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Abstract. In emergencies such as earthquakes, nuclear accidents, etc.,
we need an evacuation plan. We model a street, a building corridor,
etc. by a path network, and consider the problem of locating a set of k
sinks on a dynamic flow path network with n vertices, where people are
located, that minimizes the sum of the evacuation times of all evacuees.
Our minsum model is more difficult to deal with than the minmax model,
because the cost function is not monotone along the path. We present
an O(kn2 log2 n) time algorithm for solving this problem, which is the
first polynomial time result. If the edge capacities are uniform, we give
an O(kn log3 n) time algorithm.

1 Introduction

Due to many recent disasters such as earthquakes, volcanic eruptions, hurri-
canes, and nuclear plant accidents, evacuation planning is getting increasing
attention. The evacuation k-sink problem is an attempt to model evacuation in
such emergency situations [5,6]. In this paper, a k-sink means a set of k sinks that
minimizes the sum of the evacuation time of every evacuee to a sink. Researchers
have worked mainly on two objective functions. One is the evacuation comple-
tion time (minmax criterion), and the other is the sum of the evacuation times
of all the evacuees (minsum criterion). It is assumed that all evacuees from a
vertex evacuate to the same sink.

Mamada et al. [12] solved the minmax 1-sink problem for dynamic flow tree
networks in O(n log2 n) time under the condition that only a vertex can be a
sink. When edge capacities are uniform, Higashikawa et al. [9] and Bhattacharya
and Kameda [3] presented O(n log n) time algorithms with a more relaxed
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condition that the sink can be on an edge. Chen and Golin [4] solved the
minmax k-sink problem on dynamic flow tree networks in O(k2n log5 n) time
when the edge capacities are non-uniform. Regarding the minmax k-sink on
dynamic flow path networks, Higashikawa et al. [10] present an algorithm to
compute a k-sink in O(kn) time if the edge capacities are uniform. In the gen-
eral edge capacity case, Arumugam et al. [1] showed that a k-sink can be found
in O(kn log2 n) time. Bhattacharya et al. [2] recently improved these results to
O(min{n log n, n + k2 log2 n) time in the uniform edge capacity case, and to
O(min{n log3 n, n log n + k2 log4 n}) time in the general case.

The minsum objective function for the sink problems is motivated, among
others, by the desire to minimize the transportation cost of evacuation or the
total amount of psychological duress suffered by the evacuees. It is more difficult
than the minmax variety because the objective cost function is not unimodal,
and, to the best of our knowledge, practically nothing is known about this prob-
lem on more general networks than path networks. A path network, although
simple, can model an airplane aisle, a hall way in a building, a street, a highway,
etc., to name a few. For the simplest case of k = 1 and uniform edge capacities,
Higashikawa et al. [10] proposed an O(n) time algorithm. For the case of general
k and uniform edge capacities, Higashikawa et al. [10] showed that a k-sink can
be found in time bounded by O(kn2) and 2O(

√
log k log log n)n2.

The main contribution of this paper is an O(kn2 log2 n) time algorithm, which
is achieved by a novel data structure and the concepts of cluster and section in
an evacuee flow. Our second algorithm solves the problem in O(kn log3 n) time
if the edge capacities are the same.

This paper is organized as follows. In the next section, we define some terms
that are used throughout this paper, and present a few basic facts. Section 3 for-
mulates the framework for solving the minsum k-sink problem, utilizing Dynamic
Programming (DP), and provides a solution. In Sect. 4, we introduce the con-
cepts of cluster and section which play a key role in subsequent discussions, and
discuss how to compute the local cost data that are required in our DP for-
mulation. Section 5 states our main theorem, which results from the preceding
section. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Let P (V,E) denote a given path network, where the vertex set V consists of
v1, v2, . . . , vn, which we assume to be arranged in this order, from left to right
horizontally.1 Vertex vi has weight wi ∈ Z+, representing the number of evac-
uees initially located at vi, and edge ei = (vi, vi+1) ∈ E has length or distance
di (> 0) and capacity ci, which is the upper limit on the flow rate through ei in
persons/unit time. We write vi ≺ vj if i < j. For two vertices vi ≺ vj , the sub-
path between them is denoted by P [vi, vj ], and d(vi, vj) (resp. c(vi, vj)) denotes

1 In Sects. 3 and 4, for simplicity, we will often identify a vertex with its index, referring
to vertex i, instead of vertex vi.
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its length (resp. the minimum capacity of the edges on P [vi, vj ]). It takes each
evacuee τ units of time to travel a unit distance.

Our model assumes that the evacuees at all the vertices start evacuation at
the same time at the rate limited by the capacity of the outgoing edge. It also
assumes that all the evacuees at a non-sink vertex who were initially there or
who arrive there later evacuate in the same direction (either to the left or to
the right), i.e., the evacuee flow is confluent. We sometimes use the term “cost”
to refer to the aggregate evacuation time of a group of evacuees to a certain
destination. A k-sink shares the following property of the median problem [11].

Lemma 1 [10]. There is a k-sink such that all the k sinks are at vertices.

If we plot the arrival flow rate at, or departure flow rate from, a vertex as a
function of time, it consists of a sequence of (temporal) clusters. The duration of
a cluster is the length of time in which the flow rate corresponding to the cluster
is greater than zero. A cluster consists of a sequence of sections, such that any
adjacent pair of sections have different heights. In other words, a section is a
maximal part of a cluster with the same height (= flow rate). A simple cluster
consists of just one section. We say that a cluster/section carries (the evacuees
on) a vertex, if those evacuees provide flow to the cluster/section. A time interval
of flow rate 0 between adjacent clusters is called a gap. These terms are illustrated
in Fig. 1. Unless otherwise specified, we assume that evacuees arrive at vertex vi
from vertex vi+1. The case where the evacuees move rightward can be treated
symmetrically.

S1 S2
S3 S4 S5

C1 C2 C3 C4

Flow
Gap

local time
Front of S3 at a vertex

t0

rate

Fig. 1. Terms used: {Si} are sections and {Cj} are clusters.

The front of a cluster/section is the time when it starts. The first vertex of
a cluster is the vertex from which the evacuee corresponding to the front of the
cluster originates. The offset of a cluster with respect to vertex vi is the time
until the first evacuee belonging to the cluster arrives at vi. For vj ≺ x ≺ vj+1,
we define the following costs.

ΦL,j(x) � cost contribution to x from P [v1, vj ],

ΦR,j(x) � cost contribution to x from P [vj+1, vn],

Φ(x) =

{
ΦL,j(x) + ΦR,j+1(x) if vj ≺ x ≺ vj+1

ΦL,j−1(x) + ΦR,j+1(x) if x = vj .
(1)

A point x = μ that minimizes Φ(x) is called a minsum 1-sink.
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The total cost is the sum of the costs of all sections. The cost of a section of
height c with offset t0 and duration δt is given by

λt0 +
λ2

2c
, (2)

where λ = cδt is the number of evacuees carried by the section [8]. To be exact,
the ceiling function must be applied to the second term in (2), but we omit it
for simplicity, and adopt (2) as our objective function [5]. Or we can consider
each molecule of a fluid-like material as an “evacuee.” The average evacuation
time for an evacuee carried by this section is t0 + λ/2c, where λ/2c represents
the average delay to reach the front vertex of the section, and the aggregate is
given by (t0 + λ/2c) × λ, which yields (2). We call the first (resp. second) term
in (2) the extra cost (resp. intra cost) of the section. A minsum k-sink partitions
the path into k subpaths, and places a 1-sink on each subpath in such a way
that the sum of the evacuation time of every evacuee to a sink is minimized.

3 DP Formulation

We first present a dynamic programming (DP) formulation that follows the
template of recursive functions proposed by Hassin and Tamir [7] for the p-
median problem. Our innovation consists in the manner in which we process
the recursive computations efficiently, given that the cost functions for the sink
location problem are significantly more difficult to compute than those for the
regular median problem. Our algorithm is more general in that it relies only on
one fundamental property of some cost functions, i.e., monotonicity.

3.1 Derivation of Recurrence Formulae

Let F k(i), 1 ≤ k ≤ i ≤ n, denote the minsum cost when k sinks are placed on
subpath P [v1, vi]. Similarly, define Gk(i), 1 ≤ k ≤ i ≤ n, as the minsum cost
when k sinks are placed on subpath P [v1, vi], and vi is the rightmost sink. We
start with i = k + 1, since F k(i) = Gk(i) = 0 for i ≤ k. For j < i, we also define
R(j, i), which is the cost of evacuating all the evacuees on subpath P [vj+1, vi]
to vj , and L(j, i), which is the cost of evacuating all the evacuees on subpath
P [vj , vi−1] to vi. By definition, we have

F k(i) = min
k≤j≤i

{Gk(j) + R(j, i)}, (3)

Gk(i) = min
k≤j≤i

{F k−1(j) + L(j + 1, i)}. (4)

To solve the above recursive equations, we clearly need to compute functions
R(j, i) and L(j, i). Moreover, to obtain a DP algorithm with time complexity
sub-quadratic in n, we also need to quickly find the index j that minimizes the
recurrence relations (3) and (4). Note that to get F k(i), we need to compute
{Gp(·), F p(·)} for p = 1, 2, . . . , k.
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To motivate our approach, let us plot points (Gk(j), R(j, i)) in a 2-
dimensional coordinate system for all j, 1 ≤ j ≤ i, for a fixed vertex vi. See
Fig. 2. If we superimpose Gk(j) + R(j, i) = c for a given value c in the same
coordinate system, it is a −45◦ line. If we increase c from 0, this line eventually
touches one of the plotted points. The first point it touches gives the optimal
value that minimizes Gk(j) + R(j, i). In Fig. 2, this optimal is given by the
point (Gk(j1), R(j1, i)). For convenience, let us refer to point (Gk(j), R(j, i)) as
point (j, i).

R(∗, i)

R(j1, i)
R(j2, i)
R(j3, i)

Gk(∗)Gk(j1) Gk(j2) Gk(j3)

R(j1, i + 1)−R(j1, i)

Fig. 2. R(∗, i) vs. Gk(∗). j1 < j2 < j3.

We now explain that this representation provides us very useful information.
To see it, for each point (j, i), define the V -area that lies above the −45◦ line
and to the left of the vertical line through it as shown as a shaded area in
Fig. 2. We say that a point (j, i) situated in the V -area of another point (js, i) is
dominated by (js, i), since the cost of point (j, i) is higher than the cost of (js, i).
We sometimes say that vj is dominated by vjs , when i is clear from the context.
Thus the points at the bottoms of the V-areas are the only non-dominated points.
For subpath P [v1, vi] let J(i) = {j1, . . . , jg(i)}, where j1 ≤ j2 ≤ . . . ≤ jg(i) ≤ i
and {(js, i) | s = 1, . . . , g(i)}, are the set of all points at the bottoms of the
V-areas. From the above discussion the following lemma follows directly.

Lemma 2. F k(i) = Gk(j1) + R(j1, i) would hold if the path ended at vertex vi.

Function Gk(i) can be computed in a similar manner. Let us now compare
J(i + 1) for P [v1, vi+1] with J(i) for P [v1, vi]. Since jg(i) ≤ i, vertex vi+1 is
farther from vjs than it is from vjt , if s < t. We thus have

R(js, i + 1) − R(js, i) ≥ R(jt, i + 1) − R(jt, i) for s < t. (5)

The arrows in Fig. 2 indicate the increase R(∗, i + 1) − R(∗, i) in computing
J(i + 1), compared with J(i). Moreover, if (j, i) is dominated by (js, i), then
point (j, i′) will also be dominated by (js, i′) for any i′ > i. This implies that
once it is determined that (j, i) /∈ J(i), then (j, i′) will not belong to J(i′) for
any i′ > i. We will discuss how to update J(i) to J(i+1) in the next subsection.
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3.2 Computing Switching Points

We compute F k(i) by Lemma 2, maintaining the set J(i) of non-dominated
candidate vertices. However, not all vertices in J(i) that are non-dominated
when computing F k(i) remain useful because some of these vertices may become
dominated when computing F k(i′) for i′ > i. We shall identify those vertices, as
they become dominated, and discard them.

Let us denote by x(js−1, js), 1 < s ≤ g(i), the switching point, namely the
leftmost vertex vi′ (g(i) < i′ ≤ n), if any, for which js dominates js−1. If such
an index does not exist, it means that js never dominates js−1 and therefore we
need not remember js. For convenience, let us introduce a dummy vertex j0 so
that we can write x(j0, j1) = j1. Formally, we have

x(js−1, js) =

⎧⎪⎨
⎪⎩

min{i′ : [js < i′ ≤ n] ∧ [Gk(js) + R(js, i′)
≤ Gk(js−1) + R(js−1, i

′)]} if s ≥ 2,

js if s = 1.

(6)

Computing and maintaining the sequence x(j0, j1), . . . , x(jg(i)−1, jg(i)) allows
us to determine a subset of non-dominated vertices vjs , which are potentially
optimal vertices that may minimize function F k(·) later. We therefore assume
x(j0, j1) < x(j1, j2) < . . . < x(jg(i)−1, jg(i)). To see this, assume for example
that x(j2, j3) < x(j1, j2) holds. Then j2 will never be an optimal vertex, because
for large enough i (≥ x(j1, j2)) which makes vj2 dominate vj1 , vertex vj3 already
dominates vj2 , since x(j2, j3) < x(j1, j2). This implies that j2 can be removed
from J(i).

Updating set J(i) = {j1, . . . , jg(i)} to J(i + 1).

Change 1: If vj1 becomes dominated by vj2 (i.e., if x(j1, j2) = i + 1), then
remove j1 in constructing J(i + 1). (Note that x(j2, j3) > i + 1.)

Change 2: Starting from the last vertex in J(i), find the rightmost vertex vjs ,
if any, that is not dominated by vi+1. If none, let s = 0. Remove js+1 to jg(i)
in J(i) to obtain J(i + 1). Put vi+1 in J(i + 1) as the last vertex jg(i+1).

It is easy to show that computing J(i+1) from J(i) takes amortized O(tX(n))
time, where tX(n) is the time needed to compute x(j, j′) value for one arbitrary
pair (j, j′), j < j′.

Based on the above discussion, we present Algorithm 1 below that shows
a skeleton of our method for computing a minsum k-sink. In it, variable
J = {j1, j2, . . . , jg(i)} represents the ordered set of candidate vertices which
is updated from iteration to iteration, and X = {x(j0, j1), x(j1, j2), . . . ,
x(jg(i)−1, jg(i))} represents the corresponding ordered set of switching points.

Lemma 3. The minsum k-sink in dynamic flow path networks can be found in
O(kn · tX(n)) plus preprocessing time.
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Algorithm 1. Minsum k-sink algorithm

1 Input Data: Number of evacuees wi at each vertex i; Capacity ci and length
di for each edge ei; An integer k representing the number of sinks to be located;
T and C (defined in Sect. 4);

2 Outputs: A set S∗ ⊆ {1, . . . , n} of k sinks to be located; Cost Z∗ of solution S∗;
3 Base case: compute G1(i) for all i ∈ {1, . . . , n};
4 for p ∈ {1, . . . , k} do
5 J ← 1; X ← 1; // Initialize candidate sequence J and x(∅, 1) = 1
6 F p(1) ← Gp(1); // L(1, 1) = 0
7 for i ∈ {2, . . . , n} do
8 repeat // Update the candidate list J by considering i
9 if J is empty then

10 J ← i; X ← i; // New vertex vi is the dominating vertex

11 done ← true

12 else
13 j ← last item in J ; x ← last item in X;
14 Compute x(j, i); // Switching point between i and j
15 if x(j, i) does not exist then
16 done ← true; // i is dominated

17 else if x(j, i) > x then // i does not dominate j
18 Append i at the end of J ; append x(j, i) at the end of X;
19 done ← true

20 else // i dominates j
21 Remove j from the end of J ; remove x from the end of X;
22 done ← false

23 end

24 end

25 until done;
// Check for Change 1 (in Sect. 3.2) and compute F p(i)

26 Let x∗ be the rightmost vertex in X satisfying x∗ ≤ i and let j∗ be its
corresponding vertex in J ;

27 Let F p(i) ← Gp(j∗) + R(j∗, i)

28 end
29 if p < k then
30 Compute Gp+1(i) in a similar way using F p(i) for all 1 ≤ i ≤ n
31 else

32 return Z∗ = F k(n); // Sink set S∗ can be obtained from Z∗ in a

standard way

33 end

34 end

Proof. Algorithm 1 performs O(kn) iterations in lines 4 and 7. The repeat loop
at line 8 executes at most as many times as the size of list J . However, an element
is added to list J at most once for each iteration i (lines 10 and 18), so J cannot
receive more than n elements throughout the duration of the algorithm, and the
repeat loop cannot have more than n iterations throughout the duration of the
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algorithm. In each iteration of the repeat loop, x(·, ·) is computed a constant
number of times, and the lemma follows. �

Now that we have the above lemma, the rest of this paper is devoted to
making tx(n) as small as possible, culminating in Lemmas 7 and 8.

4 Data Structures for Computing R(j, i) and L(j, i)

Costs R(j, i) and L(j, i) are used in (3), (4), and (6). It is needed wherever x(j, i)
is used in Algorithm 1, including Line 27. We only discuss how to compute R(j, i),
since L(j, i) can be computed similarly. To compute R(j, i), we need to know the
section sequence of the vertices on P [vj+1, vi] arriving at vj . To find it efficiently,
during preprocessing we construct a balanced binary tree, named cluster tree T ,
whose leaves are the vertices of P , arranged from v1 to vn. We also construct a
capacity tree C, which is a standard binary search tree from which one can find
capacity c(vj , vh) in O(log n) time for any pair of vertices vj � vh.

For each non-leaf node2 u of T , let vL(u) (resp. vR(u)) denote the leftmost
(resp. rightmost) vertex of P that belongs to subtree T (u). We say that u spans
subpath P [vL(u), vR(u)]. For a node u of T , let αu

R(vj) (resp. βu
R(vj)) denote

the arrival (resp. departure) section sequence at (resp. from) vj (� vL(u)), car-
rying the vertices spanned by u. At each node u of T , we precompute and store
αu
R(vL(u)) and βu

R(vL(u)), as we describe below.
At a leaf node, which is a vertex vi, it is easy to construct βvi

R (vi), which is
just a section of height ci−1 and duration wi/ci−1 that starts at time 0 (local time
at vi). We obviously have αvi

R (vi) = ∅. For an internal node u of T with two child
nodes, ua and ub, assuming that we have computed αua

R (vL(ua)), βua

R (vL(ua)),
αub

R (vL(ub)), and βub

R (vL(ub)), we want to compute αu
R(vL(u)) and βu

R(vL(u))
from them. Let vj+1 = vL(ua). Then βub

R (vL(ub)) would become αub

R (vj+1) with a
delay of d(vj+1, vL(ub))τ according to the local time at vj+1, provided it encoun-
tered no congestion on its way. If the height of an arriving section in αub

R (vj+1)
is larger than cj , the evacuees carried by that section cannot depart from vj+1

at the arrival rate. See Fig. 3(a), where S1, S2, . . . , are the sections of αub

R (vj+1),
arriving at vj+1. The durations of some sections get stretched in this case, by
the ceiling operation [12]. The following two situations can arise to these sec-
tions, when they are converted into the departing sections of βu

R(vj+1). (When
S1 arrives, there may be w (> 0) leftover evacuees at the vertex. We will consider
such a scenario shortly.)

(a) A stretched section by a ceiling operation ends in a gap. (Fig. 3(b) shows
that the stretched S1 fills the next gap entirely, merges with S2, and the
following gap is partially filled. The amount equal to the light-gray parts
consisting of later arrivals moves to the dark-gray parts, to fill gaps.)

(b) A section may shrink due to the expanded section preceding it, with its front
pushed to a later time. (In Fig. 3(c), the stretched S3 “swallows” a part of

2 We use the term “node” for T to distinguish them from the vertices of P .
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(a) (b)

S0
S1 S2

S2S3

S3c

S4S4

c

(c)

S1 S2 S4

c S3

h3

h2
h1

S1

Offset of αs0
R (vi)

Fig. 3. (a) α
ub
R (vj+1); (b) Amount equal to the light-gray parts fill the dark-gray parts;

(c) Result.

S4 and S4 shrinks. The next section (such as S5 in this example), if any,
undergoes no change, since its height is less than cj .)

From observations (a) and (b) above, we can easily infer the following lemma.

Lemma 4. The heights of the sections in αu
R(vj+1) and βu

R(vj+1) are non-
increasing with time.

Redefine S1, S2, . . . , to be the sections of αu
R(vL(u)). To find which sections

merge with other sections when a smaller capacity is encountered, we place the
weight-time ratios

{λ(Sh)/δh | Sh is a section of αu
R(vL(u))}

in a max-heap Hu, where λ(Sh) is the sum of the weights of the vertices carried
by Sh, and δh is the time difference between the fronts of Sh and Sh+1. Thus in
converting αu

R(vj+1) into βu
R(vj+1), we pop out of Hu those ratios that are larger

than cj , and for each such ratio, we merge the corresponding pair of sections. In
Fig. 3, for example, λ(S3)/δ3 > λ(S1)/δ1 > cj , so that S3 merges with S4, and
S1 merges with S2. For the resulting new sections, we compute the weight-time
ratios, and if they are larger than cj , we repeat the merging process.

We call two nodes ua and ub of T adjacent if vR(ua) and vL(ub) are adjacent
vertices on P . It is easy to observe

Proposition 1. Let ua and ub be two adjacent nodes of T . The evacuees still left
at vertex vL(ua), if any, when the first evacuee in αub

R (vj+1) (shifted βub

R (vL(ub)))
arrives there belong to the last cluster in βua

R (vL(ua)).

We say those leftover evacuees form a backlog. If the height of an incoming
section is less than cj , then we use the underutilized capacity to accommodate
as many of the delayed backlog evacuees as possible, together with the evacuees
carried by the section. See Fig. 4, where the area of the dark-gray part equals
the backlog. In this example, a section of height cj becomes a new section in the
departure section sequence out of vj+1, and the light-gray part of S3 is also a
new section. Sections S4 and S5 maintain their shapes as they go through vj+1.

At vertex vj+1 = vL(ua), the first cluster in αub

R (vj+1) would start at δ time
units before all the evacuees at vj+1 from P [vL(ua), vR(ua)] would have left, if
there was no congestion on its way. Thus there would be a backlog of w = cjδ
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vh

c(vj, vh)

t=0

cj

Front of αub
R (vj+1)

Filled by backlog at vj+1

time at vj+1

S1 S2
S5

S3 S4

Fig. 4. α
ub
R (vj+1) undergoes a change to become a part of the departure section

sequence out of vj+1.

evacuees still waiting at vj+1. We use w arriving evacuees to fill the “space” (gaps
and underutilized capacities) among initial sections in αub

R (vj+1), as we stated
before. Let S1, S2, . . . , be the sections of αub

R (vj+1), which is already ceiled by
cj , and let Sh start at time th. Then the total amount of “space” between the
first and the lth sections is filled by w if

w ≥ (tl − t1)cj −
l−1∑
h=1

λ(Sh). (7)

We test l = 1, 2, . . . sequentially to find up to which gap gets merged due to the
backlog. The last gap (which may be after Sl and semi-infinite) is generally only
partially filled.

Lemma 5. We can construct T (with αu
R(vL(u)) and βu

R(vL(u)) at every node
u) in O(n log2 n) time.

Proof. For a node u of T with two child nodes ua and ub, we discussed above
how to compute αu

R(vL(u)) and βu
R(vL(u)), given αua

R (vL(ua)), βua

R (vL(ua)),
αub

R (vL(ub)), and βub

R (vL(ub)). The ceiling operation of βub

R (vL(ub)) by cj , using
max-heap Hu, takes O(|T (u)| log |T (u)|) time, since each insertion into Hu takes
O(log |T (u)|) time, where |T (u)| denotes the number vertices spanned by u. The
sequential tests, using (7), to find the extent of gap filling takes O(|T (u)|) time.
Thus the total time for all nodes is O(n log2 n). �

From now on we assume that T is constructed during preprocessing and
available. We will make use of it in proving Lemma 6.

5 Putting Pieces Together

5.1 Computing R(j, i)

To run our DP, we need to compute cost R(j, i) =
∑

h(Eh+Ih), where Eh (resp.
Ih) is the extra cost (resp. intra cost), defined by (2), of arrival section Sh at
vj+1, which carries vertices of a subpath of P [vj+1, vi].
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Lemma 6. If T is given, then for an arbitrary pair (j, i), j < i, we can compute
R(j, i) in O((i−j) log n) time.

Proof. Let P[vj+1, vi] denote the set of maximal subpaths of P [vj+1, vi] spanned
by t = O(log n) nodes, u1, u2, . . . , ut, of T , in this order from left to right.
To compute R(j, i), we combine the arrival and/or departure section sequences
stored at u1, u2, . . . , ut into a single arrival sequence at vj . We discussed in Sect. 4
in detail how to combine two such sequences. Starting with σ = αu1

R (vL(u1)),
we update σ by merging it with shifted βu2

R (vL(u2)), βu3
R (vL(u3)), . . ., until all

of them are merged into one arrival section sequence at vj . The shift amount
for βus

R (vL(us)) is d(vL(u1), vL(us))τ . When we merge σ with βus

R (vL(us)), the
capacity c(vj , vL(us)) must be used to ceil the shifted βus

R (vL(us)). Finding this
capacity from the capacity tree C takes O(log n) time. The most time consuming
part is testing (7) for successive l, every time two section sequences are merged.
Since we must perform O(i−j) such tests, the total time for all the merges is
O((i−j) log n). Once the arrival section sequence at vj is known, we can compute
the intra and extra cost based on (2). �

Lemma 7. Assuming that T is available, we have tX(n) = O(n log2 n).

Proof. Evaluating R(·, ·) takes O((i−j) log n) time by Lemma 6, and the total
time for finding switching point x(j, j′) is O(n log2 n), since we need to perform
binary search. �

Lemma 8. If the edge capacities are uniform, we have tX(n) = O(log3 n).

Proof. We precompute at each node u of T the sum of squared weights for
the sections carrying the vertices spanned by u. In processing the backlog to
fill gaps between the sections, the contributions from the swallowed up sections
are subtracted from, and the squared weight of the new combined section is
added to the sum of squared weights. Thus updating the sum of squared weights
takes constant time per merging two adjacent subtrees spanning subpaths in
P[vj+1, vi]. In the general capacity case, we tested (7) for successive l sequen-
tially. But in the uniform capacity case, we can maintain the prefix sum of the
gaps between successive sections. Then we can do binary search among them
with backlog w to find up to which gaps are filled by w. This takes O(log n)
time per merger of section sequences stored at two adjacent nodes of T , and
O(log2 n) time for all such mergers. Thus we can find R(j, i) in O(log2 n) time,
hence tX(n) = O(log3 n). �

5.2 Main Theorem

The correctness of our DP method can be proved similarly to [7] and the dis-
cussions above. Time complexities were analyzed in Lemmas 3, 5, 7, and 8.

Theorem 1.(a) The minsum k-sink problem in dynamic flow path networks can
be solved in O(kn2 log2 n) time.

(b) If the edge capacities are uniform, then it can be solved in O(kn log3 n) time.
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6 Conclusion and Discussion

We proposed an O(kn2 log2 n) time algorithm, based on DP that finds a minsum
k-sink in dynamic flow path networks with general edge capacities, which is the
first polynomial time algorithm for this problem. When the edge capacities are
uniform, we also presented an O(kn log3 n) time algorithm. There is a factor of
n difference between the above two cases. The main reason is that in the general
capacity case, we cannot update the intra cost in less than linear time, when
merging two section sequences. We are currently working to find a way around
it. A challenging problem is to efficiently solve the minsum k-sink problem in
dynamic flow networks that are more general than path networks.
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