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Modeling Approaches in the Discovery 
of Therapeutic Targets for Spinal Muscular 
Atrophy

Matthew E. R. Butchbach

Abbreviations

AC	 Adenylate cyclase
cAMP	 Cyclic AMP
cnPDE	 Cyclic nucleotide phosphodiesterase
CRE	 cAMP-response element
CREB	 CRE binding protein
dbcAMP	 Dibutyryl cAMP
ELISA	 Enzyme-linked immunosorbent assay
ESS	 Exonic splicing enhancer
FL-SMN	 Full length SMN
GPCR	 G protein-coupled receptor
IGF1R	 Insulin-like growth factor 1 receptor
ODE	 Ordinary differential equation
PDE	 Partial differential equation
PKA	 cAMP-dependent protein kinase
PP2A	 Protein phosphatase 2A
SMA	 Spinal muscular atrophy
SMN1	 Survival motor neuron 1
SMN2	 Survival motor neuron 2
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SMNΔ7	 SMN lacking exon 7
SNV	 Single nucleotide variant

10.1  �Introduction

Systems biology integrates biochemical, genetic and cellular approaches to provide 
a more comprehensive understanding of higher level processes in living organisms. 
In this integrated approach, the components of a system are best understood by their 
relationships within the system as well as with other systems. These interconnected 
components are referred to as networks. Mathematical modeling of networks is an 
essential facet of systems biology (Dhurjati and Mahadevan 2008). When studying 
complex and dynamic interactions, experimental and/or mathematical approaches 
provide a means to explore and understand the system of networks in question 
(Dhurjati and Mahadevan 2008). These approaches can also highlight ways in 
which this system can be manipulated. Systems biology can be used to identify 
novel pathways implicated in different diseases and to determine the optimal ways 
of manipulating regulatory networks to treat these diseases.

Network analysis and pathway connectivity approaches in systems biology have 
provided important insights into the pathogenesis of neurodegenerative diseases 
(Villoslada et al. 2009). These approaches have led to the identification of novel 
molecular pathways affected by diseases like hereditary ataxias. Systems biology 
and mathematical modeling approaches can be used in the development of thera-
peutic strategies for neurological diseases. Neurological diseases having a clearly 
genetic etiology, like the pediatric-onset motor neuron disease spinal muscular atro-
phy (SMA), are particularly amenable to systems biology and mathematical model-
ing approaches. To illustrate this application, we describe below how mathematical 
modeling is being used to more thoroughly understand the regulation of SMN2, an 
endogenous modifier gene for SMA, expression and to develop optimal therapeutic 
targets for this disease.

10.2  �Spinal Muscular Atrophy

Proximal SMA is an autosomal recessive early-onset neurodegenerative disease 
characterized by the loss of α-motor neurons in the anterior horn of the spinal cord 
which leads to muscle weakness and atrophy (Crawford and Pardo 1996; Kolb and 
Kissel 2015). Proximally innervated muscles are preferentially affected over distal 
muscles in SMA. It is a leading genetic cause of infant and early childhood mortal-
ity across the world with an incidence of 1  in ~10,000 live births (Pearn 1978; 
Cuscó et al. 2002; Sugarman et al. 2012). The carrier frequency for SMA ranges 
from 1:25 to 1:50 (Zaldívar et al. 2005; Labrum et al. 2007; Hendrickson et al. 2009; 
Ben-Shachar et al. 2011; Su et al. 2011; Sugarman et al. 2012; Lyahyai et al. 2012; 
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Sangaré et al. 2014). While SMA is primarily a disorder affecting motor neurons, 
other cells are affected by this disease (Shababi et al. 2014). Arrhythmias and other 
cardiac abnormalities have been observed in mouse models for SMA (Heier et al. 
2010; Shababi et al. 2010; Biondi et al. 2012; Shababi et al. 2012). SMA mice have 
also demonstrated abnormalities in the autonomic and enteric nervous systems 
(Bevan et  al. 2010; Gombash et  al. 2015). Loss of insulin-producing β-cells has 
been observed in the pancreas (Bowerman et  al. 2012, 2014). While peripheral 
organ dysfunction in SMA has been described, it is not yet clear whether or not this 
dysfunction is a direct result of the disease or a consequence of motor neuron loss 
and muscle atrophy.

There is a high degree of phenotypic variability within the SMA population. As 
such, SMA is divided into 5 clinical grades based on age of onset and severity of the 
disease (Munsat and Davies 1992; Russman 2007). The more severe SMA (types 0 
and I) patients have a short lifespan and usually die because of respiratory compli-
cations arising from weakness in the intercostals muscles. Due in part to better sup-
portive care (Wang et al. 2007), type II SMA patients generally have a life expectancy 
into early adulthood. Type III SMA patients usually have a normal lifespan but have 
difficulty walking. Adult-onset type IV SMA patients generally have a fairly benign 
disease progression.

Most cases of SMA, regardless of clinical grade, result from large-scale dele-
tions within chromosome 5q13.2 and the loss of the Survival Motor Neuron 1 
(SMN1) gene (Lefebvre et al. 1995). The SMN gene is duplicated in humans to give 
rise to SMN1 and SMN2 (Rochette et al. 2001). This duplication event is not perfect 
in that there are single nucleotide differences between SMN1 and SMN2. The major 
difference between these two SMN genes is a translationally silent, C-to-T transition 
in exon 7(SMN2 c.850C > T) (Lorson et al. 1999; Monani et al. 1999). This position 
on exon 7 lies within an exonic splicing enhancer (ESS) sequence that regulated the 
inclusion of exon 7 in SMN1 mRNA transcripts (Fig. 10.1). This ESS is disrupted in 
SMN2 so that most (about 90%) of the SMN2-derived mRNAs lack exon 7 (SMNΔ7) 
after splicing. The resultant SMNΔ7 protein is unstable and not fully functional 
(Lorson and Androphy 2000; Burnett et al. 2009; Cho and Dreyfuss 2010). Some 
SMN2 mRNAs—roughly 10%—contain exon 7 which results in the production of 
some full-length SMN (FL-SMN) protein from SMN2.

10.3  �SMN2 as an Endogenous Genetic Modifier of SMA 
Phenotype

Since the region of chromosome 5 containing the SMA locus is subject to unequal 
segmental duplication, SMN1 and SMN2 copy numbers are quite variable in the 
genome. Numerous studies have demonstrated an inverse relationship between 
SMN2 copy number and disease severity amongst patient with SMA (reviewed in 
Butchbach 2016). As a general rule, those patients with milder forms of SMA have 
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higher SMN2 copy numbers than severe SMA patients. There are some rare excep-
tions to this inverse relationship between SMN2 copy number and disease severity 
in SMA. Some type II and III SMA patients have been shown to harbor only 2 cop-
ies of SMN2 (Prior et al. 2009; Vezain et al. 2010; Bernal et al. 2010). These patients 
contain a rare single nucleotide variant (SNV) in exon 7 (SMN2 c.859G > C) that 
regulates exon 7 inclusion. SMN2 is a genetic modifier of disease progression in 
SMA patients.

The modifier effect of SMN2 is also observed in animal models for SMA.  In 
zSmn (zebrafish orthologue to SMN1) mutant zebrafish, SMN2 extends the survival 
of mutant larvae and rescues deficits in neuromuscular junction formation in these 
mutant fish (Hao Le et al. 2011). Transgenic insertion of SMN2 into mSmn (murine 
orthologue to SMN1) nullizygous mice rescues embryonic lethality (Schrank et al. 
1997; Monani et al. 2000; Hsieh-Li et al. 2000; Michaud et al. 2010). SMN2 trans-
gene copy number dictates the severity of the SMA phenotype in these mice. In 
other words, SMA mice with low SMN2 copy numbers show a severe SMA pheno-
type (i.e. death within 8 days after birth) while high copy SMN2 SMA mice have no 
phenotype (Monani et al. 2000; Hsieh-Li et al. 2000; Michaud et al. 2010). SMN2 
is, therefore, a major modifier of disease severity in humans as well as in animal 
models for SMA. These studies also show that SMN2 is an ideal endogenous molec-
ular target for the development of therapies for SMA.

Fig. 10.1  Molecular difference between SMN1 and SMN2 and its effect on splicing. This figure is 
adapted from (Butchbach and Burghes 2004; Butchbach 2016)
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10.4  �Regulation of SMN2 Expression by cAMP Signaling

Because of this phenotype modifying property, SMN2 has been the target for numer-
ous drug discovery strategies (Cherry et al. 2014). Targeting cyclic adenosine mono-
phosphate (cAMP) signaling is of particular interest in developing inducers of 
SMN2 expression. The cAMP signaling cascade (Fig. 10.2) regulates various cel-
lular processes including gene expression, cell growth, metabolism and stress 
response (Kleppe et al. 2011). The SMN2 promoter contains at least one cAMP-
response element (CRE) that is able to bind to activated CRE-binding protein 
(phospho-CREB) (Majumder et  al. 2004). The β2-adrenergic agonist salbutamol 
increases the amount of FL-SMN protein in SMA fibroblasts and leukocytes of 
SMA patients (Angelozzi et al. 2008; Tiziano et al. 2010). Forskolin, which stimu-
lates adenylyl cyclase (AC) catalysis to produce cAMP from ATP, increases SMN2 
promoter activity (Majumder et al. 2004). The synthetic analogue dibutyryl cAMP 
(dbcAMP)—which activates cyclic AMP-dependent protein kinase (PKA)—also 
increases SMN2 promoter activity (Majumder et al. 2004). We have recently shown 
that modulators of cAMP signaling significantly increase the number of gems—
subnuclei foci of SMN protein (Liu and Dreyfuss 1996)—in fibroblasts derived 

Fig. 10.2  Regulation of SMN2 gene expression by the cAMP pathway. Ligand binds to and acti-
vates its membrane-bound G protein-coupled receptor (GPCR) leading to the dissociation of the 
Gα,s subunit from the GPCR. Gα,s then activates adenylyl cyclase (AC) which converts intracellular 
ATP into cAMP. cAMP then activates cAMP-dependent protein kinase—or protein kinase A 
(PKA). The catalytic PKA subunit, now freed of its regulatory subunits, acts on cAMP-response 
element-binding (CREB) protein. Phosphorylated CREB (phospho-CREB) binds to cAMP 
response elements (CREs) with the promoter regions of SMN2. Cyclic nucleotide phosphodiester-
ases (cnPDEs) diminish cAMP signaling by breaking down cAMP into AMP. This figure is adapted 
from (Mack et al. 2014)
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from a type II SMA patient (Mack et al. 2014). Taken together, these studies show 
that modulation of cAMP signaling can increase SMN levels from SMN2.

10.5  �Mathematical Modeling of Gene Expression

Mathematical models use mathematical concepts and terminology to describe a bio-
logical network using a set of variables and equations to define the relationships 
between these variables. Mathematical models are initially generated using avail-
able experimental data and domain knowledge. Through a process involving mul-
tiple iterations, the model assumptions are revised and refined in order to develop 
improved models that better fit the biological network (Dhurjati and Mahadevan 
2008). This adaptability of mathematical models also makes it possible to integrate 
multiple pathways into a network model.

There are two types of mathematical models, quantitative and logic (Le Novère 
2015). Quantitative models are linear representations of quantitative variables over 
time and can be used to compute concentrations of biomolecules and genes as well 
as durations of biomolecular interactions and processes. Quantitative models are 
precise and provide a direct comparison with experimentally-derived quantitative 
measurements but a priori knowledge of initial conditions and kinetic parameters is 
required to generate these models. Logic models, on the other hand, use qualitative 
activities and define phenotypes to compute transitions between two states and sta-
ble behaviors, known as attractors. While logic models are easy to generate and to 
use for simulation experiments, they are not useful for making quantitative predic-
tions and it is difficult to select between multiple attractors. Historically, mathemati-
cal models have been designed to be either quantitative or logic; however, newer 
models which integrate quantitative modules with logic modules are being devel-
oped (Ryll et al. 2014).

Gene expression networks can be modeled mathematically using either thermo-
dynamic, differential equation-based or Boolean (probabilistic) approaches (Ay and 
Arnosti 2011). The selection of modeling approach depends on the type of biologi-
cal data available (qualitative or quantitative), the nature of the system to be mod-
eled (static vs. dynamic), the level of detail and the scale of the model. Thermodynamic 
models are generated by factoring the quality and the arrangements of binding site 
for a biomolecule, for example, binding of transcription factors to their response 
elements within DNA. Thermodynamic models assume that the system is at a state 
of equilibrium and, hence, cannot describe the dynamic nature of the system. 
Differential equation models focus on regulatory interactions where time, state and 
space are viewed as continuous variables. As a result, differential equation models 
readily factor in the dynamic nature of the system in question. These models use 
ordinary differential equations (ODEs) if only one continuous variable, like time, is 
being factored or partial differential equations (PDEs) when multiple variables are 
being factored. Since ODEs and PDEs can be difficult to solve analytically, differ-
ential equation-based models can be hard to implement computationally, especially 
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for larger biological networks. Boolean models represent relationships as one of 
two possible states, on or off, and can combine qualitative data into a logical struc-
ture. Instead of viewing variables as continuous, Boolean models consider time, 
state and space as discreet variables. While Boolean models are easy to analyze and 
implement computationally, they can be inaccurate if the system depends on fine 
details.

In most cases, there are unknown parameters within a mathematical model; as a 
result, these parameters need to be estimated so as to fit the proposed model with the 
experimental data. Parameter estimation begins with an initial estimate and new 
estimates are iteratively generated so as to minimize the error between simulated 
and experimental data. An objective function that measures model performance—
such as the sign squared error or sum of squares of the residuals between model 
simulations and experimental data—is used in parameter estimation. More detailed 
information on parameter estimation approaches can be found elsewhere (Banga 
and Balsa-Canto 2008; Ay and Arnosti 2011). Parameter estimation is affected by 
both the structure of the model and the biological system for that model (Ay and 
Arnosti 2011). In order to assess how the model structure can affect parameter esti-
mation, the effects of changes in parameter inputs on model outputs needs to be 
measured by process of sensitivity analysis. Local sensitivity analysis focuses on a 
specific set of parameter values at one point in time or space while global approaches 
examine the entire model over a range of parameter values. Further detailed infor-
mation regarding the specifics of sensitivity analysis can be found elsewhere (Ingalls 
2008). Sensitivity analysis is essential for the building and interpreting mathemati-
cal models.

10.6  �Overall Strategy for Building Mathematical Models 
of Gene Expression

Mathematical modeling is an essential component of systems biology but it can 
appear daunting to biologists, especially those with limited experience in mathe-
matical biology. Figure 10.3 provides a generic workflow for generating and testing 
a mathematical model for gene expression and cell signaling. This workflow is 
designed for differential equation-based models of the regulation of gene expression 
and cellular signaling. When beginning the process of model generation, one of the 
best sources of information for building mathematical models is the primary litera-
ture. There are also some recent reviews which describe the methodological details 
of generating a mathematical model for gene expression and cell signaling (Zi 2012; 
MacLean et al. 2016).

The first step in mathematical model generation is to create a comprehensive 
gene regulatory pathway map using existing biological information. CellDesigner is 
a convenient tool to graphically represent these pathway maps (Funahashi et  al. 
2003). CellDesigner uses standardized set of symbols known as Systems Biology 
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Graphical Notation (SBGN; (Hucka et al. 2003) to represent components of a bio-
logical network and their relationships (Le Novère et al. 2009). Complex Pathway 
Simulator (COPASI) is another platform-independent biological simulator program 
that can be used to generate mathematical models (Hoops et al. 2006; Mendes et al. 
2009). The models can then imported into the mathematical software MATLAB 
using the Systems Biology Toolbox (Schmidt and Jirstrand 2006).

Once the pathway map has been generated, the kinetics for each reaction in the 
regulatory pathway must be assigned. The two primary components of a mathemati-
cal model, the differential equations and the conservation equations, can now be 
generated. The differential equations, which generally take the form of ODEs, rep-
resent changes in the components of a reaction in response to stimulation. The con-
servation equations are meant to show the balance between active and inactive 
forms of a signaling intermediate. The values of all of the parameters within each 
reaction kinetics equation must also be set from either a priori knowledge or be 
estimated using an objective function as described in the previous section (Banga 
and Balsa-Canto 2008; Ay and Arnosti 2011).

Simulations for the mathematical models can be completed once the parameters 
have been set and the initial concentrations of signaling components are estimated 
or determined from the literature. The robustness of a biological model can be 
assessed with sensitivity analysis as described in the previous section (Ingalls 2008; 

Fig. 10.3  Strategy for 
generating and testing 
mathematical models of 
gene expression and cell 
signaling
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MacLean et al. 2016). For a model to be considered robust, its outcomes must not 
be markedly affected by perturbations of the parameters or initial concentrations. 
With a robust model, the effects of altered expression of a component on the out-
come, i.e. expression of the target gene, can be measured and future biological 
experiments can be designed with the assistance of mathematical models.

10.7  �Mathematical Modeling of SMN2 Regulation by cAMP 
Signaling

A systems biology approach can be used to investigate SMN2 gene regulation. We 
recently developed mathematical models to characterize the regulation of SMN2 
expression by cAMP signaling (Mack et al. 2014). This approach is based on addi-
tive interactions between experimental data and mathematical models. We focused 
on the SMN2 regulation by cAMP signaling because there is ample evidence in the 
literature showing that activation of cAMP signaling increases SMN2 expression 
(Majumder et al. 2004; Angelozzi et al. 2008; Tiziano et al. 2010). The experimental 
data for these mathematical models were obtained from gem—a marker for SMN 
localization within the nucleus—assays in type II SMA fibroblasts because the 
reduction in gems correlates with SMN protein expression and SMA severity 
(Coovert et al. 1997) and this assay has been used in multiple studies identifying 
compounds which increase SMN expression (Andreassi et al. 2001, 2004; Sumner 
et al. 2003; Lunn et al. 2004; Grzeschik et al. 2005; Jarecki et al. 2005; Riessland 
et al. 2006; Mattis et al. 2006; Novoyatleva et al. 2008; Thurmond et al. 2008; Xiao 
et al. 2011). These gem inducing agents were validated by immunoblot or enzyme-
linked immunosorbent assays (ELISAs).

The cAMP signaling treatment data were used to generate two distinct mathe-
matical models, the full cAMP:SMN2 and alternate cAMP:SMN2 models (Fig. 10.4) 
(Mack et al. 2014). The full cAMP:SMN2 model (Fig. 10.4a) factors in the effect of 
CREB activation on SMN2 transcription. As some groups have suggested that 
cAMP signaling regulates SMN2 expression post-transcriptionally by influencing 
FL-SMN protein stability (Burnett et al. 2009; Harahap et al. 2015), an alternate 
cAMP:SMN2 model (Fig. 10.4b) was generated. Both models are extensions of a 
cAMP signaling mathematical model in yeast (Williamson et al. 2009). The models 
contain ODEs as well as conservation equations. The full cAMP:SMN2 model con-
tains seven ODEs and three conservation equations while the alternate cAMP:SMN2 
model contains five ODEs and two conservation equations (Mack et  al. 2014). 
Simulated data from both models match with the experimental gem data showing 
that either model is valid. When these two models were combined, however, the 
resultant simulated data did not fit well with the experimental data suggesting that 
only one model correctly recapitulates the effect of cAMP signaling cascade on 
SMN2 expression. Since the experimental data used to generate these models were 
fixed at one point in time, it is currently not possible to assess which mathematical 
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model more accurately simulates cAMP signaling-dependent regulation of SMN2 
expression. Future studies examining various facets of SMN2 regulation including 
gem formation will allow better refinement and distinction between these two 
models.

10.8  �Conclusions and Future Directions

Regulation of SMN2 expression by cAMP signaling can be modeled mathemati-
cally. The regulation of SMN2 by cAMP signaling is complex, multi-faceted and not 
completely understood. SMN is directly phosphorylated by PKA in vitro (Burnett 
et al. 2009; Wu et al. 2011). The interactions between SMN and other components 
of the core SMN macromolecular complex may be dependent upon PKA-dependent 
phosphorylation of SMN. PKA phosphorylation of SMN protein could not be fac-
tored into either mathematical model because the effects of PKA phosphorylation 
of SMN on its function and localization are not yet known. If PKA phosphorylation 
impacts SMN function, then this component of cAMP signaling can be factored into 
refined mathematical models of cAMP signaling and SMN2 expression.

Another facet of gene regulation is the impact of other signaling pathways on the 
target pathway. For example, numerous extracellular stimuli including activation of 
ionotropic glutamate receptors, exercise and inhibition of insulin-like growth factor 

Fig. 10.4  Mathematical models for modulation of SMN2 expression by cAMP signaling. 
Schematic representations of the full cAMP:SMN2 (a) and alternate cAMP:SMN2 (b) models for 
the regulation of SMN2 expression by cAMP signaling. This figure is adapted from (Mack et al. 
2014)
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I receptor (IGF1R) increases SMN expression in the spinal cord by AKT-mediated 
phosphorylation of CREB (Biondi et al. 2010, 2015; Branchu et al. 2013). CREB is 
regulated by the protein serine/threonine phosphatase 2A (PP2A) (Wadzinski et al. 
1993). Protein serine/threonine phosphatase inhibitors like cantharidin and tautomy-
cin have been shown to increase SMN2 expression (Novoyatleva et al. 2008; Zhang 
et al. 2011). These natural product inhibitors may act through suppression of CREB 
dephosphorylation and, as a result, activation of the SMN2 promoter. As new insights 
are gained as to how these other intracellular pathways affect CREB-mediated acti-
vation of SMN2 expression, the intersection of AKT and PP2A with cAMP signaling 
can be integrated into current mathematical models of SMN2 expression.

In addition to identifying the optimal component of the cAMP signaling pathway 
responsible for regulating SMN2 expression, mathematical models can be used to 
predict the effects of drug combinations. For example, activation of AC by forskolin 
can act in concert with cyclic nucleotide phosphodiesterase (cnPDE) inhibition by 
rolipram to additively increase gem formation, as predicted mathematically (Mack 
et  al. 2014). Once validated experimentally, mathematical modeling can used to 
design combination strategies that target different parts of a signaling cascade, in 
this case cAMP signaling. Furthermore, drug discovery efforts have identified 
numerous small molecule activators of SMN2 expression that operate either by 
increasing SMN2 transcription or alternative splicing to increase the proportion of 
FL-SMN transcripts (reviewed in Cherry et al. 2014). As the molecular targets and 
signaling pathways affected by these small molecules are identified, parallel math-
ematical models can be generated for each pathway as it relates to SMN2 gene regu-
lation. These pathways can then be integrated so as to create a comprehensive 
mathematical model for SMN2 gene regulation. This comprehensive model can be 
used to predict which pathways could be modulated synergistically in order to max-
imize SMN2 upregulation which will drive the development of combination thera-
peutic strategies for SMA.

In conclusion, mathematical modeling is a systems biology approach that can be 
used to understand how gene expression can be regulated by a signaling pathway. 
This approach has recently been applied to the regulation of SMN2 expression by 
cAMP signaling. This systems-based mathematical modeling approach can ulti-
mately aid in the development and optimization of cAMP signaling-based therapies 
for SMA. A similar approach could also be used for other molecular pathways that 
regulate SMN2 expression. Mathematical models of these individual pathways reg-
ulating SMN2 expression can then be integrated to create a more comprehensive 
model of SMN2 gene regulation. Furthermore, mathematical modeling can be 
applied to other neurogenetic diseases wherein modifier genes, like SMN2 for SMA, 
have been identified.
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