
247© Springer International Publishing AG, part of Springer Nature 2018 
A. Cheung-Hoi Yu, L. Li (eds.), Systems Neuroscience, Advances in 
Neurobiology 21, https://doi.org/10.1007/978-3-319-94593-4_9

Chapter 9
Large De Novo Microdeletion in Epilepsy 
with Intellectual and Developmental 
Disabilities, with a Systems Biology Analysis

Kai Gao, Yujia Zhang, Ling Zhang, Weijing Kong, Han Xie, Jingmin Wang, 
Ye Wu, Xiru Wu, Xiaoyan Liu, Yuehua Zhang, Feng Zhang,  
Albert Cheung-Hoi Yu, and Yuwu Jiang

9.1  �Introduction

Epilepsy is a disease which arises from largely unknown cellular and genetic mech-
anisms. It is a common neurological disease that reflects neuronal hyperexcitability 
induced by many different factors such as trauma, neurotoxicity and genetic varia-
tion (Lee and Heo 2014). ID/DD is one of the most common pediatric neurological 
diseases and is also one of the most important unsolved problems in health care. 
Studies have shown that the prevalence rate of ID/DD is 1–3% (Chelly et al. 2006). 
It is estimated that approximately 30% of patients with ID/DD have seizures 
(Tuchman et al. 2009). These associations indicate that epilepsy shares a similar 
pathogenic mechanism with those diseases in some situations (Williams et al. 2009; 
Cooper et al. 2011; Grayton et al. 2012).
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Copy number variation (CNV) has been reported to be associated with a group 
of neuropsychiatric disorders, including epilepsy and ID/DD.  Recent studies of 
CNV in patients with epilepsy have revealed a series of CNV hotspots, such as 
1q21.1 (de Kovel et al. 2010; Mefford et al. 2010), 15q11.2 (Zhang et al. 2009; de 
Kovel et al. 2010; Mefford et al. 2010; Vanlerberghe et al. 2015), 15q13.3 (Mulley 
et al. 2011; Sisodiya and Mefford 2011; Kogan et al. 2015), 16p11.2 (Mefford et al. 
2011; Bassuk et  al. 2013; Tiwari et  al. 2013), 16p13.11 (Sisodiya and Mefford 
2011) and 22q11.2 (Helbig et al. 2013; Kim et al. 2016). At the same time, a group 
of ID/DD-related CNV hotspots was been found, as 1q21.1 (Harvard et al. 2011), 
2q13 (Yu et al. 2012; Riley et al. 2015), 15q11.2 (Derks et al. 2013; Caciotti et al. 
2015), 16p11.2 (Bassuk et al. 2013; Derks et al. 2013), 22q11.2 (Mertz et al. 2013; 
Olszewski et al. 2014). The overlap of those CNV hotpots between epilepsy and ID/
DD, indicate these two disease share a similar pathogenic genetic mechanism.

To elucidate whether CNV is a causal factor in epilepsy with ID/DD in Chinese 
children, we utilized a custom high-density oligonucleotide-based comparative 
genomic hybridization (CGH) microarrays to detect the CNVs in 96 epilepsy patients 
with ID/DD.

9.2  �Large De Novo Rare Microdeletion Is an Important 
Pathological Cause of Epilepsy with ID/DD

9.2.1  �Ethics and Patients

The study protocol was approved by Medical Ethics Committee of Peking University 
First Hospital. Informed consent was obtained from the parents. All data of this 
study were analyzed anonymously. DNA samples were collected from 96 epileptic 
patients with ID/DD and from their parents. All of the patients were recruited from 
the Department of Pediatrics, Peking University First Hospital from 2006 to 2014. 
These samples were prepared from a collection of whole blood samples by DNeasy 
Blood & Tissue Kit (QIAGEN).

Patient with both epilepsy and ID/DD who fulfilled the following inclusion cri-
teria were assumed to be cryptogenic: (1). no perinatal brain injury (2). no hypoxia, 
ischemia, trauma or infection of the central nervous system (CNS); (3). no evidence 
of typical inherited metabolic disorder or specific neurodegenerative disorders, as 
found by physical examination, cranial neuroimaging and blood/urinary metabolic 
diseases screening; (4). negative from a gene screen by 300 epilepsy gene panel 
(Zhang et al. 2015). Finally, according to the inclusion criteria, 96 participating Han 
ethnicity patients were recruited from Peking University First Hospital.
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9.2.2  �CNV Detection by Array CGH

To detect the changes of CNVs in the genomic DNA, we applied high-density 
oligonucleotide-based CGH microarrays, a custom-designed Agilent SurePrint G3 
Microarray (4 × 180K) was used to verify CNVs. The high-density areas covered 
the known epilepsy associated genes or related chromosome loci (including genes 
and CNVs in epilepsy including early infantile epileptic encephalopathy and idio-
pathic generalized epilepsy, listed in Supplementary Table  9.1). DNA digestion, 
Cy5-dUTP or Cy3-dUTP labeling, purification, array hybridization, washing, scan-
ning, and data analysis were conducted by following the Agilent oligonucleotide 
aCGH protocol (version 6.3).

We performed whole-genome array CGH in a series of 96 patients. All of them 
had a presenting diagnosis of epilepsy with ID/DD. Our goal was to discover novel 
CNVs associated with epilepsy and ID/DD. In this study, we gathered data from 
whole-genome analysis and extended our analysis to other idiopathic epilepsy syn-
dromes, such as infantile spasms and early onset epileptic encephalopathy (EOEE). 
In total 96 patients, we identified 8 individuals (8.3%) with 9 long rare microdele-
tions. If the CNV is larger than 500 kb, it will be identified as a long/large one.

9.2.3  �The Loci of Microdeletions

In this study, we identified 8 of 96 (8.3%) patients with 1 or 2 large microdeletions 
(more than 500 kb). The biggest deletion was about 11 Mb, and the smallest was 
893 kb. The mean CNV size was 3.5 Mb and the median size was 2.9 Mb. The num-
ber of deleted genes in each patient was from 12 to 79 (Table 9.1). Figure 9.1 shows 
the loci of the CNVs in the genome. There were two identical microdeletions at 
22q11.21-q11.22 (Fig. 9.2) and two similar microdeletions at 5q13.2 (Fig. 9.3). The 
other CNVs were located on 2q33.1-q34, 2q24.1, 5q33.1-q34, 17p13.2, and Xp22.31 
(Fig. 9.4). All the CNVs were de novo and heterozygous. Microdeletion of 5q13.2 

Table 9.1  Large CNVs identified in 8 of 96 individuals affected by epilepsy and ID/DD

Sample CNV locus Start Stop Size (bp)
Gene 
number

de novo or 
inherited

3940 2q24.1 157,183,677 159,479,627 2,295,951 10 de novo
2332 2q33.1-q34 199,750,753 210,748,712 10,997,960 79 de novo
1549 5q13.2 68,830,699 70,600,323 1,769,625 15 de novo

Xp22.31 6,705,268 7,942,835 1,237,568 4 de novo
5332 5q13.2 68,828,322 69,732,251 903,930 12 de novo
5319 5q33.1-q34 151,040,072 160,070,141 9,030,070 51 de novo
1277 17p13.3 2,165,369 3,058,821 893,453 17 de novo
1583 22q11.21-q11.22 19,058,829 21,360,978 2,302,150 48 de novo
3568 22q11.21-q11.22 19,058,829 21,360,978 2,302,150 48 de novo
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and 17p13.2 was not found in patients of epilepsy with ID/DD before. The clinical 
features of the patients with large microdeletion were summarized in Table 9.2. Of 
the 8 patients with large microdeletions, 5 were male and 3 were female. Besides 
epilepsy and ID/DD, the phenotypes of the patients were diverse. Six out of 7 
patients who had a MRI scan had encephalodysplasia. Of 5 patients who had a psy-
chiatric test, 2 patients suffered from autism. For craniofacial characteristics, 3 
patients had facial dysmorphism, 1 patient had cleft lip/palate, and 2 patients had 
strabismus (Tables 9.2 and 9.3).

From these results, most of patients have only one large microdeletions. Those 
CNVs should course epilepsy and ID/DD by two different situations, one is the 
CNVs have both epilepsy-related genes and ID/DD related genes, the other is the 
CNVs have one or more genes associating both epilepsy and ID/DD. We also found 
that most of the long rare CNVs in this study were not in the most well-known idio-
pathic epilepsy CNV hotspots, such as 1q21.1, 15q11.2, 15q13.3, 16p11.2, 
16p13.11, 22q11.2 (Table  9.4). The reason for this difference might be that the 
known CNV hotpots come from studies of idiopathic epilepsy, while our patients 
suffered from both epilepsy and ID/DD. Most of them are epileptic encephalopathy. 
The reported CNV regions of epileptic encephalopathy, such as 1q36, 2q32.3, 

Fig. 9.1  The loci of the 9 CNVs of our cohort in the genome. 2 CNVs (2q24.1 of patient 3940 and 
2q33.1-q34 of patient 2332) in chromosome 2, 3 CNVs (5q13.2 of patient 1549 and 5332, 5q33.1-
q34 of patient 5319), 1 CNV (17p13.3 of 1277) in chromosome 17, 2 CNVs (22q11.21-q11.22 of 
patient 1583 and 3568) in chromosome 22, 1 CNV (Xp22.31 of patient 1539)
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2q24.3, 3q11, 4q3.1-q3.2, 7q11.23, 14q12, 15q11-13, 16p11.2, Xp22 (Table 9.5) 
are not in accordance with idiopathic epilepsy.

9.3  �Pathogenic Mechanism Analysis

We analyzed the genes in the CNVs and discovered some genes which were candi-
date pathogenic genes. We screened for candidates by determining whether genes 
were epilepsy/seizure related, ID/DD related, synapse related, ion channel/receptor 
related, transmitter related, and neurodevelopment related, or having high expres-
sion in the CNS (Table 9.3). We found that 4 out of the 9 CNVs included epilepsy 
related genes, while 6 out of the 9 CNVs included reported ID/DD related genes. 
Besides the known epilepsy- or ID/DD-related genes, some novel candidate genes 
might be involved in epilepsy with ID/DD: NR4A, KCTD18, TRAK2, UNC80, 
CASP8, NRP2, KLF7, OCLN, SMN1, SMN2, NAIP, ADRA1B, HAND1, SRR, 
PAFAH1B1, SEPT5, RTN4R, TBX1, ARVCF, RTN4R and CRKL (Table 9.6).

Patient 3940 with a 2q24.1 deletion was suffering from autism with epilepsy and 
ID/DD. 2q24.1 was reported to be involved in juvenile myoclonic epilepsy (Layouni 
et al. 2010), ID/DD (Daoud et al. 2009) and schizophrenia (Yamada et al. 2012). 
Therefore, 2q24.1 should be a potential CNV locus for neuropsychiatric disorders. 
The pathogenic genes in this patient could be GPD2 and NR4A2. GPD2, which is 

Fig. 9.2  The 2 same CNV in 22q11.21-q11.22. (a) The microdeletion in 22q11.21-q11.22 of 
patient 3568. Compared with the genome DNA of his father and mother, the CNVs is de novo. 
From the data of SV database in this area, the CNV is rare. (b) The microdeletion in 22q11.21-
q11.22 of patient 1583. Compared with the genome DNA of his father and mother, the CNVs is de 
novo. From the data of SV database in this area, the CNV is rare
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highly expressed in brain, was reported to be a candidate gene for ID/DD in a female 
with nonsyndromic ID/DD (Daoud et  al. 2009; Barge-Schaapveld et  al. 2013). 
NR4A2 is the gene for Nuclear Receptor Subfamily 4, Group A, Member 2, which 
is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 
for the development of neurons (Messmer et al. 2007).

The clinical features of patient 2332 with a 2q33.1-q34 deletion were similar to 
2q32-q33 deletion syndrome. 2q32-q33 deletion syndrome (OMIM # 612313), first 
reported at 1989, (Glass et al. 1989) is characterized by severe ID/DD, microceph-
aly and craniofacial dysmorphism. A STAB2 gene deletion might be the most likely 
pathogenic gene in the 2q33.1-q34 region. The SATB2 is a candidate brain develop-
mental gene which should be responsible for the 2q32-q33 deletion syndrome (Van 
Buggenhout et al. 2005; Rosenfeld et al. 2009; Usui et al. 2013). The STAB2 gene 
encodes a transmembrane receptor which has always been a marker of the upper 
layer of the normal fetal neocortex (Arai et al. 2012). In the 2q33.1-q34 CNV of our 
patient, there are both epilepsy-related genes and ID/DD related genes. The reported 
epilepsy-related genes are ADAM23 (Owuor et al. 2009; Fukata et al. 2010), MAP2 
(Chulanova et  al. 2001; Jalava et  al. 2007). SATB2 (Leoyklang et  al. 2007) and 
CREB1 (Barco et al. 2003) were reported to be ID/DD related gene. Besides those 
genes, KCTD18 (Pichler et  al. 2013), TRAK2 (Grishin et  al. 2006), and UNC80 

Fig. 9.3  The 2 similar CNV in 5q13.2. (a) The microdeletion in 5q13.2 of patient 5332. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is not rare. (b) The microdeletion in 5q13.2 of patient 1549. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is not rare
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Fig. 9.4  The other CNVs in our cohort. (a) The microdeletion in 2q24.1 of patient 3940. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is rare. (b) The microdeletion in 2q33.1-q34 of patient 2332. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is rare. (c) The microdeletion in 5q33.1-q34 of patient 5319. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is rare. (d) The microdeletion in 17p13.2 of patient 1277. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is rare. (e) The microdeletion in Xp22.31 of patient 1549. Compared 
with the genome DNA of his father and mother, the CNVs is de novo. From the data of SV data-
base in this area, the CNV is rare

9  Large De Novo Microdeletion in Epilepsy with Intellectual and Developmental…
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(Gogliotti et al. 2011) are related to ion channels or receptors, and CASP8 (Ma et al. 
2007), NRP2 (Maden et  al. 2012) and KLF7 (Caiazzo et  al. 2011) takes part in 
neurodevelopment.

There were two patients (1583 and 3568) sharing the identical 48 gene-deleted 
CNV in 22q11.21-q11.22. Besides epilepsy and ID/DD, they also suffered from 
encephalodysplasia. Patient 1583 also had an anomalous face. Patient 1583 was a 
boy born after uneventful term delivery. He was the product of healthy parents with-
out family history of epilepsy and ID/DD. However, this boy had tonic seizures 
since 5  months. The seizures are intermittent with a frequency of 1.5 times per 
month. His intellectual and motive developments were delayed. The patient also had 
an anomalous face with short philtrum, small auricle, high palatal arch, and 
up-warped upper lip. A brain MRI showed cerebral dysplasia, increased lateral ven-
tricle especially on his left side, wide arachnoid at temporal lobe and frontal lobe. 
Interictal EEGs found some low to medium amplitude spike wave and spike slow 
wave in sleep. Patient 3568 was a girl born after uneventful term delivery. There was 
no history of epilepsy and ID/DD in her family. The girl had complex focal seizures 
since 2.5 years. The seizures occurred intermittently with a frequency of 2 time per 
month. Her intellectual development was delayed. The MRI showed that two-side 
hippocampal sclerosis and abnormal signal at parietal lobe and temporal lobe (espe-
cially at the right sides). Besides epilepsy and ID/DD, they also suffered from 
encephalodysplasia. The reason may be this CNV have some genes of neurodevel-
opment, such as TBX1, ARVCF, RTN4R, and CRKL (Tables 9.2 and 9.4).

Based on the locus of the deletion and the clinic features, these patients would 
almost certainly suffer from 22q11.2 deletion syndrome. This syndrome involves a 
series of syndromes such as DiGeorge syndrome (DGS) (Kelley et al. 1982), velo-
cardiofacial syndrome (VCFS) (Scambler et al. 1991; Driscoll et al. 1992), conotrun-
cal anomaly face syndrome (CTAF) (Matsuoka et al. 1994), some cases of autosomal 
dominant Opitz G/BBB syndrome (McDonald-McGinn et al. 1995; Fryburg et al. 
1996; Lacassie and Arriaza 1996), and Cayler cardiofacial syndrome (asymmetric 
crying facies) (Giannotti et al. 1994). Among candidate pathogenic genes, COMT is 
related to both epilepsy (Doyle and Sellinger 1980) and ID/DD (Zhang et al. 2007; 
Li et al. 2009). SNAP29 (Elfving et al. 2008) and TBX1 (Sedghi et al. 2012) have 
been proven to related to epilepsy.

In 2006, 5q34 was reported to be a susceptibility locus for idiopathic generalized 
epilepsy (Hempelmann et al. 2006). A 6.45 Mb deletion in 5q33-q34 and a 713 Kb 
deletion in 5q33.2 were reported by Mefford in 2010 and 2011 (Mefford et al. 2010, 
2011) to be related to epilepsy and ID/DD. Our study found a patient was with a 
deletion in 5q33.1-q34. Among candidate pathogenic genes, CYFIP2 is highly 
expressed in the brain and contributes to both epilepsy (Hideyama et al. 2010) and 
ID/DD (Hoeffer et  al. 2012). The other ID/DD gene is GLRA1 (Al-Futaisi et  al. 
2012), which encodes a subunit of glycine receptor.

In a research in 2013, Speriz reported that 17p13.2 may be an epilepsy and ID/
DD related genetic region as a duplication (Spreiz et al. 2014). A deletion of 17p13.2 
was also reported to be associated with Miller-Dieker lissencephaly syndrome 
(Chen et al. 2010). This report, together with our findings, indicates that 17p13.2 
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may be an important genetic region for gyrus development. Among pathogenic gene 
candidates, SRR, PAFAH1B1 and MRPL40 should be considered. AFAH1B1 was 
reported to be associated with lissencephaly (Cardoso et  al. 2000; Kerjan and 
Gleeson 2007). R encodes serine racemase, which catalyzes l-serine to d-serine. 
d-serine is an important transmitter in brain and may be related to epilepsy (Ryu 
et al. 2010) and ID/DD (Klatte et al. 2013).

There were two patients (1549 and 5332) sharing the similar gene-deleted CNV 
in 5q13.2. Patient 1549 was a girl born after uneventful term delivery. She was the 
product of healthy parents without family history of epilepsy and ID/DD. However, 
this girl had generalized seizure since 4 years. The seizures are with a most fre-
quency of 9 times per day. Her intellectual and motive developments were delayed. 

Table 9.3  Phenotype description of patients with long deletion

Phenotype Frequency Patients

Neurologic

ID/DD 100% (8/8) All
Epilepsy 100% (8/8) All
Microcephaly 12.5% (1/8) 2332
Encephalodysplasia 85.7% (6/7) 1227, 1583, 2332, 3568, 3519, 5332
Psychiatric

Autism 4% (2/5) 2332, 5319
Craniofacial

Facial dysmorphism 37.5% (3/8) 1583, 2332, 5319
Cleft lip/palate 12.5% (1/8) 2332
Strabismus 37.5% (2/8) 5319, 2332
Dyskinesia 50% (4/8) 5332, 1583, 1549, 1277
Syndrome

EOEE 37.5% (3/8) 2332,1277, 1549

Table 9.4  The CNV hotpots of idiopathic epilepsy

CNV 
locus Candidate gene

Type of 
CNVs Subtype Reference

1q21.1 GJA5, GJA8, 
HYDIN2

Deletion JAE, JME de Kovel et al. (2010), Mefford 
et al. (2010)

15q11.2 CYFIP1, NIPA2 Deletion JAE, JME, CAE, 
EGTCS only

Zhang et al. (2009), de Kovel 
et al. (2010), Mefford et al. 
(2010)

15q13.3 CHRNA7 Deletion JAE, JME, CAE, 
EGTCS only

Dibbens et al. (2009), Helbig 
et al. (2009), de Kovel et al. 
(2010)

16p11.2 KCTD13, 
SEZ6L2

Deletion JME Mefford et al. (2010)

16p13.11 NDE1 Deletion JME, CAE, 
EGTCS only

de Kovel et al. (2010), Mefford 
et al. (2010)

22q11.2 SLC25A18 Deletion EGTCS only de Kovel et al. (2010)
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Her brain MRI was normal. Interictal EEGs found some low to medium amplitude 
spike wave and spike slow wave in sleep. Patient 5332 was a boy born after unevent-
ful term delivery. There was no history of epilepsy and ID/DD in her family. The 
boy got complex focal seizures since 1 year 4 month. The seizures occurred inter-
mittently with a frequency of 6–30 time per day. His intellectual development was 
delayed. EEGs found Generalized and multifocal spike wave and spike slow wave. 
The MRI showed that brain dysplasia with defect of myelination of white matter.

Patient 1549 also has a long deletion in Xp22.31. The patient 5332 also suffered 
from aphasia and muscle hypotonia. The level of galactose in urine was a little 
higher than the normal standard. 5q13.2 was not reported to be related to epilepsy 
or ID/DD. In this CNV, no gene in this CNV have been reported to involve in epi-
lepsy and ID/DD.  The candidate pathogenic genes in this deletion were SMN1, 
SMN2, OCLN, and NAIP. These genes are involved in neurodevelopment. SMN1 
and SMN2 are important factor for motor neuron development, and associate with 
spinal muscular atrophy (Prior 2007). Knocking out SMN2 would increase seizure 
susceptibility (Gogliotti et al. 2011). OCLN encodes tight junction protein occludin, 
which is involved in the early stage of neurodevelopment (Virgintino et al. 2004). 
Occludin was reported to be overexpressed in Alzheimer’s disease and vascular 
dementia (Romanitan et al. 2007), so it may be related to ID/DD. Neurodevelopment 
related gene NAIP, which encodes Neuronal Apoptosis Inhibitory Protein (Mercer 
et  al. 2000), was reported to decrease in brains of patients suffering with Down 
syndrome or Alzheimer’s disease (Seidl et al. 1999). It is indicated that NAIP may 
be related to ID/DD.

In an infantile spasms related deletion in Xp22 reported by Mefford, CDKL5 was 
reported as the candidate pathogenic gene (Mefford et  al. 2011). In our study, a 
deletion of Xp22.31 in patient 1594 (who also had a 5q13.2 deletion) contained 4 

Table 9.5  The CNV hotpots of epileptic encephalopathy

CNV 
locus Candidate gene

Type of 
CNVs Subtype Reference

1p36 KLHL17 Deletion IS Paciorkowski et al. (2011)
2q32.3 Deletion IS Tiwari et al. (2013)
2q24.3 SCN1A Deletion Dravet 

syndrome
Wang et al. (2012)

3q11 EPHA6, GABRR3 Duplication IS Mefford et al. (2011)
4q3.1-q3.2 EPHA5 Duplication Dravet 

syndrome
Lin et al. (2013)

7q11.23 STX1A Deletion IS Paciorkowski et al. (2011)
14q12 FOXG1 Duplication IS Paciorkowski et al. (2011)
15q11-13 GABRA5, 

GABRB3,GABRG3
Duplication IS Paciorkowski et al. (2011), 

Tiwari et al. (2013)
16p11.2 Duplication IS Mefford et al. (2011), 

Tiwari et al. (2013)
Xp22 CDKL5 Deletion IS Mefford et al. (2011), 

Tiwari et al. (2013)
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genes, HDHD1A, STS, VCX, and PNPLA4. PNPLA4 may be involved to epilepsy 
and ID/DD (Carrascosa-Romero et al. 2012). STS and VCX was proven to take part 
in X-linked ID/DD (Ben Khelifa et al. 2013). As this patient is a girl, this heterozy-
gous microdeletion in X chromosome may play a less role in the pathogenic 
mechanism.

9.4  �Systems Biological Analysis

Recently, system biology has provided a series of powerful tools for biomedicine 
studies. As an important analysis method, network reconstruction was used in bio-
marker detection (Mitra et al. 2013), drug discovery (Zou et al. 2013), and for study-
ing the synaptic plasticity (He et  al. 2014) mechanism of learning and memory 
(Kandel et al. 2014). Network reconstruction is very suitable for studying the patho-
genic mechanism of complex disease in CNS, such as autism (Corominas et al. 2014), 
schizophrenia (Sun et al. 2010), and tumor induced epilepsy (Mittal et al. 2013).

In this study, we also tried to use the analysis tools of systems biology to predict 
the common pathogenic mechanism for epilepsy and ID/DD as complex diseases. 
By the Cystoscope 3.1.0 (Shannon et al. 2003), the network of the known epilepsy 
genes (in Supplementary Table  9.1) and CNV genes was constructed based on 
genetic interaction, pathway, and physical interaction in GENEMANIA database 
(Montojo et al. 2010). Form the constructed network, we found 70.5% of the CNV 
genes (158/224) to be involved in a network, while only 3.5% CNV genes are 
known epilepsy-related genes (Fig. 9.5a). This result indicated that most of these 
genes are potential epilepsy related genes. All of the patients in our cohort have suf-
fered from epilepsy and ID/DD, so we believe that there is some common patho-
genic mechanism.

Interestingly, we found the BGNADP motif which was constructed by BTD, 
GALNT10, NMUR2, AUTS2, DLG2 and PTPRD (Fig. 9.5b). This motif was con-
nected with each of the CNVs in our patients. The BGNADP motif is a small epi-
lepsy and ID/DD related gene network. BTD is the gene of biotinidase. Mutations 
in BTD caused a disease called biotinidase deficiency, which is characterized by 
seizures, hypotonia, skin rash, ataxia hearing loss and optic atrophy (Hymes et al. 
2001). AUTS2 (autism susceptibility candidate 2) is associated with a series of neu-
rologic disorders, such as autism, attention deficit hyperactivity disorder, dyslexia, 
ID/DD and epilepsy (Poot et  al. 2011; Jolley et  al. 2013; Nagamani et  al. 2013; 
Oksenberg et  al. 2013). DLG2 encodes a membrane-associated guanylate kinase 
called PSD-93, which interacts at postsynaptic sites of neurons and forms a scaffold 
for the clustering receptors and ion channel. DLG2 expression was reported to 
increase in epilepsy, indicating the role of DLG2 in epilepsy (Liu et  al. 2007). 
PTPRD is a member of the protein tyrosine phosphatase gene family. Deficiency of 
PTPRD results in ID/DD (Choucair et al. 2015). PTPRD is also an epilepsy candi-
date gene according to a genome-wide association study (Speed et  al. 2014). 
GALNT10 and NMUR2 are members of the CNVs of our cohort. They have not yet 
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been subjected to serious study, and should be targeted as candidate epilepsy and/or 
ID/DD genes in a further study. Our study has indicated that this BGNADP motif 
could be an important component in the common pathogenic mechanism. Further 
study should be needed to delineate the role of BGNADP in epilepsy and ID/DD.
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