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Abstract Food packaging implies a significant consumption of different materials,
of which plastics are the second most widely used. So, the development of biopoly-
mers for food packaging applications is critically important. Although several
biopolymers are available for different applications, they have some drawbacks and
their functional properties need to be adapted for food packaging requirements.
The incorporation of micro- and nano-fillers into the biopolymer matrix has proven
to be an alternative means of improving their mechanical and barrier properties. In
composites, the polymer forms the continuous matrix while the dispersed filler
phase helps to positively modify the functional characteristics of the material.
Different kinds of fillers have been used which modify the material characteristics
as a function of their content and filler-matrix interactions. The particle size and
shape, the amount and distribution and the chemical nature of the fillers are key fac-
tors in the final properties of the composite. In general, thermomechanical processes
with high shearing forces and temperatures for the required time are needed to guar-
antee the convenient dispersion of the filler within the polymer matrix. In this chap-
ter, the different kinds of fillers used in biopolymer composites have been
summarized. The relevant surface properties and the changes induced by fillers on
the mechanical, barrier and thermal properties of micro- and nano-composites have
been discussed, with emphasis on food packaging applications. The processing
techniques, formulation and final structure of materials have also been reviewed, as
well as the influence of the fillers on the biodegradation behaviour of composites.
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Abbreviations

AFM Atomic Force Microscopy

Ag-NPs  Ag nanoparticles

ATBC Acetyltributyl citrate

BCNW  Bacterial cellulose nanowhiskers

ChNC Chitin nanocrystals

CMC Carboxymethyl cellulose

CNC Cellulose nanocrystals

CNF Cellulose nanofibrils

DSC Differential Scanning Calorimetry

FESEM  Field emission scanning electron microscopy

FTIR Fourier-transform infrared spectroscopy

GTA Glycerol triacetate

HPMC (Hidroxypropil)metil cellulose

MC Methylcellulose

MCC Microcrystalline cellulose

Mnt Montmorillonite

NCC Nano-crystalline cellulose

PBS Poly(butylene succinate)

PBTA Poly(butylene adipate co-terephthalate)

PCL Polycaprolactone

PEG Polyethylen glycol

PHA Polyhydroxyalcanoates

PHB Polyhydroxybutyrate

PHBV Polyhydroxyl-3-butyrate-co23-valerate

PHBVI12 Polyhydroxybutyrate with 12 mol% of valerate and containing 10 wt%
of the plasticizer citric ester

PLA Poly(lactic) acid

PLLA Poly(L-lactide)

PVA Poly(vinyl alcohol)

SEM Scanning Electron Microscopy

TPCS Thermoplastic corn starch

TPS Thermoplastic starch

WSNC Waxy starch nanocrystals

4.1 Introduction

Of all the materials available for food packaging, plastics have increased exponen-
tially over the past two decades, with an annual growth of approximately 5%. It is
estimated that worldwide annual plastic production exceeds 300 million tonnes, and
was about 59 million tonnes in Europe in 2014. In fact, nowadays, plastics represent
almost 40% of the European packaging market (Muller et al. 2017a). Of the plastic
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materials, petroleum-based plastics, such as polyethylene (PE), polypropylene (PP),
polyamide (PA), are widely used as packaging materials due to their ready avail-
ability at relatively low cost, good mechanical and barrier properties, thermo-
processing ability and chemical characteristics, which make them suitable for food
packaging. However, despite their good properties, their use and accumulation
imply serious environmental problems and a dependence on fossil fuels. Around
63% of the current plastic waste comes from packaging applications, and it is esti-
mated that less than 14% is recyclable. Taking this scenario into account, and bear-
ing in mind the growing environmental awareness, research has focused on the
development of alternative bio-packaging materials, derived from renewable
sources, which are biodegradable or compostable.

Biopolymers can be used for food packaging applications or food coating pur-
poses, reducing the environmental impact and oil-dependence (Rivero et al. 2017,
Emadian et al. 2017). They can be divided into three main categories, on the basis of
their origin and biodegradable nature. Together with the conventional, non-
biodegradable, oil-based plastics, there are biobased-non-degradable bioplastics (e.g.
polyethylene terephthalate: PET), biobased-biodegradable bioplastics (e.g. polylactic
acid: PLA, starch and other polysaccharides, or proteins) or fossil-based biodegrad-
able bioplastics (e.g. polycaprolactone: PCL, polyvinyl alcohol: PVA, or polybutyl-
ene succinate: PBS). So, biopolymers are biodegradable, biobased or both and can be
classified as those directly obtained from biomass (polysaccharides and proteins),
synthetic biopolymers from biomass or petrochemicals (e.g. PLA, PCL) or those
obtained by microbial fermentation (polyhydroxyalcanoates: PHA and bacterial cel-
lulose) (Nair et al. 2017). The former are directly extracted from biological and natu-
ral resources and they are hydrophilic and somewhat crystalline in nature, making an
excellent gas barrier. Biodegradable polyesters (synthetic or biosynthesized) are more
hydrophobic and constitute better barriers to water vapour. In general, the functional
properties of biopolymer-based materials in terms of their mechanical and barrier
properties need to be adapted to food requirements by using different strategies, such
as physical or chemical modifications (crosslinking), blending with other compo-
nents, fillers, plasticizers or compatibilizers (Ortega-Toro et al. 2017).

The industrial uses of biopolymers have been restricted because of their usually
poor mechanical, barrier or thermal properties, and high price. The incorporation of
micro- and nano-reinforcing agents into the matrix for the purposes of obtaining
composites has been seen to improve their functional properties and so their
competitiveness in the plastics market. Composites are made up of a continuous
polymer matrix in which the filler particles are dispersed, thus contributing to a
modification of the functional characteristics of the material (Azeredo 2009). Fillers
differing in size, shape, amount, distribution and chemical nature have been used.
Lignocellulosic or cellulosic materials obtained from agro-waste have been widely
studied as organic micro-fillers (Gutiérrez and Alvarez 2017). Fibres from cotton
(Ludueda et al. 2012), garlic straw (Kallel et al. 2016), rice husk (Johar et al. 2012),
wheat straw (Berthet et al. 2015) or coffee silverskin (Sung et al. 2017), have been
used as reinforcing agents in different biopolymer films. Micro-particles signifi-
cantly improved the elastic modulus of composites while providing great thermal
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resistance to the matrices due to the presence of hydroxyl groups interacting with
the biopolymer network (Luduena et al. 2012; Berthet et al. 2015). Different organic
nano-fillers can be obtained, mainly from cellulose (cellulose nanocrystals or nano-
fibres), chitin/chitosan nanocrystals from crustacean waste (Gutiérrez 2017) or
starch nanoparticles. These nano-reinforcing agents improve the tensile strength
and elastic modulus when they have a proper distribution, chemical affinity with the
polymer and high aspect ratio. The crystalline structure of nanofillers enhances the
tortuosity factor for the mass transport of gas molecules into the biopolymer matrix,
contributing to the formation of a hydrogen-bonded network (Ng et al. 2015;
Azeredo 2009; Azeredo et al. 2017). On the other hand, inorganic particles are rel-
evant as filling agents in food packaging materials due to the enhancement of the
mechanical and barrier properties (MgO, silicon carbide or nano-clays) Some of
them also exhibited antimicrobial activity, such as Ag, TiO, and ZnO nanoparticles
(Gutiérrez et al. 2017; Azeredo 2009).

It is remarkable that biodegradation behaviour is a crucial factor in the develop-
ment of composites. The biodegradation process takes place in aerobic conditions
by the action of a microorganism, which identifies the polymer as a source of energy
to produce organic residues from the packaging material. The incorporation of
nano-fillers can affect the biodegradability of composites (Gutiérrez 2018). In this
sense, cellulose nanocrystals (CNC) promoted the material’s water intake due to
their hydrophilic nature, contributing to an acceleration of the biodegradation pro-
cess (Luduefia et al. 2012; Luzi et al. 2016). Some inorganic nano-fillers could also
affect the disintegration processes, such as what occurs with Ag nanoparticles
(Ramos et al. 2014; Cano et al. 2016), or nano-clays, whose hydroxyl groups react
with the chains of the polymer matrices (montmorillonite and fluorohectorite,
Fukushima et al. 2013).

This chapter reviews the potential use of reinforcing agents of differing natures
and sizes in biopolymer materials that are potentially useful for food packaging,
analysing their effect on the mechanical and barrier properties and on the thermal
resistance of the material. The surface properties and biodegradation behaviour
were also analysed in different kinds of composites.

4.2 Bioplastics for Food Packaging

Over the last decade, several bioplastics, bio-based, biodegradable, or both, have
been available as a suitable alternative to conventional plastics for food packaging
applications (Fabra et al. 2014; Ortega-Toro et al. 2017). At least 90% of natural or
synthetic biodegradable polymers decompose in less than 180 days (ASTM 2003).
Figure 4.1 shows the main polymers of potential use in food packaging. Of the natu-
ral polymers, different polysaccharides and proteins and microbially-produced bio-
polymers have been extensively studied for food packaging applications. Starch is a
promising polymer, suitable for processing by means of different techniques, such as
the casting method (Moreno et al. 2017), compression moulding (Muller et al.
2017b), extrusion (Gutiérrez and Alvarez 2018) or injection moulding (Lépez et al.
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Fig. 4.1 Main biopolymers with potential application in food packaging. Some molecular
structures are included

2015). Starch is naturally highly abundant, low cost and renewable. Cellulose, con-
stituted by glucose units via -1,4-glycosidic bonds, is the most naturally abundant
carbohydrate (Xiao et al. 2014). This polymer is usually used as micro-filler or nano-
filler (Shankar and Rhim 2016) in the composite formulation. These could be pro-
cessed by compression moulding and injection moulding (Graupner et al. 2016) to
obtain semi-rigid packaging (trays). On the other hand, agar is a fibrous polysaccha-
ride obtained from marine algae, such as Gelidium sp. and Gracilaria sp., consisting
of a mixture of agarose and agaropectin, which is slightly branched and sulphated.
This is thermoplastic polysaccharide, biodegradable and biocompatible, which
exhibits great mechanical strength with moderate water resistance (Giménez et al.
2013). Chitosan, the second most naturally abundant polysaccharide, has non-toxic,
biodegradable, and antimicrobial characteristics, which are of great interest for
packaging purposes (Leceta et al. 2013). Chitin, the precursor of chitosan, is a linear
polymer of mainly f-(1 — 4)-2-acetamido-2-deoxy-D-glucopyranose units and low
amounts of f-(1 — 4)-2-amino-2-deoxy-D-glucopyranose residues (Van den Broek
et al. 2015). Others relevant natural polymers are proteins, such as gelatin or colla-
gen, gluten proteins and dairy proteins. Gelatin is an animal protein obtained by the
hydrolysis of the fibrous insoluble collagen from skins and bones of different ani-
mals. It is well known for its film-forming properties. It is abundantly available, low
cost, and easily biodegradable and biocompatible (Kanmani and Rhim 2014). On the
other hand, wheat gluten (constituted by gliadins and glutenin proteins) is an inex-
pensive protein from the milling process, which allows the production of membranes
that are semipermeable to water vapour, oxygen and carbon dioxide molecules. This
polymer can be applied as a food coating or edible film on different foods (Rocca-
Smith et al. 2016), or processed by compression moulding (Zubeldia et al. 2015) and
extrusion (Rombouts et al. 2013) for the purposes of developing flexible or
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semi-rigid packaging. Caseinates have been proposed as raw materials for food
packaging development, since this protein exhibited good film-forming ability with
good mechanical properties (Fabra et al. 2012; Arrieta et al. 2014a; Jiménez et al.
2013). The use of caseinates could be considered an alternative means of obtaining
a high degree of protection from oxygen in modified atmosphere packaging (Arrieta
et al. 2014a). Biopolymers obtained from several microorganisms, such as poly-
hydroxyalkanoates -PHA-, poly-hydroxybutyrate -PHB-, or poly- hydroxybutyrate-
co-hydroxyvalerate -PHB V-, are a family of biodegradable thermoplastic polymers.
The polymer is produced in the microbial cells through a fermentation process and
then collected by solvents, like chloroform. More than 100 PHA are identified, of
which PHB is the most common (Peelman et al. 2013). PHB is a biopolymer pro-
duced from renewable sources and fermentation by certain micro-organisms, like
Halomonas hydrothermalis and Burkholderia sp. and Chelatococcus daeguensis,
inter alia (Bera et al. 2015). In addition to being biodegradable, PHB exhibits some
properties similar to some synthetic polymers, especially polypropylene (PP)
(Heitmann et al. 2016). PHBV is a copolymer of 3-hydroxybutanoic acid and
3-hydroxypentanoic acid produced directly by microorganisms. This polymer is less
brittle and more stretchable than PHB (Requena et al. 2017).

Other biodegradable polymers are obtained by synthesis from biobased mono-
mers (e.g. PLA) and non-biobased monomers (e.g. PCL, PVA or PBS). PLA is the
most common synthetic polymer obtained from biobased monomers. The synthetic
routes to obtain PLA are through the ring-opening polymerisation of the esters of
the acid and the direct condensation of the free acid (Cheng et al. 2009). PLA is of
great potential to the packaging industry because of its mechanical, barrier and opti-
cal properties. It can be processed using readily available production technologies,
and exhibits good thermal behaviour and water vapour barrier properties, although
it is brittle and only a moderate gas barrier (Bonilla et al. 2013).

In the category of biodegradable synthetic petroleum-based polymers, PCL,
PVA and PBS are the most representative. PCL is a linear, semicrystalline hydro-
phobic polyester, highly flexible, tough and thermally stable (Correa et al. 2017).
In contrast, PVA is a synthetic, water soluble polymer which forms translucent films
with good tensile strength, elongation at break and barrier properties (Dominguez-
Martinez et al. 2017). PVA has been used in polymeric blends, with glycerol as a
proper plasticiser because of its chemical affinity. PBS is another biodegradable
thermoplastic polymer which has desirable melt processability and good mechani-
cal properties, which are closely comparable to those of widely-used polyethylene
(PE) or polypropylene (PP) (Mizuno et al. 2015).

4.3 Micro and Nano-Reinforcing Agents

An alternative means of improving the properties of biopolymers for food packag-
ing applications, and reducing some of their drawbacks, is by the incorporation of
micro- or nano-fillers to the matrix for the purposes of obtaining micro- and
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nano-composites. Composites have immiscible phases constituted by the poly-
mer continuous network in which the filler particles are dispersed, thus generat-
ing new structures with different properties to those of the original polymer
matrix. The filler can positively modify the functional characteristics of the
material, depending on the filler polymer network interactions. Different kinds
of fillers have been used, which modify the material characteristics as a function
of the filler-matrix interactions. The size, shape, amount, distribution and chemi-
cal nature of the fillers are crucial factors in the final properties of the
composite.

Many studies reported the use of different kinds of fillers. As is shown in
Table 4.1, cellulose has been frequently used as a reinforcing agent in different
forms, such as cellulosic fibres (Martino et al. 2015; Moustafa et al. 2016;
Luduefia et al. 2012), bacterial cellulose (Fabra et al. 2016), nano-cellulosic
fibres (Abdul Khalil et al. 2016) or cellulose nanocrystals (ElI-Hadi 2017;
Fortunati et al. 2013a; Follain et al. 2013). In the polymer matrices, the incorpo-
ration of cellulosic fillers directly affects the mechanical and barrier properties
depending on the particle size (micro or nano), which is a significant factor. As
has been observed by various authors, particle size has differing effects on the
mechanical properties. Cho et al. (2006) studied the effect of the particle size on
the mechanical properties of polymeric composites with spherical micro
(0.5 mm) and nano (15 nm) particles. They observed that, at nano-scale, Young’s
modulus and tensile strength increased as the particle size decreased. As regards
the barrier properties, it is expected that nano scale and a homogeneous distribu-
tion increases the tortuosity factor for the migration of molecules through the
composite, decreasing the permeability of both water vapour and gases. On the
other hand, the amount of filler included significantly affects the composite
properties. At high concentrations, the polymer matrix could lose cohesiveness
and continuity which could lead to a loss in functional properties (mechanical
and barrier). In this sense, Magsood et al. (2016) studied the reinforcing capac-
ity of enzyme-hydrolysed longer jute micro-crystals in polylactic acid matrices.
The elastic modulus and tensile strength increased by 40% and 28% respectively,
once the filler loading rose to 5% with respect to neat PLA. However, a filler load-
ing of 10% led to a decrease of 32% in the elastic modulus and 33% in tensile
strength with respect to materials containing 5% of fillers. Other organic fillers
are chitin nanocrystals (Herrera et al. 2016) from crustacean waste that improve
the mechanical properties and transparency of neat PLA. Also, starch nanocrys-
tals are frequently added to several biopolymers, improving the mechanical and
barrier properties and decreasing the biodegradation time (Mukurubira et al.
2017; Le Corre and Angellier-Coussy 2014).

Some inorganic particles have been extensively studied as fillers in food
packaging materials. Some of these, such as MgO, (Sanuja et al. 2014); silicon
carbide, (Dash and Swain 2013) and nano-clays (Cavallaro et al. 2013; Majeed
et al. 2013; Abdollahi et al. 2013), enhanced the mechanical and barrier proper-
ties of the films. Additionally, other ones can provide antimicrobial activity to
the material, as occurs with Ag nanoparticles (Carbone et al. 2016; Gutiérrez
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et al. 2017), TiO, nanoparticles (He et al. 2015; Gutiérrez et al. 2017) and ZnO
nanoparticles (Gutiérrez et al. 2017).

4.4 The Effect of Reinforcing Agents on the Functional
Properties of Biopolymers

In the following sections, the effect that micro- and nano-fillers have on the tensile
behaviour, barrier properties, thermal resistance and biodegradability of biopolymer
matrices is discussed, taking the processing method into account.

4.4.1 Processing Methods

In general, thermomechanical processes (melt compounding, extrusion and com-
pression moulding) with high shearing forces, temperature and adequate time are
necessary to guarantee the convenient dispersion of the filler in the polymer matrix.
However, the casting of polymer-filler dispersions is an alternative method to obtain
nano-composites, due to the high aggregation tendency of nanoparticles, which are
better maintained in liquid dispersions. Table 4.2 shows some recent studies on
composite materials, including micro- or nano- fillers of differing characteristics,
using different processing methods.

Berthet et al. (2015) studied the properties of PHBV composites containing
wheat straw micro-fibres (10, 20 and 30 wt%). Compounding was carried out with
a lab-scale twin-screw extruder, using a temperature profile from the polymer feed-
ing to the die of 180-160 °C. Composite films were obtained by compression
moulding at 170 °C. The mechanical and barrier properties of composites were
poorer than those of neat PHVB, although the authors point that the obtained mate-
rials could be applied as packaging for respiring fresh products. Melt compounding
using a Plastograph mixer (16 cm?) for 4 min at 160 °C was also applied to obtain
PHBYV composites with micro-particles of keratin at 0.5, 1, 3, 5, 10, 25 and 50 wt%.
The composites exhibited improved mechanical and water vapour and oxygen bar-
rier properties with only 1 wt% of micro-filler (Pardo-Ibaiez et al. 2014). Moustafa
et al. (2016) studied the use of roasted coffee grounds as micro-reinforcing agent to
produce high-quality biodegradable Polybutylene adipate co-terephthalate (PBAT)
composites for food packaging applications. The composites were extruded at 160—
165 °C with a screw speed of 100 rpm for 5 min mixing. The films were obtained
by a special die attached to the mixing chamber. The authors observed an increase
in the hydrophobicity and thermal stability compared to the control films without
fillers. A compatibiliser was not necessary to obtain a filler-polymer matrix with
suitable interfacial adhesion, especially at low filler content (<30%), which was
attributed to the good grindability of roasted coffee, which improved compatibility
and filler dispersion during processing.
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Table 4.2 Recent studies on composite materials including micro-
nature, applying different processing methods
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or nano- fillers

of different

Composite Processing Possible
material Filler content | method Effect of filler application Reference
Polymer/micro-filler
PHBV/ 10, 20 and Extrusion and |- Increased the —  Food Berthet
wheat 30 wt% filler | compression | water vapour packaging etal.
straw fibres | with different | moulding transmission materials to (2015)
preparation — Decrease respiring fresh
process ultimate tensile products
strength
PHBV/ 0.5, 1, 3,5, 10, | Melt — Reduction WVP |- Packaging | Pardo-
keratin 25 and 50 wt% | compounding | and OP Ibafiez
filler — Improve etal.
mechanical (2014)
properties
PBAT/ 10, 20 and Extrusion — Increase —  Food Moustafa
roasted 30 wt% filler hydrophobicity packaging et al.
coffee with roating — Increase thermal (2016)
ground process at 250 stability
and 270 °C — Compatibiliser is
not necessary
Polymer/nano-filler
PCL-MC/ |2 wt% NCC Casting and |- Increased the —  Vegetable | Boumail
NCC compression | tightly of the matrix | packages etal.
moulding — Increased (2013)
stability of active
components
— Increased the
rough and density of
the matrix
PLA/CNC |1and5 wt% | Casting — Increase barrier |— Food active | Fortunati
from MCC | CNC with/ effect packaging etal.
and without — Antimicrobial (2013b)
Ag-NPs surfactant and effect
1 wt% Ag
nanoparticles
Agar/ 20, 40 and Casting — Increase thermal |- Food Rhim
Ag-NPs 80 mg Ag-NPs stability packaging et al.
— Barrier properties (2014)
to water vapour
increase slightly
—  Mechanical
strength and stiffness
decreased slightly
— Antimicrobial
activity against
Listeria
monocytogenes and
Escherichia coli
O157:H7

(continued)
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Table 4.2 (continued)
Composite Processing Possible
material Filler content | method Effect of filler application Reference
Alginate/ | 1,3 and 5 wt% | Casting — Decrease water |— Food Abdollahi
nano-clays | fillers solubility packaging et al.
Mnt and — Increase surface (2013)
CNC from hydrophobicity with
MCC CNC and decrease of
this parameter with
nanoclays addition
— Reduction in
WVP
— Tensile properties
improved
Chitosan/ | 0.1 gMgO/g | Casting — Improve — Food active | Sanuja
MgO chitosan mechanical packaging et al.
properties (2014)
— Increase opacity
— Decrease
swelling,
permeability and
solubility
— Antimicrobial
properties
Starch/ 1,2,5,8, Casting — Increase thermal |— Adhesive Dash and
Silicon 10 wt% filler stability application Swain
carbide — Reduce OP — Covering | (2013)
and protecting
applications
— Food
packaging
Pectin- 5,10, 15,20, | Casting — Decrease — Coatings | Cavallaro
PEG/ 30 and 50 wt% wettability for food etal.
Halloysite | filler — Improve conservation (2013)
nanotubes mechanical
properties

As concerns the incorporation of nano-fillers in composites, casting is the most
commonly used method due to the better dispersion (more limited aggregation) of
nano-particles in a liquid medium. Casting is suitable for the obtaining of coatings,
mulch films and flexible films. In some cases, this technique has been used as a
preliminary test to study the filler effect before thermomechanical processing with
actual industrial applications. Boumail et al. (2013) characterized trilayer antimi-
crobial films based on methylcellulose and PCL composites with 2% of cellulose
nanocrystals (CNC). These were prepared under stirring before sonication at room
temperature for 30 min and the subsequent casting of the PCL-CNC dispersion. The
trilayer films were obtained by compression moulding at 120 °C. An increase in the
matrix toughness and greater stability of active components was found by the filler
addition. Fortunati et al. (2013b) incorporated the CNCs and Ag-NPs PLA films
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obtained by casting, leading to improved barrier properties and antimicrobial activ-
ity in the composites. Ag-NPs (20, 40 and 80 mg Ag-NPs) have also been included
in other polymers, such as agar matrices; although a significant increase in the ther-
mal stability of the material was obtained, with improved water vapour barrier prop-
erties and antimicrobial activity against Listeria monocytogenes and Escherichia
coli O157:H7, the mechanical strength and stiffness of the composites slightly
decreased with respect to filler-free polymers (Rhim et al. 2014). Chitosan compos-
ites with MgO nano-filler, obtained by casting, also exhibited antimicrobial proper-
ties. In addition, the metallic oxide improved the mechanical properties and reduced
the water swelling capacity and solubility and water vapour permeability of the
films, which became less transparent.

Other nanocomposites with organic (CNC) or inorganic nano-clays:Mnt)
obtained by casting, using an alginate matrix, exhibited improved functional prop-
erties with respect to the net polymer matrix (Abdollahi et al. 2013). The addition of
both nano-fillers improved the tensile properties of the material and promoted a
decrease in water solubility and water vapour permeability, whereas the surface
hydrophobicity increased with the use of CNC but decreased with nano-clays. In the
same way, nanoparticles of silicon carbide increased the thermal stability and
reduced the oxygen permeability in starch composites (Dash and Swain 2013). This
material could be used as adhesive and coating in food applications. Halloysite
nanotubes promoted a decrease in film wettability and improved the mechanical
properties in composites of pectin and polyethylene glycol blends (Cavallaro et al.
2013).

4.4.2 The Effect on Tensile Properties

In this section, the changes in the tensile properties of some biopolymers caused by
incorporating nano- and micro-fillers of differing characteristics are analysed, as
summarized in Table 4.3. The main mechanical properties characterized in plastic
packaging materials are elastic modulus (EM) and the tensile strength (TS) and
elongation (e) at break, which provide information about the rigidity and resistance
to deformation and break of the material, respectively.

The changes in the polymer’s functional properties caused by filler addition are
strongly associated with surface properties and polymer-filler interfacial interac-
tions. In this sense, the effects caused by fillers on the mechanical properties of
polymer are not always positive. The main reason is the interruption of the polymer
matrix continuity, but this effect could be diminished if the polymer and fillers have
chemical affinity or an interfacial agent is added into the composite formulation. As
previously mentioned, Berthet et al. (2015) found a deterioration in the tensile prop-
erties of neat PHBV when wheat straw fibres were added to the matrix. Strain and
stress at break decreased by 61% and 63%, respectively, with 30 wt% filler in the
composite. However, Young’s modulus increased by 13% with 20 wt% filler.
Moustafa et al. (2016) found different trends in the tensile strength with the varia-
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Table 4.3 Changes in tensile properties of some biopolymers by incorporating micro- or nano-
fillers of different nature

Plasticizer/
Composite equilibrium Thickness | TS EM
material Filler content | RH (pm) (MPa) | (MPa) | € (%) | Reference
Polymer/micro-filler
PHBV/wheat | 10, 20 and - - 22— | 14.4— | 0.89- | Berthet
straw fibres | 30 wt% filler 3.13 | 39.2 | 2.3* |etal.
with different (2015)
preparation
process
PBAT/ 10,20 and /50% 300-400 | 6.8- - 98— | Moustafa
roasted 30 wt% filler 18.2 1545* et al.
coffee with roasting (2016)
ground process at 250
and 270°°C
PHBV / 0.5,1,3,5,10, |- 100 - 540- | 2.9- | Pardo-
keratin 25 and 50 wt% 600 5.5* | Ibafez
filler et al.
(2014)
Polymer/nano-filler
PCL-MC/ 7.7 wt% NCC | Glycerol/ 225-280 | 20.3*-| 175.2-| - |Boumail
NCC 24.0 | 218.3* et al.
(2013)
PLA/CNC 1wt % Triethyl citrate 100 15.8*~| 300*~ | 16— | Herrera
and ChNC | nanocrystals 242 | 1200 | 309 |etal.
(2016)
Corn 0.44, 1.5, 2.56; | Glycerol/50% | 50-140 | 11-49 - 1.24— | Alves
starch- 3% CNC and 38 etal
gelatin/CNC | 20% plasticizer (2015)
from
eucalyptus
wood pulp
Alginate/ 1,3 and 5 wt% | Glycerol/53% - CNC: | 150*- | 9-12* | Abdollahi
nano-clays | fillers 18— 270 et al.
Mnt and 23 (2013)
CNC from Mnt: | 150°— | 8-12¢
MCC 17-19 | 210
Pectin-PEG/ |5, 10, 15,20, |/53% 60 25-26 | 2.6~ | 0.9— | Cavallaro
Halloysite 30 and 50 wt% 4.1 1.5* |etal
nanotubes filler (2013)
Chitosan/ 0.1 gMg0O/g |- 220-470 | 30~ - 7.5~ | Sanuja
MgO chitosan 60 15 |etal
(2014)
Agar/ 20, 40 and Glycerol/50% | 62.2-65.8 | 45.2— | 1290- | 19.0— | Rhim et al.
Ag-NPs 80 mg Ag-NPs 49.6* | 1460 | 23.6* | (2014)

TS tensile strength; EM young’s modulus; ¢ elongation at break
Data show the range in the values of each property reported for the different formulations
AIdentifies the value for the control sample (without filler), when it is in the edge of the range
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tion in filler content, using differently roasted coffee ground (CG) in PBAT matri-
ces. As compared with neat PHBYV, the best tensile behaviour was obtained with
10% of filler roasted at the highest temperature (270 °C), while the worst behaviour
was observed for 30% of non-roasted CG powder. As the authors mentioned in their
study, roasted CG showed a better affinity with PBAT compared to untreated CG
when obtaining green composites without the need for a compatibiliser. This is
important because the greater chemical affinity among the components led to stron-
ger structures and better tensile properties of the composites. The values of the
strain at break were lower than in the net polymer films for every composite.
Pardo-Ibafiez et al. (2014) also found a decrease in the elongation at break of PHBV
composites in line with differing quantities of keratin microparticles, but the elastic
modulus at low loading was significantly improved. The content of filler greatly
affected the tensile behaviour of composites and, in general, low filler contents
improved both tensile strength and elastic modulus.

As regards nano-fillers, different studies have shown the improvement in tensile
strength and elastic modulus when nanoparticles are incorporated into the polymer
matrices. This effect is enhanced by a good particle distribution, a chemical affinity
between filler and polymer and a high aspect ratio of the particles and filler-polymer
contact area (more interactions). However, the processing conditions and the filler-
polymer ratio must be taken into account to optimize the composite properties.
Excessively high filler content results in the polymer matrix interruption and forma-
tion of micro- nano-cracks. Herrera et al. (2016) studied the effect of the incorpora-
tion of CNCs and chitosan nano-crystals (ChNC) into PLA films obtained by
extrusion and compression moulding using fast and slow cooling rates. The tensile
properties of composites were affected by both the chemical nature of the filler and
processing conditions. Strength at break was improved by CNC incorporation, both
at fast and slow cooling rates, but ChNC only improved the film strength when pro-
cessing at a slow cooling rate. Young’s modulus increased and elongation at break
decreased after the addition of both nanoparticles at both processing cooling rates.
Alves et al. (2015) studied the effect of CNC and gelatin on corn starch plasticised
films. Nanocrystals were added at 0.44, 1.5, 2.56 and 3% with respect to the
polymers. They found a significant increase in the film resistance when the CNC
ratio rose, with a slight fall in the elongation values. Similar results were obtained
in nanocomposites based on pectin/polyethylene glycol blends containing halloy-
site nanotubes (Cavallaro et al. 2013). The incorporation of nanotubes led to signifi-
cantly more rigid films, but reduced the elongation capacity of the material.

Metallic oxide nanoparticles have been used as a suitable option to improve the
mechanical properties of biopolymers. Sanuja et al. (2014) reported a significant
increase in both the tensile strength and elongation at break of chitosan composites
with 10% magnesium oxide, obtained by casting. Abdollahi et al. (2013) compared
fillers of differing chemical characteristics (Mnt and CNC) added to alginate matri-
ces at 1, 3 and 5%. The tensile strength values exhibited a constant growth as the
CNC content increased but this parameter decreased when the content of Mnt was
higher than 1%. Young’s modulus also behaved differently, depending on the filler.
The composite stiffness was higher as the CNC content increased from 0 to 5%, but
decreased when the Mnt content rose from 3 to 5%. However, the elongation values
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exhibited the same trend for both kinds of nanocomposites; decreasing when both
CNC and Mnt contents increased.

4.4.3 The Effect on Barrier Properties

Some biodegradable materials need to improve the gas and water vapour permeabil-
ity because it is a fundamental property in packaging (Ng et al. 2015). The incorpo-
ration of micro- and nano-fillers, of organic or inorganic nature, to biodegradable
polymer matrices can modify the barrier properties (oxygen permeability: OP and
water vapour permeability: WVP). The barrier properties of polymers containing
fillers depend on their chemical nature, the particle size and shape of the particles,
as well as other factors such as polarity, hydrogen bonding capacity and polydisper-
sity (Gonzdlez et al. 2015; Pardo-Ibafiez et al. 2014). Table 4.4 summarizes the
different effects several fillers were observed to have on the barrier properties of
some biopolymer matrices. In every case, the addition of fillers can improve the
oxygen permeability and the values of the control samples (without filler) were in
the range of the corresponding composites or at the high end, especially when CNC
fillers were used. Fabra et al. (2016) studied the incorporation of bacterial cellulose
nanowhiskers (BCNW) into thermoplastic corn starch matrices (TPCS) and a 95%
decrease in OP was obtained with 15% of filler with respect to the TPCS sample.
The reinforced TPCS was assembled in multilayer PHB films to obtain more hydro-
phobic matrices and to improve the film performance. The best functional proper-
ties of multilayers were obtained with 15% BCNW-TPCS composite inner layer
and PHB outer layers. Luzi et al. (2016) observed a reduction of 47% in OP with the
incorporation of 3 wt% CNC from Carmagnola carded hemp fibres and a commer-
cial surfactant into a PLA-PBS matrix. The addition of a surfactant could contribute
to a better dispersion of the CNCs and PBS. They observed that the CNCs were well
dispersed in the polymer matrices, through the Atomic Force Microscopy (AFM)
analysis of surface roughness.

As regards values, analyses of WVP in composites provide similar tendencies to
those OP values. In most cases, WVP was reduced after the incorporation of fillers,
especially nano-size ones. Table 4.4 shows the different effect of micro- and nano-
fillers on this barrier property for several biopolymer matrices. Raw lignocellulosic
fibres (Berthet et al. 2015) or cellulose fibres obtained after chemical treatments
(Ludueda et al. 2012) only slightly decreased, or did not affect, the WVP of some
composites due to their hydrophilic nature. However, Pardo-Ibafiez et al. (2014)
observed a 59% reduction in WPV of the PHVB matrices with 1 wt% of keratin
micro-filler, while no significant differences were obtained with a filler load higher
than 5 wt%. They detected a homogenous particle distribution in the matrix at
1 wt% filler, where the micro-particles are not aggregated, causing an increase in the
tortuosity factor for the diffusion of gas molecules, which reduced the permeability
values. On the other hand, the incorporation of nano-filler into different polymer
matrices, especially CNCs, improved the WVP values. The crystalline structure of
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nanocrystals makes it difficult for certain molecules (O,, CO,, H,0) to diffuse into
the biopolymer matrix because of the formation of a hydrogen-bonded network
(Brinchi et al. 2013; Ng et al. 2015), which favours the development of a percolation
network, as reported by Miranda et al. (2015); the incorporation of 1 wt% of CNC
from gravata fibres into thermoplastic corn starch matrices, provoked a 30%
decrease in WVP. The addition of 2.5 wt% of CNC from sugarcane bagasse into
matrices made up of corn starch and CMC decreased WVP by 50% due to the
impermeable crystalline structure of CNC and a good dispersion of CNCs, creating
a highly tortuous path for water vapour transfer (El Miri et al. 2015).

The use of inorganic fillers had similar effects on barrier properties to those of
organic nano-fillers. The improvement in the barrier properties is due to the
increased tortuosity factor for the gas molecule mass transport in the matrix and the
impermeable nature of fillers, as reported by Abdollahi et al. (2013) in alginate films
with 5% of Mnt nano-clays, where WVP decreased by about 20%. Studying agar
films reinforced with Ag-NPs, Rhim et al. (2014) observed that the dispersed phase
of Ag-NPs in the polymer impeded the mobility of its chains, inducing an improve-
ment in WVP of the composites.

4.4.4 The Effect on Thermal Properties

The effects of micro- and nano-fillers of differing characteristics on the thermal
properties of some biopolymers have been studied by several authors. Table 4.5
shows the main calorimetric parameters obtained from Differential Scanning
Calorimetry (DSC) and the thermal stability of different materials obtained by
Thermogravimetric Analysis (TGA) for different biopolymers and composites.
Information about glass transition temperature (T,), crystallisation temperature (T,),
melting temperature (T,,), melting enthalpy (AH,,), onset temperature (T,,) and
peak temperature (T,.,) of thermodegradation are given in the Table 4.5.

In general, the addition of micro- or nano-fillers can modify the Tg and crystal-
lization/melting properties (T, T,, AH,) of polymer in line with the established
interactions between particles and polymer chains. As expected, the addition of
plasticizers to the filler-biopolymer blends decreases both the Tg and melting point
(T,). In this sense, Martino et al. (2015) analysed the effect of different plasticisers,
such as ATBC (acetyltributyl citrate), GTA (glycerol triacetate) and PEG (polyeth-
ylen glycol) in PHVB films with 20 wt% of wheat straw fibres. Blends with ATBC
showed the strongest Tg reduction due to its non-polar nature and great affinity with
the polymer. Similar effects were observed in both polymer and composites. Cano
etal. (2015) observed a ~5 °C reduction in Tg of pea starch-PVA (1:1) matrices after
the addition of 3 wt% of CNC from MCC. This was related to the partial inhibition
of the PVA crystallisation and to the lower mean molecular weight of the amor-
phous PVA fraction.

As regards the thermal degradation of materials, the addition of fillers generally
improves the thermal stability of composites for both micro or nano fillers. The
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network of the matrices becomes more resistant to heat based on the inherently high
heat resistance of organic and inorganic fillers. Lignocellulosic fillers, such as wheat
straw fibres (Berthet et al. 2015; Martino et al. 2015), kenaf fibres (Moriana et al.
2011), garlic straw (Kallel et al. 2016), rice husk (Johar et al. 2012), sisal fibres
(Santos et al. 2015), pineapple leaf fibres (Shih et al. 2014), soy hull (Flauzino Neto
et al. 2013), rice straw (Boonterm et al. 2015), coconut husk fibres (Rosa et al.
2010) or banana peel waste (Hossain et al. 2016) decompose in the temperature
range of 150-500 °C: specifically, hemicellulose decomposes mainly from 150 to
350 °C, cellulose at between 275 and 350 °C and lignin undergoes gradual decom-
position in the range of 250-500 °C. This high/wide range of decomposition tem-
peratures promotes the greater thermal resistance of composites. Moriana et al.
(2011), found a T, increase of 6% when natural micro-fibres (cotton, kenaf and
hemp fibres) were incorporated into starch-based composites. The greatest increase
was obtained with kenaf fibres, probably due to the better compatibility between
this filler and the starch matrix. This was associated with the higher content of hemi-
cellulose, which promotes the hydrogen bonding between the fibres and the matrix,
improving the interfacial adhesion and thermal stability. However, with other bio-
polymer matrices, the addition of micro-fibres did not affect the thermal stability as
described by Berthet et al. (2015) for PHBV-wheat straw micro-fibres blends. The
presence of lignocellulosic micro-fibres could contribute to a reduction in the mean
polymer molecular weight of the blend, reducing the overall thermal stability, as
was also observed by Luduefia et al. (2012) in PCL-cotton micro-fibre films.

The particle size reduction from micro- to nano-scale of fibres (e.g. by means of
alkali and bleaching treatments of lignocellulosic material and acid hydrolysis to
obtain pure cellulose nanocrystals (Brinchi et al. 2013; Jonoobi et al. 2015; Zhou
et al. 2016), implies a high yield in thermal resistance, as well as in the previously
mentioned barrier and mechanical properties. The incorporation of CNCs into bio-
polymer composites improved their thermal stability due to the crystalline structure
and compact chains present in the nanocrystals, which are not easily dissociated by
heating, increasing the thermal stability (Ng et al. 2015). Arrieta et al. (2014a, b and
2015) reported greater thermal stability in PLA-PHB blends reinforced with 1 or
5 wt% of CNC, from commercial MCC, obtained by electrospinning or extrusion
processes. Similar behaviour was observed by Cano et al. (2015) in PVA-starch
matrices with 1, 3 and 5 wt% of the same reinforcing agent.

As concerns the influence of inorganic nano-fillers on the thermal properties of
composites, they also enhanced the thermal stability of biopolymer matrices. Rhim
etal. (2014) studied the use of Ag nanoparticles in glycerol plasticised agar matrices
obtained by casting. The thermogravimetric analysis exhibited a high residual mass
of the composite films due to the inclusion of the more thermically stable metallic
nanoparticles. Cavallaro et al. (2013) obtained pectin-PEG blends with nano-clays,
specifically hallosyte nanotubes, at 5, 10, 15, 20, 30 and 50 wt% by casting. The
thermal degradation analyses reflected the fact that nano-composites had a high
degree of thermal resistance in comparison with the control sample, which was
attributed to the fact that the nano-clay lumen can encapsulate the pectin degrada-
tion products delaying the process. Moreover, the good dispersion of the nano-filler
inside the polymer matrix improved the thermal stabilization of the biopolymer.
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4.5 The Surface Properties of Micro- and Nano-Reinforced
Polymers for Food Applications

In this section, recent studies into the effect of the addition of micro- and nano-
fillers of differing characteristics on the surface properties of some biopolymers are
analysed, and summarised in Table 4.6. The main changes in biopolymer functional
properties caused by the addition of a filler are strongly associated with surface
properties and the interfacial interactions between biopolymer and filler. Several
methods have been used to characterise the morphology and the surface composi-
tion/structure of biomaterials, such as contact angle, electron spectroscopy for
chemical analysis (ESCA) or X-ray photoelectron spectroscopy (XPS), secondary
ion mass spectrometry (SIMS), scanning electron microscopy (SEM), atomic force
microscopy (AFM) (Gutiérrez et al. 2018). The surface properties of the composites
can directly impact on the macroscopic observation of the material gloss, which can
have notable influence on their practical applications. In this section, recent studies
into the effect of different fillers on the surface hydrophobicity (contact angle), top-
ographic analysis (AFM) or sample gloss are discussed and summarised in Table 4.6.

The contact angle (0) of a liquid in contact with a solid material mainly depends
on the balance between the adhesive liquid-solid forces and the cohesive forces of
the liquid (Gutiérrez et al. 2018). Aqueous or organic solvents can be used on a
determined material in order to characterise the relative affinity of the material for
polar or non-polar systems, thus obtaining information about its respective wettabil-
ity properties according to the hydrophobic-hydrophilic nature of the surface. The 0
values vary according to the type of biopolymer and nature of the filler (organic/
inorganic). The inorganic fillers, such as nano-clays, could negatively affect the
surface hydrophobicity of matrices due to their great water affinity, as reported by
Abdollahi et al. (2013) for matrices of alginate-Mnt nano-clays at 1, 3 and 5 wt%.
The film’s surface was more hydrophilic than the control sample mainly due to the
hydrophilic nature of the Mnt also present at surface level. However, the same
authors observed an 87.5% increase in hydrophobicity when they used CNC from
commercial MCC in the same matrices. Films with 5 wt% CNC exhibited the high-
est degree of hydrophobicity, which was associated with the high ratio of CNCs at
surface level and their crystalline nature, with lower water affinity than the alginate
matrix. Similar results are reported by Slavutsky and Bertuzzi (2014) for thermo-
plastic starch (TPS) matrices reinforced with CNCs from sugarcane bagasse. The
water contact angle increased (rise in the surface hydrophobicity) when CNCs were
incorporated into TPS, while strong interactions and the formation of hydrogen
bonds between the starch chains and CNCs are expected. These strong internal
bonds could also reduce the surface interactions between water molecules and the
material. Cao et al. (2008) obtained nanocomposites with TPS and CNCs from
hemp fibres and they also observed an increase in the water contact angle or surface
hydrophobicity of the matrices. On the contrary, the incorporation of CNCs into
hydrophobic polymer matrices, such as PBS, enhanced the water wettability of the
films (decrease in contact angle). This could be expected from the surface presence
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Table 4.6 Effect of fillers on surface properties of different composite films

Composite Processing Effect on
material Formulation | method Surface analysis | polymer matrix | Reference
Polymer/micro-filler
PHBV/wheat |20 wt% Extrusion — Surface Contact angle | Martino
straw fibres fibres and hydrophobicity values of the et al.
(WSF) 10 wt% compression | (contact angle plasticized (2015)
plasticizer moulding reference liquids: | composite with
(ATBC, GTA distilled water, WSFs were
or PEG) diiodomethane lower than that
ethylene glycol of the PHBV
and glycerol) matrix
Polymer/nano-filler
Alginate/ 1,3 and Casting — Surface Composites Abdollahi
nano-clays Mnt | 5 wt% fillers hydrophobicity with Mnt had et al.
and CNC from (contact angle) more (2013)
MCC hydrophilic
surface
Composites
with CNC had
more
hydrophobic
surface due to
their highly
crystalline
nature
Pea starch- 1,3 and Casting —  Gloss The Cano
PVA/CNC 5 wt% CNC incorporation of | et al.
from MCC filler do not (2015)
affect gloss in
composites
TPS/CNC from | Appropriate | Casting — Surface Contact angle | Slavutsky
sugarcane amount of hydrophobicity increased with | and
bagasse CNC (contact angle) CNC addition | Bertuzzi
suspension Strong (2014)
and glycerol interactions
as plasticizer between starch
chains and
CNC, which
reduced the
water affinity of
the film surface

(continued)
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Table 4.6 (continued)
Composite Processing Effect on
material Formulation | method Surface analysis | polymer matrix | Reference
Wheat gluten/ |1 and 3 wt% | Casting — Gloss Good Fortunati
CNC and CNF |CNC or CNF - AFM distribution of | et al.
from sunflower topographic CNC into the (2016)
stalks analysis matrix and
some regions
with aggregated
CNF
CNC promoted
gloss a function
of filler content
CNF decreased
gloss as a
function of filler
content
Poly(butylene/ |1 and 5 wt% | Extrusion — Gloss Decreased the | Fortunati
triethylene CNC, with and — Surface gloss value as | et al.
succinate)/ surfactant compression | hydrophobicity the amount of | (2017)
CNC from moulding (contact angle) CNC increased
McCC Higher contact
angle values for
1% filler
PLA-PHB/ 1 wt% and Extrusion — Topographic | Presence of Arrieta
CNC from 5 wt% CNC | and analysis by AFM | aggregated and | et al.
MCC 15 wt% compression individualized | (2014b)
plasticizer moulding CNC

The surfactant
allowed for the
polymer chain
penetration
between the
cellulose
structures

of the cellulose hydroxyl groups, which favour water affinity at the surface (Fortunati

et al. 2017).

From the AFM analyses, the presence of nanoparticles on the composite surface
and their aggregation/isolation state can be assessed, while their effect on the sur-
face roughness can be verified. Arrieta et al. (2014b) studied the surface properties
of PLA-PHB matrices containing CNCs from MCC. The AFM analysis showed the
presence of some agglomerated and individualised CNCs in matrices. The aggrega-
tion of nanoparticles was reduced by the use of surfactants, which allowed for a
better polymer chain interaction with the cellulose nanostructure. Nevertheless, an
opposite effect was deduced by Fortunati et al. (2016) from the AFM images for
CNCGCs in wheat gluten matrices, probably due to the different kinds of interactions
between cellulose and the amphiphilic protein chains. The tendency of nanocrystals
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to aggregate has been widely found in numerous studies (Brinchi et al. 2013; Ng
et al. 2015; Zhou et al. 2016) due to the spontaneous tendency to reduce the interfa-
cial free energy of the system, accumulated at the contact surface area. The aggre-
gated nanocrystals can be successfully dispersed and homogenised by strong
mechanical shearing effects into a homogeneous suspension (Ng et al. 2015) or with
the incorporation of surfactants to achieve a good dispersion in the matrices (Hu
et al. 2015; Kaboorani and Riedl 2015); all of this is dependent on the nature of the
polymer and filler and the processing conditions.

The influence of fillers on the material gloss is related with the surface topogra-
phy achieved in the composite. Materials with aggregated fillers exhibit greater sur-
face roughness so that they are less bright than other homogeneous material with a
smoother surface. Fortunati et al. (2016) studied the homogeneity of CNC and cel-
lulose nano-fibril (CNF) dispersion in wheat gluten composites and observed
changes in the material gloss as a function of the filler. In the case of bionanocom-
posites that are reinforced with CNC, the values of gloss increase as a function of
the filler percentage while the opposite behavior was observed in the CNF-reinforced
materials. This could be related with the presence of CNF aggregates on the com-
posite surface, evidenced by optical microscopy, whereas in CNC nanocomposites,
nanoparticles were homogeneously distributed in the matrix. Cano et al. (2015)
observed that the addition of CNCs to pea starch-PVA matrices did not affect the
gloss values, as compared with the control samples, which was attributed to the
good CNC dispersion in the biopolymer blends, with strong adhesion forces between
the filler and the matrix.

4.6 The Effect of Reinforcing Agents on the Material
Biodegradability

The disintegration and biodegradation behavior of the materials is analyzed through
their composting under controlled aerobic processes, designed to produce organic
residues from the biodegradable parts of the material, by the action of microorgan-
isms. In this sense, ISO standards establish methodologies, where specific disposal
pathways, specific time frames and criteria are indicated in order to unify a proper
composting analysis (Cano et al. 2016). The biodegradation behavior is a crucial
factor for the purposes of developing environmentally-friendly packaging materials.
Biodegradable polymers are able to decompose in the medium by the enzymatic
action of microorganisms in a defined period (Nair et al. 2017). In the disintegration
and biodegradation processes produced by the action of microorganisms (bacteria,
fungi and algae), these identify the polymer as a source of energy to produce organic
residues from the biodegradable materials. These chemically react under the micro-
bial enzymatic action and the polymer chains are fragmented (Cano et al. 2016;
Nair et al. 2017).

Table 4.7 shows the effect of some reinforcing agents on the composite disinte-
gration or biodegradationl, using different composting conditions. The degradation
rate of the materials varies according to the type of polymer and reinforcing agent.
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Luduefa et al. (2012) analysed the biodegradation behavior of PCL composites
containing cotton fibres and CNC from cotton fibres at 20 °C and 40% relative
humidity (RH), using compost material with the natural microflora present in soil
(Pinocha type). The analysis was carried out throughout 6 months by controlling the
average weight loss of the samples. They observed that the biodegradability of the
reinforced material was enhanced with the addition of both kinds of fillers, which
was attributed to the high hydrophilicity of the natural fibres, which promoted
water transport and provided a rougher support for microbial growth. PCL is
semicrystalline polyester and the reduction in the degree of crystallinity benefits
the biodegradation process, since the amorphous regions are more quickly attacked
by microorganisms. Similar conclusions were reported by Luzi et al. (2016), for
PLA-PBS composites reinforced with CNC from Carmagnola carded hemp fibres
submitted to composting in sawdust, rabbit food, compost inoculum, starch, sugar,
oil and urea, at 58 °C and 50% HR throughout 90 days. The authors evaluated the
degree of disintegration (D) and the physical changes and observed that the pres-
ence of CNC in the matrices benefited the biodegradation process. Likewise, the use
of a hydrophilic surfactant improved the dispersion of cellulosic nano-fillers in the
matrices and the D parameter. The biodegradationl in blends with PBS was retarded
due to the more hydrophobic and semicrystalline nature of PBS. However, Fortunati
et al. (2014) observed CNC from Phormium tenax leaves had the opposite effect on
PLA composites. The presence of CNCs increased the crystallinity of the compos-
ites, limiting the water transport through the PLA matrices. When limonene was
incorporated as plasticiser in the PLA composites, an increase in the biodegradation
rate was observed due to an improvement in the chain mobility, which favoured the
polymer erosion. Nevertheless, each sample was 90% disintegrated after 14 days of
composting, which is within the limit defined by the ISO 20200. In PBS composites
containing CNC from MCC, similar behavior was observed, but the hydrophobic
nature of PBS and the degree of crystallinity slowed down the biodegradation pro-
cess (Fortunati et al. 2017).

The addition of inorganic nano-fillers provoked similar effects to those brought
about by organic fillers in the biodegradation process of composites. Ramos et al.
(2014) studied the effect of Ag nanoparticles on the disintegrability of PLA com-
posites at 58 °C, using a compost media made from sawdust, rabbit food, starch, oil
and urea, throughout 35 days. They assumed that Ag atoms could catalyse the dis-
integration process and the synergies between the Ag-NPs and thymol could accel-
erate the hydrolysis process. The presence of homogeneously dispersed thymol in
the PLA matrix could promote the polymer chain mobility and thus, diffuse the
water molecules through the PLA structure. Cano et al. (2016) also observed an
increase in the film disintegration rate when different ratios of Ag-NPs were incor-
porated in starch-PVA composites. Nevertheless, the generation of CO, as the result
of total carbon conversion was notably reduced when the Ag ratio increased, prob-
ably due to its antimicrobial effect on the microorganisms responsible for the bio-
degradation process. Fukushima et al. (2013) also observed an increase in the
disintegration rate of PLA composites with Mnt and fluorohectorite nano-clays at 5
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and 10 wt%. The biodegradation of PLAI matrices was enhanced by the catalytic
effect of the hydroxyl groups of silicate layers.

It is remarkable that many factors can affect the degradation rate of composites.
The environmental conditions have a significant impact on microbial growth and
parameters, such as humidity, temperature, pH, salinity, oxygen pressure, and
microbial nutrients, have a great influence on the microbial degradation of poly-
mers. The biodegradation process also depends on the chemical and physical char-
acteristics of the biopolymer. Nair et al. (2017) report that the enzymatic degradation
implies the binding of the enzyme to the bioplastic surface, followed by hydrolytic
split; biopolymers are degraded into low-molecular-weight oligomers, dimers,
monomers and finally mineralised to CO, and H,O. For instance, the biodegradation
of PLAI starts with the hydrolysis of the polymer chains promoted by the water dif-
fusion in the matrices. When the molecular weight reaches about 10,000-
20,000 g mol~!, microorganisms, such as fungi and bacteria, can metabolise the
macromolecules, converting them into carbon dioxide, water and humus (Luzi et al.
2016; Fortunati et al. 2014; Fukushima et al. 2013). Several microorganisms are
able to decompose biomaterials, such as Tritirachium album, Amycolatopsis strain
41, Amycolatopsis sp. strain 3118, Kibdelosporangium aridum for PLA, Penicillium
sp. strain 26—1 (ATCC 36507), Aspergillus sp. strain ST-01, Clostridium sp. for
PCL or Pseudomonas sp., Bacillus sp., Streptomyces sp., Aspergillus sp. for PHB
(Nair et al. 2017).

4.7 Final Remarks

The incorporation of reinforcing agents of different natures (organic or inorganic)
and size (micro or nano-sized) represents a good strategy for the purposes of
improving the functional properties of biopolymers. In general, improved barrier
and mechanical properties can be achieved when compatible micro or nano particles
are adequately dispersed in the polymer matrix. Nano-particles are generally more
effective, but their natural tendency towards aggregation makes the dispersion pro-
cess difficult, requiring carefully designed dispersion techniques. To a great extent,
the surface interactions of the filler with the polymer matrix define the effectiveness
of the reinforcement and the promotion of barrier properties. Therefore, if materials
with optimal functionality are to be obtained, it is of relevance to make an adequate
selection of both the filler for a determined polymer matrix and the processing con-
ditions necessary to ensure high dispersion levels of the particles. Composite biode-
gradability is generally enhanced by the presence of the filler dispersed particles.
However, the total conversion of carbon to CO, through the action of microorgan-
isms could be limited when the filler exhibits antimicrobial action.
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