
Stavros Konstantinidis
Giovanni Pighizzini (Eds.)

 123

LN
CS

 1
09

52

20th IFIP WG 1.02 International Conference, DCFS 2018
Halifax, NS, Canada, July 25–27, 2018
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 10952

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Stavros Konstantinidis • Giovanni Pighizzini (Eds.)

Descriptional Complexity
of Formal Systems
20th IFIP WG 1.02 International Conference, DCFS 2018
Halifax, NS, Canada, July 25–27, 2018
Proceedings

123

Editors
Stavros Konstantinidis
Department of Mathematics
and Computing Science

Saint Mary’s University
Halifax, NS
Canada

Giovanni Pighizzini
Dipartimento di Informatica e Comunicazi
Universita degli Studi di Milano
Milan
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94630-6 ISBN 978-3-319-94631-3 (eBook)
https://doi.org/10.1007/978-3-319-94631-3

Library of Congress Control Number: 2018947360

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 20th International Conference on
Descriptional Complexity of Formal Systems (DCFS 2018), which was held at Saint
Mary’s University in Halifax, Nova Scotia, Canada, during July 25–27, 2018. It was
jointly organized by the Working Group 1.02 on Descriptional Complexity of the
International Federation for Information Processing (IFIP) and by the Department of
Mathematics and Computing Science at Saint Mary’s University.

The DCFS conference series is an international venue for the dissemination of new
results related to all aspects of descriptional complexity including, but not limited to:

– Automata, grammars, languages, and other formal systems; various modes of
operations and complexity measures

– Succinctness of description of objects, state-explosion-like phenomena
– Circuit complexity of Boolean functions and related measures
– Size complexity of formal systems
– Structural complexity of formal systems
– Trade-offs between computational models and mode of operation
– Applications of formal systems – for instance in software and hardware testing, in

dialogue systems, in systems modelling or in modelling natural languages – and
their complexity constraints

– Co-operating formal systems
– Size or structural complexity of formal systems for modelling natural languages
– Complexity aspects related to the combinatorics of words
– Descriptional complexity in resource-bounded or structure-bounded environments
– Structural complexity as related to descriptional complexity
– Frontiers between decidability and undecidability
– Universality and reversibility
– Nature-motivated (bio-inspired) architectures and unconventional models of

computing
– Blum static (Kolmogorov/Chaitin) complexity, algorithmic information

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a merger in 2002 of
two other workshops: FDSR (Formal Descriptions and Software Reliability) and
DCAGRS (Descriptional Complexity of Automata, Grammars and Related Structures).
DCAGRS was previously held in Magdeburg (1999), London (2000), and Vienna
(2001). FDSR was previously held in Paderborn (1998), Boca Raton (1999), and San
Jose (2000). Since 2002, DCFS has been successively held in London, Ontario, Canada
(2002), Budapest, Hungary (2003), London, Ontario, Canada (2004), Como, Italy
(2005), Las Cruces, New Mexico, USA (2006), Nový Smokovec, High Tatras,
Slovakia (2007), Charlottetown, Prince Edward Island, Canada (2008), Magdeburg,
Germany (2009), Saskatoon, Canada (2010), Giessen, Germany (2011), Braga,

Portugal (2012), London, Ontario, Canada (2013), Turku, Finland (2014), Waterloo,
Ontario, Canada (2015), Bucharest, Romania (2016), and Milan, Italy (2017).

The submission and refereeing process was supported by the EasyChair conference
system. In total, 24 papers were submitted by authors in 14 different countries. Each
paper was reviewed by at least three Program Committee members. The Program
Committee selected 19 papers for presentation at the conference and publication in this
volume. There were three invited talks by:

– Jacques Sakarovitch, CNRS/Paris Diderot University and Telecom ParisTech,
France

– Peter Selinger, Dalhousie University, Halifax, Canada
– Ludwig Staiger, Martin-Luther-Universität, Halle, Germany

We are very thankful to all invited speakers, contributing authors, Program Com-
mittee members, and external referees for their valuable contributions towards the
realization of DCFS 2018.

We also thank Alfred Hofmann and Anna Kramer of Springer for their guidance
during the process of publishing this volume.

Finally, we are indebted to the Organizing Committee members Ms. Rose Daurie,
Dr. Paul Muir, Dr. Juraj Šebej, and the graduate students of the Department of
Mathematics and Computing Science at Saint Mary’s University, Halifax.

We look forward to the next DCFS in Košice, Slovakia.

July 2018 Stavros Konstantinidis
Giovanni Pighizzini

VI Preface

Organization

Steering Committee

Cezar Câmpeanu University of Prince Edward Island, Charlottetown,
Canada

Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Jürgen Dassow Otto von Guericke University, Magdeburg, Germany
Helmut Jürgensen Western University, London, Canada
Martin Kutrib (Chair) Justus Liebig University, Giessen, Germany
Giovanni Pighizzini University of Milan, Italy
Rogério Reis University of Porto, Portugal

Program Committee

Suna Bensch Umeå University, Sweden
Francine Blanchet-Sadri The University of North Carolina at Chapel Hill, USA
Cezar Câmpeanu University of Prince Edward Island, Canada
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Michael J. Dinneen The University of Auckland, New Zealand
Henning Fernau University of Trier, Germany
Viliam Geffert P.J. Šafárik University, Košice, Slovakia
Dora Giammarresi University of Rome Tor Vergata, Italy
Yo-Sub Han Yonsei University, South Korea
Szabolcs Iván University of Szeged, Hungary
Galina Jirásková Slovak Academy of Sciences, Slovakia
Christos Kapoutsis Carnegie Mellon University, Qatar
Stavros Konstantinidis Saint Mary’s University, Halifax, Canada
Martin Kutrib Justus Liebig University, Giessen, Germany
Sylvain Lombardy LaBRI - CNRS - Institut Polytechnique de Bordeaux,

France
Kalpana Mahalingam Indian Institute of Technology, India
Andreas Malcher Justus Liebig University, Giessen, Germany
Andreas Maletti Universität Leipzig, Germany
Ian McQuillan University of Saskatchewan, Canada
Victor Mitrana Universidad Politécnica de Madrid, Spain
Nelma Moreira University of Porto, Portugal
Jean Néraud University of Rouen, France
Alexander Okhotin St. Petersburg State University, Russia
Giovanni Pighizzini University of Milan, Italy
George Rahonis Aristotle University of Thessaloniki, Greece
Narad Rampersad University of Winnipeg, Canada
Kai Salomaa Queen’s University, Kingston, Canada

Shinnosuke Seki University of Electro-Communications, Tokyo, Japan
Petr Sosík Silesian University, Czech Republic
Lynette Van Zijl Stellenbosch University, South Africa
Mikhail Volkov Ural State University, Russia
Abuzer Yakaryilmaz University of Latvia, Riga, Latvia

Additional Reviewers

Marcella Anselmo
Mikhail Barash
Simon Beier
Michael Cadilhac
Stefan Dück
Kitti Gelle
Gustav Grabolle
Jozef Jirásek
Chris Keeler

Sang-Ki Ko
Pavlos Marantidis
Benedek Nagy
Paulina Paraponiari
Erik Paul
Alexander Szabari
Matthias Wendlandt
Mansur Ziatdinov

Sponsors

AARMS (Atlantic Association for Research in the Mathematical Sciences)
Academic Vice President, Saint Mary’s University
Dean of Science, Saint Mary’s University
Director of Computing and Data Analytics, Saint Mary’s University
Destination Halifax

VIII Organization

The Complexity of Carry Propagation
for Successor Functions
(Extended Abstract)

Valérie Berthé1, Christiane Frougny1, Michel Rigo2,
and Jacques Sakarovitch3

1 IRIF - UMR 8243 - CNRS/Paris Diderot University, France
2 Université de Liège, Institut de Mathématiques, France
3 IRIF - UMR 8243 - CNRS/Paris Diderot University

and Telecom ParisTech, France

Carry propagation is the nightmare of school pupils and the headache of computer
engineers: not only can the addition of two digits give rise to a carry, but this carry
itself, when added to the next digits to the left1 may give rise to another carry, and so
on, and so forth, and this may happen for an arbitrarily long time. Since the beginnings
of computer science, the evaluation of the carry propagation length has been the subject
of many works and it is known that the average carry propagation length (or com-
plexity) for addition of two uniformly distributed n-digits binary numbers is
log2ðnÞþO 1ð Þ (see [5, 7, 10]).

We consider here the problem of carry propagation from amore theoretical perspective
and in an apparently elementary case. We investigate the amortized carry propagation
of the successor function in various numeration systems. The central case of integer base
numeration system allows us to describe quickly what we mean. Let us take an integer
p greater than 1 as a base. In the representations of the succession of the integers —
which is exactly what the successor function does— the least digit changes at every step,
the penultimate digit changes every p steps, the ante-penultimate digit changes every p2

steps, and so on and so forth … As a result, the average carry propagation of the
successor function, computed over the first N integers, should tend to the quantity

1þ 1
p
þ 1

p2
þ 1

p3
þ � � � ¼ p

p� 1
;

when N tends to infinity. It can be shown that it is indeed the case. Motivated by
various works on non-standard numeration systems, we investigate the questions of
evaluating and computing the amortized carry propagation in those systems. We thus
consider several such numeration systems different from the classical integer base
numeration systems: the greedy numeration systems and the beta-numeration systems,
see [6], which are a particular case of the former, the rational base numeration systems
[1] which are not greedy numeration systems, and the abstract numeration systems [8]
which are a generalization of the classical positional numeration systems.

1 We write numbers under MSDF (Most Significant Digit First) convention.

The approach of abstract numeration systems of [8], namely the study of a
numeration system via the properties of the set of expansions of the natural integers is
well-fit to this problem. Such systems consist of a totally ordered alphabet A of the
non-negative integers N and a language L of A�, ordered by the radix order deduced
from the ordering on A. The representation of an integer n is then the ðnþ 1Þ-th word of
L in the radix order. This definition is consistent with every classical standard and
non-standard numeration system.

Given a system defined by a language L ordered by radix order, we denote by
cpLðiÞ the carry propagation in the computation from the representation of i in L to that
of iþ 1. The (amortized) carry propagation of L, which we denote by CPL, is the limit,
if it exists, of the mean of the carry propagation at the first N words of L:

CPL ¼ lim
N!1

1
N

XN�1

i¼0

cpLðiÞ : ð1Þ

A further hypothesis is to consider prefix-closed and right-extensible languages,
called ‘PCE’ languages in the sequel: every left-factor of a word of L is a word of L and
every word of L is a left-factor of a longer word of L. Hence, L is the branch language
of an infinite labelled tree T L and, once again, every classical standard and
non-standard numeration system meets that hypothesis.

We first prove two easy properties of the carry propagation of PCE languages. First,
CPL does not depend upon the labelling of T L, but only on its ‘shape’ which is
completely defined by the infinite sequence of the degrees of the nodes visited in a
breadth-first traversal T L, and which is called signature of T L (or of L) in [9]. For
instance, the signature of the representation language in base p is the constant sequence
px. Second, we call local growth rate of a language L, and we denote by cL, the limit, if
it exists, of the ratio uLð‘þ 1Þ=uLð‘Þ, where uLð‘Þ is the number of words of L of length
‘. If CPL exists, then cL exists and it holds:

CPL ¼
cL

cL � 1
: ð2Þ

Examples show that cL may exist without CPL exist. By virtue of this equality, the
computation of CPL is usually not an issue, the problem lies in proving its existence.
We develop three different methods of existence proof, whose domains of application
are pairwise incomparable: combinatorial, algebraic, and ergodic, and which are built
upon very different mathematical backgrounds.

A combinatorial method shows that languages with eventually periodic signature
have a carry propagation. These languages are essentially the rational base numeration
systems (including the integer base numeration systems), possibly with non-canonical
alphabets of digits [9].

We next consider the rational abstract numeration systems, that is, those systems
which are defined by languages accepted by finite automata. Examples of such systems
are the Fibonacci numeration system, more generally, beta-numeration systems where
beta is a Parry number [6], and other systems different from beta-numeration. By means
of a property of rational power series with positive coefficients which is reminiscent of

X V. Berthé et al.

Perron-Frobenius Theorem, we prove that the carry propagation of a rational PCE

language L exists if L has a local growth rate and all its quotients also have a local
growth rate.

The definition of carry propagation (Eq. 1) inevitably reminds of Ergodic Theorem.
We then consider the greedy numeration systems. The language of greedy expansions
in such a system is embedded into a compact set, and the successor function is
extended as an action, called odometer, on that compactification. This gives a
dynamical system, but Ergodic Theorem does not directy apply as the odometer is not
continuous in general. Recently tools in ergodic theory [2] allow us to prove the
existence of the carry propagation for greedy systems with exponential growth, and
thus for beta-numeration in general.

This work was indeed motivated by a paper where the amortized (algorithmic) com-
plexity of the successor function for some beta-numeration systems was studied [3].
Whatever the chosen computation model, the (amortized) complexity is greater than the
(amortized) carry propagation, hence can be seen as the sum of two quantities: the carry
propagation itself and an overload. The study of carry propagation lead to quite unexpected
and winding developments that form a subject on its own, leaving the evaluation of the
overload to future works. A complete version of this present work [4] will appear soon.

References

1. Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and rational base
number systems. Israel J. Math. 168, 53–91 (2008)

2. Barat, G., Grabner, P.: Combinatorial and probabilistic properties of systems of numeration.
Ergod. Th. Dynam. Sys. 36, 422–457 (2016)

3. Barcucci, E., Pinzani, R., Poneti, M.: Exhaustive generation of some regular languages by
using numeration systems. In: Proceedings of the Words 2005, pp. 119–127. No. 36 in
Monographies du LaCIM, UQaM (2005)

4. Berthé, V., Frougny, C., Rigo, M., Sakarovitch, J.: On the concrete complexity of the
successor function. Part I: The carry propagation (in preparation)

5. Burks, A.W., Goldstine, H.H., von Neumann, J.: Preliminary discussion of the logical design
of an electronic computing instrument. In: Taub, A.H. (ed.) Collected Works of John von
Neumann, vol. 5, pp. 34–79. Macmillan (1963)

6. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Berthé, V.,
Rigo, M. (eds.) Combinatorics, Automata and Number Theory, pp. 34–107. Cambridge
University (2010)

7. Knuth, D.E.: The average time for carry propagation. Nederl. Akad. Wettensch. Indag. Math.
40, 238–242 (1978)

8. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.) Com-
binatorics, Automata and Number Theory, pp. 34–107. Cambridge University Press (2010)

9. Marsault, V., Sakarovitch, J.: Trees and languages with periodic signature. Indagationes
Math. 28, 221–246 (2017)

10. Pippenger, N.: Analysis of carry propagation in addition: an elementary approach. J. Algo-
rithms 42(2), 317–333 (2002)

The Complexity of Carry Propagation for Successor Functions XI

Contents

Finite Automata and Randomness . 1
Ludwig Staiger

Properties of Right One-Way Jumping Finite Automata 11
Simon Beier and Markus Holzer

Word Problem Languages for Free Inverse Monoids 24
Tara Brough

Most Complex Deterministic Union-Free Regular Languages 37
Janusz A. Brzozowski and Sylvie Davies

Site-Directed Insertion: Decision Problems, Maximality and Minimality 49
Da-Jung Cho, Yo-Sub Han, Kai Salomaa, and Taylor J. Smith

Two-Way Automata over Locally Finite Semirings 62
Louis-Marie Dando and Sylvain Lombardy

A New Technique for Reachability of States in Concatenation Automata 75
Sylvie Davies

Forward Injective Finite Automata: Exact and Random Generation
of Nonisomorphic NFAs . 88

Miguel Ferreira, Nelma Moreira, and Rogério Reis

On the Generation of 2-Polyominoes . 101
Enrico Formenti and Paolo Massazza

A Local Limit Property for Pattern Statistics in Bicomponent
Stochastic Models . 114

Massimiliano Goldwurm, Jianyi Lin, and Marco Vignati

Linear-Time Limited Automata . 126
Bruno Guillon and Luca Prigioniero

Cover Complexity of Finite Languages . 139
Stefan Hetzl and Simon Wolfsteiner

On the Grammatical Complexity of Finite Languages 151
Markus Holzer and Simon Wolfsteiner

State Grammars with Stores . 163
Oscar H. Ibarra and Ian McQuillan

Error-Free Affine, Unitary, and Probabilistic OBDDs. 175
Rishat Ibrahimov, Kamil Khadiev, Krišjānis Prūsis,
and Abuzer Yakaryılmaz

State Complexity of Unambiguous Operations on Deterministic
Finite Automata . 188

Galina Jirásková and Alexander Okhotin

Cycle Height of Finite Automata. 200
Chris Keeler and Kai Salomaa

Finite Automata with Undirected State Graphs . 212
Martin Kutrib, Andreas Malcher, and Christian Schneider

Further Closure Properties of Input-Driven Pushdown Automata 224
Alexander Okhotin and Kai Salomaa

State Complexity Characterizations of Parameterized Degree-Bounded
Graph Connectivity, Sub-Linear Space Computation, and the Linear
Space Hypothesis . 237

Tomoyuki Yamakami

Author Index . 251

XIV Contents

Finite Automata and Randomness

Ludwig Staiger(B)

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,
06099 Halle (Saale), Germany

staiger@informatik.uni-halle.de

Abstract. The lecture surveys approaches using finite automata to
define several notions of (automata-theoretic) randomness.

It focuses on the one hand on automata-theoretic randomness of
infinite sequences in connection with automata-independent notions like
disjunctivity and Borel normality.

On the other hand it considers the scale of relaxations of randomness
(Borel normality and disjunctivity), that is, finite-state dimension and
subword complexity and their interrelations.

Keywords: Finite automata · Infinite words · Betting automata
Finite-state dimension · Subword complexity

1 Introduction

The (algorithmic) randomness of infinite sequences can be defined by means
of computability. There have been three main approaches to the definition of
algorithmically random sequences, namely

1. the measure-theoretic approach,
2. the unpredictability approach, and
3. the incompressibility (or complexity-theoretic) approach.

All these approaches are based on Turing machines and were shown to be
equivalent in the case of Martin-Löf random sequences. We refer the reader
to the textbooks [5,9,10,13] for a complete history of Martin-Löf randomness
and related topics.

After Martin-Löf’s measure-theoretic approach [11] and Schnorr’s unpre-
dictability approach [16] already in the 1970s sequences random with respect
to finite automata were considered. It turned out that two approaches equiva-
lent in the algorithmic case yield different characterisations of sequences which
might be called “random” in the automata case. The first approach is an adap-
tation of the betting or martingale approach of [16] to finite automata whereas
the second – in an analogy to Martin-Löf’s measure theoretic approach – uses a
randomness definition via null sets definable by finite automata.

Here we present a brief survey on both randomness approaches for finite
automata and their relaxations which result in the finite-state dimension on the
one hand and in a connection to subword complexity on the other hand.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 1–10, 2018.
https://doi.org/10.1007/978-3-319-94631-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_1&domain=pdf

2 L. Staiger

2 Notation

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X = {0, . . . , r−1} be a finite alphabet of
cardinality |X| = r ≥ 2, and X∗ be the set (monoid) of words on X, including
the empty word e, and Xω be the set of infinite sequences (ω-words) over X.
As usual we refer to subsets W ⊆ X∗ as languages and to subsets F ⊆ Xω as
ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concate-
nation product extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗∪Xω.
For a language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by

W , and by Wω := {w1 · · · wi · · · : wi ∈ W \ {e}} we denote the set of infinite
strings formed by concatenating words in W . Furthermore |w| is the length of the
word w ∈ X∗ and pref(P) (infix(P)) is the set of all finite prefixes (infixes) of
strings in P ⊆ X∗ ∪Xω, in particular, pref(P) ⊆ infix(P). We shall abbreviate
w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w � η. If n ≤ |p| then p[0..n] is the n-length
prefix of p ∈ X∗ ∪ Xω.

A (deterministic) finite automaton over X is a quintuple A = (X,Q, q0, δ,Q
′)

where Q is a finite set of states, q0 ∈ Q the initial state, δ : Q × X → Q is
the transition function, and Q′ ⊆ Q is the set of final states. As usual δ also
denotes the continuation of δ to Q × X∗ defined by δ(q, e) := q and δ(q, wx) :=
δ(δ(q, w), x).

A language W ⊆ X∗ is called regular if there is a finite automaton A such
that W = {w : δ(q0, w) ∈ Q′}.

3 Randomness by Martingales

If one is asked why a certain event is random then often will be the answer that
the event be “unpredictable”. In particular, an ω-word ξ = x1x2 · · · should be
random if one cannot win by betting on its digits given other (previous) digits.
For automata this yields the following.

Definition 1 (Betting automaton). A = (X,Q, IR≥0, q0, δ, ν) is a finite
betting automaton : ⇐⇒
1. (X,Q, q0, δ) is a finite automaton (without final states) and
2. ν : Q × X → IR≥0 and

∑
x∈X ν(q, x) ≤ 1, for all q ∈ Q.

The automaton starts with capital VA(e) = 1. After the history w ∈ X∗ its
capital is VA(w) and the automaton bets ν(δ(q0, w), x) ·VA(w) on every x as the
outcome of the next digit. Its reward is r · ν(δ(q0, w), x) · VA(w) (r = |X|) for
the next digit x. This results in the following capital function (or martingale).

VA(e) := 1, and
VA(wx) := r · ν(δ(q0, w), x) · VA(w) (1)

In order to formulate the main result we need still the following notion.

Finite Automata and Randomness 3

Definition 2 (Borel normal ω-word). An ω-word ξ ∈ Xω is Borel normal
iff every subword (infix) w ∈ X∗ appears with the same frequency:

∀w

(

lim
n→∞

|{i : i ≤ n ∧ ξ[0..i] ∈ X∗ · w}|
n

)

= r−|w|

Then Schnorr and Stimm [17] proved the following characterisation of ω-words
random w.r.t. finite betting automata.

Theorem 1 ([17]). If ξ ∈ Xω is Borel normal then for every finite automaton
A it holds

1. ∀∞n(n ∈ IN → VA(ξ[0..n]) = VA(ξ[0..n + 1])), or
2. ∃γ(0 > γ ∧ ∀∞n(n ∈ IN → VA(ξ[0..n]) ≤ rγ·n)).

If ξ ∈ Xω is not Borel normal then there are a finite automaton A and γ > 0
such that

3. ∃∞n(n ∈ IN → VA(ξ[0..n]) ≥ rγ·n).

Other recent approaches to relate Borel normality to finite automata can be
found e.g. in [2,3] or [20].

4 Finite-State Dimension

Next we turn to aspects of partial randomness via automaton definable mar-
tingales VA. Finite-state dimension may be seen as the estimate of the maxi-
mally achievable exponent γ in Theorem 1.3. To this end we define for a betting
automaton A and a non-empty subset F ⊆ Xω

αA(F) := inf
{

α : ∀ξ(ξ ∈ F → lim sup
n→∞

VA(ξ[0..n])
r(1−α)·n > 0)

}

(2)

Observe that 1 − α corresponds to the exponent γ.
Then the finite-state dimension of F is obtained as

dimFS(F) := sup {αA(F) : A is a finite automaton} (3)

In this definition we followed Schnorr’s approach via martingales and order func-
tions (cf. [26]) rather than the one by s-gales in [6]. If we replace lim sup in Eq. (2)
by lim inf we obtain the so called strong finite-state dimension which has similar
properties [7].

As an immediate consequence of Theorem 1 we obtain that dimFS(ξ) = 1
if and only if ξ is Borel normal. One possibility to obtain ω-words of smaller
finite-state dimension is by dilution (inserting blocks of zeros) of Borel normal
ones. In this way one proves

Lemma 1 ([6, Lemma 6.5]). For every rational number t ∈ Q ∩ [0, 1] there is
an ω-word ξ such that dimFS(ξ) = t.

4 L. Staiger

The papers [4,6,7] give several equivalent definitions of finite-state dimension
in terms of information-lossless compression by finite-state machines, by log-loss
rates of continuous measures1 on X∗, or by block-entropy rates.

Combining the results of [6] with the ones of [18,19] in [8] it was observed
that finite-state dimension has also a characterisation via decompression by
transducers.

Definition 3 (Finite transducer). M = (X,Y,Q, q0, δ, λ) is a generalised
sequential machine (or finite transducer) if and only if (X,Q, q0, δ) is a finite
automaton without final states, Y is an alphabet and λ : Q × X → Y ∗

The transducer realises a prefix monotone mapping ϕ : X∗ → Y ∗ in the follow-
ing way:

ϕ(e) := e, and ϕ(wx) := ϕ(w) · λ(δ(q0, w), x)

This mapping can be extended to ω-words via pref(ϕ(η)) = pref(ϕ(pref(η))),
that is, ϕ(η) := lim

v→η
ϕ(v).

We define the decompression rate ϑM(η) along an input η as follows.

Definition 4 (Decompression along an input).

ϑM(η) := lim inf
n→∞

n

|ϕ(η[0..n])| ,

where M is a finite transducer and ϕ its related mapping.

As the difference |ϕ(wx) − ϕ(w)| is bounded, this quantity measures in some
sense the asymptotic amount of digits necessary to obtain the first � digits of
the output.

Then the finite-state dimension of ξ ∈ Xω turns out to be the simultaneous
best choice of a transducer M with a suitable best input η generating ξ = ϕ(η)
(cf. [6,8,18,19]).

Theorem 2. Consider the class KX of transducers M having output alphabet
Y = X. Then for all ξ ∈ Xω we have

dimFS(ξ) = inf
{
ϑM(η) : M ∈ KX ∧ η ∈ Xω ∧ ξ = ϕ(η)

}
.

We conclude this section by presenting a connection between the finite-state
dimension of some set F ⊆ Xω and the entropy of regular languages W contain-
ing pref(F) [4, Theorem 3.5].

The entropy (or entropy rate) HW of a language W ⊆ X∗ is defined as [4,22]

HW := lim sup
n→∞

logr(1 + |W ∩ Xn|)
n

. (4)

The entropy is monotone and stable, that is, HW∪V = max{HW ,HV }. It should
be mentioned that HW = Hpref(W) = Hinfix(W), for regular languages.

Theorem 3 ([4]). dimFS(F) ≤ inf{HW : pref(F) ⊆ W ∧ W is regular}
1 These measures were called predictors in [4].

Finite Automata and Randomness 5

5 Automaton Definable Null Sets

We start this section with introducing ω-languages definable by finite automata.
For more background see the books [15,28] or the surveys [23,27].

Let B = (X,Q,Δ, q0, Q
′) be a non-deterministic (Büchi-)automaton. Then

the sequence
(
qi, ξ(i+1), qi+1

)
i∈IN

is a run of B on the ω-word ξ = ξ(1) ·ξ(2) · · ·
provided (qi, ξ(i + 1), qi+1) ∈ Δ for all i ∈ IN. A run is called successful if
infinitely many of the qi are in the set of final states Q′.

The ω-language Lω(B) defined by B is then
Lω(B) = {ξ : ξ ∈ Xω ∧ there is a successful run of B on ξ}.

Definition 5 (Regular ω-language). An ω-language F ⊆ Xω is called regu-
lar if and only if F is accepted by a finite automaton

The following properties of the class of regular (automaton definable) ω-
languages are well-known.

Theorem 4. 1. An ω-language F ⊆ Xω is regular if and only if there are an
n ∈ IN and regular languages Wi, Vi ⊆ X∗, i ≤ n, such that F =

⋃n
i=1 Wi ·V ω

i .
2. The set of regular ω-languages over X is closed under Boolean operations.
3. If F ⊆ Xω is regular then pref(F) and infix(F) are regular languages.

Theorem 5. Let DB be the class of ω-languages accepted by deterministic Büchi
automata. Then

1. DB is a proper subclass of the class of regular ω-languages, and
2. DB is closed under union and intersection but not under complementation.
3. If W ⊆ X∗ is a regular language then {ξ : ξ ∈ Xω ∧pref(ξ) ⊆ W} ∈ DB and

{ξ : ξ ∈ Xω ∧ |pref(ξ) ∩ W | = ∞} ∈ DB.

As measure on the space Xω we use the usual product measure μ defined by
its values on the cylinder sets μ(w · Xω) := r−|w|. Then in [21,24] the following
characterisation of regular null sets via “forbidden subwords” is proved.

Theorem 6. Let F be a regular ω-language.

1. If F ∈ DB then μ(F) = 0 if and only if there is word w ∈ X∗ such that
F ⊆ Xω \ X∗ · w · Xω.

2. μ(F) = 0 if and only if
F ⊆ ⋃

w∈X∗ Xω \ X∗ · w · Xω.

Remark 1. Theorem 6 holds for a much larger class of finite measures on Xω

including all non-degenerated product measures on Xω (cf. [21,24,29,30]).

Now we can characterise those ω-words which are not contained in a regular
ω-language of measure zero.

Definition 6 (Disjunctivity). An ω-word ξ ∈ Xω is called disjunctive (or
rich or saturated) if and only if it contains every word w ∈ X∗ as subword
(infix).

6 L. Staiger

Consequently, ω-words random w.r.t. finite automata in the sense of the measure
theoretic approach are exactly the disjunctive ones. This allows us to compare
both of the presented approaches of randomness.

Proposition 1. Every Borel normal ω-word is disjunctive, but there are
disjunctive ω-words which are not Borel normal, e.g. the ω-word ζ :=∏

w∈X∗ 0|w| · w.

6 Subword Complexity

The characterisation via “forbidden subwords” enables us to derive a notion of
partial randomness similar to the finite-state dimension. To this end we use the
entropy of languages defined in Eq. (4) and define for arbitrary P ⊆ X∗ ∪ Xω

Definition 7 (Subword complexity).

τ(P) := Hinfix(P)

In view of the inequality infix(P) ∩ Xn+m ⊆ (infix(P) ∩ Xn) · (infix(P) ∩ Xm)
which holds for infix(P) the limit in Eq. (4) exists and equals

τ(P) = inf
{

logr(1 + |infix(P) ∩ Xn|)
n

: n ∈ IN
}

.

This value is also known as factor complexity in automata theory and topological
entropy in symbolic dynamics.

The following is clear.

Proposition 2. 0 ≤ τ(ξ) ≤ 1 and an ω-word ξ ∈ Xω is disjunctive if and only
if τ(ξ) = 1.

For subword complexity one has for every possible value an ω-word of exactly
this complexity [12].

Theorem 7. For every t, 0 ≤ t ≤ 1, there is a ξ ∈ Xω such that τ(ξ) = t.

Similar to Eq. (5.1.2) of [22] one can derive the following identity.

τ(P) = inf{HW : W ⊆ X∗ ∧ infix(P) ⊆ W ∧ W is regular} (5)

Now Theorem 3 yields the following relation to finite-state dimension.

dimFS F ≤ τ(F) (6)

For certain regular ω-languages F ⊆ Xω we have identity in Eq. (6).

Proposition 3. Let F ⊆ Xω be non-empty and regular.

1. Then max
ξ∈F

τ(ξ) exists and max
ξ∈F

τ(ξ) = max
ξ∈F

dimFS{ξ}.

2. If, moreover, F = {ξ : pref(ξ) ⊆ pref(F)} then τ(F) = dimFS F .

Finite Automata and Randomness 7

7 Predicting Finite Automata

A further feature of randomness of an ω-word ξ, similar to the one mentioned
for betting automata, is the impossibility of the exact prediction of the next
symbol. Here Tadaki [25] proposed the following.

Definition 8 (Predicting automaton). A transducer A = (X,X,Q, q0, δ, λ)
is referred to as a predicting automaton if λ : Q → {e} ∪ X is a labelling of
states.

Definition 9 (Prediction). A predicting automaton A = (X,X,Q, q0, δ, λ)
strongly predicts ξ ∈ Xω if and only if

1. λ(δ(q0, ξ[0..n − 1])) = ξ(n) for infinitely many n ∈ IN, and
2. if λ(δ(q0, ξ[0..n − 1])) �= ξ(n) then λ(δ(q0, ξ[0..n − 1])) = e.

Definition 9 is a strong requirement, it forces the automaton to make on input
ξ infinitely many correct predictions and no incorrect ones. Here using the label
λ(q) = e the automaton may skip. Nevertheless, in the binary case X = {0, 1}
we have the following.

Theorem 8. 1. Let A = ({0, 1}, {0, 1}, Q, q0, δ, λ) be a binary predicting
automaton. If A strongly predicts ξ ∈ {0, 1}ω then ξ is not disjunctive.

2. If ξ ∈ {0, 1}ω is disjunctive then no predicting automaton predicts ξ.

This theorem does not hold in the other cases when |X| ≥ 3. Here we have
to turn to “negative” prediction. We say that A weakly predicts ξ provided
λ(δ(q0, ξ[0..n−1])) �= ξ(n) for infinitely many n ∈ IN and λ(δ(q0, ξ[0..n−1])) = e
otherwise. Then we have.

Theorem 9. 1. Let A = (X,X,Q, q0, δ, λ) be a binary predicting automaton. If
A weakly predicts ξ ∈ Xω then ξ is not disjunctive.

2. If ξ ∈ Xω is disjunctive then no predicting automaton weakly predicts ξ.

8 Finite-State Genericity

This section reviews some connections between disjunctivity and finite-state
genericity. As in [1] we define the following.

Definition 10. Let ξ ∈ Xω.

1. ξ meets a function ψ : X∗ → X∗ if w · ψ(w) � ξ.
2. ξ is finite-state generic if ξ meets every function ϕ realised by a finite

transducer.

This can be interpreted in terms of the usual product topology on Xω which
can be defined by the metric �(ξ, η) := sup{r−n : ξ(n) �= η(n)} where we agree
on sup ∅ = 0. The cylinder sets w · Xω are simultaneously open and closed balls

8 L. Staiger

of diameter r−|w|. The closure C(F) of (smallest closed set containing) a set
F ⊆ Xω obtains as C(F) = {ξ : pref(ξ) ⊆ pref(F)}.

A subset F is nowhere dense if its closure does not contain a non-empty open
subset, that is, for every w ∈ pref(F) there is a continuation v ∈ X∗ such that
w · v · Xω ∩ F = ∅, that is “v leads w to a hole” in F .

Then Definition 10.2 gives an indication that finite-state generic ω-words
avoid “finite-state nowhere dense” subsets of Xω. This is shown by Theorem 4.4
of [1].

Theorem 10 ([1]). An ω-word ξ is disjunctive if and only if it is finite-state
generic.

Theorem 10 fits into the more general coincidence of measure and category
for regular ω-languages depicted in Fig. 1 (see [21,24,29,30]). In the general
case, however, the monograph [14] shows that measure and category (topological
density) are two concepts which do no coincide.

Fig. 1. Coincidence of measure and category for regular ω-languages

As usual a subset F is meagre or of first Baire category if it is an at most
countable union of nowhere dense sets, a set is of second Baire category if it
is not meagre, and it is residual if its complement is meagre. The first column
of Fig. 1 presents a comparison of the sizes of F ⊆ Xω, and the rows indicate
that for regular ω-languages F ⊆ Xω properties of the same row coincide, e.g.
μ(F) = 0 iff F is meagre.

References

1. Ambos-Spies, K., Busse, E.: Automatic forcing and genericity: on the diagonaliza-
tion strength of finite automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V.
(eds.) DMTCS 2003. LNCS, vol. 2731, pp. 97–108. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45066-1 7

2. Becher, V., Carton, O., Heiber, P.A.: Normality and automata. J. Comput. Syst.
Sci. 81(8), 1592–1613 (2015)

3. Becher, V., Heiber, P.A.: Normal numbers and finite automata. Theor. Comput.
Sci. 477, 109–116 (2013)

4. Bourke, C., Hitchcock, J.M., Vinodchandran, N.: Entropy rates and finite-state
dimension. Theor. Comput. Sci. 349(3), 392–406 (2005)

https://doi.org/10.1007/3-540-45066-1_7

Finite Automata and Randomness 9

5. Calude, C.S.: Information and Randomness. An Algorithmic Perspective. Texts
in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Berlin
(2002). https://doi.org/10.1007/978-3-662-04978-5. With forewords by Gregory J.
Chaitin and Arto Salomaa

6. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor.
Comput. Sci. 310(1–3), 1–33 (2004)

7. Doty, D., Lutz, J.H., Nandakumar, S.: Finite-state dimension and real arithmetic.
Inf. Comput. 205(11), 1640–1651 (2007)

8. Doty, D., Moser, P.: Finite-state dimension and lossy decompressors. CoRR
abs/cs/0609096 (2006). http://arxiv.org/abs/cs/0609096

9. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-
ory and Applications of Computability. Springer, New York (2010)

10. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations. Texts and Monographs in Computer Science. Springer, New York (1993).
https://doi.org/10.1007/978-1-4757-3860-5

11. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)
12. Moldagaliyev, B., Staiger, L., Stephan, F.: On the values for factor complexity

(2018, to appear)
13. Nies, A.: Computability and Randomness, Oxford Logic Guides, vol. 51.

Oxford University Press, Oxford (2009). https://doi.org/10.1093/acprof:oso/
9780199230761.001.0001

14. Oxtoby, J.C.: Measure and Category, Graduate Texts in Mathematics, vol. 2, 2nd
edn. Springer, New York (1980). A survey of the analogies between topological and
measure spaces

15. Perrin, D., Pin, J.E.: Infinite Words. Automata, Semigroups, Logic and Games.
Elsevier/Academic Press, Amsterdam (2004)

16. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. LNM, vol. 218. Springer, Hei-
delberg (1971). https://doi.org/10.1007/BFb0112458

17. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Inf. 1,
345–359 (1972)

18. Sheinwald, D., Lempel, A., Ziv, J.: On compression with two-way head machines.
In: Storer, J.A., Reif, J.H. (eds.) Proceedings of the IEEE Data Compression Con-
ference, DCC 1991, Snowbird, Utah, 8–11 April 1991, pp. 218–227. IEEE Computer
Society (1991). https://doi.org/10.1109/DCC.1991.213359

19. Sheinwald, D., Lempel, A., Ziv, J.: On encoding and decoding with two-way head
machines. Inf. Comput. 116(1), 128–133 (1995)

20. Shen, A.: Automatic Kolmogorov complexity and normality revisited. In: Klas-
ing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 418–430. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8 33

21. Staiger, L.: Reguläre Nullmengen. Elektron. Informationsverarbeit. Kybernetik
12(6), 307–311 (1976)

22. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inform. Comput.
103(2), 159–194 (1993). https://doi.org/10.1006/inco.1993.1017

23. Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 3, pp. 339–387. Springer, Berlin (1997). Beyond Words

24. Staiger, L.: Rich ω-words and monadic second-order arithmetic. In: Nielsen, M.,
Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 478–490. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028032

25. Tadaki, K.: Phase transition and strong predictability. In: Ibarra, O.H., Kari, L.,
Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 340–352. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08123-6 28

https://doi.org/10.1007/978-3-662-04978-5
http://arxiv.org/abs/cs/0609096
https://doi.org/10.1007/978-1-4757-3860-5
https://doi.org/10.1093/acprof:oso/9780199230761.001.0001
https://doi.org/10.1093/acprof:oso/9780199230761.001.0001
https://doi.org/10.1007/BFb0112458
https://doi.org/10.1109/DCC.1991.213359
https://doi.org/10.1007/978-3-662-55751-8_33
https://doi.org/10.1006/inco.1993.1017
https://doi.org/10.1007/BFb0028032
https://doi.org/10.1007/978-3-319-08123-6_28

10 L. Staiger

26. Terwijn, S.A.: Complexity and randomness. Rend. Semin. Mat. 62(1), 1–37 (2004).
Torino

27. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990).
Formal Models and Semantics

28. Trakhtenbrot, B.A., Barzdiń, Y.M.: Finite Automata. North-Holland Publishing
Co., Amsterdam (1973). Behavior and Synthesis, Translated from the Russian
by D. Louvish, English translation edited by E. Shamir and L. H. Landweber,
Fundamental Studies in Computer Science, vol. 1

29. Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct
systems. In: 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12–15 August 2006, Seattle, WA, USA, Proceedings, pp. 389–398. IEEE Computer
Society (2006). https://doi.org/10.1109/LICS.2006.49

30. Völzer, H., Varacca, D.: Defining fairness in reactive and concurrent systems. J.
ACM 59(3), Article no. 13, 37 (2012). https://doi.org/10.1145/2220357.2220360

https://doi.org/10.1109/LICS.2006.49
https://doi.org/10.1145/2220357.2220360

Properties of Right One-Way Jumping
Finite Automata

Simon Beier and Markus Holzer(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{simon.beier,holzer}@informatik.uni-giessen.de

Abstract. Right one-way jumping finite automata (ROWJFAs), were
recently introduced in [H. Chigahara, S. Z. Fazekas, A. Yamamura:
One-Way Jumping Finite Automata, Internat. J. Found. Comput. Sci.,
27(3), 2016] and are jumping automata that process the input in a
discontinuous way with the restriction that the input head reads deter-
ministically from left-to-right starting from the leftmost letter in the
input and when it reaches the end of the input word, it returns to
the beginning and continues the computation. We solve most of the
open problems of these devices. In particular, we characterize the fam-
ily of permutation closed languages accepted by ROWJFAs in terms of
Myhill-Nerode equivalence classes. Using this, we investigate closure and
non-closure properties as well as inclusion relations to other language
families. We also give more characterizations of languages accepted by
ROWJFAs for some interesting cases.

1 Introduction

Jumping finite automata [11] are a machine model for discontinuous informa-
tion processing. Roughly speaking, a jumping finite automaton is an ordinary
finite automaton, which is allowed to read letters from anywhere in the input
string, not necessarily only from the left of the remaining input. In a series
of papers [1,6,7,13] different aspects of jumping finite automata were investi-
gated, such as, e.g., inclusion relations, closure and non-closure results, decision
problems, computational complexity of jumping finite automata problems, etc.
Shortly after the introduction of jumping automata, a variant of this machine
model was defined, namely (right) one-way jumping finite automata [3]. There
the device moves the input head deterministically from left-to-right starting from
the leftmost letter in the input and when it reaches the end of the input word,
it returns to the beginning and continues the computation. As in the case of
ordinary jumping finite automata inclusion relations to well-known formal lan-
guage families, closure and non-closure results under standard formal language
operations were investigated. Nevertheless, a series of problems on right one-way
jumping automata (ROWJFAs) remained open in [3]. This is the starting point
of our investigation.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 11–23, 2018.
https://doi.org/10.1007/978-3-319-94631-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_2&domain=pdf

12 S. Beier and M. Holzer

First we develop a characterization of (permutation closed) languages that
are accepted by ROWJFAs in terms of the Myhill-Nerode relation. It is shown
that the permutation closed language L belongs to ROWJ, the family of all
languages accepted by ROWJFAs, if and only if L can be written as the finite
union of Myhill-Nerode equivalence classes. Observe, that the overall number of
equivalence classes can be infinite. This result nicely contrasts the characteriza-
tion of regular languages, which requires that the overall number of equivalence
classes is finite. The characterization allows us to identify languages that are not
accepted by ROWJFAs, which are useful to prove non-closure results on stan-
dard formal language operations. In this way we solve all of the open problems
from [3] on the inclusion relations of ROWJFAs languages to other language
families and on their closure properties. It is shown that the family ROWJ is
an anti-abstract family of languages (anti-AFL), that is, it is not closed under
any of the operations λ-free homomorphism, inverse homomorphism, intersec-
tion with regular sets, union, concatenation, or Kleene star. This is a little bit
surprising for a language family defined by a deterministic automaton model.
Although anti-AFLs are sometimes referred to an “unfortunate family of lan-
guages” there is linguistical evidence that such language families might be of
crucial importance, since in [4] it was shown that the family of natural lan-
guages is an anti-AFL. On the other hand, the permutation closed languages
in ROWJ almost form an anti-AFL, since this language family is closed under
inverse homomorphism. Moreover, we obtain further characterizations of lan-
guages accepted by ROWJFAs. For instance, we show that

1. language wL is in ROWJ if and only if L is in ROWJ,
2. language Lw is in ROWJ if and only if L is regular, and
3. language L1L2 is in ROWJ if and only if L1 is regular and L2 is in ROWJ,

where L1 and L2 have to fulfil some further easy pre-conditions.

The latter result is in similar vein as a result in [9] on linear context-free
languages, where it was shown that L1L2 is a linear context-free language if
and only if L1 is regular and L2 at most linear context free. Finally another
characterization is given for letter bounded ROWJFA languages, namely, the
language L ⊆ a∗

1a
∗
2 . . . a∗

n is in ROWJ if and only if L is regular. This result
nicely generalizes the fact that every unary language accepted by an ROWJFA
is regular.

2 Preliminaries

We assume the reader to be familiar with the basics in automata and formal
language theory as contained, for example, in [10]. Let N = {0, 1, 2, . . .} be the
set of non-negative integers. We use ⊆ for inclusion, and ⊂ for proper inclusion.
Let Σ be an alphabet. Then Σ∗ is the set of all words over Σ, including the
empty word λ. For a language L ⊆ Σ∗ define the set perm(L) = ∪w∈L perm(w),
where perm(w) = {v ∈ Σ∗ | v is a permutation of w}. Then a language L is
called permutation closed if L = perm(L). The length of a word w ∈ Σ∗ is

Properties of Right One-Way Jumping Finite Automata 13

denoted by |w|. For the number of occurrences of a symbol a in w we use the
notation |w|a. We denote the powerset of a set S by 2S . For Σ = {a1, a2, . . . , ak},
the Parikh-mapping ψ : Σ∗ → N

k is the function w �→ (|w|a1 , |w|a2 , . . . , |w|ak
).

A language L ⊆ Σ∗ is called semilinear if its Parikh-image ψ(L) is a semilinear
subset of N

k, a definition of those can be found in [8].
The elements of N

k can be partially ordered by the ≤-relation on vectors.
For vectors x ,y ∈ N

k we write x ≤ y if all components of x are less or equal to
the corresponding components of y . The value ||x || is the maximum norm of x ,
that is, ||(x 1,x 2, . . . ,xk)|| = max{ |x i| | 1 ≤ i ≤ k }.

For v, w ∈ Σ∗, we say that v is a prefix of w if there is an x ∈ Σ∗ with w = vx.
Moreover, v is a sub-word of w if there are x1, x2, . . . , xn, y1, y2, . . . , yn+1 ∈
Σ∗ with v = x1x2 · · · xn and w = y1x1y2x2 · · · ynxnyn+1, for some n ≥ 0. A
language L ⊆ Σ∗ is called prefix-free if and only if there are no words v, w ∈ L
such that v
= w and v is a prefix of w.

For an alphabet Σ and a language L ⊆ Σ∗, let ∼L be the Myhill-Nerode
equivalence relation on Σ∗. So, for v, w ∈ Σ∗, we have v ∼L w if and only if, for
all u ∈ Σ∗, the equivalence vu ∈ L ⇔ wu ∈ L holds. For w ∈ Σ∗, we call the
equivalence class [w]∼L

positive if and only if w ∈ L. Otherwise, the equivalence
class [w]∼L

is called negative.
A deterministic finite automaton, a DFA for short, is defined as a tuple

A = (Q,Σ,R, s, F), where Q is the finite set of states, Σ is the finite input
alphabet, Σ ∩ Q = ∅, R is a partial function from Q × Σ to Q, s ∈ Q is the
start state, and F ⊆ Q is the set of final states. The elements of R are referred
to a rules of A and we write py → q ∈ R instead of R(p, y) = q. A configuration
of A is a string in QΣ∗. A DFA makes a transition from configuration paw to
configuration qw if pa → q ∈ R, where p, q ∈ Q, a ∈ Σ, and w ∈ Σ∗. We denote
this by paw �A qw or just paw � qw if it is clear which DFA we are referring to.
In the standard manner, we extend � to �n, where n ≥ 0. Let �+ and �∗ denote
the transitive closure of � and the transitive-reflexive closure of �, respectively.
Then, the language accepted by A is L(A) = {w ∈ Σ∗ | ∃f ∈ F : sw �∗ f }. We
say that A accepts w ∈ Σ∗ if w ∈ L(A) and that A rejects w otherwise. The
family of languages accepted by DFAs is referred to as REG.

A jumping finite automaton, a JFA for short, is a tuple A = (Q,Σ,R, s, F),
where Q, Σ, R, s, and F are the same as in the case of DFAs. A configuration
of A is a string in Σ∗QΣ∗. The binary jumping relation, symbolically denoted
by �A, over Σ∗QΣ∗ is defined as follows. Let x, z, x′, z′ be strings in Σ∗ such
that xz = x′z′ and py → q ∈ R. Then, the automaton A makes a jump from xpyz
to x′qz′, symbolically written as xpyz �A x′qz′ or just xpyz � x′qz′ if it is clear
which JFA we are referring to. In the standard manner, we extend � to �

n,
where n ≥ 0. Let �

+ and �
∗ denote the transitive closure of � and the

transitive-reflexive closure of �, respectively. Then, the language accepted by A
is L(A) = {uv | u, v ∈ Σ∗, ∃f ∈ F : usv �

∗ f}. We say that A accepts w ∈ Σ∗ if
w ∈ L(A) and that A rejects w otherwise. Let JFA be the family of all languages
that are accepted by JFAs.

14 S. Beier and M. Holzer

A right one-way jumping finite automaton, a ROWJFA for short, is a
tuple A = (Q,Σ,R, s, F), where Q, Σ, R, s, and F are defined as in a DFA.
A configuration of A is a string in QΣ∗. The right one-way jumping relation,
symbolically denoted by �A, over QΣ∗ is defined as follows. For p ∈ Q we set

Σp = ΣR,p = {b ∈ Σ | pb → q ∈ R for some q ∈ Q} .

Now, let pa → q ∈ R, x ∈ (Σ\Σp)∗, and y ∈ Σ∗. Then, the ROWJFA A makes a
jump from the configuration pxay to the configuration qyx, symbolically written
as pxay �A qyx or just pxay � qyx if it is clear which ROWJFA we are referring
to. In the standard manner, we extend � to �n, where n ≥ 0. Let �+ and �∗

denote the transitive closure of � and the transitive-reflexive closure of �, respec-
tively. The language accepted by A is L(A) = {w ∈ Σ∗ | ∃f ∈ F : sw �∗ f}.
We say that A accepts w ∈ Σ∗ if w ∈ L(A) and that A rejects w otherwise.
Let ROWJ be the family of all languages that are accepted by ROWJFAs.
Furthermore, for n ≥ 0, let ROWJn be the class of all languages accepted by
ROWJFAs with at most n accepting states.

Besides the above mentioned language families let FIN, DCF, CF, and CS
be the families of finite, deterministic context-free, context-free, and context-
sensitive languages. Moreover, we are interested in permutation closed language
families. These language families are referred to by a prefix p. E.,g., pROWJ
denotes the language family of all permutation closed ROWJ languages.

Sometimes, for a DFA A, we will also consider the relations � and �, that
we get by interpreting A as a JFA or a ROWJFA. The following three languages
are associated to A:

– LD(A) is the language accepted by A, interpreted as an ordinary DFA.
– LJ (A) is the language accepted by A, interpreted as an JFA.
– LR(A) is the language accepted by A, interpreted as an ROWJFA.

From a result in [12] and from [3, Theorem 10], we get

LD(A) ⊆ LR(A) ⊆ LJ (A) = perm(LD(A)). (1)

As a consequence, we have JFA = pJFA. Next we give an example of a DFA A
with LD(A) ⊂ LR(A) ⊂ LJ (A).

Example 1. Let A be the DFA

A = ({q0, q1, q2, q3}, {a, b}, R, q0, {q3}) ,

where R consists of the rules q0b → q1, q0a → q2, q2b → q3, and q3a → q2. The
automaton A is depicted in Fig. 1.

It holds LD(A) = (ab)+ and

LJ (A) = perm
(
(ab)+

)
=

{
w ∈ {a, b}+ ∣

∣ |w|a = |w|b
}

.

Properties of Right One-Way Jumping Finite Automata 15

q0 q1 q2 q3
b

a

b

a

Fig. 1. The automaton A with LD(A) ⊂ LR(A) ⊂ LJ(A).

To show how ROWJFAs work, we give an example computation of A, inter-
preted as an ROWJFA, on the input word aabbba:

q0aabbba � q2abbba � q3bbaa � q2abb � q3ba � q2b � q3

That shows aabbba ∈ LR(A). Analogously, one can see that every word that
contains the same number of a’s and b’s and that begins with an a is in LR(A).
On the other hand, no other word can be accepted by A, interpreted as an
ROWJFA. So, we get LR(A) = {w ∈ a{a, b}∗ | |w|a = |w|b}. Notice that this
language is non-regular and not closed under permutation. ��

The following basic property will be used later on.

Lemma 2. Let A = (Q,Σ,R, s, F) be a DFA. Consider two words v, w ∈ Σ∗,
states p, q ∈ Q, and an n ≥ 0 with pv �n qw. Then, there is a word x ∈ Σ∗ such
that xw is a permutation of v, and px �n q.

Proof. We prove this by induction on n. If n = 0, we have pv = qw and just
set x = λ. Now, assume n > 0 and that the lemma is true for the relation �n−1.
We get a state r ∈ Q, a symbol a ∈ Σr, and words y ∈ (Σ \ Σr)∗ and z ∈ Σ∗

such that w = zy and pv �n−1 ryaz � qw. By the induction hypothesis, there is
an x′ ∈ Σ∗ such that x′yaz is a permutation of v, and px′ �n−1 r. Set x = x′a.
Then, the word xw = x′azy is a permutation of x′yaz, which is a permutation
of v. Furthermore, we get px = px′a �n−1 ra � q. This proves the lemma. ��

3 A Characterization of Permutation Closed Languages
Accepted by ROWJFAS

By the Myhill-Nerode theorem, a language L is regular if and only if the Myhill-
Nerode relation ∼L has only a finite number of equivalence classes. Moreover,
the number of equivalence classes equals the number of states of the minimal
DFA accepting L, see for example [10]. We can give a similar characterization
for permutation closed languages that are accepted by an ROWJFA.

Theorem 3. Let L be a permutation closed language and n ≥ 0. Then, the
language L is in ROWJn if and only if the Myhill-Nerode relation ∼L has at
most n positive equivalence classes.

16 S. Beier and M. Holzer

Proof. First, assume that L is in ROWJn and let A = (Q,Σ,R, s, F) be a DFA
with |F | ≤ n and LR(A) = L. Consider v, w ∈ L and f ∈ F with sv �∗ f
and sw �∗ f . Lemma 2 shows that there are permutations v′ and w′ of v and w
with sv′ �∗ f and sw′ �∗ f . Because language L is closed under permutation we
have v ∼L v′ and w ∼L w′. Now, let u ∈ Σ∗. Thus sv′u �∗ fu and sw′u �∗ fu.
That gives us

v′u ∈ L ⇔ (∃g ∈ F : fu �∗ g) ⇔ w′u ∈ L.

We have shown v ∼L v′ ∼L w′ ∼L w. From L =
⋃

f∈F {w ∈ Σ∗ | sw �∗ f}, we
get |L/ ∼L | ≤ |F | ≤ n, which means that ∼L has at most n positive equivalence
classes.

Assume now that ∼L has at most n positive equivalence classes and let
Σ = {a1, a2, . . . , ak} be an alphabet with L ⊆ Σ∗. Set Lλ = L ∪ {λ}. Define
the map S : Lλ/ ∼L→ 2N

k

through [w] �→ {
x ∈ N

k \ 0
∣
∣ ψ−1(ψ(w) + x) ⊆ L

}
.

The definition of ∼L and the fact that L is closed under permutation make the
map S well-defined. Consider the relation ≤ on N

k. For each [w] ∈ Lλ/ ∼L,
let M([w]) be the set of minimal elements of S([w]). So, for every [w] ∈ Lλ/ ∼L

and x ∈ S([w]), there is an x0 ∈ M([w]) such that x0 ≤ x . Due to [5] each
subset of N

k has only a finite number of minimal elements, so the sets M([w])
are finite. For i ∈ {1, 2, . . . , k}, let πi : N

k → N be the canonical projection on
the ith factor and set

mi = max

⎛

⎝
⋃

[w]∈Lλ/∼L

{ πi(x) | x ∈ M([w]) }
⎞

⎠ ,

where max(∅) should be 0. We have mi < ∞, for all i ∈ {1, 2, . . . , k}, because
of |Lλ/ ∼L | ≤ n + 1. Let

Q =
{
q[wv]∼L

∣
∣
∣ w ∈ Lλ, v ∈ Σ∗ with |v|ai

≤ mi, for all i ∈ {1, 2, . . . , k}
}

be a set of states. The finiteness of Lλ/∼L implies that Q is also finite. Set

F =
{

q[w]∼L

∣
∣
∣ w ∈ L

}
⊆ Q.

We get |F | = |L/ ∼L | ≤ n. Define the partial mapping R : Q × Σ → Q by
R(q[y]∼L

, a) = q[ya]∼L
, if q[ya]∼L

∈ Q, and R(q[y]∼L
, a) be undefined otherwise, for

a ∈ Σ and y ∈ Σ∗ with q[y]∼L
∈ Q. Consider the DFA A = (Q,Σ,R, q[λ]∼L

, F).
We will show that LR(A) = L.

First, let y ∈ LR(A). Then, there exists w ∈ L with q[λ]∼L
y �∗ q[w]∼L

. From
Lemma 2 it follows that there is a permutation y′ of y with q[λ]∼L

y′ �∗ q[w]∼L
.

Now, the definition of R tells us y′ ∼L w. We get y′ ∈ L and also y ∈ L,
because L is closed under permutation. That shows LR(A) ⊆ L.

Now, let y ∈ Σ∗ \ LR(A). There are two possibilities:

1. There is a w ∈ Σ∗ \ L with q[w]∼L
∈ Q such that q[λ]∼L

y �∗ q[w]∼L
. Then,

there is a permutation y′ of y with q[λ]∼L
y′ �∗ q[w]∼L

. We get y′ ∼L w. It
follows y′ /∈ L, which gives us y /∈ L.

Properties of Right One-Way Jumping Finite Automata 17

2. There is a w ∈ Lλ, a v ∈ Σ∗ with |v|ai
≤ mi, for all i ∈ {1, 2, . . . , k}, and

a z ∈ (Σ \ Σq[wv]∼L
)+ such that q[λ]∼L

y �∗ q[wv]∼L
z. By Lemma 2 there is

a y′ ∈ Σ∗ such that y′z is a permutation of y and q[λ]∼L
y′ �∗ q[wv]∼L

. We
get y′ ∼L wv. Set

U =
⋃

t∈Σ∗
{u ∈ Σ∗ | ut ∈ perm(v) and wu ∈ Lλ} .

We have λ ∈ U . Let u0 ∈ U such that |u0| = max ({ |u| | u ∈ U }) and
let t0 ∈ Σ∗ such that u0t0 ∈ perm(v). It follows that |t0|ai

≤ |v|ai
≤ mi,

for all i ∈ {1, 2, . . . , k}, and that there exists no x ∈ M ([wu0]∼L
) with

x ≤ ψ(t0). Otherwise, we would have an x′ ∈ ψ−1(x) which is a non-empty
sub-word of t0 such that wu0x

′ ∈ L, which implies u0x
′ ∈ U . However, this

is a contradiction to the maximality of |u0|. That shows that there is no x ∈
M ([wu0]∼L

) with x ≤ ψ(t0). Let now x0 ∈ M ([wu0]∼L
). There exists a j ∈

{1, 2, . . . , k} with |t0|aj
< πj(x0) ≤ mj . Because of |t0|ai

≤ mi, for all i with
i ∈ {1, 2, . . . , k}, and z ∈ (Σ \Σq[wv]∼L

)+ = (Σ \Σq[wu0t0]∼L
)+, we get |z|aj

=
0. That gives |t0z|aj

< πj(x0) and that ψ(t0z) ≥ x0 is false. So, we have
shown ψ(t0z) /∈ S ([wu0]∼L

), which implies wu0t0z /∈ L. From wu0t0z ∼L

wvz ∼L y′z ∼L y, it follows that y /∈ L.

We have seen LR(A) = L. This shows that L is in ROWJn. ��
The previous theorem allows us to determine for a lot of interesting languages

whether they belong to ROWJ or not.

Corollary 4. Let L be a permutation closed language. Then, the language L is
in ROWJ if and only if the Myhill-Nerode relation ∼L has only a finite number
of positive equivalence classes. ��

An application of the last corollary is the following.

Lemma 5. The language L = {w ∈ {a, b}∗ | |w|b = 0 ∨ |w|b = |w|a} is not
included in ROWJ.

Proof. The language L is closed under permutation. For ∼L, the positive equiv-
alence classes [a0], [a1], . . . are pairwise different, since anbm ∈ L if and only
if m ∈ {0, n}. Corollary 4 tells us that L is not in ROWJ. ��

There are counterexamples for both implications of Corollary 4, if we do
not assume that the language L is closed under permutation. For instance, set
L = {anbn | n ≥ 0}, which was shown to be not in ROWJ in [3]. Then, the
positive equivalence classes of ∼L are [λ] and [ab]. On the other hand, we have:

Lemma 6. There is a language L in ROWJ such that ∼L has an infinite
number of positive equivalence classes. ��

From Corollary 4 we conclude the following equivalence.

18 S. Beier and M. Holzer

Corollary 7. Let L be a permutation closed ROWJ language over the alpha-
bet Σ. Then, the language L is regular if and only if Σ∗ \ L is in ROWJ. ��

The previous corollary gives us:

Lemma 8. The language {w ∈ {a, b}∗ | |w|a
= |w|b} is not in ROWJ. ��
Having the statement of Theorem 3, it is natural to ask, which numbers arise

as the number of positive equivalence classes of the Myhill-Nerode relation ∼L

of a permutation closed language L. The answer is, that all natural numbers
arise this way, even if we restrict ourselves to some special families:

Theorem 9. For each n > 0, there is a permutation closed language which
is (1) finite, (2) regular, but infinite, (3) context-free, but non-regular, (4) non-
context-free such that the corresponding Myhill-Nerode relation has exactly n
positive equivalence classes. ��

The previous theorem, together with Theorem 3, implies that the language
families ROWJn form a proper hierarchy, even if we only consider languages
out of special language families:

Corollary 10. For all n ≥ 0, we have ROWJn ∩FAM ⊂ ROWJn+1 ∩FAM,
where FAM is either 2Σ∗

, FIN, REG \ FIN, CF \ REG, or CS \ CF. The
statement remains valid if restricted to permutation closed languages. ��

4 Inclusion Relations Between Language Families

We investigate inclusion relations between ROWJ and other important lan-
guages families. The following relations were given in [3]: (1) REG ⊂ ROWJ,
(2) ROWJ and CF are incomparable, and (3) ROWJ � JFA. It was stated
as an open problem if JFA ⊂ ROWJ. We can answer this using Lemma 5:

Theorem 11. The language families ROWJ and JFA are incomparable. ��
For the complexity of ROWJ, we get that the language family ROWJ is

included in both of the complexity classes DTIME(n2) and DSPACE(n). This
implies that ROWJ is properly included in CS. Moreover, we find the following
relations:

Theorem 12. We have (1) ROWJ ⊂ CS, (2) ROWJ and DCF are incom-
parable, and (3) every language in ROWJ is semilinear. ��

For permutation closed language families the next theorem applies.

Theorem 13. We have pFIN ⊂ pREG ⊂ pDCF ⊂ pCF ⊂ pJFA = JFA ⊂
pCS and pREG ⊂ pROWJ ⊂ JFA. Furthermore, the family pROWJ is
incomparable to pDCF and to pCF. We have pROWJ ⊂ ROWJ. ��

Properties of Right One-Way Jumping Finite Automata 19

5 Closure Properties of ROWJ and pROWJ

We consider closure properties of the language families ROWJ and pROWJ.
Our results are summarized in Table 1. Here we only show that ROWJ is not
closed under inverse homomorphism, while the permutation closed language
family pROWJ is closed under this operation. The proofs of the remaining
closure and non-closure results will be given in the journal version of the paper.

Table 1. Closure properties of ROWJ and pROWJ. The gray shaded results are
proven in this paper. The non-shaded closure properties for REG are folklore. For
ROWJ the closure/non-closure results can be found in [3] and that for the language
family JFA in [1,6,7,12].

Language family

Closed under REG pROWJ ROWJ JFA

Union yes no no yes

Union with reg. lang. yes no no no

Intersection yes yes no yes

Intersection with reg. lang. yes no no no

Complementation yes no no yes

Reversal yes yes no yes

Concatenation yes no no no

Right conc. with reg. lang. yes no no no

Left conc. with reg. lang. yes no no no

Left conc. with prefix-free reg. lang. yes no yes no

Kleene star or plus yes no no no

Homomorphism yes no no no

Inv. homomorphism yes yes no yes

Substitution yes no no no

Permutation no yes no yes

Theorem 14. The family ROWJ is not closed under inverse homomorphism.

Proof. Let A be the ROWJFA A = ({q0, q1, q2}, {a, b, c}, R, q0, {q0, q2}), where R
consists of the rules q0c → q0, q0b → q1, q1a → q2, and q2b → q1. The

q0 q1 q2

c

b

a

b

Fig. 2. The ROWJFA A satisfying L(A) ∩ {ac, b}∗ = { (ac)nbn | n ≥ 0 }.

20 S. Beier and M. Holzer

ROWJFA A is depicted in Fig. 2. Let h : {a, b}∗ → {a, b, c}∗ be the homo-
morphism, given by h(a) = ac and h(b) = b. We have h({a, b}∗) = {ac, b}∗.

Let now λ
= w ∈ L(A)∩{ac, b}∗, which implies |w|b > 0. When A reads w, it
reaches the first occurrence of the symbol b in state q0. After reading this b, the
automaton is in state q1. Now, no more c can be read. So, we get w ∈ (ac)+b+.
Whenever A is in state q2, it has read the same number of a’s and b’s. This
gives us w ∈ { (ac)nbn | n > 0 }. That shows L(A) ∩ {ac, b}∗ ⊆
{ (ac)nbn | n ≥ 0 }.

On the other hand, for n > 0, we have

q0(ac)nbn �n q0b
nan �2 q2a

n−1bn−1 �2 q2a
n−2bn−2 �2 · · · �2 q2ab �2 q2.

This implies L(A) ∩ {ac, b}∗ = { (ac)nbn | n ≥ 0 }. We get

h−1(L(A)) = h−1(L(A) ∩ h({a, b}∗)) = h−1(L(A) ∩ {ac, b}∗)
= h−1({ (ac)nbn | n ≥ 0 }) = { anbn | n ≥ 0 } .

In [3] it was shown that this language is not in ROWJ. ��
For the language family pROWJ the situation w.r.t. the closure under

inverse homomorphisms is exactly the other way around.

Theorem 15. Let Γ and Σ be alphabets and h : Γ ∗ → Σ∗ be a homomor-
phism. Furthermore let L ⊆ Σ∗ be in pROWJn, for some n ≥ 0. Then, the
language h−1(L) is also in pROWJn.

Proof. It is not difficult to see that the family of permutation closed languages
is closed under inverse homomorphism. So, the language h−1(L) is closed under
permutation. Theorem 3 gives us |L/∼L| ≤ n. From L =

⋃
S∈L/∼L

S, we
get h−1(L) =

⋃
S∈L/∼L

h−1(S). Consider now an element S ∈ L/∼L, two
words v, w ∈ h−1(S), and an arbitrary u ∈ Γ ∗. Because of h(v), h(w) ∈ S,
we have h(v)∼Lh(w). It follows that

vu ∈ h−1(L) ⇔ h(v)h(u) ∈ L ⇔ h(w)h(u) ∈ L ⇔ wu ∈ h−1(L).

We have shown v ∼h−1(L) w. So, we get
∣
∣h−1(L)/∼h−1(L)

∣
∣ ≤ |L/∼L| ≤ n, which

by Theorem 3 implies that h−1(L) is in pROWJn. ��
Thus we immediately get:

Corollary 16. The family pROWJ is closed under inverse homomorphism.��

6 More on Languages Accepted by ROWJFAs

In Corollary 4 a characterization of the permutation closed languages that are in
ROWJ was given. In this section, we characterize languages in ROWJ for some
cases where the considered language does not need to be permutation closed.

Properties of Right One-Way Jumping Finite Automata 21

Theorem 17. For an alphabet Σ, let w ∈ Σ∗ and L ⊆ Σ∗. Then, the language
wL is in ROWJ if and only if L is in ROWJ.

Proof. If L is in ROWJ, then wL is also in ROWJ, because the language family
ROWJ is closed under concatenation with prefix-free languages from the left.
Now assume that wL is in ROWJ and L
= ∅. We may also assume that |w| = 1.
The general case follows from this special case via a trivial induction over the
length of w. Thus, let w = a for an a ∈ Σ and let A = (Q,Σ,R, s, F) be
a DFA with LR(A) = aL. In the following, we will show via a contradiction
that the value R(s, a) is defined. Assume that R(s, a) is undefined and let v be
an arbitrary word out of L. Because av ∈ LR(A), there is a symbol b ∈ Σs,
two words x ∈ (Σ \ Σs)

∗ and y ∈ Σ∗, and a state p ∈ F such that v = xby
and saxby � R(s, b)yax �∗ p. This gives us sbyax � R(s, b)yax �∗ p, which
implies byax ∈ LR(A) = aL. However, this is a contradiction, because b
= a. So,
the value R(s, a) is defined.

Consider the DFA B = (Q,Σ,R,R(s, a), F). For a word z ∈ Σ∗, we have
z ∈ LR(B) if and only if az ∈ LR(A) = aL, because of saz � R(s, a)z. That
gives us LR(B) = L and we have shown that L is in ROWJ. ��

From the previous theorem and Corollary 4 we get:

Corollary 18. For an alphabet Σ, let w ∈ Σ∗ and let L ⊆ Σ∗ be a permutation
closed language. Then, the set wL is in ROWJ if and only if the Myhill-Nerode
relation ∼L has only a finite number of positive equivalence classes. ��

Next, we will give a characterization for the concatenation Lw of a language L
and a word w. To do so, we need the following lemma. It treats the case of
an ROWJFA that is only allowed to jump over one of the input symbols.

Lemma 19. Let A = (Q,Σ,R, s, F) be a DFA with a symbol a ∈ Σ such
that R(q, b) is defined for all (q, b) ∈ Q × (Σ \ {a}). Then, LR(A) is regular. ��

Our characterization for languages of the form Lw generalizes a result
from [3], which says that the language {va | v ∈ {a, b}∗, |v|a = |v|b} is not
in ROWJ:

Theorem 20. For an alphabet Σ, let w ∈ Σ∗ be a non-empty word and L ⊆ Σ∗.
Then, the language Lw is in ROWJ if and only if L is regular. ��

Now, we consider the case of two languages over disjoint alphabets.

Theorem 21. For disjoint alphabets Σ1 and Σ2, let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2

with L1
= ∅
= L2
= {λ} such that L1L2 is in ROWJ. Then, the language L1

is regular and L2 is in ROWJ. ��
Adding prefix-freeness for L1, we get an equivalence, by Theorem 21 and the

closure of ROWJ under left-concatenation with prefix-free regular sets.

22 S. Beier and M. Holzer

Corollary 22. For disjoint alphabets Σ1 and Σ2, let L1 ⊆ Σ∗
1 be a prefix-free

language and L2 ⊆ Σ∗
2 be an arbitrary language with L1
= ∅
= L2
= {λ}.

Then, the language L1L2 is in ROWJ if and only if L1 is regular and L2 is in
ROWJ. ��

The previous corollary directly implies the following characterization:

Corollary 23. For disjoint alphabets Σ1 and Σ2, let L1 ⊆ Σ∗
1 be a prefix-free

language and L2 ⊆ Σ∗
2 be a permutation closed language with L1
= ∅
= L2
=

{λ}. Then, the language L1L2 is in ROWJ if and only if L1 is regular and
the Myhill-Nerode relation ∼L2 has only a finite number of positive equivalence
classes. ��

If a non-empty language and a non-empty permutation closed language over
disjoint alphabets are separated by a symbol, we get the following result:

Corollary 24. For disjoint alphabets Σ1 and Σ2, let L1 ⊆ Σ∗
1 be a non-empty

language and L2 ⊆ Σ∗
2 be a non-empty permutation closed language. Further-

more, let a ∈ Σ2. Then, the language L1aL2 is in ROWJ if and only if L1 is
regular and the Myhill-Nerode relation ∼L2 has only a finite number of positive
equivalence classes. ��

For an alphabet Σ = {a1, a2, . . . , an}, the family of subsets of a∗
1a

∗
2 . . . a∗

n is
kind of a counterpart of the family of permutation closed languages over Σ. In
a language L ⊆ a∗

1a
∗
2 . . . a∗

n, for each word w ∈ L, no other permutation of w is
in L. We can characterize the subsets of a∗

1a
∗
2 . . . a∗

n that are in ROWJ.

Theorem 25. Let {a1, a2, . . . , an} be an alphabet and L ⊆ a∗
1a

∗
2 . . . a∗

n. Then,
the language L is in ROWJ if and only if L is regular. ��

References

1. Beier, S., Holzer, M., Kutrib, M.: Operational state complexity and decidability
of jumping finite automata. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017.
LNCS, vol. 10396, pp. 96–108. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62809-7 6

2. Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic
and nondeterministic finite automata. Inform. Comput. 207(11), 1140–1155 (2009)

3. Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata. Int.
J. Found. Comput. Sci. 27(3), 391–405 (2016)

4. Culy, C.: Formal properties of natural language and linguistic theories. Linguist.
Philos. 19, 599–617 (1996)

5. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

6. Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: character-
izations and complexity. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
89–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 8

https://doi.org/10.1007/978-3-319-62809-7_6
https://doi.org/10.1007/978-3-319-62809-7_6
https://doi.org/10.1007/978-3-319-22360-5_8

Properties of Right One-Way Jumping Finite Automata 23

7. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and
complexity results on jumping finite automata (2015). http://arxiv.org/abs/1512.
00482

8. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. AMS 113,
333–368 (1964)

9. Greibach, S.A.: An infinite hierarchy of context-free languages. J. ACM 16(1),
91–106 (1969)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

11. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012)

12. Meduna, A., Zemek, P.: Chapter 17 Jumping finite automata. In: Regulated Gram-
mars and Automata, pp. 567–585. Springer, New York (2014). https://doi.org/10.
1007/978-1-4939-0369-6 17

13. Vorel, V.: Basic properties of jumping finite automata (2015). http://arxiv.org/
abs/1511.08396v2

http://arxiv.org/abs/1512.00482
http://arxiv.org/abs/1512.00482
https://doi.org/10.1007/978-1-4939-0369-6_17
https://doi.org/10.1007/978-1-4939-0369-6_17
http://arxiv.org/abs/1511.08396v2
http://arxiv.org/abs/1511.08396v2

Word Problem Languages for Free Inverse
Monoids

Tara Brough(B)

Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

t.brough@fct.unl.pt

Abstract. This paper considers the word problem for free inverse mon-
oids of finite rank from a language theory perspective. It is shown that
no free inverse monoid has context-free word problem; that the word
problem of the free inverse monoid of rank 1 is both 2-context-free
(an intersection of two context-free languages) and ET0L; that the co-
word problem of the free inverse monoid of rank 1 is context-free; and
that the word problem of a free inverse monoid of rank greater than 1 is
not poly-context-free.

Keywords: Word problems · Co-word problems · Inverse monoids
ET0L languages · Stack automata · Poly-context-free languages

1 Introduction

The word problem of a finitely generated semigroup is, informally, the problem
of deciding whether two words over a given finite generating set represent the
same element of the semigroup. Although it is undecidable [23], even for finitely
presented groups [2,21], there has been much study (especially for groups) of
word problems that are in some sense ‘easily’ decidable, for example by having
low space or time complexity, or being in certain low-complexity language classes.

For groups, the obvious formalisation of the word problem is as the set of all
words over the set of generators and their inverses representing the identity ele-
ment, since two words u and v represent the same element iff uv−1 represents the
identity. This has been generalised to semigroups in two ways: the first, which
we call the word problem of a semigroup S with respect to finite generating set
A is the set WP(S,A) = {u#vrev | u =S v, u, v ∈ A+} (where # is a symbol not
in A and vrev denotes the reverse of v); the second, the two-tape word problem of

T. Brough—The author was supported by the Fundação para a Ciência e
a Tecnologia (Portuguese Foundation for Science and Technology) through
an FCT post-doctoral fellowship (SFRH/BPD/121469/2016) and the projects
UID/Multi/04621/2013 (CEMAT-CIÊNCIAS) and UID/MAT/00297/2013 (Centro
de Matemática e Aplicações).

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 24–36, 2018.
https://doi.org/10.1007/978-3-319-94631-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_3&domain=pdf

Word Problem Languages for Free Inverse Monoids 25

S with respect to A, is the relation ι(S,A) = {(u, v) ∈ A+ × A+ | u =S v}.
Monoid versions of these are obtained by replacing A+ with A∗. The word prob-
lem has been studied in [7,12,13] and the two-tape word problem in [4,22].

A semigroup S is inverse if for every x ∈ S there is a unique y ∈ S such that
xyx = x and yxy = y. The classes of inverse semigroups and inverse monoids
each form varieties of algebras and hence contain free objects. The free inverse
monoid on a set X is denoted FIM(X); if |X| = k then we also use the notation
FIMk, and k is called the rank of FIMk. All results in this paper are stated
for free inverse monoids, but are equally true for free inverse semigroups, since
in a free inverse monoid the only representative of the identity is the empty
word ε.

Word problems of free inverse monoids have already been studied from a time
and space complexity perspective: they are recognisable in linear time and in log-
arithmic space [18]. The aim of this paper is to understand these word problems
from a language-theoretic perspective. All free inverse monoid word problems
are context-sensitive, since this is equivalent to recognisability in linear space.
Our main goal is thus to determine in which subclasses of the context-sensitive
languages the free inverse monoid word problem lies. Before summarising the
results, we introduce several of the language classes considered. All classes men-
tioned here are closed under inverse generalised sequential machine mappings,
and hence the property of having word problem in any of these classes is closed
under change of finite generating set.

The non-closure of the class CF of context-free languages under comple-
mentation and intersection [15] leads naturally to the definition of the classes
of coCF and poly-CF languages, being respectively the classes of complements
and finite intersections of context-free languages. A language is called k-CF if
it is an intersection of k context-free languages. Groups with coCF word prob-
lem were studied in [14], and groups with poly-context-free word problem in
[3]. For groups, having coCF word problem is equivalent to the co-word prob-
lem (the complement of the word problem, or abstractly the problem of deciding
whether two words represent different elements) being context-free. For monoids,
we generalise this terminology on the abstract rather than technical level: the
complement of the word problem is not an algebraically interesting language, so
we define coWP(M,X) = {u#vrev | u =M v, u, v ∈ X∗}. The two-tape co-word
problem is the complement of the two-tape word problem.

Stack automata, introduced in [10], are a generalisation of pushdown
automata that allow the contents of the stack to be examined in ‘read-only’
mode. They are a special case of the nested stack automata introduced slightly
later by Aho [1] to recognise indexed languages. The checking stack languages
are recognised by the more restricted checking stack automata [11], in which the
stack contents can only be altered prior to commencing reading of the input.

ET0L languages are another subclass of indexed languages, standardly
defined by ET0L-systems, which are essentially finite collections of ‘tables’ of
context-free-grammar-type productions. These operate similarly to context-free
grammars except that at each step in a derivation, productions all from the same

26 T. Brough

‘table’ must be applied to every nonterminal in the current string (each table
is required to have productions from every nonterminal, though these of course
may be trivial). The more restricted EDT0L languages have the further require-
ment that in each table of productions there be only one production from each
nonterminal. An automaton model for ET0L languages was given in [25]: it con-
sists of a checking stack with attached push-down stack, operating in such a way
that the pointers of the two stacks move together. See [24] (especially Chapter V)
for further information on ET0L languages and their many relatives.

In the rank 1 case our goal is achieved fairly comprehensively, with both
types of word problem for FIM1 being shown to be 2-CF (but not context-free),
co-CF and a checking stack language (and hence ET0L). As far as the author
is aware, this is the first known example of a semigroup with ET0L but not
context-free word problem. This result is particularly interesting because of the
long-standing open problem of whether the indexed languages – of which the
ET0L languages form a subclass – give any additional power over context-free
languages for recognising word problems of groups [9,19]. In higher ranks we
show that WP(FIMk) for k ≥ 2 is not poly-CF . We conjecture that the same
is true for ι(FIMk), and that neither version of the word problem is coCF or
indexed except in rank 1.

2 Background

2.1 Free Inverse Monoids

Recall that a monoid M is inverse if for every x ∈ M there is a unique y ∈ M
such that xyx = x and yxy = y. The element y is called the inverse of x and is
usually denoted x−1. In this paper we will also often use the notation x for the
inverse of x. Given a set X, we use the notation X−1 for a set {x | x ∈ X} of
formal inverses for X, and X± for X ∪ X−1. For an element x ∈ X±, if x ∈ X
then x−1 = x, while if x = y for y ∈ X then x−1 = y. We can extend this to
define the inverse of a word w = w1 . . . wn with wi ∈ X± by winv = w−1

n . . . w−1
1 .

For any set X, the free inverse monoid FIM(X) on X exists and is given by
the monoid presentation

FIM(X) = 〈X± | u = uuinvu, uuinvvvinv = vvinvuuinv (u, v ∈ (X±)∗)〉.

This presentation is not very useful for working with the word problem of
free inverse monoids. A more powerful tool is given by Munn trees [20]: certain
labelled directed finite trees that stand in one-to-one correspondence with the
elements of FIM(X), such that the product of two elements can easily be com-
puted using their corresponding trees. To obtain the Munn tree for an element
m ∈ FIM(X), we use the Cayley graph G(F (X),X) of the free group F (X). This
is a labelled directed tree with |X| edges labelled by the elements of X enter-
ing and leaving each vertex. (The Cayley graph also has its vertices labelled by
the elements of G, but these are not needed for our purposes.) Given any word
w ∈ (X±)∗ representing m, choose any vertex of G(F (X),X) as the start vertex

Word Problem Languages for Free Inverse Monoids 27

and label it α. From vertex α, then trace out the path defined by reading w
from left to right, where for x ∈ X, follow the edge labelled x leading from the
current vertex upon reading x, and follow the edge labelled x leading to the
current vertex upon reading x. Mark the final vertex of the path thus traced
as ω, and remove all edges not traversed during reading of w. The result is the
Munn tree of w, and the free inverse monoid relations ensure that two words
produce the same Munn tree iff they represent the same element of FIM(X).

To multiply two Munn trees, simply attach the start vertex of the second
tree to the end vertex of the first tree, and identify any edges with the same
label and direction issuing from or entering the same vertex. From this it can be
seen that the idempotents (elements x such that x2 = x) in FIM(X) are those
elements whose Munn trees have α = ω, and that these elements commute.

For a more detailed discussion, with diagrams, see [17, Section 6.4].

2.2 Word Problems of Inverse Monoids

Two notions of word problem for inverse monoids will occur throughout this
paper. For an inverse monoid M with finite generating set X, the word problem
of M with respect to X is the set

WP(M,X) = {u#vinv | u, v ∈ (X±)∗, u =M v},

while the two-tape word problem of M with respect to X is

ι(M,X) = {(u, v) ∈ (X±)∗ × (X±)∗ | u =M v}.

If the generating set X is irrelevant, we may use the notation WP(M) or ι(M).
Each of these notions generalises the definition of the group word problem

W (G,X) as the set of all words over X± representing the identity. If M is
a group, then W (G,X) and WP(G,X) are obtained from each other by very
simple operations (deletion or insertion of a single #), and so membership in any
‘reasonable’ language class will not depend on whether we consider the group or
inverse monoid word problem. For the two-tape word problem the generalisation
is of a more algebraic nature: ι(M,X) and W (G,X) are each the lift to (X±)∗

of the natural homomorphism from the free inverse monoid (respectively free
group) on X to M (respectively G). The kernel of a group homomorphism is a
set, while the kernel of a semigroup homomorphism is a relation.

The word problem for semigroups in general has been studied in [12], where it
is defined as the set of words u#vrev with u and v representing the same element.
For inverse monoids, this is equivalent to the word problem considered here, since
u#vinv is obtained from u#vrev by simply replacing every symbol after the #
by its inverse. This operation can be viewed as an inverse generalised sequential
machine mapping, and thus all classes of languages we consider are closed under
it (and hence all results in this paper hold for the definition in [12] as well).
Note that it is still essential to include the ‘dividing symbol’ #: as an example,
if F = FIM(X) and x ∈ X, then x#x ∈ WP(F,X), but xx# /∈ WP(F,X).

28 T. Brough

3 The Rank 1 Case

Since the free group of rank 1 is isomorphic to (Z,+), Munn trees in the rank 1
case can be viewed as intervals of integers containing zero (the starting point α),
with a marked point (ω). This allows elements of FIM1 to be represented by a
3-tuple of integers (−l, n,m) with l, n ∈ N0 and −l ≤ m ≤ n, where [−l, n] is the
interval spanned by the Munn tree and m is the marked point. Multiplication
in this representation of FIM1 is given by

(−l, n,m)(−l′, n′,m′) = (min{−l,m − l′},max{n,m + n′},m + m′).

Equipped with this model of FIM1, we can determine that free inverse monoids
never have context-free word problem.

Theorem 1. For any k ∈ N, neither WP(FIMk) nor ι(FIMk) is context-free.

Proof. Suppose that WP(FIMk,X) is context-free (X any finite generating set
of FIMk). Then for any x ∈ X, the language L := WP(FIMk,X)∩x∗x∗x∗#x∗ is
also context-free. For n ∈ N, let wn = xnxnxn#xn, which is in L for all n ∈ N.
For n greater than the pumping length p of L, we can express wn in the form
uvwyz such that |vy| ≥ 1, |vwy| ≤ p, and the strings v, y can simultaneously be
‘pumped’. Thus there must exist i, j ∈ N0, not both zero, such that all strings
of one of the following three forms must be in L for m ≥ −1:

xn+imxn+jmxn#xn, xnxn+imxn+jm#xn, xnxnxn+im#xn+jm.

However, in all cases, some words of the given form are not in L:

Word form Not in L for
xn+imxn+jmxn#xn (i 	= 0 ∧ m ≥ 1) ∨ (i = 0 ∧ j 	= 0 ∧ m ≥ 1)
xnxn+imxn+jm#xn as above
xnxnxn+im#xn+jm (j 	= 0 ∧ m = −1) ∨ (j = 0 ∧ i 	= 0 ∧ m ≥ 1)

Thus L, and hence WP(FIMk,X), is not context-free. The proof for
ι(FIMk,X) is similar, by intersecting with (x∗x∗x∗, {x, x}∗) and using the pump-
ing lemma on (xnxnxn, xn) for sufficiently large n. �

For the remainder of this section, let FIM1 be generated by X = {x} and
let Y = X± = {x, x}. For w ∈ Y ∗, denote the image of w in FIM1 by ŵ. We
define functions λ, ν and μ from Y ∗ to Z by setting (−λ(w), ν(w), μ(w)) = ŵ. It
will often be helpful to regard words in Y ∗ as paths in the integers starting at 0,
with x representing a step in the positive direction and x a step in the negative
direction. We will refer to and visualise these directions as right (positive) and
left (negative). Thus for w ∈ Y ∗ the path traced out by w has rightmost point
ν(w), leftmost point −λ(w) and endpoint μ(w).

The idempotents in FIM1 are the elements (−l, n, 0) for l, n ∈ N0. We define
the set of positive idempotents E+ = {(0, n, 0) | n ∈ N0} and similarly the set
of negative idempotents E− = {(−l, 0, 0) | l ∈ N0} in FIM1. (Note that in these

Word Problem Languages for Free Inverse Monoids 29

definitions, the identity (0, 0, 0) is counted as both a positive and a negative
idempotent.) Grammars for the sets of positive and negative idempotents form
an important building block in Theorem 2 (as well as in the ET0L grammar
mentioned following Corollary 1).

Lemma 1. Let Y = {x, x} and LE+ = {w ∈ Y ∗ | ŵ ∈ E+}. Then LE+ is gen-
erated by the context-free grammar Γ+ = ({S}, Y, P+, S) with P+ consisting
of productions P1 : S → SS, P2 : S → xSx and P3 : S → ε. Simi-
larly, LE− := {w ∈ Y ∗ | ŵ ∈ E−} is generated by the context-free grammar
Γ− = ({S}, Y, P−, S) with P− the same as P+ except that P2 is replaced by
P ′
2 : S → xSx.

Proof. We can view LE+ as the language of all paths starting and ending at 0
and never crossing to the left of 0. Concatenating two such paths gives another
such path, so we have (LE+)∗ = LE+ . Let L be the language of all paths in
Y ∗ that start and end at 0 without visiting 0 in between. Then LE+ = L∗ and
w ∈ Y ∗ is in L if and only if either w = ε or there exists v ∈ LE+ such that
w = xvx. That is, LE+ = (xLE+x)∗.

Let M be the language generated by Γ+. We show by induction on the
length of words that LE+ = M . Note that for any w in LE+ or M we have
|w|x = |w|x, so both languages consist of words of even length. To begin with,
LE+ ∩ Y 0 = M ∩ Y 0 = {ε}. Now suppose that LE+ ∩ Y 2i = M ∩ Y 2i for all
i < n. For w ∈ Y 2n, we have w ∈ LE+ if and only if either w = w1w2 or w = xvx
for some w1, w2, v ∈ LE+ . By induction, this occurs iff w1, w2 ∈ M respectively
v ∈ M , iff S → SS ⇒ w1w2 respectively S → xSx ⇒ xvx in Γ+, iff w ∈ M .
Hence LE+ = M . The language LE− is the reverse of LE+ , and the grammars
Γ+ and Γ− are the reverse of one another, hence LE− is generated by Γ−. �

A word u#vinv with u, v ∈ Y ∗ is in WP(FIM1,X) if and only if it traces
out a path starting and ending at 0 which reaches its rightmost and leftmost
points each at least once before and at least once after the #. If the minimum
or maximum is achieved at the end of u, this counts as being achieved both
before and after #. (The path must end at 0 because if û = v̂ then û(v̂)−1 is
an idempotent.) We now show that although the word problem of FIM1 is not
context-free, it can be expressed as an intersection of two context-free languages.

Theorem 2. WP(FIM1) and ι(FIM1) are both 2-CF .

Proof. Let X = {x}, Y = {x, x} and L = WP(FIM1,X). We can express L as
the intersection of the following two languages:

Lν = {u#vinv | u, v ∈ Y ∗, ν(u) = ν(v) ∧ μ(u) = μ(v)}

and
Lλ = {u#vinv | u, v ∈ Y ∗, λ(u) = λ(v) ∧ μ(u) = μ(v)}.

We will show that Lν and Lλ are each context-free and hence L is 2-CF . Since
Lλ is simply the reverse of Lν , it suffices to prove that Lν is context-free.

30 T. Brough

Let Γν = (V,Σ, P, S) be the context-free grammar with nonterminals V =
{S, T, Z, Z ′}, terminals Σ = {x, x,#} and productions P as follows:

S → ZSZ | xSx | T

T → ZTZ | xTx | #
Z → ZZ | xZx | ε.

Any derivation in Γν can be expressed as

S ⇒ αSβ → αTβ ⇒ u1u2#v2v1, (1)

where α ⇒ u1, β ⇒ v1 and T ⇒ u2#v2.
For any α′ ∈ {Z, x}∗ and β′ ∈ {Z, x}∗ with |α′|x = |β′|x, there is a partial

derivation in Γν , not involving the production S → T , from S to α′Sβ′. Con-
versely, any partial derivation from S not involving S → T results in a string
αSβ in which α and β can be derived from some such α′ and β′ respectively.

Let α ∈ {Z, x}∗ and w ∈ Y ∗ with α ⇒∗ w. By Lemma 1, the subwords of
w produced from instances of Z in α evaluate to negative idempotents, and so
have no effect on ν(w) or μ(w), whereas each x in α increases both ν(w) and
μ(w) by 1. Hence ν(w) = μ(w) = |α|x. Thus a pair of words u1 and v1 can
appear in the derivation (1) if and only if ν(u1) = μ(u1) = μ(vinv

1) = μ(vinv
1).

Similarly, it can be shown that T ⇒ u2#v2 if and only if ν(u2) = ν(vinv
2) = 0

and μ(u2) = μ(vinv
2) ≤ 0.

Hence S ⇒ u#v if and only if we can write u = u1u2 and v = v2v1 such that
there exist l1, l2, l

′
1, l

′
2,m, n ∈ N0 with

u1 =FIM1 (−l1, n, n) u2 =FIM1 (−l2,−m, 0)

vinv
1 =FIM1 (−l′1, n, n) vinv

2 =FIM1 (−l′2,−m, 0).

If u#v ∈ Lν , then we can express u and v in this way by setting u1 to be the
shortest prefix of u such that ν(u1) = ν(u) and vinv

1 the shortest prefix of vinv

such that ν(vinv
1) = ν(vinv). Conversely, supposing we can express u and v in

this way, we have

u =FIM1 (−l1, n, n)(−l2, n,−m) = (−i, n, n − m)

vinv =FIM1 (−l′1, n, n)(−l′2, 0,−m) = (−j, n, n − m)

for some i, j ∈ N0. That is, u#v ∈ Lν .
Hence Lν is generated by Γν and is context-free, and therefore Lrev

ν = Lλ is
also context-free. Thus WP(FIM1,X) = Lν ∩ Lλ is 2-CF .

For variety, we give an automaton proof for ι(FIM1,X). Define sublanguages
Lι

ν and Lι
λ of Y ∗ ×Y ∗ analogously to Lν and Lλ. Let x1 = (x, ε), x2 = (ε, x) and

define x1, x2 similarly. Reading xi or xi means that we read an x or x from the i-
th tape and nothing from the other tape. Define a pushdown automaton Aν with
states q0, q1 by the following transitions for i = 1, 2 (Z is the bottom-of-stack

Word Problem Languages for Free Inverse Monoids 31

symbol):

(q0, Z, (x, x)) �→ (q0, Z) (q1, Z, (x, x)) �→ (q1, Z)
(q0, Z, xi) �→ (q0, YiZ) (q1, Z, xi) �→ (q1, YiZ)
(q0, Yi, xi) �→ (q0, YiYi) (q1, Yi, xi) �→ (q1, YiYi)
(q0, Yi, xi) �→ (q0, ε) (q1, Yi, xi) �→ (q1, ε).

(q0, Z, ε) �→ (q1, Z)

The language Aν accepts by empty stack consists of all pairs (u, v) where
u, v ∈ (E−x)n(E−x)kE− for some n, k ∈ N0, which is precisely the language Lι

ν .
Switching the roles of x and x in Aν gives rise to a pushdown automaton Aλ

accepting Lι
λ. Hence ι(FIM1,X) is also 2-CF . �

Theorem 3. Both versions of the co-word problem of FIM1 are context-free.

Proof. Let K = coWP(FIM1,X) = {u#vinv | u, v ∈ Y ∗, u 	=FIM1 v}. A word
w = u#v with u, v ∈ Y ∗ is in K if and only if the path traced out by w starting
at 0 either does not end at 0, or its minimum or maximum value is not achieved
both before and after # (recall that this includes not being achieved at the end
of u). Thus a context-free grammar for K with start symbol S is given by the
following productions:

S → M | U | D U → ZxUxZ | xExZ# | #ZxExZ

M → ExA | ExB D → Z ′xDxZ ′ | xExZ ′# | #Z ′xExZ ′

A → xA | EAE | ε Z → ZZ | xZx | ε

B → xB | EBE | ε Z ′ → Z ′Z ′ | xZ ′x | ε.

E → ZE | Z ′E | ε

M generates all u#vinv with μ(u) 	= μ(v); U generates all u#vinv with uvinv

idempotent but ν(u) 	= ν(v), and D does the same as U but for λ instead of ν.
The two-tape co-word problem of FIM1 with respect to X is the language

M = {(u, v) ∈ Y ∗×Y ∗ | u 	=FIM1 v}. A pushdown automaton recognising M can
be expressed as the union of automata Bμ, Bν , Bλ. The automaton Bμ checks
that |u|x − |u|x 	= |v|x − |v|x for input (u, v), and thus accepts all pairs with
μ(u) 	= μ(v). The automaton Bν has states q0, q1, q2, f , with f being the unique
final state, input symbols xi, xi (as in the proof of Theorem 2) and transitions:

(q0, x1, Z) → (q0,XZ) (q0, ε, ∗) → (q1, ∗) (q2, x2, Z) → (f, Z)
(q0, x1,X) → (q0,XX) (q1, ε, Y) → (q1, ε) (q2, x2,X) → (q2, ε)
(q0, x1, Y) → (q0, ε) (q1, x2,X) → (q2, ε) (q2, x2, Y) → (q2, ε)
(q0, x1, ∗) → (q0, Y ∗) (q1, x2,X) → (q2, Y X) (q2, x2, ∗) → (q2, Y ∗)

(q2, ε,X) → (f,X),

where Z is the bottom-of-stack marker and ∗ denotes any stack symbol (X,Y,Z).
In state q0, Xν(u)Y ν(u)−μ(u) is placed on the stack. State q1 removes all Y ’s. State

32 T. Brough

q2 then checks ν(v) against ν(u), moving to the final state f if we either find
that ν(v) > ν(u) or nondeterministically if ν(v′) < ν(u) for the prefix v′ of v
read so far, in which case Bν accepts if there is no further input. Thus Bν accepts
the language of all (u, v) with ν(u) 	= ν(v). The automaton Bλ is obtained by
swapping the roles of xi and xi in Bν , and accepts (u, v) with λ(u) 	= λ(v). �

Given the model of elements of FIM1 as marked intervals in Z, stack automata
provide possibly the most natural class of automata to consider as acceptors of
its word problem. It turns out that it suffices to use a checking stack automaton.

Theorem 4. WP(FIM1) and ι(FIM1) are each recognised by a checking stack
automaton.

Proof. The idea of the checking stack automaton for WP(FIM1) is to use the
stack contents as a model for an interval of integers [−l, n] (chosen nondetermin-
istically before beginning to read the input), and check for input u#vinv whether
û = v̂ = (−l, n,m) for some m ∈ [−l, n]. Following the set-up phase, the stack
contents will always be of the form LlORn for some l, n ∈ N0, with the leftmost
symbol L or O being marked with a superscript −, and the rightmost symbol
O or R being marked with a superscript +. Such a string represents a guess
that the input string u#vinv will have λ(u) = λ(v) = l and ν(u) = ν(v) = n.
For α ∈ L∗OR∗, we denote the string ‘α with marked endpoints’ by [α]. For
example, [LLORR] = L−LORR+ and [O] = O±. Before beginning to consume
the input, the stack marker is moved to O(+,−,±).

During the checking phase, the automaton A moves up and down the stack,
tracing out the path given by u#vinv, accepting if and only if three conditions
are satisfied: (i) both the left and right endpoints of [α] are reached at least once
before and after the #; (ii) the automaton never attempts to move beyond the
endpoints of [α]; and (iii) the automaton ends with the stack marker pointing at
O(+,−,±). If during the set-up phase the string [LlORn] was placed on the stack,
then the set of words accepted by A following that particular set-up will be the
language {u#vinv | u, v ∈ Y ∗, λ(u) = λ(v) = l, ν(u) = ν(v) = n, μ(u) = ν(v)}.

More formally, the checking transitions of A are described as follows, using
states {qi, q

+
i , q−

i , q∗
i , f | i = 1, 2}, with f the unique final state. Following the

setup phase (which can be achieved non-deterministically using two states), A
is in state q1, with stack contents [α] for some string α ∈ L∗OR∗, and the stack
marker pointing at the symbol corresponding to O in [α]. The symbol $ is an
end-of-input marker, standardly included in the definition of stack automata.
Let Δ− = {O−, R−} and Δ+ = {O+, L+}. The left-hand side of a transition
represents the current automaton configuration (state,input,stack symbol). The
right-hand side has first component the state to be moved to, and second com-
ponent the direction in which to move the stack marker (with − denoting no
change). The full set of stack symbols is Γ = {L(+,−), O(+,−,±), R(+,−)}. For
i = 1, 2:

Word Problem Languages for Free Inverse Monoids 33

(q1, #, O±) �→ (q∗
2 , −),

(qi, x, C) �→ (qi, ↑), C ∈ {L, O, R}
(qi, x, C) �→ (qi, ↓), C ∈ {L, O, R}
(qi, x, C) �→ (q−

i , ↑), C ∈ Δ− (q∗
i , x, C) �→ (q∗

i , ↑), C /∈ {R+, O+, O±}
(qi, x, C) �→ (q+i , ↓), C ∈ Δ+ (q∗

i , x, C) �→ (q∗
i , ↓), C /∈ {L−, O−, O±}

(q+i , x, C) �→ (q∗
i , ↑), C ∈ Δ− (q∗

1 , #, C) �→ (q2, −), C ∈ Γ
(q−

i , x, C) �→ (q∗
i , ↓), C ∈ Δ+ (q∗

2 , $, C) �→ (f, −), C ∈ {O, O−, O+, O±}.

Note that these transitions involve no push or pop operations, so A is a
checking stack automaton. Now assume that A has reached the reading phase,
with stack contents [LlORn] for some l, n ∈ N0. Let L(l,n) denote the language
of all words accepted by A from this configuration. The case (l, n) = (0, 0) is
degenerate, since [O] = O± and the only path from q0 to f in this case is on input
#$, which is exactly as desired since the empty word is the only representative of
the identity (0, 0, 0) in Y ∗. Henceforth assume at least one of l or n is non-zero.

With few exceptions, the automaton moves up the stack on input x and down
on x. The exceptions are when this would otherwise result in moving beyond the
top or bottom of the stack. In these cases there are no transitions defined and
so the automaton fails. Thus for w ∈ Y ∗ the stack marker traces out the path
given by w, provided this path remains within the interval [−l, n].

When the automaton is in state qi and has reached the top of the stack
(indicated by a symbol in Δ+), on the next input it either fails (on x) or moves
to state q+i (on x). Similarly, after reaching the bottom of the stack (symbols in
Δ−), the automaton either fails (on x) or moves to q−

i (on x). Following either
of these events, the automaton will move to state q∗

i after reaching the opposite
end of the stack, provided it does not fail. Thus being in state q∗

0 indicates that
the automaton has read some u′ ∈ Y ∗ with λ(u′) = l and ν(u′) = n.

The only transition on the symbol # is from state q∗
0 to q1 (regardless of

stack symbol), and the only transition on $ is from q∗
1 to the final state f and

requires the automaton to be pointing at O(+,−) (both of these transitions leave
the stack unchanged). Hence L(l,n) contains exactly those words in Y ∗#Y ∗$
which trace out a path in [−l, n] starting and ending at O(+,−) which visit the
top and bottom of the stack each at least once before and after the #; that is,
L(l,n) consists of all u#vinv$ such that u#vinv is in WP(FIM1,X) and λ(u) = l,
ν(u) = n, as desired. Since the language accepted by A is

⋃
l,n∈N0

L(l,n), we
conclude that A accepts WP(FIM1,X).

To recognise ι(FIM1,X), we make a few small modifications to A: in the
setup phase, we additionally mark some symbol of the stack contents [α] to
denote a guess as to the location of μ(u) = μ(v) (where the input is (u$, v$)). In
states qi, q

+
i , q−

i , q∗
i , we read from the i-th tape (i = 1, 2). On reaching the end

symbol $ on each tape, we only proceed if the stack marker is pointing at the
marked symbol. We introduce an intermediate state between q∗

1 and q2 which
returns the stack marker to the symbol corresponding to O in α. In all other
respects, the automaton behaves the same as A. Thus the stack contents of the
modified automaton represent an element (−l, n,m) of FIM1, and with these
stack contents the automaton accepts all (u, v) such that u and v both evaluate
to (−l, n,m). Evaluating over all possible stack contents yields ι(FIM1,X). �

34 T. Brough

Note that the classes of 2-CF and checking stack languages are incomparable.
The language {ww | w ∈ A∗} for |A| ≥ 2 is not poly-CF (an easy application of
[3, Theorem 3.9]), but is accepted by a checking stack automaton that starts by
putting a word w on the stack and then checks whether the input is ww. The
language {(abn)n | n ∈ N} is not even indexed [15, Theorem 5.3], but is 3-CF .

Since E(D)T0L languages have been shown to describe various languages
arising in group theory [5,6] (but not word problems), it is worth noting the
following.

Corollary 1. WP(FIM1) and ι(FIM1) are both ET0L.

Proof. This follows from Theorem 4 and the fact that the class of checking stack
languages is contained in the ET0L languages [25]. �

The author has constructed nondeterministic ET0L grammars for both ver-
sions of the word problem of FIM1 with 9 tables and 11 nonterminals. The
nondeterminism arises from the fact that for any word w ∈ Y ∗, we may insert
idempotents arbitrarily at any point in w without changing the element repre-
sented, provided that these idempotents are not ‘large’ enough to change the
value of ν(w) or λ(w).

Conjection 1. Neither WP(FIM1) nor ι(FIM1) is EDT0L.

4 Rank Greater Than 1

The word problem for inverse monoids in higher ranks is more complex from a
language theory perspective.

Lemma 2. For any k ≥ 3, WP(FIMk) is not (k − 2)-CF .

Proof. For any k ≥ 2, let Xk = {x1, . . . , xk, x1, . . . , xk} and let

Lk = {xm1
1 xm1

1 . . . xmk

k xmk

k #xn1
1 xn1

1 . . . xnk

k xnk

k | mi, ni ∈ N0}.

Let Wk = WP(FIMk,Xk). Then Wk consists of all those words in Lk with
mi = ni for all i (since idempotents in FIMk commute). By [3, Theorem 3.12],
Wk is not (k − 1)-context-free1. Since Wk is the intersection of WP(FIMk,Xk)
with the context-free language Lk, this implies that WP(FIMk,Xk) is not
context-free. �

Since for k ≥ 2 FIMk contains submonoids isomorphic to FIMn for all n, the
following theorem is immediate from Lemma 2.

1 The language L(2,k) in the referenced result is not precisely Wk, but the associated
set of integer tuples differs from that associated to Wk only by a constant (arising
from the symbol #), which does not affect stratification properties and therefore
does not affect the property of not being (k − 1)-CF .

Word Problem Languages for Free Inverse Monoids 35

Theorem 5. For any k ≥ 2, WP(FIMk) is not poly-CF .

Note that the argument in Lemma 2 does not work for ι(FIMk), since the set
{(xm1

1 xm1
1 . . . xmk

k xmk

k , xm1
1 xm1

1 . . . xmk

k xmk

k) | mi ∈ N0} is context-free. Writing
the idempotent on the second tape in reverse (that is, starting with xmk

k xmk)
does not help, as the resulting language is still 2-CF . It appears likely that the
intersection of ι(FIMk) with the following CF language would not be (k−1)-CF :

{(xl1
1 xl1

1 . . . xlk
k xlk

k xm1
1 xm1

1 . . . xmk

k xmk

k , xn1
1 xn1

1 . . . xnk

k xnk

k) | li,mi, ni ∈ N0},

but proving this would require delicate arguments about intersections
of stratified semilinear sets beyond the scope of this paper.

The author conjectures that neither version of the word problem for FIMk,
k ≥ 2 is indexed. While a nested stack automaton can easily be used to store a
Munn tree, there appears to be no way to check while reading a word w ∈ X∗

that the path traced out by w visits every leaf of the stored Munn tree.

References

1. Aho, A.: Nested stack automata. J. ACM 16(3), 383–406 (1969)
2. Boone, W.W.: The word problem. Ann. Math. 2(70), 207–265 (1959)
3. Brough, T.: Groups with poly-context-free word problem. Groups Complex. Cryp-

tol. 6(1), 9–29 (2014)
4. Brough, T.: Inverse semigroups with rational word problem are finite, Unpublished

note. arxiv:1311.3955 (2013)
5. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups are

EDT0L languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 134–145. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6 11

6. Ciobanu, L., Elder, M., Ferov, M.: Applications of L systems to group theory. Int.
J. Algebra Comput. 28, 309–329 (2018)

7. Duncan, A., Gilman, R.H.: Word hyperbolic semigroups. Math. Proc. Camb. Phi-
los. Soc. 136, 513–524 (2004)

8. Gilbert, N.D., Noonan Heale, R.: The idempotent problem for an inverse monoid.
Int. J. Algebra Comput. 21, 1170–1194 (2011)

9. Gilman, R.H., Shapiro, M.: On groups whose word problem is solved by a nested
stack automaton. arxiv:math/9812028

10. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM
14(2), 389–418 (1967)

11. Greibach, S.: Checking automata and one-way stack languages. J. Compt. Syst.
Sci. 3, 196–217 (1969)

12. Hoffman, M., Holt, D.F., Owens, M.D., Thomas, R.M.: Semigroups with a context-
free word problem. In: Proceedings of the 16th International Conference on Devel-
opments in Language Theory, DLT 2012, pp. 97–108 (2012)

13. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. J. Aust. Math. Soc. 85, 197–209 (2005)

14. Holt, D.F., Röver, C.E., Rees, S.E., Thomas, R.M.: Groups with a context-free
co-word problem. J. Lond. Math. Soc. 71, 643–657 (2005)

http://arxiv.org/abs/1311.3955
https://doi.org/10.1007/978-3-662-47666-6_11
http://arxiv.org/abs/math/9812028

36 T. Brough

15. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston (1979)

16. Kambites, M.: Anisimov’s Theorem for inverse semigroups. Int. J. Algebra Comput.
25, 41–49 (2015)

17. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Sci-
entific, Singapore (1998)

18. Lohrey, M., Ondrusch, N.: Inverse monoids: decidability and complexity of alge-
braic questions. Inf. Comput. 205(8), 1212–1234 (2007)

19. Lisovik, L.P., Red’ko, V.N.: Regular events in semigroups. Problemy Kibernetiki
37, 155–184 (1980)

20. Munn, W.D.: Free inverse semigroups. Proc. Lond. Math. Soc. s3–29(3), 385–404
(1974)

21. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group
theory. Am. Math. Soc. Transl. Ser. 2(9), 1–122 (1958)

22. Pfeiffer, M.J.: Adventures in applying iteration lemmas, Ph.D. thesis, University
of St Andrews (2013)

23. Post, E.: Recursive unsolvability of a problem of Thue. J. Symb. Log. 12(1), 1–11
(1947)

24. Rozenberg, G., Salomaa, A.: The Book of L. Springer, Heidelberg (1986). https://
doi.org/10.1007/978-3-642-95486-3

25. van Leeuwen, J.: Variations of a new machine model. In: Conference Record 17th
Annual IEEE Symposium on Foundations of Computer Science, pp. 228–235 (1976)

https://doi.org/10.1007/978-3-642-95486-3
https://doi.org/10.1007/978-3-642-95486-3

Most Complex Deterministic Union-Free
Regular Languages

Janusz A. Brzozowski1 and Sylvie Davies2(B)

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

brzozo@uwaterloo.ca
2 Department of Pure Mathematics, University of Waterloo,

Waterloo, ON N2L 3G1, Canada
sldavies@uwaterloo.ca

Abstract. A regular language L is union-free if it can be represented by
a regular expression without the union operation. A union-free language
is deterministic if it can be accepted by a deterministic one-cycle-free-
path finite automaton; this is an automaton which has one final state and
exactly one cycle-free path from any state to the final state. Jirásková
and Masopust proved that the state complexities of the basic operations
reversal, star, product, and boolean operations in deterministic union-
free languages are exactly the same as those in the class of all regular
languages. To prove that the bounds are met they used five types of
automata, involving eight types of transformations of the set of states
of the automata. We show that for each n � 3 there exists one ternary
witness of state complexity n that meets the bound for reversal and
product. Moreover, the restrictions of this witness to binary alphabets
meet the bounds for star and boolean operations. We also show that the
tight upper bounds on the state complexity of binary operations that take
arguments over different alphabets are the same as those for arbitrary
regular languages. Furthermore, we prove that the maximal syntactic
semigroup of a union-free language has nn elements, as in the case of
regular languages, and that the maximal state complexities of atoms of
union-free languages are the same as those for regular languages. Finally,
we prove that there exists a most complex union-free language that meets
the bounds for all these complexity measures. Altogether this proves that
the complexity measures above cannot distinguish union-free languages
from regular languages.

Keywords: Atom · Boolean operation · Concatenation
Different alphabets · Most complex · One-cycle-free-path · Regular
Reversal · Star · State complexity · Syntactic semigroup
Transition semigroup · Union-free

This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 37–48, 2018.
https://doi.org/10.1007/978-3-319-94631-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_4&domain=pdf

38 J. A. Brzozowski and S. Davies

1 Introduction

Formal definitions are postponed until Sect. 2.
The class of regular languages over a finite alphabet Σ is the smallest class

of languages containing the empty language ∅, the language {ε}, where ε is the
empty word, and the letter languages {a} for each a ∈ Σ, and closed under the
operations of union, concatenation, and (Kleene) star. Hence each regular lan-
guage can be written as a finite expression involving the above basic languages
and operations. An expression defining a regular language in this way is called a
regular expression. Because regular languages are also closed under complemen-
tation, we may also consider regular expressions that allow complementation,
which are called extended regular expressions. In this paper we deal exclusively
with regular languages.

A natural question is: what kind of languages are defined if one of the
operations in the definitions given above is missing? If the star operation is
removed from the extended regular expressions we get the well known star-free
languages [10,21,26], which have been extensively studied. Less attention was
given to classes defined by removing an operation from ordinary regular expres-
sions, but recently language classes defined without union or concatenation have
been studied.

If we remove some operations from regular expressions, we obtain the follow-
ing classes of languages:

Union only subsets of {ε} ∪ Σ.
Concatenation only ∅ and {w} for each w ∈ Σ∗.
Star only ∅, {ε}, {a} for each a ∈ Σ, and {a}∗ for each a ∈ Σ.
Union and Concatenation. Finite languages.
Concatenation and Star. These are the union-free languages that consti-
tute the main topic of this paper.
Union and Star. These are the concatenation-free languages that were
studied in [15,19].

Union-free regular languages were first considered by Brzozowski [3] in 1962
under the name star-dot regular languages, where dot stands for concatenation.
He proved that every regular language is a union of union-free languages [3,
p. 216, Theorem 9.5]1. Much more recently, in 2001, Crvenković et al. [13] stud-
ied equations satisfied by union-free regular languages, and proved that the class
of these languages cannot be axiomatized by a finite set of equations. This is
also known to be true for the class of all regular languages. In 2006 Nagy studied
union-free languages in detail and characterized them in terms of nondetermin-
istic finite automata (NFAs) recognizing them [22], which he called one-cycle-
free-path NFAs. In 2009 minimal union-free decompositions of regular languages
were studied in [1] by Afonin and Golomazov. They also presented a new algo-
rithm for deciding whether a given deterministic finite automaton (DFA) accepts

1 Terminology changed to that of the present paper.

Most Complex Union-Free Languages 39

a union-free language. Decompositions of regular languages in terms of union-
free languages were further studied by Nagy in 2010 [23]. The state complexities
of operations on union-free languages were examined in 2011 by Jirásková and
Masopust [17], who proved that the state complexities of basic operations on
these languages are the same as those in the class of all regular languages. It was
shown in [17] that the class of languages defined by DFAs with the one-cycle-free-
path property is a proper subclass of that defined by one-cycle-free-path NFAs;
the former class is called the class of deterministic union-free languages. In 2012
Jirásková and Nagy [18] proved that the class of finite unions of deterministic
union-free languages is a proper subclass of the class of regular languages. They
also showed that every deterministic union-free language is accepted by a spe-
cial kind of a one-cycle-free-path DFA called a balloon DFA. A summary of the
properties of union-free languages was presented in 2017 in [15].

2 Preliminaries

Let L be a regular language. We define the alphabet of L to be the set of letters
which appear at least once in a word of L. For example, consider the language
L = {a, ab, ac} and the subset K = {a, ac}; we say L has alphabet {a, b, c} and
K has alphabet {a, c}.

A deterministic finite automaton (DFA) is a 5-tuple D = (Q,Σ, δ, q0, F),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆
Q is the set of final states. We extend δ to functions δ : Q × Σ∗ → Q and
δ : 2Q ×Σ∗ → 2Q as usual (where 2Q denotes the set of all subsets of Q). A DFA
D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by D is the set
of all words accepted by D, and is denoted by L(D). If q is a state of D, then the
language Lq(D) of q is the language accepted by the DFA (Q,Σ, δ, q, F). A state
is empty (or dead or a sink state) if its language is empty. Two states p and q of
D are equivalent if Lp(D) = Lq(D). A state q is reachable if there exists w ∈ Σ∗

such that δ(q0, w) = q. A DFA D is minimal if it has the smallest number of
states among all DFAs accepting L(D). We say a DFA has a minimal alphabet if
its alphabet is equal to the alphabet of L(D). It is well known that a DFA with
a minimal alphabet is minimal if and only if all of its states are reachable and
no two states are equivalent.

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ, δ, I, F),
where Q, Σ and F are as in a DFA, δ : Q×Σ → 2Q, and I ⊆ Q is the set of initial
states. Each triple (p, a, q) with p, q ∈ Q, a ∈ Σ is a transition if q ∈ δ(p, a).
A sequence ((p0, a0, q0), (p1, a1, q1), . . . , (pk−1, ak−1, qk−1)) of transitions, where
pi+1 = qi for i = 0, . . . , k − 2 is a path in N . The word a0a1 · · · ak−1 is the word
spelled by the path. A word w is accepted by N is there exists a path with p0 ∈ I
and qk−1 ∈ F that spells w. If q ∈ δ(p, a) we also use the notation p

a−→ q. We
extend this notation also to words, and write p

w−→ q for w ∈ Σ∗.
The state complexity [20,27] of a regular language L, denoted by κ(L), is

the number of states in the minimal DFA accepting L. Henceforth we frequently

40 J. A. Brzozowski and S. Davies

refer to state complexity simply as complexity, and we denote a language of
complexity n by Ln, and a DFA with n states by Dn.

The state complexity of a regularity-preserving unary operation ◦ on regular
languages is the maximal value of κ(L◦), expressed as a function of one parameter
n, where L varies over all regular languages with complexity at most n. For
example, the state complexity of the reversal operation is 2n; it is known that
if L has complexity at most n, then κ(LR) � 2n, and furthermore this upper
bound is tight in the sense that for each n � 1 there exists a language Ln such
that κ(LR

n) = 2n. In general, to show that an upper bound on κ(L◦) is tight, we
need to exhibit a sequence (Ln | n � k) = (Lk, Lk+1, . . .), called a stream, of
languages of each complexity n � k (for some small constant k) that meet this
upper bound. Often we are not interested in the special-case behaviour of the
operation that may occur at very small values of n; the parameter k allows us
to ignore these small values and simplify the statements of results.

The state complexity of a regularity-preserving binary operation ◦ on regular
languages is the maximal value of κ(L′ ◦ L), expressed as a function of two
parameters m and n, where L′ varies over all regular languages of complexity
at most m and L varies over all regular languages of complexity at most n. In
this case, to show an upper bound on the state complexity is tight, we need to
exhibit two classes (L′

m,n | m � h, n � k) and (Lm,n | m � h, n � k) of languages
meeting the bound; the notation L′

m,n and Lm,n implies that L′
m,n and Lm,n

depend on both m and n. However, in most cases studied in the literature, it
is enough to use witness streams (L′

m | m � h) and (Ln | n � k), where L′
m is

independent of n and Ln is independent of m.
For binary operations we consider two types of state complexity: restricted

and unrestricted state complexity. For restricted state complexity the operands of
the binary operations are required to have the same alphabet. For unrestricted
state complexity the alphabets of the operands may differ. See [9] for more
details.

Sometimes the same stream can be used for both operands of a binary oper-
ation, but this is not always possible. For example, for boolean operations when
m = n, the state complexity of Ln ∪ Ln = Ln is n, whereas the upper bound is
mn = n2. However, in many cases the second language is a “dialect” of the first,
that is, it “differs only slightly” from the first. The notion “differs only slightly”
is defined as follows [4,6,8]: Let Σ = {a1, . . . , ak} be an alphabet ordered as
shown; if L ⊆ Σ∗, we denote it by L(a1, . . . , ak) to stress its dependence on Σ.
A dialect of Ln(Σ) is a language obtained from Ln(Σ) by deleting some letters
of Σ in the words of Ln(Σ) – by this we mean that words containing these letters
are deleted – or replacing them by letters of another alphabet Σ′. In this paper
we consider only the cases where Σ = Σ′, and we encounter only two types of
dialects:

1. A dialect in which some letters were deleted; for example, Ln(a, b) is a dialect
of Ln(a, b, c) with c deleted, and Ln(a,−, c) is a dialect with b deleted. Note
that deleted letters are replaced by dashes, and if the letters {ai, . . . ak} are
all deleted then the corresponding dashes are not shown.

Most Complex Union-Free Languages 41

2. A dialect in which the roles of two letters are exchanged; for example, Ln(b, a)
is such a dialect of Ln(a, b).

These two types of dialects can be combined, for example, in Ln(a,−, b) the
letter c is deleted, and b plays the role that c played originally. The notion of
dialects also extends to DFAs; for example, if Dn(a, b, c) recognizes Ln(a, b, c)
then Dn(a,−, b) recognizes the dialect Ln(a,−, b).

We use Qn = {0, . . . , n−1} as our basic set with n elements. A transformation
of Qn is a mapping t : Qn → Qn. The image of q ∈ Qn under t is denoted by qt,
and this notation is extended to subsets of Qn. The preimage of q ∈ Qn under
t is the set qt−1 = {p ∈ Qn : pt = q}, and this notation is extended to subsets
of Qn as follows: St−1 = {p ∈ Qn : pt ∈ S}. The rank of a transformation t is
the cardinality of Qnt. If s and t are transformations of Qn, their composition is
denoted st and we have q(st) = (qs)t for q ∈ Qn. The k-fold composition tt · · · t
(with k occurrences of t) is denoted tk, and for S ⊆ Qn we define St−k = S(tk)−1.
Let TQn

be the set of all nn transformations of Qn; then TQn
is a monoid under

composition.
For k � 2, a transformation t of a set P = {q0, q1, . . . , qk−1} ⊆ Qn is a k-cycle

if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle is denoted by
(q0, q1, . . . , qk−1), and leaves the states in Qn \ P unchanged. A 2-cycle (q0, q1)
is called a transposition. A transformation that sends state p to q and acts
as the identity on the remaining states is denoted by (p → q). The identity
transformation is denoted by 1.

Let D = (Qn, Σ, δ, 0, F) be a DFA. For each word w ∈ Σ∗, the transition
function induces a transformation δw of Qn by w: for all q ∈ Qn, qδw = δ(q, w).
The set TD of all such transformations by non-empty words is the transition
semigroup of D under composition. Often we use the word w to denote the
transformation t it induces; thus we write qw instead of qδw. We also write w : t
to mean that w induces the transformation t.

The size of the syntactic semigroup of a regular language is another measure
of the complexity of the language [4]. Write Σ+ for Σ∗ \ {ε}. The syntactic con-
gruence of a language L ⊆ Σ∗ is defined on Σ+ as follows: For x, y ∈ Σ+, x≈L y
if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The quotient set Σ+/≈L of
equivalence classes of ≈L is a semigroup, the syntactic semigroup TL of L. The
syntactic semigroup is isomorphic to the transition semigroup of the minimal
DFA of L [24].

The (left) quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language w−1L = {x :
wx ∈ L}. It is well known that the number of quotients of a regular language is
finite and equal to the state complexity of the language.

The atoms of a regular language are defined by a left congruence, where two
words x and y are congruent whenever ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗.
Thus x and y are congruent whenever x ∈ u−1L if and only if y ∈ u−1L for all
u ∈ Σ∗. An equivalence class of this relation is an atom of L [12]. Atoms can
be expressed as non-empty intersections of complemented and uncomplemented
quotients of L. The number of atoms and their state complexities were suggested

42 J. A. Brzozowski and S. Davies

as measures of complexity of regular languages [4] because all quotients of a
language and all quotients of its atoms are unions of atoms [11,12,16].

3 Main Results

The automata described in [22] that characterize union-free languages are called
there one-cycle-free-path automata. They are defined by the property that there
is only one final state and a unique cycle-free path from each state to the final
state. We are now ready to define a most complex deterministic one-cycle-free-
path DFA and its most complex deterministic union-free language.

The most complex stream below meets all of our complexity bounds. How-
ever, our witness uses three letters for restricted product whereas [17] uses binary
witnesses. The same shortcoming of most complex streams occurs in the case
of regular languages [4]; that seems to be the price of getting a witness for all
operations rather than minimizing the alphabet for each operation.

Definition 1. For n � 3, let Dn = Dn(a, b, c, d) = (Qn, Σ, δn, 0, {n − 1}),
where Σ = {a, b, c, d}, and δn is defined by the transformations a : (1, . . . , n−1),
b : (0, 1), c : (1 → 0), and d : 1; see Fig. 1. Let Ln = Ln(a, b, c, d) be the language
accepted by Dn(a, b, c, d).

. . . n − 2 n − 1

b

b, c

a, c, d

a

d b, c, d

a

b, c, d

aa

b, c, d

a

a

b, c, d

Fig. 1. Most complex minimal one-cycle-free-path DFA Dn(a, b, c, d) of Definition 1.

The DFA of Definition 1 bears some similarities to the DFA for reversal in
Fig. 6 in [17, p. 1650]. It is evident that it is a one-cycle-free-path DFA. Let
E = (a(b ∪ c ∪ d)∗)n−2a. One verifies that

Ln = [(a ∪ c ∪ d) ∪ b(d ∪ E(b ∪ c ∪ d)∗a)∗(b ∪ c)]∗

b(d ∪ E(b ∪ c ∪ d)∗a)∗E(b ∪ c ∪ d)∗.

Noting that (E1 ∪ E2 ∪ · · · ∪ Ek)∗ = (E∗
1E∗

2 · · · E∗
k)∗ for all regular expressions

Ei, i = 1, . . . , k, we obtain a union-free expression for Ln.

Theorem 1 (Most Complex Deterministic Union-Free Languages).
For each n � 3, the DFA of Definition 1 is minimal and recognizes a deter-
ministic union-free language. The stream (Ln(a, b, c) | n � 3) with some dialect
streams is most complex in the class of deterministic union-free languages in the
following sense:

Most Complex Union-Free Languages 43

1. The syntactic semigroup of Ln(a, b, c) has cardinality nn, and at least three
letters are required to reach this bound.

2. Each quotient of Ln(a, b) has complexity n.
3. The reverse of Ln(a, b, c) has complexity 2n. Moreover, Ln(a, b, c) has 2n

atoms.
4. Each atom AS of Ln(a, b, c) has maximal complexity:

κ(AS) =

{
2n − 1, if S ∈ {∅, Qn};
1 +

∑|S|
x=1

∑n−|S|
y=1

(
n
x

)(
n−x

y

)
, if ∅ � S � Qn.

5. The star of Ln(a, b) has complexity 2n−1 + 2n−2.
6. (a) Restricted product: κ(Lm(a, b, c)Ln(a, b, c)) = (m − 1)2n + 2n−1.

(b) Unrestricted product: κ(Lm(a, b, c)Ln(a, b, c, d)) = m2n + 2n−1.
7. (a) Restricted boolean operations: For (m,n)
=(3, 3), κ(Lm(a, b)◦Ln(b, a)) =

mn for all binary boolean operations ◦ that depend on both arguments.
(b) Additionally, when m
= n, κ(Lm(a, b) ◦ Ln(a, b)) = mn.
(c) Unrestricted boolean operations (⊕ denotes symmetric difference):⎧⎪⎨

⎪⎩
κ(Lm(a, b,−, c) ◦ Ln(b, a,−, d)) = (m + 1)(n + 1) if ◦ ∈ {∪,⊕},
κ(Lm(a, b,−, c) \ Ln(b, a)) = mn + n,

Lm(a, b) ∩ Ln(b, a) = mn.

All of these bounds are maximal for deterministic union-free languages.

Proof. Only state 0 accepts ban−2, and the shortest word accepted by state q,
1 � q � n − 1, is an−1−q. Hence all the states are distinguishable, and Dn is
minimal. We noted above that it recognizes a deterministic union-free language.

1. It is well known that the three transformations a′ : (0, . . . n−1), b : (0, 1), and
c : (1 → 0) generate all nn transformations of Qn. We have b and c in Dn,
and a′ is generated by ab. Hence our semigroup is maximal.

2. This is easily verified.
3. By [12] the number of atoms is the same as the complexity of the reverse.

By [25] the complexity of the reverse is 2n.
4. The proof in [5] applies here as well.
5. We construct an NFA for (Ln(a, b))∗ by taking Dn(a, b) and adding a new

initial accepting state s with s
a−→ 0 and s

b−→ 1, and adding new transitions
n − 2 a−→ 0 and n − 1 b−→ 0; then we determinize to get a DFA. For S ⊆ Qn

and a ∈ Σ, the transition function of the DFA is given by

Sa =

{
Sa ∪ {0}, if n − 1 ∈ Sa;
Sa, otherwise.

We claim that the following states are reachable and pairwise distinguishable:
the initial state {s}, states of the form {0} ∪ S with S ⊆ Qn \ {0}, and non-
empty states S with S ⊆ Qn \ {0, n − 1}, for a total of 2n−1 + 2n−2 states.

44 J. A. Brzozowski and S. Davies

First consider states {0}∪S with S ⊆ Qn \{0}. We prove by induction on |S|
that all of these states are reachable. In the process, we will also show that
S is reachable when ∅
= S ⊆ Qn \ {0, n − 1}. For the base case |S| = 0, note
that we can reach {0} from the initial state {s} by a.
To reach {0} ∪ S with S ⊆ Qn \ {0} and |S| > 0, assume we can reach
all states {0} ∪ T with T ⊆ Qn \ {0} and |T | < |S|. Let q be the minimal
element of S; then 1 ∈ Sa1−q. More precisely, if S = {q, q1, q2, . . . , qk} with
1 � q < q1 < · · · < qk � n − 1, then Sa1−q = {1, q1 − q + 1, . . . , qk − q + 1}.
Set T = Sa1−q \ {1} and note that |T | < |S|. By the induction hypothesis,
we can reach {0} ∪ T . Apply b to reach either {0, 1} ∪ T (if n − 1 ∈ T) or
{1} ∪ T (if n − 1
∈ T). Note that the only way we can have n − 1 ∈ T is if
n− 1 ∈ S and q = 1. Now apply aq−1 to reach either {0}∪S (if n− 1 ∈ S) or
just S (if n − 1
∈ S). In the latter case, we can apply an−1 to reach {0} ∪ S.
This shows that if S ⊆ Qn \ {0}, then {0} ∪ S is reachable. Furthermore, if
S ⊆ Qn \ {0, n − 1} then S is reachable.
For distinguishability, if S, T ⊆ Qn and S
= T , let q be an element of the
symmetric difference of S and T . If q
= 0 then an−1−q distinguishes S and
T ; if q = 0 use ban−2. To distinguish the accepting state {s} from accepting
states S ⊆ Qn, use b.

6. To avoid confusion between the states of Dm and Dn, we mark the states of
Dm with primes: instead of Qm we use Q′

m = {0′, 1′, 2′, . . . , (m − 1)′}. In the
restricted case, we construct an NFA for Lm(a, b, c)Ln(a, b, c) by taking the
disjoint union of Dm(a, b, c) and Dn(a, b, c), making state (m − 1)′ non-final,
and adding transitions (m − 2)′ a−→ 0 and (m − 1)′ σ−→ 0 for σ ∈ {b, c}; then
we determinize to get a DFA. The states of this DFA are sets of the form
{q′} ∪ S, where q′ ∈ Q′

m and S ⊆ Qn. For a ∈ Σ, the transition function is
given by

({q′} ∪ S)a =

{
{q′a, 0} ∪ Sa, if q′a = (m − 1)′;
{q′a} ∪ Sa, otherwise.

In the unrestricted case, we use the same construction with Dm(a, b, c) and
Dn(a, b, c, d), but there are additional reachable states. In the NFA, if we are
in subset {q′} ∪ S, then by input d we reach S, since d is not in the alphabet
of Dm(a, b, c). So the determinization also has states S where S ⊆ Qn.
We claim the following states of our DFA for product are reachable and
pairwise distinguishable:

– Restricted case: All states of the form {q′} ∪ S with q′
= (m − 1)′ and
S ⊆ Qn, and all states of the form {(m − 1)′, 0} ∪ S with S ⊆ Qn \ {0}.

– Unrestricted case: All states from the restricted case, and all states S
where S ⊆ Qn.

The initial state is {0′}, and we have

{0′} b−→ {1′} am−2

−−−→ {(m − 1)′, 0} a−→ {1′, 0} b−→ {0′, 1}.

That is, {0′} bam−1b−−−−−→ {0′, 1}. For 0 � k � n−2 we have {0′, 1} ak

−→ {0′, 1+k},
and {0′, 1} c−→ {0′, 0}. Thus all states of the form {0′, q} for q ∈ Qn are

Most Complex Union-Free Languages 45

reachable from {0′}, using the set of words {x, xa, xa2, · · · , xan−2, xc} where
x = bam−1b. Since all of these words are permutations of Qn except for xc,
by [14, Theorem 2] all states of the form {0′} ∪ S with S ⊆ Qn are reachable.
To reach {q′}∪S with 1 � q � m−2, reach {0′}∪Sa−q and apply aq. To reach
{(m − 1)′, 0} ∪ S, reach {(m − 2)′} ∪ Sa−1 and apply a. In the unrestricted
case, we can also reach each state S from {0′} ∪ S by d.
To see all of these states are distinguishable, consider two distinct states X∪S
and Y ∪T . In the restricted case, X and Y are singleton subsets of Q′

m; in the
unrestricted case they may be singletons or empty sets. In both cases S and
T are arbitrary subsets of Qn. If S
= T , let q be an element of the symmetric
difference of S and T . If q
= 0 then an−1−q distinguishes the states; if q = 0
use ban−2. If S = T , then X
= Y and at least one of X or Y is non-empty.
Assume without loss of generality that Y is non-empty, say Y = {q′}, and
assume X is either empty or equal to {p′} where p < q. We consider several
cases:
(i) If 0
∈ S, then am−1−q reduces this case to the case where S
= T .
(ii) If 0 ∈ S and 1
∈ S, and {p′, q′}
= {0′, 1′}, then b reduces this to case (i).
(iii) If 0, 1 ∈ S, and {p′, q′}
= {0′, 1′}, then c reduces this to case (ii).
(iv) If {p′, q′} = {0′, 1′}, then a reduces this to case (i), (ii) or (iii).
This shows that in both the restricted and unrestricted cases, all reachable
states are pairwise distinguishable.

7. (a) A binary boolean operation is proper if it depends on both arguments. For
example, ∪, ∩, \ and ⊕ are proper, whereas the operation (L′, L) → L
is not proper since it depends only on the second argument. Since the
transition semigroups of Dm and Dn are the symmetric groups Sm and
Sn, for m,n � 5, Theorem 1 of [2] applies, and all proper binary boolean
operations have complexity mn. For (m,n) ∈ {(3, 4), (4, 3), (4, 4)} we have
verified our claim by computation.

(b) This holds by [2, Theorem 1] as well.
(c) The upper bounds for unrestricted boolean operations on regular lan-

guages were derived in [9]. The proof that the bounds are tight is very
similar to the corresponding proof of Theorem 1 in [9]. For m,n � 3, let
D′

m(a, b,−, c) be the dialect of D′
m(a, b, c, d) where c plays the role of d

and the alphabet is restricted to {a, b, c}, and let Dn(b, a,−, d) be the
dialect of Dn(a, b, c, d) in which a and b are permuted, and the alphabet
is restricted to {a, b, d}; see Fig. 2.
Next we complete the two DFAs by adding empty states. Restricting
both DFAs to the alphabet {a, b}, leads us to the problem of determining
the complexity of two DFAs over the same alphabet. In the direct prod-
uct of the two DFAs, by [2, Theorem 1] and computation for the cases
(m,n) ∈ {(3, 4), (4, 3), (4, 4)}, all mn states of the form {p′, q}, p′ ∈ Q′

m,
q ∈ Qn, are reachable and pairwise distinguishable by words in {a, b}∗ for
all proper boolean operations. As shown in Fig. 3, the remaining states
of the direct product are reachable; hence all (m + 1)(n + 1) states are
reachable.

46 J. A. Brzozowski and S. Davies

The proof of distinguishability of pairs of states in the direct product for
the union, intersection and symmetric difference is the same as that in [9].
The proof for difference given in [9] is incorrect, but a corrected version
is available in [7]. ��

0 1 2 . . . (m − 1)b

b

a a a

a

a, c c b, c b, c

. . . n− 1

b, d d a, d a, d

a

a

b b b

b

Fig. 2. Witnesses D′
m(a, b,−, c) and Dn(b, a,−, d) for boolean operations.

0 , 0

1 , 0

2 , 0

∅ , 0

0 , 1

1 , 1

2 , 1

∅ , 1

0 , 2

1 , 2

2 , 2

∅ , 2

0 , 3

1 , 3

2 , 3

∅ , 3

0 , ∅

1 , ∅

2 , ∅

∅ , ∅a b b

b

b

a a

c

d

d

c

Fig. 3. Direct product for union shown partially.

4 Conclusions

We have exhibited a single ternary language stream that is a witness for the
maximal state complexities of star and reversal of union-free languages. Together
with some dialects it also constitutes a witness for union, intersection, difference,
symmetric difference, and product in case the alphabets of the two operands are

Most Complex Union-Free Languages 47

the same. As was shown in [17] these bounds are the same as those for regular
languages. We prove that our witness also has the largest syntactic semigroup
and most complex atoms, and that these complexities are again the same as those
for arbitrary regular languages. By adding a fourth input inducing the identity
transformation to our witness we obtain witnesses for unrestricted binary oper-
ations, where the alphabets of the operands are not the same. The bounds here
are again the same as those for regular languages. In summary, this shows that
the complexity measures proposed in [4] do not distinguish union-free languages
from regular languages.

References

1. Afonin, S., Golomazov, D.: Minimal union-free decompositions of regular lan-
guages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 83–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00982-2 7

2. Bell, J., Brzozowski, J., Moreira, N., Reis, R.: Symmetric groups and quotient
complexity of boolean operations. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 1–12. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43951-7 1

3. Brzozowski, J.A.: Regular expression techniques for sequential circuits. Ph.D.
thesis, Princeton University, Princeton, NJ (1962). http://maveric.uwaterloo.ca/
∼brzozo/publication.html

4. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found.
Comput. Sci. 24(6), 691–708 (2013)

5. Brzozowski, J.A., Davies, S.: Quotient complexities of atoms of regular ideal lan-
guages. Acta Cybern. 22, 293–311 (2015)

6. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages.
Discrete Math. Theor. Comput. Sci. 18(3) (2016). Paper #15

7. Brzozowski, J.A., Sinnamon, C.: Unrestricted state complexity of binary operations
on regular and ideal languages (2016). http://arxiv.org/abs/1609.04439. Accessed
2017

8. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and
prefix-free regular languages. Acta Cybern. 23(1), 9–41 (2017)

9. Brzozowski, J.A., Sinnamon, C.: Unrestricted state complexity of binary operations
on regular and ideal languages. J. Autom. Lang. Comb. 22(1–3), 29–59 (2017)

10. Brzozowski, J.A., Szyku�la, M.: Large aperiodic semigroups. Int. J. Found. Comput.
Sci. 26(7), 913–931 (2015)

11. Brzozowski, J.A., Tamm, H.: Complexity of atoms of regular languages. Int. J.
Found. Comput. Sci. 24(7), 1009–1027 (2013)

12. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014)

13. Crvenković, S., Dolinka, I., Ésik, Z.: On equations for union-free regular languages.
Inf. Comput. 164, 152–172 (2001)

14. Davies, S.: A new technique for reachability of states in concatenation automata.
In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10316, pp. 75–
87. Springer, Cham (2018). Earlier version at https://arxiv.org/abs/1710.05061

https://doi.org/10.1007/978-3-642-00982-2_7
https://doi.org/10.1007/978-3-642-00982-2_7
https://doi.org/10.1007/978-3-662-43951-7_1
http://maveric.uwaterloo.ca/~brzozo/publication.html
http://maveric.uwaterloo.ca/~brzozo/publication.html
http://arxiv.org/abs/1609.04439
https://arxiv.org/abs/1710.05061

48 J. A. Brzozowski and S. Davies

15. Holzer, M., Kutrib, M.: Structure and complexity of some subregular language
families. In: Konstantinidis, S., Moreira, N., Reis, R., Shallit, J. (eds.) The Role of
Theory in Computer Science, pp. 59–82. World Scientific, Singapore (2017)

16. Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116(5), 356–360
(2016)

17. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Int. J.
Found. Comput. Sci. 22(7), 1639–1653 (2011)

18. Jirásková, G., Nagy, B.: On union-free and deterministic union-free languages. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
179–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-
7 13

19. Kutrib, M., Wendlandt, M.: Concatenation-free languages. Theor. Comput. Sci.
679(Suppl. C), 83–94 (2017)

20. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970). (in Russian). English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

21. McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press, Cambridge
(1971)

22. Nagy, B.: Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debr. 68(1–2), 183–197 (2006)

23. Nagy, B.: On union complexity of regular languages. In: CINTI 2010, pp. 177–182.
IEEE (2010)

24. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, vol. 1: Word, Language, Grammar, pp. 679–746. Springer,
New York (1997). https://doi.org/10.1007/978-3-642-59136-5 10

25. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theor. Comput. Sci. 320, 315–329 (2004)

26. Schützenberger, M.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

27. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125, 315–328 (1994)

https://doi.org/10.1007/978-3-642-33475-7_13
https://doi.org/10.1007/978-3-642-33475-7_13
https://doi.org/10.1007/978-3-642-59136-5_10

Site-Directed Insertion: Decision
Problems, Maximality and Minimality

Da-Jung Cho1, Yo-Sub Han1, Kai Salomaa2(B), and Taylor J. Smith2

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajungcho,emmous}@yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada

{ksalomaa,tsmith}@cs.queensu.ca

Abstract. Site-directed insertion is an overlapping insertion operation
that can be viewed as analogous to the overlap assembly or chop oper-
ations that concatenate strings by overlapping a suffix and a prefix of
the argument strings. We consider decision problems and language equa-
tions involving site-directed insertion. By relying on the tools provided
by semantic shuffle on trajectories we show that one variable equations
involving site-directed insertion and regular constants can be solved. We
consider also maximal and minimal variants of the site-directed insertion
operation.

1 Introduction

Site-directed mutagenesis is one of the most important techniques for generating
mutations on specific sites of DNA using polymerase chain reaction (PCR) based
methods [18]. The algorithmic applications of mutagenesis have been considered
e.g. by Franco and Manca [10]. Contextual insertion/deletion systems in the
study of molecular computing have been used, e.g. by Kari and Thierrin [16],
Daley et al. [4] and Enaganti et al. [8].

Site-directed insertion (SDI) of a string y into a string x involves matching
an outfix of y with a substring of x and inserting the “middle part” of y not
belonging to the outfix into x. Site-directed insertion has earlier been considered
under the name outfix-guided insertion [2]. The operation is an overlapping vari-
ant of the insertion operation in the same sense as the overlap assembly, a.k.a.
chop operation, is a variant of string concatenation [3,9,12,13].

The maximal (respectively, minimal) SDI of a string y into a string x
requires that, at the chosen location of x, the operation matches a maximal

Cho and Han were supported by the Basic Science Research Program through NRF
(2015R1D1A1A01060097) and the International Research & Development Program
of NRF (2017K1A3A1A12024971). Salomaa and Smith were supported by Natural
Sciences and Engineering Research Council of Canada Grant OGP0147224.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 49–61, 2018.
https://doi.org/10.1007/978-3-319-94631-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_5&domain=pdf

50 D.-J. Cho et al.

(respectively, minimal) outfix of y with a substring of x. This is analogous to
the maximal and minimal chop operations studied by Holzer et al. [13].

Site-directed insertion can be represented as a semantic shuffle on trajectories
(SST). Shuffle on trajectories was introduced by Mateescu et al. [17] and the
extension to SST is due to Domaratzki [5]. Further extensions of the shuffle-on-
trajectories operation have been studied by Domaratzki et al. [7].

Here we study decision problems and language equations involving site-
directed insertion and its maximal and minimal variants. The representation of
SDI as a semantic shuffle on a regular set of trajectories gives regularity preserv-
ing left- and right-inverses of the operation. By the general results of Kari [15] on
the decidability of equations, translated for SST by Domaratzki [5], this makes it
possible to decide linear equations involving SDI where the constants are regular
languages.

The maximal and minimal SDI operations do not, in general, preserve
regularity. This means that the operations cannot be represented by SST [5]
(on a regular set of trajectories) and the above tools are not available to deal
with language equations. We show that for maximal and minimal SDI certain
independence properties related to coding applications [14] can be decided in a
polynomial time. The decidability of whether a regular language is closed under
max/min SDI remains open.

In the last section we give a tight bound for the nondeterministic state com-
plexity of alphabetic SDI, where the matching outfix must consist of a prefix
and suffix of length exactly one. An upper bound for the state complexity of the
general site-directed insertion is known but it remains open whether the bound
is optimal.

2 Preliminaries

We assume the reader to be familiar with the basics of finite automata, regular
languages and context-free languages [19]. Here we briefly recall some notation.

Let Σ be an alphabet and w ∈ Σ∗. If we can write w = xyz we say that the
pair (x, z) is an outfix of w. The outfix (x, z) is a nontrivial outfix of w if x �= ε
and z �= ε. For L ⊆ Σ∗, L = Σ∗ − L is the complement of L.

A nondeterministic finite automaton (NFA) is a tuple A = (Σ,Q, δ, q0, F)
where Σ is the input alphabet, Q is the finite set of states, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
In the usual way δ is extended as a function Q × Σ∗ → 2Q and the language
accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. The automaton A is a
deterministic finite automaton (DFA) if |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.
It is well known that the deterministic and nondeterministic finite automata
recognize the class of regular languages.

The so called fooling set lemma gives a technique for establishing lower
bounds for the size of NFAs:

Site-Directed Insertion 51

Lemma 1 (Birget 1992 [1]). Let L ⊆ Σ∗ be a regular language. Suppose that
there exists a set P = {(xi, wi) | 1 ≤ i ≤ n} of pairs of strings such that: (i)
xiwi ∈ L for 1 ≤ i ≤ n, and, (ii) if i �= j, then xiwj �∈ L or xjwi �∈ L for
1 ≤ i, j ≤ n. Then, any minimal NFA for L has at least n states.

Finally we recall some notions concerning operations on languages and lan-
guage equations. Let 	 be a binary operation on languages, and L, R are lan-
guages over an alphabet Σ.

(i) The language L is closed under 	 if L 	 L ⊆ L.
(ii) The language L is 	-free with respect to R if L 	 R = ∅.
(iii) The language L is 	-independent with respect to R if (L 	 Σ+) ∩ R = ∅.
(iv) A solution for an equation X 	 L = R (respectively, L 	 X = R) is a

language S ⊆ Σ∗ such that S 	 L = R (respectively, L 	 S = R).

The 	-freeness and independence properties can be related to coding appli-
cations, where it might be desirable that we cannot produce new strings by
applying an operation, such as site-directed insertion, to strings of the language.
Domaratzki [6] defines trajectory-based codes analogously with (iii). As we will
see, languages that are site-directed insertion independent with respect to them-
selves have a definition closely resembling outfix-codes of index one [14].

3 Site-Directed Insertion

The site-directed insertion is a partially overlapping insertion operation anal-
ogously as the overlap-assembly (or self-assembly) [3,9] models an overlapping
concatenation of strings. The overlapping concatenation operation is also called
the chop operation [13].

The site-directed insertion (SDI) of a string y into a string x is defined as

x
sdi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε, v �= ε}.

The above definition requires that the pair (u, v) is a nontrivial outfix of the
string y and uv is a substring of x. If y = uzv is inserted into x by matching
the outfix with a substring uv of x, we say that (u, v) is an insertion guide
for the operation. Note that a previous paper [2] uses the name “outfix-guided
insertion” for the same operation.

The site-directed insertion operation is extended in the usual way for lan-
guages by setting

L1
sdi← L2 =

⋃

wi∈Li,i=1,2

w1
sdi← w2.

We recall that regular languages are closed under site-directed insertion.

52 D.-J. Cho et al.

Proposition 1 ([2]). If A and B are NFAs with m and n states, respectively,
the language L(A) sdi← L(B) has an NFA with 3mn + 2m states.

A simpler form of the overlap-assembly operation requires the overlapping
part of the strings to consist of a single letter. This operation is called “chop”
by Holzer and Jacobi [12] but the later definition of the chop-operation [13]
coincides with general overlap-assembly [9]. Analogously we define alphabetic
site-directed insertion by requiring that the overlapping prefix and suffix of the
inserted string each consist of a single letter.

The alphabetic site-directed insertion of a string y into a string x is

x
a−sdi← y = {x1azbx2 | x = x1abx2, y = azb, a, b ∈ Σ, x1, x2, z ∈ Σ∗}.

Note that the alphabetic site-directed insertion will have different closure
properties than the standard site-directed insertion. For example, it is not dif-
ficult to see that the context-free languages are closed under alphabetic site-
directed insertion, while the context-free languages are not closed under general
site-directed insertion [2].

3.1 Decision Problems

For a regular language L, it is decidable whether L is closed under site-directed
insertion. The algorithm relies on the construction of Proposition 1 and operates
in polynomial time when L is specified by a DFA [2]. Deciding whether a context-
free language is closed under site-directed insertion is undecidable [2].

A language L is sdi←-free, or SDI-free, with respect to R if no string of R can be
site-directed inserted into a string of L, that is, if L

sdi← R = ∅. The language L is
SDI-independent with respect to R if site-directed inserting a non-empty string
into L cannot produce a string of R. Note that L being SDI-independent with
respect to itself resembles the notion of L being an outfix-code of index one [14]
with the difference that we require the outfix to be nontrivial. For example,
{ab, b} is SDI-independent but it is not an outfix-code of index one.

Theorem 1. For NFAs A and B we can decide in polynomial time whether

(i) L(A) is SDI-free (or SDI-independent) with respect to L(B).
(ii) L(A) is alphabetic SDI-free (or alphabetic SDI-independent) with respect

to L(B).

For context-free languages deciding SDI-freeness and SDI-independence is
undecidable.

Proposition 2. For context-free languages L1 and L2 it is undecidable whether

(i) L1 is SDI-free with respect to L2,
(ii) L1 is SDI-independent with respect to L2.

Site-Directed Insertion 53

For dealing with language equations we express the site-directed inser-
tion operation as a semantic shuffle on a set of trajectories (SST) due to
Domaratzki [5]. The semantic shuffle extends the (syntactic) shuffle on trajecto-
ries originally defined by Mateescu et al. [17]. We use a simplified definition of
SST that does not allow content restriction [5].

The trajectory alphabet is Γ = {0, 1, σ} and a trajectory is a string over Γ .
The semantic shuffle of x, y ∈ Σ∗ on a trajectory t ∈ Γ ∗, denoted by x �t y, is
defined as follows.

If x = y = ε, then x �t y = ε if t = ε and is undefined otherwise. If x = ax′,
a ∈ Σ, y = ε and t = ct′, c ∈ Γ , then

x �t ε =

{
a(x′ �t′ ε) if c = 0,

∅, otherwise.

If x = ε, y = by′, b ∈ Σ, and t = ct′, c ∈ Γ , then

ε �t y =

{
b(ε �t′ y′) if c = 1,

∅, otherwise.

In the case where all the strings are nonempty, for x = ax′, y = by′, a, b ∈ Σ,
and t = ct′, c ∈ Γ , we define

x �t y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(x′ �t′ y) if c = 0,

b(x �t′ y′) if c = 1,

a(x′ �t′ y′) if a = b and c = σ,

∅, otherwise.

Intuitively, the trajectory t is a sequence of instructions that guide the shuffle of
strings x and y: 0 selects the next symbol of x, 1 the next symbol of y (these are as
in the original definition of syntactic shuffle [17]) and σ represents synchronized
insertion where the next symbols of the argument strings must coincide.

For x, y ∈ Σ∗ and t ∈ Γ ∗, x �t y either consists of a unique string or is
undefined. For T ⊆ Γ ∗, x �T y =

⋃
t∈T x �t y and the operation is extended in

the natural way for languages over Σ.
Directly from the definition it follows that the SDI and alphabetic SDI oper-

ations can be represented as semantic shuffle on a regular set of trajectories.

Proposition 3. Let Tsdi = 0∗σ+1∗σ+0∗ and Ta−sdi = 0∗σ1∗σ0∗. Then, for any
languages L1 and L2,

L1
sdi← L2 = L1 �Tsdi L2, and, L1

a−sdi← L2 = L1 �Ta−sdi
L2.

Now using the strong decidability results of Domaratzki [5] we can effectively
decide linear language equations involving site-directed insertion where the con-
stants are regular languages. The representation of SDI using SST guarantees the
existence of regularity preserving left- and right-inverse of the operation. This

54 D.-J. Cho et al.

makes it possible to use the results of Kari [15] to decide existence of solutions to
linear equations where the constants are regular languages. The maximal solu-
tions to the equations are represented using semantic deletion along trajectories
[5]. For the deletion operation we consider a trajectory alphabet Δ = {i, d, σ}.
Intuitively, a trajectory t ∈ Δ∗ guides the deletion of a string y from x as follows:
a symbol i (insertion) indicates that we output the next symbol of x, a symbol
d (deletion) indicates that the next symbol of y must match the next symbol of
x and nothing is produced in the output and a symbol σ (synchronization) indi-
cates that the next symbols of x and y must match and this symbol is placed in
the output. The result of deleting y from x along trajectory t is denoted x �t y
and the operation is extended in the natural way for sets of trajectories and for
languages.

We can express the left- and right-inverse (as defined in [5,15]) of SDI using
semantic deletion along trajectories, and these relations are used to express solu-
tions for linear language equations. Given a binary operation � on strings, let
�rev be the operation defined by x�revy = y�x for all x, y ∈ Σ∗. Using Theo-
rems 6.4 and 6.5 of [5] we obtain:

Theorem 2. Let L,R ⊆ Σ∗ be regular languages. Then for each of the following
equations it is decidable whether a solution exists: (a) X

sdi← L = R, (b) L
sdi←

X = R, (c) X
a−sdi← L = R, (d) L

a−sdi← X = R.
Define T1 = i∗σ+d∗σ+i∗, T a

1 = i∗σd∗σi∗, T2 = d∗σ+i∗σ+d∗, and T a
2 =

d∗σi∗σd∗. If a solution exists, a superset of all solutions is, respectively, for the
different cases: (a) Sa = R �T1 L, (b) Sb = L(�T2)revR, (c) Sc = R �Ta

1
L,

(d) Sd = L(�Ta
2
)revR.

The above result does not give a polynomial time decision algorithm, even
in the case where the languages L and R are given by DFA’s. Semantic shuffle
on and deletion along regular sets of trajectories preserve regularity but the
operations are inherently nondeterministic and complementation blows up the
size of an NFA. Note that deleting an individual string y from a string x along
trajectory t is deterministic, but the automaton construction for the result of the
operation on two DFA languages is nondeterministic. An explicit construction
of an NFA for the syntactic shuffle of two regular languages is given in [17].

The known trajectory based methods for two variable equations [5] do not
allow the trajectories to use the synchronizing symbol σ that is needed to rep-
resent the overlap of SDI. However, if we are just interested to know whether
a solution exists (as opposed to finding maximal solutions), it is easy to verify
that an equation X1

sdi← X2 = R has a solution if and only if all strings of R have
length at least two.

4 Maximal and Minimal Site-Directed Insertion

Holzer et al. [13] define two deterministic variants of the chop operation. The
max-chop (respectively, min-chop) of strings x and y chooses the non-empty
suffix of x overlapping with y to be as long (respectively, as short) as possible.

Site-Directed Insertion 55

By a maximal site-directed insertion of string y into a string x we mean,
roughly speaking, an insertion where neither the overlapping prefix nor the
overlapping suffix can be properly extended. The operation is not determin-
istic because y could be inserted in different positions in x. At a specific position
in x, a string y can be maximally (respectively, minimally) inserted in at most
one way.

Formally, the maximal site-directed insertion (max-SDI) of a string y into
string x is defined as follows:

x
max−sdi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε, v �= ε, and

there exist no suffix x′
1 of x1 and prefix x′

2 of x2 such that
x′
1x

′
2 �= ε and y = x′

1uz′vx′
2, z′ ∈ Σ∗}

Equivalently the maximal SDI of x and y is

x
max−sdi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε �= v, no suffix of x1u

of length greater than |u| is a prefix of uz and no prefix
of vx2 of length greater than |v| is a suffix of zv}.

x1 x2

z

x′
1 x′

2

u v

vu

u

u v

v

u′ v′

z′

x

y

x

y

(a) Definition of maximal SDI

vu

u v

z

x1 x2

u′ v′

z′

(b) Definition of minimal SDI

x

y

x

y

Fig. 1. Insertion of y into x depicted at top left is not maximal when x and y have
decompositions as depicted at bottom left.

In particular, if x and y are unary strings with |x| ≥ |y| ≥ 2, then x
max−sdi←

y = x because the maximal overlapping outfix consists always of the entire
string y. If |x| ≥ 2 and |y| > |x|, then x

max−sdi← y = y. If |x| < 2 or |y| < 2, the
operation is undefined.

Example 1. Consider alphabet Σ = {a, b, c}. Now

ababab
max−sdi← acbab = {acbabab, abacbab, ababacbab}

For example also the string abacbabab is obtained by site-directed inserting
y = acbab into x = ababab. In this operation the prefix a of y is matched
with the 3rd symbol of x and the suffix b of y is matched with the 4th symbol
of x. However, this operation does not satisfy the maximality condition because
after the 3rd symbol of x we can match a longer suffix of y.

56 D.-J. Cho et al.

The minimal site-directed insertion (min-SDI) operation is defined as
follows:

x
min−sdi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε, v �= ε,

no proper nonempty suffix of u is a prefix of u, and
no proper nonempty prefix of v is a suffix of v}.

Note that in the definition of min-SDI, u and v are unbordered words. Figure 1(b)
illustrates the definition of minimal SDI. The alphabetic SDI can be viewed as
an “extreme” case of minimal SDI: if the first and last letter of y coincide with
a substring of x of length two, then the alphabetic and minimal site-directed
insertion of y in that position coincide.

If x and y are unary strings with |x|, |y| ≥ 2, then x
min−sdi← y is the unary

string of length |y|+ |x|−2 and the operation is undefined for |x| < 2 or |y| < 2.
Note that while the maximal or minimal SDI is considerably more restricted

than the unrestricted SDI operation, if a string y can be site-directed inserted to a
string x, it can be also maximally or minimally inserted at the same position. The
result of an alphabetic insertion is always a minimal insertion. These observations
are formalized in the next lemma.

Lemma 2. Let x, y ∈ Σ∗.

(i) x
max−sdi← y ⊆ x

sdi← y and x
a−sdi← y ⊆ x

min−sdi← y ⊆ x
sdi← y.

(ii) x
sdi← y �= ∅ iff x

max−sdi← y �= ∅ iff x
min−sdi← y �= ∅.

(iii) It is possible that x
min−sdi← y �= ∅ and x

a−sdi← y = ∅.
Since the max-chop and min-chop operations do not preserve regularity [13],

it can be expected that the same holds for maximal and minimal SDI. The proof
of the following proposition is inspired by Theorem 3 of [13].

Proposition 4. The maximal and minimal site-directed insertion do not
preserve regularity.

Proof. Let Σ = {a, b, $,%} and choose

L1 = ba+ba+$, L2 = ba+ba+%$

We claim that

(L1
max−sdi← L2) ∩ (ba+)3%$ = {bambanbak%$ | m �= n or k < n, m, n, k ≥ 1}

We denote the right side of the equation by Lresult which is clearly nonregular.
Since the strings of L2 contain the marker % that does not occur in strings of
L1, when inserting a string y ∈ L2 into a string of L1 the overlapping suffix
of y must consist exactly of the last symbol $. Consider x = baibaj$ ∈ L1 and
y = barbas%$ ∈ L2. In order for the resulting string to have three symbols b, a
prefix of bar must overlap with baj , that is, j ≤ r. In order for the overlap to be

Site-Directed Insertion 57

maximal we must have r �= i or s < j. These relations guarantee that the unique
string in x

max−sdi← y is in Lresult.
For the converse inclusion we note that, for m �= n or k < n,

bambanbak%$ ∈ bamban$ max−sdi← banbak%$.

For non-closure under min-SDI we claim that

(L1
min−sdi← L2) ∩ (ba+)2%$ = {bamban%$ | n > m ≥ 1} =def L′

result.

Consider x = baibaj$ ∈ L1 and y = barbas%$ ∈ L2. In order for the result of
site-directed insertion of y into x to have two b’s, baibaj must be a prefix of
barbas, that is, i = r and j ≤ s. For the site-directed insertion to be minimal, no
proper non-empty prefix of baibaj can be its suffix, that is i < j. These relations
guarantee that the minimal SDI of x and y is in L′

result.

Conversely, for n > m, bamban%$ ∈ bamban$ min−sdi← bamban%$. �
In fact, extending the max-chop and min-chop constructions from Theorem 3

of [13] it would be possible to show that there exist regular languages L1 and L2

such that L1
max−sdi← L2 (or L1

min−sdi← L2) is not context-free. The maximal or
minimal site-directed insertion of a finite language into a regular language (and
vice versa) is regular.

Proposition 5. Let R be a regular language and L a finite language. Then the
languages R

max−sdi← L, R
min−sdi← L, L

max−sdi← R, and L
min−sdi← R are regular.

Proof. We show that R
max−sdi← L is regular. The other cases are very similar.

Since
R

max−sdi← L =
⋃

y∈L

R
max−sdi← y

and regular languages are closed under finite union, it is sufficient to consider
the case where L consists of one string y.

Let A be an NFA for R and y ∈ Σ∗. We outline how an NFA B can recognize
L(A) max−sdi← y. On an input w, B nondeterministically guesses a decomposition
w = x1y1y2y3x2 where x1y1y3x2 ∈ L(A), y1y2y3 = y and y1, y3 �= ε. When
reading the prefix x1y1, B simulates a computation of A ending in a state q,
then skips the substring y2, and continues simulation of A from state q on the
suffix y3x2.

The above checks that the input is in L(A) sdi← y and, additionally, B needs
to verify that the insertion is maximal. This is possible because B is looking for
maximal insertions of the one fixed string y.

(i) When processing the prefix x1, the state of B remembers the last
|y|−1 symbols scanned. When the computation nondeterministically guesses the

58 D.-J. Cho et al.

substrings y1, y2, y3, it can then check that for no nonempty suffix x′
1 of x1, x′

1y1
is a prefix of y1y2. If this condition does not hold, the corresponding transition
is undefined.

(ii) Similarly, when processing the (nondeterministically selected) suffix x2

of the input, B remembers the first |y| − 1 symbols and is able to check that for
no nonempty prefix x′

2 of x2, y3x
′
2 is a suffix of y2y3.

If the checks in both (i) and (ii) are successful and at the end the simulation
of A ends with a final state, this means that the decomposition x1y1y2y3x2 gives
a maximal site-directed insertion of y into a string of L(A). �

4.1 Decision Problems for Maximal/Minimal SDI

From Proposition 4 we know that the maximal or minimal SDI of regular lan-
guages need not be regular. However, for regular languages L1 and L2 we can
decide membership in L1

max−sdi← L2 (or L1
min−sdi← L2) in polynomial time.

Lemma 3. For DFAs A and B and w ∈ Σ∗ we can decide in time O(n6)
whether w ∈ L(A) max−sdi← L(B), or whether w ∈ L(A) min−sdi← L(B).

As we have seen, the maximal and minimal SDI operations are often more
difficult to handle than the unrestricted SDI. Using Lemma 2 (ii) we note that
deciding maximal (or minimal) SDI-freeness is the same as deciding SDI-freeness
and by Theorem 1 we have:

Corollary 1. For NFAs A and B we can decide in polynomial time whether
or not L(A) is maximal SDI-free (respectively, minimal SDI-free) with respect
to L(B).

Also, deciding whether regular languages are max-SDI (or min-SDI)
independent can be done in polynomial time.

Theorem 3. For NFAs A and B, we can decide in polynomial time whether or
not L(A) is maximal SDI-independent (respectively, minimal SDI-independent)
with respect to L(B).

Proof. Let Σ be the underlying alphabet of A and B. We verify that
L(A) max−sdi← Σ+ = L(A) sdi← Σ+. The inclusion from left to right holds by
Lemma 2 (i). Conversely, suppose w ∈ L(A) sdi← y1y2y3, where w = x1y1y2y3x2,
y1, y3 �= ε, x1y1y3x2 ∈ L(A). Then w ∈ L(A) max−sdi← x1y1y2y3x2, where the
latter insertion uses the outfix (x1y1, y3x2) as insertion guide. The insertion is
maximal because the outfix cannot be expanded. In the same way we see that
L(A) min−sdi← Σ+ = L(A) sdi← Σ+. Now the claim follows by Theorem 1. �

Site-Directed Insertion 59

Since the max-SDI and min-SDI operations do not preserve regularity there
is no straightforward algorithm to decide whether a regular language is closed
under maximal SDI or under minimal SDI. We conjecture that the problem is
decidable.

Problem 1. Is there an algorithm that for a given regular language L decides
whether or not L

max−sdi← L ⊆ L (respectively, L
min−sdi← L ⊆ L)?

Using Proposition 5 we can decide closure of a regular language under
max/min-SDI with a finite language.

Corollary 2. Given a regular language R and a finite language F we can decide
whether or not (i) R

max−sdi← F ⊆ R, (ii) R
min−sdi← F ⊆ R. If R is specified by

a DFA and the length of the longest string in F is bounded by a constant, the
algorithm works in polynomial time.

Proof. By Proposition 5 the languages Rmax = R
max−sdi← F and Rmin =

R
min−sdi← F are effectively regular.

Suppose R = L(A) where A is a DFA with m states and underlying alphabet
Σ and the length of the longest string in F is cF . The NFA B constructed in the
proof of Proposition 5 for Rmax (or Rmin) has O(m · |Σ|cF) states. Recall that
the NFA stores in the state a sequence of symbols having length of the inserted
string. Strictly speaking, the proof of Proposition 5 assumes that F consists of
a single string, but a similar construction works for a finite language. When cF
is a constant, the size of B is polynomial in m and we can decide in polynomial
time whether or not L(B) ∩ L(A) = ∅. �

The max-SDI and min-SDI operations do not preserve regularity and, conse-
quently, they cannot be represented using semantic shuffle on trajectories. Thus,
the tools developed in Sect. 6 of [5] to deal with language equations are not
available and it remains open whether we can solve language equations involv-
ing max-SDI or min-SDI.

Problem 2. Let L and R be regular languages. Is it decidable whether the
equation X

max−sdi← L = R (respectively, L
max−sdi← X = R, X

min−sdi← L = R,
L

min−sdi← X = R) has a solution?

5 Nondeterministic State Complexity

The site-directed insertion (SDI) operation preserves regularity [2]
(Proposition 1 above) and the construction can be modified to show that also
alphabetic SDI preserves regularity. To conclude, we consider the nondetermin-
istic state complexity of these operations.

60 D.-J. Cho et al.

Lemma 4. For NFAs M and N having, respectively, m and n states, the
language L(M) a−sdi← L(N) can be recognized by an NFA with mn + 2m states.

The upper bound is the same as the bound for the nondeterministic
state complexity of ordinary insertion [11], however, the construction used for
Lemma 4 is not the same. Using Lemma 1 (the fooling set lemma [1]) we can
establish a matching lower bound.

Lemma 5. For m,n ∈ N, there exist regular languages L1 and L2 over a binary
alphabet having NFAs with m and n states, respectively, such that any NFA for
L1

a−sdi← L2 needs at least mn + 2m states.

The above lemmas establish the precise nondeterministic state complexity of
alphabetic SDI.

Corollary 3. The worst case nondeterministic state complexity of the alphabetic
site-directed insertion of an n-state NFA language into an m-state NFA language
is mn+2m. The lower bound can be reached by languages over a binary alphabet.

It is less obvious what is the precise nondeterministic state complexity of the
general SDI. If A has m states and B has n states, Proposition 1 gives an upper
bound 3mn + 2m for the nondeterministic state complexity of L(A) sdi← L(B).
Likely the bound cannot be improved but we do not have a proof for the lower
bound.

Problem 3. What is the nondeterministic state complexity of site-directed
insertion?

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43, 185–190 (1992)

2. Cho, D.-J., Han, Y.-S., Ng, T., Salomaa, K.: Outfix-guided insertion. Theor. Com-
put. Sci. 701, 70–84 (2017)

3. Csuhaj-Varju, E., Petre, I., Vaszil, G.: Self-assembly of string and languages. Theor.
Comput. Sci. 374, 74–81 (2007)

4. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual inser-
tions/deletions with applications to biomolecular computation. In: String Process-
ing and Information Retrieval Symposium, pp. 47–54 (1999)

5. Domaratzki, M.: Semantic shuffle on and deletion along trajectories. In: Calude,
C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 163–174.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-7 14

6. Domaratzki, M.: Trajectory-based codes. Acta Inf. 40, 491–527 (2004)
7. Domaratzki, M., Rozenberg, G., Salomaa, K.: Interpreted trajectories. Fundamenta

Informaticae 73, 81–97 (2006)
8. Enaganti, S., Kari, L., Kopecki, S.: A formal language model of DNA polymerase

enzymatic activity. Fundamenta Informaticae 138, 179–192 (2015)

https://doi.org/10.1007/978-3-540-30550-7_14

Site-Directed Insertion 61

9. Enaganti, S., Ibarra, O., Kari, L., Kopecki, S.: On the overlap assembly of strings
and languages. Nat. Comput. 16, 175–185 (2017)

10. Franco, G., Manca, V.: Algorithmic applications of XPCR. Nat. Comput. 10, 805–
811 (2011)

11. Han, Y.-S., Ko, S.-K., Ng, T., Salomaa, K.: State complexity of insertion. Int. J.
Found. Comput. Sci. 27, 863–878 (2016)

12. Holzer, M., Jakobi, S.: Descriptional complexity of chop operations on unary and
finite languages. J. Autom. Lang. Comb. 17(2–4), 165–183 (2012)

13. Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. Theor. Comput. Sci.
682, 122–137 (2017)

14. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, Vol. 1, pp. 511–607. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59136-5 8

15. Kari, L.: On language equations with invertible operations. Theor. Comput. Sci.
132, 129–150 (1994)

16. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131, 47–61 (1996)

17. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic con-
straints. Theor. Comput. Sci. 197, 1–56 (1998)

18. Reikofski, J., Yao, B.Y.: Polymerase chain reaction (PCR) techniques for site-
directed mutagenesis. Biotechnol. Adv. 10, 535–547 (1992)

19. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

https://doi.org/10.1007/978-3-642-59136-5_8

Two-Way Automata over Locally Finite
Semirings

Louis-Marie Dando and Sylvain Lombardy(B)

LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS, Bordeaux, France
{louis-marie.dando,sylvain.lombardy}@labri.fr

Abstract. Two-way transducers or weighted automata are in general
more powerful than one-way ones. We show that two-way automata over
locally finite semirings may have undefined behaviour. We prove that it
is decidable whether this behaviour is defined, and, if it is, we show that
two-way automata over locally finite semirings are equivalent to one-way
automata.

1 Introduction

Weighted two-way automata and transducers have been recently intensively
studied for their interest in verification [3]. Their expressiveness is in general
larger than the expressiveness of one-way models. We consider in this paper
two-way automata over locally finite semirings. Finite or locally finite semirings
occur in many models, like distributive lattices or fuzzy logic. One-way automata
over these semirings have been studied for many decades. For instance, the first
proof of the limitedness problem [4] relies on automata on the idempotent semir-
ing {0, 1, ω,∞} (where 1 means “something” and ω means “a lot”).

It is folklore that every one-way automaton over a locally finite semiring is
equivalent to a deterministic finite automaton where the weight of the run only
depends on the state where the run stops. For two-way automata over locally
finite semirings, the situation is not as simple. For instance, if the weights belong
to Z/2Z, then the weight of an input depends on the parity of the number of
accepting runs; since in a two-way automaton, there may exist an infinite number
of runs accepting some input, this weight may be not defined.

For every two-way automaton over a locally finite semiring, we build an
automaton that describes the potentially infinite family of weights of runs on
every input. From this object, knowing which infinite sums are defined in the
locally finite semiring is sufficient to decide whether the behaviour of the two-
way automaton is defined. We also prove that every two-way automaton over
a locally finite semiring with a defined behaviour is equivalent to a one-way
automaton.

In Sect. 2, we consider locally finite semirings. In particular, we study how the
additive order allows to encode infinite sums. In Sect. 3, we introduce weighted
two-way automata over locally finite semirings and we show that they can be

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 62–74, 2018.
https://doi.org/10.1007/978-3-319-94631-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_6&domain=pdf

Two-Way Automata over Locally Finite Semirings 63

normalized in such a way that the weight of every run only depends on the
final state, and the move of the input head is fully characterized by the current
state. In Sect. 4, we use an extension of crossing sequences [6,7] to convert a
two-way automaton into a one-way automaton. It leads to a deterministic one-
way automaton where each final state describes the (potentially infinite) family
of weights of runs of the two-way automaton on the input. It is then decidable
whether the weight of every input is defined, and, if it is, then the deterministic
automaton can be turned into a (deterministic) one-way automaton equivalent
to the two-way automaton.

2 Locally Finite Semirings

A semiring (K,+, .) is a set K endowed with two associative operations: a com-
mutative addition and a multiplication that is distributive over the addition.
Moreover, the semiring contains at least two distinct elements which are respec-
tively neutral for each of these operations: 0K for the addition and 1K for the mul-
tiplication; it is also required for 0K to be an annihilator for the multiplication.

A semiring K is locally finite if, for every finite subset F of K containing both
0K and 1K, the semiring generated by F is finite.

Moreover, we assume that K is endowed with a partially defined operator for
countable sums:

∑
I x, where I is a countable set and x = (xi)i∈I a family of

elements of x. If I is finite, then
∑

I x is always defined and equal to the sum of
elements of x. We also assume that two families equal up to a permutation have
the same sum.

In this paper, we deal with weighted automata where a finite number of
elements of some locally finite semiring occur. These elements generate a finite
semiring. In the sequel, we assume that the semiring K is finite.

Example 1. Let (L,∨,∧) be an infinite distributive lattice; L is a semiring with
∨ as addition and ∧ as multiplication. 0L is the minimum element of L and 1L

is the maximum element. The infinite sum of a family of elements of L is the
supremum of this family; if it exists. In lattices, the supremum of families with
a finite number of distinct elements is always defined. ��
Example 2. Let K1 = {o, i, x} be the finite semiring where o is the zero, i is
the unit, i + i = o, and r + x = r.x = x for every r in {i, x}. Intuitively, this
semiring allows to count values modulo 2, and x stands for values where the
parity information is lost. In K1, the sum of any family which contains at least
one x is defined and equal to x, and a family that does not contain any x is
summable if and only if the number of occurrences of i is finite. ��

Since K is finite and families are unordered, a family is totally characterized
by the number of occurrences of each element of K. Hence, we represent such a
family s by a vector v in (N∪{∞})K such that, for every x in K, vx is the number
of occurrences of x in s. The evaluation of v is the sum of s if it is defined. Notice
that if s and s′ are two families respectively represented by vectors v and v′,
then the union of s and s′ is represented by v + v′.

64 L.-M. Dando and S. Lombardy

In Sect. 4.3, a one-way deterministic K-automaton equivalent to a two-way
K-automaton is built. The states of this automaton store vectors representing
families. In order to build a finite number of states, we need to define a finite
set of representatives. Two vectors v and v′ in (N ∪ {∞})K are equivalent if for
every vector u, v + u and v′ + u have the same evaluation. This property will be
required during a determinization step.

We show that every vector in (N ∪ {∞})K is equivalent to a vector where
finite entries are bounded. We consider the natural external product: for every
(k, x) in N × K, k.x is the sum of k elements x. Likewise, if it is defined, the
infinite sum of x is denoted ∞.x.

Definition 1. Let x be an element of a locally finite semiring K. The additive
order of x is the minimal couple (nx, px) of integers (with px > 0) verifying

∀k � nx, (k + px).x = k.x . (1)

The additive order of x is always defined in a locally finite semiring. Actually, the
set {k.x | k ∈ N} is finite and the sequence s = (k.x)k∈N is ultimately periodic:
if si = sj , then for every k si+k = i.x + k.x = j.x + k.x = sj+k. Thus, px is the
minimal distance between two occurrences of the same value in s and nx is the
smallest i such that si appears infinitely often in s.

If (nx, px) is the order of x, then for every (m, q) with m larger than or equal
to k and q multiple of px, it also holds ∀k � m, (k + q).x = k.x. The additive
order of a finite semiring is then the minimal pair which is admissible for every
element of the semiring.

Definition 2. Let K be a finite semiring. The additive order of K is the couple

(max{nx | x ∈ K}, lcm{px | x ∈ K}), (2)

where lcm X is the least common multiple of elements of X. For every k in
N ∪ {∞}, the value of k modulo (n, p) is defined as

k mod(n, p) =

{
k if k < n or k = ∞
n + ((k − n)modp) otherwise.

(3)

Hence, k mod(n, p) is in �0;n + p − 1� ∪ {∞} and if the additive order of a
finite semiring K is (n, p), then for every x in K, k.x = (k mod(n, p)).x.

If (n, p) is the additive order of K, then every vector v in (N∪{∞})K is equiv-
alent to the vector where each entry is considered modulo (n, p). The number
of distinct vectors modulo (n, p) is equal to (n + p + 1)|K| (some entries may be
equal to ∞).

In the sequel, Nn,p is the semiring �0;n + p − 1� ∪ {∞} where the operations
between finite integers are modulo (n, p).

Example 3. The additive order of elements of K1 (Example 2) is: order(o) =
(0, 1), order(i) = (0, 2), and order(x) = (1, 1). Hence, the additive order of K1 is
(1, 2): for every element k in K1, k = 3.k. ��

Two-Way Automata over Locally Finite Semirings 65

3 Two-Way Automata

3.1 Definition and Behaviour

We follow in this paper the definition of two-way weighted automata given in [5].
Contrary to the classical definition of two-way finite automata [6,7], the move of
the reading head does not depend on the transitions but on the states. This model
was first used in [1] and was there proved to be equivalent to the classical one.

Definition 3. Let K be a locally finite semiring, A an alphabet and � a special
symbol, called endmarker, which does not belong to A. A two-way K-automaton
over A is a tuple (F,B,E, I, T), where

– F is the set of forward states, B the set of backward states; Q = F ∪ B is
the set of states;

– E : Q × (A ∪ {�}) × Q −→ K is the transition weight function;
– I : F −→ K and T : F −→ K are the initial and the final weight function.

The set of transitions is the support of E, the set of initial states is the support of
I, and the set of final states is the support of T . For every transition e = (p, a, q),
λ(e) = a is the label of e, σ(e) = p its source, and τ(e) = q its target.

For every state p, we note δ(p) = 1 if p is in F and δ(p) = −1 if p is in B. The
head of a two-way automaton can not go beyond endmarkers, hence for every
pair (p, q) of states, if δ(p)δ(q) = 1, then E(p,�, q) = 0K.

A run of length k in the automaton is a triple (p, (ei)i∈�1;k�, q), where p and
q are in F and (ei)i∈�1;k� is a sequence of transitions such that, for every i in
�1; k − 1�, τ(ei) = σ(ei+1); if k > 0, then p = σ(e1) and q = τ(ek); otherwise
p = q.

This run admits a label w = w1 . . . wn in A∗ if there exists a mapping π :
�1; k� → �0;n + 1� such that π(1) = 1, π(k) = n, and

– for every i in �2; k�, π(i) = π(i − 1) + δ(σ(ei)),
– for every i in �1; k�, λ(ei) = wπ(i) if π(i) is in �1;n�, and λ(ei) = � otherwise.

The function π is the position mapping, giving the position of the reading head
during the computation.

The run (p, (ei)i∈�1;k�, q) meets k + 1 states. The sequence of these states is
defined by p0 = p and pj = τ(ej) for every j in �1; k�. The position of the j-th
state of the run is defined by pos(0) = 0, and

∀j ∈ �1; k�, pos(j) =

{
pos(j − 1) if δ(pj) �= δ(pj−1)
pos(j − 1) + δ(pj) otherwise

(4)

The positions of states and transitions are related; for every j ∈ �1; k�, pos(j) =
π(j) if δ(pj) = 1, and pos(j) = π(j) − 1 otherwise.

The weight of a run (p, (ei)i∈�1;k�, q) is Ip.
(∏k

i=1 E(ei)
)
.Tq. The weight of a

word w in a two-way weighted automaton is defined if the family of the weights
of runs with label w is summable.

66 L.-M. Dando and S. Lombardy

Definition 4. An automaton is valid if for every word w the weight of w in
the automaton is defined, and two automata are equivalent if, for every word
w, either the weight of w is undefined in both automata, or the weight of w is
defined in both automata and is equal.

Remark 1. If B = ∅, then the two-way K-automaton is actually one-way, and
every one-way K-automaton can be described as a two-way K-automaton where
B = ∅.

Example 4. Let A1 be the two-way K1-automaton of Fig. 1. The final weight of
the states is represented by an arrow outgoing from states. States p, q, s and
t are forward, r is backward. States p, q and r are not final, which means that
their final weight is equal to 0K1 = o. The weight of every transition is 1K1 = i:
it is a characteristic automaton.

Figure 1(b) shows a run of A1. State p appears at position 0 and 1. State r
appears twice at the same position; this is an unmoving circuit : the part of the
run between the two occurrences of r can be repeated in order to get longer runs
over the same word. ��

p

q

r

s

t
i

x

a, b

a

b,

a
a

b

b

a, b

(a) The two-way K1-automaton A1.

b a

p p q

r

q

r

s

b a

a

a

x

π 0 1 2 3

pos 0 1 2

(b) A run of A1 over the word ba

Fig. 1. A two-way K1-automaton and one of its runs.

Remark 2. In the sequel, we state results for two-way automata over finite semir-
ings. If A is a two-way automaton over a locally finite semiring K, then it can be
considered as an automaton over the finite semiring K

′ where K
′ is the semiring

generated by the weights occurring in A.

3.2 Characteristic and δ-Normalized Two-Way Automaton

Like for one-way automata, we show here that two-way automata with weights
in a finite semiring are equivalent to characteristic two-way automata where

Two-Way Automata over Locally Finite Semirings 67

the weight of the run only depends on the final state. In our model, in such an
automaton, the weights of all transitions as well as initial weights are all equal
to 1K.

Proposition 1. Let A be a two-way automaton over a locally finite semiring.
There exists a characteristic two-way automaton B equivalent to A.

Actually, through a run, the product of weights spans over a finite set and this
can be stored in states. Hence, if K is the finite semiring generated by the weights
of A, then states of B belong to Q × K.

Figure 1(b) shows that transitions during a run can be classified into four
types: forward transitions, backward transitions, and forward and backward half-
turns. We consider now δ-normalized two-way automata, where the type of a
transition depends on its source.

Definition 5. ([2]). A two-way automaton A = (F,B,E, I, T) is δ-normalized
if F and B are respectively partitioned into F = F+ ∪ F− and B = B+ ∪ B−,
such that every final state is in F+ and, for every state p and every transition
(p, a, q), q is in F if and only if p is in F+ ∪ B+.

Example 5. The automaton A1 of Fig. 1 is δ-normalized. Actually, F+ = {p, s, t},
F− = {q}, B+ = {r} and B− = ∅. ��
Proposition 2. ([2]). For every two-way K-automaton A, there exists an equiv-
alent δ-normalized K-automaton B.
To convert A into B, every state of A is split into two copies, the outgoing
transitions that go to a forward state are assigned to the first copy, those that
go to a backward state are assigned to the second one. This construction applied
to a characteristic automaton gives a characteristic automaton.

From now on, we assume that two-way automata are characteristic and
δ-normalized.

4 Counting Paths

To convert two-way K-automata into one-way automata, we use a variant of the
method of crossing sequences initiated in [6]. Nevertheless, the method must be
improved in order to keep records of the number of paths.

More precisely, let (n, p) be the order of K. The algorithm builds a (one-
way) deterministic automaton B, where each state is a crossing sequence (that
may have states repeating at most once). B is then used to build a one-way
automaton. The idea is to build from B an automaton that “counts” (modulo
(n, p)) the number of runs with a given weight ending in the last state of a
crossing sequence.

68 L.-M. Dando and S. Lombardy

4.1 Crossing Sequences

Definition 6. Let ρ be a run with label w in a two-way automata, and let
(pj)j∈�0;k� be the sequence of states met by ρ. For every i in �0; |w|�, the crossing
sequence of ρ at position i is the subsequence of states pj such that pos(j) = i.

Example 6. On Fig. 1(b), crossing sequences are (p), (p) and (q, r, s, r, s).

Remark 3. Crossing sequences are sequences of states with odd length. More
precisely, the first state is in F , and there is an alternation of states in F and B.
Using a regular expression, we can say that crossing sequences are in (FB)∗F .

If a crossing sequence of ρ contains (at least) two occurrences of the same
state, it means that during the run, the automaton comes back to the same state
with the input head at the same position; we call this an unmoving circuit. Such
a circuit can be removed from ρ in order to obtain a valid run for the same
input. On the other hand, it can be iterated to produce an infinite number of
valid runs. In a characteristic automaton, all these runs have the same weight.

In the classical crossing sequence construction [6], reduced crossing sequences,
that are crossing sequences without repetitions, are considered; we have to con-
sider also crossing sequences with 1 repetition in which no state appears more
than twice, in order to detect unmoving circuits.

Proposition 3. ([2]). Let ρ be a run of a δ-normalized two-way K-automaton
over a word w, and let (ci)i∈�0,|w|� be the list of the crossing sequences of ρ. Then
ρ is characterized by w and (ci)i∈�0,|w|�.

Notice that this proposition is independent from the weights on transitions
and that it is true whether or not the two-way automaton is characteristic.

We describe briefly how, starting with two consecutive crossing sequences
ci−1 and ci, it is possible to build the unique list of transitions in position i which
is consistent with these crossing sequences, and the i-th letter of w denoted a.

The algorithm scans sequences ci−1 and ci. If the current state p of ci−1 is
in F+, there is a transition from p to the current state q of ci; if it is in F−,
there is a transition from p to the next state p′ of ci−1. The algorithm deals then
with the next states. If the current states are in B, the analysis is based on the
nature of the current state in ci. This process produces the list of transitions in
position i in the run. It is formally described in [2].

If ci−1 and ci are not successive crossing sequences of a run, the algorithm
may fail or build a list of triples which are not transitions of the automaton.

Definition 7. Let A = (F,B,E, I, T) be a δ-normalized two-way K-automaton,
and let c1 and c2 be two potential crossing sequences in (FB)∗F .

– The sequence c2 is a successor of c1 by the letter a if the analysis applied to
c1 and c2 succeeds and returns a list of transitions of A with label a.

– c1 = (pi)i∈�1;2h+1� is an initial crossing sequence if p1 is initial, and, for
every i in �1;h�, (p2i,�, p2i+1) is a transition of A.

Two-Way Automata over Locally Finite Semirings 69

– c1 = (pi)i∈�1;2h+1� is an final crossing sequence if p2h+1 is final, and, for
every i in �1;h�, (p2i−1,�, p2i) is a transition of A.

Let S be the infinite one-way automaton of crossing sequences of the
δ-normalized two-way K-automaton A. Its states are the elements of (FB)∗F .
A state c is initial if c is an initial crossing sequence, it is final if c is a final
crossing sequence, and there is a transition from c to c′ with label a if c′ is a
successor of c by a. This automaton accepts the same words as A, and there is a
bijection between runs of S and runs of A. S can be turned into a K-automaton:
for every final crossing sequence c = (pi)i∈�1;2h+1�, the final weight of c can be
set as the final weight of p2h+1 in A. This gives an infinite one-way K-automaton
equivalent to A. Notice that the K-automaton of crossing sequences of a two-way
K-automaton A is not always equivalent to A, in particular if K is not commu-
tative. Here, the fact that A is characteristic is crucial.

To convert two-way automata (without weights) to NFA, it is sufficient to
restrict S to states without any repetition; this is a classic construction of one-
way NFA from two-way NFA.

We want to check whether there is an infinite number of runs that end in a
given state. As we have seen, as soon as a run has an unmoving circuit, this circuit
can be iterated to get an infinite number of runs. Therefore, it is unnecessary
to keep track of crossing sequences with more than two occurrences of the same
state. If a crossing sequence c of a run ρ contains three times the same state,
then the unmoving circuit between the first and the second one (or between the
second one and the third one) can be removed; the resulting path has still an
unmoving circuit.

Lemma 1. Let A be a δ-normalized characteristic two-way K-automaton, and
let ρ be a run on A. If ρ admits a crossing sequence at position i in which a state
p appears more than two times, then there exists a run ρ′ in which p appears
only twice in the crossing sequence at position i, and ρ′ and ρ end in the same
state.

Each crossing sequence with 1 repetition is the witness of an infinite number
of runs with the same weight. Lemma 1 tells that every run of A is either a run
without any unmoving circuit, or a run which admits such a witness.

4.2 Automaton of Crossing Sequences with One Repetition

Let A = (F,B,E, I, T) be a two-way K-automaton. Let C1 (resp. C2) be the
sequences of (FB)∗F where each state appears at most once (resp. twice). Let
(n, p) be the order of the finite semiring generated by the coefficients of A. Let
B be the one-way automaton over Nn,p with states R = C1 ∪ C2 defined by:

– if c is an initial crossing sequence, then c is an initial state of B, with weight
1 if c is in C1 and ∞ if c is in C2;

– if c′ is a successor of c by a, then (c, a, c′) is a transition of B, with weight ∞
if c is in C1 and c′ in C2, and weight 1 otherwise;

70 L.-M. Dando and S. Lombardy

– if c is a final crossing sequence, then c is final in B, with weight 1.

The only interesting part of B is its trim part formed with states that can
actually occur in some runs. Thus, our construction only requires to build the
accessible part of B.

Automaton B is a variant of the crossing sequence automaton.
On the one hand, there is a bijection between runs with weight 1 in B and

runs without unmoving circuits in A. On the other hand, every run in B with
weight ∞ is the witness of an infinite number of runs in A ending in the same
state. Notice that some runs of A may admit several witnesses, but all these
witnesses show that there are infinitely many runs for the same final state. A
run of B ends in a final crossing sequence; the weight of the corresponding run
in A is given by the last state of this crossing sequence.

Example 7. Four different crossing sequences may appear in the runs of A1;
this leads to the automaton B1 on Fig. 2. The weight of every transition in this
automaton is equal to 1, except the transition that goes to the crossing sequence
with repetitions where the weight is equal to ∞. For instance, this automaton
shows that there is an infinite number of runs over a in A1 that start in state p
and stop in state s. ��

p
q
r
s

q
r
q
r
s

t

a, b

b

a

b

a | ∞

b

a, b

Fig. 2. The Nn,p-automaton B1 of crossing sequences of A1.

4.3 Gathering Runs with the Same Label

On some locally finite semirings, the automaton B is sufficient to decide whether
the two-way automaton is valid and to build an equivalent one-way automaton.
In these cases (Case 1 and 2), the last step of the algorithm can be avoided; it
leads to a simpler construction.

Case 1: Every Infinite Sum Is Defined. A non deterministic characteristic one-
way K-automaton C equivalent to the two-way K-automaton can be built from
the automaton B of crossing sequences with 1 repetition. The weight of a run is
∞ as soon as the weight ∞ is met (otherwise it is 1); this information can be
stored in the states of C that belong to R × {1,∞}, where R is the set of states
of B. The accessible part of C is inductively defined as:

Two-Way Automata over Locally Finite Semirings 71

– if p is initial in B with weight k, then (p, k) is initial in C;
– if (p, a, q) is a transition in B with weight k and (p, r) is a state of C, then

((p, k), a, (q, k.r)) is a transition of C;
– if p is final in B, then p is a final crossing sequence whose last state is final

with weight x in K; every state (p, k) of C is final with weight k.x.

Case 2: No Infinite Sum Is Defined. The two-way K-automaton is valid if and
only if no transition with weight ∞ appears in any run of B. If there is no such
transition, then the previous construction applies.

Case 3: Some Infinite Sums Are Defined, Some Are Not. To decide whether
the family of weights of all runs labelled by a given word is defined, all these
runs must be gathered. We use a determinization-like algorithm to build an
automaton that computes, for each word w, the number (modulo (n, p)) of runs
that end in each final crossing sequence. The determinization D of B gathers
the vectors corresponding to all runs on every input. Each state of D is a vector
in N R

n,p, where R is the set of states of B.

– the initial vector of D is I, where Ic is the initial weight of c in B;
– if X is a state of D, then the successor of X by letter a is the state Y

defined by:
Yc′ =

∑

c∈R

Xc.E(c, a, c′). (5)

– A state X is final if there exists a final crossing sequence c such that Xc is
different from 0.

We consider the projection π from the final crossing sequences of R onto F
which maps c onto the last state of c; this projection allows to map every final
state X of D onto a vector v in N F

n,p:

∀f ∈ F, vf =
∑

c∈R,c final,π(c)=p

Xc. (6)

For every word w, if the run on w in D ends in state X, then for every c, Xc is
the number (modulo (n, p)) of runs on w in A whose last crossing sequence is c.
Hence, vf is the number (modulo (n, p)) of runs on w in A that end in state f .

Therefore, the weight of w in A is equal to the evaluation of v; if this evalu-
ation is not defined, then the weight of w in A is not defined. If, for every final
state X of D, the evaluation of the corresponding vector is defined, this weight
can be assigned to X as a final weight. This turns D to a characteristic and
deterministic one-way K-automaton equivalent to A.

Theorem 1. Over locally finite semirings, the validity of two-way automata
is decidable, and every valid two-way automaton is equivalent to a one-way
automaton.

72 L.-M. Dando and S. Lombardy

The construction follows the algorithm outlined in this paper. Given a two-way
automaton A over a locally finite semiring semiring, we can first consider it
as an automaton over K, the finite semiring generated by the weights of the
automaton. A δ-normalized characteristic two-way K-automaton A′ equivalent
to A is then constructed. The automaton of crossing sequences with 1 repetition
of A′, B, allows to compute the number of runs that stop in each state. The end
of the algorithm depends on the cases described in Sect. 4.3. In Cases 1 and 2
the validity is directly decidable on B and a one-way K-automaton equivalent to
A can also be derived from B. In Case 3, a determinization step is required. As
explained above, this deterministic automaton allows both to decide the validity
and to build a one-way K-automaton equivalent to A, if there exists one.

Remark 4. The fact that the weight of a word w is defined in A only depends
on the state ending the run over w in D. Hence the language of words with an
undefined weight is regular.

Example 8. We denote X = (q, r, q, r, s) and Y = (q, r, s); hence the states of
automaton B1 are p, t, X and Y . The states of the determinization of B1 are
vectors in N {p,t,X,Y }

n,p ; the determinization is drawn on Fig. 3. Only non zero
entries are written in each state. The initial state is not final since it does not
contain any final crossing sequence.

p : 1

p : 1
t : 1

p : 1
t : 2

p : ∞
t : 1

p : ∞
t : 2

p : ∞
t : ∞

p : 1
X : ∞
Y : 1
t : 1

p : 1
X : ∞
Y : 1
t : 2

p : 1
X : ∞
Y : 1

p : ∞
X : ∞
Y : ∞
t : 1

p : ∞
X : ∞
Y : ∞
t : 2

p : ∞
X : ∞
Y : ∞
t : ∞

b

a

a

a

a

a

a

b

b

b

b

b
b

b

a

a

a

a

b

b

a

b

a

Fig. 3. The determinization of B1.

We replace now each vector in N {p,t,X,Y }
n,p by the corresponding vector in

NK1
n,p (the entry corresponding to o is not shown since it does not influence the

evaluation). Consider for instance the vector [p : 1,X : ∞, Y : 1, t : 1]. p is not a
final crossing sequence and does not contribute; the last state of X and Y is s
with final weight x, hence, x appears with multiplicity ∞ + 1 = ∞ and the final
weight of t is i; finally, the family of weights for this state is [x : ∞, i : 1] and the
final weight is ∞.x + 1.i = x. We obtain the automaton of Fig. 4. Notice that

Two-Way Automata over Locally Finite Semirings 73

i : 1

i : 2

x : ∞
i : 1

x : ∞
i : 2

x : ∞
i : 1

i : 2

x : ∞
i : 1

x : ∞
i : 2

i : ∞ x : ∞
i : ∞

i

x

x

x

i

x

x

? x

b

a

a

a a

a

a

b

b

b

b

b
b

b

a

a

a

a

b

b

a

b

a

Fig. 4. The automaton A1 is not valid.

states with vector 2.i are not final since i + i = o = 0K. The construction fails
because one state corresponds to the vector ∞.i and the infinite sum of i is not
defined, thus no final weight can be defined for this state. For every word leading
to this state (for instance abb), there is in A1 an infinite number of runs and the
weight of each of these runs is equal to i. Therefore, the two-way automaton A1

is not valid. ��

5 Conclusion

This paper describes an algorithm to decide whether a two-way K-automaton is
valid, and, if it is, to build an equivalent one-way K-automaton. The construc-
tion involves several steps. The first two – getting a characteristic K-automaton
and then a δ-normalized K-automaton – have low state complexity: respectively
|K||Q| and 2|Q|. In contrast, the last two have huge complexity. The state com-
plexity of the automaton of crossing sequences with 1 repetition is in 2O(|Q| log |Q|)

and the determinization is in (n+p)|Q|, where Q is the set of states of the automa-
ton on which each construction is applied and (n, p) is the order of the finite
semiring of weights. Finally the state complexity of the construction is a double
exponential.

This work encompasses all locally finite semirings. It is an open question to
know whether there exist in general a more efficient construction. For particular
classes of semirings, this construction can certainly be improved.

References

1. Birget, J.C.: Concatenation of inputs in a two-way automaton. Theor. Comput. Sci.
63(2), 141–156 (1989). https://doi.org/10.1016/0304-3975(89)90075-3

2. Carnino, V., Lombardy, S.: On determinism and unambiguity of weighted two-way
automata. In: AFL 2014. EPTCS, vol. 151, pp. 188–200 (2014)

https://doi.org/10.1016/0304-3975(89)90075-3

74 L.-M. Dando and S. Lombardy

3. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

4. Leung, H.: Limitedness theorem on finite automata with distance functions: an
algebraic proof. Theor. Comput. Sci. 81(1, (Part A)), 137–145 (1991)

5. Lombardy, S.: Weighted two-way automata. In: NCMA 2015. books@ocg.at, vol.
318, pp. 37–47. Österreichische Computer Gesellschaft (2015)

6. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

7. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959). https://doi.org/10.1147/rd.32.0198

https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0198

A New Technique for Reachability
of States in Concatenation Automata

Sylvie Davies(B)

Department of Pure Mathematics,
University of Waterloo, Waterloo, Canada

sldavies@uwaterloo.ca

Abstract. We present a new technique for demonstrating the reacha-
bility of states in deterministic finite automata representing the concate-
nation of two languages. Such demonstrations are a necessary step in
establishing the state complexity of the concatenation of two languages,
and thus in establishing the state complexity of concatenation as an oper-
ation. Typically, ad-hoc induction arguments are used to show particular
states are reachable in concatenation automata. We prove some results
that seem to capture the essence of many of these induction arguments.
Using these results, reachability proofs in concatenation automata can
often be done more simply and without using induction directly.

1 Introduction

The state complexity of a regular language L, denoted sc(L), is the least number
of states needed to recognize the language with a deterministic finite automaton.
The state complexity of an operation on regular languages is the worst-case state
complexity of the result of the operation, expressed as a function of the maximal
allowed state complexity of the input languages.

To establish the state complexity of an operation, there are two steps. First,
one derives an upper bound on the state complexity. Next, one searches for
witnesses, that is, families of languages which attain the upper bound. One must
not only find these witnesses but also prove that the desired state complexity
bound is reached. Such proofs are the subject of this paper.

We are interested in the case where the operation is concatenation of lan-
guages. We assume that one is working within some subclass of the regular
languages, and has derived an upper bound f(m,n) for the worst-case state com-
plexity of concatenation within this subclasses. We also assume one has found
candidate witnesses for this upper bound, in the form of two sequences of lan-
guages (Lm : m ≥ 1) and (Kn : n ≥ 1) such that sc(Lm) ≤ m and sc(Kn) ≤ n.
The goal is to prove that for each pair (m,n), the concatenation LmKn has state
complexity f(m,n). We may divide such a proof into three steps:

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 75–87, 2018.
https://doi.org/10.1007/978-3-319-94631-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_7&domain=pdf

76 S. Davies

1. Construct a deterministic automaton A for LmKn in the standard way.
2. Show that A contains at least f(m,n) reachable states.
3. Show exactly f(m,n) reachable states in A are pairwise distinguishable.

We present a new technique for dealing with step (2) of this process. The stan-
dard way to construct a deterministic finite automaton A for the concatenation
of two languages yields an automaton in which the states are sets; to show a
particular set is reachable, one typically proceeds by induction on the size of
the set. We prove a result that seems to generalize many of these ad-hoc induc-
tion arguments, and can be used to establish reachability of sets without directly
using induction. Additionally, we prove some helpful lemmas that make our main
result easier to apply.

We have tested our technique by applying it to a variety of concatenation
witnesses taken from the literature. The state complexity of concatenation has
been studied in the class of all regular languages, as well as many subclasses.
Table 1 lists some examples of subclasses that have been studied, and the state
complexity of concatenation in each subclass. See the cited papers for definitions
of each subclass and derivations/proofs of each complexity.

Table 1. Subclasses of regular languages and the state complexity of the concatena-
tion operation within each subclass. Bold type indicates that the complexity grows
exponentially in terms of n.

Subclass Complexity Subclass Complexity

Regular [3,9,16,20] (m − 1)2n + 2n−1 Prefix-closed [2,9] (m + 1)2n−2

Unary [17,18,20] ∼mn (asymptotically) Prefix-free [9,13,15] m + n − 2

Finite unary [10,19] m + n − 2 Suffix-closed [2,8] mn − n + 1

Finite binary [10] (m − n + 3)2n−2 − 1 Suffix-free [8,14] (m − 1)2n−2 + 1

Star-free [7] (m − 1)2n + 2n−1 Right ideal [1,6,9] m + 2n−2

Non-returning [5,12] (m − 1)2n−1 + 1 Left ideal [1,6,8] m + n − 1

If the state complexity of concatenation grows exponentially with n
(indicated in Table 1 by bold type), it is typical to use an induction argument to
prove the desired number of states is reachable. It is cases like this in which our
technique is most likely to be useful. We selected 16 concatenation witnesses, all
from subclasses in which the state complexity of concatenation is exponential in
n, and tried to apply our technique to these witnesses. (In the interest of space,
we present just two of these applications; the other 14 can be found in the arXiv
version of this paper [11].) In many cases we were able to produce shorter and
simpler proofs than the original authors, and we only found two cases in which
our technique did not work or was not useful. This suggests that our technique is
widely applicable and should be considered as a viable alternative to the tradi-
tional induction argument when attempting reachability proofs in concatenation
automata.

A New Technique for Reachability of States in Concatenation Automata 77

The rest of the paper is structured as follows. Section 2 contains background
material and definitions needed to understand the paper. Section 3 describes our
new technique and proves the relevant results. Section 4 concludes the paper.

2 Preliminaries

2.1 Relations and Functions

A binary relation ρ between X and Y is a subset of X × Y . If ρ ⊆ X × Y and
τ ⊆ Y × Z, the composition of ρ and τ is the relation

ρτ = {(x, z) ∈ X × Z : there exists y ∈ Y such that (x, y) ∈ ρ and (y, z) ∈ τ}.

For x ∈ X and ρ ⊆ X × Y , the image of x under ρ is the set xρ = {y ∈ Y :
(x, y) ∈ ρ}. For x �∈ X we define xρ = ∅. The converse of a binary relation
ρ ⊆ X × Y is the relation ρ−1 = {(y, x) : (x, y) ∈ ρ} ⊆ Y × X. The set
yρ−1 = {x ∈ X : (x, y) ∈ ρ} is called the preimage of y under ρ. Elements of
this set are called preimages of y; for example, if x ∈ yρ−1 we say that x is a
preimage of y.

If we write P(S) for the power set of a set S (that is, the set of all subsets of
S), then we can view ρ as a map ρ : X→P(Y). We may also extend ρ by union
to a map ρ : P(X)→P(Y) as follows: for S ⊆ X, we define

Sρ =
⋃

s∈S

sρ.

We thus have two ways to make sense of an expression like xρτ : it is the image
of x under the composite relation ρτ ⊆ X ×Z, and it is also the image of the set
xρ ⊆ Y under the map τ : P(Y)→P(Z). Additionally, we have a way to make
sense of a composition ρτ : X→P(Z) of maps ρ : X→P(Y) and τ : Y →P(Z):
take the composition of the corresponding relations.

A function f : X→Y is a binary relation f ⊆ X × Y such that |xf | = 1 for
all x ∈ X. Following our notation for binary relations, we write functions to
the right of their arguments. Composition of functions is defined by composing
the corresponding relations. Thus the order of composition is left-to-right ; in a
composition fg, first f is applied and then g.

A transformation of a set X is a function t : X→X, that is, a function from
X into itself. We say t is a permutation of X if Xt = X. We say t acts as a
permutation on S ⊆ X if St = S. If t acts as a permutation on S, then every
element of S has at least one preimage under t, that is, for all s ∈ S, the set
st−1 = {x ∈ X : xt = s} is non-empty.

A cyclic permutation of a set {x1, . . . , xk} ⊆ X is a permutation p such that
xip = xi+1 for 1 ≤ i < k, xkp = x1, and xp = x for all x ∈ X \ {x1, . . . , xk}. We
denote such a permutation as (x1, . . . , xk). A transposition is a cyclic permuta-
tion of a two-element set. We denote the identity transformation by id.

78 S. Davies

The notation (S→x) for S ⊆ X and x ∈ X denotes a transformation that
sends every element of S to x and fixes every element of S \ X. For example,
({i}→j) maps i to j and fixes everything else, and (X→x) is a constant transfor-
mation that maps every element of X to x. In the case where X = {1, 2, . . . , n},
the notation (j

ix→x + 1) denotes a transformation such that for each x with
i ≤ x ≤ j, the transformation sends x to x + 1, and every other x is fixed.
For example, the transformation (n−1

2 x→x + 1) fixes 1, sends x to x + 1 for
2 ≤ x ≤ n − 1, and fixes n. The notation (j

ix→x − 1) is defined similarly.

2.2 Automata

A finite automaton (FA) is a tuple A = (Q,Σ, T, I, F) where Q is a finite set of
states, Σ is a finite set of letters called an alphabet, T ⊆ Q × Σ × Q is a set of
transitions, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states.

We now define a binary relation Tw ⊆ Q × Q for each w ∈ Σ∗. Define
Tε = {(q, q) : q ∈ Q}; in terms of maps, this is the identity map on Q. For
a ∈ Σ, define Ta = {(p, q) ∈ Q × Q : (p, a, q) ∈ T}. For w = a1 · · · ak with
a1, . . . , ak ∈ Σ, define Tw = Ta1 · · · Tak

. The relation Tw is called the relation
induced by w. The set {Tw : w ∈ Σ∗} is a monoid under composition, called the
transition monoid of A. If w is a word but is not a word over Σ, we define Tw

to be the empty relation. We sometimes write p
w−→ q to mean q ∈ pTw.

If A = (Q,Σ, T, I, F) is a finite automaton such that |I| = 1 and Ta is a
function for each a ∈ Σ, we say A is deterministic. We abbreviate “deterministic
finite automaton” to DFA.

Let A = (Q,Σ, T, I, F) be an FA. A word w ∈ Σ∗ is accepted by A if we
have ITw ∩ F �= ∅. If A is a DFA with I = {i}, this condition becomes iTw ∈ F .
The language of A, denoted L(A), is the set of all words it accepts. A language
recognized by an FA is called a regular language.

Given two regular languages L and K with DFAs A = (QA, ΣA, TA, iA, FA)
and B = (QB, ΣB, TB, iB, FB), we may construct an FA AB = (Q,Σ, T, I, F)
that accepts the concatenation LK as follows:

– Q = QA ∪ QB. We assume without loss of generality that QA ∩ QB = ∅.
– Σ = ΣA ∪ ΣB.
– T = TA ∪ TB ∪ {(q, a, iB) : qTA

a ∈ FA, a ∈ ΣA}.
– I = {iA} if iA �∈ FA, and otherwise I = {iA, iB}.
– F = FB.

Next, we convert the FA AB = (Q,Σ, T, I, F) to a DFA recognizing the
same language. We apply the usual subset construction to obtain the DFA C =
(P(Q), Σ, T C , I, F C), where T C = {(S, a, STa) : S ⊆ Q, a ∈ Σ}, and S ⊆ Q is in
F C if S ∩ F �= ∅. We call C the concatenation DFA for A and B.

We make some observations and introduce some conventions to make it easier
to work with the concatenation DFA.

A New Technique for Reachability of States in Concatenation Automata 79

– Since we are assuming A and B are DFAs, the only reachable states in C have
the form SA ∪ SB, where SA ⊆ QA, SB ⊆ QB, and |SA| ≤ 1. Without loss
of generality, we can assume the state set of C consists of states of this form,
rather than all of P(Q).

– We mark the states of A with primes so they can be distinguished from the
states of B. So a variable named p or q generally means an element of QB,
while p′ or q′ means an element of QA.

– We identify the set SA ∪ SB with the ordered pair (SA, SB). Hence we can
view the states of C as these ordered pairs. Reachable states are either of the
form (∅, S) or ({q′}, S) with q′ ∈ QA, S ⊆ QB.

– For convenience, we frequently make no distinction between singleton sets
and the elements they contain, and so write (q′, S) rather than ({q′}, S).

– Rather than Tw, TA
w and TB

w , we simply write w when it is clear from context
which relation is meant. For example, (q′, S)w means (q′, S)Tw since (q′, S) is
a state of C, and thus Tw is the natural relation to apply. From our convention
for marking the states of A and B with primes, one can infer that q′w means
q′TA

w and qw means qTB
w .

– Rather than iA and iB, let 1′ denote the initial state of A and let 1 denote
the initial state of B. We also assume without loss of generality that QA =
{1′, 2′, . . . ,m′} and QB = {1, 2, . . . , n} for some m and n.

Under these conventions, the transitions of C can be described as follows:

(q′, S)a =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∅, Sa), if a ∈ ΣB \ ΣA;
(q′a, ∅), if a ∈ ΣA \ ΣB and q′a �∈ FA;
(q′a, 1), if a ∈ ΣA \ ΣB and q′a ∈ FA;
(q′a, Sa), if a ∈ ΣA ∩ ΣB and q′a �∈ FA;
(q′a, Sa ∪ 1), if a ∈ ΣA ∩ ΣB and q′a ∈ FA.

Recall that TA
w is the empty relation if w is not a word over ΣA, and a similar

statement can be made for B. Thus the transitions admit a simpler description:

(q′, S)a =

{
(q′a, Sa ∪ 1), if a ∈ ΣA and q′a ∈ FA;
(q′a, Sa), otherwise.

2.3 State Complexity

We say a DFA A is minimal if it has the least number of states among all DFAs
that recognize L(A). It is well known that each regular language has a unique
minimal DFA (up to renamings of the states). The state complexity of a regular
language L, denoted sc(L), is the number of states in its minimal DFA.

The following characterization of minimality is useful. Let D = (Q,Σ, T, i, F)
be a DFA. A state q ∈ Q is reachable if iw = q. For p, q ∈ Q, we say q is reachable
from p if pw = q. Two states p, q ∈ Q are indistinguishable if they are equivalent
under the following equivalence relation: p ∼ q if for all w ∈ Σ∗, we have

80 S. Davies

pw ∈ F ⇐⇒ qw ∈ F . Otherwise they are distinguishable by some word w such
that pw ∈ F ⇐⇒ qw �∈ F . A DFA is minimal if and only if all of its states are
reachable and pairwise distinguishable.

Let ◦ be a binary operation on regular languages. The state complexity of the
operation ◦ is the following function, where m and n are positive integers:

(m,n) �→ max{sc(L ◦ K) : sc(L) ≤ m, sc(K) ≤ n}.

This is the worst-case state complexity of the result of the operation, expressed
as a function of the maximal allowed state complexities of the input languages.
When computing state complexity of operations we assume the input languages
L and K are languages over the same alphabet. The case where the inputs
are allowed to have different alphabets has been studied by Brzozowski [4]. An
example of how to apply our results in this case is given in [11, Theorem 4].

3 Results

Let A = (QA, ΣA, TA, 1′, FA) and B = (QB, ΣB, TB, 1, FB) be DFAs, with
QA = {1′, 2′, . . . ,m′} and QB = {1, 2, . . . , n} for positive integers m and n. Let
C = (Q,Σ, T, I, F) denote the concatenation DFA of A and B as defined in
Sect. 2.2.

Remark 1. Let p′, q′ ∈ QA, let X,Y,Z ⊆ QB, and let w ∈ Σ∗. Then in C, if
(p′,X)w = (q′, Y), then (p′,X ∪ Z)w = (q′, Y ∪ Zw).

Indeed, recall that the pair (p′,X) stands for the set {p′} ∪ X. Thus ({p′} ∪
X)w = {p′w} ∪ Xw = {q′} ∪ Y . It follows that p′w = q′ and Xw = Y . Hence
({p′}∪X ∪Z)w = {p′w}∪Xw∪Zw = {q′}∪Y ∪Zw, which in our pair notation
is (q′, Y ∪ Zw). We will readily use this basic fact in proofs.

Before stating our main result formally, we give some motivating exposition.
Fix a state s′ ∈ QA and a subset B of QB. The state s′ is called the focus state
or simply focus; it is often taken to be the initial state 1′ but in general can be
any state. The subset B is called the base. Fix a set T with B ⊆ T ⊆ QB, called
the target. Our goal is to give sufficient conditions under which starting from
(s′, B), we can reach (s′, S) for all sets S with B ⊆ S ⊆ T . That is, we can reach
any state of the concatenation DFA C in which the first component is the focus
and the second component lies between the base and the target.

The idea is to first assume we can reach (s′, B), the state consisting of the
focus and the base. Now, for q ∈ Q, define a q-word to be a word w such that
(s′, B)w = (s′, B ∪ q). We can think of this as a word that “adds” the state q to
the base B. Our next assumption is that we have a q-word for each state q in
the target T . To reach a set S with B ⊆ S ⊆ T , we will repeatedly use q-words
to add each missing element of S to the base B.

There is a problem with this idea, which we illustrate with an example.
Suppose wp is a p-word and wq is a q-word, and we want to reach (s′, B∪{p, q}).
Starting from (s′, B) we may apply wp to reach (s′, B ∪ p). But now if we apply

A New Technique for Reachability of States in Concatenation Automata 81

wq, we reach (s′, B ∪ {pwq, q}). There is no guarantee that we have pwq = p,
and in many cases we will not. What we should really do is find a state r such
that rwq = p, use an r-word to reach (s′, B ∪ r), and then apply wq to reach
(s′, B ∪ {p, q}). But this idea only works if p has a preimage under wq, which
may not be the case.

We resolve this by making a technical assumption, which ensures that preim-
ages will always exist when we attempt constructions like the above. First, define
a construction set for the target T to be a set of words consisting of exactly one
q-word for each q ∈ T . If W is a construction set for T , we write W [q] for the
unique q-word in W .

We say a construction set is complete if there is a total order ≺ on the target
T such that for all p, q ∈ T with p ≺ q, the state q has at least one preimage
under the unique p-word W [p], and at least one of these preimages lies in T . More
formally, whenever p ≺ q, the set qW [p]−1 = {s ∈ QB : sW [p] = q} intersects T
non-trivially. Our final assumption is that we have a complete construction set
for T .

Note that the definition of a q-word depends not only on q, but also on s′ and
B. Since a construction set for T is a set of q-words, the definition of construction
set also depends on s′ and B. For simplicity, we omit this dependence on s′ and
B from the notation for q-words and construction sets.

We summarize the definitions that have just been introduced:

– Fix a state s′ ∈ QA, called the focus, and a set B ⊆ QB called the base.
– For q ∈ QB, a q-word is a word w such that (s′, B)w = (s′, B ∪ q).
– Given a target set T with B ⊆ T ⊆ QB, a construction set for T is a set of

words that contains exactly one q-word for each q ∈ T .
– The unique q-word in a construction set W is denoted by W [q].
– A construction set for T is complete if there exists a total order ≺ on T such

that for all p, q ∈ T with p ≺ q, we have

qW [p]−1 ∩ T = {s ∈ QB : sW [p] = q} ∩ T �= ∅.

Now, we state our main theorem, which formalizes the above construction.

Theorem 1. Fix a state s′ ∈ QA and sets B and T such that B ⊆ T ⊆ QB.
If there is a complete construction set for T , then all states of the form (s′, S)
with B ⊆ S ⊆ T are reachable from (s′, B) in C. In particular, if (s′, B) itself is
reachable, then all states (s′, S) with B ⊆ S ⊆ T are reachable.

Proof. Note that if B ⊆ S ⊆ T , we can write S = R ∪ B with R ∩ B = ∅
and R ⊆ T . Thus it suffices to show that all states of the form (s′, R ∪ B) with
R ∩ B = ∅ and R ⊆ T are reachable from (s′, B). We proceed by induction on
|R|. When |R| = 0, the only state of this form is (s′, B) itself.

Now suppose every state (s′, R ∪ B) with R ∩ B = ∅, R ⊆ T and 0 ≤ |R| < k
is reachable from (s′, B). We want to show this also holds for |R| = k. Let W
be a complete construction set for T and let ≺ be the corresponding total order
on T . Let p be the minimal element of R under ≺. Let w be W [p], the unique

82 S. Davies

p-word in W . For all q ∈ R\p, we have p ≺ q and thus qw−1 contains an element
of T (since W is complete).

Construct sets X and Y as follows: starting with X = ∅, for each q ∈ R \ p,
choose an element of qw−1 ∩ T and add it to X. Then set Y = X \ B. Observe
that X is a subset of T of size |R \ p| = k − 1. Hence Y is a subset of T of
size at most k − 1 such that Y ∩ B = ∅. It follows by the induction hypothesis
that (s′, Y ∪ B) is reachable from (s′, B). But Y ∪ B = X ∪ B, so (s′,X ∪ B) is
reachable from (s′, B). By the definition of X, we have Xw = R \ p. Since w is
a p-word, we have (s′, B)w = (s′, B ∪ p), and thus

(s′,X ∪ B)w = (s′,Xw ∪ B ∪ p) = (s′, (R \ p) ∪ B ∪ p) = (s′, R ∪ B).

Hence (s′, R ∪ B) is reachable from (s′, B), as required. ��
The definition of completeness is somewhat complicated, which makes it dif-

ficult to use Theorem 1. Thus, we prove some results giving simpler sufficient
conditions for a construction set to be complete.

Before stating our first such result, we introduce some notation. Define Σ0 =
ΣA ∩ ΣB. We call Σ0 the shared alphabet of A and B. The following remark
shows that when ΣA �= ΣB, it is important to work exclusively with the shared
alphabet when looking for complete construction sets. Of course, in the case
where ΣA = ΣB there is nothing to worry about.

Remark 2. A construction set for a non-empty target cannot be complete unless
it is a subset of Σ∗

0 . To see this, suppose W is a construction set and let w ∈ W .
If w contains a letter from ΣA \ΣB, then w is not a word over ΣB. Recall that if
w is not a word over ΣB, then TB

w is defined to be the empty relation. Thus the
converse relation (TB

w)−1 is also empty, which means qw−1 is empty for all q. It
follows W cannot be complete. On the other hand, suppose w contains a letter
from ΣB \ΣA. Then (s′, B)w = (∅, Bw). Hence w is not a q-word for any q, and
so w cannot be an element of a construction set, which is a contradiction. Thus
all words in a complete construction set are words over the shared alphabet Σ0.

Lemma 1. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x1, . . . , xj be words over Σ0

that act as permutations on T , and let y be an arbitrary word over Σ0. Choose
x0 ∈ {ε, x1, . . . , xj}. Define W = {x1, x2, . . . , xj} ∪ {x0y, x0y

2, . . . , x0y
k}. If W

is a construction set for T , then it is complete.

Proof. For 1 ≤ i ≤ j, let wi = xi. For 1 ≤ i ≤ k, let wj+i = x0y
i. Let

� = j + k. Then we have W = {w1, . . . , w�}. Let qi be the state in T such that
(s′, B)wi = (s′, B ∪ qi). Define an order ≺ on T so that q1 ≺ q2 ≺ · · · ≺ q�. We
claim this order makes W complete. Notice that wr = W [qr], the unique qr-word
in W . Thus we must show that whenever qr ≺ qs, we have qsw

−1
r ∩ T �= ∅.

Suppose r < s and r ≤ j. Then wr = xr acts as a permutation on T . Thus
qsw

−1
r ∩ T is non-empty, since qs ∈ T .
Suppose r < s and r > j. Since s − r > 0, we can write ws = x0y

s−j =
x0y

s−ryr−j = wj+s−ry
r−j . Thus (s′, B)ws = (s′, B ∪ qj+s−r)yr−j = (s′, B ∪ qs).

There are two possibilities: qj+s−ry
r−j = qs, or qyr−j = qs for some q ∈ B.

A New Technique for Reachability of States in Concatenation Automata 83

In either case, qs(yr−j)−1 ∩ T is non-empty. That is, there exists q ∈ T such
that qyr−j = qs. Since x0 acts as a permutation on T , there exists p ∈ T such
that px0 = q. Thus px0y

r−j = pwr = qs. It follows that qsw
−1
r ∩T is non-empty,

as required. ��
Usually, we will use one of the following corollaries instead of Lemma 1 itself.

Corollary 1. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x and y be words over
Σ0 such that x acts as a permutation on T . Suppose W is one of the following
sets:

1. {y, y2, . . . , yk}.
2. {ε, y, y2, . . . , yk}.
3. {x, xy, xy2, . . . , xyk}.
4. {ε, x, xy, xy2, . . . , xyk}.
If W is a construction set for T , then it is complete.

Proof. All statements follow easily from Lemma 1:

1. Set j = 0.
2. Set j = 1 and x0 = x1 = ε.
3. Set j = 1 and x0 = x1 = x.
4. Set j = 2, x1 = ε and x0 = x2 = x. ��
Corollary 2. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W ⊆ Σ∗

0 be a construction
set for T .

1. If every word in W acts as a permutation on T , then W is complete.
2. If there is a word w ∈ W such that every word in W \w acts as a permutation

on T , then W is complete.

Proof. Both statements follow easily from Lemma 1:

1. Set k = 0 in Lemma 1.
2. Set k = 1, x0 = ε and y = w in Lemma 1. ��

In the special case where W contains ε, Corollary 2 admits the following
generalization, which we found occasionally useful.

Lemma 2. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W = {ε, w1, . . . , wk} be a
construction set for T , where w1, . . . , wk are non-empty words over Σ0. Suppose
that for every word w ∈ W , there exists a set S with T \ B ⊆ S ⊆ T such that
w acts as a permutation on S. Then W is complete.

Proof. Write B = {q1, . . . , qj}. Note that ε is a qi-word for 1 ≤ i ≤ j. Thus
by the definition of a construction set, ε is the unique qi-word in W for each
qi ∈ B, that is, W [qi] = ε for 1 ≤ i ≤ j. In particular, each non-empty word

84 S. Davies

in W is a q-word for some q ∈ T \ B. For 1 ≤ i ≤ k, let qj+i be the state such
that (s′, B)wi = (s′, B ∪ qj+i). Then T = {q1, . . . , qj+k}. Note that W [qi] = ε if
1 ≤ i ≤ j, and W [qi] = wi−j if j + 1 ≤ i ≤ j + k.

Define an order ≺ on T by q1 ≺ q2 ≺ · · · ≺ qj+k. We claim this order
makes W complete. Choose qr, qs ∈ T with qr ≺ qs; we want to show that
qsW [qr]−1 ∩ T �= ∅. Suppose qr ∈ B. Then W [qr] = ε, and we have qsε

−1 ∩ T
non-empty as required. Now if qr �∈ B, then since qr ≺ qs we also have qs �∈ B.
In this case, W [qr] = wr−j , which acts as a permutation on some superset S
of T \ B. Since qs ∈ T \ B, it follows that qs has a preimage under wr−j , and
furthermore this preimage lies in T , since S is a subset of T . Thus qsw

−1
r−j ∩T �= ∅

as required. This proves that W is complete. ��
Note that all words referred to in the above lemmas and corollaries are words

over Σ0, the shared alphabet of A and B. When working with automata that have
different alphabets, it is important to use only words over the shared alphabet
when trying to find a complete construction set.

The following “master theorem” summarizes the results of this section. We
have attempted to state this theorem so that it can be cited without having
to first define all the notions introduced in this section, such as q-words and
construction sets and completeness.

Theorem 2. Let A = (QA, ΣA, TA, iA, FA) and B = (QB, ΣB, TB, iB, FB) be
DFAs. Let C = (Q,Σ, T, I, F) denote the concatenation DFA of A and B, as
defined in Sect. 2.2. Let Σ0 = ΣA ∩ ΣB.

Fix a state s′ ∈ QA and sets B ⊆ T ⊆ QB. Suppose that for each q ∈ T ,
there exists a word wq ∈ Σ∗

0 such that (s′, B)
wq−−→ (s′, B ∪q) in C. Let W = {wq :

q ∈ T}. Suppose that one of the following conditions holds:

1. There exist words x, y ∈ Σ∗
0 , where x acts as a permutation on T , such that

W can be written in one of the following forms:
– W = {y, y2, . . . , yk}.
– W = {ε, y, y2, . . . , yk}.
– W = {x, xy, xy2, . . . , xyk}.
– W = {ε, x, xy, xy2, . . . , xyk}.

2. Every word in W acts as a permutation on T .
3. There exists w ∈ W such that every word in W \ w acts as a permutation on

T .
4. W contains ε, and for every non-empty word w ∈ W , there exists a set S

such that T \ B ⊆ S ⊆ T and w acts as a permutation on S.
5. There exists a total order ≺ on T such that for all p, q ∈ T with p ≺ q, the

set qw−1
p = {s ∈ QB : s

wp−−→ q} contains an element of T .

If one of the above conditions holds, then every state of the form (s′,X) with
B ⊆ X ⊆ T is reachable from (s′, B) in C.

To close this section, we give two examples of how our results can be applied.
Many more examples can be found in [11].

A New Technique for Reachability of States in Concatenation Automata 85

Theorem 3. (Yu, Zhuang and Salomaa, 1994 [20]). Define A and B as
follows:

a b c Final States
A : (1′, . . . ,m′) (QA→1′) id {m′}
B : id (1, . . . , n) (QB→2) {n}

Then C has (m − 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state of C is (1′, ∅). For k ≤ n − 2 we have

(1′, ∅) am

−−→ (1′, 1) bk−→ (1′, 1 + k).

It follows that {am, amb, . . . , ambn−1} is a construction set for QB (with s′ = 1′

and B = ∅). By Corollary 1, it is complete (taking x = am and y = b). Hence all
states (1′, S) with S ⊆ QB are reachable. We can reach (q′, S) for q′ �= m′ and
(m′, S ∪ 1) by words in a∗.

Let (p′, S) and (q′, T) be distinct states of C. If S �= T , let r be a state in the
symmetric difference of S and T . Then bn−r distinguishes the states. If S = T
and p′ < q′, then cam−qbn−2 distinguishes the states. ��
Theorem 4. (Maslov, 1970 [16]). Define A and B as follows:

a b Final States
A : (1′, . . . ,m′) id {m′}
B : (n − 1, n) (n−1

1 q→q + 1) {n}

Then C has (m − 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅) am

−−→ (1′, 1) bk−→ (1′, 1 + k).

Thus {am, amb, amb2, . . . , ambn−1} is a construction set for QB (with s′ = 1′ and
B = ∅). By Corollary 1, it is complete. Hence (1′, S) is reachable for all S ⊆ QB.
We can reach (q′, S) for q′ �= m′ and (m′, S ∪ 1) by words in a∗.

Let (p′, S) and (q′, T) be distinct states of C. If S �= T , let r be a state
in the symmetric difference of S and T . Then bn−r distinguishes the states. If
S = T and p′ < q′, by bn we reach (p′, n) and (q′, n). Then by am−q we reach
((p + m − q)′, nam−q) and (m′, nam−q ∪ 1). These states differ in their second
component, so they are distinguishable. ��

4 Conclusions

We have introduced a new technique for demonstrating the reachability of states
in DFAs for the concatenation of two regular languages, and tested this tech-
nique in a wide variety of cases. In addition to the examples of Theorems 3 and 4,

86 S. Davies

we demonstrate in [11] that our results are applicable to three other regular lan-
guage concatenation witnesses [3,4,9], a star-free witness [7], two non-returning
witnesses [5,12], a prefix-closed witness [2], two suffix-free witnesses [8,14], and
three right ideal witnesses [1,6,9]. This suggests our technique is worth con-
sidering as an alternative to traditional induction proofs when working with
concatenation automata.

Acknowledgements. I thank Jason Bell, Janusz Brzozowski and the anonymous
referees for proofreading and helpful comments. This work was supported by the
Natural Sciences and Engineering Research Council of Canada under grant No.
OGP0000871.

References

1. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages.
Discrete Math. Theoret. Comput. Sci. 18(3) (2016), paper #15

2. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54, 277–292 (2014)

3. Brzozowski, J.A.: In search of most complex regular languages. Int. J. Found.
Comput. Sci. 24(06), 691–708 (2013)

4. Brzozowski, J.: Unrestricted state complexity of binary operations on regular
languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS,
vol. 9777, pp. 60–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41114-9 5

5. Brzozowski, J.A., Davies, S.: Most complex non-returning regular languages. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 89–101.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 7

6. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theoret. Comput. Sci. 470, 36–52 (2013)

7. Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J. Found.
Comput. Sci. 23(06), 1261–1276 (2012)

8. Brzozowski, J.A., Sinnamon, C.: Complexity of left-ideal, suffix-closed and suffix-
free regular languages. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 171–182. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 12

9. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and
prefix-free regular languages. Acta Cybernetica 23(1), 9–41 (2017)

10. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45526-4 6

11. Davies, S.: A new technique for reachability of states in concatenation automata
(2017). https://arxiv.org/abs/1710.05061

12. Eom, H.S., Han, Y.S., Jirásková, G.: State complexity of basic operations on non-
returning regular languages. Fundam. Inform. 144, 161–182 (2016)

13. Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Ésik, Z., Fülöp, Z. (eds.) AFL 2009, pp. 99–115. University
of Szeged, Hungary, Institute of Informatics (2009)

14. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410(27–29), 2537–2548 (2009)

https://doi.org/10.1007/978-3-319-41114-9_5
https://doi.org/10.1007/978-3-319-41114-9_5
https://doi.org/10.1007/978-3-319-60252-3_7
https://doi.org/10.1007/978-3-319-53733-7_12
https://doi.org/10.1007/978-3-319-53733-7_12
https://doi.org/10.1007/3-540-45526-4_6
https://arxiv.org/abs/1710.05061

A New Technique for Reachability of States in Concatenation Automata 87

15. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan, I., Pighizzini, G., Trost, B. (eds.) DCFS 2010, pp. 236–244. Univer-
sity of Saskatchewan (2010)

16. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (Russian). English translation: Soviet Math. Dokl.
11(1970), 1373–1375 (1970)

17. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 21

18. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13(01), 145–159 (2002)

19. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

20. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1007/3-540-48340-3_21

Forward Injective Finite Automata:
Exact and Random Generation

of Nonisomorphic NFAs

Miguel Ferreira, Nelma Moreira(B), and Rogério Reis

CMUP and DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

miguelferreira108@gmail.com, {nam,rvr}@dcc.fc.up.pt

Abstract. We define the class of forward injective finite automata
(FIFA) and study some of their properties. Each FIFA has a unique
canonical representation up to isomorphism. Using this representation
an enumeration is given and an efficient uniform random generator is
presented. We provide a conversion algorithm from a nondeterministic
finite automaton or regular expression into an equivalent FIFA. Finally,
we present some experimental results comparing the size of FIFA with
other automata.

1 Introduction

The study of the average-case complexity of determinisation of nondeterminis-
tic finite automata (NFAs) is an important research topic. In most algorithms
that use NFAs, it is needed, in a way or another, to convert them to equivalent
deterministic finite automata (DFAs), and that leads to an exponential blow
up, in the worst-case. In practice, the feasibility of algorithms and representa-
tions, dealing with regular languages and related systems, depends primarily on
their complexity on the average case, rather than the worst-case scenario which
may rarely occur. The average-case analysis of operations in automata is, in
general, a difficult task. One approach to this problem is to consider uniformly
distributed random representations and to perform statistically significant exper-
iments requiring most of the times nonisomorphic sampled automata. There are
several uniform random generators available for nonisomorphic DFAs [1,3,4,10].
For all these generators, DFAs are considered initially connected and it is possible
to order their states in a canonical way to ensure that no two different isomor-
phic automata are generated. However for NFAs, the problem seems unfeasi-
ble in general as for n-state NFAs the size of the automorphism group can be
n!, and this is polynomially equivalent to testing if two NFAs are isomorphic.

Authors partially funded by CMUP (UID/MAT/00144/2013), which is funded by
FCT (Portugal) with national (MCTES) and European structural funds through the
programs FEDER, under the partnership agreement PT2020.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 88–100, 2018.
https://doi.org/10.1007/978-3-319-94631-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_8&domain=pdf

Forward Injective Finite Automata 89

Recently, Héam and Joly [6] presented uniform random generators for some
classes of NFAs up to isomorphism, using Monte Carlo Markov-Chains modified
by the Metropolis-Hastings algorithm, to deal with isomorphic objects [8]. This
involves the computation of the sizes of automorphism groups of NFAs. However,
the performance of these algorithms does not seem to allow the generation of
large sets of objects of acceptable size. Considering classes of NFAs for which this
latter problem is polynomial, the authors obtain (randomised/heuristic) uniform
random generators in polynomial time. These classes include trim NFAs with a
single initial state and with states with a fixed maximal output degree.

In this paper, we follow a different path and study a class of NFAs for which
it is possible the exact and uniform random generation of nonisomorphic ele-
ments. More precisely, we consider a class of initially-connected NFAs (with a
single initial state) for which it is possible to define a canonical order over the set
of states. Starting with the initial state, whenever new states are reached from
an already visited state, we ensure that the set of transition labels are pairwise
distinct. Based on a natural order of the power set of the alphabet, an ordering
for the set of states is obtained. This induces a unique canonical representation
for the nonisomorphic NFAs for which it is possible to obtain such an order, and
which are named forward injective finite automata (FIFA). We also developed
an algorithm that converts an NFA into an equivalent FIFA and performed
some experimental tests in order to compare their relative sizes. The class of
FIFA represents all regular languages, FIFA sampling is proven to be efficient
to implement, and experimental results suggest that, on average, for each NFA
one can find a FIFA which is not much larger. These properties convinced the
authors that FIFA is a class which deserves to be studied. In particular, FIFA
based sampling is a possible alternative for average complexity analysis of algo-
rithms that have NFAs as input. The paper is organised as follows. In the next
section, some notation is given and we review the canonical string representation
for initially-connected DFAs. In Sect. 3, we present the new class of automata
(FIFA), a canonical representation that is unique for nonisomorphic automata
of this class and give an enumeration of FIFAs by states and alphabetic size.
A uniform random generator for FIFA is given in Sect. 4. In Sect. 5 we adapted
the determinisation to the conversion from NFAs to FIFAs, together with some
experimental results in Sect. 6. Some future work is discussed in Sect. 7.

2 Preliminaries

Given two integers, m and n, let [m,n] be the set {i ∈ Z | m ≤ i ∧ i ≤ n}, and
let one use the additional interval notation with its standard meaning.

An NFA A is a tuple 〈Q,Σ, δ, q0, F 〉 where Q is a finite set of states, Σ
the alphabet, i.e., a nonempty finite set of symbols, δ : Q × Σ → 2Q is the
transition function, q0 the initial state and F ⊆ Q the set of final states. As
usual, let δ(q) = {p | ∃σ ∈ Σ, p ∈ δ(q, σ)}. We also consider � : Q × Q →
2Σ , such that �(p, q) = {σ | q ∈ δ(p, σ) ∧ σ ∈ Σ}, for any p, q ∈ Q, and
for ∅ �= S ⊆ Σ, let �−1

p (S) = {q | �(p, q) = S}. The function � allows us

90 M. Ferreira et al.

to consider the amalgamation of all transitions with the same start and end
states, and the value of � as label. In the rest of the paper, we will consider
either δ or � to refer to the transition function of a given NFA. The size of
an NFA is its number of states, |Q| = n. An NFA is initially connected (or
accessible) if for each state q ∈ Q there exists a sequence (q′

i)i∈[0,j] of states and
a sequence (σi)i∈[0,j−1] of symbols, for some j < |Q|, such that q′

m+1 ∈ δ(q′
m, σm)

for m ∈ [0, j[, q′
0 = q0 and q′

j = q. The transition function δ : Q × Σ → 2Q

extends naturally to Σ� and to sets of states. The language accepted by A is
L(A) = {w ∈ Σ� | δ(q0, w) ∩ F �= ∅ }. Two automata are equivalent if they
accept the same language. Two NFAs 〈Q,Σ, δ, q0, F 〉 and 〈Q′, Σ, δ′, q′

0, F
′〉 are

isomorphic if there is a bijection ι : Q → Q′ such that ι(q0) = q′
0, for all σ ∈ Σ

and q ∈ Q, ι(δ(q, σ)) = δ′(ι(q), σ), and ι(F) = F ′, where we naturally extend ι
to sets S ⊆ Q. In the following, we will identify an alphabet Σ of size k with
[0, k[and the power set 2Σ with [0, 2k[using a natural order for the subsets of
Σ, with 0 corresponding to the emptyset and j ∈ [0, 2k[corresponds to a set
J ⊆ [0, k[if and only if i ∈ J then the i-th bit of the binary representation of j is
1. If two automata A and B are isomorphic, we write A B. A semiautomaton
(Q,Σ, δ, q0) denotes an NFA without its final state information and is referred
to as an NFA∅. Each semiautomaton, if |Q| = n, will be shared by 2n NFAs.
An NFA is deterministic (DFA) if |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q × Σ and is
complete if the equality always holds. An initially-connected (complete) DFA is
denoted by ICDFA and the corresponding semiautomaton by ICDFA∅.

We review here the canonical string representation for nonisomorphic ICD-
FAs presented by Almeida et al. [1]. Given an ICDFA A = 〈Q, [0, k[, δ, q0, F 〉, a
canonical order for Q can be obtained by a breath-first traversal of A, starting
with the initial state q0, and in each state considering the transitions in the
natural order of Σ. Let ϕ : Q → [0, n[be the renaming of Q elements induced by
that order. If we, by abuse of language, identify q and ϕ(q), for q ∈ Q, a unique
representation of the semiautomaton of A is S(A) = 〈δ (�i/k�, i mod k)i∈[0,kn[〉.

A canonical representation for A is obtained by adding a sequence (bi)i∈[0,n[

of n-bits such that bi = 1 if state i is final, and bi = 0 otherwise.

Example 1. Consider the ICDFA, A = 〈{A,B,C,D,E}, {a, b}, δ, E, {B}〉, a < b,
and ϕ the states renaming according to the induced order.

E A

D B

C
a

b a

b

a
b

ab

a
b

ϕ A B C D E

1 3 4 2 0
.

The canonical string S(A) for the corresponding ICDFA∅ is 12
︸︷︷︸

E

31
︸︷︷︸

A
32

︸︷︷︸

D

40
︸︷︷︸

B

14
︸︷︷︸

C

.

Adding the information pertaining to the final states as a sequence of bits,
the canonical string for A is 123132401400010.

Forward Injective Finite Automata 91

The characterisation of the canonical strings allows the enumeration, and
the exact and random generation, as well as an optimal coding for ICDFAs, as
defined by Lothaire [9]. Inspired by this model, we defined FIFA as NFAs having
a unique breadth-first traversal order property according to the natural order
of 2Σ .

3 Forward Injective Finite Automata

Even if one only considers initially-connected NFAs, with a single initial state,
it is not possible to extend the previous representation to NFAs because it is
not possible to induce an order for the set of states from the transition function.
Starting with the initial state, whenever unvisited states are reached from an
already visited state, we must ensure that the set of transition labels from the
current state to the newly reached states are pairwise distinct. We denote NFAs
with this property as forward injective finite automata (FIFA).

Definition 1 Let A = 〈Q,Σ, δ, q0, F 〉 be an initially-connected NFA and Π the
bijection from 2Σ to [0, 2k[, induced by the order on Σ. Consider the breadth-
first search traversal of A, induced by the natural order on 2Σ, that starts in the
initial state q0. For each state s ∈ Q, let S(s) be the set of states that are image
of a transition starting from a state already visited by the BFS. The labels for
the transitions departing from s to any state in δ(s) \ S(s) need to be unique.
The automaton A is a forward injective finite automaton if it holds that:

(∀p, q ∈ δ(s) \ S(s))(p �= q ⇒ �(s, p) �= �(s, q)). (1)

This class of automata is expressive enough to recognise all regular languages,
because deterministic automata trivially satisfy (1). However, not all (initially-
connected) NFAs are FIFAs. Some experimental results suggest that for alpha-
bets, of size at least 2, one can find a FIFA equivalent to an NFA that is not
much larger than the NFA. These facts and the existence of a unique canonical
representation show the interest in studying this class of NFAs. In particular,
because of the existence of uniform random generators, one can use this model
to obtain estimates of average performance of algorithms that manipulate NFAs.

3.1 A Canonical State Order for FIFAs

Given a FIFA it is possible to obtain a canonical state order ϕ through a breadth
first traversal starting in the initial state and ordering the newly reached states
according to the total order defined in 2Σ . For that, one can disregard the set of
final states and consider the semiautomaton FIFA∅. The canonical state order for
a FIFA∅ can be computed through Algorithm 1, where Π is the bijection from
2Σ to [0, 2k[, sorted is a function that sorts integers in increasing order, and
ϕ : Q → [0, n[is the computed bijection. Note that (at line 7) �−1

ϕ−1(s)(Π
−1(j))

is a single value by the injectivity of � restricted to the newly seen states in a
FIFA.

92 M. Ferreira et al.

Algorithm 1. FIFA state order algorithm
1: procedure StateOrder(FIFA∅ 〈Q, Σ, δ, q0〉)
2: ϕ(q0) ← 0
3: i ← 0; s ← 0
4: do
5: M ← sorted{Π(S) | ∅ �= S = �(ϕ−1(s), q) ∧ q ∈ Q \ ϕ−1([0, i])}
6: for j ∈ M do
7: ϕ(�−1

ϕ−1(s)
(Π−1(j)) ← i + 1

8: i ← i + 1

9: s ← s + 1
10: while s < i

return ϕ

Proposition 1 Let A = 〈Q,Σ, δ, q0〉 be a FIFA∅ with n states and k = |Σ|,
there is a bijection ϕ : Q → [0, n[that defines an isomorphism between A and
〈[0, n[, Σ, δ′, 0〉 with δ′(i, σ) = {ϕ(s) | s ∈ δ(ϕ−1(i), σ)}, for i ∈ [0, n[and σ ∈ Σ.

Throughout the paper we will now consider FIFA∅ to have its states in their
canonical order: A = 〈[0, n[, Σ, δ, 0〉.

3.2 Canonical String Representation

Let A = 〈[0, n[, Σ, δ, 0, F 〉 be a FIFA such that 〈[0, n[, Σ, δ, 0〉 is a FIFA∅. We can
represent A by the canonical representation of its FIFA∅ concatenated with the
bitmap of the state finalities. The canonical representation of a FIFA∅ is defined
as follows.

Definition 2 Given a FIFA∅ 〈[0, n[, Σ, δ, 0〉 with |Σ| = k, its canonical repre-
sentation is a sequence (ri)i∈[0,n[such that for each state i,

ri = si,1si,2 . . . si,mi
ui,1 . . . ui,mi

,

and where mi is the number of previously seen states, mi is the number of newly
seen states, si,j = Π(�(i, j − 1)) for j ∈ [1,mi], and ui,j = Π(�(i,mi + j − 1))
for j ∈ [1,mi]. This means that, for each state i, si,j correspond to the sets of
transitions to states already seen (back transitions) and ui,j correspond to the
sets of transitions to newly seen states from state i (forward transitions).

Example 2. Consider the following FIFA on the left.

E A

D B

C

F

a

b

a

bb

b

a
b

a

a, b

b

a
b ϕ A B C D E F

1 3 4 2 0 5
.

Forward Injective Finite Automata 93

Let Π(∅) = 0, Π({a}) = 1, Π({b}) = 2 and Π({a, b}) = 3. The state renam-
ing according to the induced order on the states is given above. The canonical
string (ri)i∈[0,5] for the corresponding FIFA∅ is

[1][1, 2]
︸ ︷︷ ︸

E

[2, 2, 0][2]
︸ ︷︷ ︸

A

[0, 0, 2, 1][]
︸ ︷︷ ︸

D

[0, 0, 0, 0][1, 3]
︸ ︷︷ ︸

B

[0, 1, 0, 0, 2, 0][]
︸ ︷︷ ︸

C

[0, 0, 0, 0, 2, 0][]
︸ ︷︷ ︸

F

,

where the transitions for each state are as indicated. The FIFA can be repre-
sented by its semiautomaton canonical string with the state finalities appended.
Thus, this FIFA canonical string is

[1][1, 2][2, 2, 0][2][0, 0, 2, 1][][0, 0, 0, 0][1, 3][0, 1, 0, 0, 2, 0][][0, 0, 0, 0, 2, 0][][0, 0, 0, 1, 0, 0].

Lemma 3. Let A = 〈[0, n[, Σ, δ, 0〉 be a FIFA∅ with k = |Σ|. Let (ri)i∈[0,n[

with ri = si,1si,2 · · · si,mi
ui,1ui,2 · · · ui,mi

be the canonical representation for A
as given above. Then the following rules are satisfied:

si,j ∈ [0, 2k[, ∀i ∈ [0, n[,∀j ∈ [1,mi], (F1)

ui,j ∈ [1, 2k[, ∀i ∈ [0, n[,∀j ∈ [1,mi], (F2)
j < l ⇒ ui,j < ui,l, ∀i ∈ [0, n[,∀j, l ∈ [1,mi], (F3)

m0 = 1, (F4)
mi = mi−1 + mi−1, ∀i ∈ [1, n[, (F5)

i < mi ≤ n, ∀i ∈ [1, n[, (F6)
mn−1 = 0. (F7)

Proof. The rule (F1) describes how transitions to previously seen states are
represented, i.e. si,j = Π(�(i, j − 1)), possibly with si,j = 0. The rule (F2)
considers the transitions from state i to states ti,j = mi + j − 1 visited for the
first time in i, which implies that �(i, ti,j) �= ∅. Consequently, ui,j ∈ [1, 2k[. For
representation purposes, rule (F3) states that the set of states visited for the
first time is represented with its transitions sorted in ascending order. This is a
representation choice that ensures that all ui,j are distinct. Rule (F4) is obvious
as one starts at state 0 and thus 0 is the only seen state. Rule (F5) is a direct
consequence of the definition of mi in (2), and implies that mi = 1 +

∑i−1
j=0 mj

for i ∈ [1, n[. Rules (F6) and (F7) ensures that all states are seen, and that
the FIFA∅ is initially connected. It is a consequence of the definition of ϕ and
also ensures that a state must be seen before its representation is given. Rule
(F6) implies that mn−1 = n. By contradiction, suppose that there is i such
that mi ≤ i, for i ∈ [1, n[. Then, there exist 1 ≤ j ≤ i such that j is not
accessible from 0 in paths that use states only in [0, i[. But that contradicts ϕ
definition. ��
Lemma 4. Every string (ri)i∈[0,n[satisfying rules (F1)–(F7) represents a
FIFA∅ with states [0, n[over an alphabet of k symbols.

Proof. There is at least one transition reaching each state in [1, n[and there is at
least one transition from the state 0 to state 1. The transition function is defined

94 M. Ferreira et al.

by �(i, j − 1) = Π−1(si,j) for i ∈ [0, n[and j ∈ [1,mi], and �(i,mi + j − 1) =
Π−1(ui,j) for i ∈ [0, n[and j ∈ [1,mi]. The proof that the FIFA∅ is initially
connected is analogous to the one in Lemma 3. ��
From these lemmas the following theorem holds.

Theorem 5. For each n > 0 and k > 0, there is a one-to-one mapping from
sequences (ri)i∈[0,n[satisfying rules (F1)–(F7) and nonisomorphic FIFA∅s with
n states over an alphabet of k symbols.

The canonical form for FIFA∅ is not a simple extension of the one for ICDFA∅s
reviewed in Sect. 2 for several reasons. One needs to consider instead of the
alphabet its power set, there are no restrictions for transitions to already seen
states, and transitions to newly seen states must have different labels. However,
the first occurrences of each state satisfy exactly the same rules (over an alphabet
of 2k symbols) observed in the canonical representation of ICDFA∅s. This will
be made evident in the next section.

3.3 Counting FIFAs

Our aim is to enumerate (exactly generate) and count all the nonisomorphic
FIFA∅ with n states and k symbols. This will also allow us to obtain a uniform
random generator for the class of FIFAs. Let Ψ : [0, n[×[1, 2k[→ [0, n(2k − 1)[,
be defined by Ψ(i, j) = i(2k − 1) + j − 1. The mapping Ψ is a bijection with
Ψ−1(p) =

(⌊

p/(2k − 1)
⌋

, (p mod (2k − 1)) + 1
)

. Let (ri)i∈[0,n[be a sequence sat-
isfying rules (F1)–(F7), thus, representing a FIFA∅. Let us denote by flag of a
state t ∈ [1, n[the pair (i, ui,j), occurring in state i, such that t = mi + j − 1
(and �(i, t) = Π−1(ui,j)). According to (F3), if in a state i two different flags
(i, ui,j) and (i, ui,l) occur, we know that j < l ⇒ ui,j < ui,l. For the sake of
readability, given t ∈ [1, n[, we denote by (it, ut) its flag, and let Ψ(it, ut) = ft.
Then, by (F3), one has

(∀t ∈ [2, n[)(it = it−1 ⇒ ut > ut−1) ∨ (it > it−1),

which implies

(∀t ∈ [2, n[)(ft > ft−1), (G1)

(∀t ∈ [1, n[)(ft < t(2k − 1)). (G2)

Rules (G1)–(G2) are satisfied by the positions of the first occurrence of a state
in the canonical strings for ICDFA∅s, considering k instead of 2k −1 in rule (G2).
The following theorem computes the number of allowed sequences of flags.

Proposition 2 (Theorem 6 of [1]) Given k > 0 and n > 0, the number of
sequences (ft)t∈[1,n[, F2k−1,n, is given by:

F2k−1,n =
2k−1−1

∑

f1=0

2(2k−1)−1
∑

f2=f1+1

. . .

(2k−1)(n−1)−1
∑

fn−1=fn−2+1

1 = C(2k−1)
n ,

where C
(2k−1)
n =

(
n(2k−1)

n

)
1

(2k−2)n+1
are the generalized Fuss-Catalan numbers.

Forward Injective Finite Automata 95

Example 6. For the FIFA of Example 2, ((0, 1), (0, 2), (1, 2), (3, 1), (3, 3)) is the
sequence of flags and (ft)t∈[1,5] = (0, 1, 4, 9, 11).

Given a sequence of flags (ft)t∈[1,n[, the set of possible canonical strings
that represent FIFA∅s can be easily enumerated: each state i has unconstrained
transitions for states already seen (mi) and has the transitions to new states
given by the flags occurring in its description (forward transitions).

The number of canonical strings with a given sequence of flags is given by
∏

i∈[0,n[

(2k)
mi

. (2)

Theorem 7. The total number of FIFA∅s with n states over a k-ary alphabet is

bk,n =
2k−1−1

∑

f1=0

2(2k−1)−1
∑

f2=f1+1

. . .

(2k−1)(n−1)−1
∑

fn−1=fn−2+1

∏

i∈[0,n[

(2k)
mi

,

where mi = 1 +
∑i−1

j=0 mj and mj = |{ft | it = j}| for i ∈ [0, n[and j ∈ [1, n[.

This can be adapted for the exact generation/enumeration of all canonical repre-
sentations. Each FIFA∅ corresponds to a number between 1 and bk,n. In Table 1
we present the values of bk,n for n ∈ [2, 7] and k ∈ [2, 3]. An equivalent recursive
definition for bk,n is given in the next section for uniform random generation.

Table 1. Values of bk,n

n k = 2 k = 3

2 192 3584

3 86016 56885248

4 321912832 32236950781952

5 10382009696256 738091318939425439744

6 3073719939819896832 733871593861464877408622477312

7 8715818304405159932854272 32686722749179979231494144786993701191680

Corollary 8. The number of nonisomorphic FIFAs with n states and k alpha-
betic symbols is Bk,n = bk,n2n.

4 Uniform Random Generation

The canonical representation for FIFAs allows an easy uniform random genera-
tion for this class of automata. Given the number of flags occurring in a prefix of
a canonical string we count the number of valid suffixes. To count the number of
automata with a given prefix a recursive counting formula for FIFA∅ is needed.

96 M. Ferreira et al.

With these partial values, we can reconstruct any FIFA∅ by knowing its num-
ber, which varies from 1 to bk,n. The process of uniform randomly generating
a FIFA consists, thus, in four steps: creation of a table with partial counts for
each prefix; uniformly sample a number between 1 and bk,n; construct the FIFA∅
representation using the table; random generation of values from 0 to 2n − 1 for
the state finalities and return the FIFA. Let m be the number of already seen
states for the state i of a canonical string of a FIFA∅. We count the number
Nm,i of FIFA∅s for each value of m and i. This gives us the following recursive
formula for fixed n and k:

Nm,i = (2k)m
∑n−m

j=0

(
2k−1

j

)

Nm+j,i+1, m ∈ [1, n], i ∈ [0,m[,
Nm,i = 0, m ∈ [1, n], i /∈ [0,m[,
Nn,n = 1.

Proposition 3 bk,n = N1,0, for all k ≥ 1 and n ≥ 1.

Proof. Immediate consequence of the canonical representation and Theorem 7.
��

Algorithm 2. Random FIFA∅ algorithm.
1: procedure randomFifa(n, k)
2: r ← Random(0, N1,0 − 1) � number of the FIFA∅
3: m0 ← 1
4: for q ∈ [0, n[do � reconstruct FIFA∅ flags
5: mq ← 0
6: while Nmq+mq,q ≤ r do
7: mq ← mq + 1

8: mq+1 ← mq + mq

9: b ← r mod (2k)
∑n−1

i=0 mi � number representing back transitions

10: f ← r/(2k)
∑n−1

i=0 mi � number representing forward transitions
11: for q ∈ [0, n[do
12: for p ∈ [1, mq] do � reconstruct back transitions
13: sq,p ← b mod 2k

14: b ← b/2k

15: if mq �= 0 then

16: c ← (
2k−1
mq

)

17: t ← f mod c
18: f ← f/c
19: for p ∈ [1, mq] do
20: uq,p ← t mod (2k − 1)
21: t ←
t/(2k − 1)�

return (si,1si,2 · · · si,miui,1ui,2 · · · ui,mi)i∈[0,n[

Proposition 4 Algorithm 2 presents a uniform random generator for a FIFA∅
with n states and k symbols.

Forward Injective Finite Automata 97

Proof. (Sketch) Given an arbitrary integer r representing a FIFA∅ we determine
the values mi for each i ∈ [0, n[, using the precalculated table Nm,i. For each
state i and m previously seen states, mi is the first value such that Nm+mi,i > r,
that is, Nm+mi−1,i ≤ r < Nm+mi,i (lines 4–8). Then, we count the number of
available back transitions in each state i using mi which can be determined by
mi (by F5). The total number of possible back transitions is

∑n−1
i=0 mi. With

this number (lines 9 and 10) one obtains the integers that represent all the si,j

and the ui,j , respectively. For a given i ∈ [0, n[, in lines 12–14 we calculate si,j

for j ∈ [1,mi]. If state i has forward transitions, their values are computed in
lines 16–21. ��

To obtain a random FIFA from the FIFA∅ we can generate a random num-
ber from [0, 2n[and reconstruct the state finalities according to the corre-
sponding choice. Using dynamic programming techniques it is possible to gen-
erate a table indexed by the values of m and i (Nm,i) with time complexity
O(n3 log((2k)n2

)) = O(n5k). The amount of memory used is O(n4k), and this is
a limiting factor for the dimension of the FIFA∅ being generated. This is justified
by the huge number of FIFA∅s for a given n and k. For example, b2,100 is greater
than 1011531. In Table 2 we present the execution times for the generation of
10000 FIFAs for n ∈ {1, 20, 30, 50, 75, 100} and k ∈ {1, 2, 3, 4}, using Python
2.7 interpreted by Pypy, with a Intel Xeon CPU X5550 at 2.67 GHz. Comparing
with some experiments presented by Héam and Joly [6, Table 1], these times
correspond, approximately, to the generation of a single NFA.

Table 2. Execution times for the generation of 10000 random FIFA.

Times k = 1 k = 2 k = 3 k = 4

n = 10 0.77 s 1.05 s 0.95 s 8.59 s

n = 20 1.06 s 2.33 s 3.13 s 3.96 s

n = 30 1.15 s 5.01 s 7.38 s 9.52 s

n = 50 2.84 s 16.86 s 26.64 s 40.43 s

n = 75 7.11 s 47.62 s 71.92 s 91.70 s

n = 100 15.86 s 100.25 s 156.24 s 202.41 s

5 Converting an NFA into a FIFA

In this section we discuss a process of converting an arbitrary NFA to a FIFA and
the asymptotic time complexity bounds of such a procedure. The algorithm has
an NFA as input and outputs an equivalent FIFA. It is based on the subset con-
struction for NFA determinisation, with addition of an heuristic that attempts
to create back transitions whenever possible. This gives us a FIFA that is not
only forward injective but also forward deterministic. It may be also possible
to add an heuristic for nondeterministic forward injective transitions or to have

98 M. Ferreira et al.

other procedures that are not based on the subset construction. However this
one had a good performance in our experiments.

Proposition 5 The procedure NfaToFifa in Algorithm 3 computes a FIFA
equivalent to a given NFA.

This algorithm has time complexity O(|Σ|22|Q|), which is justified by |Q′| having
space complexity O(2|Q|) due to the determinisation based algorithm. It is an
open problem whether these bounds are tight for this algorithm.

Algorithm 3. An NFA to FIFA algorithm
1: procedure NfaToFifa(NFA 〈Q, Σ, δ, I, F 〉)
2: Q′ ← {I}
3: w ← {I} � states to be processed
4: while w �= ∅ do
5: S ← Pop(w) � popping S from w
6: for σ ∈ Σ do
7: P ← ∅
8: δ′(S, σ) ← ∅
9: for s ∈ S do

10: P ← P ∪ δ(s, σ)

11: for R ∈ sortedBySizeDesc(Q′) do
12: if R ⊆ P then � nondeterministic back transitions
13: δ′(S, σ) ← δ′(S, σ) ∪ {R}
14: P ← P \ R

15: if P �= ∅ then � forward transition
16: Q′ ← Q′ ∪ {P}
17: w ← w ∪ {P}
18: δ′(S, σ) ← δ′(S, σ) ∪ {P}
19: return FIFA 〈Q′, Σ, δ′, I, {S ∩ F �= ∅, S ∈ Q′}〉

6 Experimental Results

The algorithm defined in the previous section was implemented within the FAdo
package [5]. We performed some experiments to compare the sizes of the input
and output automata. The input NFAs were obtained from uniform random gen-
erated regular expressions, for a fixed (standard) grammar, of a given syntactic
tree size m over an alphabet of k symbols. The conversion method used was
the partial derivative automata [2]. For each m and k, 10000 random regular
expressions were generated to ensure a 95% confidence level within a 1% error
margin [7, pp. 38–41]. For each sample, we calculated the minimal, the average
and the maximum sizes of the obtained automata. For each partial derivative
automaton (PD) we applied the algorithm NFAtoFIFA and obtained a FIFA
(FIFA). We also computed the DFA obtained by determinisation of PD, by
the usual subset construction, (DT), and the minimal DFA (MIN). Results for

Forward Injective Finite Automata 99

m ∈ {50, 100, 250, 500} and k ∈ {2, 3, 10} are presented in Table 3. In general
the FIFA computed is not much larger than the PD, although the determinised
automata can be significantly larger.

Table 3. State complexities of automata where m, syntactic size of RE; k, size of
alphabet; PD, size of partial derivative NFA; DT size of DFA from PD; MIN, size of
minimal DFA; FIFA, size of FIFA from PD.

m, k Type min avg max

50, 2 FIFA 3 10.1684 25
DT 3 10.1338 62
MIN 1 5.0762 51
PD 3 10.6904 19

100, 2 FIFA 3 19.2113 46
DT 3 19.7193 158
MIN 1 6.2814 116
PD 9 20.0239 30

250, 2 FIFA 9 48.3731 107
DT 12 185.6424 1120
MIN 1 7.0256 630
PD 34 47.998 66

500, 2 FIFA 35 99.8889 189
DT 13 186.1518 6451
MIN 1 6.8369 745
PD 72 94.6422 124

m, k Type min avg max

50, 3 FIFA 3 12.4948 25
DT 3 13.9339 56
MIN 1 9.1225 41
PD 4 11.6522 19

100, 3 FIFA 5 24.3173 45
DT 5 34.289 166
MIN 1 18.2094 148
PD 11 21.8518 32

250, 3 FIFA 23 60.7792 110
DT 12 185.6424 1586
MIN 1 59.0185 988
PD 34 52.5888 70

500, 3 FIFA 42 122.2247 198
DT 37 1143.2134 11687
MIN 1 92.8985 2343
PD 79 103.6871 126

m, k Type min avg max

50, 10 FIFA 6 14.1252 24
DT 7 15.3764 33
MIN 1 13.8138 30
PD 6 13.3556 21

100, 10 FIFA 14 27.4189 43
DT 15 32.5608 66
MIN 1 28.7841 58
PD 13 25.2294 36

250, 10 FIFA 44 67.8454 99
DT 55 102.6683 329
MIN 1 88.8932 253
PD 41 60.8428 78

500, 10 FIFA 102 135.1439 170
DT 128 277.5053 1122
MIN 1 237.4012 869
PD 94 120.0465 150

7 Conclusions

We presented a class of initially-connected NFAs with a single initial state for
which it is possible to test isomorphism in polynomial time. The definition of
these automata (FIFA) is based on the possibility to order the set of states in a
breath-first search traversal from the initial state. The uniform random generator
can efficiently sample datasets to test the performance of algorithms dealing with
NFAs. Moreover one can extend it with a parameter for the density of transitions
in order to avoid the high frequency of NFAs recognising the universal language.
The class of FIFAs can be further studied in its own. One can obtain asymp-
totic bounds for the number of FIFAs of given n and k. Upper bounds for the
size of the minimal FIFAs for a given language will be of major interest. Oper-
ational state complexity with respect to this class of automata is also an open
problem.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)

4. Champarnaud, J.M., Paranthoën, T.: Random generation of DFAs. Theor. Com-
put. Sci. 330(2), 221–235 (2005)

100 M. Ferreira et al.

5. FAdo, P.: FAdo: tools for formal languages manipulation. http://fado.dcc.up.pt.
Accessed 13 2018

6. Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic
automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 12

7. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2, 2nd edn. Addison Wesley, Boston (1981)

8. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chain and Mixing Times. Amer-
ican Mathematical Society (2008). http://pages.uoregon.edu/dlevin/MARKOV/
markovmixing.pdf

9. Lothaire, M.: Applied Combinatorics on Words, vol. 105. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, New York (2005)

10. Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger,
M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 5–23. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44522-8 2

http://fado.dcc.up.pt
https://doi.org/10.1007/978-3-319-22360-5_12
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
https://doi.org/10.1007/978-3-662-44522-8_2

On the Generation of 2-Polyominoes

Enrico Formenti1(B) and Paolo Massazza2

1 Université Côte d’Azur (UCA), CNRS, I3S, Nice, France
enrico.formenti@unice.fr

2 Department of Theoretical and Applied Sciences - Computer Science Section,
Università degli Studi dell’Insubria, Via Mazzini 5, 21100 Varese, Italy

paolo.massazza@uninsubria.it

Abstract. The class of 2-polyominoes contains all polyominoes P such
that for any integer i, the first i columns of P consist of at most 2
polyominoes. We provide a decomposition that allows us to exploit suit-
able discrete dynamical systems to define an algorithm for generating all
2-polyominoes of area n in constant amortized time and space O(n).

1 Introduction

A polyomino is a finite and connected union of unitary squares (cells) in the
plane Z × Z, considered up to translations [8]. The number of cells of a poly-
omino is its area. The problem of counting the number of polyominoes of area n
(i.e. determining a closed formula for |Pol(n)|) is still open and the most used
algorithm to generate Pol(n) runs in exponential time and uses exponential
space [9]. Due to the space requirement, such algorithm has been used to compute
|Pol(n)| only for n ≤ 56 [10]. So, it is interesting to study suitable representations
of polyominoes that allow to design efficient generating algorithms with strict
constraints on the space. To classify the polyominoes and to tackle some difficult
questions about them, several subclasses have been introduced in literature. For
instance, the class of convex polyominoes and its subclasses have been studied
under different points of view [1,4–6]. Recently, some efficient algorithms for the
exhaustive generation by area of some subclasses of convex polyominoes have
been presented [2,3,12,14].

The problem of efficiently generating non-convex polyominoes is particularly
difficult. Indeed, no Constant Amortized Time (CAT) algorithm using space
O(n) is known for the generation of Pol(n). In order to answer this question, we
tackled some special cases in the hope of detecting all the conceptual obstacles
and trying to remove them. Indeed, we are interested in the class Polk(n) con-
taining all polyominoes P of area n such that, for any i > 0, the first i columns
of P are made of at most k polyominoes. A CAT algorithm for the exhaustive
generation of Pol1(n) (called partially directed animals in [15]), has been pro-
posed in [7]. This paper provides a CAT algorithm that generates Pol2(n) using
space O(n). Remark that Pol2(n) is a strictly new class which neither coincides

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 101–113, 2018.
https://doi.org/10.1007/978-3-319-94631-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_9&domain=pdf

102 E. Formenti and P. Massazza

with the class of partially directed animals with k sources (see Fig. 1) nor with
other known subclasses of polyominoes.

. . .

(a) (b)

Fig. 1. (a) a 2-polyomino corresponding to a partially directed animal with k + 1
sources (k is the number of repetitions of the gray pattern). (b) a partially directed
animal with 3 sources which is not a 2-polyomino.

The algorithm is based on an idea that was already used for other exhaus-
tive generation algorithms (for instance, [11–13]) and it is inspired by discrete
dynamical systems theory. Indeed, it proceeds to generate a polyomino column
by column, and each column is uniquely decomposed into at most four parts,
namely the skeleton and three regions. Each region corresponds to the state of
a suitable dynamical system. Proving that the dynamical system is surjective
and that it has one orbit grants exhaustive generation. Granting that the next
state can be computed from the previous one in constant amortized time and in
linear space leads to the result. This last step is accomplished through a careful
choice of the data structure used to represent a polyomino.

Because of the lack of space, most of the proofs and the pseudo-code have
been omitted. They will appear in the long version of the paper.

2 Preliminaries

The area A(P) of a polyomino P is the number of its cells. A polyomino can be
seen as a (finite) sequence of columns. A column consists of a sequence of vertical
segments separated by empty unit squares. A vertical segment is a sequence of
unit cells q1, q2, . . . , qk that are in the same column and such that qi is edge-
adjacent to qi+1, for 1 ≤ i < k. The position of a cell is its y-coordinate. The
position of the top (resp., bottom) cell of a segment s is denoted by Top(s)
(resp., Bot(s)). We represent a segment s of a column by means of the pair
(A(s) ,Top(s)). Segments belonging to the same column are numbered from the
top to the bottom, thus a column with p segments is simply a sequence of
disjoint segments c = (s1, . . . , sp), with Top(si) < Top(si−1) − A(si−1) − 1 for
1 < i ≤ p. The area of c is A(c) =

∑p
i=1 A(si). Furthermore, the position of c

is the position of its first segment, Top(c) = Top(s1). Given a segment s and
an integer j such that Top(s) > j ≥ Bot(s), we denote by s>j (resp., s≤j) the
subsegment consisting of the cells of s with position greater than j (resp., smaller
than or equal to j). The part of a column c that is above a position j is c>j

(c≥j , c≤j and c<j are defined similarly). Segments can be ordered with respect
to their position and their area.

On the Generation of 2-Polyominoes 103

Definition 1 (< on segments). Let u and v be two segments. Then, one has
u < v if and only if Top(u) > Top(v) or Top(u) = Top(v) and A(u) > A(v).

A total order on columns, denoted by ≺, can be easily obtained by
extending <.

Definition 2 (≺ on columns). Let b = (s1, . . . , sp) and c = (t1, . . . , tq) be two
columns. Then, one has b ≺ c if and only if either A(b) > A(c), or A(b) = A(c)
and there exists m with 1 ≤ m ≤ min(p, q) such that sj = tj for all j < m and
sm < tm.

Consider a polyomino P = (c1, . . . , cq). We assume that the position of the
bottom cell of the last segment of c1 is 0. We indicate by P≤i (resp., Pi) the
sequence of the first i columns of P from the left (resp., the i-th column of
P), also called the i-prefix of P . We also write P<i for P≤i−1. The area of P
is A(P) =

∑w
i=1 A(Pi) where w is the number of columns of P . From here on,

Pol(n) denotes the set of the polyominoes of area n.

Definition 3 (The class Polk(n)). Let k > 0. The class of k-polyominoes of
area n, Polk(n), contains all P ∈ Pol(n) such that, for all i with 1 ≤ i < w, P≤i

consists of at most k polyominoes, where w is the number of columns of P .

The class Pol1(n) corresponds to the class of partially directed animals [15–17],
for which a CAT generation algorithm has been provided in [7]. Here, we are
interested into an efficient exhaustive generation algorithm for the class Pol2(n).

Two segments s and t are adjacent if they belong to adjacent columns and
there exists at least one cell of s that is edge-adjacent to a cell of t. The set
LAdj(s) of left-adjacencies of a segment s contains the positions of the cells
of s that are edge-adjacent to some cells of segments in Pi−1. A segment s is
l-detached if LAdj(s) = ∅, whereas it is l-adjacent if LAdj(s) �= ∅. A column that
does not contain l-detached segments is called l-detached-free. The segment of
Pi immediately above (resp., below) s is s↑ (resp., s↓). If s is l-detached then ↓s
(resp., ↑s) indicates the first (resp., last) segment v in Pi−1 such that Top(v) <
Bot(s) (resp., Bot(v) > Top(s)). Otherwise, if s is l-adjacent then ↑s (resp.,
↓s) indicates the segment in Pi−1 that has a cell in the position min(LAdj(s))
(resp., max(LAdj(s))). For any segment s of Pi, Con(s) is the largest polyomino
comprised in P≤i that contains s. Let P≤i consist of two polyominoes U and V .
Then, U↑ (resp., V ↑) indicates the upper extreme of U (resp., V) in Pi, that is,
the first segment u ∈ U (resp., v ∈ V) of Pi such that u↑ ∈ V or u↓ ∈ V (resp.,
v↑ ∈ U or v↓ ∈ U). Analogously, U↓ (resp., V↓) denotes the lower extreme of U
(resp., V) in Pi that is, the last segment u ∈ U (resp., v ∈ V) of Pi such that
u↑ ∈ V or u↓ ∈ V (resp., v↑ ∈ U or v↓ ∈ U). If U↓ = U↑ then U has only one
extreme in Pi, denoted by U�. We say that U and V are independent if both U
and V have only one extreme in Pi (U� is above V � or vice versa), see Cases
(b), (c) and (d) of Fig. 2. Similarly, U includes V if V ↑ is immediately below U↑

and V↓ is immediately above U↓, see Cases (f) and (g) of Fig. 2. Thus, U and V
are enclosing if U includes V or vice versa.

104 E. Formenti and P. Massazza

A segment s of Pi is a bridge if P<i consists of two polyominoes Ū and V̄
and s is l-adjacent to two segments v and v↓, which are extremes of Ū and V̄ ,
respectively. The distance Dist(s) of an extreme s is the number of empty unit
squares that separate s from the nearest segment t ∈ {s↓, s↑} with Con(t) �=
Con(s). In other words, Dist(s) + 2 is the area of the smallest bridge that can
join s and t. The vertical distance of two segments s, t with Bot(s) ≥ Top(t) is
d(s, t) = Bot(s) − Top(t) − 1. If P≤i consists of two distinct polyominoes U and
V , we also set Dist(U, V) = min{Dist(s)|s is an extreme of U}.

Notation: From here on, P≤i (resp., P<i) denotes an i-prefix (resp., (i − 1)-
prefix) of a polyomino in Pol2(n). A bar over a segment indicates that it is a
bridge, s̄.

Given a sequence S of i − 1 columns and a column c, the operation | of col-
umn concatenation (left associative) produces a new sequence S′ = S|c with i
columns. A column c is compatible with Pi−1, denoted by c � Pi−1, if and only if
P<i|c is the i-prefix of a polyomino in Pol2(n). Obviously, one has c � Pi−1 if and
only if P<i|c ∈ Pol2(n) or there exists a column d such that P<i|c|d ∈ Pol2(n).
We denote by Comp(P<i, k, n) the set of columns of area k that are compatible
with Pi−1. Bridges and l-adjacent extremes are called special segments. They
determine a unique decomposition of b into regions, and they form the so-called
skeleton of b. The skeleton of a column b ∈ Comp(P<i, k, n), denoted by Ske(b),
is either the column consisting of the bridges in b (if any), or the column contain-
ing all l-adjacent extremes in b (if b does not contain a bridge and P<i �∈ Pol).

P<i Pi

(a)

V

U

P<i Pi

(b) (c) (d) (e) (f) (g)

V̄

Ū

P<i Pi

U

V

Ū

V̄

P<i Pi

V

U

Ū

P<i Pi

V

U

U

Ū

P<i Pi

Ū

V̄

P<i Pi

V

U

V

U

Fig. 2. Columns, compatibility and skeletons (represented by gray cells).

On the Generation of 2-Polyominoes 105

Definition 4. Let b ∈ Comp(P<i, k, n). Then, the skeleton of b is the column

Ske(b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

() if P<i ∈ Pol

(s̄) if b contains only one bridge s̄

(s̄, t̄) if b contains two bridges s̄, t̄

(s, s↓) if P<i|b = U ∪ V, s = U�, s↓ = V �

(s, s↓, s↓↓) if P<i|b = U ∪ V, s = U↑, s↓ = V �, s↓↓ = U↓

(s, s↓, u, u↓) if P<i|b = U ∪ V, s = U↑, s↓ = V ↑, u = V ↓, u↓ = U↓

where U↑, U↓, V ↑, V ↓, V �, U� are l-adjacent extremes of b (with no bridges).

Notice that if b contains a bridge t then it does not contain an l-adjacent
extreme s with Con(t) �= Con(s) (otherwise P<i consists of at least three
polyominoes). For any b ∈ Comp(P<i, k, n) such that Ske(b) �= () one has
Ske(b) ∈ Comp(P<i, h, n) for a suitable integer h ≤ k.

Definition 5. The northern (resp., central, southern) region of b = (s1, . . . , sq)
is denoted by b↑ (resp., b�, b↓) and it is defined as follows (Ske(b) to the left):

(): b↑ = b;
(s̄m): b↑ = (s1, . . . , sm−1) and b↓ = (sm+1, . . . , sq);
(s̄m, s̄p): b↑ = (s1, . . . , sm−1), b� = (sm+1, . . . , sp−1), b↓ = (sp+1, . . . , sq);
(sm, sm+1): b↑ = (s1, . . . , sm−1), b↓ = (sm+2, . . . , sq);
(sm, sm+1, sm+2): b↑ = (s1, . . . , sm), b↓ = (sm+3, . . . , sq);
(sm, sm+1, sp, sp+1): b↑ = (s1, . . . , sm−1), b� = (sm+2, . . . , sp−1), b↓ =
(sp+2, . . . , sq);

Remark that if s and t are l-adjacent segments belonging to the same region
then Con(s) = Con(t). The notion of skeleton induces an equivalence relation
on Comp(P<i, k, n).

Definition 6 (). Let b, c ∈ Comp(P<i, k, n). Then, one has b 	 c if and only
if Ske(b) = Ske(c).

The set Sk(P<i, k, n) = {c ∈ Comp(P<i, j, n)|j ≤ k ∧ Ske(c) = c} contains the
skeletons of area at most k that are compatible with Pi−1. Obviously, one has

Comp(P<i, k, n) =
⋃

b∈Sk(P<i,j,n)

[b]
.

Notice that Sk(P<i, j, n) = ∅ if Sk(P<i, j + 1, n) \ Sk(P<i, j, n) = ∅. We define a
total order � on Sk(P<i, k, n) as follows.

Definition 7 (� on Sk(P<i, k, n)). Let b, c ∈ Sk(P<i, k, n). Then, one has
b � c if and only if one of the following conditions holds:

– |b| < |c|, (i.e. b contains less segments than c);
– b contains a bridge whereas c does not;

106 E. Formenti and P. Massazza

– b = (s̄), c = (t̄) and s̄ < t̄;
– b = (s, t) (resp., b = (s̄, t̄)), c = (v, w) (resp., c = (v̄, w̄)) and either s < v

(resp., s̄ < v̄), or s = v (resp., s̄ = v̄) and t < w (resp., t̄ < w̄);
– b = (s, t, u), c = (v, w, z) and either s < v, or s = v and t < w, or s = v,

t = w and u < z;
– b = (q, r, s, t), c = (u, v, w, z) and either q < u, or q = u and r < v, or q = u,

r = v and s < w, or q = u, r = v, s = w and t < z;

In Sect. 4, polyominoes of Pol2(n) are generated column by column. All the
columns that are compatible with Pi−1 are generated according to the following
ordering.

Definition 8 (< on columns). Let b, c ∈ Comp(P<i, k, n). Then, one has
b < c iff Ske(b) � Ske(c) or Ske(b) = Ske(c) and one of the following holds:

(Ske(b) is null) b ≺ c;
(Ske(b) is (s̄) or (s, t) or (s, t, u)) either b↑ ≺ c↑, or b↑ = c↑ ∧ b↓ ≺ c↓;
(Ske(b) is (s̄, t̄) or (s, t, u, v)) either b↑ ≺ c↑, or b↑ = c↑ ∧ b� ≺ c�, or
b↑ = c↑ ∧ b� = c� ∧ b↓ ≺ c↓;

3 Dynamical Systems for Regions

Given a column b, its skeleton Ske(b) uniquely identifies the regions b↑, b↓
and b�. Recall that a region of b is a particular subsequence of b consisting of
consecutive segments delimited by special segments in Ske(b). In each region,
we are going to use specific dynamical systems such that their current state
represents a list of segments that when completed with the skeleton produces a
compatible column. All compatible columns can be built in this way. Given an
i-prefix P<i|b, with h = A(b) (1 ≤ h ≤ n−A(P<i)), and a segment s of a region
R of b, a move at j ∈ [Bot(s) ,Top(s)] is an operation which rearranges the cells
of R while respecting a constraint (expressed by a value δ ≥ 0) regarding the
creation of l-detached segments. More precisely, if δ = 0 then no new l-detached
segment can be created (because an l-detached segment is already present in b,
or the number of remaining cells is not sufficient to create a bridge in the next
column, that is, n − A(P<i|b) < 3, or Ske(b) contains at least two l-adjacent
extremes), whereas δ > 0 allows the creation of a new l-detached segment with
distance at most δ only if b is l-detached free (moreover, Ske(b) should not
contain l-adjacent extremes and δ + 2 = n − A(P<i|b)). Two types of moves are
devised, namely shift and split, and both output a region R′ such that R ≺ R′.
Notice that, since Ske(b) ∈ Comp(P<i, j, n) (with j ≤ h), any rearrangement R′

of the cells of R such that

1. R′ is l-detached free if δ = 0,
2. no cell of R′ becomes edge-adjacent to a segment of Ske(b),
3. if δ > 0 then R′ contains at most one l-detached segment s′ and Dist(s′) ≤ δ

On the Generation of 2-Polyominoes 107

produces a column b′ ∈ Comp(P<i, h, n). A shift move may occur only in the
position j = Top(s) of a segment s. It has the effect of shifting the segment s by
e positions downwards, where e is the smallest integer such that the resulting
region satisfies Conditions 1–3 above, see Fig. 2(left). Possibly, s and s↓ are joined
(if s↓ �∈ Ske(b)). If such an e does not exist, then the move is undefined.

A split move may occur only in a position j ∈ [Bot(s) ,Top(s)] of a segment
s. In this case, s is split into s>j and s≤j . The segment s>j stays in place whereas
s≤j is shifted e positions downwards, where e is the smallest integer such that the
resulting region R′ satisfies Conditions 1–3 above, see Fig. 2(center). Possibly,
s≤j and s↓ are joined (if s↓ �∈ Ske(b)), see Fig. 2(right).

Denote by Mcr(P<i|b,R, δ) the set of the positions where a move occurs
on a segment of R. The following lemma relates the non-emptyness of
Mcr(P<i|b,R, δ) to the number of segments in R.

Lemma 1. Let R be a region of b. If R contains at least three segments, then
Mcr(P<i|b,R, δ) �= ∅.
Proof (outline). Let s, s↓ and s↓↓ be the last three segments of R. If R does
not contain an l-detached segment then a shift move on s↓ is always defined.
Otherwise, if s (resp., s↓) is l-detached then a shift move on s (resp., s↓) is
defined. Lastly, if s↓↓ is l-detached then s can always be shifted. ��

j

δ=1⇒

U

j

δ>0⇒

U V

j

δ>0⇒

Fig. 3. Examples of shift (left) and split moves (center and right).

Remark that in general several moves are possible in R. However, we are
interested in the one occurring in the lowest position. This leads to the following:

Definition 9 (Grand ancestor). Let R be a region of b and suppose that
j = min(Mcr(P<i|b,R, δ)) is defined. The grand ancestor GA(P<i|b,R, δ) of R
is a region G delimited as R and such that A(G) = A(R), G is identical to R
in the positions above j − 1, G admits a move at j and for all other regions R′

satisfying the previous properties, it holds G ≺ R′ (possibly, G = R′).

108 E. Formenti and P. Massazza

j

⇒

P<i R

j

P<i G

j

⇒

P<i R

j

P<i G

Fig. 4. Examples of grand ancestor (gray cells are those redeployed, δ = 4).

The lowest position where a move may occur in a segment s is characterized
in the following Lemma.

Lemma 2. Let s be a segment of a region R of b and let j be the lowest position
of s such that j ∈ Mcr(P<i|b,R, δ). Then,

j =

⎧
⎪⎨

⎪⎩

Bot(s) or 1 + min(LAdj(s)) or Top(s) if δ = 0,

Bot(s) or 1 + Bot(s) if δ > 0 and s is l-adjacent,

Bot(s) or Top(s) if δ > 0 and s is l-detached,

We point out that the data structure described in Sect. 4.1 allows (in time O(1))
both to find the lowest position j where a move may occur in a segment s, and to
make the move at j. Furthermore, the grand ancestor can be effectively computed
by exploiting Lemmas 1 and 2. Indeed, one can easily prove the following:

Lemma 3. Given a region R = (s1, . . . , sm) of b, let sh be the segment
with a cell in position j = min(Mcr(P<i|b,R, δ)). Then, GA(P<i|b, R, δ) =
(s1, . . . , sh−1) · (s′, s′

↓) where Top(s′) = Top(sh) and
{

A(s′) = A(sh) + w − 1,A
(
s′

↓
)

= 1,Top
(
s′

↓
)

= Top(↓sh) if G,

A(s′) = A(sh) + w, s′
↓ = ε otherwise,

where w =
∑m

k=h+1 A(sk) and G holds if and only if sh is l-detached,
d(sh−1, sh) > δ and d(sh, v) − w > δ, where v is the segment below sm

(if any).

Given two regions R and R′, write R ⇒ R′ if and only if R′ is obtained by
making a move in R. Moreover, R

j⇒ R′ if j ∈ Mcr(P<i|b,R, δ) and the move
at the position j of R produces the region R′.

At this point we are ready to define a discrete dynamical system fP<i|b,δ that
takes in input a region R of b and changes its content, producing a region R′

such that R ≺ R′ unless the input region contains no moves.

On the Generation of 2-Polyominoes 109

Definition 10 (The dynamical system over regions). Given a region R of
b, let j = min(Mcr(P<i|b,R, δ)) and define

fP<i|b,δ(R) =

{
R′ if j �= ⊥ and GA(P<i|b,R, δ)

j⇒ R′

R otherwise.

Let R = (s1, . . . , sm) be a region of a column b. Then, RC(Ske(b),R, δ)
denotes the set of all sequences G of segments, with A(G) = A(R), such that
one can replace R with G obtaining a different column b′ with b′ � Pi−1.
Remark that RC(Ske(b),R, δ) is finite and totally ordered by ≺. We call initial
region its minimum element, denoted Rmin. Indeed, Rmin is delimited by u and
v, where u = s↑

1 and v↑ = sm (they both can be null), and it contains at most
two segments s′ and s′

↓ with

Top(s′)=Bot(u)−2 if u �=ε∧(Bot(↓u)<Bot(u)−1∨w>d(u, (↓u)↓)∨δ>0)
Bot(s′)=Top((↓u)↓) if u �=ε∧(w≤d(u, (↓u)↓)∧Bot(↓u)≥Bot(u)−1∧δ=0)
Bot(s′) = f if u = ε ∧ δ = 0
Bot(s′) = f + δ + 1 if u = ε ∧ δ > 0

(1)

where w =
∑m

k=1 A(sk) and f is the position of the first segment of Pi−1. More-
over, A(s′) = w and s′

↓ = ε unless δ > 0 and u = ε, in which case one has

A(s′) = w − 1, A
(
s′

↓
)

= 1 and Top
(
s′

↓
)

= Top(z). The following lemma proves
that fP<i|b,δ starts in an initial region and eventually ends.

Lemma 4. Consider an i-prefix P<i|b of a polyomino in Pol2(n) and a region
R of b, b = b′ · R · b′′. Then, one has

1. for all a ∈ RC(Ske(b),R, δ) such that Mcr(P<i|b′ · a · b′′,a, δ) �= ∅ it holds
a ≺ fP<i|b,δ(a);

2. RC(Ske(b),R, δ) =
⋃

n∈N
fn

P<i|b,δ(Rmin), where fn
P<i|b,δ(Rmin) corresponds

to fP<i|b,δ(fn−1
P<i|b,δ(Rmin)), with f0

P<i|b,δ(Rmin) = Rmin.

In other words, the previous lemma grants that if one wants to exhaustively
generate all possible regions, it is enough to effectively simulate the dynamical
system fP<i|b,δ. There will be neither missing regions nor repetitions.

4 Exhaustive Generation of Pol2(n)

An inductive approach is used. Given i, k ∈ N and a skeleton b ∈ Sk(P<i, k, n)
(where P<i is the current prefix), suppose that all the polyominoes Q ∈ Pol2(n)
with Q≤i = P<i|c have been already generated, for all columns c such that
A(c) = k and Ske(c) = b′, where b′ ∈ Sk(P<i, k, n) and b′ � b. We proceed
by generating all the columns c ∈ Comp(P<i, k, n) ∩ [b]
 and then, for each c,
we (recursively) generate all the polyominoes Q ∈ Pol2(n) with Q≤i = P<i|c.

110 E. Formenti and P. Massazza

Thus, the problem is reduced to design an efficient algorithm for generating the
set Comp(P<i, k, n). To this aim, we propose an algorithm that works in two
steps:

1. an outer loop that generates all skeletons b in Sk(P<i, k, n);
2. an inner loop that, for each b, generates all colums c ∈ Comp(P<i, k, n)∩[b]
.

The algorithm is a smart combination of two main iterators (functions that
run through ordered sequences), one for skeletons and one for columns. The
pseudocode of all iterators and functions will appear in the long version of this
paper. Here we briefly describe how they works.

The iterator NextSkel(P<i, k,b, δ) takes P<i, an integer k, a skeleton
b ∈ Sk(P<i, k, δ) and δ, and returns the smallest skeleton larger than b in
Sk(P<i, k, δ). The function is based on Definition 7 and exploits different iter-
ators for different types of skeletons. More precisely, the first skeleton binit is
either null (if P<i ∈ Pol), or it consists of a suitable bridge binit = (s̄) with
A(s̄) = k (if P<i consists of two polyominoes U and V with Dist(U, V)+2 < k),
or it consists of two suitable extremes, binit = (s, t) with A(s) = k − 1 and
A(t) = 1 (if Dist(U, V) + 2 > k). If binit = () then, for any k ≥ 0, one has
Sk(P<i, k, δ) = {()} and we are done. Otherwise, the successor b′ of a non-null
skeleton b depends on the number of its segments and on their types - either
bridges or extremes, see Definition 4. Indeed, if b = (s̄) then b′ is obtained by
using an iterator NextBridge that works as follows. If b is not the last skele-
ton consisting of one bridge, then b′ is obtained either by shifting s̄ (if after
a shift by e positions downwards s̄ remains a bridge – e is always 1 if Pi−1

contains only two extremes), or by replacing s̄ with a smaller bridge t̄, with
A(t̄) = A(s̄) − 1, placed in the highest possible position (i.e. t̄ is l-adjacent to
the first two extremes e and e↓ in Pi−1 with d(e, e↓) + 2 ≤ A(t̄)). Otherwise, b
is the last element in the ordered sequence of skeletons consisting of one bridge,
and b′ should be the smallest skeleton consisting of two bridges of total area k.
A function InitBridges is used for this purpose. Otherwise, one can not place
two bridges of total area k in column i (because the number of cells k is not
sufficient or Pi−1 has only two extremes or it has three extremes e1, e2 and e3
with A(e2) = 2), and then b′ should be the smallest skeleton consisting of two
l-adjacent extremes of total area k. Similarly, if b = (s, t) then b′ is obtained
either by using an iterator NextTwoExtremes (if b is not the greatest skeleton
consisting of two extremes), or a function InitThreeExtremes.

NextTwoExtremes either shifts t, or it shifts s and places t in the highest
possible position below s (if t can not be shifted), or it constructs the smallest
skeleton comprising two extremes s′ and t′ with A(s′) = A(s) − 1 and A(t′) =
A(t) + 1 (if neither t nor s can be shifted), or it constructs the smallest skeleton
of area k−1 that consists of two extremes (if A(s′) = 1). Otherwise, b is greatest
skeleton consisting of two extremes and b′ is the smallest skeleton with three
l-adjacent extremes of total area k. The remaining cases b = (s̄, t̄), b = (s, t, u)
and b = (s, t, u, v) are treated similarly.

In addition to the previous iterators, an iterator Next is used to run through
a sequence of regions. Next(R, δ) takes a region R and returns a region R′

On the Generation of 2-Polyominoes 111

obtained according to the dynamical system provided in Definition 10. Further-
more, let Init(Ske(b), r,m, δ) be the function that takes a skeleton, the type r
of the region (northern, central, southern), an integer m and δ, and returns the
smallest region of type r and area m, see the characterization (1) for Rmin.

The iterator NextCol(P<i, c, δ, n) takes a column c ∈ Comp(P<i, k, n) and
δ, and returns the smallest column c′ in Comp(P<i, k, n) such that c < c′ and
Ske(c) = Ske(c′). NextCol works by distinguishing six cases, depending on
Ske(c). Let DF(b) = 1 if the column b is l-detached free, 0 otherwise. The
simplest case is when Ske(c) is null, hence c = c↑. Here, the next column is
simply Next(c, δ). Now, consider the case Ske(c) = (s̄) where c has at most
two regions (the case Ske(c) = (s, t, u) is treated in the same way). One has
c = c↑ · (s̄) · c↓. So, if c↑ = ε then c′ is either (s̄) ·b where b = Next(c↓, δ) (if b
�= ⊥), or ⊥ (if b = ⊥). Otherwise, one has c↑ �= ε and c′ is either c↑ · (s̄) · e′ (if
e′ = Next(c↓,DF(c↑) · δ) �= ⊥) or e · (s̄) · e′′ where e = Next(c↑, δ)) and e′′ =
Init(P<i, south,A(c↓) ,Ske(c),DF(e)·δ) (if e′ = ⊥ and e �= ⊥), or (if e = e′ = ⊥)
Init(P<i,north,A

(
c↑) − 1,Ske(c), δ) · (s̄)· Init(P<i, south,A(c↓) + 1,Ske(c), 0).

NextCol works similarly also in the cases where three regions can be present
(skeletons of type (s̄, t̄) or (s, t, u, v)). Lastly, if NextCol(P<i, c, δ, n) = ⊥ then
c′ consists of the smallest skeleton larger than Ske(c), with A(c′) = k, which
is returned by NextSkel(P<i, k,Ske(c), δ). The correctness of all the iterators
directly follows from their definition and from the order on skeletons and on
columns.

4.1 The Data Structure

We represent P≤i by an array of i records, one per column. The record for the i-
th column is a tuple (L,U↑, U↓, V ↑, V ↓, R1, R2, R3). The first field L is a doubly-
linked list for the sequence of segments representing the column (as many nodes as
segments), then we have four links to the nodes associated with the extremes of the

Pi−1 Pi

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

U U V V R1 R2 R3

(3,18) (2,13) (2,10) (1,6) (2,3)

U U V V R1 R2 R3

(2,19) (1,14) (1,12) (5,9) (2,2)

Pi−1

Pi

Fig. 5. Two columns (left) and the associated data structure (right).

112 E. Formenti and P. Massazza

column (at least one is non-null). Lastly, we have three links to the last node of each
region (at least one is non-null). Each node of the list L corresponds to a segment
s (represented by (A(s) ,Top(s))) and contains five entries (s, l1, l2, l3, l4), where
l1 is a link to the preceding node (for s↑), l2 is the link to the next node (for s↓),
l3 and l4 are the links to the nodes (in the list representing the preceding column)
associated with ↑s and ↓s, respectively. Given a region R of Pi, by Lemma 1 the
move in the position min(Mcr(P≤i,R , δ)) regards one of the last three segments
ofR. Notice that this data structure allows the execution of any move (either Shift
or Split) in time O(1) (Lemmas 2 and 3). Figure 5 illustrates the data structure
associated with a polyomino.

4.2 Complexity

The execution of the algorithm that generates Pol2(n) is represented by a tree
T (n) where an internal node v at level i corresponds to a suitable i-prefix P≤i.
Furthermore, the children of v correspond to the (i + 1)-prefixes P≤i|c, for all c
in

⋃
k Comp(P≤i, k, n). Then, the complexity of v, denoted by C(v), is the time

taken to generate the set
⋃

k Comp(P≤i, k, n) (as many columns as children of
v), with C(v) = O(1) if v is a leaf. Since f(n) = O(g(n)) and g(n) = |Pol2(n)|,
where f(n) (resp., g(n)) is the number of internal nodes (resp., leaves) of T (n),
it follows that the algorithm is CAT if one proves that C(T (n)) = O(|T (n)|),
where C(T (n)) =

∑
v∈T (n) C(v). Indeed, it holds the following result.

Theorem 1. C(T (n)) = O(|T (n)|).

5 Conclusions

This paper further deepens the new approach to polyominoes generation started
in [7], by presenting a new CAT generation algorithm for Pol2(n), which takes
linear space. We strongly believe that all conceptual obstacles have been detected
and that our approach might lead to a CAT algorithm working in linear space
for the generation of the full set Pol(n).

References

1. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Math. 154(1–3), 1–25 (1996)

2. Brocchi, S., Castiglione, G., Massazza, P.: On the exhaustive generation of k-convex
polyominoes. Theor. Comput. Sci. 664, 54–66 (2017)

3. Castiglione, G., Massazza, P.: An efficient algorithm for the generation of Z-convex
polyominoes. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014.
LNCS, vol. 8466, pp. 51–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07148-0 6

4. Castiglione, G., Restivo, A.: Reconstruction of L-convex polyominoes. Electron.
Notes Discrete Math. 12, 290–301 (2003)

https://doi.org/10.1007/978-3-319-07148-0_6
https://doi.org/10.1007/978-3-319-07148-0_6

On the Generation of 2-Polyominoes 113

5. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumer-
ation of some classes of convex polyominoes. Electron. J. Comb. 11(1) (2004)

6. Delest, M.P., Viennot, G.: Algebraic languages and polyominoes enumeration.
Theor. Comput. Sci. 34(1–2), 169–206 (1984)

7. Formenti, E., Massazza, P.: From tetris to polyominoes generation. Electron. Notes
Discrete Math. 59, 79–98 (2017)

8. Golomb, S.W.: Checker boards and polyominoes. Am. Math. Monthly 61, 675–682
(1954)

9. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3), 865–
881 (2001)

10. Jensen, I.: Counting polyominoes: a parallel implementation for cluster computing.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra,
J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 203–212. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44863-2 21

11. Mantaci, R., Massazza, P.: On the exhaustive generation of plane partitions. Theor.
Comput. Sci. 502, 153–164 (2013)

12. Mantaci, R., Massazza, P.: From linear partitions to parallelogram polyominoes. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 350–361. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 30

13. Mantaci, R., Massazza, P., Yunès, J.B.: An efficient algorithm for generating sym-
metric ice piles. Theor. Comput. Sci. 629(C), 96–115 (2016)

14. Massazza, P.: On the generation of convex polyominoes. Discrete Appl. Math. 183,
78–89 (2015)

15. Privman, V., Barma, M.: Radii of gyration of fully and partially directed lattice
animals. Z. Phys. B Condens. Matter 57(1), 59–63 (1984)

16. Privman, V., Forgacs, G.: Exact solution of the partially directed compact lattice
animal model. J. Phys. A Math. Gen. 20(8), L543 (1987)

17. Redner, S., Yang, Z.R.: Size and shape of directed lattice animals. J. Phys. A Math.
Gen. 15(4), L177 (1982)

https://doi.org/10.1007/3-540-44863-2_21
https://doi.org/10.1007/978-3-642-22321-1_30

A Local Limit Property for Pattern
Statistics in Bicomponent

Stochastic Models

Massimiliano Goldwurm1, Jianyi Lin2(B), and Marco Vignati1

1 Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy
2 Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates

jianyi.lin@ku.ac.ae

Abstract. We present a non-Gaussian local limit theorem for the num-
ber of occurrences of a given symbol in a word of length n generated
at random. The stochastic model for the random generation is defined
by a rational formal series with non-negative real coefficients. The result
yields a local limit towards a uniform density function and holds under
the assumption that the formal series defining the model is recognized by
a weighted finite state automaton with two primitive components having
equal dominant eigenvalue.

1 Introduction

A classical counting problem concerning formal languages is the evaluation of
the number of occurrences of a given symbol a in a word w of length n generated
at random by a suitable stochastic source. Denoting by Yn such a random vari-
able, traditional goals of interest are the asymptotic evaluation of mean value
and variance of Yn as well as its limit distribution and local limit evaluations for
its probability function. Clearly these properties depend on the stochastic model
used for generating the random text w. Classical models are the Bernoulli and
Markovian ones [11,13]. Here we consider the rational stochastic models, which
are defined by rational formal series in non-commutative variables with coeffi-
cients in R+ [3]. In these models the computation of a random word w can be
done easily in linear time [8] once we know a R+-weighted finite state automaton
that recognizes the series. Such a probabilistic source is rather general since it
includes as special cases the traditional Bernoulli and Markovian models and
also encompasses the random generation of words of length n in any regular
language under uniform distribution.

The problem above is of interest for several reasons. First, it has been studied in
connection with the analysis of pattern statistics and in particular those occurring
in computational biology [3,11–13]. It turns out that evaluating the frequency of
patterns from a regular expression in a random text generated by a Markovian
model can be reduced to determining the frequency of a single symbol in a word
over a binary alphabet generated by a rational stochastic model [3,11].

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 114–125, 2018.
https://doi.org/10.1007/978-3-319-94631-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_10&domain=pdf

Pattern Statistics in Bicomponent Stochastic Models 115

Moreover, it is well-known that the average number of occurrences of sym-
bols in words of regular and context-free languages plays a relevant role in the
analysis of the descriptional complexity of languages and computational models
[5,6]. Clearly the limit distributions of these quantities (also in the local form)
yield a more complete information and in particular they allow to evaluate their
dispersion around the average values.

Our problem is also related to the asymptotic estimate of the coefficients
of rational formal series in commutative variables. In particular the local limit
properties of Yn enabled to show that the maximum coefficients of monomials
of size n for some of those series is of the order Θ(nk−3/2λn) for λ ≥ 1 and
any positive k ∈ N [4, Corollary 16]. Similar consequences hold for the study
of the degree of ambiguity of rational trace languages (subset of free partially
commutative monoids) [3].

The asymptotic behaviour of Yn assuming the rational stochastic model
defined by a series r depends on the finite state automata that recognize r. The
main results known in the literature concern the case when such an automaton
has a primitive transition matrix. In this case asymptotic expressions for the
mean value E(Yn) and the variance var(Yn) are known. In particular, there is a
real value β, 0 < β < 1, such that E(Yn) = βn + O(1) and a similar result holds
for var(Yn). Under the same hypothesis it is also proved that Yn has a Gaussian
limit distribution (i.e. it satisfies a central limit theorem) and it admits local
limit properties intuitively stating that its probability function approximates a
normal density [3,4].

The properties of Yn have been studied also when the transition matrix
consists of two primitive components. A variety of results on the asymptotic
behaviour of Yn are obtained in this case [7], but none of them concerns local limit
properties. Here, we extend the previous results by showing a non-Gaussian local
limit theorem that holds assuming that the two components have equal dominant
eigenvalue while the main constants of the average value, β1 and β2 (associated
with the first and the second component, respectively) are different. Under these
hypotheses, it is known that Yn/n converges in distribution to a random variable
U uniformly distributed over the interval [min{β1, β2},max{β1, β2}] [7]. In the
present work, assuming a further natural aperiodicity condition on the transi-
tion matrix, we prove that, as n grows to +∞ and for any integer expression
k = k(n) such that k/n converges to a value x different from β1 and β2, we have
nPr(Yn = k) = fU (x) + o(1), where fU is the density function of the uniform
random variable U defined above.

The proof of our result is based on the analysis of the characteristic function
of Yn and it is obtained by adapting to our settings the so-called Saddle Point
Method, traditionally used for proving Gaussian local limit properties [9].

The material we present is organized as follows. In Sect. 2 we recall the ratio-
nal stochastic model and other preliminary notions. In Sect. 3 we revisit the prop-
erties of Yn when the transition matrix of the automaton is primitive (Gaussian
case). In Sect. 4 we introduce the bicomponent model and prove the main result

116 M. Goldwurm et al.

comparing it with the convergence in distribution given in [7]. In the last section
we discuss possible extensions and future work.

2 Preliminary Notions

In this section we give some preliminary notions and define our problem.
Given the binary alphabet {a, b}, for every word w ∈ {a, b}∗ we denote by

|w| the length of w and by |w|a the number of occurrences of a in w. For each
n ∈ N, we also represent by {a, b}n the set {w ∈ {a, b}∗ : |w| = n}. A formal
series in the non-commutative variables a, b with coefficients in the set R+ of
non-negative real numbers is a function r : {a, b}∗ → R+, usually represented in
the form r =

∑
w∈{a,b}∗(r, w)w, where each coefficient (r, w) is the value of r at

w. The set R+〈〈a, b〉〉 of all such formal series forms a semiring with respect to the
operations of sum and Cauchy product. A series r ∈ R+〈〈a, b〉〉 is called rational
[14] if for some integer m > 0 there is a monoid morphism μ : {a, b}∗ → R

m×m
+

and two arrays ξ, η ∈ R
m
+ , such that (r, w) = ξ′μ(w)η, for every w ∈ {a, b}∗. In

this case, as the morphism μ is generated by matrices A = μ(a) and B = μ(b),
we say that the 4-tuple (ξ,A,B, η) is a linear representation [2] of r.

Now, consider a rational formal series r ∈ R+〈〈a, b〉〉 with linear representation
(ξ,A,B, η) and let μ be the morphism generated by A and B. Assume that the
set {w ∈ {a, b}n : (r, w) > 0} is not empty for every positive integer n. Then we
can consider the probability measure Pr over the set {a, b}n given by

Pr(w) =
(r, w)

∑
x∈{a,b}n(r, x)

=
ξ′μ(w)η

ξ′(A + B)nη
∀ w ∈ {a, b}n

Note that, if r is the characteristic series of a language L ⊆ {a, b}∗ then Pr is the
uniform probability function over the set L ∩ {a, b}n. Moreover, it is easy to see
that any Bernoullian or Markovian source, for the random generation of words
in {a, b}∗, produces strings in {a, b}n with probability Pr for some rational series
r ∈ R+〈〈a, b〉〉. We also recall that there are linear time algorithms that on input
n generate a random word in {a, b}n according with probability Pr [8].

Then we can define the random variable (r.v.) Yn representing the number
of occurrences of the symbol a in a word w chosen at random in {a, b}n with
probability Pr(w). In this work we are interested in the asymptotic properties
of {Yn}. It is clear that, for every k ∈ {0, 1, . . . , n},

pn(k) := Pr(Yn = k) =

∑
|w|=n,|w|a=k(r, w)
∑

w∈{a,b}n(r, w)

Since r is rational also the previous probability can be expressed by using its
linear representation. It turns out that

pn(k) =
[xk]ξ′(Ax + B)nη

ξ′(A + B)nη
∀ k ∈ {0, 1, . . . , n} (1)

Pattern Statistics in Bicomponent Stochastic Models 117

where [xk]q(x) denotes the coefficient of xk in a polynomial q ∈ R[x]. For sake of
brevity we say that Yn is defined by the linear representation (ξ,A,B, η). Then
the distribution of each Yn can be characterized by function hn(z) given by

hn(z) = ξ′(Aez + B)nη

Indeed, setting M = A + B, the moment generating function of Yn is given by

Fn(z) =
n∑

k=0

pn(k)ezk =
ξ′(Aez + B)nη

ξ′Mnη
=

hn(z)
hn(0)

∀ z ∈ C

This leads to determine mean value and variance of Yn as

E(Yn) = F ′
n(0) =

h′
n(0)

hn(0)
, V ar(Yn) =

h′′
n(0)

hn(0)
−

(
h′

n(0)
hn(0)

)2

(2)

Analogously, the characteristic function of Yn is given by

Ψn(t) =
n∑

k=0

pn(k)eitk =
ξ′(Aeit + B)nη

ξ′Mnη
=

hn(it)
hn(0)

∀ t ∈ R (3)

It turns out that the limit distribution of Yn depends on the properties of the
matrix M = A + B. A relevant case occurs when M is primitive (i.e. ∃k ∈ N :
Mk > 0). In this case it is known that Yn has a Gaussian limit distribution [1,3]
and satisfies a local limit theorem (in the sense of De Moivre - Laplace Theorem
[10]) we recall in the next section.

3 Primitive Case

In this section we consider the case when M = A + B is a primitive matrix [15]
and recall some properties proved in [3,4,11] that are useful in the sequel.

Since M is primitive, by Perron-Frobenius Theorem, it admits a real eigen-
value λ > 0 that is greater than the modulus of any other eigenvalue of M . Thus,
we can consider the function u = u(z) implicitly defined by the equation

Det(Iu − Aez − B) = 0

such that u(0) = λ. It turns out that, in a neighbourhood of z = 0, u(z) is
analytic, is a simple root of the characteristic polynomial of Aez + B and |u(z)|
is strictly greater than the modulus of all other eigenvalues of Aez + B.

Now, consider the bivariate matrix-valued function H(x, y) given by

H(x, y) =
+∞∑

n=0

(Ax + B)n yn = (I − (Ax + B)y)−1

Clearly, ξ′H(ez, y)η is the generating function of {hn(z)}n, i.e.

ξ′H(ez, y)η =
+∞∑

n=0

hn(z)yn =
ξ′Adj (I − (Aez + B)y) η

Det (I − (Aez + B)y)

118 M. Goldwurm et al.

Thus, for every z near 0, the singularities of ξ′H(ez, y)η are the values μ−1 for all
(non-null) eigenvalues μ of Aez + B and hence u(z)−1 is its (unique) singularity
of minimum modulus. Then, by the properties of u(z) one can get the following

Proposition 1 ([3]). If M is primitive then there are two positive constants c,
ρ and a function r(z) analytic and non-null at z = 0, such that for every |z| ≤ c

hn(z) = r(z) u(z)n + O(ρn)

and ρ < |u(z)|. In particular ρ < λ.

Mean value and variance of Yn can be estimated from Eq. (2). In turns out that

the constants β = u′(0)/λ and γ = u′′(0)
λ −

(
u′(0)

λ

)2

are positive and satisfy the
equalities E(Yn) = βn+O(1) and var(Yn) = γn+O(1) [3]. Explicit expressions
of β and γ are also obtained in [3] that depend on the matrices A, M , and in
particular on λ and the corresponding left and right eigenvectors.

Other properties concern the function y(t) = u(it)/λ used in Sect. 4, defined
for real t in a neighbourhood of 0. By Proposition 1, for any t near 0, y(t)n is
the leading term of the characteristic function Ψn(t). Moreover, for some c > 0
and every |t| ≤ c, the following relations hold [3](1):

|y(t)| = 1 − γ

2
t2 + O(t4), arg y(t) = βt + O(t3), |y(t)| ≤ e− γ

4 t2 (4)

The behaviour of y(t) can be estimated precisely when t tends to 0. For any q
such that 1/3 < q < 1/2 it can be proved that

y(t)n = e− γ
2 t2n+iβtn(1 + O(t3)n) for |t| ≤ n−q (5)

The previous properties can be used to prove a local limit theorem for {Yn}
when M is primitive [3]. The result holds under a further assumption (introduced
to avoid periodicity phenomena) stating that for every 0 < t < 2π.

|μ| < λ for every eigenvalue μ of Aeit + B (6)

Such a property is studied in detail in [4] and is often verified. For instance it
holds true whenever there are two indices i, j such that Aij > 0 and Bij > 0,
or Aii > 0 and Bjj > 0. Intuitively, it corresponds to an aperiodicity property
of the oriented graph defined by matrices A and B concerning the number of
occurrences of the label a in cycles of equal length.

The local limit theorem in the primitive case can be stated as follows.

Theorem 2. Let {Yn} be defined by a linear representation (ξ,A,B, η) such
that the matrix M = A + B is primitive and assume that property (6) holds for
every 0 < t < 2π. Moreover, let β and γ be defined as above. Then, as n tends
to +∞, the following equation holds uniformly for every k = 0, 1, . . . , n,

Pr {Yn = k} =
e− (k−βn)2

2γn√
2πγn

+ o
(

1√
n

)

(7)

1 Here, for every interval I ⊆ R and functions f, g : I → C, by “g(t) = O(f(t)) for
t ∈ I” we mean “|g(t)| ≤ b|f(t)| for all t ∈ I”, for some constant b > 0.

Pattern Statistics in Bicomponent Stochastic Models 119

4 Bicomponent Models

In this section we study the behaviour of {Yn}n∈N in the bicomponent model.
We first recall some notions and properties introduced in [7] for this model: in
particular we need a sort of analogous of Proposition 1 in this case.

Here {Yn}n∈N is defined by a linear representation (ξ,A,B, η) of size m, such
that the matrix M = A+B consists of two primitive components. More precisely,
there are two linear representations (ξ1, A1, B1, η1), (ξ2, A2, B2, η2), of size m1

and m2, respectively, with m = m1 + m2, such that for some A0, B0 ∈ R
m1×m2
+

ξ′ = (ξ′
1, ξ

′
2), A =

(
A1 A0

0 A2

)

, B =
(

B1 B0

0 B2

)

, η =
(

η1
η2

)

(8)

Moreover we assume the following conditions:

(A) The matrices M1 = A1+B1 and M2 = A2+B2 are primitive and we denote
by λ1 and λ2 the corresponding Perron-Frobenius eigenvalues;

(B) ξ1 �= 0 �= η2 and A0 + B0 �= 0;
(C) A1 �= 0 �= B1 and A2 �= 0 �= B2.

Since the two components are primitive the properties presented in the pre-
vious section hold for each of them. In particular, for j = 1, 2, we can define
H(j)(x, y), h

(j)
n (z), uj(z), yj(t), βj , and γj , respectively, as the values H(x, y),

hn(z), u(z), y(t), β, γ referred to component j. Note that condition (C) guaran-
tees that 0 < βj < 1 and 0 < γj for every j = 1, 2, while condition (B) implies
that both components contribute to probability values of Yn.

In such a bicomponent model the limit distribution of {Yn} mainly depends
on whether λ1 �= λ2 or λ1 = λ2. If λ1 > λ2 then Yn−β1n√

γ1n converges in dis-
tribution to a standard normal r.v. (the case λ1 < λ2 is symmetric) [7]. If
λ1 = λ2 and β1 �= β2 then Yn/n converges in distribution to a random variable
U uniformly distributed over the interval [b1, b2], where b1 = min{β1, β2} and
b2 = max{β1, β2} [7, Theorem 15]. This means that, for every x ∈ R,

lim
n→+∞ Pr(Yn/n ≤ x) = Pr(U ≤ x) (9)

However this relation does not give information about the probability that
Yn takes a specific value k ∈ N (possibly depending on n). Here we want to show
that adding a further condition on the model such a probability can be estimated
at least for reasonable expressions k = k(n). To this end, we still consider the case
λ1 = λ2 and β1 �= β2 and assume a further hypothesis analogous to condition (6):
for every 0 < t < 2π

|μ| < λ for all eigenvalues μ of the matrices A1e
it + B1 and A2e

it + B2 (10)

where we set λ = λ1 = λ2.

120 M. Goldwurm et al.

In this case, following [7], the matrix-valued function H(x, y) is given by

H(x, y) =
+∞∑

n=0

(Ax + B)nyn =
[

H(1)(x, y) G(x, y)
0 H(2)(x, y)

]

, where

H(1)(x, y) =
Adj (I − (A1x + B1)y)
Det (I − (A1x + B1)y)

, H(2)(x, y) =
Adj (I − (A2x + B2)y)
Det (I − (A2x + B2)y)

and G(x, y) = H(1)(x, y) (A0x + B0)y H(2)(x, y). (11)

Thus, the generating function of {hn(z)}n is now given by
∞∑

n=0

hn(z)yn = ξ′H(ez, y)η = ξ′
1H

(1)(ez, y)η1 + ξ′
1G(ez, y)η2 + ξ′

2H
(2)(ez, y)η2

An analysis of the singularities of ξ′H(ez, y)η is presented in [7, Sect. 7.2] where
the following property is proved.

Proposition 3. For some constant c > 0 and every z ∈ C such that |z| ≤ c, we
have

hn(z) = s(z)
n−1∑

j=0

u1(z)ju2(z)n−1−j + O(u1(z)n) + O(u2(z)n)

where s(z) is a function analytic and non-null for |z| ≤ c.

Since u1(0) = λ = u2(0) the previous proposition implies

hn(0) = s(0)nλn−1 + O(λn) (s(0) �= 0) (12)

4.1 Analysis of the Characteristic Function

Here we study the characteristic function Ψn(t) = hn(it)
hn(0) , for −π ≤ t ≤ π. We

split this interval in three sets:

|t| ≤ n−q, n−q < |t| < c, c ≤ |t| ≤ π

where c and q are positive constants and 1
3 < q < 1

2 . We observe that such a
splitting is typical of the “Saddle Point Method”, and it is often used to derive
local limit properties in the Gaussian case [9].

Proposition 4. For every 0 < c < π there exists 0 < ε < 1 such that

|Ψn(t)| = O(εn) for all c ≤ |t| ≤ π.

Proof. From Eq. (11) it is clear that, for every z ∈ C, the singularities of the
generating function ξ′H(ez, y)η are the inverses of the eigenvalues of the matrices
(A1e

z + B1) and (A2e
z + B2). Then, by condition (10), for every 0 < c < π, all

singularities of ξ′H(eit, y)η, for any c ≤ |t| ≤ π, are in modulus greater than a
value τ−1 such that 0 < τ < λ, and hence |hn(it)| = O(τn). Thus, by equality
(12), for some 0 < ε < 1 we have

|Ψn(t)| =
∣
∣
∣
∣
hn(it)
hn(0)

∣
∣
∣
∣ =

O(τn)
Θ(nλn)

= O(εn) for any c ≤ |t| ≤ π ��

Pattern Statistics in Bicomponent Stochastic Models 121

Now, let us study Ψn(t) for t in a neighbourhood of 0. We recall that in such
a set both functions y1(t) = u1(it)/λ and y2(t) = u2(it)/λ satisfy equations (4).
Then, for some c > 0 and every |t| ≤ c, we have

y1(t) = 1 + iβ1t + O(t2), y2(t) = 1 + iβ2t + O(t2) (13)

|y1(t)| ≤ e− γ1
4 t2 , |y2(t)| ≤ e− γ2

4 t2 (14)

Moreover, by Proposition 3 we immediately get, for |t| ≤ c, with t �= 0,

hn(it) = s(it)
u1(it)n − u2(it)n

u1(it) − u2(it)
+ O(u1(it)n) + O(u2(it)n)

Thus from equalities (12), (13) and (14), we have

Ψn(t) =
hn(it)
hn(0)

= (1 + O(t))
(

y1(t)n − y2(t)n

it (β1 − β2) n

)

+
∑

j=1,2

O

(
e− γj

4 t2n

n

)

(15)

This leads to evaluate Ψn(t) in the second set, i.e. for n−q < |t| < c.

Proposition 5. Let 0 < q < 1/2. Then there are two positive constants a, c
such that, for every real t satisfying n−q < |t| < c,

|Ψn(t)| = O
(
e−an1−2q

)

Proof. From Eq. (15), taking a = min{γ1, γ2}/4, we obtain for some c > 0

|Ψn(t)| ≤ |y1(t)|n + |y2(t)|n
Θ(n1−q)

+ O
(
e−at2n/n

)
for all n−q < |t| < c

and by (14) we get |Ψn(t)| = O
(
nq−1e−an1−2q

)
proving the result. ��

Now, let us evaluate Ψn(t) in the first set, that is for |t| ≤ n−q where
1/3 < q < 1/2. First note that, by simple computations, the following relations
can be proved:

∫

|t|≤n−q

O
(
e− γj

4 t2n/n
)

dt = O(n−1−q) = o(n−4/3) for j = 1, 2,

∫

|t|≤n−q

O(t)
y1(t)n − y2(t)n

it (β1 − β2) n
dt =

∫

|t|≤n−q

O(1/n)dt = o(n−4/3)

Therefore, by Eq. (15), for every k ∈ {0, 1, . . . , n} we get
∫

|t|≤n−q

Ψn(t)e−iktdt =
∫

|t|≤n−q

(
y1(t)n − y2(t)n

it (β1 − β2) n

)

e−iktdt + o(n−4/3) (16)

Also observe that both y1(t) and y2(t) satisfy Eq. (5), whence

yj(t)n = e− γj
2 t2n+iβjtn(1 + O(t3)n) for all |t| ≤ n−q, j = 1, 2

Thus, replacing these values in (16), after some computations (similar to the
previous ones) we obtain the following

122 M. Goldwurm et al.

Proposition 6. For every k ∈ {0, 1, . . . , n} and every 1/3 < q < 1/2 we have
∫

|t|≤n−q

Ψn(t)e−iktdt =

∫
|t|≤n−q

(
e− γ1

2 t2n+iβ1tn − e− γ2
2 t2n+iβ2tn

it (β1 − β2) n

)
e−iktdt + o(1/n)

4.2 Main Result

Without loss of generality assume β1 < β2, and denote by fU (x) the density
function of a uniform r.v. U in the interval [β1, β2], that is

fU (x) =
1

β2 − β1
χ[β1,β2](x) ∀x ∈ R

where χI denotes the indicator function of the interval I ⊂ R.
For our purpose we need the following property.

Lemma 7. For k,m ∈ N, k < m, let g : [2kπ, 2mπ] → R+ be a monotone
function, and let Ik,m =

∫ 2mπ

2kπ
g(x) sin(x)dx. Then:

(a) if g is non-increasing we have 0 ≤ Ik,m ≤ 2[g(2kπ) − g(2mπ)];
(b) if g is non-decreasing we have 2[g(2kπ) − g(2mπ)] ≤ Ik,m ≤ 0.

In both cases |Ik,m| ≤ 2|g(2kπ) − g(2mπ)|.
Proof. If g is non-increasing, for each integer k ≤ j < m the following relations
hold

Ij,j+1 =

∫ (2j+1)π

2jπ

g(x) sin(x)dx −
∫ 2(j+1)π

(2j+1)π

g(x)| sin(x)|dx ≤ 2[g(2jπ) − g(2(j + 1)π)]

while 0 ≤ Ij,j+1 is obvious. Thus (a) follows by summing the expressions above
for j = k, . . . , m − 1.

Part (b) follows by applying (a) to the function h(x) = g(2mπ) − g(x). ��
Now, we can state our main result.

Theorem 8. Let (ξ,A,B, η) be a linear representation of the form (8) satisfying
conditions (A), (B), (C) above; also assume λ1 = λ2, β1 �= β2 together with the
aperiodicity condition (10). Then, the r.v. Yn satisfies the relation

lim
n→+∞ n Pr(Yn = k) = fU (x) (17)

for every integer k = k(n), provided that k/n → x for a constant x such that
β1 �= x �= β2 (as n → +∞).

Proof. It is known [10] that the probability pn(k) = Pr {Yn = k}, for every
k ∈ {0, 1, . . . , n}, can be obtained from Ψn(t) by the inversion formula

pn(k) =
1
2π

∫ π

−π

Ψn(t)e−itkdt

Pattern Statistics in Bicomponent Stochastic Models 123

To evaluate the integral above let us split the interval [−π, π] into the three sets

[−n−q, n−q] , {t ∈ R : n−q < |t| < c}, {t ∈ R : c ≤ |t| ≤ π}
with c as in Proposition 5 and some 1/3 < q < 1/2. Then, by Propositions 4, 5,
6, we obtain

pn(k) =
1
2π

∫

|t|≤n−q

(
e− γ2

2 t2n+iβ2tn − e− γ1
2 t2n+iβ1tn

it (β2 − β1) n

)

e−iktdt + o(1/n) (18)

Now, set v = k/n and note that for n → +∞, v approaches a value different
from β1 and β2. Thus, defining

Δn(v) =
∫

|t|≤n−q

ei(β2−v)tn− γ2
2 t2n − ei(β1−v)tn− γ1

2 t2n

i(β2 − β1)t
dt

we have to prove that
Δn(v) = 2πfU (v) + o(1) (19)

Since β1 < β2 set δ = β2 − β1. Then, Δn(v) is the integral of the difference of
two functions of the form

An(t, v) =
ei(β−v)tn− γ

2 t2n − 1
iδt

where β and γ take the values β2, γ2 and β1, γ1, respectively. Using the symme-
tries of real and imaginary part of An, by a change of variable we get

∫

|t|≤n−q

An(t, v)dt =
2
δ

∫ n−q

0

e− γ
2 t2n sin((β − v)tn)

t
dt

=
2
δ

∫ (β−v)n1−q

0

sin(u)
u

du − 2
δ

∫ (β−v)n1−q

0

(

1 − e
− γu2

2(β−v)2n

)
sin(u)

u
du (20)

As
∫ +∞
0

sin(u)
u du = π/2, for n → +∞ the first term converges to π

δ sgn(β − v).
Now we show that the second term of (20) tends to 0 as n → +∞. This term is
equal to

2
δ

∫ (β−v)n1−q

0

Bn(u) sin(u)du (21)

where Bn(u) = u−1

(

1 − e
− γu2

2(β−v)2n

)

. To evaluate (21) we use Lemma 7. Note

that Bn(u) > 0 for all u > 0, and limu→0 Bn(u) = 0 = limu→+∞ Bn(u). More-
over in the set (0,+∞) its derivative is null only at the point un = α|β−v|√n/γ,
for a constant α ∈ (1, 2) independent of n and v. Thus, for n large enough, un

belongs to the interval (0, |β −v|n1−q), Bn(u) is increasing in the set (0, un) and
decreasing in (un,+∞), while its maximum value is

Bn(un) =
1 − e− α2

2

α|β − v|
√

γ

n
= Θ(n−1/2)

124 M. Goldwurm et al.

Defining kn = �un

2π � and K = � |β−v|n1−q

2π �, we can apply Lemma 7 to the intervals
[0, 2kn] and [2kn + 2, 2K], to get

∣
∣
∣
∣
∣

∫ |β−v|n1−q

0

Bn(u) sin udu

∣
∣
∣
∣
∣
≤ 2Bn(2knπ) +

∣
∣
∣
∣
∣

∫ 2(kn+1)π

2knπ

Bn(u) sin udu

∣
∣
∣
∣
∣

+2[Bn(2(kn + 1)π) − Bn(2Kπ)] +
∫ |β−v|n1−q

2Kπ

Bn(u) sin udu

≤ 2Bn(2knπ) + 2Bn(un) + 2[Bn(2(kn + 1)π) − Bn(2Kπ)] + 2Bn(2Kπ)

≤ 6Bn(un) =
c

√
γ

|β − v|√n

where c is a positive constant independent of v and n.
This implies that, for any v approaching a constant different from β1 and β2,

the second term of (20) is O(n−1/2). Therefore, we get

Δn(v) =
2
δ

[∫ (β2−v)n1−q

0

sin u

u
du −

∫ (β1−v)n1−q

0

sin u

u
du

]

+ O(n−1/2)

=
π

δ
[sgn(β2 − v) − sgn(β1 − v)] + o(1) = 2πfU (v) + o(1)

which proves Eq. (19) and the proof is complete. ��
A typical consequence of this result is that nPr(Yn = �xn�) converges to

fU (x) for every real x different from β1 and β2. Intuitively equalities of the form
(17) are considered more precise than convergence in distribution since they
estimate the probability that the n-th random variable of the sequence takes a
specific value rather than lying on an interval.

On the other hand we observe that (without condition (10)) the convergence
in distribution (9) does not imply our equality (17). In particular if there are
periodicity phenomena in the occurrences of letter a it may happen that (9) holds
while (17) does not. For instance if the overall series r of linear representation
(ξ,A,B, η) has non-zero coefficients (r, w) only for words w with even |w|a, then
Pr(Yn = k) = 0 for all odd integers k, and hence (17) cannot hold while (9)
may still be valid. This observation also shows that condition (10) prevents such
periodicity phenomena in the stochastic model.

5 Conclusions

In this work we have presented a non-Gaussian local limit property for the num-
ber of occurrences of a symbol in words generated at random according with a
rational stochastic model defined by a linear representation with two primitive
components. Our result concerns the case when the two components have the
same dominant eigenvalue but different main constants of the respective mean
value (β1 and β2). We expect that in case of different dominant eigenvalues a

Pattern Statistics in Bicomponent Stochastic Models 125

Gaussian local limit property holds, where the main terms of mean value and
variance correspond to the dominant component. On the contrary, we conjec-
ture that results similar to ours (that is of a non-Gaussian type) hold for other
rational stochastic models, defined by assuming different hypotheses on the key
parameters associated to mean value and variance of the statistic of interest (e.g.
β1 = β2), or assuming more than two primitive components with equal dominant
eigenvalues.

References

1. Bender, E.A.: Central and local limit theorems applied to asymptotic enumeration.
J. Comb. Theory 15, 91–111 (1973)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer,
New York (1988)

3. Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: On the number of occurrences
of a symbol in words of regular languages. Theoret. Comput. Sci. 302, 431–456
(2003)

4. Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: Local limit properties for
pattern statistics and rational models. Theory Comput. Syst. 39, 209–235 (2006)

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A hitchhiker’s guide to descrip-
tional complexity through analytic combinatorics. Theory Comput. Syst. 528, 85–
100 (2014)

6. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average complexity of
strong star normal form. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017.
LNCS, vol. 10316, pp. 77–88. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60252-3 6

7. de Falco, D., Goldwurm, M., Lonati, V.: Frequency of symbol occurrences in bicom-
ponent stochastic models. Theoret. Comput. Sci. 327(3), 269–300 (2004)

8. Denise, A.: Génération aléatoire uniforme de mots de langages rationnels. Theoret.
Comput. Sci. 159, 43–63 (1996)

9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

10. Gnedenko, B.V.: Theory of Probability. Gordon and Breach Science Publisher,
Amsterdam (1997)

11. Nicodeme, P., Salvy, B., Flajolet, P.: Motif statistics. Theoret. Comput. Sci.
287(2), 593–617 (2002)

12. Prum, B., Rudolphe, F., Turckheim, E.: Finding words with unexpected frequencies
in deoxyribonucleic acid sequence. J. Roy. Stat. Soc. Ser. B 57, 205–220 (1995)

13. Régnier, M., Szpankowski, W.: On pattern frequency occurrences in a Markovian
sequence. Algorithmica 22(4), 621–649 (1998)

14. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0

15. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, New York (1981).
https://doi.org/10.1007/0-387-32792-4

https://doi.org/10.1007/978-3-319-60252-3_6
https://doi.org/10.1007/978-3-319-60252-3_6
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/0-387-32792-4

Linear-Time Limited Automata

Bruno Guillon(B) and Luca Prigioniero

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
{guillonb,prigioniero}@di.unimi.it

Abstract. The time complexity of 1-limited automata is investigated
from a descriptional complexity view point. Though the model recognizes
regular languages only, it may use quadratic time in the input length. We
show that, with a polynomial increase in size and preserving determinism,
each 1-limited automaton can be transformed into an halting linear-
time equivalent one. We also obtain polynomial transformations into
related models, including weight-reducing Hennie machines, and we show
exponential gaps for converse transformations in the deterministic case.

1 Introduction

One classical topic of computer science is the investigation of computational
models operating under restrictions. Finite automata or pushdown automata, for
instance, can be considered as particular Turing machines in which the access to
memory storage is limited. Other kinds of restrictions follow from finer analysis
of the computational resources an abstract device requires to recognize certain
languages. For example, in the case of Turing machines, classical complexity
classes such as P, NP, LogSpace, etc. are defined by introducing a limit on the
amount of resources, namely time or space, at disposal of the model.

Usually, such limitations reduce the expressive power. For instance, it is well-
known that one-tape nondeterministic Turing machines operating within a space
bounded by the length of the input, namely linear bounded automata, capture
exactly the class of context-sensitive languages, e.g. [5]. Phenomena like this,
where limiting an abstract model reduces its expressiveness to the level of some
standard class, are of great interest, as they provide alternative characteriza-
tions of standard classes. Another example of this kind has been observed by
Hennie in 1965. He indeed proved that deterministic one-tape Turing machines
operating in linear time (i.e., time O(m) over inputs of length m), which can
be converted into linear bounded automata operating in linear time, recognize
exactly the class of regular languages [3]. The result has then been extended
to the nondeterministic case [15], see also [8] for further improvements.1 As
a consequence, each Hennie machine, namely nondeterministic linear bounded
automata working in linear time, is equivalent to some finite automaton. From
the opposite point of view, this means that providing two-way finite automata

1 In nondeterministic linear-time devices each accepting computation has linear length.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 126–138, 2018.
https://doi.org/10.1007/978-3-319-94631-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_11&domain=pdf
http://orcid.org/0000-0003-1630-3404
http://orcid.org/0000-0001-7163-4965

Linear-Time Limited Automata 127

with the ability to overwrite the tape cells does not extend the expressiveness of
the model, as long as the time is linearly bounded in the length of the input.

Unfortunately, Hennie proved that it is undecidable, given a deterministic
one-tape Turing machine, to check whether it works in linear time over all input
strings, namely, whether it is actually a Hennie machine. To avoid this draw-
back, Pr̊uša proposed a variant of Hennie machine, called weight-reducing Hennie
machine, in which the time limitation is syntactic [12]. In this model, each visit
of a cell should overwrite its content with a symbol in a decreasing way, with
respect to some fixed order on the working alphabet. As a consequence, the
number of visits of a cell by the head is bounded by some constant (i.e., not
depending on the input length) whence the device works in linear time over every
input string.

By contrast to Hennie machines, the d-scan limited automata (or simply
d-limited automata) introduced by Hibbard, restrict nondeterministic linear
bounded automata by allowing overwriting of each tape cell during its first d vis-
its only, for some fixed d ≥ 0 [4]. Contrary to weight-reducing Hennie machines,
the head is still allowed to visit a cell after the d-th visit, but cannot rewrite its
content anymore. This allows to use super-linear time. Hence, limited automata
(namely, d-limited automata for some d) live midway between linear-space Tur-
ing machines and weight-reducing Hennie machines. For each d ≥ 2, Hibbard
proved that d-limited automata recognize exactly the class of context-free lan-
guages. He furthermore showed the existence of an infinite hierarchy of determin-
istic d-limited automata, whose first level (i.e., corresponding to deterministic
2-limited automata) has been later proved to coincide with the class of deter-
ministic context-free languages [10]. (See [7] and references therein for further
connections between limited automata and context-free languages.)

Clearly, 0-limited automata are no more than two-way finite automata.
Hence, they characterize the class of regular languages. Wagner and Wechsung
extended this result to the case d = 1: 1-limited automata recognize exactly
the class of regular languages [16]. From that point, the question of the cost
of their simulation by classical finite automata has been studied by Pighizzini
and Pisoni in [9], where a tight doubly-exponential simulation by determinis-
tic one-way finite automata is proved. This cost reduces to a single exponential
when starting from a deterministic 1-limited automaton. Also, an exponential
lower bound, using a single-letter input alphabet, has been obtained in [11], for
the simulation of deterministic 1-limited automata by nondeterministic two-way
finite automata.

Like d-limited automata, 1-limited automata can operate in super-linear time
(cf. Example 1). This contrasts with Hennie machines which operate in linear
time by definition. The question we address in this paper is whether this ability
of 1-limited automata with respect to Hennie machines yields a gap between the
two models in terms of the size of their representations.

We show that, with a polynomial increase in size, each 1-limited automaton
can be transformed into an halting linear-time 1-limited automaton, or alter-
natively, into a weight-reducing Hennie machine, while preserving determinism.

128 B. Guillon and L. Prigioniero

We also observe that the 1-limited automaton resulting from this construction
can be easily transformed into an equivalent one whose behavior can be divided
into two phases: (1) an initial phase consisting in a left-to-right one-way traversal
of the input, during which each input symbol is nondeterministically overwrit-
ten; (2) a second phase consisting in a read-only two-way computation. Similar
behaviors have been considered in the context of regular transductions (i.e.,
transductions computed by, for instance, two-way transducers), because of their
correspondence with global existential quantification in monadic second order
logic, see, e.g. [1]. Using terminology from [1], we define the model of two-way
automaton with common guess in order to capture these particular behaviors
of 1-limited automata. Formally, such machines are not 1-limited automata, but
the composition of an initial common guess (i.e., a nondeterministic marking of
the input symbols using symbols from a finite alphabet, computed, for instance,
by a 1-state letter-to-letter one-way transducer) with a two-way automaton work-
ing on the enriched alphabet. Reformulating the above-mentioned result, each
1- limited automaton can be simulated by a two-way automaton with common
guess of polynomial size. Furthermore, the underlying two-way finite automa-
ton in the resulting device is deterministic, when starting from a deterministic
1-limited automaton. (Be aware that a deterministic two-way automaton with
common guess, is not a deterministic device, since it initially performs a common
guess which is nondeterministic by definition.) A direct consequence of this last
result, is that reversing a 1-limited automaton, i.e., transforming it into another
one recognizing the reverse of its accepted language, has polynomial cost. This
fails in the deterministic case, for which we exhibit an exponential lower bound.
As a consequence, we obtain exponential lower bounds for the simulation of

1 11 1≥

·

≥
≥

Fig. 1. Relationships between the main models studied in the paper. Here, lt and wr

mean linear-time and weight-reducing, while d1-la and (d)hm stand for deterministic
1-la and (deterministic) Hennie machine, respectively. Deterministic and nondeter-
ministic two-way automata with common guess are denoted by 2dfa+cg and 2nfa+cg.
Dotted arrows indicate trivial connections while thick arrows indicate our results.

Linear-Time Limited Automata 129

deterministic weight-reducing Hennie machines or deterministic two-way
automata with common guess by deterministic 1-limited automata. The results
are summarized in Fig. 1.

The paper is organized as follows. In Sect. 2 are gathered the main defini-
tions and notations needed in the subsequent sections. The main ideas of the
construction used for proving our results are detailed in Sect. 3, when consider-
ing the deterministic case. The results obtained therein are then extended to the
nondeterministic case in Sect. 4.

2 Preliminaries

In this section we recall some basic definitions and notations useful in the paper.
In particular, we assume the reader familiar with notions from formal languages
and automata theory (see, e.g., [5]). Given a set S, #S denotes its cardinality
and 2S the family of all its subsets. Given an alphabet Σ, we denote by |w| the
length of a string w ∈ Σ∗, by wr the reversal of w and by ε the empty string. For
a language L ⊆ Σ∗, Lr denotes the reversal of L, namely Lr = {wr | w ∈ L}.

A two-way nondeterministic finite automaton (2nfa) is defined as a quin-
tuple A = (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite
input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states,
and δ : Q × Σ�� → 2Q×{−1,0,+1} is a nondeterministic transition function
where Σ�� denotes the set Σ ∪ {�,�} with the two special symbols �,� /∈ Σ
respectively called the left and the right endmarkers. The input is written on
the tape surrounded by the two endmarkers, the left endmarker being at the
position zero. Hence, on input w, the right endmarker is at position |w| + 1. In
one move, A reads an input symbol, changes its state, and moves the input head
one position backward, forward or keeps it in position depending on whether δ
returns −1, +1 or 0, respectively. Furthermore, the head cannot violate the
endmarkers, except at the end of computation, to accept the input, as now
explained. The machine accepts the input, if there exists a computation path
starting from the initial state q0 with the head on the first tape cell (i.e., scan-
ning the left endmarker) and ending in a final state q ∈ F after violating the
right endmarker. The language accepted by A is denoted by L (A). A 2nfa A
is said to be deterministic (2dfa), whenever #δ(q, σ) ≤ 1, for any q ∈ Q and
σ ∈ Σ��. It is called one-way if its head can never move backward, i.e., if no
transition returns −1. By 1nfas and 1dfas we denote one-way nondeterministic
and deterministic finite automata, respectively.

A 1-limited automaton (1-la) is a tuple A = (Q,Σ, Γ, δ, q0, F), where Q,
Σ, q0 and F are defined as for 2nfas, Γ is a finite working alphabet such
that Σ ⊂ Γ , δ : Q × Γ�� → 2Q×Γ��×{−1,0,+1} is the nondeterministic
transition function where Γ�� denotes the set Γ ∪ {�,�} with �,� /∈ Γ
the left and the right endmarkers as for 2nfas. In one move, according to δ, A
reads a symbol from the tape, changes its state, replaces the symbol just read
by a new symbol, and moves its head one position backward or forward or keeps
it in place. However, replacing symbols is subject to some restrictions, which,

130 B. Guillon and L. Prigioniero

essentially, allow to modify the content of a cell during the first visit only. Tech-
nically, symbols from Σ shall be replaced by symbols from Γ \Σ, while symbols
from Γ�� \ Σ are never overwritten. In particular, at any time, both special
symbols � and � occur exactly once on the tape and exactly at the respective
left and right boundaries. Acceptance for 1-las as well as deterministic 1-las
are defined exactly as for 2nfas, and the language accepted by a given 1-la A
is denoted by L (A).

Some 1-las have a particular behavior, which can be decomposed into
two phases. In the first phase, they nondeterministically rewrite the content
of the whole tape during a left-to-right traversal of the input. Then, in the
second phase, they perform a two-way read-only computation over the over-
written tape. To formally define this kind of 1-las, we introduce the following
model. A 2nfa(resp.2dfa) with common guess (2nfa+cg, resp.2dfa+cg)2 is a
tuple 〈A, Σ,Δ〉 where Σ and Δ are two alphabets and A is a 2nfa (resp. 2dfa)
over the product alphabet Σ × Δ. The model is aimed to recognize languages
from Σ∗. Its dynamics is defined as for two-way automata, but a nondetermin-
istic pre-computation initially marks each input symbol with a symbol from Δ.
Hence, the read-only automaton A has access to both the input symbol and the
guessed additional information. The language accepted, denoted L (〈A, Σ,Δ〉),
is defined as the projection, denoted π1, of L (A) to the alphabet Σ, i.e.,
L (〈A, Σ,Δ〉) = π1(L (A)). In other words, a word is accepted by 〈A, Σ,Δ〉
if for some guess, the enriched word is accepted by A. We point out that, due
to the common guess, 2dfa+cg’s are nondeterministic devices.

For each of the above-defined models, a configuration is represented as a
string z · p · z′, meaning that p is the current state, zz′ ∈ �Π∗� is the content
of the tape (here Π denotes the alphabet Σ, Γ , or Σ × Δ depending on the
model under consideration) and the head is scanning the first symbol of z′.
The transition relation between configurations is denoted by �, and its reflexive-
transitive closure by �∗. Notice that, in case |z′| = 0, the machine has reached
the end of the computation. We also represent partial configurations as u ·p ·v,
where p is the current state and uv ∈ {ε,�}Π∗{ε,�} is a factor of the tape
content. The relations � and �∗ naturally extend onto partial configurations.

For each model under consideration, we evaluate its size as the total number
of symbols used to define it. Hence, the size of n-state 2nfas, 1-las or 2nfa+cg’s
are given by some polynomial in the parameters n, #Σ, and possibly #Γ or #Δ.

Example 1. We consider the language

Ln = {x0x1 · · · xk | k ∈ N, xi ∈ {a, b}n
, #{i > 0 | xi = x0} is odd}.

A deterministic 1-la An may recognize Ln as follows. It first overwrites the
factor x0, replacing each input symbol with a marked copy. Then, An repeats a
subroutine which overwrites a factor xi with some fixed symbol
, while check-
ing in the meantime whether xi equals x0 or not. This can be achieved as fol-
lows. Before overwriting the j-th symbol of xi, first, An, with the help of a
2 2dfa+cgs also correspond to synchronous two-way deterministic finite verifiers [6].

Linear-Time Limited Automata 131

counter modulo n, moves the head leftward to the position j of x0 and stores
the unmarked scanned symbol σ in its finite control; second, it moves the head
rightward until reaching the position j of xi, namely, the leftmost position that
has not been overwritten so far. At this point, An compares the scanned symbol
(i.e., the j-th symbol of xi) with σ (i.e., the j-th symbol of x0). By count-
ing modulo 2 the number of factors equal to x0, and finally checking that the
input string has length multiple of n, An can decide the membership of the
input to Ln.

It is possible to implement An with a number of states linear in n and #Σ+1
working symbols. Since for each position of a factor xi, i > 0, the head has to
move back to the factor x0, we observe that An works in quadratic time in the
length of the input string.

3 A Linear-Time Simulation for Deterministic 1-LAs

If a linear-space Turing machine can visit a tape cell only a constant number of
times, it necessarily works in linear time. Conversely, Turing machines working in
linear time (i.e., Hennie machines), have been shown to visit each tape cell only a
constant number of times during a computation [3]. This contrasts with the case
of 1-las, which can use quadratic time, as shown in Example 1. However, our
main contribution states that, with a polynomial increase in size of the model, we
can recover the above property, and therefore obtain equivalent 1-las working
in linear time.

Theorem 1. For each deterministic 1-la A, there exists an equivalent deter-
ministic 1-la A′ satisfying:

1. A′ has polynomial size with respect to A;
2. in every computation of A′, each tape cell is visited a number of times which

is bounded by some polynomial in the size of A;
3. A′ works in linear time: on every input string w, it halts within O(|w|) steps.

Proof. Clearly, Item 3 is implied by Item 2. It remains to prove that Item 2
can be achieved, while keeping a polynomial size of the device, namely Item 1.
The key idea is to ensure that, in any computation, the simulating device works
in a “virtual” window of fixed size, that is shifted along the configuration in a
one-way manner. More precisely, in every computation and for each cell c, there
exists a time t after which c is not visited anymore and furthermore, at this
time, the rightmost cell that has been overwritten is at bounded distance to the
right of c. This requires to detect local loops, that, thanks to this local window
boundaries on space, can be done by using a polynomial number of states.

In [9], the authors presented a construction to simulate any deterministic
1-la A by a 1dfa A′′, using classic ideas from the simulation of 2dfas by
1dfas [13].The main ingredient is to store in the finite control of A′′, a “transi-
tion table” describing the possible behaviors of A that may occur to the left of
the current head position. Since the part of the tape to the left of the cur-
rent head position has necessarily already been visited, its “frozen” content

132 B. Guillon and L. Prigioniero

belongs to �(Γ \ Σ)∗. Hence, the above-mentioned behaviors to the left of the
current head position, are read-only computations. To represent them, for each
word z′X ∈ �(Γ \ Σ)∗ with |X| = 1, a function τz′X : Q → Q, where Q denotes
the set of states of A, is considered. The function maps a state p to a state q,
if, starting from the state p with the head scanning the last symbol of z′X, A
eventually reaches the state q one cell to the right of z′X. Formally,

τz′X(p) = q if z′ · p · X �∗ z′X · q.

By determinism of A, τz′X is a function which is partial in general.3 We com-
plete it by setting all undefined images to some fixed symbol ⊥ /∈ Q. With the
information of τz′X , A′′ has no need to read the part of the tape containing z′X,
that is, to move its head leftward. Moreover, as acceptance is done by violat-
ing the right endmarker, if the configuration z′ · p · X occurs in some accepting
computation, then τz′X(p) ∈ Q. Hence, A′′ cannot miss accepting computa-
tions. Finally, given a string x ∈ (Γ \ Σ)∗, we can construct τz′Xx from τz′X by
scanning x.

In [9], the table of size (n+1)n corresponding to the function τz′X was stored
in the finite control of the simulating 1dfa and it was updated at each step.
This yielded an exponential number of states for the simulating device (that was
shown to be necessary for the considered simulation). Here, as our simulating
device A′ is a deterministic 1-la, we take advantage of its ability to write on the
tape, and we store the table onto the n cells following the last position of z′X.
Thus, the i-th position to the right of the tape part containing z′X will contain
the image of the i-th state of A by τz′X , as part of its written symbol. However,
updating the table when moving to the right is done block by block rather than
cell by cell, for a decomposition of the input into blocks of length #Q. We
consider the cell containing the left endmarker as a whole block, while the last
block containing the right endmarker may be shorter than #Q.

We now gather the two ideas presented above. Let Q = {q0, q1, . . . , qn−1} be
the set of states of A, ⊥ /∈ Q be a fixed symbol and Q⊥ denote the set Q ∪ {⊥}.
At any time in a computation of A we consider a “virtual window” of size 2n
which covers two successive blocks of length n = #Q. The right block covered by
the window contains the leftmost cell that has not been visited so far, to which
we refer as current frontier. A typical situation is depicted in Fig. 2.

In order to simulate A, the linear-time 1-la overwrites each block with a
word x̃ ∈ ((Γ \ Σ) × Q⊥)n whose projection to (Γ \ Σ) is the word x written
by A on the corresponding block, and the projection to Q⊥ is exactly the table τz,
where z is the content of the tape to the left of the block. (In Fig. 2, z = �w
when considering the left block covered by the window, whose “frozen” content
is x.) Roughly, when the window covers such a block as left part, A′ has to fill

3 τz′X(p) is undefined if one of the two following cases of the computation starting
in z′ · p · X occurs: either, after a finite number of steps, no successive transition is
defined (incompleteness of A), or the computation eventually enters a deterministic
loop (non-haltingness of A).

Linear-Time Limited Automata 133

� w x y u v �

0 m+ 1

Fig. 2. Typical description of the window during a computation of A: m denotes the
length of the input word, the current frontier occurs in the right block as first position
of u, w ∈ ((Γ \ Σ)n)∗, x ∈ (Γ \ Σ)n, y ∈ (Γ \ Σ)∗, u ∈ Σ+ with |yu| = n, and v ∈ Σ∗.

the next block, cell by cell, with τzx. To this end, it has read-only access to the
left block, containing all the required information, namely τz and x. In parallel,
A′ should also recover the simulated computation of A. As soon as the right
block is completely filled, the window is shifted to the right, in such a way that
it covers the block just treated (as left part) and its successor (as right part).

We now describe the formal implementation of the above-explained proce-
dure. By using a state component of size 2n, named relative position, A′ can
store the exact position of its head relative to the current window. We represent
it as a pair (i, s), where i ∈ {0, . . . , n − 1} is the position in the scanned block of
length n and s ∈ {l,r} is equal to l (resp. r) if the head is scanning a position
in the left (resp. right) block of the window. We suppose that the component is
updated at each head move. Using this component, A′ can avoid moving to the
left of the current window. More precisely, from a relative position (0, l) (i.e.,
the leftmost position covered by the window), in order to simulate a backward
move of A from p to q, A′ enters a special mode to determine the state τz(q)
(if it exists), where z is the content of the tape to the left of the window. Hence,
it simulates not only the backward step from p to q, but also the complete
computation segment to the left of the window from state q, namely, it simu-
lates z′X · p � z′ · q · X �∗ z′X · τz(q), where z = z′X. This special mode, called
readFromTable, which starts and ends in relative position (0, l), consists in a
simple read of the table τz that has been written on the left block covered by
the current window (in the factor x̃ corresponding to the factor x in Fig. 2).

In addition to the relative position, A′ stores in its finite control the relative
position of the current frontier, to which we refer as relative frontier. Since this
position always occurs in the right block of the window, it is enough to represent
it as an index ρ ∈ {0, . . . , n − 1}. Much like the relative position component, we
suppose that it is updated each time a new cell is visited. Observe that such
updates are increments modulo n. As explained below, incrementing ρ = n − 1
means shifting the window n cells to the right. Using both ρ and (i, s), A′ can
ensure that entering a cell for the first time, may be done only once all necessary
information (that is required to determine the symbol to write on the cell at its
first visit) has been gathered. This information corresponds to a pair (q, τzx(qρ)),
where q is the state entered by A when visiting for the first time the frontier

134 B. Guillon and L. Prigioniero

cell in the simulated computation, and zx is the content of the tape to the left
of the right block of the current window.

We now describe the subroutine simulateLeft that is used for recovering
this information. The procedure takes a state p as argument and starts from and
ends in some relative position (i, s) which indicates either one cell to the left of
the right block, or one cell to the left of the frontier. Notice that the two posi-
tions coincide when ρ = 0. Hence, (i, s) belongs to {(n − 1, l), (ρ − 1,r)}. Denot-
ing γ ∈ (Γ \ Σ) the symbol contained in this cell, the procedure returns q ∈ Q⊥
such that τzx′γ(p) = q, where zx′ is the content of the tape to the left of the
relative position (i, s). (In Fig. 2, z = �w and x′γ is equal to x or to xy, respec-
tively if (i, s) is equal to (n − 1, l) or to (ρ − 1,r).) During the computation,
simulateLeft has access to the content of the window up to position (i, s).
It basically performs a direct simulation of A on the corresponding part of the
tape, which uses the procedure readFromTable in order to simulate (in one step)
computations that occur to the left of the window, as explained above. More-
over, if zx′ · p · γ �∗ zx′γ · q in A, namely if q = τzx′γ(p) = ⊥, then it halts in
the relative position (i, s), before the last step of the simulated computation. At
this point, it is possible to determine the return value q. The direct simulation
might fail for two reasons: (1) the simulation halts on some previous position
(incompleteness of A); (2) the simulation enters a deterministic loop and never
exits (non-haltingness of A). For the first case, it is sufficient to enter a sub-mode
which moves the head to the right until reaching the relative position (i, s) and
returns ⊥. The second case requires to detect loops. Since the simulating com-
putation takes place in a read-only window of size at most 2n, any loop-free
computation has length bounded by some polynomial of degree 2. Hence, by
using a clock of size O(n2), we can enforce the procedure to halt. Only runs that
halted before this time limit may return a state value, while “killed” runs will
return ⊥.4

Hence, before visiting for the first time the cell at relative position (ρ,r):

first, A′ calls simulateLeft(p) from the position (ρ − 1,r), and saves its
return value q in its finite control, where p is the state that was entered by A
when visiting for the first time the cell at relative position (ρ − 1,r) in the
simulated computation;

then, A′ calls simulateLeft(qρ) from the position (n − 1, l), and stores the
returned value r in its finite control.

Once A′ has gathered the pair of states (q, τzx(qρ)) = (q, r), it moves to the cell
at relative position (ρ,r), and reads the input symbol σ ∈ Σ ∪ {�}. If σ = �,
A′ calls simulateLeft(q) and accepts, after violating the endmarker, if the
return value is a final state of A (it rejects otherwise). If σ = �, A′ writes the
symbol (r, γ) where γ ∈ (Γ \ Σ) is the symbol returned by δ(q, σ), and repeats
4 We could do a finer construction, based on Sipser’s backward construction [14],

which has linear cost (without counting the relative position and relative frontier
components) instead of the expensive O(n3) cost of the clocked simulation presented
here. For an adaptation to finite automata, see [2].

Linear-Time Limited Automata 135

the procedure with the updated relative frontier. In the case ρ = n − 1, the
window is shifted to the right, in such a way that the head is positioned on
the rightmost cell of its left block. This is formally done by setting the relative
position to (n − 1, l) and the relative frontier to (0,r).

Let us describe the initial configuration of A′. At the beginning of the com-
putation, the head is scanning the left endmarker, which is considered as the
left block of the current window. Hence, the initial relative position and relative
frontier are set to (n − 1, l) and (0,r), respectively. Since the head of A can-
not move backward from the left endmarker, the procedure simulateLeft never
calls the subroutine readFromTable, as long as the window is in its initial place.

We have shown how A′ simulates A in an halting manner, by shifting a
virtual window to the right along its computation, and by restricting local head
moves to the current window. Moreover, A′ only uses a polynomial number of
states in n, and working alphabet (Γ \ Σ)×Q⊥ ∪ Σ. We now evaluate the time
used by A′. Let fix a cell c. As A′ is loop-free, each time the head visits c
it must have a different state or a different tape content. A tape modification
between two visits of c is restricted to cells from the right block of the current
window containing c. The number of successive tape modifications in a window
is linear in n (after n overwritings, the window is shifted), and c may occur in
two successive windows. Thus, the number of visits to the cell c is bounded by
some polynomial in n. The number of visits to each cell is hence bounded by a
polynomial in n. As a consequence, A′ operates in linear time with respect to
the input length. ��

Linear-time 1-las are particular cases of Hennie machines, hence, it fol-
lows from the above result that any 1-la can be transformed into a Hennie
machine of size polynomial in the size of the 1-la. Using Item 2 we can actually
obtain the stronger result that the obtained 1-la can be transformed into a
weight-reducing Hennie machine. Informally, weight-reducing Hennie machines
are Hennie machines in which each overwriting is decreasing with respect to
some fixed order on the working alphabet. As a consequence, after overwriting a
cell with a minimal symbol, such a machine cannot visit the cell again. See [12]
for formal definition and study of the model. It is also possible to modify the
construction of Theorem1 in order to obtain an equivalent 2dfa+cg.

Corollary 1. For each deterministic 1-la, there exists an equivalent determin-
istic weight-reducing Hennie machine or halting 2dfa+cg of size polynomial in
the size of the 1-la.

Concerning the converse simulation, using the language Ln from Example 1,
we can prove an exponential gap in the deterministic case.

Theorem 2. Let Ln be the language of Example 1. Hence

Ln
r = {xkxk−1 · · · x0 | k > 0, xi ∈ {a, b}n

, #{i > 0 | xi = x0} is odd}.

136 B. Guillon and L. Prigioniero

Then,

1. Ln
r is accepted by a 2dfa+cg, a linear-time nondeterministic 1-la, or a

deterministic weight-reducing Hennie machine of size polynomial in n;
2. any 1dfa recognizing Ln

r requires 22
n

states;
3. any deterministic 1-la recognizing Ln

r requires O(2n) states.

Proof (outline). Example 1 describes a deterministic 1-la recognizing Ln, whose
size is linear in n. By applying Corollary 1, we respectively obtain equivalent
weight-reducing Hennie machine and 2dfa+cg of polynomial size. Both models
can be transformed with a constant increase in size, in order to accept the reverse
of the language, thus proving Item 1. Using a distinguishability argument, we
can prove Item 2. Finally, Item 3 can be deduced from this previous point and
the exponential blowup from deterministic 1-la to 1dfa given in [9]. ��

4 A Linear-Time Simulation for Nondeterministic 1-Las

The techniques presented in the proof of Theorem1 can be used for the non-
deterministic case. However, this time, the table τz does no longer represent a
partial function, but a binary relation on Q, whose size is thus 2n2

. To handle
this size increase, we store the table on the n2 cells following the last cell of the
tape part containing z (one bit by cell). The “virtual” window described in the
previous section is hence extended to the size 2n2.

Theorem 3. For each nondeterministic 1-la A, there exists an equivalent non-
deterministic 1-la A′, satisfying:

1. A′ has polynomial size with respect to A;
2. in every computation of A′, each tape cell is visited a number of times which

is bounded by some polynomial in the size of A;
3. A′ works in linear time: on every input string w, every branch of the compu-

tation of A′ halts within O(|w|) steps.

Proof. Again, Item 2 implies Item 3. The proof that Item 2 can be achieved
while preserving a polynomial size, namely Item 1, is analogous to those given
in the deterministic case (Theorem 1). We emphasize the main differences below.

First, for z ∈ �(Γ \ Σ)∗, a pair (p, q) belongs to the relation τz, if and only
if z′ · p · X �∗ z′X · q where z′X = z with |X| = 1. Hence, the virtual window
is extended to the size 2n2, in order to store a table of size n2 (one bit by cell)
representing a relation τz ⊆ Q × Q. The working alphabet of A′ is therefore set
to (Γ \ Σ)×{0, 1}∪Σ where Γ and Σ are the working and input alphabets of A.

Second, the readFromTable subroutine, which takes a state p as argument,
returns a nondeterministically chosen state q such that the pair (p, q) has
image 1 in the table stored in the left block of the window.5 Also the subroutine
simulateLeft is nondeterministic, as it performs a direct simulation of A, and

5 We implicitly fix a bijection from
{
0, . . . , n2 − 1

}
to Q2.

Linear-Time Limited Automata 137

possibly calls the subroutine readFromTable. As a consequence, the table stored
on the left block of the current window does not encode the complete relation τz

but a subset of it. The reason behind this loss of information, is that checking
the nonexistence of computations from z′ · p · X to z′X · q requires a universal
quantification over computations, for which nondeterminism (which corresponds
to existential quantification over computations) is unsuitable. Nevertheless, the
relation encoded is a subset of τz and when making perfect guesses, it is equal
to τz. Thus, no accepting computation is missed.

We point out that the simulating automaton can still use a clock of polyno-
mial size (but this time, Sipser’s construction cannot apply) to limit the time of
direct simulations of A that necessarily occur in the space bounded locally by
the virtual window. Doing so, the resulting 1-la is halting, has polynomial size
with respect to A, and works in linear time. ��

By analogy to Corollary 1, it follows from Theorem 3:

Corollary 2. For each 1-la, there exists an equivalent weight-reducing Hennie
machine or halting 2nfa+cg of polynomial size.

This last result is of particular interest. Indeed, 2nfa+cg’s are particular cases
of 1-las. (It is not the case for 2dfa+cg’s with respect to deterministic 1-las.)
Hence, Corollary 2 gives a kind of normal form for nondeterministic 1-las.

Acknowledgement. We are very indebted to Giovanni Pighizzini for suggesting the
problem and for many stimulating conversations.

References

1. Bojańczyk, M., Daviaud, L., Guillon, B., Penelle, V.: Which classes of origin graphs
are generated by transducers. In: ICALP 2017. LIPIcs, vol. 80, pp. 114:1–114:13
(2017)

2. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite
automata. Inf. Comput. 205(8), 1173–1187 (2007)

3. Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Comput. 8(6),
553–578 (1965)

4. Hibbard, T.N.: A generalization of context-free determinism. Inf. Comput. 11(1/2),
196–238 (1967)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

6. Kapoutsis, C.A.: Predicate characterizations in the polynomial-size hierarchy. In:
Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp.
234–244. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08019-2 24

7. Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited
automata. Inf. Comput. 259(2), 259–276 (2018)

8. Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Autom.
Lang. Comb. 14(1), 107–124 (2009)

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25(07), 897–916 (2014)

https://doi.org/10.1007/978-3-319-08019-2_24

138 B. Guillon and L. Prigioniero

10. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Funda-
menta Informaticae 136(1–2), 157–176 (2015)

11. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. In: Charlier,
É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 308–319. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62809-7 23

12. Pr̊uša, D.: Weight-reducing hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04921-2 45

13. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

14. Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10(3), 335–
338 (1980)

15. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing
machines. Theor. Comput. Sci. 411(1), 22–43 (2010)

16. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

https://doi.org/10.1007/978-3-319-62809-7_23
https://doi.org/10.1007/978-3-319-04921-2_45
https://doi.org/10.1007/978-3-319-04921-2_45

Cover Complexity of Finite Languages

Stefan Hetzl and Simon Wolfsteiner(B)

Institute of Discrete Mathematics and Geometry, TU Wien,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

{stefan.hetzl,simon.wolfsteiner}@tuwien.ac.at

Abstract. We consider the notion of cover complexity of finite lan-
guages on three different levels of abstraction. For arbitrary cover com-
plexity measures, we give a characterisation of the situations in which
they collapse to a bounded complexity measure. Moreover, we show for
a restricted class of context-free grammars that its grammatical cover
complexity measure w.r.t. a finite language L is unbounded and that the
cover complexity of L can be computed from the exact complexities of
a finite number of covers L′ ⊇ L. We also investigate upper and lower
bounds on the grammatical cover complexity of the language operations
intersection, union, and concatenation on finite languages for several dif-
ferent types of context-free grammars.

1 Introduction

The grammatical complexity of a formal language in the classical sense is the
complexity of a minimal grammar generating this language. Depending on the
type of grammar and the notion of complexity, one obtains a variety of different
grammatical complexity measures. The study of the grammatical complexity of
context-free languages can be traced back to [12], where, among other things,
it was shown that context-free definability with n nonterminals forms a strict
hierarchy. This line of research has been continued in [7,13–15], where, among
others, the number of productions of a grammar has been considered as complex-
ity measure. In [4], a theory of the grammatical complexity of finite languages
in terms of production complexity was initiated by giving a relative succinctness
classification for various kinds of context-free grammars. Investigations along
these lines have been continued in, e.g., [1–3,8,9,21].

We are interested in the cover complexity of a finite language L, i.e., the
minimal number of productions of a grammar G such that L(G) is finite
and L(G) ⊇ L. Note that this condition is similar to (but different from) the
one imposed on cover automata [5,6]: there, an automaton A is sought such
that L(A) ⊇ L, but in addition it is required that L(A) \ L consists only of

Supported by the Vienna Science Fund (WWTF) project VRG12-004 and the
Austrian Science Fund (FWF) project P25160.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 139–150, 2018.
https://doi.org/10.1007/978-3-319-94631-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_12&domain=pdf

140 S. Hetzl and S. Wolfsteiner

words longer than any word in L. Our interest in this problem is primarily moti-
vated by applications in proof theory. As shown in [16], there is an intimate
relationship between a certain class of formal proofs (those with Π1-cuts) in
first-order predicate logic and a certain class of grammars (totally rigid acyclic
tree grammars). In particular, the number of production rules in the grammar
characterises the number of certain inference rules in the proof. This relation-
ship has been exploited for a number of results in proof theory and automated
deduction [17–19]. In particular, [10,11] shows a non-trivial lower bound on the
complexity of cut-introduction. The interest in such a result is partially moti-
vated by the experience that the length of proofs with cuts is notoriously difficult
to control (for propositional logic this is considered the central open problem in
proof complexity [20]). The combinatorial center of this result is the construction
of a sequence of finite word languages which are incompressible in the sense of
the cover formulation of grammatical complexity.

In this paper, we investigate the notion of cover complexity of finite languages
on three different levels. First, in Sect. 3, we consider the cover complexity from
an abstract point of view for arbitrary complexity measures and we characterise
the situations in which it collapses to a bounded measure. Secondly, in Sect. 4,
we consider the cover complexity of a finite language as the minimal number of
productions a context-free grammar needs to cover the language with a finite
language. In particular, we show that a cover complexity measure is unbounded
if it is induced by a class of context-free grammars with a bounded number of
nonterminals on the right-hand side of their productions. Moreover, unbounded-
ness allows to reduce the cover complexity of a finite language L to the minimum
of the exact complexities over a finite number of supersets L′ of L. Thirdly, and
yet more specifically, in Sect. 5, we investigate the grammatical cover complex-
ity of the language operations intersection, union, and concatenation on finite
languages for context-free, (strict) linear, and (strict) regular grammars.

2 Cover Complexity

In this section, we introduce the basic definitions of the notion of cover complex-
ity from both an abstract and grammatical point of view. Moreover, in order
to fix notation and terminology, we also introduce the basic notions of formal
language theory.

For a set A, we write Pfin(A) for the set of finite subsets of A. Let Σ be an
alphabet, then a function μ : Pfin(Σ∗) → N is called Σ-complexity measure. If
the alphabet is irrelevant or clear from the context, we will just speak about a
complexity measure. Let μ be a Σ-complexity measure. The cover complexity
measure induced by μ is the Σ-complexity measure μc defined as

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

Note that the minimum is well-defined even though there are infinitely many L′ ∈
Pfin(Σ∗) with L ⊆ L′, since μ maps to the natural numbers. We have μc(L) ≤
μ(L), for all L ∈ Pfin(Σ∗). Moreover, for every L ∈ Pfin(Σ∗), there is an L′ ⊇ L

Cover Complexity of Finite Languages 141

such that μc(L) = μ(L′). A Σ-complexity measure μ is called bounded if there
is a k ∈ N such that μ(L) ≤ k, for all L ∈ Pfin(Σ∗), and unbounded otherwise.

A context-free (CF) grammar is a quadruple G = (N,Σ,P, S), where N
and Σ are disjoint finite sets of nonterminals and terminals, respectively, S ∈ N
is the start symbol, and P is a finite set of productions of the form A → α,
where A ∈ N and α ∈ (N ∪ Σ)∗. Let A be a nonterminal, then a produc-
tion with A on its left-hand side is called A-production. The set of all words
of length at most k, for k ≥ 0, over Σ is denoted by Σ≤k. We also con-
sider further restrictions of context-free grammars: a context-free grammar is
called linear context-free (LIN) if all productions in G are of the form A → α,
where α ∈ Σ∗(N∪{ε})Σ∗; a context-free grammar is called right-linear or regular
(REG) if all productions in G are of the form A → α, where α ∈ Σ∗(N ∪ {ε}).
Moreover, a context-free grammar is called strict linear (SLIN) if all produc-
tions are of the form A → aBb or A → c, where B ∈ N and a, b, c ∈ Σ≤1.
Similarly, a context-free grammar is called strict regular (SREG) if all produc-
tions are of the form A → aB or A → b, where B ∈ N and a, b ∈ Σ≤1.
We will also write SREG, REG, . . . for the set of strict regular, regular,
. . . grammars and define Γ = {SREG,REG,SLIN,LIN,CF}. As usual, the
derivation relation of G is denoted by ⇒G and the reflexive and transitive
closure of ⇒G is written as ⇒∗

G. If the grammar is clear from the context,
we will often omit the subscript G. The language of a grammar G is defined
as L(G) = {w ∈ Σ∗ | S ⇒∗

G w }. We say that a context-free grammar G covers
a language L if L(G) ⊇ L. The size of a context-free grammar G = (N,Σ,P, S)
is defined as |G| = |P |. Let L ∈ Pfin(Σ∗) and X ∈ Γ . Then the X-complexity
of L is

Xc(L) = min{ |G| | G ∈ X,L = L(G) }.

Clearly, Xc is a complexity measure and induces the cover complexity measure

Xcc(L) = min{Xc(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

Consequently, we say that G is a minimal X-grammar covering (or generating,
respectively) the finite language L if L(G) is finite, L ⊆ L(G) (or L = L(G),
respectively), and |G| = Xcc(L) (or |G| = Xc(L), respectively). Note that, in
general, there may be more than one minimal X-grammar for a given language L.
The following result shows the existence of regular-incompressible sequences of
finite languages and has been proved in [10,11].

Theorem 1. For all n ≥ 1, there is a language Ln with |Ln| = n = REGcc(Ln).

On the other hand, for every finite language L, there is a trivial context-free
grammar covering L with a constant number of productions:

Theorem 2. Let L ∈ Pfin(Σ∗), then CFcc(L) ≤ |Σ| + 2.

Proof. Let Σ = {a1, a2, . . . , an}, l = max{ |w| | w ∈ L }, and consider the
grammar G consisting of the productions S → Al, A → a1 | a2 | · · · | an | ε.
Then L(G) = Σ≤l ⊇ L.
�

142 S. Hetzl and S. Wolfsteiner

3 Unboundedness of Cover Complexity Measures

Motivated by the above Theorems 1 and 2, in this section, we will characterise
the situations in which a cover complexity measure collapses to a bounded com-
plexity measure. Before we can give this characterisation, we need some auxiliary
results on “almost inverting” functions from N to N. These will be provided in
Lemmas 1 and 2. A function f : N → N is called bounded if there is a k ∈ N

such that f(n) ≤ k, for all n ∈ N, and unbounded otherwise. The function f is
called monotone if n ≤ m implies f(n) ≤ f(m).

Lemma 1. Let f : N → N be monotone and unbounded, define g : N → N, n �→
min{ i ∈ N | n ≤ f(i) }, then g is well-defined, monotone, unbounded, and, for
all x, y ∈ N: g(x) ≤ y iff x ≤ f(y).

Lemma 2. Let g : N → N be monotone and unbounded, let f : N → N, n �→
max{ i ∈ N | g(i) ≤ n }. Then f is well-defined, monotone, unbounded, and, for
all x, y ∈ N: g(x) ≤ y iff x ≤ f(y).

A complexity measure ρ : Pfin(Σ∗) → N is called reference complexity mea-
sure if ρ is unbounded and L1 ⊆ L2 implies ρ(L1) ≤ ρ(L2). For reference com-
plexity measures, what we have in mind are, e.g., the number of words |L| in
a language or their cumulated lengths ‖L‖ =

∑
w∈L |w|. Let μ be a complexity

measure, then a reference complexity measure ρ is called reference complexity
measure for μ if μ(L) ≤ ρ(L), for all finite languages L. Typical examples for
the above definition include: μ = REGc,CFc, . . . and ρ(L) = |L|, or μ is the
minimal size, that is, symbolic complexity of a regular, context-free, . . . gram-
mar and ρ(L) = ‖L‖. The following theorem provides a characterisation of the
unboundedness of a cover complexity measure.

Theorem 3. Let μ be an unbounded Σ-complexity measure and ρ be a reference
complexity measure for μ, then the following are equivalent:

1. μc is unbounded
2. there is a monotone and unbounded function f : N → N s.t. ρ(L) ≤ f(μ(L)),

for all L ∈ Pfin(Σ∗).
3. there is a monotone and unbounded function g : N → N s.t. g(ρ(L)) ≤ μ(L),

for all L ∈ Pfin(Σ∗).

Proof. 2. ⇒ 3. has been shown in Lemma 1, and 3. ⇒ 2. in Lemma 2.
For 3. ⇒ 1., let L ∈ Pfin(Σ∗), then there is some L′ ∈ Pfin(Σ∗) s.t. L ⊆ L′

and μc(L) = μ(L′). Therefore, μc(L) = μ(L′) ≥3. g(ρ(L′)) ≥mon. g(ρ(L)), which
shows unboundedness of μc based on the unboundedness of g and ρ.

For showing 1. ⇒ 3., we prove the contrapositive. Assume that every
g : N → N s.t. g(ρ(L)) ≤ μ(L), for all L ∈ Pfin(Σ∗), is bounded or not monotone.
Consider h : N → N, n �→ min{μ(L) | ρ(L) ≥ n,L ∈ Pfin(Σ∗) } and note that,
due to the unboundedness of ρ, h is well-defined. Moreover, h(ρ(L)) ≤ μ(L).
For monotonicity, let n ≤ m. Then we have {L ∈ Pfin(Σ∗) | ρ(L) ≥ m ≥ n }
⊆ {L ∈ Pfin(Σ∗) | ρ(L) ≥ n }. Therefore, h(n) = min{μ(L) | ρ(L) ≥ n } ≤

Cover Complexity of Finite Languages 143

min{μ(L) | ρ(L) ≥ m } = h(m). So h is bounded, i.e., there is a k ∈ N

and (Ln)n∈N such that n �→ ρ(Ln) is unbounded, but μ(Ln) ≤ k, for all n ∈ N.
Since μc(Ln) ≤ μ(Ln) ≤ k, μc is bounded too.
�
Theorem 4. Let μ be a complexity measure and ρ be a reference complexity
measure for μ. Then, for every finite language L, there is some b ∈ N such that

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) and ρ(L′) ≤ b }.

Proof. If μc is bounded by k, let b = k. If μc is unbounded, then, by Theorem 3,
there is an unbounded and monotone function g : N → N s.t. g(ρ(K)) ≤ μ(K),
for all finite languages K, and, by Lemma 2, there is an unbounded and monotone
function f : N → N such that g(x) > y iff x > f(y), for all x, y ∈ N. Let b =
f(ρ(L)) and L′′ ⊇ L with ρ(L′′) > f(ρ(L)), then g(ρ(L′′)) > ρ(L), and, since
we have μ(L′′) ≥ g(ρ(L′′)), we obtain μ(L′′) > ρ(L). Moreover, since ρ(L) ≥
μ(L) ≥ μc(L), we have μ(L′′) > μc(L).
�

The above theorem expresses μc in terms of μ and ρ. Depending on ρ, the
set of covers L′ of L that is used to determine μc(L) may or may not be a finite
set. We will analyse the reduction of μc(L) to the value of μ(·) on a finite set
more thoroughly in the next section.

4 Computing Cover Complexity from Exact Complexity

After dealing with complexity measures in an abstract sense in the previous
section, we now come back to applications in the realm of context-free grammars.
In particular, we now focus on the number of productions in various types of
grammars. Hence, we will fix ρ(L) = |L| as reference complexity measure.

The subsequent lemma was already shown in [4] and implies that Xcc, for X ∈
{SREG,REG,SLIN,LIN}, is an unbounded complexity measure.

Lemma 3. Let G be a linear grammar with n productions generating a finite
language, then |L(G)| ≤ 2n−1.

Corollary 1. The measures SREGcc, REGcc, SLINcc, and LINcc are unbounded.

Proof. Define the function f : N → N, n �→ 2n−1. Clearly, f is both mono-
tone and unbounded. By Lemma 3, for all finite languages L ∈ Pfin(Σ∗), we
have ρ(L) = |L| ≤ 2LINc(L)−1 = f(LINc(L)). Hence, by Theorem 3, LINcc is
unbounded. The unboundedness of SREGcc, REGcc, and SLINcc follows from the
fact that LINcc(L) ≤ SLINcc(L) ≤ SREGcc(L) and LINcc(L) ≤ REGcc(L), for all
finite languages L ∈ Pfin(Σ∗).
�
Definition 1. A set X of context-free grammars is called class of context-free
grammars if 1. (N,Σ,P, S) ∈ X and p ∈ P implies that (N,Σ,P \ {p}, S) ∈ X
and 2. X is closed under identifying two nonterminals.

144 S. Hetzl and S. Wolfsteiner

A context-free grammar G = (N,Σ,P, S) is called self-embedding if there is
some A ∈ N such that A ⇒+

G w1Aw2, for w1, w2 ∈ (N ∪ Σ)∗; otherwise G is
called non self-embedding.

Lemma 4. Let X be a class of context-free grammars. If G ∈ X and L(G) is
finite, then there is a non self-embedding G′ ∈ X with |G′| ≤ |G| and L(G′) =
L(G).

The following result shows that Lemma 3 can be generalised from linear to
context-free grammars that contain only a bounded number of nonterminals on
the right-hand side of each of their productions:

Lemma 5. Let G be a grammar with n productions generating a finite language
such that every production of G contains at most k nonterminals on its right-
hand side. Then |L(G)| ≤ n(k+1)n .

Proof Sketch. Since G generates a finite language, by Lemma 4, we can assume,
without loss of generality, that it is non self-embedding. Thus, there is a non-
terminal A whose productions are A → w1 | w2 | . . . | wm with wi ∈ Σ∗,
for 1 ≤ i ≤ m ≤ n. Replacing each occurrence of A by all of the wi yields
a grammar with less nonterminals. By iterating this operation, one obtains a
trivial grammar with the above mentioned bound.
�
Corollary 2. Let X be a class of CFGs with a bounded number of nonterminals
occurring on the right-hand side of each production. Then Xcc is unbounded.

Proof. Let G ∈ X contain n production rules and let k be the bound on the
number of nonterminals occurring on the right-hand side of each production.
Define f : N → N, n �→ n(k+1)n . Clearly, f is both monotone and unbounded.
By Lemma 5, for all finite languages L ∈ Pfin(Σ∗), we have ρ(L) = |L| ≤
Xc(L)(k+1)Xc(L)

= f(Xc(L)). Hence, by Theorem 3, Xcc is unbounded.
�
An immediate consequence of Corollary 2 is that for the class CNF of gram-

mars in Chomsky normal form1, CNFcc is an unbounded complexity measure.
Moreover, by Lemma 5, the number of words generated by a grammar G in CNF
with n productions is bounded above by n3n , i.e., |L(G)| ≤ n3n .

Now, we show that the right-hand side of each production in a minimal
context-free grammar covering a language whose longest word has length � con-
tains at most � terminals.

Lemma 6. Let X be a class of CFGs, L be a finite language, � := max{ |w| |
w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L. Then for all produc-
tions of the form A → u0B1u1B2 · · · Bnun of G with u0, u1, . . . , un ∈ Σ∗, we
have |u0u1 · · · un| ≤ �.

1 A context-free grammar G = (N, Σ, P, S) is said to be in Chomsky normal form if
all productions are of the form A → BC, A → a, or A → ε, where A, B, C ∈ N
and a ∈ Σ.

Cover Complexity of Finite Languages 145

Lemma 7. Let L be a finite language, � := max{ |w| | w ∈ L }, and G be a
minimal LIN-grammar with L(G) ⊇ L. Then max{ |w| | w ∈ L(G) } ≤ |L| · �.
Lemma 8. Let X be a class of CFGs such that every production in an X-grammar
contains at most k ≥ 2 nonterminals on its right-hand side, let L be a finite
language, � := max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇
L. Then max{ |w| | w ∈ L(G) } ≤ � · k|L|.

Proof Sketch. Since G generates a finite language, by Lemma 4, we can assume,
without loss of generality, that it is non self-embedding. Thus, the nontermi-
nals A1, A2, . . . , Ap can be ordered such that every production with left-hand
side Ai only contains nonterminals Aj with i > j. Thus, we show by induction
that every derivation consists of at most

∑p−1
i=0 ki ≤ kp steps. Since p ≤ |G| ≤ |L|

and each derivation step can add at most � new terminals, any word derivable
in G has length at most � · k|L|.
�
Theorem 5. Let X be a class of CFGs such that every production in an
X-grammar contains at most k nonterminals on its right-hand side. Then,
for every finite language L, there is a finite set SL of finite languages such
that Xcc(L) = min{Xc(L′) | L′ ∈ SL }.
Proof. Let G be an arbitrary minimal X-grammar with n productions covering a
finite language L, i.e., Xcc(L) = n, and let � = max{ |w| | w ∈ L }. Clearly, n ≤
|L|. We distinguish two cases. The case k = 1 follows from Lemmas 3 and 7, since
every X-grammar covering L is an X-grammar generating a finite language L′ ⊇
L that satisfies Xc(L′) ≤ |L′| ≤ 2|L|−1 and max{ |w| | w ∈ L′ } ≤ �·|L|. Similarly,
the case k ≥ 2 follows from Lemmas 5 and 8. Hence, the sets

SL,1 = {L′ ∈ Pfin(Σ∗) | L ⊆ L′, |L′| ≤ 2|L|−1,max{|w| | w ∈ L′} ≤ � · |L| }
and, for k ≥ 2,

SL,k = {L′ ∈ Pfin(Σ∗) | L ⊆ L′, |L′| ≤ |L|(k+1)|L|
,max{|w| | w ∈ L′} ≤ � · k|L| }

are finite.
�
So, for a class of CFGs as in Theorem 5, determining the cover complexity

of L boils down to computing the exact complexity on the finite set SL.

5 Bounds on Language Operations

In this section, we will prove upper and lower bounds on the cover complexity of
the operations intersection, union, and concatenation. Since the lower bounds are
hard to show in the cover formulation, we have not yet been able to obtain lower
bounds on union and concatenation for fixed alphabets. The only exceptions
are union in the cases of strict regular and strict linear grammars as well as
concatenation in the case of strict regular grammars. The results of this section
are summarised in Fig. 1, where bold font means that we have matching upper
and lower bounds w.r.t. a fixed alphabet and non-bold means that the bounds
are matching w.r.t. a growing alphabet. For the remainder of this section, let
Δ = Γ \ {CF}.

146 S. Hetzl and S. Wolfsteiner

Xcc(L1 ∩ L2) Xcc(L1 ∪ L2) Xcc(L1L2)

LIN min{ c1, c2 } c1 + c2 min{ d1 + c2, c1 + d2 }
SLIN min{ c1, c2 } c1 + c2 min{ d1 + c2, c1 + d2 }
REG min{ c1, c2 } c1 + c2 c1 + c2

SREG min{ c1, c2 } c1 + c2 c1 + c2

Fig. 1. Summary of results, ci = Xcc(Li) and di = (S)REGcc(Li).

5.1 Intersection

Theorem 6. Let X ∈ Δ and L1 and L2 be finite languages. Then

Xcc(L1 ∩ L2) ≤ min{Xcc(L1),Xcc(L2)}.

Proof. Let Gi be a minimal X-grammar with L(Gi) ⊇ Li, for i ∈ {1, 2}; then
L(Gi) ⊇ L1 ∩ L2. Simply choose G = Gi with |Gi| = min{|G1|, |G2|}.
�
Theorem 7. Let X ∈ Δ. Then there exists a finite alphabet Σ such that for
all m,n ≥ 1, there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ m and Xcc(L2) ≥ n
such that

Xcc(L1 ∩ L2) ≥ min{Xcc(L1),Xcc(L2)}.

Proof. Let Σ be an arbitrary finite alphabet, m,n ≥ 1. From Corollary 1, it
follows that there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ m and Xcc(L2) ≥ n.
Assume, w.l.o.g., Xcc(L1) ≤ Xcc(L2). Define L′

2 = L1 ∪ L2. Then Xcc(L′
2) ≥

Xcc(L2) ≥ Xcc(L1), for otherwise there would be a grammar generating L′
2 ⊇

L2 with less than Xcc(L2) productions. Thus, we clearly have Xcc(L1 ∩ L′
2) =

Xcc(L1) = min{Xcc(L1),Xcc(L′
2) }.
�

5.2 Union

Theorem 8. Let X ∈ Δ and L1 and L2 be finite languages. Then

Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2).

Proof. Let X ∈ Δ and, for i ∈ {1, 2}, Gi = (Ni, Σi, Pi, Si) be a minimal
X-grammar with L(Gi) ⊇ Li and |Gi| = Xcc(Li) s.t. N1 ∩ N2 = ∅. Since Gi

is minimal and non self-embedding, Si does not occur on the right-hand side of
a production in Pi. Let S �∈ N1 ∪ N2 and G = (N1 ∪ N2 ∪ {S}, Σ1 ∪ Σ2, P, S)
where

P = {S → α | S1 → α ∈ P1 or S2 → α ∈ P2 }
∪ {A → α ∈ P1 | A �= S1 } ∪ {A → α ∈ P2 | A �= S2 }.

Clearly, we have L(G) = L(G1) ∪ L(G2) ⊇ L1 ∪ L2 and |G| = |G1| + |G2|, that
is, Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2). Moreover, G1, G2 ∈ X implies G ∈ X.
�

Cover Complexity of Finite Languages 147

If we consider growing alphabets, then we can show that the above upper
bound on the cover complexity of union is tight for all considered grammar types.

Theorem 9. Let X ∈ Δ. Then, for all m,n ≥ 1, there exists a finite alphabet Σ
and finite languages L1 and L2 with Xcc(L1) = m and Xcc(L2) = n such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. Let m,n ≥ 1. Then define Σ = {a1, a2, . . . , am, b1, b2, . . . , bn}, L1 =
{a1, a2, . . . , am}, and L2 = {b1, b2, . . . , bn}. Consequently, L1 ∪ L2 = Σ and,
clearly, Xcc(L1) = m, Xcc(L2) = n, and the language L1∪L2 can only be covered
by a trivial grammar. Therefore, Xcc(L1 ∪ L2) = m + n = Xcc(L1) + Xcc(L2).
�

Now, we prove—with respect to a fixed alphabet—a lower bound on the
strict regular and strict linear cover complexity of union that matches the upper
bound. To do so, we use the fact that in the case of strict regular and strict
linear grammars, there is a connection between the number of productions and
the length of a longest word in the generated finite language.

Lemma 9. Let L ∈ Pfin(Σ∗) and � = max{ |w| | w ∈ L }. Then

SREGcc(L) ≥ � and SLINcc(L) ≥
⌊

�

2
+ 1

⌋

.

Proof Sketch. First, show by induction on the length k of a derivation of v ∈ Σ∗

that k ≥
⌊

|v|
2 + 1

⌋
. Since in a strict linear grammar all right-hand sides of

productions contain at most one nonterminal, no production can occur twice in
such a derivation, for otherwise the generated language would be infinite. As a
consequence, such a derivation uses k distinct productions in order to derive v.
Thus, for some w ∈ Σ∗ with |w| = �, we have k ≥ ⌊

�
2 + 1

⌋
. The SREG-case can

be shown using similar arguments.
�
Theorem 10. Let X ∈ {SREG,SLIN}. Then there exists a finite alphabet Σ
such that for all m,n ≥ 1, there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) = m
and Xcc(L2) = n such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. For X = SREG, let Σ = {a, b} and, for m,n ≥ 1, we define the finite
languages L1 = {am} and L2 = {bn}. Moreover, let L = L1 ∪ L2. Then, from
Lemma 9, we get that SREGcc(L1) ≥ m and SREGcc(L2) ≥ n. It is easy to
see that also SREGcc(L1) ≤ m and SREGcc(L2) ≤ n. Since the words in L1

and L2 do not share a common letter, there can be no production that is used
to derive words from both L1 and L2. Thus, we must have that SREGcc(L) =
SREGcc(L1 ∪ L2) ≥ SREGcc(L1) + SREGcc(L2).

For X = SLIN , let L1 = {a2m−1} and L2 = {b2n−1} and define L = L1∪L2.
Then proceed analogous to the SREG-case using Lemma 9.
�

148 S. Hetzl and S. Wolfsteiner

5.3 Concatenation

Theorem 11. Let X ∈ {SREG,REG} and L1, L2 ∈ Pfin(Σ∗). Then

1. Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≤ min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },
3. SLINcc(L1L2) ≤ min{SREGcc(L1)+SLINcc(L2),SLINcc(L1)+SREGcc(L2) }.
Proof Sketch. Let Gi = (Ni, Σi, Pi, Si) be a minimal X-grammar with L(Gi) ⊇
Li and |Gi| = Xcc(Li), for i ∈ {1, 2}. Assume, without loss of generality, that
N1 ∩ N2 = ∅. First, note that in a right-linear and left-linear grammar all pro-
ductions of the form A → w with w ∈ Σ∗ are used to derive the postfixes and
prefixes of words, respectively.

For X ∈ {SREG,REG}, we construct an X-grammar covering L1L2 by
taking the union P1 ∪ P2 and replacing all productions of the form A → w ∈ P1

with w ∈ Σ∗ by A → wS2. Consequently, Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2).
For X ∈ {SLIN,LIN}, let G(S)REG,i and G(S)LIN,i be minimal (S)REG-

and (S)LIN -grammars covering Li, for i ∈ {1, 2}. Assume that these grammars
have pairwise disjoint sets of nonterminals. We define two (S)LIN -grammars G1

and G2 covering L1L2 as follows: G1 is obtained by taking the union P(S)REG,1∪
P(S)LIN,2 and replacing all productions of the form A → w ∈ P(S)REG,1 with w ∈
Σ∗ by A → wS(S)LIN,2. Similarly, G2 is obtained by taking the union P(S)LIN,1∪
P(S)REG,2 and replacing all productions of the form A → w ∈ P(S)REG,2 with w ∈
Σ∗ by A → S(S)LIN,1w. Then simply take the grammar with the fewest number
of productions out of G1 and G2. Thus, Xcc(L1L2) ≤ min{(S)REGcc(L1) +
(S)LINcc(L2), (S)LINcc(L1) + (S)REGcc(L2)}.
�

The following lemma shows that a grammar covering the concatenation of
two disjoint alphabets (where each contains at least two letters) needs at least
as many productions as there are elements in their (disjoint) union. This lemma
will play an important role in the proof of Theorem 12.

Lemma 10. Let Σ = Σ1 � Σ2 with |Σ1|, |Σ2| ≥ 2. Then for all CFGs G
with L(G) ⊇ Σ1Σ2, we have |G| ≥ |Σ1| + |Σ2|.
Proof Sketch. Proceed by induction on |Σ|, making a case distinction in the base
case |Σ| = 4 and reducing the step case to the induction hypothesis by deleting
productions that contain the new letter.
�
Theorem 12. Let X ∈ {SREG,REG}. Then, for all m,n ≥ 2, there is a finite
alphabet Σ and L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) = m and Xcc(L2) = n s.t.

1. Xcc(L1L2) ≥ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≥ min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2)}.
3. SLINcc(L1L2) ≥ min{SREGcc(L1) + SLINcc(L2),SLINcc(L1) + SREGcc(L2)}.
Proof. Let m,n ≥ 2 and define the alphabet Σ = {a1, a2, . . . , am, b1, b2, . . . , bn}
as well as the languages L1 = {a1, a2, . . . , am}, L2 = {b1, b2, . . . , bn}, and
let X ∈ {SREG,REG}. Then clearly we have Xcc(L1) = m and Xcc(L2) = n.

Cover Complexity of Finite Languages 149

Thus, since every X-grammar is context-free, we have by Lemma 10 that
Xcc(Σ) = Xcc(L1L2) ≥ m + n = Xcc(L1) + Xcc(L2) and (S)LINcc(L1L2) ≥
m + n = min{(S)REGcc(L1) + (S)LINcc(L2), (S)LINcc(L1) + (S)REGcc(L2)}.
�
Theorem 13. There exists a finite alphabet Σ such that for all m,n ≥ 1, there
exist L1, L2 ∈ Pfin(Σ∗) with SREGcc(L1) = m and SREGcc(L2) = n such that

SREGcc(L1L2) ≥ SREGcc(L1) + SREGcc(L2).

Proof. Let Σ = {a} and, for m,n ≥ 1, define L1 = {am} and L2 = {an}. From
Lemma 9, we get SREGcc(L1) ≥ m and SREGcc(L2) ≥ n. It is easy to see that
also SREGcc(L1) ≤ m and SREGcc(L2) ≤ n. Again, by Lemma 9, it follows that
SREGcc(L1L2) ≥ m + n = SREGcc(L1) + SREGcc(L2).
�

6 Conclusion

In this paper, we have investigated cover complexity measures for finite languages
on three different levels and shown that every complexity measure on finite
languages naturally induces a corresponding cover complexity measure. We have
characterised in which situations arbitrary complexity measures thus obtained
are unbounded. Based on these rather abstract results, we have shown that
every class of context-free grammars that allows only a bounded number of
nonterminals on the right-hand side of each production induces an unbounded
production cover complexity measure. This, in turn, entails that the production
cover complexity of a finite language L can be obtained as the minimum of the
exact production complexities of a finite number of supersets L′ of L. Moreover,
we have investigated upper and lower bounds on the production cover complexity
of the language operations intersection, union, and concatenation (see Fig. 1).
Generalising the incompressibility result of [10,11] in a suitable fashion seems
to be a promising starting point for improving the lower bounds from growing
to fixed alphabets. In summary, we believe that the study of the complexity of
finite languages is a fruitful research area with strong ties to both proof theory
and more classical questions of descriptional complexity.

Acknowledgements. The authors would like to thank Markus Holzer and the anony-
mous reviewers for several useful comments and suggestions concerning the results in
this paper.

References

1. Alspach, B., Eades, P., Rose, G.: A lower-bound for the number of productions
required for a certain class of languages. Discrete Appl. Math. 6(2), 109–115 (1983)

2. Bucher, W.: A note on a problem in the theory of grammatical complexity. Theor.
Comput. Sci. 14, 337–344 (1981)

3. Bucher, W., Maurer, H.A., Culik II, K.: Context-free complexity of finite languages.
Theor. Comput. Sci. 28, 277–285 (1984)

150 S. Hetzl and S. Wolfsteiner

4. Bucher, W., Maurer, H.A., Culik II, K., Wotschke, D.: Concise description of finite
languages. Theor. Comput. Sci. 14, 227–246 (1981)

5. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660,
pp. 43–56. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9 4

6. Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages.
Theor. Comput. Sci. 267(1–2), 3–16 (2001)

7. Černý, A.: Complexity and minimality of context-free grammars and languages.
In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 263–271. Springer, Heidelberg
(1977). https://doi.org/10.1007/3-540-08353-7 144

8. Dassow, J.: Descriptional complexity and operations – two non-classical cases. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 33–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 3

9. Dassow, J., Harbich, R.: Production complexity of some operations on context-
free languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS,
vol. 7386, pp. 141–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31623-4 11

10. Eberhard, S., Hetzl, S.: Compressibility of finite languages by grammars. In: Shallit,
J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 93–104. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19225-3 8

11. Eberhard, S., Hetzl, S.: On the compressibility of finite languages and formal
proofs. Inf. Comput. 259, 191–213 (2018)

12. Gruska, J.: On a classification of context-free languages. Kybernetika 3(1), 22–29
(1967)

13. Gruska, J.: Some classifications of context-free languages. Inf. Control 14(2), 152–
179 (1969)

14. Gruska, J.: Complexity and unambiguity of context-free grammars and languages.
Inf. Control 18(5), 502–519 (1971)

15. Gruska, J.: On the size of context-free grammars. Kybernetika 8(3), 213–218 (1972)
16. Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Mart́ın-Vide,

C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28332-1 26

17. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified
cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 240–254. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08587-6 17

18. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified
cuts. Theor. Comput. Sci. 549, 1–16 (2014)

19. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6 19

20. Pudlák, P.: Twelve problems in proof complexity. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 13–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-8 4

21. Tuza, Z.: On the context-free production complexity of finite languages. Discrete
Appl. Math. 18(3), 293–304 (1987)

https://doi.org/10.1007/3-540-48057-9_4
https://doi.org/10.1007/3-540-08353-7_144
https://doi.org/10.1007/978-3-319-60252-3_3
https://doi.org/10.1007/978-3-642-31623-4_11
https://doi.org/10.1007/978-3-642-31623-4_11
https://doi.org/10.1007/978-3-319-19225-3_8
https://doi.org/10.1007/978-3-642-28332-1_26
https://doi.org/10.1007/978-3-319-08587-6_17
https://doi.org/10.1007/978-3-319-08587-6_17
https://doi.org/10.1007/978-3-642-28717-6_19
https://doi.org/10.1007/978-3-540-79709-8_4

On the Grammatical Complexity
of Finite Languages

Markus Holzer1(B) and Simon Wolfsteiner2

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

2 Institut für Diskrete Mathematik und Geometrie, TU Wien,
Wiedner Hauptstr. 8–10, 1040 Wien, Austria

simon.wolfsteiner@tuwien.ac.at

Abstract. We study the grammatical production complexity of finite
languages w.r.t. (i) different interpretations of approximation, i.e., equiv-
alence, cover, and scattered cover, and (ii) whether the underlying gram-
mar generates a finite or infinite language. In case the generated language
is infinite, the intersection with all words up to a certain length has to be
considered in order to obtain the finite language under consideration. In
this way, we obtain six different measures for regular, linear context-free,
and context-free grammars. We compare these measures according to the
taxonomy introduced in [J. Dassow, Gh. Păun: Regulated Rewriting in
Formal Language Theory , 1989] with each other by fixing the grammar
type and varying the complexity measure and the other way around, that
is, by fixing the complexity measure and varying the grammar type. In
both of these cases, we develop an almost complete picture, which gives
new and interesting insights into the old topic of grammatical production
complexity.

1 Introduction

Measures of descriptional complexity or cost functions have a long and fruitful
history. Most approaches to defining descriptional complexity measures are based
on quantifying the ability of a device—automaton or grammar—to approximate
languages (by finite subsets). The interesting quantities in the case of automata
and grammars are, e.g., the number of states or transitions and the number of
nonterminals or productions, respectively. For instance, finite languages can be
represented by ordinary deterministic finite automata (DFAs) or by cover finite
automata (CFAs)—roughly speaking a CFA is a DFA A and a natural number �
whose accepted language is defined as L(A) ∩ Σ≤�. For a precise definition of

This research was completed while the author was on leave at the
Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen,
Germany, in 2017 and is supported by the Vienna Science Fund (WWTF) project
VRG12-004.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 151–162, 2018.
https://doi.org/10.1007/978-3-319-94631-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_13&domain=pdf

152 M. Holzer and S. Wolfsteiner

CFAs, we refer the reader to [5]. This gives rise to two different complexity
measures: for a finite language L ⊆ Σ≤�, one defines the DFA state and the CFA
state complexity as1

DFAc(L) = min{ |A| | A is a DFA and L = L(A) } (1)
and

DFAc∞(L) = min{ |A| | A is a DFA and L = L(A) ∩ Σ≤� },

respectively, where |A| refers to the number of states of the automaton A. Obvi-
ously, DFAc∞(L) ≤ DFAc(L), for every finite language L. Note that equality is
possible for certain finite languages. It is worth mentioning that although these
measures look very similar in their definitions, they can differ quite immensely
when applied to the same language. For instance, there is a finite language L such
that DFAc∞(L) = 1, but DFAc(L) = n, for every n ≥ 1. Hence, the gap between
both measures can be arbitrarily large. In general, complexity gaps can be clas-
sified according to the different growth rates of the complexity measures. To
this end, a notion was introduced in [6], which defines three categories ≤1, ≤2,
and ≤3 of increasing complexity gaps; a precise definition is given later. The
aforementioned complexity gap of arbitrary size between DFAs and CFAs is a
gap of highest type, which is simply written as c∞ ≤3

DFA c. This is one exam-
ple of a complexity measure, but one can find legions of other automata-based
descriptional complexity measures in the literature.

In this paper, we study the grammatical production complexity of finite lan-
guages. This topic is not new, and already in [2–4], measures similar in defini-
tion to (1), for regular (REG), linear context-free (LIN), and context-free gram-
mars (CFG) have been investigated; they are named Xc, for X ∈ {REG, LIN,CF}.
For instance, there it has been shown that there are incompressible finite lan-
guages for each grammar type mentioned above, i.e., languages that need at
least as many productions of a certain type as there are words in that language.
To the best of our knowledge, a classification of these grammatical measures in
the sense of [6] has not been done yet. We close this gap and, moreover, also
consider natural variants of Xc by varying the equivalence condition L = L(A)
in (1) to L ⊆ L(A) and L(A) finite (cover) or even L ≤ L(A) and L(A) finite
(scattered cover), where ≤ refers to the scattered subword relation—similarly
this can be done for L = L(A) ∩ Σ≤� in Xc∞, too. This leads to the additional
grammatical measures (i) Xcc and Xcc∞ (cover) and (ii) Xsc and Xsc∞ (scat-
tered cover), for X ∈ {REG, LIN,CF}. The variation Xcc is inspired by recent
results on proof complexity in first-order logic, a research topic, which, from a
first glance, seems completely unrelated to grammatical complexity, that con-
nects the number of certain inference rules used in a specific logical calculus
with the number of productions needed to cover a certain finite language [7].
For further results on the cover complexity of finite languages, see also [8].

1 Observe that it is common in the literature to refer to the DFA and the CFA state
complexity as sc and csc, respectively. We adapted the notation in order to be con-
sistent with the notation used throughout this paper.

On the Grammatical Complexity of Finite Languages 153

We compare these measures according to the taxonomy introduced in [6] with
each other by (i) fixing the grammar type and varying the complexity measure
and (ii) by fixing the complexity measure and varying the grammar type. In
both of these cases, we develop an almost complete picture. As a byproduct, we
also show that there are finite languages with large complexity. More precisely,
the language of even length palindromes Pn = {w$wR | w ∈ {a, b}≤n } requires
at least Ω(2n) productions to be generated by a regular grammar. Moreover,
the triple language Tn = {w$w#w | w ∈ {a, b}n } can only be generated by
grammars of type X, for X ∈ {REG, LIN,CF}, by simply listing all words in Tn,
i.e., Xc(Tn) = Ω(2n).

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as contained in [10]. Nevertheless, to fix notation and terminology, we
introduce the basic notions and results relevant to this paper in this section.

Let Σ be a finite alphabet. Then Σ∗ denotes the set of all words over the
finite alphabet Σ including the empty word ε and we write Σ+ for Σ∗ \{ε}. The
length of a word w in Σ∗ is denoted by |w|. In particular, the length of the empty
word ε is 0, i.e., |ε| = 0. The reversal of a word is defined as follows: εR = ε
and (wa)R = awR, for w ∈ Σ∗ and a ∈ Σ ∪ {ε}. Let � ≥ 0. Then Σ� and Σ≤�

refers to the set of all words over Σ of length exactly � and at most �, respectively.
A subset L of Σ∗ is called a language. Any language L ⊆ Σ≤�, for � ≥ 0, is called
finite and, unless stated otherwise, we always assume � = max{ |w| | w ∈ L }.
If L is a subset of Σ�, for � ≥ 0, then L is called a uniform language. This means
that in a uniform language all words have the same length.

A context-free grammar (CFG) is a quadruple G = (N,Σ,P, S), where N
and Σ are disjoint alphabets of nonterminals and terminals, respectively, S ∈ N
is the start symbol, and P is a finite set of productions of the form A → α,
where A ∈ N and α ∈ (N ∪ Σ)∗. As usual, the derivation relation of G is
denoted by ⇒G and the reflexive and transitive closure of ⇒G is written as ⇒∗

G.
The language generated by G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗

G w }. We
also consider the following restrictions of context-free grammars: (i) a context-
free grammar is said to be linear context-free (LIN) if the productions are of the
form A → α, where A ∈ N and α ∈ Σ∗(N ∪ {ε})Σ∗, and (ii) a context-free
grammar is said to be right-linear or regular (REG) if the productions are of the
form A → α, where A ∈ N and α ∈ Σ∗(N ∪ {ε}). Furthermore, Γ will denote
the set of grammar types in the sequel, that is, Γ = {REG, LIN,CF}.

Let G = (N,Σ,P, S) be a context-free grammar. By |G|, we denote the
number of productions of G, i.e., the cardinality of P . Then the (exact) X-
complexity (or X-complexity for short) of a finite language L w.r.t. X-grammars,
for X ∈ Γ , is defined as

Xc(L) = min{ |G| | G is an X-grammar with L = L(G) and L(G) finite }.

The additional condition that L(G) is finite is redundant, but becomes important
whenever we replace L = L(G) by L ⊆ L(G) or some other language-relating

154 M. Holzer and S. Wolfsteiner

property. Similarly, the infinite X-complexity of a finite language L ⊆ Σ≤� is
defined as

Xc∞(L) = min{ |G| | G is an X-grammar with L = L(G) ∩ Σ≤� }.

Note that in the definition of Xc∞, the grammar G is allowed to generate an
infinite language. If we replace L = L(G) and L = L(G)∩Σ≤� in the definitions
of Xc(L) and Xc∞(L), respectively, by L ⊆ L(G) and L ⊆ L(G) ∩ Σ≤�, respec-
tively, then we get the definitions for the X-cover-complexity Xcc(L) and the infi-
nite X-cover-complexity Xcc∞(L), respectively. The scattered subword relation ≤
is defined as follows: let w = w1u1w2u2 . . . un−1wn be a word with wi, uj ∈ Σ∗,
for 1 ≤ i ≤ n and 1 ≤ j ≤ n−1. Then the word w′ = w1w2 . . . wn is called a scat-
tered subword of w and we write w′ ≤ w in this case. We extend the relation ≤
from words to languages L1 and L2 as follows: L1 ≤ L2 if for all words w1 ∈ L1,
there is a word w2 ∈ L2 such that w1 ≤ w2. If L1 ≤ L2 holds, we say that L1 is a
scattered sublanguage of L2. We, obtain the definitions for Xsc(L) and Xsc∞(L)
if we replace L = L(G) and L = L(G)∩Σ≤� by L ≤ L(G) and L ≤ L(G)∩Σ≤�,
respectively, in the definitions of Xc(L) and Xc∞(L), respectively. This results in
the X-scattered-complexity and the infinite X-scattered-complexity, respectively.

Note that the definitions of Xc, Xcc, and Xsc also have the additional require-
ment that L(G) is a finite language. In the following, M will denote the set of
measure types, i.e., M = {c, cc, sc, c∞, cc∞, sc∞}. By definition, for τ ∈ M, the
following relations hold:

CFG ≤τ LIN ≤τ REG, (2)

where, for X,Y ∈ Γ , we define X ≤τ Y if and only if Xτ(L) ≤ Yτ(L), for all
finite languages L. In case that X ≤τ Y , we say that X is more succinct than Y
(w.r.t. the complexity measure τ).

We say that G is a minimal X-grammar, for X ∈ Γ , w.r.t. the measure Xτ
with τ ∈ M, if |G| = Xτ(L). In the case of the measure Xc, we speak of a
minimal X-grammar generating a finite language.

Finally, we show that grammars that generate non-trivial uniform languages
do not contain ε-productions. To this end, we first need the following result
on the length of words generated by some nonterminal from a grammar that
describes a finite uniform language.

Lemma 1. Let X ∈ Γ and G = (N,Σ,P, S) be a minimal X-grammar gener-
ating a finite and uniform language. Then, for all A ∈ N , all words occurring
in the set {w ∈ Σ∗ | A ⇒∗

G w } have the same length.

An easy consequence of the previous lemma is the next theorem.

Theorem 2. Let X ∈ Γ and G = (N,Σ,P, S) be a minimal X-grammar gen-
erating a finite and uniform language satisfying L(G)
= {ε}. Then G is ε-free,
i.e., P does not contain any rule of the form A → ε, for all A ∈ N .

On the Grammatical Complexity of Finite Languages 155

3 Some Bounds on the Various X-Complexities

First, we prove some upper bounds for the finite variants of the introduced
grammatical measures. We obtain the following results:

Theorem 3. Let L ⊆ Σ≤� be a finite language over the alphabet Σ. Then,
for X ∈ Γ and Y ∈ {REG, LIN}, we have

1. Xc(L) ≤ � + 1 if |Σ| = 1, and Xc(L) ≤ (|Σ|�+1 − 1)/(|Σ| − 1), otherwise,
2. CFcc(L) ≤ |Σ| + 2 and Ycc(L) ≤ � + 1 if |Σ| = 1, and Ycc(L) ≤ (|Σ| + 1) · �,

otherwise, and
3. Xsc(L) = 1 if L is non-empty, and Xsc(L) = 0, otherwise.

Proof. We argue as follows:

1. Every finite language L can be generated by a grammar of type X ∈ Γ by
simply listing all words from L. Since there are at most

∑�
i=0 |Σ|� words of

length at most � in L, the upper bounds of � + 1 and (|Σ|�+1 − 1)/(|Σ| − 1)
follow for the cases |Σ| = 1 and |Σ| ≥ 2, respectively.

2. Consider the context-free grammar G′ = ({A,S′}, Σ, P ′, S′), where P ′ con-
sists of the productions S′ → A� and A → a, for a ∈ Σ ∪ {ε}. Clearly, we
have L(G′) = Σ≤� and |G′| = |Σ| + 2, i.e., CFcc(Σ≤�) ≤ |Σ| + 2.
By assumption, L ⊆ Σ≤�. Thus, every grammar generating Σ≤� auto-
matically covers the language L. For |Σ| ≥ 2, consider the regular gram-
mar G = (N,Σ,P, S), where N = {A1, A2, . . . , A�} with S = A1 and

P = {Ai → aAi+1 | a ∈ Σ and 1 ≤ i ≤ � − 1 } ∪ {A� → a | a ∈ Σ }
∪ {Ai → ε | 1 ≤ i ≤ � }.

Obviously, L(G) = Σ≤� and |G| = (|Σ| + 1) · �. In the case that |Σ| = 1, we
simply list all � + 1 words occurring in Σ≤�.

3. Assume that Σ = {a1, a2, . . . , an} and consider the language {(a1a2 . . . an)�},
which is generated by G = ({S}, Σ, {S → (a1a2 . . . an)�}, S), a regular gram-
mar with a single production rule. Clearly, we have L ≤ {(a1a2 . . . an)�}, for
all nonempty languages L ⊆ Σ≤�. Thus, Xsc(L) ≤ 1. Since any grammar
with empty production set can only generate the empty language, we also
have Xsc(L) ≥ 1. In case L = ∅, we obviously have Xsc(L) = 0. �
What about lower bounds for these measures? Observe that Xsc(L) = 1 is

already a lower bound result. In the seminal paper [4] on concise description
of finite languages by different types of grammars, certain languages have been
identified that require at least a polynomial number of productions. The proofs
of these results are based on [4, Lemma 2.1] which states some easy facts about
minimal context-free grammars:

Lemma 4. Let G = (N,Σ,P, S) be a minimal context-free grammar for the
finite language L. Then, for every nonterminal A ∈ N \{S}, there are strings α1

and α2 with α1, α2 ∈ (N ∪ Σ)∗ and α1
= α2 such that A → α1 and A → α2 are

156 M. Holzer and S. Wolfsteiner

in P . Moreover, for every A ∈ N \ {S}, the set LA(G) = {w ∈ Σ∗ | A ⇒∗
G w }

contains at least two words and there is no derivation of the form A ⇒+
G αAβ

with α, β ∈ (N ∪Σ)∗. Finally, for every A ∈ N \{S}, there are u1, u2, v1, v2 ∈ Σ∗

such that u1Au2
= v1Av2 as well as S ⇒∗
G u1Au2 and S ⇒∗

G v1Av2.

Our first candidate with a large X-complexity is the language of all even
palindromes (with middle marker) Pn = {w$wR | w ∈ {a, b}≤n }. We show that
any regular grammar generating this language needs at least an exponential
number of productions.

Theorem 5. Let n ≥ 1. Then REGc(Pn) ≥ 2n.

Proof. In the proof, we will use the following result from [4, Lemma 2.2]:
let G = (N,Σ,P, S) be a context-free grammar generating a finite language.
Then there is a context-free grammar Gmax = (Nmax, Σ, Pmax, S) such that
Nmax ⊆ N , Pmax ⊆ P , and L(Gmax) = Lmax, where Lmax is the subset of L(G)
consisting of the words of maximal length. In light of this result, it suffices to
show that REGc(P ′

n) ≥ 2n, for the language P ′
n = {w$wR | w ∈ {a, b}n }. To

this end, assume that Σ = {a, b, $} and G = (N,Σ,P, S) is a minimal regular
grammar generating P ′

n that contains a nonterminal A ∈ N \{S}. By Lemma 4,
there are derivations S ⇒∗

G u1A and S ⇒∗
G u2A with u1, u2 ∈ Σ∗ and u1
= u2

as well as v1, v2 ∈ Σ∗ with A ⇒∗
G v1, A ⇒∗

G v2, and v1
= v2. Note that we must
have both |u1| = |u2| and |v1| = |v2|, for otherwise we would be able to derive
words w1 and w2 with |w1|
= |w2|, but P ′

n only contains words of the same
length. Since v1
= v2 and |v1| = |v2|, it follows that both v1
= ε and v2
= ε.
Let w ∈ {a, b}n be arbitrary. We distinguish the following cases:

1. Suppose u1 ∈ {w$}{a, b}∗. Then we must have u1 = w1w2$wR
2 , where w =

w1w2 and both v1 ∈ {a, b}∗ and v2 ∈ {a, b}∗ holds. Assume, w.l.o.g., that v1 =
wR

1 . Since v1
= v2, it follows that vR
2
= w1. Thus, u1v2
∈ P ′

n. Contradiction.
2. Suppose u1 ∈ {a, b}∗. Then we must have v1, v2 ∈ {a, b}∗{$wR}. Assume w =

u1w2, for some w2 ∈ {a, b}∗ and, w.l.o.g., v1 = w2$wR
2 uR

1 . Since v1
= v2, it
follows that v2 = w′

2$wR
2 uR

1 with w′
2
= w2. Thus, u1v2
∈ P ′

n. Contradiction.

Consequently, we have N = {S} and so the only way to generate the language P ′
n

minimally with a regular grammar is to list all of its words using S. �
For linear context-free and context-free grammars, one observes that both

measures LINc(Pn) and CFc(Pn) are at most linear, as witnessed by the linear
context-free grammar G = (N,Σ,P, S) with N = {S0, S1, . . . Sn}, Σ = {a, b, $},
start symbol S = S0, and the productions

P = {Si → aSi+1a, Si → bSi+1b, Si → Si+1 | 0 ≤ i ≤ n − 1 } ∪ {Sn → $},

satisfying L(G) = Pn, for n ≥ 1.
Using similar arguments as in the proof of Theorem 5, one can show that the

triple language Tn = {w$w#w | w ∈ {a, b}n } has large X-complexity, for all
grammar types X with X ∈ Γ . A detailed proof of this fact can be found in [9].

Theorem 6. Let X ∈ Γ and n ≥ 1. Then Xc(Tn) = 2n.

On the Grammatical Complexity of Finite Languages 157

4 Relating Finite and Infinite Complexity Measures

In this section, we will consider several different complexity measures on finite
languages and relate them according to a group of relations that vary in strength.
By the very nature of these relations, one can distinguish two main categories:
the first category fixes the measure type τ ∈ M and then compares the different
grammar types in Γ with each other w.r.t. the measure type τ—see, e.g., (2).
The second category swaps the roles of measure and grammar type, i.e., some
grammar type X ∈ Γ is fixed and then the different measure types in M are
compared with each other w.r.t. the grammar type X.

4.1 Relating Grammar Types

Now, we define several different relations on the grammar types in Γ w.r.t.
some fixed measure type from M. In this way, we classify the difference between
different grammar types w.r.t. the same measure type. This is similar to the
notion introduced in [6] for the nonterminal complexity and thus leads to a
certain kind of production complexity hierarchy.

Let X,Y ∈ Γ and τ ∈ M. Then we write

– X ≤τ Y if and only if Xτ(L) ≤ Yτ(L), for all finite languages L;
– X ≤1

τ Y if and only if there is a constant c such that Xτ(L) ≤ Yτ(L) + c, for
all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that Yτ(Li) − Xτ(Li) ≥ i;

– X ≤2
τ Y if and only if there is a constant c such that Xτ(L) ≤ Yτ(L) + c, for

all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that

lim
i→∞

Xτ(Li)
Yτ(Li)

= 0;

– X ≤3
τ Y if and only if there is a constant c such that Xτ(L) ≤ Yτ(L) + c, for

all finite languages L, and there is no function f : N → N such that Yτ(L) ≤
f(Xτ(L)), for all finite languages L.

Clearly, X ≤3
τ Y implies X ≤2

τ Y , which, in turn, implies X ≤1
τ Y . More-

over, X ≤3
τ Y holds if the first condition of its definition is satisfied and there is

a sequence (Li)i≥0 of finite languages such that Xτ(Li) ≤ k, for some constant k
and Yτ(Li) ≥ i. We write X =τ Y if both X ≤τ Y and Y ≤τ X hold.

Now, we are going to relate the different grammar types in Γ w.r.t. the finite
complexity measure types under investigation. As already mentioned earlier, the
relation CF ≤τ LIN ≤τ REG holds by definition, for all τ ∈ M. The following
result was shown in [4]:

Theorem 7. It holds that CF ≤2
c LIN ≤2

c REG.

Next, we show that we can only obtain CF ≤3
τ LIN and CF ≤3

τ REG, for τ ∈
{c, cc}. As a prerequisite, we need the following result from [4].

158 M. Holzer and S. Wolfsteiner

Lemma 8. Let G be a linear grammar generating a finite language with |G| ≥ 1.
Then |L(G)| ≤ 2|G|−1 and |G| ≥ log |L(G)| + 1.

Now, we are ready for the following theorem.

Theorem 9. Let τ ∈ {c, cc}. Then
1. CF ≤3

τ X, for X ∈ {REG, LIN}, and
2. LIN
≤3

τ REG and REG
≤3
τ LIN.

Proof. 1. Let Ln = {a, b}≤n, for n ≥ 0. It was shown in [4], that CFc(Ln) ≤ 4
and LINc(Ln) ≥ n+1. From Lemma 8, it follows that also LINcc(Ln) ≥ n+1.
Moreover, it holds that CFcc(Ln) ≤ CFc(Ln) ≤ 4. Consequently, CF ≤3

τ LIN.
Since REGτ(Ln) ≥ LINτ(Ln) ≥ n + 1, we immediately get CF ≤3

τ REG.
2. Let L be an arbitrary finite language and G be a minimal linear grammar

with L(G) = L. Clearly, REGτ(L) ≤ |L| = |L(G)|. From Lemma 8, it follows
that |L(G)| ≤ 2LINτ(L)−1. Thus, REGτ(L) ≤ |L(G)| ≤ 2LINτ(L)−1. The func-
tion f : N → N with x �→ 2x−1 fulfills REGτ(L′) ≤ f(LINτ(L′)), for all finite
languages L′, i.e., LIN
≤3

τ REG. Since LINτ(L′) ≤ REGτ(L′), setting f = idN
yields REG
≤3

τ LIN. �
For the X-scattered-complexity, we have the following situation:

Theorem 10. Let X,Y ∈ Γ . Then REG =sc LIN =sc CF, but X
≤i
sc Y , for i ∈

{1, 2, 3}.
It remains to relate the different grammar types in Γ w.r.t. the infinite com-

plexity measure types c∞, cc∞, sc∞. For the infinite X-complexity we have:

Theorem 11. Let n ≥ 1. Then REGc∞(Pn) = Ω(2n).

Proof. The idea of the proof is as follows: let G = (N,Σ,P, S) be a regular
grammar that is a witness for REGc∞(Pn). Then we construct a regular gram-
mar generating the finite set L(G)∩Σ≤2n+1. Since this language is equal to Pn,
we can apply Theorem 5 in order to obtain a lower bound on |G|. Although G
may contain ε-productions, we can safely assume that G does not contain produc-
tions with a right hand-side longer than 2n + 2, since none of these productions
generates a word of length less than or equal to 2n + 1 even with erasing rules.

To keep the presentation simple, assume for a moment that the grammar G
is in 2-normal form.2 Then we apply the triple construction—see, e.g., [10]—to
the grammar G and the nondeterministic finite automaton A = (Q,Σ, δ, q0, F)
with Q = {0, 1, . . . , 2n+1}, initial state q0 = 0, final state set F = {2n+1}, and
the transition function δ(i, a) = {i + 1, 2n + 1}, for 0 ≤ i < 2n + 1 and a ∈ Σ.
Then the regular grammar G′ = (N ′, Σ, P ′, S′) with N ′ = Q × N × Q, start
symbol S′ = [0, S, 2n + 1], and the productions

P ′ = { [i, A, j] → a | A → a ∈ P, a ∈ Σ ∪ {ε}, and j ∈ δ(i, a) }
∪{ [i, A, k] → a[j, B, k] | A → aB ∈ P, a ∈ Σ ∪ {ε}, and j ∈ δ(i, a) }

2 A regular grammar G = (N, Σ, P, S) is in 2-normal form if all productions in P are
of the form A → a and A → aB, where A, B ∈ N and a ∈ Σ ∪ {ε}.

On the Grammatical Complexity of Finite Languages 159

generates the finite language L(G)∩Σ≤2n+1. Observe that |G′| ≤ |G| · (2n+2)3,
because the productions of the form A → aB from P increase |G′| the most.

Now, we are ready to prove the stated claim. Assume to the contrary that
we have |G| = REGc∞(Pn) = o(2n), for a regular grammar G. Then we trans-
form G into an equivalent regular grammar in 2-normal form and apply the above
described intersection construction. Let G′ refer to the result of these construc-
tion steps. The transformation into 2-normal form is done by simply splitting the
right hand-side of each production into a sequence of productions of the appro-
priate form. This increases |G| by at most a factor of 2n + 2. Together with the
increase of productions by the triple construction by a factor of at most (2n+2)3,
we conclude that |G′| = o(2n), because o(2n · (2n + 2)4) = o(2n). Since the reg-
ular grammar G′ with |G′| = o(2n) generates Pn, we get a contradiction to
Theorem 5. Thus, we obtain REGc∞(Pn) = Ω(2n). �

The taxonomy of the next theorem applies to the infinite exact X-complexity.

Theorem 12. It holds that CF ≤i
c∞ REG and LIN ≤i

c∞ REG, for all i ∈ {1, 2, 3}.
Finally, both the infinite X-cover and the infinite X-scattered-complexity do

not classify according to the used taxonomy.

Theorem 13. Let X,Y ∈ Γ and τ ∈ {cc∞, sc∞}. Then we have X
≤i
τ Y , for

all i ∈ {1, 2, 3}.
We have to leave open the question whether LIN ≤i

cc REG and CF ≤j
c∞ LIN,

for i ∈ {1, 2} and j ∈ {1, 2, 3}, holds.

4.2 Relating Complexity Measure Types

Now, we introduce relations for measuring the difference between different mea-
sure types w.r.t. some fixed grammar type that we consider in this paper. There-
fore, for τ, σ ∈ M and X ∈ Γ , we similarly define the relations τ ≤X σ,
τ ≤1

X σ, τ ≤2
X σ, and τ ≤3

X σ as in the beginning of the previous subsection. For
instance, τ ≤1

X σ if and only if there is a constant c such that Xτ(L) ≤ Xσ(L)+c,
for all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that Xσ(Li) − Xτ(Li) ≥ i.

Clearly, the following chain of implications holds: τ ≤3
X σ implies τ ≤2

X σ,
which, in turn, implies τ ≤1

X σ. Moreover, τ ≤3
X σ holds if the first condition of

its definition is satisfied and there is a sequence (Li)i≥0 of finite languages such
that Xτ(Li) ≤ c, for some constant c, and Xσ(Li) ≥ i.

We start with comparing the finite X- with the infinite X-measures. Except
for the X-scattered-complexity, the infinite versions are more succinct than their
finite counterparts.

Lemma 14. Let X ∈ Γ . Then (i) c∞ ≤X c and (ii) cc∞ ≤ cc, but we have
(iii) sc ≤X sc∞.

160 M. Holzer and S. Wolfsteiner

Proof. The first relation follows by definition. Let L ⊆ Σ≤�. Assume that G is a
witness for Xc(L), i.e., G generates a finite language, L = L(G), and Xc(L) = |G|.
But then also L = L(G) ∩ Σ≤�, which implies Xc∞(L) ≤ Xc(L). A similar
argumentation applies to the second relation. For the third relation, we argue
as follows: in Theorem 3, it was shown that Xsc(L) = 1 if L is non-empty
and Xsc(L) = 0 if L = ∅. In the latter case, we also have Xsc∞(L) = 0. Thus,
we conclude that Xsc∞(L) ≤ Xsc(L), for every finite language L. �

It is worth mentioning that in the previous lemma, the argumentation used
in the proof of the first two relations does not apply to the third one. This is
seen as follows: consider the uniform finite language L = {a, b}. Then the regular
grammar G = ({S}, {a, b}, {S → ab}, S) witnesses Xsc(L) = 1, because L is a
scattered sublanguage of {ab}, i.e., L ≤ {ab} = L(G). But L(G) ∩ {a, b}≤1 = ∅.
Thus, |G| cannot be used as an upper bound for Xsc∞(L) and hence sc∞ ≤X sc
does not hold in general. Thus, we conclude:

Corollary 15. Let X ∈ Γ . Then sc∞
≤X sc.

Next, we compare the remaining X-complexities. Observe that L1 = L2

implies L1 ⊆ L2, which, in turn, implies L1 ≤ L2. As an easy consequence,
we deduce that the (infinite) X-scattered-complexity is more succinct than the
(infinite) X-cover-complexity and it is also easy to see that the (infinite) X-cover-
complexity is more succinct than the (infinite) X-complexity. We summarize:

Lemma 16. Let X ∈ Γ . Then (i) sc ≤X cc ≤X c and (ii) sc∞ ≤X cc∞ ≤X c∞.

Xcc(·) ≤ Xc(·)

≤ ≤

Xsc∞(·) ≤ Xcc∞(·) ≤ Xc∞(·)

≤

Xsc(·) = 1

Fig. 1. Relations between the different grammatical complexity measures on finite
languages. In this figure, a ≤-relation is of type (i, j, k), for i, j, k ∈ {1, 2, 3}, if (i) ≤i

CFG,
(ii) ≤j

LIN, and (iii) ≤k
REG hold for the appropriate X-measures. All ≤-relations are of

type (3, 3, 3), except Xcc ≤ Xc, Xcc∞ ≤ Xcc, Xsc ≤ Xsc∞, and Xsc∞ ≤ Xcc∞, which
are of types (3, 2, 2), (−, 3, 3), (−, −, −), and (−, −, −), respectively; the − sign means
that it cannot be classified by the taxonomy.

The obtained ≤-relations are visualized in Fig. 1. For the measures cc and c∞
we show incomparability w.r.t. the ≤-relation. Before we can prove this, we
need two prerequisites. The first one is a lower bound on Tn w.r.t. the infinite

On the Grammatical Complexity of Finite Languages 161

X-complexity, which reads as follows—the proof is similar to the proof of Theo-
rem 11 with the slight modification that we use 2-Greibach normal form3 instead
of 2-normal form, since we cannot apply the reasoning regarding the absence of
ε-productions to context-free grammars in case of the c∞-measure. The change
to 2-Greibach normal form induces the fourth root in the lower bound:

Theorem 17. Let X ∈ Γ . Then Xc∞(Tn) = Ω(2n/4).

The second prerequisite is an exact complexity bound for the language Σ≤�

w.r.t. the finite X-cover-complexity.

Lemma 18. Let X ∈ Γ and � ≥ 2. Then CFcc(Σ≤�) = |Σ| + 2.

Now, we are ready for the incomparability results:

Theorem 19. Let X ∈ Γ . Then (i) cc
≤X c∞ and (ii) c∞
≤X cc.

Proof. For the proof of (i), observe that the grammar G = (N,Σ,P, S) with the
productions P = {S → aS, S → bS, S → ε} shows that Xc∞({a, b}≤n) ≤ 3. By
Lemma 8, we have n + 1 ≤ Ycc({a, b}≤n), for n ≥ 3 and Y ∈ {REG, LIN}.
As a consequence, Yc∞({a, b}≤n) < Ycc({a, b}≤n). From Lemma 18, it fol-
lows that CFcc({a, b}≤n) ≥ 4, i.e., CFc∞({a, b}≤n) < CFcc({a, b}≤n). Next,
we prove (ii). By Theorem 17, Xc∞(Tn) = Ω(2n/4) and, by Theorem 3, we
have XccTn ≤ 15n + 10. Thus, XccTn < Xc∞(Tn), for large enough n. �

In the remainder of this subsection, we classify the relations between the
X-measures under consideration according to the taxonomy from [6].

Theorem 20. Let X ∈ Γ and Y ∈ {REG, LIN}. Then
1. cc ≤3

CFG c and cc ≤2
Y c, but τ
≤3

Y σ, for all τ, σ ∈ {c, cc} with τ
= σ,
2. sc ≤3

X c,
3. sc ≤3

Y cc, but τ
≤i
CFG σ, for all τ, σ ∈ {sc, cc} with τ
= σ and all i ∈ {1, 2, 3},

4. c∞ ≤3
X c,

5. τ ≤3
X c, for all τ ∈ {cc∞, sc∞},

6. cc∞ ≤3
Y cc, but τ
≤i

CFG σ, for τ, σ ∈ {cc, cc∞} with τ
= σ and i ∈ {1, 2, 3},
7. cc ≤3

CFG c∞, and
8. τ ≤3

X c∞, for all τ ∈ {sc, sc∞, cc∞}.
Proof. We only prove the first statement. The remaining results can be shown
with similar arguments. Let Ln = { ajbjcj | 1 ≤ j ≤ n }. In [2], it was shown
that CFc(Ln) = n. On the other hand, by Theorem 3, we have CFcc(Ln) ≤ 5.

Let Y ∈ {REG, LIN} and Tn = {w$w#w | w ∈ {a, b}n }. By Theorem 6, we
have Yc(Tn) = 2n. On the other hand, we have Ycc(Tn) ≤ 15n+10 by Theorem 3.

3 A context-free grammar G = (N, Σ, P, S) is in 2-Greibach normal form if all
productions in P are of the form A → a, A → aB, A → aBC, or S → ε,
where A ∈ N , a ∈ Σ, and B, C ∈ N \ {S}. The transformation increases the
number of productions by at most a polynomial of fourth degree [1].

162 M. Holzer and S. Wolfsteiner

Hence, cc ≤2
Y c. Finally, let L be an arbitrary finite language and f : N → N

a function defined by x �→ 2x−1. Moreover, let G be a minimal Y -grammar
with L(G) ⊇ L. By Lemma 8, we know that |L| ≤ |L(G)| ≤ 2Ycc(L)−1. It holds
that Yc(L) ≤ |L|. Thus,

Yc(L) ≤ |L| ≤ |L(G)| ≤ 2Ycc(L)−1 = f(Ycc(L)).

Hence, cc
≤3
Y c. If we set f = idN, it follows that c
≤3

Y cc. �
Finally, we list some incomparability results.

Theorem 21. Let X ∈ Γ and Y ∈ {REG, LIN}. Then, for i ∈ {1, 2, 3}, we have

1. τ
≤i
X σ, for every τ, σ ∈ {cc∞, sc∞} with τ
= σ,

2. τ
≤i
X σ, for every τ, σ ∈ {cc, sc∞} with τ
= σ,

3. τ
≤i
X σ, for every τ, σ ∈ {sc, sc∞} with τ
= σ,

4. τ
≤i
X σ, for every τ, σ ∈ {sc, cc∞} with τ
= σ, and

5. τ
≤i
Y σ, for every τ, σ ∈ {cc, c∞} with τ
= σ.

Proof. We only prove the first statement. The remaining results can be shown
with similar arguments. First note that L ⊆ Σ∗ ∩ Σ≤� as well as L ≤ Σ∗ ∩ Σ≤�,
for all finite languages L over Σ with � = max{ |w| | w ∈ L }. The universal
language Σ∗, for Σ = {a1, a2, . . . , an}, can be produced with the following reg-
ular productions: S → a1S | a2S | . . . | anS | ε. Thus, Xcc∞(L) ≤ |Σ| + 1
and Xsc∞(L) ≤ |Σ| + 1, for all finite languages L over Σ. This, however, means
that τ ≤i

X σ does not hold for τ, σ ∈ {cc∞, sc∞} and all i ∈ {1, 2, 3}. �

References

1. Blum, N., Koch, R.: Greibach normal form transformation revisited. Inform. Com-
put. 150(1), 112–118 (1999)

2. Bucher, W.: A note on a problem in the theory of grammatical complexity. Theoret.
Comput. Sci. 14(3), 337–344 (1981)

3. Bucher, W., Maurer, H.A., Culik II, K.: Context-free complexity of finite languages.
Theoret. Comput. Sci. 28(3), 277–285 (1983)

4. Bucher, W., Maurer, H.A., Culik II, K., Wotschke, D.: Concise description of finite
languages. Theoret. Comput. Sci. 14(3), 227–246 (1981)

5. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoret. Comput. Sci. 267(1–2), 3–16 (2001)

6. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

7. Eberhard, S., Hetzl, S.: On the compressibility of finite languages and formal
proofs. Inform. Comput. 259(2), 191–213 (2018)

8. Hetzl, S., Wolfsteiner, S.: Cover complexity of finite languages. In: Konstantinidis,
S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 139–150. Springer,
Cham (2018)

9. Gruber, H., Holzer, M., Wolfsteiner, S.: On Minimal Grammar Problems for Finite
Languages (2018, Submitted for publication)

10. Wood, D.: Theory of Computation. Wiley, New York (1987)

State Grammars with Stores

Oscar H. Ibarra1 and Ian McQuillan2(B)

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science,

University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. State grammars are context-free grammars where the pro-
ductions have states associated with them, and can only be applied to
a nonterminal if the current state matches the state in the production.
Once states are added to grammars, it is natural to add various stores,
similar to machine models. With such extensions, productions can only
be applied if both the state and the value read from each store matches
between the current sentential form and the production. Here, genera-
tive capacity results are presented for different derivation modes, with
and without additional stores. In particular, with the standard deriva-
tion relation, it is shown that adding reversal-bounded counters does
not increase the capacity, and states are enough. Also, state grammars
with reversal-bounded counters that operate using leftmost derivations
are shown to coincide with languages accepted by one-way machines
with a pushdown and reversal-bounded counters, and these are surpris-
ingly shown to be strictly weaker than state grammars with the standard
derivation relation (and no counters). Complexity results of some deci-
sion problems involving state grammars with counters are also studied.

Keywords: Grammars · Reversal-bounded counters
Automata models · Matrix grammars

1 Introduction

State grammars were created by Kasai [11], and have context-free grammar rules
with additional state components. As originally defined, they consist of a set of
nonterminals V , a set of terminals Σ, an initial nonterminal S ∈ V , a set of states
Q, an initial state q0 ∈ Q, and a set of productions P . Instead of normal context-
free productions of the form A → w, where A ∈ V,w ∈ (V ∪Σ)∗, now productions

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by Natural Sciences and Engi-
neering Research Council of Canada Grant 2016-06172.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 163–174, 2018.
https://doi.org/10.1007/978-3-319-94631-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_14&domain=pdf

164 O. H. Ibarra and I. McQuillan

are of the form (q,A) → (p,w), where q, p ∈ Q, and w was forced to be non-
empty in Kasai’s original formulation. Sentential forms are of the form (q, α)
where q ∈ Q,α ∈ (V ∪Σ)∗. A production is only applicable to a sentential form if
the state of the production matches the state of the sentential form. The original
derivation relation considered by Kasai (later called the leftish derivation relation
in [13] which we will call it here as well), was as follows: (q, uAv) ⇒lt (p, uwv)
if (q,A) → (p,w) ∈ P , and A is the leftmost nonterminal in the sentential
form that has a production that is applicable from the current state. A word is
generated if there is some leftish derivation starting at the initial state and initial
nonterminal that produces a word over Σ∗. The family of languages generated
by such systems with λ-free rules, denoted by Llt(λ-free-CFG-S), was shown to
be equal to the family of context-sensitive languages [11]. Later, it was shown
that when including λ rules, the family produced, Llt(CFG-S), is equal to the
family of recursively enumerable languages [15].

The definition of state grammars was extended shortly afterwards by Moriya
[12] to also include a final state set F . Furthermore, he defined another derivation
relation called the free interpretation, whereby any nonterminal can be rewritten
that has a production defined on the current state, rather than the leftmost. With
this derivation relation, the family of languages generated by state grammars,
L(CFG-S), was proven to equal the languages generated by matrix grammars (or
λ-free matrix grammars for λ-free state grammars) [1].

The notion of combining grammars with states is a powerful one. It is then
easy to add various stores to grammars that operate like machine models. It can
also enable the study of trade-offs between numbers of states, nonterminals, pro-
ductions, and stores, relevant to the area of descriptional complexity. Changing
the derivation relation and the rules allowed can also significantly change the
families generated, obtaining many important language families as special cases.

In this paper, we will collate some of the existing generative capacity results
on state grammars. In doing so, we provide a shorter alternative proof that
state grammars (with the free interpretation) generate the same family as matrix
grammars by using context-free grammars with regular control. A new derivation
mode is defined where all nonterminals are rewritten from left-to-right until
the last nonterminal, then this repeats starting again at the first nonterminal.
State grammars with this mode are found to generate the recursively enumerable
languages (or context-sensitive languages for λ-free grammars). We will then
consider adding multiple reversal-bounded counters to state grammars (with
the free interpretation) and find that this does not change the capacity beyond
only having states. However, this system provides quite an easy way of describing
languages. Furthermore, it is shown that leftmost derivations for state grammars
are strictly weaker than leftmost derivations for state grammars with counters,
which are then strictly weaker than state grammars with no counters using
the free interpretation. Lastly, some complexity results are presented on state
grammars with counters. Many proofs are omitted due to space constraints.

State Grammars with Stores 165

2 Preliminaries

Here, some notation used in the paper is presented; we refer to [7] for an intro-
ductory treatment of automata and formal languages. We assume knowledge
of deterministic and nondeterministic finite automata, context-free grammars,
context-sensitive languages, and the recursively enumerable languages.

An alphabet Σ is a finite set of symbols, a word over Σ is a finite sequence
of symbols a1 · · · an, n ≥ 0, ai ∈ Σ, 1 ≤ i ≤ n, and Σ∗ (respectively Σ+) is
the set of all words (non-empty words) over Σ. Then, Σ∗ contains the empty
word, denoted by λ. Given a word w ∈ Σ∗, the length of w is denoted by |w|,
for a ∈ Σ, |w|a is the number of a’s in w, and for subsets X of Σ, |w|X =∑

a∈X |w|a. The set of letters occurring in w, alph(w) = {a ∈ Σ | |w|a > 0}.
Given Σ = {a1, . . . , ak}, the Parikh map of w is ψ(w) = (|w|a1 , . . . , |w|ak

),
extended to languages L, ψ(L) = {ψ(w) | w ∈ L}. The commutative closure of
L, comm(L) = {v ∈ Σ∗ | ψ(v) = ψ(w) for some w ∈ L}. We will not define the
notion of semilinear sets and languages here, but an equivalent definition is that
a language L is semilinear if and only if it has the same commutative closure as
some regular language [5]. Given u, v ∈ Σ∗, the shuffle of u and v, denoted by
u v is {u1v1 · · · unvn | u = u1u2 · · · un, v = v1v2 · · · vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n}.

The context-free languages are denoted by L(CFG), the linear languages are
denoted by L(LG), the context-sensitive languages by L(CS), and the right linear
(regular languages) are denoted by L(REG).

Moreover, we will discuss other families and grammars systems summarized
in [1], such as matrix grammars. The languages generated by matrix grammars
are denoted by L(M), and the languages generated by λ-free matrix grammars
are denoted by L(λ-free-M).

3 Grammars with States

To start, we will formally define state grammars, following the notation of [12]
with final states.

Definition 1. A state grammar (CFG-S), is a 7-tuple G = (V,Σ, P, S,Q, q0, F),
where V is the finite nonterminal alphabet, Σ is the finite terminal alphabet, S ∈
V is the initial nonterminal, Q is the finite set of states (V,Σ,Q are disjoint),
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and P is a finite set
of productions of the form:

(q,A) → (p,w),

where A ∈ V,w ∈ (V ∪Σ)∗, q, p ∈ Q. The grammar is said to be linear (and is an
LG-S) if, for all productions (q,A) → (p,w), w ∈ Σ∗(V ∪{λ})Σ∗. The grammar
is said to be right linear (and is a RLG-S) if, for all productions (q,A) → (p,w),
w ∈ Σ∗(V ∪ {λ}). In all cases, G is λ-free if all productions are to some (p,w)
where w ∈ (V ∪ Σ)+.

A sentential form of G is any element of Q×(V ∪Σ)∗. Four different methods
of derivation will be defined. They are as follows:

166 O. H. Ibarra and I. McQuillan

1. The free interpretation derivation relation is defined such that (q, uAv) ⇒
(p, uxv) if, (q,A) → (p, x) ∈ P , and u, v ∈ (V ∪ Σ)∗. This is extended to the
reflexive, transitive closure ⇒∗. The language generated by G is

L(G) = {w | (q0, S) ⇒∗ (f, w), f ∈ F,w ∈ Σ∗}.

2. The leftmost derivation relation is defined such that (q, uAv) ⇒lm (p, uxv) if,
(q,A) → (p, x) ∈ P , (q, uA) ⇒ (p, ux), and u ∈ Σ∗. This is extended to the
reflexive, transitive closure ⇒∗

lm. The leftmost language generated by G is

Llm(G) = {w | (q0, S) ⇒∗
lm (f, w), f ∈ F,w ∈ Σ∗}.

3. The leftish derivation relation is defined such that (q, uAv) ⇒lt (p, uxv) if,
(q,A) → (p, x) ∈ P , (q, uA) ⇒ (p, ux), and for all B ∈ alph(u) with B ∈ V ,
then there is no production from (q,B). This is extended to the reflexive,
transitive closure ⇒∗

lt. The leftish language generated by G is

Llt(G) = {w | (q0, S) ⇒∗
lt (f, w), f ∈ F,w ∈ Σ∗}.

4. The circular derivation relation is, for v0A1v1 · · · Anvn, Ai ∈ V, vi ∈ Σ∗,
0 ≤ i ≤ n,

(p0, v0A1v1A2 · · · Anvn) ⇒◦ (p1, v0x1v1A2 · · · Anvn) ⇒◦
(p2, v0x1v1x2v2A3 · · · Anvn) ⇒◦ · · · ⇒◦ (pn, v0x1v1x2v2 · · · xnvn),

where (pi, Ai+1) → (pi+1, xi+1) ∈ P for all i, 0 ≤ i < n. In this case, it is
written

(p0, v0A1v1A2 · · · Anvn) ⇒• (pn, v0x1v1x2v2 · · · xnvn).

This is extended to ⇒∗
•, the reflexive, transitive closure of ⇒•. Therefore, this

relation rewrites all nonterminals from left-to-right, then repeats in a circular
fashion. The circular language generated by G is

L•(G) = {w | (q0, S) ⇒∗
• (f, w), f ∈ F,w ∈ Σ∗}.

We also sometimes associate labels PΣ in bijective correspondence with P , and
write u =⇒

p
v, if production p was applied from u to v (and similarly for the other

derivation relations).
The family of languages generated by CFG-S grammars with the free inter-

pretation (respectively the leftmost, leftish, and circular) derivation relation is
denoted by L(CFG-S) (respectively Llm(CFG-S), Llt(CFG-S), L•(CFG-S)). For
each of these families, we precede the family with λ-free to represent those lan-
guage generated by λ-free systems; e.g. L•(λ-free-CFG-S). Similarly, replacing
CFG-S with LG-S in these (or RLG-S) restricts the families to grammars where
the rules are linear (or right linear).

Example 2. Let k ≥ 2, Σ = {a1, b1, . . . , ak, bk}, and Gk = (V,Σ, P, S,Q, q0, F)
where Q = {q0, . . . , qk−1}, F = {q0}, and P contains:

State Grammars with Stores 167

– (q0, S) → (q0, A1A2 · · · Ak),
– (qi−1, Ai) → (qi, aiAibi) | (qi, aibi), for 1 ≤ i < k,
– (qk−1, Ak) → (q0, akAkbk) | (q0, akbk).

In any successful derivation using the free interpretation, states must follow
a pattern in q0(q0 · · · qk−1)+q0, and from qi−1, only productions on Ai can
be applied, and they all must terminate on the last pass. Hence, L(Gk) =
{an

1 bn
1 · · · an

kbn
k | n > 0}.

For the first comparison, we see that the different derivation relations for
linear and right linear grammars with states are the same.

Proposition 3. The following are true:

– L(LG) = L(LG-S) = Llm(LG-S) = Llt(LG-S) = L•(LG-S),
– L(REG) = L(RLG-S) = Llm(RLG-S) = Llt(RLG-S) = L•(RLG-S).

Proof. It is obvious that the method of derivation does not matter for linear and
right linear grammars.

A linear grammar (resp., a right linear grammar) can easily be simulated by
such a grammar with one state. The converse follows by creating nonterminals in
V × Q. Then, for all productions of the form (q,A) → (p, uBv), q, p ∈ Q,A,B ∈
V, u, v ∈ Σ∗, create a normal production (q,A) → u(p,B)v (ie. the state stays
on the nonterminal) and for all terminating productions of the form (q,A) →
(p, u), q, p ∈ Q,A ∈ V, u ∈ Σ∗, create (q,A) → u if and only if p ∈ F . It is clear
that the languages generated are the same. 	

The following was mentioned in [13], and it follows by considering the stan-
dard simulation of context-free grammars with pushdown automata, but using
the state of the pushdown to simulate the state of the state grammar.

Proposition 4. Llm(CFG-S) = L(CFG).

As proven in [12], the family of languages generated by matrix grammars
(respectively λ-free matrix grammars) is equal to the family generated by state
grammars (respectively λ-free state grammars) with the free interpretation. An
alternate, shorter proof can also be demonstrated by showing equivalence of state
grammars to context-free grammars with regular control [1]. It is known that
such grammars are equivalent to matrix grammars [1].

Proposition 5. L(CFG-S) = L(M), and L(λ-free-CFG-S) = L(λ-free-M).

When circular derivations are used, then it will be seen next that CFG-S
grammars already generate all recursively enumerable languages. We use the
notion of a complete derivation tree t of a context-free grammar [7], which is a
tree where all nodes are labelled by either a nonterminal, a terminal, or λ, the
root is labelled by the initial nonterminal, if a parent is labelled by A and its
children are labelled by A1, . . . , Ak from left to right, then A → A1 · · · Ak is a
production, if a node is labelled by λ, then it is the only child of its parent, and
all leaves are labelled by terminals. The yield of a derivation tree, yd(t), is the

168 O. H. Ibarra and I. McQuillan

sequence of terminals obtained via a preorder traversal. Given such a tree t, level
i is all nodes at distance i from the root, and the level-i word is the sequence
of labels on the nodes of level i concatenated together from left to right. It is
known that the set of yields of complete derivation trees of a grammar is exactly
the language generated by the grammar [7].

State grammars with the circular derivation will be shown equivalent to tree
controlled grammars which are defined as follows. A tree controlled grammar is
a tuple G = (V,Σ, P, S,R), where G′ = (V,Σ, P, S) is a CFG, and R is a regular
language over V ∪ Σ. When considering context-free derivation trees in G′, a
restriction on the trees is used as follows: the language generated by G, L(G), is
equal to

{yd(t) | t is a complete derivation tree of G′, for all levels i but the last,
the level-i word is in R}.

Let L(TREE) (respectively L(λ-free-TREE)) be the family of languages gener-
ated by (respectively λ-free) tree controlled grammars. It is known that tree
controlled grammars generate all recursively enumerable languages, and λ-free
tree controlled grammars generate the context-sensitive languages [1]. Equiva-
lence to tree controlled grammars therefore implies:

Proposition 6. The following are true:

– L•(CFG-S) = Llt(CFG-S) = L(TREE) = L(RE),
– L•(λ-free-CFG-S) = Llt(λ-free-CFG-S) = L(λ-free-TREE) = L(CS).

Hence, the following hierarchies are obtained:

Corollary 7. The following are true:

– L(CFG) = Llm(CFG-S) � L(CFG-S) = L(M) � L•(CFG-S) = Llt(CFG-S) =
L(RE),

– L(λ-free-CFG) = Llm(λ-free-CFG-S) � L(λ-free-CFG-S) = L(λ-free-M) �

L•(λ-free-CFG-S) = Llt(λ-free-CFG-S) = L(CS).

4 State Grammars with Stores

Now that states are attached to grammars, it is quite natural to attach one
or more stores as well, just like machine models. Then, store contents can be
part of sentential forms just as states are with state grammars. For example,
one could define context-free grammars with states plus a pushdown store. This
would be represented with a tuple just like a CFG-S but with an additional
word over the pushdown alphabet Γ and a bottom-of-pushdown marker Z0. In
particular, the productions would be of the form (q,X,A) → (p, α,w), where q, p
are states, A is a nonterminal, w is over the nonterminal and terminal alphabets,
X is the topmost symbol of the pushdown, and α is the string to replace the
topmost symbol of the pushdown. Sentential forms are therefore in Q × Γ+ ×
(V ∪ Σ)∗, and the derivation relation is defined in the obvious way. Here, we

State Grammars with Stores 169

will attach multiple reversal-bounded counters as stores as they are defined with
reversal-bounded counter machines [9]. Explained briefly, a one-way k-counter
machine is an NFA with k counters, each containing some non-negative integer,
and the transition function can detect whether each counter is empty or not,
and can increment, keep the same, or decrement each counter by one. Such
a machine is r-reversal-bounded if the number of times each counter switches
between non-decreasing and non-increasing is at most r. Then L(NCM) is the
family of languages accepted by machines that are r-reversal-bounded k-counter
machines, for some k, r ≥ 1.

Since grammars with states using either circular or leftish derivations already
generate all recursively enumerable languages, we will not consider those deriva-
tion relations with stores.

Denote the set of all context-free grammars with states and some number
of reversal-bounded counters by CFG-SC, and the languages they generate with
the free interpretation and the leftmost derivation modes by L(CFG-SC) and
Llm(CFG-SC) respectively. For each such grammar G = (V,Σ, P, S,Q, q0, F)
with k counters, productions are of the form (q, i1, . . . , ik, A) → (p, l1, . . . , lk, w),
where p, q ∈ Q, ij ∈ {0, 1} (a production with ij = 0 is applied if and only
if counter j is 0), lj ∈ {−1, 0,+1} (which changes the counter), A ∈ V,w ∈
(V ∪ Σ)∗.

Example 8. Let G = (V, {a, b}, P, S,Q, q0, {qf}) be a CFG-SC with 2 counters
accepting {w$w | |w|a = |w|b ≥ 0}, where P is as follows:

– (q0, 0, 0, S) → (q0, 0, 0, A1A2),
– (q0, i, j, A1) → (qa, 1, 0, aA1) | (qb, 0, 1, bA1), for i, j ∈ {0, 1},
– (qa, i, j, A2) → (q0, 0, 0, aA2), (qb, i, j, A2) → (q0, 0, 0, bA2), for i, j ∈ {0, 1},
– (q0, i, i, A1) → (q1, 0, 0, A1), for i ∈ {0, 1},
– (q1, 1, 1, A1) → (q1,−1,−1, A1),
– (q1, 0, 0, A2) → (q1, 0, 0, λ), (q1, 0, 0, A1) → (qf , 0, 0, $).

To start, G switches to (q0, 0, 0, A1A2). Then the derivation repeatedly guesses
either that A1 derives an a or a b; if it guesses it derives an a, it switches to qa

and increases the first counter, and then from qa, only A2 can be rewritten and
it must derive an a (similarly with the b case using qb and the second counter).
Therefore, A1 derives some sequence of terminals w and A2 must derive the same
sequence, and the first counter contains |w|a and the second contains |w|b. At
any point while in state q0, G can switch to q1 which repeatedly decreases both
counters in parallel until both are verified to be zero at the same time, at which
point both A2 and A1 are erased.

Before studying the generative capacity of CFG-SC, a definition is required.
A CFG-SC G is in normal form if each counter makes exactly 1 reversal (once
they decrease, they can no longer increase), and a terminal string is successfully
generated when G enters a unique accepting state f and all the counters are
zero. Moreover, at each step at most one counter is changed (i.e., +1 or −1). We
also assume that the state remembers when a counter enters a decreasing mode.

170 O. H. Ibarra and I. McQuillan

So, e.g., when counter i enters the decreasing mode, the state remembers that
from that point on, counter i can no longer increase. When another counter j
enters the decreasing mode, the state now remembers that counters i and j can
no longer increase, etc.

Lemma 9. Let G be an CFG-SC. We can effectively construct a CFG-SC G′ in
normal form such that L(G) = L(G′).

Hence, we may assume that a CFG-SC is in normal form.
Next, it will be seen that reversal-bounded counters do not increase the

generative capacity.

Proposition 10. L(CFG-S) = L(CFG-SC) = L(M).

Proof. By [12] (and Proposition 5), L(CFG-S) = L(M), and clearly L(CFG-S) ⊆
L(CFG-SC).

Let G be such a CFG-SC. Assume without loss of generality that G is in
normal form, and it therefore has k 1-reversal bounded counters. Make a state
grammar G′ (without counters) over Σ ∪ Δ where Δ = {c1, d1, · · · , ck, dk} are
new symbols. Then, G′ simulates G but, whenever it adds from counter i, it
instead outputs terminal symbol ci, and whenever it decreases from counter i,
it outputs di. The states of G′ also verify that G′ starts by, for each counter
i, simulating only productions associated with counter i being empty until it
adds to the counter for the first time, then it simulates productions defined on
counter i being positive (while outputting ci’s), then simulates productions on
counter i being positive (while outputting di’s), until some nondeterministically
guessed spot after outputting some di, where it guesses that the counter is now
empty, and then it only simulates productions on counter i being empty while
not outputting any more ci’s and di’s. G′ operates in this fashion, as states were
specifically marked in the normal form. Therefore, G′ operates just like G, where
it simulates all of the counters, making sure that for each counter, all additions
occur before any subtractions, but it does not do any of the counting. If one
then restricted the derivations of G′ to those where the number of increases is
the same as the number of decreases for each counter, then after erasing the
letters of Δ, it would give L(G). But, consider the following regular language
R = (c1d1)∗ · · · (ckdk)∗Σ∗, and the commutative closure of R, comm(R). Let h
be a homomorphism that erases all letters of Δ and fixes all letters of Σ. Then,
h(L(G′) ∩ comm(R)) is exactly this language, where L(G′) ∩ comm(R) restricts
words to only those that have the same number of ci’s as di’s (and hence the
same number of increases as decreases for each counter), and h erases the letters
of Δ. Hence, L(G) = h(L(G′) ∩ comm(R)).

Since G′ is a normal grammar with states, it can be converted to a matrix
grammar G′′ by Proposition 5. It is known that matrix grammars are closed
under intersection with L(NCM) [16] (there, they used closure under the BLIND
multicounter languages which is equivalent to L(NCM) [3]). Also, the commu-
tative closure of every regular language is in L(NCM) [8]. So L′′′ = L(G′′) ∩
comm(R) is a language generated by a matrix grammar. Lastly, erasing all ci’s

State Grammars with Stores 171

and di’s with h gives L(G), and matrix grammars are closed under homomor-
phism [1]. Since this is a matrix grammar, it can be converted back to a normal
state grammar by Proposition 5 generating the same language as L(G). 	

To note, in the proof above, in G, despite the counters being 1-reversal-bounded,
productions can be applied to any nonterminal in the sentential form. Thus, some
counter additions could occur when rewriting a nonterminal to the right of other
nonterminals that get rewritten with a production that decreases. Hence, when
intersecting with an L(NCM) language, it must not enforce that all ci’s occur
before any di’s.

The following corollary is true, since the results are known to be true for
matrix grammars [6].

Corollary 11. The following are true:

1. Every unary language generated by a CFG-SC is regular.
2. The emptiness problem for CFG-SC is decidable.

Next, we will study leftmost derivations of CFG-SC’s. We will show that
Llm(CFG-SC) = L(NPCM) � L(CFG-SC), where NPCMs are one-way nondeter-
ministic pushdown automata augmented by reversal-bounded counters [9]. To
help, we need the notion of a CFG with monotonic counters introduced in [10].
This is a simpler model of grammars with counters that do not have states. At
each step in the derivation, the counters can be incremented by 0 or +1, but
not decremented. A derivation in this grammar starts with the counters having
value zero. A terminal string w is in the language of the grammar if there is a
derivation of w that ends with all counters having the same value.

A CFG with monotonic counters (CFG-MC) is a 5-tuple, G = (Σ,V, S, k, P),
where Σ is the set of terminals, V is the set of nonterminals, S ∈ V is the initial
nonterminal, k is the number of monotonic counters, all are initially set to 0, and
P is the set of rules of the form: A → (z, c1, . . . , ck), where A ∈ V , z ∈ (V ∪ Σ)∗

and ci = 0 or +1.
The language defined is L(G) = {w | w ∈ Σ∗, (S, 0, . . . , 0) ⇒∗ (w, n, . . . , n)

for some n ≥ 0}.
The following result was shown in [10]:

Proposition 12. L(NPCM) is equal to the family of languages generated by
CFG-MCs (using either the leftmost derivation relation or the normal derivation
relation).

From this, the following can be shown:

Lemma 13. L(NPCM) = Llm(CFG-SC).

Proof. Every CFG-MC G with a leftmost derivation can be simulated by a
CFG-SC with a leftmost derivation. It starts by simulating with one state. Then,
before terminating, it guesses all counters are equal, decreases them all to ver-
ify, then terminates. Thus, L(NPCM) ⊆ Llm(CFG-SC). For the reverse contain-
ment, consider the standard simulation on a CFG with an NPDA with a leftmost

172 O. H. Ibarra and I. McQuillan

derivation. This same construction can work with states while the counters of
the CFG-SC can be simulated by the counters of the NPCM. 	

Lemma 14. L(NPCM) � L(M).

Proof. It is clear that L(CFL) ⊆ L(M), it is known that L(M) is closed under
intersection with L(NCM) [16], and homomorphism [1]. Recently, a Chomsky-
Schützenberger-like theorem was shown that demonstrates that every language
in NPCM can be obtained by some Dyck language (which is context-free) inter-
sected with an L(NCM) language, then mapped via a homomorphism [10]. There-
fore, L(NPCM) ⊆ L(M).

It is known that every NPCM language is semilinear [9]. Now L(CFG-SC) =
L(M) by Proposition 5. It known that matrix grammars can generate non-
semilinear languages, e.g., a matrix grammar can generate the non-semilinear
language [1], L = {anbm | 1 ≤ n < m ≤ 2n}. It follows that L(NPCM) �

L(M). 	

Therefore, the following hierarchy exists by Propositions 4, 5, 6, 10 and Lem-

mas 13 and 14.

Proposition 15. The following is true:

L(CFG) = Llm(CFG-S) � Llm(CFG-SC) = L(NPCM) � L(CFG-S) =
L(CFG-SC) = L(M) � Llt(CFG-S) = L•(CFG-S) = L(RE).

Lastly, we study the emptiness problem for a restriction of CFG-SCs. A CFG-S
G = (V,Σ, P, S,Q, q0, F) is of index m, (m ≥ 1) if, for every w ∈ L(G), there
exists some derivation (p0, α0) ⇒ (p1, α1) ⇒ · · · ⇒ (pn, αn), p0 = q0, α0 =
S, pn ∈ F, αn = w with |αi|V ≤ m, for all 0 ≤ i ≤ n. If it is index m for some
m, then it is finite-index. This property is more general than requiring that
every derivation of a word in the language has at most m nonterminals, a notion
that is called uncontrolled index m, or uncontrolled finite-index. For context-
free grammars, the languages generated by uncontrolled finite-index grammars
corresponds to pushdown automata with a reversal-bounded pushdown [2], which
cannot accept languages such as {anbn | n > 0}∗ that can be generated by an
index 2 grammar [14]. Hence, finite-index CFG-S are quite general. Clearly, the
definitions easily extend to m-index CFG-SC (finite-index CFG-SC).

Proposition 16. Let m, k ≥ 1 be fixed. The emptiness problem for m-index
CFG-SC with at most k 1-reversal counters is decidable in polynomial time.

Proof. Let G be an m-index CFG-SC with at most k 1-reversal counters. We first
construct from G a grammar G′ where all terminal symbols are mapped to λ.
Clearly, L(G′) is empty if and only if L(G) is empty. Then all rules in G′ are of
the form:

(q, i1, . . . , ik, A) → (p, l1, . . . , lk, u),

where ij ∈ {0, 1}, lj ∈ {−1, 0, 1} for 1 ≤ j ≤ k, u is string of nonterminals of
length at most m (possibly λ; there are no terminals used). Now from G′, we

State Grammars with Stores 173

construct an NCM M with k 1-reversal counters as follows: Its initial state is
[q0, S], where q0 is the initial state of G′ and S is the start nonterminal of G′.
The other states of M are of the form [q, w], where q is a state of G′, and w is
a string of at most m nonterminals (possibly λ).

Then M starts in state [q0, S] with all its k counters zero. A move of M is
defined by: if G′ has a rule

(q, i1, . . . , ik, A) → (p, l1, . . . , lk, v),

ij ∈ {0, 1}, lj ∈ {−1, 0, 1} for 1 ≤ j ≤ k, then in M , for all strings xAy with
|xAy| ≤ m and |xvy| ≤ m, create transitions from state [q, xAy] and counter
status i1, . . . , ik on λ, that goes to state [p, xvy] and updates the counters by
l1, . . . , lk. The accepting states of M are of the form [p, λ], where p is an accepting
state of G′.

Clearly, since G (and, hence, G′) is m-index and m is fixed, the size of M is
polynomial in the size of G′ (hence, of G). Since M is an NCM with a fixed (k)
number of 1-reversal counters and it is known that the emptiness problem for
NCM with a fixed number of 1-reversal counters is decidable in polynomial time
[4], the result follows. 	

Note that if the index of G is not fixed, the size of M is no longer polynomial
in the size of G′ (and, hence, of G). We also note that Proposition 16 can
be generalized to hold for many m-index grammar systems with k 1-reversal
counters (for fixed m and k).

5 Conclusions and Future Directions

State grammars were studied, and it was shown that with a new circular deriva-
tion relation, they generate all recursively enumerable languages. Then, using
the free interpretation and the leftmost derivation relations, additional stores
were added to state grammars; in particular, some number of reversal-bounded
counters. When using the free interpretation derivation relation, the counters do
not add any generative capacity, and only states are needed. When using left-
most derivations, the class coincides with the machine model NPCM (pushdown
automata with reversal-bounded counters). This leads to the result that state
grammars with counters and leftmost derivations are strictly weaker than state
grammars with no counters and the free interpretation derivation relation.

There are many interesting problems of descriptional complexity that are
open. For example, do state grammars form an infinite hierarchy with the number
of states? We conjecture that in Example 2, for each k ≥ 2, it is impossible to
generate Lk with a state grammar with fewer than k states, which would form
such a hierarchy.

174 O. H. Ibarra and I. McQuillan

References

1. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs on Theoretical Computer Science. Springer, Heidelberg (1989)

2. Ginsburg, S., Spanier, E.: Finite turn pushdown automata. SIAM J. Control 4(3),
429–453 (1966)

3. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines.
Theoret. Comput. Sci. 7, 311–324 (1978)

4. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)

5. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley Series in
Computer Science. Addison-Wesley Publishing Co., Boston (1978)

6. Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrix grammars.
Acta Informatica 31(8), 719–728 (1994)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O., McQuillan, I.: The effect of end-markers on counter machines and com-
mutativity. Theoret. Comput. Sci. 627, 71–81 (2016)

9. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

10. Ibarra, O.H.: Grammatical characterizations of NPDAs and VPDAs with counters.
In: Han, Y.S., Salomaa, K. (eds.) 21st International Conference on Implementation
and Application of Automata, CIAA 2016, Seoul, South Korea. Lecture Notes
in Computer Science, vol. 9705, p. 11 (2016). Invited abstract, journal version
submitted

11. Kasai, T.: An hierarchy between context-free and context-sensitive languages. J.
Comput. Syst. Sci. 4(5), 492–508 (1970)

12. Moriya, E.: Some remarks on state grammars and matrix grammars. Inf. Control
23, 48–57 (1973)

13. Moriya, E., Hofbauer, D., Huber, M., Otto, F.: On state-alternating context-free
grammars. Theoret. Comput. Sci. 337(1), 183–216 (2005)

14. Rozenberg, G., Vermeir, D.: On the effect of the finite index restriction on several
families of grammars. Inf. Control 39, 284–302 (1978)

15. Salomaa, A.: Matrix grammars with a leftmost restriction. Inf. Control 20(2),
143–149 (1972)

16. Stiebe, R.: Slender matrix languages, pp. 375–385. World Scientific (2000)

Error-Free Affine, Unitary,
and Probabilistic OBDDs

Rishat Ibrahimov1,3, Kamil Khadiev1,2,3(B), Krǐsjānis Prūsis2,
and Abuzer Yakaryılmaz2

1 Kazan Federal University, Kazan, Russia
rishat.ibrahimov@yandex.ru, kamilhadi@gmail.com

2 Center for Quantum Computer Science, University of Latvia, R̄ıga, Latvia
{krisjanis.prusis,abuzer}@lu.lv

3 Smart Quantum Technologies Ltd., Kazan, Russia

Abstract. We introduce the affine OBDD model and show that zero-
error affine OBDDs can be exponentially narrower than bounded-error
unitary and probabilistic OBDDs on certain problems. Moreover, we
show that Las Vegas unitary and probabilistic OBDDs can be quadrat-
ically narrower than deterministic OBDDs. We also obtain the same
results for the automata versions of these models.

Keywords: OBDDs · Affine models
Quantum and probabilistic computation · Zero-error
Las Vegas computation · Succinctness

1 Introduction

Using negative transition values (allowing interference between states and con-
figurations) is unarguably the main distinguishing property of quantum com-
putational models. In order to define a quantum-like classical system, one can
also introduce “negative probabilities” but the system is no longer linear. In this
direction, affine systems were introduced as an almost linear1 generalization of
probabilistic systems that can use negative transitions [10], and, due to their sim-
plicity, affine finite automata (AfAs) have been examined in a series of papers by
comparing them with classical and quantum finite automata [9,10,14,26,27,29].
Both bounded- and unbounded-error AfAs have been shown to be more power-
ful than their probabilistic and quantum counterparts and they are equivalent
to quantum models in nondeterministic acceptance mode [10]. AfAs can also
be very succinct on languages and promise problems [9,27]. In this paper, we

Part of the research work was done while Ibrahimov was visiting University of Latvia
in February 2017.

1 It evolves linearly but a non-linear operator is applied when we retrieve information
from the state vector.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 175–187, 2018.
https://doi.org/10.1007/978-3-319-94631-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_15&domain=pdf

176 R. Ibrahimov et al.

compare the computational power of error-free affine OBDDs with their prob-
abilistic and unitary counterparts on solving total functions and recognizing
languages.

Ordered Binary Decision Diagrams (OBDD), also known as oblivious read
once branching programs [28], are an important restriction of branching pro-
grams. It is a good model of data streaming algorithms. Since the length of an
OBDD is fixed (linear), the main complexity measure is “width”, analogous to
the number of states for automata models (see [28]). OBDDs can also be seen
as a variant of nonuniform automata that allow accessing the input in a pre-
determined order and using possibly different sets of instructions in each step
(e.g. [1]). It is known that [3,4,6,18,23] the gap between the width of the follow-
ing OBDD models can be at most exponential on total functions: deterministic
and bounded-error probabilistic, deterministic and bounded-error unitary, and
bounded-error probabilistic and bounded-error unitary. Each exponential gap
has also been shown to be tight by presenting witness functions. On partial
functions, on the other hand, the gap (width) between deterministic and exact
unitary OBDDs was shown not to be bounded [2,5,12].

In this paper, we introduce affine OBDDs and then compare error-free (zero-
error or Las Vegas) affine, unitary, probabilistic, and deterministic OBDD mod-
els. Zero-error probabilistic OBDDs are identical to deterministic OBDDs. Zero-
error unitary OBDDs cannot be narrower than deterministic OBDDs. On the
other hand, zero-error affine OBDDs can be exponentially narrower than not only
deterministic OBDDs but also bounded-error probabilistic and unitary OBDDs.
With success probability 1

2 , Las Vegas probabilistic and unitary OBDDs can be
quadratically narrower than deterministic OBDDs. We give an example func-
tion that achieves this bound up to a logarithmic factor. Finally, we examine the
automata counterpart of these models and obtain similar results.

The preliminaries and definitions are given in the next section. The generic
lower bounds are given in Sect. 3. The results on zero-error affine OBDD are
given in Sect. 4 and the results on Las Vegas OBDDs are given in Sect. 5. We
close the paper with automata results in Sect. 6. The extended version of the
paper can be accessible on arXiv (1703.07184).

2 Preliminaries

We assume the reader familiar with the basics of branching programs. An
Ordered Binary Decision Diagram (OBDD) can be defined as a non-uniform
automaton that can read the input symbols in a predetermined order (see [28]).

An OBDD P reads the variables in a specific order π = (j1, . . . , jn), called
the order of P , and it can trace its computation on a finite set of states S =
{s1, . . . , sm} such that (i) m is the width of OBDD, (ii) the initial state is the
initial node, and (iii) the accepting states are the accepting sink nodes. Thus,
each node in any level can be easily associated with a state in S. An OBDD can
also have a different transition function at each level.

Error-Free Affine, Unitary, and Probabilistic OBDDs 177

A probabilistic OBDD (POBDD) Pn of width m is formally defined as a
5-tuple: Pn = (S, T, v0, Sa, π), where S = {s1, . . . , sm} is the set of states cor-
responding to at most one node in each level2, v0 is the initial probabilistic
state, which is a stochastic column vector of size m, Sa is the set of accept-
ing states corresponding to the accepting sink nodes in the last level, π is
a permutation of {1, . . . , n} defining the order of the input variables, and,
T = {T 0

i , T 1
i | 1 ≤ i ≤ n} is the set of (left) stochastic transition matrices.

Let x ∈ {0, 1}n be the given input. At the beginning of the computation Pn

is in v0. Then the input bits are read in the order π(1), π(2), . . . , π(n) and the
corresponding stochastic operators are applied. That is, at the j-th step, we have
vj = T

xπ(j)
j vj−1, where vj−1 and vj are the probabilistic states before and after

the transition, respectively, π(j) represents the input bit read in this step, xπ(j)

is the value of this bit, and T
xπ(j)
j is the stochastic operator applied in this step.

We represent the final state as vf = vn. The input x is accepted (the value of 1
is returned) with probability fPn

(x) =
∑

si∈Sa
vf [i].

If all stochastic elements of transition matrices of a POBDD are composed
of only 0s and 1s, then it is a deterministic OBDD.

Quantum OBDDs (QOBDD) using superoperators are non-trivial general-
izations of POBDDs [2]. In this paper, we use the most restricted version of
quantum OBDDs called unitary OBDDs (UOBDDs) [13]. Note that UOBDDs
and POBDDs are incomparable [23]. (We refer the reader to [25] for a basic
introduction to the basics of quantum computation.)

A UOBDD with width m, say Mn, is a 5-tuple Mn = (Q,T, |v0〉, Qa, π),
where Q = {q1, . . . , qm} is the set of states, |v0〉 is the initial quantum state,
Qa is the set of accepting states, π is a permutation of {1, . . . , n} defining the
order of the variables, and T = {T 0

i , T 1
i | 1 ≤ i ≤ n} is the set of unitary

transition function matrices such that at the i-th step T 0
i (T 1

i) is applied if the
corresponding input bit is 0 (1).

Let x ∈ {0, 1}n be the given input. At the beginning of the computation
Mn is in |v0〉. Then the input bits are read in the order π(1), π(2), . . . , π(n)
and the corresponding unitary operators are applied: |vj〉 = T

xπ(j)
j |vj−1〉. This

represents the transition at the j-th step, where |vj−1〉 and |vj〉 are the quantum
states before and after the transition, respectively, π(j) represents the input bit
read in this step, xπ(j) is the value of this bit, and T

xπ(j)
j is the unitary operator

applied in this step. We represent the final state as |vf 〉 = |vn〉. At the end of
the computation, the final state is measured in the computational basis and the
input is accepted if the observed state is an accepting one. Thus, the input x is
accepted with probability fMn

(x) =
∑

qi∈Qa
|〈qi|vf 〉|2, where |qi〉 represents the

basis state corresponding to state qi and 〈qi|vf 〉 gives the amplitude of qi in the
final state.

An m-state affine system [10] can be represented by the space R
m, where R is

the set of real numbers. The set of (classical) states is denoted E = {e1, . . . , em}.
Any affine state (similar to a probabilistic state) is represented as a column vector

2 Suppose we have wi ≤ m nodes on a level i; then the node uj of this level corresponds
to the state sj , for j ∈ {1, . . . , wi}.

178 R. Ibrahimov et al.

v = (α1, α2, . . . , αm)T ∈ R
m such that

∑m
i=1 αi = 1. Each ei also corresponds

to a standard basis vector of R
m having value 1 in its i-th entry. An affine

operator is an m × m matrix, each column of which is an affine state, where the
(j, i)-th entry represents the transition from state ei to state ej . If we apply an
affine operator A to the affine state v, we obtain the new affine state v′ = Av.
To get information from the affine state, a non-linear operator called weighting
is applied, which returns any state with probability equal to the weight of the
corresponding vector element in the l1 norm of the affine state. If it is applied
to v, the state ei is observed with probability |αi|∑n

j=1 |αj | = |αi|
|v| , where |v| is the

l1 norm of v.
Here we define affine OBDDs (AfOBDDs) as a model with both classical

and affine states, which is similar to the quantum model having quantum and
classical states [7]. This addition does not change the computational power of
the model, but helps in algorithm construction.

An AfOBDD, say Mn, having m1 classical and m2 affine states is an 9-tuple
Mn = (S,E, δ, T, sI , v0, Sa, Ea, π), where S = {s1, . . . , sm1} is the set of classical
states, sI ∈ S is the initial classical state, Sa ⊆ S is the set of classical accepting
states, E = {e1, . . . , em2} is the set of affine states, v0 ∈ R

m2 is the initial affine
state, Ea ⊆ E is the set of affine accepting states, π is a permutation of {1, . . . , n}
defining the order of the variables, δ = {δi : S × {0, 1} → S | 1 ≤ i ≤ n} is the
classical transition function such that at the i-th step the classical state is set
to δi(s, xπ(i)) when in state s ∈ S and corresponding input bit is xπ(i), and,
T = {T s,0

i , T s,1
i | s ∈ S and 1 ≤ i ≤ n} is the set of affine transition matrices

such that at the i-th step T s,0
i is applied if the corresponding input bit is 0 (or

T s,1
i if it is 1) and the current classical state is s. The width of Mn is equal to

m1 · m2.
Let x ∈ {0, 1}n be the given input. At the beginning of the computation

Mn is (sI , v0). Then the input bits are read in the order π(1), π(2), . . . , π(n). In
each step, depending on the current input bit and classical state, the affine state
is updated and then the classical state is updated based on the current input
bit. Let (s, vj−1) be the classical-affine state pair at the beginning of the j-th
step. Then the new affine state is updated as vj = T

s,xπ(j)
j vj−1. After that the

new classical state is updated by δj(s, xπ(j)). At the end of the computation we
have (sF , vf). If sF /∈ Sa, then the input is rejected. Otherwise, the weighting
operator is applied to vf , and the input is accepted with probability fMn

(x) =
∑

ei∈Ea

|vf [i]|
|vf | . Note that if we use only non-negative numbers for an AfOBDD,

then we obtain a POBDD.
Any OBDD with π = (1, . . . , n) is called an id-OBDD. If we use the same

transitions at each level of an id-OBDD, then we obtain a finite automaton (FA).
A FA can also read an additional symbol after reading the whole input called the
right end-marker ($) for the post-processing. We abbreviate the FA versions of
OBDD, POBDD, QOBDD, UOBDD, and AfOBDD as DFA, PFA, QFA, UFA,
and AfA, respectively. Remark that UFAs are also known as Measure-Once or
Moore-Crutchfield quantum finite automata [8,21].

Error-Free Affine, Unitary, and Probabilistic OBDDs 179

A Las Vegas automaton can make three decisions: “accept”, “reject”, and
“don’t know”. Therefore, its set of states is split into three disjoint sets, the set
of accepting, rejecting, and neutral states in which the aforementioned decisions
are given, respectively. To be a well-defined Las Vegas algorithm, each member
(resp., non-member) is rejected (resp., member) with zero probability, i.e. the
algorithm never makes false classification, and the correct decision is given with
probability at least p > 0.

We assume the reader is familiar with the basic terminology of computing
functions and recognizing languages. Here we revise some necessary notations.

A function f : {0, 1}n → {1, 0} is computed by a bounded-error machine
if each member of f−1(1) is accepted with probability at least 1 − ε and each
member of f−1(0) is accepted with probability no more than ε for some non-
negative ε < 1

2 . If ε = 0, then the computation (and the machine) is called
zero-error or exact.

In the case of FAs, languages are considered instead of functions and the
term “language recognition” is used instead of “computing a function”.

A Las Vegas FA can recognize a language L with success probability p < 1
(with error bound 1 − p) if each member is accepted and each non-member is
rejected with probability at least p.

For a given language L, DFA(L), LVε(L), and ULVε(L) denote the number of
states of a minimal DFA, a minimal LV-PFA and a minimal LV-QFA recognizing
language L, respectively, where the error bound is ε for the probabilistic and
quantum models. For a given Boolean function f , OBDD(f), LV−OBDDε(f),
and ULV−OBDDε(L) denote the widths of a narrowest OBDD, a narrowest LV-
POBDD and a narrowest LV-UOBDDs computing f , respectively, where the
error bound is ε for the probabilistic and quantum models. Remark that in the
case of zero-error we set ε = 0.

3 Lower Bounds

Let X = {X1, . . . , Xn} be the set of variables. Let θ = (XA,XB) be a partition
of the set X into two parts XA and XB = X\XA. Let f |ρ be a “subfunc-
tion” of f , where ρ is a mapping ρ : XA → {0, 1}|XA|. The function f |ρ(XB)
is obtained from f by fixing each variable from XA to its value under ρ. The
concept of subfunction can be seen as a counterpart of Myhill-Neroda equiva-
lence classes. Let Nθ(f) be the number of different subfunctions with respect
to the partition θ. Let Π(n) be the set of all permutations of {1, . . . , n}. Let
θ(π, u) = (XA,XB) = ({Xj1 , . . . , Xju

}, {Xju+1 , . . . , Xjn
}), for the permutation

π = (j1, . . . , jn) ∈ Π(n), 1 < u < n. We denote Θ(π) = {θ(π, u) : 1 < u < n}.
Let Nπ(f) = maxθ∈Θ(π) Nθ(f), N(f) = minπ∈Π(n) Nπ(f).

Based on techniques from communication complexity theory, it has been
shown that exact quantum and probabilistic protocols have at least the same
complexity as deterministic ones [15,19]. The followings are also known:

180 R. Ibrahimov et al.

Fact 1 [11,15,16,19]. For any regular language L and error bound ε < 1, we
have the following lower bounds for PFAs and QFAs: (DFA(L))1−ε ≤ LVε(L) and
(DFA(L))1−ε ≤ ULVε(L).

Fact 2 [23]. For any Boolean function f over X = (X1, . . . , Xn) and error
bound ε < 1: (OBDD(f))1−ε ≤ ULV−OBDDε(f).

These results are followed from certain facts from communication complexity.
We briefly remind the notion of communication complexity (see [20]). Let h :
{0, 1}q × {0, 1}m → {0, 1} be a Boolean function. We have two players called
Alice and Bob, who compute h(x, y). The function h is known by both of them,
but Alice can see only x and Bob can see only y. First, Alice sends message(s)
to Bob and then Bob returns the answer. Alice’s aim is trying to minimize the
number of sending bits. The protocol is called Las Vegas if Alice chooses her
messages randomly, and then Bob returns the correct answer with probability
at least 1 − ε and gives-up (has error) with the remaining probability.

The communication complexity of function h(x, y) equals to c if and only if
the minimum number of bits sent during the communication is equal to c. It is
denoted as C(h) if the protocol is deterministic and LV − Cε(h) if the protocol
is Las Vegas and the probability of giving-up is bounded by ε. The relation
between these two complexity measures is presented in the following fact:

Fact 3 [11,15,16,19]. For any Boolean function h and an error bound ε < 1,
we have the following lower bound: (1 − ε)C(h) ≤ LV − Cε(h).

Facts 1 and 2 follows from Fact 3 and a simulation of automata and OBDD
by communication protocols (see [16,17]).

We can easily extend the result from Fact 2 for the probabilistic OBDD
model as well.

Theorem 1. For any Boolean function f over X = {X1, . . . , Xn} and error
bound ε < 1: (OBDD(f))1−ε ≤ LV−OBDDε(f).

Proof. Let d = OBDD(f). Due to [28], we have N(f) = d. Assume that there is a
Las Vegas OBDD P of width w, i.e. w < d1−ε. Let u = argmaxtN

θ(π(P),t)(f) and
θ = θ(π(P), u). Then P can be simulated by a Las Vegas probabilistic protocol
(see [17]) with log2 w < (1 − ε) log2 d bits. By the definition of the number of
subfunctions, we have Nθ(f) ≥ d. Moreover, it is known that the deterministic
communication complexity of a function is log2(Nθ(f)) = log2 d. But we also
have a Las Vegas communication protocol which uses log2 w < (1 − ε) log2 d
communication bits, which contradicts with Fact 3. 	

It is trivial that these results imply the equality for exact (zero-error) com-
putation, where ε = 0.

Error-Free Affine, Unitary, and Probabilistic OBDDs 181

4 Zero-Error Affine OBDDs

We show that exact AfOBDDs can be exponentially narrower than classical and
unitary quantum OBDD models. For this purpose we use two different functions.

The hidden weighted bit function [28] HWBn : {0, 1}n → {0, 1} returns the
value of xz on the input x = (x1, . . . , xn) where z = x1 + · · ·+xn, taking x0 = 0.
It is known [28] that any OBDD solving HWBn has a minimum width of 2n/5/n.
Due to Fact 2 and Theorem 1, the same bound is also valid for exact POBDDs
and UOBDDs.

Theorem 2. An exact id-AfOBDD M with n classical and n affine states can
solve HWBn.

Proof. The classical states are s0, . . . , sn−1 where s0 is the initial and only
accepting state. The affine states are e0, . . . , en−1 where e0 is the only accepting
affine state and v0 is e0.

Until reading the last input bit (xn), for each value 1, the index of the
classical state is increased by 1. Meanwhile, the value of xi is written to the
value of ei in the affine state: the affine state after the (i − 1)-th step becomes
vi−1 = (1 x1 · · · xi−1 0 · · · 0)T , where 1 = 1 − ∑i−1

j=1 xj . If xi = 0, then the
identity operator is applied. If xi = 1, then the following affine transformation
is applied ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −1 · · · − 1 0
0 0
... I(i−1)×(i−1)

...
0 0
1 1 · · · 1 1

0

0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which updates the values of e0 and ei as −∑i−1
j=1 xj and 1, respectively, and does

not change the other entries. Remark that the first entry can also be written as
1 − ∑i

j=1 xj . Thus, before reading xn, the classical state is st for t = x1 + · · · +
xn−1, and, the affine state is vn−1 = (1 x1 x2 · · · xn−1)T , where 1 is 1−∑n−1

j=1 xj .
After reading xn, the classical state is always set to s0 and so the deci-

sion is made based on the affine state. Each pair of st and xn determine
an appropriate last affine transformation that sets the final affine state to
vf = (xz 1 − xz 0 · · · 0)T , where xz is set to either 0 or 1. The details of
each last transition are as follows: (i) if t = 0 and xn = 0, then the correspond-
ing last transitions sets xz = 0, (ii) if t = n − 1 > 0, then regardless the value
of xn, the corresponding last transition sets xz = 1, and (iii) in any other case,
z = t + xn and the corresponding last transition sets xz to the (z + 1)-th entry
of vn−1. Based on xz, the final decision is given: if xz = 0 (resp., xz = 1), then
the input is accepted with probability 0 (resp., 1). 	

182 R. Ibrahimov et al.

For a positive integer n, let x, y be the inputs of size n, let p(n) be the
smallest prime number greater than n, and let sn(x) = (

∑n
i=1 i · xi) mod p(n).

The mixed weighted sum function [22] MWSn : {0, 1}n×{0, 1}n → {0, 1} is defined
as MWSn(x, y) = xi ⊕ yi if i = sn(x) = sn(y) ∈ {1, . . . , n}, and 0 otherwise. Any
bounded-error POBDD or UOBDD solving MWSn has a width of at least 2Ω(n)/n
[22,24]. The same bound is also valid for OBDDs, and so for exact POBDDs
and UOBDDs as well.

Before presenting our affine algorithm for MWSn, we consider its simpler ver-
sion: the weighted sum function [22] WSn(x) : {0, 1}n → {0, 1}, defined as
WSn(x) = xsn(x) if sn(x) ∈ {1, . . . , n}, and 0 otherwise.

Theorem 3. An exact id-AfOBDD can solve WSn with p(n) classical states and
n affine states.

Proof. We use almost the same algorithm given in the previous proof. The affine
part is the same. The new classical states are s0, . . . , sp(n)−1 with the same initial
and single accepting state s0. Until reading xn, the same affine transitions are
applied: vn−1 = (1 x1 x2 · · · xn−1)T , where 1 is 1 − ∑n−1

j=1 xj . The classical
transitions are modified as follows: The classical state before reading xi (i < n),
say sj , is set to sj+i·xi mod p(n). Thus, before reading xn, the classical state is

st where t =
(∑n−1

i=1 i · xi

)
mod p(n). At this point, the pair st and xn sets

the affine state to vf = (xsn(x) 1 − xsn(x) 0 · · · 0)T and then the classical state
is set to s0. Here xsn(x) = 0 if t + n · xn mod p(n) /∈ {1, . . . , n}. Otherwise,
depending on the value of sn(x), xsn(x) is set to the corresponding value from
vn−1 or directly to xn. 	

Theorem 4. An exact id-AfOBDD can solve MWSn with p2(n) classical states
and (n + 1) affine states.

Proof. The classical states are {si,j | 0 ≤ i, j < p(n)} where s0,0 is the initial
state and the accepting states are {si,i | 1 ≤ i ≤ n}. While reading all bits,
the values of sn(x) and sn(y) are calculated and stored as the values of the first
and second index of the classical states, respectively. Let si,j be the final state.
It is clear that if i �= j or i = j but not in {1, . . . , n}, the input is rejected
classically. In the remaining part, we assume that the final classical state is si,i

with i ∈ {1, . . . , n}. Thus, the final decision is given based on the final affine
state.

The affine states are {e0, . . . , en} where e0 is the single accepting state. The
initial affine state is v0 = e0.

While reading the first part of the input, all x values are encoded in the
affine state as (1 (−1)x1 (−1)x2 · · · (−1)xn)T , where 1 = 1 − ∑n

i=1(−1)xi .
Then, for each yj (1 ≤ j ≤ n), we multiply the j-th entry of the affine state by
(−1)yj (and update the first entry accordingly). Thus, the j-th entry becomes
(−1)xj+yj , which is equal to 1 if xj = yj and −1 if xj �= yj .

The last affine transformation is a composition of three affine transforma-
tions. The first transformation is the one explained above for yn. By using the
second one, the affine state is set to ((−1)xi+yi 1 − (−1)xi+yi 0 · · · 0)T .

Error-Free Affine, Unitary, and Probabilistic OBDDs 183

Here the first two entries are (1 0)T for members and (−1 2)T for non-
members. By using the third transformation, we can add half of the second
entry to the first entry and so get respectively (1 0)T and (0 1)T . Thus the
AfOBDD can separate members from non-members with zero error. 	

5 Las Vegas POBDDs and UOBDDs

For OBDDs with ε = 1
2 , the lower bounds given in Sect. 3 can be at most

quadratic. Up to a logarithmic factor, this quadratic gap was achieved by using
the SAd function in [23] for id-OBDDs. Here we give the same result for OBDDs
(for any order) using the SSAn function and also provide an LV-UOBDD algo-
rithm with the same size as the LV-OBDD.

We start with the well-known Storage Access Boolean Function SAd(x, y) =
xy, where the input is split into the storage x = (x1, . . . , x2d) and the address
y = (y1, . . . , yd).

By using the idea of “Shuffling” from [2,3,5,6], we define the Shuffled Storage
Access Boolean function SSAn : {0, 1}n → {0, 1} for even n. Let x ∈ {0, 1}n be an
input. We form two disjoint sorted lists of even indexes of bits I0 = (2i1, . . . , 2im)
and I1 = (2j1, . . . , 2jk) with the following properties: (i) if x2i−1 = 0 then
2i ∈ I0(x), (ii) if x2i−1 = 1 then 2i ∈ I1(x), (iii) ir < ir+1, for r ∈ {1, . . . ,m−1}
and jr < jr+1 , for r ∈ {1, . . . , k − 1}.

Let d be such that 2d + d = n/2. We can construct two binary strings by
the following procedure: initially α(x) := 02

d

, then for r from 1 to m we do
α(x) := ShiftX(α(x), x2ir

), where ShiftX((a1, ..., am), b) = (a2, ..., am, a1 ⊕ b).
And initially β(x) := 0d, then for r from 1 to k: β(x) := ShiftX(β(x), x2jr

).
Then, SSAn(x) = SAd(α(x), β(x)). Firstly, we provide a lower bound for OBDDs.

Theorem 5. OBDD(SSAn) ≥ 22
d

, for 2d + d = n/2.

Now, we provide an upper bound for LV-OBDDs.

Theorem 6. LV−OBDD0.5(SSAn) ≤ 22
d/2+d+3, for 2d + d = n/2.

Theorem 7. ULV−OBDD0.5(SSAn) ≤ 22
d/2+d+3, for 2d + d = n/2.

Affine OBDDs can be exponentially narrower also for SSAn.

Theorem 8. An exact AfOBDD A can solve SSAn with 2d+1 classical states and
2d + 1 affine states, for 2d + d = n/2.

Proof. The set of classical states is {(p, s) | p ∈ {p0, p1} and s ∈ {s0, . . . , s2d−1}}
having 2d+1 states. The states pj denote whether the next even bit to read is
a storage or address bit. The state si corresponds to the current address being
i. Every classical state is accepting, and so the decision is made based on the
final affine state. The AfOBDD also has 2d +1 affine states, {e1, . . . , e2d+1}. The
initial state is e2d+1, i.e. v0 = (0 · · · 0 1)T , and the only accepting state is e1.

184 R. Ibrahimov et al.

During the computation, it keeps the value of the storage in the first 2d states.
Specifically, if (i) the next position to read is odd or (ii) even but an address bit
(we are in a state (p1, si)), then we perform the identity transformation on the
affine state and change only the classical state. If we are reading a storage bit,
the classical state remains unchanged and we implement the ShiftX operation
on the storage: first, the 2d entries are shifted to the left by one and the first
entry becomes the 2d-th entry. Then, depending on the scanned symbol, the
value of the 2d-th entry is updated:

– If the scanned symbol is 0, then, for calculating the XOR value, the 2d-th
entry is multiplied by 1, i.e., 0 → 0 and 1 → 1.

– If the scanned symbol is 1, then, for calculating the XOR value, the 2d-th
entry is multiplied by −1 and then 1 is added to this result, i.e., 0 → 0 → 1
and 1 → −1 → 0.

The last entry in the affine state is used to make the state vector well-formed.
For example, if the state vector has 0 ≤ t ≤ 2d 1s in its first 2d entries, then the
last entry is 1 − t.

After reading the whole input, the first 2d entries keep the storage. We know
the address i from our classical state si – we move the corresponding storage
value from ei to e1 and sum all other entries in e2. Then, if the first entry is 1, the
rest of the vector contains only 0. If the first entry is 0, the second entry is 1 and
the rest of the vector contains 0. Therefore, any member (resp., non-member) of
SSAn is accepted by A with probability 1 (resp., 0). 	

6 Las Vegas Automata and Zero-Error AfAs

Similar to OBDDs, for ε = 1
2 , the lower bound for finite automata (Sect. 3) is

at most quadratic. Up to a constant, this quadratic gap is achieved by ENDk =
{u1v | u, v ∈ {0, 1}∗ and |v| = k−1}: DFA(ENDk) = 2k and LV0.5(ENDk) ≤ 4·2k/2.

Here, we propose a new language MODXORk based on which we improve the
above constant for LV-PFAs and provide a LV-UFA algorithm with the same
size as LV-PFAs. Then, we show that an AfA can recognize it with exponentially
fewer states with zero error. The language MODXORk for k > 0 is formed by the
strings {0, 1}<2kx1{0, 1}2k−1x2{0, 1}2k−1 · · · xm{0, 1}2k−1 where m > 0, each
xi ∈ {0, 1} for 1 ≤ i ≤ m, and

⊕m
i=0 xi = 1, taking x0 = 0. First, we give a lower

bound for DFAs.

Theorem 9. DFA(MODXORk) ≥ 22k for each k > 0.

Theorem 10. LV0.5(MODXORk) ≤ 2 · 2k for any k > 0.

Theorem 11. ULV0.5(MODXORk) ≤ 2 · 2k for any k > 0.

Similarly to OBDDs, exact AfAs can also be exponentially more efficient than
their classical and quantum counterparts.

Error-Free Affine, Unitary, and Probabilistic OBDDs 185

Theorem 12. The language MODXORk for k > 0 can be recognized by a (2k +1)-
state AfA A with zero-error.

Proof. The AfA A does not use any classical state and it has 2k+1 affine states,
{e1, . . . , e2k+1}. The initial state is e2k+1 and the only accepting state is e1. It
starts its computation in v0 = (0 · · · 0 1)T .

During the computation, it keeps the results in the values of the first 2k
states, i.e. it sets each value to 0 or 1 depending the previous results and the
current scanning symbols. More specifically, before each transition, the first 2k
entries are shifted to the right by one and the 2k-th entry becomes the first entry.
Then, depending on the scanned symbol, the value of the first entry is updated:

– If the scanned symbol is 0, then, for calculating XOR value, the first entry
is multiplied by 1, i.e., 0 → 0 and 1 → 1.

– If the scanned symbol is 1, then, for calculating XOR value, the first entry
is multiplied by −1 and then 1 is added to this result, i.e., 0 → 0 → 1 and
1 → −1 → 0.

The last entry in the affine state is used to make the state vector well-formed.
For example, if the state vector has 0 ≤ t ≤ 2k 1s in its first 2k entries, then the
last entry is 1 − t. After reading the whole input, the first entry has the result
and the rest of entries are summed to the second entry: if the first entry is 1
(resp., 0), then the rest of the vector contains only 0 (resp., 1). Therefore, any
member (resp., non-member) is accepted by A with probability 1 (resp., 0). 	

Acknowledgements. We thank Evgenijs Vihrovs (University of Latvia) for his help-
ful discussions and anonymous reviewers for their very helpful comments.

The work is partially supported by ERC Advanced Grant MQC, Latvian State
Research Programme NeXIT project No. 1. The work is also performed according to the
Russian Government Program of Competitive Growth of Kazan Federal University. The
research on Las-Vegas OBDDs (Sect. 5) is supported by Russian Science Foundation
Grant 17-71-10152

References

1. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform
automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
78–87. Springer, Heidelberg (2005). https://doi.org/10.1007/11505877 7

2. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math.
37(6), 670–682 (2016)

3. Ablayev, F.: Randomization and nondeterminism are incomparable for ordered
read-once branching programs. In: ECCC (021) (1997)

4. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the com-
putational power of probabilistic and quantum branching program. Inf. Comput.
203(2), 145–162 (2005)

https://doi.org/10.1007/11505877_7

186 R. Ibrahimov et al.

5. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 6

6. Ablayev, F., Karpinski, M.: On the power of randomized branching programs. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 141

7. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theor. Comput. Sci. 287(1), 299–311 (2002)

8. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical
report 1507.01988, arXiv (2015)

9. Belovs, A., Montoya, J.A., Yakaryılmaz, A.: On a conjecture by Christian Choffrut.
Int. J. Found. Comput. Sci. 28(5), 483–502 (2017)

10. Dı́az-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In:
Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2 11

11. Ďurǐs, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determin-
ism for one-way communication complexity, finite automata, and polynomial-time
computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 117–128. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023453

12. Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for
total and partial functions. Russ. Math. 59(11), 26–35 (2015)

13. Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. In: Weil, P.
(ed.) CSR 2017. LNCS, vol. 10304, pp. 126–140. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 13

14. Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the computational power of affine
automata. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS,
vol. 10168, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-53733-7 30

15. Hirvensalo, M., Seibert, S.: Lower bounds for Las Vegas automata by information
theory. RAIRO Theor. Inform. Appl. 37(1), 39–49 (2003)

16. Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communi-
cation complexity, OBDDs, and finite automata. Inf. Comput. 169(2), 284–296
(2001)

17. Khadiev, K.: On the hierarchies for deterministic, nondeterministic and proba-
bilistic ordered read-k-times branching programs. Lobachevskii J. Math. 37(6),
682–703 (2016)

18. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and
classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS,
vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58747-9 16

19. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way
protocols. In: STOC 2000, pp. 644–651 (2000)

20. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

21. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.
Comput. Sci. 237(1–2), 275–306 (2000)

22. Sauerhoff, M.: Quantum vs. classical read-once branching programs. In: Com-
plexity of Boolean Functions, vol. 06111, Dagstuhl Seminar Proceedings, Inter-
nationales Begegnungs und Forschungszentrum für Informatik (2006)

https://doi.org/10.1007/978-3-319-09704-6_6
https://doi.org/10.1007/3-540-61440-0_141
https://doi.org/10.1007/978-3-319-34171-2_11
https://doi.org/10.1007/BFb0023453
https://doi.org/10.1007/978-3-319-58747-9_13
https://doi.org/10.1007/978-3-319-58747-9_13
https://doi.org/10.1007/978-3-319-53733-7_30
https://doi.org/10.1007/978-3-319-53733-7_30
https://doi.org/10.1007/978-3-319-58747-9_16
https://doi.org/10.1007/978-3-319-58747-9_16

Error-Free Affine, Unitary, and Probabilistic OBDDs 187

23. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theor. Comput. Sci. 334(1), 177–225 (2005)

24. Savickỳ, P., Žák, S.: A read-once lower bound and a (1,+ k)-hierarchy for branching
programs. Theor. Comput. Sci. 238(1), 347–362 (2000)

25. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources.
LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13350-8 16

26. Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of
affine automata. Nat. Comput. 17(2), 283–293 (2018). https://doi.org/10.1007/
s11047-017-9652-z

27. Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of
affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp.
116–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9 10

28. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM, Philadelphia (2000)

29. Nakanishi, M., Khadiev, K., Prusis, K., Vihrovs, J., Yakaryilmaz, A.: Exact affine
counter automata. Electron. Proc. Theoret. Comput. Sci. (EPTCS) 252, 205–218
(2017). https://doi.org/10.4204/EPTCS.252.20

https://doi.org/10.1007/978-3-319-13350-8_16
https://doi.org/10.1007/978-3-319-13350-8_16
https://doi.org/10.1007/s11047-017-9652-z
https://doi.org/10.1007/s11047-017-9652-z
https://doi.org/10.1007/978-3-319-41312-9_10
https://doi.org/10.4204/EPTCS.252.20

State Complexity of Unambiguous
Operations on Deterministic

Finite Automata

Galina Jirásková1 and Alexander Okhotin2(B)

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 St. Petersburg State University,

7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
alexander.okhotin@spbu.ru

Abstract. The paper determines the number of states in a deterministic
finite automaton (DFA) necessary to represent “unambiguous” variants
of the union, concatenation, and Kleene star operations on formal lan-
guages. For the disjoint union of languages represented by an m-state
and an n-state DFA, the state complexity is mn − 1; for the unam-
biguous concatenation, it is known to be m2n−1 − 2n−2 (Daley et al.
“Orthogonal concatenation: Language equations and state complexity”,
J. UCS, 2010), and this paper shows that this number of states is nec-
essary already over a binary alphabet; for the unambiguous star, the
state complexity function is determined to be 3

8
2n + 1. In the case of a

unary alphabet, disjoint union requires up to 1
2
mn states, unambiguous

concatenation has state complexity m + n − 2, and unambiguous star
requires n − 2 states in the worst case.

1 Introduction

The basic operations on formal languages are union, concatenation and Kleene
star. The main models for language description, namely, regular expressions and
formal grammars, use these operations to express the structure of strings. An
important special case of concatenation is unambiguous concatenation. Concate-
nation of two formal languages, K and L, is said to be unambiguous, if every
string w in KL has a unique representation as w = uv, with u ∈ K and v ∈ L.
The union operation also has its unambiguous special case: the disjoint union.
These two operations are important, in particular, for giving rise to unambigu-
ous grammars. One can also define the unambiguous Kleene star : the Kleene
star of any language L with the property that every string in L∗ has a unique
decomposition as a concatenation of zero or more strings in L.

G. Jirásková—Research supported by VEGA grant 2/0084/15 and grant APVV-15-
0091.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 188–199, 2018.
https://doi.org/10.1007/978-3-319-94631-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_16&domain=pdf

State Complexity of Unambiguous Operations on DFA 189

This paper investigates the succinctness of description of these three unam-
biguous operations by deterministic finite automata (DFA). The state complexity
of union, concatenation and Kleene star in their unrestricted form has long been
known: Maslov [17] was the first to determine their state complexity as mn states
for the union, m2n − 2n−1 states for the concatenation and 3

42n states for the
Kleene star, where m and n is the number of states in the DFA recognizing
the arguments. These results were further elaborated by Yu et al. [21] and by
Jirásek et al. [10]. For nondeterministic finite automata (NFA), the state com-
plexity of these operations was determined by Holzer and Kutrib [9], a similar
study for two-way finite automata (2DFA) was carried out by Jirásková and
Okhotin [14], whereas Jirásek Jr. et al. [11] determined the state complexity
of basic operations for unambiguous finite automata (UFA). In the literature,
special consideration was given to the case of the unary alphabet, where state
complexity results are different: for DFA, as established by Yu et al. [21] and
by Pighizzini and Shallit [19], both union and concatenation require up to mn
states for relatively prime m,n, and fewer states for other values of m,n; the
star requires (n − 1)2 + 1 states. The state complexity of basic operations for
unary two-way automata was established by Kunc and Okhotin [15,16], and by
Okhotin [18] for unary UFA.

The question addressed in this paper is, do these state complexity results
essentially depend on using ambiguity, that is, on taking a union of overlapping
languages, on concatenating languages that allow some strings to be obtained
in multiple ways, and on taking the star of languages with multiple partitions?
If union, concatenation or star is restricted to be unambiguous, will it become
substantially easier to express?

In the case of the disjoint union operation, investigated in Sect. 3, it turns
out that it can be represented with one state less than the union in general: that
is, mn−1 states are sufficient to represesent disjoint union of a pair of DFA with
m and with n states. It is also proved that this number of states is in the worst
case necessary, with witness languages defined over a binary alphabet. For the
unary alphabet, the state complexity is 1

2mn, under certain assumptions on m
and n.

For the unambiguous concatenation, it is already known from Daley et
al. [4] that it requires exactly half as many states as concatenation in general:
its state complexity is m2n−1 − 2n−2. The witness languages of Daley et al. [4]
are defined over a four-symbol alphabet. In this paper, new binary witness lan-
guages for this operation are constructed in Sect. 4. In the unary case, the state
complexity of this operation is only m + n − 2.

Finally, as established in Sect. 5, representing the unambiguous star takes
half as many states as star in general, plus one extra state: its state complexity
is 3

82n +1, with witness languages over a binary alphabet. In the unary case, its
state complexity is n − 2.

190 G. Jirásková and A. Okhotin

2 Basic Notions

As usual, a deterministic finite automaton (DFA) is defined as a quintuple A =
(Σ,Q, q0, δ, F) where Σ is an input alphabet; Q is a finite non-empty set of states;
q0 ∈ Q is the initial state; δ : Q × Σ → Q is the transition function; F ⊆ Q is
the set of accepting states. The computation of A on a string w = a1 . . . an,
with a1, . . . , an ∈ Σ, is the uniquely defined sequence of states r0, . . . , rn ∈ Q,
in which r0 = q0, ri = δ(ri−1, ai) for all i. If rn ∈ F , the DFA is said to accept
the string w. The language recognized by a DFA, denoted by L(A), is the set of
all strings it accepts.

It is convenient to extend the transition function to act on strings in Σ∗, as
δ : Q × Σ∗ → Q, with δ(q, ε) = q and δ(q, aw) = δ(δ(q, a), w). In these terms,
L(A) = {w | δ(q0, w) ∈ F }. Also, the function is sometimes extended to act on
sets of states, as δ(S,w) = { δ(q, w) | q ∈ S }.

A state q of a DFA is called dead, if no string is accepted from q. In a minimal
DFA, there can be at most one dead state. A state q of a DFA is called cyclic if
there is a non-empty string v with δ(q, v) = q.

A DFA over a unary alphabet Σ = {a} is a chain of transitions by a that
eventually turns back to one of the previous states. The repetitive part is called
the cycle, and the earlier states outside of the cycle form the tail. Thus, the
language is ultimately periodic, beginning from � (the length of the tail), with
the length of the cycle as the period.

A nondeterministic finite automaton (NFA) is a quintuple A = (Σ,Q,Q0,
δ, F), where Q0 ⊆ Q is the set of possible initial states and the transition function
δ : Q × Σ → 2Q may define multiple next states. An NFA accepts a string
w = a1 . . . an if there exists a sequence of states r0, . . . , rn ∈ Q, with r0 ∈ Q0,
ri ∈ δ(ri−1, ai) for all i, and rn ∈ F .

In some literature, NFAs are defined with a unique initial state, that is, with
Q0 = {q0}. Every NFA can be converted to an NFA with a unique initial state
by adding a new initial state.

An NFA A = (Σ,Q,Q0, δ, F) can be transformed to an equivalent DFA with
states corresponding to subsets of Q. The subset Q0 is then the initial state of
the DFA, its set of final states is {S ⊆ Q | S∩F �= ∅}, and its transition function
δ′ : 2Q × Σ → 2Q is defined by δ′(S, a) =

⋃
q∈S δ(q, a).

3 Union

In general, the union of an m-state DFA A = (Σ,P, p0, γ, E) and an n-state DFA
B = (Σ,Q, q0, δ, F) can be recognized by a DFA with mn states, known as the
direct product DFA. Its set of states is the set of all pairs P ×Q, the initial state
is (p0, q0), the transition function simulates A on the first component and B
on the second component, thus mapping (p, q) by a to (γ(p, a), δ(q, a)); and a
pair (p, q) is accepting if p ∈ E or q ∈ F .

For automata without the disjointness restriction, mn states are in the worst
case necessary [17]. It turns out that if the union is disjoint, then the construction
can be improved by one state.

State Complexity of Unambiguous Operations on DFA 191

Lemma 1. For every m-state DFA A and for every n-state DFA B, with m,n �
2 and with L(A) ∩ L(B) = ∅, there is a DFA with mn − 1 states that recognizes
the disjoint union L(A) ∪ L(B).

Indeed, if any pair (p, q), with p accepting in A and q accepting in B, were
reachable in the direct product automaton, then the union would not be disjoint.
Thus, all such pairs can be excluded from the mn-state construction. Putting
aside the trivial case of either automaton having no accepting states, at least
one such pair exists.

It remains to show that this number of states, mn − 1, is necessary in the
worst case.

Lemma 2. For all m,n � 2, there exist languages K,L ⊆ {a, b}∗, recognized by
an m-state and an n-state DFA, respectively, with K ∩ L = ∅, for which every
DFA recognizing K ∪ L has at least mn − 1 states.

Proof (a sketch). The desired witness languages are recognized by the pair of
automata shown in Fig. 1. Every string in K ends with a, while every string
in L ends with b, and therefore, K and L are disjoint. In the direct product
automaton, each pair (i, j) is reachable by aibj if i � m− 2, and by am−1bja for
i = m − 2.

For every two pairs (i, j) and (k, �), if i < k, then the string am−1−k is
accepted from (i, j), but not from (k, �). The case of j < � is symmetric. �	

0A 1 . . . m− 2 m− 1
a a a a

b
b b b

a

0B 1 . . . n− 2 n− 1
b b b b

a
a a a

b

Fig. 1. Binary witnesses for disjoint union meeting the upper bound mn − 1.

The next theorem summarizes the results of the two lemmata above.

Theorem 3 (Disjoint Union). Let A and B be an m-state and n-state DFA,
respectively, such that L(A) ∩ L(B) = ∅. Then the language L(A) ∪ L(B) is
recognized by a DFA of at most mn − 1 states. This upper bound is tight, and it
is met by the binary witness languages recognized by DFAs shown in Fig. 1. �	

192 G. Jirásková and A. Okhotin

The union operation in the case of a unary alphabet still requires all mn
states, as long as m and n are relatively prime; the reduction of state complexity
in the case when m and n have common divisors was studied by Pighizzini and
Shallit [19]. However, if the union is disjoint, then it can be represented using
half as many states.

Theorem 4 (Unary Disjoint Union). Let m,n � 4. Let A be an m-state
DFA and B an n-state DFA, both defined over a unary alphabet Σ = {a}, with
L(A) ∩ L(B) = ∅. Then the disjoint union L(A) ∪ L(B) is recognized by a DFA
with at most
 1

2mn� states. This upper bound is tight whenever m and n are even
numbers with m

2 and n
2 relatively prime, and it is met by the languages (am)∗

and a(an)∗.

Proof. If either of the automata defines a finite language, then the union is
recognized by a DFA with m + n states, which cannot exceed 1

2mn: indeed,
m + n � 2max(m,n) � 1

2 min(m,n)max(m,n) = 1
2mn. Assume that both

languages are infinite. Let k be the length of the cycle in A, and let � be the
length of the cycle in B.

If the cycle lengths in A and in B are relatively prime, then the union is
ambiguous. Let d be the greatest common divisor of their cycle lengths. Then the
union L(A)∪L(B) is recognized by a DFA with a cycle of length lcm(k, �) = 1

dk�,
which is at most 1

2k�. In addition, there are max(m− k, n− �) non-cyclic states.
Assume that m − k � n − �. Then the number of states in the DFA is estimated
as follows.

1
2
k� + m − k � 1

2
k� +

1
2
(m − k)� =

1
2
m� � 1

2
mn

Now, consider the tightness. Since the first language consists of even-length
strings and the other one of odd-length strings, their union is disjoint. Since
gcd(m,n) = 1

2mn, the union is periodic with this period, and therefore every
DFA recognizing the union must have at least this many states. �	

4 Concatenation

The state compliexity of unambiguous concatenation has been investigated
before, and the following result is known.

Theorem A (Daley et al. [20]). Let A by an m-state DFA, and B an n-state
DFA. If the concatenation L(A)L(B) is unambiguous, then it can be represented
by a DFA with m2n−1−2n−2 states. The bound is tight for a four-symbol alphabet.

This paper improves the tightness result by showing that the upper bound
cannot be reduced already for a binary alphabet.

Lemma 5. Let m,n � 3 and A and B be the DFAs shown in Fig. 2. Then the
concatenation L(A)L(B) is unambiguous and every DFA recognizing L(A)L(B)
must have at least m2n−1 − 2n−2 states.

State Complexity of Unambiguous Operations on DFA 193

p0A p1 p2 . . . pm−2 pm−1
b b b b b

a
a, b

a a
a

0B 1 . . . n− 3 n− 2 n− 1
a a a a a

b b b b a, b

Fig. 2. Binary witnesses for unambiguous concatenation meeting the upper bound
m2n−1 − 2n−2.

Proof. The concatenation is unambiguous, because every non-empty string in
L(A) ends with an a, whereas every string in L(B) contains exactly n−2 occur-
rences of a. Thus, the only possible partition of a string into L(A) · L(B) is to
split it right after the (n − 1)-th last occurrence of a.

Let P = {p0, p1, . . . , pm−1} be the state set of the DFA A, and Q =
{0, 1, . . . , n − 1} the state set of B. An NFA for L(A)L(B) is constructed by
omitting the dead state n − 1 of B, by adding the transitions from pi to 0 by a,
for all pi ∈ P \ {pm−1}, and by making both p0 and 0 initial.

Each reachable subset is represented as (p, S) with p ∈ P and S ⊆ Q\{n−1}.
The first goal is to show that for each set S ⊆ Q, the state (p0, {0} ∪ S) is

reachable, and so is each state (pi, S), with 1 � i � m−1. The proof is by induc-
tion on |S|. In the base case, |S| = 0, each pair (pi, ∅), with i ∈ {1, 2, . . . ,m−1},
is reached as follows.

(p0, {0}) b−→ (p1, {0})
(bm−2a)n−2

−−−−−−−−→ (p1, {n − 2}) bm−2a−−−−→ (p1, ∅) bi−1

−−−→ (pi, ∅)

Let 2 � k � n and assume that for each set S′ with |S′| = k − 1, each state
(pi, S) with 1 � i � m − 1 and the state (p0, {0} ∪ S) is reachable. Let S ⊆ Q
and |S| = k. Consider several cases:

(1) i = 1. Let j = min S. Take S′ = {q − j − 1 | q ∈ S \ {j}}. Then S′ ⊆ Q and
|S′| = k − 1, so the state (p1, S′) is reachable by the induction assumption.
The state (p1, S) is reachable from it as follows.

(p1, S′) ab−→(p1, {0} ∪ {q − j | q ∈ S \ {j}})
(bm−2a)j−−−−−−→

(p1, {j} ∪ {q | q ∈ S \ {j}}) = (p1, S)

(2) 2 � i � m − 1. Then (p1, S) was shown to be reachable in case (1), and
(pi, S) is reached from it by the string bi−1.

(3) i = 0. Then (p1, {q − 1 | q ∈ S \ {0}}) is reachable as in case (1), and
(p0, {0} ∪ S) is reached from it by the symbol a.

194 G. Jirásková and A. Okhotin

This proves the reachability of (m − 1)2n + 2n−1 = m2n − 2n−1 states.
To prove distinguishability, let (pi, S) and (pj , T) be two distinct states. If

S �= T , let j ∈ Q be in their symmetric difference, and assume, without loss
of generality, that j ∈ S and j /∈ T . Then the string an−2−j is accepted from
(pi, S), but not from (pj , T). Let S = T , and, without loss of generality, let i < j.
Then the string bm−1−ja distinguishes (pi, S) and (pj , S) since

(pj , S) bm−1−j

−−−−−→ (pm−1, S) a−→ (
p1, {q + 1 | q ∈ S})

,

(pi, S) bm−1−j

−−−−−→ (pm−1−(j−i), S) a−→ (
p0, {0} ∪ {q + 1 | q ∈ S})

,

so, the resulting states differ in the second component, and therefore are distin-
guishable. �	

All the above results are summarized in the next theorem. Then, the unary
case is discussed.

Theorem 6 (Unambiguous Concatenation). Let A and B be an m-state
and n-state DFA, respectively, such that the concatenation L(A)L(B) is unam-
biguous. Then the language L(A)L(B) is recognized by a DFA of at most
m2n−1 − 2n−2 states. This upper bound is tight, and it is met by the binary
witness languages recognized by the DFAs shown in Fig. 2.

Theorem 7 (Unary Unambiguous Concatenation). Let m,n � 2, let A
be an m-state and B an n-state DFA over a unary alphabet Σ = {a}, and let
the concatenation L(A)L(B) be unambiguous. Then L(A)L(B) is recognized by
a DFA with at most m + n − 2 states, and this upper bound is tight.

Proof. If both languages are infinite, then the concatenation is ambiguous.
Therefore, one of the automata defines a finite language; since concatenation
is commutative, there is no loss of generality in the assumption that this is A.
Then A recognizes some subset of {ε, a, a2, . . . , am−2}.

Let L(B) be periodic with period k, beginning from �; then, k+ � � n. Then,
the concatenation L(A)L(B) is periodic with period k, beginning from m+�−2,
and is therefore recognized by a DFA with m + n − 2 states.

In the worst case, m+n−2 states are necessary to represent the unambiguous
concatenation of two unary languages represented by an m-state and an n-state
DFA, which is witnessed by the singleton languages {am−2} and {an−2}. Their
concatenation {am+n−4} requires a DFA with m + n − 2 states. �	

5 Star

The star of an n-state DFA is representable by a DFA with 3
42n states, and this

number is in the worst case necessary [17]. However, if the star is unambiguous,
then the necessary number of states can be reduced. The proof is based on the
property that for the star to be unambiguous, the automaton has to have a dead
state. This property is in turn based on the following auxiliary result.

State Complexity of Unambiguous Operations on DFA 195

Lemma 8. If a DFA A = (Σ,Q, q0, δ, F), with L(A) �= ∅, has no dead states,
then there is an accepting state q ∈ F which is in a cycle, that is, δ(q, u) = q for
some non-empty string u ∈ Σ∗.

Proof. Let u0 ∈ L(A). Then δ(q0, u0) = q1 for some accepting state q1. Since A
does not have any dead state, there is a non-empty string u1 accepted from q1.
Let q2 = δ(q1, u1) be the state, in which it is accepted. This yields a sequence
of accepting states qi and non-empty strings ui, with i � 1. Since A has finitely
many accepting states, this sequence eventually revisits some state, that is, qi =
qj for some i < j. Then the state qi is cyclic, with qi = δ(qi, u1 . . . uj−1). �	
Lemma 9. If A is a DFA and the star L(A)∗ is unambiguous, then A has a
dead state.

Proof. Let A = (Σ,Q, q0, δ, F) be a minimal DFA for L. Suppose for a contra-
diction that A does not have any dead state. Then, by Lemma 8, there is an
accepting state p ∈ F and a nonempty string v ∈ Σ∗, with δ(p, v) = p. Consider
the sequence of states qi, with i � 0, defined by qi = δ(q0, vi). Since the number
of states in A is finite, there are numbers j � 0 and k � 1 with qj = qj+k, and
thus δ(qj , v

k) = qj . Now let u be a string, by which p is reached from q0, and
let w be any string accepted from qj , Then the string uvj+kw can be partitioned
as u · vj+kw or uvk · vjw, which is a contradiction with the unambiguity of L∗.
Therefore, A must have a dead state. �	
Lemma 10. For every n � 4, the language Ln = (a∗b)n−3b(ab)∗ is recognized
by an n-state DFA, the star L∗

n is unambiguous, and every DFA recognizing L∗
n

must have at least 3
82n + 1 states.

Proof. The language Ln is recognized by the DFA A shown in Fig. 3, Construct
an NFA A∗ from A by omitting the dead state n − 1, by adding the transition
(n − 3, b, 0), and by adding one more initial and final state s; see Fig. 4. The
NFA A∗ is unambiguous, since the intersection of every reachable and every
co-reachable set of A∗ is of size at most one.

0A 1 . . . n− 4 n− 3 n− 2 n− 1
b b b b b b

a a a a, b

a

a

Fig. 3. A binary witness for unambiguous star meeting the upper bound 3
8
2n + 1.

Let us show that the subset automaton D(A∗) has 3
82n + 1 reachable and

pairwise distinguishable states. The initial subset is {s, 0} and it is sent to the
state [0, n − 3] by bn−3(ba)n. Next, every subset S of [0, n − 3] can be shifted
cyclically by one, that is, it can be sent to {(s + 1) mod (n − 2) | s ∈ S}, by

196 G. Jirásková and A. Okhotin

0 1 . . .A∗ n− 4 n− 3 n− 2

s

b b b b b

a a a
a

b

Fig. 4. NFA A∗ for the star of the language accepted by DFA A from Fig. 3.

reading b if n − 3 /∈ S, by reading ba if {n − 4, n − 3} ⊆ S, and by reading baa
if n − 3 ∈ S and n − 4 /∈ S. Moreover, the state n − 3 can be eliminated from
every subset of [0, n − 3] containing the state n − 3 by reading a. It follows that
every subset of [0, n − 3] is reachable from [0, n − 3].

Now let n − 2 ∈ S. Then also 0 ∈ S. Let S′ = {s − 1 | s ∈ S \ {0}}. Then
S′ ⊆ [0, n − 3], so S′ is reachable as shown above. Since n − 3 ∈ S′, the set S′ is
sent to S by b. This proves reachability.

To prove distinguishability, let S and S′ be any two distinct reachable subsets
of the subset automaton D(A∗). Then they must differ in some state i ∈ [0, n−2].
Assume, without loss of generality, that i ∈ S and i /∈ S′ Then, the string bn−2−i

is accepted from S, but not from S′. �	
The next theorem summarizes the results on the star operation. Then, the

unary case is discussed.

Theorem 11 (Unambiguous Star). Let n � 4 and A be an n-state DFA such
that L(A)∗ is unambiguous. Then the language L(A)∗ is accepted by a DFA of
at most 3

82n + 1 states. This upper bound is tight, and it is met by the binary
witness language (a∗b)n−3b(ab)∗.

Proof. To get an NFA A∗ for L∗ from the DFA A, first omit the dead state.
Then add the transition (q, a, q0) whenever δ(q, a) ∈ F . Finally, add one more
initial and final state s with no transitions going from it. In the subset automa-
ton D(A∗), the initial subset is {s, q0}, and no other reachable subset contains q0.
Moreover, no subset which contains a final state of A but does not contain
state q0 is reachable. In total, the number of reachable subsets in D(A∗) is at
most 1+2n−1 −2n−2 = 3

82n +1. The tightness of this upper bound follows from
Lemma 10. �	
Theorem 12 (Unary Unambiguous Star). Let A be an n-state unary DFA
such that L(A)∗ is unambiguous. Then L(A)∗ is accepted by a DFA of at most
n − 2 states. This upper bound is tight, and it is met by the unary language
{an−2}.
Proof. In the unary case, for L∗ to be unambiguous, L must be a singleton.
Furthermore, if an n-state DFA recognizes a singleton {a�}, then � � n − 2,
whereas the star of this language, (a�)∗, is recognized by a DFA with � states.

State Complexity of Unambiguous Operations on DFA 197

Thus, unambiguous star of a unary DFA is representable using n−2 states. This
number of states is necessary, witnessed by the language {an−2}. �	

6 Summary of Results

State complexity of basic operations on regular languages and of their unam-
biguous variants studied in this paper is compared in Table 1 for three automata
models: DFA, UFA and NFA.

Table 1. State complexity of standard and unambiguous operations for DFA, UFA
and NFA: union (∪), disjoint union (�), concatenation (·), unambiguous concatenation
(unamb·), Kleene star (∗), unambiguous Kleene star (unamb∗).

DFA UFA NFA

∪ mn [17] � m + O(n20.79m) [11] m + n [9]

� mn − 1 � m + n � m + n

· m2n − 2n−1 [17] 3
4
2m+n − 1 [11] m + n [9]

unamb· m2n−1 − 2n−2 [20] � m + n � m + n

* 3
4
2n [17] 3

4
2n [11] n + 1 [9]

unamb∗ 3
8
2n + 1 � n + 1 � n + 1

For the three unambiguous operations on DFA, their state complexity has
been established in this paper. These operations are easy to apply to UFA using
the standard constructions for the union, concatenation and star of NFA: indeed,
since the operations are unambiguous, they preserve the unambiguity of the
automata involved; however, it remains to establish matching lower bounds.

Another line of related state complexity research is concerned with basic
operations on prefix-free languages, that is, those with the property that uv ∈ L,
with v ∈ Σ+, implies that u /∈ L. Suffix-free languages are defined similarly.
Notably, for prefix-free and for suffix-free languages, both concatenation and
star are unambiguous, and hence the state complexity results on these subcases
are natural tight upper bounds for these two operations. For prefix-free languages
and for the DFA model, union has state complexity mn − 2 [12], the state com-
plexity of concatenation is m+n− 1 [7,12], whereas the star has state complex-
ity n [7,12]. For suffix-free languages, the results are completely different: union
has state complexity mn−m−n+2 [5,13], concatenation has (m−1)2n−2+1 [3,5],
and for the star it is 2n−2 + 1 [3,5].

One more related research direction is the recent study of variants of the
basic operations on languages defined over the field GF(2) instead of the stan-
dard Boolean logic [1]. The union operation turns into the symmetric differ-
ence, whereas concatenation gives rise to the following new GF(2)-concatenation
operation.

K � L = {w | #of partitions w = uv, with u ∈ K and v ∈ L, is odd }

198 G. Jirásková and A. Okhotin

The GF(2)-star is defined similarly, so as to preserve only the strings with
an odd number of partitions. Notably, the unambiguous operations studied in
this paper are a special case of the GF(2) operations in the same way as they
are a special case of classical operations: indeed, the differences between classical
and GF(2) operations are in the treatment of ambiguity. As the GF(2) opera-
tions preserve regularity, their state complexity is worth being compared to the
unambiguous and the classical cases. So far, it has been proved that for DFA,
GF(2)-concatenation has state complexity m · 2n, while the state complexity of
the GF(2)-star is 2n + 1 [1].

Another incomparable extension of unambiguous concatenation and star are
the unique concatenation and the unique star [20], defined similarly, using the
uniqueness of partition as the condition of membership. The state complexity of
unique concatenation is at most m3n − 3n−1, and for the unique star the upper
bound is 2 · 3n−1 − 3

42n + 2 [20], their tightness remains open.

Table 2. State complexity of operations in the case of a unary alphabet.

DFA UFA NFA

∪ � mn [19] m + n [9]

� ��� 1
2
mn � m + n � m + n

· � mn [21] m + n [9]

unamb· m + n − 2 � m + n � m + n

∗ (n − 1)2 + 1 [21] (n − 1)2 + 1 [18] n + 1 [9]

unamb∗ n − 2 � n + 1 � n + 1

In the next Table 2, the state complexity of all the same operations is com-
pared in the case of a unary alphabet. Again, for DFA, the state complexity of
unambiguous operations has been established, whereas for UFA and for NFA
there are only obvious upper bounds. For UFA, the state complexity of standard
operations remains to be investigated, with only a few results known [18].

References

1. Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.:
Formal languages over GF(2). In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77313-1 5

2. Brzozowski, J.A., Szyku�la, M.: Complexity of suffix-free regular languages. J. Com-
put. Syst. Sci. 89, 270–287 (2017). https://doi.org/10.1016/j.jcss.2017.05.011

3. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25929-6 9

https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1016/j.jcss.2017.05.011
https://doi.org/10.1007/978-3-642-25929-6_9
https://doi.org/10.1007/978-3-642-25929-6_9

State Complexity of Unambiguous Operations on DFA 199

4. Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: language
equations and state complexity. J. Univers. Comput. Sci. 16(5), 653–675 (2010).
https://doi.org/10.3217/jucs-016-05-0653

5. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009). https://doi.org/10.1016/
j.tcs.2008.12.054

6. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity for suffix-free regular
languages. In: DCFS 2010, EPTCS, vol. 31, pp. 189–196 (2010). https://doi.org/
10.4204/EPTCS.31.21

7. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–
115 (2009)

8. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundamenta Informaticae 90(1–2),
93–106 (2009). https://doi.org/10.3233/FI-2009-0008

9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003). https://doi.org/10.
1142/S0129054103002199

10. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. Int. J. Found. Comput. Sci. 16(3), 511–529 (2005). https://doi.org/
10.1142/S0129054105003133

11. Jirásek, J., Jirásková, G., Šebej, J.: Operations on unambiguous finite automata.
In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 243–255.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-7 20

12. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In: DCFS
2010, EPTCS, vol. 31, pp. 197–204. https://doi.org/10.4204/EPTCS.31.22

13. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free
languages and descriptional complexity. In: NCMA 2009, books@ocg.at, vol. 256,
151–166 (2009)

14. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite
automata. Inf. Comput. 253(1), 36–63 (2017). https://doi.org/10.1016/j.ic.2016.
12.007

15. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way non-
deterministic finite automata. Fundamenta Informaticae 110(1–4), 231–239 (2011).
https://doi.org/10.3233/FI-2011-540

16. Kunc, M., Okhotin, A.: State complexity of operations on two-way deterministic
finite automata over a unary alphabet. Theoret. Comput. Sci. 449, 106–118 (2012).
https://doi.org/10.1016/j.tcs.2012.04.010

17. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

18. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012). https://doi.org/10.1016/j.ic.2012.01.003

19. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://doi.
org/10.1142/S012905410200100X

20. Rampersad, N., Ravikumar, B., Santean, N., Shallit, J.: State complexity of unique
rational operations. Theoret. Comput. Sci. 410, 2431–2441 (2009). https://doi.org/
10.1016/j.tcs.2009.02.035

21. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on
regular languages. Theoret. Comput. Sci. 125, 315–328 (1994). https://doi.org/10.
1016/0304-3975(92)00011-F

https://doi.org/10.3217/jucs-016-05-0653
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.4204/EPTCS.31.21
https://doi.org/10.4204/EPTCS.31.21
https://doi.org/10.3233/FI-2009-0008
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054105003133
https://doi.org/10.1142/S0129054105003133
https://doi.org/10.1007/978-3-662-53132-7_20
https://doi.org/10.4204/EPTCS.31.22
https://doi.org/10.1016/j.ic.2016.12.007
https://doi.org/10.1016/j.ic.2016.12.007
https://doi.org/10.3233/FI-2011-540
https://doi.org/10.1016/j.tcs.2012.04.010
https://doi.org/10.1016/j.ic.2012.01.003
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1016/j.tcs.2009.02.035
https://doi.org/10.1016/j.tcs.2009.02.035
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Cycle Height of Finite Automata

Chris Keeler(B) and Kai Salomaa

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. A nondeterministic finite automaton (NFA) A has cycle
height K if any computation of A can visit at most K cycles, and A has
finite cycle height if it has cycle height K for some K. We give a poly-
nomial time algorithm to decide whether an NFA has finite cycle height
and, in the positive case, to compute its optimal cycle height. Nondeter-
ministic finite automata of finite cycle height recognize the polynomial
density regular languages.

1 Introduction

Deterministic and nondeterministic finite automata define the class of regular
languages and have been systematically studied for over 60 years. At the same
time, many important questions on finite automata and regular languages remain
open [8,10]. The last decades have seen much work on the descriptional com-
plexity, or state complexity, of regular languages [4,6,7].

In this paper we consider a structural property of finite automata called cycle
height. A nondeterministic finite automaton (NFA) is said to have finite cycle
height if no two cycles overlap. A finite cycle height NFA A has cycle height K if
all computations of A visit no more than K non-equivalent cycles.1 The acyclic
NFAs have cycle height zero and the nearly acyclic NFAs [9] have cycle height
one.

Note that cycle height differs from the notion of cycle rank [5] which counts
the degree of nesting of cycles in an NFA. Also Msiska and van Zijl [12] estimate
the size blow-up of the subset construction by counting how many times a com-
putation passes through a simple cycle. The notion is in some sense related to
cycle height, but their point of view is different because the algorithm modifies
the NFA by removing nested cycles.

A language L has polynomial density if the number of strings of length n
in L is bounded by a polynomial in n. Szilard et al. [15] have shown that a
language recognized by a deterministic finite automaton (DFA) A has poly-
nomial density if all strings have a certain tiered property with respect to A.
The tiered property is related to our notion of cycle height of NFAs, although
in [15] the tiered words are defined only with respect to a DFA. As noted by
1 By non-equivalent cycles we mean cycles that are not permutations of each other.

The notion will be defined formally in Sect. 2.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 200–211, 2018.
https://doi.org/10.1007/978-3-319-94631-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_17&domain=pdf

Cycle Height of NFAs 201

Kutrib et al. [11], from [15] it follows that, for a polynomial density regular lan-
guage L, the degree of the polynomial giving the density of L is computable.
Using more advanced techniques, Gawrychowski et al. [3] have shown that for
an m-state DFA A recognizing a polynomial density language the degree of the
polynomial giving the density of the language can be computed in O(m) time,
assuming the alphabet size is constant.

The contributions of this paper are as follows. In Sect. 3 we give a polynomial
time algorithm to decide whether an NFA A has finite cycle height and, in the
positive case, to compute the cycle height of A. We show that NFAs with finite
cycle height recognize the polynomial density regular languages, but an NFA
recognizing a polynomial density language need not have finite cycle height.
Based on results from [15] it then follows that a DFA A has finite cycle height
if and only if the language L(A) has polynomial density. Furthermore, if A has
finite cycle height, the degree of the polynomial bounding the density of A is
the cycle height of A minus one. This would give a polynomial time algorithm
to compute the density of a language recognized by a DFA, however, the time
complexity is worse than in the known algorithm from Gawrychowski et al. [3].
Finally in Sect. 4 we study upper and lower bounds for the depth path width [9]
of NFAs with finite cycle height. The depth path width of an NFA A, roughly
speaking, quantifies the overall path expansion in computations of A by counting
the number of complete computations of A on all possible inputs of a given
length.

2 Preliminaries

We assume the reader to be familiar with the basics of formal languages and
finite automata [14]. The set of strings over a finite alphabet Σ is Σ∗, the set
of strings of length m ≥ 0 is Σm and ε is the empty string. The cardinality of a
finite set F is denoted |F | and N is the set of non-negative integers.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is the finite set of states, Σ is the input alphabet, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The transition function δ is in the usual way extended as a function Q×Σ∗ → 2Q

and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. If
|δ(q, b)| ≤ 1 for all q ∈ Q and b ∈ Σ, the automaton A is a deterministic finite
automaton (DFA). It is well known that the NFAs and DFAs recognize the class
of regular languages.

Unless otherwise mentioned, we always assume that an NFA or a DFA does
not have useless states, that is, states that cannot be used in an accepting com-
putation. Note that we can avoid a DFA having a “useless” dead state because
we allow DFAs to have undefined transitions.

The density of a language L is a function N → N defined as �L(n) = |L∩Σn|.
A language L is said to have polynomial density if there exists an integer d ≥ 0
such that �L(n) ∈ O(nd). Density is sometimes instead defined as the ratio
|L ∩ Σn|/|Σn|, with our notion of density instead being referred to as popula-
tion [15].

202 C. Keeler and K. Salomaa

2.1 Cycle Height and Depth Path Width

First we recall some definitions related to computations and cycles of an NFA.
In the following A = (Q,Σ, δ, q0, F) is always an NFA.

A (state) path of the NFA A with underlying string w = b1b2 · · · bk, bi ∈ Σ,
i = 1, . . . , k, k ≥ 0, is a sequence of states (p0, p1, . . . , pk), where pj ∈ δ(pj−1, bj),
j = 1, . . . k. A path beginning in the start state q0, is a computation of A on the
underlying string w. A computation that ends in an accepting state of F is an
accepting computation. A computation (q0, p1, . . . , p�) is a complete computation
on a string b1b2 · · · bk if � = k. The set of all computations of A on the string w
is denoted compA(w).

A path (p0, p1, . . . , pk), k ≥ 1, with underlying string b1b2 · · · bk is a cycle if
p0 = pk. A cycle with one transition from a state to itself is called a self-loop.

Cycles that are obtained from each other by a cyclical shift are said to be
equivalent: For 0 < i < k, the above cycle (with p0 = pk) is equivalent to
the cycle (pi, . . . , pk, p1, . . . pi−1, pi) having underlying string bi+1 · · · bkb1 · · · bi.
In the following, unless otherwise mentioned, by a cycle we always mean an
equivalence class of cycles and, thus, by two distinct cycles we mean two non-
equivalent cycles.

We say that an NFA A has finite cycle height if for any distinct cycles C1 and
C2 of A, either C1 is unreachable from C2 or C2 is unreachable from C1. It is easy
to see that an NFA has finite cycle height if and only if no two different cycles
overlap. Additionally, this condition implies a strict ordering on the cycles, since
the reachability between two distinct cycles holds in at most in one direction.

A finite cycle height NFA A has cycle height K ∈ N if no computation of
A can contain states belonging to K + 1 different cycles. Intuitively, this means
that no computation can “pass through” K + 1 different cycles. Note that since
A has finite cycle height and a strict ordering on its cycles, a computation can
“pass through” a cycle at most once. We say that A has strict cycle height K if
it has cycle height K but not cycle height K − 1. Note that if A has cycle height
K, then there exists a unique 0 ≤ K′ ≤ K such that A has strict cycle height K′.

An acyclic NFA has cycle height zero and a nearly acyclic NFA [9] has cycle
height one (by its definition). Since a finite cycle height NFA cannot have over-
lapping cycles, the Lemma below is immediate. An n-state NFA with cycle height
n is given in Fig. 2.

Lemma 1. The finite cycle height of an n-state NFA is at most n. For each
n ∈ N and K ≤ n there exists an n-state NFA with strict cycle height K.

To conclude this section we recall the notion of depth path width, which
counts the number of complete computations of given length. The depth path
width [9] of A on strings of length � ∈ N is

DPW(A, �) =
∑

w∈Σ�

|compA(w)|.

The depth path width of the NFA A is defined as DPWsup(A) =
sup
�∈N

(DPW(A, �)).

Cycle Height of NFAs 203

In Sect. 4 we will use the following Lemma.

Lemma 2. Let A be an NFA and � ∈ N.

(i) If A′ is an NFA obtained from A by changing the alphabet symbol labeling
one transition, then DPW(A′, �) = DPW(A, �).

(ii) If A′′ is an NFA obtained from A by adding one new transition, then

DPW(A′′, �) ≥ DPW(A, �).

3 Polynomial Time Algorithm for Cycle Height

We present an algorithm which determines whether or not an NFA A has finite
cycle height, and if so, returns the strict cycle height of A.

The idea of Algorithm 1 is as follows: For an NFA A, we first split A into
its strongly connected components (SCCs). We then ensure that A does not
have any nested cycles, which would prevent finite cycle height. This is done by
checking that each SCC is either an acyclic singleton (consisting of only one state
and no transitions) or a simple cycle (where consecutive states are connected by
a unique transition).

After this, the algorithm creates an acyclic graph G = (V,E), V =
{v0, . . . , vk−1}, where each vertex represents one of A’s strongly connected com-
ponents. Each edge (vi, vj) represents a connection in A between the two SCCs
si and sj , for 0 ≤ i < j ≤ k − 1. The weights of these edges represent the type
of SCC to which the edge leads. That is, if (vi, vj) is a 0-weight edge in E, then
sj is (and vj represents) an acyclic singleton. If (vi, vj) is a 1-weight edge in E,
then sj is (and vj represents) a simple cycle SCC.

The algorithm then determines the minimum distance from v0 (the vertex
representing the SCC containing q0) to all other vj . Since each 1-weight edge
leads to a vertex representing a cyclical SCC, the maximum-cost path starting
from v0 will lead through the most vertices representing cyclical SCCs. In fact,
the length of the maximum-cost path in G starting from v0 is the integer K,
such that A has strict cycle height K.

In the algorithm, for states qa and qb of A, the distance from qa to qb is the
length of the shortest string that takes qa to qb. If qb is not reachable from qa

the distance is ∞.

Complexity analysis of Algorithm 1: The input is an NFA (Q,Σ, δ, q0, F) with m
states. Creating the distance matrix takes Θ(m3) time and Θ(m2) space using the
Floyd-Warshall reachability algorithm [2]. Creating the set of strongly connected
components can be done in Θ(m + |δ|) time using Tarjan’s SCC algorithm [16].
Checking for the existence of an SCC which is not a simple cycle is naturally
bounded by the number of states and transitions in A. Clearly then, the “if”
part on line 4 is not as computationally hard as the “else” part on line 6. For the
else part, the two for all statements multiply the inner statements’ complexity by
O(

(
m
2

)
), as they enumerate all ordered pairs and there are maximally m SCCs.

204 C. Keeler and K. Salomaa

Algorithm 1. Computing the Cycle Height of an NFA
1: Let A = (Q, Σ, δ, q0, F) be an NFA where |Q| = m.
2: Create a distance matrix M , where M [qa, qb] is the distance from state qa ∈ Q to

state qb ∈ Q.
3: Let s0, s1, . . . , sk−1, k ≥ 1, be the strongly connected components of A.
4: if there exists si, 0 ≤ i ≤ k − 1, such that si is not a simple cycle or acyclic

singleton then
5: return “A does not have finite cycle height”
6: else
7: if the start state q0 is in an acyclic singleton then
8: startBias = 0
9: else

10: startBias = 1
11: end if
12: Create an acyclic graph G=(V, E), V ={v0, . . . , vk−1}, E=∅, where each vi rep-

resents the strongly connected component si, for 0 ≤ i ≤ k − 1.
13: for all si, 0 ≤ i < k − 1 select one state qi in si and do
14: for all sj , i < j ≤ k − 1 select one state qj in sj and do
15: if M [qi, qj] �= ∞ then
16: if sj is an acyclic singleton consisting of state sj then
17: Add a 0-weight edge to E from vertex vi to vertex vj .
18: else
19: Add a 1-weight edge to E from vertex vi to vertex vj .
20: end if
21: end if
22: end for
23: end for
24: Let D be the distances from v0 to all other vertices in V .
25: return max

v∈V
(D[v]) + startBias

26: end if

Since we know that there is a strict ordering on the cycles, we do not need to
compare all pairs of SCCs, as qi is never reachable from qj when i < j.

Determining the reachability between SCCs is done in constant time with the
help of the distance matrix M . We create the shortest-path tree D for G using
the modified Dijkstra’s algorithm given in [13], which takes O(|E| + |V | · logC)
time, where C is the largest edge value. An upper bound for the runtime of the
algorithm is

Θ(m3 + m + |δ| +
(

m

2

)
+ |E| + |V | · log C)

Since 0 and 1 are the only edge values used, the constant C is ignored and the
runtime simplifies to Θ(max(m3, |δ|)).

Using Algorithm 1, we obtain the following two results. Note that Theorem 1
assumes that the input NFA has finite cycle height. This property can be decided
using Theorem 2.

Cycle Height of NFAs 205

Theorem 1. If A is an NFA with m states, transition function δ and finite cycle
height, then we can compute in time O(max(m3, |δ|)) and space O(max(m2, |δ|))
the strict cycle height of A.

If we consider the alphabet to be fixed, as is often done, the time bound of
Theorem 1 simplifies to O(m3).

Second, if we modify the algorithm so that the distance matrix M is never
calculated, and the else part on line 6 just returns 1 (instead of lines 10 through
25), then we can decide whether an NFA has finite cycle height just using Tarjan’s
SCC algorithm, checking that each SCC is a simple cycle or an acyclic singleton.

Theorem 2. If A is an NFA with m states and a transition function δ, we can
decide in time O(m + |δ|) whether or not A has finite cycle height.

3.1 Relationship with Polynomial Density Languages

The cycle height of an NFA A can be related to language classes recognized by
A. It is known that nearly acyclic NFAs, or NFAs of cycle height one, recognize
exactly the constant density languages [9]. We recall the following characteriza-
tion of polynomial density regular languages from [15].

Proposition 1 ([15]). A regular language is of polynomial density (of degree at
most k) if and only if it can be represented as a finite union of regular expressions
of the form x · y∗

1z1 . . . y∗
t zt, with each t ≤ k + 1 and x, y1, z1, . . . , yt, zt ∈ Σ∗.

Using the above characterization we can verify that the languages recognized
by finite cycle height NFAs have polynomial density. Note that Szilard et al. [15]
define a notion of a t-tiered string , and this notion is closely related to our notion
of cycle height.2 If all strings are t-tiered with respect to an automaton A then
the language of A has a representation as in Proposition 1. Using this observation
we can extend Proposition 1 for NFAs of given cycle height.

Proposition 2. If A is an NFA with cycle height K, then

L(A) =
r⋃

i=1

xi · [y∗
i,1zi,1 · . . . · y∗

i,ti
zi,ti

],

for xi, yi,j , zi,j ∈ Σ∗, and some integers j, ti and r, such that ti ≤ K for all i.

As a corollary, we get an explicit upper bound for the density of a language
recognized by an NFA of cycle height K.

Corollary 1. If A is an NFA with cycle height K, then �L(A)(n) ∈ O(nK−1).

The reverse is not true: an NFA recognizing a polynomial density language
need not have finite cycle height. As a counterexample, we give the NFA in
Fig. 1, which does not have finite cycle height, but whose language, L = a∗, has
constant density.

For a DFA A that has strict cycle height K, we can use results of [15] to
strengthen Corollary 1 such that it gives the precise density of L(A).
2 Strictly speaking, the t-tiered words are defined in [15] only with respect to a DFA.

206 C. Keeler and K. Salomaa

0 1 . . . m-2 m-1

a

a

a

a

a

a

a

a

a

a

Fig. 1. NFA with language a∗

Lemma 3. Let A be a DFA with strict cycle height K. Then the density of L(A)
is in Ω(nK−1).

Proof. Since A has strict cycle height K, there exists a string w such that the
accepting computation of A on w visits K different cycles. (Here we rely on the
assumption that A has no useless states, which implies that any computation
can be extended to an accepting computation.) This means that w is K-tiered
with respect to A (as defined in [15]) and the claim follows from Lemma 1
of [15]. ��

From Lemma 3 and Corollary 1 we see that the cycle height of a DFA exactly
characterizes the density of the recognized language. Note that cycle height zero
DFAs recognize finite languages.

Corollary 2. If A is a DFA with strict cycle height K ≥ 1 then the density of
L(A) is Θ(nK−1).

From Theorem 6 of [15] we know that if the density of a regular language
L is non-polynomial, then �L(n) = 2Ω(n). The gap between polynomial and
exponential densities occurs because there do not exist any regular languages
whose density functions contain non-integer exponents, e.g.

√
n, or 2

√
n. Together

with Corollary 2 this gives:

Corollary 3. If the cycle height of a DFA A is not finite then the density of
L(A) is 2Ω(n).

Corollary 2 and Theorem 1 would yield a polynomial time algorithm to com-
pute the exact density of a regular language, however, the time complexity cannot
compete with the algorithm of Gawrychowski et al. [3]. For an m-state DFA over
a fixed alphabet, an algorithm based on our Theorem 1 to compute the degree
of the polynomial giving the density of the language would require O(m3) time.
In comparison, for a DFA A over a fixed alphabet the algorithm given by The-
orem 9 of Gawrychowski et al. [3] works in linear time and, even for an NFA A,
the algorithm of Gawrychowski et al. [3] does the computation in time O(m2),
where m is the number of states of A.

Cycle Height of NFAs 207

4 Depth Path Width of Finite Cycle Height NFAs

First we consider bounds for the number of transitions of an NFA with finite
cycle height. The definition of NFAs with strict cycle height m implies that an
NFA of the form given in Fig. 2 has the minimal number of transitions among
all NFAs of strict cycle height m.

0 1 . . . m− 2 m− 1

a

a

a

a

a

a

a

a

a

Fig. 2. Unary NFA with strict cycle height m having a minimal number of transitions

For NFAs with strict cycle height K, the following Lemma gives bounds for
the number of cycles and transitions as a function of the number of states.

Lemma 4. If A = (Q,Σ, δ, q0, F) is an NFA with cycle height K, then K ≤ |Q|,
and |δ| ≤ K + |Σ| · (|Q|

2

)
. If A has strict cycle height K, then we have also that

2 · K − 1 ≤ |δ|.
We examine the number of complete computations of a given length of a

unary NFA A with strict cycle height K, that is, the depth path width of A.

Lemma 5. Let AK = (Q, {a}, δ, q0, F) be a unary NFA with strict cycle height

K. Then DPW(AK, �) ≥
K−1∑
i=0

(
�
i

)
, � ∈ N.

Next we compute an upper bound for the depth path width of K-state unary
NFAs having strict cycle height K.

Lemma 6. Let AK be a K-state unary NFA with strict cycle height K. Then for
� ∈ N, DPW(AK, �) ≤ (

�+K−1
K−1

)
.

Proof. Since AK has strict cycle height K, each of the K states must be part of
a distinct cycle, that is, each state has a self-loop and no other transition can be
part of a cycle. By Lemma 2 (ii) to get an upper bound for the depth path width,
we can add to AK a maximal number of acyclic transition. That is, without loss
of generality AK is as in Fig. 3 (with K = m).

It remains to compute the depth path width of AK. As the base case, we
observe that DPW(A1, �) =

(
�+1−1

0

)
=

(
�
0

)
= 1. Inductively, we assume that the

claim holds for AK and now the inductive claim is that

DPW(AK+1, �) =
(

� + K
K

)

208 C. Keeler and K. Salomaa

0 1 . . . m-2 m-1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Fig. 3. An m-state unary NFA with strict cycle height m and maximal number of
transitions

The value DPW(AK+1, �) counts the number of computations of length �
that are in AK, as well as all of the computations with �−1 transitions from AK
and one final transition, δ(q, a) = K, for some 0 ≤ q ≤ K − 1. More formally:

DPW (AK+1, �) = DPW (AK, �) + DPW (AK+1, � − 1) (1)

Using our inductive assumption to replace the values in the right hand side of
(1), we get:

DPW (AK+1, �) =
(

� + K − 1
K − 1

)
+

(
� + K − 1

K
)

=
(

� + K
K

)

where the last equality uses Pascal’s triangle recursion rule [17]. ��
Lemma 6 gives an upper bound for the depth path width of a K-state unary

NFA with strict cycle height K. Next we consider the depth path width of unary
NFAs with strict cycle height K that have more than K states.

Lemma 7. Let AK = (Q, {a}, δ, q0, F) be an K-state NFA with strict cycle
height K (as in Lemma 6). Let BK+nc be AK with one additional state that
is not involved in any cycle. Then DPW (BK+nc, �) ≤ DPW (AK+1, �), � ∈ N.

Since NFAs with finite strict cycle height will have maximal depth path width
when they have the same number of states and cycles, the result from Lemma 6
is an upper bound for all K-state NFAs with strict cycle height K. Combining
the results from these Lemmas, we observe the following corollary.

Corollary 4. If AK = (Q,Σ, δ, q0, F) is a K-state unary NFA with strict cycle
height K, then

K−1∑

i=0

(
�

i

)
≤ DPW(AK, �) ≤

(
� + K − 1

K − 1

)

The upper bound also holds for K-state unary NFAs with cycle height K. The
lower bound also holds for K-state non-unary NFAs with strict cycle height K.

Cycle Height of NFAs 209

The results of Sect. 4 give upper and lower bounds for the number of complete
computations of NFAs whose number of states matches exactly their strict cycle
height.

If the number of states exceeds the number of cycles, there will naturally
be fewer complete computations. In this case, however, the depth path width
of these NFAs cannot be just a function of the number of cycles, and must
necessarily involve the number of states.

Problem 1. What is the maximum number of complete computations for an m-
state NFA with strict cycle height K, when m > K?

4.1 Experimental Results

To acquire results for the maximum number of complete computations of NFAs
with strict finite cycle height and a non-unary alphabet, we first need the fol-
lowing definition.

Definition 1 ([18]). Pascal’s generalized triangle, denoted PN , is an extension
of Pascal’s triangle, defined as:

PN (0, 0) = PN (x, 0) = PN (0, y) = 1

PN (x, y) = PN (x − 1, y) + PN (x, y − 1) + (N · PN (x − 1, y − 1)),

where PN (x, y) is the yth element in the xth row of the N th generalized triangle,
for x, y ≥ 0. It is obvious that P0 reduces to the normal Pascal’s triangle.

Recalling the result from Lemma 6 for unary machines, we can see easily
that:

DPW (AK, �) = P0(K − 1, �) =
(

� + K − 1
K − 1

)

For NFAs with a binary alphabet we look to P1, which corresponds to the
Delannoy numbers [1], and has the following closed form:

P1(x, y) =
min(x,y)∑

i=0

2i ·
(

x

i

)
·
(

y

i

)

By extrapolating upon the closed form for the Delannoy numbers, we estab-
lished a candidate equation upper bounding the number of complete computa-
tions of NFAs of the form given in Fig. 4. Based on experimental testing of NFAs
of this form (for 1 ≤ K ≤ 7, 1 ≤ |Σ| ≤ 8, and 1 ≤ � ≤ 10), we believe that
the following conjecture captures the number of complete computations as the
length of the computation increases.

The selection of characters used on the self-loops (in the case of Fig. 4, c1)
is arbitrary for the purposes of counting computations, and does not have to be
the same for every state.

210 C. Keeler and K. Salomaa

0 1 . . . m-2 m-1

c1

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1, . . . , cs

c1

c1, . . . , cs

c1

Fig. 4. K-state NFA with strict cycle height K and |Σ| = s

Conjecture 1. Let A
|Σ|
K = (Q,Σ, δ, q0, F) be a K-state NFA with strict cycle

height K, as in Fig. 4. Then

DPW (A|Σ|
K , �) = P |Σ|−1(K − 1, �) =

min(K−1,�)∑

i=0

|Σ|i ·
(K − 1

i

)
·
(

�

i

)
(2)

Furthermore, since (2) and the structure of NFAs of the form given in Fig. 4
scale down to the unary case, we believe that this is an upper bound on the
number of complete computations of any K-state NFA with strict cycle height K.

Conjecture 2. Let A
|Σ|
K = (Q,Σ, δ, q0, F) be a K-state NFA with strict cycle

height K. Then

DPW (A|Σ|
K , �) ≤

min(K−1,�)∑

i=0

|Σ|i ·
(K − 1

i

)
·
(

�

i

)
(3)

Acknowledgments. Research supported by NSERC grant OGP0147224.

References

1. Banderier, C., Schwer, S.R.: Why Delannoy numbers? J. Statist. Plann. Inference
135, 40–54 (2004)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

3. Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J.: Finding the growth rate
of a regular or context-free language in polynomial time. Int. J. Found. Comput.
Sci. 21(4), 597–618 (2010)

4. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke,
D.: Descriptional complexity of machines with limited resources. J. Univ. Comput.
Sci. 8(2), 193–234 (2002)

Cycle Height of NFAs 211

5. Gruber, H.: Digraph complexity measures and applications in formal language
theory. Discrete Math. Theor. Comput. Sci. 14(2), 189–204 (2012)

6. Gruber, H., Holzer, M.: From finite automata to regular expressions and back -
a summary on descriptional complexity. Int. J. Found. Comput. Sci. 26(8), 1009–
1040 (2015)

7. Han, Y.-S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state com-
plexity of finite automata. Acta Cybernetica 23, 141–157 (2017)

8. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inform. Comput. 209(3), 456–470 (2011)

9. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 16

10. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS (111) (2013)

11. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between reg-
ular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-04298-5 37

12. Msiska, M., van Zijl, L.: Interpreting the subset construction using finite sublan-
guages. In: Proceedings of Prague Stringology Conference 2016, pp. 48–62 (2016)

13. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the
shortest path problem. J. ACM 37(2), 213–223 (1990)

14. Shallit, J.: Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York (2009)

15. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS,
vol. 629, pp. 494–503. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55808-X 48

16. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

17. Tattersall, J.J.: Elementary Number Theory in Nine Chapters, Cambridge Univer-
sity Press (2005)

18. Wong, C.K., Maddocks, T.W.: A generalized Pascal’s triangle. Fibonacci Quart.
13(2), 134–136 (1975)

https://doi.org/10.1007/978-3-319-60252-3_16
https://doi.org/10.1007/978-3-319-04298-5_37
https://doi.org/10.1007/978-3-319-04298-5_37
https://doi.org/10.1007/3-540-55808-X_48
https://doi.org/10.1007/3-540-55808-X_48

Finite Automata with Undirected
State Graphs

Martin Kutrib, Andreas Malcher(B), and Christian Schneider

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de,

Christian.Schneider@math.uni-giessen.de

Abstract. We investigate finite automata whose state graphs are undi-
rected. This means that for any transition from state p to q consuming
some letter a from the input there exists a symmetric transition from
state q to p consuming a letter a as well. So, the corresponding lan-
guage families are subregular and, in particular in the deterministic case,
subreversible. In detail, we study the operational descriptional complex-
ity of deterministic and nondeterministic undirected finite automata. To
this end, the different types of automata on alphabets with few letters
are characterized. Then the operational state complexity of the Boolean
operations as well as the operations concatenation and iteration is inves-
tigated, where tight upper and lower bounds are derived for unary as
well as arbitrary alphabets under the condition that the corresponding
language classes are closed under the operation considered.

1 Introduction

The operation problem for a language family is the question of costs (in terms of
states) of operations on languages from this family with respect to their represen-
tations. More than two decades ago the operation problem for regular languages
represented by deterministic finite automata as studied in [9,10] renewed the
interest in descriptional complexity issues of finite automata in general. In the
meantime, impressively many results have been obtained for a large number of
language families. A recent survey of the several branches and details can be
found in [2], which is also a valuable and comprehensive source of references.
It seems that the recent studies of operational state complexity focus on sub-
regular languages. Subregular language families of particular interest are the
families of languages accepted by types of reversible finite automata. Reversibil-
ity is a fundamental principle in physics. Since abstract computational models
with discrete internal states may serve as prototypes of computing devices which
can physically be constructed, it is interesting to know whether these abstract
models are able to obey physical laws. The observation that loss of information
results in heat dissipation [7] strongly suggests to study computations without
loss of information. Recent results on reversible finite automata can be found,
for example, in [3–5,8].

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 212–223, 2018.
https://doi.org/10.1007/978-3-319-94631-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_18&domain=pdf

Finite Automata with Undirected State Graphs 213

Here, we are interested in a strict form of reversible finite automata, namely,
we do not only require that every state of the automaton has a unique prede-
cessor for a given input letter, but that this predecessor can already be reached
by a forward transition with the same input letter. These automata can be seen
as finite automata whose state graphs are undirected. So, this notion is even
stronger than the concept of time-symmetry studied in [1,6]. Time-symmetry
appears in physical reality when a system can go back in time by applying the
same transition function as for forward computations after a weak transforma-
tion of the phase-space. For example, in Newtonian mechanics one can go back in
time by applying the same dynamics after a transformation that leaves masses
and positions unchanged but reverses the sign of the momenta. While time-
symmetric machines themselves cannot distinguish whether they run forward or
backward in time, for undirected automata the time directions fade away since
they are both available in the transition.

In the next section, we present the necessary notations and give an introduc-
tory example. Since the definition of undirected finite automata implies strong
restrictions on the possible state graphs and, thus, the possible automata them-
selves, it is possible to characterize the different types of undirected automata
with small alphabets in Sect. 3. These characterizations are a powerful tool to
derive tight bounds on the operational state complexity of deterministic (Sect. 4)
and nondeterministic (Sect. 5) undirected finite automata. All bounds obtained
are summarized in Table 1. Finally, in Sect. 6 we discuss open and untouched
problems for future work. We remark that some proofs are omitted due to space
constraints.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. Set inclusion is denoted by ⊆ and strict
set inclusion by ⊂. We write 2S for the power set and |S| for the cardinality of
a set S.

A nondeterministic finite automaton (NFA) is a system M = 〈Q,Σ, δ, q0, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function.
A finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all

states q ∈ Q and letters a ∈ Σ. In this case we simply write δ(q, a) = p instead of
δ(q, a) = {p} assuming that the transition function is a mapping δ : Q×Σ → Q.

So, by definition, any DFA is complete, that is, the transition function is total,
whereas it may be a partial function for NFAs in the sense that the transition
function of nondeterministic machines may map to the empty set.

If the state graph induced by some finite automaton is undirected then we
obtain the subclasses of nondeterministic undirected finite automata (NUDFA)

214 M. Kutrib et al.

and deterministic undirected finite automata (DUDFA). Formally, for undirected
finite automata it is required that q ∈ δ(p, a) if and only if p ∈ δ(q, a), for all
p, q ∈ Q and a ∈ Σ. The language accepted by a finite automaton M is

L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F 	= ∅},
where the transition function is recursively extended to δ : Q × Σ∗ → 2Q.

In order to illustrate the definitions we continue with an example.

Example 1. The NUDFA M = 〈{q0, q1, q3}, {a, b}, δ, q0, {q2}〉 whose transition
function is given through the state graph depicted in Fig. 1 accepts the language
{w ∈ {a, b}+ | |w|a mod 2 = 0}. �

q0 q1 q2

b b b

a astart

Fig. 1. State graph of an nondeterministic undirected finite automaton accepting the
language {w ∈ {a, b}+ | |w|a mod 2 = 0}.

3 Characterization of Undirected Finite Automata
with Small Alphabets

The definition of undirected finite automata implies strong restrictions on the
possible state graphs and, thus, the possible automata themselves. So, there
are only a very few different types of minimal deterministic undirected finite
automata with a unary or binary input alphabet. The situation for nondeter-
ministic devices is still rather restricted, but there are more types distinguishable.
The following characterizations of possible types of state graphs is used for later
results on the closure properties of the families of accepted languages as well as
their operational state complexity. In the rest of the section, we tacitly assume
Σ = {a} for unary languages and Σ = {a, b} for binary languages.

3.1 Unary Nondeterministic Undirected Finite Automata

We start with unary NUDFAs.

Theorem 2. Let M be a unary NUDFA. Then, language L(M) is of one of the
following types:

1. L1 = ∅,
2. L2 = {λ},
3. L3,k = {an | n ≥ k and even}, for some k ≥ 0,
4. L4,k = {an | n ≥ k and n odd}, for some k ≥ 0,

Finite Automata with Undirected State Graphs 215

5. L5,k,l = {an | n ≥ k and n even for k ≤ n < l}, for some k ≥ 0 and l > k,
6. L6,k,l = {an | n ≥ k and n odd for k ≤ n < l} for some k ≥ 0 and l > k.

Proof. Let M = 〈Q, {a}, δ, q0, F 〉 be an NUDFA with unary input alphabet.
Basically, the type of the accepted language is determined by two numbers (if
they exist) k ≥ 0 and l > k. The number k is defined to be the shortest path
from the initial state q0 to some accepting state q+ ∈ F . If k exists, that is,
if L(M) is non-empty, then l is defined dependent on whether k is even or odd.
If k is even, l is defined to be the shortest path longer than k that leads from
the initial state q0 to an accepting state q′

+ and has odd length. If such a path
does not exist, l remains undefined. Similarly, if k is odd then l must be even.

Now, we can determine the type of L(M). If there is no path from q0 to some
accepting state then L(M) = L1 = ∅. Otherwise the number k is defined.

If k = 0 and, thus, q0 ∈ F then λ ∈ L(M). If additionally δ(q0, a) is undefined
then L(M) = L2 = {λ}.

Next, assume that k is defined, δ(q0, a) is defined, and l is undefined. Since M
is undirected we obtain q0 ∈ δ(q0, a2). We conclude that ak belongs to L(M)
and, for all i ≥ 0, the input ak+2i belongs to L(M) as well. Since l is undefined
there are no words whose parity is different from ak in L(M). Therefore, if k is
even we derive L(M) = L3,k = {an | n ≥ k and n even}. Similarly, if k is odd,
we have L(M) = L4,k = {an | n ≥ k and n odd}.

Finally, let k, δ(q0, a), and l be defined. As before we may conclude that
the input ak+2i belongs to L(M), for all i ≥ 0. On the other hand, since l is
defined and l > k we also have al+2i ∈ L(M), for all i ≥ 0. The parities of k
and l are different. Therefore, all words al+i, for i ≥ 0, belong to L(M). This
implies L(M) = L5,k,l = {an | n ≥ k and n even for k ≤ n < l} if k is even, and
L(M) = L6,k,l = {an | n ≥ k and n odd for k ≤ n < l} if k is odd. �

Note that the languages {an | n ≥ k} are equal to L5,k,k+1, if k is even, and
equal to L6,k,k+1, if k is odd. Next, we turn to the minimal numbers of states
that are necessary for some NUDFA to accept the languages of different type.

Lemma 3. Let M be a unary NUDFA that accepts a language of type L1 or L2.
Then one state is sufficient and necessary for M .

Lemma 4. Let k ≥ 1 and M be a unary NUDFA that accepts a language of
type L3,k or L4,k. Then k + 1 states are sufficient and necessary for M .

Proof. Since the shortest word accepted has length k, automaton M must have
at least k + 1 states. Otherwise, L(M) would be empty or a shorter word would
be accepted. The NUDFA depicted in Fig. 2 accepts L3,k or L4,k with k + 1
states. �

Lemma 5. Let k ≥ 0, l > k, and M be a unary NUDFA that accepts a language
of type L5,k,l or L6,k,l. Then l states are sufficient and necessary for M .

The NUDFA depicted in Fig. 3 accepts L5,k,l or L6,k,l with l states.

216 M. Kutrib et al.

q0 q1 qk−1 qk· · ·a a a astart

Fig. 2. State graph of a minimal nondeterministic undirected finite automaton accept-
ing the language L3,k or L4,k.

q0 q1 qk−1 qk· · ·

ql−1 ql−2

qk+2qk+1

a a a astart

a

a

a

a

a

a

Fig. 3. State graph of a minimal nondeterministic undirected finite automaton accept-
ing the language L5,k,l or L6,k,l.

3.2 Unary and Binary Deterministic Undirected Finite Automata

The situation for unary deterministic undirected finite automata is straightfor-
ward. The only two possible state graphs are depicted in Fig. 4. Any of the states
can be made accepting or rejecting which yields four different languages that are
accepted by unary DUDFAs.

q0 q0 q1

a

start astart

Fig. 4. Possible state graphs of unary deterministic undirected finite automata.

Corollary 6. Let M be a unary DUDFA. Then language L(M) is one of the
following:

1. L1 = ∅,
2. L2 = a∗,
3. L3 = {an | n is even},
4. L4 = {an | n is odd}.

While the family of binary languages accepted by NUDFAs is fairly rich, in
the following the types of possible state graphs of deterministic undirected finite
automata accepting binary languages are analyzed.

Finite Automata with Undirected State Graphs 217

Theorem 7. Let M be a minimal binary DUDFA. Then its state graph is of
one of the five types depicted in Fig. 5, where m,n ≥ 1, the letters a and b are
interchangeable, x, y ∈ {a, b}, x̄ = a ⇐⇒ x = b, and ȳ = a ⇐⇒ y = b.

1. q0

a, b

start

2. q0 q1
a, bstart

3. q0 q1 q2 qn−1 qn· · ·

a x

b a b x x̄start

4.

q1 q2 qm−1 qm

q0

p1 p2 pn−1 pn

· · ·

· · ·

x

y

a

b a x x̄

b

a b y ȳ

start

5.

q1 q2 q3

q0 q4

qn q5· · ·

a

b a

b

a

ba

b

start

Fig. 5. Possible state graphs of binary deterministic undirected finite automata, where
m,n ≥ 1, the letters a and b are interchangeable, x, y ∈ {a, b}, x̄ = a ⇐⇒ x = b, and
ȳ = a ⇐⇒ y = b.

4 Deterministic State Complexity

In this section, we investigate the state complexity of DUDFAs. We start with
such automata on unary alphabets. It has been shown in Corollary 6 that in this

218 M. Kutrib et al.

case the automata have an easy form which makes it possible to show closure
under the Boolean operations and reversal, and to establish upper and lower
bounds of two states for each of the operations. In the second part of the section,
we investigate the state complexity of the Boolean operations for DUDFAs over
arbitrary alphabets and can establish tight bounds as well.

Theorem 8. For any integers m,n ≥ 1 let A be an m-state and B be an n-
state DUDFA over the same unary alphabet. Then two states are sufficient and
necessary in the worst case for a DUDFA to accept L(A), L(A) ∩ L(B), L(A) ∪
L(B), or L(A)R.

Now, we turn to arbitrary alphabets and consider first the complementation
of DUDFAs.

Theorem 9. For any integer n ≥ 1 let A be an n-state DUDFA. Then n states
are sufficient and necessary in the worst case for a DUDFA to accept the lan-
guage L(A).

Next, we continue with the intersection operation. To this end, we provide
the following preparatory lemma which is needed to prove a tight lower bound.

Lemma 10. Let m ≥ 4 be an even integer. There are natural numbers x1,
x2, y1, and y2 such that the following equations hold simultaneously. Moreover,
both equations take on the minimal value for x1, x2, y1, and y2.

m − 1 + 2mx1 = 1 + (2m − 2)y1, (1)
m + 1 + 2mx2 = 2m − 3 + (2m − 2)y2. (2)

Theorem 11. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state DUDFA. Then m · n states are sufficient for a DUDFA to accept the
language L(A) ∩ L(B).

Proof. For the upper bound we use the usual cross-product construction. Let
A = 〈QA, Σ, δA, q0,A, FA〉 be an m-state DUDFA and B = 〈QB , Σ, δB , q0,B , FB〉
be an n-state DUDFA. Then define C = 〈QA × QB , Σ, δ, (q0,A, q0,B), FA × FB〉,
where δ((q1, q2), a) = (δA(q1, a), δB(q2, a)) for all q1 ∈ QA, q2 ∈ QB , and a ∈ Σ.
Clearly, C is an (m · n)-state DUDFA that accepts L(A) ∩ L(B). �
Theorem 12. There are infinitely many integers m,n ≥ 1 with n = 2m − 2
such that A is an m-state DUDFA, B is an n-state DUDFA, and m · n states
are necessary for any DUDFA to accept the language L(A) ∩ L(B).

Proof. For the lower bound we consider two minimal DUDFAs A and B, where A
has m states for even m ≥ 4 and B has n = 2m − 2 states. Both DUDFAs have
the form depicted in Fig. 6.

Now, let C be a minimal DUDFA accepting L(A) ∩ L(B). First, consider
words in L(A) ∩ L(B) that have the form (ab)�a for some � ≥ 1. Then the
left hand side of Eq. (1) indicates the length of such words that are accepted

Finite Automata with Undirected State Graphs 219

q0 q1 q2 qm−2 qm−1· · ·

b b

a b a b astart

q1 q2 q3

q0 q4

qn−1 q5· · ·

a

b a

b

a

ba

b

start

Fig. 6. The DUDFA A (upper automaton) and B (lower automaton) used for proof of
the lower bound.

by A, whereas the right hand side of Eq. (1) indicates the length of such words
that are accepted by B. According to Lemma 10 there are integers x1 = m/2,
x2 = m/2 − 2, y1 = m/2 + 1, and y2 = m/2 − 2 such that Eqs. (1) and (2) hold
simultaneously while assuming a minimal value. Hence, due to the equality and
the minimality we obtain a word (ab)(m

2+m−2)/2a of minimal length m2 +m−1
which belongs to L(A) ∩ L(B). Analogously, considering words in L(A) ∩ L(B)
of the form (ba)�b for some � ≥ 1 the left hand side and right hand side of Eq. (2)
provides a word (ba)(m

2−3m)/2b of minimal length m2 − 3m + 1 which belongs
to L(A) ∩ L(B) as well. Since both minimal lengths are different, automaton C
has to have two different paths from the initial state to an accepting state which
implies, according to Theorem 7, that C is of type 4 or type 5. Let us first assume
that C is of type 4. Then, in particular the upper path contains an accepting
state f that is entered after reading w = (ab)(m

2+m−2)/2a and the upper path
ends in some state q that ends in a loop. If f = q, then there is a transition
from f to f on input a which implies that input wa is accepted by C. This
is a contradiction, since wa is not accepted by B. If f 	= q, then there are two
possibilities, namely, the remaining path from f to q processes inputs of the form
(ba)kb∗ or of the form (ba)k−1ba∗ for some k ≥ 1. In either case we can construct
a word w′ which is accepted by C, but not by B which gives the contradiction.
In the first case, we consider w′ = w(ba)kb(ab)k and in the second case we set
w′ = w(ba)k−1ba(ba)k−1b. Hence, we conclude that C is of type 5. This means
that C has two different paths which start in the initial state and end in the
same state. Thus, C has at least m2 + m + m2 − 3m + 2 − 2 = 2m2 − 2m =
m(2m − 2) = m · n states. �

220 M. Kutrib et al.

Finally, we study the union operation and obtain the same tight bound as
for intersection. For the upper bound we can again use the usual cross-product
construction as in the proof of Theorem11.

Theorem 13. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state DUDFA. Then m · n states are sufficient for a DUDFA to accept the
language L(A) ∪ L(B).

Theorem 14. There are infinitely many integers m,n ≥ 1 with n = 2m − 2
such that A is an m-state DUDFA, B is an n-state DUDFA, and m · n states
are necessary for any DUDFA to accept the language L(A) ∪ L(B).

Proof. For the lower bound we consider two DUDFAs A′ and B′ accepting the
complements of the languages accepted by A and B used in the proof of The-
orem 12. Both DUDFAs can be obtained due to Theorem9 by interchanging
accepting and non-accepting states. The resulting DUDFAs are minimal, have m
and n states, respectively, L(A′) = L(A) and L(B′) = L(B). Now, let C ′ be a
minimal DUDFA accepting L(A′) ∪ L(B′) and assume that C ′ has � < m · n
states. By applying Theorem9 we can then construct an �-state DUDFA C such
that L(C) = L(C ′) = L(A′) ∪ L(B′) = L(A′) ∩ L(B′) = L(A) ∩ L(B). This is a
contradiction to the proof of Theorem12 where it is shown that every DUDFA
accepting L(A) ∩ L(B) needs at least m · n states. �

5 Nondeterministic State Complexity

In this section, we complement the state complexity results by investigating
NUDFAs. We start again with such automata on unary alphabets. Owing to
the characterization given in Theorem2 we can show tight bounds by a detailed
case analysis. If the underlying alphabet is at least binary then NUDFAs are
only closed under intersection. However, it is possible to obtain tight bounds as
well. We start with the unary case.

Theorem 15. For any integers m,n ≥ 1 let A be an m-state and B be an
n-state NUDFA over the same unary alphabet. Then max(m,n) + 1 states are
sufficient and necessary in the worst case for an NUDFA to accept L(A)∩L(B).

Proof. According to Theorem2, L(A) and L(B) belong to one of the types L1,
L2, L3,k, L4,k, L5,k,l, or L6,k,l for some k ≥ 0 and l > k. Hence, we have to
show that each combination leads to an NUDFA with at most max(m,n) + 1
states. The results of all combinations are summarized in the following table,
where k = max(k1, k2), l = max(l1, l2), L7,k1,l1,k2,l2 = L5,max(k1,l2),l1 , if l1 > l2,
L7,k1,l1,k2,l2 = L6,max(k2,l1),l2 , if l1 ≤ l2, and L8,k2 = L2, if k2 = 0, and L8,k2 = L1

otherwise.

Finite Automata with Undirected State Graphs 221

∩ L1 L2 L3,k1 L4,k1 L5,k1,l1 L6,k1,l1

L6,k2,l2 L1 L1 L3,max(k1,l2) L4,k L7,k1,l1,k2,l2 L6,k,l

L5,k2,l2 L1 L8,k2 L3,k L4,max(k1,l2) L5,k,l L7,k2,l2,k1,l1

L4,k2 L1 L1 L1 L4,k L4,max(k2,l1) L4,k

L3,k2 L1 L8,k2 L3,k L1 L3,k L3,max(l1,k2)

L2 L1 L2 L8,k1 L1 L8,k1 L1

L1 L1 L1 L1 L1 L1 L1

We will not consider all combinations in detail, but exemplarily discuss two
intersections. First, we consider L3,k1 ∩ L6,k2,l2 which is

{an | n ≥ k1 and n even} ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2}
= {an | n ≥ k1 and n even and n ≥ l2} = L3,max(k1,l2).

Second, we consider L5,k1,l1 ∩ L6,k2,l2 where necessarily l1 is odd and l2 is even.
If l1 > l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ k1 and n even for k1 ≤ n < l1} ∩ {an | n ≥ l2}
= {an | n ≥ max(k1, l2) and n even for k1 ≤ n < l1}
= L5,max(k1,l2),l1 .

Otherwise, if l1 < l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ l1} ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2}
= {an | n ≥ max(k2, l1) and n odd for k2 ≤ n < l2}
= L6,max(k2,l1),l2 .

For the upper bound, we can read off the table the following cases. If L1, L2,
or L8,t is obtained, we know that one state is sufficient to accept the languages.
Hence, 1 ≤ max(m,n) + 1 is an upper bound. If L3,t or L4,t is obtained, we
know that t + 1 states are sufficient to accept the languages. Now, we have
t ∈ {k1, k2, l1, l2}. Since k1 < l1 = m and k2 < l2 = n, we obtain that k1 + 1 ≤
m−1+1 ≤ max(m,n)+1, k2 +1 ≤ n−1+1 ≤ max(m,n)+1, l1 +1 = m+1 ≤
max(m,n) + 1, and l2 + 1 = n + 1 ≤ max(m,n) + 1. Thus, max(m,n) + 1 is an
upper bound.

Finally, if L5,t1,t2 or L6,t1,t2 is obtained, we know that t2 states are sufficient
to accept the languages. Now, we have t2 ∈ {l1, l2,max(l1, l2)}. Since l1 = m
and l2 = n, we obtain that l1 = m ≤ max(m,n) + 1, l2 = n ≤ max(m,n) + 1,
and max(l1, l2) = max(m,n) ≤ max(m,n) + 1. Thus, max(m,n) + 1 is an upper
bound also for these cases as well.

For the lower bound, we first consider L3,k1∩L6,k2,l2 = L3,max(k1,l2). We know
that L3,k1 is accepted with k1 + 1 = m states owing to Lemma 4 and L6,k2,l2 is
accepted with l2 = n states owing to Lemma 5. Moreover, to accept L3,max(k1,l2)

at least max(k1, l2)+1 = max(m−1, n)+1 states are necessary due to Lemma 4.

222 M. Kutrib et al.

Second, consider the symmetric case L6,k1,l1 ∩ L3,k2 = L3,max(l1,k2) with m = l1
and n = k2+1. Then max(m,n−1)+1 states are necessary to accept L3,max(l1,k2).
Altogether, max(max(m − 1, n) + 1,max(m,n − 1) + 1) = max(m,n) + 1 is the
lower bound. �
Theorem 16. For any integers m,n ≥ 1 let A be an m-state and B be an n-
state NUDFA over the same unary alphabet. Then m+n−1 states are sufficient
and necessary in the worst case for an NUDFA to accept L(A) · L(B).

Since the reversal of a unary language L is the language L again, the following
statement is obvious.

Theorem 17. For any integer m ≥ 1, let A be an m-state unary NUDFA. Then
m states are sufficient and necessary in the worst case for an NUDFA to accept
L(A)R.

Finally, we consider the general intersection operation for NUDFAs.

Theorem 18. For any integers m,n ≥ 1 let A be an m-state and B be an n-
state NUDFA. Then m · n states are sufficient and necessary in the worst case
for an NUDFA to accept the language L(A) ∩ L(B).

The results on the deterministic and nondeterministic state complexity obtained
are summarized in Table 1.

Table 1. Summary of the state complexities of the operations studied in this paper. It
is marked by — if an automata class is not closed under the corresponding operation.

unary DUDFA DUDFA unary NUDFA NUDFA

L1 ∪ L2 2 mn — —

L1 ∩ L2 2 mn max(m,n) + 1 mn

L 2 m — —

L1L2 — — m + n − 1 —

L∗ — — — —

LR 2 ? m —

6 Conclusions

In this paper, we have introduced deterministic and nondeterministic finite
automata with undirected state graphs. It was possible to characterize the lan-
guages accepted by such automata in the unary case for deterministic and non-
deterministic automata as well as in the binary case for deterministic automata.
This characterization enabled us to study the deterministic and nondeterministic
operational state complexity in depth and an almost complete picture with tight

Finite Automata with Undirected State Graphs 223

bounds could be obtained. The deterministic state complexity of the reversal
operation as well as the question of whether the language class is closed under
reversal are currently open questions. For DUDFAs with one accepting state the
construction of a DUDFA accepting the reversal is straightforward and needs no
additional states. However, the construction cannot directly be generalized to
DUDFAs with more than one accepting state.

Concerning the operational state complexity we have investigated so far only
those operations under which the corresponding language classes are closed.
However, even in the case of non-closure we still obtain regular languages. Thus,
it would clearly be of interest to determine upper and lower bounds for the
remaining operations from this point of view.

Since the language classes accepted by DUDFAs and NUDFAs are subregu-
lar, it would be interesting to devise an effective algorithm that decides, given
an arbitrary finite automaton A, whether or not L(A) could be accepted by an
NUDFA or DUDFA as well. In the positive case, such an algorithm should con-
struct an equivalent NUDFA or DUDFA. Then the determination of the exact
trade-off concerning the number of states between NUDFAs and DUDFAs as
well as arbitrary NFAs and DFAs becomes a challenging task.

References

1. Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J.
Comput. Syst. Sci. 78, 1115–1126 (2012)

2. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21, 251–310 (2016)

3. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 22

4. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6 3

5. Kutrib, M.: Reversible and irreversible computations of deterministic finite-state
devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9234, pp. 38–52. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48057-1 3

6. Kutrib, M., Worsch, T.: Time-symmetric machines. In: Dueck, G.W., Miller,
D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 168–181. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38986-3 14

7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

8. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible reg-
ular languages. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) Automata and
Formal Languages (AFL 2017). EPTCS, vol. 252, pp. 143–156 (2017)

9. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of For-
mal Languages, Chap. 2, vol. 1, pp. 41–110. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59136-5 2

10. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

https://doi.org/10.1007/978-3-319-21500-6_22
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/978-3-662-48057-1_3
https://doi.org/10.1007/978-3-662-48057-1_3
https://doi.org/10.1007/978-3-642-38986-3_14
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Further Closure Properties
of Input-Driven Pushdown Automata

Alexander Okhotin1 and Kai Salomaa2(B)

1 St. Petersburg State University, 7/9 Universitetskaya nab.,
Saint Petersburg 199034, Russia
alexander.okhotin@spbu.ru

2 School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
ksalomaa@cs.queensu.ca

Abstract. The paper investigates the closure of the language family
defined by input-driven pushdown automata (IDPDA) under the follow-
ing operations: insertion ins(L,K) = {xyz | xz ∈ L, y ∈ K}, deletion
del(L,K) = {xz | xyz ∈ L, y ∈ K}, square root

√
L = {w | ww ∈ L},

and the first half 1
2
L = {u | ∃v : |u| = |v|, uv ∈ L}. For K and L rec-

ognized by nondeterministic IDPDA, with m and with n states, respec-
tively, insertion requires mn + 2m states, as long as K is well-nested;
deletion is representable with 2n states, for well-nested K; square root
requires n3−O(n2) states, for well-nested L; the well-nested subset of the

first half is representable with 2O(n2) states. Without the well-nestedness
constraints, non-closure is established in each case.

1 Introduction

Input-driven pushdown automata (IDPDA), also known under the name of visi-
bly pushdown automata, are an important special class of pushdown automata,
introduced by Mehlhorn [16] and later studied, in particular, by Alur and Mad-
husudan [1,2]. In these automata, the input symbol determines whether the
automaton should push a stack symbol, pop a stack symbol or leave the stack
untouched. These symbols are called left brackets, right brackets and neutral
symbols, and the symbol pushed at each left bracket is always popped when
reading the corresponding right bracket. Input-driven automata are important
as a model of hierarchically structured data, such as XML documents or com-
putation traces for recursive procedure calls.

Input-driven automata exist in deterministic (DIDPDA) and nondeterminis-
tic (NIDPDA) variants, which, as shown by von Braunmühl and Verbeek [3],
are equivalent in power. Input-driven automata are also notable for their
appealing closure properties, which almost rival those of finite automata. For
instance, they are closed under all Boolean operations, concatenation, Kleene

A. Okhotin—Supported by Russian Science Foundation, project 18-11-00100.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 224–236, 2018.
https://doi.org/10.1007/978-3-319-94631-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_19&domain=pdf

Further Closure Properties of Input-Driven Pushdown Automata 225

star, reversal [1,21], quotient [23] and edit distance neighbourhood [22] (for
binary operations it is assumed that the automata defining its two arguments
use the same partition of the alphabet into classes). Besides the closure results,
the descriptional complexity of these operations has also been estimated in the
literature. For instance, the concatenation of an m-state and an n-state DID-
PDA in the worst case requires a DIDPDA with m2Θ(n log n) states [21], whereas
both for the union and for the intersection its state complexity is Θ(mn) [24]. For
NIDPDA, the state complexity of concatenation and of union is m+n+O(1) [1],
and for the intersection it is Θ(mn) [10]. Further state complexity results were
established for an intermediate family of unambiguous input-driven automata
(UIDPDA) [20]. For more details on input-driven automata and their complex-
ity, the readers are directed to a fairly recent survey [19].

The purpose of this paper is to investigate the closure and the state complex-
ity of input-driven pushdown automata with respect to several further operations
on languages, which are fairly standard in the theoretical research in formal lan-
guage theory—yet their application to IDPDA has not yet been considered.

The first operation, investigated in Sect. 3, is insertion, ins(L,K) = {xyz |
xz ∈ L, y ∈ K }. For finite automata, the closure under this operation is folk-
lore, and its precise state complexity has recently been determined by Han et
al. [8]. For input-driven automata, the closure is currently known only for sin-
gleton K [22]. This paper demonstrates the closure under the assumption that
K consists only of well-nested strings, and determines the worst-case number of
states in an NIDPDA recognizing ins(L,K) as mn + 2m, where m is the num-
ber of states in the NIDPDA for K, while the NIDPDA for L has n states. For
unrestricted K, the non-closure is established.

Another related operation is deletion, del(L,K) = {xz | ∃y ∈ K : xyz ∈ L }.
It is well-known that if L is regular, then the result is regular for an arbitrary
K. The state complexity of this operation for finite automata has recently been
studied by Han et al. [9]. For NIDPDA, as shown in Sect. 4, del(L,K) is repre-
sentable with 2n states, as long as K consists only of well-nested strings; without
this assumption, there is a non-closure result.

The third operation, studied in Sect. 5, is the square root,
√

L = {w |
ww ∈ L }. Assuming that L consists of only well-nested strings and is recog-
nized by an n-state DIDPDA, its square root can be represented by a DIDPDA
with nn states, and this bound is tight; this proof uses the behaviour functions
of DIDPDA [18,21] in the same way as in the similar result for deterministic
finite automata (DFA) [15]. For NIDPDA, as well as for nondeterministic finite
automata (NFA), it is shown that this operation requires at most n3 states and
at least (n − 1)(n − 2)(n − 3) states in the worst case. If L is not restricted to
well-nested strings, a non-closure is established.

Section 6 considers the operation of taking the first half of all even-length
strings in a language, 1

2L = {u | ∃v : |u| = |v|, uv ∈ L}. This is a particular case
of proportional removals, studied by Maslov [15] and by Domaratzki [4] for DFA,
and by Goč et al. [6] for NFA. For NIDPDA, if L consists of well-nested strings,

226 A. Okhotin and K. Salomaa

then 1
2L is recognized by an NIDPDA with 2O(n2) states. For not necessarily

well-nested L, there is again a non-closure.
The last Sect. 7 proposes an open problem on the state complexity of scat-

tered substrings for IDPDA.

2 Input-Driven Automata

A deterministic input-driven pushdown automaton (DIDPDA) [1,16] is a special
case of a deterministic pushdown automaton, in which the input alphabet Σ
is split into three disjoint sets of left brackets Σ+1, right brackets Σ−1 and
neutral symbols Σ0. If the input symbol is a left bracket from Σ+1, then the
automaton always pushes one symbol onto the stack. For a right bracket from
Σ−1, the automaton must pop one symbol. Finally, for a neutral symbol in Σ0,
the automaton may not use the stack. In this paper, symbols from Σ+1 and Σ−1

shall be denoted by left and right angled brackets, respectively (<, >), whereas
lower-case Latin letters from the beginning of the alphabet (a, b, c, . . .) shall be
used for symbols from Σ0.

A nondeterministic input-driven pushdown automaton (NIDPDA) [1,3] is a
similarly restricted case of a nondeterministic pushdown automaton, in which
the type of the action on the stack is determined by the input symbol, whereas
the actual next state and the symbol pushed onto the stack may be selected
nondeterministically.

Input-driven automata are often restricted to operate on input strings, in
which the brackets are well-nested. When an input-driven automaton reads a
left bracket < ∈ Σ+1, it pushes a symbol onto the stack. This symbol is popped
at the exact moment when the automaton encounters the matching right bracket
> ∈ Σ−1. Thus, a computation of an input-driven automaton on any well-nested
substring leaves the stack contents untouched, as illustrated in Fig. 1.

Fig. 1. The computation of an IDPDA on a well-nested string.

Alur and Madhusudan [1] also considered input-driven automata operating
on potentially ill-nested input strings. For every unmatched left bracket, the
symbol pushed to the stack when reading this bracket is never popped, and
remains in the stack to the end of the computation. An unmatched right bracket

Further Closure Properties of Input-Driven Pushdown Automata 227

is read with an empty stack: instead of popping a stack symbol, the automaton
merely detects that the stack is empty and makes a special transition, which
leaves the stack empty.

Definition 1 (von Braunmühl and Verbeek [3]; Alur and Madhusu-
dan [1]). A nondeterministic input-driven pushdown automaton (NIDPDA)
over an alphabet ˜Σ = (Σ+1, Σ−1, Σ0) consists of

– a finite set Q of states, with set of initial states Q0 ⊆ Q and accepting states
F ⊆ Q;

– a finite stack alphabet Γ , and a special symbol ⊥ /∈ Γ for the empty stack;
– for a neutral symbol c ∈ Σ0, a transition function δc : Q → 2Q gives the set

of possible next states;
– for each left bracket symbol < ∈ Σ+1, the behaviour of the automaton is

described by a function δ< : Q → 2Q×Γ , which, for a given current state,
provides a set of pairs (q, γ), with q ∈ Q and γ ∈ Γ , where each pair means
that the automaton enters the state q and pushes γ onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → 2Q specifying possible next states, assuming that the given stack
symbol is popped from the stack (or that the stack is empty).

A configuration is a triple (q, w, x), with the current state q ∈ Q, remaining input
w ∈ Σ∗ and stack contents x ∈ Γ ∗. Possible next configurations are defined as
follows.

(q, cw, x) 	A (q′, w, x), c ∈ Σ0, q ∈ Q, q′ ∈ δc(q)
(q,<w, x) 	A (q′, w, γx), < ∈ Σ+1, q ∈ Q, (q′, γ) ∈ δ<(q)

(q,>w, sx) 	A (q′, w, x), > ∈ Σ−1, q ∈ Q, s ∈ Γ, q′ ∈ δ>(q, γ)
(q,>w, ε) 	A (q′, w, ε), > ∈ Σ−1, q′ ∈ δ>(q,⊥)

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗ (for well-nested inputs, the stack is empty at this point).

An NIDPDA is deterministic (DIDPDA), if there is a unique initial state
and every transition provides exactly one action.

Von Braunmühl and Verbeek [3], proved that every n-state NIDPDA operat-
ing on well-nested strings can be transformed to a 2n2

-state DIDPDA. Alur and
Madhusudan [1] extended this construction to allow ill-nested inputs, so that a
DIDPDA has 22n2

states; in the worst case, 2Ω(n2) states are necessary.
The known closure results under Boolean operations, concatenation, star,

reversal, quotient and edit distance neighbourhood are all valid for input-driven
automata operating on ill-nested strings.

228 A. Okhotin and K. Salomaa

3 Insertion

The insertion operation is a binary operation on languages: ins(L,K) is the set of
all strings obtained by taking any string from L and any position in this string,
and inserting any string from K at that position.

ins(L,K) = {xyz | xz ∈ L, y ∈ K }
The question is: when both K and L are recognized by IDPDA, shall ins(L,K)
always be recognized by an IDPDA? Provided that K does not contain any
ill-nested strings, the answer is positive, established by the following effective
construction.

Lemma 1. Let L be a language recognized by an NIDPDA B with the set of
states Q and with a stack alphabet Γ . Let K be a set of well-nested strings,
which is recognized by an NIDPDA A with the set of states P and with a stack
alphabet Θ. Then, the language ins(L,K) is recognized by an NIDPDA with the
set of states Q∪ ˜Q∪(P ×Q), where ˜Q = { q̃ | q ∈ Q }, and with the stack alphabet
Γ ∪ Θ.

Proof. The new automaton begins by simulating the computation of B in the
states ˜Q.

At any moment, while in a state q̃ ∈ ˜Q, it may nondeterministically guess
that a substring accepted by A begins at the next symbol. If the next symbol is
c ∈ Σ0, the new automaton may make a transition from q̃ by c to a pair (p, q),
where p is any state, to which A may go from its initial state p0 by reading c.
If the next symbol is a left bracket < ∈ Σ+1, the new automaton may choose to
go from q̃ by the left bracket < to a pair (p, q), pushing θ, where A may go from
p0 to p by this bracket <, pushing θ.

Thus, the simulation of A on a substring begins. It proceeds in the states
from P ×Q, with the simulation carried out in the first component, whereas the
state of B remembered in the second component remains unchanged. Whenever
the simulating automaton is in a state (p, q) with p accepting, it may decide that
the well-nested substring being inserted has now ended, and accordingly make
simulate B’s transition from the state q on the next input symbol. After that,
the simulation continues as B in the states from Q.
�

This construction is optimal in the worst case, because of the recent result
by Han et al. [8] for NFA. Han et al. [8] constructed a pair of witness languages,
K and L, recognized by an m-state NFA and by an n-state, respectively, and
proved that every NFA recognizing the language ins(L,K) must have at least
mn + 2m states. Assuming that the partition of the alphabet is fixed, with all
symbols in Σ0, and with no brackets, an NIDPDA cannot do anything more
than an NFA, and for that reason, the lower bound by Han et al. [8] also applies
to NIDPDA. This yields the following result.

Theorem 1. The state complexity of inserting a language recognized by an m-
state NIDPDA into a language of well-nested strings recognized by an n-state
NIDPDA is exactly mn + 2m.

Further Closure Properties of Input-Driven Pushdown Automata 229

On the other hand, if the strings being inserted are not required to be well-
nested, then the closure property no longer holds, as shown in the next example.

Example 1. The following language is recognized by an input-driven automaton.

L = {<n>n | n � 1 }
However, no input-driven automaton recognizes the language ins(L,<>∗<∗>).

Proof. If ins(L,<>∗<∗>) is recognized by some input-driven automaton, then
so is its intersection with the regular language <+>+<+>+. The intersection
ensures that the insertion is made exactly in the middle of a string <n>n.

ins(L,<>∗<∗>) ∩ <+>+<+>+ = {<n+1>i<j>n+1 | n, i, j � 1 }
Let the latter intersection be recognized by a DIDPDA with a set of states Q. Let
n = |Q|2+1, and consider the accepting computation on the string <n>n<n>n.
In the first half of this computation, that is, on the prefix <n>n, for every
i ∈ {1, . . . , n}, let pi and qi be the states reached after reading <i and <n>n−i,
respectively. When the automaton reads the (i + 1)-th left bracket in the state
pi, it pushes the stack symbol si = γ<(pi), which is popped when reading the
(n − i)-th right bracket in the state qj+1, so that qj = δ>(qj+1, si). There are
|Q|2 different pairs (pi, qi), and therefore, for some i and j, these pairs coincide:
(pi, qi) = (pj , qj), with i < j. Then the two segments of computation between
pi+1 and pj and between qj and qi+1, along with the stack symbols linking them
to each other, can be cut, obtaining an accepting computation on the string
<n+j−i>n+j−i<n>n, which does not belong to the language.
�

4 Deletion

The deletion operation is a binary operation on languages: del(L,K) is the set
of all strings obtained by taking any string from L and removing any substring
belonging to K from that string.

del(L,K) = {xz | ∃y ∈ K : xyz ∈ L }
If the set of strings being deleted consists of well-nested strings, there is the

following closure result.

Lemma 2. Let a language L be recognized by an NIDPDA B with states Q
and stack alphabet Γ . Let K be a language containing only well-nested strings,
recognized by an NIDPDA A. Then, the language del(L,K) is recognized by an
NIDPDA with the set of states Q ∪ ˜Q, where ˜Q = { q̃ | q ∈ Q }, and with the
stack alphabet Γ .

Proof. The new automaton first simulates B in the states from ˜Q. At some
point, while in some state q̃, it guesses that a string accepted by A has been
deleted beginning from the next position. Let q′ ∈ Q be any such state of B,

230 A. Okhotin and K. Salomaa

that there exists a well-nested string y, which is accepted by A, whereas B may
read y beginning from the state q, and finish reading it in the state q′. Then the
simulating automaton may guess such a state q′ and continue its simulation, as
if it is currently in the state q′.

The construction is effective, because all pairs (q, q′) satisfying the above con-
ditions can be determined by first constructing an IDPDA Dq,q′ that recognizes
the set of all strings y as defined above, and then applying the known emptiness
test [2] to this IDPDA.
�

If ill-nested strings may be deleted, then, as in the case of insertion, the
family is no longer closed under this operation.

Example 2. The following language is recognized by an input-driven automaton.

L = {<mn�n>m | m,n � 1 }
However, no input-driven automaton recognizes the language del(L,∗).

Proof. If del(L,∗) is recognized by some input-driven automaton, then so is its
intersection with the regular language <+�+>+, which ensures that all double
left brackets () are erased.

del(L,∗) ∩ <+�+>+ = {<m�i>m | m, i � 1 }
If the latter intersection is recognized by a DIDPDA with a set of states

Q, then let m = |Q|. Then, in the computation on <m�m>m, the stack must
be empty after reading the prefix <m�m. In the last part of the computation,
while reading the suffix >m, the automaton passes through a sequence of states
p0, . . . , pm, behaving like a DFA, with every next state determined by a transi-
tion by the empty stack as pi+1 = δ>(pi,⊥). Since m + 1 > |Q|, two of these
states must coincide: pi = pj , with 0 � i < j � m. Then this segment of the
computation can be cut out without affecting the acceptance, and the automaton
accepts the string <m�m>m−(j−i), which is not in the language.
�

5 Square Root

For a string of the form ww, the string w is its square root, denoted by
√

ww = w.
The square root of a language is defined as the set of square roots of all its
applicable elements. √

L = {w | ww ∈ L }
The regular languages are closed under this operation. Indeed, for every n-state
DFA recognizing L, one can construct a DFA with nn states that computes
the behaviour function of the original DFA on the string w: this is a function
fw : Q → Q that maps each state q ∈ Q to the state reached by the DFA after
reading w beginning from the state q. Denote by QQ the set of all such functions.
Then, the set of states of the constructed DFA is QQ.

This construction generalizes to input-driven automata, under the assump-
tion that L contains only well-nested strings. Notably, in such a case, the lan-
guage

√
L also contains only well-nested strings.

Further Closure Properties of Input-Driven Pushdown Automata 231

Lemma 3. If a language L contains only well-nested strings, and is recognized
by a DIDPDA with the set of states Q, then the language

√
L is recognized by a

DIDPDA with the set of states QQ and with the stack alphabet Σ+1 × QQ.

The new DIDPDA processing w constructs the behaviour function [18,21] of
the original DIDPDA on w. This is one of the basic constructions for DIDPDA,
based on the following observation: when a DIDPDA with a set of states Q
processes a well-nested string w and begins in a state q, it finishes reading that
string in some state fw(q), where fw : Q → Q is its behaviour function on w,
and the stack is left untouched. Thus, f completely characterizes the behaviour
of a DIDPDA on w. For any given DIDPDA A, it is possible to construct an
nn-state DIDPDA, where n = |Q|, that reaches the end of an input w in a state
representing the behaviour of A on the longest well-nested suffix of w. This
construction is necessary for optimal constructions representing operations on
DIDPDA [21].

Proof (of Lemma 3). This is a known DIDPDA construction for the behaviour
function fw : Q → Q of A on the input string w. Then the function fw ◦ fw is its
behaviour of A on ww, and the simulating automaton accepts in a state f ∈ QQ

whenever (f ◦ f)(q0) ∈ F .

A matching lower bound for the state complexity of the square root on DFA
is known. It immediately applies to DIDPDA, showing that nn is the exact
complexity of the square root for this model as well.

Lemma 4 (Maslov [15]). For every n � 1, there exists such an n-state DFA
over a 3-symbol alphabet (equivalently, an n-state DIDPDA over the alphabet
Σ+1 = Σ−1 = ∅, Σ0 = {a, b, c}) that every DFA (as well as a DIDPDA)
recognizing the language

√
L requires at least nn states.

For NIDPDA, the state complexity of the square root is quite different. As to
the authors’ knowledge, the number of states in an NFA recognizing the square
root of an n-state NFA is not yet known, and it is natural to establish it first.

Theorem 2. Square root of an n-state NFA is recognized by an n3-state NFA.
For every n, there is a language Ln over a three-symbol alphabet, which is

recognized by an n-state DFA, whereas every NFA recognizing
√

Ln must have
at least (n − 1)(n − 2)(n − 3) states.

Proof. Let A = (Σ,Q,Q0, δ, F) be any n-state NFA. The NFA B recognizing
√

L(A) uses the set of triples Q × Q × Q as its states. In the beginning of its
computation on a string w, it guesses the state p reached by A after reading w,
remembers this state as the last component on the triple, and begins simulating
two computations of A, one beginning from an initial state and the other begin-
ning from p. Accordingly, its set of initial states is { (q0, p, p) | q0 ∈ Q0, p ∈ Q },
and it uses the following transitions.

δ′((q, r, p), a
)

= { (q′, r′, p) | q′ ∈ δ(q, a), r′ ∈ δ(r, a) }

232 A. Okhotin and K. Salomaa

When B finishes reading w in a state (q, r, p), it has verified that A, upon reading
w, can move from q0 to q, as well as from p to r. If q = p, this confirms that A can
move from q0 to r upon reading ww, and if r is accepting, then B should accept
its input string w. Accordingly, the set of accepting states of B is { (p, r, p) |
p ∈ Q, r ∈ F }.

Turning to the lower bound, the language Ln is the standard “universal”
witness language, as in Lemma 4. It is recognized by a DFA with the states
{0, . . . , n − 1}, and has the following property: for every function f : {0, . . . , n −
1} → {0, . . . , n − 1}, there is such a string xf , that, upon reading xf beginning
from a state i, the DFA finishes reading it in the state f(i). The state 0 is initial
and n − 2 is accepting.

Now the lower bound is proved using the standard fooling set method. Let
(i, j, k) be a triple of states, with i, k ∈ {0, . . . , n−2}, j ∈ {1, . . . , n−3} and i �= k.
Define the string ui,j,k = xf , where f is a function defined by f(0) = i, f(j) = k
and f(t) = n − 1 for all remaining arguments. The other string is vi,j,k = xg,
where g(i) = j, g(k) = n−2 and g(t) = n−1 for the rest of the arguments. Then,
the concatenation ui,j,kvi,j,k maps the initial state to j, and j to the accepting
state. This means that the square (ui,j,kvi,j,k)2 maps the initial state to the
accepting state, and therefore ui,j,kvi,j,k belongs to

√

L(A). On the other hand,
for any two different pairs on this list, (ui,j,k, vi,j,k) and (ui′,j′,k′ , vi′,j′,k′), at
least one of the mismatched concatenations ui,j,kvi′,j′,k′ and ui′,j′,k′vi,j,k is not
in

√

L(A). Then, every NFA recognizing the square root must have at least as
many states as there are pairs in this fooling set, and there are (n−1)(n−2)(n−3)
such pairs.
�

The construction for NFA easily generalizes to NIDPDA, whereas the lower
bound applies to NIDPDA as it is.

Theorem 3. Assume that a language L contains only well-nested strings, and
let it be recognized by an NIDPDA with set of states Q, and with stack alphabet
Γ . Then the language

√
L is recognized by an NIDPDA with the set of states Q3

and with the stack alphabet Γ 2.
For every n, there is a language Ln over an alphabet that consists of four

neutral symbols, which is recognized by an n-state DFA, whereas every NIDPDA
recognizing

√
Ln must have at least (n − 1)(n − 2)(n − 3) states.

Thus, the state complexity of the square root has been established as n3 −
O(n2) both for NFA and for NIDPDA. For the latter, the construction relies on
all strings’ being well-nested.

In the general case without the well-nestedness assumption, input-driven
automata again demonstrate a non-closure.

Example 3. The following language is recognized by an input-driven automaton.

L = {>i<n>n<j | i, n, j � 1 } ∪ {<m>m<n>n | m,n � 1 }
Its square root has the following form.

√
L = {>n<n | n � 1 } ∪ {<n>n | n � 1 }

Further Closure Properties of Input-Driven Pushdown Automata 233

It is not recognized by any input-driven automaton, for any partition of the
alphabet.

6 Proportional Removals

For a string of even length, w = a1 . . . a2�, its first half, denoted by 1
2w, is the

string a1 . . . a�, obtained by discarding the second half of w. This operation is
extended to languages element-wise, as follows.

1
2 (L) = { 1

2w | w ∈ L, |w| is even }
As reported by Seiferas and McNaughton [26], Yamada, Stearns and Hartmanis
were the first to prove that the regular languages are closed under this operation.
Maslov [15] determined its state complexity for DFA as 2Θ(

√
n log n), relying on

the known determinization of unary NFAs using e(1+o(1))
√

n lnn states. Later
Domaratzki [4] has further investigated its state complexity, and Goč et al. [6]
proved that for NFA, the state complexity of “one half” is Θ(n2).

For input-driven automata, there is a construction somewhat similar to those
used for finite automata. Unfortunately, it cannot anymore rely on determinizing
unary NFA, and for that reason is much less efficient with respect to the number
of states.

Lemma 5. For an n-state NIDPDA recognizing a language L, the well-nested
subset of the language 1

2 (L) is recognized by an NIDPDA with 2O(n2) states.

This time no assumptions are made on the well-nestedness of strings in L,
but the construction produces an automaton that defines the intersection 1

2L
with the set of well-nested strings.

Proof. The states of the new automaton are of the form (q, q̂, p), where q is the
state of the original automaton’s ongoing simulation, q̂ is the guessed state of
the original automaton in the end of the simulation, whereas p is a state of a
certain finite automaton.

For each state qi of the given input-driven automaton, there exists an NFA Ai

that accepts a string a� if and only if there exists any string of length 	 accepted
by the input-driven automaton, beginning in the state qi with the empty stack.
Such a finite automaton exists by Parikh’s theorem, and is effectively obtained
as follows. First, the NIDPDA is transformed to a grammar of size O(n2). Then,
the efficient construction for Parikh’s theorem by Esparza et al. [5] is applied to
this grammar, producing an NFA of size 2O(n2).

Given the well-nested first half u of some string, the new automaton begins
its computation in any state of the form (q0, qi, p

(i)
0), where q0 is the original

automaton’s initial state, qi is any of its states, and p
(i)
0 is the initial state of the

finite automaton Ai. Then, the new automaton simulates the behaviour of the
original automaton on u, along with running Ai on the same string. In the end,
the new automaton accepts if its first component reaches the state qi guessed in
the beginning, while the simulated Ai accepts the string.
�

234 A. Okhotin and K. Salomaa

The construction in Lemma 5 should be taken as a rough upper bound on
the state complexity of one half. Improving this construction is proposed as an
open problem.

If the exact value of 1
2L is required, that is, without the intersection with the

set of well-nested strings, then there is yet another non-closure result.

Example 4. The following language consists only of well-nested strings and is
recognized by an input-driven automaton.

L = {<m>m<n(cc>)ncc | m,n � 1 }

Proof. Each string is of length 2m+4n+2, and its first half is of length m+2n+1.
This first half belongs to the set <∗>∗<∗c if and only if m = n. For this reason,
the set of first halves of strings in L, under intersection with the regular language
<∗>∗<∗c, has the following form.

1
2L ∩ <∗>∗<∗c = {<n>n<nc | n � 1 }

The latter language is certainly not recognized by any input-driven automaton,
and therefore neither is 1

2L.
�

7 Scattered Substrings

For each string w = a1 . . . an, any string ai1 . . . ai�
, with 1 � i1 < . . . < i� � n,

is its scattered substring. Denote by sub(w) the set of all scattered substrings of
w, and let sub(L) =

⋃

w∈L sub(w) for a language L. By the Higman–Haines the-
orem [7,11], the language sub(L) is regular for an arbitrary language L, and can
therefore be recognized by an IDPDA without paying attention to the bracket
structure, by pushing and popping dummy stack symbols on the brackets.

For regular languages, the state complexity of scattered substrings is
2Θ(n) [12,17], with recent further results by Karandikar et al. [13].

What is the state complexity of this operation for IDPDA? As proved by
van Leeuwen [14], for L given by a grammar, the language sub(L) is effectively
regular. However, van Leeuwen’s [14] constructive proof does not include any
estimation of the size of the regular language; it uses the finiteness of the basis
to prove that the construction terminates. For that reason, no upper bound on
the state complexity of scattered substrings for IDPDA is known.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing (STOC 2004), Chicago, USA, 13–16 June 2004, pp. 202–211
(2004). https://doi.org/10.1145/1007352.1007390

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3)
(2009). https://doi.org/10.1145/1516512.1516518

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518

Further Closure Properties of Input-Driven Pushdown Automata 235

3. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in
log n space. Ann. Discret. Math. 24, 1–20 (1985). https://doi.org/10.1016/S0304-
0208(08)73072-X

4. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang.
Comb. 7(4), 455–468 (2002)

5. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011).
https://doi.org/10.1016/j.ipl.2011.03.019

6. Goč, D., Palioudakis, A., Salomaa, K.: Nondeterministic state complexity of pro-
portional removals. Int. J. Found. Comput. Sci. 25(7), 823–836 (2014). https://
doi.org/10.1142/S0129054114400103

7. Haines, L.H.: On free monoids partially ordered by embedding. J. Comb. Theory
6, 94–98 (1969). https://doi.org/10.1016/S0021-9800(69)80111-0

8. Han, Y.-S., Ko, S.-K., Ng, T., Salomaa, K.: State complexity of insertion.
Int. J. Found. Comput. Sci. 27(7), 863–878 (2016). https://doi.org/10.1142/
S0129054116500349

9. Han, Y.-S., Ko, S.-K., Salomaa, K.: State complexity of deletion and bipolar dele-
tion. Acta Informatica 53(1), 67–85 (2016). https://doi.org/10.1007/s00236-015-
0245-y

10. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word
automata. Theor. Comput. Sci. 410, 2961–2971 (2009). https://doi.org/10.1016/
j.tcs.2009.01.004

11. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
s3–2(1), 326–336 (1952)

12. Gruber, H., Holzer, M., Kutrib, M.: More on the size of Higman-Haines sets: effec-
tive constructions. Fundamenta Informaticae 91(1), 105–121 (2009). https://doi.
org/10.3233/FI-2009-0035

13. Karandikar, P., Niewerth, M., Schnoebelen, Ph.: On the state complexity of clo-
sures and interiors of regular languages with subwords and superwords. Theor.
Comput. Sci. 610(A), 91–107 (2016). https://doi.org/10.1016/j.tcs.2015.09.028

14. van Leeuven, J.: Effective construction in well-partially-ordered free monoids.
Discrete Math. 21(3), 237–252 (1978). https://doi.org/10.1016/0012-
365X(78)90156-5

15. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

16. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

17. Okhotin, A.: On the state complexity of scattered substrings and superstrings.
Fundamenta Informaticae 99(3), 325–338 (2010). https://doi.org/10.3233/FI-
2010-252

18. Okhotin, A.: Input-driven languages are linear conjunctive. Theor. Comput. Sci.
618, 52–71 (2016). https://doi.org/10.1016/j.tcs.2016.01.007

19. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821

20. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theor. Comput. Sci. 566, 1–11 (2015). https://doi.org/10.
1016/j.tcs.2014.11.015

21. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017). https://doi.org/10.
1016/j.jcss.2017.02.001

https://doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1016/j.ipl.2011.03.019
https://doi.org/10.1142/S0129054114400103
https://doi.org/10.1142/S0129054114400103
https://doi.org/10.1016/S0021-9800(69)80111-0
https://doi.org/10.1142/S0129054116500349
https://doi.org/10.1142/S0129054116500349
https://doi.org/10.1007/s00236-015-0245-y
https://doi.org/10.1007/s00236-015-0245-y
https://doi.org/10.1016/j.tcs.2009.01.004
https://doi.org/10.1016/j.tcs.2009.01.004
https://doi.org/10.3233/FI-2009-0035
https://doi.org/10.3233/FI-2009-0035
https://doi.org/10.1016/j.tcs.2015.09.028
https://doi.org/10.1016/0012-365X(78)90156-5
https://doi.org/10.1016/0012-365X(78)90156-5
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.3233/FI-2010-252
https://doi.org/10.3233/FI-2010-252
https://doi.org/10.1016/j.tcs.2016.01.007
https://doi.org/10.1145/2636805.2636821
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1016/j.jcss.2017.02.001

236 A. Okhotin and K. Salomaa

22. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input-driven pushdown
automata. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 260–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58747-9 23

23. Okhotin, A., Salomaa, K.: The quotient operation on input-driven pushdown
automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316,
pp. 299–310. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-
3 24

24. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theor. Comput. Sci. 410, 3290–3302 (2009). https://doi.org/10.1016/j.tcs.2009.
05.002

25. Salomaa, K.: Limitations of lower bound methods for deterministic nested word
automata. Inf. Comput. 209, 580–589 (2011). https://doi.org/10.1016/j.ic.2010.
11.021

26. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comput.
Sci. 2(2), 147–154 (1976). https://doi.org/10.1016/0304-3975(76)90030-X

https://doi.org/10.1007/978-3-319-58747-9_23
https://doi.org/10.1007/978-3-319-60252-3_24
https://doi.org/10.1007/978-3-319-60252-3_24
https://doi.org/10.1016/j.tcs.2009.05.002
https://doi.org/10.1016/j.tcs.2009.05.002
https://doi.org/10.1016/j.ic.2010.11.021
https://doi.org/10.1016/j.ic.2010.11.021
https://doi.org/10.1016/0304-3975(76)90030-X

State Complexity Characterizations
of Parameterized Degree-Bounded Graph

Connectivity, Sub-Linear Space
Computation, and the Linear

Space Hypothesis

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui,
3-9-1 Bunkyo, Fukui 910-8507, Japan

TomoyukiYamakami@gmail.com

Abstract. The linear space hypothesis is a practical working hypothesis,
which originally states the insolvability of a restricted 2CNF Boolean for-
mula satisfiability problem parameterized by the number of Boolean vari-
ables. From this hypothesis, it follows that the degree-3 directed graph
connectivity problem (3DSTCON) parameterized by the number of ver-
tices in a given graph cannot belong to PsubLIN, composed of decision
problems computable by polynomial-time, sub-linear-space deterministic
Turing machines. This hypothesis immediately implies L �=NL and it was
used as a solid foundation to obtain new lower bounds on the computa-
tional complexity of various NL search and NL optimization problems.
The state complexity of transformation refers to the cost of converting
one type of finite automata to another type, where the cost is measured
in terms of the increase of the number of inner states of the converted
automata from that of the original automata. We relate the linear space
hypothesis to the state complexity of transforming restricted 2-way non-
deterministic finite automata to computationally equivalent 2-way alter-
nating finite automata having narrow computation graphs. For this pur-
pose, we present state complexity characterizations of 3DSTCON and
PsubLIN. We further characterize a non-uniform version of the linear
space hypothesis in terms of the state complexity of transformation.

1 Backgrounds and an Overview

1.1 Parameterized Problems and the Linear Space Hypothesis

The nondeterministic logarithmic-space complexity class NL has been discussed
since early days of computational complexity theory. Typical NL decision prob-
lems include the 2CNF Boolean formula satisfiability problem (2SAT) as well

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
S. Konstantinidis and G. Pighizzini (Eds.): DCFS 2018, LNCS 10952, pp. 237–249, 2018.
https://doi.org/10.1007/978-3-319-94631-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94631-3_20&domain=pdf

238 T. Yamakami

as the directed s-t connectivity problem1 (DSTCON) of determining whether
there exists a path from a given vertex s to another vertex t in a given directed
graph G. These problems are also known to be NL-complete under log-space
many-one reductions. The NL-completeness is so robust that even if we restrict
our interest within graphs whose vertices are limited to be of degree at most 3,
the corresponding decision problem, 3DSTCON, remains NL-complete.

In practice, when we measure the computational complexity of given prob-
lems, we tend to be more concerned with parameterizations of the problems. In
other words, we treat the size of specific “input objects” given to the problem
as a “practical” size parameter n and use it to measure how much resources
are needed for algorithms to solve those problems. To emphasize the choice of
such a size parameter m : Σ∗ → N for a decision problem L over an alphabet
Σ, it is convenient to write (L,m), which gives rise to a parameterized decision
problem. Since we deal only with such parameterized problems in the rest of this
paper, we often drop the adjective “parameterized” as long as it is clear from
the context.

Instances x = 〈G, s, t〉 to 3DSTCON are usually parameterized by the num-
ber of vertices and that of edges in the graph G. It was shown in [2] that
DSTCON with n vertices and m edges can be solved in O(m+n) steps using only
n1−c/

√
log n space for a suitable constant c > 0. However, it is unknown whether

we can reduce this space usage down to nε polylog(m+n) for a certain fixed con-
stant ε ∈ [0, 1). Such a bound is informally called “sub-linear” in a strong sense.
It has been conjectured that, for every constant ε ∈ [0, 1), no polynomial-time
O(nε)-space algorithm solves DSTCON with n vertices (see references in, e.g.,
[1,4]). For convenience, we denote by PsubLIN the collection of all parameter-
ized decision problems (L,m) solvable deterministically in time polynomial in
|x| using space at most m(x)ε�(|x|) for certain constants ε ∈ [0, 1) and certain
polylogarithmic (or polylog, in short) functions � [11].

The linear space hypothesis (LSH), proposed in [11], is a practical working
hypothesis, which originally asserts the insolvability of a restricted form of 2SAT,
denoted 2SAT3, together with the size parameter mvbl(φ) indicating the number
of variables in each given Boolean formula φ, in polynomial time using sub-linear
space. As noted in [11], it is unlikely that 2SAT replaces 2SAT3. From this
hypothesis, nevertheless, we immediately obtain the separation L �= NL, which
many researchers believe to hold. It was also shown in [11] that (2SAT3,mvbl)
can be replaced by (3DSTCON,mver), where mver(〈G, s, t〉) refers to the number
of vertices in G. LSH has acted as a reasonable foundation to obtain new lower
bounds of several NL-search and NL-optimization problems [11,12]. To find more
applications of this hypothesis, we need to translate the hypothesis into other
fields. In this paper, we look for a logically equivalent statement in automata
theory, in hope that we would find more applications of LSH in this theory.

1 This problem is also known as the graph accessibility problem and the graph reach-
ability problem.

State Complexity Characterizations 239

1.2 Finite Automata and State Complexity Classes

The purpose of this work is to look for an automata-theoretical statement that
is logically equivalent to the linear space hypothesis; in particular, we seek a
new characterization of the relationship between 3DSTCON and PsubLIN in
terms of the state complexity of transforming a certain type of finite automata
to another type with no direct reference to 3DSTCON or PsubLIN.

It is often cited from [3] (re-proven in [8]) that, if L = NL, then every n-state
two-way nondeterministic finite automaton (or 2nfa) can be converted into an
nO(1)-state two-way deterministic finite automaton (or 2dfa) that agrees with
it on all inputs of length at most nO(1). Conventionally, we call by unary finite
automata automata working only on unary inputs (i.e., inputs over a one-letter
alphabet). Geffert and Pighizzini [6] strengthened the aforementioned result by
proving that the assumption of L = NL leads to the following: for any n-state
unary 2nfa, there is a unary 2dfa of at most nO(1)-states agreeing with it on
all strings of length at most n. Within a few years, Kapoutsis [8] gave a similar
characterization using L/poly, a non-uniform version of L: NL ⊆ L/poly if and
only if (iff) there is a polynomial p such that any n-state 2nfa has a 2dfa of at
most p(n) states agreeing with the 2nfa on strings of length at most n. Another
incomparable characterization was given by Kapoutsis and Pighizzini [9]: NL ⊆
L/poly iff there is a polynomial p satisfying that any n-state unary 2nfa has an
equivalent unary 2dfa of states at most p(n). In this paper, we want to seek a
similar automata characterization for the linear space hypothesis.

Sakoda and Sipser [10] further laid out a complexity-theoretical framework
to discuss the state complexity by giving formal definitions to state-complexity
based classes (such as 2D, 2N/poly, 2N/unary), each of which is generally com-
posed of non-uniform families of languages recognized by finite automata of
specified types and input sizes. Such complexity-theoretical treatments of fam-
ilies of finite automata were also considered by Kapoutsis [7,8] and Kapoutsis
and Pighizzini [9]. For those state complexity classes, it was proven in [8,9] that
2N/poly ⊆ 2D iff NL ⊆ L/poly iff 2N/unary ⊆ 2D.

1.3 Main Contributions

As the main contribution of this paper, firstly we provide with two character-
izations of 3DSTCON and PsubLIN in terms of the state complexity of finite
automata, and secondly we give a characterization of LSH in terms of the state
complexity of transforming a restricted form of 2nfa to another restricted form of
two-way alternating finite automaton (or 2afa), which takes ∀-states and ∃-states
alternatingly, producing alternating ∀-levels and ∃-levels in its (directed) compu-
tation graph made up of configurations. The significance of our characterization
includes the fact that LSH can be expressed completely by the state complex-
ity of finite automata of certain types with no clear reference to (2SAT3,mvbl),
(3DSTCON,mver), or even PsubLIN; therefore, this characterization may help
us apply LSH to a wider range of NL-complete problems.

240 T. Yamakami

To describe our result precisely, we further need to explain our terminology.
A simple 2nfa is a 2nfa having a “circular” input tape2 (in which both endmark-
ers are located next to each other) whose tape head “sweeps” the tape (i.e. it
moves only to the right), and making nondeterministic choices only at the right
endmarker. For a positive integer c, a c-branching 2nfa makes only at most c
nondeterministic choices at every step and a family of 2nfa’s is called constant-
branching if there is a constant c ≥ 1 for which every 2nfa in the family is
c-branching. A c-narrow 2afa is a 2afa whose computation graphs have width
(i.e., the number of distinct vertices at a given level) at every ∀-level is bounded
from above by c.

For convenience, we say that a finite automaton M1 is equivalent (in compu-
tational power) to another finite automaton M2 over the same input alphabet if
M1 agrees with M2 on all inputs. Here, we use a straightforward binary encoding
〈M〉 of an n-state finite automaton M using O(n log n) bits. A family {Mn}n∈N

is said to be L-uniform if a deterministic Turing machine (or a DTM) produces
from 1n an encoding 〈Mn〉 of finite automaton Mn using space logarithmic in n.

Proposition 1. Every L-uniform family of constant-branching O(n log n)-state
simple 2nfa’s can be converted into another L-uniform family of equivalent
O(n1−c/

√
log n)-narrow 2afa’s with nO(1) states for a certain constant c > 0.

Theorem 2. The following three statements are logically equivalent.

1. The linear space hypothesis fails.
2. For any constants c > 0 and k ≥ 1, there exists a constant ε ∈ [0, 1) such

that every L-uniform family of constant-branching simple 2nfa’s with at most
cn logk n states can be converted into another L-uniform family of equivalent
O(nε)-narrow 2afa’s with nO(1) states.

3. For any constant c > 0, there exists a constant ε ∈ [0, 1) and a log-space
computable function that, on every input of an encoding of c-branching simple
n-state 2nfa, produces another encoding of equivalent O(nε)-narrow 2afa with
nO(1) states.

In addition to the original linear space hypothesis, it is possible to discuss
its non-uniform version, which asserts that (2SAT3,mver) does not belong to a
non-uniform version of PsubLIN, succinctly denoted by PsubLIN/poly.

The state complexity class 2linN consists of all families {Ln}n∈N of languages,
each Ln of which is recognized by a certain c-branching simple O(n logk n)-state
2nfa on all inputs for appropriate constants c, k ∈ N

+. Moreover, 2Anarrow(f(n))

is composed of language families {Ln}n∈N recognized by O(f(n))-narrow 2afa’s
of nO(1) states on all inputs.

Theorem 3. The following three statements are logically equivalent.

1. The non-uniform linear space hypothesis fails.

2 A 2nfa with a tape head that sweeps a circular tape is called “rotating” in [9].

State Complexity Characterizations 241

2. For any constant c > 0, there exists a constant ε ∈ [0, 1) such that every
c-branching simple n-state 2nfa can be converted into an equivalent O(nε)-
narrow 2afa with at most nO(1) states.

3. 2linN ⊆ ⋃
ε∈[0,1) 2Anarrow(nε).

It is open whether 2linN in Theorem 3(3) can be replaced by 2N or even
2N/poly. This is related to the question of whether we can replace 2SAT3 in the
definition of LSH by 2SAT [11].

In contrast, if we focus our attention on “unary” finite automata, then we
obtain a slightly weaker implication to the failure of LSH.

Theorem 4. Each one of the following statements implies the failure of the
linear space hypothesis.

1. For any constants c > 0 and k ≥ 1, there exists a constant ε ∈ [0, 1) such
that every L-uniform family of constant-branching simple unary 2nfa’s with at
most cn4 logk n states can be converted into an L-uniform family of equivalent
O(nε)-narrow unary 2afa’s with nO(1) states.

2. For any constants c > 0 and k ≥ 1, there exist a constant ε ∈ [0, 1) and a log-
space computable function that, on every input of an encoding of c-branching
simple unary 2nfa with at most cn4 logk n states, produces another encoding
of equivalent O(nε)-narrow unary 2afa having nO(1) states.

Theorems 2–3 will be proven in Sect. 3 after we establish basic properties of
PsubLIN and 3DSTCON in Sect. 2. Theorem 4 will be shown in Sect. 4.

2 Two Basic Characterizations

Since Theorems 2–3 are concerned with 3DSTCON and PsubLIN, we want
to look into their basic properties. In what follows, we will present two state
complexity characterizations of the complexity class PsubLIN and the language
3DSTCON.

A function m : Σ∗ → N
+ is called a log-space size parameter if there exists a

DTM M that, on any input x, produces m(x) in binary on its output tape using
only O(log |x|) work space. A function f : N → N is log-space computable (resp.,
t(n)-time space constructible for a given function t) if there exists a DTM with a
write-only output tape such that, for each given length n ∈ N, when M takes 1n

and then produces 1f(n) using O(log n) work space (resp., within O(t(n)) steps
using no more than f(n) cells).

2.1 Automata Characterizations of PsubLIN

Let us give a precise characterization of PsubLIN in terms of the state complexity
of narrow 2afa’s because the narrowness of 2afa’s directly corresponds to the
space usage of DTMs. What we intend to prove in this section is, in fact, slightly
more general than what we actually need for proving Theorems 2–3.

242 T. Yamakami

Take two functions s : N × N → N
+ and t : N → N

+, and let
m denote any log-space size parameter, where N

+ = N − {0}. We define
TIME,SPACE(t(x), s(x,m(x))) (where x expresses a symbolic input) to be the
collection of all parameterized decision problems (L,m) recognized by DTMs
(each of which is equipped with a read-only input tape and a semi-infinite
rewritable work tape) within time c1t(x) using space at most c2s(x,m(x)) on
every input x for certain absolute constants c1, c2 > 0.

Our proof of Proposition 5 is a fine-grained analysis of the well-known trans-
formation of alternating Turing machines (or ATMs) to DTMs and vice versa.
In what follows, we freely identify a language with its characteristic function.

Proposition 5. Let t, � : N → N
+ be log-space computable and O(t(n))-time

space constructible, respectively. Consider a language L and a log-space size
parameter m.

1. If (L,m) ∈ TIME,SPACE(t(|x|), �(m(x))), then there are two constants
c1, c2 > 0 and an L-uniform family {Mn,l}n,l∈N of c2�(m(x))-narrow 2afa’s
such that each Mn,|x| has at most c1t(|x|)�(m(x)) states and computes L(x)
on all inputs x satisfying m(x) = n.

2. If there are constants c1, c2 > 0 and an L-uniform family {Mn,l}n,l∈N of
c2�(m(x))-narrow 2afa’s such that each Mn,|x| has at most c1t(|x|) states and
computes L(x) on all inputs x satisfying m(x) = n, then (L,m) belongs to
TIME,SPACE(t(|x|)�(m(x)), �(m(x)) + log t(|x|) + log |x|).

Proof Sketch. (1) Given a parameterized decision problem (L,m), let us con-
sider a DTM N that solves (L,m) in time at most c1t(|x|) using space at most
c2�(m(x)) for certain constants c1, c2 > 0. We first modify N so that it halts
in scanning both |c on the input tape and the blank symbol B at the start cell
(i.e., cell 0) of the work tape. Moreover, we make it halt in exactly c1t(|x|) steps.
Now, we want to simulate N by 2afa’s Mn,l of the desired type. Let x be any
instance to L. Let us consider surface configurations (q, j, k, w) of N on x, which
indicates that N is in state q, scanning both the jth cell of the input tape and
the kth cell of the work tape containing w. We want to trace down these surface
configurations using an alternating series of ∀-states and ∃-states of Mn,|x|.

Since each move of N affects at most 3 consecutive cells of the input tape
and the work tape, it suffices to focus our attention on these local cells. Our
idea is to define Mn,|x|’s surface configuration ((q, i, k′, u), j) to represent N ’s
surface configuration (q, j, k, w) at time i in such a way that u indicates either
the k′-th cell content or the content of its neighboring 3 cells. In particular,
when k = k′, u carries extra information (by changing tape symbol σ to σ̂) that
a tape head is at the k′th cell. For example, an initial surface configuration of
Mn,|x| on x is ((qacc, c1t(|x|), 0, B̂), 0), which corresponds to the final accepting
surface configuration of N on x, where qacc is a unique accepting state of N .
Inductively, we generate the next surface configuration of Mn,|x| roughly in the
following way. In an ∃-state, Mn,|x| guesses (i.e., nondeterministically chooses)
the content of 3 consecutive cells in the current configuration of N on x. In a
∀-state, Mn,|x| checks whether the guessed content is actually correct by

State Complexity Characterizations 243

branching out 3 computation paths, each of which selects one of the 3 cells chosen
in the ∃-state. The O(�(m(x))-narrowness comes from the space bound of N .

(2) Let k ≥ 1 and M = {Mn,l}n,l∈N be a family given for L by the premise of
(2). In particular, each Mn,l is a c2�(m(x))-narrow 2afa having at most c1t(|x|)
states for constants c1, c2 > 0. We simulate M by the following DTM. On input
x, compute n = m(x), and generate 〈Mn,|x|〉 using O(log |x|) space. Consider a
computation graph of Mn,|x| on input x. Using a breadth-first search technique,
we check whether there is an accepting computation subgraph of Mn,|x| on x by
trimming all encountered branches that lead to rejecting states. It is possible
to carry out this procedure using space O(log t(|x|)) + O(�(m(x))) + O(log |x|)
since Mn,|x| is c2�(m(x))-narrow and O(log t(|x|)) bits are needed to describe
each state. The running time of this DTM is at most O(t(|x|)�(m(x))). ��

Similarly, we can obtain a non-uniform version of Proposition 5 by making
use of “advice” instead of the uniformity condition. In the uniform case, we have
used a DTM to produce 〈Mn〉 from 1n; in the non-uniform case, by contrast, we
must generate 〈Mn〉 from information given by the advice.

A Karp-Lipton non-uniform version of TIME,SPACE(t(x), �(x,m(x))),
which is denoted by TIME,SPACE(t(x), �(x,m(x)))/O(s(|x|)), is defined by
supplementing external information known as “advice” to underlying Turing
machines that characterize TIME,SPACE(t(x), �(x,m(x))). Each of such under-
lying machines is equipped with an additional read-only advice tape, to which we
provide exactly one string (called an advice string) of length O(s(n)) surrounded
by two endmarkers for all input instances of length n.

Proposition 6. Let t : N → N
+ be log-space computable and let s, � : N → N

+

be O(t(n))-time space constructible. Let L and m be a language and a log-space
size parameter, respectively. Assume that there is a function h satisfying |x| ≤
h(m(x)) for all x.

1. If (L,m) ∈ TIME,SPACE(t(|x|), �(m(x)))/O(s(|x|)), then there is a non-
uniform family {Mn,l}n,l∈N of O(�(m(x)))-narrow 2afa’s such that, for each
n ∈ N, Mn,|x| has O(t(|x|)�(m(x))s(|x|)) states and computes L(x) on all
inputs x satisfying m(x) = n.

2. If there is a non-uniform family {Mn,l}n,l∈N of O(�(m(x)))-narrow 2afa’s such
that each Mn,|x| has O(t(|x|)) states and computes L(x) on all inputs x satisfy-
ing m(x) = n, then (L,m) belongs to TIME,SPACE(t(|x|)�(m(x)), �(m(x)) +
log t(|x|) + log |x|)/O(h(m(x))t(|x|)2 log t(|x|)).

2.2 Automata Characterizations of 3DSTCON

The proofs of Theorems 2 and 3 require a characterization of 3DSTCON in
terms of 2nfa’s. Kapoutsis [8] and Kapoutsis and Pighizzini [9] earlier gave 2nfa-
characterizations of DSTCON; however, 3DSTCON needs a slightly different
characterization.

First, we re-formulate the parameterized decision problem (3DSTCON,mver)
as a family {3DSTCONn}n∈N of decision problems, each 3DSTCONn of which

244 T. Yamakami

is limited to directed graphs of vertex size exactly n. To express instances to
3DSTCONn, we also need to define an appropriate binary encoding of degree-
bounded directed graphs. Formally, let Kn = (V,E) denote a complete directed
graph with V = {0, 1, . . . , n − 1} and E = V × V and let G = (V,E) be a
degree-3 subgraph of Kn. We express this graph G as the form of an adjacency
list, which is represented by an n × 3 matrix whose rows are indexed by i ∈ [n]
and columns are indexed by j ∈ {1, 2, 3}. If there is no jth edge leaving from
vertex i, then the (i, j)th entry of this list is the designated symbol ⊥. We further
encode this list into a single binary string, denoted by 〈G〉, of size O(n log n).
Here, we demand that we can easily check whether a given string is an binary
encoding of a certain directed graph.

Lemma 7. There exists an L-uniform family {Nn}n∈N of O(n log n)-state sim-
ple 2dfa’s, each Nn of which checks whether any given input x is an encoding
〈G〉 of a certain subgraph G of Kn.

The language family {3DSTCONn}n∈N is defined as follows.

Degree-3 Directed s-t Connectivity Problem for Size n (3DSTCONn):

◦ Instance: an encoding 〈G〉 of a subgraph G of the complete directed graph
Kn with vertices of degree (i.e., indegree plus outdegree) at most 3.

◦ Output: YES if there is a path from vertex 0 to vertex n − 1; NO otherwise.

Notice that each instance x belonging to 3DSTCONn must satisfy mver(x) = n.
Clearly, the family {3DSTCONn}n∈N corresponds to (3DSTCON,mver), and
thus we freely identify (3DSTCON,mver) with the family {3DSTCONn}n∈N.

Lemma 8. There is an absolute constant c > 0 such that mver(x) ≤ |x| ≤
cmver(x) log mver(x) for all inputs x to 3DSTCON.

Next, we want to build a uniform family of constant-branching simple 2nfa’s
that solve {3DSTCONn}n∈N. Let Σn denote the set of all valid encodings of
input graphs given to 3DSTCONn.

Lemma 9. There exists an O(log n)-space computable function g for which g
produces from each 1n a description of 3-branching simple 2nfa Nn of O(n log n)
states that solves 3DSTCONn on inputs in Σn in time O(n2). Moreover, Nn can
reject all inputs outside of Σn.

Proof Sketch. Our 2nfa has a circular tape and moves its tape head only to
the right. Choose any input x = 〈G〉 to 3DSTCONn, where G = (V,E) is a
degree-3 subgraph of Kn with V = {0, 1, . . . , n − 1}.

We design Mn so that it works round by round in the following way. At the
first round, we assign vertex 0 in G to v0 and move the tape head rightward from |c
to $. Now, assume by induction hypothesis that, at round i (≥ 0), we have already
chosen vertex vi and have moved the tape head to $. Nondeterministically, we
select an index j ∈ {1, 2, 3} while scanning $, and then deterministically search

State Complexity Characterizations 245

for a row indexed i in an adjacency list of G by moving the tape head only from
left to right along the circular tape. We then read the content of the (i, j)-entry
of the list. If it is ⊥, then reject immediately. Assuming otherwise, if vi+1 is the
(i, j)-entry, then we update the current vertex from vi to vi+1. Whenever we
reach vertex n − 1, we immediately accept x and halt. If Mn visits more than n
vertices, we surely know that Mn cannot accept x. ��

Let us consider the converse of Lemma 9.

Lemma 10. Let c ∈ N
+ be a constant. There exists a function g such that,

for every c-branching simple 2nfa M with n states, g takes input 〈M〉#x and
outputs an encoding 〈Gx〉 of a subgraph Gx of K2n+3 of degree at most 2(c + 1)
satisfying that M accepts x if and only if Gx ∈ 3DSTCON2n+3. Moreover, g is
computed by a certain nO(1)-state simple 2dfa with a write-only output tape.

3 Proofs of Theorems 2 and 3

3.1 Generalizations to PTIME,SPACE(·)
Theorems 2 and 3(1)–(2) are concerned with PsubLIN. Nonetheless, it is possible
to prove slightly more general theorems, shown below as Theorems 11 and 12,
for a complexity class PTIME,SPACE(s(x,m(x))), defined in [11], which is the
union of all TIME,SPACE(p(|x|), s(x,m(x))) for any positive polynomial p.

Theorem 11. Let F denote an arbitrary nonempty set of functions � : N → N
+

such that, for every � ∈ F and every c > 0 and k ∈ N
+, there are functions

�′, �′′ ∈ F such that �(cn logk n) ≤ �′(n) and �(n) + log nk ≤ �′′(n) for all n ∈ N.
Assume that, for each � ∈ F ,

⋃
m PTIME,SPACE(�(m(x))) is closed under short

L-m-reductions (see [11]), where m ranges over all log-space size parameters. The
following three statements are logically equivalent.

1. There exists a function � ∈ F such that (3DSTCON,mver) is in⋃
m PTIME,SPACE(�(m(x))).

2. There are a function � ∈ F and two constants c > 0 and k ∈ N
+ such

that every L-uniform family of constant-branching simple 2nfa’s with at most
cn logk n states is converted into another L-family of O(�(n))-narrow 2afa’s
with nO(1) states that agree with them on all inputs.

3. There are a function � ∈ F and a constant ε ∈ [0, 1) satisfying the following:
for each constant c ∈ N

+, there exists a log-space computable function f such
that f takes an input of the form 〈M〉 for any c-branching n-state simple 2nfa
M and f produces another encoding of O(�(n))-narrow 2afa with nO(1) states
that agree with M on all inputs.

Theorem 12. Let F denote an arbitrary nonempty set of functions � : N → N
+

such that, for every � ∈ F and every c > 0 and k ∈ N
+, there are functions

�′, �′′ ∈ F such that �(cn logk n) ≤ �′(n) and �(n) + log nk ≤ �′′(n) for all n ∈

246 T. Yamakami

N. Assume that
⋃

m PTIME,SPACE(�(m(x)))/poly is closed under short L-m-
reductions, where m is any log-space size parameter. There is an � ∈ F such
that (3DSTCON,mver) is in

⋃
m PTIME,SPACE(�(m(x)))/poly iff, for each

constant e ∈ N
+, there are an � ∈ F and a constant ε ∈ [0, 1) such that any n-

state e-branching simple 2nfa can be converted into another nO(1)-state O(�(n))-
narrow 2afa that agrees with it on all inputs.

Proof of Theorems 2 and 3(1)–(2). These results follow from the fact that
Theorems 2 and 3(1)–(2) are special cases of Theorems 11 and 12, respectively,
where �(n) equals nε for a certain constant ε ∈ [0, 1). ��

Now, we return to Theorem 11 and describe its proof.

Proof Sketch of Theorem 11. For convenience, given a function �, we write
C� for

⋃
m PTIME,SPACE(�(m(x))) regarding all log-space size parameters m.

[1 ⇒ 3] Assume that (3DSTCON,mver) ∈ C� for a certain function � ∈ F .
Let c > 0 be a constant. By applying Proposition 5(1), we obtain a constant k ≥
1 and an L-uniform family {Nn,l}n,l∈N of O(�(mver(x)))-narrow 2afa’s having
O(|x|k · mver(x)) states that agree with 3DSTCON(x) on all inputs x satisfying
mver(x) = n. Take a log-space computable function g that produces 〈Nn,l〉 from
input 1n#1l. For simplicity, let d = 2n + 3. By Lemma 10, there is a function g
that transforms 〈M〉#x to the encoding 〈Gx〉 of a subgraph Gx of Kn satisfying
that M accepts x exactly when Gx ∈ 3DSTCONd. Note that g is computed by
a certain simple 2dfa with nO(1) states.

Next, we want to design a log-space computable function f that transforms
every c-branching n-state simple 2nfa M to another 2afa N of the desired type.
We define f so that, given an encoding 〈M〉 of a c-branching simple 2nfa M
with n states, it produces an appropriate 2afa N that works as follows. On input
x, generate 〈Gx〉 from 〈M〉#x by applying g and compute e = |〈Gx〉|, which
is O(n log n). Produce Nd,e and run it on the input 〈Gx〉. Note that we cannot
actually write down 〈Gx〉 onto a tape; however, since g is computed by a simple
2dfa, we can produce every bit of 〈Gx〉 separately.

[3 ⇒ 2] Assuming (3), we obtain a log-space computable function g that, from
any c-branching n-state simple 2nfa, produces an �(n)-narrow 2afa that agrees
with it on all inputs. Let us take any L-uniform family {Mn}n∈N of simple 2nfa’s,
each Mn of which has at most cn logk n states for absolute constants c > 0 and
k ∈ N

+. By the L-uniformity of {Mn}n∈N, we choose a log-space DTM N that
produces 〈Mn〉 from 1n for each n ∈ N. By (3), we obtain an �(cn logk n)-narrow
2afa 〈Nn〉 from 〈Mn〉 in polynomial time using log space. Hence, {Nn}n∈N is
L-uniform. Moreover, by our assumption, there is a function �′ ∈ F such that
�(cn logk n) ≤ �′(n) for all n ∈ N. It thus follows that Nn is �′(n)-narrow.

[2 ⇒ 1] Let c ≥ 1. Assume that we can convert any L-uniform family of
c-branching cn logk n-state simple 2nfa’s into another L-uniform family of nO(1)-
state O(�(n))-narrow 2afa that agrees with it on all inputs, where � ∈ F . Let
us consider {3DSTCONn}n∈N. By Lemma 9, we obtain an L-uniform family of
3-branching simple 2nfa’s Nn with cn log n states that solve 3DSTCONn within

State Complexity Characterizations 247

cn2 steps on all inputs x with mver(x) = n, where c ≥ 3 is an appropriate
constant.

Since mver(x) ≤ |x| ≤ emver(x) log mver(x) for a certain constant e > 0
by Lemma 8, we obtain |x| ≤ en log n. Apply (2), and we obtain 2afa’s, which
have nO(1) states and are O(�(cn log n))-narrow, solving {3DSTCONn}n∈N on
all inputs, including all strings x satisfying mver(x) = n. Take an �′ ∈ F
such that �′(n) ≥ �(cn log n) for all n ∈ N. By Proposition 5(2), we conclude
that (3DSTCON,mver) belongs to TIME,SPACE(|x|O(1), �′(mver(x))), which is
included in C�′ . ��

The proof of Theorem 12 is in essence similar to that of Theorem 11 except
for the treatment of advice strings.

An argument similar to that of [1 ⇒ 3] in the proof of Theorem 11 leads to
Proposition 1 on top of the result of Barnes et al. [2] on (DSTCON,mver).

3.2 Relationships Among State Complexity Classes

To complete the proof of Theorem 3, nevertheless, we still need to show the
logical equivalence between (1) and (3) of the theorem. To achieve this goal,
we first show Proposition 13, in which we present a close relationship between
PsubLIN and

⋃
ε∈[0,1) 2Anarrow(nε).

Proposition 13. Given a parameterized decision problem (L,m) with a log-
space size parameter m, define Ln,l = {x ∈ L ∩ Σl | m(x) = n} and Ln,l =
{x ∈ L ∩ Σl | m(x) = n} for each pair n, l ∈ N. We set L = {(Ln,l, Ln,l)}n,l∈N.
Assume that there are constants c1, c2 > 0 and k ≥ 1 for which c1m(x) ≤
|x| ≤ c2m(x) logk m(x) for all x with |x| ≥ 2. It then follows that (L,m) ∈
PsubLIN/poly iff L ∈ ⋃

ε∈[0,1) 2Anarrow(nε).

Corollary 14. (3DSTCON,mver) ∈ PsubLIN/poly if and only if
{3DSTCONn}n∈N ∈ ⋃

ε∈[0,1) 2Anarrow(nε).

Proof Sketch of Theorem 3(3). Write L for {3DSTCONn}n∈N. By Lemma 9,
we obtain L ∈ 2linN. It is possible to prove that (*) 2linN ⊆ ⋃

ε∈[0,1) 2Anarrow(nε)

iff L ∈ ⋃
ε∈[0,1) 2Anarrow(nε). The equivalence between (1) and (3) of Theorem 3

follows directly from Corollary 14 and the above statement (*). ��

4 Case of Unary Finite Automata

The proof of Theorem 4 needs a unary version of {3DSTCONn}n∈N. Hence, we
first define a unary encoding of a degree-bounded subgraph of each complete
directed graph Kn. Given a degree-3 subgraph G = (V,E) of Kn with V =
{0, 1, 2, . . . , n − 1}, the unary encoding 〈G〉unary of G is of the form 1e with
e =

∏k
l=1 p(il,jl), where E = {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊆ V 2 with k = |E|

and each p(i,j) denotes the (i · n + j)-th prime number. Since G has degree at
most 3, it follows that k ≤ 3n. It is known that the rth prime number is at most

248 T. Yamakami

cr log r for a certain constant c > 0. Since i · n + j ≤ n2 for all pairs i, j ∈ V ,
we conclude that |〈G〉unary| = e ≤ (cn2 log n)3n. Let {unary3DSTCONn}n∈N be
defined as follows.

Unary 3DSTCON of Size n (unary3DSTCONn):

◦ Instance: 〈G〉unary for a subgraph G of Kn with vertices of degree at most 3.
◦ Output: YES if there is a path from vertex 0 to vertex n − 1; NO otherwise.

Proof Sketch of Theorem 4. (1) Assume that every L-uniform family of
O(n4 logk n)-state constant-branching simple unary 2nfa’s can be converted into
another L-uniform family of equivalent nO(1)-state O(nε)-narrow unary 2afa’s.
We then take a function g that transforms 〈G〉 to 〈G〉unary. Note that g can be
implemented by an appropriate L-uniform family of nO(1)-state simple 2dfa’s. We
further take a constant c > 0 and an L-uniform family {Mn}n∈N of c-branching
simple 2nfa’s of O(n4 log n) states, each Mn of which solves unary3DSTCONn

on all inputs. Our assumption guarantees the existence of an L-uniform family
{Nn}n∈N of O(nε)-narrow 2afa’s with nO(1) states, each Nn of which agrees with
Mn on all inputs for a suitable choice of constant ε ∈ [0, 1).

We want to show that the condition of Theorem 2(2) is satisfied. Let 〈G〉
be any input to 3DSTCONn. To this input 〈G〉, we apply g in order to produce
〈G〉unary and then run Nn on 〈G〉unary. This new 2afa has nO(1) states and is
O(nε)-narrow, as we expected. Thus, the desired condition holds.

(2) Assume that, given a k ∈ N
+, there are a constant ε ∈ [0, 1) and a log-

space computable function g for which, on each input 〈M〉 of c-branching simple
2nfa M with O(n4 logk n) states, g outputs its equivalent O(nε)-narrow 2afa N .
It suffices to consider the following machine. On input 〈G〉 to 3DSTCONn, we
transform it to 〈G〉unary and run M2n+3 on 〈G〉unary. This makes the condition
of Theorem 2(3) true. ��

References

1. Allender, E., Chen, S., Lou, T., Papakonstantinou, P.A., Tang, B.: Width-
parameterized SAT: time-space tradeoffs. Theory Comput. 10, 297–339 (2014)

2. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. SIAM J. Comput. 27, 1273–1282
(1998)

3. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Science,
Warsaw (1977)

4. Chakraborty, D., Tewari, R.: Simultaneous time-space upper bounds for red-blue
path problem in planar DAGs. In: Rahman, M.S., Tomita, E. (eds.) WALCOM
2015. LNCS, vol. 8973, pp. 258–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15612-5 23

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

6. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space.
Inform. Comput. 209, 1016–1025 (2011)

https://doi.org/10.1007/978-3-319-15612-5_23
https://doi.org/10.1007/978-3-319-15612-5_23

State Complexity Characterizations 249

7. Kapoutsis, C.A.: Minicomplexity. J. Automat. Lang. Combin. 17, 205–224 (2012)
8. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.

Syst. 55, 421–447 (2014)
9. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly

versus NL. Theory Comput. Syst. 56, 662–685 (2015)
10. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.

In: STOC 1978, pp. 275–286 (1978)
11. Yamakami, T.: The 2CNF Boolean formula satsifiability problem and the lin-

ear space hypothesis. In: MFCS 2017, LIPIcs, vol. 83, pp. 62:1–62:14 (2017).
arXiv:1709.10453

12. Yamakami, T.: Parameterized graph connectivity and polynomial-time sub-linear-
space short reductions (preliminary report). In: Hague, M., Potapov, I. (eds.) RP
2017. LNCS, vol. 10506, pp. 176–191. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67089-8 13

http://arxiv.org/abs/1709.10453
https://doi.org/10.1007/978-3-319-67089-8_13
https://doi.org/10.1007/978-3-319-67089-8_13

Author Index

Beier, Simon 11
Brough, Tara 24
Brzozowski, Janusz A. 37

Cho, Da-Jung 49

Dando, Louis-Marie 62
Davies, Sylvie 37, 75

Ferreira, Miguel 88
Formenti, Enrico 101

Goldwurm, Massimiliano 114
Guillon, Bruno 126

Han, Yo-Sub 49
Hetzl, Stefan 139
Holzer, Markus 11, 151

Ibarra, Oscar H. 163
Ibrahimov, Rishat 175

Jirásková, Galina 188

Keeler, Chris 200
Khadiev, Kamil 175
Kutrib, Martin 212

Lin, Jianyi 114
Lombardy, Sylvain 62

Malcher, Andreas 212
Massazza, Paolo 101
McQuillan, Ian 163
Moreira, Nelma 88

Okhotin, Alexander 188, 224

Prigioniero, Luca 126
Prūsis, Krišjānis 175

Reis, Rogério 88

Salomaa, Kai 49, 200, 224
Schneider, Christian 212
Smith, Taylor J. 49
Staiger, Ludwig 1

Vignati, Marco 114

Wolfsteiner, Simon 139, 151

Yakaryılmaz, Abuzer 175
Yamakami, Tomoyuki 237

	Preface
	Organization
	The Complexity of Carry Propagation for Successor Functions (Extended Abstract)
	Contents
	Finite Automata and Randomness
	1 Introduction
	2 Notation
	3 Randomness by Martingales
	4 Finite-State Dimension
	5 Automaton Definable Null Sets
	6 Subword Complexity
	7 Predicting Finite Automata
	8 Finite-State Genericity
	References

	Properties of Right One-Way Jumping Finite Automata
	1 Introduction
	2 Preliminaries
	3 A Characterization of Permutation Closed Languages Accepted by ROWJFAS
	4 Inclusion Relations Between Language Families
	5 Closure Properties of ROWJ and pROWJ
	6 More on Languages Accepted by ROWJFAs
	References

	Word Problem Languages for Free Inverse Monoids
	1 Introduction
	2 Background
	2.1 Free Inverse Monoids
	2.2 Word Problems of Inverse Monoids

	3 The Rank 1 Case
	4 Rank Greater Than 1
	References

	Most Complex Deterministic Union-Free Regular Languages
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusions
	References

	Site-Directed Insertion: Decision Problems, Maximality and Minimality
	1 Introduction
	2 Preliminaries
	3 Site-Directed Insertion
	3.1 Decision Problems

	4 Maximal and Minimal Site-Directed Insertion
	4.1 Decision Problems for Maximal/Minimal SDI

	5 Nondeterministic State Complexity
	References

	Two-Way Automata over Locally Finite Semirings
	1 Introduction
	2 Locally Finite Semirings
	3 Two-Way Automata
	3.1 Definition and Behaviour
	3.2 Characteristic and -Normalized Two-Way Automaton

	4 Counting Paths
	4.1 Crossing Sequences
	4.2 Automaton of Crossing Sequences with One Repetition
	4.3 Gathering Runs with the Same Label

	5 Conclusion
	References

	A New Technique for Reachability of States in Concatenation Automata
	1 Introduction
	2 Preliminaries
	2.1 Relations and Functions
	2.2 Automata
	2.3 State Complexity

	3 Results
	4 Conclusions
	References

	Forward Injective Finite Automata: Exact and Random Generation of Nonisomorphic NFAs
	1 Introduction
	2 Preliminaries
	3 Forward Injective Finite Automata
	3.1 A Canonical State Order for FIFAs
	3.2 Canonical String Representation
	3.3 Counting FIFAs

	4 Uniform Random Generation
	5 Converting an NFA into a FIFA
	6 Experimental Results
	7 Conclusions
	References

	On the Generation of 2-Polyominoes
	1 Introduction
	2 Preliminaries
	3 Dynamical Systems for Regions
	4 Exhaustive Generation of Pol2(n)
	4.1 The Data Structure
	4.2 Complexity

	5 Conclusions
	References

	A Local Limit Property for Pattern Statistics in Bicomponent Stochastic Models
	1 Introduction
	2 Preliminary Notions
	3 Primitive Case
	4 Bicomponent Models
	4.1 Analysis of the Characteristic Function
	4.2 Main Result

	5 Conclusions
	References

	Linear-Time Limited Automata
	1 Introduction
	2 Preliminaries
	3 A Linear-Time Simulation for Deterministic 1-LAs
	4 A Linear-Time Simulation for Nondeterministic 1-Las
	References

	Cover Complexity of Finite Languages
	1 Introduction
	2 Cover Complexity
	3 Unboundedness of Cover Complexity Measures
	4 Computing Cover Complexity from Exact Complexity
	5 Bounds on Language Operations
	5.1 Intersection
	5.2 Union
	5.3 Concatenation

	6 Conclusion
	References

	On the Grammatical Complexity of Finite Languages
	1 Introduction
	2 Preliminaries
	3 Some Bounds on the Various X-Complexities
	4 Relating Finite and Infinite Complexity Measures
	4.1 Relating Grammar Types
	4.2 Relating Complexity Measure Types

	References

	State Grammars with Stores
	1 Introduction
	2 Preliminaries
	3 Grammars with States
	4 State Grammars with Stores
	5 Conclusions and Future Directions
	References

	Error-Free Affine, Unitary, and Probabilistic OBDDs
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Zero-Error Affine OBDDs
	5 Las Vegas POBDDs and UOBDDs
	6 Las Vegas Automata and Zero-Error AfAs
	References

	State Complexity of Unambiguous Operations on Deterministic Finite Automata
	1 Introduction
	2 Basic Notions
	3 Union
	4 Concatenation
	5 Star
	6 Summary of Results
	References

	Cycle Height of Finite Automata
	1 Introduction
	2 Preliminaries
	2.1 Cycle Height and Depth Path Width

	3 Polynomial Time Algorithm for Cycle Height
	3.1 Relationship with Polynomial Density Languages

	4 Depth Path Width of Finite Cycle Height NFAs
	4.1 Experimental Results

	References

	Finite Automata with Undirected State Graphs
	1 Introduction
	2 Preliminaries
	3 Characterization of Undirected Finite Automata with Small Alphabets
	3.1 Unary Nondeterministic Undirected Finite Automata
	3.2 Unary and Binary Deterministic Undirected Finite Automata

	4 Deterministic State Complexity
	5 Nondeterministic State Complexity
	6 Conclusions
	References

	Further Closure Properties of Input-Driven Pushdown Automata
	1 Introduction
	2 Input-Driven Automata
	3 Insertion
	4 Deletion
	5 Square Root
	6 Proportional Removals
	7 Scattered Substrings
	References

	State Complexity Characterizations of Parameterized Degree-Bounded Graph Connectivity, Sub-Linear Space Computation, and the Linear Space Hypothesis
	1 Backgrounds and an Overview
	1.1 Parameterized Problems and the Linear Space Hypothesis
	1.2 Finite Automata and State Complexity Classes
	1.3 Main Contributions

	2 Two Basic Characterizations
	2.1 Automata Characterizations of PsubLIN
	2.2 Automata Characterizations of 3DSTCON

	3 Proofs of Theorems 2 and 3
	3.1 Generalizations to PTIME,SPACE()
	3.2 Relationships Among State Complexity Classes

	4 Case of Unary Finite Automata
	References

	Author Index

