
Evaluation of Tie-Breaking
and Parameter Ordering for the IPO

Family of Algorithms Used in Covering
Array Generation

Kristoffer Kleine1, Ilias Kotsireas2, and Dimitris E. Simos1(B)

1 SBA Research, 1040 Vienna, Austria
{kkleine,dsimos}@sba-research.org

2 Wilfrid Laurier University, Waterloo, ON, Canada
ikotsire@wlu.ca

Abstract. The IPO (In-Parameter-Order) family of algorithms is a
popular set of greedy methods for the construction of covering arrays.
Aspects such as tie-breaking behavior or parameter ordering can have
major impact on the quality of the resulting arrays but have so far not
been studied in a systematic manner. In this paper, we survey and present
a general framework for the IPO family of algorithms (i.e. IPOG, IPOG-
F and IPOG-F2) and present ways to instantiate these abstract compo-
nents. Then, we evaluate the performance of these variations on a large
set of instances, in an extensive experimental setting in terms of covering
array sizes.

Keywords: Covering arrays · IPO family · Tie-breaks
Parameter ordering · Experiments

1 Introduction

A covering array (CA) is a mathematical object defined by four positive integers
and denoted as CA(N ; t, k, v). It is a N × k matrix where N is the number of
rows, k the number of columns (often referred to as parameters), t the size of
interactions that are covered and v is the size of the alphabet. A covering array is
defined by its t-covering property : for any t-selection of columns, all vt t-tuples
between the selected columns occur at least once in the array. t is called the
strength of the CA. A mixed-level covering array (MCA) is a generalization of
a CA where each column i has its own alphabet size vi. An MCA is denoted as
MCA(N ; t, k, (v1, . . . , vk)). The tuple (t, k, (v1, . . . , vk)) (t ≤ k) is referred to as
the configuration of an MCA.

The general problem of constructing optimal covering arrays (i.e., in terms of
minimal size N) is believed to be a hard combinatorial optimization problem and
it has significant applications in software and hardware testing [8,9]. Moreover,
it is tightly coupled with NP-hard problems [2]. As a result, there has been a lot
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 189–200, 2018.
https://doi.org/10.1007/978-3-319-94667-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_16&domain=pdf


190 K. Kleine et al.

of effort on developing and improving algorithmic approaches for covering array
generation (c.f. Sect. 2).

The In-Parameter-Order (IPO) family of algorithms is a set of greedy algo-
rithms for constructing covering arrays and their representatives have been
shown to produce acceptable sized covering arrays [3]. There have been mul-
tiple efforts in the area of improving the IPO variants, in terms of reducing the
size of generated covering arrays, but to the best of our knowledge, no systematic
evaluation of these proposals exist. In this work, we aim to provide an overview
of these optimization efforts and evaluate their effectiveness.

This paper is structured as follows: In Sect. 2 we discuss preliminaries and
related work. Section 3 presents the IPO family of algorithms and existing and
novel methods to parameterize it. Section 4 proposes an evaluation of the algo-
rithms and discusses the results and finally, Sect. 5 concludes the paper.

2 Background

The In-Parameter-Order (IPO) strategy was first proposed in [15] as a greedy
algorithm for covering array construction. It constructs a covering array one
column at a time and each extension is divided into a horizontal and an optional
vertical extension. We discuss the algorithm in greater detail in Sect. 3.

While the original algorithm was limited to arrays of strength 2 (pair-wise),
subsequent works have generalized the algorithm to allow the generation of
higher strength arrays [13] (IPOG) as well as integrated constraint handling
in [17,18]. In [5], the authors propose variants of the IPO strategy, namely
IPOG-F, IPOG-F2, by extending the search space in the horizontal extension.
In [14], the IPOG-D variant is presented which includes a recursive construction
method aimed at reducing the number of combinations to be enumerated.

Many works have been dedicated to improving parts of the IPO algorithms in
order to minimize covering arrays sizes. In [4] a graph-coloring scheme integrated
into the vertical extension is proposed to reduce the resulting array sizes. [16]
modify IPOG with additional optimizations aimed at reducing don’t-care values
in order to minimize the number of rows. [6,7] discuss and evaluate the impact
of tie-breaking on the generated arrays and propose a new tie-breaker which
reduces the generated array sizes.

Related to the aim of this paper is the works of [1] for “one-test-at-a-time”
greedy construction algorithms. There, the authors propose a general framework
of such algorithms and provide concrete ways to instantiate it. In their analy-
sis they evaluate the most important parameters which contribute to smaller
covering array sizes.

3 The IPO Family of Algorithms

The IPO family of algorithms is a set of algorithms for constructing covering
arrays and has seen use in many applications in practice [12]. The most impor-
tant representatives are IPOG [13], IPOG-F [5] and IPOG-F2 [5]. They are greedy



Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 191

algorithms able to generate (mixed-level) covering arrays for any configuration.
They all follow the same basic schema (c.f. Algorithm 1) and start out by build-
ing an initial covering array of strength t by constructing the cross-product of
the first t columns.

Algorithm 1. IPO Algorithm
procedure IPO(configuration)

configuration ← Sort-Criterion(configuration)
Array ← cross-product of first t columns
for i ← t, . . . , k do

HorizontalExtension(i)
if there are uncovered tuples then

VerticalExtension(i)
end if

end for
end procedure

Then, the array is extended one column at a time in a two-dimensional
fashion. First, a new column is added to the array by a horizontal extension.
This step will assign values to the new column in a greedy manner with the
objective to maximize coverage gain. Algorithm 2 shows the procedure for IPOG.
Here, rows are considered from top to bottom and in each one the value with the
maximum coverage gain (in terms of previously uncovered t-tuples) is selected.
If multiple values provide maximum gain then the tie must be broken with a
predefined strategy. This will be discussed in further detail in Sect. 3.1.

IPOG-F and IPOG-F2 extend the search space in the horizontal extension by
also optimizing the order in which rows are extended. For this purpose, unas-
signed rows are additionally scanned in each iteration to find the best position
and value to assign. While IPOG-F considers the actual coverage to decide on the
best value, IPOG-F2 tries to estimate the amount of covered tuples. This is an
optimization which allows for a faster implementation compared to IPOG-F, but
it sacrifices accuracy. The estimation is achieved by keeping an estimated value
of covered tuples in an array for each row and value. When a value a is chosen
in row r, the estimator is incremented by the number of shared tuples between
row s and all other unassigned rows s.

The horizontal extension either finishes when all tuples have been covered or
each entry in the new column has been assigned a value. In the latter case, there
are still tuples left which have not yet been covered and they are added in the
vertical extension step. This step grows the array by adding more rows which
include missing tuples.

In the vertical extension all remaining uncovered tuples are added to the
array to ensure that the first i columns form a covering array. Tuples can either
be added by appending a new row to the array that contains the tuple or by
finding an already existing row which can fit the tuple. The latter case is possible



192 K. Kleine et al.

Algorithm 2. Horizontal Extension (IPOG)
procedure HorizontalExtension(i)

for row ← 0, . . . ,Array.rows do
v ← select value with highest coverage gain
if multiple candidate values then

break tie
end if
Array[row][i] ← v
if all tuples are covered then return
end if

end for
end procedure

since don’t-care values can occur in the array and may be overwritten by a tuple
without destroying the t-covering property.

3.1 Tie-Breakers

During the horizontal extension, tie-breaking may be necessary in the case that
two or more values for a row in the new column provide the same, maximum
coverage gain, i.e. cover the most new t-tuples. We will refer to these values as
candidates. In the following we will give an overview to possible tie-breaking
strategies.

Random Tie-Breaker. The simplest approach is to choose one value out of all
candidates at random. This can be implemented efficiently but it will introduce
non-determinism to algorithm and the generated covering arrays will possibly
differ on subsequent runs of the algorithm. This tie-breaker is oblivious to the
previous history of the extension.

Deterministically-Seeded Random Tie-Breaker. This is a variant of the
Random tie-breaker. Here, ties are still broken randomly with the help of a pseu-
dorandom generator, but the generator is seeded with a constant at the beginning
which results in a deterministic behaviour of the algorithm.

Lexicographic Tie-Breaker. This tie-breaker will always prefer the (lexi-
cographically) smallest candidate if multiple are available. This can of course
introduce a bias towards smaller values in the new column.

Cyclic Tie-Breaker. This tie-breaker builds upon the Lexicographic tie-
breaker, but maintains the last chosen value and starts the search from this one
instead of the first. The aim is to remove bias towards smaller values, however
the last chosen value is more likely to be picked again in the next iteration.



Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 193

Cyclic-Next Tie-Breaker. This tie-breaker works exactly as the Cyclic tie-
breaker, but will start from the next value following the last chosen value. This
tie-breaker was first proposed in [6,7].

Value-Balanced Tie-Breaker. This tie-breaker keeps track of how many
times a value has been used so far in the extended column. In an optimal situa-
tion, each value for the new column occurs exactly the same amount of times and
the aim of this tie-breaker is to mimic this behaviour by balancing the occur-
rences of these values. Values are preferred when they so far have occured less
frequently than other candidate values.

α-balanced Tie-Breaker. This tie-breaker builds upon the value-balanced tie-
breaker by not only considering the balance of values in the new column, but
the balance of lower-strength tuples involving the new parameter. This is based
on the notion of α-balance which was introduced by [10] and functions as a tie-
breaker in the following way: first, the number of would-be-covered t − 1 tuples
are compared for each candidate. If there still is a tie, the next lower strength is
tried and so on. If at t = 1 there still exists a tie, then the smallest value will be
preferred.

3.2 Tuple Enumeration Order

In the vertical extension, uncovered tuples are added one-by-one to the array.
So far it has not been studied, if different enumeration orders of these tuples
have any impact on the resulting arrays. We propose besides the common
lexicographically-ascending (tuples of small lexicographical order first) order,
the reverse, i.e. from lexicographically largest to smallest. Furthermore, switch-
ing between the orderings every other vertical extension could prove beneficial
to achieve smaller arrays.

3.3 Parameter Ordering

One simple option to influence the covering array generation is the order in which
columns are extended. Since the covering property is not affected by column
permutations one can permute the configuration before starting the generation
and apply the reverse permutation afterwards. Note that this is only useful for
mixed-level covering arrays. Informal consensus is that the IPO strategy gener-
ates smaller arrays when columns are sorted by decreasing alphabet size, but, to
the best of our knowledge, this has so far not been subject to an experimental
evaluation.

While the number of column permutations in general is too large in practice,
we propose to investigate the following:

Ascending Sort columns with increasing alphabet size from smallest to largest
Descending Sort columns with decreasing alphabet size from largest to smallest



194 K. Kleine et al.

Alternating Intersperse large and small columns and switch between large and
small columns from one extension to the next. We propose two variants. The
first starts with the smallest, followed by the largest and thirdly the second-
smallest, etc. The second starts with the largest, followed by the smallest and
so on.

4 Evaluation

4.1 Setup

To evaluate the different algorithm configurations we chose a set of (M)CA
instances based upon the benchmarks used in [1] to study the behaviour of
greedy, one-test-at-a-time MCA generation algorithms. The instances are sum-
marized in Fig. 1a.

Instances

104

340

34

64

34, 45

66, 55, 34

78, 220

51, 38, 22

510, 210

82, 72, 62, 52

101, 91, 81, 71, 61, 51, 41, 31, 21, 11

(a) Set of benchmark (M)CA instances

Tie Breakers Tuple Orders Parameter Orders

Alpha-Balanced Alternating Alternating-large
Cyclic Ascending Alternating-small
Cyclic-next Descending Ascending
Deterministic Descending
Lexicographic
Random
Value-Balanced

(b) Configuration options for IPO

Fig. 1. Benchmark setup

We implemented all IPO variants in our own implementation described fur-
ther in [11]. The particular algorithm as well as the tie-breaker, tuple order and
parameter ordering are selectable via a configuration option at runtime. This
results in 63 distinct algorithm configurations for CA generation and 252 distinct
configurations for MCA generation. The configuration options are summarized
in Fig. 1b.

Each algorithm configuration was used to generate (M)CAs for the selected
benchmark instances for strengths between 2 and 4. The experiments were con-
ducted on the Graham cluster of the Shared Hierarchical Academic Research
Computing Network (SHARCNET). Configurations involving the Random tie-
breaker were repeated 10 times. Due to space limitations, we only discuss selected
and aggregated results, but we provide the full data set as well as visualizations



Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 195

on a dedicated website1 for the interested reader. There we also provide further
measurements into the test generation time differences observed between the
tested configurations.

4.2 Results

In order to meaningfully compare different configurations options across
instances we first normalized the computed covering array sizes to a relative
measure representing the deviation of the mean. We computed the mean for
each instance and based on the result computed the relative improvement or
degradation for each individual run. This value shows how much better or worse
one configuration performs in comparison to the other ones. The results are
summarized in Table 1 and are visualized in Figs. 2a and b.

Table 1. Relative improvement for different configurations compared to the mean

IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 1.0128 ±0.0759 0.9632 ±0.0619 1.0572 ±0.0662

Cyclic 1.0175 ±0.1394 0.9461 ±0.0678 1.0379 ±0.0867

Cyclic-next 0.9721 ±0.0858 0.9403 ±0.0799 1.0296 ±0.1012

Deterministic 0.9920 ±0.0429 0.9560 ±0.0539 1.0500 ±0.0664

Lexicographic 1.0140 ±0.0764 0.9651 ±0.0687 1.0580 ±0.0673

Random 0.9933 ±0.0465 0.9548 ±0.0545 1.0497 ±0.0673

Value-balanced 0.9951 ±0.0630 0.9590 ±0.0563 1.0549 ±0.0645

Tuple Order

Alternating 0.9950 ±0.0656 0.9533 ±0.0580 1.0454 ±0.0681

Ascending 0.9987 ±0.0663 0.9582 ±0.0626 1.0584 ±0.0794

Descending 0.9944 ±0.0630 0.9530 ±0.0561 1.0432 ±0.0644

Parameter Order

Alternating-large 0.9962 ±0.0309 0.9529 ±0.0268 1.0503 ±0.0510

Alternating-small 1.0082 ±0.0374 0.9667 ±0.0336 1.0763 ±0.0525

Ascending 1.0285 ±0.0443 1.0006 ±0.0440 1.0870 ±0.0519

Descending 0.9463 ±0.0791 0.8910 ±0.0442 0.9952 ±0.0793

In general, IPOG-F produces the smallest arrays, followed by IPOG and
IPOG-F2. Comparing the results for the different tie-breakers, no one choice
seems to impact array sizes significantly, however, the Cyclic-next tie-breaker
overall yields the best results. It, together with the Cyclic tie-breaker is able to
generate some arrays with up to 50% less rows. However, the Cyclic tie-breaker
exhibits extreme results in the other direction and in corner-cases with array

1 https://matris.sba-research.org/data/iwoca2018.

https://matris.sba-research.org/data/iwoca2018


196 K. Kleine et al.

sizes exceeding 50% larger than the mean are produced. This is also the case for
the Alpha-balanced and Lexicographic tie-breaker.

Judging from the results in Table 1, the order in which tuples are enumerated
does not seem to affect the resulting covering array size in any significant way.

The largest impact can be attributed to the sorting order of columns. Sorting
in descending order of alphabet size leads to significantly smaller covering arrays,
especially in the case of IPOG-F. Alternating between large and small columns
has some impact and is better than sorting columns in ascending order.

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e 
si

ze
 c

om
pa

re
d 

to
 m

ea
n

tie.breaker Alpha−balanced
Cyclic

Cyclic−next
Deterministic

Lexicographic
Random

Value−balanced

(a) Tie-breakers

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e 
si

ze
 c

om
pa

re
d 

to
 m

ea
n

parameter.order Alternating−large Alternating−small Ascending Descending

(b) Parameter orders

Fig. 2. Relative improvement compared to the mean

Selected benchmark results. Aside from the general performance, for specific
instances the various configuration options can have differing impact. In the
following, we discuss some results for selected instances. In order to meaningfully
analyze the results we have grouped the results by both the algorithm (i.e., IPOG,
IPOG-F or IPOG-F2) and one of either tie-breaker, tuple-order or parameter-
order. Inside each group we have computed the mean and the standard deviation.
The results show absolute values instead of relative difference.

340 (t = 3) The results of this experiment are summarized in Table 2 and
the generated covering array sizes per tie-breaker are visualized in Fig. 3a.
IPOG-F produces the smallest arrays and shows very low variance when com-
paring different tie-breakers. In contrast, the results for IPOG are much more
dependent on the tie-breaker. Here, the best results are obtained with the
Value-balanced tie-breaker which produces arrays 16% smaller than when using
the Alpha-balanced tie-breaker. IPOG-F2 shows no significantly differing behav-
ior with different tie-breakers. Furthermore, the order in which tuples are enu-
merated have no major impact.

104 (t = 3) The results for this experiment can be found in Table 2 and a
comparison of the tie breakers can be found in Fig. 3b. Here, the configurations
which use either the Cyclic or Resuming tie-breakers manage to generate an



Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 197

●

●

120

130

140

150

160

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g 
Ar

ra
y 

Si
ze

 (N
)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

3^40 t=3 − Tie−breaker

(a) 340 (t = 3)

●●

1000

1100

1200

1300

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g 
Ar

ra
y 

Si
ze

 (N
)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

10^4 t=3 − Tie−breaker

(b) 104 (t = 3)

Fig. 3. Results for different tie-breakers

Table 2. Results for CA experiments

340 t 013= 4 t = 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 140.0 ±3.5 116.7 ±0.6 151.3 ±4.9 1193.0 ±8.7 1145.3 ±2.9 1146.7 ±4.0

Cyclic 135.0 ±2.0 116.7 ±0.6 147.3 ±4.2 1000.0 ±0.0 1000.0 ±0.0 1000.0 ±0.0

Cyclic-next 123.3 ±0.6 115.7 ±1.2 149.7 ±3.8 1000.0 ±0.0 1000.0 ±0.0 1000.0 ±0.0

Deterministic 126.7 ±0.6 115.3 ±0.6 150.3 ±3.8 1135.3 ±1.2 1102.3 ±0.6 1102.3 ±0.6

Lexicographic 140.7 ±2.9 116.3 ±0.6 154.0 ±5.3 1228.0 ±0.0 1288.0 ±0.0 1288.0 ±0.0

Random 125.9 ±1.3 116.4 ±1.0 148.9 ±2.7 1136.2 ±7.0 1101.4 ±4.3 1102.2 ±3.7

Value-balanced 122.3 ±1.5 116.0 ±1.7 148.7 ±4.5 1186.0 ±3.5 1085.7 ±0.6 1085.7 ±0.6

Tuple Order

Alternating 127.6 ±5.7 116.2 ±0.9 147.4 ±2.3 1130.0 ±58.2 1102.4 ±62.1 1103.7 ±62.1

Ascending 128.7 ±6.4 116.5 ±1.0 152.6 ±3.0 1131.9 ±59.2 1102.1 ±61.9 1102.1 ±61.9

Descending 127.6 ±4.8 116.1 ±1.0 148.3 ±2.5 1132.6 ±58.2 1102.1 ±62.0 1102.6 ±62.2

orthogonal array (since the size is equal to vt) for the three algorithms. Inter-
estingly, the Lexicographic tie-breaker, although similar to the other two, per-
forms the worst in all cases with almost 30% larger array sizes. As before, in this
case the tuple order has no real impact.

4.3 665534 (t = 3)

For this instance (see Table 3), there is no large variance when comparing differ-
ent tie-breakers. IPOG-F produces the smallest arrays, while IPOG-F2 produces
the largest. Here, the parameter order has a measurable impact and ordering
the parameters by descending size can improve array sizes by up to 5% in this
case. These results are visualized in Fig. 4a.



198 K. Kleine et al.

●●

●

●

●

●
●

●

●●

●

●

●

450

500

550

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g 
Ar

ra
y 

Si
ze

 (N
)

parameter.order Alternating−large Alternating−small Ascending Descending

6^6,5^5,3^4 t=3 − 

(a) 665534 (t = 3)

●

●
●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●●●
●
●●

●

●

●

●
●

●

●

300

320

340

360

380

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g 
Ar

ra
y 

Si
ze

 (N
)

tuple.order Alternating Ascending Descending

5^10,2^10 t=3 − Tuple−order

(b) 510210 (t = 3)

Fig. 4. Results for different parameter orders (left) and tuple orders (right)

Table 3. Results for MCA experiments

665534t 53= 10210t = 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 470.5 ±13.6 441.9 ±17.1 533.8 ±18.2 316.0 ±5.2 305.5 ±5.4 353.5 ±7.8

Cyclic 465.8 ±14.1 443.9 ±16.3 532.3 ±16.4 331.1 ±20.7 308.2 ±1.6 344.2 ±14.0

Cyclic-next 464.7 ±12.3 444.0 ±18.1 529.0 ±23.8 316.3 ±4.4 307.6 ±3.9 352.0 ±11.8

Deterministic 465.2 ±13.9 442.8 ±20.0 532.1 ±15.8 316.2 ±3.5 304.1 ±6.0 355.0 ±7.7

Lexicographic 471.6 ±9.8 442.3 ±17.2 525.5 ±26.1 316.9 ±4.0 306.2 ±7.0 355.0 ±8.3

Random 465.2 ±13.2 443.5 ±17.3 533.8 ±16.9 315.4 ±4.1 304.6 ±5.5 353.8 ±8.5

Value-balanced 462.9 ±14.2 443.7 ±19.3 530.8 ±16.1 314.6 ±4.3 304.8 ±5.7 352.5 ±6.6

Tuple Order

Alternating 466.2 ±14.0 442.5 ±17.9 527.6 ±18.7 316.6 ±7.9 304.7 ±5.6 349.8 ±6.6

Ascending 466.3 ±14.8 444.6 ±19.1 542.5 ±20.2 317.0 ±7.0 305.4 ±5.5 359.9 ±10.2

Descending 464.9 ±10.3 443.0 ±14.9 527.7 ±8.0 316.0 ±7.4 305.3 ±5.3 349.7 ±6.1

Parameter Order

Alternating-large 465.1 ±5.1 440.4 ±2.6 522.5 ±8.0 317.8 ±2.4 307.2 ±2.4 348.3 ±3.7

Alternating-small 467.0 ±3.4 442.9 ±3.0 534.7 ±7.9 317.7 ±2.2 308.1 ±2.2 353.2 ±5.1

Ascending 482.8 ±6.3 468.8 ±5.4 550.8 ±20.7 317.6 ±2.6 307.5 ±2.5 360.4 ±9.3

Descending 448.4 ±4.1 421.4 ±3.6 522.4 ±13.9 313.2 ±13.8 297.7 ±5.4 350.7 ±11.4

510210(t = 3) The results for this instance are described in Table 3 and a
comparison of different tuple orders is visualized in Fig. 4b. The tuple order
seems to only make a difference for IPOG-F2, where both the Alternating and
Descending order outperform the Ascending order. This is also the case in
instance 665534 (t = 3).



Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 199

5 Conclusion

In this paper we have studied the impact of tie-breaking, parameter ordering
and tuple enumeration order in the IPO family of algorithms. We have compared
their effectiveness in terms of their ability to reduce covering array sizes in a large
evaluation. In summary, IPOG-F overall manages to produce the smallest arrays
compared to IPOG and IPOG-F2. Furthermore, the choice of tie-breaker seems to
not matter a great deal when averaging over all instances, but the right choice
can have large impact on selected instances. In the case of MCA generation, we
measured the largest reduction in array size when ordering columns by decreasing
alphabet size, with up to 12% reduction in size compared to the mean.

Acknowledgments. The research presented in this paper has been funded in part by
the Austrian Research Promotion Agency (FFG) under grants 851205 (Security Proto-
coL Interaction Testing in Practice - SPLIT) and 865248 (SECuring Web technologies
with combinatorial Interaction Testing - SecWIT).

Part of this research has also been carried out in the context of the Austrian
COMET K1 program which is publicly funded by the Austrian Research Promotion
Agency (FFG) and the Vienna Business Agency (WAW).

This work was made possible by the facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET) and Compute/Calcul Canada.

References

1. Bryce, R.C., Colbourn, C.J., Cohen, M.B.: A framework of greedy methods for
constructing interaction test suites. In: Proceedings of the 27th International Con-
ference on Software Engineering, ICSE 2005, pp. 146–155. ACM (2005)

2. Cheng, C.T.: The test suite generation problem: optimal instances and their impli-
cations. Discrete Appl. Math. 155(15), 1943–1957 (2007)

3. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: Proceedings of the 25th International Conference
on Software Engineering, ICSE 2003, pp. 38–48. IEEE Computer Society (2003)

4. Duan, F., Lei, Y., Yu, L., Kacker, R.N., Kuhn, D.R.: Improving IPOG’s vertical
growth based on a graph coloring scheme. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–8 (2015)

5. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stan.
Technol. 113(5), 287 (2008)

6. Gao, S.W., Lv, J.H., Du, B.L., Colbourn, C.J., Ma, S.L.: Balancing frequencies
and fault detection in the in-parameter-order algorithm. J. Comput. Sci. Technol.
30(5), 957–968 (2015)

7. Gao, S., Lv, J., Du, B., Jiang, Y., Ma, S.: General optimization strategies for
refining the in-parameter-order algorithm. In: 2014 14th International Conference
on Quality Software (QSIC), pp. 21–26. IEEE (2014)

8. Hartman, A.: Software and hardware testing using combinatorial covering suites.
In: Golumbic, M., Hartman, I.A. (eds.) Graph Theory, Combinatorics and Algo-
rithms, Operations Research/Computer Science Interfaces Series, vol. 34, pp. 237–
266. Springer, Heidelberg (2005)



200 K. Kleine et al.

9. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete
Math. 284(1–3), 149–156 (2004)

10. Kampel, L., Simos, D.E.: Set-based algorithms for combinatorial test set genera-
tion. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp.
231–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47443-4 16

11. Kleine, K., Simos, D.E.: An efficient design and implementation of the in-
parameter-order algorithm. Math. Comput. Sci. 12(1), 51–67 (2018)

12. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis, London (2013)

13. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: a general strategy
for T-way software testing. In: 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, ECBS 2007, pp. 549–
556. IEEE (2007)

14. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: effi-
cient test generation for multi-way combinatorial testing. Softw. Test. Verification
Reliab. 18(3), 125–148 (2008)

15. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise test-
ing. In: Proceedings of Third IEEE International High-Assurance Systems Engi-
neering Symposium, pp. 254–261. IEEE (1998)

16. Younis, M.I., Zamli, K.Z.: MIPOG-an efficient t-way minimization strategy for
combinatorial testing. Int. J. Comput. Theory Eng. 3(3), 388 (2011)

17. Yu, L., Duan, F., Lei, Y., Kacker, R.N., Kuhn, D.R.: Constraint handling in combi-
natorial test generation using forbidden tuples. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–9 (2015)

18. Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R.N., Kuhn, D.R.: An efficient algo-
rithm for constraint handling in combinatorial test generation. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation, pp. 242–
251 (2013)

https://doi.org/10.1007/978-3-319-47443-4_16

	Evaluation of Tie-Breaking and Parameter Ordering for the IPO Family of Algorithms Used in Covering Array Generation
	1 Introduction
	2 Background
	3 The IPO Family of Algorithms
	3.1 Tie-Breakers
	3.2 Tuple Enumeration Order
	3.3 Parameter Ordering

	4 Evaluation
	4.1 Setup
	4.2 Results
	4.3 665534 (t=3)

	5 Conclusion
	References




