one (thin) bodies immersed in a fluid of two or three space dimensions.
Our numerical tests involve thick bodies in two space dimensions; we recall the
related formulation.

Let £2 be a bounded domain in R? with Lipschitz continuous boundary. We
assume that the domain is partitioned into a fluid part £2 ¢ and a solid part §2; (both
subdomains are time dependent). The solid domain £2; is the image of a reference
domain B C R?. More precisely, the mapping X : B — R? associates to each point
s € B its image x = X(s,7) € £, at time . We denote by o/ and p* the fluid
and solid densities, respectively, by v the fluid viscosity, and by A and p the Lamé
constants.

The problem considered in [4] is the following one: given an initial velocity
u € (H(} (£2))?, an initial body position Xo € (W!*°(B))?, find velocity and
pressure (u(?), p(t)) € (H] (£2))? x L3(£2), body position X(r) € (H'(B))?, and
a Lagrange multiplier A(¢) € A such that for almost every ¢ €]0, T'[ is holds

/Q (,of]D),u(t) = pV u() — p()V -l + ;Du(t) : Dﬁ)
+ /B (c1DA(t) : DAX(1))) + k(1) - 6(X(1))) = 0
V(@ p) € (Hy(2))* x L§(2)

/B ((ps — Do X)) - X + ZDX(t) ‘DX + AV -X(V-X

—c1DA(1) : DX — oA (1) - X
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+c1DA : D(u(t)(X(2)) — 8,X (1)) + 24 - (u(t)(X(1)) — 3tX(t))) =0
VX, A) e (H' (B)? x A, (5.1

where Dy is the total derivative and D is the symmetric gradient.

The constants c1, ¢ and the space A are crucial for the definition of the model
and the subsequent numerical scheme: in our computations we consider both ¢
and ¢, positive and different from zero (H '-based Lagrange multiplier), so that the
space A is (H'(B))2.

5.2.1 Numerical Approximation

The time semi-discretization of Problem (5.1) is constructed as follows: in the first
equation the total derivative is approximated by the Galerkin-characteristic method
(see [10]); the second derivative d;;X(¢) in the second equation is approximated by
X+l —2X" 4 X"~1y/8¢2; 8,X is approximated by (X"*! — X")/8¢; all other
quantities are evaluated implicitly at time n + 1 with the following exception.
Clearly, there is a problem when a term involving @(X) has to be integrated on B.
Treating this term fully implicitly would imply the use of the mapping X"*! which
is not yet available; for this reason we use a semi-implicit scheme where G (X") is
used, instead.

In [4, Prop. 3] it has been shown that the resulting semi-discrete scheme is
unconditionally stable with respect to the time step §¢. The proof is based on
a discrete energy estimate which is analogous to the stability estimate for the
continuous problem:

of
o0 (G = 1) + viDu g
N ps — Pf Xn+1 X" 2 B X" _anl 2
EX"th - EX"
n ( 23; (X™) <0

where the energy E is defined in terms of the energy density W (IF) (F being the
deformation gradient)

E(X(t)):/BW(F(s, t))ds

The numerical approximation of Problem (5.1) is based on a set of four finite
element spaces: Vj, C (HOI(SZ))2 and Qj C L%(Q) are inf-sup stable finite element
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spaces, while S, C (H 1(B))? and A, C A are finite elements defined in the
solid domain. More precisely, V}, and Q), are finite elements defined according to a
triangulation Ty, ; of £2, while S;, and A, are finite elements defined on a mesh Ty,
of the reference solid configuration B.

5.3 Numerical Tests

In all tests the solid is hyper-elastic with Young modulus E, Poisson ratio « and
density p*. The shear modulus is then given by u = E/(1 +«)/2.
The fluid is Newtonian incompressible with density p/ and viscosity v.

5.3.1 Disk Falling in a Liquid

A disk of diameter d is at rest initially centred at x. = W/2, y. = H —hina
rectangular channel of width W and height H. Only the disk is subject to gravity g,
not the fluid. No slip conditions are applied on the walls of the channel.

This test was proposed by Zhao et al. in [12] and more recently by Wang et al. in
[11]. Here we chose Wang’s values for the parameters:

W=2d=0.125 h=05 H =4,
p' =12, k=03, u=10% p/ =1, v=1, g =981 (5.2)

The asymptotic vertical velocity is known to be —0.3567. Figure 5.1 shows the
evolution of the vertical velocity versus time for four meshes: a coarse mesh with

B e
Velocity b
-0.15| 1.2¢
-0.2] 1
-0.25 f‘\\ 1o
\ \'\,\ 0.6}
\ ~
03} —— 1
o | o4l
.0.35| o ] 02}
o Time

0O 02 04 06 08 1 12 14 16 18 2 0O 02 04 06 08 1 12 14 16 18 2

Fig. 5.1 Left: vertical velocity of the solid versus time computed with three body fitted mesh and
one non-body fitted mesh. Convergence seems monotone towards a limit curve for the first three
meshes; the coarse mesh is the highest, the middle mesh is in the middle and the finest mesh is
below. Right: area of the solid divided by 7d? /4, as a function of time
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1182 vertices, a middle mesh with 4693 vertices and a fine mesh with 18,661
vertices. The corresponding time steps are 0.02, 0.01, 0.005.

For these three cases the fluid mesh is modified at each time step to include the
fluid-structure interface as an interline curve made of edges of the triangulation.
Computation is also made on a fourth mesh with 4693 and the initial fluid-solid
interface at time zero but not changed with time. On this fourth mesh precision
degrades with time, probably due to mesh interpolations. On the three previous body
fitted mesh there is convergence to a limit curve, but the asymptotic value seems to
be —0.3788 rather than —0.3567. It could be due to the fact that the fluid model is
extended in the solid leading to an error proportional to p* — p/ . But it could also be
the effect of interpolation needed to computed variables earlier defined on the mesh
before motion. We are currently intersecting meshes to reduce this interpolation
error and preliminary tests (to be published later) point to the direction of a more
accurate falling velocity. On the other hand, mass is remarkably preserved as shown
on Fig. 5.1-right.

A pressure map at t = 0.7 is given on Fig. 5.2-left. Next the same simulation is
done with a very soft material having & = 10. The shape of the solid at r = 0.7
is given with a color map of the yy component of the stress on Fig. 5.2-right. The
computing time for this last test is 434 on a Core i7-2.5GHz on a single core.

For these two simulations the influence of the coefficients ¢; and ¢ are small,
as long as ¢y is not zero. Here both are set at 1. The influence of the degree of
the finite element spaces is also surprisingly small. Both the P2/P1 element for
velocity pressure or the P1-bubble/P1 element gave the same results. Changing P1
into P2 for the Lagrangian coordinates also didn’t make a difference. It seems that
the precision of the method is entirely driven by the quadrature formula used for
the mixed integrals involving a function on the fluid mesh times a function on the
transformed solid mesh.

Fig. 5.2 Left: pressure map at t+ = 0.7 close to the solid disk falling in a liquid. Right: the yy
component of the stress inside a very soft disk falling in a liquid displayed at # = 0.7. The shape is
also the result of the numerical simulation
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Some integrals in the variational formulation involve piecewise polynomial
functions defined on different meshes. We have developed a special quadrature
formula in FreeFem++ (see [7]) to handle them. For instance let u be defined
on mesh 7, and v be defined on mesh 7;” obtained from T} by convecting the
vertices ¢ € T,' with X, namely X (¢") is a vertex of T,). Then for a triangle T
of T, the integral on T of u o X - v is approximated by Z}":I u(XENvEjw;
where &;, w; are a valid set of quadrature points and coefficients for a quadrature
on T (shown in the FreeFem++ code by a parameter in the integral like
int2d (Ths, gft=qf9pT, mapu= [Xo, Yol ).

5.3.2 Validation with a Rotating Disk

The purpose of this test is to compare the numerical solution with a semi-analytical
solution which can be computed to any desired accuracy.

A cylinder contains a fixed rigid cylindrical rod in its center, a cylindrical layer of
hyperelastic material around the rod and the rest is filled with a fluid (see Fig. 5.3).
First the system is at rest and then a constant rotation is given to the outer cylinder.
This cause the fluid to rotate with an angular velocity which depends on the distance
r to the main axis; in turn, because the friction of the fluid at the interface the
hyperelastic material will be dragged into a angular velocity @ which is also only a
function of » and time . Due to elasticity @ will oscillate with time until numerical
dissipation and fluid viscosity damps it.

In a two dimensional cut perpendicular to the main axis, the velocities and
displacements are two dimensional as well. Hence the geometry is a ring of inner
and outer radii, Ry and Ry, with hyperelastic material between Ry and R and fluid
between R and R;. Because of axial symmetry, R is constant, so the geometry does
not change.

In this test Rp = 3, R = 4, Ry = 5. The solid is an hyperelastic material with
w = 100 and A = 2xpu/(1 — 2x) with « = 0.3 and p* = 10. The Newtonian
fluid has v = 1, pf = 1. The velocity of the outer cylinder has magnitude 3. As

outer cylinder

Fig. 5.3 A fluid-structure system inside a rotating cylinder (giving a constant angular velocity
to the fluid outer boundary) with a fixed rod in its center. Left: sketch of the system. Right: a 2d
calculation showing the velocity vectors at time 0.85 for the coarser mesh
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everything is axisymmetric the computation can be done in polar coordinates r, 6,
and the fluid-solid system reduces to

1 ‘
pdv— O [EFrd v+ E5r8,d] =0,
r

al‘d =V, re (R()s Rl)s le() = 07 U|R1 = 31 (53)

with p = p*1,<g + p/ 1,2 &, & = ul,<g, &/ = v1,- g, and with d(r, 0) = 0.

In all 2d computations ¢c; = ¢a = 10 and 8¢ = 0.005. We have verified that a
smaller time step does not improve the precision.

Comparison between this one dimensional approach and the numerical solution
of system (5.1) is given on Fig. 5.3—right, at T = 0.5 and a coarse mesh with 505
vertices. Then the same is computed on a finer mesh having 1986 vertices and finally
with a mesh with 7433 vertices. Results are displayed on Fig. 5.4.

This test has two qualities: (a) the exact solution is easy to compute to any
precision; (b) the geometry does not change and quadrature errors are due only
to quadrature for integrals involving functions on the same domain but with two
different triangulations.

5.3.2.1 Flow Past a Cylinder with a Flagella Attached

This test is known as FLUSTRUK-FSI-3 in [5]. The geometry is shown on Fig.5.5.
The inflow velocity is U =2, u = 210° and p° = p/. After some time a
Karman-Vortex alley develops and the flagella beats accordingly. Results are shown
on Figs.5.5 and 5.6 with a mesh of 9692 vertices and a time step size of 0.0015;
the first one displays a snapshot of the velocity vector norms and the second the
y-coordinate versus time of the top right corner of the flagella.

0.16 T T T T T T T T T 0 s T T T
L2 error on velocity - ) e Fine mesh +
014 | B 1 Velocity norm . 1D solution
' 0.5} % Coarse mesh
- \
0.12 coarse mesh 1 ‘
AL
0.1 r / ]
0.08 - 1 -15}
0.06 ~
. r P 1 \
- 21 \
0.04 medium mesh R \
_— AN
I 251 AN
0.02 . . 1
fine mesh Time Distance to cenis(
0 " . . . . . . . . -3 . . . .
0 005 0.1 015 0.2 025 0.3 0.35 04 045 05 3 3.5 4 4.5 5

Fig. 5.4 Rotating cylinder. Left: Evolution of the L2 error versus time for the three meshes. Right:
velocities normal to the ray at & = /4 versus r — 3, computed on the coarsest meshes shown in
green with continuous line and crosses. The “exact” solution of the one dimensional equation is
shown in blue
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Velocity at 1=3.1785

Fig. 5.5 FLUSTRUK-FSI-3 Test. Color map based on the norm of the fluid and solid velocity
vectors
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Fig. 5.6 FLUSTRUK-FSI-3 Test. Vertical position of the upper right tip of the flagella versus
time shownup tot =5

These numerical results compare reasonably well with those of [5]. The fre-
quency is 5.6 compared to 5.04 and the maximum amplitude 0.018 compared with
0.032. Amplitude is very sensitive to the method (see [8]).

Appendix 1: FreeFem++ Codes

Listing 5.1 Code for the falling disk
int n=20, m=8+n; // higher for fine mesh

int H=4, W=2; // vertical length of fluid box
real h=0.5, R1=0.125%2, R2=R1l, xc=W/2, yc=H-h; // elliptic radii and
center of disk

5 real rhof=1, rhos=1.2, nu=1, penal=le-9;

6 // rho, mu, rescaled : divided by leé6

7 real kappa=0.3, /+E=le4, mu=E/(l+kappa)/2 */ mu=lel, lambda=2+kappa*mu
/ (1-2+kappa) ;

8 real gravity=981;

9 real T=0.7, dt=0.1/n, dt2=dAdtxdt;

10 real cl=1, c¢2=10; // Lagrange multiplier constants: H1 -> 1,1, L2 -> 0,1

B W=

12 // mesh Thf=square (10+n,H*n, [x,H+y]); // fluid + solid domain
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13

14  border al(t=0,1){x=W+t; y=0;}

15 border a2(t=0,1) {x=W; y=Hxt;}

16 border a3 (t=1,0) {x=Wxt; y=H;}

17  border a4 (t=1,0){x=0;y=Hxt;}

18 Pborder C(t=0,2xpi){x=xc+R1lxcos(t); y=yc+R2+sin(t);}

19 mesh Thsi = buildmesh(C(m)); // Initial solid domain

20 fespace Whi(Thsi,P1);

21  Whi Xoi=x,Yoi=y;

22 reallint] xx(m), yy(m);

23  int[int] nn(m);

24 for(int i=0;i<m;i++) {xx[i] =xc+R1l+cos (2+ixpi/(m)); yy[il=yc+R2xsin (2+ixpi
/(m)); nn[il=2;}

25 border D(t=0,1;1i)

26 int ii = (i+41)%m; real tl = 1-t; real x1 = xx[1]+tl + xx[ii]«*t;

27 real y2 = yy[i]l*tl + yy[ii]lxt; x= Xoi(x1l,y2); y=Yoi(xl,y2);

29 plot(D(nn));

30 mesh Ths = buildmesh(D(nn)) ;

31 mesh Thso=Ths;

32 mesh Thf= buildmesh(al(Wxn/2)+a2 (Hxn)+a3 (W+n)+a4 (Hxn) +D(nn)) ;
33 //plot(al(10+n)+a2 (H+n)+a3 (10+n)+a4 (H+n)+D(nn)) ;

34 plot(Thf,Thso, cmm="Initial configuration") ;

35

36

37 fespace Vh(Thf,Plb); // velocity space

38 fespace Qh(Thf,Pl); // pressure space

39 fespace Wh(Ths,Plb); // Lagrangian coordinates X,Y space

40 fespace Lh(Ths,Pl); // Lagrangian multiplier space

41 fespace zh(Thf, [Plb,Plb,P1]); // fluid space

42 fespace Rh(Ths, [P1,P1,P1lb,P1b]l);// solid space

43

44  Vh u,v,uh,vh;

45  0Qh p,ph;

46 Wh Xoo=x-0.x(x-xc),Yoo= y-0.x(y-yc); // the X,Y are now the

displacements
47 Rh [lamx,lamy,X,Y], [lamxo, lamyo,Xo,Yol=[0,0,x,y];//x- (x-xc)/2,y+(y-yc)
/21;

48 zh [uo,vo,pol=[0,0,0];

49

50

51 macro div(u,v) ( dx(u)+dy(v) ) // EOM

52 macro Grad(u,v) [[dx(u),dy(u)], [dx(v),dy(v)]] // EOM

53 macro DD(u,v) [[2%dx(u),div(v,u)], [div(v,u),2%dy(v)]] // EOM

54

55 wvarf aa(l[u,v,pl], [uh,vh,ph]) =

56 int2d(Thf) (rhof* [u,v]’* [uh,vh] /dt- div (uh,vh)*p -div(u,v)*ph

57 + penalxp*ph + nuxtrace (DD (uh,vh)’*DD(u,v))/2)

58 + on(1,3,u=0,v=0) + on(2,4,u=0) ;

59

60 varf bb([lamx,lamy,X,Y], [lamxh, lamyh,Xh,Yh]) =

61 int2d (Ths) ( (rhos-rhof) * (XxXh+Y+Yh) /dt2

62 - clxtrace(Grad(lamx,lamy)’*Grad(Xh,Yh)) - c2*(lamx
*Xh+lamyxYh)

63 - clxtrace(Grad(lamxh, lamyh)’'*Grad(X,Y))/dt - c2=(
lamxh+X+lamyh*Y) /dt

64 + muxtrace (DD (X,Y)’xDD(Xh,Yh))/2 + lambdaxdiv (X,Y)
div (Xh, Yh)

65 + penalx (lamx*lamxh+lamy+lamyh)

)i

66

67 wvarf ab([u,v,p], [lamxh, lamyh,Xh,Yh]) =

68 int2d(Ths, gft=qf9pT, mapu= [Xo, Yol ) (

69 clxtrace (Grad(lamxh, lamyh) ’ » (Grad (Xo, Yo) *Grad (u, v

)))
70 + c2x (lamxh+u+lamyh+v)) ;
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varf ba([lamx,lamy,X,Y], [uh,vh,ph]) =
int2d(Ths, gft=gf9pT, mapt=[Xo, Yol ) (
clxtrace (Grad(lamx, lamy) ’ * (Grad (Xo, Yo) *Grad (uh, vh
)))

+ ¢2x (lamxxuh+lamy*vh)) ;

varf rhsil([u,v,p], [uh,vh,ph]) =
int2d(Thf) (-rhof+gravity*vh * 0 // 0=no gravity in the fluid
+ rhofxconvect ( [uo,vo], -dt,uo) xuh/dt
+ rhofxconvect ( [uo,vo], -dt,vo) »vh/dt)
+ on(l,3,u=0,v=0) + on(2,4,u=0,v=0) ;

varf rhs2([lamx,lamy,X,Y], [lamxh,lamyh,Xh,Yh]) =
int2d(Ths) (- (rhos-rhof) xgravity*Yh + 2x (mu+lambda) *div (Xh, Yh)
- clxtrace(Grad(lamxh, lamyh) ' *Grad (Xo, Yo)) /dt
- c2x (lamxhxXo+lamyhxYo) /dt
- (rhos-rhof) * ( (Xoo0-2%X0) *Xh+ (Yoo-2%Yo) xYh) /dt2) ;

for (int i=0;i<T/dt;i++)

// cout<<"time= "<<ixdt<<endl;
real [int] RHS1 = rhs1(0,Zzh);
real [int] RHS2 = rhs2(0,Rh);
matrix AA = aa(zh,zh);
matrix AB = ab(zh,Rh);
matrix BA = ba(Rh,zh) ;
matrix BB = bb(Rh,Rh)

i

matrix AABB = [ [AA,BA], [AB,BB] 1;

set (AABB, solver=sparsesolver,master=-1) ;
real [int] rhs = [RHS1, RHS2];

real [int] w=AABB”"-1l+rhs;

Xoo=Xo; Yoo=Yo; Xoi=Xo; Yoi=Yo;
[uo[],lamxo[]] = w;
Thso = buildmesh(D(nn)) ;

Thf= buildmesh(al (W+n/2)+a2 (Hxn) +a3 (Wxn)
+a4 (H+n) +D (nn) ) ;

[uo,vo,pol =[uo,vo,po] ; [lamxo,lamyo,Xo,
Yo] = [lamxo, lamyo, Xo, Yol ;

cout<<ixdt<<" "<<int2d(Thso) (Yo-Yoo) /R1/
R1/pi/dt<<" "<<int2d(Thso) (vo)/R1/R1
/pi<<" area= "<<int2d(Thso) (1.)/R1/
R1l/pi<<" velocity "<<endl;

uh=sgrt (uo*uo+vo*Vvo) ;

plot (Thf, Thso, uh, value=1, fill=0, coef=100, cmm="t="+
1xdt+" Velocity") ;
}
Thf = buildmesh(al (Wxn/2)+a2 (Hxn)+a3 (W+n)+a4 (Hxn) +D (nn) ) ;

[uo, vo, pol =[uo, vo, pol ;
plot (vo, value=1, fill=0,
fespace Bh(Thso,P1) ;

Bh s,sh;

solve bbc(s,sh)= int2d(Thso) (s*sh + 0.01lx (dx(s)*dx(sh)+dy(s)*dy(sh)))
-int2d(Thso) (sh* (muxdy (vo) + lambdax* (dx(uo)+dy(vo)))) ;

plot(s);

coef=100, cmm="t="+T+" Pressure ");

Listing 5.2 Code for the rotating disk test

(o I e Y O

load "MUMPS"
load "pipe"
verbosity=0;

int n=20; // higher for fine mesh
real RO=1, R1=2, R2=3, gravity=0, ringvelocity=-3;
real kappa=0.3, /*E=le4, mu=E/(l+kappa)/2 =/ mu=le2, lambda=2xkappaxmu

/ (1-2xkappa) ;
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9 real rhof=1, rhos=10, nu=1l, penal=le-6;
10 real c1=10,c¢2=10,T=0.5, dt=0.005, dt2=dtxdt;

12 real delta=0.05;

13  border CF(t=0,2#pi){x=R2xcos(t); y=R2#sin(t);} // fluid

14  border Cs(t 0,2%pi) {x=Rlxcos(t); y=Rlxsin(t);} // solid

15 border CC(t=0,2#pi) {x= RO*cos(t); y=RO*sin(t);} // clamped

16 border Cl(t 0,2xpi) {x=(R1-delta) xcos(t); y=(Rl-delta)ssin(t);} // solid

17 border C2(t=0,2xpi) {x=(R1l-delta/2)xcos(t); y=(Rl-delta/2)ssin(t);} //
solid

18 border C3(t=0,2xpi) {x=(Rl+delta/2)xcos(t); y=(Rl+delta/2)xsin(t);} //
solid

19 border C4(t=0,2+pi) {x=(Rl+delta)*cos(t); y=(Rl+delta)+sin(t);} // solid

20 mesh Thf = buildmesh(CC(-10%n) /#++C1(10%n)+C2(10%n)+C3(10%n) +C4(10+n)x*/
+CS(10%n) +CF (10%n)) ;

21 mesh Ths = buildmesh(CC(-10%n)+CS(10%n));

22 mesh Thso=Ths;

23 // plot(Thf,Ths);

24 fespace Vh(Thf,P2);

25 fespace Qh(Thf,P1);

26 fespace Wh(Ths,P1);

27 fespace Lh(Ths,P1);

28 fespace Zh(Thf, [P2,P2,P1]);

29 fespace Rh(Ths, [P1,P1,P1,P1]);

30
31 Vh u,v,uh,vh;
32 ¢h p,ph;

33 Wh Xoo=x,Yoo=y;
34 Rh [lamx,lamy,X,Y], [lamxo, lamyo,Xo,Yol=[0,0,x,y];//x- (x-xc)/2,y+ (y-yc)

/2] ;

35 zh [uo,vo,pol=[0,0,0];

36

37 macro div(u,v) ( dx(u)+dy(v) ) // EOM

38 macro Grad(u,v) [[dx(u),dy(u)], [dx(v),dy(v)]] // EOM

39 macro DD(u,v) [[2%dx(u),div(v,u)], [div(v,u),2*dy(v)]] // EOM

40

41 wvarf aa([u,v,pl, [uh,vh,ph]) =

42 int2d(Thf) (rhof* [u,v]’* [uh,vh] /dt- div (uh,vh)*p div(u v) *ph

43 + penalpxph + nuxtrace (DD (uh,vh)’ DD (u )/2)

44 + on(CC,u=0,v=0) + on(CF,u:—ringvelocity*y/RZ,vfrlngveloc1ty*x

/R2) ;

45

46 varf bb([lamx,lamy,X,Y], [lamxh, lamyh,Xh,Yh]) =

47 int2d(Ths) ( (rhos-rhof) » (X*Xh+Y+Yh) /dt2

48 - clxtrace(Grad(lamx,lamy)’*Grad(Xh,Yh)) - c2*(lamx
*Xh+lamyxYh)

49 - clxtrace(Grad(lamxh, lamyh)’'*Grad(X,Y))/dt - c2=(
lamxh+X+lamyh«Y) /dt

50 + muxtrace (DD (X,Y)’*DD(Xh,Yh))/2 + lambdaxdiv (X,Y)
div (Xh, Yh)

51 + penalx* (lamx+lamxh+lamy+*lamyh)

)i

52

53 wvarf ab([u,v,p], [lamxh, lamyh,Xh,Yh]) =

54 int2d(Ths, gft=qf9pT, mapu= [Xo, Yol ) (

55 clxtrace (Grad(lamxh, lamyh) ’ * (Grad (Xo, Yo) *Grad (u, v

)))

56 + c2x (lamxhsu+lamyhsv)) ;

57

58 wvarf ba([lamx,lamy,X,Y], [uh,vh,ph]) =

59 int2d(Ths, gft=qgf9pT, mapt=[Xo, Yo]) (

60 clxtrace (Grad(lamx, lamy) ' * (Grad (Xo, Yo) *Grad (uh, vh

)))
61 + ¢2x (lamxxuh+lamy*vh)) ;
62

63 varf rhsl([u,v,pl, [uh,vh,phl) =
64 int2d(Thf) ( rhofxconvect ( [uo,vo], -dt,uo) »uh/dt
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+ rhofxconvect ( [uo,vo], -dt,vo) »vh/dt)
+ on(CC,u=0,v=0) + on(CF,u=-ringvelocity*y/R2,v=ringvelocityx*
x/R2) ;

varf rhs2([lamx,lamy,X,Y], [lamxh, lamyh, Xh,Yh]) =
int2d(Ths) ( 2 (mu+lambda) *div (Xh, Yh)
- clxtrace(Grad(lamxh, lamyh) ' *Grad (Xo, Yo)) /dt
- c2x (lamxhxXo+lamyh«+Yo) /dt
- (rhos-rhof) * ( (Xoo0-2%X0) *Xh+ (Yoo-2%Yo) «Yh) /dt2) ;

L1117 77777777777

//// semi-analytic solution by solving a 1d problem /////

mesh Th=square(100,1, [RO+(R2-R0O)*x,0.1%y]);

fespace WWh(Th,P2,periodic=[[1,x], [3,x]]);

fespace WO (Th, P1dc) ;

WWh d=0,wo,wh,wold=0;

WO nnu=nux (x>R1)+muxdtx (x<=R1), Rho=rhofx* (x>R1)+ (rhos-rhof)  (x<=R1) ;

problem AAld(wo,wh) = int2d(Th) (Rho*xxwo+wh/dt+x*nnu+dx (wo) *dx (wh) )
+ int2d(Th) ( -Rhoxx*woldxwh/dt + mux (x<=R1) *xxdx
(d) xdx (wh) )

+on (2,wo=ringvelocity)+on(4,wo=0);// this is the
one-d axisymmetric problem

L1111 7777777777777 7777777777777 77777/

pstream pgnuplot ("gnuplot" ); // prepare gnuplot //////////////
int NT=T/dt,J=40;
real l2error=0, dr = (R2-R0O)/(J-1);

L1110 eime Toop S/ /S
for (int i=0;i<NT;i++){
// cout<<"time= "<<ixdt<<endl;
real [int] RHS1 = rhsl1(0,2Zh);
real [int] RHS2 = rhs2(0,Rh);
matrix AA = aa(zh,zh);
matrix AB = ab(zh,Rh);
matrix BA = ba(Rh,zh);
matrix BB = bb(Rh,Rh);

matrix AABB = [ [AA,BA], [AB,BB] ];
set (AABB, solver=sparsesolver,master=-1) ;
real [int] rhs = [RHS1, RHS2];
real [int] w=AABB”"-1l+rhs;
Xoo=X0; Yoo=Yo;
[uo[],lamxo[]] = w;

// cout<<i*dt;<<" "<<int2d(Thso) (Yo-Yoo) /R1
/R1/pi/dt<<" "<<int2d(Thso) (vo)/R1/R1/pi<<" area= "<<int2d(Thso) (1.)
/R1/R1/pi<<" velocity "<<endl;

// uh=sqgrt (u0*uo+vo*vo) ;

///////7///////// for error plot ///////////////////////
AA1d;
d=d+woxdt ;
wold=wo; // this is for the one-d axisymmetric problem
ofstream £ ("aux.gp");
for (int j=0;3j<J;j++) {
f << J*dr << " << vo(RO+j=*dr,0) <<" "<< wo (RO
+j*dr,0.05) << endl;
l2error += (vo(RO+j*dr,O)—wo(RO+j*dr,O.05))A2*dt
}
pgnuplot << " plot [0:2] [-3:0.51]’aux.gp’ u 1:2 w 1,’aux
.gp’ u 1:3 w 1l"<< endl;
cout<<ixdt<<" '"<<sqgrt(l2error)/T<<endl;
flush (pgnuplot) ;
}

plot (Ths, Thf, [uo,vo] ,£fill=1, coef=0.1, cmm="t="+T, wait=1) ;

for (int j=0;j<J;j++)
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124

125

126

cout<< j*dr<<" "<< vO(RO+jxdr,0)<<" "<<wo(RO+j*dr,0.05)<<" "<<vo(RO+
Jj*dr,0) -wo (RO+j+dr, 0.05) <<endl;

// copy past the numbers in a file "results.txt", call gnuplot and do
in the gnuplot terminal window:

// plot'"results.txt"using 1:2,"results.txt"using 1:3 w 1

Listing 5.3 Code for FSI-3 test

26
27
28

29
30

31
32

40

41

4

44
45

46
47
48
49

verbosity=0;
int n=2, m=2+n, NN=500xm; // higher for fine mesh

real rhof=1, rhos=1, nu=0.001, penal=le-9;

// rho, mu, rescaled : divided by leé6

real kappa=0.4, E=le6, mu=2e3, lambda=2x+kappaxmu/(l-2x+kappa);

real Ubar=2, gravity=0%981;

real T=6, dt=T/NN, dt2=dt=xdt;

real cl=1, c2=1; // Lagrange multiplier constants: H1 -> 1,1, L2 -> 0,1

// mesh Thf=square(10+n,Hsn, [x,H+y]); // fluid + solid domain

int lal=10, la2=11;

real ¢cx0 = 0.2, cy0 = 0.2; // center of cyl.

real r=0.05, H=0.41, L=2.5; // radius of cylinder, size of domain
real 11=0.35, h2=0.01;//flagella length and half thickness

real la=asin(h2/r), x0=sqrt (rxr-h2+h2);

border fril(t=0,L){x=t; y=0; label=1;} // outer box begins

border fr2(t=0,H){x=L; y=t; label=2;}

border fr3(t=L,0){x=t; y=H; label=1;}

border fr4(t=H,0){x=0; y=t; label=3;} // outer box ends

border fr5(t=la,2xpi-la){x=cx0+r*cos(-t); y=cyO+rxsin(-t); label=4;}

border brl(t=-la,la){x=cx0+r*cos(-t); y=cyO+r+«sin(-t); label=4;} // flag
begins

border br2(t 0,11) {x=cx0+x0+t; y=cy0-h2;label=1lal;}

border br3 (t=-h2,h2) {x=x0+cx0+11; y=cyO+t;label=1lal;}

border br4 (t= ll O){x:cx0+x0+t; y=cy0+h2;label=1al;} // flag

ends

mesh Thf=buildmesh (frl (20%m)+fr2(3.25%m)+fr3 (20+m) +fr4 (4+m)+fr5(12+m) +
brl (m)+br2 (12+m) +br3 (2+m) +br4 (12+m)) ;

mesh Thsi = buildmesh (brl (m)+br2 (12+m)+br3 (m)+brs (12+m)); // Initial
solid domain

fespace Whi (Thsi,P1);
Whi Xoi=x,Yoi=y;
real [int] xx(25xm+1l), yy(25%m+1l) ;
int [int] nn(25%m) ;
for (int i=0;i<=25%m;i++) {
if (i<=124m){ real t=11%i/(12.0s%m); xx[i]=cx0+x0+t; yy[il=cy0-h2;

else if (i<=13m) {real t=2xh2x(i-12.0+m)/m-h2; xx[i]=x0+
cx0+11; yyl[il=cyo0+t;}

else { real t=11-11%(i-13+%m)/(12.0m); xx[i]=cx0+x0+t;
yy[i]l=cy0+h2; }

if (i<25+m) nnl[i]=2;

}
border D(t=0,1;1)
int ii = (i+1)%(25*m+1); real tl = 1-t; real x1 = xx[i]*tl + xx[
ii] xt;
real y2 = yy[i]l*tl + yy[ii]lxt; x= Xoi(x1l,y2); y=Yoi(xl,y2);
label=1al;

plot (brl(m) + D(nn));
mesh Ths = buildmesh(brl(m) + D(nn));

141



87
88
89
90
92

93
94

D. Boffi et al.

int nbA;
real xnear=x0+cx0+11+3xh2, ynear=cy0-3+h2, distmin=10;
plot (Ths) ;

mesh Thso=Ths;

//mesh Thf= buildmesh (al (W+n/2)+a2 (Hxn)+a3 (W+n)+a4 (H+n)+D (nn)) ;
//plot(al(10+n)+a2 (H+n)+a3 (10+n)+a4 (H+n)+D (nn)) ;

plot (Thf, Thso, cmm="Initial configuration") ;

fespace Vh(Thf,P1lb); // velocity space

fespace Qh(Thf,Pl); // pressure space

fespace Wh(Ths,P1lb); // Lagrangian coordinates X,Y space
fespace Lh(Ths,Pl); // Lagrangian multiplier space
fespace Zzh(Thf, [Plb,Plb,P1]); // fluid space

fespace Rh(Ths, [P1,P1,P1lb,P1b]);// solid space

Vh u,v,uh,vh;

Qh p,ph;

Wh Xoo=x,Yoo= y; // the X,Y are now the displacements

Rh [lamx,lamy,X,Y], [lamxo,lamyo,Xo,Yol=[0,0,x,y];//x- (x-xc)/2,y+ (y-yc)
/21;

zh [uo,vo,pol=[0,0,0];

macro div(u,v) ( dx(u)+dy(v) ) // EOM
macro Grad(u,v) [[dx(u),dy(u)], [dx(v),dy(v)]1] // EOM
macro DD (u,v) [[2%dx (u) ,div(v,u)], [div(v,u),2+dy(v)]] // EOM

varf aa([u,v,pl, [uh,vh,ph]) =
int2d(Thf) (rhof* [u,v]’* [uh,vh] /dt- div (uh,vh)*p -div (u,v)*ph
+ penal+pxph + nuxtrace (DD (uh,vh)’*DD(u,v))/2)
+ on(l,4, u=0,v=0) + on(3,u=Ubar+yx (H-y)+6/H/H,v=0)

varf bb([lamx,lamy,X,Y], [lamxh, lamyh,Xh,Yh]) =
int2d (Ths) ( (rhos-rhof) * (XxXh+Y+Yh) /dt2
- clxtrace(Grad(lamx,lamy)’*Grad(Xh,Yh)) - c2*(lamx
*Xh+lamyxYh)
- clxtrace(Grad(lamxh,lamyh) ' *Grad(X,Y))/dt - c2x(
lamxh+X+lamyh«Y) /dt
+ muxtrace (DD (X,Y)’xDD(Xh,Yh))/2 + lambdaxdiv (X,Y)
div (Xh, Yh)
+ penalx (lamx*lamxh+lamy+lamyh)
)
+ on(4,X=x,Y=y);

varf ab([u,v,p], [lamxh, lamyh,Xh,Yh]) =
int2d(Ths, gft=gf9pT, mapu= [Xo, Yol ) (
clxtrace (Grad(lamxh, lamyh) ’ « (Grad (Xo, Yo) *Grad (u, v
)))

+ c2x (lamxh+u+lamyhxv)) ;

varf ba([lamx,lamy,X,Y], [uh,vh,ph]) =
int2d(Ths, gft=gf9pT, mapt=[Xo, Yol ) (
clxtrace (Grad(lamx, lamy) ’ * (Grad (Xo, Yo) *Grad (uh, vh
)))

+ c2x (lamxxuh+lamy*vh)) ;

varf rhsl([u,v,p], [uh,vh,ph]) =
int2d(Thf) (-rhof+gravity*vh * 0 // 0=no gravity in the fluid
+ rhofxconvect ( [uo,vo], -dt,uo) xuh/dt
+ rhofxconvect ( [uo,vo], -dt,vo) xvh/dt)
+ on(l,4, u=0,v=0) + on(3,u=Ubar*y*(H-y)*6/H/H,v=0) ;

varf rhs2([lamx,lamy,X,Y], [lamxh,lamyh,Xh,Yh]) =
int2d(Ths) (- (rhos-rhof) xgravity*Yh + 2x (mu+lambda) *div (Xh, Yh)
- clxtrace(Grad(lamxh, lamyh) ' *Grad (Xo, Yo)) /dt
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111 - c2x (lamxhxXo+lamyhxYo) /dt

112 - (rhos-rhof) * ( (Xoo-2xX0) *Xh+ (Yoo-2+Y0) »Yh) /dt2)
113 + on(4,X=x,Y=y) ;

114

115 real t0=0, MMCL=-100, MCL=-100,maxCL=-100,minCL=100;
116  for(int i=0;i<T/dt;i++){

117 // cout<<"time= "<<ixdt<<endl;

118 real [int] RHS1 = rhsl1(0,Zh);

119 real [int] RHS2 = rhs2(0,Rh);

120 matrix AA = aa(zh,zh);

121 matrix AB = ab(zh,Rh);

122 matrix BA = ba(Rh, Zh);

123 matrix BB = bb(Rh,Rh);

124

125 matrix AABB = [ [AA,BA], [AB,BB] ];

126 set (AABB, solver=sparsesolver,master=-1) ;

127 real [int] rhs = [RHS1, RHS2];

128 real [int] w=AABB”"-1l+rhs;

129 Xoo=X0; Yoo=Yo;

130 Xoi=Xo; Yoi=Yo;

131 [uo[],lamxo[]] = w;

132 Thso = buildmesh(brl(m) + D(nn)) ;

133 Thf= buildmesh (frl (20+m)+£fr2(3.25%m)+£fr3

(20%m) +fr4 (4+m) +£r5(12*m) + brl(m) +
D(nn)) ;
134 // plot (brl(m) + D(nn));
135 [uo,vo,pol=[uo,vo,pol ; [lamxo, lamyo,Xo,
Yo] =[lamxo, lamyo, Xo, Yol ;

136 uh=sgrt (uo*uo+vo*Vvo) ;

137 plot (Thf, Thso, uh, value=1, fill=1, coef=100, cmm="t="+

ixdt+" Velocity") ;

138 int nba;

139 real xnear=x0+cx0+11+3+h2, ynear=cy0-3+*

h2, distmin=10;

140 for (int k=0;k<Ths.nv;k++)

141 if ((Thso (k) .x-xnear) "2 +
(Thso (k) .y-ynear) “2
< distmin)

142 {distmin=(Thso (k

) .x-xnear) "2
+ (Thso (k).

y-ynear) “2;

nbA=k; }

143 real CL=Thso (nbA) .y;

144 if (minCL>CL) minCL=CL;

145 if (MMCL<MCL && CL<MCL && MCL>0.2 && MMCL

>0.2) {

146 cout<<"ft= "<<1./(ixdt-t0)<<"

minCL= "<<minCL

147 <<" maxCL= "<<MCL<<" (max-min)

/2= "<< (MCL-minCL) /2<< endl

148 MCL=-100; MMCL=-100;

149 t0=1ixdt; minCL=10;

150

151 MMCL=MCL; MCL=CL;

152 cout<<ixdt<<" "<<Thso(nbA) .x<<" "<<Thso

(nbA) .y<<" " << int2d(Thso) (1.)<<
endl;
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Appendix 2: Some Comments on the Codes

We assume that the reader has a basic experience with FreeFem++. The codes
are then pretty straightforward to be understood. Given the fluid mesh Thf, for
instance, the definition of the finite element spaces for the approximation of the
Navier—Stokes equation is performed with the following lines

fespace Vh(Thf,P1lb);
fespace Qh(Thf,P1);

in the case of the MINI element [3], or with the following lines

fespace Vh(Thf, P2);
fespace Qh(Thf,P1);

if the user prefers Taylor—Hood element. Analogous definition can be used for the
two finite element spaces based on the solid mesh Ths, for instance,

fespace Wh(Ths,P1);
fespace Lh(Ths,P1l);

Like in all fluid-structure interaction problems, one of the crucial parts of the
code consists in the evaluation of the terms involving an interaction between the
fluid and solid meshes. This occurs in two places of our code: in the assembly of the
bilinear form ab and of ba. Let us look in more detail at the assembly of ab, for
instance. The bilinear form to be approximated is

ab((u, p): (1, X)) =/B(C1Di:Du(X)+czi-u(X)) ds

and the crucial terms involve u(X) where the finite element function u, defined
on the mesh Thf has to be evaluated on X which is defined on the mesh Ths. This
interpolation problem is naturally solved by using the option mapu in the evaluation
of the integral as follows:

varf ab([u,v,p], [lamxh,lamyh,Xh,Yh]) =
int2d (Ths, gft=gf9pT, mapu= [Xo, Yol ) (
clxtrace (Grad (lamxh, lamyh) ’
* (Grad (Xo, Yo) *Grad (u,v)))
+ 2% (lamxhxu+lamyhxv)) ;

Analogously, when the mapping between the meshes involves the test function,
as in the case of the definition of ba, the option mapt comes into play. In this
particular case, the bilinear form

ab((x, X); (1, ﬁ)=/B(C1Dx:Dﬁ(X)+c2x-ﬁ(X)) ds
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can be described with the following code instruction

varf ba([lamx,lamy,X,Y], [uh,vh,ph]) =
int2d (Ths,qft=gf9pT, mapt=[Xo ,Yo]) (
clxtrace (Grad(lamx, lamy) ’
* (Grad (Xo, Yo) xGrad (uh, vh) ) )
+ c2* (lamx*uh+lamyxvh)) ;
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Chapter 6 )
Generalization of the Pythagorean Shethie
Eigenvalue Error Theorem and Its

Application to Isogeometric Analysis

Michael Barton, Victor Calo, Quanling Deng, and Vladimir Puzyrev

Abstract This chapter studies the effect of the quadrature on the isogeometric
analysis of the wave propagation and structural vibration problems. The dispersion
error of the isogeometric elements is minimized by optimally blending two standard
Gauss-type quadrature rules. These blending rules approximate the inner products
and increase the convergence rate by two extra orders when compared to those
with fully-integrated inner products. To quantify the approximation errors, we
generalize the Pythagorean eigenvalue error theorem of Strang and Fix. To reduce
the computational cost, we further propose a two-point rule for C! quadratic
isogeometric elements which produces equivalent inner products on uniform meshes
and yet requires fewer quadrature points than the optimally-blended rules.

6.1 Introduction

Partial differential eigenvalue problems arise in a wide variety of applications,
for example the vibration of elastic bodies (structural vibration) or multi-group
diffusion in nuclear reactors [58]. Finite element analysis of these differential
eigenvalue problems leads to the matrix eigenvalue problem with the entries of the
matrices which are usually approximated by numerical integration. The effect of
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these numerical integration methods on the eigenvalue and eigenfunction errors has
been investigated in the literature; see for example Fix [29], Strang and Fix [58],
and others [8—10]. Sharp and optimal estimates of the numerical eigenfunctions and
eigenvalues of finite element analysis are established in [8, 9].

Hughes et al. [41] unified the analysis of the spectrum properties of the eigen-
value problem with the dispersion analysis for wave propagation problems. They
established a duality principle between them: any numerical scheme that reduces
the dispersion error of the wave propagation problems reduces the eigenvalue errors
of the different eigenvalues problems and vice versa. Moreover, they share the same
convergence property in the sense of convergence rates [15, 43, 54]. In this work,
we focus on developing quadrature rules to optimize the dispersion errors and then
apply these rules to the approximation of differential eigenvalue problems.

The dispersion analysis of the finite element method and spectral element
method has been studied extensively; see for example Thomson and Pinsky[59, 60],
Ihlenburg and Babuska [44], Ainsworth [1-3], and many others [23, 28, 35—
38, 45, 46, 63]. Thomson and Pinsky studied the dispersive effects of using the
Legendre, spectral, and Fourier local approximation basis functions for finite
element methods when applied to the Helmholtz equation [59]. The choice of the
basis functions has a negligible effect on the dispersion errors. Nevertheless, the
continuity of the basis functions has a significant impact. Hughes et al. [41] showed
that high continuities (up to C?~! for p-th order isogeometric elements) on the basis
functions result in dramatically smaller dispersion errors than that of finite elements.

Ainsworth [1] and [2] established that the optimal convergence rate, which is
of order 2p, of the dispersion error for the p-th order standard finite elements
and spectral elements, respectively. The work was complete as they established the
analysis for arbitrary polynomial order. The dispersive properties of these methods
have been studied in detail and the most effective scheme was conjectured to be a
mixed one of these two [3, 49, 56]. Ainsworth and Wajid beautifully established the
optimal blending of these two methods for arbitrary polynomial order in 2010 in [3].
The blending was shown to provide two orders of extra accuracy (superconvergence)
in the dispersion error, which includes the fourth order superconvergence result
obtained by a modified integration rule for linear finite elements in [35]. Also,
this blending scheme is equivalent to the use of nonstandard quadrature rules and
therefore it can be efficiently implemented by replacing the standard Gaussian
quadrature by a nonstandard rule [3].

This blending idea can be extended to isogeometric analysis (IGA), a numerical
method that bridges the gap between computer aided design (CAD) and finite
element analysis (FEA). We refer to [13, 19, 21, 40] for its initial development and to
[20, 26, 33, 34, 41-43, 47, 48, 50] for its applications. The feature that distinguishes
isogeometric elements from finite and spectral elements is the fact that the basis
functions have up to p — 1 continuous derivatives across element boundaries, where
p is the order of the underlying polynomial. The publications [4, 19, 20, 4143, 55]
show that highly continuous isogeometric analysis delivers more robustness and
better accuracy per degree of freedom than standard finite elements. Nevertheless,
a detailed analysis of the solution cost reveals that IGA is more expensive to solve
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on a per degree of freedom basis than the lower continuous counterparts, such as
finite element analysis [16—18, 52]. To exploit the reduction in cost, a set of solution
strategies which control the continuity of the basis functions to deliver optimal
solution costs were proposed [31, 32].

The dispersion analysis of isogeometric elements is studied in [41, 43, 54],
presenting significant advantages over finite elements. Hughes et al. [41] showed
that the dispersion error of the isogeometric analysis with high continuity (up to
CP~! for p-th order basis function) on the basis functions is smaller than that
of the lower continuity finite element counterparts. Dede et al. [24] study the
dispersion analysis of the isogeometric elements for the two-dimensional harmonic
plane waves in an isotropic and homogeneous elastic medium. The anisotropic
curves are represented using NURBS-based IGA and the errors associated with the
compressional and shear wave velocities for different directions of the wave vector
are modeled. Recently, the dispersion error minimization for isogeometric analysis
has been performed numerically in Puzyrev et al. [54] and analytically in Calo et al.
[15].

In this work, we seek blending quadrature rules for isogeometric element to
minimize the dispersion error of the scheme and hence increase its accuracy
and robustness. We focus on the dispersion analysis of isogeometric elements
and apply the blending ideas introduced by [3] for finite and spectral elements
to isogeometric elements by using a modified inner product. The new blending
schemes reduce the errors in the approximation of the eigenvalues (and, in some
cases, the eigenfunctions). Using the optimal blending, convergence rates of the
dispersion error is increased by two additional orders. To analyze the errors, we
characterize the errors in the eigenvalues and the eigenfunctions for all the modes.
The total “error budget” of the numerical method consists of the errors arising
from the approximation of eigenvalues and eigenfunctions. When the stiffness and
mass terms are fully integrated, for each eigenvalue, the sum of the eigenvalue
error and the square of the eigenfunction error in the L?-norm scaled by the exact
eigenvalue equals the square of the error in the energy norm. Once one of these
terms are not fully integrated, this is not true any more. To account for the error
of the approximated/modified inner product, we generalize Strang’s Pythagorean
eigenvalue theorem to include the effect of inexact integration.

The outline of the remainder of this chapter is as follows. We first describe
the model problem in Sect.6.2. In Sect.6.3, we present a generalization of the
Pythagorean eigenvalue error theorem that accounts for the error of the modified
inner products. In Sect. 6.4, we describe the optimal blending of finite and spectral
elements and present an optimal blending scheme for isogeometric analysis. In
Sect. 6.5, we develop a two-point quadrature rule for periodic boundaries. Numerical
examples for one-dimensional and two-dimensional problems are given in Sect. 6.6.
Finally, Sect. 6.7 summarizes our findings and describes future research directions.



150 M. Barton et al.
6.2 Problem Setting

We begin with the differential eigenvalue problem

—Au=iu in £,
u=0 on 052,

6.1

where A = V2 is the Laplacian and 2 C RY d = 1,2,3 is a bounded open
domain with Lipschitz boundary. This eigenvalue problem has a countable infinite
set of eigenvalues 1; € R

O<A A< <ZAj < (6.2)

and an associated set of orthonormal eigenfunctions u ;

(wj,ur) = /-(2 uj(x)ug(x) dx = 8, (6.3)

where § j; is the Kronecker delta which is equal to 1 wheni = j and O otherwise (see
for example [58]). The normalized eigenfunctions form an L2-orthonormal basis.
Moreover, using integration by parts and (6.1), they are orthogonal also in the energy
inner product

(Vuj, Vup) = (—Auj, up) = (hjuj, ug) = rj(uj, ug) = A;jdj. (6.4)

Let V be the solution space, a subspace of the Hilbert space HOl (£2). The

standard weak form for the eigenvalue problem: Find all eigenvalues A; € R and
eigenfunctions u; € V such that,

a(uj,w)=Ar;u;,w), VweV (6.5)

where

a(w,v) = / Vw - Vv dx, (6.6)
2

and (-, -) is the L? inner product. These two inner products are associated with the
following energy and L2 norms

lwllg = va,w), Jwll=/(w,w). (6.7)
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The Galerkin-type formulation of the eigenvalue problem (6.1) is the discrete
form of (6.5): Seek )\7 € R and u? € V" c V such that

a(u?,wh) :)J}(u?,wh), vuw'evh, (6.8)
which results in the generalized matrix eigenvalue problem
Ku" =2"Mu", (6.9)

where K is referred as the stiffness matrix, M is referred as the mass matrix, and
(A", u") are the unknown eigenpairs.

We described the differential eigenvalue problem and its Galerkin discretization
above. For dispersion analysis, we study the classical wave propagation equation

— Au+ =0, (6.10)
C

where c is the wave propagation speed. We abuse the notation of unknown u here.
Assuming time-harmonic solutions of the form u(x, 1) = e '“'u(x) for a given
temporal frequency w, the wave equation reduces to the well-known Helmholtz
equation

— Au—k*u =0, (6.11)

where the wavenumber k = w/c represents the ratio of the angular frequency w to
the wave propagation speed c. The wavelength is equal to 27/ k. The discretization
of (6.11) leads to the following linear equation system

(K - kzM) u' = 0. (6.12)

The equivalence between (6.1) and (6.11) or (6.9) and (6.12) is established by
setting A or A" = k2. Based on this equivalence, a duality principle between the
spectrum analysis of the differential eigenvalue problem and the dispersion analysis
of the wave propagation is established in [41]. In practice, the wavenumber is
approximated and we denote it as k. In general, k" # k. Then the solution of (6.12)
is a linear combination of plane waves with numerical wavenumbers k. Hence the
discrete and exact waves have different wavelengths. The goal of the dispersion
analysis is to quantify this difference and define this difference as the dispersion
error of a specific numerical method. That is, dispersion analysis seeks to quantify
how well the discrete wavenumber k" approximates the continuous/exact k. Finally,
in the view of unified analysis in [41], this dispersion error describes the errors of
the approximated eigenvalues to the exact ones for (6.8) or (6.9).
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6.3 Pythagorean Eigenvalue Error Theorem and Its
Generalization

The theorem was first described in Strang and Fix [58] and was referred as the
Pythagorean eigenvalue error theorem in Hughes [43]. In this section, we revisit
this theorem in detail and generalize it.

6.3.1 The Theorem

Following Strang and Fix [58], the Rayleigh-Ritz idea for the steady-state equation
Lu = f (L is a differential operator) was extended to the differential eigenvalue
problem. The idea leads to the finite element approximation of the eigenvalue
problem. Equation (6.5) resembles the variational formulation for the steady-state
equation. Hence, one expects the approximated eigenfunction errors are of the
same convergence rates as those in steady-state problems. Definitely, the a priori
error estimation of the eigenfunction will depend on the index j (as in j-th
eigenvalue) and the accuracy will deteriorate as j increases. In fact, the errors of
the approximated eigenvalues also increase and hence deteriorate the accuracy as j
increases [7, 41, 58].

The a priori error analysis for the approximation of eigenfunctions and eigen-
values has a prominent connection. The motivation to derive the Pythagorean
eigenvalue error theorem as stated below (see also Lemma 6.3 in [58]) is to
elucidate the relation the between the eigenvalue and eigenvector errors to the total
approximation error.

Theorem 6.1 For each discrete mode, with the normalization ||u;|| = 1 and
||u?|| =1, we have

lj — 1% = Ajlluy — 1>+ 25— 2. (6.13)

By the Minmax Principle (discovered by Poincaré, Courant, and Fischer; referred

by Strang and Fix), all finite element approximated eigenvalues bound the exact ones
from above, that is

M=y v (6.14)

This allows us to write (6.13) in the conventional Pythagorean theorem formulation

luj — Il = (\/Mlluj —~ u’}ll)2 + (\/x’} - A,-)z. 6.15)
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This theorem was established with a simple proof in [58]. Alternatively, we
present here

llu; — uil”% =a(uj — u?,uj — u?)
:a(uj,uj)—2a(uj,u’})+a(u’},u7)
= hjuj,ug) — 20 @, uy + 2@, uh) (6.16)
= ((uj,uj) —2(uj, u?) + (u?, ui’)) +)»? —
= ajlluj —u >+ 25 =2
This theorem tells that for each discrete mode, the square of the error in the

energy norm consists of the eigenvalue error and the product of the eigenvalue and
the square of the eigenfunction error in the L?-norm. We can rewrite (6.13) as

A lu — w113

g h g2 T RIE
a, TG mwlF= T (6.17)

which implies
My =g <y = ujlE (6.18)
lluh —ujli%
I —ujl> < : (6.19)
Aj

This tells further the relation among the eigenvalue errors, eigenfunction error
in L% norm, and eigenfunction error in energy norm. Once error estimation for
eigenfunction error in energy norm is established, the other two are obvious.
Also, the inequality (6.19) does not hold for methods that do not approximate
all eigenvalues from above (that is violating (6.14)), for example, the spectral
element method [2]. In general, the spectral element method is realized by using
the Gauss-Legendre-Lobatto nodes to define the interpolation nodes for Lagrange
basis functions in each element. This quadrature rule induces an error in the
approximation of the inner products, but preserves the optimal order of convergence
of the scheme. In fact, these errors in the inner product allow the numerical scheme
to approximate eigenvalues from below. If the discrete method does not fully
reproduce the inner products associated with the stiffness and mass matrices or these
inner products are approximated using numerical integration, this theorem needs to
be extended to account for the errors introduced by the approximations of the inner
products.
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6.3.2 The Quadrature

Now to derive the generalized Pythagorean eigenvalue error theorem, we first
introduce the numerical integration with quadratures. The entries of the stiffness
and mass matrices K and M in (6.9) are given by the inner products

M, = /_Q 61 (1), (x) d, 620)

Kij = / Vi (x) - Vo (x) dx, 6.21)
2

where ¢; (x) are the piecewise polynomial basis functions. Here, we consider basis
functions for finite elements, spectral elements, and isogeometric analysis. M and K
are symmetric positive definite matrices. Moreover, in the 1D matrices have 2p + 1
diagonal entries.

In practice, the integrals in (6.20) and (6.21) are evaluated numerically, that is,
approximated by quadrature rules. Now we give a brief description of the quadrature
rules for approximating the inner products (6.20) and (6.21). On a reference element
K, an (n 4+ 1)-point quadrature rule for a function f (x) is of the form

/Ie f@) & =Y "dif i)+ Enp, (6.22)
[=0

where @; are the weights, 7; are the nodes, and En+1 is the error of the quadrature
rule. For each element K, there is an invertible affine map o such that K = 6(12 ),
which leads to the correspondence between the functions on K and K. Let Jg be
the corresponding Jacobian of the mapping. Then (6.22) induces a quadrature rule
over the element K given by

/K fe) dx ~ > wk f(u.k) + Eng1, (6.23)
=0

where w; g = det(Jx)@; and n; x = o (Ay).

The quadrature rule is exact for a given function f(x) when the remainder E;, 4
is exactly zero. For example, the standard (n + 1)-point Gauss-Legendre (GL or
Gauss) quadrature is exact for the linear space of polynomials of degree at most
2n + 1 (see, for example, [12, 57]).

The classical Galerkin finite element analysis typically employs the Gauss
quadrature with p 4+ 1 (where p is the polynomial order) quadrature points per
parametric direction that fully integrates every term in the bilinear forms defined by
the weak form. A quadrature rule is optimal if the function is evaluated with the
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minimal number of nodes (for example, Gauss quadrature with n + 1 evaluations is
optimal for polynomials of order 2n + 1 in one dimension).

Element-level integrals may be approximated using other quadrature rules, for
example the Gauss-Lobatto-Legendre (GLL or Lobatto) quadrature rule that is used
in the spectral element method (SEM). The Lobatto quadrature evaluated at n + 1
nodes is accurate for polynomials up to degree 2n+ 1. However, selecting a rule with
p + 1 evaluations for a polynomial of order p and collocating the Lagrange nodes
with the quadrature positions renders the mass matrix diagonal in 1D, 2D and 3D
for arbitrary geometrical mappings. This resulting diagonal mass matrix is a more
relevant result than the reduction in the accuracy of the calculation. Particularly,
given that this property preserves the optimal convergence order for these higher-
order schemes. Lastly, the spectral elements possess a superior phase accuracy when
compared with the standard finite elements of the same polynomial order [2].

Isogeometric analysis based on NURBS (Non-Uniform Rational B-Splines) has
been described in a number of papers (e.g. [13, 19, 20, 41]). Isogeometric analysis
employs piecewise polynomial curves composed of linear combinations of B-
spline basis functions. B-spline curves of polynomial order p may have up to
p — 1 continuous derivatives across element boundaries. Three different refinement
mechanisms are commonly used in isogeometric analysis, namely the A-, p- and
k-refinement, as detailed in [20]. We refer the reader to [53] for the definition of
common concepts of isogeometric analysis such as knot vectors, B-spline functions,
and NURBS.

The derivation of optimal quadrature rules for NURBS-based isogeometric
analysis with spaces of high polynomial degree and high continuity has attracted
significant attention in recent years [5, 6, 11, 12, 14, 39, 42]. The efficiency of
Galerkin-type numerical methods for partial differential equations depends on the
formation and assembly procedures, which, in turn, largely depend on the efficiency
of the quadrature rule employed. Integral evaluations based on full Gauss quadrature
are known to be efficient for standard C? finite element methods, but inefficient for
isogeometric analysis that uses higher-order continuous spline basis functions [51].

Hughes et al. [42] studied the effect of reduced Gauss integration on the finite
element and isogeometric analysis eigenvalue problems. By using p Gauss points
(i.e., underintegrating using one point less), one modifies the mass matrix only (in
1D). By using less than p Gauss points (i.e., underintegrating using several points
less), both mass and stiffness matrices are underintegrated. Large underintegration
errors may lead to the loss of stability since the stiffness matrix becomes singular.
As shown in [42], this kind of underintegration led to the results that were worse
than the fully integrated ones and the highest frequency errors diverged as the mesh
was refined. However, as we show in the next sections, using properly designed
alternative quadratures may lead to more accurate results.

The assembly of the elemental matrices into the global stiffness and mass
matrices is done in a similar way for all Galerkin methods we analyze in this chapter.
Similarly, the convergence rate for all Galerkin schemes we analyze is the same.
However, the heterogeneity of the high-order finite element (C0 elements, i.e., SEM
and FEA) basis functions leads to a branching of the discrete spectrum and a fast
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degradation of the accuracy for higher frequencies. In fact, the degraded frequencies
in 1D are about half of all frequencies, while in 3D this proportion reduces to about
seven eighths. On uniform meshes, B-spline basis functions of the highest p — 1
continuity, on the contrary, are homogeneous and do not exhibit such branching
patterns other than the outliers that correspond to the basis functions with support
on the boundaries of the domain.

6.3.3 The Generalization

Now we consider the generalization. Applying quadrature rules to (6.8), we have
the approximated form

an(@, w"y =A@ why Y w, e VP (6.24)
where
an(w,v) = Y Zwl(l)Vw(n(l)) Vo', (6.25)
keT, =1
and
w,on= Y Zwl(z)w(n(z))v(n(z) ), (6.26)
KE‘Thl 1

where {wl( Ig, ”1(11)<} and {wl(zlg, ”1( I)<} specify two (possibly different) quadrature

rules. This leads to the matrix elgenvalue problem
K" = "M, (6.27)
where the superscripts on K and M and the tildes specify the effect of the

quadratures.

Remark 6.1 For multidimensional problems on tensor product grids, the stiffness
and mass matrices can be expressed as Kronecker products of 1D matrices [30]. For
example, in the 2D case, the components of K and M can be represented as fourth-
order tensors using the definitions of the matrices and the basis functions for the 1D
case [22, 30]

M;ji = M| M],, (6.28)

Kiju = Ki"MjP + KiPM;P, (6.29)



6 Generalized Pythagorean Theorem 157

where Ml.l.D and K}D are the mass and stiffness matrices of the 1D problem as given
by (6.20) and (6.21). We refer the reader to [22] for the description of the summation
rules.

To understand the errors of the approximations of eigenvalues and eigenfunctions
when quadratures are applied, we measure the errors they induce in the inner
products. The following theorem generalizes the Pythagorean eigenvalue error
theorem to account for these modified inner products [54].

Theorem 6.2 For each discrete mode, with the normalization |lu;|| = 1 and
(ﬁ?, ﬁ?)h = 1, we have

ity = @80 =B — o+ gl = @12+ 5% = 0% + 2 (1 = 172012)),
(6.30)

where || - || E.n is the energy norm evaluated by a quadrature rule.

Proof By definition and linearity of the bilinear forms, we have

~h 12 ~h
luj —uwjlle =a(u; —u;

~hy __ . . . ~h ~h ~h
J,uj—uj)—a(u],u])—2a(u],uj)+a(uj,uj).

(6.31)
From (6.5), we have
a(uj,uj) =rj(uj,uj),
a(uj,ﬁ’}) =Aj(u,,’ﬁ’;).
Thus, adding and subtracting a term A ; (ﬁ?, ﬁ?), (6.31) is rewritten as
lj — TN % = 2jCujoug) — 20 Quy, @) + aj(@h, @y — aj @, i) + a (@, @)
= 2y (g ) = 20, T + Gl ) = o NP + 11
= hjllug — @07 = 1@ + @
From (6.24) and the definition of the modified energy norm | - || g », we have
15 = an(@, @) = 5@ .

Noting that (ﬁ?, i‘[?)h =1, we have

T = (R =g )@ i = 17801 — 2.
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Thus, adding and subtracting a term X’] — Aj gives

~h ;2 ~h2 ~h ;2 ~h ;2 ~h ~h 2
lutj = 803 = gl = @2 = A2+ 1@ + (R = 25) = (17803, — 2 )

=T g gl — TP G — 0%, + 2 (1= 12),

which completes the proof.

The equation in (6.30) can be rewritten as

~h 2 Th
||uj—u<||E A —Aj N
= ey =+

~hy2 2

””j”E ”uj”E,h 1 ~h12
v v + (1= llu; 7).
J J

Aj

in which the first term on the right-hand side is the relative error of the approximated
eigenvalue, the second term represent the error of eigenfunction in L? norm, the
third term shows the eigenvalue-scaled error due to the modification of the inner
product associated with the stiffness, and the last term shows the error due to the
modification of the inner product associated with the mass.

The left-hand side and the first two terms on the right-hand side resemble the
Pythagorean eigenvalue error theorem, while the extra two terms reveal the effect
of numerical integration of the inner products associated with the stiffness and the
mass. In the cases when these inner products are integrated exactly, these two extra
terms are zeros. Consequently, Theorem 6.2 reduces to the standard Pythagorean
eigenvalue error theorem.

6.4 Optimal Blending for Finite Elements and Isogeometric
Analysis

Several authors (e.g. [3, 27, 56]) studied the blended spectral-finite element method
that uses nonstandard quadrature rules to achieve an improvement of two orders
of accuracy compared with the fully integrated schemes. This method is based
on blending the full Gauss quadrature, which exactly integrates the bilinear forms
to produce the mass and stiffness matrices, with the Lobatto quadrature, which
underintegrates them. This methodology exploits the fact that the fully integrated
finite elements exhibit phase lead when compared with the exact solutions, while
the underintegrated with Lobatto quadrature methods, such as, spectral elements
have phase lag.

Ainsworth and Wajid [3] chose the blending parameter to maximize the order of
accuracy in the phase error. They showed that the optimal choice for the blending
parameter is given by weighting the spectral element and the finite element methods
in the ratio * |- As mentioned above, this optimally blended scheme improves by

+
two orders tﬁe convergence rate of the blended method when compared against the
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finite or spectral element methods that were the ingredients used in the blending. The
blended scheme can be realized in practice without assembling the mass matrices
for either of the schemes, but instead by replacing the standard Gaussian quadrature
rule by an alternative rule, as Ainsworth and Wajid clearly explained in [3]. Thus,
no additional computational cost is required by the blended scheme although the
ability to generate a diagonal mass matrix by the underintegrated spectral method is
lost.

To show how an improvement in the convergence rate is achieved, consider, for
example, the approximate eigenfrequencies written as a series in A = wh for the
linear finite and spectral elements, respectively [3]

3

h _ A 5
wpph = A — 24 + 0(AY), (6.32)
h A3 5

When these two schemes are blended using a blending parameter t, the
approximate eigenfrequencies become

3

A
o h= A+ 2 2t — 1)+ 0(Ad). (6.34)
For t = 0 and T = 1, the above expression reduces to the ones obtained by

the finite element and spectral element schemes, respectively. The choice of T =
1/2 allows the middle term of (6.34) to vanish and adds two additional orders of
accuracy to the phase approximation when compared with the standard schemes.
Similarly, by making the optimal choice of blending parameter T = (pﬁl) in high-
order schemes, they removed the leading order term from the error expansion.

The numerical examples in Sect. 6.6 show that a similar blending can be applied
to the isogeometric mass and stiffness matrices to reduce the eigenvalue error. For
C! quadratic elements, the approximate eigenfrequencies are

5

woh= A= | +0@), (6.35)
h 1 AS 7
Whrih =4+ 5, + 0@, (6.36)

Similarly, blending these two rules utilizing a parameter T gives

3r—2

A+ o). 6.37
S A o) (6.37)

w%Lh=A~|—

Thus the optimal ratio of the Lobatto and Gauss quadraturesis 2 : 1 (v = 2/3)
similar to the optimally blended spectral-finite element scheme. For C? cubic
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elements, we determine that a non-convex blending with T = 5/2 allows us to
remove the leading error term and thus achieve two additional orders of accuracy.

Remark 6.2 In general, for CO elements such as the finite elements and spectral
elements, the optimal blending is [3]: T = ( pil) for arbitrary p. This is, however,

not true for isogeometric C¥ elements, where 1 < k < p — 1 and p > 3. Finding
the optimal blending parameter for p > 3 with k > 0 remains an open question. For
p <7 with k = p — 1 and the discussion on its generalization, we refer the reader
to [15].

Equations (6.32)-(6.36) show that the absolute errors in the eigenfrequencies
converge with the rates of O (Azp +1) and O (Azp +3 ) for the standard and optimal
schemes, respectively. If we consider the relative eigenfrequency errors, from
Egs. (6.35) and (6.36), these take the form

o"h At
=14 + -, (6.38)
A o

that is, the convergence rate for frequencies computed using IGA approximations is
O (A?P) as shown in [19, 55]. The optimal blending in IGA leads to a O (A**2)
convergence rate for the relative eigenfrequencies. This superconvergence result
is similar to the one achieved by the optimally-blending of the spectral and finite
element methods of [3].

Remark 6.3 Wang et al. [61, 62] constructed super-convergent isogeometric finite
elements for dispersion by blending two alternative quadrature methods. They used
full Gauss and a method which reduces the bandwidth of the mass and stiffness
method. Although the construction is different, algebraically the resulting algebraic
system is identical for uniform meshes.

6.5 Two-Point Rules for C! Quadratic Isogeometric Analysis

The optimally-blended rules presented above first introduce an auxiliary parameter
for combining two different standard quadrature rules. Then the parameter is
determined by eliminating the highest order term in the error expansion. We can
achieve a similar result by designing a nonstandard quadrature rule here.

For C! quadratic isogeometric analysis, the blending requires evaluations of the
function at two sets of quadrature nodes on each element, which is not compu-
tationally efficient. In this section, we present a two-point rule which eliminates
the leading order term in the error expansion hence results in an equivalent but
computationally efficient scheme for the C! quadratic isogeometric elements.

We consider uniform meshes with periodic boundary conditions for the eigen-
value problem in 1D. In the reference interval [—1, 1], the two point rules are listed
in Table 6.1.
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Table 6.1 Two-point rules in the reference interval [—1, 1] for C! quadratic isogeometric analysis

Rules ni ny W w)
1 24266 1 2266 24266 24266
Rule 1 — 1= v 11+ v 1+ v 1- %
5 3 5 3 133 133
Rule 2 1 "o 24266 1 \/ . 1+2\/266 1+2\/266 . 2266
5 3 5 3 133 133
1 24/2 1 22 24/2 24/2
Rule 3 B \/11+ V266 \/11_ V266 . V266 - V266
5 3 5 3 133 133
1 2266 1 24266 24266 24266
Rule 4 /11+ v - /11— v 1— % 1+ v
5 3 5 3 133 133
(a)
’
05| .
0
0 1
(b)
20
10 | .
0
-10 - -
_20 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.1 Isogeometric C! quadratic B-spline basis functions and their derivatives. (a) Basis
functions. (b) Derivatives of basis functions

These two-point rules share some sense of symmetry and lead to the same matrix
eigenvalue problem. On uniform meshes with periodic boundary conditions, all
these rules give the same dispersion errors.

In a periodic boundary domain discretized with a uniform mesh, we show
numerically that these two-point rules lead to the same set of eigenvalues and
eigenfunctions as these obtained by the optimally-blended schemes. In fact, they
result in the same stiffness and mass matrices. The two-point rules fail when we
use a boundary condition other than periodic, for example, Dirichlet or Neumann
conditions. This happens since the two-point rule does not integrate the stiffness
terms exactly near the boundary elements where the derivatives of the B-splines
basis functions do not vanish; see Fig.6.1. We will understand and address this
shortcoming in future work.
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For multidimensional cases, we assume that a tensor product grid is placed on
the domain £2. Then generalize these two-point rules to be 2¢-point rules for d-
dimensional problems by simple tensor construction. We conclude that these two-
point rules developed above remain valid for higher dimensional problems. More
details are referred to [15, 25].

6.6 Numerical Examples

In this section, we present numerical examples of the one- and two-dimensional
problems described in Sect. 6.2 to show how the use of optimal quadratures reduce
the approximation errors in isogeometric analysis.

The 1D elliptic eigenvalue problem has the following exact eigenvalues and their
corresponding eigenfunctions

A= j2m?, uj=+/2sin(jmx), (6.39)

for j = 1,2,.... The approximate eigenvalues A" are sorted in ascending order
and are compared to the corresponding exact eigenvalues A ;. The total number of
degrees of freedom (discrete modes) is N = 1000.

Figure 6.2 compares the approximation errors of C! quadratic isogeometric
elements using the standard Gaussian quadrature and the optimal rule. We show
-

A . . 2
" ' the Ly-norm eigenfunction errors Hul — vlh H 0

the relative eigenvalue errors

0.6 0.6

0.5 0.5

04 Energy-norm error oia Energy-norm error
5 §
5 03 L,-norm error 3 03 L,-norm error
2 2
] ®
< 0.2 o 0.2
i : 4 )

Eigenvalue error Error in the L, product
0.1 0.1
0 0
Eigenvalue error
-0.1 -0.1
o 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 08 1
iN iIN

Fig. 6.2 Approximation errors for C! quadratic isogeometric elements with standard Gauss
quadrature rule (left) and optimal blending (right)
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Fig. 6.3 Convergence of the errors in the eigenvalue approximation using C! quadratic isogeomet-
ric elements with standard and optimal quadratures. The fifth (left) and tenth (right) eigenvalues
are shown

—uh)?
and the relative energy-norm errors e /\v’ I . This format of error representation
clearly illustrates the budget of the generalized Pythagorean eigenvalue theorem.

The error in the Ly norm 1 — H vlh H?) is shown only in the case when it is not zero.

In Fig.6.2, the use of the optimal quadrature leads to more accurate results.
Surprisingly, not only the eigenvalues, but also the eigenfunctions of the problem
are better approximated in this particular case. The optimal ratio of blending of the
Lobatto and Gauss quadrature rules in this case is 2:1, which is the same to the ratio
proposed by Ainsworth and Wajid (2010) for the finite element case.

Figure 6.3 shows the dispersion errors in the eigenvalue approximation with C!
quadratic isogeometric elements. The size of the meshes used in these simulations
increases from 10 to 2560 elements. These results confirm two extra orders of
convergence in the eigenvalue errors.

To study the behavior of discrete eigenfunctions from different parts of the
spectrum, in Fig.6.4 we compare the discrete and analytical eigenfunctions for
C! quadratic elements. We show the 200th and the 400th eigenfunctions, where
the error is low, and the 600th and the 800th eigenfunctions, for which the
approximation is worse. As expected, both the fully- and under-integrated methods
provide similar eigenfunctions. There is no loss of accuracy in eigenfunction
approximation due to the use of the non-standard optimal quadrature rules.

We also note that for practical applications, one may look for a scheme that
reduces errors in the desired intervals of wavenumber (frequency) for a given mesh
size. Such blending schemes are also possible and (though not being optimal, i.e.
not delivering superconvergence) they are superior in the eigenvalue approximation
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Fig. 6.4 Discrete 200th (top left), 400th (top right), 600th (bottom left) and 800th (bottom right)
eigenfunctions for C! quadratic elements. The discrete eigenfunctions resulting from the optimal
(red squares) and the standard scheme (blue line) are compared with the analytical eigenfunctions
(black line). The total number of discrete modes is 1000

compared to the optimal blending in certain ranges of wavenumber that are of
practical interest in wave propagation problems. We refer the reader to [54] for
further details.

Next, we continue our study with the dispersion properties of the two-
dimensional eigenvalue problem on tensor product meshes. Optimal quadratures for
multidimensional problems are formed by tensor product of the one dimensional
case. The exact eigenvalues and eigenfunctions of the 2D eigenvalue problem are
given by

Mg = (K + 1272, ug = 2sinkwx) sin(my), (6.40)
fork,l = 1,2, .... Again, the approximate eigenvalues )‘21 are sorted in ascending
order.

Figure 6.5 compares the eigenvalue errors of the standard Gauss using C!
quadratic elements with the optimal scheme (r = 2/3). The latter has significantly
better approximation properties.

These results demonstrate that the use of optimal quadratures in isogeometric
analysis significantly improves the accuracy of the discrete approximations when
compared to the fully-integrated Gauss-based method.
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Standard quadrature Optimal quadrature

=
= gt
S @

Eigenvalue eror
=
=
&
Eigenvalue arror

- a

o 001 002 003 O0D4 005 006 007 008 009 01

Fig. 6.5 Approximation errors for C! quadratic isogeometric elements with standard Gauss (left)
and optimal quadrature rule (right). Color represents the absolute value of the relative error
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SE e

0.04 .
1
I
003 g7
0.03 06
-
002 s
0.02 0.4
005 gy
0.01 02
005 o
- U]
01 02 03 04 05 06 O7 08 08 1 01 02 03 04 05 06 07
X X

Fig. 6.6 Approximation errors for C2 cubic isogeometric elements with standard Gauss (left) and
optimal quadrature rule (right). Color represents the absolute value of the relative error

Figure 6.6 compares the eigenvalue errors for C? cubic isogeometric elements.
Again, the optimal scheme has significantly better approximation properties than
the standard method. The scale and representation format are different from those
of Fig.6.5.

Figure 6.7 compares the dispersion errors of the standard Gauss fully-integrated
method with the optimally-blended scheme and the two-point rule described in the
previous section. In this example, we use periodic knots at the boundaries of the
domain. As can be seen from Fig. 6.7, the two-point rule leads to the same results
as those obtained by the optimally-blended scheme. At the same time, this rule is
computationally cheaper than the three-point Gauss rule or any blended scheme.
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Fig. 6.7 Approximation errors for C! quadratic isogeometric elements with standard Gauss, the
optimal quadrature rule, and the two-point

6.7 Conclusions and Future Outlook

To understand the dispersion properties of isogeometric analysis and to improve
them, we generalize the Pythagorean eigenvalue error theorem to account for the
effects of the modified inner products on the resulting weak forms. We show that
the blended quadrature rules reduce the phase error of the numerical method for the
eigenvalue problems.

The proposed optimally-blended scheme further improves the superior spectral
accuracy of isogeometric analysis. We achieve two extra orders of convergence in
the eigenvalues by applying these blended rules. We present and test two-point rules
which reduce the number of quadrature nodes and the computational cost, and at
the same time, produce the same eigenvalues and eigenfunctions. We believe that
one can extend the method to arbitrary high-order C”~! isogeometric elements
by identifying suitable quadrature rules. Nevertheless, for higher-order polynomial
approximations the only known optimal quadratures are the result of blending a
Gauss rule and a Lobatto quadrature rule. The search for this class of quadratures
that result in super-convergent dispersion properties and use fewer quadrature points
will be the subject of our future work.

Another future direction is the study on the non-uniform meshes and non-
constant coefficient wave propagation problems. The study with variable continuity
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is also of interest. We will study the impact of the variable continuities of the
basis functions on the dispersion properties of the numerical methods and how the
dispersion can be minimized by designing goal-oriented quadrature rules.
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Chapter 7 )
Weakly Consistent Regularisation Shethie
Methods for I1I-Posed Problems

Erik Burman and Lauri Oksanen

Abstract This Chapter takes its origin in the lecture notes for a 9 h course at
the Institut Henri Poincaré in September 2016. The course was divided in three
parts. In the first part, which is not included herein, the aim was to first recall some
basic aspects of stabilised finite element methods for convection-diffusion problems.
We focus entirely on the second and third parts which were dedicated to ill-posed
problems and their approximation using stabilised finite element methods. First we
introduce the concept of conditional stability. Then we consider the elliptic Cauchy-
problem and a data assimilation problem in a unified setting and show how stabilised
finite element methods may be used to derive error estimates that are consistent with
the stability properties of the problem and the approximation properties of the finite
element space. Finally, we extend the result to a data assimilation problem subject
to the heat equation.

7.1 Introduction

In these notes we will give an overview of some recent work on finite element
methods for ill-posed problems. For well-posed problems it is known that, in the
presence of non-symmetric operators, approximation using Galerkin finite element
methods may have poor accuracy, due to the lack of H'-coercivity. A popular
remedy is then to add some stabilising terms that should be balanced in such a way
that they cure the stability issue, but vanish quickly enough under mesh-refinement
so that optimal error estimates can be obtained. For ill-posed problems on the other
hand the state of the art is to add some regularising terms on the continuous level to
obtain a well-posed continuous problem that can then typically be discretised using
standard finite element methods.
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Here our aim is to make the ideas from the former class of problems carry
over to the ill-posed case, using weakly consistent regularisation that is defined
on the discrete level. Indeed prior to discretisation no regularisation is applied,
instead the ill-posed problem and associated data are discretised in the form of a
minimisation problem, where some suitable distance between the discrete solution
and the measured data is minimised under the constraint of the discrete form of the
partial differential equation. Regularisation terms may then be devised that are in
some sense the minimal choice necessary to achieve a well-posed discrete system.
To analyse the resulting approximation we rely on conditional stability estimates for
the continuous problem, typically obtained through Carleman estimates.

Compared to the state of the art methods such as the quasi-reversibility method
by Lattes and Lions (and the recent improvements on this technique by Bourgeois
et al. [7, 8, 21]) or the penalty method by Kohn and Vogelius [4, 30], the present
framework has some attractive features. Since no regularised continuous problem is
involved the only (nontrivial) regularisation parameter present is the mesh size. This
is not the case for more traditional methods where the discretisation parameter and
the regularisation parameter must be matched carefully, or as is usually assumed, the
mesh size is chosen substantially smaller than the regularisation parameter. Maybe
more importantly, in the present framework, the regularisation is independent of the
stability of the underlying physical problem while still having a convergence order
with respect to the mesh size that is consistent with the stability of the physical
problem. On the contrary, balancing regularisation and discretisation errors in the
framework of conventional Tikhonov regularisation appears to inevitably lead to a
nontrivial relation between the regularisation, the mesh size and the specific form of
the stability of the physical problem.

With the recent increased understanding of the stability properties of ill-posed
problems, in particular, in the context of inverse and data assimilation problems,
we believe that these considerations are important. For instance, data assimilation
problems with Holder, or even Lipschitz, stability will have that precise order
reproduced for the convergence order of the approximation error. To the best of
our knowledge, apart from the work reviewed here, there exists no results in the
literature reporting on such estimates even in Lipschitz stable cases that allow error
estimates as good as those for classical well-posed problems. For other work on
regularized methods for the Cauchy problem we refer to [2, 3, 6, 29].

The paper consists of two main parts. In the first we consider stationary ill-
posed elliptic problems, such as the elliptic Cauchy problem and the so-called data
assimilation problem, where measured data is available in some subdomain of the
bulk, but not on the boundary. For these problems interior estimates with Holder
stability are known to hold and we show how to make these estimates translate into
error estimates for the computational method. In the second chapter we consider the
extension of these ideas to a data assimilation problem subject to the heat equation.
In this case a Lipschitz-continuous stability estimate holds for the reconstruction
of the solution away from the (unknown) initial datum. Also in this case we show,
in a space semi-discretised framework, error estimates that reflect the stability of
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the physical problem. In this second case the estimates obtained are optimal with
respect to the approximation order of the finite element space.

7.2 Preliminary Results

In this section we will introduce the geometrical setting of the problems that we will
consider, the associated finite element spaces and some technical results, including
discrete inequalities and approximation results. We will stay in the simplest of
settings, considering only piecewise affine finite element spaces.

Let 2 C RY d = 2,3, be a convex polygonal (polyhedral) domain, with
boundary 92 and outward pointing normal n. By 7 we denote a quasi-uniform
decomposition of £2 in simplices 7 such that the intersection of two simplices
in T is either the empty set, a shared vertex, a shared face or a shared edge. We
also introduce the mesh parameter associated to J, ht = diam(7") where the
diameter of T is defined as the diameter of the smallest ball circumscribing 7.
Setting h = maxy g hr we consider the family of tesselations {J};, indexed by
h. The simplices are shape regular in the sense that the ratio between the smallest
circumscribed ball and the largest inscribed ball of any 7' € T is bounded uniformly,
with a constant independent of &. The boundary of T will be denoted 07 with
outward pointing normal n7. We denote the set of element faces by F and let F;
and F; denote the set of faces in the interior of £2 and on its boundary, respectively.
To each interior face we associate a normal np that is fixed, but with arbitrary
orientation. The normal on faces on the boundary will be chosen pointing outwards.

We define the finite dimensional space

Vi = {vn € H'(2) : vl € P(T), ¥T € T},
with P1(T') the set of polynomials of degree less than or equal to 1. For a subspace
VCH 1(.9), we denote by V), the intersection V; N V. In particular, we use the
notation V0 = HO1 (£2) and
V}? =ViN VO,
We will denote the L? scalar product over a set & by
(v, w)g = / xydZ, Vv, we L*(),

and the associated norm by

1
Ixllz == (x,%)Z.

The subscript will be dropped whenever & = £2.
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7.2.1 Inequalities

We will need a few auxiliary results on how different norms or semi norms are
related. In particular we will need the following so-called inverse inequality and
trace inequalities (see for instance [22])

IVopllT < Cihgp'lonllr Yon € Pe(T), k>0 (7.1)
lllar < Cehy P(lvalir + hrIVolr), Vv e HY(T) (7.2)
loallar < Cohy P lonllz,  Yon € P(T), k > 0. (1.3)

We also define the broken norm

. 2
lolla = | > llvlF

TeT

7.2.2 Interpolants and Approximation

We will use an interpolant i, : H'(£2) — Vj, that preserves homogeneous
boundary conditions and satisfies the following estimates [33]

lu —ipull + IV — gl < Ch ullgs (@), s =1,2. (7.4)
Combining (7.4) and (7.2) allows us to prove the estimates
12 = i) g+ 102V — wn)llg < O Mulls ), s =1,2. (1.5)
We will also make use of the H '-projection 7, : HO1 (£2) - V,? defined by
(Vmpu, Voy) = (Vu, Vo), VY, € V,?. (7.6)

We note that under the assumption of quasi uniformity and convexity of the domain
also this approximation satisfies (7.4) and (7.5).
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7.3 1ll-Posed Problems

It is well known that instabilities may cause suboptimality for approximations
of convection-diffusion equations when the standard Galerkin method is applied.
Examples of how stabilised methods can improve on the situation include the
Galerkin Least Squares method [10, 27], subgrid viscosity [26] or the continuous
interior penalty method [15]. This is an example of a problem that is well-posed
on the continuous level, but where the discrete system may be ill-conditioned and
produce poor quality approximations, unless all the scales of the problem have been
resolved, something which may be difficult to achieve in practice. The arguments to
analyse such methods use the positivity of the bilinear operator a(-, -) defining the
problem.

In many practical cases however the problem is indefinite, for instance, this is the
case for Helmholtz equation and for non-coercive convection-diffusion. Then the
bilinear form does not satisfy such a positivity property, and the inf-sup condition
that underpins well-posedness on the continuous level can be difficult to reproduce
on the discrete level. This led the first author to develop a method which does not
rely on coercivity or inf-sup stability for its analysis [11]. As the method does not
rely on the well-posedness structure for its design, it can also be applied to ill-posed
problems. This case was then analysed in [12] and applied to a series of different
ill-posed problems in [13, 16, 17, 19].

In this section we will discuss how to apply stabilised finite elements to the
approximation of ill-posed problems. Of course the class of ill-posed problems
is very large and most of these problems are not tractable to the type of high
resolution methods that we wish to apply here, so first we will discuss what type
of ill-posed problems we are interested in and give some examples. For readers
interested in delving deeper into the theory of inverse and ill-posed problems and
their regularisation, we refer to [5, 24, 28, 31, 34].

Ill-posed problems are those problems that fail to be well-posed in the sense
of the definition due to Hadamard. In order to make this precise we introduce the
abstract problem

Ku =7 (7.7)
where X : V — X is a linear map between two Hilbert (or Banach) spaces and
feX.

Definition 7.1 (Well-Posed Problem) The problem (7.7) is well-posed if

1. For every f € X there exists u € V satisfying (7.7). This means that X is the
range of L.

2. The solution u is unique in V. That is, £ ! exists.

3. The solution u depends continuously on data.

lully = Clifllo-
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Definition 7.2 (Ill-Posed Problem) The problem (7.7) is said to be ill-posed if at
least one of the three points in Definition 7.1 fails.

It was recognised by Tikhonov that some ill-posed problems are better behaved than
others, and conditionally stable problems are an important class of such problems.
We give a definition that is a variation of [28, Def. 4.3].

Definition 7.3 (Conditionally Stable Problem) The problem (7.7) is said to be
conditionally stable with respect to a semi-norm | - | on V if

1. For all f in the range of X the solution u of (7.7) is unique.
2. There is a non-decreasing function Cg : [0, c0) — [0, 00) and a modulus of
continuity @ : [0, co) — [0, oo) such that for all § in the range of X,

lul = Ce(lully)@Ifllx)-

Here @ being a modulus of continuity means that it is continuous and satisfies
®(0)=0.

We restrict our attention to conditionally stable problems where K and X consist
of two components

K=(L,R), X=W xM.

Here, for the Sobolev spaces V and W, W’ is the dual of W and L is a differential
operator, mapping V to W’ when interpreted in weak form. For the part related to
data we let R : V — M denote a restriction operator, possibly composed with a
differential operator. To summarize, we will consider problems of the form

Lu=Ff, Ru=4g (7.8)

where it is assumed that ( f ,q) is in a neighbourhood of the range of K. We will
prove estimates that depend on the distance

I8 Ilw + 18qln, 8f = f— f 8¢ =G —q,

where (f, ¢) is in the range of K. Observe that this means that we do not assume
that the problem (7.8) admits a unique solution, we only assume that it can be solved
for some point in a neighbourhood of the data ( £, §). This allows for perturbed data
to be used.

We will now proceed to give examples of problems that are conditionally stable
in the above sense.

Example 7.1 (The Elliptic Cauchy Problem and Its Ill-Posedness) LetL = —A4o
where o € R and assume that the boundary of §2 consists of two parts I" and I"’.
Consider the problem of finding u € H'(£2) such that

Lu= fin2 (7.9)
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u=gonl (7.10)
Vu-n=v¢¥onl. (7.11)

For simplicity, we consider below only the case g = 0, and refer to [14] for the case
with non-vanishing g. Then

Ru=Vu-nlp, M=H ). (7.12)

Following a classical counter-example by Hadamard, let us exemplify the failure
of continuous dependence for this problem. Let £2 := {(x,y) € R? : x > 0} and
I'={(x,y)€eR?>:x=0},0 =0, f =0,g=0and

1
Y(y) = sin(ny).

n

It is easy to verify that the solution in that case is

1
u(,y) = 5 sin(ny)("™ —e).

Clearly as n becomes large ||/ || .o (/) goes to zero, but u(x, y) blows up for any x >
0 and any y outside a countable set, showing the failure of continuous dependence.

Example 7.2 (The Elliptic Data Assimilation Problem and Its Uniqueness) Let
L = — A and assume that measurements u s of u are available in some open subset
of £2, w C 2, then we can formulate the data assimilation problem as

Lu = fin 2 (7.13)
U= uyin w. (7.14)

Here we choose
Ru=uly, M=L*w). (7.15)

This problem is often called also a unique continuation problem.

Assume that ujs, f are such that there exists a solution u € H 1(£2) to (7.13)-
(7.14). Then this solution is unique which can be proven by using elementary
properties of harmonic functions. Indeed, assume that there exists two solutions
and let v be their difference. Then

Lv =0in 2 (7.16)
v =0in w. (7.17)
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This means that v is a harmonic function in §2 and hence real analytic. But v
vanishes in the non-empty open set @, and hence by analytic continuation, v = 0
in 2.

Remark 7.1 For the problem (7.13)-(7.14) to have a solution, it is of course
necessary that the compatibility condition Lu |, = f| is satisfied. Using this one
may show that, for sufficiently smooth f, (7.13)—(7.14) is equivalent to the Cauchy
problem

Lu=fin2\w (7.18)
U =upyonow (7.19)
Vu-n=Vuy -nonow. (7.20)

The conditional stability for the problems in Examples 7.1 and 7.2 is classical,
and we discuss it further in Sect. 7.3.2 below. Let us now turn to weak formulation
of these problems on which the associated finite element methods will be based.

7.3.1 Weak Formulations of the Model Problems

Let us first consider the Cauchy problem in Example 7.1 and introduce the spaces
Vi=(ve H' @) :vlr =0} and W' :={we HY(Q): v =0}(=V).

Now observe that the solution of (7.9)—(7.11), with g = 0, can be sought in vl
Multiply (7.9) by v € W!" and integrate by parts to obtain

(Lu,v) = (Vu,Vv) + (ou,v) — FYu-nvds—/,Vu-n v ds

-~ -

=y =0
By defining
a(u,v) := (Vu, Vv) + (ou, v)
we arrive at the weak formulation: find u € V!" such that
a(u,v) = (f,v) + @, v)r, Yvewl. (7.21)
This weak formulation looks deceptively like the weak formulation for the Poisson
problem, but observe that the choice v = u is not allowed since u ¢ wr.

Let us now turn to the data assimilation problem in Example 7.2. Recall from
Sect. 7.2 that V0 = HOI(Q), and observe that we may multiply (7.13) with v € VO
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to obtain

(Lu,v):(Vu,Vv)—/ Vu-n v ds.
o

This time we define
a(u,v) := (Vu, Vv)
and obtain the weak formulation: find u € H'(£2) such that u|, = uy and
a(u,v)=(f,v) YveV’ (7.22)

Once again it is not allowed to take v = u due to the different choices of spaces.

7.3.2 Conditional Stability

To unify the treatment of the two examples, we will write V for the primal space and
W for the test space. Thatis, V = VI and W = W7 in the case of Example 7.1, and
V = H'(£2) and W = VO in the case of Example 7.2. Observe that W/ = H Y 0)
in the case of Example 7.2.

We refer to the review paper [1] for thorough discussion of conditional stability
estimates for the two example problems. In particular, the following conditional
stability estimate can be deduced from the paper.

Theorem 7.1 Letu € V be such that, withl € W',
a(u,v) =1).

Let R : V. — M be defined by (7.12) for the Cauchy problem in Example 7.1, and
by (7.15) for the data assimilation problem in Example 7.2. Write up; = Ru in both
the cases. Then for every open simply connected ' C $2 such that dist(dw’, 1§2) >
0 there holds

luller < CeulP(usmlpg + Nilw).

where CE(R) = CRY™ T and ®(n +¢) = (n +&)*. Here C > 0 and t € (0, 1) are
constants that depend on o'.

For a proof of this result with full detail on involved constants see [1, Theorem 1.7]
for the Cauchy problem and [1, Theorem 4.4] for the data assimilation case. Let
us remark that we state the conditions on @’ in slightly simplified form, for more
precise conditions on @’ see [1]. Note that here |||, is viewed as a semi-norm
onV.



180 E. Burman and L. Oksanen

Remark 7.2 A similar result for global stability of u on the form

lule = Ce(lullv)®(umlne + 1lw),

with @(n + &) = |log(n + ¢)|7%, T € (0, 1), is also derived in [1] and may be used
to derive global error estimates using the techniques below.

Remark 7.3 Conditional stability has been used before to tune the regularisation
parameters for Tikhonov regularisation methods see for instance [20]. What is new
in the approach that we advocate is that it does not depend on the form of the
modulus of continuity @, but still allows us to obtain the best possible accuracy
with respect to the approximation error and the actual form of @.

7.4 Finite Element Approximation of IlI-Posed Problems

The aim of the present section is present a finite element method that draws on our
experience of stabilised FEM for convection-diffusion equations. The ideas that are
presented below are mainly taken from [13, 19].

We wish to attempt to discretise a conditionally stable ill-posed problem of the
form: find 4 € V such that

a(u,v) =Il(w), YweW (7.23)
lu — upmlyg = 0. (7.24)

Let us consider, for the moment, the case of Cauchy problem and suppose that [ is
such that there exists a solution # € V to (7.23).
Recall the notation defined in Sect. 7.2, and define the finite element spaces

Vi =v,nvl and W =Vv,nw’.

We are assuming here that the mesh is fitted to the subsets of the boundary I" and
I'’. We then have the discrete formulation of the Cauchy problem in Example 7.1:
find uy, € VhF such that

a(up, wp) = (f, wn) + (¥, wp)r, Yw, € Wy . (7.25)

Observe that the corresponding linear system can not be invertible in general,
because there is no reason that the system matrix is square. Indeed this only holds
in the special case when the number of vertices in I is the same as the number
of vertices in I'’. Similarly the matrix corresponding to a naive finite element
discretisation of the data assimilation problem in Example 7.2 is not square and
in general the system is singular even if we impose u|, = 0.
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The idea is then to reformulate (7.23)—(7.24), on the discrete level, as the problem
to minimise (7.24) under the constraint (7.23). This will allows us also to treat the
case of perturbed data that is outside the range of the map X = (£, R). In some
cases | - |7 may not be the most efficient choice for minimisation purposes and may
be replaced by another norm | - I, that is equivalent on the discrete spaces. Then
an additional step is required to show that the minimisation with respect to | - I,
indeed leads to a bound in | - |-

Below we will mainly focus on the data assimilation problem in Example 7.2 and
use

~ 2 - o o~ N2
lup —uM|Mh = /wh (up, — upr)” dx, (7.26)
where « is a constant in the interval [—2, 0]. Here it is assumed that the mesh is
fitted to the domain w, which can always be easily achieved by replacing @ with a
slightly smaller polygonal domain. For the Cauchy problem in Example 7.1, we can
take

|up — ﬁm%m = / h(Vup - n — )* ds. (7.27)
r

In what follows it is important that, in both the cases and for all & € [—2, 0], there
holds for u € H2(£2) that

|M — ihMth 5 Chlule(Q)

We form the tentative Lagrangian
L ! i 1
(un, zn) = 2)’Mluh —tmlyg, +atun, zn) —1(zn),

where 1)y = ups + Su is the perturbed data available and f(zh) =1(zp) +8l(zp) isa
perturbed right hand side. Observe that if u is a solution to (7.23) and (7.24) then it
will minimise the Lagrangian (if Su = ] = 0) with the associated multiplier z = 0.
Unfortunately the associated minimisation problem may not be well-posed on the
discrete level due to the ill-posedness of a(-, -), even if the data of the continuous
problem is in the range of X. It follows that we need some regularisation.

7.4.1 Regularisation by Stabilisation

The classical way of obtaining a well-posed optimisation problem is through
Tikhonov regularisation. In this case the natural choice would be to add regularising
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terms in the H '-semi-norm for both the primal and the dual variable to obtain

1 B -
G, ) =, yulun — il + vilIVunll® = vl Vanll® + aGun, ) = 1),

Computing the Euler-Lagrange equations for this Lagrangian we obtain the system:
find (up, zp) € Vi, x Wy, such that

a(un, wp) — y2(Vzn, Vwy) = l(wy)  Yw, € Wy (7.28)

a(p, zn) + 1 (Vun, Vop) + ym @n, vi)yg, = ym@m, vy, Yon € Vi
(7.29)

Here it is assumed that the norm | - lM; is associated to an inner product (-, )M
This is of course the case for both (7.26) and (7.27).

Remark 7.4 This system bears a strong resemblance to the quasi-reversibility
method for the Cauchy problem in the mixed form as proposed on the continuous
level in [7]. Therein it was proven that if the exact solution exists, and the data are
unperturbed, then letting y; — 0 for bounded y» (that may tend to zero, but at a
lower rate than y7) the regularised solution converges to the exact solution.

Drawing on our experience from stabilised finite element methods we would like to
modify the regularisation terms, so that they vanish at an optimal rate in the limit
up — u € H*(2), z;, — 0, while keeping the regularisation parameters y| and y»
fixed. We therefore introduce the abstract regularisation operators s : V, x V, = R
and s* : W, x W — R in the Lagrangian

1 . 1 1 -
E(up, zp) == 2)’Mluh - ”M|%\/[h + 2S(uh, up) — 2S*(Zh, zn) +a(up, zp) — 1(zp).

(7.30)

The corresponding Euler-Lagrange equations then reads
alun, wh) = 5™ (zh, wp) = [(wp) (7.31)
a(n, zn) +$(un, vi) + ym @n, vy, = Y@, vi)yg, - (7.32)

The primal stabilisation operator should be weakly consistent, in the sense that,
s(ip, in)> < Chlul g (7.33)

We also require s to be bounded, s(vy, vp) < Cllvp ||%/. The dual stabilisation on the
other hand must be equivalent with the W norm

2 2
cr(M)lwpllyy < s*(wp, wp) < Cllwglyy .
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where the lower bound is not required to be uniform in /4. No condition analogous
to (7.33) is required from s*, the reason being that z = 0 is the solution to the
unperturbed problem where data are such that a unique solution 4 € V exists. Thus
any bilinear form s* is weakly consistent in the sense that it vanishes in (7.31) when
(up, zp) is replaced by the solution to the unperturbed problem.

Anticipating the results in the next section we give the following examples of
stabilisation operators,

s, o) == yillhounl® + 1 Y (hp[Vua], [VoiDr = wilonly,  (7.34)
FESF,'

s*(un, vn) := v2(Vor, Von)o =: yallon |13 (7.35)

We emphasize that, contrary to typical Tikhonov regularisation, the stabilisation
parameters yi, y2 > 0 will not change during computation.

Observe that for u € H2(.Q) there holds s(u, vy) = yl(h202u, vp) g for
all v, € Vj, since the jump term vanishes when applied to sufficiently smooth
functions. The remaining L>-term, is weakly consistent to the right order for
piecewise affine elements. For higher order polynomial approximation of order &,
the primal stabilisation operator in the Lagrangian (7.30) must be replaced by a
strongly consistent residual based stabilisation of the form

s, o) = BVl + nillh(f + Avi —ov) 5+ Y (he[Voa] [VoaD .
Feffi

(7.36)

for details see the discussion in [13]. The weak consistency takes a different form

in this case, since the presence of the source term f leads to a contribution on the
form ZKeTh (f, h*(—Avy, + ovp))k in the right hand side of (7.32). Observe also

that s defines a semi-norm on Vj, + H?(§2) but that s* defines a norm on W.
Let us now introduce the mesh dependent norm

Il Gen. zm)I1? 2= yalunlyg, + vilunly + vallzallly +min(rr, yaoh? lunl g -
(7.37)

As the parameters yu, y1, y2 are fixed we could omit including them in the
above norm, however, we will keep track of the dependence of the constants in
Proposition 7.2 below on these parameters, and for this reason it is convenient to
include the parameters in the above norm.

Observe that using (7.4) and (7.5) it is straightforward to prove the interpolation
inequality

Wl (u — ipu, O)I| < Chluly (o). (7.38)

To include the last term in the definition (7.37) we can apply a discrete Poincaré
inequality.
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Lemma 7.1 (Discrete Poincaré Inequality) There exists ¢, > 0 such that for all
vy € Vy there holds

crhllunllmi@y < lunlyg, + lunly.

In the case of the Cauchy problem where | - |Mh is defined by (7.27) and up|r =0
this is a consequence of the Poincaré inequalities of [9] and for the data assimilation
case where | - | M, is defined by (7.26) the result was proved in [19].

The system (7.31)—(7.32) can be cast on the compact form, find (uy, z;) € Vi %
W), such that

Anl(un, z), (o, wi)1 = L(wn) + yar G, vM,»  Y(h, wi) € Vi X Wy,
(7.39)
where

Anl(un, zn), (op, wp)1 := a(up, wp) — s*(zn, wp) + a(op, ) + sUp, vp)
+ v (un, va)yg, -

Proposition 7.1 The system (7.39) admits a unique unique solution (uy, zj) € Vi X
Wh.

Proof By construction, for all (v, wy)
yalonlyg, + vilonly + vallwallfy = Anl(on, wa), (vn, —wn)]
and therefore by Lemma 7.1 there exists C > 0 such that
Il @whs w) P < € Anl(on, wh), (Wh, —wi)]. (7.40)

The linear system (7.39) is square, and by the above positivity there are no zero
eigenvalues. We conclude that the system is invertible.

Comparing with the exact problem (7.23)—(7.24) and assuming thatu € H 2(2), we
see that the formulation (7.39) satisfies the following consistency relation

Apl(un —u, zn), (p, wi)] = 8l(wn) + ym Gu, vp)oyg, . V(0n, wp) € Vip X Wi
(7.41)

7.4.2 Error Analysis Using Conditional Stability

First we will introduce some continuity properties of the bilinear form using the
stabilisations. Assume that u € H?(£2), then there holds

a(u —ipu, vp) < Chlulg2g)llonllw (7.42)
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and forallu, € Vyandallw e W, ipw € W),
a(up, w —ipw) < (Chllull 2oy + 1w —un, O)IDNwlw, (7.43)

where and the constants are allowed to depend on the parameters y1, y» and yy.

For the data assimilation problem Eq.(7.42) follows by an application of the
Cauchy-Schwarz inequality and (7.4), and (7.43) follows by the integration by parts
followed by (7.4) and (7.5) leading to

1 1
a(up, w —ipw) < |(cup, w —ipw)| + Z / |h2 [Vup]lh™2 |lw — ipw]| ds
F
FeT;

1
< Cy, *(Ju — uply + lohul))|w|lw.

The results for the Cauchy problem are obtained in a similar fashion and we refer to
[14] for the details.

We are now ready to prove a first error estimate that holds independently of the
stability properties of the continuous model.

Proposition 7.2 If (up, zj) is the solution of (7.39) and u € H2(2) is the solution
of (7.23)—(7.24) then there holds

W —un, z)lll = Cyhlulg2 o) + 8y (7.44)

1 1
where 8, = y; 2181w + vy] 18ulyg, and Cy i= C(1+ yi + v, 2.

Proof To prove (7.44) we observe that by (7.38) and the triangle inequality it is
enough to consider the discrete error &, = iju — uy. By (7.40) we have

I En, 21> < C Anl(En, 2n), En, —2)].

Using the Galerkin orthogonality (7.41) we may write

AnlGn» zn)s Gny —zn)] = Apllinu —u, 0), (§n, —zn)] = 81(zn) + ym (Su, En)yyq, -

By the continuity (7.42) there holds
Apl(inu—u,0), n, —zn)] = a@u—inu, zp)+snu—u, &) +yum (Enu—u, &)y,

1 i 1 i
< Chy, *lulgaoyry lznllw +y7 line — uly v Enlv +ymline —ulyg, 18nlp, -
1

SChJ/lz ‘ulHZ(_Q)
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Bounding also the perturbation terms

1 1
8l(wn) < vy *8Llw vy llznllw

and

Bu, En)oy, = 18uloy, 18nlov,

we arrive at

AnlGns zn)s (=8ns zn)] = Cyhlul g2 (o) 11 Ens 2 Il + 8y 111 Ghs zr) -

We conclude by dividing by ||| (&x, zn) ||l

This proof is insufficient to show error estimates. However for unperturbed data
and u € H?(£2), it may be used to show that u;, — u as h — 0, by a compactness
argument.

Remark 7.5 Note that §,, may depend on £ via the quantity |5u I, - This is the case,
for instance, when | - |Mh is chosen as in (7.26) with « # 0, and then error in data
is amplified for small /.

To prove error estimates we must rely on the conditional stability estimates in
Theorem 7.1. The idea behind the argument is to consider the error e = u — uj, and
observe that this error satisfies

ale,w) =l(w) —a(up, w) =:r(w), Ywe W. (7.45)

We will then use Proposition 7.2 to get bounds for ||r||w-, |e|Mh and |e||, so that
the conditional stability can be applied to e.

In the data assimilation case we have |e|y; = ello = h_“/2|e|Mh < lelyy,
so this quantity is immediately bounded by (7.44). For the Cauchy problem the
continuous and discrete data matching terms are not the same, but one can prove
that a suitable bound can be obtained for a perturbed error e by adding a small
perturbation to uy in the interface zone such that

lelpyg < llle, OIll. (7.46)

The error analysis then uses the arguments below together with a perturbation
argument for e, for details see [14]. We will not consider that case here, instead
focussing on the data assimilation case.

Theorem 7.2 Let u be the exact solution to (7.23)—(7.24), with l(w) = (f, w),
f e L), and | - Inve = I - llw- Let up be the solution of (7.31)—(7.32) with
the stabilisation operators (7.34)—(7.35). Then, for all o' C $2 satisfying the
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assumptions in Theorem 7.1 there holds
lu — unller < CH™ (el 2 +h™"'3y).

where the constant depends on the geometry and the constants y1, y» and yuy.

Proof As discussed above, the estimate is shown by applying Theorem (7.1) to the
problem satisfied by the error. We know that e is a solution to (7.23) with [(w) =
r(w) as per Eq. (7.45). By Proposition 7.2 the following bounds hold

lelyg, = llello < Cyhlulg2g) + 8y (7.47)
and

lelly < Cylulp2ay +h~'8y. (7.48)
Now observe that using Eq. (7.31) we have
r(w) =r(w—ipw)+riizw) =l(w—irw)—a(uy, w—izw)—s*(zn, irw)—=8l(ipw).
We estimate the terms on the right hand side, assuming that |w|w = 1,
lw—ipw) = (fiw—ipw) < | flllw—ipw| < ChlfI,
and using the inequality (7.43)
a(up, w — ipw) < Chllull g2 gy + I — up, O)]I.

Then applying Proposition 7.2 we obtain the bound

1
a(uh, w — thJ) < ]/1 2(Cyh||l/l||H2(_Q) +8y)

The two remaining terms are handled using the Cauchy-Schwarz inequality in the
first case and the duality pairing H~! x H! in the second, followed by the stability
of the interpolant i, in the W-norm,

1
s(zp, inw) < valznllwllwllw < vy’ (Cyhlul g2y + 8y)

8l(ipw) =< Cll8l|lw

Collecting the terms above we have for all w € W with |[w|w = 1,

1 1
r(w) < ChllfIl + (v, * + ) (Cphllull g2gy +8y) + Cllstw:. (7.49)
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But then

Irllw = sup  r(w)
weW:|w|lw=1

satisfies the same bound. Note also that || /|| < Cllul|z2(g). We conclude that e
satisfies the assumptions of Theorem 7.1 by with

R =lellv < Cylulg2gp +h7ls,, p= lelvt, < Chlulp2) + 6y,
e = |rllw < C(hllullg2(g) + 3y)

c.f.(7.47)—(7.49). In the last step we dropped the dependence on the constants y1, y»
and yyy, but it can be traced in the proof.

Remark 7.6 We detailed Theorem 7.2 only in the case of the data assimilation
problem, but the same arguments also leads to an analysis for the Cauchy problem,
under the assumption (7.46).

Remark 7.7 One may prove Theorem 7.2 for the data assimilation problem if s* is
defined by (7.34). In this case an additional factor #~! multiplies the term measuring
perturbations in data.

7.4.3 A Numerical Example

We consider the problem in Example 7.1 on the unit square §2. The exact solution
isu=300%xx%(1l—x)*xyx*x(l—y),with f = Lu, and the data domain o is
defined by

w:={(x,y) e 2 :]x—0.5] <0.25; |y —0.5] < 0.25}.

We use the formulation (7.31)—(7.32) with s(-,-) given by (7.34) for piecewise
affine approximation and (7.36) for piecewise quadratic approximation. The adjoint
stabiliser s*(-, -) was defined by (7.35), and the norm | - |Mh by (7.26) witho = 0
or —2. (Observe that if « = 0 then yj; must have the unit of the square of an inverse
length for the equations to be dimensionally correct.)

We chose y» = yar = 1 and y; = 1073 for all computations. The latter value is
similar to that used for computations in the well-posed case. We meshed the domain
using structured meshes that were made to fit the boundary of w. We performed
computations on a sequence of meshes with nele= 40, 80, 160, 320, elements on
each side of the square, using piecewise affine and piecewise quadratic elements. In
Fig.7.1, left graphic, we show a computational mesh and on the right graphic we
illustrate the domains w (the inner square) and ' (the middle square). In Fig.7.2,
left plot, we show the contourlines of an approximate solution and in the right plot
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Fig. 7.1 Left: computational mesh, nele=40. Right: the different subdomains » and '’

_ \

\ i

Fig. 7.2 Left: contour lines of approximate solution, nele=40. Right: contour lines of the
computational error

the contour lines of the computational error. Observe that the error has a form that
is similar to Hadamard’s counter-example discussed in Example 7.1, but growing
exponentially in the radial direction and oscillating in the direction tangential to the
boundary of w.

In the tables below we report the error in the normalised global L>-error, the
normalised local error for the subset

o = {(x,y) € R?: |x —0.5| < 0.375; |y — 0.5| < 0.375},

the data assimilation term, |4 — up|,, and the size of the weakly consistent
regularisation

[ — un, 2)|s = /s — up, u — up) + s*(zn, 2n)- (7.50)

The experimental convergence rates are given in parenthesis, where appropriate. We
report the results for unperturbed data and @ = 0 in Tables 7.1 and 7.5 and for o =
—2 in Tables 7.2 and 7.6. In all cases we observe the expected O (h¥) convergence
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Table 7.1 Computed quantities for the data assimilation problem using piecewise affine approx-
imation, @ = 0 and unperturbed data

nele  flu—ul o —uplle llu —unllo [ —up, 2)ls
40 0.21159%4 (-) 0.050922 (-) 0.00816074 (-) 0.0289235 (-)
80 0.175512 (0.3) 0.0407488 (0.3) 0.00618422 (0.4) 0.0147585 (1.0)
160 0.113346 (0.6) 0.0235298 (0.8) 0.00337103 (0.9) 0.00791309 (0.9)
320 0.0672893 (0.75) 0.0102456 (1.2) 0.00119201 (1.5) 0.0042852 (0.9)
640 0.0510429 (0.4) 0.00529074 (1.0) 0.000342379 (1.8) 0.00221974 (0.9)

Table 7.2 Computed quantities for the data assimilation problem using piecewise affine approxi-

mation, @« = —2 and unperturbed data
nele llu — upll llu — uplley llu — uplle [ —up, z)ls
40 0.0476335 (-) 0.00481282 (-) 0.000333429 (-) 0.0352793 (-)
80 0.0403148 (0.2) 0.00312934 (0.6) 8.0272e—05 (2.0) 0.0179655 (1.0)
160 0.0304957 (0.4) 0.00188862 (0.7) 1.998e—05 (2.0) 0.00911884 (1.0)
320 0.0227619 (0.4) 0.0009549 (1.0) 4.71016e—06 (2.1) 0.00464924 (1.0)
640 0.0200062 (0.2) 0.000642748 (0.6) 1.15698e—06 (2.0) 0.00234456 (1.0)

Table 7.3 Computed quantities for the data assimilation problem using piecewise affine approxi-
mation, @ = 0 and 2.5% perturbation in data

nele llu — upll llu — upller llu — uplle [ — up, 2)ls
40 0.206909 0.0490942 0.0148287 0.0289287 (-)

80 0.176546 0.0409112 0.013946 0.0146984 (1.0)
160 0.119693 0.0267951 0.0131763 0.0077906 (0.9)
320 0.0793605 0.0180773 0.0125264 0.00416117 (0.9)
640 0.0640708 0.0158747 0.0124993 0.00214582 (1.0)

of the stabilising terms (7.50), with k = 1 for piecewise affine approximation and
k = 2 in the quadratic case. We also observe that consistently with theory we have
lu—unlle = O(h*=*/%). The convergence of the data term is more even for o = —2.
For the global and local L?-norms we see that the error is a factor 5 — 10 larger when
a = 0 compared with the case where « = —2. Most likely this is due to the fact that
the missing length-scale present for &« = 0 is not well represented when y3; = 1.0.
Indeed the weak penalty does not impose the data sufficiently well compared to the
other terms, when @« = —2 on the other hand the data penalty term is so strong
that the data error is very small already on coarse meshes leading to improved local
and global errors. We observe convergence compatible with Holder stability for all
quantities, indicating that possibly we are not yet in the asymptotic regime on these
scales. Only on the finest meshes in Table 7.6 we see clearly the decreasing orders
characteristic for logarithmic convergence in the global error.

We then make the same sequence of computations but adding a perturbation of
2.5% to the data in w in the piecewise affine case and 1% in the quadratic case.
The results are reported for affine approximation in Tables 7.3 (« = 0) and 7.4
(¢ = —2). We observe that although the data assimilation term stagnates, the local
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Table 7.4 Computed quantities for the data assimilation problem using piecewise affine approxi-
mation, @ = —2 and 2.5% perturbation in data

nele lluw — upll llw —uplle llu —unllo [ —up, 2)ls
40 0.0520752 0.0145883 0.0124714 0.03529

80 0.0507222 0.014398 0.0125092 0.0186372
160 0.0502568 0.0143645 0.0127194 0.0142032
320 0.0537505 0.0143083 0.0125169 0.0224315
640 0.0427351 0.0138826 0.0125888 0.0434341

Table 7.5 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, @ = 0 and unperturbed data

nele |lu—upl llw —upller llu —upllo [ —up, 2)ls

20 0.0113854 (-) 0.0020353 (-) 0.000272026 (-) 0.00263335 (-)

40 0.00701791 (0.7) ~ 0.000668735 (1.6)  4.36798e—05 (2.6)  0.00067804 (2.0)
80 0.00630128 (0.16)  0.000458704 (0.54) 1.0293e—05 (2.1)  0.000171095 (2.0)
160 0.00457823 (0.5)  0.000278068 (0.72)  5.50828e—06 (1.0) 4.33632e—05 (2.0)
320 0.00275223 (0.7)  9.14176e—05 (1.6)  7.11806e—07 (2.8)  1.10465e—05 (2.0)

Table 7.6 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, « = —2 and unperturbed data

nele |lu — up| e — upller llu —upllo [ — up, 2)ls

20 0.00594613 (-) 0.000454428 (-) 1.92029e—05 (-) 0.00269387 (-)

40 0.00364274 (0.7)  0.000194766 (1.2)  3.21386e—06 (-2.6)  0.00069238 (-)

80 0.0023773 (0.6) 6.52831e—05 (1.6)  2.95005e—07 (3.4)  0.000176426 (2.0)
160 0.00159176 (0.6)  2.93421e—05 (1.2) 3.91486e—08 (2.9)  4.45628e—05 (2.0)
320 0.00118008 (0.4) 1.27615e—05 (1.2)  4.3179e—09 (3.2) 1.12277e—05 (2.0)

Table 7.7 Computed quantities for the data assimilation problem using piecewise quadratic
approximation, « = 0 and 1% perturbation in data

nele lluw — upll o —uplle llu —unllo [ —up, 2)ls

20 0.0146381 0.00619699 0.00510402 0.00260206

40 0.0137215 0.00593519 0.00492976 0.00066236 (2.0)
80 0.0135235 0.00594218 0.00498009 0.000167333 (2.0)
160 0.0110434 0.00593666 0.00497521 4.82896e—05 (1.8)
320 0.00982659 0.0058722 0.00497389 1.23888e—05 (2.0)

and global errors decrease under refinement for ¢ = 0. In this case the stabilisation
norm also converges to optimal order in spite of the perturbation. When o = —2
only the error in the stabilisation semi-norm show any decrease under refinement.
On the finest scale we see that both the global error and the error in the stabilisation
semi-norm has started to grow. For piecewise affine approximation it appears that
the choice o = —2 is superior both for perturbed and unperturbed data (at least for
the choice y); = 1) (Tables 7.5 and 7.6).

For quadratic approximation the results are reported in Tables 7.7 (« = 0) and 7.8
(¢ = —2). Here the effect of the perturbation is present already on the coarsest mesh
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Table 7.8 Computed quantities for the data assimilation problem using piecewise quadratic

approximation, & = —2 and 1% perturbation in data

nele llu — unll lu — uplle lu —unllo [ — up, 2)ls

20 0.0177247 0.00638777 0.00513258 0.00275637

40 0.026475 0.00628408 0.00495361 0.00164336

80 0.0503314 0.00644259 0.00500485 0.002676516

160 0.159728 0.0079909 0.0050097 0.00510579

320 0.335852 0.00962178 0.0050035 0.0101055

and the amplification of the error clearly much stronger for « = —2. Indeed whereas
for ¢ = 0 all error quantities still decrease under mesh refinement, the errors for
a = —2 all stagnate or increase. For the stabilisation norm we clearly see that

the error doubles under mesh refinement on finer meshes, which is consistent with
theory. In this case it appears that for resolutions where the mesh-size is of similar
order as the perturbation it is advantageous to take @« = 0, also in accordance with
theory.

7.5 Time Dependent Problems: Data Assimilation

In this section we consider the extension of the methods in the previous section
to the time dependent case, where several interesting new features appear. In
particular we can consider a problem which has Lipschitz stability and prove that
our method can exploit this in the form of error estimates that are optimal compared
to approximation. We consider a data assimilation problem for the heat equation

ou—Au=f, in(0,T)x £, (7.51)

with homogeneous Dirichlet conditions. Here 7 > 0 and £2 C R" is an open convex
polyhedral domain. Let @ C §2 be open and let 0 < 77 < T. The data assimilation
problems is of the following form: determine the restriction u|(7,,7yxs of a solution
to the heat equation (7.51) given f and the restriction u|(,7)xe. In this case we
have the following stability estimate due to Imanuvilov [23], see also [17, 32, 35]
for variations of the estimate.

Theorem 7.3 Let w C 2 be open and non-empty, and let 0 < T1 < T. Then there
is C > 0 such that for all u in the space

HY0,T; H'(2)) N L*(0, T; H} (2)), (7.52)
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it holds that
lullery,r.22y) + Nulle2ery, 7112y + Nl g 7. 5-1(2))
< Clullz2(0,7)xw) + 1Lull0,~1))>
where L = a[ — A and ||'||(0’_1) = ”'”LZ(O,T;H’I(.Q))'
In what follows, we use the shorthand notations
H®&™ = 540, T; H™(2)),  H{™™ = H&™ N 120, T; Hy (),
Neell .my = Nl gro,7; mm 2y el = lluell 0,0

and denote by ||u]|, the norm of L?((0, T) x w). Moreover, we use the following
notation for the data of the problem

q =ulo,Tyxw, f = Lu, (7.53)

and write
a(u,z) =(Vu,Vz), Gygu,z) =0mu,z)+al,z)—(f,2), G=Go,

where (-, -) is the inner product of L2((0,T) x £2) and (-, ) is the dual pairing
between L?(0, T; H~'(£2)) and L*(0, T; H}(£2)). Note that foru € H'((0, T) x
£2), the equations

Grlu,z) =0, zelL*0,T;H}(2)), (7.54)

give the weak formulation of o,u — Au = f.

7.5.1 Optimisation Based Finite Element Space
Discretisation

We consider only the problem semi-discretised in space, and show that the time con-
tinuous dynamical system is well-posed for every fixed /4. This section summarizes
part of the analysis from [17], where also a problem with weaker stability, similar
to that of the data assimilation problem in the previous section was considered. The
analysis carries over to the fully discrete case, but the stabilisation operators are
not the same. In particular in the fully discrete case, the adjoint stabilisation can be
omitted (see reference [18] for details).
Since the problem is time dependent we introduce the spaces Vj and Wy,

Vi =HY0,T; V), W,=L>0,T; V).
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Observe that contrary to the developments in the previous section both spaces are
equipped with Dirichlet conditions in space. The difference between the two spaces
here is the regularity in time. Following the development in the previous sections
our approach to solve the data assimilation problem is based on minimizing the
Lagrangian functional

1 1 1
by, 2) = llu= gl + LS ) = 552, 2), +G r(w, 2), (7.55)

where the data ¢ and f are fixed. Here ||-||,, is the norm of L%((0,T) x w), and s
and s* are the primal and dual stabilizers, respectively. Note that minimizing £, ¢
can be seen as fitting u|,7)x to the data g under the constraint (7.54), z can be
interpreted as a Lagrange multiplier, and s /2 and s* /2 as regularizing penalty terms.
Let ¢ € L*((0,T) x ) and f € H©®~D. The Lagrangian £, ¢, defined
by (7.55), satisfies
Dty fv=w—-q,v)0+su,v)+G,2),

DZLq,fw = _S*(Zﬂ w) + G(I/l, w) - (fa w)a
and therefore the critical points (1, z) € Vi, x Wy, of Ly ¢ satisfy
A[(M, Z)s (U, U))] = (Q1 U)w + (fs w)s (U, w) € V/’l X W/’lv (756)
where A is the symmetric bilinear form
Al(u, 2), (v, )] =, V) + s, v) + G(v,2) — 5™z, w) + Gu, w).  (7.57)
Note that
Al 2), (u, =2)] = s, u) + ullg, + 5% (2, 2),

Herein we consider only semi-discretisations, that is, we minimize £, s on a
scale of spaces that are discrete in the spatial variable but not in the time variable.
As before the spatial mesh size & > 0 will be the only parameter controlling the
convergence of the approximation, and we use piecewise affine finite elements. For

simplicity we have set all the auxiliary regularisation parameters y1, y2, ¥y to one,
and we consider only the case of unperturbed data.

7.5.2 A Framework for Stabilisation

Before proceeding to the analysis of the data assimilation problem, we introduce an
abstract stabilisation framework.
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Let s and s* be bilinear forms on the spaces Vj, and Wy, respectively. Let | -|y) be
a semi-norm on V; and let ||-][yy be a norm on W;,. We relax (7.34) and (7.35) by
requiring only that s and s* are continuous with respect to | - |y and |- ||y, that is,

s.u) < Clul}y,  5%z.2) <Clzldy. w€Vi 2€Wp h>0.  (7.58)

Let |||, be the norm of a continuously embedded subspace H* of the energy
space (7.52). The space H* encodes the a priori smoothness. We assume that the
stabilizations and norms introduced are such that the following continuities hold

Gu,z — mpz) < Clulylizllo,1), ueVy, ze H"Y, (7.59)

G(u — mpu, ) < Chllzllyllull«, ueH" zeW, (7.60)

where 7, is an interpolator satisfying

mn s Hy(2) = V0, h>0. (7.61)
lnuell ) < Cllull @), ue H'(2), h >0, (7.62)
lu = mpull g2y < CHE™ ull e ) ue HY2), h >0, (7.63)

where k = 1,2 and m = 0, k — 1. We assume that the following upper bound holds
|whuly < Chilull,, ue H*, (7.64)
and require that analogously to the stationary case
Inzllyg < Clizll.1): ze HOY. (7.65)
We assume that
G, D = luly + Nl + lzliyw.

is a norm on V;, x Wj,. Finally, in the abstract setting, we assume that the s and s*
are sufficiently strong so that the following weak coercivity holds

lwall=c sy DWW v W, (7.66)

w,w)eV,x W, [l v, w)lll
and for all (v, w) € Vi x Wy,
sup |A[(x, ¥), (v, w)]| > 0. (7.67)

(x,y) € Vi x Wy
x,y#0
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The Babuska-Lax-Milgram theorem implies that Eq. (7.56) has a unique solution in
Vi, x Wp,. As we shall see below, these design criteria are sufficient to derive optimal
error estimates in the transient case, provided the problem has a conditional stability

property.

7.5.3 The Data Assimilation Problem

We will now proceed to a specific case. We choose the stabilizers and semi-norms
as follows,

s, u) = [AVu(0, ) jag) 5" =a, (7.68)
luly = s@, )" + [hdull, llzllyg = 5"z, 2"/, (7.69)

and we define H* = Hél’l). To counter the lack of primal stabilisation on most
of the cylinder (0, T) x £2, we choose mj, to be the orthogonal projection wj, :
H(}(Q) — W, as defined in Sect.7.2.2. As £2 is a convex polyhedron, it is well
known that this choice satisfies (7.61)—(7.63), see e.g. [25, Th. 3.12—18].

Lemma 7.2 The choices (7.68)—(7.69) satisfy the properties (7.58)—(7.64), (7.65)
and (7.66). Moreover, |||-|l| is a norm on Vj, x Wy,

Proof It is clear that the continuities (7.58) hold. We begin with the lower
bound (7.59). By the orthogonality of mj,

G,z — 72) = B, 2 — my2) < Ihdyullh™" Iz — mazll < Clladullizlo.y)-
Towards the upper bound (7.60), we use the orthogonality as above,
G(u —mpu, z) = (Ou — wpdu, 2) < Chllullq 1zl
The bound (7.60) then follows from an application of the Poincaré inequality on

lzl.
The bound (7.64) follows from the continuity of the trace

IVu(0, 22y = llull,1ys (7.70)

and the continuity of the projection ;. The bound (7.65) follows immediately from
the continuity of .

We turn to the weak coercivity (7.66). The essential difference between the time
dependent case and the stationary case is that in the latter case, the choice w = u
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is prohibited. In this case it is allowed, but due to the time-derivative and the lack
of initial condition it does not lead to stability. Instead we observe that d;u € Wy,
when u € V), so that this can be used as a test function w = 9;u to obtain

Al(u, 2), (0, )] = —s*(z. ) + G (u, dyu) = | ull® + a(u, du) — a(z, du),

and thus using bilinearity of A,

Al(u, 2), (u, ah*du — 2)1 = s(u, u) + allhdull* + lul +s*(z,2) (771
+ ahza(u, o) — ahza(z, oru),

where « > 0. We will establish (7.66) by showing that there is @ € (0, 1) such that

G, w — 2 < Clliw, DI, (7.72)
G, D> < CALw, 2), (u, w — 2)], (7.73)

where w = ah?d,u.
Towards (7.72) we observe that

Gy w — 2DI1* = (@, DI — 25 (z, w) + *(w, w) < 21w, DI + 25™ (w, w).
We use the discrete inverse inequality (7.1) to bound the second term
s*(w, w) = &?h* 9, Vu|* < Ca?h*||dul* < Ca?|l(u, DI, « > 0.

It remains to show (7.73). Towards bounding the first cross term in (7.71) we
observe that

T
_ 2 _ 2 2
2a(u, du) = /O B IVu(t, Y2y dt = V(T )25 — IVu(0, )22 ).
Hence ah?a (u, 0;u) > —as(u, u)/2. We use the arithmetic-geometric inequality,
ab < (4€)'a®> +€b®, a,beR, €>0,

and the discrete inverse inequality (7.1) to bound the second cross term in (7.71),

ah’a(z, du) < a(de) la(z, 2) + aeh*|9, Vul® < a(de) 'a(z, z) + Cae|hdu|>.



198 E. Burman and L. Oksanen

Choosing € = 1/(2C) we obtain
AL, 2), (, w—=2)1 = (1—a/2)s(u, w)+alhdul® /24 ul;+(1—Ca/2)s*(z, 2),
and therefore (7.73) holds with small enough o > 0.

The second condition (7.67) follows using the symmetry of A. Indeed, if
(v, w) # 0, then A[(x,y), (v, w)] = A[(v,w), (x,y)] > 0 for some (x, y) by

(7.66). Finally, using the Poincaré inequality, we see that |||(«, z)||| = O implies
z = 0and u(0,-) = 0. As also d;u = 0, we have u = 0, and therefore |||-||| is a
norm.

7.5.4 Error Estimates

We are now in a situation to prove an error estimate using the abstract theory.

Theorem 7.4 Let w C §2 be open and non-empty and let 0 < Ty < T. Suppose
that (A2) holds. Let u € H* and define f = d;u — Au and q = u|,. Suppose that
the primal and dual stabilizers satisfy (7.58)—(7.64), (7.65) and (7.66). Then (7.56)
has a unique solution (up, zp) € Vi, x Wy, and there exists C > 0 such that for all
he(0,1)

lun —ullecr, 2y + lun = wll 2oy 7m0 2 + N — wllgr o 7. 1-12))
< Ch(llullx + 1 £1D-

Proof We begin again by showing the estimate
W un — mnu, z)lll < Chllull,. (7.74)
The equations d,u — Au = f and u|,, = q are equivalent with
G(u,w) = (f,w), w e L*0,T;H}()), (7.75)
(@—u,v)0o=0, veL*(0,7T)xw),
and Egs. (7.56) and (7.75) imply for all v € V, and w € W}, that

Al(up — mpu, zp), (v, w)] = (4 — Tpu, V) + G(u — THu, W) — s(THU, V).
(7.76)

The weak coercivity (7.66) implies that in order to show (7.74) it is enough bound
the three terms on the right hand side of (7.76). For the first of them, that is,
(u — mpu, v),, we use (7.63). The upper bound (7.60) applies to the second term
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G(u — mpu, w), and for the third one we use the continuity (7.58) and the upper
bound (7.64),

s(mpu, v) < Clrpulyplvly < Chllull|vly.

We define the residual r as follows. By taking v = O in (7.56) we get G (up,, w) =
(f, w) + s*(zn, w), w € Wy, and therefore

(r,w) = Gup, w) — (f, w) = Gup, Tpw) + G (up, THW) (1.77)
=Gy, w —mpw) — {f, w — Tpw) + s (zp, Thw), w € Héo’l).
We now wish to arrive to the estimate
I7ll0,—1) < Cunly + lznlly +21LD. (7.78)
To show that (7.78) holds, it is enough to bound the three terms on the right hand
side of (7.77). The upper bound (7.59) applies to the first term G (u;, w — mTpw),

for the second term (f, w — mpw) we use (7.63), for the third term we use the
continuity (7.58) and the upper bound (7.65)

s*(zn, maw) < Cllznllywlimawliyg < Clizllywllwllio,1)-
The inequalities (7.78), (7.74) and (7.64) imply
I7ll0,—1) = Clun — mpuly + |mauly + llzallyw + AILFID < Ch(lull + 11LF1D.

Finally using the above bound on r, Theorem 7.3 implies that

lun =l rie2@y + lun —ull 2o rom @) + lun = ull g, rim-1@))
< Cllup — ully, + Ch(llull« + 1 £1)-

The claim follows by using (7.74) and (7.63),
lun —ully < llun — whully + llwnu —ull, < Chjjull,.
Here we used also the assumption that H* is a continuously embedded subspace of

the energy space (7.52), namely, this implies that the embedding H* ¢ H®D is
continuous.

Remark 7.8 If the data g, f is perturbed in this time-dependent case, the data
assimilation problem behaves like a typical well posed problem, that is, the term

1811 2200, 7;12(wy) + 18 1l0,—1)
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needs to be added on the right-hand side of the estimate in Theorem 7.4, but this
time without any negative power of &. The proof is similar as in the stationary case
and we omit it.

7.6 Conclusion

We have shown on some model problems how weakly consistent regularisation may
be applied in the context of finite element approximation of ill-posed problems as a
means to obtain approximations to the exact solution that are optimal with respect
the approximation order of the finite element space and the (conditional) stability
of the physical problem. We have only considered piecewise affine approximation
here but the extension to high order polynomial approximation (and with associated
enhanced accuracy for smooth solutions) is possible using the ideas from [13].
Ongoing work focuses on problems where the stability depends on the parameters
of the physical problem in a more intricate way such as for the convection-diffusion
equation or the Helmholtz equation. Further work will also address the extension to
systems such as the linearised Navier-Stokes’ equations.
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Chapter 8 )
Reduced Basis Approximation Shethie
and A Posteriori Error Estimation:
Applications to Elasticity Problems

in Several Parametric Settings

Dinh Bao Phuong Huynh, Federico Pichi, and Gianluigi Rozza

Abstract In this work we consider (hierarchical, Lagrange) reduced basis
approximation and a posteriori error estimation for elasticity problems in
affinely parametrized geometries. The essential ingredients of the methodology
are: a Galerkin projection onto a low-dimensional space associated with a
smooth “parametric manifold”—dimension reduction; an efficient and effective
greedy sampling methods for identification of optimal and numerically stable
approximations—rapid convergence; an a posteriori error estimation procedures—
rigorous and sharp bounds for the functional outputs related with the underlying
solution or related quantities of interest, like stress intensity factor; and Offline-
Online computational decomposition strategies—minimum marginal cost for high
performance in the real-time and many-query (e.g., design and optimization)
contexts. We present several illustrative results for linear elasticity problem
in parametrized geometries representing 2D Cartesian or 3D axisymmetric
configurations like an arc-cantilever beam, a center crack problem, a composite
unit cell or a woven composite beam, a multi-material plate, and a closed vessel.
We consider different parametrization for the systems: either physical quantities—
to model the materials and loads—and geometrical parameters—to model different
geometrical configurations—with isotropic and orthotropic materials working in
plane stress and plane strain approximation. We would like to underline the
versatility of the methodology in very different problems. As last example we
provide a nonlinear setting with increased complexity.
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8.1 Introduction

In several fields, from continuum mechanics to fluid dynamics, we need to solve
numerically very complex problems that arise from physics laws. Usually we
model these phenomena through partial differential equations (PDEs) and we are
interested in finding the field solution and also some other quantities that increase
our knowledge on the system we are describing. Almost always we are not able
to obtain an analytical solution, so we rely on some discretization techniques,
like Finite Element (FE) or Finite Volume (FV), that furnish an approximation of
the solution. We refer to this methods as the “truth” ones, because they require
very high computational costs, especially in parametrized context. In fact if the
problem depends on some physical or geometrical parameter, the full-order or high-
fidelity model has to be solved many times and this might be quite demanding.
Examples of typical applications of relevance are optimization, control, design,
bifurcation detection and real time query. For this class of problems, we aim to
replace the high-fidelity problem by one of much lower numerical complexity,
through the model order reduction approach [12]. We focus on Reduced Basis (RB)
method [3, 4, 17, 34, 35], which provides both fast and reliable evaluation of an
input (parameter)-output relationship. The main features of this methodology are
(1) those related to the classic Galerkin projection on which RB method is built
upon (2) an a posteriori error estimation which provides sharp and rigorous bounds
and (3) offline/online computational strategy which allows rapid computation. The
goal of this chapter is to present a very efficient a posteriori error estimation
for linear elasticity parametrized problem. We show many different configurations
and settings, by applying RB method to approximate problems using plane stress
and plane strain formulation and to deal both with isotropic and orthotropic
materials. We underline that the setting for very different problems is the same and
unique.

This work is organized as follows. In Sect. 8.2, we first present a “unified” linear
elasticity formulation; we then briefly introduce the geometric mapping strategy
based on domain decomposition; we end the Section with the affine decomposition
forms and the definition of the “truth” approximation, which we shall build our
RB approximation upon. In Sect. 8.3, we present the RB methodology and the
offline-online computational strategy for the RB “compliant” output. In Sect. 8.4,
we define our a posteriori error estimators for our RB approach, and provide the
computation procedures for the two ingredients of our error estimators, which are
the dual norm of the residual and the coercivity lower bound. In Sect. 8.5, we
briefly discuss the extension of our RB methodology to the “non-compliant” output.
In Sect. 8.6, we show several numerical results to illustrate the capability of this
method, with a final subsection devoted to provide an introduction to more complex
nonlinear problems. Finally, in Sect. 8.7, we draw discussions and news on future
works.
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8.2 Preliminaries

In this Section we shall first present a “unified” formulation for all the
linear elasticity cases—for isotropic and orthotropic materials, 2D Cartesian
and 3D axisymmetric configurations—we consider in this study. We then
introduce a domain decomposition and geometric mapping strategy to recast
the formulation in the “affine forms”, which is a crucial requirement for our
RB approximation. Finally, we define the “truth” finite element approximation,
upon which we shall build the RB approximation, introduced in the next
Section.

8.2.1 Formulation on the “Original” Domain
8.2.1.1 Isotropic/Orthotropic Materials

We first briefly describe our problem formulation based on the original settings
(denoted by a superscript °). We consider a solid body in two dimensions £2°(u) €
R? with boundary I'°, where w € D C R’ is the input parameter and D is
the parameter domain [38, 39]. For the sake of simplicity, in this section, we
assume implicitly that any “original” quantities (stress, strain, domains, boundaries,
etc.) with superscript © will depend on the input parameter u, e.g. 2° =
2°(p).

We first make the following assumptions: (1) the solid is free of body forces, (2)
there are negligible thermal strains; note that the extension to include either or both
body forces/thermal strains is straightforward. Let us denote u° as the displacement

field, and the spatial coordinate x° = (x{, x7), the linear elasticity equilibrium
reads
i o, inao 8.1
=V, mn .
0x© ®.1)

J

where o denotes the stresses, which are related to the strains ° by
op = Cijuey, 1=<i,j.kl1=<2
ij ijkl €kl =L )KL=

where

1/0u ouf
o __ k /
fu = 2<8xl° + 8x,‘2)’
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u® = (u‘f, ug) is the displacement and C;jy; is the elastic tensor, which can be
expressed in a matrix form as

Cii11 Cri2 Cri21 Cri2
Ci211 Ci212 Ci221 Cr222 T
[C] = = [B]" [E][B],
Ca111 Car12 C2121 Co122
Cx11 Ca12 Co21 Coo22

where
1000 cricrz 0
Bl=|0001 [E]= | caca O
0110 0 0 ¢33

The matrix [E] varies for different material types and is given in the Appendix.
We next consider Dirichlet boundary conditions for both components of u°:

o __ [
u; =0 on Ip,,

and Neumann boundary conditions:

(8]
o0 _ |fiepion Iy
TUni = 0 on IO\

N
where f,’ is the specified stress on boundary edge I'y respectively; and e, =
le) . ey ,] is the unit normal on I'y. Zero value of f indicate free stress
(homogeneous Neumann conditions) on a specific boundary. Here we only consider
homogeneous Dirichlet boundary conditions, but extensions to non-homogeneous
Dirichlet boundary conditions and/or nonzero traction Neumann boundary condi-
tions are simple and straightforward.

We then introduce the functional space

X°={v=(v1,0) € (H(2°)*|vi=00nT}, i=12}
here H'(2°) = {v € L*(2°) | Vv € (L*(£2°))?} and L?(£2°) is the space of

square-integrable functions over £2°. By multiplying (8.1) by a test function v € X°
and integrating by part over §2° we obtain the weak form

ov; Bui
/_Qo 0x9 Cijia axlodm = /F faen jvidl®. (8.2)
N



8 Reduced Basis Approximation and A Posteriori Error Estimation 207

Finally, we define our output of interest, which usually is a measurement (of our
displacement field or even equivalent derived solutions such as stresses, strains) over
a boundary segment I'y’ or a part of the domain £27 . Here we just consider a simple
case,

s°(u) :/ friu7dIr®, (8.3)
ry

i.e. the measure of the displacement on either or both x{ and xJ direction along
I’ with multipliers fzi; more general forms for the output of interest can be
extended straightforward. Note that our output of interest is a linear function of
the displacement; extension to quadratic function outputs can be found in [20].

We can then now recover our abstract statement: Given a u € D, we evaluate

sO(p) = £°u®; ),
where u° € X° satisfies
a®w®,v; w) = f°(v; p), Vv e X°.

Here a®(w,v; p) : X° x X° — R, Yw,v € X° is the symmetric and positive
bilinear form associated to the left hand side term of (8.2); f°(v; w) : X° - R
and £°(v; u) : X° — R, Yv € X° are the linear forms associated to the right hand
side terms of (8.2) and (8.3), respectively. It shall be proven convenience to recast
a®(-,-; ), fO(-; p) and €°(-; w) in the following forms

S
ox}
davy
9x3

dwy, ow; dwy dwy
o . — a vy 0y 0
a’(w, v; p) /m[ax? 9x9 9x0 0x3 w1}[S] d2°, Yw,v € X°,

(8.4)

O ,L):/ [sf][”l}dr‘), Vo e X°, (8.5)
ry v

©: p) =/ (S] [Ul:|d1“°, Vo e X°, (8.6)
I"I(" (%)
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where [S¢] € R>*3; [S/] € R? and [S!] € R? are defined as

1[5 0) wim[anne]. w1

8.2.1.2 Axisymmetric

Now we shall present the problem formulation for the axisymmetric case. In a
cylindrical coordinate system (r, z, 6),! the elasticity equilibrium reads
902 3o  op

oy zr + rr_gé)Q =0, in 0°
ar 0z r

do,, n doy, n o?, —0. in 0°

or 0z r
where 0., O‘ZZ, a,z, 0099 are the stress components given by
o0 1—-v) v v 0 €2
o° E v (1-v) v 0 &0
5| = v v (1-v) 0 REE
Ogy 1+v)(1-2v) =2 €09
o?, 0 0 0 5 p

(E]

where E and v are the axial Young’s modulus and Poisson ratio, respectively.
We only consider isotropic material, however, extension to general to anisotropic
material is possible; as well as axisymmetric plane stress and plane strain [44]. The
strain &y,, €2, &7, £y, are given by

— au? -—
or
ey ou?
ng — 0z 8.7
sl=l | (8.7)
g0 r
A u°  oul
_l’_
L 0z or 4

where uy, u? are the radial displacement and axial displacement, respectively.

1For the sake of simple illustration, we omit the “original” superscript ° on (r, z, 6).
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(4]
r

u
Assuming that the axial axis is x3, let [uf,u5] = [ ,u?] and denoting
r

[x}, x5, x5] = [r, z, 6], we can then express (8.7) as

- out
ax?
: : o
& 3000171

o A

% | _ iy 00010/ 53
£, 0 0001|] 5
€9, Loxproo] 3u§
[Ba] axs

L]

As in the previous case, we consider the usual homogeneous Dirichlet boundary
conditions on FB,:’ and Neumann boundary conditions on I"°. Then if we consider
the output of interest s°(u) defined upon I'yY, we arrive at the same abstract
statement where

(5] = x{[Ba1" (ENB1. 1871 = [ ()2 060, 90, |.

(S = [ w9 £0e0y foess -

Note that the x{ multipliers appear in [S/] during the weak form derivation, while
in [S!], in order to retrieve the measurement for the axial displacement u? rather than
u‘l’ due to the change of variables. Also, the 27r multipliers in both a°(-, -; p) and
f°(-; m) are disappeared in the weak form during the derivation, and can be included
in £°(-; ), i.e. incorporated to [S¢] if measurement is required to be done in truth
(rather than in the axisymmetric) domain.

8.2.2 Formulation on Reference Domain

The RB requires that the computational domain must be parameter-independent;
however, our “original” domain £2°(u) is obviously parameter-dependent. Hence,
to transform £2°(p) into the computational domain, or “reference” (parameter-
independent) domain £2, we must perform geometric transformations in order
to express the bilinear and linear forms in our abstract statement in appropriate
“affine forms”. This “affine forms” formulation allows us to model all possible
configurations, corresponding to every g € D, based on a single reference-domain
[34, 36].
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8.2.2.1 Geometry Mappings

We first assume that, for all g € D, £2°(u) is expressed as

Lreg

2°mw = J 2w,
s=1

where the 22(p), s = 1, ..., L, are mutually non-overlapping subdomains. In
two dimensions, £29(p), s = 1, ..., L, is a set of triangles (or in the general
case, a set of “curvy triangles”? [22].) such that all important domains/edges (those
defining different material regions, boundaries, pressures/tractions loaded boundary
segments, or boundaries which the output of interests are calculated upon) are
included in the set. In practice, such a set is generated by a constrained Delaunay
triangulation.

. . L
We next assume that there exists a reference domain 2 (= 2°(ff) = UY:‘T’ 24
where, for any X° € £2, 5 =1, ..., Ly, its image x° € £27(u) is given by

X°(p) = T (w; x) = R () 1x + (G ()], (8.8)

where [Ri‘ff(u)] € R?*2 and [Gi‘ff(u)] € R2. It thus follows from our definitions
that Ty(p; X) @ 25 — 22,1 < s < Ly is an (invertible) affine mapping from
£25 to £2.(p), hence the Jacobian |det([R§‘ff(;L)])| is strictly positive, and that the
derivative transformation matrix, [D?ff(u)] = [Rf’;‘ff(p,)]’1 is well defined. We thus
can write

0 ox; 0 aff d ..
0x° ~ 9x0dx; Dy i; () ax° l<ij=<2 (8.9)
As in two dimensions, an affine transformation maps a triangle to a triangle, we can
readily calculate [R?ff([l,)] and [G?ff(;l,)] for each subdomains s by simply solving a
systems of six equations forming from (8.8) by matching parametrized coordinates
to reference coordinates for the three triangle vertices.

We further require a mapping continuity condition: for all € D,

To(u; x) =Ty (u;x), VX€ 2Ny, 1=5,5 < Lreg.
This condition is automatically held if there is no curved edge in the set of 20 (). If
a domain contains one or more “important” curved edge, special “curvy triangles”

must be generated appropriately to honour the continuity condition. We refer the
readers to [36] for the full discussion and detail algorithm for such cases.

2In fact, a “curvy triangle” [36] is served as the building block. For its implementation see [22].
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The global transformation is for x € §2, the image x° € £2°(u) is given by
x°(w) = T(p; x).

It thus follows that T(p; x) : 2 — £2°(u) is a piecewise-affine geometric mapping.

8.2.2.2 Affine Forms
We now define our functional space X as
X ={v=(vi,v) € (H"(2)*|vi=00nTIp,;,i=12}

and recast our bilinear form a®(w, v; ), by invoking (8.4), (8.8) and (8.9) to obtain
Yw,v € X(£2)

[ dvy
0x1
dvy

Jwp dw; dwy dwy dx2

a(w,v;u)=/ [ wl}[S‘f’aH(ﬂ)] vz | dg.
Ufflgﬂs dx; 0x2 0x; 0x2 § ax

BRI
0x2
U1

where [SY*(u)] = [H,(w)1[SU1H, ()17 |det((RX (w)])] is the effective elastic
tensor matrix, in which

D (r)] [01%2 0
Hy(w)] = | [01>*? [Ds(n)] 0
0 0 1

Similarly, the linear form f°(v; u), Vv € X can be transformed as

(s [”1 } dr,
)

Jfp) = /U“eg

s=1 1 Ns

where Iy, denotes the partial boundary segment of I'y of the subdomain §2; and

[S{ ’aff] = ||([Rs(i)]en)|12[S/] is the effective load vector, where e, is the normal
vector to Iy, and | - |2 denotes the usual Euclidean norm. The linear form £(v; p)
is also transformed in the same manner.
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We then replace all “original” x{ and xJ in the effective elastic tensor matrix

[S@4(y)], effective load/output vectors (S ()] and [SE ()] by (8.8)
to obtain a x°-free effective elastic tensor matrix and effective load/output
vectors, respectively,® in certain conditions) can be a polynomial function of
the spatial coordinates x° as well, and we still be able to obtain our affine
forms (8.12).

We next expand the bilinear form a(w, v; ) by treating each entry of the
effective elastic tensor matrix for each subdomain separately, namely

Jdwy dvg dw] vy

s p) = st ga-aff ... (8.10
a(w, v; p) 1,11 () 2 9x1 9x; + 1,12 () 2 ax1 9x2 + ( )
S;rjgffss(u)/ wiwi. (8.11)

Lreg

Note that here for 31mp11c1ty, we consider the case where there is no spatial

coordinates in [S ([L)] In general (especially for axisymmetric case), some
ow; Jvk
or most of the integrals may take the form of fg (xp)™ (xz)” ! 5 , Where
axj dx;’
m,n € R.
Taking into account the symmetry of the bilinear form and the effective elastic
tensor matrix, there will be at most Q% = 7L terms in the expansion. However,

in practice, most of the terms can be collapsed by noticing that not only there
a,aff

will be a lot of zero entries in [S5"™ (w)], s ., Lreg, but also there will
be a lot of duplicated or “linearly dependent” entries, for example, Si‘ fn;f(u) =

[Const]Sg f‘ff(p,) We can then apply a symbolic manipulation technique [36] to

identify, eliminate all zero terms in (8.10) and collapse all “linear dependent” terms
to end up with a minimal Q¢ expansion. The same procedure is also applied for the
linear forms f(-; u) and £(-; p).

Hence the abstract formulation of the linear elasticity problem in the reference
domain £2 reads as follow: given u € D, find

s(p) = L (p); p,
where u(p) € X satisfies

a(u(p),v; ) = f(v;p), VveX,

3Here we note that, the Young’s modulus E in the isotropic and axisymmetric cases or E;, E, and
E5 in the orthotropic case only.
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where all the bilinear and linear forms are in affine forms,

Qa
a(w,v; p) =Y Of (Wag(w, v),

q=1
o/

fim) =Y 0 () fy ).
q=1
Ql

vy p) = Z@j(u)eq(u), Yw, v, € X. (8.12)
qg=1

Here @jj(u), ag(w,v),qg =1,...,0% f,(v); (~)qf ), fgw),g=1,..., Qf, and
@5 (n), Ly(w),g =1,..., 0t are parameter-dependent coefficient and parameter-
independent bilinear and linear forms, respectively.

We close this section by defining several useful terms. We first define our inner
product and energy norm as

(w, v)x = a(w, v; n) (8.13)
and ||lw|x = (w, w)l/z, Yw,v € X, respectively, where u € D is an arbitrary
parameter. Certain other inner norms and associated norms are also possible [36].

We then define our coercivity and continuity constants as

a(w, v; p)

a(p) = inf (8.14)
weX  [lwllg
a(w, v; 1)
y (1) = sup o (8.15)
wex llwlly
respectively. We assume that a(-, -; p) is symmetric, a(w, v; ) = a(v, w; n),

Yw, v € X, coercive, a(p) > og > 0, and continuous, y (g) < yp < 0o; and also
our f(-; m) and £(-; p) are bounded functionals. It follows that problem which is
well-defined and has a unique solution. Those conditions are automatically satisfied
given the nature of our considered problems [38, 39].

8.2.3 Truth Approximation

From now on, we shall restrict our attention to the “compliance” case (f(-; ) =
£(-; p)). Extension to the non-compliance case will be discuss in the Sect. 8.5.
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We now apply the finite element method and we provide a matrix formulation
[37]: given u € D, we evaluate

s(u) = EN 1 N )1, (8.16)

where [UN([L)] represents a finite element solution MN([L) € XN € X of size N
which satisfies

KN 1N 1 = FN ()1 (8.17)

here [KN(u)], and [FN(u)] and the (discrete forms) stiffness matrix and load vector

of a(-,-; p), and f(-; p), respectively. Note that the stiffness matrix [KN(u)] is
symmetric positive definite (SPD). By invoking the affine forms (8.12), we can

express [KN([L)], and [FN([L)] as

KNw1 =Y 0wk,
g=1

o’
[P ] =" of wiF)l, (8.18)
q=1

where [Kg\r], [Fg\f] and are the discrete forms of the parameter-independent bilinear
and linear forms a, (-, -) and f;(-), respectively. We also denote (the SPD matrix)

[YN] as the discrete form of our inner product (8.13). We also assume that the size
of our FE approximation, N is large enough such that our FE solution is an accurate
approximation of the exact solution.

8.3 Reduced Basis Method

In this Section we shall restrict our attention by recalling the RB method for the
“compliant” output. We shall first define the RB spaces and the Galerkin projection.
We then describe an Offline-Online computational strategy, which allows us to
obtain N-independent calculation of the RB output approximation [17, 26].

8.3.1 RB Spaces and the Greedy Algorithm

To define the RB approximation we first introduce a (nested) Lagrangian parameter
sample for 1 < N < Npax,

Sy ={ly, iy, ..., y},
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and associated hierarchical reduced basis spaces (X y =) Wg,\f, 1 < N < Nnmax,

w = span{uN(w,). 1 < n < N},

where u,, € D are determined by the means of a Greedy sampling algorithm [35,
36]; this is an iterative procedure where at each step a new basis function is added
in order to improve the precision of the basis set.

The key point of this methodology is the availability of an estimate of the error
induced by replacing the full space X N with the reduced order one Wg,\f in the
variational formulation. More specifically we assume that for all p € D there exist
an estimator 7(u) such that

N () — ¥ Il < n(R),

where uN(u) exNex represents the finite element solution, u%\g Ny € X y -

XN the reduced basis one and we can choose either the induced or the energy
norm.
During this iterative basis selection process and if at the j-th step a j-dimensional

reduced basis space W/N is given, the next basis function is the one that maximizes

the estimated model order reduction error given the j-dimensional space WJN over
D. So at the n + 1 iteration we select

Wty = arg max n(p)
neD

and compute uN(unH) to enrich the reduced space. This is repeated until the
maximal estimated error is below a required error tolerance. With this choice the
greedy algorithm always selects the next parameter sample point as the one for
which the model error is the maximum as estimated by 1 (x) and this yields a basis
that aims to be optimal in the maximum norm over D.

Furthermore we can rewrite the reduced space as

Wg]\f = span{gnN, 1 <n <N},

where the basis functions {{N] are computed from the snapshots uN(u) by

a Gram-Schmidt orthonormalization process such that [;%]T[YN][CZ\[] = Smn,
where §,,, is the Kronecker-delta symbol. We then define our orthonormalized-

snapshot matrix [Zy] = [Z;V\[] = [[é'%\[]l e I[é'nN]] of dimension N x N.
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8.3.2 Galerkin Projection

We then apply a Galerkin projection on our “truth” problem [1, 27-29, 36]: given
i € D, we could evaluate the RB output as

sn(w) = IFN ()17 uRly v (w1,

where
[U%,N(ﬂ)] = [Zy][uy (n)] (8.19)

represents the RB solution u%\]g N eX y cX N of size N. Here [uy ()] is the
RB coefficient vector of dimension N satisfies the RB “stiffness” equations

[Ky (m)][uy (w)] = [Fy ()], (8.20)

where

[Ky ()] = [Zy17 (KN ()1[Z ],
[Fy ()] = [Zx]" TFN (). 8.21)

Note that the system (8.20) is of small size: it is just a set of N linear algebraic
equations, in this way we can now evaluate our output as

sv(w) = [Fx ()] [uy ()] (8.22)

It can be shown [31] that the condition number of the RB “stiffness” matrix

[ZN]T[KN([L)][ZN] is bounded by yp(m)/oo(p), and independent of both N
and N.

8.3.3 Offline-Online Procedure

Although the system (8.20) is of small size, the computational cost for assembling
the RB “stiffness” matrix (and the RB “output” vector [FN(;L)]T[ZN]) is still
involves N and costly, O (N N2 4+ N2N) (and O(NN), respectively). However, we
can use our affine forms (8.12) to construct very efficient Offline-Online procedures,
as we shall discuss below.
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We first insert our affine forms (8.18) into the expansion (8.20) and (8.22), by
using (8.21) we obtain

0 o/
Y Ot (wIKynuy ()] =Y 6 ()[Fgn]
q=1 q=1
and
o/ .
sv(w) =Y Of (WIFgnlluy (],
q=1

respectively. Here

[Kon] = [Zy KM Zy], 1<q < Q°
[Fon] = ZW1TIF)], 1<q <0,

are parameter independent quantities that can be computed just once and than stored
for all the subsequent p-dependent queries. We then observe that all the “expensive”
matrices [Kgn], 1 < g < 0% 1 < N < Nmax and vectors [Fyy], 1 < g < Qf,
1 < N < Nmax, are now separated and parameter-independent, hence those can be
pre-computed in an Offline-Online procedure.

In the Offline stage, we first compute the [uN(u")], 1 < n < Npax, form the
matrix [Zy,,,, | and then form and store [Fy,,, ] and [Kn,,..]. The Offline operation
count depends on Npax, Q% and N but requires only O(Q“N%ax + O Npax +
QZNmaX) permanent storage.

In the Online stage, for a given g and N (1 < N < Npax), We retrieve the pre-
computed [K,n] and [Fy] (subarrays of [Kgn. ], [Fa 1), form [Ky(g)], solve
the resulting N x N system (8.20) to obtain {uy ()}, and finally evaluate the output
sy (p) from (8.22). The Online operation count is thus O (N 3) and independent of
N. The implication of the latter is twofold: first, we will achieve very fast response
in the many-query and real-time contexts, as N is typically very small, N < N; and
second, we can choose N arbitrary large—to obtain as accurate FE predictions as
we wish—without adversely affecting the Online (marginal) cost.

8.4 A Posteriori Error Estimation

In this Section we recall the a posteriori error estimator for our RB approximation.
We shall discuss in details the computation procedures for the two ingredients of the
error estimator: the dual norm of the residual and the coercivity lower bound. We
first present the Offline-Online strategy for the computation of the dual norm of the
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residual; we then briefly discuss the Successive Constraint Method [21] in order to
compute the coercivity lower bound.

8.4.1 Definitions

We first introduce the error eN(;L) = MN([L) — u%\{g’N(u) € XN and the residual
rN(v; ) € (XN)’ (the dual space to XN), Yu € XN,

PN w) = f) —a@™N (. v ), (8.23)
which can be given in the discrete form as
N1 = FN 1 - KNG 1uRg,y (). (8.24)

We then introduce the Riesz representation of rN(v; n:e(n) € X N defined by
(e(p), U)XN = rN(v; ), Vv e XN. In vector form, (i) can be expressed as

YNie(w) = N1 (8.25)

We also require a lower bound to the coercivity constant

a(w, w; p)
oNw = ) (8.26)
wexN ”w”XN
such that 0 < ozg\lg (n) < OéN([L), Yu € D.
We may now define our error estimator for our output as
eI 5

Ay (p) = 0, (8.27)

aN

LB

where ||é(;L)||XN is the dual norm of the residual. We can also equip the error
estimator with an effectivity defined by

A (p)

. (8.28)
IsN () — sy ()

ny(r) =
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We can readily demonstrate [31, 36] that

yo(i)

, VYueD;
o\ ()

I <nyp) <

so that the error estimator is both rigorous and sharp. Note that here we can only
claim the sharp property for this current “compliant” case.

We shall next provide procedures for the computation of the two ingredients of
our error estimator: we shall first discuss the Offline-Online strategy to compute
the dual norm of the residual |le(n) ”XN’ and then provide the construction for the

lower bound of the coercivity constant O{N([L).

8.4.2 Dual Norm of the Residual
In discrete form, the dual norm of the residual () = |le(n) ”XN is given by

e2(w) = [ Y N[e ()], (8.29)
We next invoke (8.24), (8.25) and (8.29) to arrive at

T
2 (w) = ([FN(;L)] - [KNm)][u%,N(m)) YNy

([Fan - [KN(M[u%,N(u)])

= FN I YT N 1 = 20FN 1T 1YV RN ()
FRN T YN RN (). (8.30)

We next defines the “pseudo”-solutions [P(J; = [YN]_l[Fg\f], 1 <gqg< Qf and
o] = YN UKNIZy] 1 < g < 0% then apply the affine form (8.18)
and (8.19) into (8.30) to obtain
Ew=y Y 6J(we) (u)([PJ]T[YN] [Pj,]) (8.31)
q=14'=1
o of . , N
DI ICACH (u)([PJ "1y ][Pg,N]>[u§B(u>]
g=1¢'=1
0° 0 N
+Y ) 0d (WO (wuy” (u)]T<[P;N]T[Y ][P;,N])[uI’SB (w)].

q=1q'=1
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It is observed that all the terms in bracket in (8.31) are all parameter-independent,
hence they can be pre-computed in the Offline stage. The Offline-Online strategy is
now clear.

In the Offline stage we form the parameter-independent quantities. We first

compute the “pseudo”’-solutions [P;;] = [YN]_l[Fg\f], 1<gqg< Qf and [PZ Nl =
YNIUKNIZN]L, 1 < g < 0% 1 < N < Ny and formstore [P 17 [YN][P/ ],
1<q.q <0/ . PITIYNIPY, 11 =g <0/, 124 <0%1 <N < Noax,
[PZN][YN][P;/N], 1 <g,9 < Q%1 <N < Npa. The Offline operation count
depends on Npax, Q¢, Qf ,and N.

In the Online stage, for a given  and N (1 < N < Npax), We retrieve the pre-
computed quantities [PJ]T[YN][P;C,], 1 <gq.q < 0/, [PZ;]T[YN][P;,N], 1<
g<0f,1<qg<0%and [PZN]T[YN][PZ,N], 1 <g,q’ < Q% and then evaluate

the sum (8.31). The Online operation count is dominated by O (((Q%)*+(Q/)*)N?)
and independent of N.

8.4.3 Lower Bound of the Coercivity Constant

We now briefly address some elements for the computation of the lower bound in the
coercive case. In order to derive the discrete form of the coercivity constant (8.26)
we introduce the discrete eigenvalue problem: given u € D, find the minimum set

([X min ()], Amin(p)) such that

KNI ()] = Amin[ YN0 ()],
Ix 1" Y N[x ()] = 1. (8.32)

We can then recover

N (1) = V/Amin(R).- (8.33)

However, the eigenproblem (8.32) is of size N, so using direct solution as an

ingredient for our error estimator is very expensive. Hence, we will construct an

inexpensive yet of good quality lower bound ocg\]g (n) and use this lower bound

instead of the truth (direct) expensive coercivity constant aN(;L) in our error
estimator.

For our current target problems, our bilinear form is coercive and symmetric. We
shall construct our coercivity lower bound by the Successive Constraint Method
(SCM) [21]. It is noted that the SCM method can be readily extended to non-
symmetric as well as non-coercive bilinear forms [21, 23, 31, 36].
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We first introduce an alternative (albeit not very computation-friendly) discrete
form for our coercivity constant as

Qa
minimum Z@;‘(u)yq, (8.34)
g=1
wo 1T KN [w
subjectto y, = 0 Iy oo
(w17 [YN][w,]

where [w,] is the discrete vector of any arbitrary wy € X N,

We shall now “relax” the constraint in (8.34) by defining the ‘“continuity
constraint box” associated with y; min and yg max, 1 < ¢ < Q¢ obtained from
the minimum set ([y— (#)], ¥4,min) and maximum set ([y+(#)], ¥4, max) solutions of
the eigenproblems

KM Iy- (0] = Yomin Y IIy— ()],

by_ (w1 1Y Nly_ ()] = 1.,

and

K+ (0] = Yomax Y Iy ()1,

by ()] YNy ()] = 1,

respectively, for 1 < g < Q. We next define a “coercivity constraint” sample
SCM SCM
Ci={pn; " e€D,....,u;" €D},

and denote C;VI”L the set of M (1 < M < J) points in Cy closest (in the usual
Euclidean norm) to a given g € D. The construction of the set C; is done by means
of a Greedy procedure [21, 31, 36]. The Greedy selection of C; can be called the
“Offline stage”, which involves the solutions of J eigenproblems (8.32) to obtain

oN(w), Vi € C;.
We may now define our lower bound ag\]g (u) as the solution of

minimum i@g (m)yg, (8.35)
q=1
subject to Yg.min = Vg = Yg,max, 1<qg=< Qa’
04
Y oOsw)yg = e, vw'ec)
q=1
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We then “restrict” the constraint in (8.34) and define our upper bound cx%\]g () as
the solution of

Qa
mininum " O () yg .« (1), (8.36)
g=1

subject to (1) = X KM ()], 1<qg <0 Vu'ecC)™,

where [x(u)] is defined by (8.32). It can be shown [21, 31, 36] that the feasible
region of (8.36) is a subset of that of (8.34), which in turn, is a subset of that
of (8.35): hence o, (1) < oN(p) < ().

We note that the lower bound (8.35) is a linear optimization problem (or Linear
Program (LP)) which contains Q¢ design variables and 2Q¢ + M inequality
constraints. Given a value of the parameter p, the Online evaluation p — ag\lg ()
is thus as follows: we find the subset Cﬁ/[’” of C; for a given M, we then calculate
cxg\]g (u) by solving the LP (8.35). The crucial point here is that the online evaluation

n— oeg\]g () is totally independent of N. The upper bound (8.35), however, can be
obtained as the solution of just a simple enumeration problem; the online evaluation
of cx%\]g (p) is also independent of N. In general, the upper bound a%\]g (@) is not
used in the calculation of the error estimator, however, it is used in the Greedy

construction of the set C; [21]. In practice, when the set C; does not guarantee to

produce a positive ag\lg (p), the upper bound oe%\{a (i) can be used as a substitution

for a%\g (p) since it approximates the “truth” OlN([L) in a very way; however we will
lose the rigorous property of the error estimators.

8.5 Extension of the RB Method to Non-compliant Output

We shall briefly provide the extension of our RB methodology for the “non-
compliant” case in this Section. We first present a suitable primal-dual formulation
for the “non-compliant” output; we then briefly provide the extension to the RB
methodology, including the RB approximation and its a posteriori error estimation.

8.5.1 Adjoint Problem

We shall briefly discuss the extension of our methodology to the non-compliant
problems. We still require that both f and ¢ are bounded functionals, but now
(f(C;m) # £€(; m)). We still use the previous abstract statement in Sect. 8.2. We
begin with the definition of the dual problem associated to £: find ¥ (n) € X (our
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“adjoint” or “dual” field) such that

a, y(u); p) = —L(w), YveX.

8.5.2 Truth Approximation

We now again apply the finite element method to the dual formulation: given . € D,
we evaluate

s(w) = N1 N )1,

where [UN([L)] is the finite element solution of size N satisfying (8.17). The discrete
form of the dual solution I/IN([L) e X Nis given

KNI N )] = [N w1

here [LN([L)] is the discrete load vector of £(-; w). We also invoke the affine
forms (8.12) to express [LN([L)] as

Q@
Nw1 =" oL, (8.37)
q=1

where all the [Lg\[] are the discrete forms of the parameter-independent linear forms
L), 1=q=<0"

8.5.3 Reduced Basis Approximation

We now define our RB spaces: we shall need to define two Lagrangian parameter
samples set, Syrr = {1, Lo, ..., ypr} and Syaww = {®y, Ro, ..., Lydu} coOrTE-
sponding to the set of our primal and dual parameter samples set, respectively. We
also associate the primal and dual reduced basis spaces (X %, =) W}Qﬁ,, 1<N<

Nhx and (X, =)W, 1 < N < N&

Ndu max
which are constructed from the primal uN(u) and dual wN(u) snapshots by a
Gram-Schmidt process as in Sect.8.3. Finally, we denote our primal and dual

orthonormalized-snapshot as [ZI]’JW] and [Z%’du] basis matrices, respectively.

to our Syprr and Sya set, respectively,
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8.5.4 Galerkin Projection

We first denote the RB primal approximation to the primal “truth” approximation
MN([,L) as u%\]g y(@) and the RB dual approximation to the primal “truth”

dual approximation wN(u) as ’»”Ig\lg N(u)' their discrete forms are given by

[ yor () 1=LZ80 e ()] and [ r/rRB o (I=IZS8, 119 e ()], respectively.
We then apply a Galerkin projection (note that in this case, a Galerkin-Petrov
projection is also possible [2, 31, 36]). given a u € D, we evaluate the RB output

sy yvan () = LN GOTT 0y yor (0] = N 1T YR v (1,

recall that [rg}f (m)] is the discrete form of the RB primal residual defined in (8.23).
The RB coefficient primal and dual are given by

0° of
Y 08 (W Kgne ey ()] = Y OF ()[Fynorl,
g=1 q=1
[ 0"
> 0L WK, oy ¥ yau ()] = = OF ()L yau]. (8.38)
q=1 g=1

Note that the two systems (8.38) are also of small size: their sizes are of NP' and
N respectively. We can now evaluate our output as

0* ol
syer () = 3 O Lo llune ()] = Y OF (WIF e[ oo ()]
g=1 g=1
Qa
+ D O8I yau ()] K, oo lluor ()] (8.39)
q=1

All the quantities in (8.38) and (8.39) are given by

(Kynorner] = [ZR5 T [KGZR ], 1<g < 0% 1< NP" < Niux.
(K oy | = 120017 (K I1Z80, 1. 10 = 0% 1= N < N,
[K, naer ] = (2301 K UZR]. 1= = 0% 1= NP < N, 1= N < Vi,

[ qNPr] [ZNpr] [Fql, 1=<g< Qf, 1< NPF < Nglrax,

[Fya] = 2807 1F,) 1=q=0f 1= N < Nl
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[Loner] = 21T [Lg). 1= < 0% 1 < NP < N,

[Lquu] = [Z%ldu]T[Lq]» 1<g= QZ! 1< Ndu = Ngl%x’

The computation of the output s ypr yau () clearly admits an Offline-Online compu-
tational strategy similar to the one we discuss previously in Sect. 8.3.

8.5.5 A Posteriori Error Estimation

We now introduce the dual residual rgl\lf (v; w),
rv v ) = —£() — a(v, Y () 1), Vv e X

and its Riesz representation of rg:{ (v; p): e (p) € X N defined by (e (), v)XN =

rgj(v; ), Vv e XN.
We may now define our error estimator for our output as

C e 1P ) v el 540
NPrydu = ((XE\{)’) 12 (ai\g) 12 .

where eP"(p) is the Riesz representation of the primal residual. We then define the
effectivity associated with our error bound

A;vprNdu (”’)

) (8.41)
sN () — s e yan ()]

n;‘vprNdu (”‘) =

We can readily demonstrate [15, 31, 36] that

1 S n;vprNdu ("L)a V”’ € .Da

note that the error estimator is still rigorous, however it is less sharp than that in
the “compliant” case since in this case we could not provide an upper bound to
U;Vpr Ndu ().

The computation of the dual norm of the primal/dual residual also follows an
Offline-Online computation strategy: the dual norm of the primal residual is in fact,
the same as in Sect. 8.4.2; the same procedure can be applied to compute the dual
norm of the dual residual.
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8.6 Numerical Results

In this sections we shall consider several “model problems” to demonstrate the
feasibility of our methodology. We note that in all cases, these model problems are
presented in non-dimensional form unless stated otherwise. In all problems below,
displacement is, in fact, in non-dimensional formu = iE /60, where i, E , 00 are the
dimensional displacement, Young’s modulus and load strength, respectively, while
E and oy are our non-dimensional Young’s modulus and load strength and usually
are around unity.

We shall not provide any details for (H)Z (), @qf (m) and @5 (m) and their
associated bilinear and linear forms a,(-, -), f;(-) and £,(-) for any of the below
examples as they are usually quite complex, due to the complicated structure of the
effective elastic tensor and our symbolic manipulation technique. We refer the users
to [20, 24, 31, 40], in which all the above terms are provided in details for some
simple model problems.

In the below, the timing #gg for an evaluation of the FE solution u — SN([L) is
the computation time taken by solving (8.17) and evaluating (8.16) by using (8.18)
and (8.37), in which all the stiffness matrix components, [K,;], 1 < g < Q¢
load and output vector components, [F;], 1 < g < Qf and [Ly], 1 < g < QZ,
respectively, are pre-computed and pre-stored. We do not include the computation
time of forming those components (or alternatively, calculate the stiffness matrix,
load and output vector directly) in #pg.

Finally, for the sake of simplicity, we shall denote the number of basis N defined
as N = NP" = N9 in all of our model problems in this Section.

8.6.1 The Arc-Cantilever Beam

We consider a thick arc cantilever beam correspond to the domain £2°(u)
representing the shape of a quarter of an annulus as shown in Fig.8.1. We
apply (clamped) homogeneous Dirichlet conditions on I"j and non-homogeneous
Neumann boundary conditions corresponding to a unit tension on I'y. The width of
the cantilever beam is 2d, and the material is isotropic with (E,v) = (1,0.3)
under plane stress assumption. Our output of interest is the integral of the
tangential displacement (1) over I'y, which can be interpreted as the average
tangential displacement on Fﬁ.“ Note that our output of interest is ‘“non-
compliant”.

4The average tangential displacement on I'y is not exactly s(u) but rather s(u)/! rg» where /o
is the length of I'y. It is obviously that the two descriptions of the two outputs, “integral of” and
“average of”, are pretty much equivalent to each other.
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Fig. 8.1 The arc-cantilever
beam

Fig. 8.2 The arc-cantilever
beam problem: domain
composition and FE mesh

The parameter is the half-width of the cantilever beam p = [11] [d]. The
parameter domain is chosen as D = [0.3,0.9], which can model a moderately
thick beam to a very thick beam. We then choose p,.s = 0.3 and apply the domain
decomposition and obtain Leg = 9 subdomains as shown in Fig. 8.2, in which three
subdomains are the general “curvy triangles”, generated by our computer automatic
procedure [36]. Note that geometric transformations are relatively complicated, due
to the appearances of the “curvy triangles” and all subdomains transformations are
classified as the “general transformation case” [19, 31]. We then recover our affine
forms with Q¢ =54, 9/ =1 and Q' = 1.

We next consider a FE approximation where the mesh contains npogde = 2747
nodes and nelem = 5322 P; elements, which corresponds to N = 5426 degrees of
freedoms’ as shown in Fig. 8.2. To verify our FE approximation, we compare our FE
results with the approximated solution for thick arc cantilever beam by Roark [41]
for a 100 uniformly distributed test points in D: the maximum difference between
our results and Roark’s one is just 2.9%.

We then apply our RB approximation. We present in Table 8.1 our convergence
results: the RB error bounds and effectivities as a function of N(= NPF = Nd¥),
The error bound reported, Ex = A} (w)/|sy(p)| is the maximum of the relative
error bound over a random test sample g Of size niest = 100. We denote by 'ﬁv
the average of the effectivity n}, (1) over Ees;. We observe that average effectivity

5Note that N # 2ny04e since Dirichlet boundary nodes are eliminated from the FE system.
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Table 8.1 The arc-cantilever

En 'y
beam: RB convergence

3.57E+00 86.37
3.70E-03 18.82
4.07E-05 35.72
6.55E—07 41.58
10 1.998—08 40.99

OOO\-bNZ

Fig. 8.3 The center crack t t t t t
problem ‘

is of order O (20 — 90), not very sharp, but this is expected due to the fact that the
output is “non-compliant”.

As regards computational times, a RB online evaluation p — (sy (@), Afv (m))
requires just trrg = 115(ms) for N = 10; while the FE solution p — SN([L)
requires frpg = 9(s): thus our RB online evaluation is just 1.28% of the FEM
computational cost.

8.6.2 The Center Crack Problem

We next consider a fracture model corresponds to a center crack in a plate under
tension at both sides as shown in Fig. 8.3.

Due to the symmetry of the geometry and loading, we only consider one quarter
of the physical domain, as shown in Fig. 8.3, note that the crack corresponds to the
boundary segment I'{. The crack (in our “quarter” model) is of size d, and the plate
is of height & (and of fixed width w = 1). We consider plane strain isotropic material
with (E,v) = (1,0.3). We consider (symmetric about the x{ direction and x3
direction) Dirichlet boundary conditions on the left and bottom boundaries I'; and
I'p, respectively; and non-homogeneous Neumann boundary conditions (tension)
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Fig. 8.4 The center crack
problem
= -
\ I
P
[
m 0
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[
P
[
m 0 0
e g

on the top boundary I"7. Our ultimate output of interest is the stress intensity factor
(SIF) for the crack, which will be derived from an intermediate (compliant) energy
output by application of the virtual crack extension approach [30]. The SIF plays an
important role in the field of fracture mechanics, for examples, if we have to estimate
the propagation path of cracks in structures [18]. We further note that analytical
result for SIF of a center-crack in a plate under tension is only available for the
infinite plate [25], which can be compared with our solutions for small crack length
d and large plate height / values (Fig. 8.4).

Our parameters are the crack length and the plate height u = [111, u2] = [d, hl,
and the parameter domain is given by D = [0.3, 0.7] x [0.5, 2.0]. We then choose
M = [0.5,1.0] and apply a domain decomposition: the final setting contains
Leg = 3 subdomains, which in turn gives us Q¢ = 10 and 0/ = 1. Note that
our “compliant” output s(@) is just an intermediate result for the calculation of the
SIF. In particular, the virtual crack extension method (VCE) [30] allows us to extract
the “Mode-I" SIF though the energy s(u) though the Energy Release Rate (ERR),

G (), defined by
0
ow=—{)

In practice, the ERR is approximated by a finite-difference (FD) approach for a
suitable small value §uu1 as

s( =+ dpe1) — S(IL))

Gl = —
(n) ( "

which then give the SIF approximation SIF (n) = \/ G (m)/(1 —v2).
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Fig. 8.5 The center crack
problem: domain composition
and FE mesh

Table 8.2 The center crack
problem: RB convergence

N &n My
5 273E-02 6.16
10 9.48E—04 8.47
20 5.71E-06 7.39
30 5.59—-08 7.01
40 891E—-10 7.54
50 6.26E—11 8.32

We then consider a FE approximation with a mesh contains npoge = 3257
nodes and nelem = 6276 Pj elements, which corresponds to N = 6422 degrees
of freedoms; the mesh is refined around the crack tip in order to give a good
approximation for the (singular) solution near this region as shown in Fig. 8.5.

We present in Table 8.2 the convergence results for the “compliant” output s(g):
the RB error bounds and effectivities as a function of N. The error bound reported,
En = Ay (w)/Isy(p)| is the maximum of the relative error bound over a random
test sample Siegc Of size neest = 200. We denote by 7}, the average of the effectivity
Ny (1) over Eies. We observe that the effectivity average is very sharp, and of order
0(10).

We next define the ERR RB approximation G ~ (@) to our “truth” (FE) /G\%\If: ()
and its associated ERR RB error Ag (pn) by

sN(r) — Ay (pr+8p1)

Gn(w) = 5 :
5 S+ 1) + A% ()
Ay ="M (8.42)

It can be readily proven [36] that our SIF RB error is a rigorous bound for the
ERR RB prediction GN(M)I |§N(u) — @%\]{:(M)l < A](\;,(u). It is note that the
choice of 51 is not arbitrary: ;41 needed to be small enough to provide a good
FD approximation, while still provide a good ERR RB error bound (8.42). Here we
choose §iu; = 1E — 03.
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22f

analytical
* RB

10.3 035 04 045 05 055 06 065 0.7

M1

Fig. 8.6 The center crack problem: SIF solution for N = 15

We then can define the SIF RB approximation SIF ~n(p) to our “truth” (FE)
ﬁ%\fE(M) and its associated SIF RB error estimation AISVIF () as

— 1 ~ ~ ~ ~
SEv (W = {\/GN(m +AG () +\/GN<u) ~ Aﬁ(u)},

Sig 1 ~ ~ ~ .
A=, {\/GN(m + A% — G - Aﬁ(u)}.

It is readily proven in [20] that |§il\3N (m) — ﬁ%\]{:(uﬂ < AISVIF(;L).

We plot the SIF RB results §ﬁ:(u) with error bars correspond to AISVIF(;L), and
the analytical results ﬁ‘(u) [25] in Fig. 8.6 for the case uj € [0.3,0.7], u2 = 2.0
for N = 15. It is observed that the RB error is large since the small number of
basis N = 15 does not compromise the small ;1 = 1E — 03 value. We next
plot, in Fig. 8.7, SIF RB results and error for the same u range as in Fig. 8.6, but
for N = 30. It is observed now that the SIF RB error is significantly improved—
thanks to the better RB approximation that compe