
Coping with Bad Agent Interaction
Protocols When Monitoring Partially

Observable Multiagent Systems

Davide Ancona, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi(B)

Università degli Studi di Genova, Genoa, Italy
{davide.ancona,angelo.ferrando,luca.franceschini,

viviana.mascardi}@dibris.unige.it

Abstract. Interaction Protocols are fundamental elements to provide
the entities in a system, be them actors, agents, services, or other com-
municating pieces of software, a means to agree on a global interaction
pattern and to be sure that all the other entities in the system adhere to it
as well. These “global interaction patterns” may serve different purposes:
if the system does not yet exist, they may specify the allowed interac-
tions in order to drive the system’s implementation and execution. If the
system exists before and independently from the protocol, the protocol
may still specify the allowed interactions, but it cannot be used to imple-
ment them. Its purpose in this case is to monitor that the actual system
does respect the rules (runtime verification). Tagging some protocols as
good ones and others as bad is common to all the research communities
where interaction is crucial, and it is not surprising that some protocol
features are recognized as bad ones everywhere. In this paper we analyze
the notion of good, bad and ugly protocols in the MAS community and
outside, and we discuss the role that bad protocols, despite being bad,
may play in a runtime verification scenario where not all the events and
interaction channels can be observed.

Keywords: Bad agent interaction protocols · Monitoring
Distributed Runtime Verification · Partial observability

1 Introduction

Interaction Protocols are a key ingredient in MASs as they explicitly represent
the agents expected/allowed communicative patterns and can be used either to
check the compliance of the agent actual behavior w.r.t. expected one [1,10] or
to drive the agent behavior itself [4].

Interaction protocols are also crucial outside the MAS community: what we
name an “Agent Interaction Protocol”, AIP, is referenced as a “Choreography”
in the Service Oriented Computing (SOC) community [36] and as a “Global
Type” in the multiparty session types one [15,31]. In the MAS community, AIPs
describe interaction patterns characterizing the system as a whole. This global
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Demazeau et al. (Eds.): PAAMS 2018, LNAI 10978, pp. 59–71, 2018.
https://doi.org/10.1007/978-3-319-94580-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94580-4_5&domain=pdf


60 D. Ancona et al.

viewpoint is supported by many formalisms and notations such as AUML [32],
commitment machines and their extensions [11,12,22,40,42], the Blindingly Sim-
ple Protocol Language (BSPL) and its Splee extension [21,37], the Hierarchical
Agent Protocol Notation (HAPN) [41], trace expressions [7]. A systematic com-
parison of these approaches – apart from AUML which is not formal, and not
supported by a textual notation – can be found in [9].

When moving from the specification to the execution stage, the AIP must
be enacted by agents in the MAS: besides the global description of the protocol,
the “local” description of the AIP portion each agent is in charge of, is required
to run the AIP. The AIP enactment is usually left to Computer-Aided Software
Engineering tools that move from AIP diagrams directly into agent skeletons in
some concrete agent oriented programming language [23,30], or to algorithms
that translate the AIP textual representation to some abstract, intermediate
formalism for modeling the local viewpoint [19,26]. Such intermediate formalisms
are not perceived as the main target of the MAS research and no standardization
effort has been put on them. In the SOC community, on the contrary, formalisms
exist for modeling both the global and the local perspectives. As observed by
[35], WS-CDL1 follows an interaction-oriented (“global”) approach, whereas in
BPEL4Chor2 the business process of each partner involved in a choreography
is specified using an abstract version of BPEL3: BPEL4Chor follows a process-
oriented (“local”) approach. In the multiparty session types community, the main
emphasis is on type-checking aspects: the formalism used to represent global
types is relevant, as well as its expressive power, but even more relevant are
the properties of the “global to local” projection function w.r.t. type-safety [25].
Finally, in the Distributed Runtime Verification (DRV) community [29], one of
the most relevant issues is how to automatically generate a monitor (or a set of
monitors) from a given protocol, and to use it (them) to dynamically monitor
the existing system’s behaviour.

Our work lies in the intersection of the MAS and DRV research areas. We
are interested in exploring under which conditions a good AIP can turn into a
bad one, if it is possible to exploit such bad protocols anyway for DRV purposes,
and in providing an implemented tool for automatically generating a set of MAS
monitors under these conditions. To this aim, we developed RIVERtools [27]
which supports the development of AIPs modeled using the trace expressions
formalism [3,7] via a user-friendly GUI. RIVERtools implements static controls
to check if a protocol is good, ugly or bad, and supports the user in finding out
how to (partially) decentralize the runtime verification process also in the last
case [28]. The adoption of RIVERtools for this purpose in exemplified in the
companion demo paper [6], which addresses the most practical aspects of our
investigation: this paper is mainly centered around the notions of bad, good, and

1 Web Services Choreography Description Language Version 1.0 W3C Candidate Rec-
ommendation 9 November 2005, https://www.w3.org/TR/ws-cdl-10/.

2 BPEL4Chor Choreography Extension for BPEL, http://www.bpel4chor.org/.
3 Web Services Business Process Execution Language Version 2.0, OASIS Standard,

11 April 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

https://www.w3.org/TR/ws-cdl-10/
http://www.bpel4chor.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html


Coping with Bad Agent Interaction Protocols 61

ugly protocol in the literature, and on the observability-driven transformation of
AIPs which, under known environmental/network constraints, may turn a good
protocol into a bad one which can nevertheless serve for DRV purposes.

2 The Good, the Bad and the Ugly

The Good. Let us consider the following interaction protocol expressed in
natural language:

1. Alice sends a whatsApp message to her mother Barbara asking her to buy a
book (plus some implausible excuse for not doing it herself...);

2. Barbara sends an email message to her friend Carol, responsible for the Book
Shop front end, to reserve that book;

3. Carol receives Barbara email and sends a whatsApp message to Dave, the
responsible of the Book Shop warehouse, to check the availability of the book
and order it if necessary;

4. Dave checks if the book is available in the warehouse;
(a) if it is,

(i.) he sends a whatsApp message to Emily who is in charge for physically
managing the books and informing the clients if their requests can be
satisfied immediately;

(ii.) Emily takes the book to the front end and sends a confirmation email
to Barbara telling that the book is already there;

(b) otherwise,
i. Dave sends an email to Frank, the point of contact for the publisher

of the required book, and orders it;
ii. Frank sends a confirmation to Barbara via whatsApp telling her that

the book will be available in two days.

For readability, we express the protocol using a more compact and formal
syntax where a

mns,cnt
=⇒ b stands for “agent a sends a message with content cnt

via communication means mns to agent b”. The symbol: stands for the prefix
operator (int:P is the protocol whose first allowed interaction is int, and the
remainder is the protocol P ) and has precedence over the other operators, ∨
stands for mutual exclusiveness, and ε represents the empty protocol:

P1 = alice
wa,buy
=⇒ barbara:barbara

em,reserve
=⇒ carol :carol

wa,checkAvail
=⇒ dave:

(dave
wa,take2shop

=⇒ emily :emily
em,availNow

=⇒ barbara:ε ∨
dave

em,order
=⇒ frank :frank

wa,avail2Days
=⇒ barbara:ε)

P1 receives the unanimous appreciation whatever the research community.
In fact, two very intuitive properties are met: 1. apart from the first one, the
message that each agent sends is a reaction to the message it just received,
and there is an evident cause-effect link between two sequential messages; 2.
in case some mutually exclusive choice must be made, the choice is up to only



62 D. Ancona et al.

one agent involved in the protocol, and hence it is feasible. These good prop-
erties take different names depending on the research communities and on the
authors. The first one is named, for example, “sequentiality” [20], “connect-
edness for sequence” [35], “explicit causality” [37]; the second “knowledge for
choice” [20], “local choice” [34], “unique point of choice” [35]. Meeting these two
properties is closely related to the absence of covert channels; they ensure that
all communications between different participants are explicitly stated, and rule
out those protocols whose implementation or enactment relies on the presence
of secret/invisible communications between participants: a protocol description
must contain all and only the interactions used to implement it [20].

The Bad. Those protocols that do not respect the connectedness for sequence
and unique point of choice properties are bad, and it is not difficult to see why.
Let us consider protocol P2:

P2 = alice
wa,buy
=⇒ barbara:carol

wa,checkAvail
=⇒ dave:

(dave
wa,take2shop

=⇒ emily :ε ∨ frank
wa,avail2Days

=⇒ barbara:ε)

The protocol states that carol can send a checkAvail message to dave only
after alice has sent a buy message to barbara, but how can carol know if and
when alice sent that message? Also, the protocol states that either dave sends
a message to emily , or frank sends a message to barbara: how can frank know if
he is allowed to send a message to barbara, without coordinating with dave via
some covert channel not shown in the protocol?

The Ugly. Protocols which are not syntactically correct are ugly, and are
ignored by all the authors. However, some protocols may be ugly even if they
are syntactically correct, for example if they are characterized by:

• “Causality unsafety”: consider the two shuffled sequences carol
wa,buy
=⇒ dave:ε

|alice wa,buy
=⇒ barbara:ε, where | models interleaving (a.k.a. shuffling) between

two protocol branches; suppose we are only able to observe what alice sends,
and what dave receives. If alice sends buy and dave receives buy, we might
think that the protocol above is respected. However, that observation might
be due to alice sending buy to dave, which is not an allowed interaction: the
protocol is not causality safe [35].

• “Non-Determinism”: given an interaction taking place in some protocol state,
we might want to deterministically know how to move to the next state. For
example, if alice asks her mother to buy a book, and the protocol is

alice
wa,buy
=⇒ barbara : barbara

wa,reserve
=⇒ carol : ε ∨

alice
wa,buy
=⇒ barbara : barbara

wa,buyItY ourself
=⇒ alice : ε

we could move on either branch. If we opt to move on the first branch, the
next expected action is that barbara asks carol to reserve a book. If, instead,
barbara tells alice to buy the book by herself, we have to backtrack to the



Coping with Bad Agent Interaction Protocols 63

previous protocol state in order to check that this interaction is allowed as
well; this is extremely inefficient and should be avoided [7]. While the notions
of good and bad protocols are universally recognized, ugliness also depends
on the formalism and its expressive power.

Can We Simply Ignore Bad Protocols? Let us suppose that the protocol
is used for monitoring purposes: it does not need to be implemented or enacted.
The agents in the MAS are already there, and they are heterogeneous black
boxes behaving according to their own policies and goals, in full autonomy. The
monitor observes messages that agents exchange, in a completely non obtrusive
way, checks their compliance with the protocol ruling the MAS, and reports
violations to some other entity or to the human(s) in charge for the security and
safety of the monitored system.

Let us also suppose that the MAS protocol is P1 and the human(s) who
set up the monitoring process know in advance that email messages cannot be
observed by the monitor, for infrastructural, legal, or other reasons. Keeping
interactions taking place via email in the protocol that the monitor will check
would lead to false positives, as the monitor would look for messages foreseen by
the protocol that it cannot see and would hence detect a protocol violation, but
removing them from P1 leads to P2: a bad protocol! If the monitor observation
ability is not perfect – which is an extremely realistic situation – there is no
gain in struggling against bad protocols: unobservable interactions are there and
generate the same problems of covert channels. We may state that what is “bad”
in this situation is the monitor, since it is not able to observe everything should
be observed, and not the AIP. This is another way to analyze the situation, but
the problem still remains: a monitor with imperfect observation capability cannot
be driven by a “perfect” protocol which includes unobservable messages. Rather,
it might need to be driven by what we classified a “bad” protocol, describing all
and only the messages that the monitor can actually observe.

Since we cannot ignore bad protocols, we opted for deepening our acquain-
tance with them. We developed RIVERtools, a tool able to (1) generate bad pro-
tocols starting from good ones with known unobservable channels, to correctly
drive monitors with limited observation ability, and (2) explore the usage of bad
protocols for Distributed Runtime Verification under suitable conditions. The
next two sections introduce trace expressions and the algorithm implemented by
RIVERtools to address the first point above. The second issue, namely how to
partially decentralize the runtime monitoring process also when the AIP is bad,
has been addressed in [28].

3 Background: Modeling AIPs with Trace Expressions

The general mechanism we propose for taking unobservable events into account
during MAS monitoring, discussed in Sect. 4, can be applied to any formalism.
However, to make our proposal more practical, we will discuss the algorithm we
implemented for a specific formalism, trace expressions [3,5,7], and we briefly



64 D. Ancona et al.

introduce it in the sequel. Trace expressions are based on the notions of event and
event type. We denote by E the fixed universe of events subject to monitoring.
An event trace ē over E is a possibly infinite sequence of events in E, and a trace
expression over E denotes a set of event traces over E. Trace expressions are built
on top of event types (chosen from a set ET), each specifying a subset of E.

The semantics of event types is specified by the function match: if e is an
event, and ϑ is an event type, then match(e, ϑ) holds if and only if event e
matches event type ϑ; hence, the semantics �ϑ� of an event type ϑ is the set
{e ∈ E | match(e, ϑ) holds}.

A trace expression τ ∈ T represents a set of possibly infinite event traces,
and is defined on top of the following operators:

• ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.

• ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the
event type ϑ, and the remaining part is a trace of τ .

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with

the traces of τ2.

Trace expressions support recursion through cyclic terms expressed by finite
sets of recursive syntactic equations, as supported by modern Prolog systems. If
match(alice

wa,buy
=⇒ barbara, buy), P4 = buy:(ε ∨ P4) denotes the protocol where

alice may send one buy request to barbara and either terminate (ε) or start the
protocol again (∨ P4). The traces denoted by P4 are

{alice wa,buy
=⇒ barbara, alice

wa,buy
=⇒ barbara alice

wa,buy
=⇒ barbara, ..., (alice

wa,buy
=⇒

barbara)n, ..., (alice
wa,buy
=⇒ barbara)ω}

namely, traces consisting of n instances of event alice
wa,buy
=⇒ barbara, with n ≥ 1,

plus the infinite trace. Infinite traces allow us to model systems that ought not
to terminate, such as those involving a “service provider agent” that must be
always be ready to answer the requests of its clients. We represent the infinite
trace in an explicit way, to distinguish it from finite traces of any length.

Some Considerations on Events and Event Types. For presentation pur-
poses, the protocols shown in Sect. 2 did not include event types but events. A
simplified variant of P1 with event types is P5, where

P5 = bookReservationReq : availabilityCheckReq :
(availableNow : ε ∨ order : okOrder : available2Days : ε)

and, for example,



Coping with Bad Agent Interaction Protocols 65

match(barbara
em,reserve

=⇒ carol , bookReservationReq)
match(barbara

wa,reserve
=⇒ carol , bookReservationReq)

match(carol
wa,checkAvail

=⇒ dave, availabilityCheckReq)

match(hillary
wa,checkAvail

=⇒ dave, availabilityCheckReq)

The sequence barbara
em,reserve

=⇒ carol hillary
wa,checkAvail

=⇒ dave (namely

barbara
em,reserve

=⇒ carol followed by hillary
wa,checkAvail

=⇒ dave) is correct w.r.t. P5
since the first event matches bookReservationReq, after which an event match-
ing availabilityCheckReq is expected and in fact the second event matches it.
Clearly, this sequence of messages does not make sense: we would like to state
that the receiver of the first message must be the sender of the second one, but
we cannot express such a constraint if the event type and protocol languages
do not support variables. Parametric trace expressions [8] overcome this limi-
tation by introducing parameters in the trace expression formalism. For space
constraints we do not discuss them, but parameters are the element of the for-
malism that allows us, for example, to support multiple concurrent conversations
and correctly track which message instance belongs to which conversation. The
algorithm presented in Sect. 4 works for parametric trace expressions as well.

As far as observability is concerned, an event type bookReservationReq that
models reservation requests whatever the communication means used to send
them (whatsApp or email) makes sense in most situations, apart those where the
observability of messages is different depending on the communication means.

The sequence barbara
em,reserve

=⇒ carol carol
wa,checkAvail

=⇒ dave is correct
w.r.t. P5, and the same holds for barbara

wa,reserve
=⇒ carol carol

wa,checkAvail
=⇒

dave, but they might lead to different monitoring outcomes if the likelihood of
barbara

em,reserve
=⇒ carol to be observed by the monitor is different from that of

barbara
wa,reserve

=⇒ carol .
In Sect. 4 we will limit our investigation to non-deterministic and contractive

trace expressions (for example, definitions like P = P∨P are not contractive,
as there is no means to “consume” interactions from P while rewriting it) and
we will assume that event types model only sets of events whose observability
likelihood is equivalent.

4 Partial Observability: When the Good Becomes Bad

In this section we discuss how a good protocol may become a (possibly) bad one,
due to unobservability or partial observability of events. The human beings in
charge for the system monitoring process may use the algorithm we present if
they are aware of limited observability of events or channels, in order to generate
a monitor which will check the system’s compliance with the protocol output
by the algorithm (possibly different from the original one, and possibly “bad”)
and avoid raising false alarms. Given a trace expression modeling an AIP, the
monitor that dynamically verifies it can be generated automatically both for
Jade [14] and for Jason [16], as discussed in [17] and [5] respectively.



66 D. Ancona et al.

For sake of readability, let us suppose that we are in charge for the moni-
toring process. We must associate with each event foreseen by the protocol, its
“observability likelihood”, namely the likelihood that the event can be observed
by the monitor. Of course, we must know this parameter, which depends on the
system to be monitored and on its context. If, when the event takes place, the
monitor can always observe it, we associate 1 with the event. If the monitor can
never observe the event (for example, the monitor can sniff whatsApp messages
only, and the event is an email message), we associate 0 with it. If the event
is transmitted over an unreliable or leaky channel, we may associate a number
between 0 and 1, excluding the extremes, with it.

Let us consider P1 again, and let us suppose that:

(1) the observability likelihood of messages exchanged via email is 0;
(2) the observability likelihood of whatsApp messages sent by frank is 0.95;
(3) the observability likelihood of the other whatsApp messages is 1.

Condition 1 forces us to remove all messages exchanged via email from the
protocol, and condition 3 forces us to keep all the other whatsApp messages but
those sent from frank . The first and last conditions would lead to protocol P2.
The second condition, however, requires a special treatment. In fact, message
frank

wa,okOrder
=⇒ dave could be either observed or not and both cases would be

correct, even if the first one should be much more frequent than the second.
The subprotocol where frank

wa,okOrder
=⇒ dave can either take place or not can

be modeled by frank
wa,okOrder

=⇒ dave : ε ∨ ε. The transformation from P1 to the
protocol which takes observability likelihood into account requires the following
steps:

(1) since the observability likelihood of messages exchanged via email is 0,
remove them by P1;

(2) since the observability likelihood of the whatsApp message sent by frank is
0.95, substitute it with the corresponding subprotocol where the message
can take place or not, and concatenate this subprotocol with the remainder;

(3) since the observability likelihood of the other whatsApp messages is 1, keep
them all.

The result is

P3 = alice
wa,buy
=⇒ barbara : carol

wa,checkAvail
=⇒ dave :

(dave
wa,take2shop

=⇒ emily : ε ∨ (frank
wa,okOrder

=⇒ dave : ε ∨ ε) · ε)

which can be simplified into the equivalent protocol

P3′ = alice
wa,buy
=⇒ barbara : carol

wa,checkAvail
=⇒ dave :

(dave
wa,take2shop

=⇒ emily : ε ∨ (frank
wa,okOrder

=⇒ dave : ε ∨ ε))

Since dealing with likelihoods in (0, 1) results into a more complex protocol,
as the original protocol must be extended with the choice between observing
the event or not, we might want to collapse likelihoods greater than a given



Coping with Bad Agent Interaction Protocols 67

threshold to 1, to avoid proliferation of choices: we may set a threshold above
which events will be considered fully observable. Let Th be such threshold and
P be the protocol to transform.

P ′ is obtained by P applying the following rules; L is the observability like-
lihood of interaction int

(1) if L > Th, int is kept;
(2) if 0 < L ≤ Th, int is transformed into the subprotocol where int can either

take place or not, and suitably concatenated with the remainder;
(3) if L = 0, int is discarded.

Since different monitors might observe different events and observability
might change over time, causing an evolution of the observable protocol, mod-
eling the good global protocol and then transforming it based on contingencies
is a better engineering approach than directly modeling the partial, observable
protocol. However, even if we start from a good P protocol, P ′ might be bad or
even ugly.

Observability-Driven Transformation of Trace Expressions. We imple-
mented the algorithm sketched above for protocols modeled as trace expressions.
The code has been developed in SWI-Prolog (http://www.swi-prolog.org/) and,
for space constraints, is made available in a longer version of this paper available
at http://www.disi.unige.it/person/MascardiV/Download/PAAMS-long18.pdf.
The code for filter events implementing the observability-driven transforma-
tion is 36 lines long and – provided a basic knowledge of logic programming –
is self-explaining. Despite its simplicity, it can operate on very complex para-
metric and recursive (also non terminating) protocols. The magic behind the
“invisible” management of non terminating protocols like P4 is the use of the
SWI-Prolog coinduction library (http://www.swi-prolog.org/pldoc/doc/ SWI /
library/coinduction.pl) which allows to cope with infinite terms without enter-
ing into loops. RIVERtools [6,27] supports the development of AIPs modeled as
trace expressions via a user-friendly GUI and implements static controls to check
if a protocol is ugly, bad or good, suggesting how to decentralize the runtime
monitoring process even in presence of bad protocols.

Experiments. We have experimented the filtering algorithm on a parametric
trace expressions modeling the English Auction where the auctioneer proposes
to sell an item for a given price and the bidders either accept or reject the pro-
posal; as long as more than one bidder accepts, the price – which is a parameter
of the protocol – is raised and another negotiation round is made. The pro-
tocol is consistent with the existing descriptions of the English Auction that
can be found online, even if it slightly differs from the English Auction FIPA
specification. The protocol description, as well as its code, can be downloaded
from http://parametricTraceExpr.altervista.org/. We initially assumed that the
only partially observable event was buy(X) with observability likelihood 0.5. By

http://www.swi-prolog.org/
http://www.disi.unige.it/person/MascardiV/Download/PAAMS-long18.pdf
http://www.swi-prolog.org/pldoc/doc/_SWI_/library/coinduction.pl
http://www.swi-prolog.org/pldoc/doc/_SWI_/library/coinduction.pl
http://parametricTraceExpr.altervista.org/


68 D. Ancona et al.

setting the threshold to 0.7, all occurrences of buy(X) became optional, while
with a threshold equal to 0.4 they were all kept in the protocol. By setting the
observability likelihood of buy(X) to 0, any occurrence of buy(X) was removed
from the protocol.

The filtering algorithm was also run on a variant of the Alternating Bit Proto-
col [25] with 6 agents. Different observability likelihoods and different thresholds
were set with both protocols, to test the algorithm in an exhaustive way.

5 Related Work and Conclusions

To the best of our knowledge, MAS monitoring under partial or imperfect observ-
ability has been addressed in the context of normative multiagent organizations
only, and by just a few works. Among them, [2] spun off from [18] and shows how
to move from the heaven of ideal norms to the earthly condition of approximate
norms. The paper focuses on conditional norms with deadlines and sanctions
[39]; ideal norms are those that can be perfectly monitored given a monitor, and
optimality of a norm approximation means that any other approximation would
fail to detect at least as many violations of the ideal norm. Given a set of ideal
norms, a set of observable properties, and some relationships between observable
properties and norms, the paper presents algorithms to automatically synthe-
size optimal approximations of the ideal norms defined in terms of the observable
properties. Even if the purpose of our work is in principle similar to that of [2,18],
the approaches used to model AIPs are too different – also in expressive power –
to compare them. A more recent work in the normative agents area is [24] that
proposes information models and algorithms for monitoring norms under partial
action observability by reconstructing unobserved actions from observed actions.
While we assume to know in advance which events cannot be observed and we
transform the ideal protocol into a monitorable one based on this information,
the authors of [24] “guess” the actions that the monitor could not observe, but
that must have taken place because of their visible effects. Outside the MAS com-
munity, partial ability of monitors to observe events is a well studied problem
in many contexts including command and control [43] and runtime verification.
In [38] the authors address the problem of gaps in the observed program execu-
tions. To deal with the effects of sampling on runtime verification, they consider
event sequences as observation sequences of a Hidden Markov Model (HMM),
and use an HMM of the monitored program to fill in sampling-induced gaps in
observation sequences, and extend the classic forward algorithm for HMM state
estimation to compute the probability that the property is satisfied by an execu-
tion of the program. Similarly to [24], that work complements ours by estimating
the likelihood of an event to occur, whereas we assume to know that likelihood,
and we transform the protocol – and hence the expected sequence of observed
events – based on this knowledge. Other works pursuing the objective of suitably
dealing with “lossy traces” in the runtime verification area are [13,33].

As part of our future work, we will evaluate the possibility to integrate our
approach with those that complement it, like [24,38]. We expect that this might



Coping with Bad Agent Interaction Protocols 69

lead to some interesting result: on the observation (by the monitor) that the
system is compliant with the bad AIP P ′, after many observations we might
be able to state that “probably” the system is also compliant with the good
AIP P . This research issue is very challenging: our roadmap involves deepening
our understanding of the techniques that other researchers exploit to estimate
the likelihood of unobserved events, and then merging those techniques into
the algorithms supported by RIVERtools. We will also consider if and how our
approach could be used to evaluate the protocol robustness to the presence of
leaky and unreliable channels.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abduc-
tive proof-procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS
(LNAI), vol. 3673, pp. 135–147. Springer, Heidelberg (2005). https://doi.org/10.
1007/11558590 14

2. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: Proceedings of AAMAS 2014, pp. 117–124. IFAAMAS/ACM (2014)

3. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., et al.: Behavioral
types in programming languages. Found. Trends Program. Lang. 3(2–3), 95–230
(2016)

4. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Proceedings of AAMAS, pp. 1019–1029. ACM
(2015)

5. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

6. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Managing bad AIPs with
RIVERtools. In: Demazeau, Y., et al. (eds.) PAAMS 2018, LNAI, vol. 10978, pp.
296–300. Springer, Cham (2018)

7. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M., Johnsen,
E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 47–64.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 6

8. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multi-
agent systems. In: Proceedings of AAMAS 2017, pp. 1457–1459. ACM (2017)

9. Ancona, D., Ferrando, A., Mascardi, V.: Improving flexibility and dependability of
remote patient monitoring with agent-oriented approaches. In: IJAOSE. (2018, to
appear)

10. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of protocol confor-
mance and agent interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA 2005.
LNCS (LNAI), vol. 3900, pp. 265–283. Springer, Heidelberg (2006). https://doi.
org/10.1007/11750734 15

11. Baldoni, M., Baroglio, C., Capuzzimati, F.: A commitment-based infrastructure
for programming socio-technical systems. ACM Trans. Internet Techn. 14(4), 1–
23 (2014)

https://doi.org/10.1007/11558590_14
https://doi.org/10.1007/11558590_14
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-30734-3_6
https://doi.org/10.1007/11750734_15
https://doi.org/10.1007/11750734_15


70 D. Ancona et al.

12. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Exploiting social com-
mitments in programming agent interaction. In: Chen, Q., Torroni, P., Villata, S.,
Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 566–574.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 39

13. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring compliance poli-
cies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 151–167. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 17

14. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Hoboken (2007)

15. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

16. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley, Hoboken (2007)

17. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 81–91. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-10422-5 10

18. Bulling, N., Dastani, M., Knobbout, M.: Monitoring norm violations in multi-agent
systems. In: Proceedings of AAMAS 2013, pp. 491–498. IFAAMAS (2013)

19. Casella, G., Mascardi, V.: West2East: exploiting web service technologies to engi-
neer agent-based software. IJAOSE 1(3/4), 396–434 (2007)

20. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Log. Methods Comput. Sci. 8(1) (2012)

21. Chopra, A.K., Christie, S., Singh, M.P.: Splee: a declarative information-based
language for multiagent interaction protocols. In: Proceedings of AAMAS 2017,
pp. 1054–1063. ACM (2017)

22. Chopra, A.K., Singh, M.P.: Cupid: commitments in relational algebra. In: Pro-
ceedings of AAAI 2015, pp. 2052–2059. AAAI Press (2015)

23. Cossentino, M.: From requirements to code with the PASSI methodology. Agent-
Orient. Methodol. 3690, 79–106 (2005)

24. Criado, N., Such, J.M.: Norm monitoring under partial action observability. IEEE
Trans. Cybern. 47(2), 270–282 (2017)

25. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

26. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Trans. Softw. Eng. 31(12), 1015–1027
(2005)

27. Ferrando, A.: RIVERtools: an IDE for runtIme VERification of MASs, and beyond.
CEUR Workshop Proc. 2056, 13–26 (2017)

28. Ferrando, A., Ancona, D., Mascardi, V.: Decentralizing MAS monitoring with
DecAMon. In: Proceedings of AAMAS 2017, pp. 239–248. ACM (2017)

29. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

https://doi.org/10.1007/978-3-319-25524-8_39
https://doi.org/10.1007/978-3-642-35632-2_17
https://doi.org/10.1007/978-3-642-35632-2_17
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-10422-5_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6


Coping with Bad Agent Interaction Protocols 71

30. Garćıa-Ojeda, J.C., DeLoach, S.A., Robby: AgentTool III: from process definition
to code generation. In: Proceedings of AAMAS 2009, pp. 1393–1394. IFAAMAS
(2009)

31. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of POPL 2008, pp. 273–284. ACM (2008)

32. Huget, M., Odell, J.: Representing agent interaction protocols with agent UML.
In: Proceedings of AAMAS 2004, pp. 1244–1245. IEEE Computer Society (2004)

33. Joshi, Y., Tchamgoue, G.M., Fischmeister, S.: Runtime verification of LTL on lossy
traces. In: Proceedings of SAC 2017, pp. 1379–1386. ACM (2017)

34. Ladkin, P.B., Leue, S.: Interpreting message flow graphs. Formal Aspects Comput.
7(5), 473–509 (1995)

35. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction-and process-oriented choreographies. In: Proceedings of ICSEFM 2008,
pp. 323–332. IEEE (2008)

36. Papazoglou, M.P.: Service -oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of WISE 2003, p. 3. IEEE Computer Society (2003)

37. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
blindingly simple protocol language. In: Proceedings of AAMAS 2011, pp. 491–
498. IFAAMAS (2011)

38. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8 15

39. Tinnemeier, N.A.M., Dastani, M., Meyer, J.C., van der Torre, L.W.N.: Program-
ming normative artifacts with declarative obligations and prohibitions. In: Pro-
ceedings of IAT 2009, pp. 145–152. IEEE Computer Society (2009)

40. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Leite,
J., Omicini, A., Torroni, P., Yolum, I. (eds.) DALT 2004. LNCS (LNAI), vol. 3476,
pp. 198–220. Springer, Heidelberg (2005). https://doi.org/10.1007/11493402 12

41. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation.
Auton. Agent. Multi-Agent Syst. 32(1), 59–133 (2018)

42. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45448-9 17

43. Yukish, M., Peluso, E., Phoha, S., Sircar, S., Licari, J., Ray, A., Mayk, I.: Limits of
control in designing distributed C2 experiments under imperfect communications.
In: Military Communications Conference MILCOM 1994. IEEE (1994)

https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/11493402_12
https://doi.org/10.1007/3-540-45448-9_17

	Coping with Bad Agent Interaction Protocols When Monitoring Partially Observable Multiagent Systems
	1 Introduction
	2 The Good, the Bad and the Ugly
	3 Background: Modeling AIPs with Trace Expressions
	4 Partial Observability: When the Good Becomes Bad
	5 Related Work and Conclusions
	References




