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Abstract. The lecture surveys approaches using finite automata to
define several notions of (automata-theoretic) randomness.

It focuses on the one hand on automata-theoretic randomness of
infinite sequences in connection with automata-independent notions like
disjunctivity and Borel normality.

On the other hand it considers the scale of relaxations of randomness
(Borel normality and disjunctivity), that is, finite-state dimension and
subword complexity and their interrelations.

Keywords: Finite automata · Infinite words · Betting automata
Finite-state dimension · Subword complexity

1 Introduction

The (algorithmic) randomness of infinite sequences can be defined by means
of computability. There have been three main approaches to the definition of
algorithmically random sequences, namely

1. the measure-theoretic approach,
2. the unpredictability approach, and
3. the incompressibility (or complexity-theoretic) approach.

All these approaches are based on Turing machines and were shown to be
equivalent in the case of Martin-Löf random sequences. We refer the reader
to the textbooks [5,9,10,13] for a complete history of Martin-Löf randomness
and related topics.

After Martin-Löf’s measure-theoretic approach [11] and Schnorr’s unpre-
dictability approach [16] already in the 1970s sequences random with respect
to finite automata were considered. It turned out that two approaches equiva-
lent in the algorithmic case yield different characterisations of sequences which
might be called “random” in the automata case. The first approach is an adap-
tation of the betting or martingale approach of [16] to finite automata whereas
the second – in an analogy to Martin-Löf’s measure theoretic approach – uses a
randomness definition via null sets definable by finite automata.

Here we present a brief survey on both randomness approaches for finite
automata and their relaxations which result in the finite-state dimension on the
one hand and in a connection to subword complexity on the other hand.
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2 Notation

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X = {0, . . . , r−1} be a finite alphabet of
cardinality |X| = r ≥ 2, and X∗ be the set (monoid) of words on X, including
the empty word e, and Xω be the set of infinite sequences (ω-words) over X.
As usual we refer to subsets W ⊆ X∗ as languages and to subsets F ⊆ Xω as
ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concate-
nation product extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗∪Xω.
For a language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by

W , and by Wω := {w1 · · · wi · · · : wi ∈ W \ {e}} we denote the set of infinite
strings formed by concatenating words in W . Furthermore |w| is the length of the
word w ∈ X∗ and pref(P ) (infix(P )) is the set of all finite prefixes (infixes) of
strings in P ⊆ X∗ ∪Xω, in particular, pref(P ) ⊆ infix(P ). We shall abbreviate
w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w � η. If n ≤ |p| then p[0..n] is the n-length
prefix of p ∈ X∗ ∪ Xω.

A (deterministic) finite automaton over X is a quintuple A = (X,Q, q0, δ,Q
′)

where Q is a finite set of states, q0 ∈ Q the initial state, δ : Q × X → Q is
the transition function, and Q′ ⊆ Q is the set of final states. As usual δ also
denotes the continuation of δ to Q × X∗ defined by δ(q, e) := q and δ(q, wx) :=
δ(δ(q, w), x).

A language W ⊆ X∗ is called regular if there is a finite automaton A such
that W = {w : δ(q0, w) ∈ Q′}.

3 Randomness by Martingales

If one is asked why a certain event is random then often will be the answer that
the event be “unpredictable”. In particular, an ω-word ξ = x1x2 · · · should be
random if one cannot win by betting on its digits given other (previous) digits.
For automata this yields the following.

Definition 1 (Betting automaton). A = (X,Q, IR≥0, q0, δ, ν) is a finite
betting automaton : ⇐⇒
1. (X,Q, q0, δ) is a finite automaton (without final states) and
2. ν : Q × X → IR≥0 and

∑
x∈X ν(q, x) ≤ 1, for all q ∈ Q.

The automaton starts with capital VA(e) = 1. After the history w ∈ X∗ its
capital is VA(w) and the automaton bets ν(δ(q0, w), x) ·VA(w) on every x as the
outcome of the next digit. Its reward is r · ν(δ(q0, w), x) · VA(w) (r = |X|) for
the next digit x. This results in the following capital function (or martingale).

VA(e) := 1, and
VA(wx) := r · ν(δ(q0, w), x) · VA(w) (1)

In order to formulate the main result we need still the following notion.
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Definition 2 (Borel normal ω-word). An ω-word ξ ∈ Xω is Borel normal
iff every subword (infix) w ∈ X∗ appears with the same frequency:

∀w

(

lim
n→∞

|{i : i ≤ n ∧ ξ[0..i] ∈ X∗ · w}|
n

)

= r−|w|

Then Schnorr and Stimm [17] proved the following characterisation of ω-words
random w.r.t. finite betting automata.

Theorem 1 ([17]). If ξ ∈ Xω is Borel normal then for every finite automaton
A it holds

1. ∀∞n(n ∈ IN → VA(ξ[0..n]) = VA(ξ[0..n + 1])), or
2. ∃γ(0 > γ ∧ ∀∞n(n ∈ IN → VA(ξ[0..n]) ≤ rγ·n)).

If ξ ∈ Xω is not Borel normal then there are a finite automaton A and γ > 0
such that

3. ∃∞n(n ∈ IN → VA(ξ[0..n]) ≥ rγ·n).

Other recent approaches to relate Borel normality to finite automata can be
found e.g. in [2,3] or [20].

4 Finite-State Dimension

Next we turn to aspects of partial randomness via automaton definable mar-
tingales VA. Finite-state dimension may be seen as the estimate of the maxi-
mally achievable exponent γ in Theorem 1.3. To this end we define for a betting
automaton A and a non-empty subset F ⊆ Xω

αA(F ) := inf
{

α : ∀ξ(ξ ∈ F → lim sup
n→∞

VA(ξ[0..n])
r(1−α)·n > 0)

}

(2)

Observe that 1 − α corresponds to the exponent γ.
Then the finite-state dimension of F is obtained as

dimFS(F ) := sup {αA(F ) : A is a finite automaton} (3)

In this definition we followed Schnorr’s approach via martingales and order func-
tions (cf. [26]) rather than the one by s-gales in [6]. If we replace lim sup in Eq. (2)
by lim inf we obtain the so called strong finite-state dimension which has similar
properties [7].

As an immediate consequence of Theorem 1 we obtain that dimFS(ξ) = 1
if and only if ξ is Borel normal. One possibility to obtain ω-words of smaller
finite-state dimension is by dilution (inserting blocks of zeros) of Borel normal
ones. In this way one proves

Lemma 1 ([6, Lemma 6.5]). For every rational number t ∈ Q ∩ [0, 1] there is
an ω-word ξ such that dimFS(ξ) = t.
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The papers [4,6,7] give several equivalent definitions of finite-state dimension
in terms of information-lossless compression by finite-state machines, by log-loss
rates of continuous measures1 on X∗, or by block-entropy rates.

Combining the results of [6] with the ones of [18,19] in [8] it was observed
that finite-state dimension has also a characterisation via decompression by
transducers.

Definition 3 (Finite transducer). M = (X,Y,Q, q0, δ, λ) is a generalised
sequential machine (or finite transducer) if and only if (X,Q, q0, δ) is a finite
automaton without final states, Y is an alphabet and λ : Q × X → Y ∗

The transducer realises a prefix monotone mapping ϕ : X∗ → Y ∗ in the follow-
ing way:

ϕ(e) := e, and ϕ(wx) := ϕ(w) · λ(δ(q0, w), x)

This mapping can be extended to ω-words via pref(ϕ(η)) = pref(ϕ(pref(η))),
that is, ϕ(η) := lim

v→η
ϕ(v).

We define the decompression rate ϑM(η) along an input η as follows.

Definition 4 (Decompression along an input).

ϑM(η) := lim inf
n→∞

n

|ϕ(η[0..n])| ,

where M is a finite transducer and ϕ its related mapping.

As the difference |ϕ(wx) − ϕ(w)| is bounded, this quantity measures in some
sense the asymptotic amount of digits necessary to obtain the first � digits of
the output.

Then the finite-state dimension of ξ ∈ Xω turns out to be the simultaneous
best choice of a transducer M with a suitable best input η generating ξ = ϕ(η)
(cf. [6,8,18,19]).

Theorem 2. Consider the class KX of transducers M having output alphabet
Y = X. Then for all ξ ∈ Xω we have

dimFS(ξ) = inf
{
ϑM(η) : M ∈ KX ∧ η ∈ Xω ∧ ξ = ϕ(η)

}
.

We conclude this section by presenting a connection between the finite-state
dimension of some set F ⊆ Xω and the entropy of regular languages W contain-
ing pref(F ) [4, Theorem 3.5].

The entropy (or entropy rate) HW of a language W ⊆ X∗ is defined as [4,22]

HW := lim sup
n→∞

logr(1 + |W ∩ Xn|)
n

. (4)

The entropy is monotone and stable, that is, HW∪V = max{HW ,HV }. It should
be mentioned that HW = Hpref(W ) = Hinfix(W ), for regular languages.

Theorem 3 ([4]). dimFS(F ) ≤ inf{HW : pref(F ) ⊆ W ∧ W is regular}
1 These measures were called predictors in [4].
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5 Automaton Definable Null Sets

We start this section with introducing ω-languages definable by finite automata.
For more background see the books [15,28] or the surveys [23,27].

Let B = (X,Q,Δ, q0, Q
′) be a non-deterministic (Büchi-)automaton. Then

the sequence
(
qi, ξ(i+1), qi+1

)
i∈IN

is a run of B on the ω-word ξ = ξ(1) ·ξ(2) · · ·
provided (qi, ξ(i + 1), qi+1) ∈ Δ for all i ∈ IN. A run is called successful if
infinitely many of the qi are in the set of final states Q′.

The ω-language Lω(B) defined by B is then
Lω(B) = {ξ : ξ ∈ Xω ∧ there is a successful run of B on ξ}.

Definition 5 (Regular ω-language). An ω-language F ⊆ Xω is called regu-
lar if and only if F is accepted by a finite automaton

The following properties of the class of regular (automaton definable) ω-
languages are well-known.

Theorem 4. 1. An ω-language F ⊆ Xω is regular if and only if there are an
n ∈ IN and regular languages Wi, Vi ⊆ X∗, i ≤ n, such that F =

⋃n
i=1 Wi ·V ω

i .
2. The set of regular ω-languages over X is closed under Boolean operations.
3. If F ⊆ Xω is regular then pref(F ) and infix(F ) are regular languages.

Theorem 5. Let DB be the class of ω-languages accepted by deterministic Büchi
automata. Then

1. DB is a proper subclass of the class of regular ω-languages, and
2. DB is closed under union and intersection but not under complementation.
3. If W ⊆ X∗ is a regular language then {ξ : ξ ∈ Xω ∧pref(ξ) ⊆ W} ∈ DB and

{ξ : ξ ∈ Xω ∧ |pref(ξ) ∩ W | = ∞} ∈ DB.

As measure on the space Xω we use the usual product measure μ defined by
its values on the cylinder sets μ(w · Xω) := r−|w|. Then in [21,24] the following
characterisation of regular null sets via “forbidden subwords” is proved.

Theorem 6. Let F be a regular ω-language.

1. If F ∈ DB then μ(F ) = 0 if and only if there is word w ∈ X∗ such that
F ⊆ Xω \ X∗ · w · Xω.

2. μ(F ) = 0 if and only if
F ⊆ ⋃

w∈X∗ Xω \ X∗ · w · Xω.

Remark 1. Theorem 6 holds for a much larger class of finite measures on Xω

including all non-degenerated product measures on Xω (cf. [21,24,29,30]).

Now we can characterise those ω-words which are not contained in a regular
ω-language of measure zero.

Definition 6 (Disjunctivity). An ω-word ξ ∈ Xω is called disjunctive (or
rich or saturated) if and only if it contains every word w ∈ X∗ as subword
(infix).
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Consequently, ω-words random w.r.t. finite automata in the sense of the measure
theoretic approach are exactly the disjunctive ones. This allows us to compare
both of the presented approaches of randomness.

Proposition 1. Every Borel normal ω-word is disjunctive, but there are
disjunctive ω-words which are not Borel normal, e.g. the ω-word ζ :=∏

w∈X∗ 0|w| · w.

6 Subword Complexity

The characterisation via “forbidden subwords” enables us to derive a notion of
partial randomness similar to the finite-state dimension. To this end we use the
entropy of languages defined in Eq. (4) and define for arbitrary P ⊆ X∗ ∪ Xω

Definition 7 (Subword complexity).

τ(P ) := Hinfix(P )

In view of the inequality infix(P ) ∩ Xn+m ⊆ (infix(P ) ∩ Xn) · (infix(P ) ∩ Xm)
which holds for infix(P ) the limit in Eq. (4) exists and equals

τ(P ) = inf
{

logr(1 + |infix(P ) ∩ Xn|)
n

: n ∈ IN
}

.

This value is also known as factor complexity in automata theory and topological
entropy in symbolic dynamics.

The following is clear.

Proposition 2. 0 ≤ τ(ξ) ≤ 1 and an ω-word ξ ∈ Xω is disjunctive if and only
if τ(ξ) = 1.

For subword complexity one has for every possible value an ω-word of exactly
this complexity [12].

Theorem 7. For every t, 0 ≤ t ≤ 1, there is a ξ ∈ Xω such that τ(ξ) = t.

Similar to Eq. (5.1.2) of [22] one can derive the following identity.

τ(P ) = inf{HW : W ⊆ X∗ ∧ infix(P ) ⊆ W ∧ W is regular} (5)

Now Theorem 3 yields the following relation to finite-state dimension.

dimFS F ≤ τ(F ) (6)

For certain regular ω-languages F ⊆ Xω we have identity in Eq. (6).

Proposition 3. Let F ⊆ Xω be non-empty and regular.

1. Then max
ξ∈F

τ(ξ) exists and max
ξ∈F

τ(ξ) = max
ξ∈F

dimFS{ξ}.

2. If, moreover, F = {ξ : pref(ξ) ⊆ pref(F )} then τ(F ) = dimFS F .
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7 Predicting Finite Automata

A further feature of randomness of an ω-word ξ, similar to the one mentioned
for betting automata, is the impossibility of the exact prediction of the next
symbol. Here Tadaki [25] proposed the following.

Definition 8 (Predicting automaton). A transducer A = (X,X,Q, q0, δ, λ)
is referred to as a predicting automaton if λ : Q → {e} ∪ X is a labelling of
states.

Definition 9 (Prediction). A predicting automaton A = (X,X,Q, q0, δ, λ)
strongly predicts ξ ∈ Xω if and only if

1. λ(δ(q0, ξ[0..n − 1])) = ξ(n) for infinitely many n ∈ IN, and
2. if λ(δ(q0, ξ[0..n − 1])) �= ξ(n) then λ(δ(q0, ξ[0..n − 1])) = e.

Definition 9 is a strong requirement, it forces the automaton to make on input
ξ infinitely many correct predictions and no incorrect ones. Here using the label
λ(q) = e the automaton may skip. Nevertheless, in the binary case X = {0, 1}
we have the following.

Theorem 8. 1. Let A = ({0, 1}, {0, 1}, Q, q0, δ, λ) be a binary predicting
automaton. If A strongly predicts ξ ∈ {0, 1}ω then ξ is not disjunctive.

2. If ξ ∈ {0, 1}ω is disjunctive then no predicting automaton predicts ξ.

This theorem does not hold in the other cases when |X| ≥ 3. Here we have
to turn to “negative” prediction. We say that A weakly predicts ξ provided
λ(δ(q0, ξ[0..n−1])) �= ξ(n) for infinitely many n ∈ IN and λ(δ(q0, ξ[0..n−1])) = e
otherwise. Then we have.

Theorem 9. 1. Let A = (X,X,Q, q0, δ, λ) be a binary predicting automaton. If
A weakly predicts ξ ∈ Xω then ξ is not disjunctive.

2. If ξ ∈ Xω is disjunctive then no predicting automaton weakly predicts ξ.

8 Finite-State Genericity

This section reviews some connections between disjunctivity and finite-state
genericity. As in [1] we define the following.

Definition 10. Let ξ ∈ Xω.

1. ξ meets a function ψ : X∗ → X∗ if w · ψ(w) � ξ.
2. ξ is finite-state generic if ξ meets every function ϕ realised by a finite

transducer.

This can be interpreted in terms of the usual product topology on Xω which
can be defined by the metric �(ξ, η) := sup{r−n : ξ(n) �= η(n)} where we agree
on sup ∅ = 0. The cylinder sets w · Xω are simultaneously open and closed balls
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of diameter r−|w|. The closure C(F ) of (smallest closed set containing) a set
F ⊆ Xω obtains as C(F ) = {ξ : pref(ξ) ⊆ pref(F )}.

A subset F is nowhere dense if its closure does not contain a non-empty open
subset, that is, for every w ∈ pref(F ) there is a continuation v ∈ X∗ such that
w · v · Xω ∩ F = ∅, that is “v leads w to a hole” in F .

Then Definition 10.2 gives an indication that finite-state generic ω-words
avoid “finite-state nowhere dense” subsets of Xω. This is shown by Theorem 4.4
of [1].

Theorem 10 ([1]). An ω-word ξ is disjunctive if and only if it is finite-state
generic.

Theorem 10 fits into the more general coincidence of measure and category
for regular ω-languages depicted in Fig. 1 (see [21,24,29,30]). In the general
case, however, the monograph [14] shows that measure and category (topological
density) are two concepts which do no coincide.

Fig. 1. Coincidence of measure and category for regular ω-languages

As usual a subset F is meagre or of first Baire category if it is an at most
countable union of nowhere dense sets, a set is of second Baire category if it
is not meagre, and it is residual if its complement is meagre. The first column
of Fig. 1 presents a comparison of the sizes of F ⊆ Xω, and the rows indicate
that for regular ω-languages F ⊆ Xω properties of the same row coincide, e.g.
μ(F ) = 0 iff F is meagre.
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