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Chapter 5
Synaptic Excitatory-Inhibitory Balance 
Underlying Efficient Neural Coding

Shanglin Zhou and Yuguo Yu

5.1  Introduction

Neural information coding is one of the central topics in neuroscience. The brain 
utilizes some features of action potential sequences (spike trains) to encode sensory 
and cognitive information. The algorithm operating within those features is the 
called the neural code. Half a century ago, Perkel and Bullock (1968) noted that a 
potential neural code must serve at least four functions: stimulus representation, 
interpretation, transformation and transmission. Stimulus representation indicates 
that the neural activity should be altered by the stimulus properties needed to be 
coded, and therefore, the neural code can represent this stimulus (Perkel and Bullock 
1968; Kumar et  al. 2010). Due to its basic role, neural representation has been 
extensively studied using experimental and theoretical approaches. Barlow in 1961 
proposed a theoretical framework which hypothesized that the action potentials in 
the sensory neurons formed a neural code for efficiently representing sensory infor-
mation. By efficient Barlow meant that the code minimized the number of neurons 
and spikes needed to represent an input signal. This is the origin of sparse coding or 
efficient neural coding (Barlow 1961). Barlow’s model treats the sensory pathway 
as a communication channel where neuronal spiking is an efficient code for repre-
senting sensory signals. The spiking code aims to maximize available channel 
capacity by minimizing the redundancy between representational units (Simoncelli 
and Olshausen 2001). In addition, one of the major components of a typical neural 
code also include reliable information transmission. The brain is highly modular, 
and a successful neural code should be able to be transmitted (propagated) from one 
module to another with high fidelity (Perkel and Bullock 1968; Kumar et al. 2010). 
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The transmission property of neural coding has also drawn significant attention 
recently (Diesmann et al. 1999; Kistler and Gerstner 2002; van Rossum et al. 2002; 
Litvak et al. 2003; Vogels and Abbott 2005; Kumar et al. 2008, 2010).

The balance of excitatory and inhibitory synaptic membrane currents (E/I bal-
ance) received by a neuron underlying its spontaneous firing and/or responding to 
sensory inputs has been widely observed (van Vreeswijk and Sompolinsky 1996; 
Brunel 2000; Shu et al. 2003; Wehr and Zador 2003; Froemke et al. 2007; Murphy 
and Miller 2009). Here, E/I balance generally refers to excitatory-inhibitory balance 
in terms of either overall global balance or temporal balance on a fine time scale. 
Global E/I balance refers to the bulk measurement of relative contributions of excit-
atory and inhibitory synaptic currents received by a specific neuron. It is called 
global E/I balance if across a range of spatio-temporal conditions of interest, the 
ratio between the synaptic excitation and inhibitioin is kept approximately constant. 
In some situations, even the measurement of firing rates of excitatory and inhibitory 
neurons or excitatory and inhibition synaptic conductances received by a neuron 
can represent E/I balance for individual neurons within the cortical network circuit. 
Temporal balance indicates that the relative magnitudes of excitatory and inhibitory 
synaptic currents are matched in a point-to-point manner on a fast time scale. Global 
E/I balance is often used to examine pathological or dysfunctional brain states, 
whereas temporal E/I balance can be used to examine the effect of synaptic correla-
tion on spiking timing to sensory input and stimulus feature seletivity. Bothe global 
and temporal E/I balances enable cortical operation in a precise manner to represent 
sensory inputs. The disruption of the cortical E/I balance has been demonstrated to 
cause cognitive dysfunction, such as schizophrenia (Yizhar et  al. 2011; Murray 
et al. 2014). Because the E/I balance may be the key structure underlying the neural 
code and cognition, multiple questions arise: (1) How is the E/I balance achieved? 
(2) Why does the neural system choose such a scenario to function? (3) How does 
the E/I balance evolve during neural plasticity and coding? Specifically, how does 
the E/I balance influence information representation and propagation across regions?

Recently, more and more studies are conducted to answer these questions. Here, 
we briefly summarize the evidence for the existence of an E/I balance in the cortex 
and the mechanisms by which the E/I balance is achieved. We then review the 
experimental and computational development on the impact of the E/I balance on 
neural coding, especially the processes of stimulus representation and information 
propagation.

5.2  E/I Balance Is Ubiquitous in Cortical Circuits

Over the last decades, E/I balance has been found to exist in many situations includ-
ing ongoing spontaneous activity, sensory-evoked activity and storage of memories. 
Synaptic plasticity at both excitatory and inhibitory synapses is suggested to play a 
central role in balancing the excitatory and inhibitory inputs to a targeted cell during 
the training or learning process (Vogels et al. 2011; Yu et al. 2014). The level of the 
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developed balance depends on the time scale of the correlation between the excit-
atory and inhibitory inputs to the cell, ranging from a global balance, either without 
a correlation or with a correlation at a slower time scale, to a fine-scale balance for 
strong correlations with a fast time scale.

Global balance is quantified by using global measures of excitatory and inhibi-
tory synaptic currents, including measuring spontaneous or ongoing excitatory and 
inhibitory postsynaptic currents (mEPSC and mIPSC) and the field potential, which 
is considered a rough signiture of the relative timing and magnitude of excitation 
and inhibition. In fact, it is difficult to simultaneously measure excitatory and inhib-
itory current inputs on the same neuron. However, researchers can overcome this by 
measuring the excitatory and inhibitory currents separately at different holding 
potentials and then calculating the average conductance of both currents (gE and gI) 
(Shu et al. 2003; Haider et al. 2006; Monier et al. 2008). By using this method, Shu 
et al. (2003) found that the received synaptic conductance values of gE and gI were 
always balanced with a certain ratio during the up state generated by recurrent con-
nection patterns in the in vitro brain slice (Fig. 5.1a). Other experimental results also 
support the idea that the ratio of gE and gI of a given neuron remains constant across 
different conditions and in many systems (Wehr and Zador 2003; Haider et al. 2006; 
Xue et al. 2014). Additionally, many studies have demonstrated that the E/I balance 
still exists even when the system is driven by external inputs (Anderson et al. 2000; 
Martinez et al. 2002; Tan et al. 2004, 2011; Wilent and Contreras 2005; Cardin et al. 
2007; Wu et al. 2008; Tan and Wehr 2009; Runyan et al. 2010; Liu et al. 2011). In 
fact, some studies have shown that the tuning curves of the excitatory and inhibitory 
conductance are similar to one another (Anderson et  al. 2000; Wehr and Zador 
2003; Cardin et al. 2007; Runyan et al. 2010).

To understand the E/I balance on the fine time scale (the fine-scale balance), 
researchers have tried to simultaneously record the time series of both the excitatory 
and inhibitory currents and then obtain the correlation between them. Since adja-
cent neurons in the cortex generally receive strongly correlated synaptic inputs, 
researchers can record both excitatory and inhibitory currents separately and simul-
taneously, each in a single neuron in a pair of neighboring cells, and the correlation 
between the excitatory and inhibitory currents onto a single cell can be inferred 
from the correlation between the time series from the two cells (Okun and Lampl 
2008). Based on this method, researchers have found that the excitatory and inhibi-
tory inputs from ongoing spontaneous activity or sensory-evoked activity are 
strongly correlated with one another, with inhibitory currents tracking excitatory 
currents closely with a few milliseconds of a delay (Fig. 5.1b) (Okun and Lampl 
2008). More evidence has also shown that a fine-scale E/I balance exists during 
oscillations in the gamma and beta frequencies (Atallah and Scanziani 2009; Poo 
and Isaacson 2009).

Recently, in an interesting study using in vivo recordings with dense multielec-
trodes in the neocortex of higher level mammals (including human and primate), 
Dehghani et  al. (2016) found that excitatory and inhibitory ensembles are well- 
balanced and co-fluctuate instantaneously in all states of the wake-sleep cycle 
(wake, slow-wave sleep and rapid-eye movement sleep) at different temporal scales 
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(Fig. 5.1c). Beyond the temporal view of E/I balance, the spatial properties of E/I 
balance are also important in information processing. For instance, researchers 
observed that local E/I imbalance coexisting with overall balance facilitaates neural 
network creating novel features selectivity (Wu et al., 2008). However, we will 
mainly focus on temporal E/I balance in the following discussion.

5.3  Mechanisms to Achieve E/I Balance

To achieve global E/I balance in a dynamic neural network, several theoretical 
studies have shown that a neural network needs to be equipped with the following 
properties: (1) neurons in the network must be connected sparsely (the number of 

Fig. 5.1 Experimental evidence of the E/I balance. (a) Average currents during the up state in 
recordings clamped at different membrane potentials from in vitro brain slices (top, red and blue 
curves showing the average currents, the green curves showing the raw traces at +30 mV), the 
reversal potential of the average synaptic currents (middle), and additional conductances during 
the up state (bottom). Adapted from Shu et al. (2003). (b) Simultaneous in vivo recordings from 
two cortical cells. One cell (red) was continuously recorded in a hyperpolarized mode, and the 
other cell (blue) was switched between depolarized and hyperpolarized modes (current depicted 
below the traces). Dashed lines mark the onset of synaptic events. Insets show examples of two 
events (marked by asterisks). Adapted from Okun and Lampl (2008). (c) Recordings in humans 
during awake (left), slow-wave sleep (SWS) (middle) and rapid-eye movement (REM) (right) 
states. Top row shows 60-s windows; bottom row shows a 10-s window of the same state. Putative 
inhibitory neurons (FS cells) are shown in red. Putative excitatory neurons (RS) are depicted in 
blue. At the top of each panel, a sample LFP trace (in blue) accompanies the spiking activity. 
Histograms show the overall activity of the RS (blue) and FS (red) cells. Adapted from Dehghani 
et al. (2016)
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connections per neuron should be much smaller than the total number of neurons 
in the network) and randomly; (2) the strength of the inhibitory connections must 
be higher than the excitatory connections (van Vreeswijk and Sompolinsky 1996, 
1998; Brunel 2000). Under such conditions, the average of the excitatory and 
inhibitory synaptic currents could be well-balanced, and the network dynamics 
could be stable. In such a balanced network, the membrane potentials and spike 
trains of the individual neurons may be highly uncorrelated (van Vreeswijk and 
Sompolinsky 1996, 1998; Brunel 2000). Beyond the two aspects mentioned above, 
synaptic plasticity may also play a vital role in the formation of the E/I balance 
(Froemke 2015).

In contrast to requirements for global balance of a network, Renart et al. (2010) 
proposed a neural network with random and dense connections (with the number of 
connections per neuron comparable to the total number of neurons) to achieve a 
more fine-scale E/I balance by setting the synaptic conductances and connection 
structure in the optimal range. In such a network, the excitatory and inhibitory cur-
rents received by each neuron are strongly correlated on a fast time scale. If excit-
atory and inhibitory currents cancel each other, then the net input current will be 
highly random, resulting in highly variable neural responses. Boerlin et al. (2013) 
have demonstrated that both variable neural responses and balanced excitation/ 
inhibition are necessary consequences of neural networks that represent infor-
mation efficiently in their spike trains. However, the Boerlin model assumes 
instantaneous synapses (transmission without delays) and only achieves balance 
because of this assumption. Further work allowed to relax this assumption and 
introduce realistic synapses (Koren and Deneve 2017). With realistic synapses it is 
however required that parameters that weight the cost on spiking are fine-tuned. 
Those parameters can be interpreted in biological terms as determining the excit-
ability of the network.

Furthermore, a theoretical study proved that a network with synaptic plasticity of 
inhibitory synapses could evolve into a fine-scale E/I-balanced state with sparse 
connections (Vogels et al. 2011), and a later experimental study demonstrated the 
existence of this form of synaptic plasticity (D’amour and Froemke 2015). Further 
information about inhibitory synanptic plasticity could be found in other works 
(Vogels et al., 2011). 

Beyond the theoretical work, experimental studies have provided some addi-
tional insights into the development of E/I balance (Froemke 2015). For example, 
Liu (2004) found that the ratio of the number of the excitatory and inhibitory syn-
apses on the dendrites of cultured hippocampal neurons remained constant along 
different developmental stages, which suggests that the E/I balance may be related 
to an anatomical basis. In addition, sensory experiences at different developmental 
stages may play important roles in shaping the final E/I balance level (Froemke 
2015).
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5.4  E/I Balance and Information Representation

One of the fundamental functions of the neural systems is to represent the sensory 
information and make use of it for guiding action, a process termed neural coding. 
Representing neural signals is the process of interpreting prominent features of 
external sensory inputs with individual or population neuronal activity. Experimental 
and theoretical studies have demonstrated that action potential generation is an 
energy-expensive process (Attwell and Laughlin 2001; Alle et al. 2009; Yu et al. 
2012). Therefore, efficient coding can be defined as coding with as few neurons and 
action potentials as possible, while not losing fidelity in representation of certain 
stimulus features (equivalent to sparse coding as defined by Barlow, 1961) or mini-
mized coding error during stimulus representation (Deneve and Machens, 2016). 
Although there is no strict theoretical proof, the minimal coding error and informa-
tion maximization or redundancy reduction are related in some aspects. Intuitively, 
coding effor reduction means a decrease in noise information, which would increase 
the mutual information between the neural response and the input signal, thus 
increasing the information coding efficiency. Because the E/I balance is ubiquitous 
in neural systems, there must be some strategic benefits of the E/I balance for effi-
cient representation. Here, we summarize the evidence for this as follows.

5.4.1  Irregular Spike Trains and Global E/I Balance

A typical well-known property of the firing pattern of an individual neuron recorded 
in  vivo is its irregularity or stochasticity, which is similar to Poisson-like time 
sequences. Revealing how individual neurons establish such irregular firing patterns 
is important for understanding the network states with spontaneous firing and how 
such states could be used to represent stimulus inputs. In fact, it has been widely 
shown that irregular firing patterns could be achieved by a neuron with balanced 
excitatory and inhibitory synaptic inputs on multiple time scales (Shadlen and 
Newsome 1994, 1998; van Vreeswijk and Sompolinsky 1996; Amit and Brunel 
1997; Brunel 2000). There is an intuitive explanation to why such a globally bal-
anced network would lead to the irregular firing of a single neuron. Imagine that 
there is a neural network where each neuron is bombarded with noisy, Poisson- 
distributed synaptic inputs from both excitatory and inhibitory sources. When the 
excitatory input values exceed the inhibitory inputs, then the net mean positive input 
would depolarize the neuron to fire quasi-regularly. However, if the excitatory 
inputs and inhibitory inputs cancel each other out in a slow time scale without cor-
relation on a fast time scale, then the membrane potential of each neuron would 
randomly cross the threshold dependent on the fast noise, resulting in a spiking pat-
tern with a high level of irregularity (Denève and Machens 2016).

Although such a network architecture would capture the irregularity of the neural 
firing pattern, the network behavior would become very sensitive to even a small 
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perturbation due to its chaotic dynamics (Shadlen and Newsome 1998; Brunel 
2000). This hypothesis suggests a low reliability of the neural network in response 
to sensory input, which makes such an E/I-balanced network represent stimulus 
features in a poor fidelity.

5.4.2  Sparse Coding, E/I Balance and Energy Efficiency

Sparse coding implies that only a small fraction of cells in the network displays a 
transient response to an input signal (Vinje and Gallant 2000) and such an energy- 
efficient paradigm greatly extends the coding capacity of a large family of sensory 
inputs (Olshausen and Field 1996; Dhawale et al. 2010; Wolfe et al. 2010; Koulakov 
and Rinberg 2011). Yu et al. (2013, 2014) implemented a large-scale olfactory bulb 
model with mitral cell and granule cell connected by dendro-dendritic synapses 
with regular LTP/LTD synaptic plasticity, and they found that balanced excitation/
inhibition in strongly activated mitral cells leads to a sparse representation of odor-
ant inputs (Fig. 5.2a). They further found that such a network with synaptic plastic-
ity could always evolve into a sparsely oscillatory state to represent the input signal 
efficiently. During the evolving process, global synaptic excitation and inhibition 
gradually reach an optimal balance with which the network produces firing patterns 
with the highest level of sparseness (Fig. 5.2b) (Yu et al. 2014). The optimal level of 
synaptic excitation and inhibition could produce the highest level of sparseness and 
decorrelation in the network response and reduce energy cost (Nawroth et al. 2007).

Interestingly, the formation of response sparseness in such an olfactory bulb net-
work does not depend on a specific type of synaptic plasticity, meaning either 
Hebbian or non-Hebbian rules can both develop the network dynamics into sparse-
ness during the training process (Migliore et al. 2010; Yu et al. 2013, 2014). In a 
recent work by Vogels et al. (2011), the sparsely connected network endowed with 
plasticity of inhibitory synapses could evolve to a sparse response to natural stimuli. 
In addition, this type of network can accommodate synaptic memories with activity 
similar to the background activity; and same activity can be reactivated by external 
stimuli (Vogels et al. 2011).

Note that the above approaches assumed sparse network connection, i.e., neu-
rons receive few connections K compared to the size of the network N, so that 
K ≪  N.  Such a sparse connectivity usually leads to uncorrelated excitation and 
inhibition, resulting in random fluctuations as input to neurons within network. 
Indeed, achieving efficient representation of input signal does not have to set the 
network to be sparsely connected. Recent theoretical works investigated network 
with dense connections. In such a scenario excitation and inhibition received in a 
neuron are strongly correlated while neuronal output spike trains are highly uncor-
related. Such a balanced network could represent information efficiently in their 
spikes (Boerlin et al. 2013). To ensure the network performance, two assumptions 
are required: (1) information on dynamic variables can be read out linearly from 
spike trains, and (2) neurons fire a spike only if it improves the representation of 
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dynamical variables. When a network satisfies these conditions, it evolves naturally 
to achieve the objective representation of a time-varying input with a minimum 
number of spikes with maximal efficiency (Boerlin et al. 2013; Denève and Machens 
2016). In the following work, they further revealed that the maximally efficient 
network is right at the transition from synchronous to asynchronous network states 
(Koren and Deneve 2017). Moreover, there is a tight relationship between coding 
efficiency and energy efficiency, it was observed that there is a “sweet spot” where 
maximal coding efficiency coincides with rather low number of spikes (Boerlin 
et al. 2013; Koren and Deneve 2017).

Using single-compartment computational models with stochastic voltage-gated 
ion channels, Sengupta et  al. (2013) calculated information content under either 
E/I- balanced or unbalanced conditions. They found that balanced synaptic currents 

Fig. 5.2 The correlation of firing sparseness and mitral cell spiking in a large-scale olfactory bulb 
model. (a) Schematic representation of balanced and unbalanced excitation and inhibition in the 
MC–GC circuit. Three activated middle MCs (solid black triangles) receive strong input from 
glomeruli (solid deep green color); through back-propagation of APs in their lateral dendrites, they 
distribute the excitation (red) through reciprocal synapses, activating lateral inhibition in the sur-
rounding MCs through the reciprocal inhibitory synapses. This mode of excitation and inhibition 
is balanced, and these MCs are called MC type I. The activated GCs (small blue spheres) deliver 
lateral inhibition to other surrounding MCs with weak or no excitatory inputs, making their recip-
rocal synapses unbalanced. These MCs are called MC type II. MCs that do not receive lateral 
inhibition are MC type III. (b) The MC network sparseness level as a function of reciprocal inhibi-
tory weight to excitation weight ratio ginh/gex for the cases of different ginh

Max with a fixed gex-
Max = 0.5 nS and different gex

Max with a fixed ginh
Max = 0.3 nS. (c) Same in (b) but shows the mitral 

cell spiking correlation. Adapted from Yu et al. (2014)

S. Zhou and Y. Yu



93

evoke fewer spikes per second than the unbalanced conditions but with more infor-
mation content in a single spike (bits/spike) in the balanced conditions. The total 
informative rate is similar in the two conditions (Sengupta et al. 2013). These results 
strongly support the hypothesis that E/I balance can promote both coding efficiency 
and energy efficiency.

Indeed, maximizing the ratio of the coding capacity to energy cost has been sug-
gested to be one of the key principles chosen by the nervous system to evolve under 
selective pressure, and the metabolic energy efficiency demands of the nervous sys-
tem could be sufficiently large to influence the design, function and evolution of the 
brain (Niven and Laughlin 2008). A recent theoretical work revealed a general rule 
for population coding in which the neuronal number should be sufficiently large to 
ensure reliable information transmission that is robust to the noisy environment but 
small enough to minimize energy cost (Yu et al. 2016). Experiments in cortex cul-
tures, anesthetized rats, and awake monkeys, as well as computer models, have 
shown that balanced excitation/inhibition (E/I) could lead to a critical dynamic of 
avalanches in the cortical neural network (Shew et al. 2009; Poil et al. 2012; Yang 
et al. 2012). The number of metastable states (Haldeman and Beggs 2005) and the 
dynamic range to the input stimuli (Shew et al. 2009), as well as the information 
capacity and transmission (Beggs 2008; Shew et  al. 2011) of the cortical neural 
networks, could be maximized at the critical point. The developed E/I balance 
within brain circuits during rest, learning and memory states may be beneficial for 
the brain to maintain an optimal state based on the theory of criticality. A large E/I 
ratio leads to a super-critical state whereby the neurons are highly activated and 
spikes among neurons are highly correlated. However, a small E/I ratio leads to a 
sub-critical state whereby the overall neural activity level drops and the spikes 
among neurons are random and not correlated (Yang et al. 2012). For information 
processing, highly correlated spikes reduce entropy in the former case, and in the 
latter case, the reduced correlation increases entropy, but this increase is counter-
acted by the concurrent drop in total information, resulting in maximal information 
transmission at a moderate E/I ratio (Shew et al. 2011). However, energy expendi-
ture increases monotonically as the E/I ratio increases due to the increasing overall 
neural activity level. Therefore, a relatively large information transmission while 
relatively low energy cost, is expected to be maximized around an optimal E/I ratio 
(Poo and Isaacson 2009; Yu et al. 2014; Denève and Machens 2016).

5.4.3  Decorrelation and E/I Balance

The correlations among the spiking trains of all individual neurons in a network in 
response to sensory input can either help or harm the information transfer (Averbeck 
et  al. 2006). More specifically, if positive signal correlations (i.e., neurons with 
similar selectivities of stimulus features) are linked to positive noise correlation, this 
would harm the information transfer. On the contrary, neurons have opposite stimu-
lus selectivities, positive noise correlation help the information transfer. In many 
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cases, correlations will not influence the information transfer (see for example, a 
theoretical study by Moreno-bote et al. 2014). To overcome the spiking correlation 
problem induced by correlated presynaptic input, Renart et al. (2010) built a densely 
connected neural network with excitatory and inhibitory currents canceling each 
other on a fast time scale (fine-scale balance). By using such mechanism, they 
showed that, theoretically, a fine-scale balanced network could generate an asyn-
chronous state of population activity with a low mean spiking correlation despite 
correlated inputs (Renart et al. 2010). In the same study described above, Yu et al. 
(2014) found the E/I balance-induced sparse representation of odorant inputs was 
accompanied by a decorrelated state of mitral cell firing patterns, and the maximal 
decorrelation value existed at the optimal level for synaptic excitation and inhibition 
for the sparseness (Fig. 5.2c). In another interesting experimental work, researchers 
manipulated the excitation/inhibition ratio (E/I ratio) to obtain an optimal E/I ratio 
that maximized the information capacity by trading off between a lower correlation 
state (induced by low E/I ratio) and moderate activity (induced by a relatively high 
E/I ratio) (Shew et al. 2011).

5.5  E/I Balance and Information Propagation

Because the brain is highly modular, and spiking activity may carry a lot of neural 
information, it is important that the spiking activity can be transmitted from one 
module to another with high fidelity. Indeed, Perkel and Bullock (1968) noted that 
one of the major components of a typical neural code should be the inclusion of 
reliable information transmission or information propagation. The identification of 
the conditions under which spiking activity can propagate with high fidelity has 
attracted the attention of many theoretical researchers in the recent decade 
(Diesmann et al. 1999; Kistler and Gerstner 2002; van Rossum et al. 2002; Litvak 
et al. 2003; Kumar et al. 2008, 2010). Researchers usually address the propagation 
topic using a model of a cascade of neural assemblies in which a single neuron can 
participate at multiple levels (termed a feedforward network). To construct a more 
biologically oriented neural network, theoretical works tend to embed a feedfor-
ward sub-network into a larger recurrent neural network. However, neurons in the 
feedforward sub-network receive stronger correlated excitation than the rest of the 
recurrent network. This may destabilize the activity of the recurrent network. To 
solve this defect, Aviel et al. (2003) added inhibitory neurons into the subset net-
work to balance the extra excitation.

Researchers have identified two modes of spiking activity propagation: the asyn-
chronous mode (rate code, with information about the stimulus is carried and propa-
gated in the firing rate of a neuron or the average of population activity) (van Rossum 
et  al. 2002; Litvak et  al. 2003; Vogels and Abbott 2009) and synchronous mode 
(temporal code, with information about the stimulus is carried and propagated by 
the precise timing of action potentials) (Aertsen et al. 1996; Diesmann et al. 1999; 
Gewaltig et al. 2001; Litvak et al. 2003; Kumar et al. 2008). For a network with a 
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feedforward configuration, the firing rates at each layer could be stabilized to a 
constant level after an initial increase (Fig. 5.3a) (Litvak et al. 2003). The network 
inhibition precisely balanced with excitation plays a key role in modulating the 
mean firing rate level. Small deviations from the precise balance would result in a 
large fluctuation in the firing rate at each layer (Fig.  5.3b) (Litvak et  al. 2003). 
Litvak et al. (2003) showed that the population synchrony could be formed after a 
few layers and then propagate stably through many layers in such a feedforward 
network with the excitation firing rate balanced with the inhibitory firing rate 
(Fig. 5.3c).

Beyond the fidelity of information propagation, the regulation of the spiking 
activity is also important for neural coding. A given module of the neural system has 
the potential to respond to several different signal pathways. To accomplish a single 
task, some mechanisms must exist to selectively block or boost some signal path-
ways. Recently, Vogels and Abbott (2009) showed that a detailed balance of excita-
tion and inhibition in the target feedforward network group could be a potential 

Fig. 5.3 Propagation of firing rate in a multilayer feedforward network. (a) Average firing rate of 
different layers in the precisely balanced network. (b) Average firing rate of different layers in the 
feedforward network with small deviations from the precise balance. (c) Raster plot showing the 
firing pattern of excitatory neurons in different layers in a feedforward network with balanced fir-
ing rates between excitation and inhibition. Adapted from Litvak et al. (2003)
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gating mechanism; there information transmission can be gated ‘on’ by adjusting 
the excitatory and inhibitory gains to upset this detailed balance.

5.6  Conclusion

Stimulus representation and information propagation are two basic functions of 
neural coding. E/I balance, which is acknowledged as a fundamental paradigm for 
many brain functions, has been demonstrated to play a fundamental role in shaping 
the neural coding process. On one hand, the E/I balance can significantly increase 
the coding efficiency and energy efficiency to extend the coding capacity by pro-
moting a sparse representation and signal decorrelation. Intuitively, an E/I ratio that 
is too high leads to excitatory dominance, resulting in high correlation (low level of 
coding efficiency) and activity (high level of energy consumed); however, an E/I 
ratio that is too low leads to suppressed activity with low information content. 
Therefore, the tradeoff between these two aspects requires the balance of the excit-
atory and inhibitory currents. On the other hand, based on recent theoretical studies, 
the E/I balance also plays a vital role in determining the fidelity of spiking activity 
propagation and gating of the multiple signal pathways. More experimental investi-
gations are expected to test theoretical hypotheses and predictions in the near future. 
As discussed above, the implementations and functions of the two types of E/I bal-
ance––global balance and fine-scale balance, are different from one another. More 
studies are also needed to demonstrate the exact differences between the effects of 
these two types of balance on neural coding.

Here, we mainly discussed the roles of E/I balance in neural coding, while many 
additional studies have focused on the role of E/I balance in other brain functions, 
e.g., the formation of memories (Vogels et al. 2011; Lim and Goldman 2013) and 
the information storage process. More studies are expected to clarify the effects of 
E/I balance in memory formation and examine how the information storage process 
benefits from the E/I balance.
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