
Forward Injective Finite Automata:
Exact and Random Generation

of Nonisomorphic NFAs

Miguel Ferreira, Nelma Moreira(B), and Rogério Reis

CMUP and DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

miguelferreira108@gmail.com, {nam,rvr}@dcc.fc.up.pt

Abstract. We define the class of forward injective finite automata
(FIFA) and study some of their properties. Each FIFA has a unique
canonical representation up to isomorphism. Using this representation
an enumeration is given and an efficient uniform random generator is
presented. We provide a conversion algorithm from a nondeterministic
finite automaton or regular expression into an equivalent FIFA. Finally,
we present some experimental results comparing the size of FIFA with
other automata.

1 Introduction

The study of the average-case complexity of determinisation of nondeterminis-
tic finite automata (NFAs) is an important research topic. In most algorithms
that use NFAs, it is needed, in a way or another, to convert them to equivalent
deterministic finite automata (DFAs), and that leads to an exponential blow
up, in the worst-case. In practice, the feasibility of algorithms and representa-
tions, dealing with regular languages and related systems, depends primarily on
their complexity on the average case, rather than the worst-case scenario which
may rarely occur. The average-case analysis of operations in automata is, in
general, a difficult task. One approach to this problem is to consider uniformly
distributed random representations and to perform statistically significant exper-
iments requiring most of the times nonisomorphic sampled automata. There are
several uniform random generators available for nonisomorphic DFAs [1,3,4,10].
For all these generators, DFAs are considered initially connected and it is possible
to order their states in a canonical way to ensure that no two different isomor-
phic automata are generated. However for NFAs, the problem seems unfeasi-
ble in general as for n-state NFAs the size of the automorphism group can be
n!, and this is polynomially equivalent to testing if two NFAs are isomorphic.

Authors partially funded by CMUP (UID/MAT/00144/2013), which is funded by
FCT (Portugal) with national (MCTES) and European structural funds through the
programs FEDER, under the partnership agreement PT2020.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 88–100, 2018.
https://doi.org/10.1007/978-3-319-94631-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_8&domain=pdf

Forward Injective Finite Automata 89

Recently, Héam and Joly [6] presented uniform random generators for some
classes of NFAs up to isomorphism, using Monte Carlo Markov-Chains modified
by the Metropolis-Hastings algorithm, to deal with isomorphic objects [8]. This
involves the computation of the sizes of automorphism groups of NFAs. However,
the performance of these algorithms does not seem to allow the generation of
large sets of objects of acceptable size. Considering classes of NFAs for which this
latter problem is polynomial, the authors obtain (randomised/heuristic) uniform
random generators in polynomial time. These classes include trim NFAs with a
single initial state and with states with a fixed maximal output degree.

In this paper, we follow a different path and study a class of NFAs for which
it is possible the exact and uniform random generation of nonisomorphic ele-
ments. More precisely, we consider a class of initially-connected NFAs (with a
single initial state) for which it is possible to define a canonical order over the set
of states. Starting with the initial state, whenever new states are reached from
an already visited state, we ensure that the set of transition labels are pairwise
distinct. Based on a natural order of the power set of the alphabet, an ordering
for the set of states is obtained. This induces a unique canonical representation
for the nonisomorphic NFAs for which it is possible to obtain such an order, and
which are named forward injective finite automata (FIFA). We also developed
an algorithm that converts an NFA into an equivalent FIFA and performed
some experimental tests in order to compare their relative sizes. The class of
FIFA represents all regular languages, FIFA sampling is proven to be efficient
to implement, and experimental results suggest that, on average, for each NFA
one can find a FIFA which is not much larger. These properties convinced the
authors that FIFA is a class which deserves to be studied. In particular, FIFA
based sampling is a possible alternative for average complexity analysis of algo-
rithms that have NFAs as input. The paper is organised as follows. In the next
section, some notation is given and we review the canonical string representation
for initially-connected DFAs. In Sect. 3, we present the new class of automata
(FIFA), a canonical representation that is unique for nonisomorphic automata
of this class and give an enumeration of FIFAs by states and alphabetic size.
A uniform random generator for FIFA is given in Sect. 4. In Sect. 5 we adapted
the determinisation to the conversion from NFAs to FIFAs, together with some
experimental results in Sect. 6. Some future work is discussed in Sect. 7.

2 Preliminaries

Given two integers, m and n, let [m,n] be the set {i ∈ Z | m ≤ i ∧ i ≤ n}, and
let one use the additional interval notation with its standard meaning.

An NFA A is a tuple 〈Q,Σ, δ, q0, F 〉 where Q is a finite set of states, Σ
the alphabet, i.e., a nonempty finite set of symbols, δ : Q × Σ → 2Q is the
transition function, q0 the initial state and F ⊆ Q the set of final states. As
usual, let δ(q) = {p | ∃σ ∈ Σ, p ∈ δ(q, σ)}. We also consider � : Q × Q →
2Σ , such that �(p, q) = {σ | q ∈ δ(p, σ) ∧ σ ∈ Σ}, for any p, q ∈ Q, and
for ∅ �= S ⊆ Σ, let �−1

p (S) = {q | �(p, q) = S}. The function � allows us

90 M. Ferreira et al.

to consider the amalgamation of all transitions with the same start and end
states, and the value of � as label. In the rest of the paper, we will consider
either δ or � to refer to the transition function of a given NFA. The size of
an NFA is its number of states, |Q| = n. An NFA is initially connected (or
accessible) if for each state q ∈ Q there exists a sequence (q′

i)i∈[0,j] of states and
a sequence (σi)i∈[0,j−1] of symbols, for some j < |Q|, such that q′

m+1 ∈ δ(q′
m, σm)

for m ∈ [0, j[, q′
0 = q0 and q′

j = q. The transition function δ : Q × Σ → 2Q

extends naturally to Σ� and to sets of states. The language accepted by A is
L(A) = {w ∈ Σ� | δ(q0, w) ∩ F �= ∅ }. Two automata are equivalent if they
accept the same language. Two NFAs 〈Q,Σ, δ, q0, F 〉 and 〈Q′, Σ, δ′, q′

0, F
′〉 are

isomorphic if there is a bijection ι : Q → Q′ such that ι(q0) = q′
0, for all σ ∈ Σ

and q ∈ Q, ι(δ(q, σ)) = δ′(ι(q), σ), and ι(F) = F ′, where we naturally extend ι
to sets S ⊆ Q. In the following, we will identify an alphabet Σ of size k with
[0, k[and the power set 2Σ with [0, 2k[using a natural order for the subsets of
Σ, with 0 corresponding to the emptyset and j ∈ [0, 2k[corresponds to a set
J ⊆ [0, k[if and only if i ∈ J then the i-th bit of the binary representation of j is
1. If two automata A and B are isomorphic, we write A
 B. A semiautomaton
(Q,Σ, δ, q0) denotes an NFA without its final state information and is referred
to as an NFA∅. Each semiautomaton, if |Q| = n, will be shared by 2n NFAs.
An NFA is deterministic (DFA) if |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q × Σ and is
complete if the equality always holds. An initially-connected (complete) DFA is
denoted by ICDFA and the corresponding semiautomaton by ICDFA∅.

We review here the canonical string representation for nonisomorphic ICD-
FAs presented by Almeida et al. [1]. Given an ICDFA A = 〈Q, [0, k[, δ, q0, F 〉, a
canonical order for Q can be obtained by a breath-first traversal of A, starting
with the initial state q0, and in each state considering the transitions in the
natural order of Σ. Let ϕ : Q → [0, n[be the renaming of Q elements induced by
that order. If we, by abuse of language, identify q and ϕ(q), for q ∈ Q, a unique
representation of the semiautomaton of A is S(A) = 〈δ (�i/k�, i mod k)i∈[0,kn[〉.

A canonical representation for A is obtained by adding a sequence (bi)i∈[0,n[

of n-bits such that bi = 1 if state i is final, and bi = 0 otherwise.

Example 1. Consider the ICDFA, A = 〈{A,B,C,D,E}, {a, b}, δ, E, {B}〉, a < b,
and ϕ the states renaming according to the induced order.

E A

D B

C
a

b a

b

a
b

ab

a
b

ϕ A B C D E

1 3 4 2 0
.

The canonical string S(A) for the corresponding ICDFA∅ is 12
︸︷︷︸

E

31
︸︷︷︸

A
32

︸︷︷︸

D

40
︸︷︷︸

B

14
︸︷︷︸

C

.

Adding the information pertaining to the final states as a sequence of bits,
the canonical string for A is 123132401400010.

Forward Injective Finite Automata 91

The characterisation of the canonical strings allows the enumeration, and
the exact and random generation, as well as an optimal coding for ICDFAs, as
defined by Lothaire [9]. Inspired by this model, we defined FIFA as NFAs having
a unique breadth-first traversal order property according to the natural order
of 2Σ .

3 Forward Injective Finite Automata

Even if one only considers initially-connected NFAs, with a single initial state,
it is not possible to extend the previous representation to NFAs because it is
not possible to induce an order for the set of states from the transition function.
Starting with the initial state, whenever unvisited states are reached from an
already visited state, we must ensure that the set of transition labels from the
current state to the newly reached states are pairwise distinct. We denote NFAs
with this property as forward injective finite automata (FIFA).

Definition 1 Let A = 〈Q,Σ, δ, q0, F 〉 be an initially-connected NFA and Π the
bijection from 2Σ to [0, 2k[, induced by the order on Σ. Consider the breadth-
first search traversal of A, induced by the natural order on 2Σ, that starts in the
initial state q0. For each state s ∈ Q, let S(s) be the set of states that are image
of a transition starting from a state already visited by the BFS. The labels for
the transitions departing from s to any state in δ(s) \ S(s) need to be unique.
The automaton A is a forward injective finite automaton if it holds that:

(∀p, q ∈ δ(s) \ S(s))(p �= q ⇒ �(s, p) �= �(s, q)). (1)

This class of automata is expressive enough to recognise all regular languages,
because deterministic automata trivially satisfy (1). However, not all (initially-
connected) NFAs are FIFAs. Some experimental results suggest that for alpha-
bets, of size at least 2, one can find a FIFA equivalent to an NFA that is not
much larger than the NFA. These facts and the existence of a unique canonical
representation show the interest in studying this class of NFAs. In particular,
because of the existence of uniform random generators, one can use this model
to obtain estimates of average performance of algorithms that manipulate NFAs.

3.1 A Canonical State Order for FIFAs

Given a FIFA it is possible to obtain a canonical state order ϕ through a breadth
first traversal starting in the initial state and ordering the newly reached states
according to the total order defined in 2Σ . For that, one can disregard the set of
final states and consider the semiautomaton FIFA∅. The canonical state order for
a FIFA∅ can be computed through Algorithm 1, where Π is the bijection from
2Σ to [0, 2k[, sorted is a function that sorts integers in increasing order, and
ϕ : Q → [0, n[is the computed bijection. Note that (at line 7) �−1

ϕ−1(s)(Π
−1(j))

is a single value by the injectivity of � restricted to the newly seen states in a
FIFA.

92 M. Ferreira et al.

Algorithm 1. FIFA state order algorithm
1: procedure StateOrder(FIFA∅ 〈Q, Σ, δ, q0〉)
2: ϕ(q0) ← 0
3: i ← 0; s ← 0
4: do
5: M ← sorted{Π(S) | ∅ �= S = �(ϕ−1(s), q) ∧ q ∈ Q \ ϕ−1([0, i])}
6: for j ∈ M do
7: ϕ(�−1

ϕ−1(s)
(Π−1(j)) ← i + 1

8: i ← i + 1

9: s ← s + 1
10: while s < i

return ϕ

Proposition 1 Let A = 〈Q,Σ, δ, q0〉 be a FIFA∅ with n states and k = |Σ|,
there is a bijection ϕ : Q → [0, n[that defines an isomorphism between A and
〈[0, n[, Σ, δ′, 0〉 with δ′(i, σ) = {ϕ(s) | s ∈ δ(ϕ−1(i), σ)}, for i ∈ [0, n[and σ ∈ Σ.

Throughout the paper we will now consider FIFA∅ to have its states in their
canonical order: A = 〈[0, n[, Σ, δ, 0〉.

3.2 Canonical String Representation

Let A = 〈[0, n[, Σ, δ, 0, F 〉 be a FIFA such that 〈[0, n[, Σ, δ, 0〉 is a FIFA∅. We can
represent A by the canonical representation of its FIFA∅ concatenated with the
bitmap of the state finalities. The canonical representation of a FIFA∅ is defined
as follows.

Definition 2 Given a FIFA∅ 〈[0, n[, Σ, δ, 0〉 with |Σ| = k, its canonical repre-
sentation is a sequence (ri)i∈[0,n[such that for each state i,

ri = si,1si,2 . . . si,mi
ui,1 . . . ui,mi

,

and where mi is the number of previously seen states, mi is the number of newly
seen states, si,j = Π(�(i, j − 1)) for j ∈ [1,mi], and ui,j = Π(�(i,mi + j − 1))
for j ∈ [1,mi]. This means that, for each state i, si,j correspond to the sets of
transitions to states already seen (back transitions) and ui,j correspond to the
sets of transitions to newly seen states from state i (forward transitions).

Example 2. Consider the following FIFA on the left.

E A

D B

C

F

a

b

a

bb

b

a
b

a

a, b

b

a
b ϕ A B C D E F

1 3 4 2 0 5
.

Forward Injective Finite Automata 93

Let Π(∅) = 0, Π({a}) = 1, Π({b}) = 2 and Π({a, b}) = 3. The state renam-
ing according to the induced order on the states is given above. The canonical
string (ri)i∈[0,5] for the corresponding FIFA∅ is

[1][1, 2]
︸ ︷︷ ︸

E

[2, 2, 0][2]
︸ ︷︷ ︸

A

[0, 0, 2, 1][]
︸ ︷︷ ︸

D

[0, 0, 0, 0][1, 3]
︸ ︷︷ ︸

B

[0, 1, 0, 0, 2, 0][]
︸ ︷︷ ︸

C

[0, 0, 0, 0, 2, 0][]
︸ ︷︷ ︸

F

,

where the transitions for each state are as indicated. The FIFA can be repre-
sented by its semiautomaton canonical string with the state finalities appended.
Thus, this FIFA canonical string is

[1][1, 2][2, 2, 0][2][0, 0, 2, 1][][0, 0, 0, 0][1, 3][0, 1, 0, 0, 2, 0][][0, 0, 0, 0, 2, 0][][0, 0, 0, 1, 0, 0].

Lemma 3. Let A = 〈[0, n[, Σ, δ, 0〉 be a FIFA∅ with k = |Σ|. Let (ri)i∈[0,n[

with ri = si,1si,2 · · · si,mi
ui,1ui,2 · · · ui,mi

be the canonical representation for A
as given above. Then the following rules are satisfied:

si,j ∈ [0, 2k[, ∀i ∈ [0, n[,∀j ∈ [1,mi], (F1)

ui,j ∈ [1, 2k[, ∀i ∈ [0, n[,∀j ∈ [1,mi], (F2)
j < l ⇒ ui,j < ui,l, ∀i ∈ [0, n[,∀j, l ∈ [1,mi], (F3)

m0 = 1, (F4)
mi = mi−1 + mi−1, ∀i ∈ [1, n[, (F5)

i < mi ≤ n, ∀i ∈ [1, n[, (F6)
mn−1 = 0. (F7)

Proof. The rule (F1) describes how transitions to previously seen states are
represented, i.e. si,j = Π(�(i, j − 1)), possibly with si,j = 0. The rule (F2)
considers the transitions from state i to states ti,j = mi + j − 1 visited for the
first time in i, which implies that �(i, ti,j) �= ∅. Consequently, ui,j ∈ [1, 2k[. For
representation purposes, rule (F3) states that the set of states visited for the
first time is represented with its transitions sorted in ascending order. This is a
representation choice that ensures that all ui,j are distinct. Rule (F4) is obvious
as one starts at state 0 and thus 0 is the only seen state. Rule (F5) is a direct
consequence of the definition of mi in (2), and implies that mi = 1 +

∑i−1
j=0 mj

for i ∈ [1, n[. Rules (F6) and (F7) ensures that all states are seen, and that
the FIFA∅ is initially connected. It is a consequence of the definition of ϕ and
also ensures that a state must be seen before its representation is given. Rule
(F6) implies that mn−1 = n. By contradiction, suppose that there is i such
that mi ≤ i, for i ∈ [1, n[. Then, there exist 1 ≤ j ≤ i such that j is not
accessible from 0 in paths that use states only in [0, i[. But that contradicts ϕ
definition. ��
Lemma 4. Every string (ri)i∈[0,n[satisfying rules (F1)–(F7) represents a
FIFA∅ with states [0, n[over an alphabet of k symbols.

Proof. There is at least one transition reaching each state in [1, n[and there is at
least one transition from the state 0 to state 1. The transition function is defined

94 M. Ferreira et al.

by �(i, j − 1) = Π−1(si,j) for i ∈ [0, n[and j ∈ [1,mi], and �(i,mi + j − 1) =
Π−1(ui,j) for i ∈ [0, n[and j ∈ [1,mi]. The proof that the FIFA∅ is initially
connected is analogous to the one in Lemma 3. ��
From these lemmas the following theorem holds.

Theorem 5. For each n > 0 and k > 0, there is a one-to-one mapping from
sequences (ri)i∈[0,n[satisfying rules (F1)–(F7) and nonisomorphic FIFA∅s with
n states over an alphabet of k symbols.

The canonical form for FIFA∅ is not a simple extension of the one for ICDFA∅s
reviewed in Sect. 2 for several reasons. One needs to consider instead of the
alphabet its power set, there are no restrictions for transitions to already seen
states, and transitions to newly seen states must have different labels. However,
the first occurrences of each state satisfy exactly the same rules (over an alphabet
of 2k symbols) observed in the canonical representation of ICDFA∅s. This will
be made evident in the next section.

3.3 Counting FIFAs

Our aim is to enumerate (exactly generate) and count all the nonisomorphic
FIFA∅ with n states and k symbols. This will also allow us to obtain a uniform
random generator for the class of FIFAs. Let Ψ : [0, n[×[1, 2k[→ [0, n(2k − 1)[,
be defined by Ψ(i, j) = i(2k − 1) + j − 1. The mapping Ψ is a bijection with
Ψ−1(p) =

(⌊

p/(2k − 1)
⌋

, (p mod (2k − 1)) + 1
)

. Let (ri)i∈[0,n[be a sequence sat-
isfying rules (F1)–(F7), thus, representing a FIFA∅. Let us denote by flag of a
state t ∈ [1, n[the pair (i, ui,j), occurring in state i, such that t = mi + j − 1
(and �(i, t) = Π−1(ui,j)). According to (F3), if in a state i two different flags
(i, ui,j) and (i, ui,l) occur, we know that j < l ⇒ ui,j < ui,l. For the sake of
readability, given t ∈ [1, n[, we denote by (it, ut) its flag, and let Ψ(it, ut) = ft.
Then, by (F3), one has

(∀t ∈ [2, n[)(it = it−1 ⇒ ut > ut−1) ∨ (it > it−1),

which implies

(∀t ∈ [2, n[)(ft > ft−1), (G1)

(∀t ∈ [1, n[)(ft < t(2k − 1)). (G2)

Rules (G1)–(G2) are satisfied by the positions of the first occurrence of a state
in the canonical strings for ICDFA∅s, considering k instead of 2k −1 in rule (G2).
The following theorem computes the number of allowed sequences of flags.

Proposition 2 (Theorem 6 of [1]) Given k > 0 and n > 0, the number of
sequences (ft)t∈[1,n[, F2k−1,n, is given by:

F2k−1,n =
2k−1−1

∑

f1=0

2(2k−1)−1
∑

f2=f1+1

. . .

(2k−1)(n−1)−1
∑

fn−1=fn−2+1

1 = C(2k−1)
n ,

where C
(2k−1)
n =

(
n(2k−1)

n

)
1

(2k−2)n+1
are the generalized Fuss-Catalan numbers.

Forward Injective Finite Automata 95

Example 6. For the FIFA of Example 2, ((0, 1), (0, 2), (1, 2), (3, 1), (3, 3)) is the
sequence of flags and (ft)t∈[1,5] = (0, 1, 4, 9, 11).

Given a sequence of flags (ft)t∈[1,n[, the set of possible canonical strings
that represent FIFA∅s can be easily enumerated: each state i has unconstrained
transitions for states already seen (mi) and has the transitions to new states
given by the flags occurring in its description (forward transitions).

The number of canonical strings with a given sequence of flags is given by
∏

i∈[0,n[

(2k)
mi

. (2)

Theorem 7. The total number of FIFA∅s with n states over a k-ary alphabet is

bk,n =
2k−1−1

∑

f1=0

2(2k−1)−1
∑

f2=f1+1

. . .

(2k−1)(n−1)−1
∑

fn−1=fn−2+1

∏

i∈[0,n[

(2k)
mi

,

where mi = 1 +
∑i−1

j=0 mj and mj = |{ft | it = j}| for i ∈ [0, n[and j ∈ [1, n[.

This can be adapted for the exact generation/enumeration of all canonical repre-
sentations. Each FIFA∅ corresponds to a number between 1 and bk,n. In Table 1
we present the values of bk,n for n ∈ [2, 7] and k ∈ [2, 3]. An equivalent recursive
definition for bk,n is given in the next section for uniform random generation.

Table 1. Values of bk,n

n k = 2 k = 3

2 192 3584

3 86016 56885248

4 321912832 32236950781952

5 10382009696256 738091318939425439744

6 3073719939819896832 733871593861464877408622477312

7 8715818304405159932854272 32686722749179979231494144786993701191680

Corollary 8. The number of nonisomorphic FIFAs with n states and k alpha-
betic symbols is Bk,n = bk,n2n.

4 Uniform Random Generation

The canonical representation for FIFAs allows an easy uniform random genera-
tion for this class of automata. Given the number of flags occurring in a prefix of
a canonical string we count the number of valid suffixes. To count the number of
automata with a given prefix a recursive counting formula for FIFA∅ is needed.

96 M. Ferreira et al.

With these partial values, we can reconstruct any FIFA∅ by knowing its num-
ber, which varies from 1 to bk,n. The process of uniform randomly generating
a FIFA consists, thus, in four steps: creation of a table with partial counts for
each prefix; uniformly sample a number between 1 and bk,n; construct the FIFA∅
representation using the table; random generation of values from 0 to 2n − 1 for
the state finalities and return the FIFA. Let m be the number of already seen
states for the state i of a canonical string of a FIFA∅. We count the number
Nm,i of FIFA∅s for each value of m and i. This gives us the following recursive
formula for fixed n and k:

Nm,i = (2k)m
∑n−m

j=0

(
2k−1

j

)

Nm+j,i+1, m ∈ [1, n], i ∈ [0,m[,
Nm,i = 0, m ∈ [1, n], i /∈ [0,m[,
Nn,n = 1.

Proposition 3 bk,n = N1,0, for all k ≥ 1 and n ≥ 1.

Proof. Immediate consequence of the canonical representation and Theorem 7.
��

Algorithm 2. Random FIFA∅ algorithm.
1: procedure randomFifa(n, k)
2: r ← Random(0, N1,0 − 1) � number of the FIFA∅
3: m0 ← 1
4: for q ∈ [0, n[do � reconstruct FIFA∅ flags
5: mq ← 0
6: while Nmq+mq,q ≤ r do
7: mq ← mq + 1

8: mq+1 ← mq + mq

9: b ← r mod (2k)
∑n−1

i=0 mi � number representing back transitions

10: f ← r/(2k)
∑n−1

i=0 mi � number representing forward transitions
11: for q ∈ [0, n[do
12: for p ∈ [1, mq] do � reconstruct back transitions
13: sq,p ← b mod 2k

14: b ← b/2k

15: if mq �= 0 then

16: c ← (
2k−1
mq

)

17: t ← f mod c
18: f ← f/c
19: for p ∈ [1, mq] do
20: uq,p ← t mod (2k − 1)
21: t ←
t/(2k − 1)�

return (si,1si,2 · · · si,miui,1ui,2 · · · ui,mi)i∈[0,n[

Proposition 4 Algorithm 2 presents a uniform random generator for a FIFA∅
with n states and k symbols.

Forward Injective Finite Automata 97

Proof. (Sketch) Given an arbitrary integer r representing a FIFA∅ we determine
the values mi for each i ∈ [0, n[, using the precalculated table Nm,i. For each
state i and m previously seen states, mi is the first value such that Nm+mi,i > r,
that is, Nm+mi−1,i ≤ r < Nm+mi,i (lines 4–8). Then, we count the number of
available back transitions in each state i using mi which can be determined by
mi (by F5). The total number of possible back transitions is

∑n−1
i=0 mi. With

this number (lines 9 and 10) one obtains the integers that represent all the si,j

and the ui,j , respectively. For a given i ∈ [0, n[, in lines 12–14 we calculate si,j

for j ∈ [1,mi]. If state i has forward transitions, their values are computed in
lines 16–21. ��

To obtain a random FIFA from the FIFA∅ we can generate a random num-
ber from [0, 2n[and reconstruct the state finalities according to the corre-
sponding choice. Using dynamic programming techniques it is possible to gen-
erate a table indexed by the values of m and i (Nm,i) with time complexity
O(n3 log((2k)n2

)) = O(n5k). The amount of memory used is O(n4k), and this is
a limiting factor for the dimension of the FIFA∅ being generated. This is justified
by the huge number of FIFA∅s for a given n and k. For example, b2,100 is greater
than 1011531. In Table 2 we present the execution times for the generation of
10000 FIFAs for n ∈ {1, 20, 30, 50, 75, 100} and k ∈ {1, 2, 3, 4}, using Python
2.7 interpreted by Pypy, with a Intel Xeon CPU X5550 at 2.67 GHz. Comparing
with some experiments presented by Héam and Joly [6, Table 1], these times
correspond, approximately, to the generation of a single NFA.

Table 2. Execution times for the generation of 10000 random FIFA.

Times k = 1 k = 2 k = 3 k = 4

n = 10 0.77 s 1.05 s 0.95 s 8.59 s

n = 20 1.06 s 2.33 s 3.13 s 3.96 s

n = 30 1.15 s 5.01 s 7.38 s 9.52 s

n = 50 2.84 s 16.86 s 26.64 s 40.43 s

n = 75 7.11 s 47.62 s 71.92 s 91.70 s

n = 100 15.86 s 100.25 s 156.24 s 202.41 s

5 Converting an NFA into a FIFA

In this section we discuss a process of converting an arbitrary NFA to a FIFA and
the asymptotic time complexity bounds of such a procedure. The algorithm has
an NFA as input and outputs an equivalent FIFA. It is based on the subset con-
struction for NFA determinisation, with addition of an heuristic that attempts
to create back transitions whenever possible. This gives us a FIFA that is not
only forward injective but also forward deterministic. It may be also possible
to add an heuristic for nondeterministic forward injective transitions or to have

98 M. Ferreira et al.

other procedures that are not based on the subset construction. However this
one had a good performance in our experiments.

Proposition 5 The procedure NfaToFifa in Algorithm 3 computes a FIFA
equivalent to a given NFA.

This algorithm has time complexity O(|Σ|22|Q|), which is justified by |Q′| having
space complexity O(2|Q|) due to the determinisation based algorithm. It is an
open problem whether these bounds are tight for this algorithm.

Algorithm 3. An NFA to FIFA algorithm
1: procedure NfaToFifa(NFA 〈Q, Σ, δ, I, F 〉)
2: Q′ ← {I}
3: w ← {I} � states to be processed
4: while w �= ∅ do
5: S ← Pop(w) � popping S from w
6: for σ ∈ Σ do
7: P ← ∅
8: δ′(S, σ) ← ∅
9: for s ∈ S do

10: P ← P ∪ δ(s, σ)

11: for R ∈ sortedBySizeDesc(Q′) do
12: if R ⊆ P then � nondeterministic back transitions
13: δ′(S, σ) ← δ′(S, σ) ∪ {R}
14: P ← P \ R

15: if P �= ∅ then � forward transition
16: Q′ ← Q′ ∪ {P}
17: w ← w ∪ {P}
18: δ′(S, σ) ← δ′(S, σ) ∪ {P}
19: return FIFA 〈Q′, Σ, δ′, I, {S ∩ F �= ∅, S ∈ Q′}〉

6 Experimental Results

The algorithm defined in the previous section was implemented within the FAdo
package [5]. We performed some experiments to compare the sizes of the input
and output automata. The input NFAs were obtained from uniform random gen-
erated regular expressions, for a fixed (standard) grammar, of a given syntactic
tree size m over an alphabet of k symbols. The conversion method used was
the partial derivative automata [2]. For each m and k, 10000 random regular
expressions were generated to ensure a 95% confidence level within a 1% error
margin [7, pp. 38–41]. For each sample, we calculated the minimal, the average
and the maximum sizes of the obtained automata. For each partial derivative
automaton (PD) we applied the algorithm NFAtoFIFA and obtained a FIFA
(FIFA). We also computed the DFA obtained by determinisation of PD, by
the usual subset construction, (DT), and the minimal DFA (MIN). Results for

Forward Injective Finite Automata 99

m ∈ {50, 100, 250, 500} and k ∈ {2, 3, 10} are presented in Table 3. In general
the FIFA computed is not much larger than the PD, although the determinised
automata can be significantly larger.

Table 3. State complexities of automata where m, syntactic size of RE; k, size of
alphabet; PD, size of partial derivative NFA; DT size of DFA from PD; MIN, size of
minimal DFA; FIFA, size of FIFA from PD.

m, k Type min avg max

50, 2 FIFA 3 10.1684 25
DT 3 10.1338 62
MIN 1 5.0762 51
PD 3 10.6904 19

100, 2 FIFA 3 19.2113 46
DT 3 19.7193 158
MIN 1 6.2814 116
PD 9 20.0239 30

250, 2 FIFA 9 48.3731 107
DT 12 185.6424 1120
MIN 1 7.0256 630
PD 34 47.998 66

500, 2 FIFA 35 99.8889 189
DT 13 186.1518 6451
MIN 1 6.8369 745
PD 72 94.6422 124

m, k Type min avg max

50, 3 FIFA 3 12.4948 25
DT 3 13.9339 56
MIN 1 9.1225 41
PD 4 11.6522 19

100, 3 FIFA 5 24.3173 45
DT 5 34.289 166
MIN 1 18.2094 148
PD 11 21.8518 32

250, 3 FIFA 23 60.7792 110
DT 12 185.6424 1586
MIN 1 59.0185 988
PD 34 52.5888 70

500, 3 FIFA 42 122.2247 198
DT 37 1143.2134 11687
MIN 1 92.8985 2343
PD 79 103.6871 126

m, k Type min avg max

50, 10 FIFA 6 14.1252 24
DT 7 15.3764 33
MIN 1 13.8138 30
PD 6 13.3556 21

100, 10 FIFA 14 27.4189 43
DT 15 32.5608 66
MIN 1 28.7841 58
PD 13 25.2294 36

250, 10 FIFA 44 67.8454 99
DT 55 102.6683 329
MIN 1 88.8932 253
PD 41 60.8428 78

500, 10 FIFA 102 135.1439 170
DT 128 277.5053 1122
MIN 1 237.4012 869
PD 94 120.0465 150

7 Conclusions

We presented a class of initially-connected NFAs with a single initial state for
which it is possible to test isomorphism in polynomial time. The definition of
these automata (FIFA) is based on the possibility to order the set of states in a
breath-first search traversal from the initial state. The uniform random generator
can efficiently sample datasets to test the performance of algorithms dealing with
NFAs. Moreover one can extend it with a parameter for the density of transitions
in order to avoid the high frequency of NFAs recognising the universal language.
The class of FIFAs can be further studied in its own. One can obtain asymp-
totic bounds for the number of FIFAs of given n and k. Upper bounds for the
size of the minimal FIFAs for a given language will be of major interest. Oper-
ational state complexity with respect to this class of automata is also an open
problem.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)

4. Champarnaud, J.M., Paranthoën, T.: Random generation of DFAs. Theor. Com-
put. Sci. 330(2), 221–235 (2005)

100 M. Ferreira et al.

5. FAdo, P.: FAdo: tools for formal languages manipulation. http://fado.dcc.up.pt.
Accessed 13 2018

6. Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic
automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 12

7. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2, 2nd edn. Addison Wesley, Boston (1981)

8. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chain and Mixing Times. Amer-
ican Mathematical Society (2008). http://pages.uoregon.edu/dlevin/MARKOV/
markovmixing.pdf

9. Lothaire, M.: Applied Combinatorics on Words, vol. 105. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, New York (2005)

10. Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger,
M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 5–23. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44522-8 2

http://fado.dcc.up.pt
https://doi.org/10.1007/978-3-319-22360-5_12
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
https://doi.org/10.1007/978-3-662-44522-8_2

	Forward Injective Finite Automata: Exact and Random Generation of Nonisomorphic NFAs
	1 Introduction
	2 Preliminaries
	3 Forward Injective Finite Automata
	3.1 A Canonical State Order for FIFAs
	3.2 Canonical String Representation
	3.3 Counting FIFAs

	4 Uniform Random Generation
	5 Converting an NFA into a FIFA
	6 Experimental Results
	7 Conclusions
	References

