
Towards Reducing Complexity
of Multi-agent Simulations by Applying

Model-Driven Techniques

Benjamin Hoffmann1(B), Kevin Chalmers2, Neil Urquhart2,
Thomas Farrenkopf1, and Michael Guckert1

1 KITE - Kompetenzzentrum für Informationstechnologie,
Technische Hochschule Mittelhessen, Gießen, Germany

{benjamin.hoffmann,thomas.farrenkopf,michael.guckert}@mnd.thm.de
2 School of Computing, Edinburgh Napier University, Edinburgh, Scotland

{k.chalmers,n.urquhart}@napier.ac.uk

Abstract. Creating multi-agent simulations is a challenging task often
requiring programming skills at the professional software developer level.
Model driven methods of software development are an appropriate tool
for reducing the complexity of the development process of such sim-
ulations. The modeller is relieved from implementing time consuming
programming details and can concentrate on the application itself. We
present the domain specific language Athos with which network based
traffic simulations can be created declaratively. The models are platform
independent and executable code can be generated for two popular multi-
agent platforms. We use a simple yet illustrative example to show how
Athos can be applied.

Keywords: Domain-Specific Language · Model-driven development
Traffic simulation

1 Introduction and Motivation

Agent-based simulations are an effective technique to model and analyse systems
in which the overall behaviour is determined by the behaviour of its constituent
autonomous entities [28]. Generally, Agent-Based Modelling (ABM) is a chal-
lenging task [5,25,31]. In comparison to more traditional modelling approaches
like system dynamics, ABM has an increased level of cognitive complexity. Ven-
drov et al. argue that one reason for the higher complexity can be found in
the programming languages used in current ABM frameworks [31]. These lan-
guages provide a low-level abstraction which makes it hard to create, understand
and validate agent-based models. This is especially true for domain experts who
are not professional programmers. Additionally, the complexity of ABM has
increased due to grown computing power allowing larger models with more com-
plex interactions [25]. At the same time, the domains analysed by ABM have

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Demazeau et al. (Eds.): PAAMS 2018, LNAI 10978, pp. 187–199, 2018.
https://doi.org/10.1007/978-3-319-94580-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94580-4_15&domain=pdf


188 B. Hoffmann et al.

become more complex themselves and thus require more powerful models [1].
Development of agent-based simulations requires insight into two distinct bod-
ies of knowledge [3]: the knowledge and experience of experts in the respective
domain; and skills in software development.

It seems obvious that domain experts should work closely with software engi-
neers to achieve high-quality agent-based simulations. In practice, the coopera-
tion often leads to new problems like inconsistent terminologies [22] or different
expectations regarding competences [29]. Therefore, scientific software is often
designed and implemented by the same scientists who will eventually use it
for their work. These scientists usually lack fundamental software engineering
expertise [18]. North and Macal consider the development of interfaces that
allow domain experts with little programming knowledge to create agent-based
models as one key challenge in the field of ABM [23].

Having successfully implemented an agent-based model, verification and vali-
dation pose the next challenges [6]. While verification ensures that a model imple-
mentation is congruent with its conceptual specification, validation guarantees
that the implementation accurately represents reality [17,33]. If implementation
languages require an increased effort to understand a model implementation,
they also make verification and validation more difficult. In addition, current
approaches impede replication as they are often directly interwoven with their
target platform [28].

The use of Domain-Specific Languages (DSLs) constitutes a promising app-
roach towards the solution of the aforementioned problems (c.f., e.g. [21,23]). By
production of intermediate models that bridge the gap between the researcher’s
abstract non-formal models and the final model implementation, DSLs present
well-sized building blocks to create models from which simulations can auto-
matically be generated. As the complexity of implementation details is hid-
den from language users, models become more comprehensible and focused.
Increased abstraction also facilitates reproducibility of models and thus ensures
high-quality simulation results in the scientific community.

In this paper, we present a DSL called Athos which supports researchers in
the development of agent-based simulations. Athos allows declarative specifica-
tions for traffic simulation scenarios and thus relieves modellers from complex
programming tasks. Major benefits of this approach are a clearer separation
of concerns in the overall simulation model and enhanced support for domain
experts in the set-up of agent-based simulations.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on DSLs and agent-based simulations and discusses how these research
fields have been brought together in related projects. Section 3 explains how
Athos raises the abstraction level for agent-based models and thus alleviates the
aforementioned problems. Section 4 presents a case study that applies Athos to
a simple yet illustrative problem. Section 5 concludes this paper and shows some
directions for future work.



Towards Reducing Complexity of Multi-agent Simulations 189

2 Background and Related Work

A Domain Specific Language (DSL) is a programming language that is tailored
towards a specific problem domain. Advantages of DSLs include decreased devel-
opment time and reduced requirements of software development skills, allowing
a domain expert to develop software for the given domain. When construct-
ing models, a DSL allows a stronger focus on the model and domain issues
rather than on lower-level programming issues [7,10]. Exploring complex prob-
lems through computer based simulation and modelling has been widely recog-
nised as a useful means of increasing our understanding of real-world problems.
A number of software frameworks for simulation and the associated analysis
exist. These range from generalist frameworks such as SimStudio [30] to domain
specific simulations such as MatSim [16] designed specifically for the transporta-
tion domain. A recent overview of the development and use of domain-specific
modelling is given by Çetinkaya [4]. According to [16], such software models may
be utilised via software packages aiming directly at the domain user. This often
leads to models constrained to the functionality offered by the packages’ user
interface. If a model is incorporated within a DSL, the user may use the DSL to
configure the model offering a far wider range of possibilities.

Multi-Agent Systems (MAS) are regarded as a useful means to construct
simulations. Most simulations revolve around the interactions of a set of entities
such as: people or vehicles [11]; stock market shares [24]); or consumers within
a marketplace [9]. In such scenarios, the entities in the system being modelled
can be represented by specific software agents. Ge and Polhill [11] use a MAS
to investigate the actions of commuters and how their decisions are influenced
by changes in the road network (specifically, the addition of new road links). In
this case groups of commuters are represented by a software agent that takes
decisions from the perspective of that individual.

Most software-based simulations are carried out for the benefit of specialists
in other fields. This leads to a paradox. The non-computing specialist is unable
to construct simulations using a framework such as the Java Agent Develop-
ment Environment (JADE) [2] and instead uses an existing simulation package
(e.g. MatSim [16]). Package-based simulation is restricted by the functionality
provided by the package which may or may not be sufficient for the task being
considered. If no package exists that can support the desired simulation, then
a platform such as JADE or NetLogo [32] must be used by someone with the
appropriate specialised skills. A DSL is a programming language that is tailored
towards a specific domain (including Software Engineering [7] or MAS [12]).
It requires less skill than a traditional programming language. This gives two
distinct advantages: the language can be learned by a domain expert; and the
process of model development is simplified.

Within transportation, a DSL has the potential to isolate the modeller from
issues such as handling details of maps, coordinate systems or routing. This
frees the modeller to concentrate on issues such as defining decision making and
making explicit the problem constraints. This has two useful outcomes. Firstly,



190 B. Hoffmann et al.

the development process may be accelerated. Secondly, the development may be
undertaken by a domain specialist rather than a software engineer.

A contribution in that direction is made by Hassan et al. [14] who define a
process to develop models for a given domain in the field of social sciences. The
authors base their approach on the INGENIAS methodology [26] that comprises
a meta-metamodel from which further metamodels can be derived. INGENIAS
provides the necessary tools to develop a working graphic editor for the defined
(meta-)models together with the necessary transformations to the intended tar-
get platform. The presented approach is designed so that it can potentially be
applied to any agent-based modelling and simulation approach within the con-
fines of social sciences. On the one hand, this makes the presented approach
highly flexible and applicable for a wide range of problems. On the other hand,
it requires users to develop a suitable metamodel for their problem as well as
suitable transformations and cannot be applied in an out-of-box style.

GAMA [13] is another contribution that aims to facilitate the creation and
simulation of complex agent-based models through employment of a platform-
internal DSL. Models are described in GAML, a DSL that allows to define mul-
tiple layers within a simulation (e.g. one layer for the inside of buildings and
another for the outside world buildings are located in), handling of geographi-
cal data, and definition of agents’ attributes and behaviour. Though GAML is
an agent-oriented DSL, it also allows to describe parts of a model by means of
ordinary differential equations. In contrast to our approach, GAML is domain-
specific in that it is agent-oriented, but it does not aim at a specific application
domain. This makes it difficult to describe models in a pure or mostly declarative
way but requires users to define agents’ behaviour through actions and reflexes
in a more procedural manner.

3 Athos – A DSL for Traffic Simulations

Athos is a DSL that seeks to support the development of MAS simulations. The
language focuses on traffic scenarios that involve vehicles (agents) with individ-
ual behaviour (e.g. finding shortest routes). Thus, an Athos program involves
a multitude of individual-level optimisation problems that each affect the state
of the global system. Athos allows scenario definition in a declarative manner.
This relieves users from complex programming tasks and enables them to focus
on what to simulate instead of how to simulate it (c.f. [3,31]).

Figure 1 illustrates the main components of the language and its flow of
information. The creation of a traffic simulation with Athos is based upon the
development of a conceptual model which features aspects from the domain of
traffic optimisation. These models allow to describe information on aspects that
are relevant in this context, e.g. the capacity of certain roads in an area of
interest or how certain types of vehicles congest certain roads. However, these
models do not contain any information on computational details. Thus, from a
computational view, they are created on the most abstract level and considered
as Computationally Independent Models (CIM) [19].



Towards Reducing Complexity of Multi-agent Simulations 191

Conceptual
Model

Athos
Model

Athos
Meta-Model

re
pr

es
en

te
d
by

derived
from

built from

Athos Generator

NetLogo
Model

Repast
Model

CIM

PIM

PSMverifies

Fig. 1. Athos’ modelling approach.

The language elements of Athos were derived from the CIM level in order
to make them available to models which also consider aspects that are relevant
for computer simulations. While these models are more specific than their CIM
ancestors, they still do not allow any assumptions with regard to the imple-
mentation platform. Models on this level are said to be Platform Independent
Models (PIM) [19,28]. Every program written in Athos constitutes such a PIM.
Since the meta-model elements from which Athos programs are built are directly
derived from the domain of traffic optimisation problems, each Athos PIM con-
cisely represents the underlying CIM of the traffic domain.

The Athos generator finally processes models from the PIM level and trans-
forms them into models for a specific simulation platform known as Platform
Specific Models (PSM). In order to transform a PIM into a PSM, the generator
has to add platform-specific details to the information drawn from the PIM. This
is done by means of code templates which are created for every supported target
platform. Currently, Athos features templates for two agent-based simulation
platforms. The first is the NetLogo1 platform, whose models follow a procedu-
ral paradigm. The other platform is the Repast Simphony2 platform for which
models are constructed in an object-oriented way. As is pointed out by Sansores
and Pavón, the creation of models for different target platforms supports valida-
tion and verification efforts as both simulation implementations should present
equivalent results [28].

The main tool used in the development of the language is the Xtext3 language
workbench (version 2.12). Next to the definition of the abstract and concrete
syntax of the language, the workbench was also used to define transformations
that constitute the language’s dynamic semantics.
1 https://ccl.northwestern.edu/netlogo/.
2 https://repast.github.io/download.html.
3 https://www.eclipse.org/Xtext/.

https://ccl.northwestern.edu/netlogo/
https://repast.github.io/download.html
https://www.eclipse.org/Xtext/


192 B. Hoffmann et al.

Athos is developed in an iterative and incremental manner. Although Athos is
ultimately intended to support the development of various different optimisation-
related traffic scenarios, it focuses on one part of the problem domain at a time.
The language’s first major development iteration focused on scenarios in which
agents seek to get from a given starting point in a road network to a predefined
destination. For this, they seek to find the route that requires the least amount
of time. Since in the underlying network the amount of time it takes to travel a
given road is dependent on the current traffic situation, each agent is confronted
with a dynamic optimisation problem.

Traffic-related problems necessitate the definition of some kind of network.
Athos allows specification of road networks that consist of nodes and edges in
a straightforward manner. In order to populate the network with agents, nodes
can be defined as sources from which new agents originate. Users can specify
time-based patterns in which agents are created. It is also possible to model
distribution functions. These functions control how source nodes spawn agents
with different properties into the system.

Agents differ in two major properties. Firstly, agents can be assigned different
routing modes that determine how they move inside the network. Most of the
time, modellers will assign an a priori destination to agents. However, in order
to generate background noise or to simulate public transport routes, it is also
possible to define agents that circle or shuttle along a pre-defined sequence of
nodes in the network. Secondly, agents can be assigned a congestion factor. The
congestion factor is a value that determines to what extend the respective agent
will congest, i.e. slow down, traffic on the road it travels on. This way, agents
can represent different types of vehicles. An agent with a high congestion factor
could represent a bus or a tractor whereas an agent with a low congestion factor
could represent a fast car or a motorcycle.

As was already stated, agents that head towards a pre-defined destination
try to get there in the least possible amount of time. Vehicle agents calculate the
fastest path from their current location to their intended destination node by
means of Dijkstra’s algorithm [8]. They do so every time they enter a node of the
network. Whenever agents recalculate the fastest path, they consider the cur-
rent traffic situation in the network. For this, roads must be assigned a numerical
value that represents the amount of time cars need to travel them. To this end,
Athos allows the definition of cost functions as ordinary mathematical expres-
sions. Within these expressions, various properties like the length of the road or
the accumulated congestion factor of all vehicles can be used. The value of the
accumulated congestion factor for a given road depends on both the number and
the types of agents that are on this road at a given point in time.

The described language features allow for the definition of traffic-dependent
travel durations. The higher the accumulated congestion factors of all vehicles
on a given road, the longer it takes these vehicles to get to the next road. This,
in turn, increases the time window in which other vehicles can further increase
the accumulated congestion factor on this road. This way, the language allows
for the definition of scenarios where increased numbers of agents congest certain



Towards Reducing Complexity of Multi-agent Simulations 193

1..* 1

1..*1..*
from
1
to
1

1
function

11..*

1

Model

Function

name:EString
expression:Expression

Network

EdgeFunction

DurationFunction

Node

name:EString
x:int
y:int

Edge

name:EString

FunctionalEdge

length:int
cfactor:int
path:int Source

frequency:int
every:int
until:int

SproutFct

AgentProb

pobability:int

ReferringAPContainingAP

AgentType

Fig. 2. Simplified excerpt of Athos’ meta-model

roads so that traffic may ultimately grind to a halt. By default, all simulation
scenarios track the total amount of time cars have spent in the system.

Figure 2 shows an excerpt of the language’s meta-model. Any program writ-
ten in Athos is a Model. A program features several types of Functions. Some of
these are used to influence the way an agent travels a given edge. Such functions
are called EdgeFunctions. This is because they are always associated with an
arbitrary number of Edges. Agents that travel an edge have to follow the rules
implied by the function associated with this edge. As will be shown shortly,
there is also another type of function that is used by (or associated with) agents.
EdgeFunctions are further specialised to DurationFunctions. They feature an
expression that determines the amount of time it takes to cross a certain edge.
Later versions will feature additional specialisations of the EdgeFunction class,
e.g. speed-dependent functions whose expressions determine the speed by which
agents drive on a given edge.

Each program must also feature a Network which consists of Nodes and
Edges. Nodes and edges must be identifiable by a unique name. Additionally,
nodes need coordinates to locate them in the plane. Edges need both a node
from which they emerge and a node to which they lead. Nodes can assume
the role of a Source that sprouts agents into the network. Source nodes are
always associated with a sprout function (SproutFct). A sprout function con-
tains a (non-empty) set of agent probabilities (AgentProb). Both specialisations,
i.e. ContainingAP and ReferringAP, have a reference to an AgentType and an
integer that represents the probability with which the referred type of agent is
created. While a ContainingAP allows to define an anonymous agent type inside
a sprout function, ReferringAP objects refer to a named agent type defined in
an Athos program.



194 B. Hoffmann et al.

types* attributes*

assignments

*

attribute
1

route1..* destination1

Model

AgentType

name:String
congestionFactor:int
routingMode:int

AgentAttribute

name:String

AttributeAssignment

value:Double

Function

AgentFunction

Node

{xor}

Fig. 3. Athos’ AgentType-related meta-model elements.

Figure 3 illustrates how Athos allows for the definition of agent types together
with type specific attributes and optimisation functions. An AgentType can
either be named or anonymous depending on whether its name attribute was
set. Each AgentType can be assigned an arbitrary number of attributes defined
in the model (e.g. fuelConsumption). The connection between the type and the
attribute is established by means of an AttributeAssignment which also assigns
a value for the attribute. For this reason, all agents of the same type have the
same value for a given attribute. As was already mentioned, different AgentTypes
can be assigned different congestionFactors and routingModes. The attributes
of an agent can be used inside an AgentFunction. An AgentFunction can be
assigned to an AgentType so that all agents of this type will calculate their routes
in a way that minimises the associated function.

4 Example

This case study demonstrates how Athos can be applied to a simple yet illus-
trative problem. We first consider a network of roads with a single source and a
single target of traffic. Agents (i.e. cars) are created in the source node and use
a shortest route to the target while travel time depends on congestion effects on
the roads represented by the edges of the network.

Given such a traffic aware network with vehicles travelling from defined
sources to individually defined targets, analysing the overall behaviour of this
system soon becomes a complex task. While static instances (i.e. networks with
static travel times not affected by congestion) of the problem can be solved
with analytical methods, agent based simulations are an appropriate tool for
dynamic versions of this problem. However, even simple networks quickly lead
to complex programs in popular, rather easy to use agent based programming
environments. In our case study we consider a network of eight nodes and nine
edges. This network corresponds to Samuelson’s example [27] in which the Braess
paradox and the effect of modified cost functions determining the choice of the
routes is examined.



Towards Reducing Complexity of Multi-agent Simulations 195

Individual travel time is calculated by means of the duration function trav-
eltime defined in line 3. This function accumulates the product of cfactor and
congestionFactor over all individuals using the edge at the very moment and
adds it to the length of the edge. Note that congestionFactor is an attribute of
the travelling agent that determines how strong this individual agent will add
to congestion while cfactor is an attribute of the edge and defines the (linear)
congestion effect on this edge.

This PIM can either be generated to be run as a NetLogo or a Repast Sim-
phony simulation in their respective environment. While the first offers the easy
to use NetLogo system, the latter is created to be run in the scalable Java-based
Repast Symphony system. Note that this model is also computation indepen-
dent as we have argued in the previous chapters: we just define the problem
without details of how the solution is to be computed leaving that as a task of
the language and the architecture.

Comparing the model above with directly implemented simulations in both of
the target platforms shows that the model is highly self-documenting. The code
generated for either of the two platforms is difficult to understand even though
the underlying templates follow best practice approaches for the platforms. Prob-
ably one of the most basic measures for software complexity is simply counting
the number of statements or just lines of code. While the Athos model consists
of 25 lines, the generated NetLogo source contains 572 lines and the Repast
Symphony program 1531 lines in 8 classes. Note that according to the principles
of model driven software development, the generated code is well structured and
follows best practice guidelines and does not contain unnecessary statements.

We will discuss some exemplary language features of Athos by extending
the model from above. For example, different types of agents with individual
behaviour in how they determine their preferred route from source to desti-
nation can be defined. This can be done very intuitively by just defining an
additional type of agent ecoDriver to the default type and an alternative func-
tion ecoDriverFunction to compute travel costs relevant to this type of agent.
ecoDriver agents possess the attribute fuelConsumption available to the newly
defined function.



196 B. Hoffmann et al.

Furthermore, we can define two sources of traffic (a and b) both being the
origin of agents heading towards the same destination d. This is achieved by
replacing the last line of the model code by:

This increases the number of lines of code in the Athos model to 30 and to
587 in the generated NetLogo source.

Besides the number of lines of code as an obvious indicator for complexity, a
closer inspection of the implementations shows how the code in both platforms
contains a significant amount of instructions that can hardly be mapped to the
simulation directly but are necessary implementation details a domain expert
would not want to bother with. Following Crooks et. al., by applying the rule of
parsimony (aka Occam’s razor) we again get a strong argument for the quality
of the Athos approach (see [6]).

5 Conclusion and Future Work

This paper argues that a model driven approach for MAS in a given domain
(e.g. traffic as in our case study) can significantly reduce the complexity of the
code that is visible to the domain expert. The domain expert creates platform
independent models that are transformed into executable simulations. In this
paper, we have shown how Athos allows the creation of PIMs from computa-
tionally independent conceptual models in order to define scenarios in which
agents solve optimisation problems. In order to provide a deeper understanding
of the language, we have discussed Athos’ meta-model elements and how they are
related. We have also shown that Athos models describe the underlying problem
in a concise and declarative way. While the optimisation problems solved by the
agents are rather simple on the individual level, they yield a complex system
behaviour as all agents mutually affect their travel times in the network.

Athos was developed with an iterative approach and will continuously be
extended in that way. Later versions of the language will allow to define agents
that receive information on the current state of the network in a temporally
deferred manner. This will allow experiments on the importance of timeliness of
information in traffic networks. We will also introduce features that give fine-
granular control on what variables are to be tracked and visualised. Currently,
we are working on agents that can find optimal tours for a given set of nodes
and congestion dependent travel times in the network, i.e. these agents are facing
instantiations of a dynamic Travelling Sales Problem.

Even though the number of lines of code required to define optimisation-
related traffic simulations can be dramatically reduced, there is a need to quan-
titatively evaluate how this affects the cognitive complexity of the models. For



Towards Reducing Complexity of Multi-agent Simulations 197

this, Athos will have to be evaluated in an objective way by appropriate tests.
In this context, we will also empirically evaluate qualitative DSL aspects like
usability, productivity, learnability and reliability that are crucial for a success-
ful DSL [15]. We consider such a quantitative evaluation of these aspects to be of
utmost importance even though it is often neglected by language developers [20].

However, literature still offers little guidance on how DSLs can be system-
atically evaluated [20]. This might be because this part of DSL development is
still at a rather immature stage [5]. For this reason, scientists should view it as
an important and interesting and rather unexplored area of further research.

References

1. Bazzan, A.L.C., Klügl, F.: A review on agent-based technology for traffic and
transportation. Knowl. Eng. Rev. 29(03), 375–403 (2014)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade—a Java agent develop-
ment framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah, S.A. (eds.)
Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simu-
lated Organizations, vol. 15, pp. 125–147. Springer, Boston (2005). https://doi.
org/10.1007/0-387-26350-0 5

3. Borenstein, D.B.: Nanoverse: a constraints-based declarative framework for rapid
agent-based modeling. In: Yilmaz, L. (ed.) Proceedings of the 2015 Winter Simu-
lation Conference, pp. 206–217. IEEE, Piscataway (2015)

4. Çetinkaya, D.: A model driven approach to web-based traffic simulation. In: A
Model Driven Approach to Web-Based Traffic Simulation (2016)

5. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating
domain-specific modeling language environments for multi-agent systems. Softw.
Q. J. 1–41 (2015)

6. Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for
geo-spatial simulation. Comput. Environ. Urban Syst. 32(6), 417–430 (2008)

7. Van Deursen, A., Klint, P.: Little languages: little maintenance? J. Softw. Maint.:
Res. Pract. 10(2), 75–92 (1998)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

9. Farrenkopf, T., Guckert, M., Urquhart, N., Wells, S.: Ontology based business
simulations. J. Artif. Soc. Soc. Simul. 19(4), 14 (2016)

10. Fowler, M.: Domain Specific Languages, vol. 1. Addison-Wesley Professional,
Boston (2010)

11. Ge, J., Polhill, G.: Exploring the combined effect of factors influencing commuting
patterns and CO2 emissions in Aberdeen using an agent-based model. J. Artif.
Soc. Soc. Simul. 19(3) (2016)

12. Grey, R.: Agent Tcl: a transportable agent system. In: Proceedings of the CIKM
Workshop on Intelligent Information Agents, Fourth International Conference on
Information and Knowledge Management (CIKM 1995) (1995)

13. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.:
Gama 1.6: advancing the art of complex agent-based modeling and simulation. In
International Conference on Principles and Practice of Multi-agent Systems, pp.
117–131 (2013)

https://doi.org/10.1007/0-387-26350-0_5
https://doi.org/10.1007/0-387-26350-0_5


198 B. Hoffmann et al.

14. Hassan, S., Fuentes-Fernández, R., Galán, J.M., López-Paredes, A., Pavón, J.:
Reducing the modeling gap: on the use of metamodels in agent-based simulation.
In: 6th Conference of the European Social Simulation Association (ESSA 2009),
pp. 1–13 (2009)

15. Hermans, F., Pinzger, M., van Deursen, A.: Domain-specific languages in practice:
a user study on the success factors. In: Schürr, A., Selic, B. (eds.) MODELS 2009.
LNCS, vol. 5795, pp. 423–437. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04425-0 33

16. Horni, A., Nagel, K., Axhausen, K.W.: The Multi-Agent Transport Simulation
MATSim. Ubiquity Press, London (2016). https://doi.org/10.5334/baw

17. North, M.J., Macal, C.M.: Agents up close. In: North, M.J., Macal, C.M. (eds.)
Managing Business Complexity, pp. 24–44. Oxford University Press, Oxford (2007)

18. Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’hara, K.,
Gavaghan, D., Emmott, S.: Troubling trends in scientific software use. Science
340(6134), 814–815 (2013)

19. Kardoš, M., Drozdová, M.: Analytical method of CIM to PIM transformation in
model driven architecture (MDA). J. Inf. Org. Sci. 34(1), 89–99 (2010)

20. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping
study. Inf. Softw. Technol. 71, 77–91 (2016)

21. Kosar, T., Mernik, M., Carver, J.C.: Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments. Emp.
Softw. Eng. 17(3), 276–304 (2012)

22. Lu, R., Jin, Z.: Domain Modeling-based Software Engineering: A Formal Approach,
vol. 8, p. 123. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-
4487-6

23. North, M.J., Macal, C.M.: Agent based modeling and computer languages. In:
Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 131–148.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3 8

24. Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B.: An artificial stock market.
Artif. Life Robot. 3(1), 27–31 (1999)

25. Parry, H.R.: Agent based modeling, large scale simulations. In: Meyers, R.A. (ed.)
Encyclopedia of Complexity and Systems Science, pp. 148–160. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-30440-3 9

26. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp.
236–276. IGI Global, Hershey (2005)

27. Samuelson, P.A.: Tragedy of the open road: avoiding paradox by use of regulated
public utilities that charge corrected knightian tolls. J. Int. Comp. Econ. 1(1), 3–12
(1992)

28. Sansores, C., Pavón, J.: Agent-based simulation replication: a model driven archi-
tecture approach. In: Gelbukh, A., de Albornoz, Á., Terashima-Maŕın, H. (eds.)
MICAI 2005. LNCS (LNAI), vol. 3789, pp. 244–253. Springer, Heidelberg (2005).
https://doi.org/10.1007/11579427 25

29. Segal, J.: Software development cultures and cooperation problems: a field study
of the early stages of development of software for a scientific community. Comput.
Support. Coop. Work (CSCW) 18(5), 581 (2009)

30. Touraille, L., Traoré, M.K., Hill, D.R.C., A model-driven software environment for
modeling, simulation and analysis of complex systems. In: Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Sym-
posium, TMS-DEVS 2011, pp. 229–237. Society for Computer Simulation Interna-
tional, San Diego (2011)

https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.5334/baw
https://doi.org/10.1007/978-1-4615-4487-6
https://doi.org/10.1007/978-1-4615-4487-6
https://doi.org/10.1007/978-0-387-30440-3_8
https://doi.org/10.1007/978-0-387-30440-3_9
https://doi.org/10.1007/11579427_25


Towards Reducing Complexity of Multi-agent Simulations 199

31. Vendrov, I., Dutchyn, C., Osgood, N.D.: Frabjous: a declarative domain-specific
language for agent-based modeling. In: Kennedy, W.G., Agarwal, N., Yang, S.J.
(eds.) SBP 2014. LNCS, vol. 8393, pp. 385–392. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05579-4 47

32. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

33. Xiang, X., Kennedy, R., Madey, G., Cabaniss, S.: Verification and validation of
agent-based scientific simulation models. In: Agent-Directed Simulation Confer-
ence, pp. 47–55 (2005)

https://doi.org/10.1007/978-3-319-05579-4_47
https://doi.org/10.1007/978-3-319-05579-4_47
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	Towards Reducing Complexity of Multi-agent Simulations by Applying Model-Driven Techniques
	1 Introduction and Motivation
	2 Background and Related Work
	3 Athos – A DSL for Traffic Simulations
	4 Example
	5 Conclusion and Future Work
	References




