
Separating Interaction Effects
Using Locating and Detecting Arrays

Stephen A. Seidel, Kaushik Sarkar, Charles J. Colbourn(B),
and Violet R. Syrotiuk

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA

{stephen.seidel,ksarkar1,colbourn,syrotiuk}@asu.edu

Abstract. The correctness and performance of complex engineered sys-
tems are often impacted by many factors, each of which has many possi-
ble levels. Performance can be affected not just by individual factor-level
choices, but also by interactions among them. While covering arrays have
been employed to produce combinatorial test suites in which every possi-
ble interaction of a specified number of factor levels arises in at least one
test, in general they do not identify the specific interaction(s) that are
significant. Locating and detecting arrays strengthen the requirements
to permit the identification of a specified number of interactions of a
specified size. Further, to cope with outliers or missing responses in data
collected from real engineered systems, a further requirement of separa-
tion is introduced. In this paper, we examine two randomized methods
for the construction of locating and detecting arrays, the first based on
the Stein-Lovász-Johnson paradigm, and the second based on the Lovász
Local Lemma. Each can be derandomized to yield efficient algorithms for
construction, the first using a conditional expectation method, and the
second using Moser-Tardos resampling. We apply these methods to pro-
duce upper bounds on sizes of locating and detecting arrays for various
numbers of factors and levels, when one interaction of two factor levels
is to be detected or located, for separation of up to four. We further
compare the sizes obtained with those from more targeted (and more
computationally intensive) heuristic methods.

1 Introduction

Complex engineered systems are critical, engineered, large-scale systems, such
as transportation networks, power grids, and wireless communication systems.
The correct operation of such systems often depends not just on the choices
made for numerous parameters in their configuration, but also on interaction
effects among these choices. Moreover, the performance of such a system can
be dramatically affected by the choices and their interactions, even when the
system is operating.

We examine a formal testing model. There are k factors F1, . . . , Fk. Each
factor Fi has a set Si = {vi1, . . . , visi} of si possible values (levels). A test is an
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 349–360, 2018.
https://doi.org/10.1007/978-3-319-94667-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_29&domain=pdf

350 S. A. Seidel et al.

assignment, for each i = 1, . . . , k, of a level from vi1, . . . , visi to Fi. The execution
of a test yields a measurement of a response. When {i1, . . . , it} ⊆ {1, . . . , k} and
σij ∈ Sij , the set {(ij , σij) : 1 ≤ j ≤ t} is a t-way interaction. (The interaction
has strength t.) A test on k factors covers

(
k
t

)
t-way interactions. A test suite is a

collection of tests. Usually such a test suite is represented as an array: Suppose
that A = (σi,j) is an N × k array for which σi,j ∈ Sj when 1 ≤ i ≤ N and
1 ≤ j ≤ k. This is a test suite of size N and type (s1, . . . , sk). Types can be
written in exponential notation: gu1

1 · · · gur
r means that there are ui factors with

gi levels for 1 ≤ i ≤ r. Tests are recorded as rows of A, and factors correspond
to columns.

Combinatorial testing [20,28] is concerned with the design and analysis of
test suites in order to assess correctness and performance of a system. The focus
has been on test suites known as covering arrays, which ensure that every t-way
interaction is covered by a test. We define these precisely next. Let A = (σi,j)
be a test suite of size N and type (s1, . . . , sk). Let T = {(ij , σij) : 1 ≤ j ≤ t}
be a t-way interaction. Denote by ρ(A, T) the set {r : ar,ij = σij , 1 ≤ j ≤
t} of rows of A in which the interaction is covered. A mixed covering array
MCA(N ; t, (s1, . . . , sk)) is a test suite A for which every t-way interaction T has
ρA(T) �= ∅, i.e., every t-way interaction is covered in at least one row. When
used for testing correctness, covering arrays reveal the presence of an interaction
that causes faulty behaviour, but in general does not identify the specific faulty
interaction(s); see [10,11].

We consider two motivating examples. In [1], a software simulation of a mobile
wireless network is studied. There, 75 factors are identified among the control-
lable parameters in the protocol stack, ranging from 2 to 10 levels. (The type is
108918475610544639228.) Throughput is measured as a response, and the objec-
tive is to determine which factors, and interactions among them, significantly
affect the response. In this setting, it is of little interest to determine whether
some interactions significantly affect the response; the goal is to ascertain which
do. One could, of course, obtain the responses for a MCA, and design further
testing based on the interactions covered in tests whose responses deviate most
widely from the mean. In this way, a MCA could be used to narrow the set of
t-way interactions that might have a significant effect on performance. Because
the study employs a software simulation, a second round of testing could be
conducted in the same environment as the first, and an adaptive method that
uses results of earlier tests to choose later ones may be suitable.

In [12], a testbed evaluation of a conferencing scenario in a wireless network
is conducted, measuring voice quality and exposure as responses. There are 24
controllable factors, ranging from 2 to 5 levels. (The type is 59453723.) Hence
the testing environment seems somewhat simpler than the simulation. Unlike
the well-controlled environment in which the simulation study is conducted,
however, the conferencing scenario is impacted by factors in the physical envi-
ronment, including the hardware used directly in the experiment, interference
from other communications in the vicinity, and the like. Despite best efforts to
shield the testbed from such effects, measurements taken far apart in time can

Separating Interaction Effects Using Locating and Detecting Arrays 351

be significantly affected by environmental factors that cannot be controlled, and
may not be measured. In this setting, it is desirable that all tests be conducted
in the same environment, and the significant interactions be identified without
further testing. Hence we want a nonadaptive approach to testing.

The nonadaptive identification of faults or significant interactions can be
accomplished by strengthening covering arrays. A combinatorial set of require-
ments was first identified in [10]; see also [11,23]. We develop this next.

1.1 Locating and Detecting Arrays

Let A be a test suite of size N and type (s1, . . . , sk). Let It be the set of all t-way
interactions for A, and let It be the set of all interactions of strength at most t.
When interaction T ∈ It has strength less than t and the t-way interaction T ′

contains T , it must hold that ρ(A, T ′) ⊆ ρ(A, T); there can be no row covering
T ′ but not T . A set T ′ ⊆ It is independent if there do not exist T, T ′ ∈ T ′ with
T ⊂ T ′. Our objective is to identify a set T ⊆ It (or perhaps It) that have
significant effects on the response. If no limitation is placed on T , the design
of a test suite can be impossible [23]; even when possible, the size of the test
suite grows as the number of interactions in T increases [10]. We assume that a
number d of interactions is to be identified. When at most d are to be identified,
we employ the notation d. Despite this limit, in the intended applications, often
many more than d significant interactions can be found by iterative analysis
of the response data, adjusting the responses after each selection of significant
interactions, without the need for further experimentation; see [31] for details.

Locating arrays for identifying sets of interactions can be defined in this
framework [10]. For a set T of interactions, define ρ(A, T) =

⋃
T∈T ρ(A, T).

A test suite A is (d, t)-locating if ρ(A, T1) = ρ(A, T2) ⇔ T1 = T2 whenever
T1, T2 ⊆ It, |T1| = d, and |T2| = d. When T1, T2 ⊆ It, and T1 and T2 are
independent, the array is (d, t)-locating. When instead |T1| ≤ d and |T2| ≤ d, the
array is (d, t)-locating or (d, t)-locating.

Using a locating array, knowing the tests that yield a significant deviation
in response, there can be at most one set of (at most) d interactions of strength
(at most) t covered in the same sets of tests that account for these deviations.
By enumeration of all sets of d interactions of strength t, the location of the
interactions causing the faults can be calculated from the outcomes. However,
determining the interactions involved may require enumeration of sets of inter-
actions. Determining the tests that exhibit a substantial deviation in response
does not ensure that any interaction that is covered only within these tests must
be significant. To deal with this, additional requirements are needed [10].

An array A is (d, t)-detecting if ρ(A, T) ⊆ ρ(A, T1) ⇔ T ∈ T1 whenever
T1 ⊆ It, |T1| = d, and T ∈ It \ T1. When instead T1 ⊆ It, T ∈ It, and T1 ∪ {T}
is independent, the array is (d, t)-detecting. For detecting arrays, we can also
consider a set of at most d interactions, to obtain arrays that are (d, t)-detecting
or (d, t)-detecting.

Detecting arrays underlie an efficient algorithm for the recovery of the set of
significant interactions [10], but necessitate a larger number of tests.

352 S. A. Seidel et al.

This framework of eight variants of testing arrays for identifying significant
interactions suggests many existence questions. However, relationships among
them enable a unified examination. In [10], the relevant relationships are estab-
lished (provided that s1 > 1, k ≥ t, and d is not larger than the number of
possible interactions):

(d, t)-detecting ⇒ (d, t)-detecting
� �

(d, t)-detecting ⇒ (d, t)-detecting
⇓ ⇓

(d, t)-locating ⇒ (d, t)-locating ⇒ (d − 1, t)-detecting
⇓ ⇓

(d, t)-locating ⇒ (d, t)-locating ⇒ (d − 1, t)-locating

Like covering arrays, locating and detecting arrays scale well to large numbers
of factors. Indeed when the strength, number d of potentially significant inter-
actions, and maximum number of levels are fixed, the number of tests required
is O(log k) [10]. Unlike covering arrays, however, constructions for locating and
detecting arrays have been much less studied. Although locating and detecting
arrays are mixed covering arrays of strength t, the extension of covering array
constructions requires substantial information about the tests in which interac-
tions are covered. Naturally the objective is to employ as few tests as possible.

Only when d = t = 1 is the minimum number of tests in (d, t)-, (d, t)-,
(d, t)-, and (d, t)-locating arrays known precisely [8]. The analogous situation for
detecting arrays is explored in [21,24], and strong bounds are established that
are exact infinitely often.

When t ≥ 2, exact results are known for locating arrays when k is very small
[32,34]; for larger numbers of factors, a small set of recursive constructions is
available when d = 1 and t = 2 for locating arrays [7]. Beyond these few direct
and recursive methods, computational methods have been developed for (1, 2)-
locating arrays [17,19,26] using constraint satisfaction techniques and one-row-
at-a-time greedy methods. In order to address concerns with infeasible tests,
Jin and Tsuchiya [17] extend the definition of locating arrays to account for
testing constraints. These algorithmic methods do not treat detecting arrays; for
locating arrays they limit the number of significant interactions, the strength,
and the number of factors to small values. In our motivating problems, limiting
the number and strength of interactions can be worthwhile, but techniques are
needed to construct locating and detecting arrays for larger numbers of factors.

2 The Need for Separation

Consider the use of a locating or detecting array in an experimental setting.
In principle, the responses for each test can identify the set of significant inter-
actions whenever the assumptions on number and strengths of interactions are
met. In practice, however, a problem arises. Suppose that two sets of (at most)
d interactions, T1 and T2, have |ρ(T1) \ ρ(T2)| = 1. If this occurs, the response

Separating Interaction Effects Using Locating and Detecting Arrays 353

measured in a single test is the sole ‘witness’ to the difference between the two.
In the absence of noise or measurement error, one such witness suffices to differ-
entiate. In our experiments, however, outliers and missing responses do occur.
These compromise our ability to analyze the response data. This can be mit-
igated by exploring a number of possible sets of significant interactions, as in
[31], rather than identifying a single set. As we have discussed, it cannot be
effectively handled by simply running the test for the outlier or missing response
again, without strong (and unjustified) assumptions about the stability of envi-
ronmental factors.

Therefore we argue that effective locating and detecting arrays must allow
for outliers and missing responses. Fortunately this can be treated by further
requirements on the testing array, by enforcing a separation between sets of
rows for different sets of interactions. We make this precise next. Let δ ≥ 1 be
an integer, the distance. A test suite A is (d, t, δ)-locating if whenever T1, T2 ⊆ It,
|T1| = d, and |T2| = d, we have that

|(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| < δ ⇔ T1 = T2.

This requires that at least δ tests witness the difference. The variants for d and
t are immediate.

Similarly, an array A is (d, t, δ)-detecting if whenever T1 ⊆ It, |T1| = d, and
T ∈ It \ T1, we have that T ∈ T1 whenever |ρ(A, T) \ ρ(A, T1)| < δ or |ρ(A, T1) \
ρ(A, T)| < δ. Again, definitions of the variants for d and t are straightforward.

Separation by distance δ ensures that any δ −1 or fewer tests can fail to pro-
vide a response, or provide an outlier response, without losing the differentiation
supported by the locating or detecting array. In our motivating examples among
many others, requiring larger distance for separation is desirable, but only if it
can be accomplished without a dramatic increase in the number of tests.

The simplest technique to make a (d, t, δ)-locating array might be to con-
catenate the rows of δ (d, t)-locating arrays, or indeed to replicate each row of
a single (d, t)-locating array, each δ times. This would enable the use of the few
available methods for locating arrays, while increasing the separation as required.
However, this appears to necessitate far too many tests.

3 Randomized and Derandomized Algorithms

We require algorithms to construct (d, t, δ)-locating arrays and (d, t, δ)-detecting
arrays. The methods of most interest to us must not only handle a range of small
values of d, t, and δ (each between, say, 1 and 4), but – more importantly – must
handle reasonable numbers of factors (in the range of 50–100 at least). We do
not expect to (or need to) produce the fewest tests possible, but naturally we
prefer arrays with fewer tests.

Every (1, t)-locating array is a mixed covering array of strength t, and hence
the algorithmic paradigms that have been most effective for covering arrays
appear to be natural candidates for construction of locating and detecting arrays.
Among these, integer programming, constraint satisfaction, tabu search, and

354 S. A. Seidel et al.

simulated annealing have provided the best available upper bounds on the num-
ber of tests when the number of factors is small [6]. One-column-at-a-time [14,20]
and one-row-at-a-time [5] greedy algorithms extend the range of numbers of fac-
tors treated, but do not outperform more sophisticated methods for few factors
and small strength. Indeed for both methods, a post-optimization strategy [27]
can often reduce the number of tests by investing more computation.

For larger numbers of factors and larger strengths yet, the best avail-
able upper bounds arise from randomized methods based on the Stein-Lovász-
Johnson framework [18,22,33], and derandomized algorithms using conditional
expectations [3,4]; and on the Lovász Local Lemma [2,13] with Moser-Tardos
resampling [25] to yield both efficient construction techniques and the best
asymptotic bounds [9,29,30].

We fully expect that computationally intensive methods and storage intensive
methods can and will produce detecting and locating arrays with fewer tests than
randomized and derandomized methods when the number of factors is relatively
small and the search is tailored to specific choices of d, t, and δ (all ‘small’); see,
for example, [19]. In exploring randomized techniques, our objective is instead to
develop algorithms that can be effectively used for a wide variety of construction
problems, without undue time and storage requirements.

3.1 The Stein-Lovász-Johnson Framework and Conditional
Expectation

Suppose that an N × k array A is specified. When A does not meet the require-
ments to be a locating or detecting array of the kind intended, it is because cer-
tain requirements are not met. For example, for (d, t, δ)-locating, when T1 �= T2,
|T1| = d, and |T2| = d, but |(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| = μ < δ,
the requirement is not met, and has deficiency δ − μ. (When a requirement is
met, its deficiency is 0.) This notion of deficiency can be extended to require-
ments for other locating and detecting arrays in a straightforward manner. Then
the deficiency of A is the sum of the deficiencies of all requirements.

When the deficiency of A is nonzero, a next test can be chosen to reduce
the deficiency. Indeed if a test were chosen at random among all possible tests,
the expected reduction in deficiency can be calculated. The Stein-Lovász-Johnson
framework dictates that a next test be chosen to reduce the deficiency by at least
this expectation. Choosing such a test at each stage ensures that no more tests
are needed than in an entire array chosen at random whose expected deficiency
is less than 1, and indeed the one-test-at-a-time method often employs much
fewer tests.

An effective implementation of this strategy requires not only that the
expected reduction in deficiency be calculated, but that a test be found to achieve
this reduction. In [3,4], conditional expectation methods are used to demonstrate
for covering arrays that the expectation can be efficiently calculated, and more
importantly that the test needed can be constructed by choosing one entry at a
time so as never to decrease the expectation. Although the details for locating
and detecting arrays differ from the simpler requirements for covering arrays,

Separating Interaction Effects Using Locating and Detecting Arrays 355

the strategy of [4] can be applied here as well. In the interests of space, we do
not here repeat the details needed in order to explore the differences.

Every time a new test is to be added, deficiencies for each requirement until
this point are needed. A storage intensive method can maintain this informa-
tion as tests are added, but the number of pairs of sets of interactions can
quickly exceed available storage even for arrays with a moderate number of fac-
tors. Instead a time-intensive version could recalculate the deficiency for each
requirement when it is needed, incurring a substantial amount of recomputation.
Recomputation may be feasible; however, the deficiency for a restriction may be
recalculated many times in the construction of a single test.

3.2 The Lovász Local Lemma and Moser-Tardos Resampling

For covering arrays, asymptotic results based on the Lovász Local Lemma (such
as [15,16,30]) improve upon those based on the Stein-Lovász-Johnson paradigm
[3,5]. Despite this, the latter have typically yielded fewer tests in practice. Hence
one might expect, for locating and detecting arrays, that the conditional expec-
tation methods would be the preferred ones. As with covering arrays, however,
the column resampling methods based on the Lovász Local Lemma again lead to
methods that avoid the time/storage tradeoff incurred by the conditional expec-
tation methods so they again provide viable construction algorithms, which we
outline next.

Suppose that an N×k array A is specified. When A does not meet the require-
ments to be a locating or detecting array of the kind intended, some requirement
has deficiency greater than 0. Following [25], we consider each requirement in an
arbitrary but fixed order. If none is encountered that has nonzero deficiency, the
array is the desired solution. Otherwise, the first time a requirement with nonzero
deficiency is found, we identify all columns involved in all interactions of both
sets, and randomly resample all of the entries in the same column. When this
resampling occurs, checking is restarted at the first requirement and continues
in the fixed order.

Moser and Tardos [25] show that the number of times resampling occurs is
expected to be polynomial when the number of tests is that specified by the
bound in the Lovász Local Lemma. As noted in [9], resampling can be applied
when the number of tests is less than the bound, but in that case there is no
guarantee that a solution can be found in a small expected number of resam-
plings (or indeed found at all). Nevertheless, resampling underlies a construction
algorithm that typically reduces the number of tests below the bound.

To accomplish this, a random array is chosen with a number of tests equal
to the bound. Column resampling proceeds as described until the array has
deficiency 0. At this point, one test is removed, typically making the deficiency
again nonzero, and a new round of column resampling is begun with the smaller
number of tests.

In order to ensure termination, a threshold on the total number of column
resamplings is set. Once this threshold is exceeded, the computation terminates

356 S. A. Seidel et al.

with the current number of tests. The deficiency of each requirement is recalcu-
lated every time this requirement is checked; no status information is stored for
the requirements. Whereas the conditional expectation methods can employ the
deficiency of an interaction up to k times for each test added, the column resam-
pling methods limit this recalculation to the threshold. But the actual behaviour
is much better than this worst case limit. Indeed, requirements that are later in
the fixed order are checked only when all earlier requirements have deficiency
0. Hence although all requirements must be verified to ensure that the array is
of the intended kind, typically a much smaller number is examined before we
discover a requirement demonstrating that it is not. In practice, this results in a
much smaller number of recalculations of deficiencies for requirements than one
might have anticipated.

The method is flexible enough to permit construction for the variety of locat-
ing and detecting arrays described here, requiring less time and less storage than
the conditional expectation methods (and less than any method that stores a
status for each requirement). Naturally the question is whether such column
resampling methods can yield useful test suites of an acceptable size. We address
this in Sect. 4.

3.3 Local Optimization

Column resampling makes no explicit effort to reduce the deficiency, instead
relying on the likelihood that a random replacement of the columns reduces the
deficiency more than it increases it. When provided with an initial array of very
low (but nonzero) deficiency having few tests, column resampling often increases
the deficiency far more than it reduces it.

In order to study the effects of this, we examine a local optimization tech-
nique. At each iteration, we again consider each requirement in an arbitrary but
fixed order. If none is encountered that has nonzero deficiency, the array is the
desired solution. Otherwise, the first time a requirement with nonzero deficiency
is found, we identify and randomly resample a column that is involved. If the
resulting array has deficiency no larger than it did before, the new array replaces
the old. Then no iteration increases the deficiency.

This shares the low storage footprint of the column resampling methods.
The time invested is harder to compare. Although column resampling may make
many resamplings that make the deficiency higher, each such resampling is trig-
gered typically after few requirements are checked. In order to retain at least the
progress made, local optimization checks every requirement at every iteration.

4 Some Computational Results

We implemented a (storage-intensive) conditional expectation method
(Sect. 3.1), a column resampling method (Sect. 3.2), and a local optimization
method (Sect. 3.3) for (1, 2)-locating arrays and for (1, 2)-detecting arrays.

Separating Interaction Effects Using Locating and Detecting Arrays 357

Our primary concerns are to (1) assess the effect of requiring larger separation
on the numbers of tests required and (2) determine the feasibility of constructing
locating and detecting arrays for scenarios with tens to hundreds of factors. In
the discussion to follow, we repeatedly refer to Table 1.

The first column of Table 1 lists the types for which we applied one or more
of the computational methods. These range from few factors (10) to a larger
number (100). We select primarily types in which are numbers of levels are

Table 1. Numbers of tests in generated locating and detecting arrays. Testbed has
type 59453723; Simulation has type 108918475610544639228.

Type (1, 2)-locating (1, 2)-detecting

δ = 1 δ = 2 δ = 3 δ = 4 δ = 1 δ = 2 δ = 3 δ = 4

210 15 14 19 24 30 25 21 32 42 54

215 19 17 22 29 34 30 29 41 57 63

220 21 19 26 31 37 37 32 44 57 70

250 29 26 33 40 47 52 46 63 76 89

275 32 28 36 44 50 58 51 68

2100 34 31 39 46 53 62 57 74

310 34 30 46 57 66 71 60 87 109 128

315 42 40 52 65 73 82 75 101 124 146

320 49 44 57 69 79 96 83 110 136 157

350 60 57 70 83 95 122 110 139 167

375 66 62 76 90 103 135 121

3100 70 67 81 94 107 138 132

410 71 65 86 104 122 135 118 161 201 235

415 78 76 96 116 133 153 139 185 219

420 91 82 104 122 141 170 152 198

450 113 106 129 148 168 217 196 244

475 120 116 138 159 178 236 212

4100 127 123 146 166 187 248 236

510 118 110 141 165 194 220 192 263 315 367

515 133 126 156 185 212 247 223 293

520 150 138 169 198 225 275 243 313

550 182 173 208 236 342 310 391

575 198 189 223 256 367 337

5100 211 202 235 266 390 357

510210 123 110 139 172 197 370 316 415 504 597

Testbed 117 114 144 169 194 313 266 367 450 533

Simulation 580 532 654 1883 1712

358 S. A. Seidel et al.

equal, to observe the growth in number of tests as a function of the number of
factors. We also report results for one mixed type, 510210 to demonstrate how
detecting arrays and locating arrays differ (more on this soon), and the two types
from our motivating examples.

Sizes from the column resampling algorithm for separation distance 1 are
reported in the first of the two columns under ‘δ = 1’, both for locating and
detecting arrays, using a threshold of 1000 resamplings. As expected, the method
runs relatively quickly, completing in less than a minute for type 375.

We employed the local optimization algorithm both to compare with column
resampling for distance 1, and to extend to larger distances (up to δ = 4 for
many types). It proved to be somewhat more time consuming to complete 1000
iterations, for example taking approximately 6 min for the locating array of type
375 with distance 1. Nevertheless, in all computations it yields a size smaller
than that from column resampling.

Most interesting is the effect of increasing the separation distance. The sizes
obtained suggest that one can do much better than replicating a solution with
distance 1 δ times; in fact, for most of the types examined, enforcing distance 4
no more than doubles the number of tests used for distance 1 for locating arrays.
This suggests that one can better cope with outliers and missing responses in
experimentation using locating and detecting arrays, incurring a modest amount
of additional testing.

Table 1 also illustrates substantial differences between locating arrays and
detecting arrays. The efficient recovery algorithm for the latter appears to come
at a high price. For types in which all factors have the same number of levels,
the number of tests in a detecting array appears to be nearly twice the number
for the corresponding locating array. However, for types in which factors have
widely different numbers of levels, detection appears to cause a much larger
increase; see the last three rows in Table 1. This is as one would anticipate,
because when a factor has few levels, each level appears in many more tests on
average. The likelihood that this larger set of tests contains all tests in which a
much less frequently occurring 2-way interaction appears is consequently larger,
necessitating a larger number of tests.

Finally we mention some results from the conditional expectation method.
With our current implementation for detecting arrays with distance 1, storage
and time limitations make it infeasible to handle large numbers of factors, so we
report only a handful of results for few factors. For k ∈ {10, 15, 20}, while local
optimization produces detecting arrays of type 3k with 60, 75, and 83 tests,
conditional expectation produces much smaller arrays of sizes 41, 48, and 54,
respectively. Similar differences are found in other cases with few factors.

Nagamoto et al. [26] describe a greedy algorithm for (1, 2)-locating arrays of
distance 1 that bears some resemblance to the conditional expectation method
outlined here and apply it to a limited set of types with at most 20 factors.
For k ∈ {10, 15, 20}, while local optimization produces locating arrays of type
5k with 110, 136, and 148 tests, their greedy approach produces much smaller
arrays of sizes 91, 105, and 113, respectively.

Separating Interaction Effects Using Locating and Detecting Arrays 359

Evidently, column resampling and local optimization, at least within the
number of iterations performed, produce numbers of tests that are far from
minimum. Despite this, we have found them to yield acceptable results, better
than expected in a randomly chosen array, for much larger numbers of factors
than appear to be handled by existing methods.

Acknowledgements. This work is supported in part by the U.S. National Science
Foundation grant #1421058, and in part by the Software Test & Analysis Techniques
for Automated Software Test program by OPNAV N-84, U.S. Navy.

References

1. Aldaco, A.N., Colbourn, C.J., Syrotiuk, V.R.: Locating arrays: a new experimental
design for screening complex engineered systems. SIGOPS Oper. Syst. Rev. 49(1),
31–40 (2015)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008)

3. Bryce, R.C., Colbourn, C.J.: The density algorithm for pairwise interaction testing.
Softw. Testing Verification Reliab. 17, 159–182 (2007)

4. Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength
covering arrays. Softw. Testing Verification Reliab. 19, 37–53 (2009)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23,
437–444 (1997)

6. Colbourn, C.J.: Covering array tables: 2 ≤ v ≤ 25, 2 ≤ t ≤ 6, t ≤ k ≤ 10000
(2005–2017). www.public.asu.edu/∼ccolbou/src/tabby

7. Colbourn, C.J., Fan, B.: Locating one pairwise interaction: three recursive con-
structions. J. Algebra Comb. Discrete Struct. Appl. 3, 125–134 (2016)

8. Colbourn, C.J., Fan, B., Horsley, D.: Disjoint spread systems and fault location.
SIAM J. Discrete Math. 30, 2011–2016 (2016)

9. Colbourn, C.J., Lanus, E., Sarkar, K.: Asymptotic and constructive methods for
covering perfect hash families and covering arrays. Des. Codes Crypt. 86, 907–937
(2018)

10. Colbourn, C.J., McClary, D.W.: Locating and detecting arrays for interaction
faults. J. Comb. Optim. 15, 17–48 (2008)

11. Colbourn, C.J., Syrotiuk, V.R.: Coverage, location, detection, and measurement.
In: 2016 IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 19–25. IEEE Press (2016)

12. Compton, R., Mehari, M.T., Colbourn, C.J., De Poorter, E., Syrotiuk, V.R.:
Screening interacting factors in a wireless network testbed using locating arrays. In:
IEEE INFOCOM International Workshop on Computer and Networking Experi-
mental Research Using Testbeds (CNERT) (2016)

13. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Infinite and Finite Sets, Colloq., Keszthely, vol. 2, pp. 609–
627 (1973). Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam
(1975)

14. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand.
Tech. 113, 287–297 (2008)

www.public.asu.edu/~ccolbou/src/tabby

360 S. A. Seidel et al.

15. Francetić, N., Stevens, B.: Asymptotic size of covering arrays: an application of
entropy compression. J. Combin. Des. 25, 243–257 (2017)

16. Godbole, A.P., Skipper, D.E., Sunley, R.A.: t-covering arrays: upper bounds and
Poisson approximations. Comb. Probab. Comput. 5, 105–118 (1996)

17. Jin, H., Tsuchiya, T.: Constrained locating arrays for combinatorial interaction
testing. CoRR abs/1801.06041 (2018). http://arxiv.org/abs/1801.06041

18. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

19. Konishi, T., Kojima, H., Nakagawa, H., Tsuchiya, T.: Finding minimum locating
arrays using a SAT solver. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo,
Japan, 13–17 March 2017, pp. 276–277 (2017)

20. Kuhn, D.R., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. CRC
Press, Boca Raton (2013)

21. Li, P.C., Meagher, K.: Sperner partition systems. J. Combin. Des. 21(7), 267–279
(2013)

22. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13(4), 383–390 (1975)

23. Mart́ınez, C., Moura, L., Panario, D., Stevens, B.: Locating errors using ELAs,
covering arrays, and adaptive testing algorithms. SIAM J. Discrete Math. 23,
1776–1799 (2009/2010)

24. Meagher, K., Moura, L., Stevens, B.: A Sperner-type theorem for set-partition
systems. Electron. J. Combin. 12, Note 20, 6 (2005). (Electronic)

25. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.
J. ACM 57(2), Article no. 11, 15 (2010)

26. Nagamoto, T., Kojima, H., Nakagawa, H., Tsuchiya, T.: Locating a faulty inter-
action in pair-wise testing. In: 20th IEEE Pacific Rim International Symposium
on Dependable Computing, PRDC 2014, Singapore, 18–21 November 2014, pp.
155–156 (2014)

27. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of covering
arrays. Eur. J. Comb. 34, 91–103 (2013)

28. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
#11 (2011)

29. Sarkar, K., Colbourn, C.J.: Two-stage algorithms for covering array construction.
CoRR abs/1606.06730 (2016). http://arxiv.org/abs/1606.06730

30. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J.
Discrete Math. 31, 1277–1293 (2017)

31. Seidel, S.A., Mehari, M.T., Colbourn, C.J., De Poorter, E., Moerman, I., Syrotiuk,
V.R.: Analysis of large-scale experimental data from wireless networks. In: IEEE
INFOCOM International Workshop on Computer and Networking Experimental
Research Using Testbeds (CNERT) (2018)

32. Shi, C., Tang, Y., Yin, J.: Optimal locating arrays for at most two faults. Sci.
China Math. 55(1), 197–206 (2012)

33. Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theory Ser. A 16,
391–397 (1974)

34. Tang, Y., Colbourn, C.J., Yin, J.: Optimality and constructions of locating arrays.
J. Stat. Theory Pract. 6(1), 20–29 (2012)

http://arxiv.org/abs/1801.06041
http://arxiv.org/abs/1606.06730

	Separating Interaction Effects Using Locating and Detecting Arrays
	1 Introduction
	1.1 Locating and Detecting Arrays

	2 The Need for Separation
	3 Randomized and Derandomized Algorithms
	3.1 The Stein-Lovász-Johnson Framework and Conditional Expectation
	3.2 The Lovász Local Lemma and Moser-Tardos Resampling
	3.3 Local Optimization

	4 Some Computational Results
	References

