
Efficient Enumeration of Subgraphs
and Induced Subgraphs

with Bounded Girth

Kazuhiro Kurita1(B), Kunihiro Wasa2, Alessio Conte2, Takeaki Uno2,
and Hiroki Arimura1

1 IST, Hokkaido University, Sapporo, Japan
{k-kurita,arim}@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo, Japan
{wasa,conte,uno}@nii.ac.jp

Abstract. The girth of a graph is the length of its shortest cycle. Due
to its relevance in graph theory, network analysis and practical fields
such as distributed computing, girth-related problems have been object
of attention in both past and recent literature. In this paper, we con-
sider the problem of listing connected subgraphs with bounded girth.
As a large girth is index of sparsity, this allows to extract sparse struc-
tures from the input graph. We propose two algorithms, for enumerating
respectively vertex induced subgraphs and edge induced subgraphs with
bounded girth, both running in O(n) amortized time per solution and
using O(n3) space. Furthermore, the algorithms can be easily adapted
to relax the connectivity requirement and to deal with weighted graphs.
As a byproduct, the second algorithm can be used to answer the well
known question of finding the densest n-vertex graph(s) of girth k.

1 Introduction

We consider the problem of finding all subgraphs and induced subgraphs with
girth at least k of a graph. The girth is a measure of sparsity, as graphs with large
girth are inherently sparse. This corresponds to finding sparse substructures of
the given graph, a problem that was considered under several forms [5,9] and
has applications in network analysis. In particular, this problem generalizes two
well studied problems, i.e., listing all subtrees and induced subtrees [7,13–15].
Indeed, any graph with girth larger than n may not contain a cycle, i.e., it is a
tree, or a forest.

A subgraph enumeration problem, given a graph G and some constraint R,
consists in outputting all the subgraphs satisfying R without duplicates. The
efficiency of enumeration algorithms is often measured with respect to both
the size of the input and that of the output, i.e., the number of solutions: an
enumeration algorithm is called an amortized polynomial time algorithm if it
runs in O(M · poly(N)) time, where N is the input size and M is the number
of solutions. Furthermore, the algorithm is said to have polynomial delay if the
maximum time elapsed between two consecutive outputs is polynomial.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 201–213, 2018.
https://doi.org/10.1007/978-3-319-94667-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_17&domain=pdf

202 K. Kurita et al.

In this paper, we present two amortized polynomial time algorithms for enu-
merating subgraphs of girth at least k. The first, EBG-IS, enumerates induced
subgraphs, while the second, EBG-S, enumerates edge subgraphs (also simply
called subgraphs). Both EBG-IS and EBG-S run in O(n |S|) time using O(n3)
space, where n is the number of nodes in G and S is the set of all solutions.
The proposed algorithms will consider the enumeration of connected subgraphs
in simple graphs. However, both algorithms can easily be applied to the enumer-
ation of non-connected subgraphs, and to weighted graphs by trivial changes,
with the same time and space complexity. In these problems, the upper bound
of the number of solutions are O(2n) and O(2m), respectively, where m is the
number of edges. Hence, the brute force algorithms are optimal if we evaluate the
efficiency of algorithms only the input size. When we describe a more efficient
algorithm, reducing amortized complexity is important [10]. Indeed, our imple-
mentation of EBG-S1 is almost 560 times faster than the brute force algorithm
when the input graph is a complete graph K8 and girth is four.

While the problem of efficiently enumerating subgraphs with bounded girth
has been considered for directed graphs [6], to the best of our knowledge, there
is no known efficient algorithm for the undirected version of the problem.2

An early result on girth computation is the algorithm by Itai and Rodeh [8],
that finds the girth of a graph in O(nm) time. In more recent work, the problem
was also solved in linear time for planar graphs [4]. However, the problem we
consider involves computing the girth of many subgraphs, so relying on these
algorithms is not efficient.

A prominent question related to the girth is finding exactly how dense a
graph of given girth can be: the maximum number of edges in a d-regular graph
with girth k is bounded by the well known Moore bound [2], which Alon later
proved to be tight on general graphs as well [1]. Erdős conjectured that there
exists a graph with Ω(n1+1/k) edges and girth 2k + 1 [12]. On the other hand,
some have focused on giving practical lower bounds, i.e., finding ways to generate
graphs of given girth as dense as possible [3,11]. We remark that our proposed
algorithm EBG-S can match theory and practice: the densest n-vertex graph of
girth k can be found as a subgraph of the complete graph Kn. While this may
not be practical for large values of n, it significantly improves upon the brute
force approach by avoiding the generation of subgraphs with girth <k.

2 Preliminaries

Let G = (V (G), E(G)) be a simple undirected graph with no self-loops, with
vertex set V (G) and edge set E(G) ⊆ V (G) × V (G). Two vertices u and v are
adjacent (or neighbors) if there is an edge e = {u, v} ∈ E(G) joining them. We

1 The implementation of EBG-S in the github repository: https://github.com/ikn-lab/
EnumerationAlgorithms/tree/master/BoundedGirth/.

2 We remark that the techniques in [6] do not extend to undirected graphs, thus
motivating a separate study. In directed graphs, a u-v path and a v-u path are
distinct. However, a u-v path and a v-u path may be same in undirected graphs.

https://github.com/ikn-lab/EnumerationAlgorithms/tree/master/BoundedGirth/
https://github.com/ikn-lab/EnumerationAlgorithms/tree/master/BoundedGirth/

Efficient Enumeration of Subgraphs and Induced Subgraphs 203

call e incident to v and we denote the set of incident edges to v E(v). The set
of neighbors of u in G is called its neighborhood and denoted by NG(u) and
the size of NG(u) is called the degree of u in G. Let NG[u] = NG(u) ∪ {u}
be the closed neighborhood of u. The set of neighbors of U ⊆ V is defined as
NG(U) =

⋃
u∈U NG(u)\U . Similarly, NG[U] denotes NG(U)∪U . For any vertex

subset S ⊆ V , we call G[S] = (S,E[S]) an induced subgraph, where E[S] =
E(G) ∩ (S × S). Since G[S] is uniquely determined by S, we sometimes identify
G[S] with S. For any edge subset E′ ⊆ E, we call G[E′] = (V ′(E′), E′) edge
induced subgraph, where V ′(E′) =

⋃
{u,v}∈E′ u. We define G \ {e} = (V,E \ {e})

and G \ {v} = G[V \ {v}]. For simplicity, we use v ∈ G and e ∈ G to refer to
v ∈ V (G) and e ∈ E(G), respectively. If G is clear from the context, we will also
use simplified notation such as V , E, N(u) instead of V (G), E(G), NG(u).

A sequence P = (v1, . . . , vk+1) of distinct vertices is a path from v1 to vk+1

(v1-vk+1 path for short) in G = (V,E) if for any i ∈ [1, k], {vi, vi+1} ∈ E. P is a
shortest path between two vertices if there is no shorter path between them. Let
us denote by V (P) and E(P) the set of vertices and edges in P , respectively.
We say that G is connected if for any two vertices u, v ∈ V , there is a u-v path.
We say that a sequence C = (v1, . . . , vk+1) of vertices is a cycle if (v1, . . . , vk)
is a v1-vk path, vk+1 = v1, and {vk, vk+1} ∈ E. The length of a path or cycle is
defined by its number of edges. The distance between two vertices is the length
of a shortest path between them. The girth of G, denoted by g(G), is the length
of a shortest cycle in G. For simplicity, we say that G has girth k if g(G) ≥ k.
The girth of acyclic graphs is usually assumed to be ∞.

4 5
3

9

10

12

6

78
11

4 5
3

9

10

12

6

78
11(A) (B)

Fig. 1. Dashed edges and vertices are not included by an induced subgraph and a
subgraph. An induced subgraph of girth five (A) and a subgraph of girth six (B).

We define our problems as follows and Fig. 1 shows examples of solutions
Problem 1 and Problem2. If we store all outputs, then it is easy to avoid dupli-
cates. Our algorithms achieve without duplicates in polynomial space.

Problem 1 (k-girth connected induced subgraph enumeration). Enumerate all
connected induced subgraphs S of a graph G with g(S) ≥ k, without duplicates.

Problem 2 (k-girth connected subgraph enumeration). Enumerate all connected
subgraphs S of a graph G with g(S) ≥ k, without duplicates.

3 Enumeration by Binary Partition

The binary partition method is one of the fundamental frameworks for designing
enumeration algorithms. Typically, a binary partition algorithm A has the fol-

204 K. Kurita et al.

Algorithm 1. Enumerate all connected induced subgraphs with girth k.
1 Procedure EBGG, k // G: an input graph, k: positive integer

2 RecEBG(∅, G);
3 Procedure RecEBG(S,G) // S: the current solution

4 Output S;
5 done ← ∅;
6 for v ∈ C (S) do
7 RecEBG(S ∪ {v}, G \ done);
8 done ← done ∪ {v};

9 return;

lowing structure: first A picks an element x of the input, then divides the search
space into two disjoint spaces, one containing the solutions that include x, and
one those that do not. A recursively executes the above step until all elements
are picked. Whenever the search space contains exactly one solution, A outputs
it. We call each dividing step an iteration.

Algorithm EBG, detailed in Algorithm1, represents a basic strategy for
Problem 1. Algorithm 1 is based on binary partition, although each iteration
divides the search space in more than two subspaces. While EBG enumerates
solutions by picking vertices on each iteration, we can obtain an enumeration
algorithm for Problem2 by modifying EBG so that it picks edges instead.

Let G, X, and S(X) be respectively an input graph, an iteration, and the
solution received by the iteration X. A vertex v /∈ S(X) is a candidate vertex for
S(X) if g(S(X) ∪ {v}) ≥ k and S(X) ∪ {v} is connected, that is, the addition of
a candidate vertex generates a new solution. Let C (S(X)) be a set of candidate
vertices for S(X). We call C (S(X)) the candidate set of S(X). Now, suppose
that X generates new iterations Y1, . . . , Yd by adding vertices in C (S(X)) =
{v1, . . . , vd} on line 7. For each i, we say that X is the parent of Yi, and Yi is a
child of X. Note that, on iteration Yi and its descendant iterations, EBG outputs
solutions that do not include v1, . . . , vi−1 but do include vi. This implies that
the solution space of Yi is disjoint from those of each Yj<i created so far, i.e.,
EBG divides the solution space of X in d disjoint subspaces. The only iteration
without a parent is the one generated on line 2, which we call the initial iteration
and denote by I. We remark that S(I) = ∅ and that ∅ is a solution.

By using the above parent-child relation, we introduce the enumeration tree
T (G) = T = (V, E). Here, V is the set of iterations of EBG for G and E is a subset
of V × V. For any pair of iterations X and Y , (X,Y) ∈ E if and only if X is the
parent of Y . We can observe that T has no cycles since every child iteration of
X receives a solution whose size is larger than S(X). In addition, each iteration
other than the initial iteration has exactly one parent. This implies that the
initial iteration is an ancestor of all iterations and thus T is connected. Thus, T
forms a tree. Next three lemmas show the correctness of EBG. Due to the space
limitation, we omit some proofs (which can be found in Appendix).

Efficient Enumeration of Subgraphs and Induced Subgraphs 205

Lemma 1. Let G be a simple undirected graph and k a positive integer. Then,
every output of EBG induces a connected subgraph of girth k.

Lemma 2. If X and Y are two distinct iterations on EBG, then S(X) 	= S(Y).

Lemma 3. Let G be a simple undirected graph and k a positive integer.
EBG(G, k) outputs all connected induced subgraphs with girth k in G exactly once.

Proof. By Lemma 1, EBG outputs only solutions, and by Lemma2 it does not
output each solution more than once. We show that EBG outputs all solutions by
induction. Let S be a solution. If |S| = 0, EBG outputs the empty set.

Otherwise, there is an iteration X0 such that S(X0) ⊆ S and S ⊆ V (G)
(that is, no vertex of S has been removed from G). This is trivially true, e.g.
for X0 = I, since S(I) = ∅ and nothing has been removed from G. Note that
every subgraph of a graph with girth at least k must also have girth at least
k, thus every v ∈ S \ S(X0) such that G[S(X0) ∪ {v}] is connected must be in
C (S(X0)). As S is connected there is at least one such v in C (S(X0)).

Consider the first execution of Line 7 in X for which a vertex v ∈ S \ S(X0)
is considered to generate a child iteration X1. As no vertex of S was added to
done in X0, we still have that S(X1) ⊆ S and S ⊆ V (G) in iteration X1, but
|S(X1)| = |S(X0)| + 1. Hence, by induction, EBG will eventually find S.
�

Using Itai’s algorithm [8] to compute the girth of a graph in O(mn), we can
obtain a first trivial complexity bound for Algorithm1.

Theorem 1. EBG solves Problem 1 with delay O(n2m).

Non-induced, weighted, and non-connected case. Let us briefly show how
EBG also applies to some variants of the problem. Firstly, we can solve Problem 2,
i.e., enumerate edge subgraphs, by modifying EBG as follows: Each solution is
a set of edges S ⊆ E, and the candidate set C (S(X)) becomes C (S(X)) =
{e ∈ E(X) | G[S(X) ∪ {e}] is connected and g(G[S(X) ∪ {v}]) ≥ k}. It is
straightforward to see that Lemma 3 still holds (replacing the word induced with
edge in the statement), and that the modified algorithm will solve Problem 2 in
polynomial delay and polynomial space.

Furthermore, we can consider the weighted version of the problem, where the
length of a cycle is the sum of the weights of its edges: we can find the girth
in this case by adapting the Floyd-Warshall algorithm, and thus still enumerate
all solutions for both the induced and edge subgraph version of the problem, in
polynomial delay and polynomial space.

Finally, we consider non-connected case, i.e., where the solutions are all
induced or edge subgraphs of girth k, and not just the connected ones: this
is trivially done by redefining the candidate set as C (S(X)) = {v ∈ V (G) |
g(G[S(X)∪{v}]) ≥ k} for Problem1, and similarly for Problem 2. If G[S] is not
connected, its girth is the minimum among that of its connected components,
thus we can still use Itai’s algorithm (or Floyd-Warshall if weighted edges are
considered as well), and again obtain polynomial delay and polynomial space.

206 K. Kurita et al.

Algorithm 2. Updating data structures in EBG-IS.
1 Procedure NextC(v, C (S) , D(1)(S), D(2)(S), S, k,G)

2 C (S ∪ {v}) ← UpdateCand(v, S);

3 D(1)(S ∪ {v}) ← Update1(v, C (S ∪ {v}));

4 D(2)(S ∪ {v}) ← Update2(v, C (S ∪ {v}));

5 Function UpdateCand(v, S)
6 C (S ∪ {v}) ← N(v) ∪ C (S);
7 foreach u ∈ C (S) do

8 if D
(1)
uv (S) + D

(2)
uv (S) ≥ k then C (S ∪ {v}) ← C (S ∪ {v}) ∪ {u} ;

9 return C (S ∪ {v});

10 Function Update1(v, C (S ∪ {v}))
11 foreach u ∈ C (S ∪ {v}) ∪ S,w ∈ C (S ∪ {v}) do

12 D
(1)
uw(S) ← min{D(1)

uw(S), D
(1)
uvw(S)}

13 return D(1)(S ∪ {v})

14 Function Update2(v, C (S ∪ {v}))
15 foreach u,w ∈ C (S ∪ {v}) do

16 p1 ← min{D(1)
uw(S), D

(1)
uvw(S ∪ {v}), D

(2)
uw(S)};

17 p2 ← the second smallest length in {D(1)
uw(S), D

(1)
uvw(S ∪ {v}), D

(2)
uw(S)};

18 if p1 + p2 ≥ k then // x ∈ N(u) ∩ S ∪ {v}
19 p2 ← the second smallest length in {D(1)

xw(S ∪ {v}) + 1};

20 D
(2)
uw(S ∪ {v}) ← p2;

21 return D(2)(S ∪ {v});

4 Induced Subgraph Enumeration

The bottleneck of EBG is the computation of the candidate set. In this section,
we present a more efficient algorithm EBG-IS for Problem1. EBG-IS is based
on EBG, but each iteration exploits information from the parent iteration, and
maintains distances in order to improve the computation of the candidate set.
The procedure is shown in Algorithm2.

EBG-IS uses the second distance between vertices defined as follows. Let v be
a vertex in C (S)∪S, and u and u′ be vertices in C (S). We denote by D

(1)
uv (S) the

distance between v and u in G[S∪{v, u}], and by D
(2)
uu′(S) the distance between u

and u′ in G[S∪{u, u′}]\{e0}, where e0 = (u, ·) is the first edge on a shortest path
between u and u′. Note that for any vertices x ∈ G \ {C (S) ∪ S}, y ∈ G \ C (S),
and y′ ∈ G \ C (S), D

(1)
xy (S) = ∞ and D

(2)
yy′(S) = ∞. Especially, we call D

(2)
uu′(S)

the second distance between u and u′ in G[S∪{u, u′}]. In addition, we call a path
whose length is the second distance a second shortest path. Moreover, we write
D

(1)
uwv(S) and D

(2)
uwv(S) for the distance and the second distance from u to v via

a vertex w, respectively. Let P and P ′ be respectively a v-u shortest path and
a v-u second shortest path. Since P and P ′ do not share e0 but do share their
ends, H must have a cycle including v and u, where H is a subgraph of G such
that V (H) = V (P) ∪ V (P ′) and E(H) = E(P) ∪ E(P ′). Figure 2(C) shows an

Efficient Enumeration of Subgraphs and Induced Subgraphs 207

example of a cycle made by P and P ′. To compute the candidate set efficiently,
we will use the following lemmas. In the following lemmas, let X and Y be two
iterations such that X is the parent of Y , and v be a vertex in C (S(X)) such
that S(Y) = S(X) ∪ {v}.

(A)

4

5

9

1
2 6

7

3 8

(B)

4

5

9

1
2 6

7

3 8
u

v

(C)

Fig. 2. (A) and (B) show two induced subgraphs. (C) shows a shortest path and a sec-
ond shortest path. Dashed edges and vertices are not contained by induced subgraphs.
Black and gray paths show respectively shortest and second shortest paths.

Lemma 4. Let u and w be two vertices in C (S(X)) and k = g(G[S(X)]). (A)
g(G[S(X) ∪ {u,w}]) ≥ k if and only if (B) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) ≥ k.

Proof. Clearly, (A) → (B) holds by definition of D(1)(S(X)) and D(2)(S(X)).
For the direction (B) → (A), consider a shortest cycle C in G[S(X) ∪ {u,w}])
in the following three cases: (I) u,w /∈ C: |C| ≥ k since g(G[S(X)]) ≥ k. (II)
Either u or w in C: |C| ≥ k since u and w belong to C (S(X)). (III) Both u
and w in C: C can be decomposed into two u-w paths P and Q. Without loss of
generality, |P | ≤ |Q|. If P is a u-w shortest path, then |C| ≥ k from (B), since
Q is at least as long as the second distance D

(2)
uw(S(X)). Otherwise, there is a

u-w shortest path P ′ and a cycle C ′ consisting of a part of P (or Q) and a part
of P ′. If C ′ contains w, then |C ′| = |C| ≥ k since C is a shortest cycle. If C ′

does not contain w, then |C ′| is a cycle in G[S(X) ∪ {u}], thus |C ′| ≥ k because
u ∈ C (S(X)).
�

Lemma 5. EBG-IS computes C (S(Y)) in O(|C (S(X))| + |N(v)|) time.

Proof. From Lemma 4, vertex u in C (S(X)) belongs to C (S(Y)) if and only if
D

(1)
uv (S(X)) + D

(2)
uv (S(X)) ≥ k. This can be done in constant time. In addition,

from the connectivity of G[S(Y)], C (S(Y)) \ C (S(X)) ⊆ N(v). Thus, we can
find C (S(Y)) \ C (S(X)) in O(|C (S(X))| + |N(v)|) time.
�

Next, we consider how to update the values of D(1)(S(Y)) and D(2)(S(Y))
when adding v to S(X). We can update the old distances to the ones after
adding v as in the Floyd-Warshall algorithm (see Algorithm2), meaning that
we can compute D(1)(S(Y)) in O(|S(X) ∪ C (S(X))| · |C (S(X))|) time. By the
following lemma, the values of D(2)(S(Y)) can be updated in O(|S(Y)|) time for
each pair of vertices in C (S(Y)).

208 K. Kurita et al.

Lemma 6. Let u and w be two vertices in C (S(X)), e0 be an edge in a u-w
shortest path in G[S(X)∪{u,w}], and H = G[S(X)∪{u,w}]\{e0}. If NH(u) = ∅,
then D

(2)
uw(S(X)) = ∞. Otherwise, D

(2)
uw(S(X)) = miny∈NH(u){D

(1)
yw(S(X)) + 1}.

Proof. From the definition of D
(2)
uw(S(X)), if NH(u) = ∅, then D

(2)
uw(S(X)) = ∞.

We assume |NH(u)| ≥ 1. Since u /∈ S(X), every shortest path between u and
w in G[S(X) ∪ {w}] ∪ f contains f , where f = {u, y}. Hence, D

(1)
yw(S(X)) + 1

is equal to the distance between u and w in G[S(X) ∪ {w}] ∪ {f}. Hence, the
statement holds.
�

The next lemma implies that if D
(1)
uw(S(X)) + D

(2)
uw(S(X)) < k, i.e., G[S(X) ∪

{u,w}] is not a solution, then computing D
(2)
uw(S(Y)) takes constant time.

(I.a) (I.b) (II)

u

x

w

v

u

x

w

v

u

x

w

v

Fig. 3. Examples of each case in Lemma 7. Solid lines are u-v shortest paths in G[S(X)∪
{u,w}]. Gray solid lines are u-v second shortest paths in G[S(X) ∪ {u,w}]. Dashed
lines are u-v-w shortest paths in G[S(Y) ∪ {u,w}]. Let {u, x} be the first edge in a
shortest path: the sum of lengths of a solid and gray solid line is less than k.

Lemma 7. Let u and w be two vertices in C (S(Y)). If p1 + p3 < k,
then D

(2)
uw(S(Y)) = min{max{p1, p2}, p3}, where p1 = D

(1)
uw(S(X)), p2 =

D
(1)
uvw(S(Y)), and p3 = D

(2)
uw(S(X)).

Proof. Let GX = G[S(X) ∪ {u,w}] and GY = G[S(Y) ∪ {u,w}]. Note that
p1 ≤ p3. We consider the following cases: (I) p1 < p2: Let e = {u, x} be the first
edge of a u-w shortest path P in GY . Note that P cannot contain v. (I.a) There
exists a u-v-w shortest path Q that does not contain e: clearly, D

(2)
uw(S(Y)) =

min{|Q| = p2, p3}. (I.b) Every u-v-w shortest path Q contains e: there always
exists a cycle C in S(Y) ∪ {w} such that V (C) ⊆ (V (P) ∪ V (Q)) \ {u} and C
does not contain u. Note that |C| < p1 + p2. If p2 ≤ p3, then this contradicts
w ∈ C (S(Y)) since |C| < k. Thus, p2 > p3. This implies that |Q| − 1 ≥ p3.
Hence, D

(2)
uw(S(Y)) = p3. (II) p2 ≤ p1: this assumption implies that there exists

a u-w shortest path P in GY that contains v, and p1 + p2 < k. Let e be the first
edge of P in GY and Q be a u-v-w shortest path in GY \ {e}. Now, we can see
|Q| > p1 since if |Q| ≤ p1, then u /∈ C (S(Y)) since P and Q make a cycle C
containing u with |C| < k. Thus, the length of a u-w shortest path in GY \ {e}
is p1, and D

(2)
uw(S(Y)) = p1 holds.
�

Efficient Enumeration of Subgraphs and Induced Subgraphs 209

Algorithm 2 shows in detail the update of the candidate set, D(1)(·), and
D(2)(·) (done using Lemma 7). We analyze the time complexity of EBG-IS. Let
ch(X) be the set of children of X and #gch(X) be the number of grandchildren
of X. The next lemma shows the time complexity for updating D(2)(S(X)).

Lemma 8. We can compute D(2)(S(Y)) from D(2)(S(X)) in O(#gch(Y) ·
|S(Y)| + |C (S(Y))|2) time.

Proof. Let u and w be two vertices in C (S(Y)). Two cases are possible:
(I) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) ≥ k: By Lemma 6, computing D

(2)
uw(S(Y)) takes

O(|S(Y)|) time, checking only vertices in S(Y). As the number of pairs (u,w)
that fit this case is bounded by #gch(Y), EBG-IS needs O(#gch(Y)·|S(Y)|) time
to compute this part. (II) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) < k: From Lemma 7, com-

puting D
(2)
uw(S(Y)) takes constant time, for a total complexity of O(|C (S(Y))|2),

which proves the statement.
�

Theorem 2. EBG-IS enumerates all solutions in O(
∑

S∈S |N [S]|) time using
O(maxS∈S{|N [S]|3}) space, where S is the set of all solutions.

Proof. The correctness of EBG-IS follows from Lemma 3. We first consider the
space complexity. In an iteration X, EBG-IS uses O(|C (S(X)) ∪ S(X)|2) space
for storing values of D(1)(·) and D(2)(·). In addition, the height of T is at most
maxS∈S{|S|}. Therefore, EBG-IS uses O(maxS∈S{|N [S]|3}) space.

Let c(X) be |C (S(X))| and T (X,Y) be the time needed to generate Y from
X, i.e., an execution of NextC() (Algorithm 2). From Lemma 5, Lemma 6, and
the Floyd-Warshall algorithm, T (X,Y) is O(c(X) + |N(v)| + c(Y) · |S(X)| +
#gch(Y) · |S(Y)| + c(Y)2) time. In addition, |N [S(X)]| ≤ |N [S(Y)]|, |N(v)| =
O(|N [S(Y)]|), and c(X) = O(N [S(X)]) since every vertex in the candidate set
has a neighbor in S(X). Thus, T (X,Y) = O(|N [S(Y)]| (c(Y)+#gch(Y))) time.
Note that the sum of children and grandchildren for all iterations is at most 2 |V|.
Thus, by distributing the O(|N [S(Y)]|) time from X to children and grandchil-
dren of Y , each iteration needs O(|N [S(Y)]|) time since each iteration receives
costs only from the parent and the grandparent. In addition, each iteration out-
puts a solution, and hence the total time is O(

∑
S∈S |N [S]|).
�

5 Subgraph Enumeration

We propose an algorithm, EBG-S, for enumerating all subgraphs with girth k in
a given graph G, detailed in Algorithm3. A trivial adaptation of EBG-IS would
run in O(m) time per solution, as the candidate sets are sets of edges, whose
size is O(m). To improve this running time, EBG-S selects candidates in a certain
order, so that the number of candidate edges does not exceed no more than the
number of nodes in the previous solution G[S].

Let S be the current solution. Note that S is an edge set. We first define
an inner edge and an outer edge as follows: an edge e = {u, v} is an inner edge

210 K. Kurita et al.

A good case A bad case

Fig. 4. Black solid lines and gray solid lines represent inner edges and outer edges,
respectively. Our main strategy is to reduce the number of inner edges in EBG-S.

for S if u, v ∈ G[S], and an outer edge otherwise (see Fig. 4). Let Cin(S) and
Cout(S) be a set of inner edges and outer edges in C (S), respectively. We first
consider the case when EBG-S picks an outer edge. In the following lemmas, let
X be an iteration in enumeration tree T , e be an edge not in X, and Y be the
child iteration of X satisfying S(Y) = S(X) ∪ {e}.

Lemma 9. Let e = {x, y} be an outer edge such that x ∈ V (G[S(X)]). Then
C (S(Y)) ⊆ (C (S(X)) ∪ E(y)) \ {e}, where E(y) are the edges incident to y.

Proof. An edge g /∈ E(y)∪C (S(X)) may not be added to S(Y) as the resulting
subgraph would be disconnected, and e 	∈ C (S(Y)) since e ∈ S(Y).
�

From Lemma 9, EBG-S manages the candidate set C (S(Y)) in O(|C (S(Y))|+
|V (G[S(X)])|) time when EBG-S picks an outer edge e since we can add all edges
e′ /∈ S(X) ∪ C (S(X)) incident to y and S(Y) ∪ {e′} is a solution. Moreover,
removed edges are at most |V (G[S(X)])| since all removed edges have a ver-
tex in V (G[S(X)]). In this case, EBG-S can obtain Cin(S(Y)) and Cout(S(Y))
in O(S(X)) time and O(C (S(Y))) time, respectively. Next, we consider that
when EBG-S picks an inner edge e. When we pick an inner edge, C (S(Y)) is
monotonically decreasing.

Lemma 10. If e is an inner edge, then Cin(S(Y)) ⊂ Cin(S(X)) and
Cout(S(Y)) = Cout(S(X)).

Proof. Since e is an inner edge V (G[S(Y)]) = V (G[S(X)]), thus there is no edge
f ∈ Cin(S(Y)) \ Cin(S(X)). Since e /∈ Cin(S(Y)) and no edge in Cout(S(X))
is in Cin(S(Y)), Cin(S(Y)) ⊂ Cin(S(X)). Moreover, there is no cycle including
f ∈ Cout(S(X)) in G[S(Y) ∪ {f}], hence Cout(S(Y)) = Cout(S(X)).
�

Next, for any pair of edges e and f not in G[S(X)], we consider the compu-
tation of the girth of G[S(X)∪{e, f}] in EBG-S. Let A(X) = {v ∈ V (G[S(X)]) |
E(v) ∩ C (S(X)) 	= ∅}. In a similar fashion as EBG-IS, EBG-S uses D(3)(S(X))
for A(X). The definition of D(3)(S(X)) is as follows: For any pair of vertices
u and v in A(X), D

(3)
uv (S(X)) is the distance between u and v in A(X). Note

that a shortest path between u and v may contain a vertex in G[S] \ A(X).
The next lemma shows that by using D(3)(S(X)), we can compute C (S(Y)) in
O(|V (G[S(Y)])|) time from C (S(X)).

Lemma 11. For any iteration X, |Cin(S(X))| ≤ |V (G[S(X)])|.

Efficient Enumeration of Subgraphs and Induced Subgraphs 211

Algorithm 3. Updating data structures in EBG-S.
1 Procedure NextC(C (S) , D(3)(S), S, k,G)

2 if Cin(S) �= ∅ then e ← Cin(S); else e ← Cout(S) ;
3 C (S ∪ {e}) ← UpdateCand(e, S);

4 D(3)(S ∪ {e}) ← Update3(e, C (S ∪ {e}));

5 Function UpdateCand(e = {u, v}, S)
6 if e ∈ Cin(S) then
7 for f ∈ Cin(S) \ {e} do
8 if g(G[S ∪ {e, f}]) ≥ k then Cin(S) ← Cin(S) ∪ {f} ;

9 else // We assume u ∈ G[S] and v /∈ G[S]
10 for w ∈ N(v) do // Let f be an edge {v, w}
11 if g(G[S ∪ {e, f}]) < k then Cout(S) ← Cout(S) \ f ;
12 else if w ∈ G[S] then
13 (Cin(S), Cout(S)) ← (Cin(S) ∪ f, Cout(S) \ f)
14 else Cout(S) ← Cout(S) ∪ f ;

15 return Cin(S) ∪ Cout(S);

16 Function Update3(e = {u, v}, C (S ∪ {e}))
17 A = {v ∈ V (G[S]) | v is incident to C (S) .};
18 for x, y ∈ A do // If e ∈ Cout(S), then u ∈ V (G[S]), v /∈ V (G[S])
19 if e ∈ Cin(S) then

20 D
(3)
xy (S) ← min{D(3)

xy (S), D
(3)
xu (S)+D

(3)
vy (S)+1, D

(3)
xv (S)+D

(3)
uy (S)+1};

21 else D
(3)
xy (S) ← min{D(3)

xy (S), D
(3)
xu (S) + 1} ;

22 return D(3)(S);

Proof. The proof follows from these facts: (A) Initially, Cin(S(X)) = ∅. (B)
Choosing e ∈ Cin(S(X)) decreases |Cin(S(Y))|. (C) e = {x, y} ∈ Cout(S(X)) is
chosen iff |Cin(S(X))| = 0, and (assuming wlog y 	∈ V (G[S(X)])) it increases
|Cin(S(Y))| by at most |{{y, z} : z ∈ V (G[S(X)])}| < |V (G[S(X)])|.
�

Lemma 12. |Cout(S(X)) \ Cout(S(Y))| + |Cout(S(Y)) \ Cout(S(X))| ≤ V (G
[S(Y)]).

Proof. We consider two cases: (I) Cin(S(X)) 	= ∅: EBG-S picks e ∈ Cin(S(X)),
and thus, From Lemma 10, Cout(S(Y)) = Cout(S(X)). (II) Cin(S(X)) = ∅:
EBG-S picks e = {u, v} ∈ Cout(S(X)). Without loss of generality, we can assume
that u ∈ V (G[S(X)]) and v /∈ V (G[S(X)]). Let f be an edge {v, w} incident to
v. Now, w ∈ V (G[S(Y)]). This implies that the number of edges that are added
to Cout(S(Y)) and removed from Cout(S(X)) is at most |V (G[S(Y)])|.
�

Note that |V (G[S(X)])| ≤ |V (G[S(Y)])|. Hence, from the above lemmas, we
can obtain the following lemma.

Lemma 13. C (S(Y)) can be computed in O(|V (G[S(Y)])|) time from
C (S(X)).

Theorem 3. EBG-S enumerates all connected subgraphs with girth k in
O(

∑
S∈S |V (G[S])|) total time using O(maxS∈S{|V (G[S])|3}) space.

212 K. Kurita et al.

Proof. The proof can be obtained by adapting that of Theorem2. A more
detailed proof can be found in the appendix.
�

6 Conclusion

In this paper, we addressed the k-girth connected induced/edge subgraph enu-
meration problems. We proposed two algorithms: EBG-IS for induced subgraphs
and EBG-S for edge subgraphs. Both algorithms have O(n) time delay and require
O(n3) space (exact bounds are reported in Table 1). The algorithms can easily
be adapted to relax the connectivity constraint and consider weighted graphs.
Other possibilities include applying the algorithms for network analysis and con-
sidering the more challenging problem of enumerating maximal subgraphs.

Table 1. Summary of our result. S is the set of all solutions.

Total time Total space

EBG-IS O(
∑

S∈S |N [S]|) O(maxS∈S{|N [S]|3})

EBG-S O(
∑

S∈S |V (G[S])|) O(maxS∈S{|V (G[S])|3})

References

1. Alon, N., Hoory, S., Linial, N.: The moore bound for irregular graphs. Gr. Comb.
18(1), 53–57 (2002)

2. Bollobás, B.: Extremal Graph Theory. Courier Corporation (2004)
3. Chandran, L.S.: A high girth graph construction. SIAM J. Discrete Math. 16(3),

366–370 (2003)
4. Chang, H.-C., Lu, H.-I.: Computing the girth of a planar graph in linear time.

SIAM J. Comput. 42(3), 1077–1094 (2013)
5. Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of

maximal k -degenerate subgraphs in a chordal graph. In: Cao, Y., Chen, J. (eds.)
COCOON 2017. LNCS, vol. 10392, pp. 150–161. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62389-4 13

6. Conte, A., Kurita, K., Wasa, K., Uno, T.: Listing acyclic subgraphs and subgraphs
of bounded girth in directed graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA
2017. LNCS, vol. 10628, pp. 169–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71147-8 12

7. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in
undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 275–286. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23719-5 24

8. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),
413–423 (1978)

9. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-319-71147-8_12
https://doi.org/10.1007/978-3-319-71147-8_12
https://doi.org/10.1007/978-3-642-23719-5_24
https://doi.org/10.1007/978-3-642-23719-5_24

Efficient Enumeration of Subgraphs and Induced Subgraphs 213

10. Kurita, K., Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of dominating
sets for sparse graphs. arXiv preprint arXiv:1802.07863 (2018)

11. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: A new series of dense graphs of high
girth. Bull. Am. Math. Soc. 32(1), 73–79 (1995)

12. Parter, M.: Bypassing Erdős’ girth conjecture: hybrid stretch and sourcewise span-
ners. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 608–619. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43951-7 49

13. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 3(5), 237–252 (1975)

14. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

15. Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in
a K-degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 94–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 8

http://arxiv.org/abs/1802.07863
https://doi.org/10.1007/978-3-662-43951-7_49
https://doi.org/10.1007/978-3-662-43951-7_49
https://doi.org/10.1007/978-3-319-13075-0_8
https://doi.org/10.1007/978-3-319-13075-0_8

	Efficient Enumeration of Subgraphs and Induced Subgraphs with Bounded Girth
	1 Introduction
	2 Preliminaries
	3 Enumeration by Binary Partition
	4 Induced Subgraph Enumeration
	5 Subgraph Enumeration
	6 Conclusion
	References

