
Costas Iliopoulos
Hon Wai Leong
Wing-Kin Sung (Eds.)

 123

LN
CS

 1
09

79

29th International Workshop, IWOCA 2018
Singapore, July 16–19, 2018
Proceedings

Combinatorial
Algorithms

Lecture Notes in Computer Science 10979

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Costas Iliopoulos • Hon Wai Leong
Wing-Kin Sung (Eds.)

Combinatorial
Algorithms
29th International Workshop, IWOCA 2018
Singapore, July 16–19, 2018
Proceedings

123

Editors
Costas Iliopoulos
Department of Informatics
King’s College London
London
UK

Hon Wai Leong
Department of Computer Science,
School of Computing

National University of Singapore
Singapore
Singapore

Wing-Kin Sung
Department of Computer Science,
School of Computing

National University of Singapore
Singapore
Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94666-5 ISBN 978-3-319-94667-2 (eBook)
https://doi.org/10.1007/978-3-319-94667-2

Library of Congress Control Number: 2018939453

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This proceedings volume contains papers presented at IWOCA 2018, the 29th Inter-
national Workshop on Combinatorial Algorithms, held during July 16–19, 2018, at the
Department of Computer Science, National University of Singapore (NUS), Singapore.
The conference covered diverse areas of combinatorial algorithms, namely, complexity
theory, graph theory and combinatorics, combinatorial optimization, cryptography and
information security, algorithms on strings and graphs, graph drawing and labelling,
computational algebra and geometry, computational biology, probabilistic and ran-
domized algorithms, algorithms for big data analytics, and new paradigms of com-
putation. The conference was organized by the School of Computing, National
University of Singapore.

IWOCA is an annual conference series on all aspects of combinatorial algorithms.
The series of IWOCA conferences grew out of over 28 years of history. Initially, the
conference was a local workshop in Australia, known as AWOCA. In 2007, it became
an international conference. Previous meetings have been held in Australia, Canada,
Czech Republic, Finland, France, Indonesia, India, Italy, Japan, South Korea, UK, and
USA. IWOCA is led by a strong Steering Committee, whose members are Charles
Colbourn (Arizona State University), Costas Iliopoulos (King’s College), and Bill
Smyth (McMaster University). The Program Committees comprise computer scientists
of international repute from different parts of the globe. Notably, the Program
Committee of IWOCA 2018 comprised 46 eminent researchers from Australia,
Bangladesh, Canada, Chile, China, Czech Republic, Finland, France, Greece, Hong
Kong, Israel, Italy, Japan, Malaysia, Norway, Singapore, Slovenia, Taiwan, UK, and
USA.

The technical program was finalized by selecting the highest-quality papers from
among 69 submitted papers. After a rigorous review followed by in-depth discussion
by the Program Committee, this year we could only accept 31 high-quality papers.
Among these 31 papers, we selected “Linear Ramsey Numbers” for the best paper
award, which presented at the conference. In addition to the 31 contributed talks, the
scientific program of the workshop included invited talks by three eminent researchers,
namely, Prof. Michael Fellows (University of Bergen, Norway), Prof. Sanjay Jain
(National University of Singapore, Singapore), and Prof. Kunihiko Sadakane
(University of Tokyo, Japan). We are extremely grateful to our invited speakers for
their excellent talks at the workshop. We thank all the authors who submitted their
works for consideration to IWOCA 2018. We deeply appreciate the contribution of all
Program Committee members and external reviewers for handling the submissions in a
timely manner despite their extremely busy schedule. We would like to acknowledge
the EasyChair conference management system again for providing us with their cel-
ebrated platform for conference administration. We are grateful to Springer for

publishing the proceedings of IWOCA 2018 in the LNCS series. As always, we are
deeply indebted to the IWOCA Steering Committee for their continuous guidance,
support, and leadership. Above all, we are extremely grateful to the Organizing
Committee of IWOCA 2018 for making the event a grand success. Finally, we would
like to thanks Springer for sponsoring the conference.

July 2018 Costas Iliopoulos
Hon Wai Leong
Wing-Kin Sung

VI Preface

Organization

Steering Committee

Charles Colbourn Arizona State University, USA
Costas Iliopoulos King’s College, UK
Bill Smyth McMaster University, Canada

Program Committee

Donald Adjeroh West Viriginia University, USA
Cristina Bazgan Paris Dauphine University, France
Yeow Meng Chee Nanyang Technological University, Singapore
Kwok Pui Choi National University of Singapore, Singapore
Charles Colbourn Arizona State University, USA
Bhaskar Dasgupta University of Illinois at Chicago, USA
Vlad Estivill-Castro Griffith University, Australia
Gabriele Fici Università di Palermo, Italy
Dalibor Froncek University of Minnesota, USA
Travis Gagie Diego Portales University, Chile
Serge Gaspers UNSW Sydney and Data61, CSIRO, Australia
Pinar Heggernes University of Bergen, Norway
Wing-Kai Hon National Tsing Hua University, Taiwan
Seok-Hee Hong University of Sydney, Australia
Peter Horak University of Washington, USA
Costas Iliopoulos King’s College, UK
Jesper Jansson The Hong Kong Polytechnic University, SAR China
Ralf Klasing CNRS and University of Bordeaux, France
Jan Kratochvil Charles University, Czech Republic
Dieter Kratsch University of Lorraine, France
Thierry Lecroq University of Rouen, France
Hon Wai Leong National University of Singapore, Singapore
Zsuzsanna Liptak University of Verona, Italy
Martin Milanič University of Primorska, Slovenia
Lucia Moura University of Ottawa, Canada
Veli Mäkinen University of Helsinki, Finland
Gonzalo Navarro University of Chile, Chile
Yen Kaow Ng Tunku Abdul Rahman University, Malaysia
Hirotaka Ono Nagoya University, Japan
Patric Ostergard Aalto University, Finland
Vangelis Paschos Paris Dauphine University, France
Solon Pissis King’s College, UK
Simon Puglisi University of Helsinki, Finland

M. Sohel Rahman Bangladesh University of Engineering and Technology,
Bangladesh

Hiroshi Sakamoto Kyushu Institute of Technology, Japan
Jamie Simpson Curtin University, Australia
Michiel Smid Carleton University, Canada
Sagi Snir University of Haifa, Israel
Wing-Kin Sung National University of Singapore, Singapore
Ryuhei Uehara Japan Advanced Institute of Science and Technology, Japan
Ugo Vaccaro University of Salerno, Italy
Lusheng Wang City University of Hong Kong, SAR China
Sue Whitesides University of Victoria, Canada
Mingyu Xiao University of Science and Technology of China, China
Christos Zaroliagis University of Patras, Greece
Louxin Zhang National University of Singapore, Singapore

Additional Reviewers

Abdeddaim, Said
Arroyuelo, Diego
Arumugam, Subramanian
Aziz, Haris
Belov, Alexander
Charalampopoulos, Panagiotis
Cicalese, Ferdinando
Cichacz, Sylwia
Cordasco, Gennaro
Courcelle, Bruno
Dasler, Philip
Della Croce, Federico
Demange, Marc
Dujmovic, Vida
García Quiles, Sergio
Gawrychowski, Pawel
Giannakos, Aristotelis
Golovach, Petr
Hama, Vitor
Haslegrave, John
Holub, Stepan
Hu, Yannan
Huang, Shenwei
Huber, Katharina
Hung, Ling-Ju

Kempa, Dominik
Khramtcova, Elena
Kola, Srinivasa Rao
Kupferman, Orna
Kwon, O-Joung
Lampis, Michael
Lee, Chia-Wei
Lin, Weibo
Maenhaut, Barbara
Mampentzidis, Konstantinos
Manea, Florin
Manlove, David
Manzini, Giovanni
Martínez, Luis
McKay, Brendan
Miyazaki, Shuichi
Musco, Christopher
Najeebullah, Kamran
Ochem, Pascal
Ochoa, Carlos
Papadopoulos, Charis
Peters, Dominik
Radzik, Tomasz
Raman, Venkatesh
Rescigno, Adele

VIII Organization

Sakoda, Genki
Satti, Srinivasa Rao
Stamoulis, Georgios
Sun, Zhaohong
T. P., Sandhya

Vialette, Stéphane
Williams, Aaron
Wyels, Cynthia
Zhang, Melvin
Zhou, Yi

Organization IX

Invited Talks

Some Recent New Directions in Multivariate
Algorithmics

Michael Fellows

Department of Informatics, University of Bergen, Norway
Michael.Fellows@uib.no

Abstract. The talk will try to do three things:

(1) Give a basic introduction to the key ideas of parameterized
complexity/multivariate algorithmics, for those who may be unfa-
miliar with this area of research. The account will be somewhat
idiosyncratic, colorful and concrete, and may offer some new per-
spectives even to those who are conversant in the technical ideas of
this area.

(2) Briefly survey some of the key achievements of this area of research
so far, and the major themes, such as the equivalency between
P-time kernelization and FPT that have emerged.

(3) Exposit recent research directions in this area that have attracted
substantial new research funding in various countries of the world.

Survey of Some Recent Near Polynomial Time
Results for Parity Games

Sanjay Jain

Department of Computer Science, National University of Singapore,
13 Computing Drive, COM1, Singapore 117417, Republic of Singapore

{sanjay}@comp.nus.edu.sg

Abstract. In this talk we will describe a Quasi Polynomial time algorithm for
parity games given by Calude et al (STOC 2017). The runtime for the algorithm
is OðnlogðmÞþ 6Þ, where n is the number of nodes and m is the number of colours
(priorities). The parameterised parity game – with n nodes and m distinct colours
is proven to be in the class of fixed parameter tractable problems (FPT) when
parameterised over m. The corresponding runtime is Oðn5 þ gðmÞÞ, where gðmÞ
can be taken to be mmþ 6. We will also discuss the next developments in the field
which improved the above algorithm by making it simultaneously in near linear
space by Jurdzinski and Lazic (LICS 2017) and Fearnley et al (SPIN 2017).
Recently, Lehtinen (LICS 2018) introduced the notion of register index com-
plexity and showed that this is logarithmic in the number of nodes; furthermore,
a game with register index complexity k, the parity game can be solved in time
mOðkÞ � nOð1Þ which provides another quasipolynomial time algorithm for parity
games.

S. Jain was supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2
grant MOE2016-T2-1-019/R146-000-234-112 and NUS grant C252-000-087-001.

Range Minimum Queries and Applications

Kunihiko Sadakane

Department of Mathematical Informatics, Graduate School of Information
Science and Technology, The University of Tokyo

sada@mist.i.u-tokyo.ac.jp

Consider the following problem.

Range Minimum Query, RMQ Given an array A½1::n� and a range ½s; t� � ½1; n�, a
range minimum query asks the position of the minimum value in A½s::t�. If there exist
more than one minimum values in the query range, return the leftmost one.

We consider the indexing problem, that is, given the array A, we first construct a data
structure DA, then given a query range, we solve the problem using DA. There exists a
linear space (OðnÞ words) data structure for the RMQ problem supporting constant time
queries [3, 4]. It is however complicated and there have been no efficient implemen-
tations until recently. In 2000, a simple solution [1] was given and after that, constant
query time RMQ data structures are used in many algorithms.

In this talk, we explain an OðnÞ-word data structure for the RMQ problem. Then we
reduce the size of the data structure to just 2nþ oðnÞ bits [2]. We also explain appli-
cations of the problem such as compressed suffix trees [5].

References

1. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

2. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on
static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

3. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry
problems. In: Proceedings of ACM Symposium on Theory of Computing (STOC), pp. 135–
143, New York, USA. ACM Press (1984)

4. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

5. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst. 41(4),
589–607 (2007)

Contents

Collision-Free Routing Problem with Restricted L-Path 1
Jammigumpula Ajay and Sasanka Roy

Linear Clique-Width of Bi-complement Reducible Graphs 14
Bogdan Alecu, Vadim Lozin, and Viktor Zamaraev

Linear Ramsey Numbers . 26
Aistis Atminas, Vadim Lozin, and Viktor Zamaraev

Graphs that Are Not Pairwise Compatible: A New Proof Technique
(Extended Abstract) . 39

Pierluigi Baiocchi, Tiziana Calamoneri, Angelo Monti,
and Rossella Petreschi

Efficient Unbounded Fault-Tolerant Aggregate Signatures
Using Nested Cover-Free Families . 52

Thais Bardini Idalino and Lucia Moura

Minimum Polygons for Fixed Visibility VC-Dimension 65
Moritz Beck and Sabine Storandt

Minsum k-Sink Problem on Dynamic Flow Path Networks. 78
Robert Benkoczi, Binay Bhattacharya, Yuya Higashikawa,
Tsunehiko Kameda, and Naoki Katoh

Fully Leafed Induced Subtrees . 90
Alexandre Blondin Massé, Julien de Carufel, Alain Goupil,
Mélodie Lapointe, Émile Nadeau, and Élise Vandomme

Pattern Matching for k-Track Permutations . 102
Laurent Bulteau, Romeo Rizzi, and Stéphane Vialette

Approximation Algorithms for the p-Hub Center Routing Problem
in Parameterized Metric Graphs . 115

Li-Hsuan Chen, Sun-Yuan Hsieh, Ling-Ju Hung, and Ralf Klasing

On the Area Requirements of Straight-Line Orthogonal Drawings
of Ternary Trees . 128

Barbara Covella, Fabrizio Frati, and Maurizio Patrignani

A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded
1-Planar Graphs . 141

Christine Dahn, Nils M. Kriege, and Petra Mutzel

Covering with Clubs: Complexity and Approximability 153
Riccardo Dondi, Giancarlo Mauri, Florian Sikora, and Italo Zoppis

On the Expected Number of Distinct Gapped Palindromic Factors 165
Philippe Duchon and Cyril Nicaud

Computational Complexity of Robot Arm Simulation Problems 177
Tianfeng Feng, Takashi Horiyama, Yoshio Okamoto, Yota Otachi,
Toshiki Saitoh, Takeaki Uno, and Ryuhei Uehara

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Family
of Algorithms Used in Covering Array Generation 189

Kristoffer Kleine, Ilias Kotsireas, and Dimitris E. Simos

Efficient Enumeration of Subgraphs and Induced Subgraphs
with Bounded Girth. 201

Kazuhiro Kurita, Kunihiro Wasa, Alessio Conte, Takeaki Uno,
and Hiroki Arimura

An Optimal Algorithm for Online Prize-Collecting Node-Weighted
Steiner Forest . 214

Christine Markarian

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 224
Robin Milosz, Sylvie Hamel, and Adeline Pierrot

On the Parameterized Complexity of Colorful Components
and Related Problems . 237

Neeldhara Misra

Analysis of Information Leakage Due to Operative Errors
in Card-Based Protocols. 250

Takaaki Mizuki and Yuichi Komano

Zero-Suppression and Computation Models . 263
Hiroki Morizumi

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 273
Petra Mutzel and Lutz Oettershagen

Cryptographic Limitations on Polynomial-Time a Posteriori
Query Learning. 285

Mikito Nanashima

Placing Segments on Parallel Arcs . 298
Yen Kaow Ng, Wenlong Jia, and Shuai Cheng Li

XVIII Contents

Branch-and-Bound Algorithm for Symmetric Travelling
Salesman Problem. 311

Alexey Nikolaev and Mikhail Batsyn

LZ-ABT: A Practical Algorithm for a-Balanced Grammar Compression. 323
Tatsuya Ohno, Keisuke Goto, Yoshimasa Takabatake, Tomohiro I,
and Hiroshi Sakamoto

Faster Coreset Construction for Projective Clustering
via Low-Rank Approximation. 336

Rameshwar Pratap and Sandeep Sen

Separating Interaction Effects Using Locating and Detecting Arrays 349
Stephen A. Seidel, Kaushik Sarkar, Charles J. Colbourn,
and Violet R. Syrotiuk

An Efficient Representation of Partitions of Integers 361
Kentaro Sumigawa and Kunihiko Sadakane

How Far From a Worst Solution a Random Solution
of a k CSP Instance Can Be? . 374

Jean-François Culus and Sophie Toulouse

Author Index . 387

Contents XIX

Collision-Free Routing Problem
with Restricted L-Path

Jammigumpula Ajay(B) and Sasanka Roy

Indian Statistical Institute, Kolkata 700108, India
ak.jammi@gmail.com, sasanka.ro@gmail.com

Abstract. We consider a variant of collision-free routing problem CRP .
In this problem, we are given set C of n vehicles which are moving in a
plane along a predefined directed rectilinear path. Our objective (CRP)
is to find the maximum number of vehicles that can move without col-
lision. CRP is shown to be NP-Hard by Ajaykumar et al. [1]. It was
also shown that the approximation of this problem is as hard as Maxi-
mum Independent Set problem (MIS) even if the paths between a pair
of vehicles intersects at most once. So we study the constrained version
CCRP of CRP in which each vehicle ci is allowed to move in a directed
L-Shaped Path.

We prove CCRP is NP-Hard by a reduction from MIS in L-graphs,
which was proved to be NP-Hard even for unit L-graph by Lahiri et al.
[2]. Simultaneously, we show that any CCRP can be partitioned into col-
lection L of L-graphs such that CCRP reduces to a problem of finding
MIS in L-graph for each partition in L. Thus we show that any algo-
rithm, that can produce a β-approximation for L-graph, would produce a
β-approximation for CCRP . We show that unit L-graphs intersected by
an axis-parallel line is Co-comparable. For this problem, we propose an
algorithm for finding MIS that runs in O(n2) time and uses O(n) space.
As a corollary, we get a 2-approximation algorithm for finding MIS of
unit L-graph that runs in O(n2) time and uses O(n) space.

Keywords: Maximum Independent Set · L-Graphs
Approximation algorithm · Collision-free · Co-comparable graph

1 Introduction

The problem is motivated by the recent development of automated driver-
less vehicles, which are capable of various decision activities such as motion-
controlling, path planning. If we consider a simple road network like Manhattan
and restrict it to be one way for the simplicity of driver-less vehicles routes,
many interesting problems can be seen in this network.

The paper on Problems on One Way Road Networks [1], gives an idea of
One Way Road Network (OWRN) and Traffic Configuration (TC), where each
vehicle moves in a predetermined path in an OWRN and the aim is to find the
maximum number of vehicles that can be allowed to move without having any
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-319-94667-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_1&domain=pdf

2 J. Ajay and S. Roy

collision for a given TC. They proved that this problem is NP-hard by reducing
it to MIS, and also showed that the approximation for this problem is as hard
as approximating MIS. It is known that, for every fixed ε > 0, MIS cannot be
approximated within a multiplicative factor of n1−ε for a general graph, unless
NP = ZPP [4].

We can generalize TC to CRP , where each vehicle is allowed to move in a
rectilinear path, replacing the vertices of the OWRN by their coordinate points
and the path same as in TC. Similar kind of road network has also been studied
by Dasler and Mount [3].

It is easy to see if we constrain the vehicles to move in directed straight lines
parallel to the axis, then the corresponding graph to CRP will be a Bipartite
Graph. MIS of a Bipartite Graph can be computed using Kőnig’s Theorem [7]
and Network-Flow Algorithm [8] in polynomial-time.

Our Contribution:
We considered a special case of CRP , called constrained collision-free routing
problem CCRP , where each vehicle is restricted to move in an L-shaped path.
We prove CCRP is NP-hard by reduction from MIS in L-graphs.

Simultaneously, we show that any CCRP can be partitioned into a collec-
tion L of L-graphs such that CCRP reduces to a problem of finding MIS for
each partition in L. Thus we show that any algorithm, that can produce a β-
approximation for L-graph, would produce a β-approximation for CCRP . Since
the best-known algorithm for L-graph by Lahiri, Mukherjee, and Subramanian
[2] has O(log2 n)-approximation, CCRP has O(log2 n)-approximation.

Further, we extended our work to study the properties of unit L-graph1,
denoted as GLU , where all the objects are of unit size. We prove that unit
L-graph, denoted as GLU (�), where all L’s are intersected by a single axis parallel
line � is a Co-comparable graph. This characterization gives us an algorithm for
finding MIS in O(n2) time using O(n2) space using results by Rose, Tarjan and
Lueker [9]. We propose a dynamic programming based algorithm for finding MIS
of GLU (�) that runs in O(n2) time and uses O(n) space. Also as a corollary, we
get a 2-approximation for finding MIS of GLU . The following are few definitions
and notations we will use throughout this work.

Definition 1. An L-shaped path Pi = (pi, qi, ri) is defined by three co-ordinate
points, where the path segment piqi of Pi forms a vertical segment (directed
downwards) and path segment qiri of Pi forms a horizontal segment (directed
rightwards).

Definition 2. A vehicle ci is defined as a 3-tuple (ti, si, Pi), where ti is the start
time, si is a constant speed with which it will travel till it reaches the destination,
Pi is the L-shaped path (with source pi and destination ri).

Definition 3. If two L-shaped paths have a common point, then they are said
to be intersecting with each other. This common point is called the intersection
point of the two vehicles moving in these L-shaped paths.
1 If both the horizontal and vertical segments of an L are of unit length then we call

it a unit L.

Collision-Free Routing Problem with Restricted L-Path 3

Definition 4. If two vehicles reach an intersection point orthogonally at the
same time, then we call it a collision.

2 Hardness of CCRP

In this section we prove the hardness of CCRP . Throughout this paper, we
assume that each vehicle is moving with a unit velocity, and the paths intersect
at a single point.

Definition 5. We define x(p), y(p) as the X-coordinate and Y-coordinate of the
point p.

Observation 1 If two paths Pi and Pj intersect with each other such that
x(qi) < x(qj), then y(qi) > y(qj).

Lemma 1. If two vehicles collide with each other, then a third vehicle whose
path intersects with both paths would either (i) collide with both the vehicles or
(ii) does not collide with both the vehicles.

Proof. Consider three vehicles c1, c2 and c3 with paths P1, P2 and P3, respec-
tively. Without loss of generality, we can assume x(q1) < x(q2) < x(q3). Thus
from Observation 1 we can claim y(q1) > y(q2) > y(q3). Let P1, P2 intersect at
point γ, P3 intersects with both P1 and P2 at points α, β respectively. Let the
distance from γ to α be a units, and the distance from α to β be b units, refer
to Fig. 1.

Let c1 reaches point γ at time t1γ , then the time at which it reaches point α
is t1α = t1γ + a. Let c2 reaches point γ at time t2γ , then the time at which it will
reach point β is t2β = t2γ + a+ b. Let c3 reaches point α at time t3α, then the time
at which c3 reaches point β is t3β = t3α + b.

Clearly (t1α − t1γ) − (t2β − t2γ) + (t3β − t3α) = 0, rearranging the terms we get,
(t1α − t3α) + (t2γ − t1γ) + (t3β − t2β) = 0. If two vehicles collide then one of the three
parts in the above equation will become zero. Thus, if one of the remaining two
parts becomes zero so does the other, this concludes the proof.

Fig. 1. Illustration of Lemma 1

4 J. Ajay and S. Roy

Definition 6. We define an L-path graph Gt
L as a collision graph of vehicles

moving in an L-shaped path, where each vehicle represents a vertex in Gt
L, and

there is an edge between two vertices in Gt
L if the respective vehicles collide.

So our CCRP problem reduces to the problem of finding MIS of Gt
L. We may

use MIS of Gt
L and CCRP interchangeably. We denote |S| as the cardinality of

the set S. We also denote |a − b| as the distance between two points a and b on
a real line.

Definition 7. Any induced sub-graph Ht of Gt
L is called a connected component

in L-path graph, if for every vertex pair u, v in Ht there exists a path from u to
v in Ht.

Theorem 1. If the path of a vehicle ci intersect with paths of two or more vehi-
cles in a connected component and it collides with one of them, then it collides
with all the vehicles whose path it intersects.

Proof. We prove this theorem using strong induction. As the base case, if the
connected component has two vehicles and the path of a third vehicle intersects
the path of both vehicles, and it collides with one of them, then from Lemma 1
the statement holds for the base case of three vehicles.

We assume that any connected component of size less than k follows this
property, and we prove the claim holds for any connected component of size k.

Given any connected component Ht of size k, select any vehicle c3, if its
path intersects with only one vehicle (which is a collision since c3 belongs to
the connected component), then the claim is true. If the path of c3 intersects
with the path of more than one vehicle, then it must collide with at least one
of the vehicles since it belongs to the connected component. So we choose one
intersection and one collision to prove that the intersection will be a collision,
thus inductively prove that all intersections will be collisions.

Let c1 and c2 be vehicles such that either c1 or c2 has a collision with c3,
while the other has an intersection with the path of c3. Without loss of generality
we can assume y(q1) > y(q2).

Delete c3 from Ht and find the path in Ht with minimum number of nodes
from corresponding vertex of c1 to respective vertex of c2. Consider all the corre-
sponding vehicles of the vertices in this path and remove the rest of the vehicles.
If c1 and c2 intersect with each other then by our inductive assumption c1 and
c2 belong to a connected component of size less than k. Thus c1 and c2 collide
with each other. By Lemma 1 c3 collides with both c1 and c2.

Thus we only need to show for the case where P1 and P2 doesn’t intersect
with each other. Since it is the shortest path in Ht no vehicle’s path will intersect
more than two vehicles. P1 and P2 intersect with only one path each. Note all
these vehicles together form a single connected component. If we insert c3 it will
still collide with c1 (or c2) while its path intersect with the path of c2 (or c1).

Here we have following two cases, where in each case we replace c1 with
another vehicle c′

1 and c2 with another vehicle c′
2. Such that (i) P ′

1 and P ′
2 will

Collision-Free Routing Problem with Restricted L-Path 5

intersect and (ii) the set of vehicles in the plane after replacing c1 and c2 will
still be a connected component.

Case 1. x(q1) < x(q2). Since we assumed y(q1) > y(q2) and P1 and P2 doesn’t
intersect, we can have following three configurations as shown in Fig. 2.

For configuration in Fig. 2(a) If we extend q1r1 in rightward direction and
p2q2 in upward direction they intersect as shown in Fig. 2(d) where c′

1 and c′
2

represent this modification.
For configuration in Fig. 2(b) If we extend p2q2 in upward direction they

intersect as shown in Fig. 2(e) where c′
1 and c′

2 represent this modification.
For configuration in Fig. 2(c) If we extend q1r1 in rightward direction they

intersect as shown in Fig. 2(f) where c′
1 and c′

2 represent this modification.
We replace c1 with c′

1 and c2 with c′
2, such that t′1 = t1, p′

1 = p1, q′
1 = q1,

y(r′
1) = y(r1), x(r′

1) = max(x(r1), x(q2)+ε), and r′
2 = r2, q′

2 = q2, x(p′
2) = x(p2),

y(p′
2) = max(y(p2), y(q1) + ε), t′2 = t2 − (y(p′

2) − y(p2)), for some ε > 0.

c1

c2

c1

c2

c1

c2

c′1

c′2

c′1

c′2

c′1

c′2

(a) (b) (c)

(d) (e) (f)

p1

q1 r1

p1

q1 r1

p1

q1 r1
p2

r2q2

p2

r2q2

p2

r2q2

p′
1

q′
1

r′
1

p′
1

q′
1

r′
1

p′
1

q′
1

r′
1

p′
2

q′
2

r′
2

p′
2

q′
2

r′
2

p′
2

q′
2 r′

2

Fig. 2. Illustration of Case 1

The above modification doesn’t change the time at which c′
1 (or c′

2) reaches
the collision point of c1 (or c2). Hence, after the replacement, c′

1 and c′
2 belongs

to the same connected component. In our construction we also made sure that
P ′
1 and P ′

2 intersect. Now we have a connected component of size less than k.
Hence c′

1 and c′
2 must also collide.

Now consider c3, if it collides with c1 (or c2) then it must also collide with c′
1

(or c′
2) according to our construction. From Lemma 1 it is evident that it collides

with both c′
1 and c′

2. Hence the intersection must also be a collision.

Case 2. x(q1) > x(q2). In the previous case we only extended one of the line
segments for c1 and c2 to get c′

1 and c′
2 respectively, but in this case we are

moving the segment i.e. both points p1, q1 are moved by some distance leftwards
or both q1, r1 are moved by some distance downwards. In order to keep the

6 J. Ajay and S. Roy

connectivity we check the immediate neighbour c4 of c1 and the segment say
p1q1 (or q1r1) of P1 with which the path P4 intersects. Then modify the other
segment q1r1 (or p1q1) of P1 to get c′

1. c′
2 can be generated just by extending one

of the segments. The vehicle c4 that collides with c1 could have y(q4) > y(q1) or
y(q4) < y(q1).

1. If y(q4) < y(q1) (i.e., P4 intersects segment q1r1 of P1) then we can have
following three configurations as shown in Fig. 3(a),(b),(c).
For configuration in Fig. 3(a) If we shift p1, q1 to the left direction and extend
p2q2 in upward direction and P3 intersects segments q1r1 and q2r2 then they
intersect as shown in Fig. 2(d) where c′

1 and c′
2 represent this modification.

For configuration in Fig. 3(b) If we shift p1, q1 to the left direction and P3

intersects segments q1r1 and q2r2 then they intersect as shown in Fig. 2(e)
where c′

1 and c′
2 represent this modification.

For configuration in Fig. 3(c) If we shift p1, q1 to the left direction and P3

intersects segments p1q1 and p2q2 then they intersect as shown in Fig. 2(f)
where c′

1 and c′
2 represent this modification.

We replace c1 with c′
1, c2 with c′

2 such that, y(p′
1) = y(p1), x(p′

1) = x(p2) − ε,
y(q′

1) = y(q1), x(q′
1) = x(p′

1), t′1 = t1 − (x(q′
1) − x(q1)), r′

1 = r1 and y(p′
2) =

max(y(p2), y(p1) + ε), r′
2 = r2, q′

2 = q2, t′2 = t2 − (y(p′
2) − y(p2)), for some

ε > 0.
By our construction P ′

1 and P ′
2 intersect with each other, c′

1 collides with c4,
and c′

2 reaches the collision points at the same time as c2. Hence even after
replacing c1 by c′

1 and c2 with c′
2, the whole component remains connected

with size less than k. By inductive hypothesis c′
1 collides with c′

2.
Now we have the following three scenarios, (a), (b), (c) as shown in Fig. 3 for
scenario (a) and (b), from Lemma 1, it is evident that c3 collides with both
c′
1 and c′

2 as shown in figure (d) and (e). Hence it collides with both c1 and
c2 as well.
In Fig. 3(c) if c3 collides with c1, then it must also collide with c′

1 which can
be proved in a way similar to Lemma 1 by considering c1, c′

1 and c3. Since c′
1

and c′
2 collide with each other c3 must also collide with c′

2. Hence c3 collides
with both c1 and c2. Else, if c3 collides with c2 then it trivially collides with
c′
2. Hence c3 collides with c′

1. Thus c3 collides c1 which can be proved in a
way similar to Lemma 1 by considering c1, c′

1 and c3.
2. If y(q4) > y(q1) (i.e., P4 intersects segment p1q1 of P1) then similar argu-

ments can be made but instead of shifting the vertical segment p1r1 by some
distance, we shift the horizontal segment q1r1. This makes sure that replacing
c1 and c2 with c′

1 and c′
2 respectively doesn’t disturb the connectedness. We

can have the following three configurations as shown in Fig. 4.
For configuration in Fig. 4(a) If we shift q1, r1 to downward direction and P3

intersects segments p1q1 and p2q2 then they intersect as shown in Fig. 2(d)
where c′

1 and c′
2 represent this modification.

Collision-Free Routing Problem with Restricted L-Path 7

c1

c2
c3

c1

c2 c3

c3 c1

c2

c3 c′
2

c3

c3 c1

c′
2

c′
1

c′
2

c′
1

c′
1

(a) (b) (c)

(d) (e) (f)

p1

q1 r1

p1

q1
r1

p1

q1
r1p2

r2q2

p2

r2q2

p2

r2q2

p′
1

q′
1

r′
1

p′
1

q′
1

r′
1

p′
1

q′
1

r′
1

p′
2

q′
2

r′
2

p′
2

q′
2

r′
2

p′
2

q′
2

r′
2

Fig. 3. Illustration of Case 2.1

For configuration in Fig. 4(b) If we shift q1, r1 to downward direction and
extend q2r2 in rightward direction and P3 intersects segments p1q1 and p2q2
then they intersect as shown in Fig. 2(e) where c′

1 and c′
2 represent this

modification.
For configuration in Fig. 4(c) If we shift q1, r1 to downward direction and P3

intersects segments q1r1 and q2r2 then they intersect as shown in Fig. 2(f)
where c′

1 and c′
2 represent this modification.

Replace c1 with c′
1, c2 with c′

2 such that p′
1 = p1, x(q′

1) = x(q1), y(q′
1) =

y(q2) − ε, x(r′
1) = x(r1), y(r′

1) = y(q′
1), t′1 = t1 and p′

2 = p2, q′
2 = q2,

x(r′
2) = max(x(r2), x(q1) + ε), y(r′

2) = y(r2), t′2 = t2, for some ε > 0. The
proof can be argued in a similar manner to the above sub-case.

c3

c1

c2

c3

c2

c1

c2

c1

c3

c3

c′
2

c′
1

c′
2

c′
1

c3

c3
c′
1

c′
2

(a) (b) (c)

(d) (e) (f)

p1

q1 r1

p1

q1 r1

p1

q1 r1
p2

r2q2

p2

r2q2

p2

r2q2

p′
1

q′
1 r′

1

p′
1

q′
1

r′
1

p′
1

q′
1

r′
1

p′
2

q′
2

r′
2

p′
2

q′
2

r′
2

p′
2

q′
2

r′
2

r1q1

Fig. 4. Illustration of Case 2.2

8 J. Ajay and S. Roy

Definition 8. We define an L-graph GL as an intersection graph of L-shaped
paths, where each L-shaped path represents a vertex in GL, and there is an edge
between two vertices in GL if the respective L-shaped paths intersect.

Now we propose an algorithm to reduce any given instance of GL to an
instance of Gt

L, as follows: For every object � ∈ GL there exists a vehicle c ∈ Gt
L,

such that if and only if li, lj ∈ GL has an edge then their corresponding vehicles
ci and cj collides in Gt

L.

Algorithm 1. Assignment of Time in GL to obtain Gt
L

1: procedure assignTime(C, S, i)
2: insert i into S
3: for ∀j ∈ C do
4: if i = 0 and j /∈ S then
5: set tj = 0
6: else
7: if j /∈ S and intersects with i then
8: setTime(C, i, j)
9: assignTime(C, S, j)

10: end if
11: end if
12: end for
13: end procedure

Theorem 2. Given an L-graph, there exists a Gt
L Computable in polynomial

time, such that the cardinality of MIS of GL is k if and only if the cardinality of
MIS of Gt

L is k.

Proof. For each object li in L-graph, assign a vehicle ci with path as li and a
unit velocity. Insert all vehicles into set C. Let S be an empty set. Now call the
procedure assignTime(C,S, 0). This will give a time assignment to each and
every vehicle. The procedure setTime(C, i, j) assigns time tj such that cj will
collide with ci (i.e. if li, lj intersect at point g then tj = ti + |x(pi) − x(g)| +
|y(pi) − y(g)| − |x(pj) − x(g)| − |y(pj) − y(g)|).

In the above assignment for each connected component, the time of one of
the vehicle is set to zero and every other vehicle is set to collide with at least
one of the vehicles in the connected component. Hence from Theorem 1 we have,
every intersection in GL as a collision in Gt

L.
This assignment might assign negative time to some vehicles. To ensure that

the start time to be non-negative for each vehicle, find the minimum time assign-
ment out of all vehicles and subtract that value from the time of each vehicle.

Collision-Free Routing Problem with Restricted L-Path 9

Algorithm 2. Procedure to partition Gt
L

1: procedure seperateSet(i)
2: U = UniversalSet, S = φ
3: insert i into S
4: for ∀j ∈ U do
5: if j /∈ S and collides with i then
6: insert j into S
7: insert seperateSet(j) into S
8: end if
9: end for

10: returnS
11: end procedure

3 Approximation for MIS of Gt
L

We propose an algorithm to partition the Gt
L to collections of GL’s.

Lemma 2. Any set S generated by the procedure seperateSet is independent
of the set U \ S, i.e. MIS(U) = MIS(S) + MIS(U \ S).

Lemma 3. Any set S generated by above algorithm is an L-Graph (GL).

Theorem 3. For any L-path graph, there exists an approximation factor equiv-
alent to L-graph. i.e. there exists a O(log2 n) approximation algorithm.

Proof. From Lemma 2 and Lemma 3, it is evident that given any L-path graph,
we can separate the L-path graph into subsets S1, S2, . . . , and all of them are pair
wise independent (i.e. no collision between objects from two different sets) and
from Theorem 1 each set Si can be treated as an L-graph i.e., each intersection
of objects belonging to same set Si is nothing but a collision in Si.

Now apply the known approximation algorithm of L-graphs [2] for each Si,
and return the union. Let Opt(Si) denote the optimal solution for Si and Sol(Si)
denote the solution generated by the algorithm [2]. Since we know Opt(Si) ≤
(k log2 n)Sol(Si), summing over all the sets on both sides will result in the desired
inequality,

∑
i=1 Opt(Si) ≤ ∑

i=1(k log2 n)Sol(Si). This concludes the proof.

4 Unit L Graph Approximation

Definition 9. A unit L-graph GLU is a special graph of GL where each L-shaped
path is of the unit size, i.e., both the horizontal and vertical segments are of unit
length each.

In this section, we design a 2-approximation algorithm for the maximum
independent set in a unit L-graph problem. Let S = {P1, P2, . . . , Pn} be a set of
n unit L-shaped paths in a plane. We first place vertical lines from leftmost to

10 J. Ajay and S. Roy

rightmost with a unit distance between each consecutive pair of lines. Assume
that there are k such vertical lines {L1, L2, . . . , Lk}. Let Si ⊆ S be the set of
L-shaped paths intersected by the line Li. The idea is to find MIS for each Si

and then combine them to produce an approximate solution. This method is
well known for finding an approximate solution for MIS of fixed height rectangle
by Agarwal et al. [5] and for the unit disk by Nandy et al. [6]. But our problem
is different in a sense that the intersection graph I(Si) of a Si may not be a
triangulated graph. We can construct an I(Si) that contains a four-cycle as
shown in Fig. 5. So we show that I(Si) is a co-comparable graph. Then we give a
dynamic programming based algorithm that solves MIS of I(Si) in O(n2) time
using O(n) space.

LiP1

P4

P2

P3

Fig. 5. GLU with four cycle

Observation 2 Any two L-shaped paths, Pa ∈ Si and Pb ∈ Si are independent
if |y(qa) − y(qb)| > 1, for 1 ≤ i ≤ k.

Observation 3 Any two L-shaped paths, Pa ∈ Si and Pb ∈ Si with y(qa) <
y(qb) are independent if x(qa) < x(qb).

Observation 4 Any two L-shaped paths, Pa ∈ Si and Pb ∈ Sj are independent
if |i − j| > 1, for 1 ≤ i, j ≤ k.

Lemma 4. If P1, P2, P3 are three unit L-shaped paths that intersect a vertical
line Li such that (i) y(q1) > y(q2) > y(q3), (ii) P1, P2 doesn’t intersect and (iii)
P2, P3 doesn’t intersect, then P1, P3 doesn’t intersect.

Definition 10. We denote G̃ = (V, Ẽ) as the complimentary graph of G =
(V,E), such that (u, v) ∈ Ẽ if and only if (u, v) /∈ E, for all u, v ∈ V .

Lemma 5. The graph G̃LU of the unit L-shaped path intersecting a vertical line
Li is a Comparable graph.

Proof. We show that G̃LU is orientable, such that if there is a directed edge from
vertex a to vertex b and there is a directed edge from vertex b to vertex c, then
there is a directed edge from vertex a to vertex c, for all vertices a �= b �= c in
the G̃LU .

The ordering of vertices is as follows: A vertex a precedes a vertex b if the
Y -coordinates of the respective L-shaped paths Pa and Pb follow the inequality

Collision-Free Routing Problem with Restricted L-Path 11

y(qa) > y(qb). Now if there is an edge between any two vertices a and b in the
graph G̃LU and a precedes b then direct the edge from a to b.

In the above mentioned ordering, we can conclude that G̃LU is a comparable
graph because if and only if there is an edge between a, b, and b,c in G̃LU then a,b
and b,c are independent in GLU . Since they are in increasing order, by Lemma 4
a, c is also independent in GLU . Thus there is an edge between a and c in G̃LU .
This proves the lemma.

Corollary 1. The graph GLU (Li) formed by unit L-shaped paths which are
intersecting with a vertical line Li is a Co-comparable graph i.e. the graph
GLU (Li) formed by Si is Co-comparable.

Given any Si, we sort the elements based on their Y-coordinates. i.e., a path
Pa will have an index less than Pb if y(qa) < y(qb). For the sake of simplicity we
refer to the path at index k as Pk.

For any index k, let R(k) be the maximum possible independent set till k
that includes the path Pk and let Jk = {Pj1 , Pj2 , . . . , Pjl} be the set of all paths
that doesn’t intersect with Pk and have index less than k.

Observation 5 R(k) =

{
1 if Jk = φ

1 + max(R(j1), R(j2), . . . , R(jl)) otherwise

Algorithm 3. Computing R(k) for each index in Si

1: procedure lineIntersectMIS(Si)
2: R, B are arrays of size |Si|
3: for k = 1 to |Si| do
4: Set R(k) = 0, B(k) = −1
5: end for
6: R(1) = 1
7: for k = 2 to |Si| do
8: for j = 1 to k − 1 do
9: if Pk and Pj doesn’t intersect then

10: if R(j) > R(k) then
11: R(k) = R(j)
12: B(k) = j
13: end if
14: end if
15: end for
16: R(k) = R(k) + 1
17: end for
18: return R, B
19: end procedure

12 J. Ajay and S. Roy

Lemma 6. The recurrence to compute the maximum independent set in Si till
index k is MIS(k) = max(MIS(k − 1), R(k)).

If we compute R(k) for all index k, then in a single run i.e. O(|Si|) we can
compute the maximum independent set for Si.

Note that, the procedure lineIntersectMIS(Si) can be modified to solves
MIS for Si optimally. Run lineIntersectMIS on each Si, for 1 ≤ i ≤ k and
let Ei be the maximum independent in Si. We define two sets EvenOPT =⋃

1≤i≤k
i is even

Ei and OddOPT =
⋃

1≤i≤k
i is odd

Ei. We report the set with the maximum

cardinality among EvenOPT and OddOPT as the result of our algorithm. Thus
we have the following theorem.

Theorem 4. Our algorithm produces a 2-approximation for MIS in GLU , with
a time complexity of O(n2) and a space complexity of O(n).

5 Conclusion

We obtained hardness results and approximation algorithm for CCRP . We
showed that GLU (�) is a Co-comparable graph. We proposed a dynamic pro-
gramming based algorithm for finding MIS of GLU (�) in O(n2) time using linear
space. Which produces 2-approximation for finding MIS of GLU with O(n2) time
and O(n) space complexity. Finally we pose the following open problems:

1. Can a 2-approximation for MIS of GLU be obtained in sub-quadratic time?
2. Does there exist a polynomial time sub-linear approximation algorithm for

CRP when the vehicles are moving only along XY-monotone paths?

Acknowledgments. The authors are thankful to Joydeep Mukherjee for many useful
discussions.

References

1. Ajaykumar, J., Das, A., Saikia, N., Karmakar, A.: Problems on one way road net-
works. In: CCCG 2016, pp. 303–308 (2016)

2. Lahiri, A., Mukherjee, J., Subramanian, C.R.: Maximum independent set on B1-
VPG graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015.
LNCS, vol. 9486, pp. 633–646. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-26626-8 46

3. Dasler, P., Mount, D.M.: On the complexity of an unregulated traffic crossing. In:
Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 224–235.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3 19

4. Johan, H.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),
105–142 (1999)

5. Agarwal, P.K., van Kerveld, M., Suri, S.: Label placement by maximum independent
set in rectangles. Comput. Geom. 11(3), 209–218 (1998)

https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/978-3-319-21840-3_19

Collision-Free Routing Problem with Restricted L-Path 13

6. Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent
set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)

7. Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)
8. Malhotra, V.M., Pramodh Kumar, M., Maheshwari, S.N.: An O(|V |3) algorithm for

finding maximum flows in networks. Inf. Process. Lett. 7(6), 277–278 (1978)
9. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on

graphs. SIAM J. Comput. 5(2), 266–283 (1976)

Linear Clique-Width of Bi-complement
Reducible Graphs

Bogdan Alecu1, Vadim Lozin1(B), and Viktor Zamaraev2

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
{B.Alecu,V.Lozin}@warwick.ac.uk

2 Department of Computer Science, Durham University,
South Road, Durham DH1 3LE, UK

viktor.zamaraev@gmail.com

Abstract. We prove that in the class of bi-complement reducible
graphs linear clique-width is unbounded and show that this class con-
tains exactly two minimal hereditary subclasses of unbounded linear
clique-width.

1 Introduction

Clique-width is a graph parameter which is of primary importance in algorithmic
graph theory, because many problems in this area that are generally NP-hard
can be solved efficiently when restricted to graphs of bounded clique-width. This
parameter generalizes tree-width in the sense that bounded tree-width implies
bounded clique-width but not necessarily vice versa.

Recently, many classes of graphs have been shown to be of bounded clique-
width, and for many others, the clique-width was shown to be unbounded, see
e.g. [2,5,13,14]. Most of these studies concern hereditary classes, i.e. classes
closed under taking induced subgraphs. This restriction is justified by the fact
that the clique-width of a graph G can never be smaller than the clique-width
of an induced subgraph of G. An important feature of hereditary classes is that
they admit a description in terms of minimal forbidden induced subgraphs, i.e.
minimal graphs that do not belong to the class.

In a similar way, in the study of clique-width of particular importance are
minimal classes of graphs of unbounded clique-width. The first two hereditary
classes of this type have been identified in [12] and only recently it was shown
in [4] that the number of such classes is infinite. What is interesting is that all
the classes found in [4] are also minimal hereditary classes of unbounded linear
clique-width.

Linear clique-width is a restricted version of clique-width and the relation-
ship between these two parameters is similar to the relationship between tree-
width and path-width. The notion of linear clique-width became an important
ingredient in the proof of hardness of computing clique-width [6] and received
considerable attention in recent years in the literature [1,3,9–11]. Nevertheless,
our knowledge of this parameter is still restricted. In particular, we know very
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 14–25, 2018.
https://doi.org/10.1007/978-3-319-94667-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_2&domain=pdf

Linear Clique-Width of Bi-complement Reducible Graphs 15

little about the behaviour of this parameter on graphs of bounded clique-width.
In this respect, the recent paper [3] is of particular interest. It deals with the class
of complement reducible graphs, also known as cographs, where the clique-width
is known to be bounded, while the linear clique-width is not [9]. The authors of
[3] show that there exist precisely two minimal hereditary subclasses of cographs
of unbounded linear clique-width. These two subclasses are complement to each
other and are known in the literature under various names, such as trivially
perfect [8] or quasi-threshold graphs [15].

In the present paper, we study a bipartite analog of cographs, known as bi-
complement reducible graphs [7] (bi-cographs for short), where the clique-width
also is known to be bounded. We prove that the linear clique-width is unbounded
in the class of bi-cographs and, similarly to [3], show that there exist precisely two
minimal hereditary subclasses of bi-cographs of unbounded linear clique-width.
However, our solution differs from that in [3] in two important aspects.

Firstly, the two classes we discover in this paper had never been studied
before and are of independent interest. We characterize them in terms of minimal
forbidden induced subgraphs.

Secondly, and most importantly, we develop an entirely new approach to
prove our results. In particular, to prove unboundedness of clique-width we intro-
duce an auxiliary graph parameter which bounds the linear clique-width from
below and provides a more flexible tool to prove results of this type. To show
minimality of our classes we develop a straightforward approach, which avoids
the notion of well-quasi-ordering used by the authors of [3]. Their approach
is applicable only to classes well-quasi-ordered by induced subgraphs, which is
not the case, for instance, for trees, where clique-width is bounded and linear
clique-width is not, similarly to cographs and bi-cographs.

The organization of the paper is as follows. All preliminary information
related to the topic of the paper can be found in Sect. 2. Then in Sect. 3 we intro-
duce two subclasses of bi-cographs and characterize them in terms of minimal
forbidden induced subgraphs. Section 4 is devoted to the proof of unboundedness
of linear clique-width in both subclasses and Sect. 5 is devoted to the proof of
their minimality. Section 6 concludes the paper with a number of open problems.

2 Preliminaries

This section introduces basic terminology and notation used in the paper.

2.1 Graphs

Throughout the paper, we will be working with undirected graphs, with no loops
or multiple edges. The vertex set and the edge set of a graph G are denoted by
V (G) and E(G), respectively. For a vertex x ∈ V (G) we denote by N(x) the
neighbourhood of x, i.e. the set of vertices of G adjacent to x. A subgraph of G
induced by a subset of vertices U ⊆ V (G) is denoted G[U]. We use the following
notation for specific graphs:

16 B. Alecu et al.

– Pn is the chordless path on n vertices.
– Cn is the chordless cycle on n vertices.
– The domino is the graph obtained from a C6 by adding an edge between one

pair of antipodal vertices.
– Sunn is the graph obtained from a Cn by adding a pendant vertex to each

vertex of the cycle.
– Starijk is the tree with exactly 3 leaves at distances i, j and k from the only

vertex of degree 3.

We will be studying bipartite graphs in particular. We will distinguish
between coloured and uncoloured classes of bipartite graphs. In a coloured class,
all bipartite graphs come with a bipartition of their vertex set into two indepen-
dent sets B and W that we will refer to as black and white vertices, respectively.

For a coloured bipartite graph G = (B,W,E), we define the bipartite com-
plement of G to be the coloured bipartite graph ˜G = (B,W,E′), where for any
two vertices x ∈ B and y ∈ W we have xy ∈ E if and only if xy �∈ E′. Also,
given two coloured bipartite graphs G1 = (B1,W1, E1) and G2 = (B2,W2, E2),
we denote by

– G1 ∪ G2 the disjoint union of G1 and G2, i.e. G1 ∪ G2 = (B1 ∪ B2,W1 ∪
W2, E1 ∪ E2).

– G1 × G2 the bipartite join of G1 and G2, i.e. the bipartite complement of
˜G1 ∪ ˜G2. With a slight abuse of notation, when G1 has only one vertex v, we
will write v × G2 instead of G1 × G2.

To each coloured class corresponds an uncoloured class that we obtain by simply
forgetting the colouring of all the graphs.

2.2 Linear Clique-Width

The linear clique-width of a graph G, denoted lcw(G), is the smallest number of
labels needed to construct G by means of the following three operations:

– add a new vertex with label l.
– add all edges between vertices labeled l and all vertices labeled k, for l �= k.
– relabel vertices labeled l to k.

A linear clique-width expression A for a graph G is an ordered sequence of
these three operations that constructs G.

2.3 Classes of Graphs

The main object in this paper is the class of bi-complement reducible graphs
that have been introduced in [7] and can be defined as follows.

Definition 1. A bi-complement reducible graph (or bi-cograph for short) is a
bipartite graph defined recursively as follows:

Linear Clique-Width of Bi-complement Reducible Graphs 17

(i) A graph on a single black or white vertex is a bi-cograph.
(ii) If G1, G2 are bi-cographs, then so is their disjoint union G1 ∪ G2.
(iii) If G is a bi-cograph, then so is its bipartite complement ˜G.

It is not difficult to see that (iii) in the above definition could be replaced
by:

(iii’) If G1, G2 are bi-cographs, then so is their bipartite join G1 × G2.

In [7], an induced subgraph characterisation for bi-cographs is also shown:

Proposition 1. A bipartite graph is a bi-cograph if and only if it is (P7, Star123,
Sun4)-free (Fig. 1).

Fig. 1. Graphs Star123 (left) and Sun4 (right)

In the present paper, we focus on two particular subclasses of bi-cographs.
We introduce one of them under the name l-critical graphs in the next section.
The second class consists of the bipartite complements of l-critical graphs.

3 l-Critical Graphs

The class of l-critical graphs is a subclass of bi-cographs and we define it in a
similar way, i.e. inductively.

Definition 2. A (coloured) l-critical graph is a bipartite graph defined recur-
sively as follows:

i. A graph on a single black or white vertex is l-critical.
ii. If G1, G2 are l-critical, then so is their union G1 ∪ G2.
iii. If G is an l-critical graph, then the join of G with a single black vertex is an

l-critical graph.

Remark 1. Note the asymmetry in this definition: we do not allow white dom-
inating vertices while constructing an l-critical graph. However, once we have
finished constructing it, we can forget the colouring, thus getting the uncoloured
class of l-critical graphs. We will refer to both notions as simply l-critical graphs,
but unless otherwise specified, we will be working with the coloured version.

18 B. Alecu et al.

Throughout the remainder of the paper, we denote by

– L the class of all l-critical graphs.

We now give a forbidden induced subgraph characterisation of the class L.
We start with a characterisation of coloured graphs in L.

Lemma 1. The following are equivalent for a coloured bipartite graph G:

(a) G ∈ L;
(b) G contains no induced P5 with white centre;
(c) any two black vertices of G have either comparable or disjoint neighbour-

hoods.

Proof. (a) ⇒ (b): A P5 with white centre is not in L, since it is not a disjoint
union, and it does not have a black dominating vertex. Moreover, from the
definition, L is hereditary, hence no graph in L contains a P5 with white
centre.
(b)⇒ (c): If two black vertices x and y have incomparable and non-disjoint
neighbourhoods, then x, y together with a private neighbour of each and with
a common neighbour induce a P5 with white centre.
(c) ⇒ (a): We want to show that, assuming (c), either G is disconnected,
or it has a black dominating vertex (then use induction, and the fact that
the condition (c) is hereditary). Suppose G is connected, and let b be a black
vertex with a maximal (under set inclusion) neighbourhood. Let w be a white
vertex, and consider a shortest path P from b to w (which exists, since G
is connected). Write its vertices as b = b0, w1, b1, . . . , bk−1, wk = w (where
the vertices wi are white, and the vertices bi are black). If k > 1, then w1

is a common neighbour to b and b1, hence by (c) and maximality of the
neighbourhood of b, N(b1) ⊆ N(b). In particular, w2 and b are adjacent, and
we have a shorter path between b and w, contradicting the choice of P . This
shows k = 1, i.e. b and w are in fact adjacent, so b must be a dominating
vertex. ��
Forgetting the colours, we obtain the class of uncoloured l-critical graphs,

which admits the following characterisation in terms of minimal forbidden
induced subgraph.

Theorem 1. A bipartite graph G is l-critical if and only if G is (P6, C6, domino,
Sun4)-free.

Proof. The “only if” direction comes from the fact that any colouring of one of
the four graphs in black and white contains a P5 with white centre, hence by
the previous lemma, none of the four graphs is l-critical.

Conversely, suppose G is (P6, C6, domino, Sun4)-free. We show that there is
colouring of G in black and white such that there is no P5 with white centre.
This is clear if G is P5-free, so assume it is not. Without loss of generality, we
can assume, in addition, that G is connected. Now find a P5 induced by a, b, c, d

Linear Clique-Width of Bi-complement Reducible Graphs 19

and e such that the neighbourhood of its middle vertex is maximal among all
P5’s. Denote by S the part of G containing a, c and e, and by T the other part.

Let x ∈ T be a neighbour of a. Then x is not a neighbour of e, otherwise
a, b, c, d, e, x induce either a C6 or a domino (depending on whether c and x are
adjacent). Additionally, x must be a neighbour of c, otherwise the six vertices
induce a P6. With this in mind, let B be the set of neighbours of a and c, let D
be the set of neighbours of e and c (in particular, b ∈ B and d ∈ D), and let Nc

be the set of neighbours of c that are not neighbours of a or e.
Suppose now that a vertex y in T is a non-neighbour of c (i.e. y /∈ B∪Nc ∪D,

and y is also a non-neighbour of a and e). Find a path from y to c. Such a path
must pass through B ∪ Nc ∪ D = N(c). Let c′ be the vertex of the path just
before N(c), and assume without loss of generality that y is adjacent to c′.

If c′ has a neighbour b′ in B, then c′ must be adjacent to all vertices in
D, since otherwise y, c′, b′, c, d′, e form a P6, where d′ in a non-neighbour of c′

in D. By symmetry, since c′ is then adjacent to d, it must also be adjacent to
all vertices in B. Moreover, c′ is adjacent to all vertices in Nc, since if z is a
non-neighbour of c′ in Nc, then a, b, c, c′, d, e, y, z induce a Sun4.

Now if c′ has a neighbour in Nc ∪ D, then it must also be adjacent to b,
otherwise we get another P6, and like in the previous case, c′ is adjacent to
every vertex in N(c). In any case, assuming c has a non-neighbour, we find a
vertex c′ with a strictly bigger neighbourhood than c (since y is adjacent to c′

but not to c), such that a, b, c′, d, e induce a P5, contradicting our initial choice of
P5. In other words, S has a dominating vertex. If there was another P5 with its
centre in T , then that other P5, together with a dominating vertex in S, would
induce a domino. Hence if we colour S black and T white, we obtain a colouring
of G with no P5’s with white centre. ��

4 Unboundedness of Linear Clique-Width

The main result of this section is the unboundedness of linear clique-width in
the classes of l-critical graphs and of their bipartite complements. To prove the
result we will use an auxiliary graph parameter which provides a lower bound
for linear clique-width.

Let G be a graph and A a linear clique-width expression for G. Clearly, A
defines a linear order of the vertex set of G, i.e. a permutation π in the symmetric
group S(V (G)). Let us denote by Sπ,i the set consisting of the first i elements of
the permutation, and by Ai the maximal prefix of A containing only the vertices
of this set. If two vertices in Sπ,i have different neighbourhoods outside of the
set, then they must have different labels in Ai, since otherwise in the rest of
the expression we would not be able to add a neighbour to one of them without
adding it to the other. Therefore, denoting by μπ,i(G) the number of vertices in
Sπ,i with pairwise different neighbourhoods outside of this set, we conclude that
A uses at least

μπ(G) := max
i

μπ,i(G)

20 B. Alecu et al.

different labels to construct G. As a result, the linear clique-width is bounded
from below by

μ(G) := min
π∈S(V (G))

μπ(G).

Therefore, to prove the main result of the section, it suffices to show that μ(G)
is unbounded in the classes under consideration. In order to do that, we need a
couple of technical lemmas describing the behaviour of μ(G) in some situations.

We introduce some notation for the coming part. Given a graph G and a
linear order π of its vertices, we will write v < w if v appears before w in the
order, and v < S if v appears before every vertex of a set S. Notice that the
order on a graph induces an order on all of its subgraphs in the obvious way.

Every i ∈ {1, . . . , n} corresponds to a cut in G with respect to π, which
separates the first i vertices in π from the rest of V (G). It will be useful to mark
cuts for which μπ,i(G) is large. We will insert symbols α, β, . . . into our ordered
list of vertices to mark such cuts. If α marks a cut with μπ,i(G) ≥ t, then a set
of t vertices in Sπ,i with pairwise different neighbourhoods outside of Sπ,i will
be called a diversity witness of size t for α. The largest t such that there exists
a diversity witness of size t for α will be called the diversity of (the cut at) α.

Let H be a connected l-critical graph with μ(H) = t ≥ 2. Since H is con-
nected and has at least two vertices, it contains both white and black vertices.
Let G = v × (H ∪ H ∪ H) for a black vertex v, and label the vertices of the
three copies of H by A = {ai : 1 ≤ i ≤ n}, B = {bi : 1 ≤ i ≤ n}, and
C = {ci : 1 ≤ i ≤ n}, respectively.

Lemma 2. μ(G) ≥ t + 1.

Proof. To prove the lemma, we fix an arbitrary permutation π of V (G) and show
that μπ(G) ≥ t + 1. Let α, β, and γ be the three cuts of diversity of at least
t in the three copies of H with respect to the restrictions of π into A, B, and
C, respectively. Without loss of generality we assume that α ≤ β ≤ γ in π. Let
B′ ⊂ B be a diversity witness of size t for β in B, i.e. B′ < β, |B′| = t, and the
vertices of B′ have pairwise different neighbourhoods in the subset of B to the
right of β.

Assume first that a vertex a of A appears after β. Since μ(H) ≥ 2, there
exist vertices of A before α (and in particular before β). Therefore, since H is
connected, there must be an edge aiaj such that ai < β < aj . Since, by the
definition of G, none of the vertices in B′ is adjacent to aj , set B′ ∪ {ai} is a
diversity witness of size t + 1 for β, i.e. μπ(G) ≥ t + 1. This conclusion allows us
to assume, from now on, that

– A < β and, by a similar argument, β < C (we need t ≥ 2 to make sure we do
indeed have vertices of C after γ, and hence after β).

Suppose v < β. Since C has at least one white vertex, v has a neighbour in
C and hence B′ ∪{v} is a diversity witness of size t+1 for β, i.e. μπ(G) ≥ t+1.
Therefore, in the rest of the proof we assume that

– v > β.

Linear Clique-Width of Bi-complement Reducible Graphs 21

Assume B′ contains a vertex bi with no neighbour bj > β in B (observe that
if such a vertex exists, then it is unique in B′, since otherwise B′ is not a diversity
witness). If bi is white, then for any black vertex ak ∈ A, the set B′ ∪ {ak} is a
diversity witness of size t + 1 for β, because bi is adjacent to v, while ak is not
(by the definition of G), and every vertex of B′ different from bi has a neighbour
to the right of β, while ak does not. Similarly, if bi is black, then for any white
vertex ak ∈ A, the set B′ ∪ {ak} is a diversity witness of size t + 1 for β in G,
because bi is not adjacent to v, while ak is, and every vertex of B′ different from
bi has a neighbour in B to the right of β, while ak does not. In both cases, we
have μπ(G) ≥ t + 1.

The above discussion allows us to assume that every vertex of B′ has a
neighbour in the subset of B to the right of β. Then for any vertex ak ∈ A,
the set B′ ∪ {ak} is a diversity witness of size t + 1 for β in G, since ak has no
neighbours in B, i.e. μπ(G) ≥ t + 1. ��

We recall that ˜G denotes the bipartite complement of a bipartite graph G.

Lemma 3. If G is a bipartite graph, then lcw(˜G) ≤ 2 · lcw(G) + 2.

Proof. We start with a linear clique-width expression A for G that uses lcw(G)
labels, then modify it to obtain an expression A′ using 2 · lcw(G) labels such
that each label is reserved for only one part of the graph.

We now claim that we can modify A′ to find a linear clique-width expression
that uses 2 · lcw(G) + 2 labels, in which the two additional labels ib and iw
are reserved for inserting black and white vertices, respectively, and such that
vertices are connected to all of their already constructed neighbours immediately
as they are inserted. Indeed, say that a new vertex v is inserted in A′ with label
l. Whether an already constructed vertex w is a neighbour of v only depends
on its label, so we can say that the set of already constructed neighbours of v is
a union

⋃

k∈Λ{w : w has label k}, where Λ is a set of labels. In A′, the label l
might already be in use, so if we tried to connect v to all its already constructed
neighbours right away, we might inadvertently add some extra edges (that do not
appear in G) to the already constructed graph, between vertices labeled l and
some other vertices. However, using a new, reserved label to insert v allows us to
go around this. We can immediately connect it to all of its neighbours without
changing the already constructed graph, and afterwards change the reserved label
to the original label used for inserting v in A′. Proceeding inductively allows us
to modify A′ to an expression giving G with the desired properties.

A linear clique-width expression for ˜G can be obtained from this modified
expression by instead connecting newly inserted vertices to their non-neighbours
in G of opposite colour that have already been inserted. ��
Theorem 2. Linear clique-width is unbounded in the class L of l-critical graphs
and in the class ˜L of their bipartite complements.

Proof. Let G2 � P4. It is easy to see that G2 is a connected l-critical graph with
μ(G2) ≥ 2. Defining Gk = v × (Gk−1 ∪ Gk−1 ∪ Gk−1) for k > 2, we conclude by

22 B. Alecu et al.

Lemma 2 that Gk is a connected l-critical graph with μ(Gk) ≥ k. Therefore, for
each k, class L contains a graph of linear clique-width at least k. For class ˜L, a
similar conclusion follows from Lemma 3. ��

5 Minimality

The goal of this section is to show that the two classes of unbounded linear clique-
width identified in the previous section are minimal hereditary classes where this
parameter is unbounded. Moreover, we prove a more general result showing that
the class of l-critical graphs and the class of their bipartite complements are the
only two minimal hereditary classes of bi-cographs where the linear clique-width
is unbounded.

To prove this result we will use a modification of linear clique-width defined
as follows.

Definition 3. The bipartite linear clique-width (or bi-linear clique-width, for
short) of a bipartite graph G, denoted blcw(G), is the minimum number of labels
necessary to construct G via a linear clique-width expression, but only allowing
any given label to be used for either black or white vertices (we will call those
labels black or white respectively).

It is clear from the definition that lcw(G) ≤ blcw(G) ≤ 2lcw(G), so bound-
edness of one of the parameters is equivalent to boundedness of the other. We
start with a couple of simple lemmas describing how this bi-linear clique-width
behaves when taking bipartite unions or joins.

Lemma 4. If G1, . . . , Gr are bipartite graphs each with bi-linear clique-width at
most k, then their bipartite union

⋃r
i=1 Gi and their bipartite join

∏r
i=1 Gi have

bi-linear clique-width at most k + 2.

Proof. Let r = 2. We construct G1 using at most k labels in such a way that no
vertices of different color ever receive the same label, then we relabel all black
vertices to k + 1 and all white vertices to k + 2. We then construct G2 using the
first k labels (which are now unused). The bipartite union does not require any
more operations. To construct the bipartite join, we connect vertices labeled by
k+1 to all vertices labeled by white labels, except k+2, and we connect vertices
labeled k + 2 to all vertices labeled by black labels, except k + 1. For general r,
we continue by induction. ��
Lemma 5. If G1 and G2 are bipartite graphs with bi-linear clique-widths at
most k and l respectively, then their union G1 ∪ G2 and their join G1 × G2 have
bi-linear clique-width at most max{k + 2, l}.
Proof. This lemma is a modification of the previous one in the case r = 2, and
is proved in the same way. ��

Linear Clique-Width of Bi-complement Reducible Graphs 23

We are now ready to prove the main result of the section.

Theorem 3. The class L of l-critical graphs and the class ˜L of their bipar-
tite complements are the only two minimal hereditary classes of bi-cographs of
unbounded linear clique-width.

Proof. To prove the theorem, we will show that for any graph H ∈ L and any
graph K ∈ ˜L, the class of (H,K)-free bi-cographs has bounded bi-linear clique-
width. We proceed by induction on |V (H)| + |V (K)|. The base case |V (H)| +
|V (K)| = 2 is trivial.

Assume now that the statement is true for |V (H)| + |V (K)| ≤ n. More
specifically, we assume that there exists a constant k such that by forbidding
any graph H ∈ L and any graph K ∈ ˜L with |V (H)| + |V (K)| ≤ n we obtain
a class of bi-cographs with bi-linear clique-width at most k. Now fix H and K
with |V (H)| + |V (K)| = n + 1, and let G be an (H,K)-free bi-cograph with at
least 2 vertices.

From the definition of l-critical graphs, and that of bi-cographs, we know:

– H either has a black dominating vertex, or is a bipartite disjoint union of
strictly smaller graphs.

– K either has a black isolated vertex, or is a bipartite join of strictly smaller
graphs.

– G is either a disjoint union or a join of strictly smaller graphs.

We distinguish between the following two cases.

1. H has a black dominating vertex v, or K has a black isolated vertex w. The
two situations are analogous, so we only give details for the case where H has
a black dominating vertex.
(a) Suppose first that G =

∏r
i=1 Gi is a bipartite join of smaller bi-cographs.

If one of them, say G1, contains an induced copy of H−v, then no other Gi

has black vertices, since otherwise an induced copy of H arises, in which
case G has the same bi-linear clique-width as G1 (provided it is at least 3).
Otherwise, each Gi is (H−v)-free and hence, by the inductive hypothesis,
each Gi has bi-linear clique-width at most k, and so by Lemma 4, G itself
has bi-linear clique-width at most k + 2.

(b) Suppose now G =
⋃r

i=1 Gi. Without loss of generality we can assume that
each Gi is connected. Hence by the previous part, each Gi has bi-linear
clique-width at most k + 2, and another application of Lemma 4 tells us
G has bi-linear clique-width at most k + 4.

2. H is a disjoint union and K is a join. We represent H is a disjoint union
H1 ∪ H2 of two smaller graphs (chosen arbitrarily if the partition is not
unique). Similarly, we represent K as a join K1 × K2 of two smaller graphs.
We will write G = G1 � G2 to mean that G can be decomposed as either a
union or a join of G1 and G2, which is always the case for a bi-cograph. If G
is a union, then either G1 is H1-free or G2 is H2-free, and if G is a join, then

24 B. Alecu et al.

either G1 is K1-free or G2 is K2-free. In any case, by the inductive hypoth-
esis, one of G1 and G2 has bi-linear clique-width at most k. Without loss of
generality, assume blcw(G1) ≤ k. We write l0 for the bi-linear clique-width
of G, and l1 for that of G2. By Lemma 5, l0 ≤ max{k + 2, l1}.

Note that G2 can also be decomposed as G2 = G′
1 � G′

2, and by the same
argument as earlier, we can assume that blcw(G′

1) ≤ k. Denoting l2 :=
blcw(G′

2), we have again l1 ≤ max{k + 2, l2} and applying the same argu-
ment repeatedly we obtain a sequence li ≤ max{k+2, li+1}. Note however that
at each stage, li is the bi-linear clique-width of a smaller graph, and since this
parameter cannot be larger the number of vertices of the graph, we eventually
reach an lt ≤ k + 2. But li ≤ k + 2 implies li−1 ≤ max{k + 2, li} = k + 2, so
that in fact all li, and in particular l0, are bounded from above by k + 2.

Putting everything together, we have blcw(G) ≤ k + 4, which finishes the
proof. ��

6 Conclusion

In this paper, we proved that in the class of bi-complement reducible graphs
linear clique-width is unbounded and showed that this class contains exactly
two minimal hereditary subclasses of unbounded linear clique-width. Our results
lead naturally to a number of open problems.

It is known [14] that clique-width is bounded in the class of Star123-free bipar-
tite graphs. This class extends bi-cographs and hence contains both l-critical
graphs and their bipartite complements. Are there other minimal hereditary
subclasses of Star123-free bipartite graphs with unbounded linear clique-width?

One more interesting class of bipartite graphs is known as chordal bipartite
graphs [13]. It contains several subclasses, which are of primary importance
in the context of clique-width. In particular, it contains bipartite permutation
graphs, which is one of the first two hereditary classes that have been shown to
be minimal of unbounded clique-width [12]. Recently, in [4], it was also shown
that this is a minimal hereditary class of unbounded linear clique-width.

The class of chordal bipartite graphs also contains trees or, more generally,
forests, where clique-width is known to be bounded but linear clique-width is
not [1]. However, the problem of identifying minimal hereditary subclasses of
forests of unbounded linear clique-width remains open.

Acknowledgment. Viktor Zamaraev acknowledges support from EPSRC, grant
EP/P020372/1.

References

1. Adler, I., Kanté, M.M.: Linear rank-width and linear clique-width of trees. Theoret.
Comput. Sci. 589, 87–98 (2015)

2. Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-
width of H-free split graphs. Discrete Appl. Math. 211, 30–39 (2016)

Linear Clique-Width of Bi-complement Reducible Graphs 25

3. Brignall, R., Korpelainen, N., Vatter, V.: Linear clique-width for hereditary classes
of cographs. J. Graph Theory 84, 501–511 (2017)

4. Collins, A., Foniok, J., Korpelainen, N., Lozin, V., Zamaraev, V.: Infinitely
many minimal classes of graphs of unbounded clique-width. Discrete Appl. Math.
(accepted). https://doi.org/10.1016/j.dam.2017.02.012

5. Dabrowski, K.K., Huang, S., Paulusma, D.: Classifying the clique-width of H-free
bipartite graphs. Discrete Appl. Math. 200, 43–51 (2016)

6. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-
complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

7. Giakoumakis, V., Vanherpe, J.: Bi-complement reducible graphs. Adv. Appl. Math.
18, 389–402 (1997)

8. Golumbic, M.C.: Trivially perfect graphs. Discrete Math. 24, 105–107 (1978)
9. Gurski, F., Wanke, E.: On the relationship between NCL-width and linear NCL-

width. Theoret. Comput. Sci. 347, 76–89 (2005)
10. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of linear clique-width at

most 3. Theoret. Comput. Sci. 412, 5466–5486 (2011)
11. Heggernes, P., Meister, D., Papadopoulos, C.: Characterising the linear clique-

width of a class of graphs by forbidden induced subgraphs. Discrete Appl. Math.
160, 888–901 (2012)

12. Lozin, V.: Minimal classes of graphs of unbounded clique-width. Ann. Comb. 15,
707–722 (2011)

13. Lozin, V., Rautenbach, D.: Chordal bipartite graphs of bounded tree- and clique-
width. Discrete Math. 283, 151–158 (2004)

14. Lozin, V.V., Volz, J.: The clique-width of bipartite graphs in monogenic classes.
Int. J. Found. Comput. Sci. 19, 477–494 (2008)

15. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math.
69, 247–255 (1996)

https://doi.org/10.1016/j.dam.2017.02.012

Linear Ramsey Numbers

Aistis Atminas1, Vadim Lozin2,3(B), and Viktor Zamaraev4

1 Department of Mathematics, London School of Economics, Houghton Street,
London WC2A 2AE, UK
A.Atminas@lse.ac.uk

2 University of Warwick, Coventry, UK
V.Lozin@warwick.ac.uk

3 Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
4 Department of Computer Science, Durham University, South Road,

Durham DH1 3LE, UK
viktor.zamaraev@gmail.com

Abstract. The Ramsey number RX(p, q) for a class of graphs X is the
minimum n such that every graph in X with at least n vertices has either
a clique of size p or an independent set of size q. We say that Ramsey
number is linear inX if there is a constant k such that RX(p, q) ≤ k(p+q)
for all p, q. In the present paper we conjecture that Ramsey number is
linear in X if and only if the co-chromatic number is bounded in X and
determine Ramsey numbers for several classes of graphs that verify the
conjecture.

1 Introduction

According to Ramsey’s Theorem [8] for all natural p and q there exists a min-
imum number R(p, q) such that every graph with at least R(p, q) vertices has
either a clique of size p or an independent set of size q.

The exact values of Ramsey numbers are known only for small values of
p and q. However, with the restriction to specific classes of graphs, Ramsey
numbers can be determined for all p and q. In particular, in [9] this problem
was solved for planar graphs, while in [2] it was solved for line graphs, bipartite
graphs, perfect graphs, P4-free graphs and some other classes.

We denote the Ramsey number restricted to a class X by RX(p, q) and focus
in the present paper on classes with a smallest speed of growth of RX(p, q).
Clearly, RX(p, q) cannot be smaller than the minimum of p and q. We say that
Ramsey number is linear in X if there is a constant k such that RX(p, q) ≤
k(p + q) for all p, q.

It is not difficult to see that all classes of bounded co-chromatic number
have linear Ramsey number, where the co-chromatic number of a graph G is
the minimum k such that the vertex set of G can be partitioned into k subsets
each of which is either a clique or an independent set. We conjecture that in the
universe of hereditary classes of graphs the two notions coincide.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 26–38, 2018.
https://doi.org/10.1007/978-3-319-94667-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_3&domain=pdf

Linear Ramsey Numbers 27

Conjecture 1. A hereditary graph class is of linear Ramsey number if and only
if it is of bounded co-chromatic number.

A class of graphs is hereditary if it is closed under taking induced subgraphs.
It is well known that a class of graphs is hereditary if and only if it can be
characterized in terms of minimal forbidden induced subgraphs. Of particular
interest in the present paper are finitely defined classes, i.e. classes defined by
finitely many forbidden induced subgraphs.

In [4], it was conjectured that a finitely defined class X has bounded co-
chromatic number if and only if the set of minimal forbidden induced subgraphs
for X contains a P3-free graph, the complement of a P3-free graph, a forest (i.e. a
graph without cycles) and the complement of a forest. Following this conjecture,
we propose a restriction of our Conjecture 1 to the case of finitely defined classes
as follows.

Conjecture 2. A finitely defined class X is of linear Ramsey number if and only if
the set of minimal forbidden induced subgraphs for X contains a P3-free graph,
the complement of a P3-free graph, a forest and the complement of a forest.

In Sect. 2, we prove the “only if” part of the conjecture and in Sect. 3 we
determine Ramsey numbers for several classes of graphs that verify the “if”
part of the conjecture. In the rest of the present section, we introduce basic
terminology and notation.

All graphs in this paper are finite, undirected, without loops and multiple
edges. The vertex set and the edge set of a graph G are denoted by V (G) and
E(G), respectively. For a vertex x ∈ V (G) we denote by N(x) the neighbourhood
of x, i.e. the set of vertices of G adjacent to x. The degree of x is |N(x)|. We
say that x is complete to a subset U ⊂ V (G) if U ⊆ N(x) and anticomplete to
U if U ∩ N(x) = ∅. A subgraph of G induced by a subset of vertices U ⊆ V (G)
is denoted G[U]. By G we denote the complement of G and call it co-G.

A clique in a graph is a subset of pairwise adjacent vertices and an indepen-
dent set is a subset of pairwise non-adjacent vertices. The size of a maximum
clique in G is the clique number and the size of a maximum independent set is
the independence number of G.

By Kn, Cn and Pn we denote a complete graph, a chordless cycle and a
chordless path with n vertices, respectively. Also, Kn,m is a complete bipartite
graph with parts of size n and m, and K1,n is a star. A disjoint union of two
graphs G and H is denoted G + H. In particular, pG is a disjoint union of p
copies of G.

If a graph G does not contain induced subgraphs isomorphic to a graph H,
then we say that G is H-free and call H a forbidden induced subgraph for G. In
case of several forbidden induced subgraphs we list them in parentheses.

A bipartite graph is a graph whose vertices can be partitioned into two inde-
pendent sets, and a split graph is a graph whose vertices can be partitioned into
an independent set and a clique. A graph is bipartite if and only if it is free of
odd cycles, and a graph is a split graph if and only if it is (C4, 2K2, C5)-free [6].

28 A. Atminas et al.

2 Classes with Non-linear Ramsey Number

In this section, we prove the “only if” part of Conjecture 2.

Lemma 1. For every fixed k, the class Xk of (C3, C4, . . . , Ck)-free graphs is not
of linear Ramsey number.

Proof. Assume to the contrary that the Ramsey number for the class Xk is
linear. Then there must exist a constant t = t(k) such that any n-vertex graph
from the class has an independent set of size at least n/t.

It is well-known (see e.g. [1]) that Xk contains n-vertex graphs with the
independence number of order O(n1−ε ln(n)), where ε > 0 depends on k, which
is smaller than n/t for large n. This contradiction shows that Xk is not of linear
Ramsey number. �	
Theorem 1. Let X be a class of graphs defined by a finite set M of forbidden
induced subgraph. If M does not contain a graph in at least one of the follow-
ing four classes, then X is not of linear Ramsey number: P3-free graphs, the
complements of P3-free graphs, forests, the complements of a forests.

Proof. It is not difficult to see that a graph is P3-free if and only if it is a disjoint
union of cliques. The class of P3-free graphs contains the graph (q−1)Kp−1 with
(q − 1)(p − 1) vertices with no clique of size p or independent set of size q, and
hence this class is not of linear Ramsey number. Therefore, if M contains no
P3-free graph, then Xk contains all P3-free graphs and hence is not of linear
Ramsey number. Similarly, if M contains no P 3-free graph, then Xk is not of
linear Ramsey number.

Now assume that M contains no forest. Therefore, every graph in M contains
a cycle. Since the number of graphs in M is finite, X contains the class of
(C3, C4, . . . , Ck)-free graphs for a finite value of k and hence is not of linear
Ramsey number by Lemma 1. Applying the same arguments to the complements
of graphs in Xk, we conclude that if M contains no co-forest, then Xk is not of
linear Ramsey number. �	

3 Classes with Linear Ramsey Number

In this section, we study classes of graphs defined by forbidden induced subgraphs
with 4 vertices and determine Ramsey numbers for several classes in this family
that verify the “if” part of Conjecture 2. All the eleven graphs on 4 vertices are
represented in Fig. 1.

Below we list which of these graphs are P3-free and which of them are forests
(take the complements for P 3-free graphs and for the complements of forests,
respectively).

– P3-free graphs: K4, K4, 2K2, co-diamond, co-claw.
– Forests: K4, 2K2, P4, co-diamond, co-paw, claw.

Linear Ramsey Numbers 29

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

P4=co-P4

�
�

�
K4

�
�

�
diamond C4

�
�

�
paw

�
�

�
claw

co-K4 co-diamond co-C4=2K2 co-paw co-claw

Fig. 1. All 4-vertex graphs

3.1 Claw- and Co-claw-free Graphs

Lemma 2. If a (claw, co-claw)-free graph G contains a K4, then it is K3-free.

Proof. Assume G contains a K4 induced by A = {a1, a2, a3, a4} and suppose by
contradiction that G also contains a K3 induced by Z = {x, y, z}.

Let first A be disjoint from Z. To avoid a co-claw, each vertex of A has a
neighbour in Z and hence one of the vertices of Z is adjacent to two vertices
of A, say x is adjacent to a1 and a2. Then, to avoid a claw, x has no other
neighbours in A and y has a neighbour in {a1, a2}, say y is adjacent to a1. This
implies that y is adjacent to a3 (else x, y, a1, a3 induce a co-claw) and similarly
y is adjacent to a4. But then y, a1, a2, a3 induce a claw, a contradiction.

If A and Z are not disjoint, they have at most one vertex in common, say
a4 = z. Again, to avoid a co-claw, each vertex in {a1, a2, a3} has a neighbour in
{x, y} and hence, without loss of generality, x is adjacent to a1 and a2. But then
x, a1, a2, a4 induce a claw, a contradiction again. �	
Lemma 3. The maximum number of vertices in a (claw, co-claw, K4,K4)-free
graph is 9.

Proof. Let G be a (claw, co-claw, K4,K4)-free graph and let x be a vertex of
G. Denote by A the set of neighbours and by B the set of non-neighbours of x.
Clearly, A contains neither triangles nor anti-triangles, since otherwise either a
K4 or a claw arises. Therefore, A has at most 5 vertices, and similarly B has at
most 5 vertices.

If |A| = 5, then G[A] must be a C5 induced by vertices, say, a1, a2, a3, a4, a5

(listed along the cycle). In order to avoid a claw or K4, each vertex of A can
be adjacent to at most 2 vertices of B, which gives rise to at most 10 edges
between A and B. On the other hand, to avoid a co-claw, each vertex of B must

30 A. Atminas et al.

be adjacent to at least 3 vertices of A. Therefore, B contains at most 3 vertices
and hence |V (G)| ≤ 9. Similarly, if |B| = 5, then |V (G)| ≤ 9.

It remains to show that there exists a (claw, co-claw, K4,K4)-free graph
with 9 vertices. This graph can be constructed as follows. Start with a C8

formed by the vertices v1, v2, . . . , v8. Then create a C4 on the even-indexed ver-
tices v2, v4, v6, v8 (listed along the cycle) and a C4 on the odd-indexed vertices
v1, v3, v5, v7 (listed along the cycle in the complement). Finally, add one more
vertex adjacent to the odd-indexed vertices. It is now a routine matter to check
that the resulting graph is (claw, co-claw, K4,K4)-free. This graph is known as
the Paley graph of order q = 32. �	
Theorem 2. For the class A of (claw, co-claw)-free graphs and all a, b ≥ 3,

RA(a, b) = max(�(5a − 3)/2� , �(5b − 3)/2�),
unless a = b = 4 in which case RA(a, b) = 10.

Proof. According to Lemma 2, the class of (claw, co-claw)-free graphs is the
union of three classes:

– the class X of (claw, K3)-free graphs,
– the class Y of (co-claw, K3)-free graphs and
– the class Z of (claw, co-claw, K4,K4)-free graphs.

Clearly, RA(a, b) = max(RX(a, b), RY (a, b), RZ(a, b)).
Since K3 is forbidden in X, we have RX(a, b) = RX(3, b). Also, denoting

by B the class of claw-free graphs, we conclude that RX(3, b) = RB(3, b). As
was shown in [2], RB(3, b) = �(5b − 3)/2)�. Therefore, RX(a, b) = �(5b − 3)/2)�.
Similarly, RY (a, b) = �(5a − 3)/2)�.

In the class Z, for all a, b ≥ 4 we have RZ(a, b) = 10 by Lemma 3. Moreover,
if additionally max(a, b) ≥ 5, then RZ(a, b) < max(RX(a, b), RY (a, b)). For a =
b = 4, we have RZ(4, 4) = 10 > 8 = max(RX(4, 4), RY (4, 4)). Finally, it is not
difficult to see that RZ(3, b) ≤ RX(3, b) and RZ(a, 3) ≤ RX(a, 3), and hence the
result follows. �	

3.2 Diamond- and Co-diamond-free Graphs

Lemma 4. If a (diamond, co-diamond)-free graph G contains a K4, then it is
bipartite.

Proof. Assume G contains a K4. Let A be any maximal (with respect to inclu-
sion) independent set containing the K4 and let B = V (G) − A. If B is empty,
then G is edgeless (and hence bipartite). Suppose now B contains a vertex b.
Then b has a neighbour a in A (else A is not maximal) and at most one non-
neighbour (else a and b together with any two non-neighbours of b in A induce
a co-diamond).

Assume B has two adjacent vertices, say b1 and b2. Since |A| ≥ 4 and each
of b1 and b2 has at most one non-neighbour in A, there are must be at least

Linear Ramsey Numbers 31

two common neighbours of b1 and b2 in A, say a1, a2. But then a1, a2, b1, b2
induce a diamond. This contradiction shows that B is independent and hence G
is bipartite. �	
Lemma 5. A co-diamond-free bipartite graph containing at least one edge is
either a simplex (a bipartite graph in which every vertex has at most one non-
neighbour in the opposite part) or a Ks,t + K1 for some s and t.

Proof. Assume G = (A,B,E) is a co-diamond-free bipartite graph containing
at least one edge. Then G cannot have two isolated vertices, since otherwise an
edge together with two isolated vertices create an induced co-diamond.

Assume G has exactly one isolated vertex, say a, and let G′ = G − a. Then
any vertex b ∈ V (G′) is adjacent to every vertex in the opposite part of G′.
Indeed, if b has a non-neighbour c in the opposite part, then a, b, c together with
any neighbour of b (which exists because b is not isolated) induce a co-diamond.
Therefore, G′ is complete bipartite and hence G = Ks,t + K1 for some s and t.

Finally, suppose G has no isolated vertices. Then every vertex a ∈ A has
at most one non-neighbour in B, since otherwise any two non-neighbours of a
in B together with a and any neighbour of a (which exists because a is not
isolated) induce a co-diamond. Similarly, every vertex b ∈ B has at most one
non-neighbour in A. Therefore, G is a simplex. �	
Lemma 6. The maximum number of vertices in a (diamond, co-diamond,
K4,K4)-free graph is 9.

Proof. Let G be a (diamond, co-diamond, K4,K4)-free graph and x be a vertex
of G. Denote by A the set of neighbours and by B the set of non-neighbours of
x. Then G[A] is (P3,K3)-free, else G contains either a diamond or a K4. Since
G[A] is P3-free, every connected component of G[A] is a clique and since this
graph is K3-free, every connected component has at most 2 vertices. If at least
one of the components of G[A] has 2 vertices, the number of components is at
most 2 (since otherwise a co-diamond arises), in which case A has at most 4
vertices. If all the components of G[A] have size 1, the number of components is
at most 3 (since otherwise a K4 arises), in which case A has at most 3 vertices.
Similarly, B has at most 4 vertices and hence |V (G)| ≤ 9.

To conclude the proof, we observe that the Paley graph of order q = 32

described in the proof of Lemma 3 is (diamond, co-diamond, K4,K4)-free. �	
Theorem 3. For the class A of (diamond, co-diamond)-free graphs and
a, b ≥ 3,

RA(a, b) = max(2a − 1, 2b − 1),

unless a, b ∈ {4, 5}, in which case RA(a, b) = 10, and unless a = b = 3, in which
case RA(a, b) = 6.

Proof. According to Lemma 4, in order to determine the value of RA(a, b), we
analyze this number in three classes:

32 A. Atminas et al.

– the class X of co-diamond-free bipartite graphs,
– the class Y of the complements of graphs in X and
– the class Z of (diamond, co-diamond, K4,K4)-free graphs.

In the class X of co-diamond-free bipartite graphs, RX(a, b) = 2b−1, since every
graph in this class with at least 2b−1 contains an independent set of size b, while
the graph Kb−1,b−1 contains neither an independent set of size b nor a clique of
size a ≥ 3. Similarly, RY (a, b) = 2a − 1.

In the class Z of (diamond, co-diamond, K4,K4)-free graphs, for all a, b ≥ 4
we have RZ(a, b) = 10 by Lemma 6. Moreover, if additionally max(a, b) ≥ 6,
then RZ(a, b) < max(RX(a, b), RY (a, b)). For a, b ∈ {4, 5}, we have RZ(a, b) =
10 > max(RX(a, b), RY (a, b)). Also, RZ(3, 3) = 6 (since C5 ∈ Z) and hence
RZ(3, 3) > max(RX(3, 3), RY (3, 3)). Finally, by direct inspection one can verify
that Z contains no K3-free graphs with more than 6 vertices and hence for b ≥ 4
we have RZ(3, b) ≤ RX(3, b). Similarly, for a ≥ 4 we have RZ(a, 3) ≤ RY (a, 3).
Thus for all values of a, b ≥ 3, we have RA(a, b) = max(2a − 1, 2b − 1), unless
a, b ∈ {4, 5}, in which case RA(a, b) = 10, and unless a = b = 3, in which case
RA(a, b) = 6. �	

3.3 2K2- and C4-Free Graphs

Theorem 4. For the class A of (2K2, C4)-free graphs and all a, b ≥ 3,

RA(a, b) = a + b.

Proof. Let G be a (2K2, C4)-free graph with a+b vertices. If G is C5-free, then it
is a split graph and hence it contains either a clique of size a or an independent
set of size b.

If G contains a C5, then the remaining vertices of the graph can be partitioned
into a clique U , whose vertices are complete to the cycle C5, and an independent
set W , whose vertices are anticomplete to the C5 [3]. We have |U |+|W | = a+b−5
and hence either |U | ≥ a−2 or |W | ≥ b−2. In the first case, U together with any
two adjacent vertices of the cycle C5 create a clique of size a. In the second case,
W together with any two non-adjacent vertices of the cycle create an independent
set of size b. This shows that RA(a, b) ≤ a + b.

For the inverse inequality, we construct a graph G with a + b − 1 vertices as
follows: G consists of a cycle C5, an independent set W of size b−3 anticomplete
to the cycle and a clique U of size a − 3 complete to both W and V (C5). It is
not difficult to see that the size of a maximum clique in G is a − 1 and the size
of a maximum independent set in G is b − 1. Therefore, RA(a, b) ≥ a + b. �	

3.4 2K2- and Diamond-Free Graphs

Lemma 7. If a (2K2, diamond)-free graph G contains a K4, then G is a split
graph partitionable into a clique C and an independent set I such that every
vertex of I has at most one neighbour in C.

Linear Ramsey Numbers 33

Proof. Let G be a (2K2, diamond)-free graph containing a K4. We extend the
K4 to any maximal (with respect to inclusion) clique and denote it by C. Also,
denote I = V (G) − C.

Assume a vertex a ∈ I has two neighbours b, c in C. It also has a non-
neighbour d in C (else C is not maximal). But then a, b, c, d induce a diamond.
This contradiction shows that any vertex of I has at most one neighbour in C.

Finally, assume two vertices a, b ∈ I are adjacent. Since each of them has at
most one neighbour in C and |C| ≥ 4, there are two vertices c, d ∈ C adjacent
neither to a nor to b. But then a, b, c, d induce a 2K2. This contradiction shows
that I is independent and completes the proof. �	
Lemma 8. Let G be a (2K2, diamond,K4)-free graph containing a K3. Then G
is 3-colorable.

Proof. Denote a triangle K3 in G by T = {a, b, c}, and for any subset U ⊆
{a, b, c} let VU be the subset of vertices outside of T such that N(v)∩T = U for
each v ∈ VU . Then

– Va,b,c = ∅, since G is K4-free.
– Va,b = Vac = Vbc = ∅, since G is diamond-free.
– Va, Vb, Vc, V∅ are independent sets, since G is 2K2-free. For the same reason,

every vertex of V∅ is isolated.

Then each of the following three sets {a} ∪ Vb, {b} ∪ Vc and {c} ∪ Va ∪ V∅ is
independent and hence G is 3-colorable. �	

The above two lemmas reduce the analysis to (2K2,K3)-free graphs. In order
to characterize this class, let us say that G∗ is an extended G (also known as
a blow-up of G) if G∗ is obtained from G by replacing the vertices of G with
independent sets.

Lemma 9. If G is a (2K2,K3)-free graph, then it is either bipartite or an
extended C5 + K1.

Proof. If G is C5-free, then it is bipartite, because any cycle of length at least
7 contains an induced 2K2. Assume now that G contains a C5 induced by a
set S = {v0, v1, v2, v3, v4}. To avoid an induced 2K2 or K3, any vertex u �∈ S
must be either anticomplete to S or have exactly two neighbours on the cycle
of distance 2 from each other, i.e. N(u) ∩ S = {vi, vi+2} for some i (addition is
taken modulo 5). Moreover, if N(u)∩S = {vi, vi+2} and N(w)∩S = {vj , vj+2},
then

– if i = j or |i − j| > 1, then u is not adjacent to w, since G is K3-free.
– if |i − j| = 1, then u is adjacent to w, since G is 2K2-free.

Clearly, every vertex u �∈ S, which is anticomplete to S, is isolated, and hence
G is an extended C5 + K1. �	

34 A. Atminas et al.

Theorem 5. Let A be the class of (2K2, diamond)-free graphs. Then

– for a = 3, we have RA(a, b) = �2.5(b − 1)� + 1,
– for a = 4, we have RA(a, b) = 3b − 2,
– for a ≥ 5, we have RA(a, b) = 3b − 2 if a < 2b and RA(a, b) = a + b − 1 if

a ≥ 2b.

Proof. As before, we split the analysis into several subclasses of A.
For the class X of (2K2, diamond)-free graphs containing a K4 and a ≥ 5,

we have RX(a, b) = a + b − 1. Indeed, every split graph with a + b − 1 vertices
contains either a clique of size a or an independent set of size b and hence
RX(a, b) ≤ a + b − 1. On the other hand, the split graph with a clique C of size
a − 1 and an independent set I of size b − 1 with a matching between C and I
belongs to X and hence RX(a, b) ≥ a + b − 1.

For the class Y of 3-colorable (2K2, diamond)-free graphs and for a ≥ 4 we
have RY (a, b) = 3b− 2. Indeed, a 3-colorable graph with 3b− 2 vertices contains
an independent set of size b and hence RY ≤ 3b−2. On the other hand, consider
the graph G constructed from b − 1 triangles Ti = {ai, bi, ci} (i = 1, 2, . . . , b − 1)
such that for all j > i,

– ai is adjacent to bj ,
– bi is adjacent to cj ,
– ci is adjacent to aj .

It is not difficult to see that G is 3-colorable (2K2, diamond)-free graph with
3b − 3 vertices containing neither a clique of size a ≥ 4 nor an independent set
of size b. Therefore, RY ≥ 3b − 2.

For the class Z0 of bipartite 2K2-free graphs, we have RZ0(a, b) = 2b − 1,
which is easy to see. Finally, in the class Z1 of graphs each of which is an
extended C5 + K1, we have RZ1(a, b) = �2.5(b − 1)� + 1. For an odd b, a maxi-
mum counterexample is constructed from a C5 by replacing each vertex with an
independent set of size (b − 1)/2. This graph has �2.5(b − 1)� vertices, the inde-
pendence number b− 1 and the clique number 2 < a. For an even b, a maximum
counterexample is constructed from a C5 by replacing two adjacent vertices of a
C5 with independent sets of size b/2 and the remaining vertices of the cycle with
independent sets of size b/2 − 1. This again gives in total �2.5(b − 1)� vertices,
and the independence number b − 1. Therefore, in the class Z = Z0 ∪ Z1, we
have RZ(a, b) = max(RZ0(a, b), RZ1(a, b)) = �2.5(b − 1)� + 1.

Combining, we conclude that

– for a = 3, we have RA(a, b) = �2.5(b − 1)� + 1,
– for a = 4, we have RA(a, b) = 3b − 2,
– for a ≥ 5, we have RA(a, b) = 3b − 2 if a < 2b and RA(a, b) = a + b − 1 if

a ≥ 2b.

�	

Linear Ramsey Numbers 35

3.5 The Class of (P4, C4, Co-claw)-Free Graphs

With start with a lemma characterizing the structure of graphs in this class,
where we use the following well-known fact (see e.g. [5]): every P4-free graph with
at least two vertices is either disconnected or the complement to a disconnected
graph.

Lemma 10. Every disconnected (P4, C4, co-claw)-free graph is a collection of
disjoint stars and every connected (P4, C4, co-claw)-free graph consists of a col-
lection of disjoint stars plus a number of dominating vertices, i.e. vertices adja-
cent to all other vertices of the graph.

Proof. Let G be a disconnected (P4, C4, co-claw)-free graph. Then every con-
nected component of G is K3-free, since a triangle in one of them together with
a vertex from any other component create an induced co-claw. Therefore, every
connected component of G is a bipartite graph. This graph is complete bipartite,
because G is P4-free, and it is a star, because G is C4-free.

Now let G be a connected graph. Since G is P4-free, G is disconnected. Let
C1, . . . , Ck (k ≥ 2) be co-components of G, i.e. components in the complement
of G. If at least two of them have more than 1 vertex, then an induced C4

arises. Therefore, all co-components, except possibly one, have size 1, i.e. they
are dominating vertices in G. If, say, C1 is a co-component of size more than 1,
then the subgraph of G induced by C1 must be disconnected and hence it is a
collection of stars. �	
Theorem 6. For the class A of (P4, C4, co-claw)-free graphs and all a, b ≥ 3,

RA(a, b) = a + 2b − 4.

Proof. Let G be a graph in A with a + 2b − 5 vertices, 2b − 2 of which induce a
matching (a 1-regular graph with b − 1 edges) and the remaining a − 3 vertices
are dominating in G. Then G has neither a clique of size a nor an independent
set of size b. Therefore, RA(a, b) ≥ a + 2b − 4.

Conversely, let G be a graph in A with a+2b−4 vertices. If G is disconnected,
then it is bipartite and hence at least one part in a bipartition of G has size at
least b, i.e. G contains an independent set of size b. If G is connected, denote
by C the set of dominating vertices in G. If |C| ≥ a − 1, then either C itself
(if |C| ≥ a) or C together with a vertex not in C (if |C| = a − 1) create a clique
of size a. So, let |C| ≤ a−2. The graph G−C is bipartite and has at least 2b−2
vertices. If this graph has no independent set of size b, then in any bipartition
of this graph each part contains exactly b − 1 vertices, and each vertex has a
neighbour in the opposite part. But then |C| = a − 2 and therefore C together
with any two adjacent vertices in G − C create a clique of size a. �	

36 A. Atminas et al.

3.6 The Class of (Co-diamond, Paw, Claw)-Free Graphs

Lemma 11. Let G be a (co-diamond, paw, claw)-free graph.

– If G is connected, then it is either a path with at most 5 vertices or a cycle
with at most 6 vertices or the complement of a graph of vertex degree at most
1.

– If G has two connected components, then either both components are com-
plete graphs or one of the components is a single vertex and the other is the
complement of a graph of vertex degree at most 1.

– If G has at least 3 connected components, then G is edgeless.

Proof. Assume first that G is connected. It is known (see e.g. [7]) that every
connected paw-free graphs is either K3-free or complete multipartite. i.e. P 3-
free. If G is K3-free, then together with the claw-freeness of G this implies that
G has no vertices of degree more than 2, i.e. G is either a path or a cycle. To
avoid an induced co-diamond, a path cannot have more than 5 vertices and a
cycle cannot have more than 6 vertices. If G is complete multipartite, then each
part has size at most 2, since otherwise an induced claw arises. In other words,
the complement of G is a graph of vertex degree at most 1.

Assume now that G has two connected components. If each of them contains
an edge, then both components are cliques, since otherwise two non-adjacent
vertices in one of the components with two adjacent vertices in the other compo-
nent create an induced co-diamond. If one of the components is a single vertex,
then the other is P 3-free (to avoid an induced co-diamond) and hence is the
complement of a graph of vertex degree at most 1 (according to the previous
paragraph).

Finally, let G have at least 3 connected components. If one of them contains
an edge, then this edge together with two vertices from two other components
form an induced co-diamond. Therefore, every component of G consists of a
single vertex, i.e. G is edgeless. �	
Theorem 7. For the class A of (co-diamond, paw, claw)-free graphs and for all
a, b ≥ 3,

RA(a, 3) = 2a − 1,
RA(a, b) = max(2a, b) for b ≥ 4,

except for the following four numbers RA(3, 3) = 6, RA(3, 4) = RA(3, 5) =
RA(3, 6) = 7.

Proof. We start with the case b = 3. Since C5 belongs to A, RA(3, 3) = 6, which
covers the first of the four exceptional cases.

Let a ≥ 4. The graph 2Ka−1 with 2a − 2 vertices has neither cliques of size
a nor independent sets of size 3, and hence RA(a, 3) ≥ 2a − 1. Conversely, let
G ∈ A be a graph with 2a − 1 ≥ 7 vertices. If G is connected, then according to
Lemma 11 G is the complement of a graph of vertex degree at most 1, and hence
G has a clique of size a. If G has two connected components both of which are

Linear Ramsey Numbers 37

cliques, then one of them has size at least a. If G has two connected components
one of which is a single vertex, then either the second component has a couple
of non-adjacent vertices, in which case an independent set of size 3 arises, or the
second component is a clique of size more than a. If G has at least 3 connected
components, then it contains an independent set of size more than 3. Therefore,
RA(a, 3) ≤ 2a − 1 and hence RA(a, 3) = 2a − 1 for a ≥ 4.
From now on, b ≥ 4. Consider the last three exceptional cases, i.e. let a = 3 and
4 ≤ b ≤ 6.

The graph C6 that belongs to our class has neither a clique of size 3 nor
an independent set of size b ≥ 4 and hence RA(a, b) ≥ 7 in these cases.
Conversely, let G ∈ A be a graph with at least 7 vertices. If G is connected,
then it is the complement of a graph of vertex degree at most 1 and hence
contains a clique of size 3. If G has two connected components each of which
is a clique, then one of them has size at least 3. If G has two components one
of which is a single vertex, then the other component has at least 6 vertices
and also contains a clique of size 3. If G has at least 3 connected components,
then G has an independent set of size 4 ≤ b ≤ 6. Therefore, RA(a, b) = 7 for
a = 3 and 4 ≤ b ≤ 6.

In the rest of the proof we assume that either a ≥ 4 or b ≥ 7. Denote
m = max(2a, b). If m = 2a, then the graph (a − 1)K2 + K1 with 2a − 1 vertices
has neither cliques of size a nor independent sets of size b ≥ 7. If m = b, then the
edgeless graph with b − 1 vertices has neither cliques of size a nor independent
sets of size b. Therefore, RA(a, b) ≥ m.

Conversely, let G be a graph with at least m ≥ 7 vertices. If G is connected,
then it is the complement of a graph of vertex degree at most 1 and hence
contains a clique of size a. If G has two connected components each of which is
a clique, then one of them has size at least a. If G has two components one of
which is a single vertex, then the other component has at least 2a − 1 vertices
and also contains a clique of size a. If G has at least 3 connected components,
then G has an independent set of size b. Therefore, RA(a, b) = m. �	

Acknowledgment. Vadim Lozin acknowledges support from the Russian Science
Foundation Grant No. 17-11-01336.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2004)
2. Belmonte, R., Heggernes, P., van’t Hof, P., Rafiey, A., Saei, R.: Graph classes and

Ramsey numbers. Discrete Appl. Math. 173, 16–27 (2014)
3. Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced C4 and 2K2.

Discrete Math. 115, 51–55 (1993)
4. Chudnovsky, M., Seymour, P.: Extending Gyárfás-Sumner conjecture. J. Comb.

Theory Ser. B 105, 11–16 (2014)
5. Corneil, D.G., Lerchs, H., Stewart, B.L.: Complement reducible graphs. Discrete

Appl. Math. 3, 163–174 (1981)

38 A. Atminas et al.

6. Foldes, S., Hammer, P.L.: Split graphs. In: Congressus Numerantium, no. XIX, pp.
311–315 (1977)

7. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28, 53–54 (1988)
8. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286

(1930)
9. Steinberg, R., Tovey, C.A.: Planar Ramsey numbers. J. Combin. Theory Ser. B 59,

288–296 (1993)

Graphs that Are Not Pairwise
Compatible: A New Proof Technique

(Extended Abstract)

Pierluigi Baiocchi, Tiziana Calamoneri(B), Angelo Monti,
and Rossella Petreschi

Computer Science Department, “Sapienza” University of Rome, Rome, Italy
pierluigi.baiocchi@gmail.com, {calamo,monti,petreschi}@di.uniroma1.it

Abstract. A graph G = (V,E) is a pairwise compatibility graph (PCG)
if there exists an edge-weighted tree T and two non-negative real numbers
dmin and dmax, dmin ≤ dmax, such that each node u ∈ V is uniquely
associated to a leaf of T and there is an edge (u, v) ∈ E if and only if
dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum of the weights of
the edges on the unique path PT (u, v) from u to v in T . Understanding
which graph classes lie inside and which ones outside the PCG class is an
important issue. Despite numerous efforts, a complete characterization
of the PCG class is not known yet. In this paper we propose a new proof
technique that allows us to show that some interesting classes of graphs
have empty intersection with PCG. We demonstrate our technique by
showing many graph classes that do not lie in PCG. As a side effect, we
show a not pairwise compatibility planar graph with 8 nodes (i.e. C2

8),
so improving the previously known result concerning the smallest planar
graph known not to be PCG.

Keywords: Phylogenetic tree reconstruction problem
Pairwise Compatibility Graphs (PCGs) · PCG recognition problem

1 Introduction

Graphs we deal with in this paper are motivated by a fundamental problem in
computational biology, that is the reconstruction of ancestral relationships. It
is known that the evolutionary history of a set of organisms is represented by
a phylogenetic tree, i.e. a tree where leaves represent distinct known taxa while
internal nodes are possible ancestors that might have led through evolution to
this set of taxa. The edges of the tree are weighted in order to represent a kind
of evolutionary distance among species. Given a set of taxa, the phylogenetic
tree reconstruction problem consists in finding the “best” phylogenetic tree that

Partially supported by Sapienza University of Rome projects “Graph Algorithms for
Phylogeny: a promising approach” and “Combinatorial structures and algorithms for
problems in co-phylogeny”.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 39–51, 2018.
https://doi.org/10.1007/978-3-319-94667-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_4&domain=pdf

40 P. Baiocchi et al.

explains the given data. Since it is not completely clear what “best” means, the
performance of the reconstruction algorithms is usually evaluated experimen-
tally by comparing the tree produced by the algorithm with those partial sub-
trees that are unanimously recognized as “sure” by biologists. However, the tree
reconstruction problem is proved to be NP-hard under many criteria of optimal-
ity, moreover real phylogenetic trees are usually huge, so testing these heuristics
on real data is in general very difficult. This is the reason why it is common to
exploit sample techniques, extracting relatively small subsets of taxa from large
phylogenetic trees, according to some biologically-motivated constraints, and to
test the reconstruction algorithms only on the smaller subtrees induced by the
sample. The underlying idea is that the behavior of the algorithm on the whole
tree will be more or less the same as on the sample. It has been observed that
using, in the sample, very close or very distant taxa can create problems for
phylogeny reconstruction algorithms [8] so, in selecting a sample from the leaves
of the tree, the constraint of keeping the distance between any two leaves in the
sample between two given positive integers dmin and dmax is used. This moti-
vates the introduction of pairwise compatibility graphs (PCG). Indeed, given a
phylogenetic tree T and integers dmin, dmax, we can associate a graph G, called
the pairwise compatibility graph of T , whose nodes are the leaves of T and for
which there is an edge between two nodes if the corresponding leaves in T are
at a weighted distance within the interval [dmin, dmax].

From a more theoretical point of view, we highlight that the problem of sam-
pling a set of m leaves from a weighted tree T , such that their distance is within
some interval [dmin, dmax], reduces to selecting a clique of size m uniformly at
random from the associated pairwise compatibility graph. As the sampling prob-
lem can be solved in polynomial time on PCGs [9], it follows that the max clique
problem is solved in polynomial time on this class of graphs, if the edge-weighted
tree T and the two values dmin, dmax are known or can be provided in polynomial
time.

The previous reasonings motivate the interest of researchers in the so called
PCG recognition problem, consisting in understanding whether, given a graph G,
it is possible to determine an edge-weighted tree T and two integers dmin, dmax

such that G is the associated pairwise compatibility graph; in this case G can
be briefly denoted as PCG(T, dmin, dmax).

Figure 1(a) depicts a graph that is PCG(T, 4, 5), where T is shown in
Fig. 1(b). In general, T is not unique; here T is a caterpillar, i.e. a tree con-
sisting of a central path, called spine, and nodes directly connected to that path.
Due to their simple structure, caterpillars are the most used witness trees to
show that a graph is PCG. However, it has been proven that there are some
PCGs for which it is not possible to find a caterpillar as witness tree [4].

Due to the flexibility afforded in the construction of instances (i.e. choice of
tree topology and values for dmin and dmax), when PCGs were introduced, it was
also conjectured that all graphs are PCGs [9]. This conjecture has been refuted by
proving the existence of some graphs not belonging to PCG. Namely, Yanhaona
et al. [12] show a bipartite not PCG with 15 nodes. Mehnaz and Rahman [10]

Graphs that Are Not Pairwise Compatible: A New Proof Technique 41

�

�

�

�

a

d

b

c
� � � �

a d b c

� �

2 1 1 2

2
�

�

�

�

a

d

b

c

.c.b.a

Fig. 1. a. A graph G. b. An edge-weighted caterpillar T such that G = PCG(T, 4, 5). c.
G where the PCG-coloring induced by triple T, 4, 5 is highlighted. (Color figure online)

generalize the technique in [12] to provide a class of bipartite graphs that are not
PCGs. More recently, Durocher et al. [7] prove that there exists a not bipartite
graph with 8 nodes that is not PCG; this is the smallest not planar graph that
is not pairwise compatibility, since all graphs with at most 7 nodes are PCGs
[4]. The authors of [7] provide also an example of a planar graph with 20 nodes
that is not PCG. Moreover, it holds that, if a graph H is not a PCG, then every
graph admitting H as an induced subgraph is also not a PCG [5]. Finally, a
graph is not PCG if its complement has two ‘far’ induced subgraphs which are
either a chordless cycle of at least four nodes or the complement of a cycle of
length at least 5; two induced subgraphs are ‘far’ if they are both node disjoint
and there is no edge connecting them [14].

From the other side, many graph classes have been proved to be in PCG,
such as cliques and trees, cycles, single chord cycles, cacti, tree power graphs
[12,13], interval graphs [2], triangle-free outerplanar 3-graphs [11] and Dilworth
2 graphs [6].

However, despite these results, the exact boundary of the PCG class remains
unclear. In this paper, we move a concrete step in the direction of searching new
graph classes that are not PCGs. To this aim, in Sect. 2 we introduce a new
proof technique that allows us to show that some interesting classes have empty
intersection with PCG. In particular, in Sect. 3 we show in detail the application
of this technique on the class of graphs constructed as the square of a cycle.
We prove that, for every n ≥ 8, C2

n is not a PCG. Moreover, we show that by
deleting any node from C2

n we get a PCG, thus proving that it does not contain
any induced subgraph that is not PCG, i.e. we prove that C2

n is a minimal graph
that is not PCG.

As a side effect, we prove that there exists also an 8 node planar graph that is
not PCG, i.e. C2

8 , so improving the known result of a not pairwise compatibility
planar graph with 20 nodes.

Finally, in Sect. 4, we present two other classes of graphs, obtained by modi-
fying cycle graph in different ways, and we show that they are not PCGs through
the application of our technique.

Due to the lack of space, for these latter classes, we only state the results
referring the reader to [1] for the proofs’ details.

42 P. Baiocchi et al.

2 Proof Technique

In this section, after introducing some definitions, we describe our proof tech-
nique, useful to prove that some classes of graphs have empty intersection with
the class of PCGs, formally defined as follows.

Definition 1 [9]. A graph G = (V,E) is a pairwise compatibility graph (PCG)
if there exists a tree T , a weight function assigning a positive real value to each
edge of T , and two non-negative real numbers dmin and dmax with dmin ≤ dmax,
such that each node u ∈ V is uniquely associated to a leaf of T and there is an
edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum
of the weights of the edges on the unique path PT (u, v) from u to v in T .

All trees in this paper are edge-weighted.

Given a graph G = (V,E), we call non-edges of G the edges that do not belong
to the graph. A tri-coloring of G is an edge labeling of the complete graph K|V |
with labels from set {black, red, blue} such that all edges of K|V | that are in G
are labeled black, while all the other edges of K|V | (i.e. the non-edges of G) are
labeled either red or blue. A tri-coloring is called a partial tri-coloring if not all
the non-edges of G are labeled.

Notice that, if G = PCG(T, dmin, dmax), some of its non-edges do not belong
to G because the weights of the corresponding paths on T are strictly larger
than dmax, while some other edges are not in G because the weights of the
corresponding paths on T are strictly smaller than dmin. This motivates the
following definition.

Definition 2. Given a graph G = PCG(T, dmin, dmax), we call its PCG-
coloring the tri-coloring C of G such that:

– (u, v) is red in C if dT (u, v) < dmin,
– (u, v) is black in C if dmin ≤ dT (u, v) ≤ dmax,
– (u, v) is blue in C if dT (u, v) > dmax.

In such a case, we will say that triple (T, dmin, dmax) induces the PCG-
coloring C.

In order to read the figures even in gray scale, we draw red edges as red-dotted
and blue edges as blue-dashed in all the figures.

In Fig. 1(c) we highlight the PCG-coloring induced by the triple (T, 4, 5)
where T is the tree in Fig. 1(b).

The following definition formalizes that not all tri-colorings are PCG-
colorings.

Definition 3. A tri-coloring C (either partial or not) of a graph G is called a
forbidden PCG-coloring if no triple (T, dmin, dmax) inducing C exists.

Graphs that Are Not Pairwise Compatible: A New Proof Technique 43

Observe that a graph is PCG if and only if there exists a tri-coloring C that
is a PCG-coloring for G. Besides, any induced subgraph H of a given G =
PCG(T, dmin, dmax) is also PCG, indeed H = PCG(T ′, dmin, dmax), where T ′

is the subtree induced by the leaves corresponding to the nodes of H. Moreover,
H inherits the PCG-coloring induced by triple (T, dmin, dmax) from G. Thus, if
we were able to prove that H, although PCG, inherits a forbidden PCG-coloring
from a tri-coloring C of G, then we would show that C cannot be a PCG-coloring
for G in any way. This is the core of our proof technique:

Given a graph G that we want to prove not to be PCG:

1. list some forbidden PCG-colorings of particular graphs that are induced sub-
graphs of G;

2. show that each tri-coloring of G induces a forbidden PCG-coloring in at least
an induced subgraph;

3. conclude that G is not PCG, since all its tri-colorings are proved to be for-
bidden.

3 The Square of a Cycle

In this section we exploit the proof technique just described on a particular class
of graphs, i.e. the square of a cycle; we recall that the square G2 of a graph G
is a new graph whose node set coincides with the node set of G, and an edge
(u, v) is in G2 if either (u, v) is in G or (u,w) and (w, v) are both in G for some
node w.

3.1 Forbidden Tri-Colorings of Some Subgraphs of C2
n

In agreement with the proof technique described in Sect. 2, as a first step, here
we highlight forbidden partial tri-colorings of paths Pn, n ≥ 3 and cycles Cn,
n ≥ 4. Moreover, we prove forbidden colorings and partial forbidden colorings
(for short f-c) for some graphs that are induced subgraphs of C2

n (see Figs. 2
and 3).

Given a graph G = (V,E) and a subset S ⊆ V , we denote by G[S] the
subgraph of G induced by nodes in S.

A subtree induced by a set of leaves of T is the minimal subtree of T which
contains those leaves. In particular, we denote by Tuvw the subtree of a tree
induced by three leaves u, v and w.

The following lemma from [12] will be largely used:

Lemma 1. Let T be a tree, and u, v and w be three leaves of T such that
dT (u, v) ≥ max{dT (u,w), dT (v, w)}. Let x be a leaf of T other than u, v, w.
Then, dT (w, x) ≤ max{dT (u, x), dT (v, x)}.

It is known that Pm is a PCG [13]; the following lemma gives some constraints
to the associated PCG-coloring.

44 P. Baiocchi et al.

Lemma 2. Let Pm, m ≥ 4, be path v1, . . . , vm and let C be one of its PCG-
colorings. If all non-edges (v1, vi), 3 ≤ i ≤ m − 1, and (v2, vm) are colored with
blue in C, then also non-edge (v1, vm) is colored with blue in C.
Proof. Let C be the PCG-coloring of Pm induced by triple (T, dmin, dmax). We
apply Lemma 1 iteratively.

First consider nodes v1, v2, v3 and v4 as u, w, v and x: PT (v1, v3) is eas-
ily the largest path in Tv1v3v2 ; then dT (v2, v4) ≤ max{dT (v1, v4), dT (v3, v4)} =
dT (v1, v4). This is because (v1, v4) is a blue non-edge by hypothesis while (v3, v4)
is an edge.

Now repeat the reasoning with nodes v1, v2, vi and vi+1, 4 ≤ i < m,
as u, w, v and x, exploiting that at the previous step we have obtained
that dT (v2, vi) ≤ dT (v1, vi): in Tv1viv2 , PT (v1, vi) is the largest path and so
dT (v2, vi+1) ≤ max{dT (v1, vi+1), dT (vi, vi+1) = dT (v1, vi+1) since (v1, vi+1) is a
blue non-edge while (vi, vi+1) is an edge.

Posing i = m − 1, we get that dT (v2, vm) ≤ dT (v1, vm); since non-edge
(v2, vm) is blue by hypothesis, (v1, vm) is blue, too. ��

Given a graph, in order to ease the exposition, we call 2-non-edge a non-edge
between nodes that are at distance 2 in the graph.

Lemma 3. Let Pn, n ≥ 3, be a path. Any PCG-coloring of Pn that has at least
one red non-edge but no red 2-non-edges is forbidden.

Proof. If n = 3, there is a unique non-edge and it is a 2-non-edge; so, the claim
trivially follows.

So, let it be n ≥ 4 and consider a triple (T, dmin, dmax) inducing a PCG-
coloring with at least a red non-edge. Among all red non-edges, let (vi, vj) –
i < j– be the one such that j−i is minimum. Assume by contradiction, j−i > 2.
Consider now the subpath P ′ induced by vi, . . . , vj . P ′ has at least 4 nodes and
inherits the PCG-coloring from Pn; in it, there is only a red non-edge (i.e. the
non-edge connecting vi and vj). P ′ satisfies the hypothesis of Lemma 2, hence
(vi, vj) must be blue, against the hypothesis that it is red. ��
Lemma 4. Let Cn, n ≥ 4, be a cycle. Then any PCG-coloring of Cn that does
not have red 2-non-edges is forbidden.

Proof. Let Cn = PCG(T, dmin, dmax), n ≥ 4; from [13], at least a non-edge (u, v)
such that dT (u, v) < dmin. In our setting, this means that every PCG-coloring
of Cn, n ≥ 4, has at least one red non-edge. By contradiction, w.l.o.g. assume
that this non-edge is (v1, vi), with 4 ≤ i < n − 1. We apply Lemma 3 on the
induced Pi and the claim follows. ��
Lemma 5. The tri-colorings in Fig. 2 are forbidden PCG-colorings.

Proof. We prove separately that each tri-coloring is forbidden.

Graphs that Are Not Pairwise Compatible: A New Proof Technique 45

�

�

�

�

a

b c

d

�

�

�

�

a

b c

d
�

�

�

�

a

b c

d

� �

�

�

a

b

d

c

a. f-c(2K2)a b. f-c(2K2)b c. f-c(P4) d. f-c(K3 ∪ K1)

Fig. 2. Forbidden tri-colorings of some graphs. (Color figure online)

Forbidden Tri-Coloring f-c(2K2)a:
We obtain that the tri-coloring in Fig. 2(a) is forbidden by rephrasing

Lemma 6 of [7] with our nomenclature.
The other proofs are all by contradiction and proceed as follows: for each

tri-coloring in Fig. 2, we assume that it is a feasible PCG-coloring induced by a
triple (T, dmin, dmax) and show that this assumption contradicts Lemma 1.

Forbidden Tri-Coloring f-c(2K2)b:
From the tri-coloring in Fig. 2(b) we have that

dT (b, c) < dmin ≤ dT (a, b) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d it must be:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring it holds
that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden Tri-Coloring f-c(P4):
From the tri-coloring in Fig. 2(c) we have that

dT (a, b), dT (b, c) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d we have:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring it holds
that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden Tri-Coloring f-c(K3 ∪ K1):
From the tri-coloring in Fig. 2(d) we have that

dT (a, d), dT (a, c) < dmin ≤ dT (c, d).

Thus PT (c, d) is the largest path in Ta,c,d. By Lemma 1, for leaf b it must
be: dT (a, b) ≤ max {dT (c, b), dT (d, b)} while from the tri-coloring it holds that
dT (c, b), dT (d, b) < dmax ≤ dT (a, b), a contradiction. ��
Lemma 6. The partial tri-coloring in Fig. 3 is a forbidden PCG-coloring.

46 P. Baiocchi et al.

� �

�

�

� �

a b

c

d

e f

f-c(C)

Fig. 3. A forbidden coloring of a graph that is an induced subgraph of C2
n, with n ≥ 10.

(Color figure online)

Proof. Using the result of Lemma 5, we again prove that each tri-coloring is
forbidden by contradiction.

From the tri-coloring in Fig. 3, extract the inherited PCG-colorings for the
two subgraphs G[a, c, d, e] and G[b, c, d, f]. To avoid f-c(K3 ∪K1), the non-edges
(a, e) and (b, f) are both blue. Now we distinguish the two possible cases for the
color of the non-edge (a, f):

(a, f) is a red non-edge: consider the PCG-coloring for subgraph G[a, b, e, f].
To avoid f-c(2K2)b, non-edge (b, e) has to be blue. This implies that the
PCG-coloring for path G[a, b, d, e, f] has all the 2-non-edges with color blue
while the non-edge (a, f) is red. This is in contradiction with Lemma3.

(a, f) is a blue non-edge: in this case consider Lemma 1 applied to tree Ta,d,f .
We distinguish the three cases for the largest path among PT (a, d), PT (a, f)
and PT (d, f):
the largest path is PT (a, d) : for leaf b it must be:

dT (f, b) ≤ max {dT (a, b), dT (d, b)}

while from the tri-coloring dT (a, b), dT (d, b) ≤ dmax < dT (f, b).
the largest path is PT (a, f) : for leaf c it must be:

dT (d, c) ≤ max {dT (a, c), dT (f, c)}

while from the tri-coloring dT (a, c), dT (f, c) < dmin ≤ dT (d, c).
the largest path is PT (d, f) : for leaf e it must be:

dT (a, c) ≤ max {dT (d, c), dT (f, c)}

while from the tri-coloring dT (d, c), dT (f, c) ≤ dmax < dT (a, c).
In all the three cases, a contradiction arises. ��

Graphs that Are Not Pairwise Compatible: A New Proof Technique 47

3.2 Graph C2
n , n ≥ 8, Is Not PCG

We recall that all graphs with at most 7 nodes are PCG [4] and that cycles are
PCGs [12], so we focus on n ≥ 8.

For easing the proofs, the nodes of C2
n will be indexed with values in the

finite group Zn of the integers modulo n, i.e. V (C2
n) = {v0, v1, . . . , vn−1}. As a

consequence, for each pair vi, vj , the edge (vi, vj) belongs to C2
n if and only if

j − i ∈ {1, 2, n − 1, n − 2}.
Before proving that C2

n is not PCG, we need some ad-hoc forbidden PCG-
colorings for C2

n. Due to the lack of space, we omit the proof, that can be found
in [1].

Given a PCG-coloring of C2
n, we call red-node a node v of C2

n if all the non-
edges incident on v are of red color.

Lemma 7. Let C2
n, n ≥ 8, be a square cycle. Then:

1. Any PCG-coloring of C2
n where all the 2-non-edges are blue is forbidden.

2. Any PCG-coloring of C2
n having two red non-edges from a common non red-

node to two adjacent nodes is forbidden.
3. Any PCG-coloring of C2

n having two adjacent red-nodes is forbidden.

Now we show other two ad-hoc forbidden PCG-colorings that hold only for
n ≥ 10 because in the proof we exploit f − c(C). Hence the two cases n = 8 and
n = 9 have to be handled separately. Due to the lack of space, their proof are
omitted in this extended abstract and can be found in [1].

Lemma 8. Let C2
n, n ≥ 10, be a square cycle. Then:

1. Any PCG-coloring of C2
n with a triple of nodes (vi, vi+4, vi+8), 0 ≤ i < n,

such that vi+8 is the only non red-node (in this triple) is forbidden.
2. Any PCG-coloring of C2

n with a triple of nodes (vi−6, vi−3, vi), 0 ≤ i < n,
such that vi−6 is the only non red-node (in this triple) is forbidden.

We are now ready to prove that C2
n is not PCG.

Theorem 1. Graph C2
n, n ≥ 10, is not a PCG.

Proof. The proof is by contradiction. Let (vi, vi+4) be a red 2-non-edge in C2
n

(such a non-edge must exist by Lemma 7.1). Consider now the induced path
G[vi, vi+1, vi+3, vi+4]. In this path we have the red non-edge (vi, vi+4) thus, due
to f − c(P4), one of the non-edges (vi, vi+3) and (vi+1, vi+4) is red, too and
at least one of the nodes vi and vi+4 is the end-point of two red non-edges
toward adjacent nodes. Hence one of these nodes is a red-node (see Lemma 7.2).
Reindexing the nodes of C2

n, this red-node is node v0.
Consider now the induced subgraph G[vn−3, vn−1, v0, v1, v2, v4]. In this sub-

graph the non-edges (vn−3, v0) and (v0, v4) are red and, due to f − c(C), at least
one of the non-edges (vn−3, v1) and (v1, v4) is red. We consider two cases:

48 P. Baiocchi et al.

non-edge (v1, v4) is red
The two non-edges (v0, v4) and (v1, v4) are red so, by Lemma 7.2, node v4 is

a red-node. Considering the triple of nodes (v0, v4, v8), by Lemma 8.1, node v8
is a red-node, too. We can iterate this reasoning on the triple (v4, v8, v12) and so
on, and finally obtaining that V ∗ = {vi | i ≡ 0 (mod 4)} is a set of red-nodes
in the PCG-coloring. Moreover each node vi, with i
≡ 0 (mod 4), is adjacent
to some node in V ∗ thus, by Lemma 7.3, n is a multiple of 4 (and n ≥ 12) and
set V ∗ contains all the red-nodes of the PCG-coloring. Consider now the cycle
induced by all the nodes having an odd index, i.e. G[v1, v3, v5, . . . , vn−1]. This
cycle is n

2 ≥ 6 long thus, by Lemma 4, it contains at least a red non-edge. Let
(vi, vj) be one of these red non-edges. Node vj is necessarily adjacent to a node
in V ∗, hence there are two red non-edges from adjacent nodes incident toward vi
in C2

n implying that vi is a red-node (by Lemma 7.2). This contradicts the fact
that vi
∈ V ∗.

non-edge (vn−3, v1) is red
The proof is analogous to the previous one: due to the two red non-edges

(vn−3, v0) and (vn−3, v1), by Lemma 7.2, node vn−3 is a red-node. Considering
the triple of nodes (vn−6, vn−3, v0) in Lemma 8.2, node vn−6 is a red-node, too.
We can iterate this reasoning on the triple (vn−9, vn−6, vn−3) and so on finally
obtaining that V ∗ = {vi | i ≡ 0 (mod 3)} is a set of red-nodes in the PCG-
coloring. Moreover, each node vi, with i
≡ 0 (mod 3), is adjacent to some node
in V ∗ so, due to Lemma 7.3, n is a multiple of 3 (and n ≥ 12) and set V ∗ contains
all the red-nodes of the PCG-coloring. Consider now the cycle induced by all the
nodes that are not in V ∗, i.e. G[1, 2, 4, . . . , n− 2, n− 1]. This cycle has length at
least 8 and, by Lemma 4, there is at least a red non-edge connecting two nodes
of the cycle. Let (vi, vj) be one of these red non-edges. Node vj is adjacent to a
node in V ∗, so vi is the end-point of two red non-edges toward adjacent nodes
in C2

n as a consequence vi is a red-node (by Lemma 7.2). This contradicts the
fact that vi
∈ V ∗.

Theorem 2. Graph C2
8 is not a PCG.

Corollary 1. Graph C2
8 is the smallest planar graph that is not PCG.

Theorem 3. Graph C2
9 is not a PCG.

3.3 Graph C2
n , n ≥ 8, Is a Minimal Graph that Is Not PCG

Recall that if a graph contains as induced subgraph a not PCG, then it is not
PCG, too. We call minimal not PCG a graph that is not PCG and it does not
contain any induced proper subgraph that is not PCG. (It is worth to be noted
that PCG is closed under taking induced subgraphs.)

In this subsection we prove that C2
n is a minimal not PCG. The proof is

constructive and it provides an edge-weighted tree T and two values dmin and
dmax such that PCG(T, dmin, dmax) = C2

n \ {x} for any node x of C2
n.

Theorem 4. C2
n, n ≥ 8, is a minimal not PCG.

Graphs that Are Not Pairwise Compatible: A New Proof Technique 49

Proof. Consider the graph C2
n, n ≥ 8. To prove the theorem we remove from

the graph a node x and prove that the new graph G′ is PCG. Without loss of
generality assume that x = vn. We construct a tree T such that G′ = PCG(T ,
2n − 2, 2n + 4). We consider the following two cases depending on whether n is
an even or an odd number.

– n is an odd number. Tree T is a caterpillar with n−1 internal nodes we denote
as x1, x2, . . . , xn−1

2 −1, y, xn−1
2

, . . . , xn−2. The internal nodes induce a path
from x1 to xn−2 and edges (xi, xi+1), 1 ≤ i < (n − 1)/2 − 1 and (n − 1)/2 ≤
i < n − 2, have weight 2. Edges (xn−1

2 −1, y) and (y, xn−1
2

) have weight 1.
Leaves vi, 1 ≤ i ≤ n − 2, are connected to xi with edges of weight n. Finally
leaf vn−1 is connected to the node y with an edge of weight 3. See Fig. 4.a

– n is an even number. Tree T is a caterpillar with n − 1 internal nodes we
denote as x1, x2, . . . , xn−1. The internal nodes x1, . . . , xn−1 induce a path
and edges (xi, xi+1), 1 ≤ i < n − 1, have weight 2.

Leaves vi, 1 ≤ i < n, are connected to xi with edges of weight n. Finally vn−1 is
connected to xn−2

2
with an edge of weight 3. See Fig. 4(b). ��

v1

x1

v2

x2

vn−1
2 −1

xn−1
2 −1 y

vn−1

vn−1
2

xn−1
2

vn−2

xn−2

2 2 1 1
n n n n n

3

a.

v1

x1

v2

x2

vn−2
2 −1

xn−2
2 −1

xn−2
2

vn−1

vn−2
2 +1

xn−2
2 +1

vn−2

xn−2

2 2
1 1

n n n n n

3

b.

Fig. 4. Caterpillars for the proof of Theorem 4: a. n odd; b. n even.

4 Other Results Due to the Application of Our Technique

In this section we get two further results applying again the technique introduced
in Sect. 2. Due to the lack of space, we omit the proofs, that can although be
found in [1]. The graph classes we consider are obtained by operating in different
ways on cycles and are very interesting in this context because both are connected
to some open problems.

4.1 The Wheel

Wheels Wn+1 are n length cycles Cn whose nodes are all connected with a
universal node.

50 P. Baiocchi et al.

Wheel W6+1 is PCG and it is the only graph with 7 nodes whose witness tree
is not a caterpillar [4]. Moreover, it has been proven in [3] that also the larger
wheels up to W10+1 do not have a caterpillar as a witness tree but, up to now,
no other witness trees are known for these graphs and, in general, it has been
left open to understand whether wheels with at least 8 nodes are PCGs or not.

Using our technique, we prove the following theorem.

Theorem 5. Wheel W7+1 is a PCG while wheels Wn+1, n ≥ 8, are minimal
not PCGs.

4.2 The Strong Product of a Cycle and P2

Given two graphs G and H, their strong product G�H is a graph whose node
set is the Cartesian product of the node sets of the two graphs, and there is an
edge between nodes (u, v) and (u′, v′) if and only if either u = u′ and (v, v′) is
an edge of H or v = v′ and (u, u′) is an edge of G.

We recall that C4�P2 has already been proved not to be PCG [7] but nothing
is known for n > 4. Recalling that all graphs with 7 nodes or less are PCGs, our
result is the following.

Theorem 6. The graphs obtained as strong product Cn�P2, n ≥ 4 are minimal
not PCGs.

5 Conclusions

In this paper we proposed a new proof technique to show that graphs are not
PCGs. As an example, we applied it to the square of cycles, to wheels and to
Cn�P2. As a side effect, we show that the smallest planar graph not to be PCG
has not 20 nodes, as previously known, but only 8.

Even if all these classes are obtained by operating on cycles, we think that
this technique can be potentially used to position outside PCG many other graph
classes no related to cycles. This represents an important step toward the solution
of the very general open problem consisting in demarcating the boundary of the
PCG class.

References

1. Baiocchi, P., Calamoneri, T., Monti, A., Petreschi, R.: Some classes of graphs that
are not PCGs. arXiv:1707.07436 [cs.DM]

2. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers.
In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 479–491. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78773-0 42

3. Calamoneri, T., Frangioni, A., Sinaimeri, B.: Pairwise compatibility graphs of
caterpillars. Comput. J. 57(11), 1616–1623 (2014)

http://arxiv.org/abs/1707.07436
https://doi.org/10.1007/978-3-540-78773-0_42
https://doi.org/10.1007/978-3-540-78773-0_42

Graphs that Are Not Pairwise Compatible: A New Proof Technique 51

4. Calamoneri, T., Frascaria, D., Sinaimeri, B.: All graphs with at most seven vertices
are pairwise compatibility graphs. Comput. J. 56(7), 882–886 (2013)

5. Calamoneri, T., Sinaimeri, B.: On pairwise compatibility graphs: a survey. SIAM
Rev. 58(3), 445–460 (2016)

6. Calamoneri, T., Petreschi, R.: On pairwise compatibility graphs having Dilworth
number two. Theoret. Comput. Sci. 524, 34–40 (2014)

7. Durocher, S., Mondal, D., Rahman, Md.S.: On graphs that are not PCGs. Theoret.
Comput. Sci. 571, 78–87 (2015)

8. Felsenstein, J.: Cases in which parsimony or compatibility methods will be posi-
tively misleading. Syst. Zool. 27, 401–410 (1978)

9. Kearney, P., Munro, J.I., Phillips, D.: Efficient generation of uniform samples from
phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol.
2812, pp. 177–189. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39763-2 14

10. Mehnaz, S., Rahman, M.S.: Pairwise compatibility graphs revisited. In: Proceed-
ings of the International Conference on Informatics, Electronics Vision (ICIEV)
(2013)

11. Salma, S.A., Rahman, Md.S.: Triangle-free outerplanar 3-graphs are pairwise com-
patibility graphs. J. Graph Algorithms Appl. 17(2), 81–102 (2013)

12. Yanhaona, M.N., Bayzid, Md.S., Rahman, Md.S.: Discovering pairwise compati-
bility graphs. Discrete Math. Algorithms Appl. 2(4), 607–623 (2010)

13. Yanhaona, M.N., Hossain, K.S.M.T., Rahman, Md.S.: Pairwise compatibility
graphs. J. Appl. Math. Comput. 30, 479–503 (2009)

14. Hossain, Md.I., Salma, S.A., Rahman, Md.S., Mondal, D.: A necessary condition
and a sufficient condition for pairwise compatibility graphs. J. Graph Algorithms
Appl. 21(3), 341–352 (2017)

https://doi.org/10.1007/978-3-540-39763-2_14
https://doi.org/10.1007/978-3-540-39763-2_14

Efficient Unbounded Fault-Tolerant
Aggregate Signatures Using Nested

Cover-Free Families

Thais Bardini Idalino(B) and Lucia Moura

University of Ottawa, Ottawa, Canada
{tbardini,lmoura}@uottawa.ca

Abstract. Aggregate signatures are used to create one short proof of
authenticity and integrity from a set of digital signatures. However, one
invalid signature in the set invalidates the entire aggregate, giving no
information on which signatures are valid. Hartung et al. (PKC 2016)
proposed a fault-tolerant aggregate signature scheme based on combina-
torial group testing. Given a bound d on the number of invalid signatures,
the scheme can determine which signatures are invalid, and guarantees a
moderate increase on the size of the aggregate signature when there is an
upper bound on the number n of signatures to be aggregated. However,
for the case of unbounded n the constructions provided had constant
compression ratio, i.e. the signature size grew linearly with n. In this
paper we propose a solution to the unbounded scheme with increasing
compression ratio for every d. In particular, for d = 1 the compression
ratio is the best possible and meets the information theoretical bound.

Keywords: Aggregate signature · Fault-tolerance · Cover-free family
Digital signature · Combinatorial group testing

1 Introduction

Aggregate signature schemes allow us to combine a set of signatures into a single
signature, which can be used as proof of integrity and authenticity of a possibly
large set of data. This solution is useful specially for applications that manage a
large quantity of data and digital signatures, since it can save on communication
and storage, as well as improve the signature verification process. A few examples
of such applications are outsourced databases [9], sensor networks [6], secure
logging [7], certificate chains [1], vehicular communication [12], among others.

The verification of an aggregate signature outputs a positive result only if the
entire set of signatures is valid. If we have at least one faulty signature in the set,
the proof of integrity and authenticity of all the data involved is invalidated. This
happens because when a set of signatures is aggregated into one, this operation
does not preserve enough information in order to identify the exact set of invalid
signatures. In order to solve this problem, Hartung et al. [2] propose a fault-
tolerant scheme using d-cover-free families (d-CFFs). This scheme generates a
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 52–64, 2018.
https://doi.org/10.1007/978-3-319-94667-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_5&domain=pdf

Efficient Unbounded Fault-Tolerant Aggregate Signatures 53

more expressive aggregate signature, that can tolerate up to d invalid signatures
and identify all the valid ones.

Although the use of cover-free families is a practical solution for fault-
tolerance in aggregated signatures, it sets a bound on the number of signatures n
that can be aggregated. This number is not always known in advance; for exam-
ple, secure logging applications can not always predict how many log entries will
be saved, and outsourced databases not always have control on the amount of
data that will be inserted. While a traditional aggregate scheme does not set such
a bound, it also does not allow the identification of invalid signatures. This raises
the need of an unbounded fault-tolerant aggregate scheme. In order to solve this
problem, the authors in [2] present an unbounded scheme based on a mono-
tone sequence of d-cover-free families. In an unbounded scheme, the concept of
compression ratio is important. Consider the total number of signatures n and
the size of the aggregate signature s(n), the compression ratio is equals to ρ(n)
iff n

s(n) is Θ(ρ(n)). The explicit constructions of monotone families given in [2]
yield aggregate signatures with length linear in n and thus constant compression
ratio. This makes the scheme impractical for the unbounded case, even though
the constant compression ratio can be chosen arbitrarily small. Intuitively, an
increasing ratio is preferable since it implies a small aggregated signature. The
authors pose as an open problem to find a better monotone family in order to
achieve a more efficient unbounded scheme.

Contributions: In this work, we approach unbounded aggregate signatures by
defining a more flexible sequence of d−CFFs, which we call a nested family,
instead of monotone family defined in [2]. We show how to achieve unbounded
aggregation in a general way by using nested families and give the correspond-
ing aggregation algorithm. We provide explicit constructions of such families
that yield unbounded aggregate schemes with better compression ratio than the
constant ones previously known [2]. We give such constructions for general d
(Theorems 9 and 11) and specific constructions for d = 1 (Theorem 7) and
d = 2 (Theorem 12), which here can have a better compression ratio.

2 Background on Fault-Tolerant Schemes

In this section, we present the fault-tolerant aggregate signature scheme by
Hartung et al. [2]. We summarize the concepts introduced by the authors [2,
Sects. 1, 3 and 4], including the necessary formalization to contextualize our
construction. The reader should refer to the original work [2] for a more detailed
description. We also present background and recursive constructions of cover-free
families.

2.1 Fault-Tolerant Aggregate Signature

Let {σ1, . . . , σn} be a set of n signatures and let C = {(pk1,m1), . . . , (pkn,mn)}
be their corresponding pairs of public key and message. A traditional aggregate

54 T. Bardini Idalino and L. Moura

signature scheme consists of combining all n signatures together in one aggregate
signature σ, which can be as small as a single digital signature [1]. By verifying
only σ we can ensure the integrity and authenticity of the entire set C. If all
signatures {σ1, . . . , σn} are correctly formed from C, the signature verification
outputs 1, but if at least one σi does not match its corresponding pair (pki,mi),
the verification outputs 0. In more details, Boneh et al. [1] define an aggregate
signature scheme with four algorithms [1,2]:

1. KeyGen(1κ) takes security parameter κ and creates a key pair (pk, sk).
2. Sign(sk,m) creates a signature for message m using secret key sk.
3. Agg(C1, C2, σ1, σ2) takes two multisets of public key and message pairs C1

and C2 and their corresponding signatures σ1 and σ2, and outputs an aggre-
gate signature σ that certifies the integrity and authenticity of C = C1 ∪ C2.

4. Verify(C, σ) takes a multiset of public key and message pairs and its aggre-
gate signature σ. Outputs 1 if the signature is valid and 0 otherwise.

The security of the scheme is based on the difficulty of an adversary to forge
a signature of a chosen message after performing q signature queries to an oracle.
More specifically, the aggregate scheme is (t, q, ε)-secure if there is no adversary
A capable of winning the game with probability at least ε, performing at most
q queries to the oracle, and running in time at most t [1,2].

In order to provide fault-tolerance, the signature verification needs to output
a list of valid signatures instead of just 0 or 1, so the scheme should provide list
verification instead of boolean verification. To describe this scheme, Hartung
et al. [2] use the concepts of “claim” c = (pk,m) as a tuple of message m and
public key pk, and “claim sequence” C as a sequence of claims. A claim sequence
requires an order among the claims, so each of its position i may contain one
claim or a placeholder ⊥. Two claim sequences C1, C2 are defined as exclusively
mergeable if for all i, C1[i] = ⊥ or C2[i] = ⊥, and for a C1 and C2 of length k
and l, with k ≥ l, C1 � C2 = (c1, . . . , ck) is defined by

ci =

{
C1[i], if C2[i] = ⊥, C2[i] = C1[i] or i > l

C2[i], otherwise.

Let C = (c1, . . . , cn) be a claim sequence and b ∈ {0, 1}n be a bit sequence
that specifies a selection of indexes, then C[b] denotes a subsequence of C with
claims cj for all j s.t. b[j] = 1. For more details, see Hartung et al. [2, Sect. 3].
The definition of list verification is given below.

Definition 1. [Hartung et al. [2]] An aggregate signature scheme with list ver-
ification consists of four algorithms Σ:

1. KeyGen(1κ) takes security parameter κ and creates a key pair (pk, sk).
2. Sign(sk,m) creates a signature for message m using secret key sk.
3. Agg(C1, C2, τ1, τ2) takes two exclusively mergeable claim sequences C1 and

C2 and their corresponding signatures τ1 and τ2, and outputs an aggregate
signature τ that certifies the integrity and authenticity of the sequence C =
C1 � C2.

Efficient Unbounded Fault-Tolerant Aggregate Signatures 55

4. Verify(C, τ) takes a claim sequence C and its aggregate signature τ as input.
Outputs the set of valid claims, which can be all the elements in C or even
the empty set.

Consider a claim sequence C with n claims, their corresponding signatures
σ1, . . . , σn with at most d invalid ones, and the aggregate signature τ . The aggre-
gate signature scheme Σ is tolerant against d errors if Σ.Verify(C, τ) outputs
the set of claims that have valid signatures. Therefore, a d-fault-tolerant aggre-
gate signature scheme is an aggregate signature scheme with list verification with
a tolerance against d errors. From now on we will use σ to represent a standard
aggregate signature, and τ for signatures of a fault-tolerant scheme.

Hartung et al. [2] uses d-CFFs to instantiate a generic fault-tolerant aggregate
signature scheme. A d-CFF is a set system and can be represented by a t × n
incidence binary matrix M (see Sect. 2.2 for more details). Given M and a set
{σ1, . . . , σn} of signatures to be aggregated, each column j represents a signature
σj , and the rows of M indicate which signatures will be aggregated together.
We are able to identify all valid signatures as long as the amount of invalid ones
does not exceed a bound d.

Hartung et al. [2, Sect. 4] define a fault-tolerant aggregate signature scheme
based on an ordinary aggregate signature scheme Σ that supports claims, claim
sequences, and the empty signature λ as input. We denote Mi as row i of matrix
M, so C[Mi] represents the corresponding subsequence of a claim sequence C.
This scheme inherits the security of Σ, with algorithms presented below:

1. KeyGen(1κ) creates a key pair (pk, sk) using KeyGen from Σ and security
parameter κ.

2. Sign(sk,m) receives a secret key and message, and outputs the signature
given by Σ.Sign(sk,m).

3. Agg(C1, C2, τ1, τ2) takes two exclusive mergeable claim sequences C1 and C2

and corresponding signatures τ1 and τ2, and proceeds as follows:
(a) If one or both of the claim sequences Ck (k ∈ {1, 2}) contain only one

claim c, τk is an individual signature σk. We initialize σk as τk and expand
it to a vector as follows, with j equals to the index of c in Ck:

τk[i] =

{
σk, if M[i, j] = 1,
λ, otherwise

for i = 1, . . . t.

(b) Once τ1 and τ2 are both vectors, we aggregate them, position by position,
according to the incidence matrix M:

τ [i] = Σ.Agg(C1[Mi], C2[Mi], τ1[i], τ2[i]).

(c) Output τ , which certifies the integrity and authenticity of the sequence
C = C1 � C2.

4. Verify(C, τ) takes a set of public key and message pairs and the aggre-
gate signature τ , and outputs the set of valid claims. Computes bi =
Σ.Verify(C[Mi], τ [i]) for each 1 ≤ i ≤ t and outputs the set of valid claims
consisting of the union of each C[Mi] such that bi = 1.

56 T. Bardini Idalino and L. Moura

The following theorems are from Hartung et al. [2, Sect. 4] and address the
security and correctness of the scheme. For details regarding their proofs, see [2].

Theorem 1 (Hartung et al. [2]). Let Σ be the aggregate signature scheme
with list verification presented above. If Σ is based on a d-CFF, then it is correct
and tolerant against up to d errors.

Theorem 2 (Hartung et al. [2]). If Σ is a (t, q, ε)-secure aggregate signa-
ture scheme, then the aggregate signature scheme with list verification above is
(t′, q, ε)-secure, with t′ approximately the same as t.

The following example consists of n = 10 signatures aggregated according to
the 1-CFF(5, 10) matrix M, which allows us to identify all valid signatures as
long as we have at most one invalid. For instance, if σ1 is invalid, τ [1] and τ [2]
will fail, but τ [3], τ [4], τ [5] prove the validity of σi, 2 ≤ i ≤ 10.

M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎠ →

τ [1] = Agg(σ1, σ2, σ3, σ4)
τ [2] = Agg(σ1, σ5, σ6, σ7)
τ [3] = Agg(σ2, σ5, σ8, σ9)
τ [4] = Agg(σ3, σ6, σ8, σ10)
τ [5] = Agg(σ4, σ7, σ9, σ10)

The idea of fault tolerance in signature aggregation using CFFs appeared
independently in the master’s thesis of the first author as level-d signature aggre-
gation [3, Chap. 5]. A related application of CFFs to modification tolerant digital
signatures can be found in [4].

2.2 Cover-Free Family Constructions

Cover-free families (CFFs) are combinatorial structures studied in the context of
combinatorial group testing, and frequently used in scenarios where we need to
test a set of n elements to identify up to d invalid ones. We use them to combine
these elements into a few groups, and test the groups instead of each element.

Definition 2. A set system F = (X,B) consists of a set X = {x1, . . . , xt} with
|X| = t, and a collection B = {B1, . . . , Bn} with Bi ⊆ X, 1 ≤ i ≤ n, and |B| = n.
A d-cover-free family, denoted d−CFF(t, n), consists of a set system such that
for any subset Bi0 ∈ B and any other d subsets Bi1 , . . . , Bid ∈ B, we have

Bi0 �
d⋃

j=1

Bij (1)

We can represent F as a t×n binary incidence matrix M by considering the
characteristic vectors of subsets in B as columns of M. More precisely, Mi,j = 1
if xi ∈ Bj , and Mi,j = 0 otherwise. We will interchangeably say that M is
d-CFF when its corresponding set system is d-CFF. Note that if M is d-CFF,
then a matrix obtained by row and column permutations is also d-CFF.

Efficient Unbounded Fault-Tolerant Aggregate Signatures 57

An equivalent definition of d-CFF is based on the existence of permutation
submatrices of dimension d + 1 [8]. A permutation matrix is an n × n binary
matrix with exactly one “1” per row and per column, in other words, it is
obtained by permuting the rows of the identity matrix.

Proposition 1. A matrix M is d-CFF if and only if any set of d + 1 columns
contains a permutation sub-matrix of dimension d + 1.

The next propositions state relationships between sub-matrices with respect
to d-CFF properties. Their proofs follow directly from Definition 2.

Proposition 2. Let M be a matrix and let M′ be a sub-matrix of M formed
by some of its columns. If M is d-CFF, then M′ is also d-CFF.

Proposition 3. Let M be a matrix and let M′ be a sub-matrix of M formed
by some of its rows. If M′ is d-CFF, then M is d-CFF.

When considering d = 1, a 1−CFF allows us to identify up to one invalid
element. For this particular case, there is a construction using Sperner’s theorem
that yields minimum possible number of rows.

Theorem 3 (Sperner [11]). Let B be a collection of subsets of {1, . . . , t} such
that B1
⊆ B2 for all B1, B2 ∈ B. Then |B| ≤ (

t
�t/2�

)
. Moreover, equality holds

when B is the collection of all the �t/2�-subsets of {1, . . . , t}.
Corollary 1. Given n and d = 1, there exists a 1-CFF(t,n) matrix with t =
min{s :

(
s

�s/2�
) ≥ n}.

Proof. Build each column of the matrix from the characteristic vector of a dis-
tinct �t/2�-subset of a t-set. Since this forms a Sperner family of subsets, Prop-
erty (1) for d = 1 holds. �
The value t grows as log2 n as n → ∞, which meets the information theoretical
lower bound, yielding an optimal construction.

Other constructions of CFF exist for larger d; see Zaverucha and Stin-
son [13, Sect. 3.2] for a discussion on how other combinatorial objects yield good
CFF methods depending on the relation of d and n. In particular, Porat and
Rothschild [10] give a construction that yields t = c(d+1)2 log n for a constant c,
which for fixed d is optimal in terms of meeting a lower bound Θ(log n) (see [13,
Theorem 3]). Next we give generalizations of two constructions by Li et al. [5,
Theorems 3.4 and 3.5] that allows us to build larger d−CFFs from smaller ones.

Definition 3 (Kronecker product). Let Ak be an mk ×nk binary matrix, for
k = 1, 2. The product P = A1 ⊗ A2 is a binary matrix such that

P =

⎛
⎜⎝

P1,1 . . . P1,n1

...
...

Pm1,1 . . . Pm1,n1

⎞
⎟⎠ where

Pi,j =

{
A2, if A1i,j = 1
0, otherwise

58 T. Bardini Idalino and L. Moura

Where 0 is the matrix of all zeroes with same dimension as A2. The following
theorem generalizes a construction by Li et al. [5] given for d = 2.

Theorem 4. Let A1 be a d−CFF(t1, n1) and A2 be a d−CFF(t2, n2), then C =
A1 ⊗ A2 is a d−CFF(t1t2, n1n2).

Next we present a construction of d-CFFs based on results by Li et al. [5] for
d = 2. This construction gives a better result than the one from Theorem 4 for
the cases where s < t1t2−t2

t1
.

Construction 1. Let d ≥ 2, A1 be a d−CFF(t1, n1), A2 be a d−CFF(t2, n2),
and B be a (d−1)−CFF(s, n2). Create a matrix P = B ⊗A1 as in Definition 3.
This results in P with n2 “blocks” of n1 columns each. For each column in block
i, append the ith column of A2, for 1 ≤ i ≤ n2. Call Const1(A1, A2, B) the
matrix obtained.

Theorem 5. Let A1 be a d−CFF(t1, n1), A2 be a d−CFF(t2, n2), and B be a
(d − 1)−CFF(s, n2). Then C := Const1(A1, A2, B) is d−CFF(st1 + t2, n1n2).

As a corollary, it is possible to obtain a previous result by Li et al. [5] for the
specific case of d = 2.

Corollary 2. [5, Theorem 3.5] Suppose there exists a 2−CFF(t1, n1) and a
2−CFF(t2, n2), then there exists a 2−CFF(st1 + t2, n1n2) for any s satisfying(

s
� s
2 �

) ≥ n2.

3 Our General Unbounded Scheme

By using d−CFFs for fault-tolerant aggregate signatures, we set a bound on the
number of signatures n that can be aggregated, which may not be known in
advance. Applications such as secure logging usually cannot predict the amount
of signed logs that will be generated, and dynamic databases may not be able to
predict the amount of data that will be inserted. These unbounded applications
require a sequence of d−CFFs that allows the increase of n as necessary. Several
of these applications also deal with a large amount of signatures, and it may not
be possible to save each one of them individually. So besides requiring increasing
size, the d−CFF should also take into consideration that once aggregated, the
individual signatures may not be available anymore. Moreover, we want to use
the best constructions for a specific number of signatures n, corresponding to
an increasing compression ratio as n grows. This raises the need of a sequence
of d−CFFs to support all these requirements.

In order to address this problem, Hartung et al. [2] propose the notion of a
fault-tolerant unbounded scheme based on what they call a monotone family of
d-CFFs. It consists of using a CFF incidence matrix M(1) until its maximum n is
achieved, and then jump to the next matrix. Each new matrix M(l+1) contains
the previous ones M(1), . . . ,M(l) in a sequence that presents a monotonicity
property. However, the constructions they provide for monotone families yield

Efficient Unbounded Fault-Tolerant Aggregate Signatures 59

aggregate signature with length linear in n and constant compression ratio, which
makes the scheme impractical for the unbounded case. Intuitively, an unbounded
fault-tolerant aggregate scheme should provide increasing compression ratio as
we increase n, since it reflects a smaller increase on the aggregate signature size.

In this section, we extend the notion of unbounded aggregation and suggest
a more flexible sequence of d−CFFs, called nested family. We claim that even
without the monotone property we can keep the characteristic of being able to
discard individual signatures after they are aggregated. In fact, by using a nested
family we can offer an infinite sequence of d-cover-free families with increasing
compression ratio. The new definition of nested families is presented below.

In the remaining of the paper, an infinite sequence a1, a2, . . . is compactly
denoted as (al)l for sets and (a(l))l for matrices.

Definition 4. Let (M(l))l be a sequence of incidence matrices of d-cover-free
families (Fl)l = (Xl,Bl)l, where the number of rows and columns of M(l) are
denoted by rows(l) and cols(l), respectively. (M(l))l is a nested family of inci-
dence matrices of d-CFFs, if Xl ⊆ Xl+1, rows(l) ≤ rows(l+1), and cols(l) ≤
cols(l+1), and

M(l+1) =
(M(l) Y

Z W

)

where each row of Z is one of the rows of M(l), or a row of all zeros, or a row
of all ones.

Note that the definition of monotone family by Hartung et al. [2] is a special
case of nested family, where Z = 0. The authors use monotone families to achieve
unbounded aggregation in the following way. For each 1 ≤ i ≤ cols(l), if Bi ∈ Bl

and Di ∈ Bl+1, then Bi = Di. In the case of nested families, instead of Bi = Di

we get Bi ⊆ Di for all 1 ≤ i ≤ cols(l). The additional property requiring that
the rows of Z must repeat rows of M(l), or be trivial, is what allows us to be
able to only need previous aggregations and not original signatures. We observe
that subsequences of nested families are also nested families.

Our unbounded fault-tolerant aggregate signature scheme with nested fam-
ilies is defined by the following algorithms. Note that KeyGen and Sign are
equal to the algorithms given in page 4. We also create a new position τ [0] in the
aggregate signature τ , which holds a full aggregation of all signatures considered
up to that point. Let (M(l))l be a nested family of incidence matrices of d-CFFs
and let Σ be a simple aggregate signature scheme that supports claim sequences,
claim placeholders, and the empty signature λ.

1. KeyGen(1κ) creates a key pair (pk, sk) using KeyGen from Σ and security
parameter κ.

2. Sign(sk,m) receives a secret key and message, and outputs the signature
given by Σ.Sign(sk,m).

3. Agg(C1, C2, τ1, τ2) takes two exclusive mergeable claim sequences C1 and C2

and corresponding signatures τ1 and τ2, and outputs the aggregate signature
τ , where |τ | = max{|τ1|, |τ2|}.

60 T. Bardini Idalino and L. Moura

(a) Let nk be the dimension of Ck for k = 1, 2, and assume w.l.o.g. that
n1 ≤ n2. Determine lk such that cols(M(lk−1)) < nk ≤ cols(M(lk)), and
denote by tk = rows(M(lk)), k = 1, 2. Note that l1 ≤ l2 and take M
as the submatrix of M(l2) consisting of the first n2 columns. Note that
M = (M(l1) Y

Z W
), for some matrices Z, Y, W satisfying the “nesting”

properties of Definition 4. For this aggregation, M will be the d-CFF
matrix that plays the same role as the fixed matrix used in the bounded
scheme in page 4.

(b) If one or both of the claim sequences Ck (k ∈ {1, 2}) contain only one
claim c, τk is an individual signature σk. We expand τk to a vector as
follows, with j equals to the index of c in Ck:

τk[i] =

{
σk, if i = 0 or (M[i, j] = 1 and 1 ≤ i ≤ tk),
λ, otherwise.

(c) Once τ1 and τ2 are both vectors, we aggregate them position by position
according to M. Note that by the nested family definition we have three
types of row index i depending on the row type of Z: a row of zeros,
where M[i, 1] =. . . = M[i, n1] = 0 (Type 0); a row of ones, where M[i, 1]
=. . . = M[i, n1] = 1 (Type 1); and a repeated row r of M(l1), where
M[i, 1] = M(l1)[r, 1] =. . . = M[i, n1] = M(l1)[r, n1] (Type 2 (r)). First
we expand C1 to C1 having the same dimension as C2, i.e. C1[i] = C1[i]
for 1 ≤ i ≤ n1, and C1[i] =⊥ for n1 + 1 ≤ i ≤ n2, then we proceed as
follows.

τ [0] = Σ.Agg(C1, C2, τ1[0], τ2[0])

For i = 1, . . . t1 :

τ [i] = Σ.Agg(C1[Mi], C2[Mi], τ1[i], τ2[i])

For i = t1 + 1, . . . , t2 :

τ [i] =

⎧⎪⎨
⎪⎩

τ2[i], if i is Type 0,

Σ.Agg(C1[Mi], C2[Mi], τ1[0], τ2[i]), if i is Type 1,
Σ.Agg(C1[Mi], C2[Mi], τ1[r], τ2[i]), if i is Type 2 (r).

Output τ .
4. Verify(C, τ) takes a set of public key and message pairs and the aggregate

signature τ and outputs the valid claims. If Σ.Verify(C, τ [0]) = 1, output
all claims, otherwise compute bi = Σ.Verify(C[Mi], τ [i]) for each 1 ≤ i ≤ t2
and output the set of valid claims consisting of the union of each C[Mi] such
that bi = 1.

The correctness of the aggregation and verification algorithms comes from
the fact that the matrices used are d-CFF. For the aggregation algorithm we
just need to verify that the aggregated signature computed in step (c) yields

Efficient Unbounded Fault-Tolerant Aggregate Signatures 61

the same results as if M(l2) was used directly on the original signatures. The
security of the scheme comes from Theorem 2, which relies on the security of
the underlying aggregate scheme Σ.

In the next section, we give three explicit constructions of nested families
that allow us to achieve unbounded aggregation with increasing compression
ratio for d = 1, d = 2, and general values of d.

4 Construction of Unbounded Schemes with Non
Constant Compression Ratio

Now we aim to construct a nested family of incidence matrices as shown in
Definition 4, where we can increase n as necessary while avoiding to save every
individual signature for further use. In this section, we propose explicit construc-
tions of nested families for the cases where d = 1, d = 2, and for general values
of d. We note that all sequences of CFF given are constructive, as they rely
on ingredients that can be constructed explicitly by known methods. Proofs are
omitted here, and will be included in an extended version of this paper.

4.1 Nested Family for d = 1

As specified in Corollary 1, we can build a 1−CFF F = (X,B) from a set
of elements X = {x1, . . . , xt} and a collection B of �t/2�−subsets of X, with
|B| = n. Given n, we need to choose a minimum t such that n ≤ (

t
�t/2�

)
. From

the binomial properties we can see that one specific t may be suitable for a few
consecutive n values, as an example for n = 7, 8, 9, 10 we can use t = 5. We
want to achieve unbounded aggregation by constructing a nested family with
increasing n, so larger n values can be achieved by increasing t.

Now we focus on constructing a new 1−CFF Ft = (Xt,Bt) from a smaller
Ft−1 = (Xt−1,Bt−1), in order to obtain a sequence of nested families. Let Xt =
{1, . . . , t} and let Bt be all distinct � t

2�−subsets of elements from Xt. We consider
small increments of n that increase t by one, i.e. Xt = Xt−1 ∪ {t}, and Bt is
generated by considering two cases according to the parity of t, as shown below.

Since the order of the elements is important for nested families, we represent
the family as a tuple of sets. Let nl =

(
l

� l
2 �

)
, and Cn

k be the list of all k-subsets
from {1, . . . , n} in lexicographical order. The recursive definition of Bt is:

B2 = [{1}, {2}],

Bt =

{
[Bt−1[1], . . . ,Bt−1[nt−1], Ct−1

�t/2�−1[1] ∪ {t}, . . . , Ct−1
�t/2�−1[nt] ∪ {t}], t odd,

[Bt−1[1] ∪ {t}, . . . ,Bt−1[nt−1] ∪ {t}, Ct−1
t/2 [1], . . . , Ct−1

t/2 [nt]], t even,

for t > 2.

Theorem 6. The sequence (Xt,Bt)t is a nested family, and each family in the
sequence is 1−CFF.

62 T. Bardini Idalino and L. Moura

It is easy to see that the property holds for larger increases of t as well, where
each row of Z in this construction consists of all zeros or all ones. In other words,
taking sub-sequences of (Xt,Bt)t also gives a nested family.

Theorem 7. Let (M(l))l be the nested family defined in Theorem 6. This
sequence has a compression ratio ρ(n) = n

log2 n .

Note that this compression ratio meets the information theoretical bound.

4.2 Nested Family for d ≥ 2

In this section, we give three classes of constructions of nested families which for
fixed d gives ρ(n) → ∞ as n → ∞. Theorems 9 and 11 give specific compression
ratios obtained for the cases of d ≥ 2. The one from Theorem 11 is asymptotically
better, but for different constants and ranges of n, either one may be more
suitable. Theorem 12 gives yet a better asymptotic ratio for the case d = 2.

Theorem 8 gives nested families via Theorem 4, and Theorem 9 provides its
corresponding ratio.

Theorem 8. Let M be the incidence matrix of a d−CFF(t, n) (wlog we require
M1,1 = 1), and set M(1) = M. We define M(l) = M ⊗ M(l−1) for l ≥ 2. Then
(M(l))l is a nested family of incidence matrices of d-CFFs.

Theorem 9. Let d ≥ 2. Let (M(l))l be the nested family defined in Theorem 8
using a d-CFF(t, n) matrix M with n > t > 1. Then, the sequence has increasing
compression ratio ρ(n) = n

n1/c = n1−1/c, for c = logt n > 1 (c depending on d).

In Theorem 10, we show how to use the construction from Theorem 5 to build
a sequence of nested families for general d. In order to achieve a nested family,
we instantiate the construction with a single d-CFF(t1, n1) M(1) used as both
A1 and A2, and recursively apply the construction until we achieve the desired
number of signatures n. Then, in Theorems 11 and 12 we give compression ratios
by using specific d-CFF matrices.

Theorem 10. Let M be a d−CFF(t1, n1) matrix and set M(1) = M. Let Bi

be a (d − 1)-CFF(si, ni) matrix (wlog we require Bi1,1 = 1), for each i ≥ 1. We
recursively define M(l) = Const1(M(l−1),M(l−1), Bl−1), for l ≥ 2 and Const1
as defined in Construction 1. The sequence of matrices (M(l))l is a nested family
of incidence matrices of d-CFFs.

Theorem 11. Let d ≥ 2. Let (M(l))l be the nested family defined in Theorem 10
using a d-CFF(t, n) matrix M with n > t. Then, there exists a (d − 1)-CFF Bl

such that the sequence (M(l))l has increasing ratio ρ(n) = n
(b log2 n)log2 log2 n+D for

constants b = 2d2 lnn
log2 n , and D = 1 − log2 log2 n.

The next theorem improves the ratio from Theorem 11 for d = 2 by using
optimal 1-CFF constructions given by Corollary 1.

Efficient Unbounded Fault-Tolerant Aggregate Signatures 63

Theorem 12. Let (M(l))l be the nested family defined in Theorem 10 using a
2-CFF(t, n) matrix M with n > t, and each Bi is a 1-CFF given by Corollary 1
for n = n2i−1

, i ≥ 1. Then, the sequence (M(l))l has increasing ratio ρ(n) =
n

(2 log2 n)log2 log2 n+D , for constant D = 1 − log2 log2 n.

5 Final Remarks and Open Problems

In this work we define a sequence of cover-free families, called nested families,
which generalizes monotone families introduced by Hartung et al. [2]. While it
may be difficult to build a monotone family with increasing compression ratio,
we show that this is possible by using nested families. We show how to achieve
unbounded aggregation in general with nested families, and we also give explicit
constructions for the cases of d = 1, d = 2, and general values of d. We were
able to meet the information theoretical bound for d = 1, and good compression
ratios for all values of d. We believe the concept of nested cover-free families can
also be of important interest in other applications of cover-free families.

We observe that as n increases in our constructions, it would be desirable to
increase the threshold value d as well. However, it is not hard to show that there
can not be nested families with increasing d. We would like to investigate other
sequences of CFFs with increasing d.

Acknowledgments. Thais Bardini Idalino acknowledges funding granted from
CNPq-Brazil [233697/2014-4]. Lucia Moura was supported by an NSERC discovery
grant.

References

1. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: EUROCRYPT 2003, pp. 416–432 (2003)

2. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A.: Fault-tolerant aggregate
signatures. In: Public-Key Cryptography - PKC 2016, pp. 331–356 (2016)

3. Idalino, T.B.: Using combinatorial group testing to solve integrity issues. Master’s
thesis, Universidade Federal de Santa Catarina, Brazil (2015)

4. Idalino, T.B., Moura, L., Custódio, R.F., Panario, D.: Locating modifications in
signed data for partial data integrity. Inf. Process. Lett. 115(10), 731–737 (2015)

5. Li, P.C., van Rees, G.H.J., Wei, R.: Constructions of 2-cover-free families and
related separating hash families. J. Comb. Des. 14(6), 423–440 (2006)

6. Li, Z., Gong, G.: Data aggregation integrity based on homomorphic primitives
in sensor networks. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS,
vol. 6288, pp. 149–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14785-2 12

7. Ma, D.: Practical forward secure sequential aggregate signatures. In: ASIACCS
2008, pp. 341–352. ACM (2008)

8. Macula, A.J.: A simple construction of d-disjunct matrices with certain constant
weights. Discrete Math. 162(1), 311–312 (1996)

9. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM Trans. Storage 2, 107–138 (2006)

https://doi.org/10.1007/978-3-642-14785-2_12
https://doi.org/10.1007/978-3-642-14785-2_12

64 T. Bardini Idalino and L. Moura

10. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing
schemes. IEEE Trans. Inf. Theory 57, 7982–7989 (2011)

11. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Mathematische
Zeitschrift 27, 544–548 (1928)

12. Wasef, A., Shen, X.: ASIC: aggregate signatures and certificates verification scheme
for vehicular networks. In: GLOBECOM 2009, pp. 1–6 (2009)

13. Zaverucha, G.M., Stinson, D.R.: Group testing and batch verification. In: ICITS
2009, pp. 140–157 (2009)

Minimum Polygons for Fixed Visibility
VC-Dimension

Moritz Beck(B) and Sabine Storandt

Institut für Informatik, Julius-Maximilians-Universität Würzburg,
Würzburg, Germany

{beck,storandt}@informatik.uni-wuerzburg.de

Abstract. Motivated by the art gallery problem, the visibility VC-
dimension was investigated as a measure for the complexity of polygons
in previous work. It was shown that simple polygons exhibit a visibility
VC-dimension of at most 6. Hence there are 7 classes of simple poly-
gons w.r.t. their visibility VC-dimension. The polygons in class 0 are
exactly the convex polygons. In this paper, we strive for a more profound
understanding of polygons in the other classes. First of all, we seek to
find minimum polygons for each class, that is, polygons with a minimum
number of vertices for each fixed visibility VC-dimension d. Furthermore,
we show that for d < 4 the respective minimum polygons exhibit only
few different visibility structures, which can be represented by so called
visibility strings. On the practical side, we describe an algorithm that
computes the visibility VC-dimension of a given polygon efficiently. We
use this tool to analyze the distribution of the visibility VC-dimension
in different kinds of randomly generated polygons.

1 Introduction

One of the most widely known and well studied visibility problems in algorithmic
geometry is the art gallery problem. Given a polygon (the art gallery footprint)
it asks for the minimum sized set of points (the guards) in the polygon that
collectively see the entire polygon. There are many variations of the art gallery
problem, for example depending on whether guards are only allowed on vertices
of the polygon, only on the edges, or also inside the polygon; and whether the
polygons are simple or contain holes. In [1,2] it was proven that all these variants
are APX-hard, so an approximation ratio better than some fixed constant is
unlikely to be obtainable.

In [3] a deterministic O(log n)-approximation algorithm was described for
vertex and edge guards which transforms an art gallery problem to a set cover
problem. Improvements over this approximation ratio were made by taking the
geometric information into account: In [4], it was shown that the set systems
of the respective set cover instances exhibit a bounded VC-dimension. For set
systems with VC-dimension d, Brönnimann and Goodrich [5] introduced an algo-
rithm based on ε-net theory which provides an O(d log(d·OPT))-approximation

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 65–77, 2018.
https://doi.org/10.1007/978-3-319-94667-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_6&domain=pdf

66 M. Beck and S. Storandt

where OPT denotes the size of an optimal solution. Hence for constant d, a
O(log OPT)-approximation is achieved.

So the smaller d, the better the approximation ratio. This motivates to study
the visibility VC-dimension of polygons. Intuitively, the visibility VC-dimension
measures the complexity of the visibility structure of a polygon.

Definition 1 (Visibility VC-Dimension). Given a simple polygon with n
vertices, a vertex sees (or is visible from) another vertex if the straight line
segment between those vertices does not intersect the exterior of the polygon. A
subset S of the polygon vertices is called shattered if for every subset S′ of S
there is a vertex v such that this vertex sees every vertex in S′ but sees none of
the vertices in S \ S′. The visibility VC-dimension d of the polygon is the size
of its largest shattered subset.

We call the vertices in S also the VC-points and v itself the viewpoint for the
subset S′. Note that VC-points and viewpoints are not necessarily disjunct.
Figure 1 illustrates all these concepts.

1

2

0

p0
0

1

2

3

p1

0

1

2

3

4

5

p2

Fig. 1. Polygons pd with VC-dimension d ≤ 2. The blue vertices are the VC-points. In
p2 the vertex 0 sees itself but not 2, the vertex 3 is a viewpoint for the subset S′ = {2},
the vertex 5 for S′ = {0, 2} and vertex 4 sees neither 0 nor 2. (Color figure online)

The visibility VC-dimension of simple polygons is defined as the maximum
visibility VC-dimension over all simple polygons. For viewpoints being restricted
to polygon vertices or edges, it was proven in [6] that the visibility VC-dimension
of simple polygons is 6. For individual polygons the VC-dimension can assume
any integer between 0 and 6. This induces seven classes of simple polygons. In
this paper, we focus on studying minimum polygons within each class.

1.1 Related Work

In [4] it was proven that the visibility VC-dimension for simple polygons (allow-
ing viewpoints to lie anywhere in the polygon) is at most 23 and an example
polygon with VC-dimension 6 was provided. The upper bound was lowered to
14 by Gilbers and Klein [7]. For the case when the viewpoints are restricted to
the boundary of the polygon the upper bound was consecutively lowered to 7 by
Gilbers [8] and 6 by Gibson et al. [6]. A matching lower bound was presented
in [9]. Hence the VC-dimension of simple polygons is known to be exactly 6.

Minimum Polygons for Fixed Visibility VC-Dimension 67

Interestingly these bounds also hold for x-monotone polygons [9]. A polygon
is x-monotone if the intersection between the polygon and any vertical line is
connected. Somehow surprisingly, this structural limitation does not improve the
visibility VC-dimension.

1.2 Contribution and Outline

In Sect. 2, we provide examples of minimum polygons for each visibility VC-
dimension up to d = 5; along with the proofs that smaller polygons can not
be members of the respective classes. Somehow surprisingly, for d = 3, 4, 5 the
respective minimum polygons consist of exactly 2d vertices which matches the
trivial lower bound. For d = 6, we show that a minimum polygon consists of
64 ≤ n ≤ 78 vertices and we conjecture that there also n = 2d = 64 holds.

In Sect. 3, we further investigate the visibility structure of minimum polygons
by abstracting from the geometry. We define so called visibility strings which
capture the collocation of VC-points and the numbers of VC-points visible from
the viewpoints. For d < 4, we prove that only few different visibility strings
occur; for example, for d = 3 only two.

In Sect. 4, practical algorithms to compute the visibility VC-dimensions of a
given polygon are discussed. This is complemented with experimental results in
Sect. 5. There we compare the distribution of the visibility VC-dimension classes
for different kinds of randomly generated polygons, including ones created by the
2-Opt method and Quick Star. We show that the distributions differ significantly
in dependency of the creation method, and we furthermore devise a new polygon
generator which is more likely to produce polygons with a high visibility VC-
dimension. As such polygons are likely to be ’hard’ instances for the art gallery
problem, the generator might be useful to create sensible benchmark sets for
guard placement algorithms.

2 Minimum Polygons

Given a VC-dimension d there is a trivial lower bound for the number of vertices
a polygon of this VC-dimension must have: A shattered subset S of size d has 2d

subsets S′. For every of these subsets there has to be a vertex that sees S′ but not
S\S′. So the number of viewpoints/vertices nd is at least 2d. The smallest simple
polygons are triangles, so another trivial lower bound is 3 vertices. Concave spots
are needed to get a VC-dimension higher than 0 as there has to be a viewpoint
that does not see any VC-point. As all triangles are convex, a polygon with
positive VC-dimension needs to have at least 4 vertices. We observe that indeed
one concave spot is sufficient to get a VC-dimension of 1 (see Fig. 1, right), hence
we deduce n1 = 4. Table 1 summarizes all our derived bounds for the number
of vertices of minimum polygons. The results for d ≥ 2 are explained in more
detail below.

68 M. Beck and S. Storandt

Table 1. The minimum number of vertices required to get a certain VC-dimension.

VC-dimension d 0 1 2 3 4 5 6

Minimum vertex count nd 3 4 6 8 16 32 64 ≤ n6 ≤ 78

2.1 Minimum Polygons for VC-Dimension 2

For polygons with VC-dimension d = 2 actually more than 2d = 4 vertices are
needed as proven in the following lemma.

Lemma 1. Every polygon of VC-dimension 2 has at least six vertices.

Proof. A polygon with 3 vertices is convex and thus is of VC-dimension 0. Sup-
pose a polygon with 4 vertices has a shatterable vertex set {g1, g2}. Then every
vertex is a neighbor of g1 or g2. Hence there is no vertex that sees neither g1 nor
g2, leading to a contradiction.

Suppose a polygon with 5 vertices has a shatterable vertex set {g1, g2}.
Case 1: g1 and g2 are not neighbors. Then every vertex is a neighbor of g1

or g2. Hence there is no vertex that sees exactly the empty set, a contradiction.
Case 2: g1 and g2 are neighbors. Then both g1 and g2 see the set {g1, g2}.

Therefore the remaining three vertices must cover the remaining three sets {g1},
{g2} and ∅. There is exactly one vertex v∅ that is a neighbor of neither g1 nor
g2, so no other vertex can see exactly the empty set.

Because the neighbor v1 (v2) of g1 (g2) sees its neighbor, it must not see g2
(g1), thus the internal angles must be both obtuse. Hence v1, v2 both have to
lie ‘below’ the line segment g1g2. The fifth vertex v∅ is adjacent to both v1 and
v2. It has to lie above the line segment g1g2 as otherwise edges of the polygon
would cross (see Fig. 2). But then no vertex blocks v∅ from seeing g1, which is a
contradiction to v∅ not seeing any VC-point. ��
The lemma establishes a lower bound. A polygon with VC-dimension 2 and the
number of vertices matching the lower bound of 6 is depicted in Fig. 1 (middle).

g1
g2

v2 v1

v∅

Fig. 2. A polygon with two designated VC-points that cannot be realized. The vertex
v∅ should see neither g1 nor g2 but cannot be placed in such a way.

Minimum Polygons for Fixed Visibility VC-Dimension 69

2.2 Minimum Polygons for VC-Dimension ≥ 3

For VC-dimensions 3, 4 and 5 somehow surprisingly nd = 2d vertices suffice to
construct a polygon of the respective class. In Fig. 3 we give examples of such
minimum polygons. As the trivial lower bounds for the vertex count are met
here, we do not require any additional proofs for the examples to be minimum
representatives of their respective classes. Note that all of these polygons are
also x-monotone. While the minimum polygons up to d = 4 were constructed
manually, we generated and minimized random polygons to get the example for
VC-dimension 5 (see Sect. 5.2).

Fig. 3. Image of minimum polygons with VC-dimensions 3, 4 and 5 from left to right.

For VC-dimension 6 the smallest example we currently have consists of 78
vertices (see Fig. 4). The example is derived from a polygon with VC-dimension
6 which is essentially due to Gibson et al. [9]. Although we found the example

Fig. 4. Image of a polygon with VC-dimension 6.

70 M. Beck and S. Storandt

polygon in [9] to be not of VC-dimension 6, thankfully Erik Krohn provided
a corrected polygon with VC-dimension 6 with 94 vertices. We then applied
minimization techniques to get the vertex count down to 78.

3 Visibility Structure

Here we introduce a notion of a visibility string of a polygon. The visibility string
is a description of the structure of a polygon in regard to a fixed maximum
shattered subset (if there are more than one). This abstraction aims at grouping
together polygons that are similar to each other. For example if the position of
a vertex in a polygon is changed but the pairwise visibility of viewpoints and
VC-points is not affected, then the original polygon and the modified one are
essentially the same for our purpose. The visibility string will also be invariant
under translation, rotation, scaling and reflection of a polygon.

More precisely, for a given polygon the visibility string describes which ver-
tices are the VC-points and for each vertex how many VC-points it can see. The
visibility string consists of one symbol for each vertex in order around the poly-
gon to form a word of length n. To account for cyclic permutation and reflection
we choose a unique string:

Definition 2 (Visibility String). Let p1, . . . , pn be the vertices and g1, . . . , gd
the VC-points of a polygon in clockwise order. For a vertex p let nv(p) be the
number of VC-points that it sees. The symbol representing the vertex p is the
nv(p)-th letter of the latin alphabet if p is a VC-point or else the digit nv(p).

The visibility string is the lexicographically smallest string that can be built by
concatenating the symbols of the vertices in clockwise or counterclockwise order
starting at an arbitrary vertex. Here digits are smaller than letters.

By definition every visibility string starts with a 0 symbol. Figure 5 shows an
example of a visibility string.

0

1

1

1

a

Fig. 5. A polygon with the visibility string 011a1.

It is easy to see that the only possible visibility strings for minimum polygons
of VC-dimension 0 and 1 are 000 and 01a1, respectively. We show that there are
also only a few possible visibility strings for minimum polygons of VC-dimension
2 and 3. The following proof uses the notation ∂(p, q) for two vertices p, q to
denote the set of all vertices that are reached when going along the border of
the polygon in clockwise order starting at p and ending at q.

Minimum Polygons for Fixed Visibility VC-Dimension 71

Theorem 1. There are exactly four possible visibility strings for minimum poly-
gons of VC-dimension 2. These strings are 01bb12, 02a2a2, 01a2a2 and 01a2a1.

Proof. Let P be a polygon with six vertices and VC-dimension 2 and {g1, g2}
a shattered subset where ∂(g1, g2) contains not more vertices than ∂(g2, g1).
Consider the number c of vertices on ∂(g1, g2), i.e. the number of vertices between
g1 and g2. This number c cannot be 2 as otherwise every vertex apart from g1
and g2 itself are neighbors of g1 or g2. Hence no vertex would see exactly the
empty set.

Consider the case c = 1. If g1 and g2 see each other, then the vertex between
them lies w.l.o.g. below the line g1g2 (where the interior of the polygon extents
above this line). Then the other three points have to see at most one VC-point.
Hence the neighbors of g1 and g2 also have to lie below the line g1g2. So it is not
possible that g1 and g2 see each other, leaving the possibility for the visibility
strings 02a2a2, 01a2a2 and 01a2a1.

Now consider the case c = 0, i.e. g1 and g2 are neighbors. Then they both
see both VC-points. One of the two vertices that is not adjacent to g1 or g2 has
to be v∅. One of the neighbors of g1 or g2 only sees its neighboring VC-point as
two of the three unspecified points see exactly one VC-point—say the neighbor
of g1. If the neighbor of g2 sees only g2, then we get the visibility string 01bb12
because the last unspecified point has to obscure v∅ and sees both VC-points. If
the other neighbor sees both VC-points then there is no possibility to place the
vertex v2 that sees g2 but not g1. This is because neither v1 nor v∅ can block it
from seeing g1, see Fig. 6. ��

g2 g1

v2

v1

v∅
v1,2

g2 g1

v1,2
v∅ v2

v1

Fig. 6. Impossible visibility constraints of a polygon with two VC-points. Neither when
v2 neighbors v1,2 (left image) nor when v∅ neighbors v1,2 (right image) is there a vertex
that blocks v2 from seeing g1.

For VC-dimension 2 there is some leeway because there are more vertices
than subsets to cover but this does not hold for VC-dimension 3.

Theorem 2. There are exactly two possible visibility strings for minimum poly-
gons of VC-dimension 3. These strings are 02a2a2a3 and 02a2a3a2.

Interestingly for VC-dimension 4 the number of possible visibility strings
increases dramatically: In 800 analyzed minimum polygons, we identified about

72 M. Beck and S. Storandt

600 different visibility strings. Nevertheless, a relaxed definition of the visibility
string which considers only the configuration of the VC-points and their visibility
with respect to each other could provide better structural insights: In about
71,000 randomly generated polygons only two possible configurations were found.

4 Computation of the Visibility VC-Dimension

In this section we discuss the methods for computing the VC-dimension of a
given polygon. This allows to determine better instance-based approximation
guarantees for polygons with d < 6 when applying (art gallery) algorithms with
a VC-dimension dependent approximation guarantee. Furthermore, we leverage
tools for efficient VC-dimension computation later to analyze the distribution of
the VC-dimension classes among sets of randomly generated polygons.

4.1 Naive Algorithm and Improvements

Given an input polygon with n vertices, we want to find the largest shattered
subset. As we already know that no subset of size 7 or larger can be shattered, it
suffices to check all subsets up to size 6. If the subsets are considered in increasing
order of their size, the process can be stopped if no subset of a certain size k is
shattered (as then naturally no superset can be shattered). Hence, for a polygon
with VC-dimension d we have to check O(min(nd+1, n6)) subsets.

To determine whether a certain subset S of size k ≤ 6 is shattered, we need
to check whether there are 2k suitable viewpoints (each being visible from one
particular subset of S). Within a simple polygon, the so called visibility region
of a point can be computed in linear time. Hence it takes O(nk) = O(n) time
to retrieve the visibility regions of all VC-points. From those we can interfere in
linear time if there is a viewpoint for each subset. Hence the total running time
amounts to O(min(nd+2, n7)). Note that in practice it makes sense to have an
initial phase where the visibility region of each vertex is precomputed to avoid
redundant computations.

The algorithm can be further improved by skipping unnecessary tests for
certain vertex sets: If the algorithm finds a shattered set S′ of size k, it can omit
testing other sets of the same cardinality. In addition, if the algorithm considers
sets of the same cardinality in lexicographic order, many sets can be skipped
when the algorithm starts to consider the sets with cardinality k +1. In fact, all
sets with a lexicographically smaller prefix than S′ do not need to be checked
as already their prefixes could not be shattered. For example, if the set {2, 4} is
the first of size 2 to be shattered, the algorithm skips all remaining sets with 2
vertices. And it also skips the sets {0, 1, 2}, {0, 1, 3}, . . . , {2, 3, n−2}, {2, 3, n−1}
because the sets {0, 1}, . . . , {2, 3} could not be shattered. Instead it proceeds with
the set {2, 4, 5}. While these rules have the potential to reduce the numbers of
sets to be checked significantly, they unfortunately can not circumvent that for
d < 6 all sets of size d + 1 need to be checked in order to certify that no subset
larger than d is shattered.

Minimum Polygons for Fixed Visibility VC-Dimension 73

4.2 Stack-Based Algorithm

To reduce the number of large sets that have to be tested, we propose a stack-
based approach. Here, we assure that a set is only tested if already all of its
prefixes were shown to be shattered.

Let S be an initially empty stack and v := 0. Repeat the following steps
until the algorithm terminates: Test whether S ∪ {v} is shattered. If this is the
case, then push v onto the stack. Set v := v + 1. If v = n − 1 and the stack is
not empty, then set v := S.pop() + 1. If v = n − 1 and the stack is empty, then
terminate and return (the size of) the biggest found shattered set.

5 Experiments

We implemented the naive algorithm for VC-dimension computation along with
the described improvements, and our stack-based algorithm. The used program-
ming language is Rust. Experiments were run on a machine with an Intel i5 CPU
with a frequency of 2.5 GHz and 8 GB of main memory. Note that the size of the
memory was no limitation as the algorithms all used at most a few MB.

5.1 VC-Dimension Computation

First of all, we investigated how many vertex subsets of a randomly generated
polygon are tested in the described approaches for VC-dimension computation.
Results for polygons with VC-dimension 4 are shown in Fig. 7. We observe that
the stack-based method clearly outperforms the naive method, even if we look
at the maximum number of sets tested for the former. The ratio gets drastically
lower the larger the number of vertices, so the advantage of the stack-based
method clearly increases with the size of the polygon. Further experiments also
showed that the ratio gets lower the larger the VC-dimension of the polygon is.
For a clock time comparison we computed the VC-dimension of 10 polygons with
100 vertices each and d = 4. The naive algorithm took nearly 13 min in total
whereas the stack based algorithm only took 5 s.

5.2 VC-Dimension Distribution in Random Polygons

In order to find minimum polygons and analyze related algorithms, we generated
large sets of random polygons. Initially, we used two classic methods for random
polygon generation: 2-Opt moves and Quick Star [10]. For 100, 000 polygons
created for different vertex counts, we computed d. The resulting distributions
are given in Fig. 9, top and middle. We observe that the vast majority of polygons
generated with these methods exhibit a VC-dimension of 3 or smaller. While
Quick Star leads to significantly more polygons with d = 4 than 2-Opt, even
in rather large polygons with 50 vertices still about half of them only exhibit a
VC-dimension of 3. The reason why 2-Opt primarily produces polygons of low
VC-dimension is that there often are multiple areas that are mostly independent

74 M. Beck and S. Storandt

Fig. 7. Number of sets considered using the stack-based method (mean and max)
versus the naive method for polygons with VC-dimension 4. To the left are the absolute
numbers, to the right the ratios.

of each other in the sense that most vertices of one area do not see any one from
the other areas. Quick Star polygons exhibit a more compact shape and more
likely contain viewpoints with large visibility regions. Figure 8, left and middle,
shows examples of polygons created with 2-Opt and Quick Star.

To get more example polygons of higher VC-dimension, we developed another
method for generating (x-monotone) polygons randomly: First, the plane is
divided into three horizontal regions top, bottom and gap. Then, (n−2)/2 points
are placed randomly into the top region and just as many in the bottom region.
One point is put in the horizontal gap between the top and bottom regions as
the leftmost point and one as the rightmost point. These points are connected
in the following order to always get an x-monotone polygon: Left point, bottom
points in ascending x-direction, right point, top points in descending x-direction.
We refer to this method as X-Gen. An example of a polygon created with X-Gen
is shown in Fig. 8, right.

Fig. 8. Examples of randomly generated polygons with 100 vertices each. The methods
used are from left to right: 2-Opt, Quick Star, X-Gen.

Figure 9, bottom, shows the respective distribution of the VC-dimension in
polygons generated via X-Gen. We observe that for polygons consisting of 40 or
more vertices almost all generated examples have a VC-dimension of 4.

Minimum Polygons for Fixed Visibility VC-Dimension 75

Fig. 9. Distribution of the VC-dimension on randomly generated polygons with a given
number of vertices. The polygons were generated from top to bottom with the 2-Opt
method, Quick Star and X-Gen.

The 2-Opt method never produced a polygon with VC-dimension 5 even for
larger vertex counts. Generating 100, 000 polygons with 150 vertices, Quick Star
produced 17 polygons with VC-dimension 5 and X-Gen 49. Using X-Gen we
also found an example with d = 5 that could be minimized to consist of only 32

76 M. Beck and S. Storandt

vertices (by iterative vertex removal), therefore producing a minimum member
of the respective VC-dimension class.

6 Conclusion and Open Problems

In this paper we studied minimum polygons of fixed VC-dimension d. For d ≤ 5,
we identified example polygons of minimum size. For d = 6, the size of the min-
imum polygon in this class remains an open question. Based on the results for
d = 3, 4, 5 and our current example of a polygon with 78 vertices, we conjecture
that a polygon with 64 vertices and VC-dimension 6 might exist. Better struc-
tural insights, for example by extending the notion of visibility strings as defined
in this paper, might help to construct such an example.

For computing the VC-dimension of a given polygon, we devised an algorithm
which is sufficiently fast in practice to compute the VC-dimension of polygons
with a few hundred vertices. The theoretical running time is O(min(nd+2, n7))
and hence output-sensitive. It might however be possible to compute the VC-
dimension significantly faster (and independent of d); for example by considering
the intersections of the visibility regions of all vertices.

Finally, it is worthwhile to investigate further polygon generating methods
which are capable of producing either polygons with a given VC-dimension or
at least lead to a larger percentage of polygons with high VC-dimension. Our
devised X-Gen method already produces more complex polygons on average
(in terms of the visibility structure) than conventional methods as 2-Opt or
Quick Star, but other custom-tailored methods might perform even better. The
resulting polygons could then form interesting benchmark sets for algorithms
and heuristics that solve art gallery problems.

References

1. Eidenbenz, S.: Inapproximability results for guarding polygons without holes. In:
Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 427–437.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6 45

2. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31(1), 79–113 (2001)

3. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: The Proceed-
ings of Canadian Information Processing Society Congress, pp. 429–434 (2010)

4. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math.
104(1), 1–16 (1998)

5. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

6. Gibson, M., Krohn, E., Wang, Q.: The VC-dimension of visibility on the boundary
of a simple polygon. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 541–551. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 46

7. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility
regions. In: Proceedings of the Twenty-seventh Annual Symposium on Computa-
tional Geometry, SoCG 2011, New York, NY, USA, pp. 380–386. ACM (2011)

https://doi.org/10.1007/3-540-49381-6_45
https://doi.org/10.1007/978-3-662-48971-0_46
https://doi.org/10.1007/978-3-662-48971-0_46

Minimum Polygons for Fixed Visibility VC-Dimension 77

8. Gilbers, A.: VC-dimension of perimeter visibility domains. Inf. Process. Lett.
114(12), 696–699 (2014)

9. Gibson, M., Krohn, E., Wang, Q.: On the VC-dimension of visibility in monotone
polygons. In: Canadian Conference on Computational Geometry, pp. 85–94 (2014)

10. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Pro-
ceedings of the 8th Canadian Conference on Computational Geometry, pp. 38–43.
Carleton University Press (1996)

Minsum k-Sink Problem on Dynamic
Flow Path Networks

Robert Benkoczi1, Binay Bhattacharya2, Yuya Higashikawa3,
Tsunehiko Kameda2(B), and Naoki Katoh4

1 Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, Canada

2 School of Computing Science, Simon Fraser University, Burnaby, Canada
tiko@sfu.ca

3 School of Business Administration, University of Hyogo, Kobe, Japan
4 School of Science and Technology, Kwansei Gakuin University, Sanda, Japan

Abstract. In emergencies such as earthquakes, nuclear accidents, etc.,
we need an evacuation plan. We model a street, a building corridor,
etc. by a path network, and consider the problem of locating a set of k
sinks on a dynamic flow path network with n vertices, where people are
located, that minimizes the sum of the evacuation times of all evacuees.
Our minsum model is more difficult to deal with than the minmax model,
because the cost function is not monotone along the path. We present
an O(kn2 log2 n) time algorithm for solving this problem, which is the
first polynomial time result. If the edge capacities are uniform, we give
an O(kn log3 n) time algorithm.

1 Introduction

Due to many recent disasters such as earthquakes, volcanic eruptions, hurri-
canes, and nuclear plant accidents, evacuation planning is getting increasing
attention. The evacuation k-sink problem is an attempt to model evacuation in
such emergency situations [5,6]. In this paper, a k-sink means a set of k sinks that
minimizes the sum of the evacuation time of every evacuee to a sink. Researchers
have worked mainly on two objective functions. One is the evacuation comple-
tion time (minmax criterion), and the other is the sum of the evacuation times
of all the evacuees (minsum criterion). It is assumed that all evacuees from a
vertex evacuate to the same sink.

Mamada et al. [12] solved the minmax 1-sink problem for dynamic flow tree
networks in O(n log2 n) time under the condition that only a vertex can be a
sink. When edge capacities are uniform, Higashikawa et al. [9] and Bhattacharya
and Kameda [3] presented O(n log n) time algorithms with a more relaxed

This work was supported in part by NSERC Discovery Grants, awarded to
R. Benkoczi and B. Bhattacharya, in part by JST CREST Grant Number
JPMJCR1402 held by N. Katoh and Y. Higashikawa, and in part by JSPS Kak-
enhi Grant-in-Aid for Young Scientists (B) (17K12641) given to Y. Higashikawa.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 78–89, 2018.
https://doi.org/10.1007/978-3-319-94667-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_7&domain=pdf

Minsum k-Sink Problem on Dynamic Flow Path Networks 79

condition that the sink can be on an edge. Chen and Golin [4] solved the
minmax k-sink problem on dynamic flow tree networks in O(k2n log5 n) time
when the edge capacities are non-uniform. Regarding the minmax k-sink on
dynamic flow path networks, Higashikawa et al. [10] present an algorithm to
compute a k-sink in O(kn) time if the edge capacities are uniform. In the gen-
eral edge capacity case, Arumugam et al. [1] showed that a k-sink can be found
in O(kn log2 n) time. Bhattacharya et al. [2] recently improved these results to
O(min{n log n, n + k2 log2 n) time in the uniform edge capacity case, and to
O(min{n log3 n, n log n + k2 log4 n}) time in the general case.

The minsum objective function for the sink problems is motivated, among
others, by the desire to minimize the transportation cost of evacuation or the
total amount of psychological duress suffered by the evacuees. It is more difficult
than the minmax variety because the objective cost function is not unimodal,
and, to the best of our knowledge, practically nothing is known about this prob-
lem on more general networks than path networks. A path network, although
simple, can model an airplane aisle, a hall way in a building, a street, a highway,
etc., to name a few. For the simplest case of k = 1 and uniform edge capacities,
Higashikawa et al. [10] proposed an O(n) time algorithm. For the case of general
k and uniform edge capacities, Higashikawa et al. [10] showed that a k-sink can
be found in time bounded by O(kn2) and 2O(

√
log k log log n)n2.

The main contribution of this paper is an O(kn2 log2 n) time algorithm, which
is achieved by a novel data structure and the concepts of cluster and section in
an evacuee flow. Our second algorithm solves the problem in O(kn log3 n) time
if the edge capacities are the same.

This paper is organized as follows. In the next section, we define some terms
that are used throughout this paper, and present a few basic facts. Section 3 for-
mulates the framework for solving the minsum k-sink problem, utilizing Dynamic
Programming (DP), and provides a solution. In Sect. 4, we introduce the con-
cepts of cluster and section which play a key role in subsequent discussions, and
discuss how to compute the local cost data that are required in our DP for-
mulation. Section 5 states our main theorem, which results from the preceding
section. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Let P (V,E) denote a given path network, where the vertex set V consists of
v1, v2, . . . , vn, which we assume to be arranged in this order, from left to right
horizontally.1 Vertex vi has weight wi ∈ Z+, representing the number of evac-
uees initially located at vi, and edge ei = (vi, vi+1) ∈ E has length or distance
di (> 0) and capacity ci, which is the upper limit on the flow rate through ei in
persons/unit time. We write vi ≺ vj if i < j. For two vertices vi ≺ vj , the sub-
path between them is denoted by P [vi, vj], and d(vi, vj) (resp. c(vi, vj)) denotes

1 In Sects. 3 and 4, for simplicity, we will often identify a vertex with its index, referring
to vertex i, instead of vertex vi.

80 R. Benkoczi et al.

its length (resp. the minimum capacity of the edges on P [vi, vj]). It takes each
evacuee τ units of time to travel a unit distance.

Our model assumes that the evacuees at all the vertices start evacuation at
the same time at the rate limited by the capacity of the outgoing edge. It also
assumes that all the evacuees at a non-sink vertex who were initially there or
who arrive there later evacuate in the same direction (either to the left or to
the right), i.e., the evacuee flow is confluent. We sometimes use the term “cost”
to refer to the aggregate evacuation time of a group of evacuees to a certain
destination. A k-sink shares the following property of the median problem [11].

Lemma 1 [10]. There is a k-sink such that all the k sinks are at vertices.

If we plot the arrival flow rate at, or departure flow rate from, a vertex as a
function of time, it consists of a sequence of (temporal) clusters. The duration of
a cluster is the length of time in which the flow rate corresponding to the cluster
is greater than zero. A cluster consists of a sequence of sections, such that any
adjacent pair of sections have different heights. In other words, a section is a
maximal part of a cluster with the same height (= flow rate). A simple cluster
consists of just one section. We say that a cluster/section carries (the evacuees
on) a vertex, if those evacuees provide flow to the cluster/section. A time interval
of flow rate 0 between adjacent clusters is called a gap. These terms are illustrated
in Fig. 1. Unless otherwise specified, we assume that evacuees arrive at vertex vi
from vertex vi+1. The case where the evacuees move rightward can be treated
symmetrically.

S1 S2
S3 S4 S5

C1 C2 C3 C4

Flow
Gap

local time
Front of S3 at a vertex

t0

rate

Fig. 1. Terms used: {Si} are sections and {Cj} are clusters.

The front of a cluster/section is the time when it starts. The first vertex of
a cluster is the vertex from which the evacuee corresponding to the front of the
cluster originates. The offset of a cluster with respect to vertex vi is the time
until the first evacuee belonging to the cluster arrives at vi. For vj ≺ x ≺ vj+1,
we define the following costs.

ΦL,j(x) � cost contribution to x from P [v1, vj],

ΦR,j(x) � cost contribution to x from P [vj+1, vn],

Φ(x) =

{
ΦL,j(x) + ΦR,j+1(x) if vj ≺ x ≺ vj+1

ΦL,j−1(x) + ΦR,j+1(x) if x = vj .
(1)

A point x = μ that minimizes Φ(x) is called a minsum 1-sink.

Minsum k-Sink Problem on Dynamic Flow Path Networks 81

The total cost is the sum of the costs of all sections. The cost of a section of
height c with offset t0 and duration δt is given by

λt0 +
λ2

2c
, (2)

where λ = cδt is the number of evacuees carried by the section [8]. To be exact,
the ceiling function must be applied to the second term in (2), but we omit it
for simplicity, and adopt (2) as our objective function [5]. Or we can consider
each molecule of a fluid-like material as an “evacuee.” The average evacuation
time for an evacuee carried by this section is t0 + λ/2c, where λ/2c represents
the average delay to reach the front vertex of the section, and the aggregate is
given by (t0 + λ/2c) × λ, which yields (2). We call the first (resp. second) term
in (2) the extra cost (resp. intra cost) of the section. A minsum k-sink partitions
the path into k subpaths, and places a 1-sink on each subpath in such a way
that the sum of the evacuation time of every evacuee to a sink is minimized.

3 DP Formulation

We first present a dynamic programming (DP) formulation that follows the
template of recursive functions proposed by Hassin and Tamir [7] for the p-
median problem. Our innovation consists in the manner in which we process
the recursive computations efficiently, given that the cost functions for the sink
location problem are significantly more difficult to compute than those for the
regular median problem. Our algorithm is more general in that it relies only on
one fundamental property of some cost functions, i.e., monotonicity.

3.1 Derivation of Recurrence Formulae

Let F k(i), 1 ≤ k ≤ i ≤ n, denote the minsum cost when k sinks are placed on
subpath P [v1, vi]. Similarly, define Gk(i), 1 ≤ k ≤ i ≤ n, as the minsum cost
when k sinks are placed on subpath P [v1, vi], and vi is the rightmost sink. We
start with i = k + 1, since F k(i) = Gk(i) = 0 for i ≤ k. For j < i, we also define
R(j, i), which is the cost of evacuating all the evacuees on subpath P [vj+1, vi]
to vj , and L(j, i), which is the cost of evacuating all the evacuees on subpath
P [vj , vi−1] to vi. By definition, we have

F k(i) = min
k≤j≤i

{Gk(j) + R(j, i)}, (3)

Gk(i) = min
k≤j≤i

{F k−1(j) + L(j + 1, i)}. (4)

To solve the above recursive equations, we clearly need to compute functions
R(j, i) and L(j, i). Moreover, to obtain a DP algorithm with time complexity
sub-quadratic in n, we also need to quickly find the index j that minimizes the
recurrence relations (3) and (4). Note that to get F k(i), we need to compute
{Gp(·), F p(·)} for p = 1, 2, . . . , k.

82 R. Benkoczi et al.

To motivate our approach, let us plot points (Gk(j), R(j, i)) in a 2-
dimensional coordinate system for all j, 1 ≤ j ≤ i, for a fixed vertex vi. See
Fig. 2. If we superimpose Gk(j) + R(j, i) = c for a given value c in the same
coordinate system, it is a −45◦ line. If we increase c from 0, this line eventually
touches one of the plotted points. The first point it touches gives the optimal
value that minimizes Gk(j) + R(j, i). In Fig. 2, this optimal is given by the
point (Gk(j1), R(j1, i)). For convenience, let us refer to point (Gk(j), R(j, i)) as
point (j, i).

R(∗, i)

R(j1, i)
R(j2, i)
R(j3, i)

Gk(∗)Gk(j1) Gk(j2) Gk(j3)

R(j1, i + 1)−R(j1, i)

Fig. 2. R(∗, i) vs. Gk(∗). j1 < j2 < j3.

We now explain that this representation provides us very useful information.
To see it, for each point (j, i), define the V -area that lies above the −45◦ line
and to the left of the vertical line through it as shown as a shaded area in
Fig. 2. We say that a point (j, i) situated in the V -area of another point (js, i) is
dominated by (js, i), since the cost of point (j, i) is higher than the cost of (js, i).
We sometimes say that vj is dominated by vjs , when i is clear from the context.
Thus the points at the bottoms of the V-areas are the only non-dominated points.
For subpath P [v1, vi] let J(i) = {j1, . . . , jg(i)}, where j1 ≤ j2 ≤ . . . ≤ jg(i) ≤ i
and {(js, i) | s = 1, . . . , g(i)}, are the set of all points at the bottoms of the
V-areas. From the above discussion the following lemma follows directly.

Lemma 2. F k(i) = Gk(j1) + R(j1, i) would hold if the path ended at vertex vi.

Function Gk(i) can be computed in a similar manner. Let us now compare
J(i + 1) for P [v1, vi+1] with J(i) for P [v1, vi]. Since jg(i) ≤ i, vertex vi+1 is
farther from vjs than it is from vjt , if s < t. We thus have

R(js, i + 1) − R(js, i) ≥ R(jt, i + 1) − R(jt, i) for s < t. (5)

The arrows in Fig. 2 indicate the increase R(∗, i + 1) − R(∗, i) in computing
J(i + 1), compared with J(i). Moreover, if (j, i) is dominated by (js, i), then
point (j, i′) will also be dominated by (js, i′) for any i′ > i. This implies that
once it is determined that (j, i) /∈ J(i), then (j, i′) will not belong to J(i′) for
any i′ > i. We will discuss how to update J(i) to J(i+1) in the next subsection.

Minsum k-Sink Problem on Dynamic Flow Path Networks 83

3.2 Computing Switching Points

We compute F k(i) by Lemma 2, maintaining the set J(i) of non-dominated
candidate vertices. However, not all vertices in J(i) that are non-dominated
when computing F k(i) remain useful because some of these vertices may become
dominated when computing F k(i′) for i′ > i. We shall identify those vertices, as
they become dominated, and discard them.

Let us denote by x(js−1, js), 1 < s ≤ g(i), the switching point, namely the
leftmost vertex vi′ (g(i) < i′ ≤ n), if any, for which js dominates js−1. If such
an index does not exist, it means that js never dominates js−1 and therefore we
need not remember js. For convenience, let us introduce a dummy vertex j0 so
that we can write x(j0, j1) = j1. Formally, we have

x(js−1, js) =

⎧⎪⎨
⎪⎩

min{i′ : [js < i′ ≤ n] ∧ [Gk(js) + R(js, i′)
≤ Gk(js−1) + R(js−1, i

′)]} if s ≥ 2,

js if s = 1.

(6)

Computing and maintaining the sequence x(j0, j1), . . . , x(jg(i)−1, jg(i)) allows
us to determine a subset of non-dominated vertices vjs , which are potentially
optimal vertices that may minimize function F k(·) later. We therefore assume
x(j0, j1) < x(j1, j2) < . . . < x(jg(i)−1, jg(i)). To see this, assume for example
that x(j2, j3) < x(j1, j2) holds. Then j2 will never be an optimal vertex, because
for large enough i (≥ x(j1, j2)) which makes vj2 dominate vj1 , vertex vj3 already
dominates vj2 , since x(j2, j3) < x(j1, j2). This implies that j2 can be removed
from J(i).

Updating set J(i) = {j1, . . . , jg(i)} to J(i + 1).

Change 1: If vj1 becomes dominated by vj2 (i.e., if x(j1, j2) = i + 1), then
remove j1 in constructing J(i + 1). (Note that x(j2, j3) > i + 1.)

Change 2: Starting from the last vertex in J(i), find the rightmost vertex vjs ,
if any, that is not dominated by vi+1. If none, let s = 0. Remove js+1 to jg(i)
in J(i) to obtain J(i + 1). Put vi+1 in J(i + 1) as the last vertex jg(i+1).

It is easy to show that computing J(i+1) from J(i) takes amortized O(tX(n))
time, where tX(n) is the time needed to compute x(j, j′) value for one arbitrary
pair (j, j′), j < j′.

Based on the above discussion, we present Algorithm 1 below that shows
a skeleton of our method for computing a minsum k-sink. In it, variable
J = {j1, j2, . . . , jg(i)} represents the ordered set of candidate vertices which
is updated from iteration to iteration, and X = {x(j0, j1), x(j1, j2), . . . ,
x(jg(i)−1, jg(i))} represents the corresponding ordered set of switching points.

Lemma 3. The minsum k-sink in dynamic flow path networks can be found in
O(kn · tX(n)) plus preprocessing time.

84 R. Benkoczi et al.

Algorithm 1. Minsum k-sink algorithm

1 Input Data: Number of evacuees wi at each vertex i; Capacity ci and length
di for each edge ei; An integer k representing the number of sinks to be located;
T and C (defined in Sect. 4);

2 Outputs: A set S∗ ⊆ {1, . . . , n} of k sinks to be located; Cost Z∗ of solution S∗;
3 Base case: compute G1(i) for all i ∈ {1, . . . , n};
4 for p ∈ {1, . . . , k} do
5 J ← 1; X ← 1; // Initialize candidate sequence J and x(∅, 1) = 1
6 F p(1) ← Gp(1); // L(1, 1) = 0
7 for i ∈ {2, . . . , n} do
8 repeat // Update the candidate list J by considering i
9 if J is empty then

10 J ← i; X ← i; // New vertex vi is the dominating vertex

11 done ← true

12 else
13 j ← last item in J ; x ← last item in X;
14 Compute x(j, i); // Switching point between i and j
15 if x(j, i) does not exist then
16 done ← true; // i is dominated

17 else if x(j, i) > x then // i does not dominate j
18 Append i at the end of J ; append x(j, i) at the end of X;
19 done ← true

20 else // i dominates j
21 Remove j from the end of J ; remove x from the end of X;
22 done ← false

23 end

24 end

25 until done;
// Check for Change 1 (in Sect. 3.2) and compute F p(i)

26 Let x∗ be the rightmost vertex in X satisfying x∗ ≤ i and let j∗ be its
corresponding vertex in J ;

27 Let F p(i) ← Gp(j∗) + R(j∗, i)

28 end
29 if p < k then
30 Compute Gp+1(i) in a similar way using F p(i) for all 1 ≤ i ≤ n
31 else

32 return Z∗ = F k(n); // Sink set S∗ can be obtained from Z∗ in a

standard way

33 end

34 end

Proof. Algorithm 1 performs O(kn) iterations in lines 4 and 7. The repeat loop
at line 8 executes at most as many times as the size of list J . However, an element
is added to list J at most once for each iteration i (lines 10 and 18), so J cannot
receive more than n elements throughout the duration of the algorithm, and the
repeat loop cannot have more than n iterations throughout the duration of the

Minsum k-Sink Problem on Dynamic Flow Path Networks 85

algorithm. In each iteration of the repeat loop, x(·, ·) is computed a constant
number of times, and the lemma follows. �

Now that we have the above lemma, the rest of this paper is devoted to
making tx(n) as small as possible, culminating in Lemmas 7 and 8.

4 Data Structures for Computing R(j, i) and L(j, i)

Costs R(j, i) and L(j, i) are used in (3), (4), and (6). It is needed wherever x(j, i)
is used in Algorithm 1, including Line 27. We only discuss how to compute R(j, i),
since L(j, i) can be computed similarly. To compute R(j, i), we need to know the
section sequence of the vertices on P [vj+1, vi] arriving at vj . To find it efficiently,
during preprocessing we construct a balanced binary tree, named cluster tree T ,
whose leaves are the vertices of P , arranged from v1 to vn. We also construct a
capacity tree C, which is a standard binary search tree from which one can find
capacity c(vj , vh) in O(log n) time for any pair of vertices vj � vh.

For each non-leaf node2 u of T , let vL(u) (resp. vR(u)) denote the leftmost
(resp. rightmost) vertex of P that belongs to subtree T (u). We say that u spans
subpath P [vL(u), vR(u)]. For a node u of T , let αu

R(vj) (resp. βu
R(vj)) denote

the arrival (resp. departure) section sequence at (resp. from) vj (� vL(u)), car-
rying the vertices spanned by u. At each node u of T , we precompute and store
αu
R(vL(u)) and βu

R(vL(u)), as we describe below.
At a leaf node, which is a vertex vi, it is easy to construct βvi

R (vi), which is
just a section of height ci−1 and duration wi/ci−1 that starts at time 0 (local time
at vi). We obviously have αvi

R (vi) = ∅. For an internal node u of T with two child
nodes, ua and ub, assuming that we have computed αua

R (vL(ua)), βua

R (vL(ua)),
αub

R (vL(ub)), and βub

R (vL(ub)), we want to compute αu
R(vL(u)) and βu

R(vL(u))
from them. Let vj+1 = vL(ua). Then βub

R (vL(ub)) would become αub

R (vj+1) with a
delay of d(vj+1, vL(ub))τ according to the local time at vj+1, provided it encoun-
tered no congestion on its way. If the height of an arriving section in αub

R (vj+1)
is larger than cj , the evacuees carried by that section cannot depart from vj+1

at the arrival rate. See Fig. 3(a), where S1, S2, . . . , are the sections of αub

R (vj+1),
arriving at vj+1. The durations of some sections get stretched in this case, by
the ceiling operation [12]. The following two situations can arise to these sec-
tions, when they are converted into the departing sections of βu

R(vj+1). (When
S1 arrives, there may be w (> 0) leftover evacuees at the vertex. We will consider
such a scenario shortly.)

(a) A stretched section by a ceiling operation ends in a gap. (Fig. 3(b) shows
that the stretched S1 fills the next gap entirely, merges with S2, and the
following gap is partially filled. The amount equal to the light-gray parts
consisting of later arrivals moves to the dark-gray parts, to fill gaps.)

(b) A section may shrink due to the expanded section preceding it, with its front
pushed to a later time. (In Fig. 3(c), the stretched S3 “swallows” a part of

2 We use the term “node” for T to distinguish them from the vertices of P .

86 R. Benkoczi et al.

(a) (b)

S0
S1 S2

S2S3

S3c

S4S4

c

(c)

S1 S2 S4

c S3

h3

h2
h1

S1

Offset of αs0
R (vi)

Fig. 3. (a) α
ub
R (vj+1); (b) Amount equal to the light-gray parts fill the dark-gray parts;

(c) Result.

S4 and S4 shrinks. The next section (such as S5 in this example), if any,
undergoes no change, since its height is less than cj .)

From observations (a) and (b) above, we can easily infer the following lemma.

Lemma 4. The heights of the sections in αu
R(vj+1) and βu

R(vj+1) are non-
increasing with time.

Redefine S1, S2, . . . , to be the sections of αu
R(vL(u)). To find which sections

merge with other sections when a smaller capacity is encountered, we place the
weight-time ratios

{λ(Sh)/δh | Sh is a section of αu
R(vL(u))}

in a max-heap Hu, where λ(Sh) is the sum of the weights of the vertices carried
by Sh, and δh is the time difference between the fronts of Sh and Sh+1. Thus in
converting αu

R(vj+1) into βu
R(vj+1), we pop out of Hu those ratios that are larger

than cj , and for each such ratio, we merge the corresponding pair of sections. In
Fig. 3, for example, λ(S3)/δ3 > λ(S1)/δ1 > cj , so that S3 merges with S4, and
S1 merges with S2. For the resulting new sections, we compute the weight-time
ratios, and if they are larger than cj , we repeat the merging process.

We call two nodes ua and ub of T adjacent if vR(ua) and vL(ub) are adjacent
vertices on P . It is easy to observe

Proposition 1. Let ua and ub be two adjacent nodes of T . The evacuees still left
at vertex vL(ua), if any, when the first evacuee in αub

R (vj+1) (shifted βub

R (vL(ub)))
arrives there belong to the last cluster in βua

R (vL(ua)).

We say those leftover evacuees form a backlog. If the height of an incoming
section is less than cj , then we use the underutilized capacity to accommodate
as many of the delayed backlog evacuees as possible, together with the evacuees
carried by the section. See Fig. 4, where the area of the dark-gray part equals
the backlog. In this example, a section of height cj becomes a new section in the
departure section sequence out of vj+1, and the light-gray part of S3 is also a
new section. Sections S4 and S5 maintain their shapes as they go through vj+1.

At vertex vj+1 = vL(ua), the first cluster in αub

R (vj+1) would start at δ time
units before all the evacuees at vj+1 from P [vL(ua), vR(ua)] would have left, if
there was no congestion on its way. Thus there would be a backlog of w = cjδ

Minsum k-Sink Problem on Dynamic Flow Path Networks 87

vh

c(vj, vh)

t=0

cj

Front of αub
R (vj+1)

Filled by backlog at vj+1

time at vj+1

S1 S2
S5

S3 S4

Fig. 4. α
ub
R (vj+1) undergoes a change to become a part of the departure section

sequence out of vj+1.

evacuees still waiting at vj+1. We use w arriving evacuees to fill the “space” (gaps
and underutilized capacities) among initial sections in αub

R (vj+1), as we stated
before. Let S1, S2, . . . , be the sections of αub

R (vj+1), which is already ceiled by
cj , and let Sh start at time th. Then the total amount of “space” between the
first and the lth sections is filled by w if

w ≥ (tl − t1)cj −
l−1∑
h=1

λ(Sh). (7)

We test l = 1, 2, . . . sequentially to find up to which gap gets merged due to the
backlog. The last gap (which may be after Sl and semi-infinite) is generally only
partially filled.

Lemma 5. We can construct T (with αu
R(vL(u)) and βu

R(vL(u)) at every node
u) in O(n log2 n) time.

Proof. For a node u of T with two child nodes ua and ub, we discussed above
how to compute αu

R(vL(u)) and βu
R(vL(u)), given αua

R (vL(ua)), βua

R (vL(ua)),
αub

R (vL(ub)), and βub

R (vL(ub)). The ceiling operation of βub

R (vL(ub)) by cj , using
max-heap Hu, takes O(|T (u)| log |T (u)|) time, since each insertion into Hu takes
O(log |T (u)|) time, where |T (u)| denotes the number vertices spanned by u. The
sequential tests, using (7), to find the extent of gap filling takes O(|T (u)|) time.
Thus the total time for all nodes is O(n log2 n). �

From now on we assume that T is constructed during preprocessing and
available. We will make use of it in proving Lemma 6.

5 Putting Pieces Together

5.1 Computing R(j, i)

To run our DP, we need to compute cost R(j, i) =
∑

h(Eh+Ih), where Eh (resp.
Ih) is the extra cost (resp. intra cost), defined by (2), of arrival section Sh at
vj+1, which carries vertices of a subpath of P [vj+1, vi].

88 R. Benkoczi et al.

Lemma 6. If T is given, then for an arbitrary pair (j, i), j < i, we can compute
R(j, i) in O((i−j) log n) time.

Proof. Let P[vj+1, vi] denote the set of maximal subpaths of P [vj+1, vi] spanned
by t = O(log n) nodes, u1, u2, . . . , ut, of T , in this order from left to right.
To compute R(j, i), we combine the arrival and/or departure section sequences
stored at u1, u2, . . . , ut into a single arrival sequence at vj . We discussed in Sect. 4
in detail how to combine two such sequences. Starting with σ = αu1

R (vL(u1)),
we update σ by merging it with shifted βu2

R (vL(u2)), βu3
R (vL(u3)), . . ., until all

of them are merged into one arrival section sequence at vj . The shift amount
for βus

R (vL(us)) is d(vL(u1), vL(us))τ . When we merge σ with βus

R (vL(us)), the
capacity c(vj , vL(us)) must be used to ceil the shifted βus

R (vL(us)). Finding this
capacity from the capacity tree C takes O(log n) time. The most time consuming
part is testing (7) for successive l, every time two section sequences are merged.
Since we must perform O(i−j) such tests, the total time for all the merges is
O((i−j) log n). Once the arrival section sequence at vj is known, we can compute
the intra and extra cost based on (2). �

Lemma 7. Assuming that T is available, we have tX(n) = O(n log2 n).

Proof. Evaluating R(·, ·) takes O((i−j) log n) time by Lemma 6, and the total
time for finding switching point x(j, j′) is O(n log2 n), since we need to perform
binary search. �

Lemma 8. If the edge capacities are uniform, we have tX(n) = O(log3 n).

Proof. We precompute at each node u of T the sum of squared weights for
the sections carrying the vertices spanned by u. In processing the backlog to
fill gaps between the sections, the contributions from the swallowed up sections
are subtracted from, and the squared weight of the new combined section is
added to the sum of squared weights. Thus updating the sum of squared weights
takes constant time per merging two adjacent subtrees spanning subpaths in
P[vj+1, vi]. In the general capacity case, we tested (7) for successive l sequen-
tially. But in the uniform capacity case, we can maintain the prefix sum of the
gaps between successive sections. Then we can do binary search among them
with backlog w to find up to which gaps are filled by w. This takes O(log n)
time per merger of section sequences stored at two adjacent nodes of T , and
O(log2 n) time for all such mergers. Thus we can find R(j, i) in O(log2 n) time,
hence tX(n) = O(log3 n). �

5.2 Main Theorem

The correctness of our DP method can be proved similarly to [7] and the dis-
cussions above. Time complexities were analyzed in Lemmas 3, 5, 7, and 8.

Theorem 1.(a) The minsum k-sink problem in dynamic flow path networks can
be solved in O(kn2 log2 n) time.

(b) If the edge capacities are uniform, then it can be solved in O(kn log3 n) time.

Minsum k-Sink Problem on Dynamic Flow Path Networks 89

6 Conclusion and Discussion

We proposed an O(kn2 log2 n) time algorithm, based on DP that finds a minsum
k-sink in dynamic flow path networks with general edge capacities, which is the
first polynomial time algorithm for this problem. When the edge capacities are
uniform, we also presented an O(kn log3 n) time algorithm. There is a factor of
n difference between the above two cases. The main reason is that in the general
capacity case, we cannot update the intra cost in less than linear time, when
merging two section sequences. We are currently working to find a way around
it. A challenging problem is to efficiently solve the minsum k-sink problem in
dynamic flow networks that are more general than path networks.

References

1. Arumugam, G.P., Augustine, J., Golin, M., Srikanthan, P.: A polynomial time
algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404,5448v1
[cs.DS], 22 April 2014, 165 (2014)

2. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved
algorithms for computing k -sink on dynamic flow path networks. In: Ellen, F.,
Kolokolova, A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol.
10389, pp. 133–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62127-2 12

3. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret
sinks on path and tree networks. Theoret. Comput. Sci. 607, 411–425 (2015)

4. Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In:
Hong, S.-H. (ed.) 27th International Symposium on Algorithms and Computation
(ISAAC), Leibniz International Proceedings in Informatics, pp. 25:1–25:13 (2016)

5. Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret
1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C.,
Trevisan, L. (eds.) Theory and Applications of Models of Computation. LNCS,
vol. 7876, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38236-9 12

6. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems: a
state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer
(2002)

7. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Oper. Res. Lett. 10(7), 395–402 (1991)

8. Higashikawa, Y., Augustine, J., Cheng, S.W., Golin, M.J., Katoh, N., Ni, G., Su,
B., Xu, Y.: Minimax regret 1-sink location problem in dynamic path networks.
Theoret. Comput. Sci. 588(11), 24–36 (2015)

9. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in
dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4),
539–555 (2014)

10. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in
dynamic path networks. Theoret. Comput. Sci. 607(1), 2–15 (2015)

11. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, Part
II: the p-median. SIAM J. Appl. Math. 37, 539–560 (1979)

12. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for a sink
location problem in dynamic tree networks. Discrete Appl. Math. 154, 2387–2401
(2006)

http://arxiv.org/abs/1404,5448v1
https://doi.org/10.1007/978-3-319-62127-2_12
https://doi.org/10.1007/978-3-319-62127-2_12
https://doi.org/10.1007/978-3-642-38236-9_12
https://doi.org/10.1007/978-3-642-38236-9_12

Fully Leafed Induced Subtrees

Alexandre Blondin Massé1, Julien de Carufel2, Alain Goupil2,
Mélodie Lapointe1, Émile Nadeau1, and Élise Vandomme1(B)

1 Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, Montreal, Canada

blondin masse.alexandre@uqam.ca, e.vandomme@alumni.uliege.be
2 Laboratoire Interdisciplinaire de Recherche en Imagerie et en Combinatoire,

Université du Québec à Trois-Rivières, Trois-Rivières, Canada

Abstract. We consider the problem LIS of deciding whether there exists
an induced subtree with exactly i ≤ n vertices and � leaves in a given
graph G with n vertices. We study the associated optimization problem,
that consists in computing the maximal number of leaves, denoted by
LG(i), realized by an induced subtree with i vertices, for 0 ≤ i ≤ n. We
begin by proving that the LIS problem is NP-complete in general. Then,
we describe a nontrivial branch and bound algorithm that computes the
function LG for any simple graph G. In the special case where G is a
tree of maximum degree Δ, we provide a O(n3Δ) time and O(n2) space
algorithm to compute the function LG.

1 Introduction

In the past decades, subtrees of graphs, as well as their number of leaves, have
been the subject of investigation from various communities. For instance in 1984,
Payan et al. [14] discussed the maximum number of leaves, called the leaf num-
ber, that can be realized by a spanning tree of a given graph. This problem, called
the maximum leaf spanning tree problem (MLST), is known to be NP-complete
even in the case of regular graphs of degree 4 [13] and has attracted interest in
the telecommunication network community [5,6]. The frequent subtree mining
problem [7] investigated in the data mining community, has applications in biol-
ogy. The detection of subgraph patterns such as induced subtrees is useful in
information retrieval [17] and requires efficient algorithms for the enumeration
of induced subtrees. In this perspective, Wasa et al. [16] proposed an efficient
parametrized algorithm for the generation of induced subtrees in a graph.

The objects of interest in this paper are induced subtrees. The induced prop-
erty requirement brings an interesting constraint that makes the problem signif-
icantly different from the MLST problem. A first result by Erdős et al. showed
that the problem of finding an induced subtree of a given graph G with more

A. Blondin Massé is supported by a grant from the National Sciences and Engineering
Research Council of Canada (NSERC) through Individual Discovery Grant RGPIN-
417269-2013. M. Lapointe and É. Nadeau are both supported by a scholarship from
the NSERC.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 90–101, 2018.
https://doi.org/10.1007/978-3-319-94667-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_8&domain=pdf

Fully Leafed Induced Subtrees 91

than i vertices is NP-complete [12]. Among induced subtrees of simple graphs, we
focus on those with a maximal number of leaves. We call these objects fully leafed
induced subtrees. Particular instances of these subtrees have recently appeared
in the paper of Blondin Massé et al. [2], where the authors considered the maxi-
mal number of leaves that can be realized by tree-like polyominoes, respectively
polycubes. The observation that tree-like polyominoes and polycubes are induced
subgraphs of the lattices Z

2 and Z
3 respectively leads naturally to the investi-

gation of fully leafed induced subtrees in general simple graphs, either finite or
infinite.

To begin with, we consider the decision problem, called leafed induced subtree
problem (LIS), and its associated optimization problem, maximum leafed induced
subtree problem (MLIS):

Problem 1 (LIS). Given a simple graph G and two positive integers i and �, does
there exist an induced subtree of G with i vertices and � leaves?

Problem 2 (MLIS). Given a simple graph G on n vertices, what is the maximum
number of leaves, LG(i), that can be realized by an induced subtree of G with i
vertices, for i ∈ {0, 1, . . . , n}?

Examples of fully leafed induced subtrees are given in Fig. 1. We believe that
fully leafed induced subtrees are interesting candidates for the representation of
structures appearing in nature and in particular in molecular networks. Indeed,
in chemical graph theory, subtrees are known to be useful in the computation
of a characteristic of chemical graph, called the Wiener index [15]. The results
of [2,15] suggest that a thorough investigation of subtrees, and in particular
induced subtrees with many leaves, could lead to the discovery of combinatorial
structures relevant to chemical graph theory.

This paper establishes fundamental results on fully leafed induced subtrees
for further theoretical investigations and their applications. First, we prove in
Sect. 2 that the problem LIS is NP-complete. To tackle the problem MLIS, we
provide a branch and bound algorithm in Sect. 3. When we restrict our attention
to the case of trees, it turns out that the problem MLIS is polynomial. To achieve
this polynomial complexity, our proposed algorithm, described in Sect. 4, uses
a dynamic programming strategy. Notice that a naive greedy approach cannot
work, even in the case of trees, because a fully leafed induced subtree with n
vertices is not necessarily a subtree of a fully leafed induced subtree with n + 1
vertices. All algorithms discussed in this paper are available, with examples, in
a public GitHub repository [3]. Finally, we give in Sect. 5 some perspectives on
future work. All proofs, omitted due to a lack of space, are available in the arXiv
full version [1].

2 Fully Leafed Induced Subtrees

We briefly recall some definitions from graph theory. The reader is referred to [8]
for graph theoretical concepts. All graphs considered in this text are simple and

92 A. Blondin Massé et al.

(a) (b)

(c) (d) (e)

Fig. 1. Fully leafed induced subtrees in various graphs. (a) In a finite graph (the subtree
of i = 11 vertices appears in bold). (b) In the cubic lattice. (c) In the square lattice. (d)
In the hexagonal lattice. (e) In the triangular lattice. The color of each cell indicates
its degree: pink for degree 5, blue for degree 4, red for degree 3, yellow for degree 2 and
green for degree 1 (the leaves). (Color figure online)

undirected unless stated otherwise. Let G = (V,E) be a graph with vertex set
V and edge set E. The degree of a vertex u is the number of vertices adjacent to
u and is denoted by deg(u). We denote by |G| the total number |V | of vertices
of G and we call it the size of G. For U ⊆ V , the subgraph of G induced by U ,
denoted by G[U], is the graph G[U] = (U,E ∩ P2(U)), where P2(U) is the set of
all subsets of size 2 of U . Let T = (V,E) be a tree, that is to say, a connected
and acyclic graph. A vertex u ∈ V is called a leaf of T when deg(u) = 1. The
number of leaves of T is denoted by |T |�. A subtree of G induced by U is an
induced subgraph that is also a tree.

The next definitions and notation are useful in the study of the LIS and
MLIS problems.

Definition 1 (Leaf function). Given a finite or infinite graph G = (V,E),
let TG(i) be the family of all induced subtrees of G with exactly i vertices. The
leaf function of G, denoted by LG, is the function with domain {0, 1, 2, . . . , |G|}
defined by

LG(i) = max{|T |� : T ∈ TG(i)}.

As is customary, we set max ∅ = −∞. An induced subtree T of G with i vertices
is called fully leafed when |T |� = LG(i).

Fully Leafed Induced Subtrees 93

Example 1. Consider the graph G depicted in Fig. 2 with its leaf function. The
subtree induced by U = {1, 2, 3, 4, 6, 8} is fully leafed because it has 6 vertices,
4 of them are leaves, and because LG(6) = 4.

7 8

32

5

1

6

4 i 0 1 2 3 4 5 6 7 8
LG(i) 0 0 2 2 3 4 4 5 −∞

Fig. 2. A graph with vertex set V = {1, . . . , 8} and its leaf function.

Remark 1. For any nontrivial graph G, we have LG(0) = 0 because the empty
tree has no leaf, and LG(1) = 0 since a single vertex is not a leaf. Finally, we
always have LG(2) = 2 in any graph G with at least one edge.

The following observations are immediate.

Proposition 1. Let G be a connected graph with n ≥ 3 vertices.

– If G is non-isomorphic to the complete graph on n vertices, then LG(3) = 2.
– The sequence (LG(i))i=0,1,...,|G| is non-decreasing if and only if G is a tree.

We now describe the complexity of solving the problem LIS.

Theorem 1. The problem LIS of determining whether there exists an induced
subtree with i vertices and � leaves in a given graph is NP-complete.

To show that it is NP-complete we reduce it to the well-know NP-complete
independent set problem (IndependentSet) [13]: Given a graph G and a pos-
itive integer k, does there exist an independent set of size k in G, i.e. a subset
of k vertices that are not pairwise adjacent? For the reduction, we consider the
map that associates to an instance (G, k) of IndependentSet, the instance
(H, k + 1, k) of LIS such that the graph H is a copy of G with an additional
universal vertex u that is linked to each vertex of G, k + 1 is the number of
vertices of the induced subtree of H and k is its number of leaves.

From this reduction, we obtain insights on the parameterized complexity of
LIS problem. A problem, which is parameterized by k1, . . . , kj , is said to be fixed
parameter tractable if it can be solved in time O(f(k1, . . . , kj)nc) where n is the
size of the input, c is a constant independent from the parameters k1, . . . , kj and
f is a function of k1, . . . , kj . The class FPT contains all parameterized problems
that are fixed parameter tractable. Similarly to the conventional complexity the-
ory, Downey and Fellows introduced a hierarchy of complexity classes to describe
the complexity of parameterized problems [11]: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . Since
IndependentSet is W[1]-complete [9], it follows that LIS is fixed parameter
intractable, unless FPT = W[1]. Note that when we replace the “induced” con-
dition with “spanning”, the problem becomes fixed parameter tractable [4,10].

94 A. Blondin Massé et al.

Corollary 1. If FTP �= W[1], then LIS �∈ FPT.

We end this section with results on leaf functions for particular families of
graphs. We can easily compute the leaf function for cycle, wheel and complete
graphs as well as for complete bipartite graphs [1]. For the hypercube graph Qd

with 2d vertices, the computation of LQd
is more intricate. Using the branch

and bound algorithm described in Sect. 3 and implemented in [3], we were able
to compute the values of the function LQd

for d ≤ 6 (see [1]).
Some infinite lattices were studied by Blondin Massé et al. [2]. They have

computed the leaf functions of the regular square lattice Z
2 and of the regular

hexagonal and triangular lattices. They also studied the regular cubic lattice Z
3.

These leaf functions always satisfies a linear recurrence, with asymptotic growth
i/2 for planar lattices and with asymptotic growth 28i/41 for the cubic lattice.

3 Computing the Leaf Function of a Graph

We now describe a branch and bound algorithm that computes the leaf function
LG(i) for an arbitrary graph G. We propose an algorithm based on a data
structure that we call an induced subtree configuration.

Definition 2. Let G = (V,E) be a graph and Γ = {green, yellow, red,blue}
be a set of colors. An induced subtree configuration of G is an ordered pair
C = (c,H), where c : V → Γ is a coloring function and H is a stack of colorings
called the history of C.

All colorings c : V → Γ must satisfy the following conditions for any u, v ∈ V :

(i) The subgraph induced by c−1(green) is a tree;
(ii) If c(u) = green and {u, v} ∈ E, then c(v) ∈ {green, yellow, red};
(iii) If c(u) = yellow, then |c−1(green)∩N(u)| = 1, where N(u) denotes the set

of neighbors of u.

The initial induced subtree configuration of a graph G is the pair (cblue,H)
where cblue(v) = blue for all v ∈ G and H is the empty stack. When the context
is clear, C is simply called a configuration. See Fig. 3(a) for an example.

Roughly speaking, a configuration is an induced subtree enriched with infor-
mation that allows one to generate other induced subtrees either by extension,
by exclusion or by backtracking. The colors assigned to the vertices can be inter-
preted as follow. The green vertices are the confirmed vertices to be included in
a subtree. Since each yellow vertex is connected to exactly one green vertex, any
yellow vertex can be safely added to the green subtree to create a new induced
subtree. A red vertex is excluded of the subtree. The exclusion of a red vertex is
done either because it is adjacent to more than one green vertex and its addition
would create a cycle or because it is explicitly excluded for generation purposes.
Finally, the blue vertices are available vertices that have not yet been considered
and that could be considered later. For reasons that are explained in the next

Fully Leafed Induced Subtrees 95

13

14

9
8

7 6

5

4

3

2

11

0

1

10

15

12

16

(a)

13

14

9
8

7 6

5

4

3

2

11

0

1

10

15

12

16

(b)

Fig. 3. Induced subtree configurations. The green edges outline the induced subtree
and the yellow edges outline its possible extensions. (a) A configuration C. (b) The
configuration C.AddToSubtree(11). (Color figure online)

paragraphs, it is convenient to save in the stack H the colorations from which
C was obtained.

Let C = (c,H) be a configuration of some graph G = (V,E), with coloring c
and stack H. We consider the following operations on C:

– C.VertexToAdd() is a non deterministic function that returns any non
green vertex in G that can be safely colored in green. If no such vertex exists,
it returns none. Note that the color of the returned vertex is always yellow,
except when c−1(green) = ∅, where the color is blue.

– C.AddToSubtree(v) first pushes a copy of c on top of H, sets the color of v
to green and updates the colors of the neighborhood of v accordingly. Notice
that this operation is applied only to a vertex v that can be safely colored in
green.

– C.ExcludeVertex(v) first pushes a copy of c on top of H and then sets
the color of v to red . This operation is applied only on a vertex v such that
c(v) ∈ {yellow, blue}.

– C.Undo() retrieves and removes the top of H, then stores it into c. In other
words, this operation cancels the last operation applied on C, which is either
an inclusion or an exclusion.

It is quite straightforward to use configurations for the generation of all
induced subtrees of a graph G. Starting with the initial configuration, it is suffi-
cient to recursively build configurations by branching according to whether some
vertex v returned by the operation C.VertexToAdd() is included or excluded
from the current green tree. Considering this process as a tree of configurations,
the operation can be paired with edges of this tree. Therefore, a careful analysis
shows that the generation runs in O(|V |) amortized per solution and O(|V |) in
space.

While iterating over all possible configurations, it is obvious that some con-
figurations should be discarded whenever they cannot extend to configurations

96 A. Blondin Massé et al.

with many leaves. Therefore, given a configuration C, we define the function
C.LeafPotential(n′) which computes an upper bound on the number of leaves
that can be reached by extending C to a configuration of n′ green vertices. First,
the potential is −∞ for n′ greater than the size of the connected component K
containing the green subtree (when computing the connected component, we
treat red vertices as removed from the graph). Second, in order to compute
this upper bound for n′ ≤ |K|, we consider an optimistic scenario in which all
available yellow and blue vertices that are close enough can safely be colored in
green. Keeping this idea in mind, we start by partitioning the available vertices,
which are the yellow and blue vertices together with the leaves of the green tree,
according to their distance from the inner vertices of the configuration subtree
in K. Algorithm 1 describes these steps in details.

Algorithm 1 Computation of the leaf potential for n′

1: function LeafPotential(C : configuration, n′ : natural): natural
2: n ← number of green vertices; � ← number of leaves in the green subtree
3: y ← number of yellow vertices adjacent to an inner green subtree vertex
4: if n + y ≥ n′ then
5: (n, �) ← (n′, � + (n′ − n))
6: else
7: (n, �) ← (n + y, � + y)
8: end if
9: d ← 1

10: while n < n′ and there exists an available vertex at distance at most d do
11: Let v be an available vertex of highest degree
12: � The degree does not count red vertices
13: if n + deg(v) − 1 ≤ n′ then
14: (n, �) ← (n + deg(v) − 1, � + deg(v) − 2)
15: else
16: (n, �) ← (n′, � + (n′ − n) − 1)
17: end if
18: Remove v from available vertices; d ← d + 1
19: end while
20: return �
21: end function

The first part of Algorithm 1 consists in completing the green subtree. More
precisely, a configuration C is called complete if each yellow vertex is adjacent
to a leaf of the green tree. We first verify if C is complete and, when it is not
the case, we increase n and � as if the green subtree was completed (Lines 4–8).
Next, we choose a vertex v among all available vertices within distance d. We
assume that v is green and update n and � as if all non-green neighbors of v were
leaves added to the current configuration (Lines 13–17). This process is repeated
until the size of the “optimistic subtree” reaches n′.

One can prove that Algorithm 1 yields an upper bound on the maximum
number of leaves that can be realized. It is worth mentioning that, in order to

Fully Leafed Induced Subtrees 97

obtain a nontrivial bound, we restrict the available vertices to those that are
within distance d from the inner vertices of the current green subtree, and then
we increase the value of d at each iteration.

Proposition 2. Let C be a configuration of a graph G = (V,E) with n ≥ 3 green
vertices and let n′ be an integer such that n ≤ n′ ≤ |V |. Then any extension of
C to a configuration of n′ vertices has at most C.LeafPotential(n′) leaves,
where C.LeafPotential(n′) is the operator described in Algorithm 1.

It follows from Proposition 2 that a configuration C of n green vertices and
r red vertices cannot be extended to a configuration whose subtree has more
leaves than prescribed by the best values found for L so far when

C.LeafPotential(n′) ≤ L(n′) for all n ≤ n′ ≤ |K|. (1)

Based on Proposition 2 and Eq. (1), we can adapt the induced subtree gen-
erator to a branch and bound algorithm that discards useless configurations.

Theorem 2. Let G be a graph. Then the branch and bound algorithm described
in the previous paragraphs of the present section computes the leaf function LG

of G.

Empirically, we observed the following elements. First, it seems that the
overall time performance is significantly better on dense graphs. More precisely,
for a fixed number of vertices, the computation of the leaf function is faster on
a dense graph than on a sparse one (see Fig. 4(a–b)). This is not surprising,
since if one takes a vertices subset of a dense graph, the probability that these
vertices induce at least one cycle is high. Therefore, the number of visited induced
subtrees is smaller. For example, experimental data show that the number of
visited subtrees in a graph with 30 vertices and density 0.1 is still around ten
times greater than the number of visited subtrees in a graph with 80 vertices
and density 0.9.

Moreover, the leaf potential bound always reduces the number of visited
subtrees regardless of the density. However, the difference is more pronounced
on lower density graphs (see Fig. 4(c–d)). This also seems easily explainable: It
is expected that, as the density decreases, the number of layers in the vertices
partition increases and the degrees of the vertices diminish. Hence, when we use
the leaf potential as a bounding strategy, the computation time gain is more
significant on sparse graphs.

Hence, for lower density graphs, the leaf potential improves the algorithm and
the overall performance of the algorithm. For higher density, no significant dif-
ference in time performance with or without the usage of the bound is observed.
Finally, from an empirical point of view, the number of visited induced subtrees
seems to indicate an overall complexity of the algorithm in O(αn) with α < 2.
Unfortunately, we were unable to prove such an upper bound.

98 A. Blondin Massé et al.

2−8

2−6

2−4

2−2

20
22
24
26
28

0 5 10 15 20 25 30

C
om

pu
ta
ti
on

ti
m
e
(i
n
se
co

nd
s)

Number of vertices

no bound
with bound

2−8

2−6

2−4

2−2

20

22

24

0 10 20 30 40 50 60 70 80

C
om

pu
ta
ti
on

ti
m
e
(i
n
se
co

nd
s)

Number of vertices

no bound
with bound

)b()a(

24
26
28
210
212
214
216
218
220
222

0 5 10 15 20 25 30N
um

b
er

of
vi
si
te
d
in
du

ce
d
su

bt
re
es

Number of vertices

no bound
with bound

26

28

210

212

214

216

218

0 10 20 30 40 50 60 70 80N
um

b
er

of
vi
si
te
d
in
du

ce
d
su

bt
re
es

Number of vertices

no bound
with bound

(c) (d)

Fig. 4. The running time of the branch and bound algorithm on 10 randomly generated
graphs with density 0.2 (a) and density 0.8 (b), with or without using the leaf potential
bound. The corresponding number of induced subtrees for density 0.2 (c) and density
0.8 (d) that are visited during the execution. (Color figure online)

4 Fully Leafed Induced Subtrees of Trees

It turns out that the MLIS problem can be solved in polynomial time when it
is restricted to the class of trees. Observe that since all subtrees of trees are
induced subgraphs, we can omit the “induced” adjective.

A naive strategy consists in successively deleting suitable leaves to obtain a
sequence of fully leafed subtrees embedded in each other. Such a strategy is not
viable. Indeed, consider the tree T represented in Fig. 5. We have LT (9) = 6
and LT (7) = 5 and there is exactly one fully leafed induced subtree of T with
respectively 7 and 9 vertices. But the smallest of these two subtrees (in blue) is
not a subgraph of the largest one (in red).

Hereafter, we describe an algorithm with polynomial time complexity based
on the dynamic programming paradigm but before, we recall some definitions.
A rooted tree is a couple ̂T = (T, u) where T = (V,E) is a tree and u ∈ V is a

Fully Leafed Induced Subtrees 99

Fig. 5. A tree with its unique fully leafed induced subtrees with 7 (respectively 9)
vertices in the blue (resp. red) area. (Color figure online)

distinguished vertex called the root of ̂T . Rooted trees have a natural orientation
with arcs pointing away from the root. A leaf of a rooted tree is a vertex v with
outdegree deg+(v) = 0. In particular, if a rooted tree consists in a single vertex,
then this vertex is a leaf. The functions | ̂T | and |̂T |� are defined accordingly by

|̂T | = |T | and | ̂T |� =
∣

∣

∣

{

v ∈ ̂T : deg+(v) = 0
}∣

∣

∣ .

Similarly, a rooted forest ̂F is a collection of rooted trees. It follows naturally
that

| ̂F |� =
∑

̂T ∈ ̂F

|̂T |�.

The rooted forest induced by a rooted tree ̂T = (T, u) is the set of rooted trees
obtained by removing from T the root u and its incident edges so that the k
vertices adjacent to u become roots of the trees ̂Ti. Let ̂T be any rooted tree
with n vertices and L

̂T : {0, 1, . . . , n} → N be defined by

L
̂T (i) = max

{

|̂T ′|�
∣

∣ ̂T ′ � ̂T and |̂T ′| = i
}

,

where � denotes the relation “being a rooted subtree with the same root”.
Roughly speaking, L

̂T (i) is the maximum number of leaves that can be realized
by some rooted subtree of size i of ̂T . This map is naturally extended to rooted
forests. Thus for a rooted forest ̂F = {̂T1, . . . , ̂Tk} we set

L
̂F (i) = max

⎧

⎨

⎩

k
∑

j=1

|̂T ′
j |�

∣

∣ ̂T ′
j � ̂Tj and

k
∑

j=1

|̂T ′
j | = i

⎫

⎬

⎭

. (2)

Let C(i, k) be the set of all weak compositions λ = (λ1, . . . , λk) of i in k non-
negative parts. Then Eq. (2) is equivalent to

L
̂F (i) = max

⎧

⎨

⎩

k
∑

j=1

L
̂Tj

(λj) : λ ∈ C(i, k)

⎫

⎬

⎭

. (3)

Assuming that L
̂Tj

is known for j = 1, 2, . . . , k, a naive computation of L
̂F using

Eq. (3) is not done in polynomial time, since |C(i, k)| =
(

i+k−1
i

)

. Nevertheless,
the next lemma shows that L

̂F can be computed in polynomial time.

100 A. Blondin Massé et al.

Lemma 1. Let k ≥ 1 be an integer and ̂F = {̂T1, . . . , ̂Tk} be a rooted forest with
n vertices. Then, for i ∈ {0, . . . , n}, we have L

̂F (i) = L
̂T1

(i) if k = 1, and if
k ≥ 2

L
̂F (i) = max{L

̂T1
(j) + L

̂F ′(i − j) : max{0, i − |̂F ′|} ≤ j ≤ min{i, |̂T1|}}

where ̂F ′ = {̂T2, . . . , ̂Tk}. Therefore, if L
̂Tj

is known for j = 1, 2, . . . , k, then L
̂F

can be computed in O(kn2) time.

Finally, we describe how L
̂T is computed from the children of its root.

Lemma 2. Let ̂T be some rooted tree with root u. Let ̂F be the rooted forest
induced by the children of u. Then L

̂T (i) = i if 0 ≤ i ≤ 1 and,

L
̂T (i) = L

̂F (i − 1), if 2 ≤ i ≤ | ̂T |.
Combining Lemmas 1 and 2, we obtain the following result.

Theorem 3. Let T = (V,E) be an unrooted tree with n ≥ 2 vertices. Then LT

can be computed in O(n3Δ) time and O(n2) space where Δ denotes the maximal
degree of a vertex in T .

Remark 2. At first sight, one might think that a more careful analysis could lead
to a O(n3) time complexity in Theorem 3. However, we have not been able to
get rid of the Δ factor for the following reason. Consider a tree ̂T rooted in u
and the forest ̂F induced by ̂T . By Lemma 1, the computation of L

̂F requires
deg(u) − 1 “merging steps”, i.e., computations using the recursive part of the
formula. Since, in the graph, each arc incident to u induces a different rooted tree
and an associated rooted forest, it does not seem possible to reuse the merger of
one forest in the computation of another. Therefore, the number of mergers of
a given edge can increase up to Δ.

5 Perspectives

There is room for improving and specializing the branch and bound algorithm
described in Sect. 3. For example, we were able to speed up the computations for
the hypercube Q6 by taking into account some symmetries (see [3]). In a more
general context, we believe that significant improvements could be obtained by
exploiting the complete automorphism group of the graph, particularly in highly
symmetric graphs.

Due to a lack of space, we did not discuss the problem of generating efficiently
the set of all fully leafed induced subtrees. However, it seems easy to show that,
by slightly modifying the branch and bound algorithm and the dynamic pro-
gramming approach of Sect. 4, one could generate all optimal induced subtrees
with polynomial time delay.

Finally, since the problem MLIS is polynomial for trees, another possible
study would be to restrict our attention to special families of graphs. The classes
of 3-colorable graphs, planar graphs and chordal graphs seem promising for find-
ing a polynomial time algorithm, as well as the family of graphs with bounded
tree-width.

Fully Leafed Induced Subtrees 101

References

1. Blondin Massé, A., de Carufel, J., Goupil, A., Lapointe, M., Nadeau, É., Van-
domme, É.: Fully leafed induced subtrees (2017). arXiv.org/abs/1709.09808

2. Blondin Massé, A., de Carufel, J., Goupil, A., Samson, M.: Fully leafed tree-
like polyominoes and polycubes. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.)
IWOCA 2017. LNCS, vol. 10765, pp. 206–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78825-8 17

3. Blondin Massé, A., Nadeau, É.: Fully leafed induced subtrees, GitHub Repository.
https://github.com/enadeau/fully-leafed-induced-subtrees

4. Bodlaender, H.L.: On linear time minor tests and depth first search. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 577–590. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9 48

5. Boukerche, A., Cheng, X., Linus, J.: A performance evaluation of a novel energy-
aware data-centric routing algorithm in wireless sensor networks. Wirel. Netw.
11(5), 619–635 (2005)

6. Chen, S., Ljubić, I., Raghavan, S.: The generalized regenerator location problem.
INFORMS J. Comput. 27(2), 204–220 (2015)

7. Deepak, A., Fernández-Baca, D., Tirthapura, S., Sanderson, M.J., McMahon,
M.M.: EvoMiner: frequent subtree mining in phylogenetic databases. Knowl. Inf.
Syst. 41(3), 559–590 (2014)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2010)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W[1]. Theoret. Comput. Sci. 141(1), 109–131 (1995)

10. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote,
P., Remmel, J.B. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser Boston,
Boston (1995)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

12. Erdős, P., Saks, M., Sós, V.T.: Maximum induced trees in graphs. J. Combin.
Theory Ser. B 41(1), 61–79 (1986)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Co., San Francisco (1979)

14. Payan, C., Tchuente, M., Xuong, N.H.: Arbres avec un nombre maximum de som-
mets pendants (Trees with a maximal number of vertices with degree 1). Discrete
Math. 49(3), 267–273 (1984)

15. Székely, L.A., Wang, H.: On subtrees of trees. Adv. Appl. Math. 34(1), 138–155
(2005)

16. Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in a K-
degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889,
pp. 94–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 8

17. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2002, pp. 71–80. ACM, New York (2002)

http://arxiv.org/abs/org/abs/1709.09808
https://doi.org/10.1007/978-3-319-78825-8_17
https://doi.org/10.1007/978-3-319-78825-8_17
https://github.com/enadeau/fully-leafed-induced-subtrees
https://doi.org/10.1007/3-540-51542-9_48
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-319-13075-0_8

Pattern Matching for k-Track
Permutations

Laurent Bulteau1, Romeo Rizzi2, and Stéphane Vialette1(B)

1 Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
77454 Marne-la-Vallée, France

{laurent.bulteau,stephane.vialette}@u-pem.fr
2 Department of Computer Science, University of Verona, Verona, Italy

romeo.rizzi@univr.it

Abstract. Given permutations τ and π, the permutation pattern (PP)
problem is to decide whether π occurs in τ as an order-isomorphic subse-
quence. Although an FPT algorithm is known for PP parameterized by
the size of the pattern |π| [Guillemot and Marx 2014], the high com-
plexity of this algorithm makes it impractical for most instances. In
this paper we approach the PP problem from k-track permutations, i.e.
those permutations that are the union of k increasing patterns or, equiva-
lently, those permutation that avoid the decreasing pattern (k+1)k . . . 1.
Recently, k-track permutations have been shown to be central combina-
torial objects in the study of the PP problem. Indeed, the PP problem
is NP-complete when π is 321-avoiding and τ is 4321-avoiding but is
solvable in polynomial-time if both π and τ avoid 321. We propose and
implement an exact algorithm, FPT for parameters k and |π|, which
allows to solve efficiently some large instances.

1 Introduction

A target permutation τ is said to contain the pattern (shorter permutation) π,
in symbols π � τ , if there exists an order-preserving embedding of π into τ (i.e.,
if there exists a subsequence of entries of τ that has the same relative order as
π); alternatively, π is said to be involved in τ . Otherwise, τ is said to avoid π.
For example, τ = 3215674 contains the pattern π = 132 since the subsequence
154 is ordered in the same way as 132. See Fig. 1 for another example. Pattern
involvement in permutations has become a very active area of research.

We consider here the Permutation Pattern (PP) problem. Given two
permutations τ and π, the PP problem is to decide whether π is involved in τ
(the problem is ascribed to Wilf in [6]). The PP problem is NP-hard [6], but is
solvable in O∗(nm) time if π has size m and τ has size n. Improvements were
presented in [2] and [1], the latter describing an O(n0.47m+o(m)) time algorithm.
Of particular importance, Marx and Guillemot [12] proved the problem to be
fixed-parameter tractable (FPT) for parameter m (the running time of the algo-
rithm is n 2O(m2 log(m))). However, this result is mainly of theoretical interest,
since, to the best of our understanding, it yields an algorithm with a rather pro-
hibitive running time. Taking advantage of the structure of the permutations, an
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 102–114, 2018.
https://doi.org/10.1007/978-3-319-94667-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_9&domain=pdf

Pattern Matching for k-Track Permutations 103

π

1
1

2

2

3

3

4

4

τ

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

e

Fig. 1. An embedding of π = 2431 into τ = 153728964.

O(1.79run(τ) nm) time algorithm has been presented in [9], where run(τ) is the
number of alternating runs in τ . The PP problem is known to be polynomial-
time solvable (in m and n) if pi is separable (i.e. π contains neither the pattern
2413 nor 3142) [6,14,18]. In case π is monotone, an O(n log logm) time algo-
rithm is known [10]. Finally, notice that in the last years, other types of patterns
in permutations have been studied: vincular, bivincular and mesh patterns, just
to name a few (see [8,16] and references therein).

In this paper, we focus on k-track permutations, i.e., those permutations
that can be decomposed into k increasing subsequences. For example 14576238
is a 3-track permutation as it can be decomposed into 1578, 46 and 23. Such
permutations are commonly known as (k+1)k . . . 1-avoiding permutations. Pat-
tern matching for 321-avoiding permutations have been considered in [13] and
[3], the latter presenting a fast polynomial-time algorithm in case both π and
τ are 321-avoiding. It has been recently proven that the PP problem remains
NP-complete when π is 321-avoiding and τ is 4321-avoiding [17]. Strongly related
in this setting is the NP-complete problem of partitioning a permutation into a
minimum number of monotone subsequences [4,7,15,23].

Erdős and Szekeres theorem of 1935 states that every permutation of n dis-
tinct reals contains a monotone subsequence of length �√n�, see the review [21].
Greedily extracting longest monotone subsequences in an iterative way yields
a partition into at most 2 �√n� monotone subsequences (an O

(
n1.5

)
time

procedure). Note, however, finding a minimum size partition into monotone
subsequences is NP-hard [24]. For fixed k and � (not part of the input), a parti-

104 L. Bulteau et al.

tion into exactly k increasing and � decreasing subsequences can be computed in
O

(
nk+�

)
time [7]. A minimum monotone partition can be approximated within

a factor of 1.71 in O
(
n2.5

)
time, see [11]. The natural generalization asking for

partitions into k-modal subsequences (i.e., sequences having at most k internal
local extrema) is considered in [22]. As n → ∞, for inputs in which each permu-
tation of the input is equally likely, the expected length of the longest increasing
subsequence is 2

√
n + cn1/6 + o(n1/6), where c = −1.77108 . . . is a constant

having a complicated definition in terms of the solution to a certain differential
equation, the Painlevé equation of type II [5] (see also [20]).

We show in this paper that searching for a pattern into a k-track permutation
can be significantly sped-up when k is small, by providing a FPTalgorithm with
parameters m and k. More precisely, our algorithm runs in time O(nkmm3),
and experiments allowed us to solve efficiently enough instances with n = 600,
m = 20 and k = 6. An informal description of our algorithm is as follows.
We first fix a partition (i.e., a coloring) of the target permutation τ and guess,
for each element in π, the track on which it should be searched. We map the
elements of π onto the first positions of τ of the corresponding track. Whenever
incompatibilities appear in the mapping (either a higher-index element of π is
mapped to a lower-index element of τ , or a higher-value element of π is mapped
to a lower-value element of τ), an element is “pushed ” forward on its own track,
until no more conflicts exist (then a pattern is found), or the end of a track is
reached (and we move on to the next guessing, if any). The main bottleneck
of this algorithm is clearly the exponential enumeration of the colorings of the
pattern. We thus use a specific coloring of the target permutation in order to
reduce the search space.

This paper is organized as follows. Section 2 progressively introduces the
needed definitions and properties. Section 3 is devoted to presenting the proposed
algorithm, and benchmarks are presented in Sect. 4.

2 Step-by-Step: Definitions and Propositions

2.1 Coloring

We first define the coloring and number of tracks of a permutations. Informally,
a k-coloring is a partition of a permutation into k increasing subsequences, see
Fig. 2(a).

Definition 1 (k-coloring). A k-coloring of a permutation π of [n] is a function
c : [n] → [k], such that, for each i, j ∈ [n], i < j, we have c(i) = c(j) ⇒ π[i] <
π[j].

Definition 2 (k-track). A permutation is a k-track permutation if it admits a
k-coloring.

A folklore property is that π is a k-track permutation if and only if it does
not contain a decreasing subsequence of length k + 1.

Pattern Matching for k-Track Permutations 105

(a) (b) (c)

Fig. 2. Three possible colorings of the same permutation 415327A69B8 positions with
the same color are linked by a path: (a) an arbitrary coloring (the only constraint
is that the paths are increasing), (b) an ordered coloring (where any decreasing pair
of positions have increasing colors, i.e. paths are non-crossings) and (c) the canonical
coloring (where the color is determined by the decreasing subsequences). (Color figure
online)

Definition 3 (Colored permutation). A colored permutation is a pair (π, c)
where c is a coloring of π.

Note that a k-track permutation is also a k′-track permutation for all k′ > k.

2.2 Embedding

Definition 4 (Pre-embedding and embedding). Given two permutations,
π of [m] and τ of [n], a pre-embedding of π into τ is any function e : [m] → [n].
A pair (i, j) is an order (resp. value) conflict for e if i < j and e(i) ≥ e(j) (resp.
π[i] < π[j] and τ [e(i)] ≥ τ [e(j)]). An embedding is a pre-embedding without any
order nor value conflict.

If we restrict ourselves to color-preserving embeddings (for some fixed col-
oring of π and τ), then the problem of finding an embedding actually becomes
simpler. We focus on this special case.

Definition 5 (Color preserving (pre-)embedding). Given two colored per-
mutations, (π, c) and (τ, c′), a color preserving (pre-)embedding of (π, c) into
(τ, c′) is a (pre-)embedding e of π into τ such that c′(e(i)) = c(i) for all i ∈ [m].

If there exits an embedding e of permutations π into τ , and τ admits a k-
coloring c, then it is straightforward to verify that c ◦ e is a k-coloring of τ , it is
called the inherited coloring of π for e from coloring c.

2.3 Leftmost Pre-embeddings

Leftmost color preserving pre-embeddings are at the heart of our approach.
Given a fixed k-coloring of τ , we build a color-preserving embedding by starting

106 L. Bulteau et al.

with a pre-embedding on which we progressively solve conflicts. We maintain
the invariant that the current pre-embedding is always a lower-bound, in the
following sense, of any possible embedding (for the same coloring).

Definition 6 (Leftmost color preserving pre-embedding). Given two col-
ored permutations, a color preserving pre-embedding e is leftmost if any colored
embedding e∗ is such that e∗(i) ≥ e(i) for all i ∈ [m].

π

τ

e → e′

Rule 1

π

τ

e → e′

Rule 2

Fig. 3. Rules 1 and 2. If two elements of π create an order (resp. value) conflict, match
the rightmost (resp. top-most) element to the first possible position in τ , of the same
color, that solves the conflict.

We now give two rules (see Fig. 3) applying to any leftmost colored pre-
embedding e of (π, cπ) into (τ, cτ). We prove for each one that it is sound: (i) it
returns “no” only if there is no embedding of (π, cπ) into (τ, cτ), and (ii) if it
returns e′, then e′ is a leftmost pre-embedding such that e′ �= e and e′(i) ≥ e(i)
for all i ∈ [m].

Rule 1 (Solving order conflicts) If e has an order conflict (i0, j0), then build
e′ such that e′(i) = e(i) for all i �= j0, and e′(j0) = min{u > e(i0) : cτ (u) =
cπ(j0)}, or return “no” if this set is empty

Proposition 1. Rule 1 is sound.

Proof. Assume that there exists a colored embedding e∗ of (π, cπ) into (τ, cτ).
Since e is Leftmost, we have e∗(i) ≥ e(i) for all i. Hence e∗(i) ≥ e′(i) for all i �= j0.
For i = j0, since e∗ is increasing, e∗(j0) > e∗(i0) ≥ e(i0). Since cτ (e∗(j0)) =
cπ(j0) (since e∗ is colored), then e∗(j0) ∈ {u > e(i0) | cτ (u) = cπ(j0)}. Then this
set is non-empty (the rule does not return “no”) and e′(j0) ≤ e∗(j0).

Rule 2 (Solving value conflicts) If e has a value conflict (i0, j0), then build
e′ such that e′(i) = e(i) for all i �= j0, and e′(j0) = min{u > e(j0) | τ [u] >
τ [e(i0)] and cτ (u) = cπ(j0)}, or return “no” if this set is empty.

Pattern Matching for k-Track Permutations 107

Proposition 2. Rule 2 is sound.

Proof. Assume that there exists a colored embedding e∗ of (π, cπ) into (τ, cτ).
Since e is Leftmost, we have e∗(i) ≥ e(i) for all i. Hence e∗(i) ≥ e′(i) for all
i �= j0. For i = j0, since (i0, j0) is not a value conflict for e∗, then τ [e∗(j0)] >
τ [e∗(i0)] ≥ τ [e(i0)] ≥ τ [e(j0)]. Note in particular that e∗(j0) �= e(j0) (since
τ [e∗(j0)] �= τ [e(j0)]). Moreover, we have cτ (e∗(j0)) = cπ(j0) (since e∗ is colored),
so overall e∗(j0) ∈ {u > e(j0) | τ [u] > τ [e(i0)] and cτ (u) = cπ(j0)}. Then this
set is non-empty (the rule does not return “no”) and e′(j0) ≤ e∗(j0).

Notice that resolving conflicts (i.e., applying Rules 1 and 2) may introduce
new conflicts. Since a conflict-free pre-embedding is an embedding, we have the
following result.

Proposition 3. If a colored pre-embedding e does not satisfy the conditions of
Rules 1 and 2, then e is a colored embedding.

Proof. This is trivial since, by definition, a conflict-free pre-embedding is an
embedding.

2.4 Canonical Coloring

A k-track permutation may have many different k-colorings. For our purpose,
we make use of the following specific coloring, see Fig. 2(c).

Definition 7 (Canonical coloring). Given a permutation π, the canonical
coloring of π, denoted canπ, is the coloring such that, for all i ∈ [n], canπ(i) is
the length of the longest decreasing subsequence of π ending at position i.

Note that the above definition is a coloring. Indeed, if i < j and π[i] ≥ π[j],
then any decreasing sequence ending in position i can be extended once with
position j, so canπ(i) < canπ(j). Since a k-track permutation does not contain
any length-k+1 decreasing subsequence, its canonical coloring may have at most
k colors (in this sense, it is an “optimal ” coloring).

We now prove the following property, which yields a fast algorithm to com-
pute the canonical coloring.

Proposition 4. Let π be a permutation. The canonical coloring satisfies
canπ(i) = min{h > 0 | ∀j < i, canπ(j) = h ⇒ π[j] < π[i]}.

2.5 Ordered Coloring

The canonical coloring yields some very interesting properties. However it is
not stable by inheritance (i.e., given an embedding, the inherited coloring of
the canonical coloring is not necessarily canonical). We thus introduce a weaker
form of coloring (in the sense that such colorings are not unique), called ordered,
which do have a nice behavior with regards to embeddings, see Fig. 2(b).

108 L. Bulteau et al.

Definition 8 (Ordered coloring). A coloring c of permutation π is ordered
if, for all i < j, π[i] > π[j] ⇒ c(i) < c(j).

Proposition 5. The canonical coloring of a permutation π is ordered.

Proposition 6. Let (τ, c) be a colored permutation where c is ordered, and π be
a permutation with an embedding e into τ , then the inherited coloring c ◦ e of π
is ordered.

Corollary 1. If there exists an embedding of π into a k-track permutation τ ,
then there exists a colored embedding of (π, c) into (τ, canτ) for some ordered
k-coloring c of π.

3 Algorithm

Given two permutations π and τ , our algorithm runs as follows. We first fix a
coloring for τ , namely, the canonical coloring, using k colors. We then enumerate
all ordered colorings of π with k colors (even if π would admit a k′-coloring with
k′ < k). An upper-bound on the number of such colorings is km. For each of
these colorings, we look for a colored embedding of π into τ . If any ordered
coloring yields a colored embedding, then we have found an embedding of π into
τ . Otherwise, Corollary 1 ensures that no such embedding can exist.

Looking for an embedding using a given coloring is achieved (in linear time for
n) by applying Rules 1 and 2 from a starting Leftmost pre-embedding, until “no”
is returned (in which case no embedding exists) or the rules do not apply anymore
(in which case the current pre-embedding is an embedding, Proposition 4). The
pseudo-code of the algorithm is given in Algorithm 1 and is illustrated in Fig. 4.

Data: Permutations π and τ .
Result: An embedding of π into τ if it exists, and ⊥ otherwise.

Let canτ be the canonical k-coloring of τ
forall ordered k-colorings c of π do

Let e be the leftmost colored embedding of (π, c) into (τ, canτ)
while e �= ⊥ do

if e contains an order (resp. value) conflict then
/* Resolve any conflict (set e = ⊥ if this is not

possible) */
Update e according to Rule 1 (resp. Rule 2)

else
/* e is an embedding of π into τ */
return e

end
end

end
/* π does not occur in τ */
return ⊥

Algorithm 1. Finding an occurrence of permutation π into permutation τ .

Pattern Matching for k-Track Permutations 109

2 4 3 1

7 2 8 9 6 4351

(a)

e

2 4 3 1

7 2 8 9 6 4351

(b)

e

2 4 3 1

7 2 8 9 6 4351

(c)

e

2 4 3 1

7 2 8 9 6 4351

(d)

e

Fig. 4. Finding an order-isomorphic occurrence of π = 24135 into τ = 142853679 using
3 color. Conflicts are depicted as bold links. Embedding updates (i.e., resolving con-
flicts) are shown with horizontal bottom links. The target permutation τ is presented

with the canonical 3-coloring 1 4 2 8 5 3 6 7 9 , whereas the

source permutation π is presented with the ordered 3-coloring 2 4 1 3 5 .

Step 1. Initial leftmost embedding e. Identifying a value conflict for the pair (1, 4), and
resolve with e(1) = 2 and e(2) = 4. Step 2. Identifying an order conflict for the pair
(2, 3), and resolve with e(3) = 8. Step 3. Identifying an order conflict for the pair (3, 4),
and resolve with e(4) = 9. Step 4. e is both order conflict-free and value conflict-free.

110 L. Bulteau et al.

4 Benchmarks

4.1 General Statements

The algorithm has been implemented in the Haskell programming language1,
and is available online at https://github.com/vialette/ppattern. All experiments
were conducted on a Intel(R) Xeon(R) CPU E5–2630 v2 2.60GHz CPU and
64GB 1866MHz DDR3 RAM desktop computer running 4.4.38− 1-MANJARO
linux. Programs were compiled with ghc (GHC - Glasgow Haskell Compiler)
version 7.10.3 with -O2 option using version 1.24.0.2 of the Cabal library. For
efficiently and using fewer resources, many optimizations have been implemented
in the program that cannot be detailed here. At the most general level (and
in setting aside pure Haskell optimization techniques), these include: consider-
ing colored embeddings of π in a tree-like manner to speed up computations,
efficiently detecting and resolving (if possible) both order and value conflicts,
rejecting as soon as possible wrong colored embeddings, . . .

4.2 Generating Random k-Split Permutations

In this case study, we present pattern matching benchmarks for random k-track
permutations with moderate parameter k. A word of caution is needed here.
Indeed, efficiently generating uniformly at random permutations that are the
union of at most k increasing subsequences remains - as far as we know - an open
problem, and the accept-reject method is not at all well-suited for generating
long k-track permutations for moderate parameter k. Pursuant to this, we have
adopted the following procedure for random generating a permutation of size n
that is the union of at most k increasing sequences. Step 1. Generate uniformly
at random a partition of the integer n into k positive integers n = n1 + n2 +
· · · + nk (see for example [19]). Step 2. Distribute uniformly at random the
positive integers 1, 2, . . . , n into k increasing sequences L1, L2, . . . , Lk of length
n1, n2, . . . , nk, respectively. Step 3. Random shuffle the k increasing sequences
L1, L2, . . . , Lk to produce a permutation of size n that is the union of at most k
increasing sequences.

For example, to generate a random permutation of length 9 that is the union
of at most 3 increasing subsequences, (i) one generates uniformly at random an
integer partition of 9 into 3 positive integers, say 9 = 4 + 3 + 2, (ii) distributes
uniformly at random the positive integers 1, 2, . . . , 9 into 3 increasing sequences
of length 4, 3 and 2, say L1 = 15 6 9, L2 = 23 8 and L3 = 47, and (iii) random
shuffles L1, L2 and L3, say 2 1 5 3 6 4 7 8 9.

Figure 5 compares the exact distribution of permutations of length n =
1, 2, . . . , 10 which are the union of at most k increasings patterns with the pro-
posed k-track generation algorithm (i.e., how many increasing patterns are really
needed for a permutation that is the union of at most k increasing patterns?).

1 https://www.haskell.org/.

https://github.com/vialette/ppattern
https://www.haskell.org/

Pattern Matching for k-Track Permutations 111

Fig. 5. Comparing the exact distribution of permutations of length n which are the
union of at most k increasings patterns with the proposed k-track generation algorithm.

As it can be seen, the k-track generation algorithm tends to produce permuta-
tions that need less increasing patterns compared to the exact distribution (this
is confirmed by one-sample t-tests for n = 1, 2, . . . , 10).

4.3 k-Track Permutations

To test the algorithm, we benchmarked the running time of our implementation
for several pattern sizes (m = 10, 20) and different k-track parameters (k =
2, 3, 4, 5, 6). All tests are for searching a random k-track pattern in a random
k-track permutation. Several strategies are conceivable for resolving both order
and value conflicts.

We conducted our tests using 2 different strategies: Leftmost conflict selection
first and Rightmost conflict selection first (in both cases, the conflict may be
an order or a value conflict). The benchmarks for permutations of length n =
200, 400, 600 are shown in Fig. 6. We investigated the differences between the two
strategies (Leftmost conflict selection first and Rightmost conflict selection first)
by conducting paired t-tests. The paired t-tests confirm a clear trend towards a
better Rightmost conflict selection first strategy as most p-values are indicating
that there are significant differences (at a 99% confidence level) between the
running time means of each strategy. In the light of this trend, we focus on the
running time of the algorithm for three conflict selection strategies: Rightmost
order conflict first, Rightmost value conflict first and Rightmost conflict first.
Analysis of variance (ANOVA) shows, however, no significant difference (at a
99% confidence level) between the means of each rightmost strategy.

112 L. Bulteau et al.

k = 2 k = 3 k = 4 k = 5 k = 6
m = 10

0

1

2

3

4

5

6
ru
nn
in
g
tim

e
(m

s)

leftmost conflict first
rightmost conflict first

k = 2 k = 3 k = 4 k = 5 k = 6
m = 20

0

100

200

300

400

500

ru
nn
in
g
tim

e
(m

s)

Benchmarks (n = 200)

k = 2 k = 3 k = 4 k = 5 k = 6
m = 10

0

2

4

6

8

10

12

14

16

ru
nn
in
g
tim

e
(m

s)

leftmost conflict first
rightmost conflict first

k = 2 k = 3 k = 4 k = 5 k = 6
m = 20

0

100

200

300

400

500

600

700
ru
nn
in
g
tim

e
(m

s)

Benchmarks (n = 400)

k = 2 k = 3 k = 4 k = 5 k = 6
m = 10

0

2

4

6

8

10

12

14

ru
nn
in
g
tim

e
(m

s)

leftmost conflict first
rightmost conflict first

k = 2 k = 3 k = 4 k = 5 k = 6
m = 20

0

100

200

300

400

500

600

700

ru
nn
in
g
tim

e
(m

s)

Benchmarks (n = 600)

Fig. 6. Benchmarking the algorithm for m = 10, 20, k = 2, 3, 4, 5, 6, n = 200, 400, 600
and two conflict selection strategies: Leftmost conflict first and Rightmost conflict first.

Pattern Matching for k-Track Permutations 113

References

1. Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM JDM
22(2), 629–649 (2008)

2. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pat-
tern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 355–367. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45678-3_31

3. Albert, M.H., Lackner, M.-L., Lackner, M., Vatter, V.: The complexity of pattern
matching for 321-avoiding and skew-merged permutations. DMTCS 18(2) (2016)

4. Atkinson, M.D.: Permutations which are the union of an increasing and a decreas-
ing. EJC 5, 263–273 (1998)

5. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest
increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–
1178 (1999)

6. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. IIPL 65(5),
277–283 (1998)

7. Brandstädt, A., Kratsch, D.: On partitions of permutations into increasing and
decreasing subsequences. Elektron. Inf. Verarb. Kybern. EIK 22, 263–273 (1986)

8. Bruner, M.-L., Lackner, M.: The computational landscape of permutation patterns.
CoRR, abs/1301.0340 (2013)

9. Bruner, M.-L., Lackner, M.: A fast algorithm for permutation pattern matching
based on alternating runs. Algorithmica 75(1), 84–117 (2016)

10. Crochemore, M., Porat, E.: Fast computation of a longest increasing subsequence
and application. Inf. Comput. 208(9), 1054–1059 (2010)

11. Fomin, F., Kratsch, D., Novelli, J.-C.: Approximating minimum cocolourings. IPL
84, 285–290 (2002)

12. Guillemot, S., Marx, D.: Finding small patterns in permutations in linear time. In:
Chekuri, C. (ed.) SODA, pp. 82–101. SIAM (2014)

13. Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp.
1064–1073. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-
6_107

14. Ibarra, L.: Finding pattern matchings for permutations. IPL 61(6), 293–295 (1997)
15. Kézdy, A.E.: Partitioning permutations into increasing and decreasing subse-

quences. J. Comb. Theor. A 73(2), 353–359 (1996)
16. Kitaev, S.: Patterns in Permutations and Words. Monographs in Theoretical Com-

puter Science. An EATCS Series. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-17333-2

17. Jelínek, V., Kync̆l, J.: Hardness of permutation pattern matching. In: Klein, P.
(ed.) SODA, pp. 378–396. SIAM (2017)

18. Neou, B.E., Rizzi, R., Vialette, S.: Pattern matching for separable permutations.
In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
260–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_25

19. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calcula-
tors. Computer Science and Applied Mathematics, 2nd edn. Academic Press, New
York (1978)

20. Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Insti-
tute of Mathematical Statistics Textbooks, vol. 04. Cambridge University Press,
Cambridge (2015)

https://doi.org/10.1007/3-540-45678-3_31
https://doi.org/10.1007/3-540-45678-3_31
https://doi.org/10.1007/978-3-642-10631-6_107
https://doi.org/10.1007/978-3-642-10631-6_107
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-319-46049-9_25

114 L. Bulteau et al.

21. Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres.
Discrete Probab. Algorithms 72, 111–131 (1995)

22. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-
modal partitions of permutations. JDA 6(3), 381–392 (2008). https://doi.org/10.
1016/j.jda.2008.01.002

23. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum
k -modal partitions of permutations. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.)
LATIN 2006. LNCS, vol. 3887, pp. 374–385. Springer, Heidelberg (2006). https://
doi.org/10.1007/11682462_36

24. Wagner, K.: Monotonic coverings of finite sets. Elektronische Informationsverar-
beitung und Kybernetik 20(12), 633–639 (1984)

https://doi.org/10.1016/j.jda.2008.01.002
https://doi.org/10.1016/j.jda.2008.01.002
https://doi.org/10.1007/11682462_36
https://doi.org/10.1007/11682462_36

Approximation Algorithms for the p-Hub
Center Routing Problem

in Parameterized Metric Graphs

Li-Hsuan Chen1, Sun-Yuan Hsieh2, Ling-Ju Hung1(B), and Ralf Klasing3

1 AROBOT Innovation CO., LTD., New Taipei City 235, Taiwan
{lihsuan.chen,lingju.hung}@arobot.info

2 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan

hsiehsy@mail.ncku.edu.tw
3 CNRS, LaBRI, Université de Bordeaux,

351 Cours de la Libération, 33405 Talence cedex, France
ralf.klasing@labri.fr

Abstract. A complete weighted graph G = (V, E, w) is called Δβ-
metric, for some β ≥ 1/2, if G satisfies the β-triangle inequality, i.e.,
w(u, v) ≤ β · (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . Given a
Δβ-metric graph G = (V, E, w), the Single Allocation at most p-
Hub Center Routing problem is to find a spanning subgraph H∗

of G such that (i) any pair of vertices in C∗ is adjacent in H∗ where
C∗ ⊂ V and |C∗| ≤ p; (ii) any pair of vertices in V \ C∗ is not adjacent
in H∗; (iii) each v ∈ V \ C∗ is adjacent to exactly one vertex in C∗;
and (iv) the routing cost r(H∗) =

∑
u,v∈V dH∗(u, v) is minimized where

dH∗(u, v) = w(u, f∗(u))+w(f∗(u), f∗(v))+w(v, f∗(v)) and f∗(u), f∗(v)
are the vertices in C∗ adjacent to u and v in H∗, respectively. Note that
w(v, f∗(v)) = 0 if v ∈ C∗. The vertices selected in C∗ are called hubs
and the rest of vertices are called non-hubs. In this paper, we show that
the Single Allocation at most p-Hub Center Routing problem is
NP-hard in Δβ-metric graphs for any β > 1/2. Moreover, we give 2β-
approximation algorithms running in time O(n2) for any β > 1/2 where
n is the number of vertices in the input graph.

1 Introduction

The design of hub-and-spoke networks is a key issue with applications in trans-
portation, e.g., airlines [21] and cargo delivery systems [31]. The major concern
to design a hub-and-spoke network with high quality is to connect a large amount

This study has been carried out in the frame of the “Investments for the future”
Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). Research supported by
the LaBRI under the “Projets émergents” program. The main work for this article
was done while Li-Hsuan Chen and Ling-Ju Hung (corresponding author) were with
the National Cheng Kung University.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 115–127, 2018.
https://doi.org/10.1007/978-3-319-94667-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_10&domain=pdf

116 L.-H. Chen et al.

of origin/destination (O/D) pairs by using a small number of links. The usage
of hub facilities helps to reduce the connections between all nodes. To locate p
hubs in hub networks in order to route the traffic between origin/destination
pairs with minimum cost is the classical hub location problem called the p-Hub
Median problem [30,32]. Notice that the general p-hub median problem consid-
ers that each pair of origin/destination has different unit traffic (flow) cost. We
call a hub location problem multi-allocation, if a demand node can be served by
several hubs. If each demand node can be served by exactly one hub, the hub loca-
tion problem is single-allocation. The p-hub median problem is NP-hard. Many
linear programming-based and heuristic algorithms were proposed to solve the
p-hub median problem and its variants (see the survey papers [1,14,28]).

Another hub location problem, the Single Allocation p-Hub Center
problem, is to choose a fixed number p of vertices as hubs and to assign each non-
hub vertex to exactly one of the chosen hubs in such a way that the maximum
distance/cost between origin-destination pairs is minimized [13,31]. Unlike the
p-Hub Median problem to minimize the total cost of all origin-destination pairs,
the Single Allocation p-Hub Center problem is to minimize the poorest
service quality. Chen et al. [15] proved that for any ε > 0, it is NP-hard to
approximate the Single Allocation p-Hub Center problem to a ratio 4

3 − ε
and gave a 5

3 -approximation algorithm running in time O(pn3) to solve the same
problem. If the input graph is Δβ-metric, it was proved that for any ε > 0, to
approximate the Single Allocation p-Hub Center problem to a ratio g(β)−
ε is NP-hard where g(β) is a function of β and a series of r(β)-approximation
algorithms were given in [18] where r(β) is a function of β. The Star p-Hub
Center problem is another hub location problem with min-max criterion. It
is to pick p nodes as hubs among the set of demand nodes connecting with
the central given hub c and to connect each of the remaining demand nodes to
exactly one of the p chosen hubs such that the longest path in the tree structure
network is minimized. Chen et al. [16] showed that for any ε > 0, to approximate
the Star p-Hub Center problem to a ratio 1.5 − ε is NP-hard and gave a 5

3 -
approximation algorithms for the same problem. Moreover, for input graphs
satisfying β-triangle inequality, i.e., w(u, v) ≤ β · (w(u, x) + w(x, v)) for all
vertices u, v, x in the input graph G = (V,E,w) and β ≥ 1/2, it was shown
that for any ε > 0, to approximate the Star p-Hub Center problem to a ratio
g(β) − ε is NP-hard and r(β)-approximation algorithms were given in the same
paper where g(β) and r(β) are functions of β [17,19].

Despite numerous research results on solving various hub location problems
in the past twenty-five years [14,20], the design of approximation algorithms for
hub location problems only made very little progress in the past two decades,
especially for the p-Hub Median problem [25,26]. In this paper, we consider a
variant of the p-Hub Median problem in which each pair of origin/destination
has the same unit traffic (flow) cost called the Single Allocation at most
p-Hub Center Routing problem. The Single Allocation at most p-Hub
Center Routing problem is to choose at most p vertices as hubs and to assign
each remaining vertex (called non-hub) to exactly one of the chosen hubs in

Approximation Algorithms for the p-Hub Center Routing Problem 117

such a way that the sum of distance/cost between all origin-destination pairs
is minimized, i.e., the routing cost is minimized. There are some routing cost
optimization problems on finding a spanning subtrees or a spanning tree satis-
fying certain properties of the input graph such that the routing cost is mini-
mized [27,33,34]. Some of these minimum routing cost spanning tree problems
admit polynomial-time approximation schemes [33,34].

Our study uses the well-known concept of stability of approximation for hard
optimization problems [9,11,22,23]. The idea of this concept is similar to that
of the stability of numerical algorithms. But instead of observing the size of
the change in the output value according to a small change of the input value,
one is interested in the size of the change of the approximation ratio according
to a small change in the specification (some parameters, characteristics) of the
set of problem instances considered. If the change of the approximation ratio is
small for every small change in the set of problem instances, then the algorithm
is called stable. The concept of stability of approximation has been successfully
applied to several fundamental hard optimization problems. E.g. in [2–4,8–10,
12,29] it was shown that one can partition the set of all input instances of
the Traveling Salesman Problem into infinitely many subclasses according to
the degree of violation of the triangle inequality, and for each subclass one can
guarantee upper and lower bounds on the approximation ratio. Similar studies
demonstrated that the β-triangle inequality can serve as a measure of hardness
of the input instances for other problems as well, in particular for the problem of
constructing 2-connected spanning subgraphs of a given complete edge-weighted
graph [5], and for the problem of finding, for a given positive integer k ≥ 2 and
an edge-weighted graph G, a minimum k-edge- or k-vertex-connected spanning
subgraph [6,7].

In this paper, we consider a graph G = (V,E,w) with a distance function
w(·, ·) being a Δβ-metric graph on V such that w(v, v) = 0, w(u, v) = w(v, u),
and w(u, v) ≤ β ·(w(u, x)+w(x, v)) for all u, v, x ∈ V . Given a positive integer p,
let H∗ be a spanning subgraph of G satisfying the conditions that vertices (hubs)
in C∗ ⊂ V form a clique of size at most p in H∗, vertices (non-hubs) in V \C∗ form
an independent set in H∗, and each non-hub v ∈ V \ C∗ is adjacent to exactly
one hub in C∗. Define dH∗(u, v) = w(u, f∗(u)) + w(f∗(u), f∗(v)) + w(v, f∗(v))
where f∗(u) and f∗(v) are hubs adjacent to u and v in H∗ respectively. Notice
that if u is a hub in H∗ then w(u, f∗(u)) = 0. Let r(H∗) =

∑
u,v∈V dH∗(u, v) be

the routing cost of H∗. We list the formal definition of the Single Allocation
at most p-Hub Center Routing problem in the following.

Single Allocation at most p-Hub Center Routing (Δβ-SApHCR)
Input: A Δβ-metric graph G = (V,E,w) and a positive integer p.
Output: A spanning subgraph H∗ of G satisfying the following conditions

(i) any pair of vertices (hubs) in C∗ is adjacent in H∗ where C∗ ⊂ V
and |C∗| ≤ p; (ii) any pair of vertices (non-hubs) in V \ C∗ is not
adjacent in H∗; (iii) each non-hub v ∈ V \ C∗ is adjacent to exactly
one hub in C∗ such that r(H∗) is minimized.

118 L.-H. Chen et al.

Fig. 1. An example of a single allocation at most p-hub center routing network where
the four hubs are the major post offices and the non-hubs are the other small post
offices.

In Fig. 1, we give an example of the Single Allocation at most p-Hub
Center Routing problem that can be applied in the design of post mail net-
works for which hubs are major post offices and non-hubs are small post offices.
In this paper, we investigate the approximability of the Single Allocation
at most p-Hub Center Routing problem in Δβ-metric graphs. The paper
is organized as follows: In Sect. 2, we prove that the Single Allocation at
most p-Hub Center Routing problem is NP-hard in Δβ-metric graphs for
any β > 1/2. In Sect. 3, for any β > 1/2, we give 2β-approximation algorithms
running in time O(n2) for the Single Allocation at most p-Hub Center
Routing problem.

2 NP-hardness

In this section, we show that for any β > 1/2, the Single Allocation at
most p-Hub Center Routing problem is NP-hard.

Theorem 1. For any β > 1/2, the Single Allocation at most p-Hub Cen-
ter Routing problem in Δβ-metric graphs is NP-hard.

Proof. We prove that the Single Allocation at most p-Hub Center Rout-
ing problem is at least as hard as the well-known NP-hard problem Maximum
Clique [24].

Maximum Clique Problem [24]
Input: A simple undirected graph G = (V,E) and a positive integer k.
Output: Whether there is a clique S ⊆ V of size k in G.

Notice that if G has a universal vertex v, i.e., degG(v) = |V |−1, then we can
simply select v in S and ask whether there exists a size k−1 clique in G[V \{v}].
Thus, we may assume that G has no universal vertex. To show such a statement,
we reduce the input G = (V,E) of the Maximum Clique problem to the Single
Allocation at most p-Hub Center Routing problem where p = k + 1.

Approximation Algorithms for the p-Hub Center Routing Problem 119

According to G, we construct an input Δβ-metric graph G′ = (V ′, E′, w) where
V ′ = V ∪ {x}, E′ = {(u, v) | u, v ∈ V ′}, and assign the cost of each edge in E′

as follows.

– w(u, v) = 1 if (u, v) is an edge in G.
– w(u, v) = 1 + ε if (u, v) is a non-edge in G where 0 < ε < 1.
– w(x, v) = 1 for all v ∈ V .

It is not hard to see that G′ is a Δβ-metric graph for any β ≥ 1+ε
2 . Notice that for

any constant β, it defines a Δβ-metric graph class and this graph class contains
all Δβ′ -metric graphs for β′ ≤ β. If one can prove for any 1/2 < β < 1 the
Single Allocation at most p-Hub Center Routing problem is NP-hard,
then it implies for any β > 1/2 this problem is NP-hard. In the following proof,
we may assume that 1/2 < β < 1.

Let H∗ be an optimal solution of the Single Allocation at most p-Hub
Center Routing problem. Let S∗ be a size k clique in G. We then obtain
a solution H of the Single Allocation at most p-Hub Center Routing
problem by letting all vertices C = S∗ ∪ {x} be the set of hubs in H and letting
all the remaining vertices in V \ S∗ be non-hubs adjacent to x. We obtain the
following facts.

– For two non-hubs y, z, distH(y, z) = 2.
– For a hub v ∈ C \ {x} and a non-hub y, distH(v, y) = 2.
– For two hubs u, v ∈ C, distH(u, v) = w(u, v).
– For any vertex v ∈ V , distH(v, x) = w(v, x) = 1.

We see that the routing cost of H is r(H) = 2 · (
n
2

) − (
k
2

)
+ n = n2 − (

k
2

)

where n = |V |.
Since H∗ is an optimal solution of the Single Allocation at most p-Hub

Center Routing problem in G′, we have r(H∗) ≤ n2 − (
k
2

)
.

Claim 1. All non-hubs in H∗ must be adjacent to the same hub.

Proof. Suppose that there are at least two hubs adjacent to non-hubs. Then the
routing cost between any two non-hubs which are adjacent to different hubs is at
least 3. This will imply that r(H∗) ≥ (3−ρ

2) ·n2−(
k
2

)
> n2−(

k
2

)
where 0 < ρ < 1,

a contradiction to the assumption that H∗ is an optimal solution of the Single
Allocation at most p-Hub Center Routing. �

Claim 2. The number of hubs in H∗ is p.

Proof. If the number of hubs is less than p, i.e., |C∗| < p, then we may obtain
another solution H ′ by selecting p − |C∗| non-hubs in H∗ and let them be hubs
in H ′. Since all hubs are pairwise adjacent and β < 1, it is not hard to see that
r(H ′) < r(H∗). It contradicts the assumption that H∗ is an optimal solution of
the Single Allocation at most p-Hub Center Routing. This shows that
the number of hubs in H∗ must be p. �

120 L.-H. Chen et al.

Claim 3. The vertex x must be a hub in H∗.

Proof. Suppose that x is not a hub. Since G has no universal vertex, in H∗ the
hub which is adjacent to all non-hubs must be incident to some edges with edge
cost 1 + ε. We see that r(H∗) ≥ (2+ε′

2) · n2 − (
k
2

)
> n2 − (

k
2

)
= r(H) where

ε′ > 0, a contradiction to the assumption that H∗ is an optimal solution of the
Single Allocation at most p-Hub Center Routing. This completes the
proof that x must be a hub in H∗. �

Claim 4. If the Single Allocation at most p-Hub Center Routing has
an optimal solution H∗ with r(H∗) = n2 − (

k
2

)
and C∗ is the set of hubs in H∗,

then C∗ \ {x} is a clique of size k in G where k = p − 1.

Proof. According to Claims 1–3 that all non-hubs are adjacent to x and |C∗| =
p = k + 1, we have the routing cost between vertices in C∗ is

r(C∗) = r(H∗) − r(V ′ \ C∗) − r(V ′ \ C∗, C∗)

=
(

n2 −
(

k

2

))

− 2 ·
(

n − k

2

)

− ((n − k) + 2 · k(n − k)) =
(

k + 1
2

)

.

Notice that w(x, v) = 1 for v ∈ V , w(u, v) = 1 if (u, v) ∈ E, otherwise
w(u, v) = 1 + ε. Since r(C∗) =

∑
u,v∈C∗ w(u, v) =

(
k+1
2

)
, we see that for u, v ∈

C∗ \ {x}, w(u, v) = 1 and C∗ \ {x} forms a clique in G. �

According to Claim 4, if there exists a polynomial time algorithm that solves
Single Allocation at most p-Hub Center Routing with routing cost
n2 − (

k
2

)
where k = p − 1, then the Maximum Clique problem can be solved in

polynomial time. However, Maximum Clique is a well-known NP-hard prob-
lem [24]. By the fact Maximum Clique is an NP-hard problem, this implies that
Single Allocation at most p-Hub Center Routing is also an NP-hard
problem. �	

3 New Approximation Algorithms

We have shown the NP-hardness of the Single Allocation at most p-Hub
Center Routing problem by reducing from the maximum clique problem. It
is well-known that the maximum clique is hard to approximate. In this section,
we give approximation algorithms for the Single Allocation at most p-Hub
Center Routing problem.

We first state a property of Δβ-metric graphs in the following lemma.

Lemma 1 [8]. Let G = (V,E) be a Δβ-metric graph for 1
2 ≤ β < 1. For any

two edges (u, x), (v, x) with a common endvertex x in G, w(u, x) ≤ β
1−β ·w(v, x).

Approximation Algorithms for the p-Hub Center Routing Problem 121

Algorithm 1. Approximation algorithm for Δβ-SApHCR for 1/2 ≤ β ≤ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the
following steps.

Step 1: Find z = arg minv∈V

∑

u∈V

w(u, v) as a hub in H.

Step 2: Pick p − 1 vertices {v1, . . . , vp−1} farthest to z from U . Let C := C ∪
{z, v1, . . . , vp−1} be the set of hubs in H and U := U \ {z, v1, . . . , vp−1}.

Step 3: Connect all vertices in U to z as non-hubs in H.
Step 4: Return H.

Theorem 2. For any 1/2 ≤ β ≤ 1, there is a 2β-approximation algorithm for
the Single Allocation at most p-Hub Center Routing problem.

Proof. It is easy to see that in time O(n2), Algorithm 1 returns a feasible solu-
tion of the Single Allocation at most p-Hub Center Routing problem.
We now prove that the solution H returned by Algorithm 1 satisfies the approx-
imation ratio 2β. Let G = (V,E,w) be the input graph of the Single Allo-
cation at most p-Hub Center Routing problem. Let H∗ be an optimal
solution of the Single Allocation at most p-Hub Center Routing prob-
lem. Let C∗ denote the set of hubs in H∗. Define w(H∗) =

∑
(u,v)∈E(H∗) w(u, v).

Construct a weighted complete graph G∗ = (V,E,w∗) according to H∗ where
w∗(u, v) = distH∗(u, v). Define

w∗(G∗) =
∑

u,v∈V

w∗(u, v) =
∑

u,v∈V

distH∗(u, v) = r(H∗).

Let H be the solution returned by Algorithm 1 with z being the only hub in
H that is adjacent to non-hubs. Let Sz be the spanning star of G with center
z satisfying z = arg minv∈V

∑
u∈V w(u, v). We use f∗(z) to denote the hub

adjacent to z in H∗. Note that f∗(z) = z if z is a hub in H∗. Let Sv be the
spanning star of G∗ with center v and w∗(Sv) =

∑
(u,v)∈E(Sv)

w∗(u, v).

Claim 1. r(H) ≤ r(Sz) − (1 − β) · ∑
u,v∈C\{z}(w(z, u) + w(z, v))

Proof. According to the β-triangle inequality for u, v ∈ V , w(u, v) ≤ β(w(z, u)+
w(z, v)). We obtain that

r(H) = r(Sz) −
∑

u,v∈C\{z}
(w(z, u) + w(z, v) − w(u, v))

≤ r(Sz) − (1 − β) ·
∑

u,v∈C\{z}
(w(z, u) + w(z, v)).

This completes the proof. �

122 L.-H. Chen et al.

Claim 2.
∑

u,v∈C∗\{f∗(z)} w(u, v) ≤ ∑
u,v∈C\{z}(w(z, u) + w(z, v))

Proof. We obtain that
∑

u,v∈C∗\{f∗(z)}
w(u, v) ≤

∑

u,v∈C∗\{f∗(z)}
β · (w(z, u) + w(z, v))

≤
∑

u,v∈C\{z}
β · (w(z, u) + w(z, v))

(since the selection of hubs in Algorithm 1)

≤
∑

u,v∈C\{z}
(w(z, u) + w(z, v)).

This completes the proof. �

Now we prove r(H) ≤ 2β · r(H∗) in the following.

r(H∗) = w∗(G∗) =
1
2

·
∑

v∈V

w∗(Sv)

≥ 1
2β

·
∑

v∈V

w(Sv) −
(

1 − β

2β

)

·
∑

(u,v)∈E(H∗)

w∗(u, v)

=
1
2β

·
∑

v∈V

w(Sv) −
(

1 − β

2β

)

·
∑

(u,v)∈E(H∗)

w(u, v)

=
1
2β

·
∑

v∈V

w(Sv) −
(

1 − β

2β

)

·
⎛

⎝
∑

u∈V \C∗
w(u, f∗(u)) +

∑

u∈C∗\{f∗(z)}
w(u, f∗(z)) +

∑

u,v∈C∗\{f∗(z)}
w(u, v)

⎞

⎠

≥ 1
2β

·
∑

v∈V

w(Sv) − 1
2

·
⎛

⎝
∑

u∈V \C∗
w(u, z) +

∑

u∈C∗\{f∗(z)}
w(u, z)

⎞

⎠ −
(

1 − β

2β

)

·
∑

u,v∈C∗\{f∗(z)}
w(u, v)

(by Lemma 1, w(u, f∗(u)) ≤ β
1−β · w(u, z))

=
1
2β

·
∑

v∈V

w(Sv) − 1
2

· w(Sz) −
(

1 − β

2β

)

·
∑

u,v∈C∗\{f∗(z)}
w(u, v)

≥
(

n

2β

)

· w(Sz) − 1
2β

· w(Sz) −
(

1 − β

2β

)

·
∑

u,v∈C∗\{f∗(z)}
w(u, v)

(since β ≤ 1)

Approximation Algorithms for the p-Hub Center Routing Problem 123

Algorithm 2. Approximation algorithm for Δβ-SApHCR for β ≥ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the
following steps.

Step 1: Find z = arg minv∈V

∑

u∈V

w(u, v) as the hub in H.

Step 2: Connect all vertices in U \ {z} to z as non-hubs in H.
Step 3: Return H.

=
(

n − 1
2β

)

· w(Sz) −
(

1 − β

2β

)

·
∑

u,v∈C∗\{f∗(z)}
w(u, v)

=
r(Sz)
2β

−
(

1 − β

2β

)

·
∑

u,v∈C∗\{f∗(z)}
w(u, v)

(since r(Sz) = (n − 1) · w(Sz))

≥ r(Sz)
2β

−
(

1 − β

2β

)

·
∑

u,v∈C\{z}
(w(z, u) + w(z, v)) (by Claim 2)

≥ r(H)
2β

(by Claim 1).

This shows that r(H) ≤ 2β · r(H∗), and the proof is completed. �	
Theorem 3. For any β ≥ 1, there is a 2β-approximation algorithm for the
Single Allocation at most p-Hub Center Routing problem.

Proof. It is easy to see that in time O(n2), Algorithm 2 returns a feasible solu-
tion of the Single Allocation at most p-Hub Center Routing prob-
lem. We now prove that the solution H returned by Algorithm 2 satisfies the
approximation ratio 2β. Let G = (V,E,w) be the input graph of the Single
Allocation at most p-Hub Center Routing problem. Let H∗ be an opti-
mal solution of the Single Allocation at most p-Hub Center Routing
problem and C∗ be the set of hubs in H∗. Construct a weighted complete
graph G∗ = (V,E,w∗) according to H∗ where w∗(u, v) = distH∗(u, v). Let
w(G∗) =

∑
u,v w∗(u, v) = r(H∗).

We use Sv to denote the spanning star of G with center v and w(Sv) =∑
u∈V w(u, v). Let x = arg minv∈C∗{w(Sv)}. Define w∗(Sv) =

∑
u∈V w∗(u, v)

where w∗(u, v) = distH∗(u, v). Let f∗(x) denote the hub adjacent to x in H∗.
Note that if x is a hub in H∗, then f∗(x) = x.

Claim 1. w∗(Sx) = (n − 2) · w(x, f∗(x)) + w∗(Sf∗(x)).

124 L.-H. Chen et al.

Proof. If x is a hub in H∗, we have f∗(x) = x and the equation holds directly.
Suppose that x is not a hub. We obtain that

w∗(Sx) =
∑

v∈V

w∗(x, v) =
∑

v∈V \{x}
w(x, f∗(x)) + w(f∗(x), f∗(v)) + w(f∗(v), v)

= (n − 1) · w(x, f∗(x)) +

⎛

⎝
∑

v∈V \{x}
w(f∗(x), f∗(v)) + w(f∗(v), v)

⎞

⎠

= (n − 2) · w(x, f∗(x)) +

(
∑

v∈V

w(f∗(x), f∗(v)) + w(f∗(v), v)

)

= (n − 2) · w(x, f∗(x)) +

(
∑

v∈V

w∗(f∗(x), v)

)

= (n − 2) · w(x, f∗(x)) + w∗(Sf∗(x)).

This completes the proof. �

Claim 2. For any hub y ∈ C∗, w∗(Sy) ≥ 1
β · w(Sy).

Proof. According to the β-triangle inequality, we see that w(u, y) ≤ β ·(w(u, y)+
w(f∗(u), y)). We obtain that for u ∈ V , w∗(u, y) = w(u, f∗(u)) + w(f∗(u), y) ≥
1
β · w(u, y). Thus

w∗(Sy) =
∑

u∈V

w∗(u, y) ≥
∑

u∈V

1
β

· w(u, y) =
1
β

·
∑

u∈V

w(u, y) =
1
β

· w(Sy).

This completes the proof. �

Now we prove r(H) ≤ 2β · r(H∗) in the following.

r(H∗) = w∗(G∗) =
1
2

·
∑

v∈V

w∗(Sv)

=
1
2

·
(

∑

v∈V

(
w∗(Sf∗(v)) + (n − 2) · w(v, f∗(v))

)
)

(by Claim 1)

≥ 1
2

·
∑

v∈V

w∗(Sf∗(v)) ≥ 1
2β

·
∑

v∈V

w(Sf∗(v)) (by Claim 2)

≥ 1
2β

· n · w(Sx) (since x = arg min
v∈C∗

{w(Sv)})

≥ 1
2β

· (n − 1) · w(Sz) (since z = arg min
v∈V

{w(Sv)}) =
1
2β

· r(H).

This shows r(H) ≤ 2β · r(H∗). Thus Algorithm 2 returns a solution with
approximation ratio 2β. �	

Approximation Algorithms for the p-Hub Center Routing Problem 125

4 Concluding Remarks

In this paper, we have proved that the Single Allocation at most p-Hub
Center Routing problem is NP-hard in Δβ-metric graphs for any β > 1

2 .
For any β > 1

2 , we have given 2β-approximation algorithms. In future work,
it is of interest to design approximation algorithms with better approximation
ratios. Besides, it is still open whether the Single Allocation at most p-Hub
Center Routing problem is APX-hard or not. If the Single Allocation at
most p-Hub Center Routing problem is APX-hard, one must prove that
for any ε > 0, it is NP-hard to approximate Single Allocation at most
p-Hub Center Routing to a factor c − ε for some constant c > 1. The other
possibility is that there exists a polynomial-time approximation scheme (PTAS)
for Single Allocation at most p-Hub Center Routing. We conjecture
that there exists a PTAS for the Single Allocation at most p-Hub Center
Routing problem.

References

1. Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur.
J. Oper. Res. 190, 1–21 (2008)

2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a
relaxed triangle inequality. Networks 38, 59–67 (2001)

3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms
depending on parameterized triangle inequalities. SIAM J. Discrete Math. 8, 1–16
(1995)

4. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parame-
terized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)

5. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert,
S., Unger, W.: On the hardness of constructing minimal 2-connected spanning
subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M.,
Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36206-1 7

6. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert,
S., Unger, W.: On k -edge-connectivity problems with sharpened triangle inequality.
In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp.
189–200. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44849-7 24

7. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert,
S., Unger, W.: On k-connectivity problems with sharpened triangle inequality. J.
Discrete Algorithms 6, 605–617 (2008)

8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approx-
imation algorithms for the TSP with sharpened triangle inequality. Inf. Process.
Lett. 75, 133–138 (2000)

9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the Traveling
Salesman Problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC
2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-46521-9 7

https://doi.org/10.1007/3-540-36206-1_7
https://doi.org/10.1007/3-540-44849-7_24
https://doi.org/10.1007/3-540-46521-9_7
https://doi.org/10.1007/3-540-46521-9_7

126 L.-H. Chen et al.

10. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An
improved lower bound on the approximability of metric TSP and approximation
algorithms for the TSP with sharpened triangle inequality. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-46541-3 32

11. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gon-
zalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap.
31. Chapman & Hall/CRC (2007)

12. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of
the traveling salesman problem. RAIRO - Theoret. Inf. Appl. 34, 213–255 (2000)

13. Campbell, J.F.: Integer programming formulations of discrete hub location prob-
lems. Eur. J. Oper. Res. 72, 387–405 (1994)

14. Campbell, J.F., O’Kelly, M.E.: Twenty-five years of hub location research. Transp.
Sci. 46, 153–169 (2012)

15. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.:
Approximation algorithms for single allocation k-hub center problem. In: Pro-
ceedings of the 33rd Workshop on Combinatorial Mathematics and Computation
Theory (CMCT 2016), pp. 13–18 (2016)

16. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.:
Approximation algorithms for the star k -hub center problem in metric graphs.
In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 222–234.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1 18

17. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu, B.Y.: On the
complexity of the star p-hub center problem with parameterized triangle inequal-
ity. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol.
10236, pp. 152–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57586-5 14

18. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R.: The approximability of the
p-hub center problem with parameterized triangle inequality. In: Cao, Y., Chen,
J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 112–123. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62389-4 10

19. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu,
B.Y.: Approximability and inapproximability of the star p-hub center problem with
parameterized triangle inequality. J. Comput. Syst. Sci. 92, 92–112 (2018)

20. Contreras, I.: Hub location problems. In: Laporte, G., Nickel, S., da Gama, F.S.
(eds.) Location Science, pp. 311–344. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-13111-5 12

21. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Unca-
pacitated single and multiple allocation p-hub center problems. Comput. Oper.
Res. 36, 2230–2241 (2009)

22. Hromkovič, J.: Stability of approximation algorithms and the knapsack problem.
In: Karhumäki, J., Maurer, H., Paun, G., Rozenberg, G. (eds.) Jewels are For-
ever, pp. 238–249. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-
642-60207-8 21

23. Hromkovič, J.: Algorithmics for Hard Problems - Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics, 2nd edn. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-662-05269-3

24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

https://doi.org/10.1007/3-540-46541-3_32
https://doi.org/10.1007/978-3-319-42634-1_18
https://doi.org/10.1007/978-3-319-57586-5_14
https://doi.org/10.1007/978-3-319-57586-5_14
https://doi.org/10.1007/978-3-319-62389-4_10
https://doi.org/10.1007/978-3-319-13111-5_12
https://doi.org/10.1007/978-3-319-13111-5_12
https://doi.org/10.1007/978-3-642-60207-8_21
https://doi.org/10.1007/978-3-642-60207-8_21
https://doi.org/10.1007/978-3-662-05269-3

Approximation Algorithms for the p-Hub Center Routing Problem 127

25. Iwasa, M., Saito, H., Matsui, T.: Approximation algorithms for the single allocation
problem in hub-and-spoke networks and related metric labeling problems. Discrete
Appl. Math. 157, 2078–2088 (2009)

26. Kuroki, Y., Matsui, T.: Approximation algorithms for hub location problems. In:
The 9th Annual Meeting of Asian Association for Algorithms and Computation
(AAAC 2016) (2016)

27. Lin, C.-W., Wu, B.Y.: On the minimum routing cost clustered tree problem. J.
Combinat. Optim. 33, 1106–1121 (2017)

28. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median prob-
lem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179, 927–939 (2007)

29. Mömke, T.: An improved approximation algorithm for the traveling salesman prob-
lem with relaxed triangle inequality. Inf. Process. Lett. 115, 866–871 (2015)

30. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub
facilities. Eur. J. Oper. Res. 32, 393–404 (1987)

31. O’Kelly, M.E., Miller, H.J.: Solution strategies for the single facility minimax hub
location problem. Pap. Reg. Sci. 70, 367–380 (1991)

32. Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neigh-
borhood search for solving the uncapacitated r-allocation p-hub median problem.
Optim. Lett. 11, 1109–1121 (2017)

33. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., Tang, C.Y.: A polynomial-
time approximation scheme for minimum routing cost spanning trees. SIAM J.
Comput. 29, 761–778 (1999)

34. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum
routing cost spanning trees. J. Algorithms 44, 359–378 (2002)

On the Area Requirements
of Straight-Line Orthogonal
Drawings of Ternary Trees

Barbara Covella, Fabrizio Frati(B), and Maurizio Patrignani

Roma Tre University, Rome, Italy
{covella,frati,patrigna}@dia.uniroma3.it

Abstract. We prove that every n-node ternary tree has a planar
straight-line orthogonal drawing in O(n1.576) area, improving upon the
previously best known O(n1.631) bound. Further, we present an upper
bound, the outcomes of an experimental evaluation, and a conjecture
on the area requirements of planar straight-line orthogonal drawings of
complete ternary trees.

1 Introduction

A planar straight-line orthogonal drawing of a graph represents each vertex as a
point in the plane and each edge either as a horizontal or as a vertical straight-
line segment, so that no two edges cross. Planar straight-line orthogonal graph
drawings have long been studied. In 1987 Tamassia [15] presented an algorithm
that decides in polynomial time whether a graph with a fixed combinatorial
embedding has a planar straight-line orthogonal drawing (and, more in general,
a planar orthogonal drawing with at most k bends, for any integer k ≥ 0); this
result lies at the very foundations of the research area now called Graph Drawing.
Nomura et al. [10] proved that every outerplanar graph with maximum degree 3
and no 3-cycle has a planar straight-line orthogonal drawing.

The question whether a given tree has a planar straight-line orthogonal draw-
ing is less interesting, as the answer is positive if and only if the degree of each
node is at most 4. Most research efforts concerning planar straight-line orthog-
onal drawings of trees have then been devoted to the construction of drawings
with small area. This is usually formalized by requiring nodes to lie at grid
points, i.e., points with integer coordinates, and by defining the width and height
of a drawing as the number of grid columns and rows intersecting it, respectively,
and the area as the width times the height.

It has been known since the 70’s that n-node complete binary trees1 admit
planar straight-line orthogonal drawings in O(n) area [4,13]. Concerning gen-
eral binary trees, the long-standing O(n log log n) area bound [3,14] has recently

Partially supported by MIUR Project “MODE” under PRIN 20157EFM5C and by
H2020-MSCA-RISE project 734922 – “CONNECT”.

1 Drawing algorithms usually assume trees to be rooted, that is, to have a distinguished
node, called root. Trees of maximum degree 3 and 4 are then called binary and

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 128–140, 2018.
https://doi.org/10.1007/978-3-319-94667-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_11&domain=pdf

On the Area Requirements of Straight-Line Orthogonal Drawings 129

been improved by Chan [2] to n2O(log∗ n), where log∗ denotes the iterated loga-
rithm. Worse bounds are known for ternary trees; Frati proved [7] that ternary
trees and complete ternary trees admit planar straight-line orthogonal drawings
in O(n1.631) and O(n1.262) area, respectively. The latter bound was improved
to O(n1.118) by Ali [1]. No super-linear area lower bound is known for planar
straight-line orthogonal drawings of ternary trees. We prove the following result.

Theorem 1. Every n-node ternary tree admits a planar straight-line orthogonal
drawing in O(n1.576) area.

The proof of Theorem1, which is presented in Sect. 2, exploits a geometric
construction which includes the one presented by Frati [7] as a special case.

In Sect. 3 we study the area requirements of planar straight-line orthogonal
drawings of complete ternary trees. We focus on drawings that satisfy the subtree
separation property: the smallest axis-parallel rectangles enclosing the drawings
of any two node-disjoint subtrees do not overlap. We prove that n-node complete
ternary trees admit such drawings in O(n1.149) area. We also present an algo-
rithm that constructs a minimum-area planar straight-line orthogonal drawing
with the subtree separation property of a complete ternary tree in polynomial
time. This allowed us to experimentally compute the area required by planar
straight-line orthogonal drawings with the subtree separation property for com-
plete ternary trees with up to 2 billion nodes. The outcomes of these experiments
led us to conjecture that complete ternary trees do not admit planar straight-line
orthogonal drawings with the subtree separation property in near-linear area. In
the following a drawing always means a planar straight-line orthogonal drawing.

2 General Ternary Trees

In this section we prove Theorem 1; we show an inductive algorithm that takes
in input an n-node ternary tree T and constructs a drawing Γ of T in O(n1.576)
area that satisfies the top-visibility property, i.e., the vertical half-line emanating
from the root r(T) and directed upwards does not intersect Γ , except at r(T).

For a node v in T , we denote as Tv the subtree of T rooted at v; further, we
denote the subtrees of v as the heaviest subtree Hv, the second heaviest subtree
Mv, and the lightest subtree Lv of v, according to the non-increasing order of
the number of their nodes, with ties broken arbitrarily. A heavy path in T is
a path (v1, . . . , vk) such that r(T) = v1 and vi+1 is the root of Hvi

, for any
i = 1, . . . , k − 1. We denote by (π1, . . . , πk(π)) the nodes of a heavy path π.

In the base case n = 1. Then Γ is constructed by placing r(T) at any grid
point of the plane. If n > 1, then let π be a heavy path in T . Further, let ρ be
a heavy path in Mr(T). Let p > 4 be a parameter to be determined later and
let x be the smallest index such that πx has at least two subtrees with at least

ternary trees, respectively. We will use standard terminology on rooted trees, like
child, subtree, and leaf; refer to [5,6,11]. A tree is complete if every non-leaf node has
the same number of children and every root-to-leaf path has the same length.

130 B. Covella et al.

n/p nodes each, if any such index exists. We first describe our construction by
assuming that x exists and is greater than 2; we will deal with the other cases
later. Let σ be a heavy path in Mπx−1 and let τ be a heavy path in Mπx

. Let P =
(ρk(ρ), . . . , ρ1, π1, . . . , πx−1, σ1, . . . , σk(σ)) and Q = (πk(π), . . . , πx, τ1, . . . , τk(τ)).

πx−1r(T)=π1
ρ1

π2
σ1 σ2

πx
πx+1

ρ2

τ1 τ2 τk(τ)

Lπ1
Lπ2

Mπ2 Lπx−1

Lσ1

Mσ1 Mσ2Mρ1

Lρ1
Lρ2

Mρ2

Lπx
Lπx+1

Mπx+1

Mπx+2

Lπx+2

ρk(ρ) σk(σ)

πk(π) πx+2

Mτ1

Mτ2

Lτ2Lτ1

Lσ2

Fig. 1. Construction of Γ if n > 1. Fat lines represent π, ρ, σ, and τ . Double-headed
arrows indicate unit distances. Gray boxes represent inductively constructed drawings.

Figure 1 shows the construction of Γ . The paths P and Q lie on two horizontal
lines �P and �Q, with �P above �Q and with the nodes in left-to-right order as they
appear in P and Q. Let V = V (P) ∪ V (Q). For every subtree T ∗ of T rooted
at a node r∗ /∈ V child of a node p∗ ∈ V, a drawing Γ ∗ of T ∗ is constructed
inductively and attached to p∗ as follows. If T ∗ = Lp∗ , then Γ ∗ is placed with
r∗ on the same vertical line as p∗ with its top side one unit below p∗ (we call
T ∗ a bottom subtree of P or Q, depending on whether p∗ is in V (P) or V (Q),
respectively). Otherwise, T ∗ = Mp∗ (note that T ∗ �= Hp∗ , as r∗ /∈ V); then Γ ∗

is rotated by 180◦ and placed with r∗ on the same vertical line as p∗ with its
bottom side one unit above p∗ (we call T ∗ a top subtree of P or Q, depending
on whether p∗ is in V (P) or V (Q), respectively). There is one exception to this
rule, which happens if T ∗ = Lp∗ with p∗ = πx−1; then Γ ∗ is rotated by 180◦ and
placed with r∗ on the same vertical line as p∗ and with its bottom side one unit
above p∗, as if it were a second heaviest subtree (we call T ∗ a top subtree of P).

The horizontal distance of the nodes in V is set so that, for any two nodes
x and y such that x comes right before y on P or Q, the rightmost vertical
line intersecting x or its attached subtrees is one unit to the left of the leftmost
vertical line intersecting y or its attached subtrees. There are two exceptions
to this rule, involving the distance between πx and its neighbors πx+1 and τ1.
Indeed, the distance between πx and πx+1 is set so that the rightmost vertical line
intersecting πx+1 or its attached subtrees is one unit to the left of the leftmost
vertical line intersecting P or its attached subtrees, or πx, or Lπx

; the distance
between πx and τ1 is set similarly. The reason for “pushing” πx+1 (τ1) and its
attached subtrees to the left (right) of P and its attached subtrees is to allow
for a vertical compaction of Γ . In fact, the vertical distance between P and Q
can be set so that the bottommost horizontal line intersecting P or its attached
subtrees is one unit above Q. This completes the construction of Γ .

It is easy to see that Γ is a planar straight-line orthogonal drawing with the
top-visibility property. Every grid column intersecting Γ contains at least one
node of T , hence the width of Γ is in O(n). We now analyze the height of Γ .

On the Area Requirements of Straight-Line Orthogonal Drawings 131

Let H(n) be the maximum height of a drawing of an n-node tree constructed
by the described algorithm. Then the height of Γ is at most H(n). Note that
H(1) = 1.

Let a (b) be the maximum cardinality of a top (resp. bottom) subtree of P .
Let r (s) be the maximum cardinality of a top (resp. bottom) subtree of Q. By
definition of x we have |V (Mπi

)|, |V (Lπi
)| < n/p, for i ∈ {1, . . . , x − 1}. Hence:

a, b < n/p. (1)

Since the lightest subtree of the root of a tree with m nodes has less than
m/3 nodes, we have

s ≤ (n − a − b)/3. (2)

We also have the following inequality, whose proof needs some case analysis.

r + s ≤ 2(p − 1)
3p

n. (3)

Proof: Let R and S be a top and bottom subtree of Q, respectively, with |R| = r
and |S| = s. By construction R = Mπi

, for some x < i < k(π), or R = Mτi
, for

some 1 ≤ i < k(τ). Further, S = Lπj
, for some x ≤ j < k(π), or S = Lτj

, for
some 1 ≤ j < k(τ). We first assume that R = Mπi

, for some x < i < k(π). We
distinguish five cases.

Fig. 2. The five cases in the proof of Inequality (3).

Case 1: S = Lπx
(see Fig. 2(a)). We have that |Hπi

| ≥ r; also, |Mπx
| ≥ s.

Since Lπx
, Mπx

, Mπi
, and Hπi

are vertex-disjoint, we have 2r + 2s ≤ n, which
implies r + s ≤ 2(p−1)

3p n if p ≥ 4.
Case 2: S = Lτj

, for some 1 ≤ j < k(τ) (see Fig. 2(b)). We have |Hπi
| ≥

r; also, |Hτj
| ≥ s. Since Lτj

, Hτj
, Mπi

, and Hπi
are vertex-disjoint, we have

2r + 2s ≤ n, which implies r + s ≤ 2(p−1)
3p n if p ≥ 4.

Case 3: S = Lπj
, for some x < j < i < k(π) (see Fig. 2(c)). We have

|Hπi
| ≥ r; also, |Mπj

| ≥ s. Since Lπj
, Mπj

, Mπi
, and Hπi

are vertex-disjoint, we
have 2r + 2s ≤ n, which implies r + s ≤ 2(p−1)

3p n if p ≥ 4.
Case 4: S = Lπi

(see Fig. 2(d)). By definition of x we have |Mπx
| ≥ n/p.

Since Tπi
and Mπx

are vertex-disjoint, we have |Tπi
| ≤ p−1

p n. Since |Hπi
| ≥

|Mπi
|, |Lπi

|, we have r + s ≤ 2(p−1)
3p n.

132 B. Covella et al.

Case 5: S = Lπj
, for some x < i < j < k(π) (see Fig. 2(e)). As in Case 4, we

have |Tπi
| ≤ p−1

p n. Since Tπi+1 = Hπi
, we have r ≤ |Tπi+1 |. Since |Hπj

|, |Mπj
| ≥

|Lπj
|, we have s ≤ |Tπi+1 |/3, hence r + s ≤ 4|Tπi+1 |/3. On the other hand, at

least |Tπi+1 | − |Lπj
| ≥ 2|Tπi+1 |/3 nodes of Tπi+1 do not belong to R or S, hence

4|Tπi+1 |
3 +

2|Tπi+1 |
3 = 2|Tπi+1 | ≤ p−1

p n, which is |Tπi+1 | ≤ p−1
2p n. It follows that

r + s ≤ 2(p−1)
3p n.

This concludes the discussion if R = Mπi
, for some x < i < k(π). Our argu-

ments above do not make use of the fact that |Tπx+1 | ≥ |Tτ1 |. Hence, symmetric
arguments handle the case in which R = Mτi

, for some 1 ≤ i < k(τ). ��
The height of the part of Γ below �Q is given by the height of a bottom

subtree of Q. Further, since �Q is one unit below the bottommost horizontal
line intersecting P or its attached subtrees, the height of the part of Γ above
�Q is given by the maximum between the height of a top subtree of Q, and the
height of a top subtree of P plus the height of a bottom subtree of P plus one
(corresponding to �P). Since the heights of a top subtree of P , a bottom subtree
of P , a top subtree of Q, and a bottom subtree of Q are at most H(a), H(b),
H(r), and H(s), respectively, by taking into account the grid row of �Q we get:

H(n) ≤ max{H(r) + H(s) + 1,H(a) + H(b) + H(s) + 2}. (4)

We are going to inductively prove that

H(n) ≤ 2 · nc − 1, where c =
1

log2
3p

p−1

. (5)

Note that inequality (5) is trivially true if n = 1. Now assume that inequal-
ity (5) is true for all integer values of the variable less than n. By inequality (4),
it suffices to prove that max{H(r)+H(s)+1,H(a)+H(b)+H(s)+2} ≤ 2·nc−1.

– First, we need to have H(r) + H(s) + 1 ≤ 2 · nc − 1. By induction, H(r) +
H(s) + 1 ≤ 2 · rc − 1 + 2 · sc − 1 + 1, hence we need that rc + sc ≤ nc.
Here we use Hölder’s inequality, which states that

∑
aibi ≤ (

∑
ax

i)
1
x (

∑
by
i)

1
y

for every x and y such that 1/x + 1/y = 1. By employing the values 1/x = c,
1/y = 1 − c, a1 = rc, a2 = sc, b1 = b2 = 1, we get:

rc + sc ≤ (r + s)c · 21−c ≤
(

2(p − 1)
3p

n

)c

· 21−c = 2 ·
(

p − 1
3p

n

)c

,

where we exploited inequality (3). Thus, we need 2 · (p−1
3p n)c ≤ nc, which is

2 · (p−1
3p)1/(log2

3p
p−1) ≤ 1. Set x = 3p

p−1 ; then the previous inequality becomes
(1/x)1/ log2 x ≤ 1/2; taking the base-2 logarithms, we have log2(1/x)1/ log2 x ≤
log2(1/2), hence 1

log2 x log2(1/x) ≤ −1 which is −1 ≤ −1. This proves that
H(r) + H(s) + 1 ≤ 2 · nc − 1.

On the Area Requirements of Straight-Line Orthogonal Drawings 133

– Second, we need to have H(a)+H(b)+H(s)+2 ≤ 2 ·nc−1. By inequality (2),
we have H(a)+H(b)+H(s)+2 ≤ H(a)+H(b)+H(n−a−b

3)+2. By induction,
H(a) ≤ 2 · ac − 1, H(b) ≤ 2 · bc − 1, and H(n−a−b

3) ≤ 2 · (n−a−b
3)c − 1, hence

we need that ac + bc + (n−a−b
3)c ≤ nc.

We prove that f(a, b) = ac + bc + (n−a−b
3)c grows monotonically with a, by

assuming that 0.5 < c < 0.6; this assumption will be verified later. We have
∂f(a,b)

∂a = c · ac−1 − c
3 · (n−a−b

3)c−1, which is greater than zero as long as
ac−1 > 1

3c · (n − a − b)c−1. Since c < 0.6, we have that 1 − c is positive,
hence by raising the previous inequality to the power of −1/(1 − c) we get
a < 3c/(1−c) · (n−a−b), which is a < 3c/(1−c)

1+3c/(1−c) · (n−b). By inequality (1) the

latter is true as long as n
p < 3c/(1−c)

1+3c/(1−c) · p−1
p ·n, that is 3c/(1−c)

1+3c/(1−c) · (p− 1) > 1.

From 0.5 < c < 0.6 we get that 3c/(1−c) > 3, hence 3c/(1−c)

1+3c/(1−c) > 3
4 . Since

p > 4, the inequality 3c/(1−c)

1+3c/(1−c) · (p − 1) > 1 is satisfied, hence ∂f(a,b)
∂a > 0 and

f(a, b) grows monotonically with a.
Analogously, f(a, b) grows monotonically with b, as long as 0.5 < c < 0.6.
By inequality (1) we have a, b < n/p, hence the monotonicity of f(a, b) we

proved above implies ac + bc +
(

n−a−b
3

)c
< 2 · (n/p)c +

(
n−2n/p

3

)c

. Thus, we

need 2 · (n/p)c +
(

n−2n/p
3

)c

≤ nc. Dividing by nc, the inequality becomes

2 · (1/p)c +
(

1−2/p
3

)c

− 1 ≤ 0. Thus, we need to choose p so to satisfy 2 ·

(1/p)1/ log2
3p

p−1 +
(

1−2/p
3

)1/ log2
3p

p−1 − 1 ≤ 0; the latter inequality is true2 if
p ≥ 9.956. Thus setting p = 9.956 we have H(a)+H(b)+H(s)+2 ≤ 2 ·nc −1.

From p = 9.956 we get c = 0.576. By inequality (5) the height of Γ is in
O(n0.576). This completes the proof of the height and area bounds for Γ .

Finally, we describe how to modify the construction if x = 1, if x = 2, or if x
is undefined. If x is undefined, π “never turns down”, that is, the construction
coincides with the one above with x = k(π)+1; in this special case our construc-
tion actually coincides with the one of Frati [7]. If x = 1, the construction above
starts from πx, that is, it ignores the paths ρ, σ, and (π1, . . . , πx−1) and their
attached subtrees. If x = 2, π “immediately turns down”: the second heaviest
subtree of r(T) = π1 = πx−1 is drawn as above, while its lightest subtree is
drawn as the second heaviest subtree of πx−1 above; the rest of the construc-
tion, starting from πx, coincides with the one above. In each of these cases, the
analysis on the area of the constructed drawings does not change.

3 Complete Ternary Trees

When restricting the attention to complete ternary trees better area bounds
than the one from Theorem 1 are known. Namely, Frati [7] presented two induc-
tive constructions, which are called Constructions 1 and 2 and are depicted in
2 We used the software at www.wolframalpha.com in order to solve the inequality.

www.wolframalpha.com

134 B. Covella et al.

Figs. 3(a) and (b), respectively, and proved that either of them can be used to
obtain drawings with O(n1.262) area. That bound was improved by Ali [1], whose
construction, which is depicted in Fig. 3(c), achieves an O(n1.118) bound.

1 11

r(Th)
1 1

r(Th)

1

r(Th)

)c()b()a(

r(Th)

r(Th)
Γh−1r(Th)

Γh−1

1

Γh−2 1

Γh−2

Γh−2
1

1

1

1 1

)f()e()d(

Fig. 3. (a) and (b) Constructions 1 and 2 from [7]; each of them constructs a drawing of
Th out of 3 copies of the inductively constructed drawing of Th−1. (c) The construction
of a drawing of Th from [1], which employs 9 copies of the inductively constructed draw-
ing of Th−2. (d) H-drawings, as in [13]. (e) HV-drawings, as in [4]. (f) The construction
of an O(n1.149)-area drawing of Th satisfying the subtree separation property.

Denote by Th the complete ternary tree such that every root-to-leaf path
has length h. In the remainder of the paper we investigate what area bounds
can be achieved for planar straight-line orthogonal drawings of Th by combining
Constructions 1 and 2. More formally, we define a 1-2 drawing of Th as follows.
If h = 1, then any drawing in which the root r(Th) of Th is at a grid point of
the plane is a 1-2 drawing. If h > 1, then consider any three (not necessarily
congruent) 1-2 drawings of Th−1 and arrange them as in Construction 1 or as in
Construction 2; then the resulting drawing of Th is a 1-2 drawing.

A 1-2 drawing has a feature that the drawings of Ali [1] do not have, called
subtree separation property: the smallest axis-parallel rectangles enclosing the
drawings of any two node-disjoint subtrees do not overlap. This property has
been frequently considered in the tree drawing literature (see, e.g., [3,9,11,12]),
because of the readability of the drawings that have it and because it is directly
guaranteed by the following natural approach for drawing trees: Inductively con-
struct drawings of the subtrees of the root and place them together so that the
smallest axis-parallel rectangles enclosing them do not overlap; placing the root
in the plane completes the drawing. The notorious H-drawings [13] and HV-
drawings [4], which can be constructed in linear area for complete binary trees,
satisfy the subtree separation property (see Figs. 3(d) and (e), respectively).

On the Area Requirements of Straight-Line Orthogonal Drawings 135

Let the left width of a drawing Γ of a ternary tree be the number of grid
columns intersecting Γ to the left of the root; the right width, top height, and
bottom height of Γ are defined analogously. We have the following.

Lemma 1. Suppose that the complete ternary tree Th has a planar straight-line
orthogonal drawing Γ with the subtree separation property, with left width λ, with
right width ρ, with height η, and such that, if h ≥ 2, the three children of r(Th)
are to the left, below, and to the right of r(Th).

Then there is a 1-2 drawing Γ ′ of Th with the following properties:

– the left and right widths of Γ ′ are both equal to a value μ ≤ min{λ, ρ};
– the height of Γ ′ is at most η;
– if h ≥ 2, then the three children of r(Th) are to the left, below, and to the

right of r(Th) in Γ ′; and
– if h ≥ 2, then let L, B, and R be the subtrees of r(Th) rooted at the children

of r(Th) to the left, below, and to the right of r(Th), respectively; then the
drawings of L and R in Γ ′ are congruent, up to a rotation of 180◦.

Similar statements hold true if the three children of r(Th) are below, to the right,
and above r(Th), if they are to the right, above, and to the left of r(Th), or if
they are above, to the left, and below r(Th).

Proof sketch: The proof proceeds in three steps. We first replace the drawings
of L, B, and R in Γ by 1-2 drawings; we then replace the 1-2 drawing of one
between L and R by a rotated copy of the 1-2 drawing of the other one; we
finally compact the drawing of Th by translating the drawings of L, B, and R.
The full proof of the lemma will be shown in the full version of the paper.

Lemma 1 implies that 1-2 drawings require minimum area among the planar
straight-line orthogonal drawings satisfying the subtree separation property.

Theorem 2. For any positive integer h, there is a 1-2 drawing of the com-
plete ternary tree Th achieving minimum area among all the planar straight-line
orthogonal drawings of Th satisfying the subtree separation property.

Proof: By Lemma 1 for any planar straight-line orthogonal drawing Γ of Th

satisfying the subtree separation property there is a 1-2 drawing Γ ′ whose width
and height are at most equal to the width and height of Γ , respectively. ��

Theorem 2 motivates the study of the area requirements of 1-2 drawings of
complete ternary trees. Our next theorem proves an upper bound for the area
requirements of 1-2 drawings that improves upon the O(n1.262) area bound by
Frati [7] and is close to the O(n1.118) bound by Ali [1] for planar straight-line
orthogonal drawings that do not satisfy the subtree separation property.

Theorem 3. The n-node complete ternary tree has a 1-2 drawing (and hence a
planar straight-line orthogonal drawing satisfying the subtree separation property)
in O(n1.149) area.

136 B. Covella et al.

Proof: We show an inductive algorithm that constructs a 1-2 drawing Γh of Th

in O(n1.149) area, so that the three children r(L), r(B), and r(R) of r(Th) are
to the left, below, and to the right of r(Th), respectively. Denote by L, B, and
R the subtrees of r(Th) rooted at r(L), r(B), and r(R), respectively. Further,
denote by W (h) and H(h) the width and the height of Γh, respectively.

In the base case of the algorithm we have h ≤ 2. If h = 1 then Γ1 is con-
structed by placing r(Th) at any grid point in the plane. If h = 2 then Γ2 is
constructed by combining three copies of Γ1 by means of Construction 1. Note
that W (1) = H(1) = 1, W (2) = 3, and H(2) = 2.

If h > 2 we construct Γh as in Fig. 3(f). In particular, we first construct
a 1-2 drawing of B; this is done by combining, by means of Construction 1,
three copies of the inductively constructed drawing Γh−2 of Th−2 (two of such
copies are rotated by 90◦, one clockwise and one counter-clockwise). We then
construct Γh by combining, by means of Construction 2, two copies of the induc-
tively constructed drawing Γh−1 of Th−1 (rotated by 90◦, one clockwise and one
counter-clockwise), which serve as drawings for L and R, with the just con-
structed drawing of B. We now analyze the area requirements of Γh.

The width of Γh is given by the maximum between the width of the part of
Γh comprising r(Th), L, and R, and the part of Γh comprising B, that is:

W (h) = max{2H(h − 1) + 1,W (h − 2) + 2H(h − 2)}. (6)

The height of Γh is given by the height of the part of Γh comprising r(Th),
L, and R, plus the height of the part of Γh comprising B, that is:

H(h) = W (h − 1) + max{W (h − 2), (W (h − 2) + 1)/2 + H(h − 2)}. (7)

We now inductively prove that W (h) ≤ k · ch − 1 and H(h) ≤ α · k · ch − 1,
for any h = 1, 2, . . . , where α, k, and c are suitable constants (to be determined)
such that 1/2 < α < 1, k > 1, and 1 < c < 2; in particular, we would like c to
be as small as possible. In the base case (1 ≤ h ≤ 2), for any constants c > 1
and 1/2 < α < 1, a constant k = k(c, α) can be chosen large enough so that
W (h) ≤ k ·ch−1 and H(h) ≤ α·k ·ch−1. Indeed, it suffices to choose k ≥ 4/(α·c)
in order to have k · ch − 1 > α · k · ch − 1 ≥ 3 ≥ W (1),H(1),W (2),H(2).

For the inductive case, assume that W (h′) ≤ k·ch′−1 and H(h′) ≤ α·k·ch′−1,
for every integer h′ < h; we prove the same inequalities for h.

By applying induction in Eq. (7), we get H(h) ≤ k · ch−1 −1+max{k · ch−2 −
1, (k ·ch−2 −1+1)/2+α ·k ·ch−2 −1} ≤ k ·ch−1 −1+k ·ch−2 ·max{1, α+1/2} ≤
k · ch−1 − 1 + (α + 1/2) · k · ch−2, where we exploited α > 1/2. Hence, we want
k · ch−1 − 1 + (α + 1/2) · k · ch−2 ≤ α · k · ch − 1, that is

α · c2 − c − (α + 1/2) ≥ 0. (8)

In order to establish W (h) ≤ k · ch − 1 we distinguish two cases.
If W (h−2)+2H(h−2) ≥ 2H(h−1)+1, then by applying induction, we get

W (h) ≤ k · ch−2 − 1 + 2(α · k · ch−2 − 1) = (2α + 1) · k · ch−2 − 3. Hence, we want
(2α + 1) · k · ch−2 − 3 ≤ k · ch − 1, which is true as long as c2 ≥ 2α + 1, hence

c ≥ √
2α + 1. (9)

On the Area Requirements of Straight-Line Orthogonal Drawings 137

If 2H(h − 1) + 1 > W (h − 2) + 2H(h − 2), then by applying induction,
we get W (h) ≤ 2(α · k · ch−1 − 1) + 1 = 2α · k · ch−1 − 1. Hence, we want
2α · k · ch−1 − 1 ≤ k · ch − 1, which is true as long as

c ≥ 2α. (10)

Now pick c = 2α, thus satisfying inequality (10). Substituting c = 2α in
inequality (8), we want 4α3 − 3α − 1/2 ≥ 0, which is true if α ≥ 0.9397. So
take α = 0.9397, implying that inequality (8) is satisfied and note that c =
2α = 1.8794 > 1.6969 >

√
2α + 1, hence inequality (9) is satisfied as well. This

completes the induction and hence proves that W (h),H(h) ∈ O(1.8794h).
Since h = log3 n+O(1), we have W (h),H(h) ∈ O(1.8794log1.8794 n/ log1.8794 3),

hence W (h),H(h) ∈ O(n0.5744). Theorem 3 follows. ��
We now prove the following theorem.

Theorem 4. A minimum-area 1-2 drawing of a complete ternary tree can be
computed in polynomial time.

The proof of Theorem 4 is based on the following strategy3, which resembles
the approach proposed in [8] in order to compute minimum-area LR-drawings
of binary trees. For any value of h we aim at computing all the Pareto-optimal
width-height pairs (ω, η) for the 1-2 drawings of Th; these are the pairs such that:
(i) Th admits a 1-2 drawing with width ω and height η; and (ii) there exists no
pair (ω′, η′) such that Th admits a 1-2 drawing with width ω′ and height η′,
where ω′ ≤ ω, η′ ≤ η, and at least one of these inequalities is strict.

Lemma 2. There are O(n) Pareto-optimal width-height pairs for the 1-2 draw-
ings of a complete ternary tree with n nodes.

Proof: The statement comes from the following two observations. First, for
any integer value ω there is at most one Pareto-optimal pair (ω, η). Second, any
Pareto-optimal pair (ω, η) has ω ≤ n, as any 1-2 drawing with width greater than
n has a grid column not containing any vertex; then the part of the drawing to
the right of such a grid column can be moved one unit to the left, resulting in a
1-2 drawing with the same height and with smaller width. ��
Lemma 3. The Pareto-optimal width-height pairs for the 1-2 drawings of Th

can be computed in polynomial (in the number of nodes of Th) time.

Proof: In this proof by pair we always mean Pareto-optimal width-height pair.
Suppose that the pairs for the 1-2 drawings of Th−1 have been computed already
(note that (1, 1) is the only pair for the 1-2 drawings of T1). We compute the
pairs for the 1-2 drawings of Th by considering all the triples (pl, pb, c) where

3 We claim that Theorem 4 can be generalized to ternary trees that are not necessarily
complete. However, since our main interest in 1-2 drawings comes from the study of
the area requirements of complete ternary trees, we opted for keeping the exposition
simple and present the theorem and its proof for complete ternary trees only.

138 B. Covella et al.

pl = (ωl, ηl) and pb = (ωb, ηb) are pairs for the 1-2 drawings of Th−1 and c is
either 1 or 2. By Lemma 2 there are O(n2) such triples. For each triple (pl, pb, c)
we consider the 1-2 drawing Γ defined as follows:

– the drawing of L in Γ is a 1-2 drawing with width ωl and height ηl;
– the drawing of R in Γ is a 1-2 drawing with width ωl and height ηl;
– the drawing of B in Γ is a 1-2 drawing with width ωb and height ηb;
– the drawings of L, B, and R are arranged as in Construction c (the drawings

of L and R are rotated clockwise and counter-clockwise by 90◦, respectively).

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n 1 4 13 40 121 364 1093 3280 9841 29 524 88 573 265 720 797 161 2 391 484

Area 1 6 25 99 342 1184 4030 13 320 44 457 144 690 469 221 1 520 189 4 840 478 15 550 542

h 15 16 17 18 19 20

n 7 174 453 21 523 360 64 570 081 193 710 244 581 130 733 1 743 392 200

Area 49 461 933 157 388 427 498 895 215 1 580 110 511 4 990 796 080 15 765 654 805

The width and height of Γ can be computed easily as follows (see also [7]).
If c = 1, then the width of Γ is equal to 2ηl + ωb, otherwise it is equal to the
maximum between 2ηl +1 and ωb. Further, if c = 1, then the height of Γ is equal
to the maximum between ωl and ηb +(ωl +1)/2, otherwise it is equal to ωl + ηb.

Out of the O(n2) 1-2 drawings of Th constructed as above we only keep the
O(n) drawings corresponding to Pareto-optimal width-height pairs – it comes
again from Lemma 2 that there are this many Pareto-optimal width-height pairs.
This can be accomplished in polynomial time by ordering the O(n2) width-height
pairs by increasing width and, secondarily, by increasing height, and by removing
every width-height pair that is preceded by a pair with smaller or equal height.

The proof of correctness of the described algorithm exploits Lemma 1. In
particular, the algorithm uses, in every constructed drawing of Th, two drawings
for the left and right subtrees of r(Th) that are congruent, up to a rotation of
180◦, which can be done without loss of generality by Lemma 1. Further, the
algorithm constructs the Pareto-optimal pairs for the 1-2 drawings of Th starting
from the Pareto-optimal pairs for the 1-2 drawings of Th−1. This is also not a loss
of generality since, again by Lemma 1, any 1-2 drawing of Th−1 can be replaced
by a 1-2 drawing of Th−1 corresponding to a Pareto-optimal pair in which the
bottom and top heights (or the left and right widths) are the same, without
increasing the width and height of the drawing of Th. ��

Lemmata 2 and 3 imply Theorem 4, as the minimum area for a 1-2 drawing of
Th is equal to min{ω ·η}, where the minimum is taken over all the Pareto-optimal
width-height pairs (ω, η) for the 1-2 drawings of Th.

We run a mono-thread C implementation of the algorithm that computes
the Pareto-optimal width-height pairs for the 1-2 drawings of Th described in

On the Area Requirements of Straight-Line Orthogonal Drawings 139

the proof of Lemma 3 on a machine with two 4-core 3.16 GHz Intel(R) Xeon(R)
CPU X5460 processors, with 48 GB of RAM, running Ubuntu 14.04.2 LTS. We
could compute the Pareto-optimal width-height pairs (ω, η) and the minimum
area for the 1-2 drawings of Th with h up to 20. The computation of the pairs
for h = 20 took roughly 5 days. The table below shows the value of h, the
corresponding value of n, which is (3h − 1)/2, and the minimum area required
by any 1-2 drawing (and by Theorem2 by any planar straight-line orthogonal
drawing satisfying the subtree separation property) of Th.

By means of the Mathematica software [16] we searched for the function of
the form a · nb + c that better fits the values of the table above, according to
the least squares optimization method. The optimal function we got is 3.3262 ·
x1.047 − 181 209.1337. While the large absolute value of the additive constant
suggests the need for a lower order term or for a different optimization method,
the experimentation also seems to indicate that planar straight-line drawings
with the subtree separation property cannot be constructed within almost-linear
area. We hence conclude the paper with the following conjecture.

Conjecture 1. There exists a constant ε > 0 such that n-node complete ternary
trees require Ω(n1+ε) area in any planar straight-line orthogonal drawing satis-
fying the subtree separation property.

References

1. Ali, A.: Straight line orthogonal drawings of complete ternery trees. MIT Summer
Program in Undergraduate Research Final Paper, July 2015

2. Chan, T.M.: Tree drawings revisited. In: Speckmann, B., Tóth, C.D. (eds.) Sym-
posium on Computational Geometry (SoCG 2018) (2018)

3. Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and
aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–
162 (2002)

4. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for
upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Englewood (1999)

6. Di Battista, G., Frati, F.: Drawing trees, outerplanar graphs, series-parallel graphs,
and planar graphs in a small area. In: Pach, J. (ed.) Thirty Essays on Geometric
Graph Theory, pp. 121–165. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-0110-0 9

7. Frati, F.: Straight-line orthogonal drawings of binary and ternary trees. In: Hong,
S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 76–87.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-9 11

8. Frati, F., Patrignani, M., Roselli, V.: LR-drawings of ordered rooted binary trees
and near-linear area drawings of outerplanar graphs. In: Klein, P.N. (ed.) Sympo-
sium on Discrete Algorithms (SODA 2017), pp. 1980–1999. SIAM (2017)

9. Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and
arbitrary aspect ratio. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 320–332. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36151-0 30

https://doi.org/10.1007/978-1-4614-0110-0_9
https://doi.org/10.1007/978-1-4614-0110-0_9
https://doi.org/10.1007/978-3-540-77537-9_11
https://doi.org/10.1007/3-540-36151-0_30
https://doi.org/10.1007/3-540-36151-0_30

140 B. Covella et al.

10. Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs.
IEICE Trans. 88-A(6), 1583–1588 (2005)

11. Rusu, A.: Tree drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph
Drawing and Visualization, pp. 155–192. CRC Press (2016). Chap. 5

12. Rusu, A., Santiago, C.: Grid drawings of binary trees: an experimental study. J.
Graph Algorithms Appl. 12(2), 131–195 (2008)

13. Shiloach, Y.: Linear and Planar Arrangement of Graphs. Ph.D. thesis, Weizmann
Institute of Science, Rehovot (1976)

14. Shin, C., Kim, S.K., Chwa, K.: Area-efficient algorithms for straight-line tree draw-
ings. Comput. Geom. 15(4), 175–202 (2000)

15. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

16. Wolfram Research Inc.: Mathematica 10 (2014). http://www.wolfram.com

http://www.wolfram.com

A Fixed-Parameter Algorithm
for the Max-Cut Problem on Embedded

1-Planar Graphs

Christine Dahn(B), Nils M. Kriege, and Petra Mutzel

Department of Computer Science, TU Dortmund University, Dortmund, Germany
{christine.dahn,nils.kriege,petra.mutzel}@cs.tu-dortmund.de

Abstract. We propose a fixed-parameter tractable algorithm for the
Max-Cut problem on embedded 1-planar graphs parameterized by the
crossing number k of the given embedding. A graph is called 1-planar
if it can be drawn in the plane with at most one crossing per edge.
Our algorithm recursively reduces a 1-planar graph to at most 3k planar
graphs, using edge removal and node contraction. The Max-Cut prob-
lem is then solved on the planar graphs using established polynomial-time
algorithms. We show that a maximum cut in the given 1-planar graph
can be derived from the solutions for the planar graphs. Our algorithm
computes a maximum cut in an embedded 1-planar graph with n nodes
and k edge crossings in time O(3k · n3/2 log n).

Keywords: Maximum cut · Fixed-parameter tractable
1-planar graphs

1 Introduction

Partitioning problems on graphs receive increasing attention in the literature.
Here the task is to partition the set of nodes of a given (weighted) undirected
graph so that the number (or weighted sum) of connections between the parts is
minimized. A special case is the Max-Cut problem which asks for a node par-
tition into two sets so that the sum of the edge weights in the cut is maximised.
The problem is getting increasing attention in the literature, since it is directly
related to solving Ising spin glass models (see, e.g., Barahona [3]) which are of
high interest in physics. Besides its theoretical merits, Ising spin glass models
need to be solved in adiabatic quantum computation [20]. Other applications
occur in the layout of electronic circuits [6,8].

The Max-Cut problem has been shown to be NP-hard for general
graphs [15]. Moreover, Papadimitriou and Yannakakis [24] have shown that the
Max-Cut problem is APX-hard, i.e., there does not exist a polynomial-time
approximation scheme unless P = NP. Goemans and Williamson suggested a ran-
domized constant factor approximation algorithm [10] which has been derandom-
ized by Mahajan and Ramesh [19] and has a performance guarantee of 0.87856.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 141–152, 2018.
https://doi.org/10.1007/978-3-319-94667-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_12&domain=pdf

142 C. Dahn et al.

There are a number of special cases for which the problem can be solved in
polynomial time. The most prominent case arises if the weights of all edges are
negative, since then the problem can be solved via network flow. Other special
cases are graphs without long odd cycles [11] or weakly bipartite graphs [12].
Another prominent case arises for planar input graphs. Orlova and Dorfman [22]
and Hadlock [13] have shown that the Max-Cut problem can be solved in poly-
nomial time for unweighted planar graphs. Their algorithms can be extended
to work on weighted planar graphs (e.g., Mutzel [21]). Currently, the fastest
algorithms have been suggested by Shih et al. [25] and by Liers and Pardella
[18]. These results have been extended to the class of graphs not contractible to
K5 [5] and to toroidal graphs [4,9] (i.e., graphs that can be embedded on the
torus). In this paper, we show an extension of the planar special case to that of
the class of 1-planar graphs.

A graph is 1-planar if it can be drawn into the plane so that every edge
is crossed at most once. While planarity testing can be done in linear time
[14], the recognition problem for 1-planar graphs is much harder. Korzhik and
Mohar showed that 1-planarity testing is NP-hard [16]. However, there are fixed-
parameter tractable (FPT) algorithms parameterized by the cyclomatic number
(the minimum number of edges that must be removed from the graph to create
a forest), the tree-depth or the node cover number [2]. For 1-planar graphs these
algorithms construct a 1-planar embedding.

Our Contribution. Given an embedded 1-planar graph with k crossings, we
suggest a fixed-parameter tractable algorithm for the Max-Cut problem with
parameter k. The idea of our algorithm is to recursively reduce the input graph
into a set of at most 3k planar graphs using a series of edge removals and node
contractions. The planar instances can then be solved using the polynomial time
algorithms suggested in [18,25] with running time O(n3/2 log n) for a planar
graph with n nodes.

The paper is organized as follows. Section 2 contains the basic definitions
concerning cuts and 1-planarity. We also introduce the class of k-almost-planar
graphs which have 1-planar drawings not exceeding k crossings. In Sect. 3 we
present our new algorithm for embedded 1-planar graphs and prove its correct-
ness. Our analysis of its running time shows that it is fixed-parameter tractable
with parameter k. We end with a conclusion and open problems in Sect. 4.

2 Preliminaries

Throughout our paper, we consider undirected weighted graphs G = (V,E, c)
with arbitrary edge weights. A partition of the nodes of G into two sets S ⊆ V
and S = V \S defines the cut δ(S,G) = {(uv) ∈ E | (u ∈ S and v ∈ S) or (v ∈
S and u ∈ S)}. The value of a cut δ(S,G) in the graph G is the sum of weights of
all edges in the cut: c(δ(S,G)) =

∑
e∈δ(S,G) ce. The Max-Cut problem searches

for a cut in a given weighted graph with highest value. For the graph class of
planar graphs, the Max-Cut problem can be solved in polynomial time.

A Fixed-Parameter Algorithm for the Max-Cut Problem 143

A graph is planar if it admits a planar drawing, i.e., a drawing on the plane
without any edge crossing. A drawing admits a rotation system which is a
clockwise-ordering of the incident edges for every node. In a planar drawing,
a rotation system defines the faces, i.e., the topologically connected regions of
the plane. One of the faces, the outer face, is unbounded. A face is uniquely
described by its boundary edges. Such a description for each face is an equiv-
alent definition of a (planar) embedding. A (planar) embedding represents the
set of all planar drawings with the same faces. It can be represented by the
description of the faces or by the rotation system. It is well known that pla-
narity testing can be solved in linear time [14]. The same is true for computing a
planar embedding. In order to generate crossing free drawings of planar graphs,
a number of various algorithms exist, e.g., the straight-line drawing algorithm
by de Fraysseix et al. [7].

Planar graphs are contained in the class of 1-planar graphs. A graph is
1-planar, if it admits a 1-planar drawing, i.e., a drawing on the plane with at
most one crossing per edge. Testing 1-planarity is NP-hard [16] even in the case
of bounded treewidth or bandwith [2]. A 1-planar embedding defines the faces of
a given 1-planar drawing and can be represented by the set of crossings X and a
list of edges and edge segments (half edges) for the crossings for each face. Note
that a 1-planar embedding uniquely defines a rotation system for the nodes.
However, the opposite is not true. In general, a rotation system does not allow
for computing the crossings efficiently or a 1-planar embedding. Auer et al. [1]
have shown that testing 1-planarity of a graph with a fixed rotation system is
NP-hard even if the graph is 3-connected.

We call a 1-planar graph k-almost-planar if it admits a 1-planar drawing
with at most k edge crossings. For edge removal and node contraction we use
the following notation: G − e = (V,E \ {e}) denotes the graph obtained from
G = (V,E) by deleting the edge e ∈ E. G/xy contracts the two nodes x and y
into a new node vxy /∈ V . In doing so, the edges leading to x or y are replaced
by a new edge to vxy. Multi-edges to vxy are contracted to one edge and their
edge weights are added, self-loops are deleted. We denote the inverse operation
of contraction by Split. The contraction and Split operation can be applied
to a subset of nodes S ⊆ V :

S/xy =

{
S \ {x, y} ∪ {vxy} if x, y ∈ S

S otherwise

Split(S, vxy) =

{
S \ {vxy} ∪ {x, y} if vxy ∈ S

S otherwise

3 Max-Cut for Embedded 1-Planar Graphs

Our main idea for computing the maximum cut in an embedded 1-planar graph
G is to eliminate its k crossings and then use a Max-Cut algorithm for planar
graphs on the resulting planar graph. In order to remove a crossing, we need to

144 C. Dahn et al.

know the two crossing edges of each crossing. We use two methods to remove
a crossing: Either by deleting one of the crossing edges, or by contracting two
nodes that do not belong to the same crossing edge.

3.1 Removing the Crossings

In this section let G = (V,E, c) be a k-almost-planar graph with a 1-planar
embedding (Π,X) and a set of crossing edges X with |X| = k. A crossing is
defined by a pair of crossing edges, e.g., let χ = {evy, ewz} ∈ X be an arbitrary
crossing. The following lemma shows that specific node contractions (and edge
deletions) remove at least one crossing and do not introduce new crossings.
Figure 1b and c show examples of node contraction and Fig. 1d shows an example
of edge deletion.

Lemma 1. Let G be a k-almost-planar graph with 1-planar embedding (Π,X)
and χ = {evy, ewz} ∈ X be an arbitrary crossing. The graphs G/ab, G− evy and
G−ewz are (k −1)-almost-planar for ab ∈ {vw, vz, wy, yz}. The set of crossings
in the resulting 1-planar embedding is a proper subset of X.

Proof. Since the contracted nodes a and b are each an endpoint to one of the
crossing edges, the contracted node is an endpoint to both edges. Since evy and
ewz now have a common endpoint, they can be drawn without a crossing. There-
fore the crossing χ is removed. The contraction does not create new crossings
because the two nodes a and b can be moved along their half edges towards the
crossing. This is possible because we have a 1-planar embedding which has the
property that every crossing is incident to two half edges connecting it with its
endpoints. The new node vab is then placed where the crossing used to be. All
other edges can be extended to the new node along the way of the same half
edges without creating new crossings. Multi-edges are merged into a single edge
and self-loops are deleted. In G − evy and G − ewz, the crossing χ is removed by
deleting one of its crossing edges. Obviously this does not lead to new crossings.
So in both cases the number of crossings decreases. ��

The recursive application of Lemma 1 shows that all crossings can be removed
with these two operations. Thus after k contraction or removal operations, the
resulting graph is planar and a planar Max-Cut algorithm can be applied to
compute a maximum cut. The following lemma shows how to project a cut in
G/xy or G − e back onto G.

Lemma 2. Let G = (V,E, c) be a weighted graph, x �= y ∈ V and S ⊆ V .

(i) Let δ(S,G/xy) be a cut in G/xy, then the cut δ(Split(S, vxy), G) in G has
the same value.

(ii) If x and y are in the same set (x, y ∈ S or x, y ∈ S) then δ(S,G) =
δ(S,G − exy) for exy ∈ E.

A Fixed-Parameter Algorithm for the Max-Cut Problem 145

a b

cd

e

f

t

s

y

x

(a) H

a

vbc

d

e

f

t

s

y

x

(b) H/bc

a b

vcd

e

f

t

s

y

x

(c) H/cd

a b

cd

e

f

t

s

y

x

(d) H − ebd

Fig. 1. An example how a crossing can be removed. (Blue dashed edges are merged
edges from H.) (Color figure online)

Proof. (i) Let S define a cut in G/xy. If the contracted node vxy is split, the
cut is projected from G/xy to G. The corresponding set of nodes in G is S′ =
Split(S, vxy). It defines a cut in G. If vxy /∈ S then S = S′. The weight of an edge
e ∈ δ(S,G/xy) in G/xy is either the same as the weight of the corresponding
edge e′ ∈ δ(S′, G) in G or it is split between two edges e′, e′′ ∈ δ(S′, G) in G.
The only edge that might exist in G but not in G/xy is exy. Since x and y
were contracted in G/xy, they are either both in S′ or both in S′. Therefore the
only edge that could be added in G by splitting vxy can not add to the value of
δ(S′, G) in G. So no weights are lost or added due to the projection and the two
cuts have the same value.
(ii) This is obvious because exy is in neither of the two cuts. ��

3.2 The Max-Cut Algorithm

We use the three operations introduced above to successively remove all crossings
of a 1-planar graph. All planar instances obtained in this way are then solved
by a Max-Cut algorithm for planar graphs. From the solutions of the planar
graphs, we construct a solution for the original graph. Note that the algorithm
only needs the graph G and the set of edge crossings X as input. However, the
1-planar embedding is needed to show the correctness of the algorithm.

146 C. Dahn et al.

MaxCut(G, X)

Input: An undirected weighted 1-planar graph G and a set of crossing edges X in a
1-planar embedding of G.
Output: A set S ⊆ VG defining a maximum cut δ(S, G) ⊆ EG in G.

1: if X = ∅ then
2: S ← MaxCutplanar(G)
3: else
4: choose an element χ ← {evy, ewz} ∈ X
5: S1 ← MaxCut(G/wy, Update(X, w, y))
6: S2 ← MaxCut(G/yz, Update(X, y, z))
7: S3 ← MaxCut(G − ewz, X \ {χ})
8: G1 ← G/wy, G2 ← G/yz, G3 ← G − ewz

9: j ← argmax
1≤i≤3

c(δ(Si, Gi))

10: if j = 1 then
11: S ← Split(S1, vwy)
12: else if j = 2 then
13: S ← Split(S2, vyz)
14: else
15: S ← S3

16: end if
17: end if
18: return S

Algorithm 1.1. Max-Cut algorithm for embedded 1-planar graphs

Algorithm 1.1 realizes this approach with a recursive function, which is ini-
tially called with the input graph G and the set of crossings X present in its
embedding. As the algorithm progresses, the graph is successively modified and
the set of crossings is adjusted according to the modifications applied. If the
graph G passed as parameter to the function is planar (X = ∅), then a pla-
nar Max-Cut algorithm is called (line 2). If there are still crossings remaining,
an arbitrary crossing is selected and removed in three different ways: Let y be
an arbitrary endpoint of one crossing edge and ewz, w �= y, z �= y, the other
crossing edge, then (i) the nodes y and w are contracted, (ii) the nodes y and
z are contracted, and (iii) the edge ewz is deleted. Each operation removes at
least the selected crossing, but in case (i) and (ii) also other crossing may be
affected. Therefore, the set of crossings X is adjusted by the function Update.
If two nodes w, y are contracted, Update(X,w, y) removes every crossing in X
which was dissolved by contracting w and y, and replaces every appearance of
w or y in X with the contracted node vwy. To check if a crossing was dissolved,
Update checks if w and y are both part of the crossing. Since every crossing
needs to be checked once, Update has a linear running time. For each case, the
recursive function is called with the modified graph and the set of crossings as a
parameter (lines 5–7). Each call returns a node set defining a maximum cut in
the modified instance. The cut with maximal value is then projected back to G.
If the maximum cut is obtained in a graph with contracted nodes, i.e., case (i)

A Fixed-Parameter Algorithm for the Max-Cut Problem 147

or (ii), then the original nodes are restored by the function Split(S, vwy), which
replaces vwy with w and y if S contains the contracted node. This cut-defining
set is then returned as the solution to the subproblem.

a

vbc

d

e

f

t

s

y

x

(a) Max-Cut in H/bc

a b

vcd

e

f

t

s

y

x

(b) Max-Cut in H/cd

a b

cd

e

f

t

s

y

x

(c) Max-Cut in H − e12

a b

cd

e

f

t

s

y

x

(d) Max-Cut in H

Fig. 2. An example how the algorithm calculates aMax-Cut in an embedded 2-almost-
planar graph. (Blue dotted edges were merged and have weight 2; all other edges have
weight 1; curvy edges belong to the cut; black dashed edges do not belong to the cut.)
(Color figure online)

Example 1. Given the 2-almost planar graph H in Fig. 1a with uniform edge
weights, e.g. 1. The algorithm removes the left crossing in the three described
ways. The resulting graphs are shown in Fig. 1b–d. The recursively calculated
cuts of these graphs are depicted in Fig. 2a–c with 2b being the largest cut. This
cut is transferred back to H by splitting the contracted node vcd. The resulting
cut is shown in Fig. 2d. It is a maximum cut in H.

3.3 Correctness

The four endpoints of a crossing can be partitioned in eight non-isomorphic
ways, cf. Fig. 3: (a) all endpoints in one set, (b)/(c)/(d)/(e) three endpoints in
one set without v/w/y/z, (f)/(g) the two endpoints of different crossing edges
in the same sets, or (h) the two endpoints of the same crossing edges in one
set each. For arbitrary graphs, the induced cut is different because non-crossing
edges might be replaced with a path or might not exist at all.

148 C. Dahn et al.

v w

yz

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. The 8 non-isomorphic partitions of the four endpoints of a crossing. (The red
and curvy edges belong to the cut that is defined by the corresponding partition on
the K4.) (Color figure online)

Lemma 3. Let G = (V,E, c) be a 1-planar graph with a 1-planar embedding
(Π,X), S ⊆ V , and χ = {evy, ewz} ∈ X be an arbitrary crossing.

(i) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3(a),
(b), (c) or (f) then S2 = S/yz defines a cut in G/yz with the same value.
If δ(S,G) is maximal in G so is δ(S2, G/yz) in G/yz.

(ii) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3(a),
(b), (e) or (g) then S1 = S/wy defines a cut in G/wy with the same value.
If δ(S,G) is maximal in G so is δ(S1, G/wy) in G/wy.

(iii) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3(a),
(b), (d) or (h) then S3 = S defines a cut in G − ewz with the same value.
If δ(S,G) is maximal in G, so is δ(S3, G − ewz) in G − ewz.

Proof. (i) Let S define a cut in G that separates the endpoints of χ as shown
in Fig. 3(a), (b), (c) or (f). By contracting y and z, the set of nodes is projected
to G/yz and δ(S2, G/yz) is a cut in G/yz. The only edge that might have been
removed in G/yz does not add to the value of δ(S,G) in G because y and z are not
separated by the cut (Fig. 3(a), (b), (c) or (f)). Therefore, the two cuts have the
same value in both graphs. Let S define a maximum cut in G (with the required
property). If there was a cut δ(S′, G/yz) in G/yz larger than δ(S2, G/yz),
then Split(S′, vyz) would define a cut in G with the same value as δ(S′, G)
(Lemma 2(i)), contradicting that δ(S,G) is maximal in G.
(ii) The proof of the second proposition is analogous to the proof of the first.
(iii) Let S define a cut in G that separates the endpoints of χ as shown in
Fig. 3(a), (b), (d) or (h). Since G and G − ewz have the same set of nodes,
δ(S3, G − ewz) is a cut in G − ewz as well. We know that w and z are not
separated by the cut (Fig. 3(a), (b), (d) or (h)). Therefore the only edge that
was removed in G − ewz does not add to the value of the cut in G and the
cut has the same value in both graphs. Let S define a maximum cut in G
(with the required property). If there was a cut δ(S′, G − ewz) in G− ewz larger
than δ(S3, G − ewz), then δ(S′, G) would be a cut in G as well (Lemma 2(ii)),
contradicting that δ(S,G) is maximal in G. ��
Theorem 1. Algorithm1.1 computes a maximum cut in a 1-planar graph G,
given a set of crossing edges X in a 1-planar embedding of G.

Proof. We prove its optimality by induction over k. For k = 0, the given graph
is planar. Thus the Max-Cut algorithm for planar graphs calculates a node set

A Fixed-Parameter Algorithm for the Max-Cut Problem 149

defining a maximum cut in G. Let S∗ define a maximum cut in G. We show that
the cut δ(S,G) defined by the calculated node set S is not smaller than δ(S∗, G).
Let G1 = G/wy,G2 = G/yz and G3 = G − ewz be the (k − 1)-almost-planar
graphs (Lemma 1) whose cuts δ(S1, G1), δ(S2, G2) and δ(S3, G3) are calculated
recursively by the algorithm. There are 8 possible ways for S∗ to separate the
four endpoints of χ. These are shown in Fig. 3(a)–(h). If the endpoints of χ are
separated as shown in (a), (b), (e) or (g), then δ(S∗, G) has the same value as a
maximum cut δ(S∗

1, G1) in G1 (Lemma 3(ii)). Due to the induction hypothesis,
δ(S1, G1) is not smaller than δ(S∗

1, G1). If the endpoints of χ are separated as
shown in (c) or (f), then δ(S∗, G) has the same value as a maximum cut δ(S∗

2, G2)
in G2 (Lemma 3(i)). Due to the induction hypothesis, δ(S2, G2) is not smaller
than δ(S∗

2, G2). If the endpoints of χ are separated as shown in (d) or (h), then
δ(S∗, G) has the same value as a maximum cut δ(S∗

3, G3) in G3 (Lemma 3(iii)).
Due to the induction hypothesis, δ(S3, G3) is not smaller than δ(S∗

3, G3). The
algorithm chooses the node set defining the largest of these three cuts (line 9–
16) and projects it back to G without changing its value (Lemma 2). Thus the
calculated cut δ(S,G) is not smaller than δ(S1, G1), δ(S2, G2) and δ(S3, G3). ��

3.4 Running Time

Let n be the number of nodes and m be the number of edges of a given graph.
It is well known that a 1-planar graph has at most 4n − 8 edges [23]. For an
arbitrary 1-planar drawing, the number of crossings is bounded by m

2 , since every
edge can be crossed at most once and every crossing needs two edges. With the
previous observation, we can establish a bound depending on the number of
nodes: k ≤ 2n − 4.

Theorem 2. Algorithm1.1 computes a maximum cut in an embedded 1-planar
graph with n nodes and k crossings in time O(3k ·(Tp(n)+n)), where Tp(n) is the
running time of a planar Max-Cut algorithm. Using the algorithms suggested
in [17] or [25], the running time is O(3k · n3/2 log n).

Proof. Let T (k, n) be the running time of Algorithm1.1 on an embedded 1-
planar graph G with n nodes and k crossings. If G is planar, our algorithm uses
a planar Max-Cut algorithm, resulting in T (0, n) = Tp(n). Update has a linear
running time of O(k), since every crossing in X needs to be checked only once.
The contractions of G/wy and G/yz take time O(n + m) and the edge removal
G − ewz takes time O(m). Reversing a contraction on a set of nodes Si with
Split takes |Si| steps, resulting in a running time of O(n). Hence the recursive
running time is:

T (k, n) = 3 · T (k − 1, n) + O(k + n + m)

An induction proof shows that T (k, n) = 3k · (T (0, n)+
∑k

i=1 3−i ·O(i+n+m)).
Since m is bounded by 4n − 8 [23], k is bounded by 2n − 4 (see above), i is
bounded by k and the geometric sum equals a value between 0 and 1, the overall
running time is O(3k · (Tp(n) + n)). Liers and Pardella [17] or Shih et al. [25]

150 C. Dahn et al.

describe a planar Max-Cut algorithm with a running time of O(n3/2 · log n),
resulting in a concrete running time of O(3k · n3/2 log n) for our algorithm. ��

If the number of crossings k in a 1-planar embedding is fixed, the running time
of Algorithm 1.1 is polynomial. However, in an arbitrary 1-planar embedding, k
is not fixed and the factor 3k leads to an exponential worst case running time.
But we can show that our algorithm is fixed-parameter tractable with parameter
k. Since its running time can be split into an exponential part, depending only
on the parameter k, (3k) and a polynomial part in the size of the input graph
(Tp(n) + n), the algorithm is fixed-parameter tractable with parameter k.

Theorem 3. The Max-Cut problem on embedded 1-planar graphs is fixed-
parameter tractable parameterized by the crossing number k of the given 1-planar
embedding.

4 Conclusion and Open Problems

We have presented a polynomial time algorithm for computing a Max-Cut in a
1-planar graph provided with a 1-planar embedding with a constant number of
crossings. This shows that the Max-Cut problem on embedded 1-planar graphs
is in the class FPT.

The question arises if our approach can be extended to general graphs with
up to k crossings per edge, so called k-planar graphs. Our approach is based
on the fact that node contractions and edge deletions decrease the number of
crossings (see Lemma 1). Figure 4 shows that this is no longer true if an edge is
crossed more than once. In this case, there are crossings that do not have direct
half edges connecting it to its endpoints like, e.g., the crossing (ad, cf) in Fig. 4.

a

. . .
l

f

b

e

c

. . .
l

d

l

(a) G

a

. . .
l

vdf

b

e

c

. . .
l

l

(b) G/df

Fig. 4. A 4-planar graph where the contraction of the nodes d and f leads to O(l) new
crossings. The two edges that generate the new crossings are drawn in red. Between a
and f (resp. c and d) in G are l independent paths. Beneath b there are l paths between
a and c that are pairwise connected and therefore have a specific order. The highest
path contains a node connected to b and the lowest path contains a node connected to
e. No matter where e is drawn in G/df , one of the two red edges crosses at least l − 1
other edges. (Color figure online)

A Fixed-Parameter Algorithm for the Max-Cut Problem 151

If we contract d and f , we get plenty of new crossings in the new graph G/df . We
are currently working to generalize our approach to embedded k-planar graphs.

Another interesting question would be to drop the assumption that we are
given a 1-planar embedding. Note that our algorithm does not need such an
embedding as input, it only needs to get a list of edge crossings that must
correspond to a 1-planar embedding. However, for our correctness analysis it is
important to have a 1-planar embedding of the graph.

References

1. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs
with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

2. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp.
97–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6 9

3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys.
A Math. Gen. 15(10), 3241 (1982)

4. Barahona, F.: Balancing signed toroidal graphs in polynomial time. Departamento
de Matematicas, Universidad de Chile, Santiago, Chile (1983)

5. Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res.
Lett. 2(3), 107–111 (1983)

6. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combi-
natorial optimization to statistical physics and circuit layout design. Oper. Res.
36(3), 493–513 (1988)

7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

8. De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., Rinaldi, G.: Exact
ground states of Ising spin glasses: new experimental results with a branch-and-cut
algorithm. J. Stat. Phys. 80(1–2), 487–496 (1995)

9. Galluccio, A., Loebl, M.: Max cut in toroidal graphs. Instituto di Analisi dei Sistemi
ed Informatica, Consiglio Nazionale delle Ricerche, Oktober 1998

10. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
(JACM) 42(6), 1115–1145 (1995)

11. Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem
on graphs without long odd cycles. Math. Program. 29(1), 28–40 (1984)

12. Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut prob-
lem. Oper. Res. Lett. 1(1), 23–27 (1981)

13. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

14. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Com-
puter Computations, New York. The IBM Research Symposia Series, pp. 85–103.
Plenum Press, New York (1972)

16. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

https://doi.org/10.1007/978-3-642-40104-6_9

152 C. Dahn et al.

17. Liers, F., Pardella, G.: A simple MAX-CUT algorithm for planar graphs. In:
Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L., (eds.) Proceed-
ings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Opti-
mization, CTW 2009, Paris, France, 2–4 June 2009, pp. 351–354 (2009)

18. Liers, F., Pardella, G.: Partitioning planar graphs: a fast combinatorial approach
for max-cut. Comput. Optim. Appl. 51(1), 323–344 (2012)

19. Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on
semidefinite programming. SIAM J. Comput. 28(5), 1641–1663 (1999)

20. McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing: The-
ory and Practice. Synthesis Lectures on Quantum Computing. Morgan & Claypool
Publishers, San Rafael (2014)

21. Mutzel, P.: Graphenalgorithmen, Master Vertiefungsvorlesung. Fakultät für Infor-
matik, TU Dortmund (2016)

22. Orlova, G.I., Dorfman, Y.G.: Finding the maximum cut in a graph. Eng. Cybern.
10(3), 502–506 (1972)

23. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

24. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

25. Shih, W.-K., Sun, W., Kuo, Y.-S.: Unifying maximum cut and minimum cut of a
planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)

Covering with Clubs: Complexity
and Approximability

Riccardo Dondi1, Giancarlo Mauri2, Florian Sikora3(B), and Italo Zoppis2

1 Università degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

2 Università degli Studi di Milano-Bicocca, Milan, Italy
{mauri,zoppis}@disco.unimib.it

3 Université Paris-Dauphine, PSL Research University, CNRS UMR 7243,
LAMSADE, 75016 Paris, France
florian.sikora@dauphine.fr

Abstract. Finding cohesive subgraphs in a network is a well-known
problem in graph theory. Several alternative formulations of cohesive
subgraph have been proposed, a notable example being s-club, which
is a subgraph where each vertex is at distance at most s to the oth-
ers. Here we consider the problem of covering a given graph with the
minimum number of s-clubs. We study the computational and approxi-
mation complexity of this problem, when s is equal to 2 or 3. First, we
show that deciding if there exists a cover of a graph with three 2-clubs
is NP-complete, and that deciding if there exists a cover of a graph with
two 3-clubs is NP-complete. Then, we consider the approximation com-
plexity of covering a graph with the minimum number of 2-clubs and
3-clubs. We show that, given a graph G = (V, E) to be covered, cover-
ing G with the minimum number of 2-clubs is not approximable within
factor O(|V |1/2−ε), for any ε > 0, and covering G with the minimum
number of 3-clubs is not approximable within factor O(|V |1−ε), for any
ε > 0. On the positive side, we give an approximation algorithm of fac-
tor 2|V |1/2 log3/2 |V | for covering a graph with the minimum number of
2-clubs.

1 Introduction

The quest for modules inside a network is a well-known and deeply studied
problem in network analysis, with several application in different fields, like com-
putational biology or social network analysis. A highly investigated problem is
that of finding cohesive subgroups inside a network which in graph theory trans-
lates in highly connected subgraphs. A common approach is to look for cliques
(i.e. complete graphs), and several combinatorial problems have been considered,
notable examples being the Maximum Clique problem ([11, GT19]), the Minimum
Clique Cover problem ([11, GT17]), and the Minimum Clique Partition problem
([11, GT15]). This last is a classical problem in theoretical computer science,
whose goal is to partition the vertices of a graph into the minimum number of
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 153–164, 2018.
https://doi.org/10.1007/978-3-319-94667-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_13&domain=pdf

154 R. Dondi et al.

cliques. The Minimum Clique Partition problem has been deeply studied since
the seminal paper of Karp [15], studying its complexity in several graph classes
[5,6,9,21].

In some cases, asking for a complete subgraph is too restrictive, as interesting
highly connected graphs may have some missing edges due to noise in the data
considered or because some pair may not be directly connected by an edge in
the subgraph of interest. To overcome this limitation of the clique approach,
alternative definitions of highly connected graphs have been proposed, leading
to the concept of relaxed clique [16]. A relaxed clique is a graph G = (V,E) whose
vertices satisfy a property which is a relaxation of the clique property. Indeed, a
clique is a subgraph whose vertices are all at distance one from each other and
have the same degree (the size of the clique minus one). Different definitions of
relaxed clique are obtained by modifying one of the properties of clique, thus
leading to distance-based relaxed cliques, degree-based relaxed cliques, and so
on (see for example [16]).

In this paper, we focus on a distance-based relaxation. In a clique all the
vertices are required to be at distance at most one from each other. Here this
constraint is relaxed, so that the vertices have to be at distance at most s, for an
integer s � 1. A subgraph whose vertices are all distance at most s is called an
s-club (notice that, when s = 1, an s-club is exactly a clique). The identification
of s-clubs inside a network has been applied to social networks [1,18–20,23], and
biological networks [3]. Interesting recent studies have shown the relevance of
finding s-clubs in a network [18,20], in particular focusing on finding 2-clubs in
real networks like DBLP or a European corporate network.

Contributions to the study of s-clubs mainly focus on the Maximum s-Club
problem, that is the problem of finding an s-club of maximum size. Maximum
s-Club is known to be NP-hard, for each s � 1 [4]. Even deciding whether there
exists an s-club larger than a given size in a graph of diameter s + 1 is NP-
complete, for each s � 1 [3]. The Maximum s-Club problem has been studied also
in the approximability and parameterized complexity framework. A polynomial-
time approximation algorithm with factor |V |1/2 for every s � 2 on an input
graph G = (V,E) has been designed [2]. This is optimal, since the problem is
not approximable within factor |V |1/2−ε, on an input graph G = (V,E), for
each ε > 0 and s � 2 [2]. As for the parameterized complexity framework, the
problem is known to be fixed-parameter tractable, when parameterized by the
size of an s-club [7,17,22]. The Maximum s-Club problem has been investigated
also for structural parameters and specific graph classes [12,13].

In this paper, we consider a different combinatorial problem, where we aim
at covering the vertices of a network with a set of subgraphs. Similar to Minimum
Clique Partition, we consider the problem of covering a graph with the minimum
number of s-clubs such that each vertex belongs to an s-club. We denote this
problem by Min s-Club Cover, and we focus in particular on the cases s = 2
and s = 3. We show some analogies and differences between Min s-Club Cover
and Minimum Clique Partition. We start in Sect. 3 by considering the computa-
tional complexity of the problem of covering a graph with two or three s-clubs.

Covering with Clubs: Complexity and Approximability 155

This is motivated by the fact that Clique Partition is known to be in P when we
ask whether there exists a partition of the graph consisting of two cliques, while
it is NP-hard to decide whether there exists a partition of the graph consisting
of three cliques [10]. As for Clique Partition, we show that it is NP-complete
to decide whether there exist three 2-clubs that cover a graph. On the other
hand, we show that, unlike Clique Partition, it is NP-complete to decide whether
there exist two 3-clubs that cover a graph. These two results imply also that
Min 2-Club Cover and Min 3-Club Cover do not belong to the class XP for the
parameter “number of clubs” in a cover.

Then, we consider the approximation complexity of Min 2-Club Cover and
Min 3-Club Cover. We recall that, given an input graph G = (V,E), Minimum
Clique Partition is not approximable within factor O(|V |1−ε), for any ε > 0, unless
P = NP [24]. Here we show that Min 2-Club Cover has a slightly different behav-
ior, while Min 3-Club Cover is similar to Clique Partition. Indeed, in Sect. 4 we
prove that Min 2-Club Cover is not approximable within factor O(|V |1/2−ε), for
any ε > 0, unless P = NP , while Min 3-Club Cover is not approximable within
factor O(|V |1−ε), for any ε > 0, unless P = NP . In Sect. 5, we present a greedy
approximation algorithm that has factor 2|V |1/2 log3/2 |V | for Min 2-Club Cover,
which almost match the inapproximability result for the problem. We start the
paper by giving in Sect. 2 some definitions and by formally defining the problem
we are interested in. Some of the proofs (marked with �) are omitted due to
space constraint.

2 Preliminaries

Given a graph G = (V,E) and a subset V ′ ⊆ V , we denote by G[V ′] the subgraph
of G induced by V ′. Given two vertices u, v ∈ V , the distance between u and
v in G, denoted by dG(u, v), is the length of a shortest path from u to v. The
diameter of a graph G = (V,E) is the maximum distance between two vertices
of V . Given a graph G = (V,E) and a vertex v ∈ V , we denote by NG(v) the
set of neighbors of v, that is NG(v) = {u : {v, u} ∈ E}. We denote by NG[v]
the close neighborhood of V , that is NG[v] = NG(v) ∪ {v}. Define N l

G(v) = {u :
u has distance at most l from v}, with 1 � l � 2. Given a set of vertices X ⊆ V
and l, with 1 � l � 2, define N l

G(X) =
⋃

u∈X N l
G(u). We may omit the subscript

G when it is clear from the context. Now, we give the definition of s-club, which
is fundamental for the paper.

Definition 1. Given a graph G = (V,E), and a subset V ′ ⊆ V , G[V ′] is an
s-club if it has diameter at most s.

Notice that an s-club must be a connected graph. We present now the formal
definition of the Minimum s-Club Cover problem we are interested in.
Minimum s-Club Cover (Min s-Club Cover)
Input: a graph G = (V,E) and an integer s � 2.
Output: a minimum cardinality collection S = {V1, . . . , Vh} such that, for each

156 R. Dondi et al.

i with 1 � i � h, Vi ⊆ V , G[Vi] is an s-club, and, for each vertex v ∈ V , there
exists a set Vj , with 1 � j � h, such that v ∈ Vj .

We denote by s-Club Cover(h), with 1 � h � |V |, the decision version of
Min s-Club Cover that asks whether there exists a cover of G consisting of at
most h s-clubs.

Notice that while in Minimum Clique Partition we can assume that the cliques
that cover a graph G = (V,E) partition V , hence the cliques are vertex disjoint,
we cannot make this assumption for Min s-Club Cover. Indeed, in a solution of
Min s-Club Cover, a vertex may be covered by more than one s-club, in order to
have a cover consisting of the minimum number of s-clubs. Consider the example
of Fig. 1. The two 2-clubs induced by {v1, v2, v3, v4, v5} and {v1, v6, v7, v8, v9}
cover G, and both these 2-clubs contain vertex v1. However, if we ask for a
partition of G, we need at least three 2-clubs. This difference between Mini-
mum Clique Partition and Min s-Club Cover is due to the fact that, while being a
clique is a hereditary property, this is not the case for being an s-club. If a graph
G is an s-club, then a subgraph of G may not be an s-club (for example a star
is a 2-club, but the subgraph obtained by removing its center is not anymore a
2-club).

v1

v2v3

v4 v5

G
v6 v7

v9 v8

Fig. 1. A graph G and a cover consisting of two 2-clubs (induced by the vertices in the
ovals). Notice that the 2-clubs of this cover must both contain vertex v1.

3 Computational Complexity

In this section we investigate the computational complexity of 2-Club Cover and
3-Club Cover and we show that 2-Club Cover(3), that is deciding whether there
exists a cover of a graph G with three 2-clubs, and 3-Club Cover(2), that is
deciding whether there exists a cover of a graph G with two 3-clubs, are NP-
complete.

3.1 2-Club Cover(3) is NP-Complete

In this section we show that 2-Club Cover(3) is NP-complete by giving a reduction
from the 3-Clique Partition problem, that is the problem of computing whether
there exists a partition of a graph Gp = (V p, Ep) in three cliques. Consider

Covering with Clubs: Complexity and Approximability 157

an instance Gp = (V p, Ep) of 3-Clique Partition, we construct an instance G =
(V,E) of 2-Club Cover(3) (see Fig. 2). The vertex set V is defined as follows:

V = {wi : vi ∈ V p} ∪ {wi,j : {vi, vj} ∈ Ep ∧ i < j}}

The set E of edges is defined as follows:

E = {{wi, wi,j}, {wi, wh,i} : vi ∈ V p, wi, wi,j , wh,i ∈ V }
∪ {{wi,j , wi,l}, {wi,j , wh,i}, {wh,i, wz,i} : wi,j , wi,l, wh,i, wz,i ∈ V }

Before giving the main results of this section, we prove a property of G.

Lemma 2 (�). Let Gp = (V p, Ep) be an instance of 3-Clique Partition and let
G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given two
vertices vi, vj ∈ V p and the corresponding vertices wi, wj ∈ V :

– if {vi, vj} ∈ Ep, then dG(wi, wj) = 2
– if {vi, vj} /∈ Ep, then dG(wi, wj) � 3

We are now able to prove the main properties of the reduction.

Lemma 3. Let Gp = (V p, Ep) be a graph input of 3-Clique Partition and let
G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given a
solution of 3-Clique Partition on Gp = (V p, Ep), we can compute in polynomial
time a solution of 2-Club Cover(3) on G = (V,E).

Proof. Consider a solution of 3-Clique Partition on Gp = (V p, Ep), and let V p
1 ,

V p
2 , V p

3 ⊆ V p be the sets of vertices of Gp that partition V p. We define a solution
of 2-Club Cover(3) on G = (V,E) as follows. For each d, with 1 � d � 3, define

Vd = {wj ∈ V : vj ∈ V p
d } ∪ {wi,j : vi ∈ V p

d }

We show that each G[Vd], with 1 � d � 3, is a 2-club. Consider two vertices
wi, wj ∈ Vd, with 1 � i < j � |V |. Since they correspond to two vertices
vi, vj ∈ V p that belong to a clique of Gp, it follows that {vi, vj} ∈ Ep and
wi,j ∈ Vd. Thus dG[Vd](wi, wj) = 2. Now, consider the vertices wi ∈ Vd, with
1 � i � |V |, and wh,z ∈ Vd, with 1 � h < z � |V |. If i = h or i = z, assume
w.l.o.g. i = h, then by construction dG[Vd](wi, wi,z) = 1. Assume that i �= h and
i �= z (assume w.l.o.g. that i < h < z), since wh,z ∈ Vd, it follows that wh ∈ Vd.
Since wi, wh ∈ Vd, it follows that wi,h ∈ Vd. By construction, there exist edges
{wi,h, wh,z}, {wi, wi,h} in Ep, thus implying that dG[Vd](wi, wh,z) = 2. Finally,
consider two vertices wi,j , wh,z ∈ Vd, with 1 � i < j � |V | and 1 � h < z � |V |.
Then, by construction, wi ∈ Vd and wh ∈ Vd. But then, wi,h belongs to Vd,
and, by construction, {wi,j , wi,h} ∈ E and {wh,z, wi,h} ∈ E. It follows that
dG[Vd](wi,j , wh,z) = 2.

We conclude the proof observing that, by construction, since V p
1 , V p

2 , V p
3 par-

tition V p, it holds that V = V1 ∪ V2 ∪ V3, thus G[V1], G[V2], G[V3] covers G. ��

158 R. Dondi et al.

Based on Lemma 2, we can prove the following result.

v1

v3

v2

v4

w1

w3

w2

w4

v5

w5

w1,4 w2,5

w1,2

w2,3

Gp G

w1,3

w4,5

Fig. 2. An example of a graph Gp input of 3-Clique Partition and the corresponding
graph G input of 2-Club Cover(3).

Lemma 4 (�). Let Gp = (V p, Ep) be a graph input of 3-Clique Partition and
let G = (V,E) be the corresponding instance of 2-Club Cover(3). Then, given a
solution of 2-Club Cover(3) on G = (V,E), we can compute in polynomial time
a solution of 3-Clique Partition on Gp = (V p, Ep).

Now, we can prove the main result of this section.

Theorem 5 (�). 2-Club Cover(3) is NP-complete.

3.2 3-Club Cover(2) is NP-Complete

In this section we show that 3-Club Cover(2) is NP-complete by giving a reduction
from a variant of Sat called 5-Double-Sat. Recall that a literal is positive if it is
a non-negated variable, while it is negative if it is a negated variable.

Given a collection of clauses C = {C1, . . . , Cp} over the set of variables X =
{x1, . . . , xq}, where each Ci ∈ C, with 1 � i � p, contains exactly five literals
and does not contain both a variable and its negation, 5-Double-Sat asks for a
truth assignment to the variables in X such that each clause Ci, with 1 � i � p,
is double-satisfied. A clause Ci is double-satisfied by a truth assignment f to the
variables X if there exist a positive literal and a negative literal in Ci that are
both satisfied by f . Notice that we assume that there exist at least one positive
literal and at least one negative literal in each clause Ci, with 1 � i � p, otherwise
Ci cannot be doubled-satisfied. Moreover, we assume that each variable in an
instance of 5-Double-Sat appears both as a positive literal and a negative literal
in the instance. Notice that if this is not the case, for example a variable appears
only as a positive literal, we can assign a true value to the variable, as defining
an assignment to false does not contribute to double-satisfy any clause. First, we
show that 5-Double-Sat is NP-complete, which may be of independent interest.

Theorem 6 (�). 5-Double-Sat is NP-complete.

Let us now give the construction of the reduction from 5-Double-Sat to
3-Club Cover(2). Consider an instance of 5-Double-Sat consisting of a set C of
clauses C1, . . . , Cp over set X = {x1, . . . , xq} of variables. We assume that it is

Covering with Clubs: Complexity and Approximability 159

not possible to double-satisfy all the clauses by setting at most two variables to
true or to false (this can be easily checked in polynomial-time).

Before giving the details, we present an overview of the reduction. Given an
instance (X, C) of 5-Double-Sat, for each positive literal xi, with 1 � i � q, we
define vertices xT

i,1, xT
i,2 and for each negative literal xi, with 1 � i � q, we define

a vertex xF
i . Moreover, for each clause Cj ∈ C, with 1 � j � p, we define a vertex

vC,j . We define other vertices to ensure that some vertices have distance not
greater than three and to force the membership to one of the two 3-clubs of the
solution (see Lemma 7). The construction implies that for each i with 1 � i � q,
xT

i,1 and xF
i belong to different 3-clubs (see Lemma 8); this corresponds to a truth

assignment to the variables in X. Then, we are able to show that each vertex
vC,j belongs to the same 3-club of a vertex xT

i,1, with 1 � i � q, and of a vertex
xF

h , with 1 � h � q, adjacent to vC,j (see Lemma 10); these vertices correspond
to a positive literal xi and a negative literal xh, respectively, that are satisfied
by a truth assignment, hence Cj is double-satisfied.

Now, we give the details of the reduction. Let (X, C) be an instance of
5-Double-Sat, we construct an instance G = (V,E) of 3-Club Cover(2) as fol-
lows (see Fig. 3). The vertex set V is defined as follows:

V = {r, r′, rT , r′
T , r∗

T , rF , r′
F } ∪ {xT

i,1, x
T
i,2, x

F
i : xi ∈ X} ∪ {vC,j : Cj ∈ C} ∪ {y1, y2, y}

The edge set E is defined as follows:

E = {{r, r′}, {{r′, rT }, {r′, r∗
T }{r′, rF }} ∪ {{rT , xT

i,1} : xi ∈ X}
∪ {{rF , xF

i } : xi ∈ X} ∪ {{r′
T , xT

i,1} : xi ∈ X} ∪ {{r′
F , xF

i } : xi ∈ X}
∪ {{xT

i,1, x
T
i,2} : xi ∈ X} ∪ {{r∗

T , xT
i,2}, {y1, x

T
i,2} : xi ∈ X}

∪ {{xT
i,2, x

F
j } : xi, xj ∈ X, i �= j} ∪ {{xT

i,1, vC,j} : xi ∈ Cj} ∪ {{xF
i , vC,j} : xi ∈ Cj}

∪ {{vC,j , y} : Cj ∈ C} ∪ {{y, y2}, {y1, y2}, {y1, r
′
T }, {y1, r

′
F }}

We start by proving some properties of the graph G.

Lemma 7 (�). Consider an instance (C,X) of 5-Double-Sat and let G = (V,E)
be the corresponding instance of 3-Club Cover(2). Then, (1) dG(r′, y) > 3, (2)
dG(r, y) > 3, (3) dG(r, vC,j) > 3, for each j with 1 � j � p, and (4) dG(r, r′

F) >
3, dG(r, r′

T) > 3.

Consider two sets V1 ⊆ V and V2 ⊆ V , such that G[V1] and G[V2] are two
3-clubs of G that cover G. As a consequence of Lemma 7, it follows that r and
r′ are in exactly one of G[V1], G[V2], w.l.o.g. G[V1], while r′

T , r′
F , y and vC,j , for

each j with 1 � j � p, belong to G[V2] and not to G[V1].
Next, we show a crucial property of the graph G built by the reduction.

Lemma 8 (�). Given an instance (C,X) of 5-Double-Sat, let G = (V,E) be
the corresponding instance of 3-Club Cover(2). Then, for each i with 1 � i � q,
dG(xT

i,1, x
F
i) > 3.

160 R. Dondi et al.

r r′ r∗
T

rT

rF

y1

r′
T

r′
F

y

y2

xT
i,2

xT
i,1

xF
i

vC,j

Fig. 3. Schematic construction for the reduction from 5-Double-Sat to 3-Club Cover(2).

Now, we are able to prove the main results of this section.

Lemma 9 (�). Given an instance (C,X) of 5-Double-Sat, let G = (V,E) be the
corresponding instance of 3-Club Cover(2). Then, given a truth assignment that
double-satisfies C, we can compute in polynomial-time two 3-clubs that cover G.

Lemma 10. Given an instance (C,X) of 5-Double-Sat, let G = (V,E) be the
corresponding instance of 3-Club Cover(2). Then, given two 3-clubs that cover G,
we can compute in polynomial time a truth assignment that double-satisfies C.
Proof. Consider two 3-clubs G[V1], G[V2], with V1, V2 ⊆ V , that cover G. First,
notice that by Lemma 7 we assume that r, r′ ∈ V1 \ V2, while y, r′

T , r′
F ∈ V2 \ V1

and vC,j ∈ V2 \ V1, for each j with 1 � j � p. Moreover, by Lemma 8 it follows
that for each i with 1 � i � q, xT

i,1 and xF
i do not belong to the same 3-club,

that is exactly one belongs to V1 and exactly one belongs to V2.
By construction, each path of length at most three from a vertex vC,j , with

1 � j � p, to r′
F must pass through some xF

h , with 1 � h � q. Similarly, each
path of length at most three from a vertex vC,j , with 1 � j � p, to r′

T must
pass through some xT

i,1. Assume that vC,j , with 1 � j � p, is not adjacent to
a vertex xT

i,1 ∈ V2, with 1 � i � q (xF
h ∈ V2, with 1 � h � p respectively). It

follows that vC,j is only adjacent to y and to vertices xF
w , with 1 � w � q (xT

u,1,
with 1 � u � q, respectively) in G[V2]. In the first case, notice that y is adjacent
only to vC,z, with 1 � z � p, and y2, none of which is adjacent to r′

T (r′
F ,

respectively), thus implying that this path from vC,j to r′
T (to r′

F , respectively)
has length at least 4. In the second case, xF

w (xT
u,1, respectively) is adjacent to

Covering with Clubs: Complexity and Approximability 161

r′
F , rF , vC,j and xT

i,2 (r′
T , rT , vC,j , xT

u,2, respectively), none of which is adjacent
to r′

T (r′
F , respectively), implying that also in this case the path from vC,j to r′

T

(to r′
F , respectively) has length at least 4. Since r′

T , r′
F , vC,j ∈ V2, it follows that,

for each vC,j , the set V2 contains a vertex xT
i,1, with 1 � i � q, and a vertex xF

h ,
with 1 � h � q, connected to vC,j .

By Lemma 8 exactly one of xT
i,1, xF

i belongs to V2, thus we can construct
a truth assignment f as follows: f(xi) := true, if xT

i,1 ∈ V2, f(xi) := false, if
xF

i ∈ V2. The assignment f double-satisfies each clause of C, since each vC,j is
connected to a vertex xT

i,1, for some i with 1 � i � q, and a vertex xF
h , for some

h with 1 � h � q. ��
Based on Lemmas 9 and 10, and on the NP-completeness of 5-Double-Sat (see

Theorem 6), we can conclude that 3-Club Cover(2) is NP-complete.

Theorem 11 (�). 3-Club Cover(2) is NP-complete.

4 Hardness of Approximation

In this section we consider the approximation complexity of Min 2-Club Cover
and Min 3-Club Cover and we prove that Min 2-Club Cover is not approx-
imable within factor O(|V |1/2−ε), for each ε > 0, and that Min 3-Club Cover
is not approximable within factor O(|V |1−ε), for each ε > 0. The proof
for Min 2-Club Cover is obtained with a reduction very similar to that of
Sect. 3.1, except from the fact that we reduce Minimum Clique Partition to
Min 2-Club Cover.

Corollary 12 (�). Unless P = NP , Min 2-Club Cover is not approximable
within factor O(|V |1/2−ε), for each ε > 0.

Next, we show that Min 3-Club Cover is not approximable within factor
O(|V |1−ε), for each ε > 0, unless P = NP , by giving a preserving-factor reduc-
tion from Minimum Clique Partition.

Consider an instance Gp = (V p, Ep) of Minimum Clique Partition, we con-
struct an instance G = (V,E) of Min 3-Club Cover by adding a pendant ver-
tex connected to each vertex of V p. Formally, V = {ui, wi : vi ∈ V p},
E = {{ui, wi} : 1 � i � |V p|} ∪ {{ui, uj} : {vi, vj} ∈ Ep}}.

We prove now the main properties of the reduction.

Lemma 13 (�). Let Gp = (V p, Ep) be an instance of Minimum Clique Partition
and let G = (V,E) be the corresponding instance of Min 3-Club Cover. Then,
given a solution of Minimum Clique Partition on Gp = (V p, Ep) consisting of k
cliques, we can compute in polynomial time a solution of Min 3-Club Cover on
G = (V,E) consisting of k 3-clubs.

Lemma 14 (�). Let Gp = (V p, Ep) be a graph input of
Minimum Clique Partition and let G = (V,E) be the corresponding instance of
Min 3-Club Cover. Then, given a solution of Min 3-Club Cover on G = (V,E)
consisting of k 3-clubs, we can compute in polynomial time a solution of
Minimum Clique Partition on Gp = (V p, Ep) consisting of k cliques.

162 R. Dondi et al.

Lemmas 13 and 14 imply the following result.

Theorem 15 (�). Min 3-Club Cover is not approximable within factor
O(|V |1−ε), for each ε > 0, unless P = NP .

5 An Approximation Algorithm for Min 2-Club Cover

In this section, we present an approximation algorithm for Min 2-Club Cover that
achieves an approximation factor of 2|V |1/2 log3/2 |V |. Notice that, due to the
result in Sect. 4, the approximation factor is almost tight. We start by describing
the approximation algorithm, then we present the analysis of the approximation
factor.

Algorithm 1. Club-Cover-Approx
Data: a graph G
Result: a cover S of G

1 V ′ := V ; /* V ′ is the set of uncovered vertices of G, initialized to V */
2 S := ∅;
3 while V ′ �= ∅ do
4 Let v be a vertex of V such that |N [v] ∩ V ′| is maximum;
5 Add N [v] to S;
6 V ′ := V ′ \ N [v];

Club-Cover-Approx is similar to the greedy approximation algorithm for
Minimum Dominating Set and Minimum Set Cover. While there exists an uncov-
ered vertex of G, the Club-Cover-Approx algorithm greedily defines a 2-club
induced by the set N [v] of vertices, with v ∈ V , such that N [v] covers the max-
imum number of uncovered vertices (notice that some of the vertices of N [v]
may already be covered). While for Minimum Dominating Set the choice of each
iteration is optimal, here the choice is suboptimal. Notice that indeed computing
a maximum 2-club is NP-hard.

Clearly the algorithm returns a feasible solution for Min 2-Club Cover, as
each set N [v] picked by the algorithm is a 2-club and, by construction, each
vertex of V is covered. Next, we show the approximation factor yielded by the
Club-Cover-Approx algorithm for Min 2-Club Cover.

First, consider the set VD of vertices v ∈ V picked by the Club-Cover-Approx
algorithm, so that N [v] is added to S. Notice that |VD| = |S| and that VD is a
dominating set of G, since, at each step, the vertex v picked by the algorithm
dominates each vertex in N [v], and each vertex in V is covered by the algorithm,
so it belongs to some N [v], with v ∈ VD.

Let D be a minimum dominating set of the input graph G. By the property
of the greedy approximation algorithm for Minimum Dominating Set, the set VD

has the following property [14]:

|VD| � |D| log |V | (1)

The size of a minimum dominating set in graphs of diameter bounded by 2
(hence 2-clubs) has been considered in [8], where the following result is proven.

Covering with Clubs: Complexity and Approximability 163

Lemma 16 ([8]). Let H = (VH , EH) be a 2-club, then H has a dominating set
of size at most 1 +

√|VH | + ln(|VH |).
The approximation factor 2|V |1/2 log3/2 |V | for Club-Cover-Approx is

obtained by combining Lemma16 and Eq. 1.

Theorem 17. Let OPT be an optimal solution of Min 2-Club Cover, then Club-
Cover-Approx returns a solution having at most 2|V |1/2 log3/2 |V ||OPT | 2-clubs.

Proof. Let D be a minimum dominating set of G and let OPT be an
optimal solution of Min 2-Club Cover. We start by proving that |D| �
2|OPT ||V |1/2 log1/2 |V |. For each 2-club G[C], with C ⊆ V , that belongs
to OPT , by Lemma 16 there exists a dominating set DC of size at most
1 +

√|C| + ln(|C|) � 2
√|C| + ln(|C|). Since |C| � |V |, it follows that each

2-club G[C] that belongs to OPT has a dominating set of size at most
2
√|V | + ln(|V |). Consider D′ =

⋃
C∈OPT DC . It follows that D′ is a domi-

nating set of G, since the 2-clubs in OPT covers G. Since D′ contains |OPT |
sets DC and |DC | � 2

√|V | + ln(|V |), for each G[C] ∈ OPT , it follows that
|D′| � 2|OPT |√|V | + ln(|V |). Since D is a minimum dominating set, it follows
that |D| � |D′| � 2|OPT |(√|V | + ln(|V |)). By Eq. 1, it holds |VD| � 2|D| log |V |
thus |VD| � 2|V |1/2 ln1/2 |V | log |V ||OPT | � 2|V |1/2 log3/2 |V ||OPT |. ��

6 Conclusion

There are some interesting direction for the problem of covering a graph with s-
clubs. From the computational complexity point of view, the main open problem
is whether 2-Club Cover(2) is NP-complete or is in P. Moreover, it would be
interesting to study the computational/parameterized complexity of the problem
in specific graph classes, as done for Minimum Clique Partition [5,6,9,21].

References

1. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol.
3, 113–126 (1973)

2. Asahiro, Y., Doi, Y., Miyano, E., Samizo, K., Shimizu, H.: Optimal approximation
algorithms for maximum distance-bounded subgraph problems. Algorithmica 80,
1834–1856 (2017)

3. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing
biological networks. J. Comb. Optim. 10(1), 23–39 (2005)

4. Bourjolly, J., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club
problem in an undirected graph. Eur. J. Oper. Res. 138(1), 21–28 (2002)

5. Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.A.:
Partition into cliques for cubic graphs: planar case, complexity and approximation.
Discrete Appl. Math. 156(12), 2270–2278 (2008)

6. Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: A note on maximum indepen-
dent sets and minimum clique partitions in unit disk graphs and penny graphs:
complexity and approximation. RAIRO Theor. Inf. Appl. 45(3), 331–346 (2011)

164 R. Dondi et al.

7. Chang, M., Hung, L., Lin, C., Su, P.: Finding large k-clubs in undirected graphs.
Computing 95(9), 739–758 (2013)

8. Desormeaux, W.J., Haynes, T.W., Henning, M.A., Yeo, A.: Total domination in
graphs with diameter 2. J. Graph Theory 75(1), 91–103 (2014)

9. Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. Graphs
Comb. 27(3), 399–411 (2011)

10. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Golovach, P.A., Heggernes, P., Kratsch, D., Rafiey, A.: Finding clubs in graph
classes. Discrete Appl. Math. 174, 57–65 (2014)

13. Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and
computational experiments for finding 2-clubs. J. Graph Algorithms Appl. 19(1),
155–190 (2015)

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, 20–22 March 1972. The IBM Research Symposia Series, pp. 85–103. Plenum
Press, New York (1972)

16. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algo-
rithms 9(1), 21 (2016)

17. Komusiewicz, C., Sorge, M.: An algorithmic framework for fixed-cardinality opti-
mization in sparse graphs applied to dense subgraph problems. Discrete Appl.
Math. 193, 145–161 (2015)

18. Laan, S., Marx, M., Mokken, R.J.: Close communities in social networks: boroughs
and 2-clubs. Social Netw. Anal. Min. 6(1), 20:1–20:16 (2016)

19. Mokken, R.: Cliques, clubs and clans. Qual. Quant. Int. J. Methodol. 13(2), 161–
173 (1979)

20. Mokken, R.J., Heemskerk, E.M., Laan, S.: Close communication and 2-clubs in
corporate networks: Europe 2010. Social Netw. Anal. Min. 6(1), 40:1–40:19 (2016)

21. Pirwani, I.A., Salavatipour, M.R.: A weakly robust PTAS for minimum clique
partition in unit disk graphs. Algorithmica 62(3–4), 1050–1072 (2012)

22. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-
tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

23. Zoppis, I., Dondi, R., Santoro, E., Castelnuovo, G., Sicurello, F., Mauri, G.: Opti-
mizing social interaction - a computational approach to support patient engage-
ment. In: Zwiggelaar, R., Gamboa, H., Fred, A.L.N., i Badia, S.B. (eds.) Proceed-
ings of the 11th International Joint Conference on Biomedical Engineering Systems
and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, Funchal, Madeira,
Portugal, 19–21 January 2018, pp. 651–657. SciTePress (2018)

24. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

On the Expected Number of Distinct
Gapped Palindromic Factors

Philippe Duchon1,2 and Cyril Nicaud3(B)

1 Univ. Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
2 CNRS, LaBRI, UMR 5800, 33400 Talence, France

3 Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
77454 Marne-la-Vallée, France

cyril.nicaud@u-pem.fr

Abstract. An α-gapped palindromic factor of a word is a factor of the
form uvu, where u is the reversal of u and where |uv| ≤ α|u| for some
fixed α ≥ 1. We give an asymptotic estimate of the expected number of
distinct palindromic factors in a random word for a memoryless source,
where each letter is generated independently from the other, according
to some fixed probability distribution on the alphabet.

1 Introduction

An α-gapped palindrome is a word of the form uvu, where u is the reversal1 of
u and where |uv| ≤ α|u|, for some fixed α ≥ 1. Initially motivated by applica-
tions to bioinformatics, several articles in the literature focus on studying the
α-gapped palindromic factors that occur in a given word [5,7]. Different direc-
tions were taken in these studies, and it is now known that there are at most a
linear number of distinct α-gapped palindromic factors in a word [1,5], and that
they can be computed in linear time [6,8,13].

In this paper, we are interested in the probabilistic properties related to
this notion: if w is a random word of length n, what can be said about its α-
gapped palindromic factors? To answer this kind of question, the probabilistic
model must be specified. In the sequel, we will consider words generated using a
memoryless source: each letter is chosen independently from each other, following
a fixed probability distribution on the alphabet. Together with C. Pivoteau,
we gave several results in [4]: the expected number of α-gapped palindromic
factors and the expected length of the longest such factor. These were obtained
using classical techniques from analytic combinatorics, together with elementary
discrete probabilities. We also adapted, almost readily, a result by Rubinchik
and Shur [11] on the expected number of distinct palindromic factors when the
distribution is the uniform distribution, to distinct α-gapped palindromic factors.
But this technique fails to work when the distribution is not uniform.

We aim at completing the works [4,11] by studying the number of distinct
α-gapped palindromic factors in a random word generated by a memoryless
1 The reversal of u = u1 · · · un is u = un · · · u1.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 165–176, 2018.
https://doi.org/10.1007/978-3-319-94667-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_14&domain=pdf

166 P. Duchon and C. Nicaud

source. Beside the combinatorial and probabilistic motivations, note that knowl-
edge on the typical number of distinct factors can be useful in the design of
data structures, as it can give hints on the likely memory size needed for a
typical input. For instance, the number of vertices of the graph eertree intro-
duced in [12] is the number of distinct palindromic factors, which is in Θ(

√
n)

in expectation for the uniform distribution [11].
The classical techniques we used in [4] are not well suited to handle distinct

factors. This is why we propose in [3] a probabilistic process that focuses on the
notion of distinctness, in order to develop useful methodologies. The process we
studied is the following: generate N random words of length L, independently,
and remove duplicates. What does the resulting random set S looks like? We
gave a precise characterization of the typical composition of letters of a word of
S. More than the result itself, the techniques we used, based on classical analysis
of functions with several variables, can be used to try to tackle other questions
involving distinctness and non-uniform models. It also hints that uniform distri-
butions are really singular, hiding some complicated situations that appear for
non-uniform distribution only.

In this article, we use techniques that are similar to those introduced in [3]
in order to estimate the expected number of distinct α-gapped palindromic fac-
tors in a random word, generated by a memoryless source. Our problem is more
difficult than [3] for two main reasons: factors of a random word are not inde-
pendent and α-gapped palindromic factors have various lengths. As we will see,
these technical difficulties can be overcome, and we give in the sequel two main
results: an estimate of the expected number of distinct α-gapped palindromic
factors and a description of the factors that are more likely to occur, in term of
their lengths and of their composition of letters.

2 Definitions and Notations

If k is a positive integer, let [k] = {1, . . . , k}. For x = (x1, . . . , xk) ∈ R
k, let

‖x‖ =
√∑

i∈[k] x
2
i denote the Euclidean norm. A vector x = (x1, . . . , xk) ∈ R

k

is a probability vector if every xi ∈ [0, 1] and
∑k

i=1 xi = 1.

Words. Let A = {a1, . . . , ak} be an alphabet with k ≥ 2 letters. Throughout
the article, the alphabet A, and therefore k, are fixed. We denote the empty
word by ε. If u = u1 · · · un is a word of length n on A, then its reversal is the
word u = un · · · u1. A palindrome is a word of the form uλu where λ ∈ A ∪ {ε},
that is, where λ is either a letter or empty. Let α ≥ 1 be a real number. An
α-gapped palindrome is a word of the form uvu where |uv| ≤ α|u|.

For any word w ∈ A∗, the composition vector (or Parikh vector) of w is the
vector (|w|1, . . . , |w|k), where |w|i is the number of occurrences of ai in w. If w

is not empty, its frequency vector is the probability vector (|w|1
|w| , . . . , |w|k

|w|). We
let Wm(x) denote the set of words of length m with frequency vector x (which
is empty if mx does not have nonnegative integer coordinates).

On the Expected Number of Distinct Gapped Palindromic Factors 167

Probabilities. Throughout the article, we assume some probability vector
p = (p1, . . . , pk) to be fixed, with pi �= 0 for every i ∈ [k], and we consider
statistics in the memoryless model where each letter ai has probability pi. We
also assume that p is not the uniform distribution, i.e. there exists i ∈ [k] such
that pi �= 1

k . Let pmax = maxi∈[k] pi < 1 denote the maximal value of p.
We will use the (natural-based) entropy function [9] on k positive variables,

which is defined by H(x) = H(x1, . . . , xk) = −∑k
i=1 xi log xi. We also borrow

the function Φ from [3], defined for any non-negative t by Φ(t) =
∑k

i=1 pt
i.

3 Expected Number of Distinct α-Gapped Factors

Recall that the Θ̃ notation means “asymptotically of the same growth, up to
some polylogarithmic multiplicative factors”. More precisely, a positive sequence
(un)n≥0 is Θ̃(nd) if there exists δ > 0 such that nd(log n)−δ ≤ un ≤ nd(log n)δ,
for n sufficiently large. It is in the same vein, though a bit more precise, as
saying that for all ε > 0, un is O(nd+ε) and un is Ω(nd−ε). Our main result is
the following.

Theorem 1. Let α ≥ 1. The expected number of distinct α-gapped palindromic
factors is Θ̃(nc∗

), where c∗ ∈ (0, 1) is the unique positive solution of the equation

Φ(2c)Φ(c)α−1 = 1.

Observe that, even if we assume that p is not the uniform distribution in this
paper, the result is compatible with the estimations of [3,11]: we have Φ(t) = k1−t

for the uniform distribution, so the equation rewrites k1−2c+(α−1)(1−c)=1 = 1, so
that c∗ = α

α+1 . The value of c∗ for non-uniform p are depicted in Fig. 1.

Fig. 1. The values of c∗ as α ranges from 1 to 6, for three different probability vectors
on an alphabet with three letters (k = 3): x the uniform distribution plotted with
empty squares, p1 = (1

2
, 1
3
, 1
6
) plotted with squares, and p2 = (4

5
, 1
10

, 1
10

) plotted with
triangles. For these three examples, the more the probability approaches the uniform
distribution, the smaller the expected number of distinct factors.

168 P. Duchon and C. Nicaud

The proof, presented in the rest of this section, consists in finding the fre-
quency vector that contributes the most to the number of distinct α-gapped
palindromic factors. This information will be crucial, as we will see that every-
thing is concentrated on words with approximatively this frequency vector. We
first work solely on the upper bound, then provide a matching lower bound.

3.1 Upper Bound for the Probability of a Given α-Gapped Pattern

In this section we compute an upper bound for the probability that a given
α-gapped palindromic factor uvu appears at position j in a random word w
of length n, with i ∈ [n + 1 − |uvu|]. We introduce several real variables to
express this probability in a convenient way: Let 	 be positive real such that
|u| = 	 log n. Let r be the non-negative real such that |v| = r|u|. The length of
uvu is therefore (2+ r)	 log n, and r ≤ α − 1 because of the α-gapped condition.
Let also x = (x1, . . . , xk) be the frequency vector of u and let y = (y1, . . . , yk)
be the frequency vector of v.

The probability that uvu appears as a factor at position j of a random word
of length n is pn(x,y, 	, r) := Pn(uvu factor at position j) defined by

pn(x,y, 	, r) =
k∏

i=1

p2xi� log n+yir� log n
j = n�

∑
i∈[k](2xi+ryi) log pi . (1)

In particular, this probability does not depend on the position j.
By linearity of the expectation, the expected number of occurrences of uvu in

a random word of length n is simply (n+1−|uvu|)pn(x,y, 	, r). Since the prob-
ability that a word appears as a factor is bounded from above by its expected
number of occurrences, the probability qn(x,y, 	, r) that uvu is factor of a ran-
dom word of length n satisfies

qn(x,y, 	, r) ≤ npn(x,y, 	, r) = n1+�
∑

i∈[k](2xi+ryi) log pi . (2)

This upper bound can be greater than one, if the exponent is positive. Thus, we
will use the following upper bound for the probability qn(x,y, 	, r):

qn(x,y, 	, r) ≤ min(1, npn(x,y, 	, r)) ≤ nmin(0,1+�
∑

i∈[k](2xi+ryi) log pi). (3)

This idea that the probability of appearance is bounded by the minimum
between 1 and the expected number of occurrences is central in [3,11].

3.2 Upper Bound for Given Frequency Vectors

The result of this section is the following lemma.

Lemma 1. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be two frequency vectors,
such that (log n)x and (r	 log n)y are integer-valued. The expected number of
distinct α-gapped factors of the form uvu in a random word of length n, such
that |u| = 	 log n and |v| = r	 log n, and such that u has frequency vector x and

On the Expected Number of Distinct Gapped Palindromic Factors 169

v has frequency vector y, is bounded from above by λn�min(Jr(x,y),K�,r(x,y)), for
some positive constant λ, where Jr(x,y) and K�,r(x,y) are defined by

Jr(x,y) = H(x) + rH(y) and K�,r(x,y) = Jr(x,y) +
1
	

+
k∑

i=1

(2xi + ryi) log pi.

Proof. Let μn(x,y, 	, r) be the expected number of distinct α-gapped factors
described in the statement of the lemma. By linearity of the expectation, we
have

μn(x,y, 	, r) =
∑

u∈W� log n(x)
v∈Wr� log n(y)

qn(x,y, 	, r) = |W� log n(x)| · |Wr� log n(y)| · qn(x,y, 	, r).

So we just have to bound from above the cardinalities of W� log n(x) and of
Wr� log n(y) to conclude using Eq. (3). This is done using Lemma 1 of [3], which
states that |W� log n(x)| ≤ Cn�H(x) for some positive constant C. 	

Observe that there can be no possibilities for u or v if the values of x, y, 	, n
and r are such that one of the quantities xi	 log n or yi	 log n is not an integer.
This is not a problem, as our statement is an upper bound.

3.3 Optimizing Jr(x, y) and K�,r(x, y), for Fixed � and r

In this section we start to work on the upper bound provided by Lemma 1
by studying separately the two functions Jr(x,y) and K�,r(x,y). The following
lemma is a consequence of the properties of the entropy function.

Lemma 2. For given r ≥ 0, the function Jr(x,y) is maximized on the set of
probability vectors for x and y when x = y = x, where x = (1

k , . . . , 1
k) is the

uniform probability vector. For these values we have Jr(x,x) = (1 + r) log k.

The analysis of K�,r is not really complicated either. For any non-negative c,
we define the probability vector x(c) by

x(c) =
(

pc
1

Φ(c)
, . . . ,

pc
i

Φ(c)
, . . . ,

pc
k

Φ(c)

)
.

In particular x(0) is the uniform probability vector x and x(1) = p is the
distribution of the source. Recall also Gibbs’ inequality [9], stating that if
s = (s1, . . . , sk) and t = (t1, . . . , tk) are two probability vectors, then we have2

−∑k
i=1 si log si ≤ −∑k

i=1 si log ti, with equality if and only if s = t.

Lemma 3. For given r ≥ 0 and 	 > 0, the function K�,r(x,y) is maximized on
the set of probabilities vector for x and y when x = x(2) and y = p. For these
values we have K�,r(x(2),p) = 1

� + log Φ(2).

2 The case where some coordinates are zero is covered by setting x log x = 0 for x = 0.

170 P. Duchon and C. Nicaud

Proof. We can rewrite K�,r(x,y) the following way:

K�,r(x,y) =

(
H(x) +

k∑
i=1

xi log p2i

)
+ r

(
H(y) +

k∑
i=1

yi log pi

)
+

1
	
.

The second parenthesis is non-positive by direct application of Gibbs’ inequality,
and maximal for y = p, in which case it is equal to zero. For the first parenthesis,
Gibbs’ inequality also applies as

H(x) +
k∑

i=1

xi log p2i = −
k∑

i=1

xi log xi +
k∑

i=1

xi log
p2i

Φ(2)
+ log Φ(2).

It is therefore maximal for x = x(2), where it is equal to log Φ(2). 	

3.4 Optimizing G�,r(x, y), for Fixed � and r

Let G�,r(x,y) = min(Jr(x,y),K�,r(x,y)). This is the function to maximize in
order to locate the maximum of the upper bound given in Lemma 1. We distin-
guish three cases (recall that J� is maximal at (x,x) and K�,r at (x(2),p)):

(a) If Jr(x,x) ≤ K�,r(x,x): then G�,r(x,x) = Jr(x,x), and thus, G�,r is maximal
at (x,x), since G�,r(x,y) ≤ Jr(x,y).

(b) If K�,r(x(2),p) ≤ Jr(x(2),p): for the same reasons, G�,r is maximal at the
point (x(2),p).

(c) If Jr(x,x) > K�,r(x,x) and K�,r(x(2),p) > Jr(x(2),p): since both Jr and
K�,r are strictly concave (on the set of pairs of probabilities vectors), then
G�,r has no local maximum on the set defined by {Jr(x,y) < K�,r(x,y)}, nor
on the set {Jr(x,y) > K�,r(x,y)}. The global maximum of G�,r therefore lies
on the set defined by the condition Jr(x,y) = K�,r(x,y).

For convenience, we introduce the set E�,r defined by E�,r = {(x,y) : Jr(x,y) =
K�,r(x,y)}.

It is not difficult to identify the ranges for the different cases depending on
the values of 	 and r. The properties of the first two cases are summarized in
the lemma below.

Lemma 4. The first two cases are characterized as follows:

– We are in Case (a) if and only if (2 + r) log k < 1
� . In this case, G�,r has its

maximum at (x,x), with G�,r(x,x) = (2 + r) log k.
– We are in Case (b) if and only if H(x(2)) + rH(p) + log Φ(2) > 1

� . In this
case, G�,r has its maximum at (x(2),p), with G�,r(x(2),p) = 1

� + log Φ(2).

Observe that each condition in Lemma 4 defines an open subset of the (, r)
domain, each delimited by a hyperbole segment. These two subsets cannot inter-
sect, since in each domain G�,r is maximized at a different point (recall that we
assumed p �= x). Thus, the closed subset of the (, r) domain defining Case (c)
cannot be empty. Our result for Case (c), which constitutes the main technical
contribution of this article, is the following.

On the Expected Number of Distinct Gapped Palindromic Factors 171

Lemma 5. Let 	 > 0 and r ≥ 0 be two real numbers such that (2 + r) log k ≥ 1
�

and H(x(2))+rH(p)+log Φ(2) ≤ 1
� . Then G�,r(x,y) reaches its unique maximum

for x = x(2c) and y = x(c), where c ∈ (0, 1) is the unique positive solution of
the equation

1 + 	
Φ′(2t)
Φ(2t)

+ 	r
Φ′(t)
Φ(t)

= 0. (4)

Proof. By Lemma 4, the hypothesis of the lemma implies that we are in Case (c).
Hence, G�,r reaches its maximum, for probability vectors of E�,r; this is equivalent
to 1

� +
∑

i(2xi + ryi) log pi = 0, which is a linear condition on the 2k variables
defining (x,y).

On the considered domain we have G�,r(x,y) = Jr(x,y) = K�,r(x,y), so
we take Jr(x,y) which is easier to study. Its gradient, as a function of 2k non-
negative variables (and thus, not only for probability vectors) is the following:

∂Jr

∂xi
= −1 − log xi, and

∂Jr

∂yi
= −r − r log yi, ∀i ∈ [k].

Since we are looking for a pair of probability vectors (x,y) that lies in the set E�,r

the following linear constraints must be satisfied:
∑

i∈[k] xi = 1,
∑

i∈[k] yi = 1
and 1

� +
∑

i∈[k](2xi + ryi) log pi = 0. Let n1, n2 and n be the three vectors
normal to the constraints defined by

n1 = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
k times

); n2 = (0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
k times

);

n = (2 log p1, . . . , 2 log pk, r log p1, . . . , r log pk).

To locate our optimal value, we have to find where the gradient lies in the vector
space spanned by n1, n2 and n. We are thus looking for vectors x and y for
which there exist three constants c1, c2, c3 such that, for all i ∈ [k],

−1 − log xi = c1 + 2c3 log pi, and − r − r log yi = c2 + c3r log pi.

By differences (keeping the equations involving x1 and y1), this leads to

log
(

xi

x1

)
= −2c3 log

(
pi

p1

)
and log

(
yi

y1

)
= −c3 log

(
pi

p1

)
.

Introducing parameter c = −c3, we get that the xi’s must be proportional to
p2c

i (with a normalizing constant Φ(2c)) and the yi’s must be proportional to pc
i

(with a normalizing constant Φ(c)) for the same constant c. That is, we must
take (x,y) = (x(2c),x(c)) for some constant c; the parameters c1 and c2 are
then easily recovered as, from the equation involving x1:

c1 = −1 − log
(

p2c
1

Φ(2c)

)
+ 2c log pi = −1 + log Φ(2c),

172 P. Duchon and C. Nicaud

and, from the equation involving y1, we have c2 = −r − r log pi + cr log pi. Thus
the only remaining equation is the one asking for (x,y) to be in the set E�,r.
Setting x = x(2c) and y = x(c) in the equation, we get

− 1
	

=
2

Φ(2c)

k∑
i=1

p2c
i log pi +

r

Φ(c)

k∑
i=1

pc
i log pi, (5)

or equivalently,

− 1
	

= 2
Φ′(2c)
Φ(2c)

+ r
Φ′(c)
Φ(c)

. (6)

Now consider the function Φ′
Φ appearing on the right-hand side of (6). Its deriva-

tive is Φ′′Φ−Φ′2
Φ2 , which is strictly positive by an application of Cauchy-Schwarz

inequality (we use here that p �= x). Thus, the right-hand side of (4) is an
increasing, continuous function of c when r and 	 are considered as fixed param-
eters. Evaluating this function for c = 0 yields a value less than −1/	, from the
condition that we are not in Case (a), and for c = 1, a value more than −1/	,
from the condition that we are not in Case (b). This proves that the equation
has a unique solution c, and that this solution lies strictly between 0 and 1. 	

3.5 Optimizing the Exponent on � and r

At this point, we know where the maximum is when 	 and r are fixed, for all three
ranges. We still have to find the values of 	 and r that maximize the exponent
	G�,r(x,y), in each case, for the maximal x and y. Recall that r ∈ [0, α − 1] in
our settings. The next two lemmas are directly derived from Lemma 4.

Lemma 6. For Case (a), the maximum of 	G�,r(x,y) is reached for 	 = 	0,
r = α−1 and x = y = x, where 	0 = 1

(2+r) log k ; we have 	0G�0,α−1(x,x) = α
α+1 .

Lemma 7. For Case (b), the maximum of 	G�,r(x,y) is reached for 	 = 	1,
r = α − 1, x = x(2) and y = p, where 	1 = 1

H(x(2))+rH(p)−log Φ(2) ; we have

	1G�1,α−1(x,x) = H(x(2))+(α−1)H(p)
H(x(2))+(α−1)H(p)−log Φ(2) .

Observe that 	0 and 	1 are not formally in the ranges for Case (a) and Case
(b) as they have been defined. We allow this abuse of notation, as the exponent
function can be extended by continuity at 	0 and at 	1.

We now focus on Case (c). By Lemma 5 we know that the maximum of G�,r

is reached at some point (x(2c),x(c)) of E�,r, for some c ∈ (0, 1) that is implicitly
defined. Our optimization is on the variables 	 and r, and c is viewed as a function
of these two variables. We introduce the notation h(c) = H(x(c)), for which an
elementary calculation yields h(c) = log Φ(c) − cΦ′(c)

Φ(c) . As G�,r = Jr on E�,r, our
problem reduces to maximizing the exponent E(r, 	, c) = 	h(2c)+ 	rh(c) subject
to the constraint 1+2	Φ′(2c)

Φ(2c) + 	r Φ′(c)
Φ(c) = 0. The solution is given in the following

lemma.

On the Expected Number of Distinct Gapped Palindromic Factors 173

Lemma 8. For Case (c), the maximum of 	G�,r(x,y) is reached for 	 = 	c∗ ,
r = α − 1, x = x(2c∗) and y = x(c∗), where c∗ is the solution of the equation

Φ(2c)Φ(c)α−1 = 1. (7)

At this point, the value of the exponent is 	c∗G�c∗ ,α−1(x(2c∗),x(c∗)) = c∗.

Proof. Remark that, using the simplification of h(c), we have E(, r, c) = c +
	 (log Φ(2c) + r log Φ(c)). Lets us consider c as an implicit function of (, r), so
that E becomes a function of only two variables 	 and r, for which we compute
partial derivatives:

∂E

∂r
(, r) =

∂c

∂r
(, r) + 2	

∂c

∂r
(, r)

Φ′(2c)
Φ(2c)

+ 	 log Φ(c) + 	r
∂c

∂r
(, r)

Φ′(c)
Φ(c)

= 	 log Φ(c) +
∂c

∂r
(, r)

(
1 + 2	

Φ′(2c)
Φ(2c)

+ 	r
Φ′(c)
Φ(c)

)
= 	 log Φ(c);

∂E

∂	
(, r) =

∂c

∂	
(, r) + log Φ(2c)) + r ln(Φ(c)) + 	

(
2
c

	

Φ′(2c)
Φ(2c)

+
∂c

∂	
(, r)r

Φ′(c)
Φ(c)

)

= log Φ(2c) + r log Φ(c).

The expression for ∂E
∂r shows it to be positive (c < 1 implies Φ(c) > 1), so the

maximum is obtained when r is as large as possible, namely, r = α − 1. The
expression for ∂E

∂� provides a candidate for a maximum, where it reaches zero.
This happens for c solution of the equation

log Φ(2c) + (α − 1) log Φ(c) = 0. (8)

We compute the second derivative in 	 to verify that it is a local maximum:

∂2E

∂	2
(, r) = 2

∂c

∂	
(, r)

Φ′(2c)
Φ(2c)

+ r
∂c

∂	
(, r)

Φ′(c)
Φ(c)

=
∂c

∂	
(, r)

(
2
Φ′(2c)
Φ(2c)

+ r
Φ′(c)
Φ(c)

)

︸ ︷︷ ︸
=− 1

�

= −1
	

∂c

∂	
(, r).

A closer look at Eq. (4), the implicit equation for c, yields that c is an increasing
function of 	. Hence ∂2E

∂�2 (, r) is negative, and thus it has a unique maximum
for c solution of Eq. (8). This equation is equivalent to Eq. (7), concluding the
proof. 	

Lemmas 6, 7 and 8 describe the various maximum exponents obtained in
the three cases; we now combine the three into a single result. It is obtained by
remarking that in all three cases, the maximum exponent is reached on the line
r = α − 1, and that it is a continuous function of 	.

Proposition 1. The maximum exponent over all choices of 	, r, x and y is
obtained for Case (c), namely, r = α − 1, 	 = 	c∗ where Φ(2c∗)Φ(c∗)α−1 = 1,
x = x(2c∗) and y = x(c∗); this maximum exponent is equal to c∗.

174 P. Duchon and C. Nicaud

3.6 Proof of Theorem 1

Up to now, we have optimized over continuous domains for 	, r, x and y. We
now deal properly with the fact that they must be rational numbers and vec-
tors that correspond to actual composition vectors for words. We let 	∗, c∗,
x∗ = (x∗

1, . . . , x
∗
k) and y∗ = (y∗

1 , . . . , y
∗
k) denote the real-valued optimal solution

describe in the previous section. Let L = �	∗ log n, R = �(α − 1)L, and define
the vectors x and y as follows: for any i ∈ [k−1], xi = 1

L�x∗
i L and yi = 1

R�y∗
i R;

finally, let xk = 1 − ∑
i<k xi and let yk = 1 − ∑

i<k yi. Defined this way, Lx
and Ry are vectors of integers summing to L and R respectively, so we can look
at the expected number of distinct α-gapped palindromic factors uvu where u
has composition exactly Lx, and v has composition exactly Ly; we write this
expected number as nc (equivalently, c is the logarithm to base n of the expected
number of factors).

Since ||x − x∗|| = O(1/ log n) and ||y − y∗|| = O(1/ log n), we have that c =
c∗ −O(1/ log n) (this would be 1/ log2 n if both partial derivatives of E vanished
at (∗, α − 1), but ∂E/∂r does not vanish). Thus, we have nc = nc∗−O(log n) =
ec∗ log n−O(1) = Θ(nc∗

).
Now let 	+ = 3

| log pmax| . For any choice of 	 and r with 	+ ≤ 	 ≤ n/ log n and
0 ≤ R ≤ α	 log n, the probability of having an α-gapped palindromic factor uvu
at some position j, with |u| = 	 log n and |v| = R, is at most p� log n

max ≤ n−3: for
any choice of u and v, the probability that the next 	 log n letters are exactly
those of u is upper bounded by p� log n

max . Since there are fewer than n3 choices for
the triple (|u|, |v|, j), the expected number of such “long” factors is less than 1.

As a consequence, the dominant contribution to the expected number of
gapped palindromic factors comes from those with |u| ≤ 	+ log n. Each possible
composition vector for u and v contributes less than nc∗

, and there are at most
(+ log n)2k(α − 1)k = Õ(1) such composition vectors; thus the Θ̃(nc∗

) bound
carries over for the expected total number of distinct α-gapped palindromic
factors of all possible lengths. 	

4 Typical Composition Vectors of Palindromic Factors

In this section, we show that with asymptotic probability 1, most gapped palin-
dromic factors present in a large random word will be as described in the upper
bound computations of the previous section. For this, we must first prove that
our previous result on the expected number of gapped palindromic factors hold
with good enough probability for the random variable that counts these factors.

Theorem 2. There exist two constants a < 0 and b > 0 such that, with asymp-
totic probability 1 (when n tends to infinity), the number Γα,n of distinct α-gapped
palindromic factors in a random word of length n lies between nc∗

loga(n) and
nc∗

logb(n).

Proof. The upper bound is a direct consequence of applying Markov’s inequality
to the bound on the expectation of Theorem 1: if we simply multiply by logε n

On the Expected Number of Distinct Gapped Palindromic Factors 175

the upper bound in the Θ̃(nc∗
) in the theorem, the probability that Γα,n is higher

than this new bound is O((log n)−ε) = o(1).
For the lower bound, we now prove that with high enough probability, Γα,n is

at least E(Γα,n)/ log nd for some d > 0. We will do this by proving such a lower
bound for the factors appearing in a subset of the possible positions in the word:
Let m = n/(2 + α)	∗ log n. Our word of length n is obtained3 by concatenating
m independent words W1, . . . ,Wm, each of length (2 + α)	∗ log n.

Now, for each possible α-gapped palindrome w of length (2 + α)	∗ log n, and
for each integer 1 ≤ i ≤ m, define the Bernoulli random variable Xi,w as 1 if
Wi = w, and 0 otherwise; then define Xw as maxi Xi,w, i.e., Xw = 1 if and only
if w appears in a factor in one of the m positions in the whole random word.
Finally, set X =

∑
w Xw: X is the total number of distinct α-gapped palindromic

factors that appear in at least one of the m positions. Thus, X ≤ Gα,n, but
E(X) = Θ̃(nc∗

) (we lose a factor of at most log n because we only consider
Θ(n/ log n) positions instead of n, but this is absorbed by the Θ̃ notation).

The collection of random variables (Xi,w) is negatively associated in the sense
of [2], so that (by [2], Proposition 7), the classical Chernoff-Hoeffding bounds
apply to X. This is enough to prove (using, for example, [10], Theorem 4.2)
that the probability of X being less than half its expectation is exponentially
small. 	

Our final result ensures that, with probability close to 1, almost all α-gapped
palindromic factors that appear in the random word have composition vectors
close to the typical vectors described earlier.

Theorem 3. We again let Γα,n denote the total number of distinct α-gapped
palindromic factors of a random word of length n; and, for any ε > 0, we let
Γα,n,ε denote the total number of these factors whose frequency vectors lie within
distance ε of the optimal vectors x∗ and y∗. Then, for any δ > 0, with asymptotic
probability 1, we have Γα,n,ε ≥ (1 − δ)Γα,n.

Proof. We already know that, with asymptotic probability 1, Γα,n,ε ≥ nc∗
/ log na

for some a > 0. From the proof of Lemma 8, we know that any frequency vectors
at distance at least ε from (x,y) come with an exponent at most c∗ − βε2 (for
some β > 0 which only depends on the second derivative of E at the critical
point), so that the total expected number of distinct α-gapped factors with
such frequency vectors is Θ̃(nc∗−βε2

). Markov’s inequality turns this into a high
probability bound at the cost of logarithmic factors absorbed into the Θ̃ notation,
and with high probability, Γα,n,ε is within a factor 1 − Õ(n−βε2

) of Γα,n.

5 Conclusion

In this article we show that the expected number of distinct α-gapped palin-
dromic factors in a random word of length n is Θ̃(nc∗

), where c∗ is implicitly
3 We disregard rounding errors in lengths; properly dealing with them by means of

integer parts would only yield clumsier notations without changing the asymptotic
results.

176 P. Duchon and C. Nicaud

defined as the solution of some equation depending on the probability p of the
source and of α. Moreover, for any positive ε, the frequency vectors of u and v
of such factors uvu are likely to be at distance at most ε of x∗ and y∗.

To conclude, we want to emphasize that the techniques we used follow those
we introduced in [3]. These methods therefore prove useful to study the number
of distinct elements (palindromes, subwords, . . .) in different settings, for random
words generated by a memoryless distribution.

References

1. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing α-
gapped repeats. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 245–255. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 19

2. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random
Struct. Algorithms 13(2), 99–124 (1998)

3. Duchon, P., Nicaud, C.: On the biased partial word collector problem. In:
Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol.
10807, pp. 413–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77404-6 30

4. Duchon, P., Nicaud, C., Pivoteau, C.: Gapped pattern statistics. In: Kärkkäinen,
J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial
Pattern Matching, CPM 2017, Warsaw, Poland, 4–6 July 2017. LIPIcs, vol. 78, pp.
21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

5. Dumitran, M., Gawrychowski, P., Manea, F.: Longest gapped repeats and palin-
dromes. Discrete Math. Theoret. Comput. Sci. 19(4) (2017)

6. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and
optimal algorithms for all maximal α-gapped repeats and palindromes - finding all
maximal α-gapped repeats and palindromes in optimal worst case time on integer
alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)

7. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoret. Comput.
Sci. 410(51), 5365–5373 (2009)

8. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. J. Discrete Algorithms 46-47, 1–15 (2017)

9. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge (2003)

10. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. (CSUR)
28(1), 33–37 (1996)

11. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random
words. Fundam. Inform. 145(3), 371–384 (2016)

12. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. Eur. J. Comb. 68, 249–265 (2018)

13. Tanimura, Y., Fujishige, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: A faster
algorithm for computing maximal α-gapped repeats in a string. In: Iliopoulos,
C.S., Puglisi, S.J., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 124–136.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 13

https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.1007/978-3-319-77404-6_30
https://doi.org/10.1007/978-3-319-77404-6_30
https://doi.org/10.1007/978-3-319-23826-5_13

Computational Complexity of Robot
Arm Simulation Problems

Tianfeng Feng1(B), Takashi Horiyama2, Yoshio Okamoto3, Yota Otachi4,
Toshiki Saitoh5, Takeaki Uno6, and Ryuhei Uehara1

1 Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
{ftflluy,uehara}@jaist.ac.jp

2 Saitama University, Saitama, Japan
horiyama@al.ics.saitama-u.ac.jp

3 RIKEN Center for Advanced Intelligence Project,
University of Electro-Communications, Chofu, Japan

okamotoy@uec.ac.jp
4 Kumamoto University, Kumamoto, Japan

otachi@cs.kumamoto-u.ac.jp
5 Kyushu Institute of Technology, Kitakyushu, Japan

toshikis@ces.kyutech.ac.jp
6 National Institute of Informatics, Tokyo, Japan

uno@nii.jp

Abstract. We consider a simulation problem of a general mechanism
by a robot arm. A robot arm can be modeled by a path P , and the target
is modeled by a general graph G. Then the problem asks if there is an
edge-weighted Eulerian path of G spanned by P . We first show that it is
strongly NP-hard even if edge lengths are restricted. Then we consider
two different variants of this problem. We first allow the edges in P to
be elastic, and minimize the elastic ratio when G is a path. Second, we
allow P to cover an edge of G twice or more. The problem is weakly
NP-hard even if G is an edge. We thus assume that each edge of G is
covered by P exactly twice, and obtain three hardness results and one
polynomial-time algorithm when G and edge lengths are restricted.

Keywords: Edge-weighted Eulerian path problem
Graph spanning problem · Linkage · Robot arm

1 Introduction

A robot arm is a type of programmable mechanical arms, which can be modeled
by a linkage. A linkage is a collection of fixed-length 1D segments joined at
their endpoints forming a path. (See [1] for further details.) Namely, a linkage
is a path P = (v1, v2, . . . , vn) with length function � : E → R, where vi is an
endpoint, ei = {vi, vi+1} is an edge in E = {{vi, vi+1} | 1 ≤ i ≤ n − 1}, and its
length is given by �(ei). Now we consider the following situation (Fig. 1). You
are given a general target mechanism which is modeled by a graph G = (V ′, E′),
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 177–188, 2018.
https://doi.org/10.1007/978-3-319-94667-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_15&domain=pdf

178 T. Feng et al.

and a robot arm modeled by a linkage P = (V,E) as above with length function
� : E ∪ E′ → R. Our mission is to simulate the target graph G by the given
linkage P . The joints in P are programmable, and each joint (or vertex) of G
should be simulated by a joint of P , however we can also put the joints of P
on some internal points of edges of G because they can be fixed. Therefore, our
problem can be formalized as finding the following mapping φ from P to G:

– Each vertex of G should be mapped from some vertices of P ;
– Each edge of G should be mapped from a subpath of P by φ;
– Each edge of P should be mapped to on an edge of G, which may span from

one internal point to another on the edge.

3 3

3 3

4
2

4

3

4
3

3 3 3 3 2 2 2 2 2 3 3 2 2

G

P

3 3

3 3

3

3

s t

s

t
P simulates G

2
2

2

2

2

2
2

Fig. 1. A simple example. A robot arm modeled by P can simulate a given mechanism
modeled by the graph G as shown in the figure. When P simulates G, each circled
joint is fixed, and two joints of the robot arm on the same vertex of G move with
synchronization.

The decision problem asks if there exists a mapping φ from P to G. That
is, it asks if there is an Eulerian path of G spanned by P such that (1) when
P visits a vertex in G, a vertex of P should be put on it, and (2) some vertices
in P can be put on internal points of edges of G. When all edges in P and G
have the same length, it is easy to solve that in linear time since the problem is
the ordinary Eulerian path problem. In the context of formal languages, there
are some variants of the Eulerian path problem with some constraints (see [2]
for a comprehensive survey). However, as far as the authors know, the robot
arm simulation problem, our variant of the Eulerian path problem has not been
investigated, while the situation is quite natural.

The first interesting result is that this problem is strongly NP-hard even if
edge lengths are quite restricted. Precisely, the problem is strongly NP-hard even
if P and G consist of edges of lengths only 1 and 2 (Theorem1). We remind that
if they consist of unit length edges, the problem is linear time solvable. We thus
tackle this problem in two different ways.

The first problem is an optimization version of this problem. In this variant,
we consider a linkage is elastic, that is, the length of one line segment is not
fixed and can be changed a little bit. This situation is natural not only in the

Computational Complexity of Robot Arm Simulation Problems 179

context of the robot arm simulation, but also in the approximation algorithm.
Formally, we allow the edges in P to be elastic to fit the vertices of P to ones
of G. Our goal is to minimize the stretch/shrink ratio of each edge of P . We
show that when G is a path, this can be solved in polynomial time by dynamic
programming.

In the second way, we allow P to cover an edge of G twice or more. In this
situation, we can simulate G by P even if G does not have an Eulerian path.
In this case, we do not allow P to be elastic, or its ratio is fixed to 1. We first
show that the problem is weakly NP-hard even if G is an edge (Theorem 3). In
fact, this problem is similar to the ruler folding problem (see, e.g., [1,3]). From
the viewpoint of a simulation of G by P , we can take the following strategy in
general. For a given G, first make a spanning tree T of G, and traverse T in the
depth first manner. It is easy to see that this strategy works for any connected
graph G even if G does not have an Eulerian path, and the trail of the traverse
of T gives us a way of simulation of G by P in a sense. In this paper, we focus on
the case that the graph G is a tree. Precisely, we consider the following problem:
For a given tree G and a path P (with edge lengths), the traverse problem asks if
G has a trail by P such that each edge of G is traversed exactly twice. (We note
that trees form a representative class of graphs that have no Eulerian paths.)
We first mention that this problem is quite easy when each edge has unit length.
The answer is yes if and only if G = (V,E) is connected and P contains 2|E|
edges. From the practical viewpoint, it seems to be reasonable when we simulate
a mechanism by a robot arm. However, this problem is still strongly NP-hard
even in quite restricted cases; (1) G is a star, and P consists of edges of only
two different lengths, and (2) G is a spider, and all edges are of two different
lengths. On the other hand, the problem is polynomial time solvable when G is
a star and its edge lengths are of k different values.

2 Preliminaries

In this paper, we only consider a simple undirected graph G = (V,E). A path
P = (v1, v2, . . . , vn) consists of n vertices with n − 1 edges ei joining vi and vi+1

for each i = 1, . . . , n−1. The vertices v1 and vn of the path are called endpoints.
Let Kn,m denote a complete bipartite graph G = (X,Y,E) such that |X| = n,
|Y | = m, and every pair of a vertex in X and a vertex in Y is joined by an edge.
A graph G = (V,E) is a tree if it is connected and acyclic. Here a graph G is a
star if and only if it is a complete bipartite graph K1,n−1, and a graph G is a
spider if and only if G is a tree that has only one vertex of degree greater than
2. In a star or a spider, the unique vertex of degree greater than or equal to 3
is called center. Without loss of generality, we assume that a star or a spider
always has the center. Let G = (V ′, E′) and P = (V,E) be a graph and a path
(v1, v2, . . . , vn). Let � : E′ ∪ E → R be an edge-length function of them. We say
the linkage P can simulate the mechanism G if each edge in G is spanned by at
least one subpath of P , and no subpath of P properly joins two non-adjacent
vertices in G. We formalize the notion of simulation by a mapping φ that maps

180 T. Feng et al.

each vertex V in P to a point in G as follows. For any edge e = {u, v} ∈ E′,
we consider e a line segment (u, v) of length �(e). Then the intermediate point p
at distance t�(e) from u is denoted by p = tv + (1 − t)u, where 0 < t < 1. We
note that the endpoints of an edge e are not considered intermediate points of
e. Now we first define a set of points in G by V ′ and all intermediate points on
edges of E′. Then we define a mapping φ from V to points of G as follows. To
make it clear, we first divide V in P into two subsets Ve and Vi such that each
vertex in Ve is mapped to a vertex in V ′, and each vertex in Vi is mapped to
an intermediate point of G. In our problems, we assume that φ(v0) and φ(vn)
should be in Ve. That is, P should start and end at vertices in G. Depending on
the restrictions, we consider some different simulation problems as follows.

Weighted Eulerian path problem: We consider the mapping φ from Ve to V ′ that
satisfies some conditions as follows; (1) for every v′ ∈ V ′, there is at least one
vertex v ∈ Ve with φ(v) = v′; (2) for each edge e′ = {v′, u′} ∈ E′, there is a
pair of vertices vi and vj in Ve such that (2a) �(e′) =

∑j−1
k=i �(ek), and (2b) there

is no other vertex vk is in Ve between vi and vj . Intuitively, each edge e′ in G
corresponds to a subpath in P , and vice versa. In other words, some vertices in
P are mapped to some intermediate points in G, and the corresponding joints of
the robot arm are fixed when the robot arm P simulates the target mechanism
G. We note that by the length condition (2a), we can assume that when the
subpath (vi, . . . , vj) in P simulates an edge e = {φ(vi), φ(vj)}, it is not allowed
to span it in a zig-zag way. We also add one condition: (3) for each edge (vk, vk+1)
in P , {φ(vk), φ(vk+1)} should be on an edge e in G. That is, there is a subpath
(vi, . . . , vk, vk+1, . . . , vj) with i ≤ k < k+1 ≤ j such that (3a) e = {φ(vi), φ(vj)}
and φ(vk) is on an intermediate point on e for each i < k < j. In other words, all
edges in P are used for spanning some edges in G, and there is no other subpath
in P joining two endpoints in G by the length condition (2a). Then we say that
the linkage P can simulate the mechanism G if there is a mapping φ satisfying
the conditions (1), (2), and (3). This problem can be seen as the Eulerian path
problem with edge weights.

Elastic linkage problem: In this problem, we allow all edges in P to be elastic
to simulate the path G by the path P . The elastic ratio of an edge e is defined
by max {l′/l, l/l′}, where l is the length of the edge e = {u, v} in P and l′ is the
length of the edge {φ(u), φ(v)} in G. (Intuitively, the length of edge e is changed
from l on P to l′ on G.) For a given graph G = (V ′, E′) and a path P = (V,E),
it is easy to observe that P can simulate G (with elastic edges) if and only if G
has an Eulerian path and |V ′| ≤ |V |. When G has an Eulerian path by P with
elastic edges, the elastic ratio of the mapping is defined by the maximum elastic
ratio of all edges in P . Then the elastic linkage problem asks to minimize the
elastic ratio of the mapping from P to G for given G and P .

Traverse problem by a path: In this variant, we allow the mapping to map two
subpaths of P to an edge of G, however, we do not allow P to be elastic, or
its ratio is fixed to 1. For a given graph G = (V ′, E′) and a path P = (V,E),

Computational Complexity of Robot Arm Simulation Problems 181

when all edges have a unit length, it is easy to observe that P can simulate G
in this manner if and only if G is connected and 2|E| = |E′|. We first perform
the depth first search on G, and traverse this search tree. We also consider its
edge-weighted version as the traverse problem for a graph G and a path P . (In
this paper, in fact, we only investigate the cases that G is a tree.)

In this paper, we will often use the following problem to show the hardness
of our problems.

3-Partition Problem
Input: An integer B and a multiset A of 3m integers A = {a1, a2, . . . , a3m} with

B/4 < ai < B/2.
Output: Determine if A can be partitioned into m multisets S1, S2, . . . , Sm such

that
∑

aj∈Si
aj = B for every i.

Without loss of generality, we can assume that
∑

ai∈A ai = mB, and |Si| = 3.
It is well known that the 3-Partition problem is strongly NP-complete [1].

3 Weighted Eulerian Path Problem

Now we show the main theorem in this section.

Theorem 1. Let P,G, � be a path, an undirected graph, and a length function,
respectively. Then the weighted Eulerian path problem is strongly NP-hard even
if �(e) is either 1 or 2 for any e in P and G.

Proof. It is easy to see that the problem is in NP. Therefore we show the hard-
ness. We reduce the 3-Partition problem to the weighted Eulerian path problem.

Let PB+1 be a path that consists of B consecutive edges of length 2, and
P4 be a path that consists of 3 consecutive edges of length 1. Then the path P
is obtained by joining m subpaths PB+1 and m subpaths P4 alternatingly, that
is, P is constructed by joining PB+1, P4, PB+1, P4, . . . , P4, PB+1, and P4. The
graph G is constructed as follows. For each i with 1 ≤ i ≤ 3m, we construct a
cycle Cai

of ai edges of length 2. We also construct m cycles C3 of 3 edges of
length 1. Then these 4m cycles share a special vertex c in common. That is, G
is a cactus that consists of 4m cycles, and all vertices have degree 2 except the
common vertex c that has degree 8m. The construction is illustrated in Fig. 2.

It is easy to see that this is polynomial-time reduction. Thus, we show that
A has a solution if and only if P can simulate G. We first observe that no edge
of length 2 in PB+1 in P can cover a cycle C3 in G. Therefore, when P covers G,
every C3 of G has to be covered by P4 in P . Thus, each endpoint of P4 should
be on c in G, and no edge in PB+1 can cover edges in C3. Hence, each subpath
PB+1 in P covers exactly B edges in the set of cycles Cai

that consists of edges
of length 2. Since B/4 < ai < B/2 for each i, each subpath PB+1 covers exactly
three cycles Cai

, Caj
and Cak

for some i, j, k with ai + aj + ak = B. Clearly,
each cover for a subpath PB+1 gives a subset of A, and the collection of these
subsets gives us a solution to the 3-Partition problem and vice versa. ��

182 T. Feng et al.

P
PB+1 P4 PB+1 P4 P4 PB+1

2

C3 m

c

Ca1
Ca2

Ca3
Ca4

Ca3m

G
1

2

1

P4

Fig. 2. Construction of P and G; bold lines are of length 2, and thin lines are of length
1. Each Pi+1 consists of i edges and each Ci consists of i edges.

4 Elastic Linkage Problem

In this section, we consider the elastic linkage problem for two paths G and P :

Elastic linkage problem from path to path
Input: Two paths G = (V ′, E′) and P = (V,E) with length function �.
Output: a mapping φ with minimum elastic (or stretch/shrink) ratio.

In this problem, we allow all edges in P to be elastic to simulate the path G by
the path P . We let G is a path (u1, u2, . . . , un′) and P is a path (v1, v2, . . . , vn).
Without loss of generality, we assume that n′ ≤ n. Since each vertex in G should
be mapped from only one vertex in P , it should be φ(v1) = u1 and φ(vn) = un′ ,
otherwise the elastic ratio will be infinity. We show a polynomial-time algorithm
for this problem based on a dynamic programming.

First, we show a technical lemma when G is just an edge. In this case, the
optimal value is achieved when all ratios are even.

Lemma 1. Assume that G consists of an edge e = (u1, u2). When P = (V,E)
is a path, the minimum elastic ratio is achieved when the ratio of each e ∈ E
takes the same value.

Proof. Assume that the length of the edge e = (u1, u2) in G is L, E =
{e1, e2, . . . , en−1}, and the length of each ei is li. For a mapping φ, let ri

be the ratio of the edge ei for each i = 1, 2, . . . , n − 1. Then we have
r1l1 + r2l2 + · · · + rn−1ln−1 = L.

Assume the maximum among ri for all 1 ≤ i ≤ n−1 is rk, and the minimum
among ri for all 1 ≤ i ≤ n − 1 is rh. Thus, it is obvious that rk ≥ L/(l1 + l2 +
· · · + ln−1), 1/rh ≥ (l1 + l2 + · · · + ln−1)/L.

Computational Complexity of Robot Arm Simulation Problems 183

According to the definition, the elastic ratio er of this mapping is the max-
imum among ri and its reciprocal for all 1 ≤ i ≤ n − 1. That is, er equals the
larger of rk and 1/rh.

When r1 = r2 = · · · = rn−1, max{rk, 1/rh} takes the minimum. That means
the minimum elastic ratio can be achieved if and only if the ratio of each e ∈ E
takes the same value. ��

Now we turn to the main theorem.

Theorem 2. We can solve the elastic linkage problem from path to path in
O(n3) time.

Proof. We assume path P = (v1, v2, . . . , vn), the length of each edge {vi, vi+1}
is li, path G = (u1, u2, . . . , un′), the length of each edge {uj , uj+1} is wj , and
n ≥ n′ ≥ 2.

We define two functions as follows for i > i′ ≥ j:

dist(vi′ , vi) = li′ + li′+1 + · · · + li−1, and

Ser(vi′ , vi, wj) = max
{

wj

dist(vi′ , vi)
,
dist(vi′ , vi)

wj

}

.

That is, dist(vi′ , vi) is the length of the path (v′
i, . . . , vi), and Ser(vi′ , vi, wj) is

the minimum elastic ratio of all edges in the subpath P ′ = (vi′ , vi′+1, . . . , vi) of
P that covers the edge {uj , uj+1}. We first precompute these functions as tables
which will be referred in our polynomial-time algorithm. The computation of the
corresponding table Ser[(vi′ , vi), wj] can be done as follows1: (1) for each (vi′ , vi)
with i′ < i, compute dist(vi′ , vi) and fill in the table dist[vi′ , vi], (2) for each
j = 0, 1, . . . , n′, compute Ser(vi′ , vi, wj) and fill in the table Ser[(vi′ , vi), wj]. In
(1), each dist(vi′ , vi) can be computed in a constant time by using dist(vi′ , vi) =
dist(vi′ , vi−1) + �(ei−1) when we compute the values of this table in the order
of (i − i′) = 1, 2, 3, On the other hand, in (2), each Ser(vi′ , vi, wj) can be
computed in a constant time. Therefore, the precomputation can be done in
O(n3) time in total.

To solve the elastic linkage problem efficiently, we define two more functions
ER(vi, uj) and M(vi, uj) as follows. First, ER(vi, uj) is the minimum elastic
ratio of the mappings from the subpath P ′ = (v1, v2, . . . , vi) of P to the subpath
G′ = (u1, u2, . . . , uj) of G. Then we have the following:

ER(vi, uj)

=
{

Ser(v1, vi, w1) when j = 2
minj−1≤k≤i−1{max{ER(vk, uj−1), Ser(vk, vi, wj−1)}} when j > 2

Our goal is to obtain the mapping from P to G with elastic ratio ER(vn, un′).

1 In this paper, for a function f() and a predicate p(), their corresponding tables (or
arrays in program) are denoted by f [] and p[], respectively.

184 T. Feng et al.

Next, M(vi, uj) is a sequence of j vertices of path P that represents the
mapping with minimum elastic ratio from the subpath P ′ to the subpath G′.
The first and last vertices in M(vi, uj) are v1 and vi. Then we have the following:

M(vi, uj) =
{

(v1, vi) when j = 2
(M(vτ , uj−1), vi) when j > 2,

where τ is determined by the following equation;

ER(vi, uj) = max{ER(vτ , uj−1), Ser(vτ , vi, wj−1)}.

Then our goal is to obtain M(vn, un′). The ER(vn, un′) and M(vn, un′)
can be obtained simultaneously by the dynamic programming technique. In the
tables of ER(vn, un′) and M(vn, un′), ER(vn, un′) and M(vn, un′) are easy to
get if the values in the (n′ − 2)-nd row are available. The table ER(vn, un′) is
filled from j = 2, that is, for each vi = v1, v2, . . . , vn, ER(vi, u1) = Ser(v1, vi, w1)
has already been computed, and accordingly, the first row of table M(vn, un′)
is M(vi, u1) = (v1, vi). After filling in the first row of the tables, it is easy to
get the values in the second row, the third row, up to the (n′ − 2)-nd row and
finally get ER(vn, un′) and M(vn, un′). Each element of the table ER(vn, un′)
can be computed in O(n) time, and each element of the table M(vn, un′) can
be computed in constant time. Therefore, the computation of ER(vn, un′) and
M(vn, un′) can be done in O(n3) time, and the precomputation also can be done
in O(n3) time. Thus, the algorithm runs in O(n3) time, which means the elastic
linkage problem can be solved in polynomial time. ��

5 Traverse Problem of a Tree by a Path

In this section, we focus on the traverse problem of G by P . In this variant, we
allow P to cover an edge of G twice.

Before the traverse problem, we consider more general case that allow P to
cover an edge of G twice or more. This general simulation problem is similar to
the following ruler folding problem:

Ruler Folding: Given a polygonal chain with links of integer length
�1, . . . , �n−1 and an integer L, can the chain be folded flat so that its total
folded length is L?

The details of this problem and related results can be found in [3]. In our context,
we have the following theorem:

Theorem 3. The general simulation problem of G by P is NP-complete even if
G is an edge.

Proof. We can reduce the ruler folding problem to our problem by just letting
G be an edge of length L. ��

Computational Complexity of Robot Arm Simulation Problems 185

We note that the ruler folding problem is weakly NP-complete, and we have a
simple pseudo-polynomial-time algorithm that runs in O(nL) time as follows;

Input: Set of integers S = {�1, . . . , �n−1} and an integer L
Output: Determine if there is I ⊆ {1, . . . , n − 1} with

∑
i∈I �i == L

begin
Initialize array a[0], . . . , a[L] by 0;
Set a[0] = 1;
foreach i = 1, . . . , n − 1 do

foreach j = 0, . . . , L do
if a[j] == 1 and j + �i ≤ L then a[j + �i] = 1

end
end
if a[L] == 1 then output “Yes”;
else output “No”

end

Now we turn to the traverse problem. Even if a connected graph G has no
Eulerian path, when we allow to visit each edge in G twice, we can visit all
vertices of G by a path in the depth first search manner. Therefore, we consider
the following traversal problem as a kind of the robot arm simulation problem:

Input: A path P = (V,E) that forms a path (v1, v2, . . . , vn), and a graph G =
(V ′, E′) with length function � : E ∪ E′ → R.

Output: A mapping φ from P to G such that each edge in G is mapped from
exactly two subpaths of P , or “No” if it does not exist.

We first observe that it is linear time solvable when each edge has the unit length
just by depth first search. Therefore, it is an interesting question that asks the
computational complexity when � maps to few distinct values, especially, � maps
to two distinct values.

We give three hardness results about the traversal problem even if the graph
G is a simple tree T and the edge lengths are quite restricted.

Theorem 4. The traversal problem of a tree T by a path P is strongly NP-
complete in each of the following cases: (1) T is a star K1,n−1, and P consists
of edges of two different lengths. (2) T is a spider, and all edges in G and P
are of length p and q, where (2a) p and q are any two positive integers that are
relatively prime, or (2b) p = 1 and q = 2.

Proof. Since it is clear that each of the problems is in NP, we show their hardness.
We will give polynomial-time reductions from the 3-Partition to our problems.
(1) T is a star K1,4m+1. Among 4m+1 edges, the length of m+1 edges is B, and the
other 3m edges have length ai for each i = 1, 2, . . . , 3m (Fig. 3). The construction
of P is as follows. Let P ′ be a path that consists of 2B edges of length 1, and P ′′ be
a path that consists of 2 edges of length B. Then the path P is obtained by joining
m + 1 subpaths P ′′ and m subpaths P ′ alternatingly, that is, P is constructed by
joining P ′′, P ′, P ′′, P ′, P ′′, . . . , P ′, P ′′ as shown in Fig. 3.

186 T. Feng et al.

P
P’’ P’

B

ai

T

B

1

m+1 3m

B 1 1

P’’

2B

P’ P’ P’’

Fig. 3. Reduction to K1,4m+1 and a path P .

The construction is done in polynomial time. Thus, we show that the
3-Partition problem has a solution if and only if the constructed cover prob-
lem has a solution. We first observe that P ′′ cannot cover any short edge of
length ai in T . Therefore, each P ′′ should cover each edge of length B in T
twice. Hence all of the endpoints of P ′′s (and hence P ′) are on the central vertex
of T . Therefore, if P can cover T properly, it is easy to see that each P ′ should
cover three edges of length ai, aj , and ak with ai + aj + ak = B exactly twice.
This concludes the proof of (1).
(2a) This reduction is similar to (1). Let P ′ be a path that consists of 2B edges
of length p, and P ′′ be a path that consists of 2 edges of length q. Then the path
P is obtained by joining m + 1 subpaths P ′′ and m subpaths P ′ alternatingly.
On the other hand, the spider T is obtained by sharing the central vertex of
4m+1 subpaths (Fig. 4). Among 4m+1 subpaths, m+1 paths are just edges of
length q. The other 3m subpaths are of ai edges for each 1 ≤ i ≤ 3m, and each
edge has length p. Since p and q are relatively prime, P ′′ cannot cover each of
the edges of length p. Therefore, their endpoints (and the endpoints of P ′) share
the central vertex of T . Thus, each P ′ gives us the solution of the 3-Partition as
in (1), which completes the proof of (2a).
(2b) The reduction itself is the same as (2a) except p = 1 and q = 2. In this
case, we observe that no edge of length 1 can be covered by any edge of length
2 in P ′′. Therefore, each edge of P ′′ of length 2 should cover the edges of T of
length 2. Thus, each P ′ gives us the solution of the 3-Partition as in (2a), which
completes the proof of (2b). ��

In Theorem 4, we show that the traversal problem of a tree by a path is NP-
hard even if we strictly restrict ourselves. Now we turn to show a polynomial-time
algorithm for the case that we furthermore restrict.

Theorem 5. Let T be a star K1,n′ and the number of distinct lengths of its
edges is k. Let P be any path of length n. Without loss of generality, we suppose
2n′ ≤ n. Then the traversal problem of T by P can be solved in O(nk+1) time
and O(nk) space. That is, it is polynomial time solvable when k is a constant.

Computational Complexity of Robot Arm Simulation Problems 187

P
P’’ P’

q

ai
T

q

m+1 3m

q

P’’

2B

P’ P’ P’’

p pp

p pp

p

Fig. 4. Reduction to spider of two different lengths.

Proof. We suppose that each edge of T has a length in L = {�1, �2, . . . , �k}, and
T contains Li edges of length �i for each i. For a vertex vi in P and length �j in
L, we define a function pre(vi, �j) as follows;

pre(vi, �j)

=
{

vk there is a vertex vk with k < i on P s. t. �(ek) + · · · + �(ei) = �j ,
φ otherwise.

We first precompute this function as a table which will be referred to in our
polynomial-time algorithm. To distinguish the function pre(vi, �j), we refer to
this table as pre[vi, �j] which uses O(nk) space. The computation of pre[] can be
done as follows; (0) initialize pre[] by φ in O(nk) time, (1) sort L in O(k log k)
time, and (2) for each i = 1, 2, . . . , n and j = 1, 2, . . . , k − 1, the vertex vi fills
the table pre[vi′ , �j] = vi. In (2), the vertex vi can fill pre[vi′ , �j] = vi in O(n+k)
time. Therefore, the precomputing takes O(n(n + k) + k log k) time in O(nk)
space.

Now we turn to the computation for the traversal problem. To do that, we
define a predicate F (d1, d2, . . . , dk, vi) which is defined as follows: When there is a
cover of a subtree T ′ of T that consists of d1 edges of length �1, d2 edges of length
�2, . . ., and dk edges of length �k by the subpath P ′ = (v1, v2, . . . , vi) when v1 and
vi are put on the center of T , F (d1, d2, . . . , dk, vi) is true, and false otherwise. (For
notational convenience, we define that F (d1, d2, . . . , dk, φ) is always false.) Thus,
our goal is to determine if F (L1, L2, . . . , Lk, vn) is true or false. The predicate
F (d1, d2, . . . , dk, vi) is determined by the following recursion;

F (d1, d2, . . . , dk, vi)

=
∨

1≤j≤k

((pre(vi, �j)
= φ) ∧ F (d1, . . . , dj − 2, . . . , dk,pre(pre(vi, �j), �j))).

That is, for the vertex vi, we have to have two vertices vi′ = pre(vi, �j)
and vi′′ = pre(pre(vi, �j), �j) such that �(ei′) + �(ei′+1) + · · · + �(ei) = �j and
�(ei′′) + �(ei′′+1) + · · · + �(ei′) = �j for some j with 1 ≤ j ≤ k. The correctness
of this recursion is trivial.

188 T. Feng et al.

The predicate F (L1, L2, . . . , Lk, vn) is computed by a dynamic programming
technique. That is, the table F [d1, d2, . . . , dk, vi], corresponding to the predicate
F (L1, L2, . . . , Lk, vn), is filled from d1 = 0, d2 = 0, . . . , dk = 0 for the center
vertex c, which is true. Then, we increment in the bottom up manner; that is, we
increment as (d1, d2, . . . , dk) = (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 0), . . ., (0, 1, . . . , 0, 0),
(1, 0, . . . , 0, 0), (0, 0, . . . , 0, 2), (0, 0, . . . , 1, 1), . . ., (0, 1, . . . , 0, 1), (1, 0, . . . , 0, 1),
and so on. The number of combinations of (d1, d2, . . . , dk) is L1 · L2 · · · · · Lk ≤
n′k = O(nk), and the computation of F [d1, d2, . . . , dk, vi] for the (d1, d2, . . . , dk)
can be done in linear time. Therefore, the algorithm runs in O(nk+1) time and
O(nk) space. ��

References

1. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University
Press, Cambridge (2007)

2. Kupferman, O., Vardi, G.: Eulerian paths with regular constraints. In: 41st Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, 62:1–62:15
(2016)

3. Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, pp. 90–91. W. H. Freeman Co., San Francisco (1979)

Evaluation of Tie-Breaking
and Parameter Ordering for the IPO

Family of Algorithms Used in Covering
Array Generation

Kristoffer Kleine1, Ilias Kotsireas2, and Dimitris E. Simos1(B)

1 SBA Research, 1040 Vienna, Austria
{kkleine,dsimos}@sba-research.org

2 Wilfrid Laurier University, Waterloo, ON, Canada
ikotsire@wlu.ca

Abstract. The IPO (In-Parameter-Order) family of algorithms is a
popular set of greedy methods for the construction of covering arrays.
Aspects such as tie-breaking behavior or parameter ordering can have
major impact on the quality of the resulting arrays but have so far not
been studied in a systematic manner. In this paper, we survey and present
a general framework for the IPO family of algorithms (i.e. IPOG, IPOG-
F and IPOG-F2) and present ways to instantiate these abstract compo-
nents. Then, we evaluate the performance of these variations on a large
set of instances, in an extensive experimental setting in terms of covering
array sizes.

Keywords: Covering arrays · IPO family · Tie-breaks
Parameter ordering · Experiments

1 Introduction

A covering array (CA) is a mathematical object defined by four positive integers
and denoted as CA(N ; t, k, v). It is a N × k matrix where N is the number of
rows, k the number of columns (often referred to as parameters), t the size of
interactions that are covered and v is the size of the alphabet. A covering array is
defined by its t-covering property : for any t-selection of columns, all vt t-tuples
between the selected columns occur at least once in the array. t is called the
strength of the CA. A mixed-level covering array (MCA) is a generalization of
a CA where each column i has its own alphabet size vi. An MCA is denoted as
MCA(N ; t, k, (v1, . . . , vk)). The tuple (t, k, (v1, . . . , vk)) (t ≤ k) is referred to as
the configuration of an MCA.

The general problem of constructing optimal covering arrays (i.e., in terms of
minimal size N) is believed to be a hard combinatorial optimization problem and
it has significant applications in software and hardware testing [8,9]. Moreover,
it is tightly coupled with NP-hard problems [2]. As a result, there has been a lot
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 189–200, 2018.
https://doi.org/10.1007/978-3-319-94667-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_16&domain=pdf

190 K. Kleine et al.

of effort on developing and improving algorithmic approaches for covering array
generation (c.f. Sect. 2).

The In-Parameter-Order (IPO) family of algorithms is a set of greedy algo-
rithms for constructing covering arrays and their representatives have been
shown to produce acceptable sized covering arrays [3]. There have been mul-
tiple efforts in the area of improving the IPO variants, in terms of reducing the
size of generated covering arrays, but to the best of our knowledge, no systematic
evaluation of these proposals exist. In this work, we aim to provide an overview
of these optimization efforts and evaluate their effectiveness.

This paper is structured as follows: In Sect. 2 we discuss preliminaries and
related work. Section 3 presents the IPO family of algorithms and existing and
novel methods to parameterize it. Section 4 proposes an evaluation of the algo-
rithms and discusses the results and finally, Sect. 5 concludes the paper.

2 Background

The In-Parameter-Order (IPO) strategy was first proposed in [15] as a greedy
algorithm for covering array construction. It constructs a covering array one
column at a time and each extension is divided into a horizontal and an optional
vertical extension. We discuss the algorithm in greater detail in Sect. 3.

While the original algorithm was limited to arrays of strength 2 (pair-wise),
subsequent works have generalized the algorithm to allow the generation of
higher strength arrays [13] (IPOG) as well as integrated constraint handling
in [17,18]. In [5], the authors propose variants of the IPO strategy, namely
IPOG-F, IPOG-F2, by extending the search space in the horizontal extension.
In [14], the IPOG-D variant is presented which includes a recursive construction
method aimed at reducing the number of combinations to be enumerated.

Many works have been dedicated to improving parts of the IPO algorithms in
order to minimize covering arrays sizes. In [4] a graph-coloring scheme integrated
into the vertical extension is proposed to reduce the resulting array sizes. [16]
modify IPOG with additional optimizations aimed at reducing don’t-care values
in order to minimize the number of rows. [6,7] discuss and evaluate the impact
of tie-breaking on the generated arrays and propose a new tie-breaker which
reduces the generated array sizes.

Related to the aim of this paper is the works of [1] for “one-test-at-a-time”
greedy construction algorithms. There, the authors propose a general framework
of such algorithms and provide concrete ways to instantiate it. In their analy-
sis they evaluate the most important parameters which contribute to smaller
covering array sizes.

3 The IPO Family of Algorithms

The IPO family of algorithms is a set of algorithms for constructing covering
arrays and has seen use in many applications in practice [12]. The most impor-
tant representatives are IPOG [13], IPOG-F [5] and IPOG-F2 [5]. They are greedy

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 191

algorithms able to generate (mixed-level) covering arrays for any configuration.
They all follow the same basic schema (c.f. Algorithm 1) and start out by build-
ing an initial covering array of strength t by constructing the cross-product of
the first t columns.

Algorithm 1. IPO Algorithm
procedure IPO(configuration)

configuration ← Sort-Criterion(configuration)
Array ← cross-product of first t columns
for i ← t, . . . , k do

HorizontalExtension(i)
if there are uncovered tuples then

VerticalExtension(i)
end if

end for
end procedure

Then, the array is extended one column at a time in a two-dimensional
fashion. First, a new column is added to the array by a horizontal extension.
This step will assign values to the new column in a greedy manner with the
objective to maximize coverage gain. Algorithm 2 shows the procedure for IPOG.
Here, rows are considered from top to bottom and in each one the value with the
maximum coverage gain (in terms of previously uncovered t-tuples) is selected.
If multiple values provide maximum gain then the tie must be broken with a
predefined strategy. This will be discussed in further detail in Sect. 3.1.

IPOG-F and IPOG-F2 extend the search space in the horizontal extension by
also optimizing the order in which rows are extended. For this purpose, unas-
signed rows are additionally scanned in each iteration to find the best position
and value to assign. While IPOG-F considers the actual coverage to decide on the
best value, IPOG-F2 tries to estimate the amount of covered tuples. This is an
optimization which allows for a faster implementation compared to IPOG-F, but
it sacrifices accuracy. The estimation is achieved by keeping an estimated value
of covered tuples in an array for each row and value. When a value a is chosen
in row r, the estimator is incremented by the number of shared tuples between
row s and all other unassigned rows s.

The horizontal extension either finishes when all tuples have been covered or
each entry in the new column has been assigned a value. In the latter case, there
are still tuples left which have not yet been covered and they are added in the
vertical extension step. This step grows the array by adding more rows which
include missing tuples.

In the vertical extension all remaining uncovered tuples are added to the
array to ensure that the first i columns form a covering array. Tuples can either
be added by appending a new row to the array that contains the tuple or by
finding an already existing row which can fit the tuple. The latter case is possible

192 K. Kleine et al.

Algorithm 2. Horizontal Extension (IPOG)
procedure HorizontalExtension(i)

for row ← 0, . . . ,Array.rows do
v ← select value with highest coverage gain
if multiple candidate values then

break tie
end if
Array[row][i] ← v
if all tuples are covered then return
end if

end for
end procedure

since don’t-care values can occur in the array and may be overwritten by a tuple
without destroying the t-covering property.

3.1 Tie-Breakers

During the horizontal extension, tie-breaking may be necessary in the case that
two or more values for a row in the new column provide the same, maximum
coverage gain, i.e. cover the most new t-tuples. We will refer to these values as
candidates. In the following we will give an overview to possible tie-breaking
strategies.

Random Tie-Breaker. The simplest approach is to choose one value out of all
candidates at random. This can be implemented efficiently but it will introduce
non-determinism to algorithm and the generated covering arrays will possibly
differ on subsequent runs of the algorithm. This tie-breaker is oblivious to the
previous history of the extension.

Deterministically-Seeded Random Tie-Breaker. This is a variant of the
Random tie-breaker. Here, ties are still broken randomly with the help of a pseu-
dorandom generator, but the generator is seeded with a constant at the beginning
which results in a deterministic behaviour of the algorithm.

Lexicographic Tie-Breaker. This tie-breaker will always prefer the (lexi-
cographically) smallest candidate if multiple are available. This can of course
introduce a bias towards smaller values in the new column.

Cyclic Tie-Breaker. This tie-breaker builds upon the Lexicographic tie-
breaker, but maintains the last chosen value and starts the search from this one
instead of the first. The aim is to remove bias towards smaller values, however
the last chosen value is more likely to be picked again in the next iteration.

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 193

Cyclic-Next Tie-Breaker. This tie-breaker works exactly as the Cyclic tie-
breaker, but will start from the next value following the last chosen value. This
tie-breaker was first proposed in [6,7].

Value-Balanced Tie-Breaker. This tie-breaker keeps track of how many
times a value has been used so far in the extended column. In an optimal situa-
tion, each value for the new column occurs exactly the same amount of times and
the aim of this tie-breaker is to mimic this behaviour by balancing the occur-
rences of these values. Values are preferred when they so far have occured less
frequently than other candidate values.

α-balanced Tie-Breaker. This tie-breaker builds upon the value-balanced tie-
breaker by not only considering the balance of values in the new column, but
the balance of lower-strength tuples involving the new parameter. This is based
on the notion of α-balance which was introduced by [10] and functions as a tie-
breaker in the following way: first, the number of would-be-covered t − 1 tuples
are compared for each candidate. If there still is a tie, the next lower strength is
tried and so on. If at t = 1 there still exists a tie, then the smallest value will be
preferred.

3.2 Tuple Enumeration Order

In the vertical extension, uncovered tuples are added one-by-one to the array.
So far it has not been studied, if different enumeration orders of these tuples
have any impact on the resulting arrays. We propose besides the common
lexicographically-ascending (tuples of small lexicographical order first) order,
the reverse, i.e. from lexicographically largest to smallest. Furthermore, switch-
ing between the orderings every other vertical extension could prove beneficial
to achieve smaller arrays.

3.3 Parameter Ordering

One simple option to influence the covering array generation is the order in which
columns are extended. Since the covering property is not affected by column
permutations one can permute the configuration before starting the generation
and apply the reverse permutation afterwards. Note that this is only useful for
mixed-level covering arrays. Informal consensus is that the IPO strategy gener-
ates smaller arrays when columns are sorted by decreasing alphabet size, but, to
the best of our knowledge, this has so far not been subject to an experimental
evaluation.

While the number of column permutations in general is too large in practice,
we propose to investigate the following:

Ascending Sort columns with increasing alphabet size from smallest to largest
Descending Sort columns with decreasing alphabet size from largest to smallest

194 K. Kleine et al.

Alternating Intersperse large and small columns and switch between large and
small columns from one extension to the next. We propose two variants. The
first starts with the smallest, followed by the largest and thirdly the second-
smallest, etc. The second starts with the largest, followed by the smallest and
so on.

4 Evaluation

4.1 Setup

To evaluate the different algorithm configurations we chose a set of (M)CA
instances based upon the benchmarks used in [1] to study the behaviour of
greedy, one-test-at-a-time MCA generation algorithms. The instances are sum-
marized in Fig. 1a.

Instances

104

340

34

64

34, 45

66, 55, 34

78, 220

51, 38, 22

510, 210

82, 72, 62, 52

101, 91, 81, 71, 61, 51, 41, 31, 21, 11

(a) Set of benchmark (M)CA instances

Tie Breakers Tuple Orders Parameter Orders

Alpha-Balanced Alternating Alternating-large
Cyclic Ascending Alternating-small
Cyclic-next Descending Ascending
Deterministic Descending
Lexicographic
Random
Value-Balanced

(b) Configuration options for IPO

Fig. 1. Benchmark setup

We implemented all IPO variants in our own implementation described fur-
ther in [11]. The particular algorithm as well as the tie-breaker, tuple order and
parameter ordering are selectable via a configuration option at runtime. This
results in 63 distinct algorithm configurations for CA generation and 252 distinct
configurations for MCA generation. The configuration options are summarized
in Fig. 1b.

Each algorithm configuration was used to generate (M)CAs for the selected
benchmark instances for strengths between 2 and 4. The experiments were con-
ducted on the Graham cluster of the Shared Hierarchical Academic Research
Computing Network (SHARCNET). Configurations involving the Random tie-
breaker were repeated 10 times. Due to space limitations, we only discuss selected
and aggregated results, but we provide the full data set as well as visualizations

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 195

on a dedicated website1 for the interested reader. There we also provide further
measurements into the test generation time differences observed between the
tested configurations.

4.2 Results

In order to meaningfully compare different configurations options across
instances we first normalized the computed covering array sizes to a relative
measure representing the deviation of the mean. We computed the mean for
each instance and based on the result computed the relative improvement or
degradation for each individual run. This value shows how much better or worse
one configuration performs in comparison to the other ones. The results are
summarized in Table 1 and are visualized in Figs. 2a and b.

Table 1. Relative improvement for different configurations compared to the mean

IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 1.0128 ±0.0759 0.9632 ±0.0619 1.0572 ±0.0662

Cyclic 1.0175 ±0.1394 0.9461 ±0.0678 1.0379 ±0.0867

Cyclic-next 0.9721 ±0.0858 0.9403 ±0.0799 1.0296 ±0.1012

Deterministic 0.9920 ±0.0429 0.9560 ±0.0539 1.0500 ±0.0664

Lexicographic 1.0140 ±0.0764 0.9651 ±0.0687 1.0580 ±0.0673

Random 0.9933 ±0.0465 0.9548 ±0.0545 1.0497 ±0.0673

Value-balanced 0.9951 ±0.0630 0.9590 ±0.0563 1.0549 ±0.0645

Tuple Order

Alternating 0.9950 ±0.0656 0.9533 ±0.0580 1.0454 ±0.0681

Ascending 0.9987 ±0.0663 0.9582 ±0.0626 1.0584 ±0.0794

Descending 0.9944 ±0.0630 0.9530 ±0.0561 1.0432 ±0.0644

Parameter Order

Alternating-large 0.9962 ±0.0309 0.9529 ±0.0268 1.0503 ±0.0510

Alternating-small 1.0082 ±0.0374 0.9667 ±0.0336 1.0763 ±0.0525

Ascending 1.0285 ±0.0443 1.0006 ±0.0440 1.0870 ±0.0519

Descending 0.9463 ±0.0791 0.8910 ±0.0442 0.9952 ±0.0793

In general, IPOG-F produces the smallest arrays, followed by IPOG and
IPOG-F2. Comparing the results for the different tie-breakers, no one choice
seems to impact array sizes significantly, however, the Cyclic-next tie-breaker
overall yields the best results. It, together with the Cyclic tie-breaker is able to
generate some arrays with up to 50% less rows. However, the Cyclic tie-breaker
exhibits extreme results in the other direction and in corner-cases with array

1 https://matris.sba-research.org/data/iwoca2018.

https://matris.sba-research.org/data/iwoca2018

196 K. Kleine et al.

sizes exceeding 50% larger than the mean are produced. This is also the case for
the Alpha-balanced and Lexicographic tie-breaker.

Judging from the results in Table 1, the order in which tuples are enumerated
does not seem to affect the resulting covering array size in any significant way.

The largest impact can be attributed to the sorting order of columns. Sorting
in descending order of alphabet size leads to significantly smaller covering arrays,
especially in the case of IPOG-F. Alternating between large and small columns
has some impact and is better than sorting columns in ascending order.

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e
si

ze
 c

om
pa

re
d

to
 m

ea
n

tie.breaker Alpha−balanced
Cyclic

Cyclic−next
Deterministic

Lexicographic
Random

Value−balanced

(a) Tie-breakers

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e
si

ze
 c

om
pa

re
d

to
 m

ea
n

parameter.order Alternating−large Alternating−small Ascending Descending

(b) Parameter orders

Fig. 2. Relative improvement compared to the mean

Selected benchmark results. Aside from the general performance, for specific
instances the various configuration options can have differing impact. In the
following, we discuss some results for selected instances. In order to meaningfully
analyze the results we have grouped the results by both the algorithm (i.e., IPOG,
IPOG-F or IPOG-F2) and one of either tie-breaker, tuple-order or parameter-
order. Inside each group we have computed the mean and the standard deviation.
The results show absolute values instead of relative difference.

340 (t = 3) The results of this experiment are summarized in Table 2 and
the generated covering array sizes per tie-breaker are visualized in Fig. 3a.
IPOG-F produces the smallest arrays and shows very low variance when com-
paring different tie-breakers. In contrast, the results for IPOG are much more
dependent on the tie-breaker. Here, the best results are obtained with the
Value-balanced tie-breaker which produces arrays 16% smaller than when using
the Alpha-balanced tie-breaker. IPOG-F2 shows no significantly differing behav-
ior with different tie-breakers. Furthermore, the order in which tuples are enu-
merated have no major impact.

104 (t = 3) The results for this experiment can be found in Table 2 and a
comparison of the tie breakers can be found in Fig. 3b. Here, the configurations
which use either the Cyclic or Resuming tie-breakers manage to generate an

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 197

●

●

120

130

140

150

160

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
Ar

ra
y

Si
ze

 (N
)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

3^40 t=3 − Tie−breaker

(a) 340 (t = 3)

●●

1000

1100

1200

1300

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
Ar

ra
y

Si
ze

 (N
)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

10^4 t=3 − Tie−breaker

(b) 104 (t = 3)

Fig. 3. Results for different tie-breakers

Table 2. Results for CA experiments

340 t 013= 4 t = 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 140.0 ±3.5 116.7 ±0.6 151.3 ±4.9 1193.0 ±8.7 1145.3 ±2.9 1146.7 ±4.0

Cyclic 135.0 ±2.0 116.7 ±0.6 147.3 ±4.2 1000.0 ±0.0 1000.0 ±0.0 1000.0 ±0.0

Cyclic-next 123.3 ±0.6 115.7 ±1.2 149.7 ±3.8 1000.0 ±0.0 1000.0 ±0.0 1000.0 ±0.0

Deterministic 126.7 ±0.6 115.3 ±0.6 150.3 ±3.8 1135.3 ±1.2 1102.3 ±0.6 1102.3 ±0.6

Lexicographic 140.7 ±2.9 116.3 ±0.6 154.0 ±5.3 1228.0 ±0.0 1288.0 ±0.0 1288.0 ±0.0

Random 125.9 ±1.3 116.4 ±1.0 148.9 ±2.7 1136.2 ±7.0 1101.4 ±4.3 1102.2 ±3.7

Value-balanced 122.3 ±1.5 116.0 ±1.7 148.7 ±4.5 1186.0 ±3.5 1085.7 ±0.6 1085.7 ±0.6

Tuple Order

Alternating 127.6 ±5.7 116.2 ±0.9 147.4 ±2.3 1130.0 ±58.2 1102.4 ±62.1 1103.7 ±62.1

Ascending 128.7 ±6.4 116.5 ±1.0 152.6 ±3.0 1131.9 ±59.2 1102.1 ±61.9 1102.1 ±61.9

Descending 127.6 ±4.8 116.1 ±1.0 148.3 ±2.5 1132.6 ±58.2 1102.1 ±62.0 1102.6 ±62.2

orthogonal array (since the size is equal to vt) for the three algorithms. Inter-
estingly, the Lexicographic tie-breaker, although similar to the other two, per-
forms the worst in all cases with almost 30% larger array sizes. As before, in this
case the tuple order has no real impact.

4.3 665534 (t = 3)

For this instance (see Table 3), there is no large variance when comparing differ-
ent tie-breakers. IPOG-F produces the smallest arrays, while IPOG-F2 produces
the largest. Here, the parameter order has a measurable impact and ordering
the parameters by descending size can improve array sizes by up to 5% in this
case. These results are visualized in Fig. 4a.

198 K. Kleine et al.

●●

●

●

●

●
●

●

●●

●

●

●

450

500

550

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
Ar

ra
y

Si
ze

 (N
)

parameter.order Alternating−large Alternating−small Ascending Descending

6^6,5^5,3^4 t=3 −

(a) 665534 (t = 3)

●

●
●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●●●
●
●●

●

●

●

●
●

●

●

300

320

340

360

380

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
Ar

ra
y

Si
ze

 (N
)

tuple.order Alternating Ascending Descending

5^10,2^10 t=3 − Tuple−order

(b) 510210 (t = 3)

Fig. 4. Results for different parameter orders (left) and tuple orders (right)

Table 3. Results for MCA experiments

665534t 53= 10210t = 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 470.5 ±13.6 441.9 ±17.1 533.8 ±18.2 316.0 ±5.2 305.5 ±5.4 353.5 ±7.8

Cyclic 465.8 ±14.1 443.9 ±16.3 532.3 ±16.4 331.1 ±20.7 308.2 ±1.6 344.2 ±14.0

Cyclic-next 464.7 ±12.3 444.0 ±18.1 529.0 ±23.8 316.3 ±4.4 307.6 ±3.9 352.0 ±11.8

Deterministic 465.2 ±13.9 442.8 ±20.0 532.1 ±15.8 316.2 ±3.5 304.1 ±6.0 355.0 ±7.7

Lexicographic 471.6 ±9.8 442.3 ±17.2 525.5 ±26.1 316.9 ±4.0 306.2 ±7.0 355.0 ±8.3

Random 465.2 ±13.2 443.5 ±17.3 533.8 ±16.9 315.4 ±4.1 304.6 ±5.5 353.8 ±8.5

Value-balanced 462.9 ±14.2 443.7 ±19.3 530.8 ±16.1 314.6 ±4.3 304.8 ±5.7 352.5 ±6.6

Tuple Order

Alternating 466.2 ±14.0 442.5 ±17.9 527.6 ±18.7 316.6 ±7.9 304.7 ±5.6 349.8 ±6.6

Ascending 466.3 ±14.8 444.6 ±19.1 542.5 ±20.2 317.0 ±7.0 305.4 ±5.5 359.9 ±10.2

Descending 464.9 ±10.3 443.0 ±14.9 527.7 ±8.0 316.0 ±7.4 305.3 ±5.3 349.7 ±6.1

Parameter Order

Alternating-large 465.1 ±5.1 440.4 ±2.6 522.5 ±8.0 317.8 ±2.4 307.2 ±2.4 348.3 ±3.7

Alternating-small 467.0 ±3.4 442.9 ±3.0 534.7 ±7.9 317.7 ±2.2 308.1 ±2.2 353.2 ±5.1

Ascending 482.8 ±6.3 468.8 ±5.4 550.8 ±20.7 317.6 ±2.6 307.5 ±2.5 360.4 ±9.3

Descending 448.4 ±4.1 421.4 ±3.6 522.4 ±13.9 313.2 ±13.8 297.7 ±5.4 350.7 ±11.4

510210(t = 3) The results for this instance are described in Table 3 and a
comparison of different tuple orders is visualized in Fig. 4b. The tuple order
seems to only make a difference for IPOG-F2, where both the Alternating and
Descending order outperform the Ascending order. This is also the case in
instance 665534 (t = 3).

Evaluation of Tie-Breaking and Parameter Ordering for the IPO Algorithms 199

5 Conclusion

In this paper we have studied the impact of tie-breaking, parameter ordering
and tuple enumeration order in the IPO family of algorithms. We have compared
their effectiveness in terms of their ability to reduce covering array sizes in a large
evaluation. In summary, IPOG-F overall manages to produce the smallest arrays
compared to IPOG and IPOG-F2. Furthermore, the choice of tie-breaker seems to
not matter a great deal when averaging over all instances, but the right choice
can have large impact on selected instances. In the case of MCA generation, we
measured the largest reduction in array size when ordering columns by decreasing
alphabet size, with up to 12% reduction in size compared to the mean.

Acknowledgments. The research presented in this paper has been funded in part by
the Austrian Research Promotion Agency (FFG) under grants 851205 (Security Proto-
coL Interaction Testing in Practice - SPLIT) and 865248 (SECuring Web technologies
with combinatorial Interaction Testing - SecWIT).

Part of this research has also been carried out in the context of the Austrian
COMET K1 program which is publicly funded by the Austrian Research Promotion
Agency (FFG) and the Vienna Business Agency (WAW).

This work was made possible by the facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET) and Compute/Calcul Canada.

References

1. Bryce, R.C., Colbourn, C.J., Cohen, M.B.: A framework of greedy methods for
constructing interaction test suites. In: Proceedings of the 27th International Con-
ference on Software Engineering, ICSE 2005, pp. 146–155. ACM (2005)

2. Cheng, C.T.: The test suite generation problem: optimal instances and their impli-
cations. Discrete Appl. Math. 155(15), 1943–1957 (2007)

3. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: Proceedings of the 25th International Conference
on Software Engineering, ICSE 2003, pp. 38–48. IEEE Computer Society (2003)

4. Duan, F., Lei, Y., Yu, L., Kacker, R.N., Kuhn, D.R.: Improving IPOG’s vertical
growth based on a graph coloring scheme. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–8 (2015)

5. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stan.
Technol. 113(5), 287 (2008)

6. Gao, S.W., Lv, J.H., Du, B.L., Colbourn, C.J., Ma, S.L.: Balancing frequencies
and fault detection in the in-parameter-order algorithm. J. Comput. Sci. Technol.
30(5), 957–968 (2015)

7. Gao, S., Lv, J., Du, B., Jiang, Y., Ma, S.: General optimization strategies for
refining the in-parameter-order algorithm. In: 2014 14th International Conference
on Quality Software (QSIC), pp. 21–26. IEEE (2014)

8. Hartman, A.: Software and hardware testing using combinatorial covering suites.
In: Golumbic, M., Hartman, I.A. (eds.) Graph Theory, Combinatorics and Algo-
rithms, Operations Research/Computer Science Interfaces Series, vol. 34, pp. 237–
266. Springer, Heidelberg (2005)

200 K. Kleine et al.

9. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete
Math. 284(1–3), 149–156 (2004)

10. Kampel, L., Simos, D.E.: Set-based algorithms for combinatorial test set genera-
tion. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp.
231–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47443-4 16

11. Kleine, K., Simos, D.E.: An efficient design and implementation of the in-
parameter-order algorithm. Math. Comput. Sci. 12(1), 51–67 (2018)

12. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis, London (2013)

13. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: a general strategy
for T-way software testing. In: 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, ECBS 2007, pp. 549–
556. IEEE (2007)

14. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: effi-
cient test generation for multi-way combinatorial testing. Softw. Test. Verification
Reliab. 18(3), 125–148 (2008)

15. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise test-
ing. In: Proceedings of Third IEEE International High-Assurance Systems Engi-
neering Symposium, pp. 254–261. IEEE (1998)

16. Younis, M.I., Zamli, K.Z.: MIPOG-an efficient t-way minimization strategy for
combinatorial testing. Int. J. Comput. Theory Eng. 3(3), 388 (2011)

17. Yu, L., Duan, F., Lei, Y., Kacker, R.N., Kuhn, D.R.: Constraint handling in combi-
natorial test generation using forbidden tuples. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–9 (2015)

18. Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R.N., Kuhn, D.R.: An efficient algo-
rithm for constraint handling in combinatorial test generation. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation, pp. 242–
251 (2013)

https://doi.org/10.1007/978-3-319-47443-4_16

Efficient Enumeration of Subgraphs
and Induced Subgraphs

with Bounded Girth

Kazuhiro Kurita1(B), Kunihiro Wasa2, Alessio Conte2, Takeaki Uno2,
and Hiroki Arimura1

1 IST, Hokkaido University, Sapporo, Japan
{k-kurita,arim}@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo, Japan
{wasa,conte,uno}@nii.ac.jp

Abstract. The girth of a graph is the length of its shortest cycle. Due
to its relevance in graph theory, network analysis and practical fields
such as distributed computing, girth-related problems have been object
of attention in both past and recent literature. In this paper, we con-
sider the problem of listing connected subgraphs with bounded girth.
As a large girth is index of sparsity, this allows to extract sparse struc-
tures from the input graph. We propose two algorithms, for enumerating
respectively vertex induced subgraphs and edge induced subgraphs with
bounded girth, both running in O(n) amortized time per solution and
using O(n3) space. Furthermore, the algorithms can be easily adapted
to relax the connectivity requirement and to deal with weighted graphs.
As a byproduct, the second algorithm can be used to answer the well
known question of finding the densest n-vertex graph(s) of girth k.

1 Introduction

We consider the problem of finding all subgraphs and induced subgraphs with
girth at least k of a graph. The girth is a measure of sparsity, as graphs with large
girth are inherently sparse. This corresponds to finding sparse substructures of
the given graph, a problem that was considered under several forms [5,9] and
has applications in network analysis. In particular, this problem generalizes two
well studied problems, i.e., listing all subtrees and induced subtrees [7,13–15].
Indeed, any graph with girth larger than n may not contain a cycle, i.e., it is a
tree, or a forest.

A subgraph enumeration problem, given a graph G and some constraint R,
consists in outputting all the subgraphs satisfying R without duplicates. The
efficiency of enumeration algorithms is often measured with respect to both
the size of the input and that of the output, i.e., the number of solutions: an
enumeration algorithm is called an amortized polynomial time algorithm if it
runs in O(M · poly(N)) time, where N is the input size and M is the number
of solutions. Furthermore, the algorithm is said to have polynomial delay if the
maximum time elapsed between two consecutive outputs is polynomial.
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 201–213, 2018.
https://doi.org/10.1007/978-3-319-94667-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_17&domain=pdf

202 K. Kurita et al.

In this paper, we present two amortized polynomial time algorithms for enu-
merating subgraphs of girth at least k. The first, EBG-IS, enumerates induced
subgraphs, while the second, EBG-S, enumerates edge subgraphs (also simply
called subgraphs). Both EBG-IS and EBG-S run in O(n |S|) time using O(n3)
space, where n is the number of nodes in G and S is the set of all solutions.
The proposed algorithms will consider the enumeration of connected subgraphs
in simple graphs. However, both algorithms can easily be applied to the enumer-
ation of non-connected subgraphs, and to weighted graphs by trivial changes,
with the same time and space complexity. In these problems, the upper bound
of the number of solutions are O(2n) and O(2m), respectively, where m is the
number of edges. Hence, the brute force algorithms are optimal if we evaluate the
efficiency of algorithms only the input size. When we describe a more efficient
algorithm, reducing amortized complexity is important [10]. Indeed, our imple-
mentation of EBG-S1 is almost 560 times faster than the brute force algorithm
when the input graph is a complete graph K8 and girth is four.

While the problem of efficiently enumerating subgraphs with bounded girth
has been considered for directed graphs [6], to the best of our knowledge, there
is no known efficient algorithm for the undirected version of the problem.2

An early result on girth computation is the algorithm by Itai and Rodeh [8],
that finds the girth of a graph in O(nm) time. In more recent work, the problem
was also solved in linear time for planar graphs [4]. However, the problem we
consider involves computing the girth of many subgraphs, so relying on these
algorithms is not efficient.

A prominent question related to the girth is finding exactly how dense a
graph of given girth can be: the maximum number of edges in a d-regular graph
with girth k is bounded by the well known Moore bound [2], which Alon later
proved to be tight on general graphs as well [1]. Erdős conjectured that there
exists a graph with Ω(n1+1/k) edges and girth 2k + 1 [12]. On the other hand,
some have focused on giving practical lower bounds, i.e., finding ways to generate
graphs of given girth as dense as possible [3,11]. We remark that our proposed
algorithm EBG-S can match theory and practice: the densest n-vertex graph of
girth k can be found as a subgraph of the complete graph Kn. While this may
not be practical for large values of n, it significantly improves upon the brute
force approach by avoiding the generation of subgraphs with girth <k.

2 Preliminaries

Let G = (V (G), E(G)) be a simple undirected graph with no self-loops, with
vertex set V (G) and edge set E(G) ⊆ V (G) × V (G). Two vertices u and v are
adjacent (or neighbors) if there is an edge e = {u, v} ∈ E(G) joining them. We

1 The implementation of EBG-S in the github repository: https://github.com/ikn-lab/
EnumerationAlgorithms/tree/master/BoundedGirth/.

2 We remark that the techniques in [6] do not extend to undirected graphs, thus
motivating a separate study. In directed graphs, a u-v path and a v-u path are
distinct. However, a u-v path and a v-u path may be same in undirected graphs.

https://github.com/ikn-lab/EnumerationAlgorithms/tree/master/BoundedGirth/
https://github.com/ikn-lab/EnumerationAlgorithms/tree/master/BoundedGirth/

Efficient Enumeration of Subgraphs and Induced Subgraphs 203

call e incident to v and we denote the set of incident edges to v E(v). The set
of neighbors of u in G is called its neighborhood and denoted by NG(u) and
the size of NG(u) is called the degree of u in G. Let NG[u] = NG(u) ∪ {u}
be the closed neighborhood of u. The set of neighbors of U ⊆ V is defined as
NG(U) =

⋃
u∈U NG(u)\U . Similarly, NG[U] denotes NG(U)∪U . For any vertex

subset S ⊆ V , we call G[S] = (S,E[S]) an induced subgraph, where E[S] =
E(G) ∩ (S × S). Since G[S] is uniquely determined by S, we sometimes identify
G[S] with S. For any edge subset E′ ⊆ E, we call G[E′] = (V ′(E′), E′) edge
induced subgraph, where V ′(E′) =

⋃
{u,v}∈E′ u. We define G \ {e} = (V,E \ {e})

and G \ {v} = G[V \ {v}]. For simplicity, we use v ∈ G and e ∈ G to refer to
v ∈ V (G) and e ∈ E(G), respectively. If G is clear from the context, we will also
use simplified notation such as V , E, N(u) instead of V (G), E(G), NG(u).

A sequence P = (v1, . . . , vk+1) of distinct vertices is a path from v1 to vk+1

(v1-vk+1 path for short) in G = (V,E) if for any i ∈ [1, k], {vi, vi+1} ∈ E. P is a
shortest path between two vertices if there is no shorter path between them. Let
us denote by V (P) and E(P) the set of vertices and edges in P , respectively.
We say that G is connected if for any two vertices u, v ∈ V , there is a u-v path.
We say that a sequence C = (v1, . . . , vk+1) of vertices is a cycle if (v1, . . . , vk)
is a v1-vk path, vk+1 = v1, and {vk, vk+1} ∈ E. The length of a path or cycle is
defined by its number of edges. The distance between two vertices is the length
of a shortest path between them. The girth of G, denoted by g(G), is the length
of a shortest cycle in G. For simplicity, we say that G has girth k if g(G) ≥ k.
The girth of acyclic graphs is usually assumed to be ∞.

4 5
3

9

10

12

6

78
11

4 5
3

9

10

12

6

78
11(A) (B)

Fig. 1. Dashed edges and vertices are not included by an induced subgraph and a
subgraph. An induced subgraph of girth five (A) and a subgraph of girth six (B).

We define our problems as follows and Fig. 1 shows examples of solutions
Problem 1 and Problem2. If we store all outputs, then it is easy to avoid dupli-
cates. Our algorithms achieve without duplicates in polynomial space.

Problem 1 (k-girth connected induced subgraph enumeration). Enumerate all
connected induced subgraphs S of a graph G with g(S) ≥ k, without duplicates.

Problem 2 (k-girth connected subgraph enumeration). Enumerate all connected
subgraphs S of a graph G with g(S) ≥ k, without duplicates.

3 Enumeration by Binary Partition

The binary partition method is one of the fundamental frameworks for designing
enumeration algorithms. Typically, a binary partition algorithm A has the fol-

204 K. Kurita et al.

Algorithm 1. Enumerate all connected induced subgraphs with girth k.
1 Procedure EBGG, k // G: an input graph, k: positive integer

2 RecEBG(∅, G);
3 Procedure RecEBG(S,G) // S: the current solution

4 Output S;
5 done ← ∅;
6 for v ∈ C (S) do
7 RecEBG(S ∪ {v}, G \ done);
8 done ← done ∪ {v};

9 return;

lowing structure: first A picks an element x of the input, then divides the search
space into two disjoint spaces, one containing the solutions that include x, and
one those that do not. A recursively executes the above step until all elements
are picked. Whenever the search space contains exactly one solution, A outputs
it. We call each dividing step an iteration.

Algorithm EBG, detailed in Algorithm1, represents a basic strategy for
Problem 1. Algorithm 1 is based on binary partition, although each iteration
divides the search space in more than two subspaces. While EBG enumerates
solutions by picking vertices on each iteration, we can obtain an enumeration
algorithm for Problem2 by modifying EBG so that it picks edges instead.

Let G, X, and S(X) be respectively an input graph, an iteration, and the
solution received by the iteration X. A vertex v /∈ S(X) is a candidate vertex for
S(X) if g(S(X) ∪ {v}) ≥ k and S(X) ∪ {v} is connected, that is, the addition of
a candidate vertex generates a new solution. Let C (S(X)) be a set of candidate
vertices for S(X). We call C (S(X)) the candidate set of S(X). Now, suppose
that X generates new iterations Y1, . . . , Yd by adding vertices in C (S(X)) =
{v1, . . . , vd} on line 7. For each i, we say that X is the parent of Yi, and Yi is a
child of X. Note that, on iteration Yi and its descendant iterations, EBG outputs
solutions that do not include v1, . . . , vi−1 but do include vi. This implies that
the solution space of Yi is disjoint from those of each Yj<i created so far, i.e.,
EBG divides the solution space of X in d disjoint subspaces. The only iteration
without a parent is the one generated on line 2, which we call the initial iteration
and denote by I. We remark that S(I) = ∅ and that ∅ is a solution.

By using the above parent-child relation, we introduce the enumeration tree
T (G) = T = (V, E). Here, V is the set of iterations of EBG for G and E is a subset
of V × V. For any pair of iterations X and Y , (X,Y) ∈ E if and only if X is the
parent of Y . We can observe that T has no cycles since every child iteration of
X receives a solution whose size is larger than S(X). In addition, each iteration
other than the initial iteration has exactly one parent. This implies that the
initial iteration is an ancestor of all iterations and thus T is connected. Thus, T
forms a tree. Next three lemmas show the correctness of EBG. Due to the space
limitation, we omit some proofs (which can be found in Appendix).

Efficient Enumeration of Subgraphs and Induced Subgraphs 205

Lemma 1. Let G be a simple undirected graph and k a positive integer. Then,
every output of EBG induces a connected subgraph of girth k.

Lemma 2. If X and Y are two distinct iterations on EBG, then S(X) 	= S(Y).

Lemma 3. Let G be a simple undirected graph and k a positive integer.
EBG(G, k) outputs all connected induced subgraphs with girth k in G exactly once.

Proof. By Lemma 1, EBG outputs only solutions, and by Lemma2 it does not
output each solution more than once. We show that EBG outputs all solutions by
induction. Let S be a solution. If |S| = 0, EBG outputs the empty set.

Otherwise, there is an iteration X0 such that S(X0) ⊆ S and S ⊆ V (G)
(that is, no vertex of S has been removed from G). This is trivially true, e.g.
for X0 = I, since S(I) = ∅ and nothing has been removed from G. Note that
every subgraph of a graph with girth at least k must also have girth at least
k, thus every v ∈ S \ S(X0) such that G[S(X0) ∪ {v}] is connected must be in
C (S(X0)). As S is connected there is at least one such v in C (S(X0)).

Consider the first execution of Line 7 in X for which a vertex v ∈ S \ S(X0)
is considered to generate a child iteration X1. As no vertex of S was added to
done in X0, we still have that S(X1) ⊆ S and S ⊆ V (G) in iteration X1, but
|S(X1)| = |S(X0)| + 1. Hence, by induction, EBG will eventually find S.
�

Using Itai’s algorithm [8] to compute the girth of a graph in O(mn), we can
obtain a first trivial complexity bound for Algorithm1.

Theorem 1. EBG solves Problem 1 with delay O(n2m).

Non-induced, weighted, and non-connected case. Let us briefly show how
EBG also applies to some variants of the problem. Firstly, we can solve Problem 2,
i.e., enumerate edge subgraphs, by modifying EBG as follows: Each solution is
a set of edges S ⊆ E, and the candidate set C (S(X)) becomes C (S(X)) =
{e ∈ E(X) | G[S(X) ∪ {e}] is connected and g(G[S(X) ∪ {v}]) ≥ k}. It is
straightforward to see that Lemma 3 still holds (replacing the word induced with
edge in the statement), and that the modified algorithm will solve Problem 2 in
polynomial delay and polynomial space.

Furthermore, we can consider the weighted version of the problem, where the
length of a cycle is the sum of the weights of its edges: we can find the girth
in this case by adapting the Floyd-Warshall algorithm, and thus still enumerate
all solutions for both the induced and edge subgraph version of the problem, in
polynomial delay and polynomial space.

Finally, we consider non-connected case, i.e., where the solutions are all
induced or edge subgraphs of girth k, and not just the connected ones: this
is trivially done by redefining the candidate set as C (S(X)) = {v ∈ V (G) |
g(G[S(X)∪{v}]) ≥ k} for Problem1, and similarly for Problem 2. If G[S] is not
connected, its girth is the minimum among that of its connected components,
thus we can still use Itai’s algorithm (or Floyd-Warshall if weighted edges are
considered as well), and again obtain polynomial delay and polynomial space.

206 K. Kurita et al.

Algorithm 2. Updating data structures in EBG-IS.
1 Procedure NextC(v, C (S) , D(1)(S), D(2)(S), S, k,G)

2 C (S ∪ {v}) ← UpdateCand(v, S);

3 D(1)(S ∪ {v}) ← Update1(v, C (S ∪ {v}));

4 D(2)(S ∪ {v}) ← Update2(v, C (S ∪ {v}));

5 Function UpdateCand(v, S)
6 C (S ∪ {v}) ← N(v) ∪ C (S);
7 foreach u ∈ C (S) do

8 if D
(1)
uv (S) + D

(2)
uv (S) ≥ k then C (S ∪ {v}) ← C (S ∪ {v}) ∪ {u} ;

9 return C (S ∪ {v});

10 Function Update1(v, C (S ∪ {v}))
11 foreach u ∈ C (S ∪ {v}) ∪ S,w ∈ C (S ∪ {v}) do

12 D
(1)
uw(S) ← min{D(1)

uw(S), D
(1)
uvw(S)}

13 return D(1)(S ∪ {v})

14 Function Update2(v, C (S ∪ {v}))
15 foreach u,w ∈ C (S ∪ {v}) do

16 p1 ← min{D(1)
uw(S), D

(1)
uvw(S ∪ {v}), D

(2)
uw(S)};

17 p2 ← the second smallest length in {D(1)
uw(S), D

(1)
uvw(S ∪ {v}), D

(2)
uw(S)};

18 if p1 + p2 ≥ k then // x ∈ N(u) ∩ S ∪ {v}
19 p2 ← the second smallest length in {D(1)

xw(S ∪ {v}) + 1};

20 D
(2)
uw(S ∪ {v}) ← p2;

21 return D(2)(S ∪ {v});

4 Induced Subgraph Enumeration

The bottleneck of EBG is the computation of the candidate set. In this section,
we present a more efficient algorithm EBG-IS for Problem1. EBG-IS is based
on EBG, but each iteration exploits information from the parent iteration, and
maintains distances in order to improve the computation of the candidate set.
The procedure is shown in Algorithm2.

EBG-IS uses the second distance between vertices defined as follows. Let v be
a vertex in C (S)∪S, and u and u′ be vertices in C (S). We denote by D

(1)
uv (S) the

distance between v and u in G[S∪{v, u}], and by D
(2)
uu′(S) the distance between u

and u′ in G[S∪{u, u′}]\{e0}, where e0 = (u, ·) is the first edge on a shortest path
between u and u′. Note that for any vertices x ∈ G \ {C (S) ∪ S}, y ∈ G \ C (S),
and y′ ∈ G \ C (S), D

(1)
xy (S) = ∞ and D

(2)
yy′(S) = ∞. Especially, we call D

(2)
uu′(S)

the second distance between u and u′ in G[S∪{u, u′}]. In addition, we call a path
whose length is the second distance a second shortest path. Moreover, we write
D

(1)
uwv(S) and D

(2)
uwv(S) for the distance and the second distance from u to v via

a vertex w, respectively. Let P and P ′ be respectively a v-u shortest path and
a v-u second shortest path. Since P and P ′ do not share e0 but do share their
ends, H must have a cycle including v and u, where H is a subgraph of G such
that V (H) = V (P) ∪ V (P ′) and E(H) = E(P) ∪ E(P ′). Figure 2(C) shows an

Efficient Enumeration of Subgraphs and Induced Subgraphs 207

example of a cycle made by P and P ′. To compute the candidate set efficiently,
we will use the following lemmas. In the following lemmas, let X and Y be two
iterations such that X is the parent of Y , and v be a vertex in C (S(X)) such
that S(Y) = S(X) ∪ {v}.

(A)

4

5

9

1
2 6

7

3 8

(B)

4

5

9

1
2 6

7

3 8
u

v

(C)

Fig. 2. (A) and (B) show two induced subgraphs. (C) shows a shortest path and a sec-
ond shortest path. Dashed edges and vertices are not contained by induced subgraphs.
Black and gray paths show respectively shortest and second shortest paths.

Lemma 4. Let u and w be two vertices in C (S(X)) and k = g(G[S(X)]). (A)
g(G[S(X) ∪ {u,w}]) ≥ k if and only if (B) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) ≥ k.

Proof. Clearly, (A) → (B) holds by definition of D(1)(S(X)) and D(2)(S(X)).
For the direction (B) → (A), consider a shortest cycle C in G[S(X) ∪ {u,w}])
in the following three cases: (I) u,w /∈ C: |C| ≥ k since g(G[S(X)]) ≥ k. (II)
Either u or w in C: |C| ≥ k since u and w belong to C (S(X)). (III) Both u
and w in C: C can be decomposed into two u-w paths P and Q. Without loss of
generality, |P | ≤ |Q|. If P is a u-w shortest path, then |C| ≥ k from (B), since
Q is at least as long as the second distance D

(2)
uw(S(X)). Otherwise, there is a

u-w shortest path P ′ and a cycle C ′ consisting of a part of P (or Q) and a part
of P ′. If C ′ contains w, then |C ′| = |C| ≥ k since C is a shortest cycle. If C ′

does not contain w, then |C ′| is a cycle in G[S(X) ∪ {u}], thus |C ′| ≥ k because
u ∈ C (S(X)).
�

Lemma 5. EBG-IS computes C (S(Y)) in O(|C (S(X))| + |N(v)|) time.

Proof. From Lemma 4, vertex u in C (S(X)) belongs to C (S(Y)) if and only if
D

(1)
uv (S(X)) + D

(2)
uv (S(X)) ≥ k. This can be done in constant time. In addition,

from the connectivity of G[S(Y)], C (S(Y)) \ C (S(X)) ⊆ N(v). Thus, we can
find C (S(Y)) \ C (S(X)) in O(|C (S(X))| + |N(v)|) time.
�

Next, we consider how to update the values of D(1)(S(Y)) and D(2)(S(Y))
when adding v to S(X). We can update the old distances to the ones after
adding v as in the Floyd-Warshall algorithm (see Algorithm2), meaning that
we can compute D(1)(S(Y)) in O(|S(X) ∪ C (S(X))| · |C (S(X))|) time. By the
following lemma, the values of D(2)(S(Y)) can be updated in O(|S(Y)|) time for
each pair of vertices in C (S(Y)).

208 K. Kurita et al.

Lemma 6. Let u and w be two vertices in C (S(X)), e0 be an edge in a u-w
shortest path in G[S(X)∪{u,w}], and H = G[S(X)∪{u,w}]\{e0}. If NH(u) = ∅,
then D

(2)
uw(S(X)) = ∞. Otherwise, D

(2)
uw(S(X)) = miny∈NH(u){D

(1)
yw(S(X)) + 1}.

Proof. From the definition of D
(2)
uw(S(X)), if NH(u) = ∅, then D

(2)
uw(S(X)) = ∞.

We assume |NH(u)| ≥ 1. Since u /∈ S(X), every shortest path between u and
w in G[S(X) ∪ {w}] ∪ f contains f , where f = {u, y}. Hence, D

(1)
yw(S(X)) + 1

is equal to the distance between u and w in G[S(X) ∪ {w}] ∪ {f}. Hence, the
statement holds.
�

The next lemma implies that if D
(1)
uw(S(X)) + D

(2)
uw(S(X)) < k, i.e., G[S(X) ∪

{u,w}] is not a solution, then computing D
(2)
uw(S(Y)) takes constant time.

(I.a) (I.b) (II)

u

x

w

v

u

x

w

v

u

x

w

v

Fig. 3. Examples of each case in Lemma 7. Solid lines are u-v shortest paths in G[S(X)∪
{u,w}]. Gray solid lines are u-v second shortest paths in G[S(X) ∪ {u,w}]. Dashed
lines are u-v-w shortest paths in G[S(Y) ∪ {u,w}]. Let {u, x} be the first edge in a
shortest path: the sum of lengths of a solid and gray solid line is less than k.

Lemma 7. Let u and w be two vertices in C (S(Y)). If p1 + p3 < k,
then D

(2)
uw(S(Y)) = min{max{p1, p2}, p3}, where p1 = D

(1)
uw(S(X)), p2 =

D
(1)
uvw(S(Y)), and p3 = D

(2)
uw(S(X)).

Proof. Let GX = G[S(X) ∪ {u,w}] and GY = G[S(Y) ∪ {u,w}]. Note that
p1 ≤ p3. We consider the following cases: (I) p1 < p2: Let e = {u, x} be the first
edge of a u-w shortest path P in GY . Note that P cannot contain v. (I.a) There
exists a u-v-w shortest path Q that does not contain e: clearly, D

(2)
uw(S(Y)) =

min{|Q| = p2, p3}. (I.b) Every u-v-w shortest path Q contains e: there always
exists a cycle C in S(Y) ∪ {w} such that V (C) ⊆ (V (P) ∪ V (Q)) \ {u} and C
does not contain u. Note that |C| < p1 + p2. If p2 ≤ p3, then this contradicts
w ∈ C (S(Y)) since |C| < k. Thus, p2 > p3. This implies that |Q| − 1 ≥ p3.
Hence, D

(2)
uw(S(Y)) = p3. (II) p2 ≤ p1: this assumption implies that there exists

a u-w shortest path P in GY that contains v, and p1 + p2 < k. Let e be the first
edge of P in GY and Q be a u-v-w shortest path in GY \ {e}. Now, we can see
|Q| > p1 since if |Q| ≤ p1, then u /∈ C (S(Y)) since P and Q make a cycle C
containing u with |C| < k. Thus, the length of a u-w shortest path in GY \ {e}
is p1, and D

(2)
uw(S(Y)) = p1 holds.
�

Efficient Enumeration of Subgraphs and Induced Subgraphs 209

Algorithm 2 shows in detail the update of the candidate set, D(1)(·), and
D(2)(·) (done using Lemma 7). We analyze the time complexity of EBG-IS. Let
ch(X) be the set of children of X and #gch(X) be the number of grandchildren
of X. The next lemma shows the time complexity for updating D(2)(S(X)).

Lemma 8. We can compute D(2)(S(Y)) from D(2)(S(X)) in O(#gch(Y) ·
|S(Y)| + |C (S(Y))|2) time.

Proof. Let u and w be two vertices in C (S(Y)). Two cases are possible:
(I) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) ≥ k: By Lemma 6, computing D

(2)
uw(S(Y)) takes

O(|S(Y)|) time, checking only vertices in S(Y). As the number of pairs (u,w)
that fit this case is bounded by #gch(Y), EBG-IS needs O(#gch(Y)·|S(Y)|) time
to compute this part. (II) D

(1)
uw(S(X)) + D

(2)
uw(S(X)) < k: From Lemma 7, com-

puting D
(2)
uw(S(Y)) takes constant time, for a total complexity of O(|C (S(Y))|2),

which proves the statement.
�

Theorem 2. EBG-IS enumerates all solutions in O(
∑

S∈S |N [S]|) time using
O(maxS∈S{|N [S]|3}) space, where S is the set of all solutions.

Proof. The correctness of EBG-IS follows from Lemma 3. We first consider the
space complexity. In an iteration X, EBG-IS uses O(|C (S(X)) ∪ S(X)|2) space
for storing values of D(1)(·) and D(2)(·). In addition, the height of T is at most
maxS∈S{|S|}. Therefore, EBG-IS uses O(maxS∈S{|N [S]|3}) space.

Let c(X) be |C (S(X))| and T (X,Y) be the time needed to generate Y from
X, i.e., an execution of NextC() (Algorithm 2). From Lemma 5, Lemma 6, and
the Floyd-Warshall algorithm, T (X,Y) is O(c(X) + |N(v)| + c(Y) · |S(X)| +
#gch(Y) · |S(Y)| + c(Y)2) time. In addition, |N [S(X)]| ≤ |N [S(Y)]|, |N(v)| =
O(|N [S(Y)]|), and c(X) = O(N [S(X)]) since every vertex in the candidate set
has a neighbor in S(X). Thus, T (X,Y) = O(|N [S(Y)]| (c(Y)+#gch(Y))) time.
Note that the sum of children and grandchildren for all iterations is at most 2 |V|.
Thus, by distributing the O(|N [S(Y)]|) time from X to children and grandchil-
dren of Y , each iteration needs O(|N [S(Y)]|) time since each iteration receives
costs only from the parent and the grandparent. In addition, each iteration out-
puts a solution, and hence the total time is O(

∑
S∈S |N [S]|).
�

5 Subgraph Enumeration

We propose an algorithm, EBG-S, for enumerating all subgraphs with girth k in
a given graph G, detailed in Algorithm3. A trivial adaptation of EBG-IS would
run in O(m) time per solution, as the candidate sets are sets of edges, whose
size is O(m). To improve this running time, EBG-S selects candidates in a certain
order, so that the number of candidate edges does not exceed no more than the
number of nodes in the previous solution G[S].

Let S be the current solution. Note that S is an edge set. We first define
an inner edge and an outer edge as follows: an edge e = {u, v} is an inner edge

210 K. Kurita et al.

A good case A bad case

Fig. 4. Black solid lines and gray solid lines represent inner edges and outer edges,
respectively. Our main strategy is to reduce the number of inner edges in EBG-S.

for S if u, v ∈ G[S], and an outer edge otherwise (see Fig. 4). Let Cin(S) and
Cout(S) be a set of inner edges and outer edges in C (S), respectively. We first
consider the case when EBG-S picks an outer edge. In the following lemmas, let
X be an iteration in enumeration tree T , e be an edge not in X, and Y be the
child iteration of X satisfying S(Y) = S(X) ∪ {e}.

Lemma 9. Let e = {x, y} be an outer edge such that x ∈ V (G[S(X)]). Then
C (S(Y)) ⊆ (C (S(X)) ∪ E(y)) \ {e}, where E(y) are the edges incident to y.

Proof. An edge g /∈ E(y)∪C (S(X)) may not be added to S(Y) as the resulting
subgraph would be disconnected, and e 	∈ C (S(Y)) since e ∈ S(Y).
�

From Lemma 9, EBG-S manages the candidate set C (S(Y)) in O(|C (S(Y))|+
|V (G[S(X)])|) time when EBG-S picks an outer edge e since we can add all edges
e′ /∈ S(X) ∪ C (S(X)) incident to y and S(Y) ∪ {e′} is a solution. Moreover,
removed edges are at most |V (G[S(X)])| since all removed edges have a ver-
tex in V (G[S(X)]). In this case, EBG-S can obtain Cin(S(Y)) and Cout(S(Y))
in O(S(X)) time and O(C (S(Y))) time, respectively. Next, we consider that
when EBG-S picks an inner edge e. When we pick an inner edge, C (S(Y)) is
monotonically decreasing.

Lemma 10. If e is an inner edge, then Cin(S(Y)) ⊂ Cin(S(X)) and
Cout(S(Y)) = Cout(S(X)).

Proof. Since e is an inner edge V (G[S(Y)]) = V (G[S(X)]), thus there is no edge
f ∈ Cin(S(Y)) \ Cin(S(X)). Since e /∈ Cin(S(Y)) and no edge in Cout(S(X))
is in Cin(S(Y)), Cin(S(Y)) ⊂ Cin(S(X)). Moreover, there is no cycle including
f ∈ Cout(S(X)) in G[S(Y) ∪ {f}], hence Cout(S(Y)) = Cout(S(X)).
�

Next, for any pair of edges e and f not in G[S(X)], we consider the compu-
tation of the girth of G[S(X)∪{e, f}] in EBG-S. Let A(X) = {v ∈ V (G[S(X)]) |
E(v) ∩ C (S(X)) 	= ∅}. In a similar fashion as EBG-IS, EBG-S uses D(3)(S(X))
for A(X). The definition of D(3)(S(X)) is as follows: For any pair of vertices
u and v in A(X), D

(3)
uv (S(X)) is the distance between u and v in A(X). Note

that a shortest path between u and v may contain a vertex in G[S] \ A(X).
The next lemma shows that by using D(3)(S(X)), we can compute C (S(Y)) in
O(|V (G[S(Y)])|) time from C (S(X)).

Lemma 11. For any iteration X, |Cin(S(X))| ≤ |V (G[S(X)])|.

Efficient Enumeration of Subgraphs and Induced Subgraphs 211

Algorithm 3. Updating data structures in EBG-S.
1 Procedure NextC(C (S) , D(3)(S), S, k,G)

2 if Cin(S) �= ∅ then e ← Cin(S); else e ← Cout(S) ;
3 C (S ∪ {e}) ← UpdateCand(e, S);

4 D(3)(S ∪ {e}) ← Update3(e, C (S ∪ {e}));

5 Function UpdateCand(e = {u, v}, S)
6 if e ∈ Cin(S) then
7 for f ∈ Cin(S) \ {e} do
8 if g(G[S ∪ {e, f}]) ≥ k then Cin(S) ← Cin(S) ∪ {f} ;

9 else // We assume u ∈ G[S] and v /∈ G[S]
10 for w ∈ N(v) do // Let f be an edge {v, w}
11 if g(G[S ∪ {e, f}]) < k then Cout(S) ← Cout(S) \ f ;
12 else if w ∈ G[S] then
13 (Cin(S), Cout(S)) ← (Cin(S) ∪ f, Cout(S) \ f)
14 else Cout(S) ← Cout(S) ∪ f ;

15 return Cin(S) ∪ Cout(S);

16 Function Update3(e = {u, v}, C (S ∪ {e}))
17 A = {v ∈ V (G[S]) | v is incident to C (S) .};
18 for x, y ∈ A do // If e ∈ Cout(S), then u ∈ V (G[S]), v /∈ V (G[S])
19 if e ∈ Cin(S) then

20 D
(3)
xy (S) ← min{D(3)

xy (S), D
(3)
xu (S)+D

(3)
vy (S)+1, D

(3)
xv (S)+D

(3)
uy (S)+1};

21 else D
(3)
xy (S) ← min{D(3)

xy (S), D
(3)
xu (S) + 1} ;

22 return D(3)(S);

Proof. The proof follows from these facts: (A) Initially, Cin(S(X)) = ∅. (B)
Choosing e ∈ Cin(S(X)) decreases |Cin(S(Y))|. (C) e = {x, y} ∈ Cout(S(X)) is
chosen iff |Cin(S(X))| = 0, and (assuming wlog y 	∈ V (G[S(X)])) it increases
|Cin(S(Y))| by at most |{{y, z} : z ∈ V (G[S(X)])}| < |V (G[S(X)])|.
�

Lemma 12. |Cout(S(X)) \ Cout(S(Y))| + |Cout(S(Y)) \ Cout(S(X))| ≤ V (G
[S(Y)]).

Proof. We consider two cases: (I) Cin(S(X)) 	= ∅: EBG-S picks e ∈ Cin(S(X)),
and thus, From Lemma 10, Cout(S(Y)) = Cout(S(X)). (II) Cin(S(X)) = ∅:
EBG-S picks e = {u, v} ∈ Cout(S(X)). Without loss of generality, we can assume
that u ∈ V (G[S(X)]) and v /∈ V (G[S(X)]). Let f be an edge {v, w} incident to
v. Now, w ∈ V (G[S(Y)]). This implies that the number of edges that are added
to Cout(S(Y)) and removed from Cout(S(X)) is at most |V (G[S(Y)])|.
�

Note that |V (G[S(X)])| ≤ |V (G[S(Y)])|. Hence, from the above lemmas, we
can obtain the following lemma.

Lemma 13. C (S(Y)) can be computed in O(|V (G[S(Y)])|) time from
C (S(X)).

Theorem 3. EBG-S enumerates all connected subgraphs with girth k in
O(

∑
S∈S |V (G[S])|) total time using O(maxS∈S{|V (G[S])|3}) space.

212 K. Kurita et al.

Proof. The proof can be obtained by adapting that of Theorem2. A more
detailed proof can be found in the appendix.
�

6 Conclusion

In this paper, we addressed the k-girth connected induced/edge subgraph enu-
meration problems. We proposed two algorithms: EBG-IS for induced subgraphs
and EBG-S for edge subgraphs. Both algorithms have O(n) time delay and require
O(n3) space (exact bounds are reported in Table 1). The algorithms can easily
be adapted to relax the connectivity constraint and consider weighted graphs.
Other possibilities include applying the algorithms for network analysis and con-
sidering the more challenging problem of enumerating maximal subgraphs.

Table 1. Summary of our result. S is the set of all solutions.

Total time Total space

EBG-IS O(
∑

S∈S |N [S]|) O(maxS∈S{|N [S]|3})

EBG-S O(
∑

S∈S |V (G[S])|) O(maxS∈S{|V (G[S])|3})

References

1. Alon, N., Hoory, S., Linial, N.: The moore bound for irregular graphs. Gr. Comb.
18(1), 53–57 (2002)

2. Bollobás, B.: Extremal Graph Theory. Courier Corporation (2004)
3. Chandran, L.S.: A high girth graph construction. SIAM J. Discrete Math. 16(3),

366–370 (2003)
4. Chang, H.-C., Lu, H.-I.: Computing the girth of a planar graph in linear time.

SIAM J. Comput. 42(3), 1077–1094 (2013)
5. Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of

maximal k -degenerate subgraphs in a chordal graph. In: Cao, Y., Chen, J. (eds.)
COCOON 2017. LNCS, vol. 10392, pp. 150–161. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62389-4 13

6. Conte, A., Kurita, K., Wasa, K., Uno, T.: Listing acyclic subgraphs and subgraphs
of bounded girth in directed graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA
2017. LNCS, vol. 10628, pp. 169–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71147-8 12

7. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in
undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 275–286. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23719-5 24

8. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),
413–423 (1978)

9. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-319-71147-8_12
https://doi.org/10.1007/978-3-319-71147-8_12
https://doi.org/10.1007/978-3-642-23719-5_24
https://doi.org/10.1007/978-3-642-23719-5_24

Efficient Enumeration of Subgraphs and Induced Subgraphs 213

10. Kurita, K., Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of dominating
sets for sparse graphs. arXiv preprint arXiv:1802.07863 (2018)

11. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: A new series of dense graphs of high
girth. Bull. Am. Math. Soc. 32(1), 73–79 (1995)

12. Parter, M.: Bypassing Erdős’ girth conjecture: hybrid stretch and sourcewise span-
ners. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 608–619. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43951-7 49

13. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 3(5), 237–252 (1975)

14. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

15. Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in
a K-degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 94–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 8

http://arxiv.org/abs/1802.07863
https://doi.org/10.1007/978-3-662-43951-7_49
https://doi.org/10.1007/978-3-662-43951-7_49
https://doi.org/10.1007/978-3-319-13075-0_8
https://doi.org/10.1007/978-3-319-13075-0_8

An Optimal Algorithm for Online
Prize-Collecting Node-Weighted

Steiner Forest

Christine Markarian(B)

Heinz Nixdorf Institute, Computer Science Department,
Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany

chrissm@mail.uni-paderborn.de

Abstract. We study the Online Prize-collecting Node-weighted Steiner
Forest problem (OPC-NWSF) in which we are given an undirected graph
G = (V, E) with |V | = n and node-weight function w : V → R+.
A sequence of k pairs of nodes of G, each associated with a penalty,
arrives online. OPC-NWSF asks to construct a subgraph H such that
each pair {s, t} is either connected (there is a path between s and t
in H) or its associated penalty is paid. The goal is to minimize the
weight of H and the total penalties paid. The current best result for
OPC-NWSF is a randomized O(log4 n)-competitive algorithm due to
Hajiaghayi et al. (ICALP 2014). We improve this by proposing a ran-
domized O(log n log k)-competitive algorithm for OPC-NWSF, which
is optimal up to constant factor since OPC-NWSF has a randomized
lower bound of Ω(log2 n) due to Korman [11]. Moreover, our result also
implies an improvement for two special cases of OPC-NWSF, the Online
Prize-collecting Node-weighted Steiner Tree problem (OPC-NWST) and
the Online Node-weighted Steiner Forest problem (ONWSF). In OPC-
NWST, there is a distinguished node which is one of the nodes in each
pair. In ONWSF, all penalties are set to infinity. The currently best
known results for OPC-NWST and ONWSF are a randomized O(log3 n)-
competitive algorithm due to Hajiaghayi et al. (ICALP 2014) and a ran-
domized O(log n log2 k)-competitive algorithm due to Hajiaghayi et al.
(FOCS 2013), respectively.

Keywords: Online algorithms · Competitive analysis · Steiner forest
Steiner tree · Prize-collecting · Node-weighted graphs · Penalties

1 Introduction

Steiner problems, which ask for a minimum weight subgraph of a given (undi-
rected) graph that satisfies some connectivity requirements, have been of signif-
icant interest over the past few decades. They have been originally studied in

This work was partially supported by the Federal Ministry of Education and
Research (BMBF) as part of the project ‘Resilience by Spontaneous Volunteers Net-
works for Coping with Emergencies and Disaster’ (RESIBES), (grant no. 13N13955
to 13N13957).

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 214–223, 2018.
https://doi.org/10.1007/978-3-319-94667-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_18&domain=pdf

Online Connected Red-Blue Dominating Set Leasing 215

edge-weighted graphs and later in node-weighted graphs. Node-weighted vari-
ants generalize edge-weighted ones by replacing each edge by a node with the
corresponding edge weight. In this paper, we are interested in node-weighted
graphs. A broader class of Steiner problems in which violation of some of the
requirements is possible at the cost of paying an associated penalty, is known as
prize-collecting Steiner problems. These were motivated by client-server network
planning scenarios in which a service provider may decide to lose some of his
clients or refuse to take some new ones, thereby paying an associated penalty
cost. In many scenarios, connectivity requirements are not known in advance
but are revealed over time (arrival of new clients). These are modeled as online
Steiner problems in which the algorithm has to satisfy a connectivity require-
ment as soon as revealed by irrevocably making immediate decisions. In this
paper, we study the Online Prize-collecting Node-weighted Steiner Forest prob-
lem (OPC-NWSF), introduced by Hajiaghayi et al. [8] and defined as follows.

Definition 1 (OPC-NWSF). Given an undirected graph G = (V,E) with |V | =
n and node-weight function w : V → R+. A sequence of k pairs of nodes of
G (called terminal pairs), each associated with a penalty, arrives online. OPC-
NWSF asks to construct a subgraph H such that each pair {s, t} is either con-
nected (there is a path between s and t in H) or its associated penalty is paid.
The goal is to minimize the weight of H and the total penalties paid.

Throughout the paper, unless stated otherwise, we represent the number
of nodes in the input graph by n and the number of terminal pairs by k. We
assume the standard model for online Steiner problems in which the input graph
is known in advance while the terminal pairs arrive over time. We measure the
performance of the online algorithm using the classical notion of competitive
analysis. Given an input sequence σ, let CA(σ) and COPT (σ) denote the cost
incurred by an algorithm A and an optimal offline algorithm OPT , respectively.
Algorithm A is said to be c-competitive (or has competitive ratio c) if there
exists a constant α such that CA(σ) ≤ c · COPT (σ) + α for all input sequences
σ. OPC-NWSF admits a randomized O(log4 n)-competitive algorithm due to
Hajiaghayi et al. [8], based on a generic technique that reduces online prize-
collecting Steiner problems to their corresponding fractional non-prize-collecting
variants, by losing a logarithmic factor in the competitive ratio. OPC-NWSF
generalizes the Online Set Cover problem (OSC) introduced by Alon et al. [1]
and for which Korman [11] has given a randomized lower bound of O(log n log m)
on its competitive ratio, where n denotes the number of elements and m denotes
the number of subsets. A randomized lower bound on the competitive ratio for
OPC-NWSF is thus O(log2 n).

Our Contribution. We propose an online polynomial-time O(log n log k) com-
petitive randomized algorithm for OPC-NWSF, which is optimal up to constant
factor. Our algorithm can be viewed as an online LP rounding algorithm and
draws on ideas from Alon et al.’s algorithm for the Generalized Connectivity
problem (GN) [2] in which the given graph is an edge-weighted graph and a

216 C. Markarian

sequence of pairs of nodes arrives online. GN asks to construct a minimum-
weight subgraph which contains a path between each given pair. Our result:

– improves the previous best result for OPC-NWSF, the randomized O(log4 n)-
competitive algorithm due to Hajiaghayi et al. (Theorem 3 in [8] combined
with Theorem 1 in [7]).

– improves the previous best result and gives an optimal algorithm for a spe-
cial case of OPC-NWSF, the Online Prize-collecting Node-weighted Steiner
Tree problem (OPC-NWST) in which there is a distinguished node that is
one of the nodes in each pair. The previous best result for OPC-NWST is a
randomized O(log3 n)-competitive algorithm due to Hajiaghayi et al. (Corol-
lary 1 in [8]).

– improves the previous best result and gives an optimal algorithm for a spe-
cial case of OPC-NWSF, the Online Node-weighted Steiner Forest problem
(ONWSF) in which all penalties are set to infinity. The previous best result
for ONWSF is a randomized O(log n log2 k)-competitive algorithm due to
Hajiaghayi et al. (Corollary 1 in [7]). Note that the Generalized Connectivity
problem by Alon et al. [2] can be seen as the edge-weighted counterpart of
ONWSF in which edges rather than nodes have weights.

– matches the optimal competitive ratio due to Hajiaghayi et al. (Theorem 2
in [8]) for a special case of OPC-NWSF, the Online Node-weighted Steiner
Tree problem (ONWST) in which there is a distinguished node that is one of
the nodes in each pair and all penalties are set to infinity.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give an
overview of related literature. In Sect. 3, we present our randomized algorithm
and show its analysis in Sect. 4. We conclude in Sect. 5 with some future work.

2 Related Work

Online Steiner problems were initially studied in edge-weighted graphs. Imase
and Waxman [9] have shown that a natural greedy algorithm achieves an
O(log n)-competitive ratio for the Online Steiner Tree problem (OST) in edge-
weighted graphs, which is optimal up to constant factor. Awerbuch et al. [4]
have generalized this result by showing that the greedy algorithm achieves an
O(log2 n)-competitive ratio for the Online Steiner Forest problem (OSF) in
edge-weighted graphs. Berman and Coulston [5] have improved the latter to
an O(log n)-competitive ratio. The Online Prize-collecting Steiner Tree problem
(OPST) in edge-weighted graphs was studied by Qian and Williamson [14] who
have given an O(log n)-competitive algorithm, based on an online primal-dual
approach. Hajiahjayi et al. [8] have given the same competitive ratio for OPST
and an O(log n)-competitive algorithm for the Online Prize-collecting Steiner
Forest problem (OPST) in planar edge-weighted graphs. Naor et al. [13] have
initiated the study of online Steiner problems in node-weighted graphs by giving
an O(log3 n)-competitive randomized algorithm for the Online Node-weighted

Online Connected Red-Blue Dominating Set Leasing 217

Steiner Tree problem (ONWST). Their algorithm is based on spider decomposi-
tion, a technique first introduced by Klein and Ravi [10] for the offline version of
the problem. Hajiahjayi et al. [8] have later improved this result to an O(log2 n)-
competitive ratio by employing a new technique for dual-fitting analysis called
dual averaging. This ratio is optimal up to constant factor since ONWST gen-
eralizes the Online Set Cover problem (OSC) [1] which has a randomized lower
bound of O(log n log m) [11], where n denotes the number of elements and m
denotes the number of subsets. In fact, node-weighted Steiner problems strictly
generalize their edge-weighted counterparts since every edge can be replaced by
a node with the corresponding edge weight. Angelopoulos [3] has studied a vari-
ant of ONWST in which node-weights are restricted, such that the ratio of the
maximum node-weight to the minimum node-weight is bounded (and appears
in the competitive ratio). Hajiahjayi et al. [7] have proposed an O(log3 n)-
competitive randomized algorithm for the Online Node-weighted Steiner For-
est problem (ONWSF). Their result is based on a technique called disk paint-
ings in which primal cost updates are amortized to a set of mutually disjoint
fixed-radius dual disks centered at a subset of terminals. Hajiahjayi et al. [8]
have proposed a generic technique that reduces online prize-collecting Steiner
problems to their corresponding fractional non-prize-collecting variants, by los-
ing a logarithmic factor in the competitive ratio. This has implied O(log3 n)-
competitive and O(log4 n)-competitive randomized algorithms for the Online
Prize-collecting Node-weighted Steiner Tree problem (OPC-NWST) and the
Online Prize-collecting Node-weighted Steiner Forest problem (OPC-NWSF),
respectively. For OPC-NWSF in planar graphs, they have shown an O(log2 n)-
competitive ratio.

3 Online Algorithm

In this section, we present our randomized online algorithm for OPC-NWSF.
The algorithm is given an undirected graph G = (V,E) with node-weight

function w : V → R+. In each step, a pair {s, t} associated with a penalty p
needs to be served by either paying its penalty or assuring a path between s and
t in the subgraph induced by the set of nodes outputted by the algorithm.

The algorithm assigns a fraction, initially set to 0, to each of the n nodes
of G and to each of the k penalties associated with the pairs. The maximum
flow between nodes s and t in an undirected edge-weighted graph G = (V,E)
is defined as the smallest total weight of edges of G which if removed would
disconnect s from t. These edges form a minimum cut between s and t in G.
Alon et al.’s fractional algorithm [2] satisfies a connectivity requirement between
two nodes in an undirected edge-weighted graph by constructing a minimum cut
between the two nodes and augmenting the fraction of each edge in the cut,
until the maximum flow between the two nodes becomes at least 1. Since the
fraction of each edge on a path connecting the two nodes has a value of at least
the maximum flow going through the path, a fractional solution is guaranteed.

Upon the arrival of a new pair, our algorithm constructs a fractional solution
by transforming the given node-weighted graph into an edge-weighted graph and

218 C. Markarian

then exploiting a similar approach as Alon et al.’s [2] for edge-weighted graphs.
It performs the following edge-weight update:

– It assigns a (temporary) weight to each edge e and sets its value to the smaller
among the two fractional values corresponding to e’s endpoint nodes. If an
edge has s or t as one of its endpoint nodes and u as the other, the algorithm
sets its weight to that of u.

– It adds a (temporary) virtual edge from s to t and sets its weight to the
fractional value corresponding to p (see Fig. 1). This edge is removed after
serving pair {s, t}.

Fig. 1. Virtual edge of weight p from s to t

While the maximum flow between s and t is less than 1, the algorithm per-
forms an edge-weight update and computes a minimum cut C between s and
t by running the minimum cut polynomial-time algorithm by Schroeder et al.
for undirected edge-weighted graphs [15]. Consider an edge e in C. We call the
endpoint node of e with fractional value smaller than that of the other endpoint
of e, a minimum cut node of C. The algorithm increases the fractions of all
minimum cut nodes of C as well as the fraction corresponding to p. Note that
the virtual edge from s to t belongs to every (minimum) cut between s and t.
Since each edge e on any path from s to t has a weight of at least the maximum
flow going through the path and this value is the smaller of the two fractional
values corresponding to the two endpoint nodes, a fractional solution is guaran-
teed. The algorithm then rounds the fractional solution constructed. A variable
μ is randomly chosen as the minimum among 2 �log(k + 1)� independent random
variables, distributed uniformly in the interval [0, 1]. The algorithm adds to the
integral solution every node or penalty with fractional value exceeding μ. This
randomized rounding process need not guarantee a feasible integral solution. If
this is the case, the algorithm compares the cost of paying penalty p to that of
a minimum node-weight path from s to t and chooses the cheaper among the
two. That is, it either adds the nodes of such a path into the integral solution
or pays p, whichever costs less.

Let fu denote the fraction corresponding to u and fp the fraction correspond-
ing to penalty p. We denote by S the solution nodes added by the algorithm and

Online Connected Red-Blue Dominating Set Leasing 219

by P the set of pairs for which the algorithm pays their penalties. Both sets
are initially empty. Let H be the subgraph induced by S and let wu denote the
weight of node u. The steps of the algorithm upon the arrival of a new pair are
depicted in Algorithm 1 below.

Algorithm 1.
Input: G = (V, E), S and P , {s, t} with penalty p
Output: S and P , such that either there is a path from s to t in the subgraph H
induced by S or {s, t} ∈ P
If there is no path from s to t in H,

(i) While (maximum flow between s and t after edge-weight update) < 1,
- Construct a minimum cut between s and t.
Let Q be the set of its minimum cut nodes.

- For each node u ∈ Q, set: fu = fu · (1 + 1/wu) + 1
|Q|·wu

- Set fp = fp · (1 + 1/p) + 1
|Q|·p

(ii) Add every u ∈ V with fu > μ to S and add {s, t} to P if fp > μ
(iii) If {s, t} /∈ P and there is no path from s to t in H, construct a minimum

node-weight path from s to t. Let c be its cost. Add {s, t} to P if p < c. Else, add
each node in the path to S.

Correctness. The correctness of the algorithm follows immediately from the last
step, which assures that for each arriving pair {s, t} with penalty p, either
its penalty p is paid or the nodes of a cheapest path connecting s to t are
added into the solution. In the next section, we show that this algorithm has an
O(log n log k)-competitive ratio for OPC-NWSF.

4 Competitive Analysis

In this section, we analyze the performance of Algorithm 1 upon its termination.
We show that it has an O(log n log k)-competitive ratio.

We will refer to a node u or pair with penalty p by a single parameter x
and denote by cx the corresponding cost wu or p. Let S and P represent the
solution constructed by the algorithm, where S denotes the set of nodes in the
integral solution and P denotes the set of pairs whose penalties are paid by the
algorithm. Similarly, we let S′ and P ′ represent the output of an optimal offline
solution.

Lemma 1. The cost of the fractional solution constructed by the algorithm is
at most O(log n) times the cost of the optimal offline solution.

Proof. The proof is based on the following:

(a) Every fractional increase adds at most 2 to the fractional solution.

Proof. Assume the algorithm enters the while loop to serve a given pair and

220 C. Markarian

constructs a minimum cut. Let K be the set containing the corresponding
minimum cut nodes and the penalty corresponding to the given pair. The
fractional cost added by each i ∈ K is

(
ci · (fici + 1

|K|·ci)
)
. Note that before

the algorithm performs a fractional increase, we have that
∑

i∈K fi ≤ 1. In
total, the fractional cost is thus:

∑
i∈K

ci ·
(

fi
ci

+
1

|K| · ci

)
≤ 2 (1)

��
(b) Every time the algorithm makes an increase, there is at least one j ∈ S′ ∪P ′

whose fraction increases. After O(log n) · cj increases, the fraction of j
becomes at least 1.

Proof. In order to have served a given pair, an optimal offline algorithm
must have either paid the corresponding penalty or must contain at least
one of the minimum cut nodes. Hence, there must be at least one j ∈ S′ ∪P ′

in every fractional increase. Moreover, the fraction of j becomes at least 1
after O(log |K|) · cj weight increases, where |K| ≤ n. ��

(c) The fraction of j is not increased again by the algorithm.

Proof. We have two possibilities here. (1) j ∈ P ′: assume for contradiction
that the algorithm decides to increase the fraction of j. Since this fraction is
already at least 1, the while condition will not be satisfied (maximum flow
is at least 1 because of the virtual edge corresponding to j which belongs
to every cut) and the algorithm would have now served the demand. (2)
j ∈ S′: assume the maximum flow is less than 1 and the algorithm enters
the while loop. Then j cannot be a minimum cut node for any minimum
cut computed inside the while loop since its fraction is at least 1 (Min-cut
Max-flow Theorem). ��

Lemma 2. The cost of the integral solution constructed by the algorithm is at
most O(log k) times the cost of the fractional solution.

Proof. To serve a given pair {s, t}, the algorithm adds nodes to S (and/or pairs
to P) in steps ii and iii. The expected cost of the integral solution in step ii
can be upper bounded by O(log k). Fix a q : 1 ≤ q ≤ 2 �log(k + 1)� and let
i represent any node (or penalty). Let L be the set of all nodes and penalties
(|L| = n + k). Let Xi,q be the indicator variable of the event that i is chosen by
the algorithm. The expected cost of the integral solution is then at most:

∑
i∈L

2�log(k+1)�∑
q=1

ci · Exp [Xi,q] ≤ 2 �log(k + 1)� ·
∑
i∈L

ci · fi (2)

As for the expected cost of the integral solution in step iii, we show that it
is negligible. The algorithm performs step iii only if the given pair {s, t} is not

Online Connected Red-Blue Dominating Set Leasing 221

served in previous steps. Assume C is any minimum cut of G between s and
t after exiting the while loop. Let K be the set containing the corresponding
minimum cut nodes of C and pair {s, t}. Note that the algorithm assures that∑

i∈K fi ≥ 1 upon exiting the while loop. Thus, we have that for a single 1 ≤
q ≤ 2 �log(k + 1)�, the probability that {s, t} is not served is at most:

∏
i∈K

(1 − fi) ≤ e− ∑
i∈K fi ≤ 1/e

Therefore, for all 1 ≤ q ≤ 2 �log(k + 1)�, the probability that {s, t} is not
served is at most 1/k2. Moreover, the algorithm serves {s, t} by paying the
cheapest cost possible. This cost is a lower bound on the cost of the optimal
offline solution Opt. The overall expected cost for all k terminal pairs is thus
k · 1/k2 · Opt. ��

Lemmas 1 and 2 ultimately lead to the following theorem.

Theorem 1. There is an online polynomial-time O(log n log k)-competitive ran-
domized algorithm for the Online Prize-collecting Node-weighted Steiner Forest
problem (OPC-NWSF), which is optimal up to constant factor.

Corollary 1. There is an online polynomial-time O(log n log k)-competitive
randomized algorithm for the Online Prize-collecting Node-weighted Steiner Tree
problem (OPC-NWST), which is optimal up to constant factor.

Corollary 2. There is an online polynomial-time O(log n log k)-competitive
randomized algorithm for the Online Node-weighted Steiner Forest problem
(ONWSF), which is optimal up to constant factor.

5 Open Problems

We have presented a randomized online algorithm for the Online Prize-collecting
Node-weighted Steiner Forest problem (OPC-NWSF), which is optimal up to
constant factor. The very next question would be to find out whether one can
design an optimal deterministic algorithm for the problem. This seems to be
challenging even for the simplest variant, the Online Node-weighted Steiner Tree
problem. In fact, most online approaches for node-weighted Steiner problems are
randomized.

OPC-NWSF in planar graphs admits an O(log2 n)-competitive ratio due to
Hajiaghayi et al. [8]. The question is whether one can achieve a better com-
petitive ratio for this problem, by incorporating, for instance, ideas from our
algorithm to that of Hajiaghayi et al..

Steiner problems have been recently studied with a leasing aspect in which
rather than buying edges and being able to use them forever, edges are leased
for different durations and costs. Connectivity requirements need to be satisfied
for a limited period of time and edges can be used only when leased. The leasing

222 C. Markarian

variants of the Online Steiner Tree and Online Steiner Forest problems in edge-
weighted graphs have been studied by Bienkowski et al. [6] and Meyerson [12],
respectively. It would be interesting to consider the node-weighted as well as the
prize-collecting counterparts of these problems.

References

1. Alon, N., Awerbuch, B., Azar, Y.: The online set cover problem. In: Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003,
pp. 100–105. ACM, New York (2003)

2. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., (Seffi) Naor, J.: A general
approach to online network optimization problems. ACM Trans. Algorithms 2(4),
640–660 (2006)

3. Angelopoulos, S.: The node-weighted steiner problem in graphs of restricted node
weights. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 208–
219. Springer, Heidelberg (2006). https://doi.org/10.1007/11785293 21

4. Awerbuch, B., Azar, Y., Bartal, Y.: Online generalized Steiner problem. Theor.
Comput. Sci. 324(2–3), 313–324 (2004)

5. Berman, P., Coulston, C.: Online algorithms for Steiner tree problems (extended
abstract). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 344–353 (1997)

6. Bienkowski, M., Kraska, A., Schmidt, P.: A deterministic algorithm for online
steiner tree leasing. Algorithms and Data Structures. LNCS, vol. 10389, pp. 169–
180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 15

7. Hajiaghayi, M.T., Liaghat, V., Panigrahi, D.: Online node-weighted Steiner forest
and extensions via disk paintings. In: 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, Berkeley, CA, USA, 26–29 October 2013,
pp. 558–567 (2013)

8. Hajiaghayi, M.T., Liaghat, V., Panigrahi, D.: Near-optimal online algorithms for
prize-collecting Steiner problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 576–587. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43948-7 48

9. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math.
4(3), 369–384 (1991)

10. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)

11. Korman, S.: On the use of randomization in the online set cover problem. Master’s
thesis, Weizmann Institute of Science, Israel (2005)

12. Meyerson, A.: The parking permit problem. In: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh,
PA, USA, 23–25 October 2005, pp. 274–284 (2005)

13. (Seffi) Naor, J., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and
related problems. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Washington, DC, USA. IEEE Com-
puter Society, pp. 210–219 (2011)

https://doi.org/10.1007/11785293_21
https://doi.org/10.1007/978-3-319-62127-2_15
https://doi.org/10.1007/978-3-662-43948-7_48

Online Connected Red-Blue Dominating Set Leasing 223

14. Qian, J., Williamson, D.P.: An O(logn)-competitive algorithm for online con-
strained forest problems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011.
LNCS, vol. 6755, pp. 37–48. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22006-7 4

15. Schroeder, J., Guedes, A., Duarte Jr., E.P.: Computing the minimum cut and
maximum flow of undirected graphs. Technical report, Department of Informatics,
Federal University of Paraná (2004)

https://doi.org/10.1007/978-3-642-22006-7_4
https://doi.org/10.1007/978-3-642-22006-7_4

Median of 3 Permutations, 3-Cycles
and 3-Hitting Set Problem

Robin Milosz1,2, Sylvie Hamel1(B), and Adeline Pierrot2

1 Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, Québec, Canada

{robin.milosz,sylvie.hamel}@umontreal.ca
2 Laboratoire de Recherche Informatique, Université Paris-Sud, Orsay, France

adeline.pierrot@lri.fr

Abstract. The median of permutations problem consists in finding a
consensus permutation of a given set of m permutations of size n. This
consensus represent the “closest” permutation to the given set under
the Kendall-tau distance. Since the complexity of this problem is still
unknown for sets of 3 permutations, in the following work, we investigate
this specific case and show an interesting link with the 3-Hitting Set
problem.

1 Introduction

The problem of aggregating multiple rankings into one consensus ranking was
already looked at two centuries ago [8] but was mostly studied in the last twenty
years under different names and in different research areas: rank aggregation
problem [1,11,12], Kemeny rank aggregation [2,4,9], Kemeny-Young method [17],
median ranking problem [7] and preference aggregation [10]. Applications include
determining the winner in a sport competition, deriving voting preferences for
an election or aggregating answers returned by several Web engines.

From a theoretical point-of-view, if the rankings are on strictly ordered ele-
ments, rankings are permutations and the problem becomes that of finding the
median of a set of permutations under a given distance. For the Kendall-tau
distance [16], the problem of finding medians of a set of m permutations has
been widely studied either by deriving some exact solvers [2,9], some approxi-
mation algorithms [21], some fixed-parameters algorithms [13,15,20] or working
on space reduction techniques [4,6,19].

The problem has been proved to be NP-complete for sets of m ≥ 4 per-
mutations, m even [11] (some corrections of the proof was done in [5]). It was
recently found [3] that it is NP-Hard for sets of m ≥ 7 permutations, m odd.
The theoretical complexity of the cases m = 3 and m = 5 remains open, thus
making it relevant to investigate those two cases.

Supported by NSERC through an Individual Discovery Grant (Hamel), by FRQNT
through a Ph.D’s scholarship and Mitacs through a Globalink Research Award
(Milosz).

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 224–236, 2018.
https://doi.org/10.1007/978-3-319-94667-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_19&domain=pdf

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 225

Here, we focus on the case where m = 3, i.e. we are interested to find medians
of sets of three permutations. We demonstrate in this work, that in order to solve
the median of three permutations problem, one can only consider 3-cycles present
in the majority graph associated with the three permutations. We further make
the link with the 3-Hitting Set problem (one of Karp’s 21 NP-complete problems
[14]) which consist in finding a minimal set of elements that cover a collection of
subsets, in our case covering the collection of all 3-cycles present in the majority
graph.

2 Basic Definitions

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all
permutations of [n] is denoted Sn. As usual we denote a permutation π of [n]
as π = π1π2 . . . πn. The position of an element i in a permutation π is π−1

i ,
where π−1 is the usual inverse of π under composition. Let R ⊂ Sn be a set
of permutations of [n], we will denote its cardinality by #R. We define the
order between two elements i and j, 1 ≤ i, j ≤ n, in a permutation π of [n]
as i to the left of j (resp. to the right of), denoted i ≺π j (resp. j ≺π i), if
π−1

i < π−1
j (resp. π−1

i > π−1
j). For R ⊂ Sn, the majority order for elements i

and j, 1 ≤ i, j ≤ n is i ≺R j (resp. j ≺R i) if #{π ∈ R | i ≺π j} >
(resp. <)#{π ∈

R | j ≺π i}. We say that j ≺R i is the minority order if i ≺R j is the majority
order. Note that when #R is even, there can exist elements i and j, 1 ≤ i, j ≤
n, for which neither a majority or a minority order is defined. The Kendall-
tau distance, denoted Kt, counts the number of order disagreements between
pairs of elements of two permutations π, σ ∈ Sn and is defined as Kt(π, σ) =
#{(i, j)|i < j and [(i ≺π j and j ≺σ i) or (j ≺π i and i ≺σ j)]}. Given any set
of permutations R ⊆ Sn and a permutation π ∈ Sn, the Kemeny score is defined
as K(π,R) =

∑
σ∈R Kt(π, σ).

The median of permutations problem is stated as follows: Given R ⊆ Sn, we
want to find a permutation π∗ ∈ Sn such that K(π∗,R) ≤ K(π,R), ∀ π ∈ Sn.
Such a permutation π∗ is called a median permutation. Note that a set R can
have more than one median.

Finally, we define the left matrice L(R) such that for any two elements 1 ≤
i, j ≤ n, Lij(R) = #{π ∈ R | i ≺π j}. It represents the number of time i ≺ j in
permutations of R. Note that Lxy(R) = #R−Lyx(R) and that the Kemeny score
can be computed using the left matrice as K(π,R) =

∑
1≤i,j≤n|i≺πj Lji(R). Note

that for ease of notation, we will write Lij instead of Lij(R), when the context
is clear.

3 3-Cycle Theorem

In this section, we put everything together to state and prove our main theorem
on the ordering of pairs of elements in medians of sets of three permutations.

226 R. Milosz et al.

3.1 Definitions and Properties

First, let us set basic definitions and state some properties that will help under-
stand and prove this main theorem called 3-cycle Theorem. To do that, we need
to build the following graph.

Definition 1. Let R ⊂ Sn. The majority graph GR = (V,E) of R is the
weighted directed graph, with the set of vertices V = {i | 1 ≤ i ≤ n} and the set
of directed edges E = {(i, j) | i ≺R j is themajority order of i 	= j ∈ V }. The
weight of an edge (i, j) is w(i,j) = |Lij − Lji |. Note that the majority graph is
a weighted tournament graph when #R is odd.

Observatio 1. Let R ⊂ Sn be a set of 3 permutations, then for every pair of
elements i, j, 1 ≤ i 	= j ≤ n, exactly one of the following holds:

– (i, j) is an edge of GR of weight 3 (case Lij = 3),
– (i, j) is an edge of GR of weight 1 (case Lij = 2),
– (j, i) is an edge of GR of weight 1 (case Lij = 1),
– (j, i) is an edge of GR of weight 3 (case Lij = 0).

Definition 2. We call LowerBound1 the trivial lower bound on the Kemeny
Score of a median permutation of R ⊂ Sn, discussed in details in [10], and
computed as follow:

LowerBound1(K(π,R)) =
∑

i�=j∈{1,...,n}
i<j

min{Lij(R), Lji(R)}.

Definition 3. A 3-cycle (i, j, k) in a majority graph G = (V,E) is a directed
cycle of length three containing the edges (i, j),(j, k) and (k, i). The set of
involved edges of G, denoted IE, is the set of all edges in E that are con-
tained in at least one 3-cycle.

Example 1. Figure 1 shows the majority graph of the set R = {[4, 5, 1, 2, 3],
[1, 5, 3, 4, 2], [5, 2, 3, 4, 1]}. In this instance, there are two 3-cycles: (2, 3, 4) and
(3, 4, 1) and IE = {(1, 3), (2, 3), (3, 4), (4, 1), (4, 2)}.
Proposition 1. Let R ⊂ Sn be a set of 3 permutations and let GR = (V,E) be
its majority graph. Then if e ∈ E is an edge of a 3-cycle of GR, we = 1.

Proof. By contradiction, suppose that there is an edge (i, j) of weight 3 in a
3-cycle (i, j, k) of GR. Then in every permutation of R, i is before j. Moreover,
by definition of the majority graph, k ≺R i and j ≺R k have to be majority
orders. Because k ≺R i is a majority order, k has to be before i in at least
2 of the 3 permutations of R. But i is always before j thus, by transitivity, k
has to be before j in at least 2 of the 3 permutations. This is a contradiction
because j ≺R k is a majority order. Therefore, a 3-cycle can only have edges of
weight 1. �

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 227

Finding a median for a set R ⊂ Sn of 3 permutations is equivalent to trans-
forming the majority graph GR into a direct acyclic graph (DAG) using the
minimum number of edge inversions and taking into account the weights of
those inverted edges [9,10]. Indeed, a permutation can be represented as a DAG
(the majority graph of the set containing only this permutation), and all edges
that are reversed with respect to GR correspond to pairs of elements that are
in their minority order in that permutation. Note that if the number of reversed
edges is minimal, the resulting topological ordering of the graph is a median per-
mutation. From [9], we have that the Kemeny score of a permutations is linked
with LowerBound1 and the weight of reversed edges with respect to GR:

Proposition 2 [9]. Let R ⊂ Sn, let GR = (V,E) be the majority graph of R
and let D(GR) be a directed acyclic graph obtained by inverting edges in GR.
Let π be the permutation obtained from the topological ordering of the vertices
in D(GR), then:

K(π,R) = LowerBound1 +
∑

(i,j)∈E
s.t.(j,i)∈D(GR)

w(i,j).

Interestingly, we observed by simulations on sets of 3 permutations, that
all edges of the majority graph that needed to be inverted to obtain a median
permutation were contained in a 3-cycle of the original majority graph. This
gives us the following theorem.

Theorem 1 (3-cycle Theorem). Let R ⊂ Sn be a set of 3 permutations. Let
GR = (V,E) be its majority graph. Let π∗ be any median permutation of R. If
an edge (i, j) of GR is not contained in any 3-cycle, then i ≺π∗ j.

Proof (Part 1). First, note that by Proposition 1, all edges (i, j), with w(i,j) = 3
are not contained in any 3-cycle of GR. For these edges, the following theorem
from [6], gives us the result.

Theorem 2 (Always Theorem [6]). Let R be a set of m permutations, m
odd. Let π∗ be any median permutation of R. If i ≺π j, ∀π ∈ R, then i ≺π∗ j.

For those edges (i, j) of GR, not contained in any 3-cycle, with w(i,j) = 1,
we have to work a bit more. The proof of this case is detailed in Sect. 3.2. �

Theorem 1 can drastically reduce the search space for a median permutation,
since it allows us to fix the order of all pairs of elements not contained in any
3-cycle of the majority graph. In Fig. 1, all 3-cycles are represented with dashed
edges.

3.2 Proof of the 3-Cycle Theorem

In the following section we prove Theorem 1 for the case where (i, j) of GR is
not contained in any 3-cycle, with w(i,j) = 1, and where R ⊂ Sn is a set of 3
permutations.

To help us do so, first note that we have the following partition.

228 R. Milosz et al.

1

2

3

4

5

Fig. 1. The majority graph of the set R = {[4, 5, 1, 2, 3], [1, 5, 3, 4, 2], [5, 2, 3, 4, 1]}. Bold
edges have weight 3 and thin edges have weight 1. The 3-cycles are shown with dashed
edges and the set of all those dashed edges is the set of involved edges IE . With the
3-cycle theorem, the edge (1, 2) is preserved in any median permutation and should
not be reversed despite being part of the cycle (1, 2, 3, 4). In this case, reversing edge
(3, 4) results in a DAG with corresponding median permutation π∗ = [5, 4, 1, 2, 3].

Lemma 1. Let R ⊂ Sn be a set of 3 permutations and let GR = (V,E) be its
majority graph. Let (i, j) be an edge of GR not contained in any 3-cycle. Then
the elements of N(i,j) = {1, 2, . . . , n}\{i, j} can be partitioned into the 5 distincts
(disjoint) following subsets A,B,C,D and E:

A = {x ∈ N(i,j) |Lxi(R) = 3},
B = {x ∈ N(i,j) |Lxi(R) = 2 and Lxj(R) ≥ 2},
C = {x ∈ N(i,j) |Lxi(R) ≤ 1 and Lxj(R) ≥ 2},
D = {x ∈ N(i,j) |Lxi(R) ≤ 1 and Lxj(R) = 1},
E = {x ∈ N(i,j) |Lxj(R) = 0}.

Proof. This comes from the fact that for x ∈ N(i,j), we cannot have Lxi(R) ≥ 2
(x ≺R i is a majority order) and Lxj(R) ≤ 1 (j ≺R x is a majority order), since
this case correspond to having the 3-cycle (x, i, j) and we choose an edge (i, j)
of GR not contained in any 3-cycle. Since all of the other disjoint cases are
represent by one of the subsets A,B,C,D and E, this conclude the proof. �

Figure 2 gives two sets of three permutations, with elements in A, B, C, D
and E.

R1 =

⎧
⎨

⎩

[b a i c j e d]
[a i d c b j e]
[j e d c b a i]

⎫
⎬

⎭
R2 =

⎧
⎨

⎩

[a b i c j d e]
[a i b c d j e]
[j a b c d e i]

⎫
⎬

⎭

Fig. 2. Two examples of a set of three permutations having one element of each subset:
a ∈ A, b ∈ B, c ∈ C, d ∈ D and e ∈ E. The permutations are formatted to align
elements i and j for better visualization.

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 229

To prove Theorem 1 by contradiction, we assume that there are two elements
i and j such that (i, j) is an edge of the majority graph of R not contained
in any 3-cycle, but there is a median permutation π∗ in which j ≺π∗ i. We
will concentrate on the set K of elements lying strictly between j and i in π∗

(i.e. π∗ = ...jKi...) and show that swapping j and i reduces the Kemeny score
leading to a contradiction in our choice of median. Our proof is based on the
following two lemmas, where Lemma 2 gives the possible values of Lxy(R), for
x, y ∈ K ∪ {i, j}, and Lemma 3 shows that for k ∈ K, k /∈ A and k /∈ E.

Lemma 2. Let R ⊂ Sn be a set of 3 permutations and let GR = (V,E) be its
majority graph. Let (i, j) be an edge of weight w(i,j) = 1 in GR not contained
in any 3-cycle. Let j ≺π∗ i, where π∗ ∈ Sn is an assumed median of R. Let
K ⊂ {1, 2, . . . n} be the set of elements lying strictly between j and i in π∗.
Then, the values Lxy(R) for x, y ∈ K ∪ {i, j} are the ones given in Table 1:

Table 1. This table gives the possible values of Lxy(R) for x, y ∈ K ∪ {i, j} (i.e. the
number of permutations of R having x to the left y), where K is partitioned into the
subsets A, B, C, D and E of Lemma 1. The bold (resp. italicized) numbers corresponds
to values of Lxy(R1) (resp. of Lxy(R2)) of the left example from Fig. 2.

Lxy y ∈ A y ∈ B y ∈ C y ∈ D y ∈ E y = i y = j

x ∈ A 0 ,1,2,3 1,2,3 2,3 2,3 2,3 3 2

x ∈ B 0,1,2 0 ,1,2,3 1,2,3 1,2,3 2,3 2 2

x ∈ C 0,1 0,1,2 0 ,1,2,3 1,2,3 2,3 1 2

x ∈ D 0,1 0,1,2 0,1,2 0 ,1,2,3 1,2,3 1 1

x ∈ E 0,1 0,1 0,1 0,1,2 0 ,1,2,3 1 0

x = i 0 1 2 2 2 - 2

x = j 1 1 1 2 3 1 -

Proof. First, Theorem 2 and the fact that π∗ = . . . jKi . . . is a median of R
imply that Lkj(R) 	= 3 and Lik(R) 	= 3,∀k ∈ K. Combining this observation
and the definitions of subsets A,B,C,D,E, give us that Lai = 3, ∀a ∈ A,
Lbi = Lbj = 2, ∀b ∈ B, Lic = Lcj = 2, ∀c ∈ C, Lid = Ljd = 2, ∀d ∈ D, and
Lje = 3, ∀e ∈ E.

Second, since (i, j) is an edge of weight w(i,j) = 1 in GR, we know that the
majority order between i and j is i ≺R j with Lij(R) = 2. Since ∀a ∈ A, a
is always left of i, by transitivity, every element a ∈ A has the majority order
a ≺R j and Laj = 2, ∀a ∈ A. Transitivity also gives us Lak ≥ 2, ∀a ∈ A and
∀k ∈ C ∪ D ∪ E. Symmetrically, Lie = 2, ∀e ∈ E and Lke ≥ 2, ∀e ∈ E and
∀k ∈ A ∪ B ∪ C.

Third, since ∀b ∈ B, Lbi(R) = 2, we know that in one of the three permuta-
tions of R, b is to the right of i. Combining this with the fact that ∀a ∈ A, a is

230 R. Milosz et al.

always to the left of i (Lai = 3) gives us that Lba 	= 3, ∀a ∈ A, b ∈ B. Similarly,
we have Lcb 	= 3, ∀b ∈ B, c ∈ C, Ldc 	= 3, ∀c ∈ C, d ∈ D, Led 	= 3, ∀d ∈ D, e ∈ E
and Ldb 	= 3, ∀b ∈ B, d ∈ D.

Finally, if we consider x and y to be elements of the same subset A,B,C,D
or E, then we know nothing about their relative order in permutations of R
leading, in that case to Lxy ∈ {0, 1, 2, 3}. �

Lemma 3. Let R ⊂ Sn be a set of 3 permutations and let GR = (V,E) be its
majority graph. Let (i, j) be an edge of weight w(i,j) = 1 in GR not contained
in any 3-cycle. Let π∗ ∈ Sn be an assumed median of R in which j ≺π∗ i. Let
K ⊂ {1, 2, . . . n} be the set of elements lying strictly between j and i in π∗. Then,
∀k ∈ K, Lki(R) 	= 3 and Lkj(R) 	= 0.

Proof. First, note that if we partition K into the subsets A,B,C,D and E of
Lemma 1, then for k ∈ K, showing that Lki(R) 	= 3 and Lkj(R) 	= 0, is the same
as showing that k /∈ A and k /∈ E i.e. subsets A and E are empty. To prove that
A and E are empty, we will proceed in two steps. First, we will assume that they
are not empty and show that we cannot have an element of E to the left of an
element of A in our assumed median. Second, we will use this fact to conclude
that A and E are empty.
Step 1. We want to show that there is no element of E to the left of an element
of A in π∗. By contradiction, assume π∗ has at least one element of E at the left
of one element of A. Assume that e ∈ E (resp. a ∈ A) is the rightmost (resp.
leftmost) such element, so that there is neither elements of E nor elements of A
lying between e and a in π∗. Let S be the sequence of elements lying between
e and a in π∗ (i.e. π∗ = ...j...eSa...i...). Then S contains only elements of B, C
and D. Let Bs = B ∩ S and nB = #Bs, and similarly for C and D. We show
that we can build from π∗ a permutation π′ that reduces the Kemeny score.

If nD ≥ nB we take π′ such that the position of every element in π′ is the
same as in π∗, except that a is moved to the left of S and e: π′ = ...j...aeS...i....

Let Δ be the difference of Kemeny score between π′ and π∗: Δ = K(π′,R)−
K(π∗,R). Recall that for any permutation π, the Kemeny score K(π,R) =∑

1≤i,j≤n|π−1
i <π−1

j
Lji(R). Then

Δ = −Lae + Lea +
∑

b∈Bs

(−Lab + Lba) +
∑

c∈Cs

(−Lac + Lca) +
∑

d∈Ds

(−Lad + Lda)

(1)
< −2 + 1 +

∑

b∈Bs

(−1 + 2) +
∑

c∈Cs

(−2 + 1) +
∑

d∈Ds

(−2 + 1)

= −1 +
∑

b∈Bs

(1) +
∑

c∈Cs

(−1) +
∑

d∈Ds

(−1)

= −1 + nB − nC − nD
(2)
< 0

Inequality (1) comes from taking the bounding values of L in Lemma 2. Inequal-
ity (2) comes from the fact that nD ≥ nB .

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 231

For nB > nD, if we take π′ such that the position of every element in π′

is the same as in π∗, except that e is moved to the right of S and a: π′ =
...j...Sae...i..., we can show again, using the same kind of computation as before,
that Δ = K(π′,R)−K(π∗,R) < 0. In both cases, the Kemeny score is reduced,
contradicting that π∗ is a median permutation. Therefore, no element of E can
precede an element of A in π∗.
Step 2. Now, we show that A and E are empty. Assume by contradiction that
A is non empty. Let a be the leftmost element of A in π∗. Let S be the sequence
of elements lying between j and a in π∗ (i.e. π∗ = ...jSa...i...). From Step 1, S
contains only elements of B, C and D. Let Bs = B ∩ S and nB = #Bs, and
similarly for C and D. Again we show that we can build from π∗ a permutation
π′ that reduces the Kemeny score: If nB > nD we take π′ such that the position
of every element in π′ is the same as in π∗, except that j is moved to the right
of S and a: π′ = ...Saj...i.... Let Δ be the difference of Kemeny score between
π′ and π∗ : Δ = K(π′,R) − K(π∗,R). Then

Δ = −Laj + Lja +
∑

b∈Bs

(−Lbj + Ljb) +
∑

c∈Cs

(−Lcj + Ljc) +
∑

d∈Ds

(−Ldj + Ljd)

(1)
= −2 + 1 +

∑

b∈Bs

(−2 + 1) +
∑

c∈Cs

(−2 + 1) +
∑

d∈Ds

(−1 + 2)

= −1 +
∑

b∈Bs

(−1) +
∑

c∈Cs

(−1) +
∑

d∈Ds

(1)

= −1 − nB − nC + nD
(2)
< 0

Equality (1) comes from taking the values of L, given in Table 1. Inequality (2)
comes from the fact that nB > nD.

For the case nD ≥ nB , we move a at the immediate left of j (i.e. π′ =
...ajS...i...) and we can show again, using the same kind of computation as
before, that Δ = K(π′,R) − K(π∗,R) < 0. In both cases, the Kemeny score is
reduced, contradicting that π∗ is a median permutation. Therefore, A is empty.
The proof that E is empty is symmetrical. �

We now have everything we need to finish the proof of our Theorem 1 and
conclude this section.

Proof of Theorem 1 (Part 2). Let R ⊂ Sn be a set of 3 permutations and let
GR = (V,E) be its majority graph. Let (i, j) be an edge of weight w(i,j) = 1 in
GR not contained in any 3-cycle. Let π∗ ∈ Sn be an assumed median of R with
j ≺π∗ i. Let K ⊂ {1, 2, . . . n} be the set of elements lying strictly between j and
i in π∗ i.e. we have π∗ = ...jKi.... From Lemma 3, K contains only elements of
B, C and D. Let π′ = ...iKj... obtained from π∗ by exchanging the positions of
element i and element j. Let Δ be the difference of Kemeny score between π′

232 R. Milosz et al.

and π∗, i.e. Δ = K(π′,R) − K(π∗,R). Then

Δ = −Lij + Lji +
∑

b∈B

(−Lib + Lbi − Lbj + Ljb)

+
∑

c∈C

(−Lic + Lci − Lcj + Ljc) +
∑

d∈D

(−Lid + Ldi − Ldj + Ljd)

(1)
= −2 + 1 +

∑

b∈B

(−1 + 2 − 2 + 1)

+
∑

c∈C

(−2 + 1 − 2 + 1) +
∑

d∈D

(−2 + 1 − 1 + 2)

= −1 +
∑

b∈B

(0) +
∑

c∈C

(−2) +
∑

d∈D

(0)

= −1 + −2 × #C
< 0

Equality (1) comes from taking the values of L given in Lemma 2. The permu-
tation π′ has a lower Kemeny score than the assumed median permutation π∗,
leading to a contradiction. �

From preliminary tests we observed that Theorem 1 seems to be also valid
on sets of m permutations, m odd. Therefore we state the following conjecture:

Conjecture 1. Let R ⊂ Sn be a set of m permutations, m odd. Let GR = (V,E)
be its majority graph. Let π∗ be any median permutation of R. If an edge (i, j)
of GR is not contained in any 3-cycle, then i ≺π∗ j.

The 3-Cycle Theorem has an important significance since we can prove that
pairs of elements that are ordered by previous methods such as an extension of
the Condorcet Criterion [8], the Major Order Theorem [19], the Always Theorem
[6] and the 3/4 - Majority Rule [4], the two last ones being equivalent in the case
of three permutations, are also ordered by Theorem 1. When combined with an
ILP solver this space reduction greatly improves the solving time for randomly
generated data as well as for real data (see supplementary material1).

4 Link with the 3-Hitting Set Problem

The Hitting Set problem (HSP) is defined as follows: Let E be our set of
elements and T a set of subsets of E . Find the minimum cardinality subset S ⊆ E
such that every subset of T contains at least one element of S.

The 3-Hitting Set problem (3HS) is the case where all subsets in T
are of size 3. Both the Hitting Set problem and the 3-Hitting Set problem are
NP-Hard [14]. The 3-Hitting Set problem can be formulated in Integer Linear
Programming (ILP) as:

minimize :
∑

e∈E
xe

Subject to:
xet1 + xet2 + xet3 ≥ 1, ∀{t1, t2, t3} ∈ T,

1 http://www.iro.umontreal.ca/∼hamelsyl/M3P 3Cycles 3HS.html.

http://www.iro.umontreal.ca/~hamelsyl/M3P_3Cycles_3HS.html

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 233

xe ∈ {0, 1}, ∀e ∈ E .

Where xe is the binary variable that indicates if element e is included in the
solution subset S ⊆ E . The first constraint forces the solution to cover every
subset {t1, t2, t3} of T with a least one element. The last constraint make the
variables xe binary.

Let S be the solution (the set of selected elements) of the 3-Hitting Set
problem and #S its “value” as the score of the objective function, i.e. here its
cardinality.

The link between the 3-Hitting Set problem and the median of a set R ⊂ Sn

of three permutations is made by observing that for every 3-cycle of GR = (V,E),
at least one edge has to be reversed to obtained a permutation. Therefore, the
minimum number of edges covering all 3-cycles is a lower bound on the number
of edges needed to be reverse to make GR a DAG. In order to cover all 3-cycles
using the 3HS, we choose E = IE , the set of involved edges of the majority graph
GR = (V,E) (see Definition 3), and T , the set of 3-cycles of GR (see Fig. 3).

Proposition 3. Let R ⊂ Sn be a set of 3 permutations, LowerBound1 be the
trivial lower bound of Definition 2 and GR = (V,E) be the majority graph of R.
Let T be the set of all 3-cycles of GR and IE, the set of its involved edges. If S
is a solution of value #S of the 3HS problem applied on (IE , T) then:

LowerBound1 + #S ≤ K(π∗,R) ≤ K(π,R) ∀π ∈ Sn,

where π∗ is a median permutation of R.

Proof. From Theorem 1, only edges contained in 3-cycles can be reversed to
make GR a DAG with a minimal number of reversed edges. Since #S is the
minimal number of edges to select in order to cover all sets of T in the 3HS, we
have that GR cannot become a DAG with less than #S reversed edges.

From Observation 1 and Proposition 1, we have that the cost of reversing
the edge (i, j) of a 3-cycle in GR is 1.

From Proposition 2, we have that the Kemeny Score of a permutation is
the sum of the LowerBound1 and the number of reversed edges in GR times
their weight. In the case of a median of three permutations, the weight of edges
in 3-cycles is always 1. Then, any reversed edge contributes 1 to the Kemeny
Score. Since #S is a lower bound on the number of reversed edges, we have
that LowerBound1 + #S is a lower bound for the Kemeny score of a median
permutation. �

This result greatly improves, for this #R = 3 case, the two lower bounds
based on linear programming and cycles given in [9], which had to consider all
cycles present in the majority graph.

Through preliminary empirical observations, we noted that the lower bound
LowerBound1 + #S seems to be a really tight lower bound: in all our tests we
have the surprising observation of LowerBound1 + #S = K(π∗,R), with π∗ a
median permutation of R ⊂ Sn, so we conjecture the following:

234 R. Milosz et al.

e1,3

e4,1

e3,4

e2,3

e4,2

t1,3,4

t2,3,4

E

T

Fig. 3. 3-Hitting Set problem with E as the set of involved edges IE and T the set of
3-cycles from the example in Fig. 1. In this case, selecting edge e3,4 covers all 3-cycles
thus S = {e3,4} and #S = 1. Reversing this edge in the original majority graph makes
the graph of Fig. 1 acyclic.

Conjecture 2. Let R ⊂ Sn be a set of 3 permutations, LowerBound1 be the
trivial lower bound of Definition 2 and GR = (V,E) be the majority graph of R.
Let T be the set of all 3-cycles of GR and IE, the set of its involved edges. If S
is a solution of value #S of the 3HS problem applied on (IE , T) then:

LowerBound1 + #S = K(π∗,R) ≤ K(π,R) ∀π ∈ Sn,

where π∗ is a median permutation of R.

The conjecture was extensively tested on 10000 sets of 3 uniform random
permutations of size n ∈ {10, 20, 30, 40, 50} and 70 sets of permutations from
PrefLib.org [18] (with 10 ≤ n ≤ 90). No counter-example has been found. The
conjecture can be extended for the cases where R ⊂ Sn is a set of m permuta-
tions, m odd, with the weighted 3-Hitting Set problem.

5 Perspectives

The theoretical complexity of the median of permutations problem on sets of
three permutations is still unknown making it an interesting problem to inves-
tigate. In this article, we presented our 3-Cycle Theorem, that allows us to
drastically reduce the search space for a median of 3 permutations by fixing the
order of all pairs of elements not contained in any 3-cycle of the majority graph
of the given set of permutations. We then conjecture that our 3-Cycle Theorem
is still true for sets of m permutations, m odd. It would be very interesting to
be able to prove the stated conjecture since its reach englobes previous methods
such as the Extended Condorcet Criterion [8], the Major Order Theorem [19],
the Always Theorem [6] and the 3/4 - Majority Rule [4].

We also stated a new tight lower bound on the problem and a conjecture
linking the 3HS problem with the median of three permutations problem. In
future works, it would be interesting to prove this conjecture and to investigate

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem 235

the complexity of the median of 3 permutations problem using this link to the
3-Hitting Set problem which is known to be NP-Hard.

Acknowledgements. Thanks to Sarah Cohen-Boulakia, Alain Denise and Pierre
Andrieu from the bioinformatic team of Laboratoire de Recherche Informatique of
Université Paris-Sud for useful advices and thoughts. Thanks to Mitacs which made
this collaboration possible through a Mitacs Globalink grant.

References

1. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica
57(2), 284–300 (2010)

2. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math.
Soc. Sci. 64, 28–40 (2012)

3. Bachmeier, G., Brandt, F., Geist, C., Harrenstein, P., Kardel, K., Peters, D.,
Seedig, H.G.: k-Majority Digraphs and the Hardness of Voting with a Constant
Number of Voters arXiv: http://arxiv.org/abs/1704.06304v1 (2017)

4. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation
of data reduction for exact Kemeny rank aggregation. Auton. Agent. Multi-Agent
Syst. 28, 721–748 (2014)

5. Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058 1

6. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of
permutations. Pure Math. Appl. 21(2), 161–175 (2011)

7. Cohen-Boulakia, S., Denise, A., Hamel, S.: Using medians to generate consensus
rankings for biological data. In: Bayard Cushing, J., French, J., Bowers, S. (eds.)
SSDBM 2011. LNCS, vol. 6809, pp. 73–90. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22351-8 5

8. Condorcet, M.J.: Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Imprimerie Royale, 191 p. (1785)

9. Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing
Kemeny rankings. In: Proceedings of AAAI - Volume 1, pp. 620–626 (2006)

10. Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for
preference aggregation. In: Proceedings of the 19th National Conference on Artifi-
cial Intelligence, AAAI 2004, pp. 697–702 (2004)

11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: proceedings of the 10th WWW, pp. 613–622 (2001)

12. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial
rankings. SIAM J. Discret. Math. 20(3), 628–648 (2006)

13. Guo, J., Niedermeier, R., Betzler, N., Fellows, M.R., Rosamond, F.A.: How sim-
ilarity helps to efficiently compute Kemeny rankings. In: Proceedings of the 8th
International Conference on Autonomous Agents and Multi-Agent Systems (2009)

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller,
R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Com-
puter Computations. IRSS, pp. 85–103. Springer, Boston (1972).
https://doi.org/10.1007/978-1-4684-2001-29

http://arxiv.org/abs/1704.06304v1
https://doi.org/10.1007/11618058_1
https://doi.org/10.1007/978-3-642-22351-8_5
https://doi.org/10.1007/978-3-642-22351-8_5
https://doi.org/10.1007/978-1-4684-2001-29

236 R. Milosz et al.

15. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-
Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17517-6 3

16. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)
17. Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election prin-

ciple. SIAM J. Appl. Math. 35(2), 285–300 (1978)
18. Mattei, N., Walsh, T.: PrefLib: a library for preferences

http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.)
ADT 2013. LNCS (LNAI), vol. 8176, pp. 259–270. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41575-3 20

19. Milosz, R., Hamel, S.: Medians of permutations: building constraints. In: Govin-
darajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 264–276.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 23

20. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggre-
gations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol.
8037, pp. 512–523. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40104-6 44

21. Schalekamp, F., van Zuylen, A.: Rank aggregation: together we’re strong. In: Pro-
ceedings of the 11th SIAM Workshop on Algorithm Engineering and Experiments,
ALENEX, pp. 38–51 (2009)

https://doi.org/10.1007/978-3-642-17517-6_3
https://doi.org/10.1007/978-3-642-41575-3_20
https://doi.org/10.1007/978-3-319-29221-2_23
https://doi.org/10.1007/978-3-642-40104-6_44
https://doi.org/10.1007/978-3-642-40104-6_44

On the Parameterized Complexity
of Colorful Components
and Related Problems

Neeldhara Misra(B)

Indian Institute of Technology, Gandhinagar, India
neeldhara.m@iitgn.ac.in

http://www.neeldhara.com

Abstract. The colorful components framework is motivated by applica-
tions emerging from computational biology. A vertex-colored graph G is
said to be colorful if every color appears exactly once. The general goal is
to remove a collection of edges from an undirected vertex-colored graph
G such that in the resulting graph H all the connected components are
colorful. We want H to optimize an appropriate objective function. Two
natural functions involve deleting the smallest number of edges (which
we refer to as Colorful Components) and maximizing the number of
edges in the transitive closure of the remaining components (which we
refer to as MEC).

These problems are well-studied from the point of view of classical
complexity, approximation algorithms, and parameterized algorithms.
We complement and improve on some of the results in the literature con-
cerning MEC and Colorful Components. In the context of MEC, we
demonstrate a linear kernel on trees and a randomized kO(k) algorithm,
where k is the standard parameter. Both of these results directly improve
on previously known results about the problem. For the Colorful Com-
ponents problem, we demonstrate a FPT algorithm for the vertex cover
parameter, which is a well-motivated structural parameterization given
that the problem is already para-NP-hard when parameterized by a dele-
tion set to a disjoint union of stars.

1 Introduction

We consider some problems that arise in the framework of colorful components,
where we are given a vertex-colored graph G and the goal is to find a subgraph
H that induces colorful components — in other words, no color appears more
than once in any connected component of H. Usually, one is interested in the
“largest” such subgraph possible, and this notion manifests in a few different
optimization objectives. For instance, we might ask for the smallest subset of
edges that needs to be removed from G such that all connected components of

N. Misra The author acknowledges support by the INSPIRE Faculty Scheme, DST
India (project IFA12-ENG-31).

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 237–249, 2018.
https://doi.org/10.1007/978-3-319-94667-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_20&domain=pdf

238 N. Misra

G \ F are colorful [8,9]. The dual objective would be to find the largest subset
of edges F for which every connected component in G[F] is colorful — this is
commonly formulated as the problem of maximizing the number of edges in the
transitive closure of a solution [16]. Other well-studied goals involve minimizing
the total number components [2] or the number of singleton components in the
subgraph [16].

Readers may recognize the version of the problem that asks for the smallest edge
deletion set as a particular type of cut problem. Indeed, recall that in the Mul-
tiCut problem [5,15], we are given a graph and “demands” specified as pairs of
vertices {(si, ti)}

p
i=0, and the goal is to remove the smallest number of edges such

that in the remaining graph, there is no path between si and ti for any i ∈ [p].
Clearly, the first objective that we discussed is a special case of MultiCut:
we can declare a demand corresponding to every pair of vertices that have the
same color. Similarly, in the Multi-Multiway Cut problem [4], we are given
a graph and a family of terminal sets specified by vertex subsets S1,S2, . . . ,Sp,
and the goal is to remove the smallest number of edges that intersects every
path between all pairs of vertices in Si, for any i ∈ [p]. Again, it is easy to see
that deleting the smallest subset of edges so that all remaining components are
colorful is a special case of Multi-Multiway Cut: one where the terminal sets
correspond to a partition of the entire vertex set.

The problems involving colorful components also carry the flavor of the Graph
Motif problem [13], where the input is a vertex-colored graph and a multiset
of colors M, usually called a motif, and the goal is to determine if there exists
a connected subgraph H such that the set of colors used by the vertices of H

corresponds exactly to M. When M is a set (rather than a multiset), M is called
colorful. The problem of discovering motifs and colorful motifs in graphs are
well-studied problems from both the theoretical and practical standpoints. Sev-
eral variations of this theme have been explored in the literature, one of which
is to ask for a colorful subgraph on at least k vertices, without fixing a motif.
Both colorful components and graph motif family of problems are motivated by
applications in computational biology. For instance, the former has been used
as a model for problems such as Multiple Sequence Alignment [9] and Network
Alignment for multiple protein-protein interaction (PPI) networks. We refer the
reader to the discussions in [1,8,16] for a more detailed discussion of the compu-
tational biology background that has motivated the algorithmic studies of these
problems.

Background and Our Contributions. We now summarize the context for the
work in this contribution. We focus on the colorful components family of prob-
lems. First, we consider the problem of maximizing the number of edges in the
colorful subgraph, which we refer to as the problem of Maximizing Edges
in the Transitive Closure (MEC). This problem is known to be NP-hard.
Recently, [12] studied the parameterized complexity of the problem when param-
eterized by the number of edges in the solution. They demonstrated that the

On the Parameterized Complexity of Colorful Components 239

problem is FPT by showing an exponential kernel of size O(k2
√

k22k) on general
graphs. Further, they also obtained a quadratic kernel on trees. We complement
these results by showing a simple randomized FPT algorithm using color coding
that has a better asymptotic complexity, namely O(kk) when compared to a
brute-force approach on the exponential kernel. Our approach here is to reduce
this problem to one of finding enough colorful motifs that when combined cor-
respond to the desired MEC solution.

We then turn our attention to the Colorful Components problem. In [8], the
authors show that the problem is in P when the instance has at most two colors
and is NP-hard otherwise, even on trees of diameter four, and separately, even
when the maximum degree of the graph is bounded by a constant. On the other
hand, they also show an algorithm with running time 2cnO(1) on trees with
n vertices by dynamic programming and also an algorithm with running time
(c−1)km on general graphs with m edges. The authors also take advantage of a
weighted multi-multi cut formulation leading to interesting consequences on the
experimental front. The hardness of trees on diameter four shows that the prob-
lem is para-NP-hard when parameterized by the size of a deletion set to graphs
that are a disjoint union of stars. Similarly, the hardness of the Minimum Col-
orful Components (where the goal is to minimize the number of connected
components) shown by [12] can be adapted to show para-NP-hardness when
parameterized by the size of a deletion set to graphs that are a disjoint union of
paths. A natural goal, from the perspective of structural parameterizations, is to
settle the complexity of Colorful Components when parameterized by the
vertex cover of the graph G. We answer this question in the affirmative showing
that the problem is FPT when parameterized by vertex cover.

Related Work. Apart from Colorful Components and Maximizing Edges
in the Transitive Closure (MEC), other optimization objectives were stud-
ied by [1,2]. Experimental advances based on ILP methods for Colorful Com-
ponents were performed in [7]. It is worth noting that although most variants
of problems in this framework are NP-hard, the version that seeks to minimize
the number of singleton components was shown to admit a polynomial-time
algorithm [2]. Also, for a comprehensive study of MEC from the perspective of
approximation algorithms and hardness, we refer to [1].

2 Problem Definitions and Notation

We use standard graph-theoretic notation following [11] unless mentioned oth-
erwise. We refer the reader to [10] for an introduction to terminology and tech-
niques concerning parameterized algorithms. We only mention here, for the sake
of completeness, the key definitions relevant to this work. A parameterized prob-
lem is denoted by a pair (Q,k) ⊆ Σ∗ × N. The first component Q is a classi-
cal language, and the number k is called the parameter. Such a problem is

240 N. Misra

fixed–parameter tractable (FPT) if there exists an algorithm that decides it in
time O(f(k)nO(1)) on instances of size n. A kernelization algorithm for a problem
P is a polynomial-time algorithm that, given an instance Q of P and a parameter
k, returns an instance Q ′ of P whose size is bounded by some function f(k), such
that Q is a Yes-instance iff Q ′ is a Yes-instance. We then say that P has a
kernel of size f(k). One of the FPT algorithms presented in this work follows the
technique of color coding, a widely-employed tool introduced in [3].

We now summarize the problem definitions that we will need subsequently. Recall
that a subgraph H of a graph G is colorful if no color appears more than once in
any connected component of H. We now define the following problems concern-
ing the discovery of colorful subgraphs that have different optimization objec-
tives. The first problem is Maximizing Edges in the Transitive Closure
(MEC).

Maximizing Edges in the Transitive Closure (MEC)
Input: A vertex-colored graph (G = (V,E); c : V → [�]) and k ∈ N.
Question: Does there exist a colorful subgraph H of G that has at
least k edges in the transitive closure of its connected components?

The next problem that we consider is Colorful Components.

Colorful Components (CC)
Input: A vertex-colored graph (G = (V,E); c : V → [�]) and k ∈ N.
Question: Does there exist a subset F ⊆ E of at most k edges such that
every connected component in G \ F is colorful?

3 A Simple FPT Algorithm for MEC

Let (G = (V,E); c : V → [�],k) be an instance of MEC. In this section, we
focus on the question of whether G admits a solution with exactly k edges. Note
that the original question can be addressed by simply repeating the algorithm
described in this section for a suitable range of values of k: indeed, if G admits
a solution F with more than k edges in the transitive closure of the connected
components of G[F], then G also admits a solution F ′ that has exactly k ′ edges for
some k ∈ [k, 5k]. To see this, let F be a solution with strictly more than k edges in
the transitive closure of its connected components. Modify F by removing edges
one by one, and stop when the number of edges in the transitive closure falls
below k for the first time. Let F ′ be the solution after adding back the last edge
removed: we denote this edge by e. Let C be the component that e belonged to.
Note that e must be a cut edge in the component C, else the number of edges in
the transitive closure stays the same after removing e, contradicting our choice of
e. Note that the connected components of C\ {e}, say X and Y, can have at most√

2k vertices each (and we remark here that this is a loose bound). Therefore,

On the Parameterized Complexity of Colorful Components 241

the number of edges in the transitive closure of F ′ is at most k+ 4k = 5k, where
the first k edges is an upper bound on the number of edges in components of F ′

different from C and within X and Y while 4k is the bound for the number of
new edges added to the transitive closure by the addition of the edge e.

We now turn to a description of our approach. To begin with, suppose (G, c,k)
were a Yes-instance of MEC, and further, let F ⊆ E be an arbitrary but fixed
solution. Let C1, . . . ,Cr be the vertex subsets corresponding to non-trivial con-
nected components of G[F]. We refer to r as the order of F and define the signature
of F as a tuple sF := (k1, . . . ,kr), where ki :=

(
|Ci|
2

)
. Note that

∑r
i=1 ki = k.

We will also need to define the following graph motif problem, considered by [14]:

Colorful Graph Motif (CGM)
Input: A graph G = (V,E), a set C, a function χ : V → C, an integer k.
Question: Does there exist a subtree T = (VT ,ET) of G such that
|VT | = k and for each u, v ∈ VT distinct, χ(u) �= χ(v)?

The authors in [14] demonstrate a randomized algorithm running in time O�(2k)
based on multilinear term detection. This problem can also be solved (albiet
with a higher time complexity) by employing the color coding technique. For
instance, see [6] for a description of this approach the special case when k = |C|.
Our approach to an FPT algorithm is based on the color coding technique as
well [3].

We guess the order of a possible solution and also its signature, sF, given by
(k1, . . . ,kr). Now consider a partition of V(G) into r parts. We say that a parti-
tion P = (P1, . . . ,Pr) of V is good for F if Ci ⊆ Pi. Notice that if we are given a
good partition, then we can discover a solution F whose signature is given by sF,
by treating each part of the partition P as an instance of the Colorful Graph
Motif problem. After guessing the order and the signature, we use a random
partition and, in the analysis, we exploit the fact that a random partition is also
good with reasonable probability. Finally, a solution is found by invoking the
algorithm for CGM on each part with an appropriate target. We now turn to a
more detailed description and analysis of this algorithm.

Good Partitions and Colorful Motifs. Assume that P = (P1, . . . ,Pr) is a par-
tition of V that is good for F. Let Gi denote G[Pi]. We claim that G admits
a solution F with signature sF, if and only if for all 1 � i � r, the graph Gi

contains a colorful motif on at least qi vertices, where qi is the integer for which(
qi

2

)
= ki. This follows from the definition of a good partition and the fact

colorful connected components whose transitive closure have ki edges are also
colorful motifs on at least qi vertices, and vice versa. Note that qi = O(

√
ki).

242 N. Misra

Goodness of Random Partitions. For any solution F, we have that:

√
2k + 1 �

r∑

i=1

|Ci| � 2k.

Observe that the extreme cases in the bound above correspond to scenarios
where either F has only one connected component with k edges in its transitive
closure, which implies that the component comprises of O(

√
k) vertices, or when

F has k connected components, each of which induces an edge. With qi’s defined
as before, note that |Ci| = qi. We let q :=

∑r
i=1 qi. Consider now partitions

of V(G) into q parts. Noting that there are qq distinct labelings of vertices in
∪r
i=1Ci, only one of which corresponds to a good partition for F. Specifically, the

number of partitions that are good for F are qn−q, while the number of partitions
that are not good for F are (qq−1) ·qn−q. Let P be a random partition of V(G),
by which we mean that every vertex is assigned to each of the possible q parts
with equal probability. Then, by the discussion in this paragraph, it follows that:

P(P is a good partition for F) � 1
qq

We can now repeat the process of generating a random partition O(qq) times to
reduce the probability of error (namely that there exists a solution with signature
sF and yet none of the partitions considered were good for F) to a constant:

P(None of the qq partitions are good for F) <

(
1 −

1
qq

)qq

� 1
e
.

Running Time. The number of signatures is loosely bounded by O(kk) and
since q � k, the number of trials that we run for any fixed choice of signature
is also bounded by O(kk). For each trial, we run the CGM algorithm at most k

times, which incurs a running time O�(2k). Therefore, the overall running time
is bounded by kO(k)nO(1). We summarize this discussion with the following
statement.

Theorem 1. MEC admits a randomized FPT algorithm with running time
kO(k)nO(1), where k is the standard parameter.

4 An Improved Kernel for MEC on Trees

We now turn our attention to the MEC problem restricted to trees. In [12], a
quadratic kernel is established by the standard parameter. Here, we demonstrate
that this can be improved to a linear kernel. Our overall approach uses ideas quite
similar to the ones used for the quadratic kernel. Before stating the reduction

On the Parameterized Complexity of Colorful Components 243

rules formally, we give a high-level summary of our algorithm. We begin by
observing that if two or more sibling leaves have the same color, then it is
enough to retain only one of them, since at most one of them can contribute to a
non-trivial component in any solution. Thus, when we focus on the tree induced
by the leaves and their parents, we see a disjoint union of colorful stars, and
thus inferring that the number of leaves is bounded by k: otherwise we already
have a solution. This also implies a bound on the number of branching vertices.
We are now left with vertices of degree two. Our final observation is that if we
focus on all the degree two vertices and if they collectively contribute more than
2k edges, then again we can extract a matching on k edges and we are have
an easy Yes-instance. Otherwise, the number of internal non-branching vertices
is also bounded by 2k, giving us the overall linear bound. We have to argue
about the degree two vertices with some care since even if the number of edges
is bounded, there may be isolated vertices: but this can be handled by “padding”
the degree two paths with an appropriate branch or leaf neighbor. We now turn
to a detailed description of these arguments.

Let (T , c,k) be an instance of MEC where T is a tree. Recall that we may assume,
without loss of generality, that c is a proper coloring. Also, we may assume that
T has at least one vertex of degree at least three, since T would otherwise be a
path, and we could obtain a trivial kernel by solving MEC in polynomial time.
For convenience, we choose an arbitrary vertex of degree at least three, say r,
and assume for the rest of this discussion that T is rooted at r. We begin by
employing the following reduction rule.

Reduction Rule 1. If u and v are two leaves in T with a common parent p

and c(u) = c(v), then delete u.

The safety of the reduction rule follows from the fact that any valid solution of
MEC cannot contain both (p,u) and (p, v). Therefore, at least one of u or v in
T [F] belongs to a trivial connected component, and therefore does not contribute
to the solution. Absuing notation, we use T to continue to denote the instance
after it is reduced with respect to the reduction rule above. Let p be a vertex
that is a parent of a leaf in T . Using the fact that c is a proper coloring and that
T is reduced, observe that the subtree induced by N[p] is colorful. We now make
following claim, noting that for the rest of this discussion, we use T to refer to a
reduced instance.

Proposition 1. If the number of leaves of T is at least k, then (T , c,k) is a
Yes-instance of MEC.

Proof. Let Q denote the set of leaves of the tree T and let P ⊆ V consist of the
set of vertices that are parents of a leaf vertex in T . Consider:

F := {(u, v) | u ∈ P, v ∈ Q and (u, v) ∈ E(T)}.

244 N. Misra

Recall that G[F] is a disjoint union of stars where each component is colorful.
Since every leaf contributes at least one edge to F, the number of edges in the
transitive closure of F is also at least k.

The safety of the following reduction rule follows from Proposition 1.

Reduction Rule 2. If T has at least k leaves, then return a trivial Yes-
instance.

Let T be an instance reduced with respect to the first two reduction rules, which
implies, in particular, that T has at most k leaves. We now proceed by marking
all the vertices in T that have degree at least three. Denoting the number of
leaves by � and the subset of marked vertices by M, we note that |M| � � � k,
using the fact that the number of internal vertices that have degree at least three
(sometimes referred to as “branching” vertices) is bounded above by the number
of leaves in T .

Now, recalling that we use Q to denote the set of leaves of T , consider the graph
H0 := T \ (M ∪ Q). Note that every vertex in H0 has degree at most two, and
therefore H is a disjoint union of paths with some paths possibly having length
zero. For any maximal path P ∈ H0, let {v1, . . . , vt} be the vertices on P in their
order of appearance on the path, arranged in increasing order of distance from r.
Note that this ordering is well-defined since r ∈ M, and therefore the root vertex
r does not appear on any path P ∈ H0. Observe that vt has at least one neighbor
in (M ∪ Q) — indeed, if not, then vt would be a leaf vertex of T , contradicting
the situation that vt ∈ H0. Let t(P) denote an arbitrarily chosen neighbor of vt
from (M ∪ Q): we refer to this vertex as the tail of the path P. We now make
the following claim about tail vertices in T :

Proposition 2. Let P1 = {v1, . . . , va} and P2 = {u1, . . . ,ub} be two distinct
maximal paths in H0. Then t(P1) �= t(P2).

Proof. Assume, for the sake of contradiction, that t(P1) = t(P2) = x. Let
y denote the least common ancestor of v1 and u1. Observe that the paths
yTv1, v1P1va, x,ubP2u1,u1Ty constitute a cycle, contradicting the tree struc-
ture of T .

Let H1 denote the set of all vertices identified as tail vertices and define H :=
H0 ∪ H1. We now claim that if H has enough edges then we can extract a valid
MEC solution from it. This also leads us to our final reduction rule.

Proposition 3. If H has at least 2k edges, then (T , c,k) is a Yes-instance of
MEC.

Proof. Observe that every connected component of H is a path of length at least
one. Let t1, . . . , tr denote the lengths of the paths in P, noting that

∑r
i=1 ti � 2k

On the Parameterized Complexity of Colorful Components 245

by assumption. Construct F by choosing alternating edges from every path in H,
we get a matching on at least

∑r
i=1� ti

2 	 � k edges, as desired.

Reduction Rule 3. If H, constructed according to the description above, has
at least 2k edges, then return a trivial Yes-instance.

We summarize our discussion here by arguing that any instance reduced with
respect to all the reduction rules above is a linear kernel.

Theorem 2. MEC admits a kernel of size O(k).

Proof. If the algorithm stops by returning a trivial instance then there is nothing
to prove. Any other instance that is reduced with respect to Reduction Rules
1–3 has at most k marked vertices, at most k leaves, and at most 2k vertices
that are neither marked nor leaves. Therefore, the total number of vertices is
bounded by 4k, implying the claim.

5 Structural Parameterization: Vertex Cover

In this section, we focus on the Colorful Components problem, parameter-
ized by the size of a vertex cover of the input graph G. We denote this problem
by CC�τ�:

Colorful Components/Vertex Cover (CC�τ�)
Input: A vertex-colored graph (G = (V,E); c : V → [�]), a vertex
cover T ⊆ V of size t and k ∈ N.
Parameter: τ

Question: Does there exist a subset F ⊆ E of at most k edges such that
every connected component in G \ F is colorful?

As is standard for such parameterizations, we assume that a vertex cover T

is given as a part of the input and we use t to denote the size of the given
vertex cover. The goal of this discussion is to demonstrate that CC�τ� is in
FPT. Without loss of generality, we assume that G is connected.

We now turn to a description of the main steps in our FPT algorithm. Fix an
instance (G, T , c,k) of CC�τ�. We denote by F an optimal solution, which we
will refer to typically for the sake of analysis. To begin with, observe that in
G\F, any vertex v ∈ V \T that is not isolated belongs to a connected component
that contains at least one vertex of T . In particular, the number of non-singleton
connected components in G \ F does not exceed t.

Our algorithm begins by guessing the intersection S of F with the edges in G[T].
For a fixed choice of S, let CS := {CS

1 , . . . ,CS
r } denote the connected components

of (G \ S)[T]. When S is clear from the context, we drop the superscripts when

246 N. Misra

referring to the components. We also guess the number of non-singleton com-
ponents induced by G \ F and denote this by h. We say that two components
Ci and Cj are equivalent if they belong to the same connected component of
G \ F. Note that this is, in fact, an equivalence relation that induces exactly h

equivalence classes on CS. We guess a partition of CS into h equivalence classes:
in other words, we try all possible labelings χ of the components C1, . . . ,Cr with
label set [h]. The semantics here is that two components that have the same
label belong to the same connected component of G \ F. For any 1 � i � h, we
refer to the union of all connected components that have label i as the ith bag
of the vertex cover with respect to the guess (S,χ) and denote this set by Bi.

At this point, we pause to reflect on the structure of a Yes-instance of a MEC.
As we noted before, in G \ F, every vertex in the independent set V \ T either
“joins” one of the bags that is fixed by our guess from above, or breaks away into
a singleton component. For a vertex v in V \ T , let di(v) denote the number of
edges incident on v whose other endpoint lies outside Bi. Then, define the cost
of v as the following (h + 1)-tuple: c(v) = 〈d1(v), . . . ,di(v), . . . ,dh(v),d(v)〉.
Intuitively, the ith coordinate of c(v) quantifies the number of edges that need
to be deleted for v to belong to the same component as the vertices of Bi in
G \ F, while the last coordinate indicates the cost of making v isolated in G \ F.

As a warm-up, we address the special case when the number of colors � is
bounded. Group the vertices in V \ T according to their neighborhoods in T .
In particular, two vertices u, v ∈ V \ T belong to the same group if and only if
N(u) = N(v). Notice that there are 2t groups and � colors. For X ⊆ T and for
q ∈ [�], define I(X,q) ⊆ V \ T as the following set:

I(X,q) = {v | v ∈ V \ T ,N(v) = X, c(v) = q}.

Note that the number of sets I(X,q) is bounded by 2t�. Observe also that all
vertices in I(X,q) have the same cost vector. Now, consider a choice of X ⊆ T

and for q ∈ [�] for which nX,q := |I(X,q)| > h. Let U be a subset of any
nX,q −h many vertices chosen from I(X,q). We claim that:

(G, T , c,k) ≡ (G \ U, T , c ′,k − dnX,q),

where c ′ is the projection of c on the vertices of V \U and d is the degree of any
vertex in I(X,q). Indeed, this follows from the fact that in any solution F that
respects the guess (S,χ), at least nX,q − h vertices must be isolated in G \ F:
if not, by a pigeon-hole argument, we would have that two vertices of I(X,q)
join the same bag, which would contradict the fact that the vertices in any bag
belong to a colorful connected component. This leads to a contradiction, since
any two vertices of I(X,q) have the same color.

So far, this gives us a bound of 2t · � ·h � 2tt� on the total number of vertices in
G. If � were small enough, then we might find a solution at this point by brute-
force. The rest of this section focuses on addressing the case when � is arbitrary.

On the Parameterized Complexity of Colorful Components 247

To this end, let us call a color q “harmless” if there exists a vertex v ∈ T for which
c(v) = q. Note that there are at most t harmless colors. Any other color will be
referred to as a “fresh” color in our discussion. We can employ the arguments
from the previous paragraph to ensure that the number of vertices in V \ T that
are colored with the same color are bounded by 2th. Observe that this already
gives a bound of O(2tt2) on the total number of vertices colored with harmless
colors.

We now sketch the ideas for handling the fresh colors, which will complete the
description of the algorithm. We partition the vertex set V\T into X and Y, where
X contains all vertices of V \ T colored with harmless colors, and Y contains all
vertices of V \ T colored with fresh colors. Define the signature of a fresh color
q, denoted by sq as a tuple with 2t coordinates, indexed by subsets of T , where
sq[X] is the number of vertices in I(X,q). Note that the number of signatures
is bounded by h2t .

Let q be a fresh color and let w be the number of vertices of color q. A solution
F can be thought of as assigning a label between 1 � i � h to some collection
of min{w,h} vertices of q, indicating which bags the vertices are aligned with in
G \ F. The number of possible assignments is:

g(w) :=

((
w

h

)
· h!

)
.

We now describe our process for the fresh colors. Fix a signature s. Let Cs ⊆ [�]
be the set of all colors that have the same signature, and therefore the same
number of vertices (say ws). We retain min{Cs,g(w)} fresh colors from among
those that have signature s, and assign the others to bags using an optimal
strategy. Note that for any particular color class, it is possible to determine the
best assignment of the vertices to bags by examining all possible assignments
(note that this is FPT in t since the number of bags and the number of vertices
of any given color are both bounded).

The correctness of the approach above follows from the fact that vertices with
different fresh colors can be assigned independently (as they do not contribute
to any conflicts as far as the final components being colorful are concerned).
We retain enough vertices to remember all possible ways in which F may have
assigned vertices of any particular color. The key observation is that if two colors
with the same signature experience the exact same assignment to bags in G \ F,
then one of them may be reassigned to an optimal assignment without affecting
the connectivity template of G \ F. A more formal version of this argument is
deferred to the full version of this manuscript. We summarize our discussion in
this section in the following claim.

Theorem 3. CC�τ� admits an FPT algorithm.

248 N. Misra

6 Concluding Remarks

It would be interesting to see if other structural parameterizations for some
of the problems in the colorful components framework become tractable when
combined with the number of colors as a parameter. We also believe that the
vertex cover parameterization studied in this contribution admits a more efficient
algorithm, possibly by establishing an appropriate reduction to the problem of
minimizing the number of singleton vertices (MSV), which is known to admit a
polynomial time algorithm [2]. The fact that vertices from the independent set
either break away into singletons or join the vertex cover vertices motivates this
suggestion.

References

1. Adamaszek, A., Blin, G., Popa, A.: Approximation and hardness results for the
maximum edges in transitive closure problem. In: Kratochv́ıl, J., Miller, M.,
Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 13–23. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19315-1 2

2. Adamaszek, A., Popa, A.: Algorithmic and hardness results for the colorful com-
ponents problems. Algorithmica 73(2), 371–388 (2015)

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

4. Avidor, A., Langberg, M.: The multi-multiway cut problem. Theor. Comput. Sci
377(1–3), 35–42 (2007)

5. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L.,
Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, pp. 459–468. ACM (2011)

6. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)

7. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-
based approaches for partitioning into colorful components. In: Bonifaci, V.,
Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 176–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38527-8 17

8. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.:
Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen,
J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31265-6 5

9. Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency
problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)

10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

11. Diestel, R.: Graph Theory. Springer Graduate Text GTM 173. Reinhard Diestel,
July 2012

https://doi.org/10.1007/978-3-319-19315-1_2
https://doi.org/10.1007/978-3-642-38527-8_17
https://doi.org/10.1007/978-3-642-38527-8_17
https://doi.org/10.1007/978-3-642-31265-6_5
https://doi.org/10.1007/978-3-319-21275-3

On the Parameterized Complexity of Colorful Components 249

12. Dondi, R., Sikora, F.: Parameterized complexity and approximation issues for the
colorful components problems. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.)
CiE 2016. LNCS, vol. 9709, pp. 261–270. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40189-8 27

13. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

14. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorith-
mica 65(4), 828–844 (2013)

15. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)

16. Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! Orthologs in multiple
genomes – competing graph-theoretical formulations. In: Przytycka, T.M., Sagot,
M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 364–375. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23038-7 30

https://doi.org/10.1007/978-3-319-40189-8_27
https://doi.org/10.1007/978-3-319-40189-8_27
https://doi.org/10.1007/978-3-642-23038-7_30

Analysis of Information Leakage
Due to Operative Errors in Card-Based

Protocols

Takaaki Mizuki1(B) and Yuichi Komano2

1 Tohoku University, Sendai, Japan
tm-paper+cardecc@g-mail.tohoku-university.jp

2 Toshiba Corporation, Kawasaki, Japan
yuichi1.komano@toshiba.co.jp

Abstract. Card-based protocols provide secure multi-party computa-
tion using a deck of physical cards, via a series of operations such as
shuffling and turning over cards, which are supposed to be executed by
humans. Although almost all existing protocols have been designed to
be perfectly secure, operative errors by humans would cause information
leakage. In this paper, we propose a technique for analyzing information
leakage due to operative errors in card-based protocols. To be specific,
we introduce a concept, which we call a “probability trace,” and propose
a new diagram for displaying how much information leaks, by enhancing
the KWH diagram proposed by Koch, Walzer, and Härtel. By apply-
ing our diagram to a card-based protocol with an operative error, we
can precisely reveal the leakage of players’ inputs from the protocol out-
put. We also discuss an application of the diagram to human-error-free
implementations of the existing six-card AND protocol.

1 Introduction

Card-based protocols allow us to securely perform computations, such as AND
and OR, among players with a physical deck of playing cards, as depicted in
Fig. 1. Because their operations are easy to implement and both their correct-
ness and security are intuitively understandable, card-based protocols have been
widely used to solve social problems in daily life as well as to educate non-experts
about cryptography [1]. Many protocols have been proposed [2]. Let us review a
seminal work, the six-card (committed-format) AND protocol [3], which is one
of the most practical protocols, and has been applied as a learning tool thanks
to its simple operations.

In this protocol, a one-bit value is encoded with two cards, black ♣ and red
♥ , as:

♣ ♥ = 0 and ♥ ♣ = 1.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 250–262, 2018.
https://doi.org/10.1007/978-3-319-94667-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_21&domain=pdf

Analysis of Information Leakage Due to Operative Errors 251

Fig. 1. Execution of a card-based protocol using physical playing cards

Using this encoding rule, two players, Alice and Bob, place two face-down cards
depending on their secret one-bit inputs a and b, respectively, as:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

.

The left and right pairs of two cards are called commitments to a ∈ {0, 1} and
b ∈ {0, 1}, respectively. With these commitments and two additional cards, the
six-card AND protocol consists of the following five steps:

1. Place black and red cards (which become a commitment to 0) between the
commitments to a and b, and turn the cards face down:

? ?
︸ ︷︷ ︸

a

♣ ♥ ? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

b

.

2. Rearrange the cards as:
? ? ? ? ? ?

�
������ ���

? ? ? ? ? ? .

3. Divide the sequence of cards into two halves and randomly shuffle them keep-
ing the order of cards inside the half portion unchanged:

[

? ? ?
∣

∣

∣ ? ? ?
]

→ ? ? ? ? ? ? .

This operation is called a random bisection cut and it is securely imple-
mentable by humans [4].

4. Rearrange the cards as:
? ? ? ? ? ?

������
�

��	
? ? ? ? ? ? .

252 T. Mizuki and Y. Komano

5. Open the leftmost two cards and obtain a commitment to a ∧ b as:

♣ ♥ ? ?
︸ ︷︷ ︸

a∧b

? ? or ♥ ♣ ? ? ? ?
︸ ︷︷ ︸

a∧b

.

The commitment to a ∧ b remains face down, and hence, the players can
use it as an input to a subsequent execution of the six-card AND protocol. By
repeating the protocol, more than two players can securely compute the AND
of their input bits.

The above six-card protocol is simple, and therefore, from our educational
experiments with non-experts, people can almost always execute the protocol
without any mistakes. In rare instances, however, operative errors such as con-
fusing the rearrangement operations in Steps 2 and 4 occur.

In this paper, we propose a technique to analyze the information leakage
caused by such operative errors in card-based protocols. To be specific, we intro-
duce a concept, which we call a probability trace, and propose a new diagram,
which employs probability traces, for the leakage analysis. Our diagram is an
extension of the KWH diagram invented by Koch et al. [5]. Similar to the KWH
diagram, our diagram can be applied to analyze the correctness and security
of a card-based protocol without operative errors. In addition, by applying our
diagram to a card-based protocol with an operative error, we can analyze the
leakage of players’ inputs from the protocol output. We then discuss an appli-
cation of the diagram to human-error-free implementations of the six-card AND
protocol above. That is, we discuss solutions to the problem of detecting the
operative errors and preventing information leakage in the AND protocol.

The remainder of this paper is organized as follows. Section 2 reviews the
background information on the card-based protocol. We then introduce the con-
cepts of a probability trace and the extended diagram in Sect. 3. In Sect. 4,
we discuss the erroneous protocols with operative errors as examples, and the
application of our diagram to analyzing their correctness and security. Sections 5
and 6 discuss the detection of the operative errors and protection against them,
respectively. Finally, Sect. 7 concludes this paper.

2 Background

Let us review the formal definitions of card-based protocols and consider an
example of a card-based protocol. In this paper, |S| denotes the cardinal number
of set S.

2.1 Definitions of Card-Based Protocols

The computational model of card-based protocols was introduced by Mizuki and
Shizuya [6], after which Koch et al. [5] and Mizuki and Shizuya [2] refined it.
Let us review the definition as follows.

In this paper, we deal with a card-based protocol using two atomic symbols,
♣ and ♥. A non-empty finite multi-set D of atomic symbols is called a deck.

Analysis of Information Leakage Due to Operative Errors 253

An example of a deck for the six-card AND protocol is [♣,♣,♣,♥,♥,♥]. The
symbol on the back of a card is denoted by “?”.

A card, such as ♣ and ? , which is placed on a table is called a lying card.
Formally, face-up and face-down lying cards for c ∈ D are denoted by c

? and ?
c ,

respectively.
The input and output of a card-based protocol are sequences of lying cards.

For example, the input to the six-card AND protocol is a sequence of six cards
placed on the table, where a, b ∈ {0, 1}:

? ?
︸ ︷︷ ︸

a

♣ ♥ ? ?
︸ ︷︷ ︸

b

.

Therefore, there are four possible initial sequences Γ ab
0 :

Γ 00
0 =

(

?
♣ ,

?
♥ ,

♣
?

,
♥
?

,
?
♣ ,

?
♥

)

, Γ 01
0 =

(

?
♣ ,

?
♥ ,

♣
?

,
♥
?

,
?
♥ ,

?
♣

)

,

Γ 10
0 =

(

?
♥ ,

?
♣ ,

♣
?

,
♥
?

,
?
♣ ,

?
♥

)

, and Γ 11
0 =

(

?
♥ ,

?
♣ ,

♣
?

,
♥
?

,
?
♥ ,

?
♣

)

.

The set of all sequences of lying cards is denoted by

SeqD def= {Γ | Γ is a sequence of lying cards for D}.

For a sequence of lying cards, we call a sequence of their atomic symbols an
atomic sequence. For example, there are four atomic sequences, each of which
corresponds to an input Γ ab

0 of the six-card AND protocol:

Γ 00
0 : ♣ ♥ ♣ ♥ ♣ ♥, Γ 01

0 : ♣ ♥ ♣ ♥ ♥ ♣, Γ 10
0 : ♥ ♣ ♣ ♥ ♣ ♥, Γ 11

0 : ♥ ♣ ♣ ♥ ♥ ♣

Given a lying card c
? or ?

c , top returns its visible symbol; i.e., top(c
?) = c,

and top(?c) = ?. For a sequence of d lying cards Γ = (α1, α2, . . . , αd), we call
top(Γ) = (top(α1), top(α2), . . . , top(αd)) a visible sequence of Γ . We also define
the visible sequence set VisD of D as

VisD def= {top(Γ) | Γ ∈ SeqD}.

The definitions of card-based protocols are given as follows.

Definition 1 (Card-based protocol [2]). A card-based protocol is specified
with a quadruple P = (D, U,Q,A):

– D is a deck;
– U ⊆ SeqD is an input set;
– Q is a state set having an initial state q0 ∈ Q and a final state qf ∈ Q;
– A : (Q − {qf}) × VisD → Q × Action is an action function, where Action is

the set of the following actions:

254 T. Mizuki and Y. Komano

• (turn, T ⊆ {1, 2, . . . , |D|}); turning over the i-th card for each i ∈ T ,
• (perm, π ∈ S|D|); applying the permutation π to a sequence of lying cards

where Si denotes the symmetric group of degree i,
• (shuf,Π ⊆ S|D|,F); applying π, drawn from Π according to the probability

distribution1 F , to a sequence of lying cards,
• (result, p1, . . . , p�); assigning the positions of output commitments with

pi ∈ {1, 2, . . . , |D|}.
The protocol is correct if it produces the correct output at the final state.

The protocol P = (D, U,Q,A) proceeds as the Turing machine does. That
is, starting from the initial state q0 and the initial sequence Γ0 ∈ U , its current
state q and sequence Γ move to the next state q′ and sequence Γ ′, respectively,
according to the output of the action function A.

Definition 2 (Perfect security of card-based protocol). We call a card-
based protocol P perfectly secure if it leaks no information for any run of the
protocol (in other words, the input and the visible sequence trace are indepen-
dent).

2.2 Six-Card AND Protocol

The six-card AND protocol [3], explained in Sect. 1, can be described as follows.
The following sections review this protocol as an example.

Six-card AND protocol PMS

Input set:

{

Γ 00
0 =

(

?
♣ ,

?
♥ ,

♣
?

,
♥
?

,
?
♣ ,

?
♥

)

, Γ 01
0 =

(

?
♣ ,

?
♥ ,

♣
?

,
♥
?

,
?
♥ ,

?
♣

)

,

Γ 10
0 =

(

?
♥ ,

?
♣ ,

♣
?

,
♥
?

,
?
♣ ,

?
♥

)

, Γ 11
0 =

(

?
♥ ,

?
♣ ,

♣
?

,
♥
?

,
?
♥ ,

?
♣

)}

Steps:

1. (turn, {3, 4})
2. (perm, (2 4 3))
3. (shuf, {id, (1 4)(2 5)(3 6)})
4. (perm, (2 3 4))
5. (turn, {1, 2})

if visible seq. = (♣,♥, ?, ?, ?, ?) then (result, 3, 4)
else if visible seq. = (♥,♣, ?, ?, ?, ?) then (result, 5, 6)

1 We omit the description of F if the distribution is uniform.

Analysis of Information Leakage Due to Operative Errors 255

3 Probability Trace and the Extended KWH Diagram

Koch et al. [5] introduced a diagram (the KWH diagram) to check the correctness
and security of card-based protocols. In this section, we introduce a new concept,
which we call a probability trace, and a new diagram created by enhancing the
KWH diagram with the probability trace. We first show an example of our
diagram, after which we give a formal definition of the probability trace.

3.1 Example of Our Diagram

In this subsection, we give an example of our diagram which shows the cor-
rectness and perfect security of the six-card AND protocol PMS. Let pab be the
probabilities that a and b are private inputs of Alice and Bob, respectively. The
first component of our diagram, which displays the status after Step 1, is:

♣♥♣♥♣♥ : (p00, 0, 0, 0)
♣♥♣♥♥♣ : (0, p01, 0, 0)
♥♣♣♥♣♥ : (0, 0, p10, 0)
♥♣♣♥♥♣ : (0, 0, 0, p11).

Each line consists of an atomic sequence and the corresponding “probability
trace” (which will be defined formally in the next subsection). The probability
trace consists of four probabilities corresponding to Γ 00

0 , Γ 01
0 , Γ 10

0 , and Γ 11
0 ;

for example, the atomic sequence ♣♥♣♥♣♥ is derived only when the input
sequence is Γ 00

0 with probability of p00, and hence, the first coordinate of the
probability trace is p00 and the remaining three coordinates are all 0.

Figure 2 depicts the whole diagram with probability traces for the protocol
PMS. In this figure, we denote the end of Step i by “Step i” for brevity. We omit
the component for input, i.e., the initial sequence, because it is the same as that
of Step 1 explained above except the visible sequence.

The component for Step 2 is derived from the rearrangement action, and its
probability traces are unchanged from the previous step. The same is true for
Step 4. The component for Step 3 originates from the bisection cut. It is the sum
of the following two possible outcomes (left and right below) from the bisection
cut:

♣♣♥♥♣♥ : (p00/2, 0, 0, 0) ♥♣♥♣♣♥ : (p00/2, 0, 0, 0)
♣♣♥♥♥♣ : (0, p01/2, 0, 0) ♥♥♣♣♣♥ : (0, p01/2, 0, 0)
♥♣♥♣♣♥ : (0, 0, p10/2, 0) ♣♣♥♥♣♥ : (0, 0, p10/2, 0)
♥♣♥♣♥♣ : (0, 0, 0, p11/2) ♣♥♣♥♣♥ : (0, 0, 0, p11/2).

The component for Step 5 is from the turn action for the leftmost two cards.
Note that there are two visible sequences, ♣♥ ? ? ? ? and ♥♣ ? ? ? ?.

The positions of the output commitment are determined by turning over the
leftmost two cards at Step 5. If these cards are ♣♥ (resp. ♥♣), they are the

256 T. Mizuki and Y. Komano

Step Visible sequence Atomic sequence Probability trace

1 ? ? ? ? ? ?

♣ ♥ ♣ ♥ ♣ ♥ (p00, 0, 0, 0)
♣ ♥ ♣ ♥ ♥ ♣ (0, p01, 0, 0)
♥ ♣ ♣ ♥ ♣ ♥ (0, 0, p10, 0)
♥ ♣ ♣ ♥ ♥ ♣ (0, 0, 0, p11)

2 ? ? ? ? ? ?

♣ ♣ ♥ ♥ ♣ ♥ (p00, 0, 0, 0)
♣ ♣ ♥ ♥ ♥ ♣ (0, p01, 0, 0)
♥ ♣ ♥ ♣ ♣ ♥ (0, 0, p10, 0)
♥ ♣ ♥ ♣ ♥ ♣ (0, 0, 0, p11)

3 ? ? ? ? ? ?

♣ ♣ ♥ ♥ ♣ ♥ (p00/2, 0, p10/2, 0)
♣ ♣ ♥ ♥ ♥ ♣ (0, p01/2, 0, 0)
♣ ♥ ♣ ♥ ♣ ♥ (0, 0, 0, p11/2)
♥ ♣ ♥ ♣ ♣ ♥ (p00/2, 0, p10/2, 0)
♥ ♥ ♣ ♣ ♣ ♥ (0, p01/2, 0, 0)
♥ ♣ ♥ ♣ ♥ ♣ (0, 0, 0, p11/2)

4 ? ? ? ? ? ?

♣ ♥ ♣ ♥ ♣ ♥ (p00/2, 0, p10/2, 0)
♣ ♥ ♣ ♥ ♥ ♣ (0, p01/2, 0, 0)
♣ ♥ ♥ ♣ ♣ ♥ (0, 0, 0, p11/2)
♥ ♣ ♣ ♥ ♣ ♥ (p00/2, 0, p10/2, 0)
♥ ♣ ♥ ♣ ♣ ♥ (0, p01/2, 0, 0)
♥ ♣ ♣ ♥ ♥ ♣ (0, 0, 0, p11/2)

5

♣ ♥ ♣ ♥ ♣ ♥ (p00, 0, p10, 0)
♣ ♥ ? ? ? ? ♣ ♥ ♣ ♥ ♥ ♣ (0, p01, 0, 0)

♣ ♥ ♥ ♣ ♣ ♥ (0, 0, 0, p11)
♥ ♣ ♣ ♥ ♣ ♥ (p00, 0, p10, 0)

♥ ♣ ? ? ? ? ♥ ♣ ♥ ♣ ♣ ♥ (0, p01, 0, 0)
♥ ♣ ♣ ♥ ♥ ♣ (0, 0, 0, p11)

Fig. 2. Our diagram for the six-card AND protocol

middle (resp. rightmost) two cards, indicated with underlines at Step 5 in Fig. 2.
The correctness of the protocol PMS is easily checked by comparing i∧j for non-
zero probability pij in each probability trace with the corresponding underlined
output.

We then discuss the security of the protocol PMS. For the case where the
leftmost two cards are ♣♥ in Fig. 2, the sum of the probability traces is
(p00, p01, p10, p11). That is, the probability distribution of the input after the
leftmost two cards are opened is unchanged from the viewpoint of the players
and others. This means that no information leaks through the protocol. Simi-
larly, no information leaks for the case where the leftmost two cards are ♥♣.
Hence, we have confirmed the perfect security of the protocol.

Analysis of Information Leakage Due to Operative Errors 257

3.2 Definition of Probability Trace

We present a formal definition of a probability trace as follows.

Definition 3 (Probability trace). Let n = |U | for input set U of a card-based
protocol P. An n-tuple (q1,j , · · · , qn,j) such that

qi,j = Pr[M = Γ i
0, Gj = s|Vj = v]

is called a probability trace for a step number j, an atomic sequence s, and
a visible sequence trace v, where M , Gj, and Vj are random variables of the
original input sequence, of the atomic sequence for the end of the j-th step, and
of the visible sequence trace for the end of the j-th step, respectively.

Note that the probability traces in Fig. 2 are actually obtained according to
Definition 3. The original KWH diagram is a sequence of pairs of an atomic
sequence and its probability. We replace the probability with the probability
trace. Our diagram allows us to analyze the leakage from operative errors in
the protocol (as will be seen in the next section), in addition to checking the
correctness and security of the protocol as the original KWH diagram does.

4 Rearrangement Errors in Six-Card and Protocol

In this section, we apply our diagram to analyze the information leakage from
operative errors in the six-card AND protocol PMS.

4.1 Classification of Rearrangement Error

We discuss operative errors in PMS. We assume that two players, Alice and Bob,
perform wrong rearrangements by mistake at Steps 2 and 4 in PMS, and they
are not aware of this. There are three error types, in addition to the correct
rearrangements; we name such erroneous protocols P1,P2, and P3, as follows.

– Protocol PMS: (perm, (2 4 3)) in Step 2, and (perm, (2 3 4)) in Step 4
– Protocol P1: (perm, (2 3 4)) in Step 2, and (perm, (2 4 3)) in Step 4 (erroneous)
– Protocol P2: (perm, (2 3 4)) in Step 2, and (perm, (2 3 4)) in Step 4 (erroneous)
– Protocol P3: (perm, (2 4 3)) in Step 2, and (perm, (2 4 3)) in Step 4 (erroneous)

In a similar way to the correct protocol PMS in Sect. 3, diagrams for erroneous
protocols can be described. Figure 3 depicts the final part of the diagram for P1.
Diagrams for P2 and P3 can be depicted; however, due to the limitation of space,
we omit them.

As known from Fig. 3, there are four classes of protocol output:

(a) A correct commitment to a ∧ b
(b) A complementary commitment to a ∧ b
(c) An invalid commitment, such as ♣♣ or ♥♥
(d) No commitment because the leftmost two cards are invalid (♣♣ or ♥♥)

258 T. Mizuki and Y. Komano

Step Visible sequence Atomic sequence Output Probability trace

5

♣ ♥ ? ? ? ?

♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ (p00
2p00+p01+p10

, 0, 0, 0)
♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥ (0, p01

2p00+p01+p10
, 0, 0)

♣ ♥ ♣ ♣ ♥ ♥ ♣ ♣ (p00
2p00+p01+p10

, 0, 0, 0)
♣ ♥ ♥ ♣ ♥ ♣ ♥ ♣ (0, 0, p10

2p00+p01+p10
, 0)

♥ ♣ ? ? ? ?
♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥ (0, 0, p10

p10+p11
, 0)

♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ (0, 0, 0, p11
p10+p11

)

♣ ♣ ? ? ? ?
♣ ♣ ♣ ♥ ♥ ♥ – (0, p01

p01+p11
, 0, 0)

♣ ♣ ♥ ♥ ♥ ♣ – (0, 0, 0, p11
p01+p11

)

Fig. 3. Final part of our diagram for P1

Table 1. Output classes for each protocol

Protocol (a) (b) (c) (d)

PMS 8 0 0 0

P1 4 1 1 2

P2 4 0 0 4

P3 1 3 0 4

From (a) to (c), the leftmost two cards are either ♣♥ or ♥♣, and the positions
of the commitment are determined in the protocol; in contrast, in case (d), the
leftmost two cards are invalid in the protocol, and therefore, the players can
become aware of their operative error. Table 1 summarizes the output classes
derived from the correct protocol in Fig. 2 and the erroneous protocols in Fig. 3
and other diagrams.

4.2 Correctness and Security of Erroneous Protocols

We have already discussed the correctness and security of the correct proto-
col (PMS) in Sect. 3.1. Let us now discuss the correctness and security of the
erroneous protocols (P1, P2, and P3) with Table 1.

For P1, half of the eight cases lead to correct outputs; however, the remaining
four lead to incorrect/no outputs. Note that the output class (c) appears only
in P1. If an output is in class (d), that is, if the leftmost two cards are ♣♣,
the probability traces tell us that the input pair (a, b) must be either (0, 1) or
(1, 1); that is, b = 1 leaks. If the leftmost two cards are ♣♥, information about
the input pair leaks for a person who knows that the erroneous protocol P1 was
executed, as follows. Let us consider the sum of the probability traces of the first
four lines in Fig. 3; then, we have

(

2p00
2p00 + p01 + p10

,
p01

2p00 + p01 + p10
,

p10
2p00 + p01 + p10

, 0
)

.

Analysis of Information Leakage Due to Operative Errors 259

It is known from the coordinates that (a, b) �= (1, 1) leaks. More precisely, the
above four-tuple is the distribution on (a, b) after P1 terminates with ♣♥. Hence,
P1 is not perfectly secure.

Similar to the analysis for P1, we can show that the protocols P2 and P3 are
neither correct nor perfectly secure with our diagrams.

Thus, our new diagram with probability traces displays exactly how much
information leaks.

5 Detection of Operative Errors in Card Rearrangement

As discussed above, if the atomic symbols of the leftmost two cards are the same,
players can become aware of their operative error. In this section, we propose
two other methods to detect operative errors as in P1,P2, and P3.

5.1 Detection with Card Arrangement

For the sake of convenience, let us assign a label for the six cards after Step 1.
1

?
2

?
3

?
4

?
5

?
6

?

After Step 4, the order of these cards is one of the following with probability 1
2 :

1

?
2

?
3

?
4

?
5

?
6

? or
2

?
1

?
5

?
6

?
3

?
4

?

Note that, in either case, the leftmost two cards correspond to the input a where
their positions are randomly switched by the bisection cut. The positions of pairs
of the middle two cards and the rightmost two cards are randomly switched,
whereas the orders of the two cards in each pair are unchanged.

Assume that the back of the card is asymmetric.2 Let us place the leftmost
two cards upside down at Step 1:

¿ ¿ ? ? ? ?

Table 2 summarizes the visible sequences after Step 4 in each protocol. From
the visible sequence, players can check whether the protocol has been correctly
executed or not (except for P1 with probability 1

2); if not, they can determine
which type of operative error has occurred. Note that the exception can be
handled: repeating Steps from 2 to 4 is effective in decreasing the error.

2 If the back of the card is symmetric, it is possible to make the back asymmetric by
putting a mark on it.

260 T. Mizuki and Y. Komano

Table 2. Visible sequences after Step 4 in each protocol

Protocol Visible sequence

PMS ¿ ¿ ? ? ? ? or ¿ ¿ ? ? ? ?

P1 ¿ ¿ ? ? ? ? or ? ? ¿ ? ? ¿

P2 ¿ ? ¿ ? ? ? or ¿ ? ¿ ? ? ?

P3 ¿ ? ? ¿ ? ? or ? ¿ ? ? ? ¿

5.2 Detection with Discarded Cards

In PMS, the leftmost two cards are opened at the final step, the middle two cards
or the rightmost two cards are selected as a commitment to the result, and the
remaining two cards are discarded. With these discarded cards, we can detect an
error leading to an output in class (c). To be specific, players randomly shuffle
these cards and then open them. Players can become aware of such an error if
the revealed two cards have the same color.

6 Toward Human-Error-Free Protocol on Rearrangement

We propose two methods to avoid the arrangement errors in P1,P2, and P3.

6.1 Card Arrangement Without Rearrangement

Kastner et al. [7] described a two-dimensional arrangement for the protocol PMS

as in Fig. 4. Two cards for input a are placed at the first row across the dashed
line. Two cards for input b are placed at the left side of the second row; and two
cards ♣ ♥ are placed at the right side. Figure 4 above shows the face-up cards
for Γ 00

0 , Γ 01
0 , Γ 10

0 , and Γ 11
0 , from left to right.

♣ ♥ ♣ ♥ ♥ ♣ ♥ ♣
♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥

♣ ♥ ♣ ♥ ♥ ♣ ♥ ♣
♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥

Fig. 4. Arrangements in Kastner et al. (above) and our modification (below)

In their arrangement, tuples of three face-down cards across the dashed line
are randomly shuffled (bisection cut), after which two cards in the first row are
opened. If they are ♣ ♥ (resp. ♥ ♣), then the rightmost (resp. leftmost) two
cards are a commitment to the result.

Analysis of Information Leakage Due to Operative Errors 261

Although their implementation is essentially the same as PMS, it requires no
rearrangement of cards. However, before and after the shuffle, three cards should
be layered, which might lead to another operative error.

Let us consider another arrangement, the one depicted in Fig. 4 below. The
operation is the same as that of Kastner et al. The arrangements of the three
cards across the dashed line are identical; therefore, we expect to decrease the
probability of operative errors in layering the cards.

6.2 Using Mixed Encoding Rules

The protocol PMS uses an encoding where 0 = ♣♥ and 1 = ♥♣ with two
cards each. Mizuki [8] introduced another four-card AND protocol PM using
two different encodings. In addition to the above encoding, PM also uses an
encoding with one card: 0 = ♣ and 1 = ♥. In PM, each input is encoded with a
different rule.

♣ ?
︸︷︷︸

a

? ?
︸ ︷︷ ︸

b

.

PM requires no rearrangement, and therefore, it can avoid an operative error
in rearrangement. One possible drawback is that the complicated encoding rule
might lead to another error in the arrangement.

7 Conclusions

In this paper, we introduced the concept of a probability trace and a diagram
with the probability trace, for analyzing information leakage due to operative
errors in a card-based protocol. We then precisely showed, with our diagram,
how much information leaks from an operative error in PMS. We also discussed
the detection of operative errors and protection against them.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP17K00001.

References

1. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology
ePrint Archive, Report 2015/1031 (2015)

2. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E100.A(1), 3–11 (2017)

3. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

4. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a
random bisection cut. In: Mart́ın-Vide, C., Mizuki, T., Vega-Rodŕıguez, M.A. (eds.)
TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-49001-4 5

https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5

262 T. Mizuki and Y. Komano

5. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part
I. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 32

6. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

7. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

8. Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple
variables. Theor. Comput. Sci. 622, 34–44 (2016)

https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-319-70700-6_5

Zero-Suppression and Computation
Models

Hiroki Morizumi(B)

Interdisciplinary Graduate School of Science and Engineering, Shimane University,
Matsue, Shimane 690-8504, Japan
morizumi@cis.shimane-u.ac.jp

Abstract. Zero-suppressed binary decision diagrams (ZDDs) are a data
structure representing Boolean functions, and one of the most successful
variants of binary decision diagrams (BDDs). On the other hand, BDDs
are also called branching programs in computational complexity theory,
and have been studied as a computation model. In this paper, we consider
ZDDs from the viewpoint of computational complexity theory. Firstly,
we define zero-suppressed branching programs, which actually have the
same definition to (unordered) ZDDs, and consider the computational
power of zero-suppressed branching programs. Secondly, we attempt to
generalize the concept of zero-suppression. We call the basic idea of ZDDs
zero-suppression. We show that zero-suppression can be applied to other
two classical computation models, decision trees and Boolean formulas.

1 Introduction

Zero-suppressed binary decision diagrams (ZDDs) are a data structure represent-
ing Boolean functions, introduced by Minato [6], and one of the most successful
variants of binary decision diagrams (BDDs). Knuth has referred to ZDDs as
an important variant of BDDs in his book [4], and ZDDs are also referred to in
other books [5,7]. On the other hand, BDDs are also called branching programs
in computational complexity theory, and have been studied as a computation
model.

ZDDs have the same shape as BDDs (and branching programs) have, and
the only difference is the way to determine the output. An assignment to the
variables determines a computation path from the start node to a sink node.
ZDDs output 1 iff the value of the sink node is 1 and all variables which are not
contained in the computation path are assigned by 0. (See Sect. 2 for the formal
definitions.) ZDDs are known to be effective in representing a certain kind of
Boolean functions such as almost all outputs are 0. (Thus, ZDDs are better for
Boolean functions characterizing sparse sets of combinations than BDDs.) In
this paper, we consider ZDDs from the viewpoint of computational complexity
theory.

H. Morizumi—This work was supported by JSPS KAKENHI Grant Number
15K11986.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 263–272, 2018.
https://doi.org/10.1007/978-3-319-94667-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_22&domain=pdf

264 H. Morizumi

In the first part of this paper, we consider ZDDs and branching programs.
Branching programs are known as a computation model to approach the L vs. P
problem. It is known that the class of decision problems solvable by a nonuniform
family of polynomial-size branching programs is equal to L/poly [3]. L/poly is
the class of decision problems solvable by nonuniform logarithmic space Turing
machines. If one have proven a superpolynomial lower bound for the size of
branching programs computing a Boolean function in P, then L �= P. In this
paper, we define zero-suppressed branching programs, which actually have the
same definition to (unordered) ZDDs, and consider the following question: Is
the class of decision problems solvable by a nonuniform family of polynomial-
size zero-suppressed branching programs equal to L/poly? We prove three results
which are related to the question.

Our three results for zero-suppressed branching programs are summarized
as follows. Firstly, we prove that the class of decision problems solvable by a
nonuniform family of polynomial-size width 5 (or arbitrary constant which is
greater than 5) zero-suppressed branching programs is equal to nonuniform NC1.
This corresponds to the well-known Barrington’s theorem [1], which showed that
the class of decision problems solvable by a nonuniform family of polynomial-size
width 5 branching programs is equal to nonuniform NC1. Secondly, we prove that
the class of decision problems solvable by a nonuniform family of polynomial-
size zero-suppressed branching programs contains L/poly, and is contained in
nonuniform NC2. Thirdly, we prove that the class of decision problems solvable
by a nonuniform family of polynomial-size read-once zero-suppressed branching
programs is equal to the class of decision problems solvable by a nonuniform
family of polynomial-size read-once (deterministic) branching programs. When
we prove the third result, we also give some insight of the reason why the class
of decision problems solvable by a nonuniform family of polynomial-size zero-
suppressed branching programs may not be equal to L/poly (Sect. 3.3).

In the second part of this paper, we attempt to generalize the concept of zero-
suppression. We call the basic idea of ZDDs zero-suppression. We expect that
zero-suppression is effective in computing a certain kind of Boolean functions
such as almost all outputs are 0. Zero-suppressed branching programs, which we
defined in the first part, are the zero-suppressed version of branching programs.
We show that zero-suppression can be applied to other two classical computation
models, decision trees and Boolean formulas.

The first computation model is decision trees. We consider zero-suppression
for this model. For randomized computation and quantum computation, variants
of decision trees (i.e., randomized decision trees and quantum decision trees,
respectively) have been well-studied. We define zero-suppressed decision trees
and show some gaps of the complexity to deterministic decision trees. Although
our results for this model are quite simple observations, it implies a difference
between zero-suppression and other computations, and motivates the study of
zero-suppression.

The second computation model is Boolean formulas. For decision trees and
branching programs, we can smoothly define the zero-suppressed versions, since

Zero-Suppression and Computation Models 265

the definitions of them are close to ZDDs. We apply zero-suppression to oper-
ations of Boolean formulas, and define a new operation. We show an example
that Boolean formulas with zero-suppression are effective. Although our results
for this model are also quite simple observations, it implies that the concept of
zero-suppression could be widely applied.

2 Preliminaries

A Boolean function is a function f : {0, 1}n → {0, 1}.
A (deterministic) branching program or binary decision diagram (BDD) is

a directed acyclic graph. The nodes of out-degree 2 are called inner nodes and
labeled by a variable. The nodes of out-degree 0 are called sinks and labeled by
0 or 1. For each inner node, one of the outgoing edges is labeled by 0 and the
other one is labeled by 1. There is a single specific node called the start node.
An assignment to the variables determines a computation path from the start
node to a sink node. The value of the sink node is the output of the branching
program or BDD.

A zero-suppressed binary decision diagram (ZDD) is also a directed acyclic
graph defined in the same way as BDD, and the only difference is the way to
determine the output. An assignment to the variables determines a computation
path from the start node to a sink node. The ZDD outputs 1 iff the value of the
sink node is 1 and all variables which are not contained in the computation path
are assigned by 0.

Notice that we define BDD and ZDD with no restriction to the appearance
of the variables. (BDD and ZDD often mean the ordered one, i.e., the variable
order is fixed and each variable appears at most once on each path.) The size of
branching programs is the number of its nodes. If the nodes are arranged into a
sequence of levels with edges going only from one level to the next, then the width
is the size of the largest level. A branching program is called read-once branching
program if each path contains at most one node labeled by each variable.

Decision trees can be defined along the definition of branching programs. We
use this way in this paper. A (deterministic) decision tree is a branching program
whose graph is a rooted tree. The start node of a decision tree is the root. We
define the (deterministic) decision tree complexity of f , denoted by D(f), as the
depth of an optimal (i.e., minimal-depth) decision tree that computes f .

For a nonnegative integer i, NCi is the class of decision problems solvable by
a uniform family of Boolean circuits with polynomial size, depth O(logi n), and
fan-in 2.

3 Zero-Suppressed Branching Programs

Branching programs and BDDs have a same definition as we defined in Sect. 2.
We define zero-suppressed branching programs as it has the same definition to
ZDDs. In this section, we consider the computational power of zero-suppressed
branching programs.

266 H. Morizumi

3.1 Constant-Width Zero-Suppressed Branching Programs

Firstly, we prove two lemmas, which are used also in the following subsection.

Lemma 1. Any deterministic branching program of n variables, size s, and
width w can be converted to a zero-suppressed branching programs of size s + n
and width w.

Proof. Let G be a deterministic branching program of n variables, size s, and
width w. We convert G to a zero-suppressed branching program as follows. We
add n nodes, v1, v2, . . . , vn, such that vi is labeled by xi for 1 ≤ i ≤ n, and
connect two outgoing edges of vi to vi+1 for 1 ≤ i ≤ n − 1, and connect two
outgoing edges of vn to the 1-sink, and connect all edges which are connected to
the 1-sink to v1.

In the obtained zero-suppressed branching program, every computation path
to the 1-sink contains all variables. Thus, by the definition of zero-suppressed
branching programs, G and the obtained zero-suppressed branching program
compute the same Boolean function. ��
Lemma 2. Any zero-suppressed branching programs of n variables, polynomial
size, and width w can be converted to a Boolean circuit of polynomial size and
depth O(log w log n).

Proof. We extend the proof of one direction of the Barrington’s theorem. A
deterministic branching program of n variables, polynomial size, and width 5
can be converted to a Boolean circuit of polynomial size and depth O(log n) as
follows. Two levels of a deterministic branching program are composed to one
level by a circuit of a constant depth. Doing this in parallel and repeating it
O(log n) times yield the desired circuit of depth O(log n).

If the width is w, two levels of a deterministic branching program are com-
posed to one level by a circuit of depth O(log w). For the case of zero-suppressed
branching programs, we need to memorize the variables contained in the com-
putation path, which can be done with no increase of the depth of the circuit.

Actual encoding of each level is as follows. At most w nodes of each level can
be numbered with �log w� bits. For each outgoing edge of each node of a level,
�log w� + n bits are assigned. The first �log w� bits represent the node which
the outgoing edge connects to. The other n bits represent whether each of n
variables is contained in the computation path when the outgoing edge is used
in computation. ��

For the case that the width of zero-suppressed branching programs is a con-
stant, we determine that the equivalent class is NC1, which is an analog of the
Barrington’s theorem [1] for deterministic branching programs.

Theorem 1. For any constant w ≥ 5, the class of decision problems solvable
by a nonuniform family of polynomial-size width w zero-suppressed branching
programs is equal to nonuniform NC1.

Zero-Suppression and Computation Models 267

Proof. All problems in nonuniform NC1 can be solvable by a nonuniform family
of polynomial-size width 5 deterministic branching programs [1]. By Lemma 1,
the problems can be solvable also by a nonuniform family of polynomial-size
width 5 zero-suppressed branching programs. Thus, the class contains nonuni-
form NC1.

Consider a problem solvable by a nonuniform family of polynomial-size width
w zero-suppressed branching programs. By Lemma 2, the problem is also solv-
able by a nonuniform family of Boolean circuits of polynomial size and depth
O(log w log n). Since w is a constant, the class is contained in nonuniform NC1. ��

3.2 General Zero-Suppressed Branching Programs

The main question for zero-suppressed branching programs is whether the class
of decision problems solvable by a nonuniform family of polynomial-size zero-
suppressed branching programs is equal to L/poly or not. We show a weaker
result.

Theorem 2. The class of decision problems solvable by a nonuniform family
of polynomial-size zero-suppressed branching programs contains L/poly, and is
contained in nonuniform NC2.

Proof. All problems in L/poly can be solvable by a nonuniform family of
polynomial-size deterministic branching programs [3]. By Lemma 1, the problems
can be solvable also by a nonuniform family of polynomial-size zero-suppressed
branching programs. Thus, the class contains L/poly.

Consider a problem solvable by a nonuniform family of polynomial-size zero-
suppressed branching programs. Obviously, the width of the zero-suppressed
branching programs is a polynomial of n. Thus, by Lemma 2, the problem is
also solvable by a nonuniform family of Boolean circuits of polynomial size and
depth O(log2 n). Therefore, the class is contained in nonuniform NC2. ��

3.3 Read-Once Zero-Suppressed Branching Programs

In deterministic branching programs, the states in computation are decided only
by the node which was reached in computation. Thus, the number of the states
is at most the size of the branching program, and, if the size is at most poly-
nomial, then each state can be represented by logarithmic space, which leads
to the fact that the class of decision problems solvable by a nonuniform fam-
ily of polynomial-size deterministic branching programs is equal to L/poly. On
the other hand, in zero-suppressed branching programs, the states in compu-
tation are not decided only by the node which was reached in computation. It
depends on the variables which were contained in the computation path. This
is the main reason why the class of decision problems solvable by a nonuniform
family of polynomial-size zero-suppressed branching programs may not be equal
to L/poly. Note that the information of the passed variables cannot be saved in
logarithmic space.

268 H. Morizumi

In this subsection, we consider a simple case. If deterministic and zero-
suppressed branching programs are read-once, then we can convert them to each
other with polynomial increase of the size.

Theorem 3. The class of decision problems solvable by a nonuniform family
of polynomial-size read-once zero-suppressed branching programs is equal to the
class of decision problems solvable by a nonuniform family of polynomial-size
read-once deterministic branching programs.

Proof. We prove two lemmas.

Lemma 3. Any read-once deterministic branching program of n variables and
size s can be converted to a read-once zero-suppressed branching program of size
s + 2ns.

Proof. Note that the way of the proof of Lemma 1 does not give a read-once
zero-suppressed branching program. We need more consideration to the place
where new nodes are added.

Let G be a read-once deterministic branching program of n variables and
size s. Let v1, v2, . . . , vs be the nodes in G such that v1, v2, . . . , vs is a topologi-
cally sorted order. We convert G so that every computation path which reaches
to a node contains the same all variables, for each node from v1 to vs. Assume
that every computation path which reaches to vi contains the same variables for
each 1 ≤ i ≤ k − 1. We convert G so that every computation path which reaches
to vk contains the same variables as follows. Let Xi be the set of variables which
are contained in computation paths to vi, for 1 ≤ i ≤ k − 1. Let X be the union
of Xj such that there is an edge from vj to vk. Let X ′

i = X −Xi. For every edge
e from vi to vk, 1 ≤ i ≤ k − 1, we add |X ′

i| nodes, u1, u2, . . . , u|X′
i|, such that the

nodes are labeled by the variables contained in X ′
i, and connect two outgoing

edges of uj to uj+1 for 1 ≤ j ≤ |X ′
i| − 1, and connect two outgoing edges of

u|X′
i| to vk, and connect e to u1. Let G′ be the obtained branching program. If

computation paths to the 1-sink in G′ do not contain all variables, we modify
G′ to contain all variables by a similar way.

G′ is read-once, since added nodes are labeled by the variables contained in
X ′

i. In G′, every computation path to the 1-sink contains all variables. Thus,
by the definition of zero-suppressed branching programs, G and G′ compute the
same Boolean function. The number of added node is at most n for each edge. ��
Lemma 4. Any read-once zero-suppressed branching program of n variables and
size s can be converted to a read-once deterministic branching program of size
s + 2ns.

Proof. Let G be a read-once zero-suppressed branching program of n variables
and size s. Let v1, v2, . . . , vs be the nodes in G such that v1, v2, . . . , vs is a
topologically sorted order. We convert G so that every computation path which
reaches to a node contains the same all variables, for each node from v1 to vs.
Assume that every computation path which reaches to vi contains the same
variables for each 1 ≤ i ≤ k − 1. We convert G so that every computation path

Zero-Suppression and Computation Models 269

which reaches to vk contains the same variables as follows. Let Xi be the set of
variables which are contained in computation paths to vi, for 1 ≤ i ≤ k − 1. Let
X be the union of Xj such that there is an edge from vj to vk. Let X ′

i = X −Xi.
For every edge e from vi to vk, 1 ≤ i ≤ k−1, we add |X ′

i| nodes, u1, u2, . . . , u|X′
i|,

such that the nodes are labeled by the variables contained in X ′
i, and connect

the outgoing 0-edge of uj to uj+1 for 1 ≤ j ≤ |X ′
i|−1, and connect the outgoing

0-edge of u|X′
i| to vk, and connect the outgoing 1-edge of uj to the 0-sink for

1 ≤ j ≤ |X ′
i|, and connect e to u1. Let G′ be the obtained branching program.

If computation paths to the 1-sink in G′ do not contain all variables, we modify
G′ to contain all variables by a similar way.

G′ is read-once, since added nodes are labeled by the variables contained in
X ′

i. By the definition of zero-suppressed branching programs, G and G′ compute
the same Boolean function. The number of added node is at most n for each
edge. ��

By the two lemmas, the theorem holds. ��

4 Zero-Suppression and Other Computation Models

In this section, we attempt to generalize the concept of zero-suppression. We
show that zero-suppression can be applied to other two classical computation
models, decision trees and Boolean formulas.

4.1 Zero-Suppressed Decision Trees

Since a decision tree is a branching program whose graph is a rooted tree, zero-
suppressed decision trees are naturally defined as follows.

A zero-suppressed decision tree is also a rooted tree defined in the same way
as deterministic decision tree, and the only difference is the way to determine
the output. An assignment to the variables determines a computation path from
the start node to a sink node. The zero-suppressed decision tree outputs 1 iff
the value of the sink node is 1 and all variables which are not contained in the
computation path are assigned by 0. We define the zero-suppressed decision tree
complexity of f , denoted by Z(f), as the depth of an optimal (i.e., minimal-
depth) zero-suppressed decision tree that computes f .

We can immediately obtain the following gaps.

Theorem 4. There is a Boolean function f such that D(f) = 0 and Z(f) = n.

Proof. Let f = 1. (See also Fig. 1.) ��

Theorem 5. There is a Boolean function g such that D(g) = n and Z(g) = 0.

Proof. Let g = ¬x1 ∧ ¬x2 ∧ · · · ∧ ¬xn. (See also Fig. 2.) ��

270 H. Morizumi

Fig. 1. Decision trees computing f for n = 3

Fig. 2. Decision trees computing g for n = 3

Thus, the advantages and disadvantages of deterministic and zero-suppressed
decision trees strongly depend on the Boolean function which decision trees com-
pute. Although these two theorems are quite simple observations, the difference
from other computations implies unique behavior of zero-suppression. See the
following proposition.

Proposition 1. Q2(f) ≤ R2(f) ≤ D(f).

Q2(f) and R2(f) are variants of decision tree complexity with quantum com-
putation and randomized computation, respectively. For the definitions and the
more details, we refer to Sect. 3 of the survey paper [2].

4.2 Boolean Formulas with Zero-Suppression

In this subsection, we do not intend to give formal definitions. We show a simple
idea for future works.

Zero-Suppression and Computation Models 271

The exactly-k-function En
k (x1, . . . , xn) is 1 iff Σn

i=1xi = k. In the standard
formulas, an obvious representation of E3

1 is

(x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2 ∧ x3).

In formulas with zero-suppression, E3
1 is simply represented by

(x1)z ∨ (x2)z ∨ (x3)z,

where ()z is a new operation which we define from the concept of zero-suppression
and (f)z is 1 iff f = 1 and all variables which are not contained in f are assigned
by 0.

Although Boolean formulas are a computation model to compute Boolean
functions in computational complexity theory, it also appears in various areas.
From the example of Boolean formulas, we note that zero-suppression is not
necessarily considered only for computational complexity theory, although it is
beyond the main aim of this paper.

5 Conclusions

In this paper, we investigated zero-suppression. We applied zero-suppression to
three computation models including branching programs. It raises a question:
More generally, can we establish zero-suppressed computation as a new compu-
tation? We hope that this paper will be the first step to study zero-suppressed
computation. On the other hand, we also noted that zero-suppression is not nec-
essarily considered only for computational complexity theory with an example
of Boolean formulas.

While three computation models in this paper need further studies, a
challenging open problem is to seek another computation model whose zero-
suppressed version is meaningful, hopefully also in the real world. When we
consider other computation models (e.g., Boolean circuits), it is a difficult and
interesting problem even to define the appropriate zero-suppressed version.

For zero-suppressed branching programs, it remains open whether the class
of decision problems solvable by a nonuniform family of polynomial-size zero-
suppressed branching programs is equal to L/poly or not. We showed some related
results to the question in this paper. By Theorem 2, there are the following four
cases.

– The class is equal to L/poly.
– The class is equal to nonuniform NC2.
– The class is equal to another known complexity class between L/poly and

nonuniform NC2.
– The class is not equal to any known complexity class.

Our observation for zero-suppressed decision trees implies unusual properties of
zero-suppression, which makes us feel the possibility of some new complexity
class.

272 H. Morizumi

References

1. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

2. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

3. Cobham, A.: The recognition problem for the set of perfect squares. In: Proceedings
of the 7th Annual Symposium on Switching and Automata Theory, pp. 78–87 (1966)

4. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1. Addison-
Wesley, Boston (2009)

5. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD
- Foundations and Applications. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-3-642-58940-9

6. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of DAC, pp. 272–277 (1993)

7. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadel-
phia (2000)

https://doi.org/10.1007/978-3-642-58940-9
https://doi.org/10.1007/978-3-642-58940-9

The Crossing Number of Seq-Shellable
Drawings of Complete Graphs

Petra Mutzel and Lutz Oettershagen(B)

Department of Computer Science, TU Dortmund University, Dortmund, Germany
{petra.mutzel,lutz.oettershagen}@tu-dortmund.de

Abstract. The Harary-Hill conjecture states that for every n ≥ 3 the
number of crossings of a drawing of the complete graph Kn is at least

H(n) :=
1

4

⌊n
2

⌋⌊n − 1

2

⌋⌊n − 2

2

⌋⌊n − 3

2

⌋
.

So far, the conjecture could only be verified for arbitrary drawings of
Kn with n ≤ 12. In recent years, progress has been made in verify-
ing the conjecture for certain classes of drawings, for example 2-page-
book, x-monotone, x-bounded, shellable and bishellable drawings. Up to
now, the class of bishellable drawings was the broadest class for which
the Harary-Hill conjecture has been verified, as it contains all before-
hand mentioned classes. In this work, we introduce the class of seq-
shellable drawings and verify the Harary-Hill conjecture for this new
class. We show that bishellability implies seq-shellability and exhibit a
non-bishellable but seq-shellable drawing of K11, therefore the class of
seq-shellable drawings strictly contains the class of bishellable drawings.

1 Introduction

Let G = (V,E) be an undirected graph and Kn the complete graph on n > 0
vertices. The crossing number cr(G) of G is the smallest number of edge crossings
over all possible drawings of G. In a drawing D every vertex v ∈ V is represented
by a point and every edge uv ∈ E with u, v ∈ V is represented by a simple curve
connecting the corresponding points of u and v. The Harary-Hill conjecture
states the following.

Conjecture 1 (Harary-Hill [1]). Let Kn be the complete graph with n vertices,
then

cr(Kn) = H(n) :=
1
4

⌊n

2

⌋⌊n − 1
2

⌋⌊n − 2
2

⌋⌊n − 3
2

⌋
.

There are construction methods for drawings of Kn that lead to exactly H(n)
crossings, for example the class of cylindrical drawings first described by Harary
and Hill [2]. For a cylindrical drawing, we put �n

2 � vertices on the top rim and
the remaining �n

2 � vertices on the bottom rim of a cylinder. Edges between
vertices on the same rim (lid or bottom) are connected with straight lines on
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 273–284, 2018.
https://doi.org/10.1007/978-3-319-94667-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_23&domain=pdf

274 P. Mutzel and L. Oettershagen

the lid or bottom. Two vertices on opposite rims are connected with an edge
along the geodesic between the two vertices. The drawing of K6 in Fig. 1(a) is
homeomorphic to a planarized cylindrical drawing of K6.

However, there is no proof for the lower bound of the conjecture for arbitrary
drawings of Kn with n > 12. The cases for n ≤ 10 are shown by Guy [1] and
for n = 11 by Pan and Richter [3]. Guy [1] argues that cr(K2n+1) ≥ H(2n + 1)
implies cr(K2(n+1)) ≥ H(2(n + 1)), hence cr(K12) ≥ H(12). McQuillan et al.
showed that cr(K13) ≥ 219 [4]. Ábrego et al. [5] improved the result to cr(K13) ∈
{223, 225}.

Beside these results for arbitrary drawings, there has been success in proving
the Harary-Hill conjecture for different classes of drawings. So far, the conjecture
has been verified for 2-page-book [6], x-monotone [7–9], x-bounded [7], shellable
[7] and bishellable drawings [10]. The class of bishellable drawings comprises all
beforehand mentioned classes, and until now it was the largest class of drawings
for which the Harary-Hill conjecture has been verified. Ábrego et al. [10] showed
that the Harary-Hill conjecture holds for bishellable drawings using cumulated
k-edges.

Our Contribution. In this work, we introduce the new class of seq-shellable
drawings and verify the Harary-Hill conjecture for this new class. We show
that bishellability implies seq-shellability and exhibit a drawing of K11 which
is seq-shellable but not bishellable. Therefore, we establish that the class of seq-
shellable drawings strictly contains the class of bishellable drawings.

The outline of this paper is as follows. In Sect. 2 we present the preliminaries,
and in particular the background on k-edges, cumulated k-edges and their usage
for verifying the Harary-Hill conjecture. In Sect. 3 we define simple sequences
and their usage for proving lower bounds on the number of invariant edges. We
present the definition of seq-shellability, verify the Harary-Hill conjecture for
the new class and show its superiority towards the class of bishellable drawings.
Finally, in Sect. 4 we draw our conclusion and close with open questions.

2 Preliminaries

Formally, a drawing D of a graph G on the plane is an injection φ from the vertex
set V into the plane, and a mapping of the edge set E into the set of simple
curves, such that the curve corresponding to the edge e = uv has endpoints φ(u)
and φ(v), and contains no other vertices [11]. We call an intersection point of
the interior of two edges a crossing and a shared endpoint of two adjacent edges
is not considered a crossing. The crossing number cr(D) of a drawing D equals
the number of crossings in D and the crossing number cr(G) of a graph G is
the minimum crossing number over all its possible drawings. We restrict our
discussions to good drawings of Kn, and call a drawing good if (1) any two of
the curves have finitely many points in common, (2) no two curves have a point
in common in a tangential way, (3) no three curves cross each other in the same
point, (4) any two edges cross at most once and (5) no two adjacent edges cross.

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 275

It is known that every drawing with a minimum number of crossings is good
[12]. In the discussion of a drawing D, we call the points also vertices, the curves
edges and V denotes the set of vertices (i.e. points), and E denotes the edges
(i.e. curves) of D. If we subtract the drawing D from the plane, a set of open
discs remain. We call F(D) := R

2 \ D the set of faces of the drawing D. If we
remove a vertex v and all its incident edges from D, we get the subdrawing D−v.
Moreover, we might consider the drawing to be on the surface of the sphere S2,
which is equivalent to the drawing on the plane due to the homeomorphism
between the plane and the sphere minus one point.

In [10] Ábrego et al. introduce bishellable drawings.

Definition 1 (Bishellability [10]). For a non-negative integer s, a drawing
D of Kn is s-bishellable if there exist sequences a0, a1, . . . , as and bs, bs−1, . . . ,
b1, b0, each sequence consisting of distinct vertices of Kn, so that with respect to
a reference face F :

(i) For each i ∈ {0, . . . , s}, the vertex ai is incident to the face of D −
{a0, a1, . . . , ai−1} that contains F ,

(ii) for each i ∈ {0, . . . , s}, the vertex bi is incident to the face of D −
{b0, b1, . . . , bi−1} that contains F , and

(iii) for each i ∈ {0, . . . , s}, the set {a0, a1, . . . ai} ∩ {bs−i, bs−i−1, . . . , b0} is
empty.

The class of bishellable drawings contains all drawings that are (�n
2 � − 2)-

bishellable. In order to show that if a drawing D is (�n
2 � − 2)-bishellable, the

Harary-Hill conjecture holds for D, Ábrego et al. use the notion of k-edges.
The origins of k-edges lie in computational geometry and problems over n-point
set, especially problems on halving lines and k-set [13]. An early definition in
the geometric setting goes back to Erdős et al. [14]. Given a set P of n points
in general position in the plane, the authors add a directed edge e = (pi, pj)
between the two distinct points pi and pj , and consider the continuation as line
that separates the plane into the left and right half plane. There is a (possibly
empty) point set PL ⊆ P on the left side of e, i.e. left half plane. Erdős et al.
assign k := min(|PL|, |P \PL|) to e. Later, the name k-edge emerged and Lovász
et al. [15] used k-edges for determining a lower bound on the crossing number
of rectilinear graph drawings. Finally, Ábrego et al. [6] extended the concept of
k-edges from rectilinear to topological graph drawings.

Every edge in a good drawing D of Kn is a k-edge with k ∈ {0, . . . , �n
2 �−1}.

Let D be on the surface of the sphere S2, and e = uv be an edge in D and
F ∈ F(D) be an arbitrary but fixed face; we call F the reference face. Together
with any vertex w ∈ V \ {u, v}, the edge e forms a triangle uvw and hence
a closed curve that separates the surface of the sphere into two parts. For an
arbitrary but fixed orientation of e one can distinguish between the left part and
the right part of the separated surface. If F lies in the left part of the surface, we
say the triangle has orientation + else it has orientation −. For e there are n−2
possible triangles in total, of which 0 ≤ i ≤ n − 2 triangles have orientation +
(or −) and n − 2 − i triangles have orientation − (or + respectively). We define

276 P. Mutzel and L. Oettershagen

k := min(i, n − 2 − i) and say e is an k-edge with respect to the reference face
F and its k-value equals k with respect to F . Ábrego et al. [6] show that the
crossing number of a drawing is expressible in terms of the number of k-edges
for 0 ≤ k ≤ �n

2 � − 1 with respect to the reference face. The following definition
of the cumulated number of k-edges is helpful in determining the lower bound
of the crossing number.

Definition 2 (Cumulated k-edges [6]). Let D be good drawing and Ek(D) be
the number of k-edges in D with respect to a reference face F ∈ F(D) and for
k ∈ {0, . . . , �n

2 � − 1}. We call

E≤≤k(D) :=
k∑

i=0

(k + 1 − i)Ei(D)

the cumulated number of k-edges with respect to F .

We also write cumulated k-edges or cumulated k-value instead of cumulated
number of k-edges. Lower bounds on E≤≤k(D) for 0 ≤ k ≤ �n

2 � − 2 translate
directly into a lower bound for cr(D).

Lemma 1 [6]. Let D be a good drawing of Kn and F ∈ F(D). If E≤≤k(D) ≥
3
(
k+3
3

)
for all 0 ≤ k ≤ �n

2 � − 2 with respect to F , then cr(D) ≥ H(n). �

If a vertex v is incident to the reference face, the edges incident to v have a
predetermined distribution of k-values.

Lemma 2 [6]. Let D be a good drawing of Kn, F ∈ F(D) and v ∈ V be a
vertex incident to F . With respect to F , vertex v is incident to two i-edges for
0 ≤ i ≤ �n

2 �−2. Furthermore, if we label the edges incident to v counter clockwise
with e0, . . . , en−2 such that e0 and en−2 are incident to the face F , then ei is a
k-edge with k = min(i, n − 2 − i) for 0 ≤ i ≤ n − 2. �

Examples for Lemma 2 are the vertices incident to F in Fig. 1. We denote
the cumulated k-values for edges incident to a vertex v in a drawing D with
E≤≤k(D, v). Due to Lemma 2 it follows that E≤≤k(D, v) =

∑k
i=0(k +1− i) ·2 =

2
(
k+2
2

)
.

Next, we introduce invariant k-edges. Consider removing a vertex v ∈ V
from a good drawing D of Kn, resulting in the subdrawing D − v. By deleting
v and its incident edges every remaining edge loses one triangle, i.e. for an edge
uw ∈ E there are only (n − 3) triangles uwx with x ∈ V \ {u, v} (instead of
the (n − 2) triangles in drawing D). The k-value of any edge e ∈ E is defined
as the minimum count of + or − oriented triangles that contain e. If the lost
triangle had the same orientation as the minority of triangles, the k-value of e is
reduced by one else it stays the same. Therefore, every k-edge in D with respect
to F ∈ F(D) is either a k-edge or a (k − 1)-edge in the subdrawing D − v with
respect to F ′ ∈ F(D − v) and F ⊆ F ′. We call an edge e invariant if e has the
same k-value with respect to F in D as for F ′ in D′. We denote the number
of cumulated invariant k-edges between D and D′ (with respect to F and F ′

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 277

0 0

0

1

1 1

1

1 1

v0 v1

v2

v3 v4

v5

0 0

0
1 1

1

1 1

v0 v1

v3 v4

v5

F F

1 1

(a) (b)

2

2

2

22

2

Fig. 1. Example: (a) shows a crossing optimal drawing D of K6 with the k-values at
the edges. (b) shows the subdrawing D−v2 and its k-values. The fat highlighted edges
v0v1, v0v4 and v1v3 are invariant and keep their k-values. The reference face is the
outer face F .

respectively) with I≤k(D,D′), i.e. I≤k(D,D′) equals the sum of the number of
invariant i-edges for 0 ≤ i ≤ k.

For a good drawing D of Kn, we are able to express the value of cumulated
k-edges with respect to a reference face F ∈ F(D) recursively by adding up the
cumulated (k − 1)-value of a subdrawing D − v, the contribution of the edges
incident to v and the number of invariant edges between D and D − v.

Lemma 3 [10]. Let D be a good drawing of Kn, v ∈ V and F ∈ F(D). With
respect to the reference face F , we have

E≤≤k(D) = E≤≤k−1(D − v) + E≤≤k(D, v) + I≤k(D,D − v).

�

Ábrego et al. [10] use an inductive proof over k to show that for a bishellable
drawing D of Kn E≤≤k(D) ≥ 3

(
k+3
3

)
for all k ∈ {0, . . . , �n

2 � − 2}. Together with
Lemma 1 follows cr(D) ≥ H(n).

Here, we also use Lemma 3 and show that for a seq-shellable drawing D of Kn

the lower bounds on E≤≤k(D) hold for all k ∈ {0, . . . , �n
2 � − 2}. But in contrast

to [10], we use a more general and at the same time easy to follow approach
to guarantee lower bounds on the number of invariant edges I≤k(D,D − v) for
0 ≤ k ≤ �n

2 � − 2.

3 Seq-Shellability

Before we proceed with the definition of seq-shellability, we introduce simple
sequences.

278 P. Mutzel and L. Oettershagen

3.1 Simple Sequences

We use simple sequences to guarantee a lower bound of the number of invariant
edges in the recursive formulation of the cumulated k-value.

Definition 3 (Simple sequence). Let D be a good drawing of Kn, F ∈ F(D)
and v ∈ V with v incident to F . Furthermore, let Sv = (u0, . . . , uk) with ui ∈
V \ {v} be a sequence of distinct vertices. If u0 is incident to F and vertex
ui is incident to a face containing F in subdrawing D − {u0, . . . , ui−1} for all
1 ≤ i ≤ k, then we call Sv simple sequence of v.

Before we continue with a result for lower bounds on the number of invariant
edges using simple sequences, we need the following lemma.

Lemma 4. Let D be a good drawing of Kn, F ∈ F(D) and u, v ∈ V with u and
v incident to F . The edge uv touches F either over its full length or not at all
(except its endpoints).

Proof. Assume that D a is good drawing of Kn in which the edge uv touches
F only partly. We can exclude the case that an edge cuts a part out of uv by
crossing it more than once due to the goodness of the drawing (see Fig. 2(a)).
The case that an edge crosses the whole face F and separates it into two faces
is also impossible, because this would contradict that both u and v are incident
to F . Therefore, a vertex x has to be on the same side of uv as F and a vertex y
on the other side such that the edge xy crosses uv. But the edge xu cannot cross
any edge uz with z ∈ V \{u} as this would contradict the goodness of D and xu
cannot leave the superface of x without separating v from F (see Fig. 2(b) and
(c)). We have the symmetric case for v. Consequently, uv cannot touch F beside
its endpoints u and v (see Fig. 2(d)), a contradiction to the assumption. �

Fig. 2. (a) Due to the goodness of D an edge cannot cut a part out of the edge uv.
(b) The edges uv and ux cross, both have vertex u as endpoint thus the drawing is
not good. (c) The drawing is good but vertex v is not incident to the face F. (d) The
edge uv is crossed, the drawing is good and both vertices u and v is are incident to F ,
however uv is not incident to F .

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 279

Corollary 1. Let D be a good drawing of Kn, F ∈ F(D) and u, v ∈ V with
both u and v incident to F . If and only if uv is a j-edge, there are exactly j or
n − 2 − j vertices on the same side of uv as the reference face F . �

The following lemma provides a lower bound for the number of invariant edges
in the case that F is incident to at least two vertices and we remove one of them.

Lemma 5. Let D be a good drawing of Kn, F ∈ F(D) and v, w ∈ V with v and
w incident to F . If we remove v from D, then w is incident to at least �n

2 � − 1
invariant edges.

Proof. We label the edges incident to w counter clockwise with e0, . . . , en−2 such
that e0 and en−2 are incident to the face F , and we label the vertex at the other
end of ei with ui. Furthermore, we orient all edges incident to w as outgoing
edges. Due to Lemma 2 we know that w has two i-edges for 0 ≤ i ≤ �n

2 � − 2.
Edge ei obtains its i-value from the minimum of say + oriented triangles and
edge en−2−i obtains its i-value from the minimum − oriented triangles (or vice
versa). Assume that vw is incident to F , i.e. vw is a 0-edge and all triangles vwu
for u ∈ V \ {v, w} have the same orientation. Consequently, all ei or all en−2−i

for 0 ≤ i ≤ �n
2 � − 2 are invariant. In the case that vw is not incident to F and

is a j-edge, there are j triangles vwuh with uh ∈ V \ {v, w}, 0 ≤ h ≤ j − 1 or
n − 1 − j ≤ h ≤ n − 2 and uh is on the same side of vw as F (Corollary 1). This
means, each triangle wuhv is part of the majority of orientations for the k-value
of edge wuh, therefore removing v does not change the k-value and there are j
additional invariant edges incident to w if we remove v. �

The following lemma provides a lower bound for the number of cumulated invari-
ant k-edges if we remove a vertex that has a simple sequence.

Lemma 6. Let D be a good drawing of Kn, F ∈ F(D) and v ∈ V with v
incident to F . If v has a simple sequence Sv = (u0, . . . , uk), then

I≤k(D,D − v) ≥
(

k + 2
2

)

with respect to F and for all k ∈ {0, . . . , �n
2 � − 2}.

Proof. Let k ∈ {0, . . . , �n
2 � − 2}. We know that u0 has at least k + 1 ≤ �n

2 � − 1
invariant edges with respect to F and removing v. After removing vertex u0 from
drawing D, vertices v and u1 are incident to F . Since k ≤ �n

2 � − 2 ≤ �n−1
2 � − 1

and u0 has an edge to u1 in drawing D, vertex u1 has at least k invariant edges
with respect to F and removing v in drawing D. In general, after removing
vertices u0, . . . , ui−1 from drawing D, vertices v and ui are incident to F . For
u ∈ {u0, . . . , ui−1} the edge uui in drawing D may be invariant or non-invariant,
and we have k+1−i ≤ �n

2 �−1−i ≤ �n−i
2 �−1. Therefore, ui has at least k−i+1

280 P. Mutzel and L. Oettershagen

invariant edges in drawing D with respect to F and removing v. Summing up
leads to

I≤k(D,D − v) ≥
k∑

i=0

(k + 1 − i) =
(

k + 2
2

)
. �

3.2 Seq-Shellable Drawings

With help of simple sequences we define k-seq-shellability. For a sequence of
distinct vertices a0, . . . , ak we assign to each vertex ai with 0 ≤ i ≤ k ≤ n − 2
a simple sequence Si, under the condition that Si does not contain any of the
vertices a0, . . . , ai−1.

Definition 4 (Seq-Shellability). Let D be a good drawing of Kn. We call D
k-seq-shellable for k ≥ 0 if there exists a face F ∈ F(D) and a sequence of
distinct vertices a0, . . . , ak such that a0 is incident to F and

1. for each i ∈ {1, . . . , k}, vertex ai is incident to the face containing F in
drawing D − {a0, . . . , ai−1} and

2. for each i ∈ {0, . . . , k}, vertex ai has a simple sequence Si = (u0, . . . , uk−i)
with uj ∈ V \ {a0, . . . , ai} for 0 ≤ j ≤ k − i in drawing D − {a0, . . . , ai−1}.

Notice that if D is k-seq-shellable for k > 0, then the subdrawing D−a0 is (k−1)-
seq-shellable. Moreover, if D is k-seq-shellable, then D is also j-seq-shellable for
0 ≤ j ≤ k.

Lemma 7. If D is a good drawing of Kn and D is k-seq-shellable with k ∈
{0, . . . , �n

2 � − 2}, then E≤≤k(D) ≥ 3
(
k+3
3

)
.

Proof. We proceed with induction over k. For k = 0 the reference face is incident
to at least three 0-edges and it follows that

E≤≤0(D) ≥ 3 = 3
(

0 + 3
3

)
.

For the induction step, let D be k-seq-shellable with a0, . . . , ak and the sequences
S0, . . . , Sk. Consider the drawing D − a0 which is (k − 1)-seq-shellable for
a1, . . . , ak and S1, . . . , Sk. Since k − 1 ≤ (�n

2 � − 2) − 1 ≤ (�n−1
2 � − 2), we assume

E≤≤k−1(D − a0) ≥ 3
(

k + 2
3

)
.

We use the recursive formulation introduced in Lemma3, i.e.

E≤≤k(D) = E≤≤k−1(D − a0) + E≤≤k(D, a0) + I≤k(D,D − a0).

Because a0 is incident to F , we have E≤≤k(D, a0) = 2
(
k+2
2

)
, and with the simple

sequence S0 of a0 follows I≤k(D,D − a0) ≥ (
k+2
2

)
(see Lemma 6). Together with

the induction hypothesis, we have

E≤≤k(D) ≥ 3
(

k + 2
3

)
+ 2

(
k + 2

2

)
+

(
k + 2

2

)
= 3

(
k + 3

3

)
. �

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 281

Using Lemmas 1 and 7, we are able to verify the Harary-Hill conjecture for seq-
shellable drawings.

Theorem 1. If D is a good drawing of Kn and D is (�n
2 � − 2)-seq-shellable,

then cr(D) ≥ H(n).

Proof. Let D be a good drawing of Kn and (�n
2 � − 2)-seq-shellable. Since D is

(�n
2 � − 2)-seq-shellable, it is also k-seq-shellable for 0 ≤ k ≤ �n

2 � − 2. We apply
Lemma 7 and have E≤≤k(D) ≥ 3

(
k+3
3

)
for 0 ≤ k ≤ �n

2 �−2 and the result follows
with Lemma 1. �

If a drawing D of Kn is (�n
2 � − 2)-seq-shellable, we omit the (�n

2 � − 2) part and
say D is seq-shellable. The class of seq-shellable drawings contains all drawings
that are (�n

2 � − 2)-seq-shellable.

Theorem 2. The class of seq-shellable drawings strictly contains the class of
bishellable drawings.

Proof. First, we show that k-bishellability implies k-seq-shellability. Let D be
a k-bishellable drawing of Kn with the associated sequences a0, . . . , ak and
b0, . . . , bk. In order to show that D is k-seq-shellable, we choose a0, . . . , ak

as vertex sequence and k simple sequences Si for 0 ≤ i ≤ k such that

Fig. 3. Drawing H of K11 which is not bishellable for any face, however it is seq-
shellable for face F , vertex sequence (v0, v2, v3, v4) and the simple sequences S0 =
(v1, v2, v7, v4), S1 = (v1, v8, v6), S2 = (v1, v8) and S3 = (v1). Vertex v0 and the vertices
of S0 are highlighted as unfilled and filled squares.

282 P. Mutzel and L. Oettershagen

Si = (b0, . . . , bk−i). We assign simple sequence Si to vertex ai for each 0 ≤ i ≤ k
and see that D is indeed seq-shellable. Furthermore, drawing H of K11 in Fig. 3
is not bishellable but seq-shellable. It is impossible to find sequences a0, . . . , a3

and b0, . . . , b3 in H that fulfill the definition of bishellability. However, H is
seq-shellable for face F , vertex sequence (v0, v2, v3, v4) and the simple sequences
S0 = (v1, v2, v7, v4), S1 = (v1, v8, v6), S2 = (v1, v8) and S3 = (v1). �

The distinctive difference between seq-shellability and bishellability is that
the latter demands a symmetric structure in the sense that we can mutually
exchange the sequences a0, . . . , ak and b0, . . . , bk. Thus, the sequence b0, . . . , bk−i

has to be the simple sequence of ai in the subdrawing D − {a0, . . . , ai−1} for
all 0 ≤ i ≤ k and vice versa, i.e. the sequence a0, . . . , ak−i has to be the simple
sequence of bi in the subdrawing D − {b0, . . . , bi−1} for all 0 ≤ i ≤ k. With seq-
shellability we do not have this requirement. Here we have the vertex sequence
a0, . . . , ak and each vertex ai with 0 ≤ i ≤ k has its own (independent) simple
sequence Si.

Figure 5 shows a gadget that visualizes the difference between bishellabil-
ity and seq-shellability: (a) shows a substructure with nine vertices that may
occur in a drawing. We have the simple sequence v1, v2, v4 for vertex v3 in (b)
and (c). Therefore, we can remove vertex v3 and are able to guarantee the

Fig. 4. Subdrawing H −v0 after removing vertex v0 and its incident edges. The second
vertex of the vertex sequence v2 is incident to the face containing F and has simple
sequence S1. Vertex v2 and the vertices of S1 are highlighted as unfilled and filled
squares.

The Crossing Number of Seq-Shellable Drawings of Complete Graphs 283

Fig. 5. The gadget does not allow for a bishellability sequence, because only one of
the two sequences a0, . . . , ak or b0, . . . , bk can be chosen due to condition three of the
definition of bishellability. However, the gadget is seq-shellable.

number of invariant edges. After removing vertex v3 in (d), there are simple
sequences for vertex v1 and v2, thus the substructure is seq-shellable. However,
it is impossible to apply the definition of bishellability. We may use, for example,
sequence v1, v2, v4 as a0, . . . , ak sequence and we need a second sequence (the b
sequence) that satisfies the exclusion condition of the bishellability, i.e. for each
i ∈ {0, . . . , k}, the set {a0, a1, . . . ai} ∩ {bk−i, bk−i−1, . . . , b0} has to be empty
(see Definition 1). The first vertex of our second sequence (i.e. b0) has to be v3,
because b0 has to be incident to F . Now, for the second vertex we have to satisfy
{a0, a1} ∩ {b1, b0} = ∅, thus the second vertex has to be different from the first
two vertices of the sequence v1, v2, v4. Because we only can choose between ver-
tices v1 and v2, we cannot select a second vertex for our b sequence. Thus, the
structure is not bishellable. We can argue the same way for the other possible
sequences in the gadget.

4 Conclusion

In this work, we introduced the new class of seq-shellable drawings and verified
the Harary-Hill conjecture for this class. Seq-shellability is a generalization of
bishellability, thus bishellability implies seq-shellability. In addition we exhibited
a drawing of K11 which is seq-shellable but not bishellable, hence seq-shellability
is a proper extension of bishellability. So far, we are not aware of an optimal
seq-shellable but non-bishellable drawing and we close with the following open
questions:

284 P. Mutzel and L. Oettershagen

1. Can we find a construction method to obtain optimal drawings of Kn that
are seq-shellable but not bishellable?

2. Does there exist a non-bishellable but seq-shellable drawing of Kn with 10 ≤
n < 14, such that after removing the first vertex of the simple sequence the
drawing D − a0 is still non-bishellable. We found a drawing of K14 with this
property.

References

1. Guy, R.K.: A combinatorial problem. Nabla Bull. Malay. Math. Soc. 7, 68–72
(1960)

2. Harary, F., Hill, A.: On the number of crossings in a complete graph. Proc. Edinb.
Math. Soc. 13(4), 333–338 (1963)

3. Pan, S., Richter, R.B.: The crossing number of K11 is 100. J. Graph Theory 56(2),
128–134 (2007)

4. McQuillan, D., Pan, S., Richter, R.B.: On the crossing number of K13. J. Comb.
Theory Ser. B 115, 224–235 (2015)

5. Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz,
A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete
graphs. In: Proceedings of 31st European Workshop on Computational Geometry
(EuroCG), pp. 57–60 (2015)

6. Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The
2-page crossing number of Kn. In: Proceedings of the Twenty-Eighth Annual Sym-
posium on Computational Geometry. SoCG 2012, pp. 397–404. ACM, New York
(2012)

7. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.:
Shellable drawings and the cylindrical crossing number of Kn. Discrete Computa.
Geom. 52(4), 743–753 (2014)

8. Balko, M., Fulek, R., Kyncl, J.: Crossing numbers and combinatorial character-
ization of monotone drawings of Kn. Discrete Computa. Geom. 53(1), 107–143
(2015)

9. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.:
More on the crossing number of Kn: monotone drawings. Electron Notes Discrete
Math. 44, 411–414 (2013)

10. Ábrego, B., Aichholzer, O., Fernández-Merchant, S., McQuillan, D., Mohar, B.,
Mutzel, P., Ramos, P., Richter, R., Vogtenhuber, B.: Bishellable drawings of Kn.
In: Proceedings of XVII Encuentros de Geometŕıa Computacional (EGC), Alicante,
Spain, pp. 17–20 (2017)

11. Székely, L.A.: A successful concept for measuring non-planarity of graphs: the
crossing number. Electron. Notes Discrete Math. 5, 284–287 (2000)

12. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J.
Comb. 1000, DS21 (2013)

13. Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On ≤k-
edges, crossings, and halving lines of geometric drawings of Kn. Discrete Comput.
Geom. 48(1), 192–215 (2012)

14. Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point
sets. In: Srivastava, J.N. (ed.) A Survey of Combinatorial Theory, pp. 139–149.
Elsevier, Amsterdam (1973)

15. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and
k-sets. Contemp. Math. 342, 139–148 (2004)

Cryptographic Limitations
on Polynomial-Time a Posteriori

Query Learning

Mikito Nanashima(B)

Department of Mathematical and Computing Science,
Tokyo Institute of Technology,

O-okayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
nanashima.m.aa@is.c.titech.ac.jp

Abstract. We investigate the polynomial-time learnability by using
examples and membership queries. Angluin and Kharitonov [1] proved
that various concept classes (e.g., Boolean formulae, non-deterministic
finite automata) are not polynomial-time learnable in this learning model
based on a public-key encryption scheme with a certain security (i.e.,
IND-CCA1). As a stronger learning model, we consider an a posteri-
ori query learning model, and show that it is indeed stronger than the
above learning model if a one-way function exists. Nevertheless, from a
secure encryption scheme, we prove that many natural classes containing
Boolean formula concept class is not polynomial-time learnable even in
this stronger learning model. The security of an encryption scheme used
in this paper is weaker than the one used by Angluin and Kharitonov.

Keywords: Computational learning theory · PAC learning
Query learning · Cryptography · Encryption · Signature

1 Introduction

Computational learning theory introduced by Valiant [10] is concerned with what
machines can learn efficiently. Roughly speaking, a learning algorithm tries to
learn a certain target concept such as an automaton or a Boolean formula, and
we say that a concept class (i.e., a set of concepts) is polynomial-time learnable if
a polynomial-time learning algorithm can learn any concept in the class approx-
imately correctly under any example distribution by examples and membership
queries. There are a number of studies and many positive results and negative
results are known. On the negative side, it is known that cryptographic tools and
assumptions are useful to show the limits of polynomial-time learnability. For
example, from well-known cryptographic assumptions (e.g., hardness of inverting
the RSA function, factoring Blum integers) Angluin and Kharitonov show that
many concept classes (e.g., Boolean formulae, non-deterministic finite automata)
are not polynomial-time learnable. In general, their argument is based on an

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 285–297, 2018.
https://doi.org/10.1007/978-3-319-94667-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_24&domain=pdf

286 M. Nanashima

a priori chosen-ciphertext secure public-key encryption scheme (IND-CCA1)
constructed from the cryptographic assumptions [1].

We consider a stronger learning model in this paper. In the above model,
learning can be divided into two phases: a learning phase and a testing phase [6].
In a learning phase, an algorithm learns a target concept by asking queries to
a teacher, called an “oracle”, who knows the target concept. In a testing phase
(after the learning phase), a learner is given a test, called a challenge, by the
oracle and answers it correctly to prove that the learner has learned the target
concept successfully. In the testing phase, the learning algorithm cannot make
a query to the oracle. Let us call this a priori query learning. In this paper we
introduce a new learning model—a posteriori query learning—that is stronger
in the sense that a learner is allowed to query to the oracle while in a testing
phase (like an open-book examination). We can easily show that there is no
difference between a priori and a posteriori query learning in the restricted case
where only examples are allowed. On the other hand, in the case of learning
with membership queries (i.e., when a learning algorithm is allowed to ask the
teacher whether a certain object (except the challenge) is contained in the target
concept or not), we show that a posteriori query learning is indeed stronger than
a priori one if a one-way function exists.

We study in this paper whether natural concept classes such as Boolean
formulae are polynomial-time learnable in this a posteriori query learning. Note
that it is not so difficult to prove the non-learnability result similar to the one
by Angluin and Kharitonov by using an encryption scheme with strong security
(i.e., IND-CCA2) and the decryption method computable in a certain complexity
class. Our main result is to give a concept class that is not a posteriori query
learnable in polynomial-time based on a standard one-way function. This leads
to the non-learnability of natural concept classes based on an encryption scheme
with weaker security, that is, indistinguishable encryptions for multiple messages
(where we also require that the scheme has a decryption method computable in
a certain complexity class). Note that it has been shown that an encryption
scheme with indistinguishable encryptions for multiple messages is in general
weaker than the IND-CCA1 encryption scheme [2]. Thus, we derived a stronger
non-learnability result from a weaker cryptographic assumption.

We also investigate polynomial-time learnability by using only membership
queries (i.e., no examples). In this restricted case, we give a non-learnable concept
class based on an encryption scheme with single-massage security. Note that
it is weaker than multiple-messages security and we can construct the weak
encryption scheme unconditionally by the well-known construction (i.e., one-time
pad). This leads to the non-learnability result of natural concept classes based
on a standard one-way function without any condition for the computational
complexity of cryptographic tools (e.g., an easily computable decryption).

The motivation of considering a stronger learning model is mainly to inves-
tigate how machines can learn complex concept classes efficiently. As we men-
tioned above, Angluin and Kharitonov showed that many natural classes are not
polynomial-time learnable in a priori query learning under some cryptographic

Cryptographic Limitations on Polynomial-Time 287

assumptions [1]. Thus as a stronger model, we consider a posteriori query learn-
ing and investigate whether it is indeed useful to learn some of these natural
classes. In some fields, especially cryptography, we may observe the situation
that any membership query except the challenge is allowed. We can regard
adversaries in cryptography as learning algorithms in learning theory. From the
perspective of cryptography, for example, the aim of the learner trying to learn
a secret-key is to obtain some secret information from a certain ciphertext (i.e.,
a challenge) rather than the secret-key itself, and the learner may get other
information adaptively by abusing complicated applications using the secret-key
internally. In other words, there is a gap between complex cryptographic security
and non-learnability in the a priori query learning model. The characterization
of cryptographic security by difficulty of learning is useful to understand the
relationship between some cryptographic tools, and our motivation is also to
reduce the gap between cryptography and computational learning theory.

2 Preliminaries

2.1 Concepts

We use a binary alphabet. If x is a string, |x| denotes its length. We let 〈x, y〉
denote a proper encoding of a pair (x, y) of strings as a single string.

A representation of concepts (or a concept class) C is defined as any subset
of {0, 1}∗ ×{0, 1}∗. For an element (u, x) ∈ C , we call the first string u a concept
name, and the second string x an example. We define a concept represented by
a concept name u as a set of strings κC (u) = {x : (u, x) ∈ C }. We also define a
computational complexity of a representation of concepts C as the complexity
of deciding whether (u, x) ∈ C or not.

Now we give some examples. We let CBF denote the representation of con-
cepts for Boolean formulae. Then (u, x) is an element of CBF if and only if u
has the form 〈n, φ̄〉, where n is an integer and φ̄ is a proper encoding of Boolean
formula φ over n variables, and x is a string satisfying |x| = n and φ(x) = 1. For
example, the concept represented by the concept name u = 〈3,¬x1 ∨ (x2 ∧ x3)〉
is κCBF

(u) = {000, 001, 010, 011, 111}.
In this paper, we refer to the classes1 NCi and ACi together as a circuit

complexity class. For brevity, we may regard the circuit complexity class as a set
of circuits. For a circuit complexity class S , we let CS denote the representation
of concepts for circuits in S . Then (u, x) is an element of CS if and only if u
has the form 〈n, c̄〉, where n is a integer and c̄ is a proper encoding of a circuit
c in S that has n input-gates and 1 output-gate, and x is a string satisfying
|x| = n and c(x) = 1.

1 Let n be the length of input. NCi is the class computed by a family of polynomial
size and O(logi(n)) depth circuits with bounded fan-in, and ACi is the similar class
except that gates are allowed to have unbounded fan-in.

288 M. Nanashima

2.2 Learning Models

We generalize the definitions in [1,6]. Let C be a representation of concepts. A
learning algorithm A for C is defined as any randomized oracle Turing machine
that takes as input a bound s on the length of the target concept name, a
bound n on the length of examples, and an accuracy parameter ε ∈ (0, 1/2]. The
algorithm A can make a call to the CHALLENGE oracle at only one time, and
the oracle returns a string x̃, called a challenge, chosen according to unknown
example distribution D on {0, 1}≤n. The goal of A is to guess and output whether
the challenge x̃ is contained in the unknown target concept represented by u ∈
{0, 1}≤s correctly with probability at least 1− ε. The algorithm A can also make
a call to the following oracles decided by the target concept u and the example
distribution D to gain knowledge about the target concept.

– EXAMPLE: the oracle takes no input and returns a pair (x, b), where x is a
string chosen according to D and b = 1 if x ∈ κC (u) and b = 0 otherwise.

– MQ (Membership Query): the oracle takes a string x ∈ {0, 1}∗ as input and
returns 1 if x ∈ κC (u) and 0 otherwise.

We classify learning algorithms under the accessibility to the oracles as follows:

– a priori query learning: it can make a call to EXAMPLE and MQ only before
receiving a challenge.

– a posteriori query learning: it can also make a call to EXAMPLE and MQ
after receiving a challenge, but querying the challenge to MQ is prohibited.

We say that a representation of concepts C is polynomial-time learnable if
there exists a learning algorithm A satisfying the following conditions: for all
inputs (s, n, ε), concept names u ∈ {0, 1}≤s, and distributions D on {0, 1}≤n,
(1) A runs in polynomial-time in s, n, and 1/ε, and (2) A succeeds in predicting
whether the challenge is in the target concept κC (u) under the distribution D
correctly with probability at least 1 − ε.

We also define weaker learnability of a concept class. A weak learning algo-
rithm is a randomized oracle machine with the same properties as the above
learning algorithm except for taking no accuracy parameter. It tries to predict a
correct classification of a challenge with probability more than 1/2 (in the case
of making a prediction at random). We say that a representation of concepts
C is weakly polynomial-time learnable if there exists a weak learning algorithm
A and a polynomial p satisfying the following conditions: for all inputs (s, n),
concept names u ∈ {0, 1}≤s, and distributions D on {0, 1}≤n, (1) A runs in
polynomial-time in s and n, and (2) A succeeds in predicting whether the chal-
lenge is in the target concept κC (u) under the distribution D correctly with
probability at least 1/2 + 1/p(s, n).

It is known that polynomial-time learnability in a priori query learning is
equivalent to the one in PAC (Probably Approximately Correct) learning intro-
duced by Valiant [4,10]. In the PAC learning model, it is known that weak
polynomial-time learnability is equivalent to (strong) polynomial-time learnabil-
ity [8]. Thus, the relationship also holds in an a priori query learning model.

Cryptographic Limitations on Polynomial-Time 289

Lemma 1 ([8]). In a priori query learning by only examples, weak polynomial-
time learnability is equivalent to polynomial-time learnability.

In the restricted case where only examples are allowed, an a priori query
learner can simulate an a posteriori query learner by getting enough examples
in advance. Then, the following holds. (We omit the proof.)

Lemma 2. In polynomial-time learning by only examples, a priori query learn-
ability is equivalent to a posteriori query learnability. In weak polynomial-time
learnability, the same result holds.

By the above lemmas, we have immediately the following lemma.

Lemma 3. In a posteriori query learning by only examples, weak polynomial-
time learnability is equivalent to polynomial-time learnability.

2.3 Cryptographic Tools

We introduce some useful cryptographic tools to show the limits of polynomial-
time learnability.

Definition 1 (one-way function). A function f is one-way if f is polynomial-
time computable but any non-uniform polynomial-time algorithm cannot
invert f .

Definition 2 (encryption scheme). An encryption scheme is a triple (G,E,
D) of PPT (probabilistic polynomial-time) algorithms with the following prop-
erties: (1) for every integer n, G(1n) outputs a pair (e, d) of strings, where e
is an encryption-key and d is a decryption-key, (2) for every pair (e, d) of keys
and plaintext α ∈ {0, 1}∗, the algorithms E and D satisfy the condition that
Pr[D(d,E(e, α)) = α] = 1.

Definition 3 (signature scheme). A signature scheme is a triple (G,S, V) of
PPT algorithms with the following properties: (1) for every integer n, G(1n) out-
puts a pair (sk, vk) of strings, where sk is a signing-key and vk is a verification-
key, (2) for every pair (sk, vk) of keys and document α ∈ {0, 1}∗, the algorithms
S and V satisfy the condition that Pr[V (vk, α, S(sk, α)) = 1] = 1.

In this paper, we will make no distinction between a private-key encryption
scheme and a public-key encryption scheme. Besides, we only consider a deter-
ministic algorithm as a decryption algorithm D and a verification algorithm V .
We let G1(1n) (resp. G2(1n)) denote the first (resp. second) element of outputs
of G(1n) in both cases of an encryption scheme and a signature scheme.

3 Polynomial-Time a Posteriori Query Learnability

We discuss polynomial-time learnability in an a posteriori query learning model
with membership queries.

290 M. Nanashima

3.1 Polynomial Representation of Signatures

To show that membership queries don’t help to learn some natural concept
classes, we introduce a useful tool, which is polynomial representation of signa-
tures by Angluin and Kharitonov [1].

Definition 4 ([1]). Let C and C ′ be representations of concepts. C ′ polynomi-
ally represents signatures for C with respect to a signature scheme (G,S, V) if
there exist two maps, a concept map g and an example map f , and two polyno-
mials q1 and q2 such that for all integers s and n, concept names u ∈ {0, 1}≤s,
examples x ∈ {0, 1}≤n, pairs of keys (sk, vk) ← G(1n), and signatures y ←
S(sk, x), the following conditions hold:

(1) |g(vk, s, n, u)| ≤ q1(s, n),
(2) w := f(vk, s, n, x, y) is computable in polynomial-time in s and n, and |w| ≤

q2(s, n),
(3) fvk,s,n(x, y) := f(vk, s, n, x, y) is injective, and there is a polynomial-time

algorithm that computes the unique inverse element (if any),

and for all integers s and n, concept names u ∈ {0, 1}≤s, pairs of keys (sk, vk) ←
G(1n), and strings w ∈ {0, 1}∗, the following condition holds:

(4) w ∈ κC ′(g(vk, s, n, u)) if and only if there exist strings x and y such that
w = fvk,s,n(x, y) and x ∈ κC (u) and V (vk, x, y) = 1.

Intuitively, C and C ′ satisfy the above conditions if each concept in C ′ corre-
sponds to each concept in C with valid signatures to the examples. Angluin and
Kharitonov proved that many natural concept classes polynomially represent sig-
natures for themselves with respect to any signature scheme. Their proof holds
as long as the concept class is closed by AND (∧) and has ability to compute
3CNF formulae. It is easily checked that any 3CNF formula can be computed
by a depth-3 circuit using unbounded fan-in gates. Thus, we have the following
theorem.

Theorem 1 ([1]). CBF polynomially represents signatures for CBF with respect
to every signature scheme. Moreover, CS polynomially represents signatures for
CS with respect to every signature scheme, where S is a circuit complexity class
that contains AC0.

Angluin and Kharitonov also showed that membership queries don’t help to
learn a concept class that polynomially represents the signatures with the fol-
lowing security, called EUF-CMA. It is well-known that an EUF-CMA signature
scheme can be constructed from any one-way function [7].

Definition 5 (EUF-CMA [3]). A signature scheme (G,S, V) is existential
unforgeable against adaptive chosen message attackers (EUF-CMA) if for all
non-uniform oracle machines M , polynomials p, and sufficiently large integers
n, the following condition holds:

Pr
[

V (vk, α, β) = 1 ∧ α /∈ QSsk

M (vk)
where (sk, vk) ← G(1n) and (α, β) ← MSsk(vk)

]
<

1
p(n)

,

Cryptographic Limitations on Polynomial-Time 291

where, QSsk

M (vk) denotes a set of M ’s queries to a signing oracle Ssk(·).
Theorem 2 ([1]). Let C and C ′ be concept classes in P . If C ′ polynomially
represents signatures for C with respect to an EUF-CMA signature scheme and
C is not polynomial-time learnable by only examples, then C ′ is not polynomial-
time learnable by examples and membership queries in a priori query learning.

3.2 Positive Results

On the assumption that a one-way function exists, we show that a posteriori
query learning has truly stronger power than a priori query learning in the case
where examples and membership queries are available.

From an encryption scheme that has indistinguishable encryptions for mul-
tiple messages, we first show how to construct a concept class that is not
polynomial-time learnable by only examples. Note that a private-key encryption
scheme with this security can be constructed from any one-way function [2].

Definition 6 (indistinguishable encryptions for multiple messages [2]).
An encryption scheme (G,E,D) has indistinguishable encryptions for mul-
tiple messages if for any polynomial t, plaintexts x̄ = (x1, . . . , xt(n)), ȳ =
(y1, . . . , yt(n)) (with |x1| = |y1| = · · · = |xt(n)| = |yt(n)| = poly(n)), non-uniform
polynomial-time algorithm A, polynomial p, and sufficiently large integer n, the
following condition holds:

|Pr[A(ĒG1(1n)(x̄), (G1(1n))) = 1] − Pr[A(ĒG1(1n)(ȳ), (G1(1n))) = 1]| <
1

p(n)
,

where, Ēe(x̄) denotes the sequence of the ciphertexts of x1, . . . , xt(n) by using
the encryption-key e and independently tossed internal coins for each encryption
process. An encryption-key G1(1n) is only given to A in the public-key setting.

Lemma 4. If there exists an encryption scheme (G,E,D) that has indistin-
guishable encryptions for multiple messages and the decryption D is computable
in a complexity class S , then there exists a representation of concepts CD in S
that is not polynomial-time a posteriori query learnable by only examples.

Proof. Define a representation of concepts CD as follows:

CD = {(d, x) : n ∈ N, d ← G2(1n), x ∈ {0, 1}∗ s.t. D(d, x) = 1}.

To determine whether (d, x) ∈ CD or not, we have only to execute D(d, x), hence
CD is in S . Assume by contradiction that CD is polynomial-time a posteriori
query learnable by examples and let A be the learning algorithm and p be the
polynomial that bounds on A’s running time. For input 1n to the key generator,
let q1 be a polynomial in n that bounds on the length of decryption-key and q2 be
a polynomial in n that bounds on the length of a ciphertext of a 1-bit plaintext.

292 M. Nanashima

We also define a polynomial t as t(n) := p(q1(n), q2(n)). For 0 ≤ i ≤ 2t(n) + 1,
assign the value to plaintexts xi and yi as follows:

x0 = 1, y0 = 0, x1 = 0, y1 = 1, xi = yi = i mod 2 (i > 1),

We construct a distinguisher B for the multiple messages x̄ = (x0, . . . , x2t(n)+1),
and ȳ = (y0, . . . , y2t(n)+1) by using A. For the details, see the construction of
the algorithm B.

Algorithm B

Input: c0, · · · , c2t(n)+1

1: i := 1
2: Execute A(q1(n), q2(n), 1/4), where answer to A’s queries as follows:

EXAMPLE: Select r ∈ {0, 1} uniformly at random, and return c2i+r to A. Then,
set i := i + 1.
CHALLENGE: Select r̃ ∈ {0, 1} uniformly at random, and return cr̃ as A’s chal-
lenge.

3: If A halts and outputs some prediction b, then B outputs b ⊕ r̃.

Let (e, d) be the pair of keys firstly selected, then it can be checked that
B runs in polynomial-time in n and perfectly simulates A’s oracles decided by
the distribution Ee(U1) and the target concept κCD

(d), where U1 denotes the
uniform distribution over {0, 1}. When input to B is taken from Ee(x̃), the
probability that B outputs 1 is equal to the success probability of A, which is at
least 3/4. In another case that input is taken from Ee(ỹ), the probability that B
outputs 1 is equal to the error probability of A, which is at most 1/4. Therefore,
B distinguishes two ciphertexts with probability at least 3/4 − 1/4 = 1/2. This
contradicts the security of the encryption scheme. 	

Now we construct the witness for the gap between a priori query learning and
a posteriori query learning by using this concept class.

Theorem 3. If a one-way function exists, there exists a representation of con-
cepts that is not polynomial-time a priori query learnable but polynomial-time a
posteriori query learnable by examples and membership queries.

Proof (sketch). Let (Ge, E,D) be a private-key encryption scheme with indis-
tinguishable encryptions for multiple messages, which can be constructed from
any one-way function [2]. By Lemma 4, CD is not polynomial-time a priori
query learnable by examples. Besides, let (Gs, S, V) be an EUF-CMA signa-
ture that has a polynomial-time computable function g with V (vk, α, β) = 1 ⇔
V (vk, α, g(β)) = 1 for any verification-key vk. (Firstly we construct a general
EUF-CMA signature scheme from a one-way function, and let the signing algo-
rithm concatenate a signature with an extra random bit. We let the verification

Cryptographic Limitations on Polynomial-Time 293

algorithm ignore the extra least significant bit (LSB), and define g as a function
that negates a LSB.) Now we define a representation of concepts C as follows:

C = {(〈d, vk〉, 〈x, y〉) : n1, n2 ∈ N, d ← Ge2(1
n1), vk ← Gs2(1

n2),
x, y ∈ {0, 1}∗ s.t. D(d, x) = 1, V (vk, x, y) = 1}.

Then, it can be checked that C polynomially represents signatures for CD with
respect to (Gs, S, V). Hence by Theorem 2, C is not polynomial-time a priori
learnable by examples and membership queries. On the other hand, we construct
an a posteriori query learner A. For the details, see the construction of the
algorithm A. When A learns a target concept κC (〈d, vk〉), we have the following.

Algorithm A

Input: (s, n, ε)
1: Request a challenge w
2: Check that w is in the form 〈x, y〉 (if not, A outputs 0 and halts).
3: Query 〈x, g(y)〉 to MQ, and output the answer.

MQ(〈x, g(y)〉) = 1 ⇔ V (vk, x, g(y)) = 1 ∧ D(d, x) = 1
⇔ V (vk, x, y) = 1 ∧ D(d, x) = 1 ⇔ w = 〈x, y〉 ∈ κC (〈d, vk〉).

Hence, the a posteriori query learner A learns C successfully with probability 1
under any example distribution. 	

3.3 Negative Results

By Theorem 3, we showed a posteriori query learning has indeed stronger power
than a priori one. However, the witness was not natural at all, and it is not
known that there is a natural witness to the gap. As a negative answer to this,
we show a posteriori query learning has no additional power about many natural
concept classes.

The main idea is to use a signature scheme with stronger security, called
sEUF-CMA, in the proof of Theorem2 to show the same result in a posteriori
query learning. Note that we can also construct an sEUF-CMA signature scheme
from any one-way function [2].

Definition 7 (sEUF-CMA [9]). A signature scheme (G,S, V) is strongly exis-
tential unforgeable against adaptive chosen message attackers (sEUF-CMA) if
for all non-uniform oracle machines M , polynomials p, and sufficiently large
integers n, the following condition holds:

Pr
[

V (vk, α, β) = 1 ∧ (α, β) /∈ QASsk

M (vk)
where (sk, vk) ← G(1n) and (α, β) ← MSsk(vk)

]
<

1
p(n)

,

where, QASsk

M (vk) denotes a set of pairs of M ’s query to the signing oracle Ssk(·)
and the answer to the query (that is, pairs of a message and a valid signature).

294 M. Nanashima

Theorem 4. Let C and C ′ be representations of concepts in P . If C ′ poly-
nomially represents signatures for C with respect to an sEUF-CMA signature
scheme (G,S, V) and C is not polynomial-time learnable by only examples, then
C ′ is not polynomial-time learnable by examples and membership queries in a
posteriori query learning.

Proof. Assume C ′ is polynomial-time a posteriori query learnable by examples
and membership queries, and let A′ be the learning algorithm. By Lemma 3,
we only need to show C is weakly polynomial-time learnable by examples. Since
C ′ polynomially represents signatures for C , we have the mappings g, f and the
polynomials q1, q2 satisfying the conditions in Definition 4. Then, we construct a
weak learning algorithm A that learns C with probability at least 3/4 by using
A′ as follows:

Algorithm A

Input: (s, n)
Oracle: EXAMPLEA, CHALLENGEA

1: Generate (sk, vk) ← G(1n).
2: Execute A′(q1(n), q2(n), 1/8), where answer to A′’s queries as follows:

EXAMPLEA′ : Have access to EXAMPLEA to get an example (x, b), and save it
in memory. Then, A generates y ← Ssk(x) and returns (fvk,s,n(x, y), b) to A′.
CHALLENGEA′ : Have access to CHALLENGEA to get challenge x̃. Then, A gen-
erates ỹ ← Ssk(x̃) and returns fvk,s,n(x̃, ỹ) to A′ as a challenge.
MQA′(w): (1) Compute (x, y) that satisfies w = fvk,s,n(x, y) (if not, return 0). (2)
Check that V (vk, x, y) = 1 (if not, return 0). (3) Check whether (x, b) is in memory,
if any, return b to A′. (4) Otherwise, return 0 to A′ (for now).

3: If A′ halts and outputs some prediction, then A also outputs the same prediction.

When A learns a target concept κC (u) under a distribution D, it can be
checked that A runs in polynomial-time in s and n, and perfectly simulates A′’s
EXAMPLE and CHALLENGE oracles decided by the distribution fvk,s,n(D,
Ssk(D)) and the target concept represented by g(vk, s, n, u) by the conditions
in Definition 4. On the other hand, A may fail to answer to A′’s membership
query only in the case (4). However, it is guaranteed that it does not occur by
the security of signature schemes. We explain the reason in more detail.

Assume that the case (4) occurs at the membership query w = fvk,s,n(x, y),
then y is a valid signature to x because they satisfy V (vk, x, y) = 1 by (2).
Besides, the signature y to x has not been generated yet because (x, b) does not
exist in memory. (In the case that x = x̃, y is not equal to ỹ because A′ cannot
query the challenge fvk,s,n(x̃, ỹ) to MQ.) In other words, (x, y) is just a forged
signature that breaks sEUF-CMA security.

Assume that the error probability of A is more than 1/4. Then we construct
an adversary M to the signature scheme by using A as follows: M takes a
verification-key vk as an input and simulates A, where M generates signatures

Cryptographic Limitations on Polynomial-Time 295

by M ’s signing oracle. For infinitely many integer n’s, M is given also the non-
learnable concept name un and the worst examples from Dn for A beforehand
as advice, and M lets A learn the target concept κC (un) under the distribution
Dn. If the case (4) occurs in simulating A, M outputs a forged signature (x, y)
as above. If it doesn’t occur and A outputs some prediction, then M outputs
“error” and halts. By the construction of A, if A fails to learn C , then A fails to
simulate A′’s membership queries (in this case, M succeeds in generating a forged
signature) or A′ fails to learn C ′ under the correct oracle simulation. The latter
probability is smaller than 1/8 by the assumption about A′. Hence, M succeeds
in outputting a forged signature with probability more than 1/4 − 1/8 = 1/8,
and this contradicts the sEUF-CMA security. Therefore, A weakly learns C with
probability at least 3/4. 	

3.4 Learnability of Some Natural Classes

We apply the above lemmas and theorems to show non-learnability in some
concrete concept classes from existence of an encryption scheme with weaker
conditions than the previous work [1]. Firstly we have the following lemma by
using Pitt and Warmuth’s prediction-preserving reduction.

Lemma 5 ([6]). If there exists polynomial-time unpredictable (i.e., not a priori
learnable by examples) concept class C in NC1, then CBF is also polynomial-
time unpredictable. Furthermore, if there exists a polynomial-time unpredictable
concept class C in a circuit complexity class S , then CS is also polynomial-time
unpredictable.

To use Theorem 4 in the following proof, we need to show that there exists a
one-way function (which is equivalent to existence of an sEUF-CMA signature).
In fact, an encryption scheme has indistinguishable encryptions for multiple
messages implies the existence of a one-way function [5].

Theorem 5. If there exists an encryption scheme that has indistinguishable
encryptions for multiple messages and the decryption is computable in NC1,
then CBF is not polynomial-time a posteriori query learnable by examples and
membership queries.

Proof. By the assumption and Lemma 4, there exists a polynomial-time unpre-
dictable concept class CD in NC1. By Lemma 5, CBF is also polynomial-time
unpredictable. From the secure encryption scheme in the assumption, we con-
struct an sEUF-CMA signature (G,S, V). By Theorem 1, CBF polynomially
represents signatures CBF with respect to (G,S, V). Therefore, by Theorem 4,
CBF is not polynomial-time a posteriori query learnable by examples and mem-
bership queries. 	

In general, we have the following theorem in the same way as Theorem 5.
Note that we need the easier computable decryption with the multiple-messages
security to prove the stronger limits of polynomial-time learnability.

296 M. Nanashima

Theorem 6. Let S be a circuit complexity class that contains AC0. If there
exists an encryption scheme that has indistinguishable encryptions for multiple
messages and the decryption is computable in S , then CS is not polynomial-time
a posteriori query learnable by examples and membership queries.

3.5 Learnability with only Membership Queries

We discuss polynomial-time learnability in a posteriori query learning with only
membership queries (i.e., no examples). In the proof of Lemma 4, multiple mes-
sages corresponded to multiple examples in learning. In other words, we can show
polynomial-time non-learnability by no examples from an encryption scheme
that has indistinguishable encryptions for a single message. Remember that we
only used the security of the encryptions of 1-bit texts in the proof of Lemma
4, and we can easily construct a 1-bit private-key encryption scheme with this
security by one-time pad. Thus, the following lemma holds. (We omit the proof.)

Lemma 6. COTP = {(0, 1), (1, 0)} is not weakly polynomial-time learnable by
no examples and no membership queries.

We can convert a concept class that is not polynomial-time learnable by no
examples and no membership queries into a concept class that is not polynomial-
time a posteriori query learnable with only membership queries in the same way
as Theorem 4, because examples were only used to simulate the example oracle
in the proof. Hence, we have the following theorem.

Theorem 7. Let C and C ′ be representations of concepts in P . If C ′ polynomi-
ally represents signatures for C with respect to an sEUF-CMA signature scheme
and C is not weakly polynomial-time learnable by no examples, then C ′ is not
polynomial-time a posteriori query learnable with only membership queries.

Let S be a circuit complexity class that contains AC0. It is obvious that
COTP is in S because the evaluation problem can be solved by computing 1-bit
parity. By using Pitt and Warmuth’s prediction-preserving reduction, CS is also
not weakly polynomial-time learnable by no examples. Therefore, we have the
following result by Theorems 1 and 7.

Theorem 8. Let S be a circuit complexity class that contains AC0. If a one-
way function exists, then CS is not polynomial-time a posteriori query learnable
with only membership queries.

References

1. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50(2), 336–355 (1995)

2. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York (2004)

Cryptographic Limitations on Polynomial-Time 297

3. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

4. Haussler, D., Kearns, M., Littlestone, N., Warmuth, M.K.: Equivalence of mod-
els for polynomial learnability. In: Proceedings of the First Annual Workshop on
Computational Learning Theory, pp. 42–55 (1988)

5. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proceedings of the 30th Annual Symposium on Foundations of
Computer Science, pp. 230–235 (1989)

6. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. J. Comput. Syst. Sci.
41(3), 430–467 (1990)

7. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 387–394 (1990)

8. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

9. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 7

10. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/3-540-45708-9_7

Placing Segments on Parallel Arcs

Yen Kaow Ng1(B), Wenlong Jia2, and Shuai Cheng Li2

1 Department of Computer Science, Faculty of Information
and Communication Technology, Universiti Tunku Abdul Rahman,

Kampar, Malaysia
ykng@utar.edu.my

2 Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong

{wenlong,scli}@cityu.edu.hk

Abstract. In this paper we consider the problem of arranging segments
on parallel arcs drawn within a circular sector, to provide foundational
work for the visualization of genomic regions in the study of pathogenic
integration. The arcs as well as the start and end angles for each seg-
ment are pre-defined; our problem is to place each segment on an arc
without having them overlap. There are no segments that span multiple
arcs. For visualization purpose, the segments are to be easily distinguish-
able. To achieve that we consider various criteria that in a sense, place
segments as far as possible from each other—for instance, maximizing
the sum of inter-center distances between nearest segments. We show
complexity results for some of the resultant problems, while providing
approximation or heuristic solutions for others. Our algorithms have been
implemented in JavaScript and made available at https://github.com/
kalngyk/segmentplacer.

Keywords: Segment placement · Approximation algorithm
Visualization

1 Introduction

In this paper we consider the problem of arranging segments on parallel arcs, or
curved tracks, drawn within a circular sector (see Fig. 1). Our aim is to visualize
genomic regions on circular sectors that are combined to form a disk, similar to
those in Circos-like visualization [11,13].

The central angle, maxangle, of the sector is predetermined. Each segment is
to start from a specified angle and end at a specified angle within the sector, but
they can be placed on any track. Two segments that overlap in their specified
angles must be placed on different tracks. There must be sufficiently many tracks
such that segments do not overlap, but there cannot be too many tracks due to

1. Aesthetic reasons to avoid overly sparse placements, and
2. Pragmatic concerns of whether the resultant disk fits on an A4 or letter-sized

paper (for printing as well as for inclusion in publications).
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 298–310, 2018.
https://doi.org/10.1007/978-3-319-94667-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_25&domain=pdf
https://github.com/kalngyk/segmentplacer
https://github.com/kalngyk/segmentplacer

Placing Segments on Parallel Arcs 299

Fig. 1. Fourteen segments on nine tracks

The problem of finding such a non-overlapping placement resembles the interval
scheduling problem [4] as well as a trivial variant of the offline dynamic storage
allocation problem [5,6,9]. However, for our visualization purpose, a placement
should ideally place segments far apart in order to maximize visual ease. This
requirement gives rise to several non-trivial problems. In this paper we con-
sider a few of these problems, and give foundational results regarding them. In
particular, we consider situations where:

1. The distances between the nearest segments are in some sense maximized.
2. Segments are near-equally distributed on all the tracks.

The usage scenario which we have in mind is semi-automatic or interactive. The
algorithm is to only assist by providing choices of placements, leaving the decision
of what is aesthetically pleasing to the user. Hence, we look for algorithms that
are: (1) sufficiently fast for interactive use, (2) able to enumerate all optimal
solutions, (3) flexible in accommodating additional user requirements, such as
requiring specific segments to be placed on given tracks.

1.1 Bioinformatics Use

The visualization we are aiming for is motivated by the study of genetic rear-
rangements due to tumor cells. It is known that tumor cells frequently harbor
genome rearrangements or pathogenic integrations, such as oncogenic fusion-
generating structure variations [7,10], chromothripsis [2], and oncovirus integra-
tions [8,12]. The rearranged segments are often located in very specific sequences.
Past studies into the the effects from these local genomic maps have revealed
novel mechanisms in gene regulations [1,3,14].

Advances in biological sequencing technologies in recent years have furthered
the accuracies in our identification of the affected regions, enabling more refined
studies of the genomic regions. This increase in information, on the other hand,
cannot be leveraged without accurate visualization of the resolved genomic allo-
cations.

Current visualizations of genome rearrangements and oncovirus integrations
are often presented using trajectory lines in Circos [11,13], which reveal little of

300 Y. K. Ng et al.

the segment relationships. By organizing genomic segments along parallel tracks,
we hope to better display these relationships.

2 Preliminaries

In this section we give definitions that are shared throughout this paper. A
segment represents an interval that is to be placed on an arc or track. The locus
of a segment is a pair of positive integers (α, β) where α < β. α and β span from
0 to maxangle. Intuitively, α indicates the start angle and β the end angle on the
track where the segment is to be placed. For a segment s of locus (α, β), st(s)
is used to indicate α, ed(s) used to indicate β, while ctr(s) is used to indicate
(β + α)/2.

A track is a number from {1, 2, . . . , k}. Tracks are considered to be possibly
curved in this work, with track 1 having a radius of curvature r. Subsequent
tracks i > 1 are separated by distance d; that is, they have radius of curvature
h(i) = r + (i − 1)d.

A placement f of a set of segments S = {s1, s2, . . . , sn}, is a many-one
relation where f ⊆ {(s, i) | s ∈ S, 1 ≤ i ≤ k}. A placement of two segments s
and t, {(s, i), (t, j)} say, is said to be non-overlapping iff i �= j, or ed(s) ≤ st(t),
or ed(t) ≤ st(s). A placement is non-overlapping iff every two segments in its
domain are non-overlapping.

Given two elements (s, i), (s′, i′) in a placement, the shortest Euclidean dis-
tance between x and y, denoted dist(x, y, i, i′), for any x ∈ {ed(s), st(s), ctr(s)}
and y ∈ {ed(s′), st(s′), ctr(s′)} can be calculated from s, s′, h(i), and h(i′) with
trigonometry.

2.1 Minimum Tracks Required for Non-overlapping Placement

Given a set of segments, the minimum number of tracks where a placement exists
can be found using this simple approach from interval scheduling:

1. Order s ∈ S by st(s).
2. Set placement f to ∅.
3. For each s ∈ S in increasing order of st(s),
4. Find smallest i ≥ 0 such that f ∪ {(s, i)} is non-overlapping.
5. Add pair (s, i) to f .

The largest i in the range of f is the minimum number of tracks required.
We can solve the problem similarly in the case that we require a minimum

distance z between subsequent segments on the same track. More precisely, for
two segments s and s′ on the same track i, we want st(s) − ed(s′) ≥ z if
st(s) ≥ ed(s′), and st(s′) − ed(s) ≥ z if st(s′) ≥ ed(s). This condition can be
checked at line 4 in the program above.

Throughout the rest of this paper we assume that the number of tracks is
predetermined by the user.

Placing Segments on Parallel Arcs 301

3 Maximize Within-Track Separation

We first consider the problem of maximizing the sum total of the separation
between the segments that are placed on the same track. Maximizing this sum
is tricky, because the problem is different when we consider whether to include
the space:

(1) from 0 angle to the first segment, and
(2) from the end of the last segment to maxangle.

If they are considered, then the sum of all the spacing on all tracks would
always be the same, except for differences due to the curvature of the arc. On
the other hand, if we do not add these spaces to the sum, then a solution for the
segments (1, 2) and (3, 4) on 2 tracks would (undesirably) place both segments
on a single track, since placing the segments on separate tracks would result in
zero separation score.

For this section we proceed with the inclusion of the distance from the start
boundary of each track to its first segment, and ignore the curvature of the arc.
(In the next section, we show an exhaustive search method that can be used to
solve the case with curvature.)

For each placement f and each track i, let {sf,i1 , sf,i2 , . . . , sf,in(f,i)} denote the
segments placed by f on track i in increasing order of st(s), where n(f, i) is the
number of segments placed by f on track i, and let

within track space(i) = st(sf,i1) +
∑

1≤j<n(f,i)

st(sf,ij+1) − ed(sf,ij).

Then, our aim is to find f which maximizes
∑

1≤i≤k within track space(i).
This can be solved using a greedy algorithm as shown in Algorithm1.

Algorithm 1. Algorithm to maximize
∑

1≤i≤k within track space(i)
Input: Set of segments S, number of tracks k.
Output: Placement f maximizing

∑
1≤i≤k within track space(i).

1: f ← ∅
2: for each track i do
3: lasti ← NULL

4: for s ∈ S in increasing order of st(s) do
5: j ← argmaxi (st(s) − max{ed(lasti), 0}).
6: lastj ← s.
7: Add (s, j) to f . Exit if f becomes overlapping.

8: return f .

To achieve optimality, it suffices that each track ends with a segment which
ends some track in the optimal solution. That Algorithm1 achieves optimality
can be seen from the fact that it achieves this requirement. The output f can

302 Y. K. Ng et al.

also be shown to maximize min1≤i≤k,1≤j<n(f,i) st(s
f,i
j+1) − ed(sf,ij). We omit the

discussion from this manuscript.
The algorithm is highly applicable, with a low runtime complexity of O(nk),

and produces reasonably placements in general. However, it has a tendency
towards staircase-like placements such as the following.

4 Threshold Requirement to Inter-center Distances

In this section we consider the problem of requiring a threshold between the
centers of every pair of segments. More precisely, we set a threshold z and require
that for every s, s′ ∈ S, 1 ≤ i, j ≤ k, dist(ctr(s), ctr(s′), i, j) ≥ z.

This problem cannot be solved using a greedy algorithm where we consec-
utively place segments which are further away on the tracks, as we did for the
earlier problem. For example, consider the instance where we are to place the
segments S = {(0, 1), (1, 2), (2, 4), (1, 6)} on 2 tracks of separation 1 with z = 1.2.
The centers of the segments are respectively {0.5, 1.5, 3, 3.5}, and hence by the
strategy should be placed in this order. A greedy algorithm similar to Algo-
rithm1 would place (0, 1) on track 1, (1, 2) on track 2, and then (2, 4) on track
1. However, that would make it impossible to place (1, 6); whereas if (2, 4) is
placed on track 2 rather than track 1, it would be possible to place (1, 6).

An exhaustive search for all possible placements would on the other hand
require O(kn) time. An alternative solution is to perform a search similar to the
greedy strategy, but keeping all relevant “configurations” from earlier placements
for a more complete search. More precisely, we place segments in increasing order
of their centers. When placing each segment s, we examine all the possible earlier
configurations prior to the placing of s. Each such configuration is encoded as a
state, which consists of an array of k numbers (i1, i2, . . ., ik). The i-th member
of the array φ is written φ[i]. φ[i] shows the segment that was last placed in
track i. For example, in an instance of three tracks, the state (2, 1, 3) indicates
that s2 was the last segment placed in track 1, s1 the last segment in track 2,
and s3 the last segment in track 3. A track with the number 0 implies that no
segment has yet been placed on it. For example, (2, 0, 3).

A new state φ is created when a segment is placed. The new state is computed
from all the states that was computed when the last segment was placed. More
precisely, if we let Φm denote the set of states created right after the segment

Placing Segments on Parallel Arcs 303

sm is placed, then, Φm is computed from Φm−1. The search is complete if at
any point, Φm is empty, or when the first element in Φn is found. Details of this
search is shown in Algorithm 2.

Algorithm 2. Decide if there exists solution that fulfill threshold requirement
Input: Segments S, number of tracks k, distance threshold z, radius of curvature r,

inter-track distance d.
Output: Whether a placement that fulfills threshold requirement exists.
1: Φ0 ← {(0, 0, . . . , 0)} � (0, 0, . . . , 0) is an array of length k
2: for m ← 1, . . . , n do
3: Φm ← ∅
4: for φ ∈ Φm−1 do
5: for i ← 1, . . . , k do
6: if consistent(sm, φ, i, z) then � φ allows sm to be placed on track i
7: Let φ′ be a copy of φ but with the i-th array element set to m.
8: Φm ← Φm ∪ {φ′}.
9: return true if Φn is non-empty, false otherwise.

The function consistent(sm, φ, i, z) returns true iff

(∀j, 1 ≤ j ≤ k)[dist(ctr(φ[j]), ctr(sm), j, i) ≥ z],

and that φ[i] does not overlap sm. Each call to consistent(sm, φ) requires O(k)
time to examine.

At each loop of the variable m, there exist at most mk states in φm−1. Since
m ≤ n, this is bounded by nk. Hence there are O(knk) calls to consistent.

On the other hand, the outermost loop of variable n is repeated at most n
times. Hence, Algorithm 2 runs in time O(k2nk+1).

While Algorithm 2 solves the decision problem, it does not return the place-
ment which fulfills the threshold requirement. We now modify Algorithm2 to
return all the possible placements that fulfill the threshold requirement. To find
these placements, it suffices that we map each state φ ∈ Φm in the earlier algo-
rithm to a set (or array) of (arbitrarily number of) earlier states in Φm−1 from
which φ can be reached. Each element in Map is indexed by φ and hence can be
dereferenced in constant time. The resultant program, as shown in Algorithm3,
modifies Algorithm 2 only slightly to include the maintenance of the Map data
structure.

To enumerate all the placements, we call list placements(φ, Map, ()), as
shown below, for each φ ∈ Φn. The last argument in the call, (), is an empty
array.

list placements(φ, Map, path)
1. For φ′ ∈ Map(φ)
2. Prepend the track of the last segment placed in φ′ to path.
3. If φ′ has only one segment placed, output path.
4. Otherwise, copy path to path′ and call list placements(φ′, Map, path′).

304 Y. K. Ng et al.

Algorithm 3. Find all solutions fulfilling threshold requirement
Input: Segments S, number of tracks k, distance threshold z, radius of curvature r,

inter-track distance d.
Output: Data structure Map for listing all placements f that fulfill the threshold

requirement.
1: Φ0 ← {(0, 0, . . . , 0)} � (0, 0, . . . , 0) is an array of length k
2: Map ← ∅
3: for m ← 1, . . . , n do
4: Φm ← ∅
5: for φ ∈ Φm−1 do
6: for i ← 1, . . . , k do
7: if consistent(sm, φ, i, z) then � φ allows sm to be placed on track i
8: Let φ′ be a copy of φ but with the i-th array element set to m.
9: Φm ← Φm ∪ {φ′}.
10: Append φ to the array Map(φ′). � Create Map(φ′) if it’s undefined.

11: return Map and Φn.

It is clear that Algorithm 3 has the same time complexity of O(k2nk+1) as
Algorithm 2. However, list placements’s worst-case runtime is at least kn,
since in the worst case, all kn placements would fulfill the threshold require-
ment. Note that at each stage m, each array in Map is of length at most m.

Placements obtained using Algorithm 3, however, showed shortcomings in our
strategy. Enforcing a constant inter-center distance threshold across all segments
ignores differences in the segment lengths. For example, consider the following
case where the two longer segments are considered far from both of the two short
segments, but the two short segments are considered near each other.

One solution to this is to allow a fixed number of violations to the
requirement, which we can decide based on the number of short segments.
This mechanism can be achieved by keeping a “violation count” for each
state in the array elements of Map, through an additional Violations
array. For instance, suppose Map(φ) contains the states (φ1, φ2, φ3), then,
Violations(φ) will keep (x1, x2, x3), where xi is the number of violations in
reaching φ from φi. Furthermore, we keep a value MinViolations(φ) which
keeps track of the minimum number of violations among all the states in
Map(φ), that is, min(Violations(φ)). When computing consistent(sm, φ, i, z),
MinViolations(φ) is consulted to decide if the placement is permitted. It is easy
to see that this strategy does not add to the time complexity of Algorithm3.
During list placements, the recursion for each state is entered only if the state
has not committed more violations than permitted.

Placing Segments on Parallel Arcs 305

An alternative solution that may be more natural is presented in the next
section.

5 Maximize Sum of Inter-center Distances

In this section we consider maximizing the sum of inter-center distances between
each segment and its nearest segment on the left as well as its nearest segment
on the right. More precisely, we define the distance to the nearest segment to
the left of a segment s under placement f , L(s, f), as

L(s, f) = mins′∈S\{s},ctr(s′)≤ctr(s)dist(s, s′, f(s), f(s′)),

and similarly we define the distance to the nearest segment to the right of a
segment s under placement f as

R(s, f) = mins′∈S\{s},ctr(s′)≥ctr(s)dist(s, s′, f(s), f(s′)).

Our problem is to find placement f which maximizes

D =
∑

s∈S

(L(s, f) + R(s, f))

This problem allows a 2-approximation using a polynomial-time dynamic pro-
gramming which consists of two steps. Each step computes a placement that
optimizes

∑
s∈S L(s, f) and

∑
s∈S R(s, f) respectively. Then, the larger scoring

placement among the two is given as the output.
We first consider the placements that optimize

∑
s∈S L(s, f). Again, we use

a strategy which places segments in the order of ctr(s). For each of the earlier
state φ right before the placing of s, we exhaustively examine all the states which
extend φ by placing s on one of the tracks. For each of these resultant states,
we update the sum of inter-center distance with the minimum distance from a
segment in φ to s. This is shown in Algorithm4.

The placements can be enumerated using the same recursion given in the
earlier section, list placements(φ, Map, ()), for each φ ∈ Φn.

To compute the placements which optimize
∑

s∈S R(s, f), it suffices that
Algorithm 4 is run with the segments sorted in reverse order of ctr(s).

To see that the method produces a 2-approximation, let D∗ denote the opti-
mal D and D the score Algorithm 4 computed for both steps. Then

D∗ = max
f

∑

s

(L(s, f) + R(s, f)) ≤ max
f

∑

s

L(s, f) + max
f

∑

s

R(s, f)

≤ 2max

(
max
f

∑

s

L(s, f),max
f

∑

s

R(s, f)

)

= 2D.

Hence D is of at least D∗
2 .

306 Y. K. Ng et al.

Algorithm 4. Find all placements f with maximal
∑

s∈S L(s, f)
Input: Segments S, number of tracks k, distance threshold z, radius of curvature r,

inter-track distance d.
Output: Data structure Map for listing all placements f with maximal

∑
s∈S L(s, f)

1: Φ0 ← {(0, 0, . . . , 0)} � (0, 0, . . . , 0) is an array of length k
2: Map ← ∅
3: SumL((0, 0, . . . , 0)) ← 0
4: for m ← 1, . . . , n do
5: Φm ← ∅
6: for φ ∈ Φm−1 do
7: for i ← 1, . . . , k do
8: if consistent(sm, φ, i, z) then
9: d ← SumL(φ) + min1≤j≤kdist(sφ[j], sm, j, i)
10: Let φ′ be a copy of φ but with the i-th array element set to m.
11: Φm ← Φm ∪ {φ′}.
12: if SumL(φ′) is undefined or d > SumL(φ′) then
13: Map(φ′) ← (φ) � New array with φ as the first element.
14: SumL(φ′) ← d
15: else if d is equal to SumL(φ′) then
16: Append φ to the array Map(φ′).

17: Max ← max{SumL(φ) | φ ∈ Φn}.
18: Φn ← {φ ∈ Φn | SumL(φ) is equal to Max}
19: return Map and Φn.

At this point the computational complexity of the problem is unclear. Our
approximation algorithm runs in time O(k2nk+1), and can be adapted, at the
same runtime complexity, to accommodate more contraints from the user, such as
requiring specific segments to be placed on given tracks, through modifications
to the consistent call. The method can also be modified for other classes of
distance measures. We do not discuss that in this work.

For the current measure, trimming can be further performed for the algo-
rithm. For instance, for a 4-tracks problem, it is easy to see that a state of
(4, 3, 6, 2) is better than a state of (4, 5, 6, 2) if they have the same score. In this
case, (4, 5, 6, 2) can be discarded from further investigation.

One problem with maximizing the inter-center distance is that this results
in a tendency to place segments on either the top or the bottom tracks since
that would maximize their separation. In extreme situations, this may result in
placements with empty tracks, such as the following.

In such a situation, we envision that a user would most want to carry out
one of these two actions: (1) reduce the number of tracks, or (2) move segments
from filled tracks to the empty one. The latter is discussed in the next section.

Placing Segments on Parallel Arcs 307

6 Balanced Placement of Segments on Tracks

In this section we consider how one can distribute segments evenly over the
tracks. Intuitively this problem can be stated as follows: Given segments s1, s2,
. . . , sn, find placement f that minimizes max1≤i,j≤k |Ni − Nj |, where Ni is the
total length of the segments on track i, that is, Ni =

∑{ed(s)−st(s) | f(s) = i}.
However, such a problem is NP-hard, since it can be used to solve the parti-

tion problem as follows. Given an instance of the partition problem of integers
{a1, a2, . . . , an}, we create the segments {s1, s2, . . . , sn} where

(1) ed(si) = st(si) + ai, and
(2) st(si+1) = ed(si) + 1.

Then, a solution that places the segments evenly onto two tracks solves the
partition problem.

In this section we consider a simpler situation, where one track has been left
empty in the earlier algorithm, and the task is one of moving segments from other
tracks to the empty track. More precisely, given a placement of segments on two
tracks, we consider how to move segments from the two tracks to a third track,
such that the three tracks now have roughly equal sum of segment lengths. We
offer a heuristic solution to this problem in Algorithm5. For simplity we do not
consider the size-changing effects from the curvature of the arcs. Our strategy
is to first set a point which divides each track into a front and back part, for
instance:

Then, some segments can be selected from the front part of Track 1 and the
back part of Track 2 (and vice versa), to form a new track:

We consider all possible points for division, as well as obtaining partitions of
various lengths from the divided tracks, as shown in Algorithm5.

The function best partition(leftbound, rightbound) is computed as fol-
lows.

best partition(leftbound, rightbound)

1. Let R∧ ← [1, leftbound] and R$ ← [rightbound, maxangle]
2. Let Sx

i ← {s | f(s) = i ∧ st(s), ed(s) ∈ Rx}
3. Let Nx

i ← ∑{ed(s) − st(s) | s ∈ Sj
i }

4. Compute for the 2 cases:

(Case 1) partition(S∧
1 , N1+N2

3

N∧
1

N∧
1 +N$

2
) and partition(S$

2 , N1+N2
3

N$
2

N∧
1 +N$

2
),

308 Y. K. Ng et al.

(Case 2) partition(S∧
2 , N1+N2

3

N∧
2

N∧
2 +N$

1
) and partition(S$

1 , N1+N2
3

N$
1

N∧
2 +N$

1
).

5. If Case 1 results in more even distribution of segment lengths on all three tracks,
return the tracks according to the partitioning of Case 1, otherwise return the new
tracks formed by the partitioning of Case 2.

Algorithm 5. Heuristic algorithm to evenly distribute segments to new track
Input: Segments S and two-tracks placement f .
Output: Three-tracks placement f which heuristically places S evenly on all tracks.
1: f ← f
2: for each track i do
3: for each segment s in track i do
4: for each point x in {st(s), ed(s)} do
5: Set leftbound and rightbound to x, but if there exists some segment
6: s′ on track (3 − i) overlapping x, then leftbound ← st(s′) and
7: rightbound ← ed(s′)
8: f ′ ← best partition(leftbound, rightbound)
9: Replace f with f ′ if f ′ distributes segments more evenly over the tracks.

10: Output f .

The function partition(S, x) accepts a set of segments S and a number x. It
computes a partition of S′ which sums to x, where S′ = {ed(s)− st(s) | s ∈ S},
and outputs the corresponding partitioning of S. This can be implemented using
some approximation algorithm for the partition problem.

(a) Algorithm 1 (b) Algorithm 3

(c) Algorithm 4 (d) 2-approx based on Algorithm 4

Fig. 2. Results from Algorithms 1, 3 and 4

Placing Segments on Parallel Arcs 309

7 Results

In this section we show samples of results from the algorithms proposed earlier,
on the same test case of 24 segments.

In Fig. 2(a), we observe that a few segments right after that at the middle has
formed a staircase-like pattern, which is consistent with our earlier remarks on
Algorithm 1. Nonetheless, the resultant graph is pleasant-looking, and the fast
runtime makes the method very usable.

Algorithm 3, on the other hand, has a tendency to not separate segments
far apart, due to its lack of a natural mechanism to maximize such separation.
The remaining two results from Algorithm 4, which attempt to maximize the
sum of inter-center distances, are similarly pleasant-looking, although requiring
significantly more time to produce.

References

1. Adey, A., Burton, J.N., Kitzman, J.O., Hiatt, J.B., Lewis, A.P., Martin, B.K., Qiu,
R., Lee, C., Shendure, J.: The haplotype-resolved genome and epigenome of the
aneuploid hela cancer cell line. Nature 500(7461), 207–211 (2013)

2. Forment, J.V., Kaidi, A., Jackson, S.P.: Chromothripsis and cancer: causes and
consequences of chromosome shattering. Nat. Rev. Cancer 12(10), 663 (2012)

3. Kataoka, K., Shiraishi, Y., Takeda, Y., Sakata, S., Matsumoto, M., Nagano, S.,
Maeda, T., Nagata, Y., Kitanaka, A., Mizuno, S., et al.: Aberrant PD-L1 expression
through 3′-UTR disruption in multiple cancers. Nature 534(7607), 402 (2016)

4. Kleinberg, J., Tardos, É.: Algorithm Design. Addison Wesley, Reading (2006)
5. Knuth, D.E.: Art of Computer Programming, Volume 1: Fundamental Algorithms.

Addison-Wesley Professional, Reading (1973)
6. Li, S.C., Leong, H.W., Quek, S.K.: New approximation algorithms for some

dynamic storage allocation problems. In: Chwa, K.-Y., Munro, J.I.J. (eds.)
COCOON 2004. LNCS, vol. 3106, pp. 339–348. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27798-9 37

7. Lipson, D., Capelletti, M., Yelensky, R., Otto, G., Parker, A., Jarosz, M., Curran,
J.A., Balasubramanian, S., Bloom, T., Brennan, K.W., et al.: Identification of new
ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med.
18(3), 382 (2012)

8. Nault, J.-C., Datta, S., Imbeaud, S., Franconi, A., Mallet, M., Couchy, G., Letouzé,
E., Pilati, C., Verret, B., Blanc, J.-F., et al.: Recurrent AAV2-related insertional
mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47(10), 1187 (2015)

9. Robson, J.M.: Bounds for some functions concerning dynamic storage allocation.
J. ACM 21(3), 491–499 (1974)

10. Soda, M., Choi, Y.L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fuji-
wara, S., Watanabe, H., Kurashina, K., Hatanaka, H., et al.: Identification of
the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature
448(7153), 561 (2007)

11. Stephens, P.J., McBride, D.J., Lin, M.-L., Varela, I., Pleasance, E.D., Simpson,
J.T., Stebbings, L.A., Leroy, C., Edkins, S., Mudie, L.J., et al.: Complex landscapes
of somatic rearrangement in human breast cancer genomes. Nature 462(7276), 1005
(2009)

https://doi.org/10.1007/978-3-540-27798-9_37

310 Y. K. Ng et al.

12. Sung, W.-K., Zheng, H., Li, S., Chen, R., Liu, X., Li, Y., Lee, N.P., Lee, W.H.,
Ariyaratne, P.N., Tennakoon, C., et al.: Genome-wide survey of recurrent HBV
integration in hepatocellular carcinoma. Nat. Genet. 44(7), 765–769 (2012)

13. Waddell, N., Pajic, M., Patch, A.-M., Chang, D.K., Kassahn, K.S., Bailey, P.,
Johns, A.L., Miller, D., Nones, K., Quek, K., et al.: Whole genomes redefine the
mutational landscape of pancreatic cancer. Nature 518(7540), 495 (2015)

14. Yang, L., Luquette, L.J., Gehlenborg, N., Xi, R., Haseley, P.S., Hsieh, C.-H., Zhang,
C., Ren, X., Protopopov, A., Chin, L., et al.: Diverse mechanisms of somatic struc-
tural variations in human cancer genomes. Cell 153(4), 919–929 (2013)

Branch-and-Bound Algorithm
for Symmetric Travelling Salesman

Problem

Alexey Nikolaev(B) and Mikhail Batsyn

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics,

136 Rodionova street, Nizhny Novgorod, Russia
{ainikolaev,mbatsyn}@hse.ru

Abstract. In this paper a branch-and-bound algorithm for the Symmet-
ric Travelling Salesman Problem (STSP) is presented. The algorithm is
based on the 1-tree Lagrangian relaxation. A new branching strategy is
suggested in which the algorithm branches on the 1-tree edge belonging
to the vertex with maximum degree in the 1-tree and having the maxi-
mum tolerance. This strategy is compared with branching on the shortest
edge and the so-called strong branching, which is the branching on the
edge with maximum tolerance also applied by Held and Karp (1971).
The computational experiments show that proposed branching strategy
provides better results on TSPlib benchmark instances.

Keywords: Traveling salesman problem · 1-tree
Branch-and-bound algorithm

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best known and deeply
studied combinatorial optimization problems. It consists of finding the shortest
tour for a given set of cities in which every city is visited only once. This prob-
lem is equivalent to the problem of finding minimum cost (length) Hamiltonian
circuit (or cycle) for a given graph G = (V,E) with a cost (length) function
c : E → R. If the graph G is an undirected graph, the problem is called Sym-
metric Travelling Salesman Problem (STSP). Otherwise it is called Asymmetric
TSP (ATSP). A detailed analysis of heuristics and exact algorithms for STSP
and ATSP can be found in Laporte (1992) and Matai et al. (2010).

Different relaxations have been proposed for solving the STSP including 2-
Matching, Subtour Elimination, Minimum Spanning Tree problems. According
to the computational results in Reinelt (1994) one of the tightest lower bounds
is based on the 1-tree Lagrangian relaxation. This relaxation was originally sug-
gested in Held and Karp (1970). Held and Karp (1971) implemented branch-
and-bound algorithm and used the minimum cost 1-tree as the lower bound.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 311–322, 2018.
https://doi.org/10.1007/978-3-319-94667-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_26&domain=pdf

312 A. Nikolaev and M. Batsyn

This algorithm was further improved by many researchers (Hansen and Krarup
1974; Volgenant and Jonker 1982; Benchimol et al. 2010). In this paper a branch-
and-bound algorithm for the STSP with a new branching strategy is developed.
The suggested strategy is compared with the most popular ones.

The paper is organized as follows. The STSP problem and well known
approaches for it are given in Sect. 2. Section 3 contains a description of the
implemented algorithm. In Sect. 4 computational results are presented and anal-
ysed. And conclusions are given in the last section.

2 Problem Description

The integer linear programming model for the STSP problem is presented below.

min
∑

e∈E

cexe (1)

∑

e∈E|i∈e

xe = 2 ∀i ∈ V (2)

∑

e=(i,j)|(i,j)∈E,i,j∈S

xe ≤ |S| − 1 ∀S ⊂ V, 1 < |S| < n (3)

xe ∈ {0, 1} ∀e ∈ E (4)

Binary variable xe is equal to 1 if the edge e is contained in a tour, otherwise
it is 0. The objective function (1) minimizes the total cost (length), constraints
(2) require that every vertex in the solution has degree 2, and constraints (3)
guarantee that there are no disjoint subtours.

The STSP problem can be also formulated as the problem of finding the
minimum cost connected subgraph covering all vertices in which every vertex
has degree 2. In this interpretation it is obvious that the Minimum Spanning
Tree (MST) problem is a relaxation of the STSP in which we do not have any
constraints on vertex degrees. MST is the minimum cost connected subgraph
over all vertices.

Let us now add two more constraints to this minimum cost subgraph problem.
First, we require it to have exactly n edges – the same as the Hamiltonian cycle
has and one edge more than the MST has. Second, we choose one of the MST
leaves and require it to have degree 2 as every vertex in the Hamiltonian cycle
has. We will call this special MST leaf the 1-vertex – υ1.

The 1-vertex υ1 is connected to the MST with its shortest edge and if we add
the next shortest edge from υ1, we will obviously obtain the required minimum
cost subgraph. This subgraph is called 1-tree and we will call the second shortest
1-vertex edge the 1-edge – e1.

Thus the minimum cost 1-tree problem is a relaxation of the STSP in which
at least one vertex has degree 2. So the solution of this relaxation provides a lower
bound to the STSP solution. Moreover, this lower bound can be improved using

Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem 313

the following property, which is actually derived from the Lagrangian relaxation
of the STSP (Held and Karp 1971).

Let us choose for every vertex i a certain value πi and add this value to
the cost of each edge incident to this vertex. The cost of each edge (i, j) then
becomes equal to cij +πi+πj . In this case an optimal tour for the STSP does not
change, and only its length fmin increases by 2

∑
i∈V πi. But an optimal 1-tree

changes and its cost c1tree in the modified graph provides the lower bound for the
increased tour length: fmin +2

∑
i∈V πi ≥ c1tree. From it we derive an improved

lower bound LB for the original STSP: fmin ≥ LB = c1tree − 2
∑

i∈V πi, which
depends on the chosen values πi. And this dependency is a piecewise linear
concave function. This means that we can apply a subgradient ascent method
to find πi values providing maximum lower bound.

Since the objective of the STSP is to find the shortest tour, many algorithms
apply edge length as a criterion for adding an edge to a solution. The smaller is
the edge length, the greater is the probability that this edge belongs to an optimal
solution. The first author who suggested a better criterion was Helsgaun (2000).
For every edge which does not belong to the minimum cost 1-tree he measures
how much we should decrease the edge length, so that this edge appears in the
minimum cost 1-tree. Helsgaun (2000) has called this value the α-nearness of an
edge to an optimal solution.

In the sensitivity analysis such a value is called the tolerance of an optimiza-
tion problem parameter. In the same way for an edge belonging to the minimum
cost 1-tree its tolerance is measured as the minimal value by which we should
increase the edge length, so that it disappears from an optimal 1-tree. An equiva-
lent way to measure this tolerance is to forbid the edge, recompute the minimum
cost 1-tree without it, and measure the increase in the 1-tree edges total cost.
In the current paper we apply tolerances in our branch-and-bound algorithm.

3 Algorithm

The pseudo-code of the suggested algorithm is provided in Algorithms 1–9. The
following parameters and variables are used in the pseudo-code of our algorithm:
e = (i, j) – an edge between vertices i and j: i = e[1], j = e[2]
c(e) = ce = cij – the cost of edge e = (i, j)
Δc(e) = Δce – the tolerance of edge e
degi – the degree of vertex i in the current 1-tree
υ∗ – the vertex with the maximum degree in the 1-tree
degυ∗ – the maximum degree of the 1-tree vertices
S∗ – the current best TSP solution
f∗ – the cost of the current best TSP solution
E – the list of all edges sorted in the non-descending order of edge costs
E1tree – the list of 1-tree edges sorted in the non-ascending order of edge
tolerances
υ1 – a special 1-vertex of the 1-tree
e1mst – the 1-vertex’s shortest edge belonging to Minimum Spanning Tree (MST)

314 A. Nikolaev and M. Batsyn

e1 – the next shortest edge from the 1-vertex
c1tree – the total cost of 1-tree edges
E1 – the list of the 1-vertex edges sorted in the non-descending order of costs
Ea – the list of edges forcibly added to the 1-tree
Er – the list of edges forcibly removed from the 1-tree and forbidden to be added
E[j] – the j-th element in a sorted list E: E = (E[1], ..., E[m])
ê – an edge which replaces edge e (replacing edge) in the 1-tree if e is forbidden
Ê1tree – the list of the replacing edges for all 1-tree edges
ê1mst – the replacing edge for the 1-vertex’s shortest edge belonging to MST
ê1 – the replacing edge for the next shortest edge from the 1-vertex
1tree – the 1-tree including: {E1tree, υ1, e1mst, e

1, Ê1tree, ê1mst, ê
1,Δc, deg, υ∗}

Vl, Vr – vertex sets of left and right MST subtrees separated by a removed edge
k ← GetIndex(E, e) – returns index k of element e in a sorted list E: e = E[k]
s – the name of the selected branching strategy

The main procedure is presented in Algorithm 1. First we find initial solution
by applying the LKH heuristic (Helsgaun 2000) with default parameters. Then
following the approach of Held and Karp (1970, 1971) we find the values of vertex
weights πi added to edge costs in order to improve the 1-tree lower bound. We
run the SubgradientAscentForBest1Tree() function only once and the
obtained edge costs are used then in all nodes of the BranchAndBound()
algorithm. This is the main difference between our algorithm and other ones
(Held and Karp 1971; Hansen and Krarup 1974) which use subgradient ascent
for all branch-and-bound subproblems.

Algorithm 1. Main branch-and-bound algorithm
function BranchAndBoundAlgorithm()

s ← Choose Branching Strategy
S∗, f∗ ← LKH()
1tree, [πi] ← SubgradientAscentForBest1Tree()
Π ← 2

∑
i∈V πi, [cij] ← [cij] + [πi] + [πj], Ea ← ∅, Er ← ∅

BranchAndBound(1tree, ∅, ∅)
return S∗, f∗

The subgradient ascent method to obtain a better 1-tree bound is provided in
Algorithm 2. This algorithm is the same as the 1tree bound procedure from
Reinelt (1994) and all the values of its parameters are taken from the book. At
each iteration we construct a minimum cost 1-tree in Build1Tree() function
(Algorithm 3), compute the subgradient direction [di] using 1-tree vertex degrees
[degi], and recompute the current vertex weights moving partly in this direction
[di] and partly in the previous step direction [d0i] by the current step size α. The
1-tree giving the best lower bound is stored and returned in 1tree∗ object.

After all iterations we run ComputeDegreesAndTolerances() function
(Algorithm 4) to compute the degrees of vertices [degi], determine the vertex υ∗

with maximum degree in the 1-tree, compute tolerances and replacing edges in
ComputeTolerance() function, sort edges by tolerances, and prepare the list
E1 of 1-vertex edges sorted by costs.

Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem 315

Algorithm 2
function SubgradientAscentForBest1Tree()

1tree ← Build1Tree()
LB∗ ← c1tree, α ← 10 · (f∗ − LB∗)/|V |
λ ← 0.98, [πi] ← 0, [c0ij] ← [cij], [d0

i] ← 0
for (k ← 1; k ≤ 300; k ← k + 1) do

[di] ← [degi] − 2
[πi] ← [πi] + α · (0.7di + 0.3d0

i)
[cij] ← [c0ij] + [πi] + [πj]
1tree ← Build1Tree()
Π ← 2

∑
i∈V πi, LB ← c1tree − Π

if (LB > LB∗) then
[π∗

i] ← [πi], LB∗ ← LB, 1tree∗ ← 1tree

[d0
i] ← [di], α ← λα

[cij] ← [c0ij]
1tree∗ ← ComputeDegreesAndTolerances(1tree∗)
return [π∗

i], 1tree∗

Construction of a minimum cost 1-tree is described in Algorithm 3. First
we build the Minimum Spanning Tree (MST) applying the well-known Kruskal
approach (KruskalMstAlgorithm()). To obtain a 1-tree we then choose one
of the MST leaves as a special 1-vertex υ1 of our 1-tree and connect this vertex
with the shortest possible edge e1 = (i, j∗), called 1-edge, to the MST. We also
compute the next shortest edge (i, ĵ∗) as the replacing edge for the 1-edge to
compute the 1-edge tolerance later. Since every vertex can be assigned to be the
1-vertex, we use the vertex for which the 1-edge is longer, because it increases
our lower bound. Next we add the 1-edge to our tree and compute its tolerance.

Algorithm 3
function Build1Tree()

E1tree ← KruskalMstAlgorithm(V, E)
e1 ← ∅, c1 ← 0
for (i ∈ V) do � choose the 1-vertex from MST leaves

if (degi �= 1) continue
Ei ← {e ∈ E1tree | i ∈ e}
e ← Ei[1] � there is only one element since degi = 1
c∗ ← ∞, j∗ ← 0
for (j ∈ V & j /∈ e) do � find the 1-edge – 2nd shortest edge from 1-vertex

if (cij < c∗) then
c∗ ← cij , ĵ∗ ← j∗, j∗ ← j

if (c∗ > c1) then � we choose the 1-vertex with the longest 1-edge
c1 ← c∗, e1 ← (i, j∗), ê1 ← (i, ĵ∗), e1mst ← e, ê1mst ← e1, υ1 ← i

E1tree ← E1tree ∪ e1, Ê1tree ← {ê1}, Δc(e1) = c(ê1) − c(e1)
1tree ← {E1tree, υ1, E1, e1mst, e

1, Ê1tree, ê1mst, ê
1, Δc, [degi], υ

∗}
return 1tree

316 A. Nikolaev and M. Batsyn

To illustrate our algorithm hereafter we will use the graph shown in Fig. 1a.
The 1-tree for this graph is shown in Fig. 1b. It is constructed from the MST
by adding 1-edge e1 = (5, 1). The MST is built with Kruskal algorithm by
sequentially choosing the shortest edges: (2, 4), (3, 5), (3, 1), and (1, 4). The MST
has two leaves 2 and 5, and we choose leaf 5 as the 1-vertex υ1 because its second
shortest edge has length 7, which is greater than length 6 of the second shortest
edge of leaf 2.

Fig. 1. Example for algorithm illustration

We also show one iteration of the subgradient ascent method in Fig. 1c. To
have better numbers we use the initial step value α = 10/7, so that after the
first iteration we have for vertex 1 with degree 3: π1 = 10/7 · (0.7 ·1+0.3 ·0) = 1
and for vertex 2 with degree 1: π2 = 10/7 · (0.7 · (−1) + 0.3 · 0) = −1. This gives
the 1-tree shown in Fig. 1c.

The tolerances of the 1-tree edges are shown in brackets in Fig. 1c. Their
computation is performed by ComputeTolerance() function (Algorithm 9)
which calls FindReplacingEdge() function (Algorithm 8) to determine the
replacing edge. The tolerance of a 1-tree edge is computed as the value to which
the 1-tree cost increases if we forbid this edge and have to replace it with another
longer edge called replacing edge in this paper. When we forbid a 1-tree edge
adding it to the list of removed edges Er, the 1-tree breaks into a left subtree
(with respect to the removed edge) with vertex set Vl and a right subtree with
vertex set Vr. We represent a 1-tree as a tree data structure and so it is easy
to obtain these vertex sets Vl and Vr applying a standard recursive traverse
procedure – TraverseTree() function in our pseudo-code. Since all edges in
list E are sorted by Kruskal algorithm in the non-descending order of their costs,
we return as the replacing edge the first available edge from E which connects
the two subtrees. For example edge (2, 4) in Fig. 1c has the replacing edge (1, 4)
and so its tolerance is equal to 5.

The recursive branch-and-bound procedure is presented in Algorithm5. The
first time this procedure is called without any forcibly added or removed edge:
ea = er = ∅. In this case it actually skips the first if-else blocks and proceeds to
choosing the edge according to the chosen branching strategy (function Branch-
ingStrategy()). On the left branch this edge is forcibly added to the 1-tree,
and on the right branch it is forcibly removed from the 1-tree and forbidden. For
both branches the branch-and-bound procedure is then recursively called.

Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem 317

Algorithm 4
function ComputeDegreesAndTolerances(1tree)

[degi] ← |{e ∈ E1tree | i ∈ e}|, υ∗ ← argmaxi∈V (degi)
for (e ∈ E1tree) do

ComputeTolerance(E1tree, Ê1tree, ∅, e)

Sort(E1tree, Ê1tree) � sort in non-ascending order of tolerances
for (j ∈ V \ υ1) do

E1 ← E1 ∪ (υ1, j) � insert keeping sorting in non-descending order of costs

return 1tree

On the left branch where we have forcibly added edge ea we check for each
vertex of this edge if there is one more edge from this vertex forcibly added to
the 1-tree. In this case such a vertex already has two guaranteed edges in the
1-tree and so all other edges from this vertex should be forbidden, because every
vertex should have degree 2 in the final feasible TSP solution. We add such
forbidden edges to list E′

r and then also to global list Er. If such an edge belongs
to the current 1-tree we replace it calling the ReplaceEdge() function. It is not
possible to replace a forbidden edge, we restore the global list of removed edges
and return from recursion, since there are no feasible solutions on this branch.

On the right branch where we have removed edge er we first compute the
lower bound LB using the edge tolerance value. And if we already have a solution
f∗ not worse than this bound, then we prune this branch. Otherwise we replace
the removed edge calling the ReplaceEdge() function.

On both branches if some edges have been replaced in the 1-tree we have
to recompute all edge tolerances in RecomputeTolerances() function (Algo-
rithm9). If the maximum vertex degree degυ∗ in the 1-tree is equal to 2, then our
1-tree is a feasible TSP solution – a cycle, because of the following proposition.

Proposition 1. If the maximum degree of 1-tree vertices is 2, then this 1-tree
is a cycle.

Proof. A 1-tree with n vertices has exactly n edges. So the sum of vertex degrees
is equal to 2n. Since the maximum degree is 2, then the sum of n vertex degrees
can be equal to 2n only if every vertex degree is equal to 2. Otherwise, this sum
will be less than 2n. This means that this 1-tree is a cycle, because every 1-tree
is a connected graph.
�

For our example in Fig. 1c the vertex with maximum degree is υ∗ = 3 and
its edge with maximum tolerance is e∗ = (3, 5). First we go to the left branch
setting ea = (3, 5) and Ea = {(3, 5)}. This does not change the optimal 1-tree
and we branch again on the edge from vertex υ∗ = 3 having next maximum
tolerance – edge (3, 2). Here on the left branch we have two forcibly added edges
from vertex 3: Ea = {(3, 5), (3, 2)}. So we forbid all its other edges: Er = E′

r =
{(3, 1), (3, 4)}. Edge (3, 1) belonging to the 1-tree is replaced with edge (4, 1)
and we get the 1-tree shown in Fig. 1d. Its maximum degree is 2 and so it is our
first feasible solution with f∗ = 23. On the right branch we forbid edge (3, 2):
Ea = {(3, 5)}, Er = {(3, 2)}. The tolerance of this edge immediately gives us the

318 A. Nikolaev and M. Batsyn

Algorithm 5. Recursive branch-and-bound procedure
function BranchAndBound(1tree, ea, er)

E′
r ← ∅, êr ← ∅

if (ea �= ∅) then
for (i ∈ ea) do � repeat for both vertices of this edge: i = ea[1], i = ea[2]

Ei ← {e ∈ Ea | i ∈ e} � a list of forcibly added edges from vertex i
if (|Ei| = 2) then � if there are already two edges from vertex i

for (j ∈ V) do � other edges from vertex i will be forbidden
if ((i, j) /∈ Ei) E′

r ← E′
r ∪ (i, j)

for (e′ ∈ E′
r) do

Er ← Er ∪ e′

if (e′ ∈ E1tree) then
ê′ ← ReplaceEdge(1tree, Er, e)
if (ê′ = ∅) then

Er ← Er \ E′
r � restore the list of forbidden edges

return
else if (er �= ∅) then

LB ← c1tree − Π + Δc(er)
if (LB ≥ f∗) return
êr ← ReplaceEdge(1tree, Er, er)
if (êr = ∅) return

if (degυ∗ = 2 & c1tree − Π < f∗) then � a feasible and better TSP solution
f∗ ← c1tree − Π, S∗ ← E1tree, Er ← Er \ E′

r

return
if (E′

r �= ∅ or êr �= ∅) RecomputeTolerances(E1tree, Ê1tree, Er)
e∗ ← BranchingStrategy(1tree)
Ea ← Ea ∪ e∗ � forcibly add edge e∗

BranchAndBound(1tree, e∗, ∅)
Ea ← Ea \ e∗, Er ← Er ∪ e∗ � forbid edge e∗

BranchAndBound(1tree, ∅, e∗)
Er ← Er \ e∗, Er ← Er \ E′

r � restore the list of forbidden edges

function BranchingStrategy(1tree)
if s = “max degree” then � choose from the maximum-degree vertex edges

E∗ ← {e ∈ E1tree \ Ea | υ∗ ∈ e} � E∗[1] has maximum tolerance
else if s = “max tolerance” then � choose from 1-tree edges

E∗ ← E1tree \ Ea � E∗[1] has maximum tolerance
else if s = “min length” then � choose from 1-tree edges sorted by length

E∗ ← E ∩ E1tree \ Ea � E∗[1] has minimum length due to list E sorting

return E∗[1]

lower bound LB = 22 + 1 = 23. So we prune this branch and return back to our
first branching. Now we forbid edge (3, 5): Ea = ∅, Er = {(3, 5)}, and get the
lower bound LB = 22 + 5 = 27, which again allows us to prune the branch.

Function ReplaceEdge() is presented in Algorithm 6. It has a special pro-
cessing for 1-vertex edges e1mst, the shortest edge from 1-vertex, and e1, the

Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem 319

Algorithm 6. Replaces a forbidden edge in 1-tree with a new edge
function ReplaceEdge(1tree, Er, er)

Er ← Er ∪ er

E1tree ← E1tree \ er

c1tree ← c1tree − c(er)
Ê1tree ← Ê1tree \ êr

if (er = e1mst or er = e1) then
if (ê1 = ∅) return ∅
k ← GetIndex(E1, ê1)
if (er = e1mst) e1mst ← e1

e1 ← ê1, ê1mst ← ê1, e ← ê1, ê1 ← ∅
Δc(e1mst) ← c(ê1mst) − c(e1mst)
for (k ← k + 1; k ≤ |E1|; k ← k + 1) do

if (E1[k] /∈ Er) then
ê1 ← E1[k]
break

ê ← ê1

else
if (êr = ∅) return ∅
e ← êr

ê ← FindReplacingEdge(E1tree, Er, e)

Δc(e) ← c(ê) − c(e)
E1tree ← E1tree ∪ e � insert e keeping the sorting by tolerances
c1tree ← c1tree + c(e)
Ê1tree ← Ê1tree ∪ ê
RecomputeDegrees([degi], υ

∗, er, e)

Algorithm 7. Recomputes degrees of the 1-tree vertices
function RecomputeDegrees([degi], υ

∗, er, e)
for (i ∈ er) do

degi ← degi − 1

for (i ∈ e) do
degi ← degi + 1

υ∗ ← argmaxi∈V (degi) � we use a sorted array [degi] to get υ∗

Algorithm 8. Finds the replacing edge for the given edge in the 1-tree
function FindReplacingEdge(E1tree, Er, e)

i ← e[1], j ← e[2]
Vl ← TraverseTree(E1tree, i)
Vr ← TraverseTree(E1tree, j)
for (ê ∈ E \ Er) do � E is sorted in the non-descending order of edge costs

if (ê ∩ Vl �= ∅ & ê ∩ Vr �= ∅) then
return ê

return ∅

320 A. Nikolaev and M. Batsyn

next shortest edge from 1-vertex. And for other MST edges it calls Find-
ReplacingEdge() (Algorithm 8) which has been described above. For efficient
finding of the replacing edge for one of the 1-vertex edges we use the list E1 of
1-vertex edges sorted in the non-descending order of their lengths. The replacing
edge for edge e1mst is the 1-edge e1, and for the 1-edge – the next shortest edge
ê1. After we have replaced the edges of the 1-vertex we update the replacing
edge ê1 with the next available shortest edge from list E1. We also decrease the
degrees of the removed edge vertices, increase the degrees of the inserted edge
vertices, and update the maximum degree vertex υ∗ in RecomputeDegrees()
function (Algorithm 7).

Algorithm 9. Computes tolerances for 1-tree edges
function RecomputeTolerances(E1tree, Ê1tree, Er)

for (e ∈ E1tree) do
ComputeTolerance(E1tree, Ê1tree, Er, e)

function ComputeTolerance(E1tree, Ê1tree, Er, e)
Er ← Er ∪ e
Ê1tree ← Ê1tree \ ê
ê ← FindReplacingEdge(E1tree, Er, e)
Ê1tree ← Ê1tree ∪ ê
Δc(e) ← c(ê) − c(e)
Er ← Er \ e

4 Computational Results

The branch-and-bound algorithm is implemented in C\C++ and tested on
TSPlib (Reinelt 1991) instances with the number of cities not greater than 130.
All experiments are carried out on a computer with 2.2 GHz CPU and 8 GB of
RAM. On each test instance each algorithm is executed with 300 s time limit.

Table 1 presents the computational results for the considered TSPlib
instances. The table contains information about the performance and the search
tree size of the branch-and-bound algorithm with different branching strategies.
The value “–” means that the algorithm exceeds the time limit. Three different
strategies have been implemented:

• Strategy 1 “max tolerance”. The edge with maximum tolerance is chosen
from the 1-tree. This strategy is suggested by Held and Karp (1971).

• Strategy 2 “min length”. The shortest edge is selected from the 1-tree.
• Strategy 3 “max degree”. The vertex with maximum degree is found and

the edge with the maximum tolerance incident to this vertex is chosen.

According to the computational results the suggested “max degree” strategy is
the best with respect to the search tree size and the computational time. “Max
tolerance” strategy has the worst performance. A potential reason for it is that
the computation of all tolerances is computationally expensive. It implies that
strategy 2 and 3 are more preferable in practice.

Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem 321

Table 1. Comparison of different branching strategies

Strategy 1 “max tolerance” Strategy 2 “min length” Strategy 3 “max degree”

Instance Number
of steps

Time, s Number
of steps

Time, s Number
of steps

Time, s

att48 123 0.01 125 0.01 60 0.01

bayg29 29 0 30 0 21 0

bays29 41 0 59 0 22 0

berlin52 1 0 1 0 1 0

brazil58 323 0.04 1455 0.06 83 0.01

burma14 1 0 1 0 1 0

dantzig42 87 0.01 130 0.01 46 0.01

eil51 2012 0.35 32215 1.44 17053 0.77

eil76 650 0.23 1775 0.19 3617 0.42

eil101 1727 1.38 3418 0.6 21497 4.62

fri26 1 0 1 0 1 0

gr17 1 0 1 0 1 0

gr21 1 0 1 0 1 0

gr24 29 0 18 0 10 0

gr48 12931 1.98 8656 0.38 19194 0.98

gr96 - - - - 444724 66.71

hk48 60 0.02 70 0.01 30 0.01

kroB100 - - 245919 35.73 - -

kroC100 - - 1943807 282.37 375393 67.02

kroD100 81324 51.16 38952 5.3 28638 5.09

lin105 108 0.09 95 0.02 20 0.01

rat99 6605 1.9 3136 0.39 1418 0.22

rd100 506 0.26 1459 0.15 244 0.04

st70 7206 2.63 46547 3.37 26681 2.53

swiss42 48 0.01 81 0 26 0

ulysses16 1 0 1 0 1 0

ulysses22 1 0 1 0 1 0

5 Conclusion

In this paper we developed a branch-and-bound algorithm based on the 1-
tree Lagrangian relaxation with a new branching strategy and considered other
branching strategies for solving the STSP. We compared our strategy with the
so-called strong branching applied by Held and Karp (1971) and with branch-
ing by the shortest edge. The computational results show that the developed
branching strategy provides better results.

Acknowledgments. The research was funded by Russian Science Foundation (RSF
project No. 17-71-10107).

322 A. Nikolaev and M. Batsyn

References

Benchimol, P., Régin, J.C., Rousseau, L.M., Rueher, M., van Hoeve, W.J.: Improving
the Held and Karp approach with constraint programming. In: Lodi, A., Milano,
M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 40–44. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13520-0 6

Hansen, K.H., Krarup, J.: Improvements of the Held-Karp algorithm for the symmetric
traveling-salesman problem. Math. Program. 7(1), 87–96 (1974)

Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees.
Oper. Res. 18(6), 1138–1162 (1970)

Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees:
Part II. Math. Program. 1(1), 6–25 (1971)

Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

Laporte, G.: The traveling salesman problem: an overview of exact and approximate
algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

Matai, R., Singh, S., Mittal, M.L.: Traveling salesman problem: an overview of appli-
cations, formulations, and solution approaches. In: Traveling Salesman Problem,
Theory and Applications. InTech (2010)

Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991)

Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications.
Lecture Notes in Computer Science. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48661-5

Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric traveling
salesman problem based on the 1-tree relaxation. Eur. J. Oper. Res. 9(1), 83–89
(1982)

https://doi.org/10.1007/978-3-642-13520-0_6
https://doi.org/10.1007/3-540-48661-5
https://doi.org/10.1007/3-540-48661-5

LZ-ABT: A Practical Algorithm
for α-Balanced Grammar Compression

Tatsuya Ohno1, Keisuke Goto2, Yoshimasa Takabatake1, Tomohiro I1,
and Hiroshi Sakamoto1(B)

1 Kyushu Institute of Technology, Kitakyushu, Japan
t ohno@donald.ai.kyutech.ac.jp,

{takabatake,tomohiro,hiroshi}@ai.kyutech.ac.jp
2 Fujitsu Laboratories Ltd., Kawasaki, Japan

goto.keisuke@jp.fujitsu.com

Abstract. We propose a new LZ78-style grammar compression algo-
rithm, named LZ-ABT, which is a simple online algorithm to create,
given a string of length N over an alphabet of size σ, an α-balanced
grammar in O(N log N log σ) time and O(n) space in addition to the
input string, where n is the grammar size to output. LZ-ABT can avoid
the lower-bound of Ω(N5/4) time of the naive algorithms for LZMW and
LZD, other LZ78-style compression algorithms, which was observed in
[Badkobeh et al. SPIRE 2017, pp. 51–67]. We also show that the algo-
rithm can be executed in compressed space, i.e., without storing the
whole input string explicitly in memory: in O(N log2 N log σ) time and
O(n) space, or O(N log N log σ) time and O(n log∗ N) space. We imple-
ment LZ-ABT running in O(N log N log σ) time and O(N) space and
empirically show that its performance is competitive to LZD. This is
the first practical implementation of α-balanced grammar compression
to the best of our knowledge.

1 Introduction

Grammar compression is a model of lossless compression in which a compressed
string is represented by a context-free grammar that deterministically derives
the string only. In the last two decades, grammar compression has been exten-
sively studied not only because it is theoretically clean enough to work on [9],
but also because it can actually model many practical compression algorithms
(like LZ78 [17], Bisection [11], SEQUITUR [12], RePair [8], LZD [4], LZMW [10],
and SOLCA [16]). While the problem of computing the smallest grammar for
an input string is known to be NP-hard [2,15], several polylogarithmic approxi-
mation algorithms have been proposed [2,6,7,13,14,16]. Interestingly, almost all
these algorithms generate a balanced grammar in the sense that the height of the
derivation tree of any variable is the logarithmic order of the length of the string
it derives. As is usual with balanced trees, it is certain that the balancedness
is helpful for improving the worst-case behavior in grammar compression algo-
rithms. In this paper, we focus on α-balanced grammars, which were employed in
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 323–335, 2018.
https://doi.org/10.1007/978-3-319-94667-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_27&domain=pdf

324 T. Ohno et al.

the seminal paper [2] in this field but have not been well-studied up until today.
We apply the α-balanced property to LZD [4], a practical LZ78-style grammar
compression, to improve its worst-case running time for anomalous input strings.

LZD [4] was recently proposed to improve the compression ability of LZ78.
Basically, LZD greedily parses a string into a sequence of phrases from left to
right while searching for the longest prefix of the unprocessed string that matches
a phrase created so far. A naive implementation of the longest-match string
searching is to conduct a prefix search on the Patricia tree that stores the phrases.
It has been shown by experimental results that this naive implementation is
simple enough to run fast in practical. If the number of character-to-character
comparisons in a single prefix search is within a constant multiple of the obtained
length of the longest prefix, the algorithm would actually run in (almost) linear
time. However, in theory the prefix search could badly “overrun”, and it was
reported in [1] that the algorithm has a lower-bound of Ω(N5/4) time.

In this paper, we propose a new LZ78-style grammar compression algorithm,
named LZ-ABT, which is a simple online algorithm to create, given a string of
length N over an alphabet of size σ, an α-balanced grammar in O(N log N log σ)
time and O(n) space in addition to the input string, where n is the grammar
size to output.1 In contrast to LZD, we impose the α-balanced property to
the grammar rules, i.e., for any derivation rule X → X�Xr, the fraction of two
strings derived by X� and Xr is bounded by a constant with respect to predefined
0 < α ≤ (3−

√
5)/2. Since this property suppresses the bad “overrun” of LZD, we

can evade the lower-bound of Ω(N5/4) time. In addition, the α-balanced property
enables us to execute the algorithm efficiently in compressed space without stor-
ing the whole input string explicitly in memory: in O(N log2 N log σ) time and
O(n) space, or O(N log N log σ) time and O(n log∗ N) space. The latter utilizes
bookmarking data structures on balanced grammars, which can be maintained
in an online manner.

We implement LZ-ABT running in O(N log N log σ) time and O(N) space
and empirically show that its performance is competitive to LZD [4]. We also
observe LZ-ABT keeps its performance in malicious examples for other LZ78-
style compression algorithms [1]. This is the first practical implementation of
α-balanced grammar compression to the best of our knowledge.

2 Preliminaries

2.1 Notation

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. The length
of a string S is denoted by |S|. The empty string ε is the string of length 0,
namely, |ε| = 0. For a string S = xyz, strings x, y, and z are called a prefix,
substring, and suffix of S, respectively. For 1 ≤ i ≤ |S|, the ith character of a

1 We remark that the log σ multiplicative factor in the running time is the cost to
conduct a binary search at internal nodes in the Patricia tree, and can be removed
by using hash function if we allow its non-deterministic behavior.

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 325

string S is denoted by S[i]. For 1 ≤ i ≤ j ≤ |S|, let S[i..j] = S[i] · · · S[j], i.e.,
S[i..j] is the substring of S starting at position i and ending at position j in S.
For convenience, let S[i..j] = ε if j < i.

The default base of log we use is two unless otherwise noted. Let log∗ m
denote the iterated logarithm of m. Let ↑↑ denote the up-arrow notation of
Knuth, in particular, 2 ↑↑ 0 = 1 and 2 ↑↑ (k + 1) = 22↑↑k for any k ≥ 0. For
any m ≥ 0, we use τ(m) to denote the set {2 ↑↑ k | k ≥ 1, 2 ↑↑ k ≤ m}. Clearly,
|τ(m)| = O(log∗ m).

2.2 α-balanced Grammars

For a fixed constant 0 < α < 1/2, two positive integers � and r are said to be
α-balanced iff the following condition holds, where m = �+r and β = (1−α)/α:

� ≥ αm and r ≥ αm

⇔ (1 − α)m ≥ � and (1 − α)m ≥ r

⇔ r/� ≤ β and �/r ≤ β.

The larger α imposes a stronger balancing condition on the two integers. Extend-
ing this notion, two strings are called α-balanced iff their lengths are α-balanced.

Grammar compression is a model of lossless compression in which we con-
sider a context-free grammar that deterministically derives a single string as
a compressed representation of the string. In particular, we focus on a nor-
mal form such that the righthand side of every rule is of size two2, namely, its
derivation tree forms a full binary tree: an internal node of the derivation tree
is labeled with a variable of the grammar, and a leaf is labeled with a terminal
(character). Throughout this paper, we denote the set of variables by V and
the set of rules by D , and assume that, given X ∈ V , we can access the rule
X → X�Xr ∈ D in constant time. Let val(X) denote the string X derives. The
size |X| of X is |val(X)|, and the height of X is the height of the derivation tree
of X. The height of a grammar is defined by the height of the starting symbol.
Let [V] = {val(X) | X ∈ V } and [V]≤m = {val(X) | X ∈ V , |X| ≤ m}.

A grammar is called α-balanced iff |X�| and |Xr| are α-balanced for any
variable X ∈ V with X → X�Xr. For any variable X of an α-balanced grammar,
the height of X is O(log |X|). In particular, the height of an α-balanced grammar
is O(log N), where N is the length of the string represented by the grammar.

The next lemma is well known for random access and substring expansion
on grammar compressed strings.

Lemma 1 (Substring expansion). Suppose that for every variable in V we
store the length of the string it derives. Then, we can expand any substring of
length l of val(X) for any variable X ∈ V in O(h+ l) time, where h is the height
of X.

As a corollary of this lemma, for balanced grammars we can support substring
expansion in O(log |X| + l) time.
2 Of course, we ignore any trivial input string of length one or zero.

326 T. Ohno et al.

2.3 LZ78-style Grammar Compression

We describe the basic LZ78 [17] algorithm and LZD (a variant of LZ78) [4].
LZ78 algorithm transforms an input string S of length N into a sequence
P1, P2, . . . , Pn of substrings such that each phrase Pk = pk1pk2 is defined as
follows. If k = 1, pk1 = ε and pk2 = S[1]. For k ≥ 2, pk1 is the longest prefix
of S[|P1 · · · Pk−1| + 1..N] in {P1, . . . , Pk−1} if it exists or pk1 = ε otherwise, and
pk2 is the next symbol S[|P1 · · · Pk−1pk1 | + 1]. For example, the Fibonacci string
S = abaababaabaab is parsed into the sequence (P1, P2, P3, P4, P5, P6, P7) =
(a, b, aa, ba, baa, baab, c). A recursive expansion of LZ78 phrase is directly inter-
preted into a derivation in grammar compression associating a variable Xk with a
phrase Pk = pk1pk2 by the production rule Xk → Xk1Xk2 . Finally, the righthand
of the start production rule contains all the variables associated with pairs. For
example, a grammar associated with the LZ78 phrases for S = abaababaabaabc
is defined as follows.{

X8 → X1X2X3X4X5X6X7, X7 → c, X6 → X5b, X5 → X4a,
X4 → X2a, X3 → X1a, X2 → b, X1 → a

}

Given this correspondence between LZ78 phrases and production rules, here-
after we can regard the output of LZ78 algorithm as a grammar compression
rather than as a sequence of LZ78 phrases.

LZD (LZ-Double) parsing for S is a variant of LZ78 defined by a sequence
of phrases Pk = pk1pk2 as follows. pk1 and pk2 are in {P1, . . . , Pk−1} ∪ Σ,
and pk1 is the longest prefix of S[|P1 · · · Pk−1| + 1..N], and pk2 is the longest
prefix of S[|P1 · · · Pk−1pk1 | + 1..N]. Intuitively, Pk in LZD is a concatenation
of two longest prefixes of unprocessed S appearing in the generated phrases
for the processed S. For the same S = abaababaabaabc, the LZD phrases
(P1, P2, P3, P4) = (ab, aab, abaab, aabc) defines the following grammar.

{X5 → X1X2X3X4, X4 → X2c, X3 → X1X2, X2 → aX1, X1 → ab}

Practically, the number of LZD phrases, |LZD|, is smaller than |LZ78|, how-
ever, there exists a worst case satisfying |LZD| = Ω(N

1
3) and requires Ω(N

5
4)

computation time as reported in [1].

3 LZ-ABT: Online α-balanced Grammar Compression

In this section, we present an online α-balanced grammar compression algorithm,
named LZ-ABT. Let S (resp. V) always denote the current state of the input
string (resp. the set of variables). While appending a character to a string S, we
incrementally add α-balanced variables to V in a greedy manner. So N := |S|
and n := |V | are monotonically non-decreasing.

We remark that we will not “complete” an α-balanced grammar so as to
always prepare for new characters to come. Instead, we maintain a tail string
Stail and a stack that stores a sequence S1, S2, . . . , St of strings such that

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 327

1. Sj ∈ [V] for any j < t,
2. St ∈ [V] or a single character,
3. Stail is a prefix of some string in [V] or a single character,
4. S1S2 · · · StStail = S,
5. |S1| > |S2| > · · · > |St|, and
6. any pair of adjacent strings in the stack is not α-balanced.

We note that we do not actually store the strings S1, S2, . . . , St, Stail , but we
just remember the corresponding variable that derives each string (or a single
character), and for Stail additionally the length |Stail |. Thus, S1, S2, . . . , St, Stail

together with V represent S in compressed space of O(n+ t) = O(n) due to the
following lemma.

Lemma 2. At any moment of our LZ-ABT algorithm, the stack size t is
bounded by O(log N).

Proof. Since any pair of adjacent strings in the stack is not α-balanced and
monotonically shrinking, N > |S1| > β|S2| > β2|S3| > · · · > βt−1|St| > βt−1.
As β = (1 − α)/α > 1 is constant, t ≤ logβ N + 1 = O(log N).
�

LZ-ABT consists of two sub-procedures parse and merge, which are executed
alternatingly. In parse, we work on Stail and search for the longest prefix p of
Stail that matches a string in [V]≤|St|β . Here the length limit |St|β is set to
avoid the situation where p is too large to merge with St under the condition of
α-balanced grammar. As soon as we find that p cannot be longer by appending
characters to Stail , we push p into the stack and execute merge. Note that at
the moment p is pushed, the condition for the top of the stack could be broken,
i.e., St−1 could be shorter than St and/or α-balanced with St. This is mended
in merge, in which we iterate the following procedure while the two strings St−1

and St on the top of the stack are α-balanced: pop two strings (let S� and Sr be
the popped strings in the order of positions) to make a new variable X → X�Xr

with val(X�) = S� and val(Xr) = Sr, and then push val(X).
Algorithm 1 shows our algorithm, in which parse is described in Line 4–6

and merge is described in Line 8–12. In Subsect. 3.1, we will study the behavior
of LZ-ABT that is varied according to the parameter α. In Subsect. 3.2, we
will present a standard implementation of parse based on Patricia trees and its
analysis. Finally in Subsect. 3.3, we show how to execute the algorithm efficiently
in compressed space.

3.1 Behavior of LZ-ABT with Varying α

First of all, we remark that LZ-ABT does not work as we expect if α is too large.
The next lemma shows valid α by which it is guaranteed that St cannot be too
large to merge with St−1 under the condition of α-balanced grammar.

Lemma 3. If 0 < α ≤ (3 −
√

5)/2, at any moment of LZ-ABT algorithm, the
following holds: St−1 and St are α-balanced iff |St−1| ≤ |St|β.

328 T. Ohno et al.

Algorithm 1. Construction of LZ-ABT’s grammar of an input string
Data: S: current input string. V : current set of variables of grammar. S:

current stack of size t. Stail : current tail string. α: an input parameter of
positive real number less than (3 −

√
5)/2. Let β = (1 − α)/α. For

convenience, let |S0| = 0.
Output: Report V , S and Stail as a compressed representation of S.

1 initialize V ← ∅, S ← ∅, Stail ← ε;
2 while receive a new character a to append do
3 Stail ← Staila, S ← Sa;
4 while Stail is not prefixed by any string in [V]≤|St|β do
5 p ← longest prefix of string Stail in [V]≤|St|β ∪ Σ;
6 Stail ← Stail [|p| + 1..|Stail |] ; // truncate p from Stail

7 S.push(p);
8 while t > 1 and (|St−1|β ≤ |St|) do
9 Sr ← S.pop();

10 S� ← S.pop();
11 add a new variable X deriving S�Sr into V ;
12 S.push(S�Sr);

13 report V , S and Stail ;

Proof. It suffices to show that a pushed string St cannot be too long (i.e., |St| ≤
|St−1|β for a constant β = (1 − α)/α). There are two situations where a string
is pushed to the stack; one is in parse and another in merge. For the former
situation, we are sure that |St| ≤ |St−1|β by the limit we set for the prefix search.
For the latter situation, recall that the pushed string St (= p) is derived by X →
X�Xr. Let val(X�) = S� and val(Xr) = Sr. Since St−1 and S� were adjacent
in the stack before S� and Sr were popped, |St−1| > |S�|β holds. Also, |Sr| ≤
|S�|β < |St−1| holds because S� and Sr are α-balanced. Due to |St|/|St−1| =
(|S�| + |Sr|)/|St−1| < |S�|/|St−1| + 1 < 1/β + 1, it suffices to show 1/β + 1 ≤ β
to see if |St| ≥ |St−1|β holds.

1/β + 1 ≤ β

α/(1 − α) + 1 ≤ (1 − α)/α

α2 − 3α + 1 ≥ 0.

Solving this formula under 0 < α < 1/2, we get 0 < α ≤ (3 −
√

5)/2, and hence,
the statement holds.
�

Next we show that if the balancing condition is stronger than a certain point,
LZ-ABT generates a grammar whose derivation tree is a perfect binary tree in
an online manner (partially constructed subtrees are stacked in the right place),
and thus, essentially works as an online algorithm of Bisection [11].

Lemma 4. If α > 1/3 (or equivalently β = (1 − α)/α < 2), LZ-ABT generates
a grammar whose derivation tree is a perfect binary tree in an online manner.

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 329

Proof. We say that a string Si for any 1 < i ≤ t in the stack is well-placed iff
|Si| = 2k for some integer k ≥ 0 and

∑j<i
j=1 |Sj | is divisible by 2k. We show that

the length of any string in [V] is a power of two and S1, S2, . . . , St are well-placed
by induction. We assume that the condition holds right before pushing a string
into the stack in parse, and show that the condition still holds after finishing
the succeeding merge.

By the inductive assumption, the length of the pushed string St (= p) is a
power of two. In addition, by the limit we set for the prefix search, it holds that
|St| ≤ |St−1|β < 2|St−1|, and thus, |St| is a power of two that is at most |St−1|.
If |St| < |St−1|, merge does not merge St−1 and St because St−1 and St are
not α-balanced for (1 − α)/α < 2 due to |St−1|/|St| ≥ 2 > β. By the condition
S1 > S2 > · · · > St, |Si| is divisible by |St| for any i < t, and thus, St is well-
placed. If |St| = |St−1| = 2k, two strings are popped and the merged string of
length 2k+1 is pushed (being new St). At this moment, the situation is exactly
the same as before, i.e., the inductive assumption is still valid for S1, S2, . . . , St−1

and |St| is a power of two that is at most |St−1|. Therefore, it is proved that St

is well-placed in the same way. Since merge just repeats this procedure, we see
that S1, S2, . . . , St are always well-placed and every merged string has a length
of power of two.
�

3.2 Implementation with Patricia Trees and Its Analysis

The Patricia tree TV of [V] is the compacted trie storing the strings in [V]. Each
edge label (string) is stored by a pointer to input string in constant space. In
order to compute the longest prefix p of Stail that matches a string in [V]≤|St|β ,
we only have to traverse the tree from the root by Stail [1..|St|β] as long as pos-
sible. Suppose that we stop at a (possibly implicit) node v during the traversal,
the lowest node that represents a string in [V]≤|St|β on the path from the root
to v is actually representing p. We can maintain v and p online while appending
new character to S. Let pp′ be the string v represents. The cost of the traver-
sal is O(|pp′| log σ). When p is parsed out, O(|p′| log σ) is considered to be the
“overrun” cost. as we restart the next parsing with p′. We can charge this cost
to O(|p|β log σ) = O(|p| log σ) because, by definition of α-balanced grammars,
there is a string pq ∈ [V]≤|St|β such that p′ is a prefix of q, and p and q are
α-balanced. Therefore, the cost of parse is bounded by O(N log σ) in total.

Next, we consider how to update TV when a new phrase S�Sr is added
in merge. We simply traverse TV from the root by S�Sr as long as possible,
and branch out a new edge.3 The total cost of maintaining TV is bounded by
O(L log σ), where L is the sum of the lengths of strings in [V]. Since the grammar
is α-balanced, for every position i in S, S[i] is derived by at most O(log N)
variables, and hence, L = O(N log N).

3 Since S� is represented in TV , we can shortcut by starting the traversal from the
node representing S�, but it does not change the complexity.

330 T. Ohno et al.

In summary, we obtain the following theorem.

Theorem 1. Given a string of length N over an alphabet of size σ online, LZ-
ABT can be computed in O(N log N log σ) time and O(n) working space in addi-
tion to N log σ bits of space for the input, where n is the size of the grammar to
output.

3.3 LZ-ABT in Compressed Space

We show how to execute our LZ-ABT algorithm described in Subsect. 3.2 in
compressed space: in O(N log2 N log σ) time and O(n) space, or O(N log N log σ)
time and O(n log∗ N) space.

The idea is to retrieve the edge labels of the Patricia tree TV from the α-
balanced grammar rather than referring to S explicitly stored in memory. Since
each edge label is a substring of val(X) for some variable X, we can retrieve the
edge label by Lemma 1 if we remember a triple (X, b, l) such that val(X)[b..b +
l − 1] is the edge label. This gives us the following theorem:

Theorem 2. Given a string of length N over an alphabet of size σ online, LZ-
ABT can be computed in O(N log2 N log σ) time and O(n) working space, where
n is the size of the grammar to output.

In order to accelerate the algorithm, we can utilize the bookmarking data
structure of [3] on balanced grammars. We describe the basic idea of the data
structure as follows:

Lemma 5. ([3]). Let X be a variable whose derivation tree is balanced. If we
construct a bookmarking data structure for a position b in X using O(log∗ |X|)
space, we can later expand, given any l, val(X)[b..b + l − 1] in O(l) time.

Proof. For a balanced grammar, we can choose (at most) two nodes of height
O(log g) that covers val(X)[b..b+g] for any g. In the preprocessing phase we com-
pute such nodes for every g ∈ τ(|X|), and remember their node labels (variables)
in O(log∗ |X|) space.

In the query phase, given l, we first choose the smallest g ∈ τ(|X|) with
g ≥ l in O(log∗ l) = O(l) time. If there is no such g, it holds that log |X| < l,
and thus, val(X)[b..b + l − 1] is expanded in O(log |X| + l) = O(l) time by
Lemma 1. Now suppose that g exists, and Y and Z are the variables we remember
for g. Notice that the heights of Y and Z are both O(l) by definition. Since
val(X)[b..b + l − 1] is a substring of val(Y)val(Z), we can expand it (suppose
that we also remember the relative position of b in val(Y)) by using Lemma 1
in O(log |Y | + log |Z| + l) = O(l) time.
�

By Lemma 5, for every edge label associated with a triple (X, b, l), we can book-
mark b in X so that later we can expand the edge label in time linear to its
length. In addition, we can also support prefix expansion, in which we want to
expand val(X)[b..b + l′] in O(l′) time even if we do not know l′ in advance.
This can be done with a standard doubling technique: we gradually increase

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 331

the length of expansion starting from a small constant and double the length of
expansion when it is needed.

The last issue we have to address is how to maintain bookmarking data
structures in our online setting: In contrast to [3], in which the bookmarking
positions are static, we have to add bookmarks when new edge labels appear.
A naive approach would take O(log |X| log∗ |X|) time to compute, for every
g ∈ τ(|X|), two nodes of height O(log g) that covers val(X)[b..b + g].

To solve this issue, we slightly modify the data structure. First of all, we
bookmark the first position for every variable X to support prefix expansion of
the string derived by the variable. When a new variable X is created, we do the
following spending O(log |X|) time: we traverse down along the leftmost path of
the derivation tree of X and compute, for each g ∈ τ(|X|), the lowest node that
covers val(X)[1..g]. Storing the labels of these nodes is enough to support prefix
expansion of val(X). In a completely symmetric way, we also bookmark the last
position for every variable X to support “suffix” expansion.

When we bookmark a new position b in X, we do the following spending
O(log |X|) time: we traverse the derivation tree of X from the root to the position
b, and identify, for each g ∈ τ(|X|), the lowest node vg that covers val(X)[b..b+g],
and remember its label. Suppose that, in the query phase, we want to expand
val(X)[b..b + l − 1] for l such that there exists g ∈ τ(|X|) with g ≥ l. Since
val(X)[b..b + l − 1] is a concatenation of a suffix of the left child of vg and a
prefix of right child of vg, we can expand it in O(l) time using the bookmarking
data structures for prefix/suffix expansion created for every variable.

In summary, we have shown that we can add a bookmark in O(log N) time in
our online setting. Since we need O(n) bookmarks, we use O(n log∗ N) space, and
the total cost O(n log N) of constructing bookmarking data structures is domi-
nated by the cost O(N log N log σ) for prefix expansion of edge labels. Therefore,
we get the following theorem:

Theorem 3. Given a string of length N over an alphabet of size σ online, LZ-
ABT can be computed in O(N log N log σ) time and O(n log∗ N) working space,
where n is the size of the grammar to output.

4 Experiments

We implemented in C++ LZ-ABT described in Theorem 1 of Sect. 3.2, which
runs in O(N log N log σ) time and O(N) space. To confirm its empirical per-
formance, we examined the compression ratio, compression speed, and working
space with several α ∈ {0.1, 0.2, 0.3} compared with a practical implementation
of LZD4 in O(n(M + min(m,M) log σ)) time and O(N) space where M is the
maximal length of factors. From well-known datasets for benchmark, we chose
6 general texts (dblp.xml.200MB, dna.200MB, english.200MB, pitches.50MB,
proteins.200MB, sources.200MB)5 and 7 repetitive texts (Escherichia Coli,
4 https://github.com/kg86/lzd.
5 http://pizzachili.dcc.uchile.cl/texts.html.

https://github.com/kg86/lzd
http://pizzachili.dcc.uchile.cl/texts.html

332 T. Ohno et al.

T
a
b
le

1
.
L
Z
-A

B
T

v
.s

.
L
Z
D

:
C

o
m

p
re

ss
io

n
ra

ti
o
,
th

ro
u
g
h
p
u
t,

a
n
d

w
o
rk

in
g

sp
a
ce

,
w

h
er

e
“
co

m
p
re

ss
io

n
ra

ti
o
”

d
en

o
te

s
n
/N

fo
r

th
e

n
u
m

b
er

n
o
f
p
h
ra

se
s

a
n
d

N
=

|S
|,

“
th

ro
u
g
h
p
u
t”

d
en

o
te

s
th

e
n
u
m

b
er

o
f
ch

a
ra

ct
er

s
(×

1
0
6
)

p
er

se
co

n
d
,
a
n
d

“
w

o
rk

in
g

sp
a
ce

”
d
en

o
te

s
th

e
re

q
u
ir

ed
sp

a
ce

in
m

eg
a
b
y
te

s.
T

h
e

re
su

lt
s

w
ri

tt
en

in
b
o
ld

re
p
re

se
n
t

th
e

b
es

t
re

su
lt

s
a
m

o
n
g

th
e

o
n
es

o
f
L
Z
D

a
n
d

L
Z
-A

B
T

fo
r

α
=

0
.1

,0
.2

,0
.3

,
th

a
t

is
,
th

e
sm

a
ll
es

t,
la

rg
es

t,
sm

a
ll
es

t
n
u
m

b
er

s
fo

r
th

e
co

m
p
re

ss
io

n
ra

ti
o
,
th

ro
u
g
h
p
u
t,

a
n
d

w
o
rk

in
g

sp
a
ce

,
re

sp
ec

ti
v
el

y.

D
a
ta

se
t

|S
|[

M
B

]
C

o
m

p
re

ss
io

n
ra

ti
o

[%
]

T
h
ro

u
g
h
p
u
t

[M
ch

a
r/

se
c]

W
o
rk

in
g

sp
a
ce

[M
B

]

L
Z
-A

B
T

L
Z
D

L
Z
-A

B
T

L
Z
D

L
Z
-A

B
T

L
Z
D

α
=

0
.1

α
=

0
.2

α
=

0
.3

α
=

0
.1

α
=

0
.2

α
=

0
.3

α
=

0
.1

α
=

0
.2

α
=

0
.3

d
b
lp

.x
m

l.
2
0
0

M
B

2
0
0
.0

0
1
7
.6

7
1
8
.4

3
2
0
.4

4
1
5
.7
2

6
.2

6
5
.7

3
5
.1

5
6
.8
1

1
3
9
5
.4

6
1
4
4
4
.6

3
1
5
5
7
.6

8
8
4
2
.2
9

d
n
a
.2

0
0

M
B

2
0
0
.0

0
3
6
.7

4
3
6
.1

9
3
5
.8

5
3
4
.2
5

2
.3

2
2
.3

1
2
.2

3
2
.5
9

2
6
5
0
.6

7
2
6
9
5
.3

1
2
7
4
7
.3

9
1
8
7
4
.7
8

en
g
li
sh

.2
0
0

M
B

2
0
0
.0

0
3
3
.0

1
3
2
.7
3

3
4
.5

4
3
3
.9

1
2
.9
1

2
.4

0
2
.0

9
2
.4

5
2
4
3
2
.5

3
2
4
6
2
.4

7
2
5
8
0
.7

0
1
5
2
0
.3
7

p
it

ch
es

.5
0

M
B

5
0
.0

0
6
0
.8

6
5
8
.8

9
5
8
.6

4
5
8
.6
1

2
.3

0
2
.2

8
2
.2

3
2
.5
7

1
1
1
3
.5

4
1
1
0
5
.9

0
1
1
1
7
.5

5
6
3
1
.6
7

p
ro

te
in

s.
2
0
0

M
B

2
0
0
.0

0
5
5
.2

0
5
4
.1

1
5
3
.6
5

5
5
.9

0
1
.9
2

1
.8

1
1
.6

2
1
.9

1
4
2
0
8
.4

9
4
2
6
0
.3

8
4
3
2
0
.3

5
2
4
1
7
.7
8

so
u
rc

es
.2

0
0

M
B

2
0
0
.0

0
3
2
.0

7
3
1
.9

9
3
4
.8

2
2
9
.5
4

3
.1

4
3
.5

9
3
.1

2
4
.0
1

2
3
8
1
.8

2
2
4
1
4
.6

0
2
5
7
4
.8

8
1
3
8
4
.2
6

E
sc

h
er

ic
h
ia

C
o
li

1
0
7
.4

7
1
2
.6

8
1
2
.0

2
1
1
.7
6

1
4
.8

0
8
.7
1

8
.6

8
8
.5

6
7
.8

3
6
3
8
.2

9
6
3
4
.0

2
6
4
3
.6

1
4
4
7
.5
6

ce
re

4
3
9
.9

2
3
.2

3
2
.9
5

2
.9

8
4
.2

1
2
7
.0
0

2
6
.4

4
2
4
.9

5
2
2
.3

3
9
8
2
.8

0
9
6
8
.5

4
9
8
5
.2

2
8
5
7
.3
4

ei
n
st

ei
n
.e

n
.t

x
t

4
4
5
.9

6
0
.1
3

0
.1
3

0
.1

4
0
.1

6
2
3
1
.5
9

2
3
0
.3

1
2
2
0
.6

8
2
2
9
.1

3
4
7
2
.0

6
4
7
2
.0

8
4
7
8
.5

5
4
6
3
.6
4

in
fl
u
en

za
1
4
7
.6

4
4
.3

3
4
.2
1

4
.3

4
4
.3

2
2
4
.6

8
2
3
.6

4
2
1
.2

6
2
6
.8
3

4
1
4
.2

6
4
1
6
.5

5
4
2
9
.0

3
3
0
0
.5
5

k
er

n
el

2
4
6
.0

1
1
.7

6
1
.7
2

1
.8

7
2
.8

1
6
3
.9
1

6
2
.9

6
5
5
.9

8
4
4
.5

9
4
0
4
.5

1
4
0
4
.9

8
4
1
7
.5

2
3
8
9
.6
8

p
a
ra

4
0
9
.3

8
4
.5

4
4
.1

9
4
.1
7

5
.9

1
2
0
.0

4
2
0
.2
8

1
9
.6

2
1
6
.5

3
1
0
5
4
.0

0
1
0
3
7
.8

4
1
0
5
4
.7

7
9
6
3
.7
8

w
o
rl

d
le

a
d
er

s
4
4
.7

9
2
.8

8
2
.7
8

3
.0

5
3
.2

7
5
0
.6

9
4
8
.5

1
4
1
.2

5
5
4
.0
2

1
0
7
.4

7
9
7
.0

2
1
0
9
.7

0
7
9
.4
0

lz
7
8
s

la
rg

e
ra

ti
o
.t

x
t

5
1
6
.0

1
0
.0
0

0
.0
0

0
.0
0

0
.2

4
3
3
4
.2
5

3
1
6
.2

3
3
0
4
.7

5
1
0
1
.2

1
5
1
7
.2
4

5
1
7
.2

8
5
1
7
.3

2
5
6
8
.0

1

lz
7
8
s

w
o
rs

t
ti

m
e2

.t
x
t

0
.0

1
1
3
.3

5
1
2
.7

7
1
5
.8

5
8
.9
0

1
.0

6
1
.1

5
1
.1

1
1
.3
4

0
.2

0
0
.2

0
0
.2

0
0
.1
7

lz
7
8
s

w
o
rs

t
ti

m
e3

.t
x
t

1
2
0
.6

3
0
.1

0
0
.1

0
0
.1

1
0
.0
4

2
5
1
.0
7

2
4
1
.7

7
2
2
6
.2

4
1
1
3
.0

7
1
2
7
.1

3
1
2
7
.3

7
1
2
8
.0

5
1
2
2
.2
6

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 333

cere, einstein.en.txt, influenza, kernel, para, world leaders)6. In addi-
tion, we show a comparison of these algorithms for the following anomalous
strings reported in [1] as a worst case for LZD parsing.

– lz78s large ratio.txt: A string requiring Ω(N
1
3) phrases for LZD;

– lz78s worst time2.txt: A string from k2 different alphabet symbols (e.g.,
k = 4) requiring Ω(N

5
4) time for LZD;

– lz78s worst time3.txt: A string from a binary alphabet requiring Ω(N
5
4)

time for LZD.

These worst case strings are created using the program available from a
public resource7. We compiled the programs with g++-7.2.1 using -Ofast option
and examined the performance on one core of an 8-core Intel(R) Xeon(R) CPU
E7-8837 (2.66 GHz) Linux (CentOS6) machine with 1TB memory.

Table 1 shows the compression ratio (n/N), throughput (106 chars per sec.)
and working space (MB) of LZ-ABT and LZD for the indicated benchmarks.
For each α ∈ {0.1, 0.2, 0.3}, the compression ratio and throughput of LZ-ABT
are very competitive to LZD for general texts, and they are better for repetitive
texts. Especially, LZ-ABT avoids the worst case behavior of LZ78-style grammar
compression for the anomalous strings. On the other hand, LZ-ABT requires
larger working space than LZD for all texts. This is because the implementation
of LZD stores only all phrases in a Patricia tree but our implementation stores
decompressed strings of all variables in addition to all phrases in a Patricia tree.
We believe that this drawback will be solved by implementing a Patricia tree in
compressed form as described in Sect. 3.3.

5 Conclusions and Future Work

We proposed a novel LZ78-style compression algorithm, LZ-ABT, that is
a first practical implementation of grammar compression preserving the
α-balancedness. We implemented LZ-ABT in uncompressed space and showed
its empirical performance. As a result, the compression ratio and time were very
competitive to LZD, and especially for repetitive texts, LZ-ABT showed bet-
ter performance than LZD. Furthermore, we really confirmed the phenomenon
reported in [1] and our algorithm avoid the worst case running time. On the
other hand, unfortunately, we observed the increase of working space for almost
all benchmarks. In addition, we introduced several ideas to implement LZ-ABT
in compressed space and showed related results in Sect. 3.3. An improvement of
LZ-ABT in compressed space is one of important future works in this study.

6 http://pizzachili.dcc.uchile.cl/repcorpus/real/.
7 https://bitbucket.org/dkosolobov/lzd-lzmw.

http://pizzachili.dcc.uchile.cl/repcorpus/real/
https://bitbucket.org/dkosolobov/lzd-lzmw

334 T. Ohno et al.

In terms of theoretical bounds for approximation ratios to the smallest gram-
mar, it is open whether LZ-ABT makes difference to those of LZD, which was
proved to be Ω(N1/3) and O((N/ log N)2/3) in [1]. It seems not difficult to get
O((N/ log N)2/3) in a similar way to [1,2]. Meanwhile, if LZ-ABT works as an
online algorithm of Bisection, we have the tight bound Θ((N/ log N)1/2) of [5].

Acknowledgments. This work was supported by JST CREST (Grant Number
JPMJCR1402), and KAKENHI (Grant Numbers 18K18111, 17H01791 and 16K16009).

References

1. Badkobeh, G., Gagie, T., Inenaga, S., Kociumaka, T., Kosolobov, D., Puglisi, S.J.:
On two LZ78-style grammars: compression bounds and compressed-space computa-
tion. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508,
pp. 51–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 5

2. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–
2576 (2005)

3. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28332-1 21

4. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: LZD Factorization: simple and prac-
tical online grammar compression with variable-to-fixed encoding. In: Cicalese, F.,
Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 219–230. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19929-0 19

5. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9 4

6. Jez, A.: Approximation of grammar-based compression via recompression. Theor.
Comput. Sci. 592, 115–134 (2015)

7. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016)

8. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference, DCC 1999, pp. 296–305 (1999)

9. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

10. Miller, V.S., Wegman, M.N.: Variations on a theme by Ziv and Lempel. In: Apos-
tolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series,
vol. 12, pp. 131–140. Springer, Heidelberg (1985)

11. Nelson, G., Kieffer, J., Cosman, P.: An interesting hierarchical lossless data com-
pression algorithm. In: IEEE Information Theory Society Workshop (1995)

12. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical strcture in sequences:
a linear-time algorithm. J. Artif. Intell. Res. (JAIR) 7, 67–82 (1997)

13. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

14. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(2–4), 416–430 (2005)

https://doi.org/10.1007/978-3-319-67428-5_5
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-319-19929-0_19
https://doi.org/10.1007/978-3-319-46049-9_4

LZ-ABT: A Practical Algorithm for α-Balanced Grammar Compression 335

15. Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended
abstract). In: Proceedings of the 10th Annual ACM Symposium on Theory of
Computing, pp. 30–39 (1978)

16. Takabatake, Y., I, T., Sakamoto, H.: A space-optimal grammar compression. In:
Proceedings of ESA 2017, pp. 67:1–67:15 (2017)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

Faster Coreset Construction
for Projective Clustering via Low-Rank

Approximation

Rameshwar Pratap1(B) and Sandeep Sen2

1 Wipro Technologies, Bangalore, India
rameshwar.pratap@gmail.com
2 IIT Delhi, New Delhi, India
ssen@cse.iitd.ernet.in

Abstract. In this work, we present a randomized coreset construction
for projective clustering, which involves computing a set of k closest
j-dimensional linear (affine) subspaces of a given set of n vectors in d
dimensions. Let A ∈ R

n×d be an input matrix. An earlier deterministic
coreset construction of Feldman et. al. [10] relied on computing the SVD
of A. The best known algorithms for SVD require min{nd2, n2d} time,
which may not be feasible for large values of n and d. We present a
coreset construction by projecting the matrix A on some orthonormal
vectors that closely approximate the right singular vectors of A. As a
consequence, when the values of k and j are small, we are able to achieve
a faster algorithm, as compared to [10], while maintaining almost the
same approximation. We also benefit in terms of space as well as exploit
the sparsity of the input dataset. Another advantage of our approach is
that it can be constructed in a streaming setting quite efficiently.

1 Introduction

Succinct representation of Big data – Coreset: Recent years have witnessed a
dramatic increase in our ability to collect data from various sources. This data
flood has surpassed our ability to understand, analyse and process them. Big data
is a new terminology that has become quite popular in identifying such datasets
that are difficult to analyse with the current available technologies. One possible
approach to manage such large volume of datasets is to keep a succinct summary
of the datasets such that it approximately preserves the required properties of
the original datasets. This notion was initially formalised by Agarwal et al. [1],
and they coined the term coreset for such summaries. Intuitively, a coreset can
be considered as a semantic compression of the input. For example: in the case
of clustering, a coreset is a weighted subset of the data such that the cost of a
clustering algorithm evaluated on the coreset closely approximates to the corre-
sponding cost on the entire dataset. Consider a set Q (possibly of infinite size)

R. Pratap—This work done when author was affiliated with TCS Innovation Labs.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 336–348, 2018.
https://doi.org/10.1007/978-3-319-94667-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_28&domain=pdf

Faster Coreset Construction for Projective Clustering 337

of query shapes (for example: subspaces, set of points, set of lines etc.), then for
every shape q ∈ Q, the sum of distances from q to the input points, and the sum
of distances from q to the points in the coreset, is approximately the same. If the
query set belongs to some particular candidate query set, then such coreset is
called as a weak coreset [15]; and if the coreset approximates the distances from
all possible (potentially infinite) query shapes, then it is called as strong coreset.
Coresets are a practical and flexible tool which require no or minimal assump-
tion on the data. Although the analysis techniques for coreset construction are a
bit involved, and require tools from computational geometry and linear algebra,
the resulting coreset construction algorithms are easy to implement. Another
important property of coresets is that they can be constructed in a streaming
and distributed setting quite efficiently. This is due to the fact that unions of
coresets are coresets, and coresets of coresets are also coresets [12]. Also, using
these properties it is possible to construct coresets in a tree-wise fashion which
can be parallelized in a Map-Reduce style [10].

Coreset constructions have been studied extensively for various data analysis
tasks. There are usually two steps involved in the coreset construction – dimen-
sionality reduction, and cardinality reduction. The dimension reduction step of
the coreset construction includes projecting points in a low dimension space
such that the original geometry of points is also preserved in the low dimension.
These projection techniques includes SVD decomposition, random projections,
row/column subset selections, or any combinations of these (see [5,10]). The car-
dinality reduction step includes contracting the input size via sampling or other
geometric analysis approach on the reduced dimension instance of the input. We
refer readers to survey articles of Jeff M. Phillips [16] and Agarwal et al. [2].

In this work, we focus on the dimension reduction step of coreset construction
for the projective clustering problem. In the paragraph below, we discuss the
motivation behind the projective clustering problem.

Projective clustering: Clustering is one of the most popular techniques for analyz-
ing large data, and is widely used in many areas such as classification, unsuper-
vised learning, data mining, indexing, pattern recognition. Many popular cluster-
ing algorithms such as k-means, BIRCH [19], DBSCAN [6] are full dimensional –
they give equal importance to all the dimensions while computing the distance
between two points. These clustering algorithms works well in low dimensional
datasets, however, due to the “curse of dimensionality” such algorithms scale
poorly in high dimensions. Moreover, in high dimensional datasets a full dimen-
sional distance might not be appropriate as farthest neighbour of a point is
expected to be roughly as close as its nearest neighbour [14]. These problems
are often handled via methods such as Principal component analysis (PCA) or
Johnson-Lindenstrauss lemma by finding a low dimensional representation of the
data obtained by projecting all points on a subspace so that the information loss
is minimized. However, projecting all the points in a single low dimensional sub-
space may not be appropriate when different clusters lie in different subspaces.
This motivates the study of projective clustering which involves finding clus-
ters along different subspaces. Projective clustering algorithms have been widely
applicable for indexing and pattern discovery in high dimensional datasets.

338 R. Pratap and S. Sen

1.1 Our Contribution

With the above motivation we study the dimension reduction step of coreset
construction for projective clustering problem. We first briefly describe the sub-
space and projective clustering problems. In a j-subspace clustering problem,
given a set of n, d dimensional vectors, denoted by A ∈ R

n×d, the problem is
to find a j-dimensional subspace such that it minimizes the sum of squared dis-
tances from the rows of A, over every j-dimensional subspace. Further, in the
problem of linear (affine) (k, j)-projective clustering, the goal is to find a closed
set C which is the union of k linear (affine) subspaces each of dimension j, such
that it minimizes the sum of squared distances from the rows of A, over every
possible choice of C (see Definitions 8 and 9).

Feldman et al. [10] presented a deterministic coreset construction for these
clustering problems. Their coreset construction relies on projecting the rows of
A on the first few right singular values of A. However, the main drawback of
their construction is that it requires computing the SVD of A which is expen-
sive for large values of n and d. Cohen et al. [5] suggested “projection-cost-
preserving-sketch” for various clustering problems. Their sketches are essentially
the dimensionality reduction step of the coreset construction. Using a low rank
approximation of A, they suggested a faster coreset construction for the subspace
clustering problem. However, it was not clear that how their techniques could be
extended for projective clustering problem. In this work, we extend their tech-
niques and obtain a faster dimension reduction for projective clustering, and as a
consequence, a faster coreset construction for the projective clustering problem.
In Sect. 3, we first revisit the techniques for subspace clustering problem, and
in Sect. 4 we present our coreset construction for projective clustering problem.
We state our main result as follows: (In the following theorem, nnz(A) denotes
the number of non-zero entries of A.)

Theorem 1. Let A ∈ R
n×d, ε ∈ (0, 1), and j, k be two integers less than (d−1),

and (n − 1) respectively such that k(j + 1) ≤ d − 1. Then there is a randomized
algorithm which outputs a matrix A∗ of rank O

(
k(j + 1)/ε2

)
such that for every

non-empty closed set C, which is the union of k linear (affine) subspaces each of
dimension at most j, the following holds w.h.p.

∣
∣(dist2(A∗, C) + Δ∗) − dist2(A, C)

∣
∣ ≤ εdist2(A, C).

where, j∗ = k(j + 1); Δ∗ = ||A − AO(j∗
ε2

)||2F ; dist2(A, C) denotes the sum of

squared distances from each row of A to its closest point in C; and AO(j∗
ε2

) is the
best rank O(j∗

ε2) approximation of A. The expected running time of the algorithm

is Õ
(
nnz(A) j∗

ε3 + (n + d) j∗2

ε6 + ndj∗

ε2

)
.1

Remark 1. We develop our coreset by projecting points on some orthonormal
vectors that closely approximate the right singular vectors of A, and we obtain

1 Here, Õ is the asymptotic notation that ignores logarithmic factors.

Faster Coreset Construction for Projective Clustering 339

them using the algorithm of Sarlós [17]. The expected running time of our algo-
rithm is better than the corresponding deterministic algorithm of [10] when n ≥ d
and j∗ = o(n), or, when n < d and j∗ = o(d), where j∗ = k(j + 1). Further,
as the coreset construction time depends on the number of non-zero entries of
the matrix, our algorithm is substantially faster for sparse data matrices. Please
note that one can also use any other low-rank approximation algorithms such
as [4] (instead of [17]), which offer multiplicative approximation guarantee. How-
ever, for completeness sake we use the bounds of [17], and compare our results
with [10].

Remark 2. The term Δ∗ is a positive constant, and is sum of squared singular
values from O(j∗/ε2) to d. We use A∗ to approximately solve the clustering
problem, and add the constant Δ∗ in the clustering cost obtained from A∗, this
sum gives a good approximation w.r.t. the cost of clustering on A.

Remark 3. An advantage of our coresets is that it can be constructed in the
pass efficient streaming model [13], where access to the input is limited to only
a constant number of sequential passes. We construct our coreset by projecting
the matrix A on orthonormal vectors, that closely approximate the right singular
vectors of A, our algorithm requires only two passes over the data in order to
compute those orthonormal vectors using [17].

1.2 Related Work

Coreset construction has been studied extensively for the problem of j-subspace
clustering. However, we will discuss a few of them that are more relevant to
our work. Feldman et al. [7] developed a strong coreset whose size is expo-
nential in d, j, logarithmic in n, and their coreset construction requires O(n)
time. Feldman et al. [9] improved their earlier result [7] and developed a core-
set of size logarithmic in n, linear in d, and exponential in j. However, the
construction requires O(ndj) time. In [8] Feldman and Langberg showed a core-
set construction of size polynomial in j and d (independent of n). Feldman
et al. [10] presented a novel coreset construction for subspace and projective
clustering. They showed that the sum of squared Euclidean distance from n
rows of A ∈ R

n×d to any j-dimensional subspace can be approximated upto
(1 + ε) factor, with an additive constant which is the sum of a few last singular
values of A, by projecting the points on the first O(j/ε) right singular vectors
of A. Thus, they were able to show the dimension reduction from d to O(j/ε).
They also showed O(k(j + 1)/ε2) dimension reduction for (k, j)-projective clus-
tering problem. Recently, for j-subspace clustering, Cohen et al. [5] improved
the construction of [10] using only first �j/ε� right singular vectors, which is an
improvement over [10] by a constant factor.

Sariel Har-Peled [11] showed that for projective clustering problem it is not
possible to get a strong coreset of size sublinear in n, even for a simpler instance
such as a family of pair of planes in R

3. However, in a restricted setting, where
points are on an integer grid, and the largest coordinate of any point is bounded

340 R. Pratap and S. Sen

by a polynomial in n and d, Varadarajan et al. [18] showed that a sublinear sized
coreset construction for projective clustering.

Organization of the paper: In Sect. 2, we present the necessary notations, defini-
tions and linear algebra background that are used in the various proofs in the
paper. In Sect. 3, we revisit the result of [5], and discuss the coreset construction
for subspace clustering using their techniques. In Sect. 4, we extend the result of
Sect. 3, and present the coreset construction for projective clustering problem.
We conclude our discussion, and state some open questions in Sect. 5.

2 Preliminaries

Below we present some necessary linear algebra background. We first present
some basic properties of Frobenius norm of a matrix. We define SVD (singu-
lar value decomposition) of a matrix, and its basic properties. We describe the
expression about the distance of a point, and sum of square distances of the rows
of matrix - from a subspace and a closed set.

Notations

A = UΣV T Columns of U, V are orthonormal and called as left and
right singular vectors of A; [Σ] is a diagonal matrix having
the corresponding singular values

A(m) = UΣ(m)V T Σ(m) is the diagonal having the m largest entries of Σ, and
0 otherwise

[X]d×j j orthonormal columns represent a j-dimensional subspace
L in R

d

[X⊥]d×(d−j) (d − j) dimensional subspace L⊥ orthogonal to subspace L

πS(A) matrix formed by projecting A on the row span of S
πS,k(A) The best rank-k approximation of A after projecting its

rows on the row span of S
A(k) The best rank-k approximation of A

nnz(A) The number of non-zero entries of A

Fact 1 (Frobenius norm and its properties). Let A ∈ R
n×d, then square

of Frobenius norm of A is defined as the sum of the absolute squares of its
elements, i.e. ||A||2F = Σn

i=1Σ
d
j=1a

2
i,j. Further, if {σi}d

i=1 are singular values
of A, then ||A||2F = Σd

i=1σ
2
i . Also, if tr(A) be the trace of the matrix A then

||A||2F = tr(AT A).

Fact 2. Let AX be the projection of points of A on the j-dimensional subspace
L represented by an orthonormal matrix X. We can also write the projection
of the points in the rows of A to L as AXXT , these projected points are still
d-dimensional, but lie within the j-dimensional subspace. Further, ||AX||2F =
||AXXT ||2F .

Faster Coreset Construction for Projective Clustering 341

The Singular Value Decomposition: A matrix A ∈ R
n×d of rank at most r can be

written due to its SVD decomposition as A = Σr
i=1σtu

(i)v(i)T . Here, u(i) and v(i)

are i-th orthonormal columns of U and V respectively, and σ1 ≥ σ2, . . . σr ≥ 0.

Also, u(i)T A = σiv
(i)T , and Av(i) = σiu

(i) for 1 ≤ i ≤ r. Further, the matrix
A(k) that minimizes ||A − B||F among all matrices B (of rank at most k) is
given by A(k) = Σk

i=1Av(i)v(i)T - i.e. by projecting A on the first k right singular
vectors of A.

l2 distances to a subspace: Let L be a j-dimensional subspace in R
d represented

by an orthonormal matrix X ∈ R
d×j . Then, for a point p ∈ R

d, ||pT X||2F is the
squares of the length of projections of the point p on the subspace L. Similarly,
given a matrix A ∈ R

n×d, ||AX||2F is the sum of squares of the length of pro-
jections of the points (rows) of A on the subspace L. Let L⊥ be the orthogonal
complement of L represented by an orthonormal matrix X⊥ ∈ R

d×(d−j). Then,
||AX⊥||2F is the sum of squares of distances of the points of A from L.

l2 distance to a closed set: Let S ∈ R
d be a closed set and p be a point in R

d. We
define the l2 distance between p and S by dist2(p, S) := mins∈S dist2(p, s), i.e.,
the smallest distance between p and any element s ∈ S. If S consists of union
of k, j-dimensional subspaces L1, . . . , Lk, then dist2(p, S) denotes the distance
from p to the closest set S. Similarly, given a matrix A ∈ R

n×d, dist2(A,S) :=
Σn

i=1dist2(Ai∗ , S). Here, Ai∗ denotes the ith row of A.

Pythagorean theorem: Let A ∈ R
n×d, L be a j-dimensional subspace in R

d rep-
resented by an orthonormal matrix X ∈ R

d×j , and L⊥ be the orthogonal com-
plement of the subspace L represented by an orthonormal matrix X ∈ R

d×d−j .
Then by Pythagorean theorem we have ||A||2F = ||AX||2F + ||AX⊥||2F . Further,
if C is a closed set spanned by X, then due to the Pythagorean theorem we have
dist2(A, C) = ||AX⊥||2F + dist2(AXXT , C). We will use the following fact in our
analysis which hold true due to Pythagorean theorem.

Fact 3. Let A ∈ R
n×d, and X ∈ R

d×j be a matrix having first j right singular
vectors of A as columns, then due to the Pythagorean theorem, we have
||A − AXXT ||2F = ||A||2F − ||AXXT ||2F .

In the following, we state some facts from elementary linear algebra which
are required for deriving the correctness of our result.

Fact 4. For a square matrix M ∈ R
n×n, tr(M) is the sum of all its diagonal

entries. Further, for matrices A ∈ R
n×d, B ∈ R

d×n due to the cyclic property
of the tr function, we have tr(AB) = tr(BA). Also for square matrices M,N ∈
R

n×n, due to the linear property of the tr function: tr(M ±N) = tr(M)± tr(N).

Fact 5. A symmetric matrix M ∈ R
n×n is positive semidefinite if xT Mx > 0

for all x ∈ R
n. A matrix M is positive semidefinite then the following two

statements are equivalent:

– there is a real nonsingular matrix N such that M = NT N ,
– all eigenvalues of M are nonnegative.

342 R. Pratap and S. Sen

Fact 6. Let A ∈ R
n×d and UΣV T be the SVD of A. Then, the first j columns

of V span a subspace that minimizes the sum of squares distances of the vec-
tors in A from all j-dimensional subspace, and this sum is Σd

i=j+1σ
2
i . Thus, for

any j-dimensional subspace represented by an orthonormal matrix X, we have
||AX⊥||2F ≥ Σd

i=j+1σ
2
i .

Fact 7. Let M ∈ R
d×l be a matrix. Then, for an orthonormal matrix X ∈ R

d×k,
due to elementary linear algebra we have, ||XXT M ||2F ≤ ||M ||2F .

In the following, we state the definitions of subspace and projective clustering.

Definition 8 (Subspace clustering). Let A ∈ R
n×d and j be an integer less

than d. Then, the problem of j-subspace clustering is to find a j-dimensional
subspace L of R

d that minimizes the dist2(A,L). In other words, the goal is
to find a matrix X⊥ ∈ R

d×(d−j) having orthonormal columns that minimizes
||AX⊥||2F over every such possible matrix X⊥.

Definition 9 (linear (affine) (k, j)-projective clustering). Let A ∈ R
n×d,

j be an integer less than d, and k be an integer less than n. Then, the problem
of linear (affine) (k, j)-projective clustering is to find a closed set C, which is the
union of k linear (affine) subspaces {L1, . . . Lk} each of dimension at most j,
such that it minimizes the dist2(A, C), over every possible choice of C.

Theorem 2 (Low-rank approximation by [17]). Let A ∈ R
n×d, and π.(.)

denote the projection operators stated in the notation table. If ε ∈ (0, 1] and S is
an (r × n) Johnson-Lindenstrauss matrix with i.i.d. zero-mean ±1 entries and
r = O

(
(m

ε + m log m) log 1
δ

)
, then with probability at least 1 − δ it holds that

||A − πSA,m(A)||2F ≤ (1 + ε)||A − A(m)||2F .

Further, computing the singular vectors spanning πSA,m(A) in two passes2

over the data requires O(nnz(A)r + (n + d)r2) time.

For our analysis, we will use a weak triangle inequality which is stated below:

Lemma 10 (Lemma 7.1 of [10]). For any ε ∈ (0, 1), a closed set C, and two
points p, q ∈ R

d, we have

|dist2(p, C) − dist2(q, C)| ≤ 12||p − q||2
ε

+
ε

2
dist2(p, C).

2 Two passes are required as we first multiply A on the right with a Johnson-
Lindenstrauss matrix S, and then we project the rows of A again onto the row
span of SA.

Faster Coreset Construction for Projective Clustering 343

3 Faster Coreset Construction for Subspace Clustering

In this section after revisiting the results of Cohen et al. [5], we present a ran-
domized coreset construction for subspace clustering. The deterministic coreset
construction of Feldman et al. [10] for subspace clustering problem relies on
projecting the input matrix on its first few right singular vectors – projecting
the rows of A on first few right singular vectors of A – which requires SVD
computation of A. Cohen et al. [5] suggested that projecting the rows of A on
some orthonormal vectors that closely approximate the right singular vectors of
A (obtained via e.g. [17]) also satisfies the required properties of coreset w.h.p.,
and as a consequence, gives a faster coreset construction.

Theorem 3 (Adapted from Theorem 8 of [5]). Let X ∈ R
d×j be an

orthonormal matrix representing a subspace L, let X⊥ ∈ R
d×(d−j) be the

orthonormal matrix representing the orthogonal complement of L, ε ∈ (0, 1),
δ ∈ (0, 1), m = � j

ε �, Δ = ||A − A(m)||2F , and Ã is a rank m approximation of A
satisfying Theorem 2. Then, the following is true with probability at least 1 − δ:

0 ≤
∣
∣
∣||ÃX⊥||2F + Δ − ||AX⊥||2F

∣
∣
∣ ≤ 2ε||AX⊥||2F .

Proof. Using a result of Sarlós [17], we get a rank m approximation of A. If S is
an (r × n) JL matrix, where r = O

(
(m

ε + m log m) log 1
δ

)
(see Theorem 2) then

the following is true with probability at least 1 − δ:

||A − πSA,m(A)||2F ≤ (1 + ε)||A − A(m)||2F . (1)

Here, A(m) is the best m rank approximation of A. Let R′ be the matrix having
the first m right singular vectors of πSA(A), and let we denote AR′R′T by Ã,
then by Eq. 1, the following holds true with probability at least 1 − δ:

||A − Ã||2F ≤ (1 + ε)||A − A(m)||2F (2)

In the following we show an upper bound on the following expression:
∣
∣
∣||ÃX⊥||2F + Δ − ||AX⊥||2F

∣
∣
∣

=
∣
∣
∣||Ã||2F − ||ÃX||2F + ||A − A(m)||2F − ||A||2F + ||AX||2F

∣
∣
∣ (3)

=
∣
∣
∣||Ã||2F − ||ÃX||2F + ||A||2F − ||A(m)||2F − ||A||2F + ||AX||2F

∣
∣
∣ (4)

=
∣
∣
∣||Ã||2F − ||A(m)||2F − ||ÃX||2F + ||AX||2F

∣
∣
∣

≤
∣
∣
∣||A(m)||2F − ||A(m)||2F + ||AX||2F − ||ÃX||2F

∣
∣
∣ (5)

=
∣
∣
∣||AX||2F − ||ÃX||2F

∣
∣
∣ ≤ 2ε||AX⊥||2F (6)

Equality 3 follows from Pythagorean theorem; Equality 4 follows from Fact 3,
where A(m) = AV ′V ′T , and V ′ ∈ R

d×m having m columns from the first m right

344 R. Pratap and S. Sen

singular vectors of A; Inequality 5 holds as the value of ||Ã||2F − ||A(m)||2F can
be at most zero, because at the best we can hope to sample the right singular
vectors of A as R′, which maximizes the value of the desired expression; finally
Inequality 6 holds from Lemma 11.

A proof of the following lemma follows from the analysis of Lemma 5 of [5]. We
defer it to the full version of this paper.

Lemma 11 (Adapted from Lemma 5 of [5]). Let A ∈ R
n×d, Ã is a rank m

approximation of A satisfying Eq. 2, then

0 ≤ ||AX||2F − ||ÃX||2F ≤ 2ε||AX⊥||2F .

4 Faster Coreset Construction for Projective Clustering

In this section, extending the result (Theorem 3) of the previous section, we
present a randomized coreset construction for the problem of projective cluster-
ing. More precisely, if L1, ..., Lk be a set of k subspaces each of dimension at
most j, and let C be a closed set containing union of them, then our randomized
coreset is a matrix of very small rank (independent of d) and it approximately
preserves the distances from every such closed set C, with high probability. Our
main contribution is the dimensionality reduction step of the coreset construc-
tion, which is presented in Algorithm 1 below.

1 Input: A ∈ R
n×d, an integer 1 ≤ j < d − 1, and an integer 1 ≤ k < n − 1 such

that j∗ ≤ d − 1, where j∗ = k(j + 1), ε ∈ (0, 1), δ ∈ (0, 1).
2 Result: Dimensionality reduction for randomized coreset construction for the

projective clustering.
3 Compute an Johnson-Lindenstrauss matrix [S]r×n having i.i.d. ±1 entries and

zero-mean, where r = O((m∗
ε

+ m∗ log m∗) log 1
δ
), m∗ = � 52j∗

ε2
�.

4 Compute the matrix πSA(A).

5 Compute the SVD of πSA(A), let R∗ ∈ R
d×m∗

be the first m∗ right singular
vectors of πSA(A).

6 Let us denote AR∗R∗T by A∗, and output A∗.

Algorithm 1. Dimensionality reduction for projective clustering.

Proof of Theorem 1: Let [X∗]d×j∗ be a matrix with orthonormal columns
whose span is L∗, and let L∗⊥ be the orthogonal complement of L∗ spanned by
[X∗⊥]d×(d−j∗). If C is a closed set spanned by L∗, then due to the Pythagorean
theorem, we have, dist2(A, C) = ||AX∗⊥||2F + dist2(AX∗X∗T , C). Further,
∣
∣
(

dist2(A∗, C) + Δ∗) − dist2(A, C)
∣
∣

=
∣
∣
∣

(

||A∗X∗⊥||2F + dist2(A∗X∗X∗T
, C) + Δ∗

)

−
(

||AX∗⊥||2F + dist2(AX∗X∗T
, C)

)∣
∣
∣

≤
∣
∣
∣

(

||A∗X∗⊥||2F + Δ∗ − ||AX∗⊥||2F
)∣
∣
∣

︸ ︷︷ ︸

first term

+
∣
∣
∣

(

dist2(A∗X∗X∗T
, C) − dist2(AX∗X∗T

, C))
)∣
∣
∣

︸ ︷︷ ︸

second term

Faster Coreset Construction for Projective Clustering 345

We have to bound two terms in the above expression. The first term can be
upper bounded using a similar analysis as of Theorem 3 which holds true with
probability at least 1 − δ. (In Theorem 3, we replace j by j∗,m by m∗, ε by ε2

52 ,
and Δ by Δ∗).

∣
∣
∣||A∗X∗⊥||2F + Δ∗ − ||AX∗⊥||2F

∣
∣
∣ ≤ ε2

26
||AX∗⊥||2F (7)

To bound the second term
∣
∣
∣dist2(A∗X∗X∗T , C) − dist2(AX∗X∗T , C))

∣
∣
∣, we use

Lemma 10. For any ε ∈ (0, 1) and due to Lemma 10, we have
∣
∣
∣dist2(A∗X∗X∗T , C) − dist2(AX∗X∗T , C))

∣
∣
∣

≤ 12
ε

||A∗X∗X∗T − AX∗X∗T ||2F +
ε

2
dist2(AX∗X∗T , C)

≤ 12
ε

(
ε2

26
||AX∗⊥||2F

)
+

ε

2
dist2(AX∗X∗T , C) (8)

≤ 12
ε

(
ε2

26
||AX∗⊥||2F

)
+

ε

2
dist2(A, C)

Inequality 8 holds due to Lemma 12. Thus, we have
∣
∣
∣dist2(A∗X∗X∗T

, C) − dist2(AX∗X∗T
, C))

∣
∣
∣ ≤ 12

ε

(
ε2

26
||AX∗⊥||2F

)

+
ε

2
dist2(A, C)

(9)

Equation 7, in conjunction with Eq. 9, gives us the following:
∣
∣(dist2(A∗, C) + Δ∗) − dist2(A, C)

∣
∣

≤
(

1 +
12
ε

)
ε2

26
||AX∗⊥||2F +

ε

2
dist2(A, C)

≤
(

1 +
12
ε

)
ε2

26
dist2(A, C) +

ε

2
dist2(A, C)

=
(

ε2

26
+

12ε2

26ε
+

ε

2

)
dist2(A, C)

=
(

ε2

26
+

12ε

26
+

ε

2

)
dist2(A, C) (10)

≤ εdist2(A, C)

Equality 10 holds by choosing ε = ε, and as ε2/26 + 12ε/26 < ε/2.
A proof of the following lemma is deferred to the full version of this paper.

Lemma 12. Let X∗ ∈ R
d×j∗

be a matrix with orthonormal columns whose span
is L∗, then in Algorithm1 the following is true with probability at least 1 − δ

||A∗X∗X∗T − AX∗X∗T ||2F ≤ ε2

26
||AX∗⊥||2F .

346 R. Pratap and S. Sen

Remark 4. Please note that it is sufficient to store the matrix AR∗ which is of
dimension m∗, where m∗ = O

(
k(j + 1)/ε2

)
. However, for the purpose of our

analysis, we use the matrix AR∗R∗T which is of dimension d, and rank m∗.
Further, the space that is required to store our coreset is O(nm∗ + 1) – we need
O(nm∗) space to store the matrix AR∗, and O(1) space to store the term Δ∗;
on the other hand, the space require to store A is O(nd).

Comparison with coreset construction of [10]: Coreset construction of [10]
requires projecting the rows of A on its first O(k(j+1)/ε2) right singular vectors
which gives a matrix of rank O(k(j + 1)/ε2) and it approximately preserves the
distance from any closed C. Their construction requires computing SVD of the
given matrix A, which has the run-time complexity of min{n2d, nd2}. In our
construction, we showed that it is also sufficient to project the rows of A on
O(k(j + 1)/ε2) orthonormal vectors that closely approximate the right singular
vectors of A. We now give an expected time bound on the running time of
Algorithm 1. Time required for execution of line number 3, 4, 5 is

O

(
nnz(A)(

m∗

ε
+ m∗ log m∗) + (n + d)(

m∗

ε
+ m∗ log m∗)2

)

= O

(
nnz(A)(

j∗

ε3
+

j∗

ε2
log

j∗

ε2
) + (n + d)(

j∗

ε3
+

j∗

ε2
log

j∗

ε2
)2

)
,

due to [17], where j∗ = k(j + 1). Further, line number 6 requires time -
for projecting A on R∗, which due to an elementary matrix multiplication is
O(ndm∗) = O

(
ndj∗

ε2

)
. Thus, total expected running time of Algorithm1 is

O

(

nnz(A)
(

j∗

ε3
+

j∗

ε2
log

j∗

ε2

)
+ (n + d)

(
j∗

ε3
+

j∗

ε2
log

j∗

ε2

)2

+
ndj∗

ε2

)

= Õ

(
nnz(A)

j∗

ε3
+ (n + d)

j∗2

ε6
+

ndj∗

ε2

)
.

Clearly, if n ≥ d and j∗ = o(n), or, if n < d and j∗ = o(d), then our expected
running time is better than that of [10].

5 Conclusion and Open Problems

We presented a randomized coreset construction for projective clustering via low
rank approximation. We first revisited the result of [5] for the subspace cluster-
ing, and then extended their result to construct a randomized coreset for pro-
jective clustering. We showed that our construction is significantly faster (when
the values of k and j are small), as compared to the corresponding deterministic
construction of [10], and it also maintains nearly the same accuracy. Our work
leaves several open problems - improving the dimensionality reduction bounds for
projective clustering, or giving a matching lower bound for the same. Another
important open problem is to come up with the dimension reduction step of
coreset construction using feature selection algorithms such as row/column sub-
set selection [3].

Faster Coreset Construction for Projective Clustering 347

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. In: Welzl, E., (ed.) Current Trends in Combinatorial and Computational
Geometry (2007)

3. Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm
for the column subset selection problem. In: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, 4–6 January 2009, pp. 968–977 (2009)

4. Clarkson, K.L., Woodruff, D.P.: Low rank approximation and regression in input
sparsity time. In: Symposium on Theory of Computing Conference, STOC 2013,
Palo Alto, CA, USA, 1–4 June 2013, pp. 81–90 (2013)

5. Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduc-
tion for k-means clustering and low rank approximation. In: Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, 14–17 June 2015, pp. 163–172 (2015)

6. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD 1996),
Portland, Oregon, USA, pp. 226–231 (1996)

7. Feldman, D., Fiat, A., Sharir, M.: Coresets forweighted facilities and their appli-
cations. In: 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21–24 October 2006, Berkeley, California, USA, Proceedings, pp.
315–324 (2006)

8. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 569–578 (2011)

9. Feldman, D., Monemizadeh, M., Sohler, C., Woodruff, D.P.: Coresets and sketches
for high dimensional subspace approximation problems. In: Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 630–
649 (2010)

10. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-
size coresets for k-means, PCA and projective clustering. In: Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–
1453 (2013)

11. Har-Peled, S.: No, coreset, no cry. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004: Foundations of Software Technology and Theoretical Computer Science. Lec-
ture Notes in Computer Science, vol. 3328, pp. 324–335. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30538-5 27

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering.
In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, 13–16 June 2004, pp. 291–300 (2004)

13. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
In: Proceedings of a DIMACS Workshop on External Memory Algorithms,
New Brunswick, New Jersey, USA, 20–22 May 1998, pp. 107–118 (1998)

14. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high
dimensional spaces? In: VLDB 2000, Proceedings of 26th International Conference
on Very Large Data Bases, 10–14 September 2000, Cairo, Egypt, pp. 506–515
(2000)

https://doi.org/10.1007/978-3-540-30538-5_27

348 R. Pratap and S. Sen

15. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends
Mach. Learn. 3(2), 123–224 (2011)

16. Phillips, J.M.: Coresets and sketches. CoRR, abs/1601.00617 (2016)
17. Sarlós, T.: Improved approximation algorithms for large matrices via random pro-

jections. In: 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21–24 October 2006, Berkeley, California, USA, Proceedings, pp.
143–152 (2006)

18. Varadarajan, K.R., Xiao, X.: A near-linear algorithm for projective clustering inte-
ger points. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 1329–
1342 (2012)

19. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: A new data clustering algorithm
and its applications. Data Min. Knowl. Discov. 1(2), 141–182 (1997)

Separating Interaction Effects
Using Locating and Detecting Arrays

Stephen A. Seidel, Kaushik Sarkar, Charles J. Colbourn(B),
and Violet R. Syrotiuk

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA

{stephen.seidel,ksarkar1,colbourn,syrotiuk}@asu.edu

Abstract. The correctness and performance of complex engineered sys-
tems are often impacted by many factors, each of which has many possi-
ble levels. Performance can be affected not just by individual factor-level
choices, but also by interactions among them. While covering arrays have
been employed to produce combinatorial test suites in which every possi-
ble interaction of a specified number of factor levels arises in at least one
test, in general they do not identify the specific interaction(s) that are
significant. Locating and detecting arrays strengthen the requirements
to permit the identification of a specified number of interactions of a
specified size. Further, to cope with outliers or missing responses in data
collected from real engineered systems, a further requirement of separa-
tion is introduced. In this paper, we examine two randomized methods
for the construction of locating and detecting arrays, the first based on
the Stein-Lovász-Johnson paradigm, and the second based on the Lovász
Local Lemma. Each can be derandomized to yield efficient algorithms for
construction, the first using a conditional expectation method, and the
second using Moser-Tardos resampling. We apply these methods to pro-
duce upper bounds on sizes of locating and detecting arrays for various
numbers of factors and levels, when one interaction of two factor levels
is to be detected or located, for separation of up to four. We further
compare the sizes obtained with those from more targeted (and more
computationally intensive) heuristic methods.

1 Introduction

Complex engineered systems are critical, engineered, large-scale systems, such
as transportation networks, power grids, and wireless communication systems.
The correct operation of such systems often depends not just on the choices
made for numerous parameters in their configuration, but also on interaction
effects among these choices. Moreover, the performance of such a system can
be dramatically affected by the choices and their interactions, even when the
system is operating.

We examine a formal testing model. There are k factors F1, . . . , Fk. Each
factor Fi has a set Si = {vi1, . . . , visi} of si possible values (levels). A test is an
c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 349–360, 2018.
https://doi.org/10.1007/978-3-319-94667-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_29&domain=pdf

350 S. A. Seidel et al.

assignment, for each i = 1, . . . , k, of a level from vi1, . . . , visi to Fi. The execution
of a test yields a measurement of a response. When {i1, . . . , it} ⊆ {1, . . . , k} and
σij ∈ Sij , the set {(ij , σij) : 1 ≤ j ≤ t} is a t-way interaction. (The interaction
has strength t.) A test on k factors covers

(
k
t

)
t-way interactions. A test suite is a

collection of tests. Usually such a test suite is represented as an array: Suppose
that A = (σi,j) is an N × k array for which σi,j ∈ Sj when 1 ≤ i ≤ N and
1 ≤ j ≤ k. This is a test suite of size N and type (s1, . . . , sk). Types can be
written in exponential notation: gu1

1 · · · gur
r means that there are ui factors with

gi levels for 1 ≤ i ≤ r. Tests are recorded as rows of A, and factors correspond
to columns.

Combinatorial testing [20,28] is concerned with the design and analysis of
test suites in order to assess correctness and performance of a system. The focus
has been on test suites known as covering arrays, which ensure that every t-way
interaction is covered by a test. We define these precisely next. Let A = (σi,j)
be a test suite of size N and type (s1, . . . , sk). Let T = {(ij , σij) : 1 ≤ j ≤ t}
be a t-way interaction. Denote by ρ(A, T) the set {r : ar,ij = σij , 1 ≤ j ≤
t} of rows of A in which the interaction is covered. A mixed covering array
MCA(N ; t, (s1, . . . , sk)) is a test suite A for which every t-way interaction T has
ρA(T) �= ∅, i.e., every t-way interaction is covered in at least one row. When
used for testing correctness, covering arrays reveal the presence of an interaction
that causes faulty behaviour, but in general does not identify the specific faulty
interaction(s); see [10,11].

We consider two motivating examples. In [1], a software simulation of a mobile
wireless network is studied. There, 75 factors are identified among the control-
lable parameters in the protocol stack, ranging from 2 to 10 levels. (The type is
108918475610544639228.) Throughput is measured as a response, and the objec-
tive is to determine which factors, and interactions among them, significantly
affect the response. In this setting, it is of little interest to determine whether
some interactions significantly affect the response; the goal is to ascertain which
do. One could, of course, obtain the responses for a MCA, and design further
testing based on the interactions covered in tests whose responses deviate most
widely from the mean. In this way, a MCA could be used to narrow the set of
t-way interactions that might have a significant effect on performance. Because
the study employs a software simulation, a second round of testing could be
conducted in the same environment as the first, and an adaptive method that
uses results of earlier tests to choose later ones may be suitable.

In [12], a testbed evaluation of a conferencing scenario in a wireless network
is conducted, measuring voice quality and exposure as responses. There are 24
controllable factors, ranging from 2 to 5 levels. (The type is 59453723.) Hence
the testing environment seems somewhat simpler than the simulation. Unlike
the well-controlled environment in which the simulation study is conducted,
however, the conferencing scenario is impacted by factors in the physical envi-
ronment, including the hardware used directly in the experiment, interference
from other communications in the vicinity, and the like. Despite best efforts to
shield the testbed from such effects, measurements taken far apart in time can

Separating Interaction Effects Using Locating and Detecting Arrays 351

be significantly affected by environmental factors that cannot be controlled, and
may not be measured. In this setting, it is desirable that all tests be conducted
in the same environment, and the significant interactions be identified without
further testing. Hence we want a nonadaptive approach to testing.

The nonadaptive identification of faults or significant interactions can be
accomplished by strengthening covering arrays. A combinatorial set of require-
ments was first identified in [10]; see also [11,23]. We develop this next.

1.1 Locating and Detecting Arrays

Let A be a test suite of size N and type (s1, . . . , sk). Let It be the set of all t-way
interactions for A, and let It be the set of all interactions of strength at most t.
When interaction T ∈ It has strength less than t and the t-way interaction T ′

contains T , it must hold that ρ(A, T ′) ⊆ ρ(A, T); there can be no row covering
T ′ but not T . A set T ′ ⊆ It is independent if there do not exist T, T ′ ∈ T ′ with
T ⊂ T ′. Our objective is to identify a set T ⊆ It (or perhaps It) that have
significant effects on the response. If no limitation is placed on T , the design
of a test suite can be impossible [23]; even when possible, the size of the test
suite grows as the number of interactions in T increases [10]. We assume that a
number d of interactions is to be identified. When at most d are to be identified,
we employ the notation d. Despite this limit, in the intended applications, often
many more than d significant interactions can be found by iterative analysis
of the response data, adjusting the responses after each selection of significant
interactions, without the need for further experimentation; see [31] for details.

Locating arrays for identifying sets of interactions can be defined in this
framework [10]. For a set T of interactions, define ρ(A, T) =

⋃
T∈T ρ(A, T).

A test suite A is (d, t)-locating if ρ(A, T1) = ρ(A, T2) ⇔ T1 = T2 whenever
T1, T2 ⊆ It, |T1| = d, and |T2| = d. When T1, T2 ⊆ It, and T1 and T2 are
independent, the array is (d, t)-locating. When instead |T1| ≤ d and |T2| ≤ d, the
array is (d, t)-locating or (d, t)-locating.

Using a locating array, knowing the tests that yield a significant deviation
in response, there can be at most one set of (at most) d interactions of strength
(at most) t covered in the same sets of tests that account for these deviations.
By enumeration of all sets of d interactions of strength t, the location of the
interactions causing the faults can be calculated from the outcomes. However,
determining the interactions involved may require enumeration of sets of inter-
actions. Determining the tests that exhibit a substantial deviation in response
does not ensure that any interaction that is covered only within these tests must
be significant. To deal with this, additional requirements are needed [10].

An array A is (d, t)-detecting if ρ(A, T) ⊆ ρ(A, T1) ⇔ T ∈ T1 whenever
T1 ⊆ It, |T1| = d, and T ∈ It \ T1. When instead T1 ⊆ It, T ∈ It, and T1 ∪ {T}
is independent, the array is (d, t)-detecting. For detecting arrays, we can also
consider a set of at most d interactions, to obtain arrays that are (d, t)-detecting
or (d, t)-detecting.

Detecting arrays underlie an efficient algorithm for the recovery of the set of
significant interactions [10], but necessitate a larger number of tests.

352 S. A. Seidel et al.

This framework of eight variants of testing arrays for identifying significant
interactions suggests many existence questions. However, relationships among
them enable a unified examination. In [10], the relevant relationships are estab-
lished (provided that s1 > 1, k ≥ t, and d is not larger than the number of
possible interactions):

(d, t)-detecting ⇒ (d, t)-detecting
� �

(d, t)-detecting ⇒ (d, t)-detecting
⇓ ⇓

(d, t)-locating ⇒ (d, t)-locating ⇒ (d − 1, t)-detecting
⇓ ⇓

(d, t)-locating ⇒ (d, t)-locating ⇒ (d − 1, t)-locating

Like covering arrays, locating and detecting arrays scale well to large numbers
of factors. Indeed when the strength, number d of potentially significant inter-
actions, and maximum number of levels are fixed, the number of tests required
is O(log k) [10]. Unlike covering arrays, however, constructions for locating and
detecting arrays have been much less studied. Although locating and detecting
arrays are mixed covering arrays of strength t, the extension of covering array
constructions requires substantial information about the tests in which interac-
tions are covered. Naturally the objective is to employ as few tests as possible.

Only when d = t = 1 is the minimum number of tests in (d, t)-, (d, t)-,
(d, t)-, and (d, t)-locating arrays known precisely [8]. The analogous situation for
detecting arrays is explored in [21,24], and strong bounds are established that
are exact infinitely often.

When t ≥ 2, exact results are known for locating arrays when k is very small
[32,34]; for larger numbers of factors, a small set of recursive constructions is
available when d = 1 and t = 2 for locating arrays [7]. Beyond these few direct
and recursive methods, computational methods have been developed for (1, 2)-
locating arrays [17,19,26] using constraint satisfaction techniques and one-row-
at-a-time greedy methods. In order to address concerns with infeasible tests,
Jin and Tsuchiya [17] extend the definition of locating arrays to account for
testing constraints. These algorithmic methods do not treat detecting arrays; for
locating arrays they limit the number of significant interactions, the strength,
and the number of factors to small values. In our motivating problems, limiting
the number and strength of interactions can be worthwhile, but techniques are
needed to construct locating and detecting arrays for larger numbers of factors.

2 The Need for Separation

Consider the use of a locating or detecting array in an experimental setting.
In principle, the responses for each test can identify the set of significant inter-
actions whenever the assumptions on number and strengths of interactions are
met. In practice, however, a problem arises. Suppose that two sets of (at most)
d interactions, T1 and T2, have |ρ(T1) \ ρ(T2)| = 1. If this occurs, the response

Separating Interaction Effects Using Locating and Detecting Arrays 353

measured in a single test is the sole ‘witness’ to the difference between the two.
In the absence of noise or measurement error, one such witness suffices to differ-
entiate. In our experiments, however, outliers and missing responses do occur.
These compromise our ability to analyze the response data. This can be mit-
igated by exploring a number of possible sets of significant interactions, as in
[31], rather than identifying a single set. As we have discussed, it cannot be
effectively handled by simply running the test for the outlier or missing response
again, without strong (and unjustified) assumptions about the stability of envi-
ronmental factors.

Therefore we argue that effective locating and detecting arrays must allow
for outliers and missing responses. Fortunately this can be treated by further
requirements on the testing array, by enforcing a separation between sets of
rows for different sets of interactions. We make this precise next. Let δ ≥ 1 be
an integer, the distance. A test suite A is (d, t, δ)-locating if whenever T1, T2 ⊆ It,
|T1| = d, and |T2| = d, we have that

|(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| < δ ⇔ T1 = T2.

This requires that at least δ tests witness the difference. The variants for d and
t are immediate.

Similarly, an array A is (d, t, δ)-detecting if whenever T1 ⊆ It, |T1| = d, and
T ∈ It \ T1, we have that T ∈ T1 whenever |ρ(A, T) \ ρ(A, T1)| < δ or |ρ(A, T1) \
ρ(A, T)| < δ. Again, definitions of the variants for d and t are straightforward.

Separation by distance δ ensures that any δ −1 or fewer tests can fail to pro-
vide a response, or provide an outlier response, without losing the differentiation
supported by the locating or detecting array. In our motivating examples among
many others, requiring larger distance for separation is desirable, but only if it
can be accomplished without a dramatic increase in the number of tests.

The simplest technique to make a (d, t, δ)-locating array might be to con-
catenate the rows of δ (d, t)-locating arrays, or indeed to replicate each row of
a single (d, t)-locating array, each δ times. This would enable the use of the few
available methods for locating arrays, while increasing the separation as required.
However, this appears to necessitate far too many tests.

3 Randomized and Derandomized Algorithms

We require algorithms to construct (d, t, δ)-locating arrays and (d, t, δ)-detecting
arrays. The methods of most interest to us must not only handle a range of small
values of d, t, and δ (each between, say, 1 and 4), but – more importantly – must
handle reasonable numbers of factors (in the range of 50–100 at least). We do
not expect to (or need to) produce the fewest tests possible, but naturally we
prefer arrays with fewer tests.

Every (1, t)-locating array is a mixed covering array of strength t, and hence
the algorithmic paradigms that have been most effective for covering arrays
appear to be natural candidates for construction of locating and detecting arrays.
Among these, integer programming, constraint satisfaction, tabu search, and

354 S. A. Seidel et al.

simulated annealing have provided the best available upper bounds on the num-
ber of tests when the number of factors is small [6]. One-column-at-a-time [14,20]
and one-row-at-a-time [5] greedy algorithms extend the range of numbers of fac-
tors treated, but do not outperform more sophisticated methods for few factors
and small strength. Indeed for both methods, a post-optimization strategy [27]
can often reduce the number of tests by investing more computation.

For larger numbers of factors and larger strengths yet, the best avail-
able upper bounds arise from randomized methods based on the Stein-Lovász-
Johnson framework [18,22,33], and derandomized algorithms using conditional
expectations [3,4]; and on the Lovász Local Lemma [2,13] with Moser-Tardos
resampling [25] to yield both efficient construction techniques and the best
asymptotic bounds [9,29,30].

We fully expect that computationally intensive methods and storage intensive
methods can and will produce detecting and locating arrays with fewer tests than
randomized and derandomized methods when the number of factors is relatively
small and the search is tailored to specific choices of d, t, and δ (all ‘small’); see,
for example, [19]. In exploring randomized techniques, our objective is instead to
develop algorithms that can be effectively used for a wide variety of construction
problems, without undue time and storage requirements.

3.1 The Stein-Lovász-Johnson Framework and Conditional
Expectation

Suppose that an N × k array A is specified. When A does not meet the require-
ments to be a locating or detecting array of the kind intended, it is because cer-
tain requirements are not met. For example, for (d, t, δ)-locating, when T1 �= T2,
|T1| = d, and |T2| = d, but |(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| = μ < δ,
the requirement is not met, and has deficiency δ − μ. (When a requirement is
met, its deficiency is 0.) This notion of deficiency can be extended to require-
ments for other locating and detecting arrays in a straightforward manner. Then
the deficiency of A is the sum of the deficiencies of all requirements.

When the deficiency of A is nonzero, a next test can be chosen to reduce
the deficiency. Indeed if a test were chosen at random among all possible tests,
the expected reduction in deficiency can be calculated. The Stein-Lovász-Johnson
framework dictates that a next test be chosen to reduce the deficiency by at least
this expectation. Choosing such a test at each stage ensures that no more tests
are needed than in an entire array chosen at random whose expected deficiency
is less than 1, and indeed the one-test-at-a-time method often employs much
fewer tests.

An effective implementation of this strategy requires not only that the
expected reduction in deficiency be calculated, but that a test be found to achieve
this reduction. In [3,4], conditional expectation methods are used to demonstrate
for covering arrays that the expectation can be efficiently calculated, and more
importantly that the test needed can be constructed by choosing one entry at a
time so as never to decrease the expectation. Although the details for locating
and detecting arrays differ from the simpler requirements for covering arrays,

Separating Interaction Effects Using Locating and Detecting Arrays 355

the strategy of [4] can be applied here as well. In the interests of space, we do
not here repeat the details needed in order to explore the differences.

Every time a new test is to be added, deficiencies for each requirement until
this point are needed. A storage intensive method can maintain this informa-
tion as tests are added, but the number of pairs of sets of interactions can
quickly exceed available storage even for arrays with a moderate number of fac-
tors. Instead a time-intensive version could recalculate the deficiency for each
requirement when it is needed, incurring a substantial amount of recomputation.
Recomputation may be feasible; however, the deficiency for a restriction may be
recalculated many times in the construction of a single test.

3.2 The Lovász Local Lemma and Moser-Tardos Resampling

For covering arrays, asymptotic results based on the Lovász Local Lemma (such
as [15,16,30]) improve upon those based on the Stein-Lovász-Johnson paradigm
[3,5]. Despite this, the latter have typically yielded fewer tests in practice. Hence
one might expect, for locating and detecting arrays, that the conditional expec-
tation methods would be the preferred ones. As with covering arrays, however,
the column resampling methods based on the Lovász Local Lemma again lead to
methods that avoid the time/storage tradeoff incurred by the conditional expec-
tation methods so they again provide viable construction algorithms, which we
outline next.

Suppose that an N×k array A is specified. When A does not meet the require-
ments to be a locating or detecting array of the kind intended, some requirement
has deficiency greater than 0. Following [25], we consider each requirement in an
arbitrary but fixed order. If none is encountered that has nonzero deficiency, the
array is the desired solution. Otherwise, the first time a requirement with nonzero
deficiency is found, we identify all columns involved in all interactions of both
sets, and randomly resample all of the entries in the same column. When this
resampling occurs, checking is restarted at the first requirement and continues
in the fixed order.

Moser and Tardos [25] show that the number of times resampling occurs is
expected to be polynomial when the number of tests is that specified by the
bound in the Lovász Local Lemma. As noted in [9], resampling can be applied
when the number of tests is less than the bound, but in that case there is no
guarantee that a solution can be found in a small expected number of resam-
plings (or indeed found at all). Nevertheless, resampling underlies a construction
algorithm that typically reduces the number of tests below the bound.

To accomplish this, a random array is chosen with a number of tests equal
to the bound. Column resampling proceeds as described until the array has
deficiency 0. At this point, one test is removed, typically making the deficiency
again nonzero, and a new round of column resampling is begun with the smaller
number of tests.

In order to ensure termination, a threshold on the total number of column
resamplings is set. Once this threshold is exceeded, the computation terminates

356 S. A. Seidel et al.

with the current number of tests. The deficiency of each requirement is recalcu-
lated every time this requirement is checked; no status information is stored for
the requirements. Whereas the conditional expectation methods can employ the
deficiency of an interaction up to k times for each test added, the column resam-
pling methods limit this recalculation to the threshold. But the actual behaviour
is much better than this worst case limit. Indeed, requirements that are later in
the fixed order are checked only when all earlier requirements have deficiency
0. Hence although all requirements must be verified to ensure that the array is
of the intended kind, typically a much smaller number is examined before we
discover a requirement demonstrating that it is not. In practice, this results in a
much smaller number of recalculations of deficiencies for requirements than one
might have anticipated.

The method is flexible enough to permit construction for the variety of locat-
ing and detecting arrays described here, requiring less time and less storage than
the conditional expectation methods (and less than any method that stores a
status for each requirement). Naturally the question is whether such column
resampling methods can yield useful test suites of an acceptable size. We address
this in Sect. 4.

3.3 Local Optimization

Column resampling makes no explicit effort to reduce the deficiency, instead
relying on the likelihood that a random replacement of the columns reduces the
deficiency more than it increases it. When provided with an initial array of very
low (but nonzero) deficiency having few tests, column resampling often increases
the deficiency far more than it reduces it.

In order to study the effects of this, we examine a local optimization tech-
nique. At each iteration, we again consider each requirement in an arbitrary but
fixed order. If none is encountered that has nonzero deficiency, the array is the
desired solution. Otherwise, the first time a requirement with nonzero deficiency
is found, we identify and randomly resample a column that is involved. If the
resulting array has deficiency no larger than it did before, the new array replaces
the old. Then no iteration increases the deficiency.

This shares the low storage footprint of the column resampling methods.
The time invested is harder to compare. Although column resampling may make
many resamplings that make the deficiency higher, each such resampling is trig-
gered typically after few requirements are checked. In order to retain at least the
progress made, local optimization checks every requirement at every iteration.

4 Some Computational Results

We implemented a (storage-intensive) conditional expectation method
(Sect. 3.1), a column resampling method (Sect. 3.2), and a local optimization
method (Sect. 3.3) for (1, 2)-locating arrays and for (1, 2)-detecting arrays.

Separating Interaction Effects Using Locating and Detecting Arrays 357

Our primary concerns are to (1) assess the effect of requiring larger separation
on the numbers of tests required and (2) determine the feasibility of constructing
locating and detecting arrays for scenarios with tens to hundreds of factors. In
the discussion to follow, we repeatedly refer to Table 1.

The first column of Table 1 lists the types for which we applied one or more
of the computational methods. These range from few factors (10) to a larger
number (100). We select primarily types in which are numbers of levels are

Table 1. Numbers of tests in generated locating and detecting arrays. Testbed has
type 59453723; Simulation has type 108918475610544639228.

Type (1, 2)-locating (1, 2)-detecting

δ = 1 δ = 2 δ = 3 δ = 4 δ = 1 δ = 2 δ = 3 δ = 4

210 15 14 19 24 30 25 21 32 42 54

215 19 17 22 29 34 30 29 41 57 63

220 21 19 26 31 37 37 32 44 57 70

250 29 26 33 40 47 52 46 63 76 89

275 32 28 36 44 50 58 51 68

2100 34 31 39 46 53 62 57 74

310 34 30 46 57 66 71 60 87 109 128

315 42 40 52 65 73 82 75 101 124 146

320 49 44 57 69 79 96 83 110 136 157

350 60 57 70 83 95 122 110 139 167

375 66 62 76 90 103 135 121

3100 70 67 81 94 107 138 132

410 71 65 86 104 122 135 118 161 201 235

415 78 76 96 116 133 153 139 185 219

420 91 82 104 122 141 170 152 198

450 113 106 129 148 168 217 196 244

475 120 116 138 159 178 236 212

4100 127 123 146 166 187 248 236

510 118 110 141 165 194 220 192 263 315 367

515 133 126 156 185 212 247 223 293

520 150 138 169 198 225 275 243 313

550 182 173 208 236 342 310 391

575 198 189 223 256 367 337

5100 211 202 235 266 390 357

510210 123 110 139 172 197 370 316 415 504 597

Testbed 117 114 144 169 194 313 266 367 450 533

Simulation 580 532 654 1883 1712

358 S. A. Seidel et al.

equal, to observe the growth in number of tests as a function of the number of
factors. We also report results for one mixed type, 510210 to demonstrate how
detecting arrays and locating arrays differ (more on this soon), and the two types
from our motivating examples.

Sizes from the column resampling algorithm for separation distance 1 are
reported in the first of the two columns under ‘δ = 1’, both for locating and
detecting arrays, using a threshold of 1000 resamplings. As expected, the method
runs relatively quickly, completing in less than a minute for type 375.

We employed the local optimization algorithm both to compare with column
resampling for distance 1, and to extend to larger distances (up to δ = 4 for
many types). It proved to be somewhat more time consuming to complete 1000
iterations, for example taking approximately 6 min for the locating array of type
375 with distance 1. Nevertheless, in all computations it yields a size smaller
than that from column resampling.

Most interesting is the effect of increasing the separation distance. The sizes
obtained suggest that one can do much better than replicating a solution with
distance 1 δ times; in fact, for most of the types examined, enforcing distance 4
no more than doubles the number of tests used for distance 1 for locating arrays.
This suggests that one can better cope with outliers and missing responses in
experimentation using locating and detecting arrays, incurring a modest amount
of additional testing.

Table 1 also illustrates substantial differences between locating arrays and
detecting arrays. The efficient recovery algorithm for the latter appears to come
at a high price. For types in which all factors have the same number of levels,
the number of tests in a detecting array appears to be nearly twice the number
for the corresponding locating array. However, for types in which factors have
widely different numbers of levels, detection appears to cause a much larger
increase; see the last three rows in Table 1. This is as one would anticipate,
because when a factor has few levels, each level appears in many more tests on
average. The likelihood that this larger set of tests contains all tests in which a
much less frequently occurring 2-way interaction appears is consequently larger,
necessitating a larger number of tests.

Finally we mention some results from the conditional expectation method.
With our current implementation for detecting arrays with distance 1, storage
and time limitations make it infeasible to handle large numbers of factors, so we
report only a handful of results for few factors. For k ∈ {10, 15, 20}, while local
optimization produces detecting arrays of type 3k with 60, 75, and 83 tests,
conditional expectation produces much smaller arrays of sizes 41, 48, and 54,
respectively. Similar differences are found in other cases with few factors.

Nagamoto et al. [26] describe a greedy algorithm for (1, 2)-locating arrays of
distance 1 that bears some resemblance to the conditional expectation method
outlined here and apply it to a limited set of types with at most 20 factors.
For k ∈ {10, 15, 20}, while local optimization produces locating arrays of type
5k with 110, 136, and 148 tests, their greedy approach produces much smaller
arrays of sizes 91, 105, and 113, respectively.

Separating Interaction Effects Using Locating and Detecting Arrays 359

Evidently, column resampling and local optimization, at least within the
number of iterations performed, produce numbers of tests that are far from
minimum. Despite this, we have found them to yield acceptable results, better
than expected in a randomly chosen array, for much larger numbers of factors
than appear to be handled by existing methods.

Acknowledgements. This work is supported in part by the U.S. National Science
Foundation grant #1421058, and in part by the Software Test & Analysis Techniques
for Automated Software Test program by OPNAV N-84, U.S. Navy.

References

1. Aldaco, A.N., Colbourn, C.J., Syrotiuk, V.R.: Locating arrays: a new experimental
design for screening complex engineered systems. SIGOPS Oper. Syst. Rev. 49(1),
31–40 (2015)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008)

3. Bryce, R.C., Colbourn, C.J.: The density algorithm for pairwise interaction testing.
Softw. Testing Verification Reliab. 17, 159–182 (2007)

4. Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength
covering arrays. Softw. Testing Verification Reliab. 19, 37–53 (2009)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23,
437–444 (1997)

6. Colbourn, C.J.: Covering array tables: 2 ≤ v ≤ 25, 2 ≤ t ≤ 6, t ≤ k ≤ 10000
(2005–2017). www.public.asu.edu/∼ccolbou/src/tabby

7. Colbourn, C.J., Fan, B.: Locating one pairwise interaction: three recursive con-
structions. J. Algebra Comb. Discrete Struct. Appl. 3, 125–134 (2016)

8. Colbourn, C.J., Fan, B., Horsley, D.: Disjoint spread systems and fault location.
SIAM J. Discrete Math. 30, 2011–2016 (2016)

9. Colbourn, C.J., Lanus, E., Sarkar, K.: Asymptotic and constructive methods for
covering perfect hash families and covering arrays. Des. Codes Crypt. 86, 907–937
(2018)

10. Colbourn, C.J., McClary, D.W.: Locating and detecting arrays for interaction
faults. J. Comb. Optim. 15, 17–48 (2008)

11. Colbourn, C.J., Syrotiuk, V.R.: Coverage, location, detection, and measurement.
In: 2016 IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 19–25. IEEE Press (2016)

12. Compton, R., Mehari, M.T., Colbourn, C.J., De Poorter, E., Syrotiuk, V.R.:
Screening interacting factors in a wireless network testbed using locating arrays. In:
IEEE INFOCOM International Workshop on Computer and Networking Experi-
mental Research Using Testbeds (CNERT) (2016)

13. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Infinite and Finite Sets, Colloq., Keszthely, vol. 2, pp. 609–
627 (1973). Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam
(1975)

14. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand.
Tech. 113, 287–297 (2008)

www.public.asu.edu/~ccolbou/src/tabby

360 S. A. Seidel et al.

15. Francetić, N., Stevens, B.: Asymptotic size of covering arrays: an application of
entropy compression. J. Combin. Des. 25, 243–257 (2017)

16. Godbole, A.P., Skipper, D.E., Sunley, R.A.: t-covering arrays: upper bounds and
Poisson approximations. Comb. Probab. Comput. 5, 105–118 (1996)

17. Jin, H., Tsuchiya, T.: Constrained locating arrays for combinatorial interaction
testing. CoRR abs/1801.06041 (2018). http://arxiv.org/abs/1801.06041

18. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

19. Konishi, T., Kojima, H., Nakagawa, H., Tsuchiya, T.: Finding minimum locating
arrays using a SAT solver. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo,
Japan, 13–17 March 2017, pp. 276–277 (2017)

20. Kuhn, D.R., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. CRC
Press, Boca Raton (2013)

21. Li, P.C., Meagher, K.: Sperner partition systems. J. Combin. Des. 21(7), 267–279
(2013)

22. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13(4), 383–390 (1975)

23. Mart́ınez, C., Moura, L., Panario, D., Stevens, B.: Locating errors using ELAs,
covering arrays, and adaptive testing algorithms. SIAM J. Discrete Math. 23,
1776–1799 (2009/2010)

24. Meagher, K., Moura, L., Stevens, B.: A Sperner-type theorem for set-partition
systems. Electron. J. Combin. 12, Note 20, 6 (2005). (Electronic)

25. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.
J. ACM 57(2), Article no. 11, 15 (2010)

26. Nagamoto, T., Kojima, H., Nakagawa, H., Tsuchiya, T.: Locating a faulty inter-
action in pair-wise testing. In: 20th IEEE Pacific Rim International Symposium
on Dependable Computing, PRDC 2014, Singapore, 18–21 November 2014, pp.
155–156 (2014)

27. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of covering
arrays. Eur. J. Comb. 34, 91–103 (2013)

28. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
#11 (2011)

29. Sarkar, K., Colbourn, C.J.: Two-stage algorithms for covering array construction.
CoRR abs/1606.06730 (2016). http://arxiv.org/abs/1606.06730

30. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J.
Discrete Math. 31, 1277–1293 (2017)

31. Seidel, S.A., Mehari, M.T., Colbourn, C.J., De Poorter, E., Moerman, I., Syrotiuk,
V.R.: Analysis of large-scale experimental data from wireless networks. In: IEEE
INFOCOM International Workshop on Computer and Networking Experimental
Research Using Testbeds (CNERT) (2018)

32. Shi, C., Tang, Y., Yin, J.: Optimal locating arrays for at most two faults. Sci.
China Math. 55(1), 197–206 (2012)

33. Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theory Ser. A 16,
391–397 (1974)

34. Tang, Y., Colbourn, C.J., Yin, J.: Optimality and constructions of locating arrays.
J. Stat. Theory Pract. 6(1), 20–29 (2012)

http://arxiv.org/abs/1801.06041
http://arxiv.org/abs/1606.06730

An Efficient Representation
of Partitions of Integers

Kentaro Sumigawa(B) and Kunihiko Sadakane

Department of Mathematical Informatics, Graduate School of Information Science
and Technology, The University of Tokyo, Tokyo, Japan

{kentaro sumigawa,sada}@mist.i.u-tokyo.ac.jp

Abstract. We introduce a data structure for representing a partition
of an integer n, which uses O(

√
n) bits of space. This is constant multi-

ple of the information theoretic lower bound. Three types of operations
accessp, boundp, prefixsump are supported in constant time by using the
notion of conjugate of a partition. In order to construct this data struc-
ture, we also construct a data structure for representing a monotonic
sequence, which supports the same operations in constant time and uses

O(min{ 1
δ
u

(
n
u

)δ
, 1

δ
n

(
u
n

)δ}) bits of space for any positive constant δ. (n
is the number of terms, and u denotes the size of the universe.)

1 Introduction

A partition of an integer n represents ways of division of n objects, which is
equivalent to Young diagrams and Ferrers diagrams. This is usually represented
by a positive integer sequence {A} = 〈A[0], A[1], A[2], . . .〉 which satisfies two
conditions: (i) {A} is monotonic (not necessarily strictly) decreasing sequence,
(ii) the sum of all terms over {A} is n. It is known that they are useful in study
of group representation theory [4]. This notion is also used for the situation that
objects are divided into some groups such as a representation of a permutation
[7]. We consider a data structure which represents a partition of an integer and
supports the following fundamental three operations:

– accessp(i) = A[i], boundp(i) = #{j | A[j] ≥ i}, prefixsump(i) =
∑i

j=0 A[j]

Regarding a partition as a Young diagram, the operations accessp(i) and
boundp(i) represents the number of cells in i-th row and column, respectively. It
takes O(n lg n) bits to store all the answers, which takes too much space, since
the information theoretic lower bound is shown to be 3.7

√
n − lg n + O(1) bits1

(see Theorem 4 below).
Few studies have focused on space efficient representations of a partition of an

integer and the operations on it. [2] showed that reordering the terms according
to a certain order (which means they resign the condition (i)), some operations

This work was supported by JST CREST Grant Number JPMJCR1402, Japan.
1 In this paper, lg x denotes log2 x.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 361–373, 2018.
https://doi.org/10.1007/978-3-319-94667-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_30&domain=pdf

362 K. Sumigawa and K. Sadakane

can be supported in constant time with an O(
√

n) bit space data structure. In
order to apply [2] to our problem, we have to store the correspondence between
the order of the terms sorted in different ways, which could take O(n lg n) bits.

Though we can apply existing data structures for monotonic sequences to
represent a partition, their space requirement is much larger than 3.7

√
n bits

because condition (ii) is not taken into account. Let u be the size of the universe
of a sequence and n be the number of terms. Thus we consider the sequences
such that {a} : 0 ≤ a[0] ≤ a[1] ≤ · · · ≤ a[n − 1] < u. For access, when
u > n, Elias-fano sequence [1,3] takes n(2+ lg u

n) bits and support the operation
in constant time. In the case u � n, this sequence can be encoded by a bit
vector and we can operate these operations in constant time using the data
structure called FID [9]. When u = O(n

lg n), access can be done in constant
time using a bit vector in [5] which uses O(u(1 + lg n

u lg n)) bits. However, under
the condition of u � n, such as n = uc for some constant c(> 1), few data
structures can deal with. For example, [8] supports access in O(lg lg u) time while
bound operation is in constant time. FID takes O(n lg lg n

lg n) bits of space and it is
quite larger than the information theoretic lower bound O(u lg n

u). For prefixsum,
without the restriction of monotonicity of sequences, it can be represented as a
bit vector [9]. However, using this method it takes O(n lg u) bits even if the bit
vector is compressed into the information theoretic lower bound.

In this paper we propose a new method which can deal with the conditions (i)
and (ii) at the same time effectively, which is difficult for existing methods. This
method is based on the fact that most of short sequences, which are obtained by
dividing the original sequence, are of equal values because of the condition (ii).
This means we do not have to store the greater part of the original sequence. As
a result we obtain the following Theorem.
Theorem 1. Let {A} be a partition of an integer n. There exists a data struc-
ture which uses O(

√
n) bits and supports accessp, boundp, and prefixsump in

constant time.
In order to prove Theorem1, we consider a new data structure for increasing
(instead of decreasing in order to simplify) monotonic sequence which supports
operations access, bound, prefixsum in constant time (they are distinguished from
accessp etc. since access supports arbitrary access over any monotonic sequence
without condition (ii)). We obtain following (some words which appear in theo-
rems are defined in Sect. 2):

Theorem 2. Given a monotonic increasing sequence {a} which satisfies 0 ≤
a[i] < u (0 ≤ i < n), there exists a data structure for access and bound for
{a} and its conjugate sequence in O(δ) time and prefixsum in O(δ2) time which
requires O(min{ 1

δ nδu1−δ, 1
δ uδn1−δ}) bits of space for any δ > 0.

Theorem 3. Given a bit vector B of length l with b 1s, there exists a data
structure for access, rank, and select on B which requires O(δ) time and
O(min{ 1

δ lδb1−δ, 1
δ lδ(l − b)1−δ}) bits of space for any δ > 0.

Compared to other data structures (see Table 1), our data structure uses less
space than others if l = bc for some constant c > 1.

An Efficient Representation of Partitions of Integers 363

Table 1. Results for the size and the valid sparsity of data structure which support
all operations access, rank0, rank1, select0, select1 in constant time over a bit vector of
length l with b 1s.

Data structure Space Valid sparsity

[9] lg
(

l
b

)
+ O

(
l lg lg l

lg l

)
b = Ω

(
l

lg l

)

[9] O
(
l lg lg l

lg l

)
b = o

(
l

lg l

)

[5] O
(
b(1 + lg l

b lg l
)
)

Θ
(

l
(lg l)c

)
≤ b ≤ Θ

(
l

lg l

)

Ours O(lδb1−δ) Any

2 Preliminaries

In this paper, we use zero-based indexing.
Let IMS (n, u) be the set of monotonic increasing sequences with n terms and

its range is [0, u). Similarly, let DMS (n, u) be the set of monotonic decreasing
sequences with n terms and its range is [0, u).

2.1 Conjugate of a Monotonic Sequence

We define the conjugate of a monotonic sequence.

Definition 1. Let {a} be a sequence which consists of n terms and its range is
[0, u). The sequence {a} defined as follows is called {a}’s conjugate sequence

a[i] ≡ #{j | a[j] > i} (= bound({a}, i)) (0 ≤ i < u − 1).

Fact 1. {a} belongs to DMS (u − 1, n + 1).

Example 1. Let {a} be monotonic decreasing sequence 〈6, 5, 5, 4, 3, 1, 1, 1, 0, 0〉 ∈
DMS (10, 8). Its conjugate is {a} = 〈8, 5, 5, 4, 3, 1, 0〉 ∈ DMS (7, 11)

Lemma 1. Given {a} ∈ DMS (n, u), a[i] = a[i] holds for every 0 ≤ i < n.

Proof. By the definition of conjugate, we have

a[i] = #{j | a[j] > i}
= #{j | #{k | a[k] > j} > i}.

Here {a} is a monotonic decreasing sequence, {j | #{k | a[k] > j} > i} =
{0, 1, . . . , a[i] − 1} and a[i] = a[i] holds. ��
Corollary 1. For any sequence {a} ∈ IMS (n, u), a[i] = a[n − i − 1] holds for
every 0 ≤ i < n.

364 K. Sumigawa and K. Sadakane

Now we consider data structures storing a monotonic increasing sequence
{a} ∈ IMS (n, u), supporting constant time operations which access arbitrary
terms of sequences {a} and {a}. We are going to show that the operations on a
bit vector can be applied to the representation of monotonic sequences. Three
operations access, rankc, selectc on bit vector B are defined as follows:

– access(x,B): the x-th bit of B.
– rankc(x,B): #{i | i ≤ x and B[i] = c}.
– selectc(x,B): min{i | rankc(i, B) = x}.

Lemma 2 (FID [9]). Given a bit vector B of length l with b 1s, the operations
access(x,B), rankc(x,B) and selectc(x,B) can be done in constant time with a
data structure of lg

(
l
b

)
+ O(l lg l

lg lg l) bits.

Lemma 3. Given a monotonic increasing sequence {a} ∈ IMS (n, u), there
exists a data structure for reporting an arbitrary term of {a} and {a} in constant
time which requires n + u + o(n + u) bits of space.

Proof. Let B a bit vector of length at most n + u − 1 which is obtained
by appending ai − ai−1 0s and one 1 for i = 0, 1, . . . , n − 1 (for conve-
nience, we define a−1 = 0). Then B consists of n 1s and at most u − 1 0s.
Then, operations are supported in constant time as there exist the relations
a[i] = rank0(select1(i, B), B), a[i] = n − rank1(select0(i, B), B). ��

2.2 Partitions of Integers

Definition 2. When a sequence {A} satisfies the following conditions,

k−1∑

i=0

A[i] = n,

A[0] ≥ A[1] ≥ · · · ≥ A[k − 1] (≥1) ,

{A} is called a partition of an integer n.

Fact 2. The conjugate of a partition of n is also a partition of n.

The number of the possible partitions of n is called partition number pn. The

asymptotic expression of pn is given by 1
4
√
3n

exp
(
π
√

2n
3

)
[6]. Therefore, the

following Theorem holds.

Theorem 4. The information theoretic lower bound for the number of bits of a

representation needed to distinguish all the partition of n is π
√

2
3 lg e

√
n− lg n+

O(1) bits.

An Efficient Representation of Partitions of Integers 365

3 Data Structures to Represent Monotonic Sequences

Before we consider partitions of integers, we construct a data structure for mono-
tonic sequences. First, we are going to prove Theorem2.

In order to reduce the space complexity, we “divide” an original sequence
into multiple short sequences.

Lemma 4. Any sequence {a} which belongs to IMS (n, u) (n ≥ u) can be repre-
sented by two sequences of IMS (

√
nu, u) and three bit vectors of length at most

2u each, so that access on {a} and {a} can be done in 2T + O(1) time, where T
is the time complexity for access on IMS (

√
nu, u).

Proof. Divide n terms into
√

nu blocks of d =
√

n/u terms. Let Bi denote the
i-th block and h[i] = a[d(i + 1)] − a[di] denote the increment of the sequence in
the block Bi, for 0 ≤ i <

√
nu. We call Bi empty block when h[i] = 0, non-empty

block otherwise. Let z(< u) be the number of non-empty blocks.
The sequence {a} can be represented by the following sequences:

1. {a′} ∈ IMS (
√

nu, u) satisfies a′[j] = a[jd] (0 ≤ j <
√

nu).
2. {a′′} ∈ IMS (zd, u), concatenating all non-empty blocks of the original

sequence. Because the number of non-empty blocks is z, this sequence consists
of at most zd ≤ √

nu terms.

In addition, we construct three sequences:

3. {v} ∈ IMS(u, u), v[k] = #{j | Bj is non-empty and a′′[j] < k}.
4. {s} ∈ IMS(z, u), s[k] = (k-th non-empty block’s first term).2

5. {t} ∈ IMS(z, u), t[k] = (k-th non-empty block’s last term).

Using Lemma 3, each sequence can be represented in at most 2u + o(u) bits.
Algorithms 1 and 2 show the procedures of operations, and Fig. 1 shows a visual
image of Algorithm 2. ��
Lemma 5. Let {a} ∈ IMS (n, u) (n ≥ u) be the original sequence. It can be
represented in O(2kn1/2ku1−1/2k) bits of space in total for any fixed k > 0. The
operation access over {a} and {a} can be done in O(2k) time. We denote this
data structure Dk.

Proof. Applying Lemma 4 k times recursively, the original sequence is decom-
posed into sequences and bit vectors without information loss. We can represent
these sequences by a full binary tree of height k. The root is numbered 0, and
the node i has two children 2i + 1 and 2i + 2. The root node corresponds to the
original sequence {a}, and its two children correspond to the two sequences {a′}
and {a′′} obtained from {a} using Lemma 4. Internal nodes store the bit vectors
{v}, {s} and {t}, while leaves store the sequences {a′} and {a′′} using Lemma 3.

2 We use this sequence in Sect. 4.

366 K. Sumigawa and K. Sadakane

Space Complexity: Let {a(0)} be the original sequence. For integer i, when the
sequence {a(i)} is represented by two sequences {a′} and {a′′} as Lemma 4, we
name them {a(2i+1)} and {a(2i+2)} respectively. Applying this operation for 0 ≤
i ≤ 2k−2, we obtain 2k sequences, each of which belong to IMS (n1/2ku1−1/2k , u).
Using Lemma 3, each sequence can be represented in O(n1/2ku1−1/2k) bits of
space. In addition, 3 ·2k bit vectors {v(i)}, {s(i)}, {t(i)} take O(2ku) bits in total.
This means that the whole space complexity is O(2kn1/2ku1−1/2k) + O(2ku) =
O(2kn1/2ku1−1/2k).

Time Complexity: Let T1(k) be the time complexity for random access on {a}
using Dk. From Algorithm 23, T1(k) = 2T1(k−1)+O(1) and T1(1) = O(1) holds.
Then, T1(k) is shown to be O(2k).

Let T2(k) be the time complexity for random access on {a} using Dk. Con-
sidering the function access which returns two values, a[i − 1] and a[i], the time
complexity is T2(k) = 2T2(k − 1) + O(1) which means T2(k) = O(2k), as shown
in Algorithm 1. ��

Algorithm 1. access({a}, j) = (a[j], a[j + 1]) (if {a} is assigned to an internal
node)

d ← √
n/u, b ← j/d, r ← j%d

(p1, p2) ← access2({a′}, b)
if r �= √

nu − 1 then
if p1 �= p2 then

return access2({a′′}, v[p1] · √
nu + r)

else
return (p2, p2)

end if
else

if p1 �= p2 then
return (t[v[p1]], p2)

else
return (p1, p2)

end if
end if

Lemma 5 shows that the operations access and bound are supported for the
sequences such that u ≤ n since bound({a}, i)=access({a}, i). In the case that
the sequence {a} belongs to IMS (n, u) such that u > n, applying Lemma 5 to
its conjugate sequence, access and bound over {a} is supported. Consequently,
we obtain the first part of Theorem2.

To prove Theorem 3, we convert a bit vector to monotonic sequences using
the following lemma:
3 In this paper, a/b and a%b appeared in pseudo codes means �a/b� and a mod b,

respectively.

An Efficient Representation of Partitions of Integers 367

Algorithm 2. access({a}, i) (if {a} is assigned to an internal node)
if a[0] > i then

return n
end if
d ← √

n/u, l ← d · access({a′}, i), w ← access({a′′}, i)%d
return w + l

Fig. 1. The histogram representation of a monotonic increasing sequence (i-th bin’s
height is a[i]). The length of gray bar represents access({a}, i).

Lemma 6. Let B be a bit vector of length l with b 1s. Suppose there exists a data
structure for accessing an arbitrary term of sequence IMS(n, u) and its conjugate
sequence in g(n, u) time which requires f(n, u) bits of space, there exists a data
structure for access, rankc, and selectc on B in O(g(b, l) + g(l − b, b + 1)) time
which requires f(b, l) + f(l − b, b + 1) bits of space.

Proof. We construct two auxiliary sequences {s} ∈ IMS (b, l) and {t} ∈ IMS (l −
b, b + 1), defined as follows:

s[i] = select1(i, B),
t[i] = #{j ≤ select0(i, B) | B[j] = 1} = rank1(select0(i, B)).

Each auxiliary sequence is represented in f(b, l) bits and f(l − b, b + 1) bits of
space, respectively.

Using these sequences, the following operations are supported in O(g(b, l) +
g(l − b, b + 1)): (for convenience, we define s[−1] = n and s[n − 1] = 0.)

– access(x,B): if ∃i s[i] = x(⇔ s[x − 1] > s[x]) return 1, otherwise return 0.
– select1(x,B): s[x].
– select0(x,B): x + t[x].
– rank1(x,B): #{j | s[j] ≤ x} = n − #{j | s[j] > x} = n − s[x].
– rank0(x,B): x − rank1(x) = x − n + s[x]. ��
From Theorem 2 and Lemma 6, we obtain Theorem 3.

368 K. Sumigawa and K. Sadakane

4 A Data Structure for Prefix Sums

In this section we consider prefix sums over monotonic sequences. The prefix
sum over IMS (n, u) takes a value in the range [0, (u − 1)n]. Thus, regarding the
prefix sums as IMS (n, (u − 1)n + 1), it takes O(n lg u) bits of space to store
all the values. We develop a data structure with the same space complexity as
Lemma 5 which is obviously smaller than O(n lg u) bits of space using Lemma 2.

Lemma 7. Given a monotonic increasing sequence {a} ∈ IMS (n, u), there
exists a data structure for reporting arbitrary prefix sum of {a} and {a} in con-
stant time which requires O(n + u) bits of space.

Proof. Let B be a bit vector of length l(= n + u) which represents {a} by using
Lemma 3. The k-th prefix sum

∑k−1
i=0 a[i] is equal to

∑k−1
i=0 rank0(select1(i)). We

divide B into 2l
lg l blocks of length d = lg l

2 . The k-th block stores a value sk

explicitly where sk is defined as follows:

sk =
rank1(kd−1,B)∑

i=0

rank0(select1(i, B), B).

Since the value of sk is at most (u − 1)n, each value can be represented in
O(lg u + lg n) bits. Therefore it takes O(2l

lg l (lg u + lg n)) = O(l) bits to store all
the values sk (0 ≤ k < 2l

lg l). In addition to this, we construct a look up table
T storing prefix sums over every sequences which blocks can represent. In other
words, given a bit vector b of length d and integer k, T stores every value of

T (b, k) =
rank1(k,b)∑

i=0

rank0(select1(i, b), b) (0 ≤ k < d).

This table takes 2dd lg d2 = O(
√

l · polylog(l)) bits. Prefix sum for the first k
terms is obtained by following procedure:

– r ← select1(k,B), r′ ← r − r%d − 1
– b′ ← B[r′ + 1, r′ + 2, . . . r′ + d]
– return sr/d−1 + (k − rank1(r′, B))rank0(r′, B) + T (b′, k − rank1(r′, B))

For k-th prefix sum of conjugate sequence {a},

– e1 ← (k + 1)access({a}, k)
– e2 ← prefixsum({a}, n − 1 − access({a}, k))
– return e1 + e2

The whole space usage is O(l) = O(n+u) and both algorithms run in constant
time. ��
Lemma 8. Let {a} ∈ IMS (n, u) (n ≥ u) be the original sequence. It can be
represented in O(2kn1/2ku1−1/2k) bits of space in total. The operation prefixsum
over {a} and its conjugate {a} can be done in O(4k) time.

An Efficient Representation of Partitions of Integers 369

Algorithm 3. prefixsum({a}, i) (if {a} is assigned to an internal node)

d ← √
n/u, b ← i/d, r ← i%d

if access({a′}, b) �= access({a′}, b + 1) then
e1 ← prefixsum({a′′}, v[access({a′}, b)]d + r)
e2 ← d · prefixsum({a′}, b − 1)
e3 ← prefixsum({s}, access({a′}, b))
return e1 + e2 − e3

else
e1 ← prefixsum({a′′}, v[access({a′}, b)]d)
e2 ← d · prefixsum({a′}, b − 1)
e3 ← prefixsum({s}, access({a′}, b))
e4 ← r · access({a′}, b)
return e1 + e2 − e3 + e4

end if

Algorithm 4. prefixsum({a}, i) (if {a} is assigned to an internal node)
j ← n − 1 − access({a}, i)
return prefixsum({a}, j) + i(n − j − 1)

Proof. We use the same data structure as Lemma 5. Let {a(0)} be the original
sequence and construct 2k sequences {a(2k−1)}, . . . , {a(2k+1−2)} which belong to
IMS (n1/2ku1−1/2k , u). We store these short sequences as Lemma 7. Therefore,
the space complexity is shown to be O(2kn1/2ku1−1/2k).

Next, we consider the time complexity. Algorithms 3 and 4 shows how to
calculate the prefix sum over {a} and {a}, respectively. There exist access oper-
ations in Algorithm 3, but this data structure does not support access. Therefore,
we have to use prefixsum({a}, i) − prefixsum({a}, i − 1) instead of access({a}, i).
In Algorithm 3, prefixsum({a(2i+1)}, ·) and prefixsum({a(2i+2)}, ·) are called four
times in total. Thus, time complexity for prefixsum({a}, i) becomes O(4k). For
{a}, it is also O(4k) time. ��
In the case of n < u, applying Lemma 8 to the conjugate sequence, the space
complexity becomes O(2ku1/2kn1−1/2k) and prefixsum can be supported in O(4k)
time. By replacing 2k with δ, we obtain Theorem 2.

5 A Data Structure for a Partition of an Integer

We are going to show Theorem 1.
We consider the following queries on a partition of an integer:

– accessp({A}, i) = A[i].
– boundp({A}, i) = #{j | Aj > i} = A[i].
– prefixsump({A}, i) =

∑i
l=0 A[l].

370 K. Sumigawa and K. Sadakane

Encoding this sequence as Lemma 3, it supports operations in constant time
but takes n + o(n) bits. It is quite larger than the information theoretic lower
bound, since this method ignores the condition

∑k−1
i=0 A[i] = n.

For convenience, we define A[i] = 0 (n > i ≥ k). First, the following holds
by definition.

Fact 3. A[i] ≤ √
n if i >

√
n.

In order to support the three operations accessp, boundp, prefixsump on the
partition, we divide the original partition {A} into two sequences {a1} and {a2}:

– {a1} ∈ DMS (n,
√

n); a1[k] = min(
√

n,A[k]).
– {a2} ∈ DMS (n,

√
n); a2[k] = min(

√
n,A[k]).

Fact 4.
n−1∑

k=0

a1[k] ≤ n,
n−1∑

k=0

a2[k] ≤ n.

In order to prove Theorem 1, we define the set of monotonic sequence SMS (n).

Definition 3. SMS (n) = {{a} ∈ DMS (n,
√

n) | ∑n−1
l=0 a[l] ≤ n}.

From Fact 4, two sequences {a1} and {a2} belong to SMS (n). We are going to
show that access, bound, prefixsum on the sequences which belong to SMS (n) can
be done in constant time by a data structure which uses O(

√
n) bits space. In

order to distinguish from the operations on DMS (n, u) and IMS (n, u), we denote
the operations on SMS (n) as accesss, bounds, prefixsums.

Applying Theorem2 to a sequence {a} ∈ SMS (n), we obtain a data structure
with O(n1/2+δ) bit space for any positive constant δ and supporting the three
types of operations in constant time. We are going to reduce the space complexity
to O(

√
n) bits.

First, divide the sequence {a} into
√

n blocks of length
√

n. Let the sequence
{h} be h[i] = a[

√
ni] − a[

√
n(i + 1)].

Lemma 9. #{i | h[i] ≥ j} = O(n1/4j−1/2)

Proof. In order to maximize l = #{i | h[i] > j}, we should set h[0] = h[1] =
· · · = h[l−1] = j, h[l] = h[l+1] = · · · = h[

√
n−1] = 0. Considering the condition

∑n−1
i=0 a[i] ≤ n, l should satisfy l(l−1)

√
nj

2 ≤ n. It means l = O(n1/4j−1/2). ��

Corollary 2. #{j | h[j] > 0} = O(n1/4)

We call a block Bj such that h[j] = 0 as an empty block, otherwise a non-empty
block.

Lemma 10. The k-th largest value of the sequence {h} is O
(√

n

k2

)

.

Proof. In order to maximize r = (the k-th largest value of the sequence {h}). It

is equivalent to O(n1/4r−1/2) > k, thus r satisfies r = O
(√

n

k2

)

. ��

An Efficient Representation of Partitions of Integers 371

For each block which satisfies h[i] > 0, we construct the sequence {di} where
di[j] = a[

√
n i+j]−a[

√
n(i+1)]. Since {di} ∈ DMS (

√
n, h[i]), this sequence can

be represented in O(2kn1/2kh[i]1−1/2k) bits of space for any positive constant k
as Lemmas 5 and 8. The sum of space usage over all non-empty blocks is

√
n∑

i=0

O(2kn1/2kh[i]1−1/2k) ≤ 2kζ

(

2 − 1
2k−1

)

O
(√

n
)
, (1)

where ζ(·) is Riemann zeta function. The term 2kζ(2−1/2k−1) becomes constant
when k ≥ 2.

In addition we have to store the sequence {c} defined as c[i] = a[
√

ni].
Because {c} ∈ DMS (

√
n,

√
n), this sequence can be compressed into O(

√
n)

bit space and we can access an arbitrary term in constant time as Lemma 3. A
bit vector BV is defined so that i-th bit is 1 if and only if i-th block Bi is not
empty. Thus, rank1(BV, k) means the number of non-empty blocks out of the
first k blocks.

The whole space usage is O(
√

n) bits and time complexity for accesss(i) is
O(2k) = O(1) since we fix k as a constant.

Algorithms 5 and 6 shows the procedure of operation accesss and bounds on
the sequence {a}, respectively.

Algorithm 5. accesss({a}, i)
b ← i/

√
n, r ← i%

√
n

return c[b + 1] + db[r]

Algorithm 6. bounds({a}, i)
j ← max{k | c[k] > i}, h ← i − c[j + 1], diff ← max{r | dj [r] ≥ h}
return (j + 1)

√
n − diff

For prefixsums, we prepare an additional sequence {g} of length O(n1/4).
Here g[i] is defined as g[k] =

∑k
i=0 s[i] where s[i] =(the sum of all terms in i-th

non-empty block).
Note that the number of non-empty blocks is O(n1/4) (Corollary 2). Storing

this sequence explicitly, it only takes O(n1/4 lg n) = o(
√

n) bits. We represent
all non-empty blocks using the data structure of Theorem1, therefore the whole
space complexity of representing blocks is same as Ineq. (1). This means the
space complexity of the data structure for {a} is O(

√
n) in total. We construct

the same one for the sequences {a1} and {a2}.

372 K. Sumigawa and K. Sadakane

Algorithm 7. prefixsums({a}, i)
b ← i/

√
n, r ← i%

√
n, e1 ← √

n · prefixsum({c}, b − 1), e2 ← g[rank1(BV, b)]
e3 ← c[b] · r
if b-th block is non-empty then

return e1 + e2 + e3 + prefixsum({db}, r)
else

return e1 + e2 + e3
end if

Algorithm 7 shows how to calculate prefixsums(i).
Using the algorithms above, three operations accessp, boundp, prefixsump on

a partition can be represented as:

accessp({A}, i) =

{
bounds({a2}, i) (i <

√
n),

accesss({a1}, i) (i ≥ √
n),

boundp({A}, i) =

{
accesss({a2}, i) (i <

√
n),

bounds({a1}, i) (i ≥ √
n),

prefixsump({A}, i) =

{
prefixsums({a2}, j) + i(n − j − 1) (i <

√
n),

prefixsums({a1}, i) + diff (i ≥ √
n),

where

j = max{k | A[k] ≤ i} = n − 1 − boundp({A}, i),

diff =

√
n−1∑

k=0

max(0, A[k] − √
n).

The value j can be found in constant time, and diff can be stored explicitly.
Thus, three operations are supported in constant time with O(

√
n) bits of space.

Consequently, Theorem 1 is obtained.

6 Conclusion

In this paper we have shown how to support operations
accessp, boundp, prefixsump on a partition of an integer. In particular, we con-
structed a data structure supporting constant time operations for these types
of queries and use only O(

√
n) bits of space. In order to achieve this space and

time complexity, we had to construct an efficient data structure for monotonic
sequences which can be used for any relation of n and u (n denotes the number
of terms and u is the size of the universe). Consequently, we devised a new data
structure for monotonic sequences which uses O(min{1

δ u
(

n
u

)δ
, 1

δ n
(

u
n

)δ}) bits
and operates in O(δ) or O(δ2) time. Though they are not optimal in space as
long as δ is set constant, they work for arbitrary n, u.

An Efficient Representation of Partitions of Integers 373

Our data structure cannot support the operation prefixsum boundp({A}, i)
on a partition, which returns min{k | prefixsump({A}, k) > i}.

As future work, we consider the following:

– support the operation prefixsum boundp.
– construct a succinct data structure for a partition of integer n, that is, a data

structure whose size matches the lower bound in Theorem 4.

References

1. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974)

2. El-Zein, H., Lewenstein, M., Munro, J.I., Raman, V., Chan, T.M.: On the succinct
representation of equivalence classes. Algorithmica 78(3), 1020–1040 (2017)

3. Fano, R.M.: On the number of bits required to implement an associative memory.
Project MAC, Massachusetts Institute of Technology (1971)

4. Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (2012)
5. Golynski, A., Orlandi, A., Raman, R., Rao, S.S.: Optimal indexes for sparse bit

vectors. Algorithmica 69(4), 906–924 (2014)
6. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc.

Lond. Math. Soc. 2(1), 75–115 (1918)
7. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representation of permu-

tation and functions. Theor. Comput. Sci. 438(22), 74–88 (2012)
8. Pibiri, G.E., Venturini, R.: Dynamic Elias-Fano representation. In: 28th Annual

Symposium on Combinatorial Pattern Matching (CPM 2017), vol. 78, issue 30, pp.
1–14 (2017)

9. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. ACM Trans. Algorithms 3(4) (2007). Article
No. 43

How Far From a Worst Solution
a Random Solution of a kCSP

Instance Can Be?

Jean-François Culus1 and Sophie Toulouse2(B)

1 CEREGMIA, Université des Antilles, Pointe-à-Pitre, France
jean-francois-culus@espe-martinique.fr
2 LIPN (UMR CNRS 7030), Institut Galilée,

Université Paris 13, Villetaneuse, France
sophie.toulouse@lipn.univ-paris13.fr

Abstract. Given an instance I of an optimization constraint satisfac-
tion problem (CSP), finding solutions with value at least the expected
value of a random solution is easy. We wonder how good such solutions
can be. Namely, we initiate the study of ratio ρE(I) = (EX [v(I, X)] −
wor(I))/(opt(I)−wor(I)) where opt(I), wor(I) and EX [v(I, X)] refer to
respectively the optimal, the worst, and the average solution values on I.
We here focus on the case when the variables have a domain of size q ≥ 2
and the constraint arity is at most k ≥ 2, where k, q are two constant
integers. Connecting this ratio to the highest frequency in orthogonal
arrays with specified parameters, we prove that it is Ω(1/nk/2) if q = 2,
Ω(1/nk−1−�logpκ (k−1)�) where pκ is the smallest prime power such that
pκ ≥ q otherwise, and Ω(1/qk) in (max{q, k} + 1})-partite instances.

Keywords: Average differential ratio
Optimization constraint satisfaction problems · Orthogonal arrays

1 Introduction

Given an integer q ≥ 2, an optimization Constraint Satisfaction Problem (CSP)
over Zq = Z/qZ considers a set {x1, . . . , xn} of Zq-valued variables and a set
{C1, . . . , Cm} of constraints, where a constraint consists of the application of
a (non constant) predicate Pi : Z

ki
q → {0, 1} to a tuple xJi

= (xi1 , . . . , xiki
)

of variables. The goal is then to assign values to the variables so as to satisfy
either as many, or as few constraints as possible. For instance, in the Maximum
Satisfiability Problem (MaxSat), the goal is to satisfy as many disjunctive clauses
as possible. In Min Lin−q, the goal is to satisfy as few equations of a system of
linear equations modulo q as possible.

Most often, a positive weight wi is associated with each constraint Ci. Given
a positive integer N , we represent by [N] the discrete interval {1, . . . , N}. The
goal is then to optimize an objective function of the form

∑m
i=1 wiCi =

∑m
i=1 wiPi(xJi

) =
∑m

i=1 wiPi(xi1 , . . . , xiki
)

c© Springer International Publishing AG, part of Springer Nature 2018
C. Iliopoulos et al. (Eds.): IWOCA 2018, LNCS 10979, pp. 374–386, 2018.
https://doi.org/10.1007/978-3-319-94667-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94667-2_31&domain=pdf

k CSPs: Approximation Guarantees Reached at the Average Solution Value 375

over Z
n
q where for all i ∈ [m], ki ∈ [n], Pi : Zki

q → {0, 1}, Ji = (i1, . . . , iki
) ⊆ [n]

and wi > 0. The special case when functions Pi all belong to a specific family F
of functions is referred to as CSP(F) in the literature. Given a predicate P , the
restriction to constraints of the form P (xJi

+ vi) where vi is a constant vector is
referred to as CSP−P. For example, given a positive integer k, XORk is the k-ary
boolean predicate that accepts entries (y1, . . . , yk) with y1 + . . . + yk ≡ 1 mod 2;
then Lin−2 = CSP−{XORk | k ∈ N

∗} = CSP({XORk, 1 − XORk | k ∈ N
∗}).

We here consider the slight generalization where functions Pi may be real-
valued. In the sequel, we denote by CSP−q the corresponding problem, and by
kCSP−q (resp., EkCSP−q) the special case when every constraint depends on
at most (resp., exactly) k variables, where k is a universal constant integer. As
kCSP−q is NP−hard even in case when q = k = 2 [1], a major issue as regards
optimization CSPs consists in charactering their approximation degree.

1.1 Around the Average Solution Value

Thereafter, given an instance I of CSP−q, we denote by v(I, .) its objective
function, by w(I) =

∑m
i=1 wi the total weight on I, by opt(I) and wor(I) respec-

tively the optimum and the worst solution values on I. It is convenient to think
of the average solution value on I as the expected value EX [v(I,X)] of a random
solution where X = (X1, . . . , Xn) is a vector of pairwise independent random
variables, each uniformly distributed over Zq. This value expresses as

EX [v(I,X)] =
∑m

i=1 wiEX [Pi(XJi
)] =

∑m
i=1 wirPi

where given i ∈ [m], rPi
refers to the average value of Pi over Z

ki
q . For example,

on an instance I of Lin−2, the average solution value equals w(I)/2.
Solutions with value at least EX [v(I,X)] are computationally easy to find,

e.g. using the conditional expectation technique [2]. Therefore, two questions can
naturally be asked: is it possible to compute within polynomial time solutions
that beat the average solution value, and what is the gain of the average solution
value over the worst solution value?

The former question notably leads to the concept of approximation of the
advantage over a random assignment [3], herein referred to as gain approxima-
tion. The advantage of a given solution x over a random assigment is the differ-
ence v(I, x) − EX [v(I,X)] if one maximizes, EX [v(I,X)] − v(I, x) if one mini-
mizes. Given ρ ∈]0, 1], x approximates the optimum gain |opt(I) − EX [v(I,X)]|
over EX [v(I,X)] within factor ρ iff x achieves a gain ratio

ρG(I, x) =
v(I, x) − EX [v(I,X)]
opt(I) − EX [v(I,X)]

(1)

at least ρ. A given CSP Π is ρ-gain approximable (where ρ possibly depends
on parameters of the considered instance I) if it is possible to compute within
polynomial time on every instance I of Π a solution with gain ratio at least ρ(I).
The corresponding issue consists in determining “the best” ρ for which Π is ρ-
gain approximable. H̊astad and Venkatesh introduced in [3] this approximation

376 J.-F. Culus and S. Toulouse

measure motivated by the fact that for numerous predicates P , for all constant
ε > 0, finding solutions with value at least (rP + ε)w(I) on almost satisfiable
instances of MaxCSP−P is NP−hard. For example, for all k ≥ 3, XORk is
such a predicate [4]. Thus for all k ≥ 3, k Lin−2 is NP−hard to approximate to
within any constant gain factor. It is, though, approximable within an expected
gain factor of Ω(

√
1/m) [3].

The latter question leads to the notion of advantage of a random solution
over the worst solution value. Namely, we say that the average solution value on
I is ρ-approximate if the ratio

ρE(I) =
EX [v(I,X)] − wor(I)

opt(I) − wor(I)
(2)

of the gain of EX [v(I,X)] over wor(I) to the diameter of I is at least ρ. Given a
CSP Π, we say that the average solution value is ρ-approximate for Π provided
that ρE(I) ≥ ρ(I) holds for all instances I of Π. The issue here consists in
exhibiting “the tightest” possible lower bound ρ for ρE . For example, on an
instance I of E3 Lin−2, as given any x, any equation is satisfied either by x
or by its complement, we have opt(I) + wor(I) = w(I) = 2 × EX [v(I,X)] [5].
Equivalently, ρE(I) is equal to 1/2. By contrast, for E2 Lin−2, we show that
ρE(I) ∈ Ω(1/n), while there are satisfiable instances I on which ρE(I) ∈ Θ(1/n).

Figure 1 pictures the quantities involved in ratios (1) and (2). The two ques-
tions are complementary, and the latter has potential to enlighten the former.
For instance, we may think that the more EX [v(I,X)] does a good job at getting
away from wor(I), the more it is computationally difficult to get away from it.

wor(I) opt(I)EX [v(I,X)] v(I, x)

Fig. 1. Quantities involved in ρG(I, x) and ρE(I).

1.2 Outline

Our goal is to estimate ρE(I) on instances I of kCSP−q given two integers
q ≥ 2, k ≥ 2. To the best of our knowledge, such a study has not been carried
out so far. We may nevertheless make mention of a result due to Feige et al., and
that concerns the restriction to submodular functions. Given a positive integer
n, a function P : {0, 1}n → R is submodular iff it satisfies:

P (y) + P (z) ≥ P (y1 ∨ z1, . . . , yn ∨ zn) + P (y1 ∧ z1, . . . , yn ∧ zn), y, z ∈ {0, 1}n

As shown in [6], given any maximizer x∗ of such a function P , we have:

EX [P (X)] ≥ P (x∗)/4 + P (x̄∗
1, . . . , x̄

∗
n)/4 + P (0, . . . , 0)/4 + P (1, . . . , 1)/4 (3)

k CSPs: Approximation Guarantees Reached at the Average Solution Value 377

Since a conical combination of submodular pseudo-boolean functions is submod-
ular, it follows from (3) that, on an instance I of MaxCSP−2 in which functions
Pi all are submodular, we have EX [v(I,X)] ≥ opt(I)/4+3×wor(I)/4 and thus,
ρE(I) ≥ 1/4.

In kCSP−q, thought, the functions that occur in the constraints are only
required to have arity at most k. In order to exhibit lower bounds for ρE(I), we
seek expressions of EX [v(I,X)] as a conical combination of the optimum solution
value and as few other solution values as possible. We adopt kind of a neighbour-
hood approach: we associate with each solution x of I a multisubset S(I, x) of
solutions with the same average solution value as the whole solution set, of rela-
tively small size, and in which x occurs at least once. In the next section, we show
how to derive such solution multisets from hypothetical orthogonal arrays (see
Definition 2) with specified parameters that rely on characteristics of I (main
theorem). In Sect. 3, we derive lower bounds for ρE either from orthogonal arrays
of the literature, or by reduction to CSPs over a bigger alphabet. These bounds
are summarized in Table 1. In the last section, we briefly discuss the obtained
results and perspectives for further research.

Table 1. Lower bounds for ρE on instances of kCSP−q given two integers q ≥ 2, k ≥ 2:
pκ refers to the smallest prime power greater than or equal to q.

q k restriction ρE

≥ 2 ≥ 2 (k + 1)-partite instances of kCSP−q 1/qk

≥ 2 < pκ (pκ + 1)-partite instances of kCSP−q Ω(1/qk)
≥ 3 = 3 (2�log2 q� + 2)-partite instances of 3CSP−q Ω(1/q3)
= 2 ≥ 2 kCSP−2 Ω(1/n�k/2�)
≥ 3 ≥ 2 kCSP−q Ω(1/nk−1−�logpκ (k−1)�)

2 Seeking Symmetries in the Solution Set

Let us start with a simple example. Given an integer q ≥ 2, we denote by Oq

the set of functions P : Zk
q → R with k ∈ N

∗ that satisfy:
∑q−1

a=0 P (y1 + a, . . . , yk + a)/q = rP , y ∈ Z
k
q (4)

Oq is a natural generalization to q-ary alphabets of such boolean functions P
as XOR3 that, when using a {−1, 1}-encoding of truth values, are odd. For
example, the predicate on Z

3
q that accepts solutions to equation y1 + y2 − y3 ≡

0 mod q is a function of Oq. By (4), given any instance I of CSP(Oq), we have:

v(I, x)/q +
∑q−1

a=1 v(I, (x1 + a, , . . . , xn + a))/q = EX [v(I,X)], x ∈ Z
n
q (5)

Taking (5) at a solution x with optimal value, one trivially gets that the average
value is 1/q-approximate on I. Hence, for this particular CSP, one shall define
S(I, x) by S(I, x) = {x + (a, . . . , a) | a ∈ Zq}.

378 J.-F. Culus and S. Toulouse

2.1 Partition-Based Solution Multisets

We base our solution multisets S(I, x), x ∈ Z
n
q on a specific partition V =

{V1, . . . , Vν} of [n]. Our solution multisets then rely on an array M with ν
columns and coefficients in Zq: given x ∈ Z

n
q , each row Mr = (M1

r , . . . ,Mν
r) of

M gives rise in S(I, x) to the vector obtained from x by translating for each
c ∈ [ν] by M c

r all its coordinates with index in Vc. Formally, let R refer to the
number of rows in the array, and let πV : Zν

q → Z
n
q be defined by:

πV(u)Vc
= (uc, uc, . . . , uc), c ∈ [ν] , u ∈ Z

ν
q (6)

Then we define S(I, .) by:

S(I, x) = (x + πV(Mr) | r ∈ [R]) , x ∈ Z
n
q (7)

We more specifically are interested in pairs (V,M) that satisfy:
∑R

r=1 Pi(xJi
+ πV(Mr)Ji

)/R = rPi
, i ∈ [m], x ∈ Z

n
q (8)

For example, when I is an instance of CSP(Oq), we may consider the pair
(V,M) where V = {[n]} and M = (0, 1, . . . , q − 1)T . Requirement (8) ensures
that for all solutions x of I, the average solution value over S(I, x) equals the
average solution value on I. Since this holds for all x ∈ Z

n
q , this in particular

holds in case when x is optimal. If R∗ refers to the number of times (0, . . . , 0)
occurs as a row in M , then R∗ precisely is the number of times x occurs in
S(I, x). Hence, provided that x is optimal, we have:

EX [v(I,X)] =
∑R

r=1 v(I, x∗ + πV(Mr))/R
= R∗ × v(I, x∗)/R +

∑
r∈[R]:Mr �=(0,...,0) v(I, x∗ + πV(Mr))/R

We deduce that the average solution value on I is R∗/R-approximate.
Therefore, we shall seek such pairs (V,M) on which the ratio R∗/R is as

high as possible. Observe that we may always assume that (0, . . . , 0) is a vector
of highest frequency in M , due to the fact that given any u ∈ Z

ν
q , the array

obtained by shifting every row of M by u still satisfies (8).

2.2 Solution Multisets Derived from Orthogonal Arrays

Given i ∈ [m], we denote by (ci,1, . . . , ci,ki
) the sequence of indices in [ν] such

that (i1, . . . , iki
) ∈ Vci,1 × . . . × Vci,ki

. Given any x ∈ Z
n
q , over S(I, x), Pi is

evaluated at entries

xJi
+ πV(Mr)Ji

= (xi1 + M ci,1
r , . . . , xiki

+ M
ci,ki
r), r ∈ [R]

(V,M) therefore in particular satisfies (8) at (i, x) provided that these entries
coincide the same number of times with each u ∈ Z

ki
q . Equivalently, (8) is satisfied

at (i, x) provided that each u ∈ Z
ki
q occurs R/qki times in vector multiset

((M ci,1
r , . . . ,M

ci,ki
r) | r ∈ [R]) (9)

k CSPs: Approximation Guarantees Reached at the Average Solution Value 379

On the one hand, this may not occur unless indices ci,1, . . . , ci,ki
are pairwise

distinct. On the other hand, assuming that these indices indeed are pairwise
distinct, {ci,1, . . . , ci,ki

} can be any at most k-cardinality subset of [ν]. These
observations suggest to consider a pair (V,M) where V is a strong coloring of
the primary hypergraph of I, and M is orthogonal of strength k:

Table 2. An OA(27, 5, 3, 2) on Z3 (we picture the transpose).

M1

M2

M3

M4

M5

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 0 2 0 1 1 1 2 2 1 1 2 0 0 2 0 1 2 0 1 2 1 2 2 0 0 1
0 0 2 1 0 1 2 1 2 1 2 1 2 2 0 0 0 1 1 2 0 1 0 2 1 2 0
0 0 2 1 1 2 2 0 1 2 0 1 0 2 1 2 1 0 1 1 2 0 2 0 2 1 0

Definition 1. The primary hypergraph of a CSP instance I is the hypergraph
GI where: for each j ∈ [n], there is a vertex j in GI ; for each i ∈ [m], there
is a hyperedge ei = (i1, . . . , iki

) in GI . A strong coloring of GI is a partition
{U1, . . . , Uν} of [n] such that for all c ∈ [ν] and all i ∈ [m], |Uc∩{i1, . . . , iki

}| ≤ 1.
I is said ν-partite whenever such a partition exists.

Definition 2. Let q ≥ 2, t ≥ 1, ν ≥ t and R be four integers, and Σ be a set
of q symbols. Then an R × ν array M with coefficients in Σ is an Orthogonal
Array of strength t, OA(R, ν, q, t) in short, if given any sequence J = (c1, . . . , ct)
of t column indices, each v ∈ Σt occurs the same number of times as a row in
subarray MJ = (M c1 , . . . ,M ck). (See Table 2 for an illustration.)

Since ki ≤ k, i ∈ [m], such a pair (V,M) indeed satisfies for all i ∈ [m] that the
vectors of (9) coincide R/qki times with each u ∈ Z

ki
q and thus, (8).

It is possible to reduce the number of columns and possibly the strength of
the array if functions Pi all satisfy, for some integer t > 0, that their average
value when fixing any t of their variables is equal to their average value. Namely,
given two integers q ≥ 2, t ≥ 1, we define It

q as the set of functions P : Zk → R

with k ∈ N
∗ that satisfy:

∑
y∈Zk

q :yJ=v P (y)/qk−t = rP , J ⊆ [k], |J | = t, v ∈ Z
t
q (10)

Functions in It
q are known to bring inapproximability bounds for kCSP−q.

Notably, for all k ≥ 3, if the accepting entries of a k-ary predicate P ∈ I2
q

form a subgroup of Zk
q , then MaxCSP−P is NP−hard to approximate within

any constant standard factor greater than rP [7]. For instance, the predicate that
accepts solutions to equation y1 + y2 − y3 ≡ 0 mod q over Z3

q is such a predicate.
Thus assume that Pi ∈ It

q, i ∈ [m] holds for some t > 0. When this occurs, it
is possible to fix up to t coordinates of πV(Mr)Ji

, and still obtain when averaging
Pi(xJi

+ πV(Mr)Ji
) over r ∈ [R] the average value of Pi. Hence, rather than a

380 J.-F. Culus and S. Toulouse

strong coloring {U1, . . . , Uν} of GI , we consider partition V = {U1, . . . , Uν−t, V0}
where V0 = Uν−t+1∪ . . .∪Uν of [n]. Array M consequently has ν −t+1 columns.
Given i ∈ [m], we denote by Ki the set {ci,1, . . . , ci,ki

}∩{1, . . . , ν − t} of column
indices, by si it cardinality. For the sake of clarity, we assume w.l.o.g. that
Ki = {ci,1, . . . , ci,s}. Over S(I, x), Pi is evaluated at entries

(xi1 + M
ci,1
r , . . . , xisi

+ M
ci,si
r , xisi+1 + Mν−t+1

r , . . . , xiki
+ Mν−t+1

r), r ∈ [R]

where ki −si ≤ t and si ≤ min{ν−t, ki} ≤ min{ν−t, k}. We deduce that setting
e.g. M = N × {0} where N is an orthogonal array of strength min{ν − t, k} on
ν − t columns, one obtains a pair (V,M) that satisfies (8).

Thereafter, given an instance I of CSP−q, we denote by νI the strong chro-
matic number of GI (that is, νI is the smallest integer such that I is νI -partite),
and by tI the greatest integer such that Pi ∈ ItI

q , i ∈ [m] (thus tI possibly is 0).
In all, the preceding discussion establishes the following connection between the
average solution value on CSP instances and orthogonal arrays:

Theorem 1. Given any three integers q ≥ 2, t ≥ 1 and ν ≥ t, we define ρ(ν, q, t)
as the greatest ρ ∈ [0, 1] for which an OA(R, ν, q, t) with highest frequency ρ
exists. (For example, the OA(27, 5, 3, 2) of Table 2 does achieve ρ(5, 3, 2) = 2/27.)

Then for all integers k ≥ 2, q ≥ 2, the average solution value on an instance
I of kCSP−q is ρ(νI − tI , q,min{k, νI − tI})-approximate.

3 Approximation Quality of the Average Solution Value

3.1 From an Alphabet Size to a Greater One

We derive lower bounds for ρE from orthognonal arrays with a relatively small
number of rows of the literature. Such arrays often require q to be a prime power.
However, we can derive lower bounds for ρE in case when q is not a prime power
by reduction to the case when q is a prime power:

Theorem 2. Let q ≥ 3, k ≥ 2 be two integers. Then for all primes p, the average
solution value on an instance I of kCSP−q is ρ(νI , p

�logp q�, k)-approximate.

Proof. Let κ = �logp q, d = pκ, and let π = (π1, . . . , πn) be a vector of surjective
maps from Zd to Zq. We interpret I as the instance fπ(I) of CSP−d where:

1. for each j ∈ [n], there is in fπ(I) a variable zj with domain Zd;
2. for each i ∈ [m], there is in fπ(I) a constraint Pi(πi1(zi1), . . . , πiki

(ziki
)), with

the same associated weight wi as Ci in I.

So as to retrieve solutions of I from solutions of fπ(I), we define gπ(I, .) by
gπ(I, z) = (π1(z1), . . . , πn(zn)), z ∈ Z

n
d . By construction, gπ(I, .) is surjective,

and satisfies for all z ∈ Z
n
d that v(I, gπ(I, z)) = v(fπ(I), z). The extremal solution

values on I and fπ(I) therefore satisfy:

opt(fπ(I)) = opt(I), wor(fπ(I)) = wor(I) (11)

k CSPs: Approximation Guarantees Reached at the Average Solution Value 381

By contrast, EZ [v(fπ(I), Z)] may differ from EX [v(I,X)], due to the fact
that two distinct vectors x, x′ ∈ Z

n
q may be the image by gπ(I, .) of a distinct

number of vectors of Z
n
d . Hence, rather than a single vector π, we consider a

vector Π = (Π1, . . . , Πn) of random maps that are independently and uniformly
distributed over the set M of surjective maps from Zd to Zq.

Let j ∈ [n], a ∈ Zd, b ∈ Zq, b′ ∈ Zq\{b}. Consider then function σ on M that
maps any π ∈ M to the map σ(π) : Zd → Zq defined by σ(π)(c) = b′ if π(c) = b,
b if π(c) = b′, and π(c) otherwise. σ clearly is a bijection on M. Hence, we have:

|{π ∈ M|π(a) = b}| = |{π ∈ M|σ(π)(a) = b′}| = |{π ∈ M|π(a) = b′}|

Since
∑q−1

b=0 PΠj
[Πj(a) = b] = 1 holds for all j ∈ [n] and all a ∈ Zd, we

first deduce that probabilities PΠj
[Πj(a) = b] all are equal to 1/q. We then

deduce that probabilities PΠ [gΠ(I, z) = x], z ∈ Z
n
d , x ∈ Z

n
q all are equal to∏n

j=1 PΠj
[Πj(zj) = xj] = 1/qn. Accordingly, given any z ∈ Z

n
d , we have:

EΠ [v(I, gΠ(I, z))] =
∑

x∈Zn
q

v(I, x) × PΠ [gΠ(I, z) = x] = EX [v(I,X)]

We eventually deduce that the expected average solution value on fΠ(I) satisfies:

EΠ [EZ [v(fΠ(I), Z)]] = EZ [EΠ [v(I, gΠ(I, Z))]] = EX [v(I,X)] (12)

By (12), there exists π∗ ∈ Mn such that EZ [v(fπ∗(I), Z)] ≤ EX [v(I,X)]
while by (11), for such a vector π∗, we have ρE(I) ≥ ρE(fπ∗(I)). Since the
supports of the constraints are unchanged by fπ, π ∈ Mn, the result follows
from Theorem 1. ��

3.2 Deriving Bounds from Orthogonal Arrays of the Litterature

Let q ≥ 2, t ≥ 1 and ν ≥ t be three integers. The smallest integer R such
that an OA(R, ν, q, t) exists is referred to as F (ν, q, t) in the literature. The
highest frequency of a word in an array that achieves F (ν, q, t) naturally is at
least 1/F (ν, q, t). Also observe that F (ν, q, k) ≤ F (ν′, q, k) naturally holds for
all integers ν′ > ν. Hence, according to Theorems 1 and 2, given any instance I
of kCSP−q, we may exhibit lower bounds for ρE(I) using inequalities:

ρE(I) ≥ 1/F (ν′, q,min{νI − tI , k}), ν′ ∈ N, ν′ ≥ νI − tI (13)

ρE(I) ≥ 1/F (ν′, p�logp q�, k), ν′, p ∈ N, ν′ ≥ νI , p prime (14)

First, we consider the case of instances with a bounded strong chromatic
number. Given three integers q ≥ 2, k ≥ 1, ν ≥ k, there exists an OA(qk, ν, q, k)
provided that one of the following cases occurs (see e.g. [8]):

1. ν ∈ {k, k + 1};
2. q is a prime power, q > k and ν ∈ {k + 2, . . . , q + 1};
3. k = 3, q is a power of 2, q > 3 and ν = q + 2.

382 J.-F. Culus and S. Toulouse

1. is trivial, considering M � Z
k
q if ν = k, M � {y ∈ Z

k+1
q | y1 + . . . + yk+1 ≡

0 mod q} otherwise. 2. and 3. are due to Bush. We deduce from (13) and (14)
the following lower bounds for ρE in O(max{q, k})-partite instances of kCSP−q:

Corollary 1. Let q ≥ 2, k ≥ 2, ν ≥ k be three integers with ν ∈ O(max{q, k})
and I be a ν-partite instance of kCSP−q. We denote by pκ the smallest prime
power greater than or equal to q. Then on I, ρE(I) is bounded below by:

1. 1/qν−tI > 1/qk if ν < k + tI ;
2. 1/qk if ν ≤ k + tI + 1;
3. 1/qk if q is a prime power, q > k and ν ≤ q + tI + 1;
4. 1/pκk ≥ 1/(2(q − 1))k if q is not a prime power, pκ > k and ν ≤ pκ + 1;
5. 1/q3 if k = 3, q is a power of 2, q > 3 and ν ≤ q + tI + 2;
6. 1/23�log2 q� ≥ 1/(2(q−1))3 if k = 3, q is not a power of 2 and ν ≤ 2�log2 q�+2.

For example, on a k-partite instance I of Lin−q in which equations all are
of the form (xi1 + . . . + xik

≡ αi,0 mod q), we have ρE(I) ≥ 1/q. For greater
integers ν, we refer to families of orthogonal arrays that originate from infinite
families of linear codes. Over the boolean alphabet, we consider dual codes of
BCH codes. Namely, binary BCH codes allow for all integers κ ≥ 3, k ≥ 1 such
that 2κ − 1 ≥ 2k + 1 to construct an OA(R, 2κ − 1, 2, 2k) with R ≤ 2κk (see
e.g. [8,9]). For such pairs (κ, k), we consequently have F (2κ − 1, 2, 2k) ≤ 2κk.
Besides, as reported in [8], F (2κ, 2, 2k + 1) = 2 × F (2κ − 1, 2, 2k). Hence, it also
holds for such pairs (κ, k) that F (2κ, 2, 2k + 1) ≤ 21+κk. Accordingly:

Corollary 2. Let k ≥ 2 be an integer. Then on all instances I of kCSP with
νI − tI ≥ k + 2, ρE(I) is bounded below by:

1. 1/2�log2(νI−tI+1)�	k/2
 ≥ 1/2	k/2
 × 1/(νI − tI)	k/2
 if k is even;
2. 1/21+�log2(νI−tI)�	k/2
 ≥ 1/21+	k/2
 × 1/(νI − tI − 1)	k/2
 if k is odd.

For MaxE2 Lin−2, which is a special case of 2CSP(I1
2), we thus obtain for

ρE a lower bound of 1/2�log2 νI�. And this is a tight bound: given n ∈ N
∗, let

In refer to the instance where GIn
is the complete graph K2n, and equations all

are of the form (xj + xh ≡ 0 mod 2). In is trivially satisfiable by the vectors of
allzeros and of allones, and v(In, .) is minimized at balanced vectors. Hence, we
have:

ρE(In) = (
(
2n
2

)
/2 − 2

(
n
2

)
)/(

(
2n
2

) − 2
(
n
2

)
) = 1/(2n) = 1/νIn

, n ∈ N
∗

For greater prime powers q, trace-codes of Reed-Solomon codes give rise for
all integers s, k, λ such that qs ≥ k > qλ ≥ 1 to q1+s(k−1−λ) × qs orthogonal
arrays of strength k on Zq [10]. Accordingly:

Corollary 3. Let q ≥ 3, k ≥ 2 be two integers. We denote by pκ the smallest
prime power such that pκ ≥ q, by λ the greatest integer such that k > pκλ. If q
is a prime power, then for all instances I of kCSP−q with νI − tI ≥ k, we have:

ρE(I) ≥ 1/q1+�logq(νI−tI)�(k−1−λ) ≥ 1/qk−λ × 1/(νI − tI − 1)k−1−λ

Otherwise, for all instances I of kCSP−q with νI ≥ k, we have:

ρE(I) ≥ 1/pκ(1+�logpκ νI�(k−1−λ)) ≥ 1/(2(q − 1))k−λ × 1/(νI − 1)k−1−λ

k CSPs: Approximation Guarantees Reached at the Average Solution Value 383

4 Concluding Remarks

In order to evaluate the quality of the average solution value, one shall compare
the lower bounds we obtain for ρE to both gain and differential approximability
bounds of the literature. The differential approximation measure (see [11] for an
introduction) evaluates the performance of a given solution x by the ratio

ρD(I, x) =
v(I, x) − wor(I)
opt(I) − wor(I)

(15)

Thus ρE(I) precisely is the average differential ratio on I. ρ-differential approx-
imable problems are defined just as the same as for the gain approximation
measure. Notice that by definition of ρG(I, x), ρE(I) and ρD(I, x), we have:

ρD(I, x) = ρE(I) + (1 − ρE(I)) × ρG(I, x) (16)

Hence, if a given CSP Π is ρ-gain approximable, and the average solution value
is δ-approximate for Π, then Π is [ρ + δ(1 − ρ)]-differential approximable.

We summarize in Table 3 the bounds we are aware of. In this table, we take
into account the fact that gain approximability lower bounds that hold for Lin−2
somehow extend to kCSP−q for all integers q ≥ 2, k ≥ 3:

Proposition 1. For all integers q ≥ 2, k ≥ 2, if (k�log2 q)Lin−2 is approx-
imable within gain factor ρ, then kCSP−q is approximable within differential
factor ρ and, provided that q is a power of 2, within gain factor ρ.

Table 3. Differential (ρD) and gain (ρG) approximability bounds for kCSP−q that
are achievable by either deterministic (det.) or randomized (exp.) algorithms, and their
comparison to ρE : pκ refers to the smallest prime power ≥ q; inapproximability bounds
are given for all constant ε > 0, and assume P �= NP.

Approximability bounds in k-partite instances of EkCSP−q
k q tI ρG det. ρD det. ρE

0.561 [13] 0.78 [13] = 1/2
≥ 3 ≥
= 2 = 2 = 1

2 = k − 1 ¬ ε [7] ¬ 1/q + ε [7] ≥ 1/q

≥ 3 ≥ 2, ≤ k = 2 ¬ ε [7] ¬ O(k/qk−1) + ε [7] ≥ 1/qk−2

≥ 3 ≥ k = 2 ¬ ε [7] ¬ O(k/qk−2) + ε [7] ≥ 1/qk−2

Gain approximability bounds for EkCSP−q
k q tI ρG det. ρG exp. ρE

= 2 = 2 ≥ 0 Ω(1/ lnn) [14] Ω(1/νI)
= 3 = 2 = 2 Ω(1/m) [3] Ω(

√
lnn/n) [15] = 1/2

≥ 4 = 2 ≥ 0 Ω(1/m) [3] Ω(1/
√

m) [3] Ω(1/ν
�k/2�
I)

≥ 2 = 2κ, ≥ 4 ≥ 0 Ω(1/m) Ω(1/
√

m) Ω(1/ν
k−1−�log2κ (k−1)�
I)

Other differential approximability bounds for kCSP−q
k, q ρD det. ρD exp. ρE

k = 2 or (k, q) = (3, 2) Ω(1) [16, 17] Ω(1/νI)
k ≥ 3 and q ≥ 3 Ω(1/m) Ω(1/

√
m) Ω(1/ν

k−1−�logpκ (k−1)�
I)

384 J.-F. Culus and S. Toulouse

Proof (sketch). Let I be an instance of kCSP−q. First map I to an instance J
of (κk)CSP−2 where κ = �log2 q using a binary encoding of the variables. Then
map J to an instance H of (κk)Lin−2 using the discrete Fourier transform.
When q = 2κ, the average solution values on I and J (and thus, on H) are
identical. ��

For such symptomatic CSPs as the restriction of CSP(Ik−1
q) to k-partite

instances for all k ≥ 3, and CSP(Oq), EX [v(I,X)] trivially brings the same
differential approximation guarantee of 1/q, which essentially is optimal, as in
the standard approximation framework. By contrast, for 2CSP−2, EX [v(I,X)]
is of rather low quality, considering that Ω(1/n) is a tight lower bound for ρE(I),
while 2CSP−2 is approximable within gain and differential factor respectively
Ω(1/ ln n) and Ω(1). For greater integers k, in dense instances of kCSP−2, the
factor of Ω(1/n	k/2
) EX [v(I,X)] gains over wor(I) is significantly greater than
the best gain approximation guarantee of Ω(1/m) known so far, and comparable
to the best expected gain factor of Ω(1/

√
m) known so far.

Starting with an R×ν-array M on Zq, we can define a probability distribution
on Z

ν
q by associating with each vector u ∈ Z

ν
q its frequency in M . Then, M is

orthogonal of strength t iff this distribution is balanced t-wise independent. A
function P : Zν

q → R with minimal value P∗ similarly belongs to It
q iff 1/qν ×

(P −P∗)/(rP −P∗) defines a balanced t-wise independent distribution on Z
ν
q . This

classic notion is strongly involved in the exhibition of approximation resistant
predicates (notably see [7,12]). The analysis we proposed therefore reinforces
the connection between balanced t-wise independence and approximability of
kCSP−q by allowing the establishment of positive results. Observe that the
arrays we used contain no duplicated rows. Therefore, lower bounds for ρE in ν-
partite instances could be improved by exhibiting orthogonal arrays (or balanced
k-wise independent measures) that maximize their highest frequency, especially
in case when ν ∈ Θ(max{q, k}). Table 4 provides a few illustrations of this fact.

The average differential ratio has potential to provide new insights into
CSPs. First, the method we used to obtain lower bounds for ρE not only shows
that EX [v(I,X)] achieves some differential ratio ρ, but also indicates that ρ-
differential approximate solutions are spread all over the solution set. It thus
provides additional information on the repartition of solution values. Although
we took into account parameters νI and tI so as to refine our analysis, apart
from the arity of their constraints, we did not restrict the instances we consid-
ered. Hence, a next step should be the identification of hypergraphs and function
properties that allow to build partition-based solution multisets of low cardinal-
ity that satisfy (8). More generally, it would be worthwhile to characterize such
functions families F as the set of submodular functions for which MaxCSP(F)
or MinCSP(F) admits a constant lower bound for ρE . Finally, the properties of
ρE viewed as a complexity measure, including its connections to other measures,
should be investigated. Notably, because for E3 Lin−2, ρE ∈ O(1), the authors
of [5] could derive from the hardness result of [4] as regards E3 Lin−2 a constant
inapproximability bound of 0 for the diameter of 3 Sat instances.

k CSPs: Approximation Guarantees Reached at the Average Solution Value 385

Table 4. Comparison of arrays that maximize their highest frequency among those
that achieve F (ν, q, k) (on the right) to arrays that minimize their number of rows
among those that achieve ρ(ν, q, k) (on the left). In both cases, we indicate the ratio
R∗/R of the highest number of occurrences of a word to the number of rows in the
array. (These arrays were calculated by computer using linear programs.)

ν ν
q k 4 5 6 7 8 9 4 5 6 7 8 9

2
2 2/12 2/12 1/8 1/8 2/20 2/20 1/8 1/8 1/8 1/8 1/12 1/12
4 1/16 1/16 3/80 4/144 6/240 1/16 1/16 1/32 1/64 1/64
6 − 1/32 1/64 1/64 4/448 6/960 − 1/32 1/64 1/64 1/128 1/256

3 2 1/9 2/27 3/45 3/45 1/9 1/18 1/18 1/18
4 2 1/16 1/16 7/160 1/16 1/16 1/32

References

1. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theor. Comput. Sci. 1(3), 237–267 (1976)

2. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

3. H̊astad, J., Venkatesh, S.: On the advantage over a random assignment. Random
Struct. Algorithms 25(2), 117–149 (2004)

4. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
5. Escoffier, B., Paschos, V.T.: Differential approximation of MIN SAT, MAX SAT

and related problems. EJOR 181(2), 620–633 (2007)
6. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular

functions. SIAM J. Comput. 40(4), 1133–1153 (2011)
7. Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J.

ACM 63(3), 27:1–27:32 (2016)
8. Hedayat, A., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applica-

tions. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1478-6
9. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North

Holland Publishing Co., Amsterdam (1977)
10. Bierbrauer, J.: Construction of orthogonal arrays. J. Stat. Plann. Infer. 56(1),

39–47 (1996)
11. Demange, M., Paschos, V.T.: On an approximation measure founded on the links

between optimization and polynomial approximation theory. Theor. Comput. Sci.
158(1–2), 117–141 (1996)

12. Austrin, P., H̊astad, J.: Randomly supported independence and resistance. SIAM
J. Comput. 40(1), 1–27 (2011)

13. Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality.
SIAM J. Comput. 35(4), 787–803 (2006)

14. Nemirovski, A.S., Roos, C., Terlaky, T.: On maximization of quadratic form over
intersection of ellipsoids with common center. Math. Program. 86(3), 463–473
(1999)

15. Khot, S., Naor, A.: Linear equations modulo 2 and the $L 1$ diameter of convex
bodies. SIAM J. Comput. 38(4), 1448–1463 (2008)

16. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization.
Optim. Methods Softw. 9(1–3), 141–160 (1998)

https://doi.org/10.1007/978-1-4612-1478-6

386 J.-F. Culus and S. Toulouse

17. Culus, J.F., Toulouse, S.: 2 CSPs all are approximable within some constant dif-
ferential factor. In: 5th International Symposium on Combinatorial Optimization
(ISCO) (20I8, to appear)

Author Index

Ajay, Jammigumpula 1
Alecu, Bogdan 14
Arimura, Hiroki 201
Atminas, Aistis 26

Baiocchi, Pierluigi 39
Bardini Idalino, Thais 52
Batsyn, Mikhail 311
Beck, Moritz 65
Benkoczi, Robert 78
Bhattacharya, Binay 78
Blondin Massé, Alexandre 90
Bulteau, Laurent 102

Calamoneri, Tiziana 39
Chen, Li-Hsuan 115
Colbourn, Charles J. 349
Conte, Alessio 201
Covella, Barbara 128
Culus, Jean-François 374

Dahn, Christine 141
de Carufel, Julien 90
Dondi, Riccardo 153
Duchon, Philippe 165

Feng, Tianfeng 177
Frati, Fabrizio 128

Goto, Keisuke 323
Goupil, Alain 90

Hamel, Sylvie 224
Higashikawa, Yuya 78
Horiyama, Takashi 177
Hsieh, Sun-Yuan 115
Hung, Ling-Ju 115

I, Tomohiro 323

Jia, Wenlong 298

Kameda, Tsunehiko 78
Katoh, Naoki 78
Klasing, Ralf 115
Kleine, Kristoffer 189
Komano, Yuichi 250
Kotsireas, Ilias 189
Kriege, Nils M. 141
Kurita, Kazuhiro 201

Lapointe, Mélodie 90
Li, Shuai Cheng 298
Lozin, Vadim 14, 26

Markarian, Christine 214
Mauri, Giancarlo 153
Milosz, Robin 224
Misra, Neeldhara 237
Mizuki, Takaaki 250
Monti, Angelo 39
Morizumi, Hiroki 263
Moura, Lucia 52
Mutzel, Petra 141, 273

Nadeau, Émile 90
Nanashima, Mikito 285
Ng, Yen Kaow 298
Nicaud, Cyril 165
Nikolaev, Alexey 311

Oettershagen, Lutz 273
Ohno, Tatsuya 323
Okamoto, Yoshio 177
Otachi, Yota 177

Patrignani, Maurizio 128
Petreschi, Rossella 39
Pierrot, Adeline 224
Pratap, Rameshwar 336

Rizzi, Romeo 102
Roy, Sasanka 1

Sadakane, Kunihiko 361
Saitoh, Toshiki 177
Sakamoto, Hiroshi 323
Sarkar, Kaushik 349
Seidel, Stephen A. 349
Sen, Sandeep 336
Sikora, Florian 153
Simos, Dimitris E. 189
Storandt, Sabine 65
Sumigawa, Kentaro 361
Syrotiuk, Violet R. 349

Takabatake, Yoshimasa 323
Toulouse, Sophie 374

Uehara, Ryuhei 177
Uno, Takeaki 177, 201

Vandomme, Élise 90
Vialette, Stéphane 102

Wasa, Kunihiro 201

Zamaraev, Viktor 14, 26
Zoppis, Italo 153

388 Author Index

	Preface
	Organization
	Invited Talks
	Some Recent New Directions in Multivariate Algorithmics
	Survey of Some Recent Near Polynomial Time Results for Parity Games��
	Range Minimum Queries and Applications
	Contents
	Collision-Free Routing Problem with Restricted L-Path
	1 Introduction
	2 Hardness of CCRP
	3 Approximation for MIS of GLt
	4 Unit L Graph Approximation
	5 Conclusion
	References

	Linear Clique-Width of Bi-complement Reducible Graphs
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Linear Clique-Width
	2.3 Classes of Graphs

	3 l-Critical Graphs
	4 Unboundedness of Linear Clique-Width
	5 Minimality
	6 Conclusion
	References

	Linear Ramsey Numbers
	1 Introduction
	2 Classes with Non-linear Ramsey Number
	3 Classes with Linear Ramsey Number
	3.1 Claw- and Co-claw-free Graphs
	3.2 Diamond- and Co-diamond-free Graphs
	3.3 2K2- and C4-Free Graphs
	3.4 2K2- and Diamond-Free Graphs
	3.5 The Class of (P4,C4, Co-claw)-Free Graphs
	3.6 The Class of (Co-diamond, Paw, Claw)-Free Graphs

	References

	Graphs that Are Not Pairwise Compatible: A New Proof Technique (Extended Abstract)
	1 Introduction
	2 Proof Technique
	3 The Square of a Cycle
	3.1 Forbidden Tri-Colorings of Some Subgraphs of Cn 2
	3.2 Graph Cn 2, n 8, Is Not PCG
	3.3 Graph Cn2, n 8, Is a Minimal Graph that Is Not PCG

	4 Other Results Due to the Application of Our Technique
	4.1 The Wheel
	4.2 The Strong Product of a Cycle and P2

	5 Conclusions
	References

	Efficient Unbounded Fault-Tolerant Aggregate Signatures Using Nested Cover-Free Families
	1 Introduction
	2 Background on Fault-Tolerant Schemes
	2.1 Fault-Tolerant Aggregate Signature
	2.2 Cover-Free Family Constructions

	3 Our General Unbounded Scheme
	4 Construction of Unbounded Schemes with Non Constant Compression Ratio
	4.1 Nested Family for d = 1
	4.2 Nested Family for d 2

	5 Final Remarks and Open Problems
	References

	Minimum Polygons for Fixed Visibility VC-Dimension
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Outline

	2 Minimum Polygons
	2.1 Minimum Polygons for VC-Dimension 2
	2.2 Minimum Polygons for VC-Dimension 3

	3 Visibility Structure
	4 Computation of the Visibility VC-Dimension
	4.1 Naive Algorithm and Improvements
	4.2 Stack-Based Algorithm

	5 Experiments
	5.1 VC-Dimension Computation
	5.2 VC-Dimension Distribution in Random Polygons

	6 Conclusion and Open Problems
	References

	Minsum k-Sink Problem on Dynamic Flow Path Networks
	1 Introduction
	2 Preliminaries
	3 DP Formulation
	3.1 Derivation of Recurrence Formulae
	3.2 Computing Switching Points

	4 Data Structures for Computing R(j,i) and L(j,i)
	5 Putting Pieces Together
	5.1 Computing R(j,i)
	5.2 Main Theorem

	6 Conclusion and Discussion
	References

	Fully Leafed Induced Subtrees
	1 Introduction
	2 Fully Leafed Induced Subtrees
	3 Computing the Leaf Function of a Graph
	4 Fully Leafed Induced Subtrees of Trees
	5 Perspectives
	References

	Pattern Matching for k-Track Permutations
	1 Introduction
	2 Step-by-Step: Definitions and Propositions
	2.1 Coloring
	2.2 Embedding
	2.3 Leftmost Pre-embeddings
	2.4 Canonical Coloring
	2.5 Ordered Coloring

	3 Algorithm
	4 Benchmarks
	4.1 General Statements
	4.2 Generating Random k-Split Permutations
	4.3 k-Track Permutations

	References

	Approximation Algorithms for the p-Hub Center Routing Problem in Parameterized Metric Graphs
	1 Introduction
	2 NP-hardness
	3 New Approximation Algorithms
	4 Concluding Remarks
	References

	On the Area Requirements of Straight-Line Orthogonal Drawings of Ternary Trees
	1 Introduction
	2 General Ternary Trees
	3 Complete Ternary Trees
	References

	A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Max-Cut for Embedded 1-Planar Graphs
	3.1 Removing the Crossings
	3.2 The Max-Cut Algorithm
	3.3 Correctness
	3.4 Running Time

	4 Conclusion and Open Problems
	References

	Covering with Clubs: Complexity and Approximability
	1 Introduction
	2 Preliminaries
	3 Computational Complexity
	3.1 2 Club Cover(3) is NP-Complete
	3.2 3 Club Cover(2) is NP-Complete

	4 Hardness of Approximation
	5 An Approximation Algorithm for Min 2 Club Cover
	6 Conclusion
	References

	On the Expected Number of Distinct Gapped Palindromic Factors
	1 Introduction
	2 Definitions and Notations
	3 Expected Number of Distinct -Gapped Factors
	3.1 Upper Bound for the Probability of a Given -Gapped Pattern
	3.2 Upper Bound for Given Frequency Vectors
	3.3 Optimizing Jr(x,y) and K,r(x,y), for Fixed and r
	3.4 Optimizing G,r(x,y), for Fixed and r
	3.5 Optimizing the Exponent on and r
	3.6 Proof of Theorem 1

	4 Typical Composition Vectors of Palindromic Factors
	5 Conclusion
	References

	Computational Complexity of Robot Arm Simulation Problems
	1 Introduction
	2 Preliminaries
	3 Weighted Eulerian Path Problem
	4 Elastic Linkage Problem
	5 Traverse Problem of a Tree by a Path
	References

	Evaluation of Tie-Breaking and Parameter Ordering for the IPO Family of Algorithms Used in Covering Array Generation
	1 Introduction
	2 Background
	3 The IPO Family of Algorithms
	3.1 Tie-Breakers
	3.2 Tuple Enumeration Order
	3.3 Parameter Ordering

	4 Evaluation
	4.1 Setup
	4.2 Results
	4.3 665534 (t=3)

	5 Conclusion
	References

	Efficient Enumeration of Subgraphs and Induced Subgraphs with Bounded Girth
	1 Introduction
	2 Preliminaries
	3 Enumeration by Binary Partition
	4 Induced Subgraph Enumeration
	5 Subgraph Enumeration
	6 Conclusion
	References

	An Optimal Algorithm for Online Prize-Collecting Node-Weighted Steiner Forest
	1 Introduction
	2 Related Work
	3 Online Algorithm
	4 Competitive Analysis
	5 Open Problems
	References

	Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem
	1 Introduction
	2 Basic Definitions
	3 3-Cycle Theorem
	3.1 Definitions and Properties
	3.2 Proof of the 3-Cycle Theorem

	4 Link with the 3-Hitting Set Problem
	5 Perspectives
	References

	On the Parameterized Complexity of Colorful Components and Related Problems
	1 Introduction
	2 Problem Definitions and Notation
	3 A Simple FPT Algorithm for MEC
	4 An Improved Kernel for MEC on Trees
	5 Structural Parameterization: Vertex Cover
	6 Concluding Remarks
	References

	Analysis of Information Leakage Due to Operative Errors in Card-Based Protocols
	1 Introduction
	2 Background
	2.1 Definitions of Card-Based Protocols
	2.2 Six-Card AND Protocol

	3 Probability Trace and the Extended KWH Diagram
	3.1 Example of Our Diagram
	3.2 Definition of Probability Trace

	4 Rearrangement Errors in Six-Card and Protocol
	4.1 Classification of Rearrangement Error
	4.2 Correctness and Security of Erroneous Protocols

	5 Detection of Operative Errors in Card Rearrangement
	5.1 Detection with Card Arrangement
	5.2 Detection with Discarded Cards

	6 Toward Human-Error-Free Protocol on Rearrangement
	6.1 Card Arrangement Without Rearrangement
	6.2 Using Mixed Encoding Rules

	7 Conclusions
	References

	Zero-Suppression and Computation Models
	1 Introduction
	2 Preliminaries
	3 Zero-Suppressed Branching Programs
	3.1 Constant-Width Zero-Suppressed Branching Programs
	3.2 General Zero-Suppressed Branching Programs
	3.3 Read-Once Zero-Suppressed Branching Programs

	4 Zero-Suppression and Other Computation Models
	4.1 Zero-Suppressed Decision Trees
	4.2 Boolean Formulas with Zero-Suppression

	5 Conclusions
	References

	The Crossing Number of Seq-Shellable Drawings of Complete Graphs
	1 Introduction
	2 Preliminaries
	3 Seq-Shellability
	3.1 Simple Sequences
	3.2 Seq-Shellable Drawings

	4 Conclusion
	References

	Cryptographic Limitations on Polynomial-Time a Posteriori Query Learning
	1 Introduction
	2 Preliminaries
	2.1 Concepts
	2.2 Learning Models
	2.3 Cryptographic Tools

	3 Polynomial-Time a Posteriori Query Learnability
	3.1 Polynomial Representation of Signatures
	3.2 Positive Results
	3.3 Negative Results
	3.4 Learnability of Some Natural Classes
	3.5 Learnability with only Membership Queries

	References

	Placing Segments on Parallel Arcs
	1 Introduction
	1.1 Bioinformatics Use

	2 Preliminaries
	2.1 Minimum Tracks Required for Non-overlapping Placement

	3 Maximize Within-Track Separation
	4 Threshold Requirement to Inter-center Distances
	5 Maximize Sum of Inter-center Distances
	6 Balanced Placement of Segments on Tracks
	7 Results
	References

	Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem
	1 Introduction
	2 Problem Description
	3 Algorithm
	4 Computational Results
	5 Conclusion
	References

	LZ-ABT: A Practical Algorithm for -Balanced Grammar Compression
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 -balanced Grammars
	2.3 LZ78-style Grammar Compression

	3 LZ-ABT: Online -balanced Grammar Compression
	3.1 Behavior of LZ-ABT with Varying
	3.2 Implementation with Patricia Trees and Its Analysis
	3.3 LZ-ABT in Compressed Space

	4 Experiments
	5 Conclusions and Future Work
	References

	Faster Coreset Construction for Projective Clustering via Low-Rank Approximation
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Faster Coreset Construction for Subspace Clustering
	4 Faster Coreset Construction for Projective Clustering
	5 Conclusion and Open Problems
	References

	Separating Interaction Effects Using Locating and Detecting Arrays
	1 Introduction
	1.1 Locating and Detecting Arrays

	2 The Need for Separation
	3 Randomized and Derandomized Algorithms
	3.1 The Stein-Lovász-Johnson Framework and Conditional Expectation
	3.2 The Lovász Local Lemma and Moser-Tardos Resampling
	3.3 Local Optimization

	4 Some Computational Results
	References

	An Efficient Representation of Partitions of Integers
	1 Introduction
	2 Preliminaries
	2.1 Conjugate of a Monotonic Sequence
	2.2 Partitions of Integers

	3 Data Structures to Represent Monotonic Sequences
	4 A Data Structure for Prefix Sums
	5 A Data Structure for a Partition of an Integer
	6 Conclusion
	References

	How Far From a Worst Solution a Random Solution of a kCSP Instance Can Be?
	1 Introduction
	1.1 Around the Average Solution Value
	1.2 Outline

	2 Seeking Symmetries in the Solution Set
	2.1 Partition-Based Solution Multisets
	2.2 Solution Multisets Derived from Orthogonal Arrays

	3 Approximation Quality of the Average Solution Value
	3.1 From an Alphabet Size to a Greater One
	3.2 Deriving Bounds from Orthogonal Arrays of the Litterature

	4 Concluding Remarks
	References

	Author Index

