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Abstract Most of the matter accreting onto a compact object, or emanating from
its vicinity, can be satisfactorily modeled as a fluid. These fluids are different
from terrestrial versions. The temperature can range from relativistic values to non-
relativistic ones and at high temperature, the fluid is composed of charges and not
neutral particles as is the case in the terrestrial version.

We use relativistic equation of state to describe trans-relativistic fluid, around
compact objects and at regions far from it. For steady state investigation we took
the help of generalized Bernoulli parameter which acts as a constant of motion.
We also exploited the fact that the global solution should be of higher entropy and
correct boundary conditions. This approach is considered for dissipative accretion
flow in curved geometry around black holes, magnetosphere around neutron stars
or white dwarfs, and also for magnetically driven outflows. We show that the flow
geometry close to a black hole is quite different from a neutron star because of
the strong magnetic field around the latter, which has implication on the radiative
processes dominant nearby. We also obtained shock solutions for lepton dominated
accretion flow around neutron stars, but not around black holes, this is again due
to the different flow geometry around the two different types of compact objects.
Magnetically driven flows in the special relativistic domain, are able to produce
flows which connect both the Alfven and fast sonic points. Numerical simulation of
the fluid with relativistic equation of state, shows distinct differences depending on
the composition of the flow.
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1 Introduction

Examples of relativistic flows in astrophysics are invariably linked to matter flow
into or out of a compact object. Generally a flow is called relativistic when the fluid
moves from one spatial position to the other with a speed (i.e., bulk speed) close
to the speed of light. Such insane speed can be achieved by accreting matter close
to a black hole (BH) [37], or, when matter around a compact object like BH or
neutron star (NS) is violently ejected in the form of astrophysical jets [38]. Since,
an accretion disk around a compact object has never been directly observed, but
jets have been observed, majority of investigations on relativistic fluid were applied
to the studies of jets [2, 5–8, 13, 33]. By relativistic fluid mechanics, the general
trend had been to either use relativistic equations of motion or, use Newtonian
equations of motion with pseudo potentials, and use the adiabatic index to be
Γ = 4/3 in the equation of state of the fluid. However, the thermal speed of the
particles that constitute an astrophysical fluid, may also approach the speed of light
at some regions of the flow but non-relativistic elsewhere, and thereby make the
fluid thermally trans-relativistic. In such cases Γ is no more constant, but a function
of temperature and composition of the fluid [1, 31, 32].

The exact equation of state (EoS) for relativistic gas has been used in relativistic
hydrodynamics tentatively [18, 19]. The major stumbling block is that the perfect
EoS is expressed as the ratio of modified Bessel’s function of the second kind of
order one, two and three, or two and three, or one and two [1, 15, 31], which depends
on the recurrence relation used and are equivalent to each other [36]. An extremely
close but algebraic approximation of the perfect EoS was proposed [3, 12, 27] and
was used to study relativistic jets in flat metric and jets and accretion flow near a BH
and NS in strong gravity.

In the next section, we introduce the relativistic EoS and its properties. In Sect. 3,
we discuss application of this equation of state on the dynamics of relativistic
outflows in flat metric as well as, curvedmetric. In Sect. 4.1, we discuss the accretion
flow onto magnetized compact objects with hard surface. In Sect. 4.2 we discuss
accretion on to black holes, and possible precursor of jets. In the last section we
summarize and point out to some future direction and issues.

2 Equation of State

The closure relation between the thermodynamic quantities like the internal energy,
pressure and mass density, is called equation of state (EoS) of a fluid, and it helps to
solve the equations of hydrodynamics. If the thermal speed of constituent particles
are non-relativistic then the internal energy can be computed by obtaining the
expression of average energy of the particles in the momentum or configuration
space and is given by eth = p/(Γ − 1), where p is the isotropic pressure [30].
However, if the constituent particles are identical and executing relativistic motion,
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then the EoS obtained independently by [1, 15, 31] was shown to be equivalent by
[36], and are given by

e = ρc2
3K3(1/Θ) + K1(1/Θ)

4K2(1/Θ)
= ρc2

K3(1/Θ)

K2(1/Θ)
− p = ρc2

(
3Θ + K1(1/Θ)

K2(1/Θ)

)
.

HereΘ is proportional to temperature and c is the speed of light in vacuum.We may
use the acronym RP (relativistic perfect) to represent the above EoS. The problem
is the presence of the ratios of modified Bessel’s function, which are difficult to
implement in numerical schemes. Primarily motivated by this fact, we proposed a
new EoS which was an extremely close approximate of the exact relativistic EoS,
in addition it also satisfies the fundamental Taub’s inequality [32] and is given by
[3, 12, 27],

e = ne−mec
2f ; f = (2 − ξ)

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+ ξ

[
1

η
+ Θ

(
9Θ + 3/η

3Θ + 2/η

)]

(1)

where, ξ = np+/ne− is the relative proportion of protons w.r.t electrons, η =
me/mp is the ratio of electron to proton rest mass and Θ = kT /mec

2, where
k is the Boltzmann constant. We may use the acronym CR to represent the
EoS represented by Eq. (1), from the initials of the original proposers. Figure 1
shows how closely CR mimics RP, even for fluids with different composition. The
temperatures corresponding to the electron and proton rest mass are marked on the
T axis. It is clear if the flow temperature is higher than the proton temperature then
Γ → 4/3. However, for purely leptonic flow, Γ → 4/3 at temperatures greater
than electron rest mass.

3 Relativistic Fluids: Outflows

The energy-momentum tensor of a fluid is given by

T μν = T
μν
M + T

μν
R + T

μν
EM, (2)

where, the suffix M, R and EM represent the three components for matter,
radiation and electro-magnetic field of the energy-momentum tensor, that describes
a relativistic fluid. The composite form of the equation of motion of the fluid is given
by,

T
μν

;ν = 0 (3)
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Fig. 1 Comparison of Γ as a function of T , between that computed from RP (solid/black, long-
dashed/magenta) and CR (dashed/red, dotted/blue) EoS. The two different distributions are for
electron-proton flow (ξ = 1) and electron-positron flow (ξ = 0) (Ref: Fig. C1 a of [36]) (Color
figure online)

and the particle number (of matter) conservation equation

(nuν);ν = 0. (4)

In the above, the Greek alphabets signify space-time components in four space, uμ

components of four velocity, and n the number density measured in fluid rest frame.
One needs to solve Eqs. (3), (4) in a given space-time metric, whose general form is
ds2 = gμνdxμdxν .

3.1 Time Dependent Relativistic Hydrodynamics

We developed a relativistic hydrodynamic code (T μν
R = T

μν
EM = 0) in special

relativity (i.e., gμμ = (−1, 1, 1, 1), gμν |μ�=ν = 0). The energy momentum tensor of
the matter is given by T

μν
M = (e + p)uμuν + pgμν . The fluxes were calculated by

using Eq. (1). In Fig. 2, we plot density contour and velocity vectors of relativistic
jet launched with Lorentz factor γinj = 10. In the computational set up we assumed
c = 1. We showed the jet profile and shock positions differ if we change the
composition parameter [4, 14].
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Fig. 2 Density contour and velocity vector of an astrophysical jet launched with γinj = 10, ρinj =
0.1 pressure p = 0.01 and ambient density ρamb = 100. The jet is composed of electron-proton
plasma

3.2 Radiatively Driven Stationary Jets in Curved Space Time

If we consider T
μν
EM = 0, gtt = −(1 − 2GM/rc2) = −1/grr; gθθ = r2, gφφ =

r2sin2θ; gμν |μ�=ν = 0, and ∂/∂t = ∂/∂φ = 0, we are in the realm of radiatively
driven axisymmetric, stationary flow. For ur > 0 therefore we are in the regime of
radiatively driven jets. The radiative stress tensor is given by T

μν
R = ∫

I lμlνdΩ .
The momentum balance equation becomes,

ur dur

dr
+ 1

r2
= −

(
1 − 2

r
+ urur

)
1

e + p

dp

dr
+ ρe

σ
√

grrγ 3

me(e + p)
�r (5)

σ = χcσT =
⎡
⎢⎣ 1

1 +
(

Te

4.5×108

)0.86
⎤
⎥⎦ σT (6)

σT is Thomson scattering cross section, for χc = 1 it is the Thomson scattering cross
section. �r is a function of radiation moments, and Te is the electron temperature.
The entropy equation is given by

de

dr
− e + p

ρ

dρ

dr
= −γρe(1 − χc)Rt√

grr
. (7)

Here Rt is radiative contribution representing energy exchange between radiation
and fluid:

Rt = σ

me

[
grrR0

v
+ vR2

grr
− 2R1

]

where,R0, R1, R2 are the zeroth, first and second moments of radiation field.
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Integrating Eqs. (5) and (7) we obtain the generalised Bernoulli parameter

E = −hute
−Xf , (8)

where

Xf =
∫

dr
γ (2 − ξ)

(f + 2Θ)
√

grr
[� − (1 − χc)Rt ] .

It is to be remembered that E is a constant of motion, even if radiation imparts
momentum and energy to the jet. It was shown that a jet can suffer from stationary
internal shocks due to the change in flow geometry, and also due to the radiation field
from a moderately thick accretion disk [34, 35]. However, in the Compton scattering
regime because a part of the radiation energy is absorbed by the matter, it increases
the thermal energy of the jet and produces faster jets. In Fig. 3a, c, d we plot the jet
three-velocity v with radial distance r for the disk with same disk luminosity. The
jet generalized Bernoulli parameterE is reduced from 1.2 to 1.07 to 1.04. In Fig. 3a,
b we compare the three velocity and temperature of the jet with E = 1.2, and show
that both the velocity and temperature of the jet is more in the Compton regime than
the Thomson scattering regime by about 20%. Figure 3c shows the existence of an
internal shock in the jet.
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Fig. 3 Comparison of radiatively driven jet for (a), (b) E = 1.2, (c) E = 1.07 and (d) E = 1.04.
The solutions presented are electron-proton flow or ξ = 1
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3.3 Relativistic MHD

Magnetically driven outflow was also studied with relativistic EoS. The electro-
magnetic component of the energy momentum tensor is

T
μν
EM = Fμ

σ F νσ − gμνFλσ Fλσ

4
. (9)

Along with this, one has to also solve the electro-magnetic Maxwell’s equations
which are,

∂μFνλ + ∂νFλμ + ∂λFμν = 0; & F
μν

;ν = −Jμ,

here, Fμν is the electro magnetic field tensor. We followed the methodologies of
[33], but used CR EoS instead of fixed Γ EoS and obtained trans Alvenic and trans-
fast MHD outflows in flat metric (see Fig. 4). The slow critical point is not obtained
without gravity.
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Fig. 4 (a) The Alven Mach number M with cylindrical radial distance in units of light cylinder
radius. (b) Cylindrical radial coordinate x with the axial coordinate z is plotted. Junction between
solid and dotted curve is the Alfven point, while between dotted and dashed curve is the fast sonic
point. The solutions presented are electron proton flow or ξ = 1
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4 Accretion Flows

4.1 Around Black Holes

Our investigation on accretion flows around black holes started mainly with fixed Γ

EoS [10, 16, 17, 21, 25, 26]. Since the temperature distribution of an accretion flow
varies by 3–4 order of magnitude, therefore from Fig. 1 it is clear that, the relativistic
EoS has to be considered for correct physics. We used the CR EoS on accretion flow
on to black holes in the inviscid as well as in the viscous regime [3, 9, 11, 12, 22–
24]. Inviscid solutions are relatively easy to obtain, simply because, for a given
specific energy and angular momentum, the sonic or critical points can be found out
uniquely. However, for dissipative flow, the critical points cannot be known apriori.
We integrated all the equations of motion in steady state to obtain the generalized
Bernoulli parameter, and used it to generate the global solutions. The generalized
Bernoulli parameter is expressed as,

E = hγvexpXf (10)

Xf 1 =
∫ ⎡

⎣ 1 − a2s /r2

r2(1 − 2/r + a2s /r2)
+ l2

2r3Dγ 2
v

−
(0.5r3A + r3 − a2s )(l

2/A + ωγ

√
A
D )

r2γ 2
v

⎤
⎦ dr

Xf 2 =
∫ [

gφφgrr τ̃ρur(L − L0)
2

2η(f + 2Θ)
− Λ

(e + p)urgrrγ 2
v

− Sr

(e + p)D

]
dr

and

Xf = Xf 1 + Xf 2,

Sr = ur tφrσ
rφ , tμν are the components of viscous stress tensor, and σμν are

components of shear tensor, Λ is the combined radiative cooling term, τ̃ is the
composition function, L = huφ , γv is the Lorentz factor related to three velocity
along the radial direction, γ is the total Lorentz factor, A = 1 + a2s /r2 + 2a2s /r3,
and D = 1 − 2/r + a2s /r2, where as is the Kerr parameter. E is constant of motion
even in presence of viscosity and cooling. We use this constant of motion to obtain
all possible accretion solutions.

We found that, accretion solutions may admit shock solutions, but in addition to
energy or angular momentum of the flow, the fluid has to contain significant protons
to make it hot enough. Accretion flows are convergent flows and become hotter as
they accrete towards the central object. Due to the property of the space-time around
a black hole, the inflow geometry is approximately a radial flow, independent of the
nature of flow geometry further out. Lepton dominated flows are not hot, and even in
convergent flow on to a black hole, it only becomes hot enough to produce a sonic
point close to the horizon and not hot enough to form a shock. Therefore, lepton
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dominated accretion flow around a black hole cannot produce a shock or very high
energy radiation, and this is true for inviscid as well as viscous accretion flow as
well.

We also estimated formation of bipolar jets from accretion flows around black
holes. We solved the equations of Von-Zeipel surfaces to obtain the jet streamlines.
We showed that for Kerr parameter as > 0.6, shocks can even form in jets.
Interestingly, the shock in jets imposed by the curved space-time of a highly
spinning black hole, is stronger than shock in accretion flow. The related radiative
properties is yet to be worked out.

4.2 Accretion Around Compact Objects with Hard Surface

Accretion flow onto a neutron star or a white dwarf is different from that around
a black hole, essentially on two accounts—(1) neutron stars or white dwarfs have
hard surfaces, while a black hole has none, and (2) space time around a neutron star
or white dwarf has intrinsic magnetic field anchored to the star itself, but a black
hole has no intrinsic magnetic field.

We solved the equations of motion in the strong field approximation and showed
that in addition to the shock formed close to the star surface, there is a possibility of
a second shock forming further away from the surface. Moreover, we also showed
that the temperature profile considered is distinctively different if one considers a
fixed Γ EoS or CR EoS [28, 29]. Another major difference is in the flow geometry
around a neutron star, controlled by the magnetic field around it. The cross-section
decreases at a steeper rate than a radial flow geometry, such that shocks may form
even for lepton dominated accretion flow. The major advancement in this field is in
consideration of cooling processes in order to obtain a solution which matches the
inner boundary condition on the surface of the star.

5 Summary and Future Direction

In this paper we showed, how our understanding of relativistic fluid-mechanics as
applied to astrophysics has affected our understanding of the physics related to
compact objects. We showed that, the composition indeed affects the flow structure.
The choice of Γ in fixed Γ EoS is critical to obtain a magnetically driven outflow
which passes through both the Alfven and fast points. But using CR EoS relieves us
from such constraints. In relativistic simulations we obtained flow structure which
depend on composition of relativistic jets, which is not seen in simulations with
fixed Γ EoS. Accretion of lepton dominated flows around a black hole is distinctly
different from that around a neutron star. We also showed that if some protons are
present in the accretion flow then high energy phenomena like shocks will occur
for some choice of flow parameters. Some workers have used relativistic EoS and
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Fig. 5 Transonic Bondi two-temperature solution in Schwarzschild metric for the same E =
1.0001, Ṁ = 0.1 and MBH = 10 but multiple transonic solutions. Here ξ = 1, accretion rate
Ṁ is in units of Eddington rate and black hole mass, in units of solar mass

failed to detect accretion shock around black holes [20]. Their limitation was that
they used electron-positron flow, which will not only not show shocks but also fail
to produce multiple sonic points even in the inviscid limit.

Two major aspects remains to be investigated, (1) two temperature accretion
solution with CR EoS, (2) treating ξ as a flow variable rather than a constant.
The problem with two temperature solution is that, there is another increase in
flow variable i.e., instead of one temperature Θ , we now have two temperatures
Θe and Θp, without any increase of the number of governing equations. Therefore,
one can construct multiple transonic solutions for the same generalized Bernoulli
parameter. In Fig. 5 we show three transonic two temperature Bondi solution in
general relativity, all corresponds to the sameE and Ṁ. One needs to find a principle
to try and obtain the unique two temperature solution. In addition, one has also to
consider how a variable ξ would affect the solutions.
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