
Mathias Payer · Awais Rashid
Jose M. Such (Eds.)

 123

LN
CS

 1
09

53

10th International Symposium, ESSoS 2018
Paris, France, June 26–27, 2018
Proceedings

Engineering
Secure Software
and Systems

Lecture Notes in Computer Science 10953

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Mathias Payer • Awais Rashid
Jose M. Such (Eds.)

Engineering
Secure Software
and Systems
10th International Symposium, ESSoS 2018
Paris, France, June 26–27, 2018
Proceedings

123

Editors
Mathias Payer
Purdue University
West Lafayette
USA

Awais Rashid
University of Bristol
Clifton
UK

Jose M. Such
King’s College London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94495-1 ISBN 978-3-319-94496-8 (eBook)
https://doi.org/10.1007/978-3-319-94496-8

Library of Congress Control Number: 2018947337

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is our pleasure to welcome you to the proceedings of the 10th International Sym-
posium on Engineering Secure Software and Systems (ESSoS 2018), co-located with
the conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA 2018). ESSoS is part of a maturing series of symposia that attempts to bridge
the gap between the software engineering and security scientific communities with the
goal of supporting secure software development. The parallel technical sponsorship
from ACM SIGSAC (the ACM interest group in security) and ACM SIGSOFT (the
ACM interest group in software engineering) demonstrates the support from both
communities and the need for providing such a bridge.

Security mechanisms and the act of software development usually go hand in hand.
It is generally not enough to ensure correct functioning of the security mechanisms
used. They cannot be blindly inserted into a security-critical system, but the overall
system development must take security aspects into account in a coherent way.
Building trustworthy components does not suffice, since the interconnections and
interactions of components play a significant role in trustworthiness. Lastly, while
functional requirements are generally analyzed carefully in systems development,
security considerations often arise after the fact. Adding security as an afterthought,
however, often leads to problems. Ad Hoc development can lead to the deployment of
systems that do not satisfy important security requirements. Thus, a sound methodol-
ogy supporting secure systems development is needed. The presentations and associ-
ated publications at ESSoS 2018 contribute to this goal in several directions: first, by
improving methodologies for secure software engineering (such as flow analysis and
policy compliance). Second, with results for the detection and analysis of software
vulnerabilities and the attacks they enable. Finally, for securing software for specific
application domains (such as mobile devices and access control).

The conference program featured two keynotes, as well as research and idea papers.
In response to the call for papers, 26 papers were submitted. The Program Committee
selected seven full-paper contributions, presenting new research results on engineering
secure software and systems. In addition, three idea papers were selected, giving a
concise account of new ideas in the early stages of research. ESSoS received four
requests for artifact evaluation, out of which three were evaluated correctly and
received the artifact evaluation badge. Many individuals and organizations contributed
to the success of this event. First of all, we would like to express our appreciation to the
authors of the submitted papers and to the Program Committee members and external
reviewers, who provided timely and relevant reviews. Many thanks go to the Artifact
Evaluation Committee for assessing the quality of the submitted artifacts to the Steering
Committee for supporting this series of symposia, and to all the members of the
Organizing Committee for their tremendous work. We are thankful to ACM
SIGSAC/SIGSOFT and LNCS for continuing to support us in this series of symposia.

The engineering of secure software and systems in an increasingly hyperconnected
world is both a major challenge and a fundamental need to ensure that the digital fabric
underpinning our society remains resilient in the face of a variety of threats. Bringing
researchers from software and systems engineering and computer security to discuss
challenges and solutions is an important important step in this regard. It has been our
pleasure to chair the program for ESSoS 2018.

May 2018 Mathias Payer
Awais Rashid

VI Preface

Organization

Steering Committee

Jorge Cuellar Siemens AG, Germany
Wouter Joosen

(Chair)
KU Leuven University, Belgium

Fabio Massacci University of Trento, Italy
Bashar Nuseibeh The Open University and LERO, UK
Juan Caballero IMDEA Software Institute, Spain
Eric Bodden University of Paderborn, Germany
Lorenzo Cavallaro Royal Holloway University of London, UK

Organizing Committee

Program Co-chairs

Mathias Payer Purdue University, USA
Awais Rashid University of Bristol, UK

Publication Chair

Jose M. Such King’s College London, UK

Publicity Chair

Raoul Strackx KU Leuven University, Belgium

Local Organizers

Sebastien Bardin CEA, France
Gregory Blanc Telecom SudParis, France

Web Chair

Annick Vandijck KU Leuven University, Belgium

Program Committee

Yasmin Acar Leibniz University Hannover, Germany
Luca Allodi Technical University of Eindhoven, The Netherlands
Pauline

Anthonysamy
Google Inc., Switzerland

Rakesh Bobba Oregon State University, USA
Alvaro Cardenas The University of Texas at Dallas, USA
Lorenzo Cavallaro Royal Holloway University of London, UK

Tom Chothia University of Birmingham, UK
Sven Dietrich The City University of New York, USA
Mattia Fazzini Georgia Institute of Technology, Atlanta, USA
Yanick Fratantonio EURECOM, France
Seda Gurses Princeton University, USA
Marina Krotofil FireEye, Inc., USA
Per Larsen University of California, Irvine, USA
Martina Lindorfer University of California, Santa Barbara, USA
Mira Mezini Technical University of Darmstadt, Germany
Nick Nikiforakis Stony Brook University, New York, USA
Michael Pradel Technical University of Darmstadt, Germany
Kaveh Razavi ETH Zurich, Switzerland and Vrije Universiteit Amsterdam,

The Netherlands
Abhik

Roychoudhury
National University of Singapore, Singapore

Riccardo Scandariato University of Gothenburg, Sweden
Laurie Williams North Carolina State University, USA

Artifact Evaluation Committee

Lieven Desmet KU Leuven, Belgium
Sylvain Frey Google DeepMind
Joseph Hallett University of Bristol, UK
Jan Tobias

Muehlberg
KU Leuven, Belgium

Additional Reviewers

Sarah Elder
Sylvain Frey
Andrei Homescu
Trishank Karthik
Raul Quinonez
Akond Rahman
Chris Theisen

VIII Organization

Contents

A Vision for Enhancing Security of Cryptography in Executables 1
Otto Brechelmacher, Willibald Krenn, and Thorsten Tarrach

Enforcing Full-Stack Memory-Safety in Cyber-Physical Systems. 9
Eyasu Getahun Chekole, Sudipta Chattopadhyay, Martín Ochoa,
and Guo Huaqun

Model Checking the Information Flow Security of Real-Time Systems 27
Christopher Gerking, David Schubert, and Eric Bodden

Off-Limits: Abusing Legacy x86 Memory Segmentation to Spy
on Enclaved Execution . 44

Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx

One Leak Is Enough to Expose Them All: From a WebRTC IP Leak
to Web-Based Network Scanning . 61

Mohammadreza Hazhirpasand and Mohammad Ghafari

PrivacyMeter: Designing and Developing a Privacy-Preserving
Browser Extension . 77

Oleksii Starov and Nick Nikiforakis

Security Analysis of Drone Communication Protocols 96
Christian Bunse and Sebastian Plotz

Idea: Automatic Localization of Malicious Behaviors in Android
Malware with Hidden Markov Models. 108

Aleieldin Salem, Tabea Schmidt, and Alexander Pretschner

Idea: Benchmarking Android Data Leak Detection Tools 116
Claudio Corrodi, Timo Spring, Mohammad Ghafari,
and Oscar Nierstrasz

Idea: Visual Analytics for Web Security . 124
Victor Le Pochat, Tom Van Goethem, and Wouter Joosen

Author Index . 133

A Vision for Enhancing Security
of Cryptography in Executables

Otto Brechelmacher, Willibald Krenn, and Thorsten Tarrach(B)

AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
thorsten.tarrach@ait.ac.at

Abstract. This paper proposes an idea on how to use existing tech-
niques from late stage software customization to improve the security of
software employing cryptographic functions. In our vision, we can verify
an implemented algorithm and replace it with a faster or more trusted
implementation if necessary. We also want to be able to add encryption
to binaries that currently do not employ any, or gain access to unen-
crypted data if an application depends on encryption.

To corroborate the feasibility of our vision, we developed a proto-
type that is able to identify cryptographic functions in highly optimized
binary code and tests the identified functions for functional correctness,
potentially also revealing backdoors.

1 Introduction

In recent years cryptography became almost universal in applications, both
commercial and open-source. Every application securely communicating with
its cloud server relies on a full suite of symmetric and asymmetric encryption
algorithms. Hence, running a closed-source application employing cryptography
requires one to trust the software developer to (a) consistently use cryptography,
(b) have chosen a good crypto-library and use it correctly, and (c) not to have
built-in a backdoor that leaks sensitive information.

Especially when dealing with software running in a sensitive environment it
is necessary to thoroughly inspect the software for potential vulnerabilities and
threats. We focus on the correctness analysis of the software using the binary
code as unwanted functionality can be introduced during the compilation pro-
cess [1], the original source code or libraries are not available, or one cannot
re-produce bit-matching binary images from the supplied sources. For similar
reasons, i.e. no source available or highest level of trust, any late stage cus-
tomization has to be performed on the machine-code level. In the following, we
focus on cryptography routines because they are often exposed to the network
and present a major part of the attack surface of an application. Also, this spe-
cific domain allows us to use a lot of domain-specific knowledge in the attempted
automated analysis.

The research leading to this paper has received funding from the AMASS project
(H2020-ECSEL no. 692474).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 1–8, 2018.
https://doi.org/10.1007/978-3-319-94496-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_1&domain=pdf

2 O. Brechelmacher et al.

Once some piece of software fails the verification, information about vulnera-
bilities becomes public, or encryption needs to be added due to changing security
requirements, the software needs to be patched or replaced. In order to save on
the re-certification/verification effort, we propose to automatically address the
shortcomings in the binary file. Put differently, we do not only want to analyze
binaries, but also fix certain problems automatically or even add encryption to
binaries that do not currently employ encryption, e.g. adding HTTPS to a legacy
application.

While one source of vulnerabilities are sophisticated, deliberate backdoors,
we believe a significant portion of flaws are accidental. Developers typically are
not very knowledgeable in cryptography. A common pattern these days is that
developers use the first seemingly working code-snipped from some blog or stack-
exchange answer for their code. There are numerous problems when using cryp-
tography in this näıve way.

The first problem is that developers may use a home-grown implementation
of their desired cipher or some not very well maintained library. Such home-
grown implementations will not contain hardening against side-channel attacks
and will likely contain unknown bugs or weaknesses [2]. The second problem
is connected to the use of statically linked libraries. Here, one issue is that
the user of the software cannot easily update the version of the library used,
once a vulnerability has been found. Further, the user has no guarantees (and
is generally unable to check) whether the software supplier has used the latest
version of the library when building the release. As security issues are regularly
found and fixed in libraries, this is a major problem. Lastly, even the best crypto
library may be used incorrectly. There are numerous topics around encryption,
such as key management or safe storage and erasure of the key in memory that
a developer can get wrong.

In the past numerous flaws concerning cryptography have been found in
software. Here are some of the more interesting cases. Our first example has
been revealed by the Chaos Computer Club of Germany (CCC) in software used
by the German government to spy on suspected criminals. On close analysis of
the software, which is also known as the federal trojan horse, the CCC discovered
that the trojan used the same hard-coded AES-key to secure the data transfer
to the control server for years. The key can now be found on the internet [3].
Hence, unauthorized parties would have been able read the data transferred.
The second example is the well-known Heartbleed bug [4]. This bug may still
be present in applications that were statically linked with any of the vulnerable
OpenSSL versions. Here, we would want an automated upgrade of the library
linked into the affected applications to fix the issue. A third example shows
another source for weaknesses when using cryptographic functions: the random
number generator. The best crypto implementation does not help if the key is
predictable. This was the case in Debian’s OpenSSL package, that was able to
generate only 32 768 different keys [5]. As before, we would like to be able to
address this bug by replacing the random generator used in the application by
a trusted one. These are just a few examples, but they illustrate a need to focus
on cryptography as part of a software security analysis and life cycle. They also

A Vision for Enhancing Security of Cryptography 3

show that binary analysis is needed because merely analyzing the input and
output of the application may not reveal a faulty crypto implementation.

We are now ready to present our vision in Sect. 2, before arguing for its
feasibility in Sect. 3 by presenting already existing work we can build on. Finally,
we conclude this idea paper in Sect. 4.

2 The Vision

As we have shown in Sect. 1, the current treatment of cryptography in the life-
cycle of executable programs is far from optimal. Put shortly, the user has no
efficient way of checking whether the employed algorithms or library versions are
up-to-date, whether the cryptographic primitives are used correctly, or whether
the advertised algorithms are used at all. Even worse, once vulnerabilities are
discovered there is no easy way to fix the affected executables. Finally, there is
no way to add additional functionality to the application.

Our vision is to address these shortcomings with a platform for analyzing,
rewriting, and embedding cryptographic functions in binaries. By ‘binary’ we
mean a compiled program, where we don’t have access to the source code or
any debug information. We understand the term cryptography here in its wider
sense to also include random number generators needed to generate keys, cipher
modes (counter mode, cipher feedback mode, etc.), and cryptographic protocols
like TLS. We envision our platform to have the following features:

– Analyze cryptographic functions in the binary for correctness and potential
backdoors. The analysis should reveal if the algorithm computes the cor-
rect result, has potential information leaks, and if it is vulnerable to known
attacks.

– Replace cryptographic functions in the binary with alternate implementa-
tions.

– Insert cryptographic functionality, which is most useful for legacy binaries.

While these features seem trivial, achieving them is far from it. We will use a
few scenarios to illustrate common problems and how our platform would help.

Unknown Binary Using Crypto. Assuming we bought an application that
employs the Advanced Encryption Standard (AES) according to the data sheet.
In this situation we need to check whether AES really is being used and whether
there are (known) vulnerabilities, weaknesses, or leaks with this version. Hence
in this scenario we could use the analysis capabilities of our platform. In case
we are not satisfied with the quality of the implementation, we can then replace
the existing AES implementation with calls to our own trusted library.

Legacy Application Without Patches. Another important situation is the
maintenance of legacy applications without vendor support. Be it a statically
linked application or an application dynamically linked to some outdated version

4 O. Brechelmacher et al.

of some cryptographic library that contains known vulnerabilities. In order to
develop our own patch for the application, our platform can be used. In the case
of an statically linked application, the platform will supply the means to replace
the original library version with an updated one. If the application has a dynamic
dependency one might be able to find a drop-in replacement if the interface
did not change. If, however, there was some interface change, our platform will
help with its insert and replacement functionality to add adapter code so the
application can use the interface incompatible new version of the library.

Adding Encryption. A further use case we envision for our platform is to
add encryption to executables. This could be done by adding transient encryp-
tion/decryption when saving/loading files but could also mean securing network
connections in non-standard ways. For example we may want to enable a legacy
application to encrypt its network traffic. The encryption could be added to the
data passed to the send function of libc and the decryption to the data returned
by the receive function. We could provide standard packages that also take care
of key derivation between peer, for example as part of the connect call. Similarly
employing steganography or adding direct support for onion routing techniques
would benefit from our platform.

Weakening Encryption. While not in our primary focus, our platform could
even be used to weaken a cryptographic implementation. This could be useful in
case of reverse engineering, i.e. malware analysis. An important part of reverse
engineering is the network traffic, which may be difficult to analyze if it is TLS
encrypted with certificate pinning. Our framework would save the analyst a lot
of time by simply leaking the encryption key to a file.

All of the discussed scenarios can be realized manually with dedicated per-
sonnel. Our platform, however, should automate the work involved as much as
possible. While this is no easy feat, we think it is viable and give an overview of
already available building blocks in the following section.

3 Available Already

Quite a number of building blocks for our vision are already in place. On the one
hand there is a large body of research and tools that deal with binary analysis
and manipulation, on the other hand we started working towards our platform
for Linux/x86-64 and gained first, encouraging results.

In the following sub-sections, we give a brief overview of available tools and
techniques that help realizing our vision. Starting from tools helping with binary
rewriting and analysis, we refer to techniques used for specifying machine code
that needs replacement before describing our own contributions.

A Vision for Enhancing Security of Cryptography 5

3.1 Supporting Tools

Binary Rewriting. We benefit from a large body of work in runtime manipula-
tion of machine code and binary rewriting. We use DynamoRIO [6] to inject code
and modify the control flow of binaries during runtime. While this is ideal for
prototyping we would eventually want to rewrite the binaries to persist changes
in it. Rewriting binaries is challenging because the control flow can be unpre-
dictable due to exceptions and signals and because some parts of the code may
be only revealed at runtime due to Just-In-Time compilation or encryption.
Thankfully many of these problem are already addressed, e.g. in Zipr++ [7] and
RL-Bin [8].

Binary Analysis. There are two approaches to analyzing a binary. One is to
observe the binary during its normal operation at runtime. That is suitable to
understand the normal operation of the binary, but not to find a backdoor. The
latter can be found for example by symbolic analysis, a technique to reach all
program locations. The downside is that such analysis is inherently slow. Since
we expect the crypto routines to be part of the normal operation of the binary
our prototype uses runtime analysis. We use DynamoRIO to record a trace that
we later analyze. A trace means the sequence of all machine code instructions
that were executed during a single run of the binary under observation.

There are a few symbolic analysis frameworks for machine code, including
S2E [9], angr [10], and libtriton [11]. We also showed that it is feasible to use
KLEE [12] for symbolic analysis if the machine code is first lifted to LLVM
intermediate language. A task that is non-trivial in itself and we completed only
for simple binaries.

Specification. We specify functions and their input/output behavior with the
help of model programs. That means we have a model of the intended function-
ality as a specification and are searching for functions that, when given the same
input, will return the same value. Hence our specification does not use pairs
of inputs and outputs, but a reference implementation of the function we are
looking for. To our knowledge this specification approach is novel in the field.

Another specification method is to use seed functions [13]. Seed functions
are functions in the binary one wants to remove by removing the function and
all functions that depend on it. These functions can specify a function in a
specific binary, but cannot describe the same functionality over all binaries. An
alternative is dual slicing [14] where a feature is defined by the difference in two
program executions. So the program is started with two different parameters and
the function calls that are present in only one trace are the functions of interest.

3.2 First Results

Using these building blocks we built a prototype demonstrating parts of our
vision.

6 O. Brechelmacher et al.

Identification. Our specification is given in the form of an implementation of
the crypto functions we are looking for. We use these to find the functions of
interest in the trace we recorded. The näıve approach of testing all functions
called in the trace brute-force does not scale. We therefore employ domain-
knowledge to narrow the search: A candidate function can often be identified
by its use of certain constants (SBox in AES), specific CPU instructions (AES-
NI), or heuristically by a density of bit-level operations in the code. To test
the latter we use a machine-learning approach that is able to identify functions
containing cryptographic operations with high confidence. A different approach
is implemented in CryptoHunt [15] and the Software Analysis Workbench [16],
where the authors translate the binary program into logical formulas that can
be compared to a given reference implementation with an SMT solver.

Function identification is further complicated because we also need the order
of parameters of the function in order to replace or invoke it. Again a brute-force
attempt would be very slow, so we again use domain knowledge: The parameters
we are interested in (plaintext, key, ciphertext) are pointers to memory buffers
of at least 16 byte length. That significantly reduces the number of parameters
we need to test.

Testing Cryptographic Implementations. Knowing the exact interface we
can test the cryptographic implementation in the binary. We support two test
modes:

Firstly, we support supervised encryption, which means that we check after
every invocation of the encryption routine if the returned result is correct. This
is done by running in parallel a trusted implementation. At this point we could
also replace the entire crypto routine with the trusted implementation. Currently
this check is done at runtime using DynamoRIO.

The second test mode is to run the encryption function against a list of
well-known input-output pairs. In case of AES such pairs are provided by the
NIST [17]. This works during runtime by waiting until the encryption function is
first invoked and then repeatedly invoking just the encryption function with the
chosen inputs and comparing the outputs to the specified ones. Any deviation is
an indication that the encryption is not implemented correctly. This is essentially
a from of differential testing [18].

Symbolic Analysis. We already use symbolic analysis to find so-called logic
bombs in binaries. A logic bomb is a malicious action hidden in the binary and
triggered on certain conditions. In terms of crypto this could for example be a
backdoor leaking the key. A first attempt working on source code was already
published [19] and we are currently busy porting this to the machine code level.

Replacing the Encryption Algorithm. The identification of the encryption
algorithm and its parameters is the first important step to allow replacing the
encryption algorithm. Our framework could be trivially extended to make the

A Vision for Enhancing Security of Cryptography 7

replacement at runtime with DynamoRIO. This is because we already intercept
the call to crypto functions for testing. Instead of running both functions and
comparing the result, one could simply return the result of the reference imple-
mentation and never invoke the original function. While the runtime manipula-
tion of the binary is perfect for testing, it is not desirable as a permanent solution
due to the overhead. Therefore we need the binary rewriting tools outlined in
Sect. 3.1 to persist changes in the binary itself.

Inserting Encryption. To insert encryption we need to specify insertion
points, e.g. function calls to libc. libc is a standard C library used by virtually
every Linux application. We can replace these calls with a transparent wrap-
per to encrypt data before it is passed to libc and decrypting data returned by
libc. This could be done when writing data to a file or to a network socket.
Of course this would be further complicated by adding key management and
exchange. To protect the keys in memory from the original application we can
use novel CPU-backed technologies that isolate certain parts of memory, such as
Intel SGX.

3.3 Evaluation

Our current prototype implements the complete testing toolchain for AES: It
has the ability to record traces, find the addresses and parameters of the crypto
functions, and test the crypto function using NIST vectors. We implemented
several models for AES using two modes (ECB and CTR) and various keylengths.

We can not only process the small toy examples we created for numerous ways
to implement AES, but also the aescrypt2 sample program from the mbedTLS
library [20]. All these example were compiled with GCC optimization level 3 and
without symbols. The aescrypt2 example is 180 kb in size and contains more than
7000 assembler instructions.

4 Conclusion

We have presented our vision on how to address the challenges posed by cryptog-
raphy in the life-cycle of executable programs. In order to automate the process
of testing and adapting executables as much as possible, we propose to build a
platform capable of analyzing, replacing, and inserting cryptographic functions
with the goal of achieving a high level of automation. For this, we rely on a mix
of techniques known from binary analysis and rewriting, program verification,
model-based testing, and compiler construction.

Our envisioned platform will help analysts find flawed cryptographic imple-
mentations and replace them by trusted ones or even insert encryption function-
ality into executable programs. We have made promising first steps towards our
vision by implementing parts of the platform on the Linux-x86-64 platform and
applying it to different applications relying on AES. Our lessons learnt led us to
new approaches for speeding up solving the identification problem of functions

8 O. Brechelmacher et al.

and parameters, which we are implementing right now. We are also working
on improving the symbolic analysis to make it more scalable and applicable to
larger executables. Finally, we want to use rewriting techniques to make perma-
nent changes to binaries as the next step in going after our vision.

References

1. Thompson, K.: Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)
2. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-

tographic misuse in Android applications. In: CCS 2013, pp. 73–84 (2013)
3. CCC: Analyse einer Regierungs-Malware. Technical report, Chaos Computer Club

(2011)
4. Codenomicon, Google-Security: CVE-2014-0160. Available from MITRE, CVE-ID

CVE-2014-0160, 3 Dec 2013
5. Bello, L.: CVE-2008-0166. Available from MITRE, CVE-ID CVE-2008-0166, 9 Jan

2008
6. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instrumentation.

ACM SIGPLAN Not. 47(7), 133–144 (2012)
7. Hiser, J., Nguyen-Tuong, A., Hawkins, W., McGill, M., Co, M., Davidson, J.:

Zipr++: exceptional binary rewriting. In: FEAST 2017, pp. 9–15 (2017)
8. Majlesi-Kupaei, A., Kim, D., Anand, K., ElWazeer, K., Barua, R.: RL-Bin, robust

low-overhead binary rewriter. In: FEAST 2017, pp. 17–22 (2017)
9. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implemen-

tation, and applications. TOCS 30(1), 2 (2012)
10. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,

Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (state of) the art of
war: offensive techniques in binary analysis. In: S&P 2016 (2016)

11. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des Technologies de l’information et des Communications,
SSTIC, France, Rennes, June 3–5 2015, SSTIC, pp. 31–54 (2015)

12. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: OSDI. vol. 8,
pp. 209–224 (2008)

13. Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based software customization: pre-
liminary analysis, formalization, and methods. In: HASE 2016, pp. 122–131 (2016)

14. Kim, D., Sumner, W.N., Zhang, X., Xu, D., Agrawal, H.: Reuse-oriented reverse
engineering of functional components from x86 binaries. In: ICSE 2014, pp. 1128–
1139 (2014)

15. Xu, D., Ming, J., Wu, D.: Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping. In: S&P 2017, pp. 921–937 (2017)

16. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the software analysis workbench. In:
VSTTE 2016, pp. 56–72 (2016)

17. Bassham III, L.E.: The advanced encryption standard algorithm validation suite
(AESAVS). NIST Information Technology Laboratory (2002)

18. McKeeman, W.M.: Differential testing for software. Digit. Techn. J. 10(1), 100–107
(1998)

19. Papp, D., Buttyán, L., Ma, Z.: Towards semi-automated detection of trigger-based
behavior for software security assurance. In: SAW 2018 (2018)

20. ARM: mbedTLS. https://tls.mbed.org/

https://tls.mbed.org/

Enforcing Full-Stack Memory-Safety
in Cyber-Physical Systems

Eyasu Getahun Chekole1,2(B), Sudipta Chattopadhyay1, Mart́ın Ochoa1,3,
and Guo Huaqun2

1 Singapore University of Technology and Design, Singapore, Singapore
eyasu chekole@mymail.sutd.edu.sg

2 Institute for Infocomm Research (I2R), Singapore, Singapore
3 Department of Applied Mathematics and Computer Science,

Universidad del Rosario, Bogotá, Colombia

Abstract. Memory-safety attacks are one of the most critical threats
against Cyber-Physical Systems (CPS). As opposed to mainstream sys-
tems, CPS often impose stringent timing constraints. Given such timing
constraints, how can we protect CPS from memory-safety attacks? In this
paper, we propose a full-stack memory-safety attack detection method
to address this challenge. We also quantify the notion of tolerability
of memory-safety overheads (MSO) in terms of the expected real-time
constraints of a typical CPS. We implemented and evaluated our pro-
posed solution on a real-world Secure Water Treatment (SWaT) testbed.
Concretely, we show that our proposed solution incurs a memory-safety
overhead of 419.91 µs, which is tolerable for the real-time constraints
imposed by the SWaT system. Additionally, We also discuss how differ-
ent parameters of a typical CPS will impact the execution time of the
CPS computational logic and memory safety overhead.

1 Introduction

Cyber-physical systems [1–3], which integrate computations and communica-
tions with physical processes, are gaining attention and being widely adopted in
various application areas including power grid, water systems, transportation,
manufacturing, healthcare services and robotics, among others. Despite their
importance, two major issues have raised concerns about the safety of CPS in
general. On the one hand, the increasing prevalence of cyber attacks poses a
serious security risk; on the other hand, real-time requirements and legacy hard-
ware/software limit the practicality of certain security solutions available. Thus,
the trade-off between security, performance and cost remains one of the main
design challenges for CPS.

In this paper, we focus on memory-safety attacks against computing nodes
of a CPS. These attacks typically are launched on programmable logic con-
trollers (PLCs) and exploit memory-safety vulnerabilities. Most PLCs nowadays
are user-mode applications running on top of a POSIX-like OS, often Linux

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 9–26, 2018.
https://doi.org/10.1007/978-3-319-94496-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_2&domain=pdf

10 E. G. Chekole et al.

OS. Therefore, memory-safety vulnerabilities may be discovered on the PLC
firmware and control software (user-space) or the Linux kernel (kernel-space).
For example, a malware can corrupt the memory of the PLC or the kernel to
hijack or otherwise subvert its operations.

Memory-safety vulnerabilities arise due to the use of programming languages
where memory management is handled manually, such as C/C++. Those lan-
guages are particularly relevant in systems with stringent real-time constraints
since they allow skilled programmers to produce efficient compiled code. How-
ever, since firmwares of PLCs and operating systems are commonly implemented
in memory-unsafe languages (for the sake of efficiency), the memory unsafety
remains a significant security concern. For instance, buffer overflows and dan-
gling pointers, are regularly discovered and reported in modern PLCs.

Common Vulnerabilities and Exposures (CVE) [4] have been reported for a
wide-range of memory-safety vulnerabilities only on PLCs for the last couple of
decades. For example, a buffer overflow vulnerability concerns Allen-Bradley’s
RSLogix Micro Starter Lite (CVE-2016-5814) [5]. This allows remote attackers
to execute arbitrary code via a crafted rich site on summary (RSS) project file.
Yet other buffer overflow vulnerabilities are reported on this PLC [6,7]. Similarly,
CVEs are also recently reported for memory-safety vulnerabilities discovered on
Siemens PLC [8,9], Schneider Electric Modicon PLC [10,11], ABB PLC automa-
tion [12], and so on. Recent CVE reports also show a high volume of interest in
exploiting the Linux kernel [13].

Existing countermeasures against memory-safety attacks [14–26] face several
challenges to be employed in the context of CPS. First, almost all of them have
architectural compatibility problems in working with PLCs, because the PLCs
are often based on RISC-based ARM or AVR CPU architectures. More fun-
damentally, the countermeasures have non-negligible runtime overheads, which
may unacceptably compromise the performance of a CPS. Violation of tim-
ing constraints in a CPS may lead to serious consequences, including complete
system damage or disruption and incorrect control by the use of stale informa-
tion. Hence, vis-a-vis the exploitation concerns, performance and availability are
equally critical in a CPS environment.

To cover a wide range of memory-safety errors, the code-instrumentation
based countermeasures, which we refer to as memory-safety tools, offer stronger
guarantees. These tools detect memory-safety violations before the attackers get
a chance to exploit them. Although there are published benchmarks for the
overheads caused by such tools, which give an intuition of average penalties to
be paid when using them, it is still unclear how they perform in a CPS context.

In this paper, we leverage memory-safety compilation tools ASan [20] (for
the user-space) and KASan [27] (for the kernel-space) to enforce full-stack mem-
ory safety in CPS. We quantify the performance impact of our solution via an
empirical approach that measures the memory-safety overhead. We evaluated
our approach on SWaT [28], a realistic CPS water treatment testbed that con-
tains a set of real-world vendor-supplied PLCs. However, the PLC firmware for
the SWaT is closed-source and hence, it does not allow us to incorporate addi-
tional memory-safety solutions. To circumvent this challenge, we prototyped an

Enforcing Full-Stack Memory-Safety in CPS 11

experimental setup, which we call open-SWaT, based on open-source PLCs and
mimic the behavior of the SWaT according to its detailed operational profile. Our
experiments on open-SWaT reveal that the introduced memory-safety overhead
would not impact the normal operation of SWaT.

In summary, this work tackles the problem of quantifying the practical tol-
erability of a strong full-stack memory-safety enforcement on realistic Cyber-
Physical Systems with hard real-time constraints and limited computational
power.

We make the following contributions: (a) We enforce a full-stack memory-
safety countermeasure based on memory-safe compilation for a realistic CPS
environment. (b) We empirically measure and quantify the tolerability of the
induced overhead of the countermeasure based on the real-time constraints of a
real industrial control system. (c) We discuss parameters that affect the absolute
overhead to generalize our observations on tolerability beyond our case study.

2 Background

In this section, we provide background information on cyber-physical systems,
the CPS testbed we use for experimentation (SWaT) and the memory-safety
tools we enforced to our CPS design (ASan and KASan).

2.1 Overview of CPS

CPS constitute complex interactions between entities in physical space and cyber
space. Unlike traditional IT systems, these complex interactions are achieved
through communication between physical world via sensors and digital world
via controllers (PLCs) and other embedded devices. A general architecture of
CPS and the interactions among its entities is shown on Fig. 2 (in Appendix).
Since these systems are real-time, there are latency and reliability constraints.
If these real-time constraints are not met, system could run in to an unstable
and unsafe state. The devices in a typical CPS are resource constrained too. For
example, PLCs and I/O devices have limited memory and computational power.
In general, a typical CPS consists of the following entities:

– Plants: Entities where physical processes take place.
– Sensors: Devices that observe or measure state information of plants and

physical processes which will be used as inputs for controllers (PLCs).
– PLCs: Entities that make decisions and issue control commands (based on

inputs obtained from sensors) to control plants.
– Actuators: Entities that implement control commands issued by PLCs.
– Communication networks: Communication medias where packets (contain-

ing sensor measurements, control commands, alarms, diagnostic information,
etc.) transmit over from one entity to another.

– SCADA: A software entity designed for process controlling and monitoring. It
consists of human-machine interface (HMI) – for displaying state information
of plants – and historian server (for storing all operating data and alarm
history).

12 E. G. Chekole et al.

2.2 Overview of SWaT

SWaT [28] is a fully operational water purification plant designed for research
in the design of secure cyber physical systems. It produces 5 gal/min of doubly
filtered water.

Purification Process. The whole water purification process is carried out by
six distinct, but cooperative, sub-processes. Each process is controlled by an
independent PLC (details can be found on [29]).

Components and Specifications. The design of SWaT consists of various
components such as real-world PLCs to control the water purification process;
a remote input/output (RIO) terminal consisting of digital inputs (DI), digital
outputs (DO) and analog inputs (AI); a SCADA system to provide users a
local system supervisory and controls; a complex control program written in
ladder logic; and so on. It also consists of various system specifications such
as a real-time constraints and communication frequencies with other PLCs and
the SCADA system. A detailed account of the components and specifications is
provided in our previous work [30].

2.3 ASan

As discussed on the introduction, despite several memory-safety tools being avail-
able, there applicability in the CPS environment is limited due to compatibil-
ity and performance reasons. After researching and experimenting on various
memory-safety tools, we chose ASan [20] (for the user-space enforcement) as
a basis for our empirical study because of its error coverage, high detection
accuracy and relatively low runtime overhead when compared to other code-
instrumentation based tools. A detailed account on error coverage and runtime
overhead of ASan (in comparison with other tools) is provided on [20,31].

ASan is a compile-time code instrumentation memory-safety tool. It inserts
memory-safety checks into the program code at compile-time, and it detects and
mitigates memory-safety violations at runtime. ASan covers several memory-
safety vulnerabilities such as buffer overflows, dangling pointers (use-after-free),
use-after-return, memory leaks and initialization order bugs. Although there are
also some memory errors, e.g., uninitialized memory reads, that are not covered
by ASan, such errors are less critical and rarely exploited in practice.

Similar to other memory-safety tools, the off-the-shelf ASan has compatibil-
ity issues with RISC-based ARM or AVR based architectures. ASan has also a
problem of dynamically linking shared libraries, e.g., glibc, for our experimen-
tal setup. Therefore, as explained on Sect. 4.1, our initial task was fixing those
problems to fit our experimental design. For this task it was crucial that ASan
is an open-source project, which allowed for several customizations.

Enforcing Full-Stack Memory-Safety in CPS 13

2.4 KASan

KASan [27,32] is a fast and dynamic memory error detector tool mainly designed
for the Linux kernel. It is also a compile-time code instrumentation memory-
safety tool. However, KASan is designed to cover only buffer overflows and dan-
gling pointers not to significantly affect the performance of Linux kernel. Conse-
quently, its runtime overhead is considerably low when compared to ASan. Sev-
eral kernel memory bugs have been already detected using KASan [33]. There-
fore, we chose KASan for the kernel-space enforcement. The current version of
KASan is supported only for the x86 64 and ARM64 architectures. Hence, it
has compatibility issue with ARM32 architecture, which we have fixed it. As
discussed on Sect. 6.2, the practical tolerability of its overhead (together with
ASan) is also evaluated against the real-time constraints of SWaT.

3 Attacker Model and Memory Safety Overhead

In this section, we will introduce our attacker model and formulate its implication
in computing memory-safety overheads and its tolerability.

3.1 Attacker Model

Memory-safety attacks, such as code injection and code reuse, mainly exploit
memory-safety vulnerabilities in the firmware, control software or OS kernel of
PLCs. Figure 2 (in Appendix) shows an architectural point of view of memory-
safety attacks in CPS. In general, we consider the following five steps involved
in a memory-safety attack scenario:

1. Interacting with the victim PLC, e.g., via network connection.
2. Finding a memory-safety vulnerability (e.g. buffer overflow) in the firmware,

control software or the OS kernel with the objective of exploiting it.
3. Triggering a memory-safety violation on the PLC, e.g., overflowing a buffer.
4. Overwriting critical addresses of the vulnerable program, e.g., overwriting

return address of the PLC program.
5. Using the new return address, diverting control flow of the program to an

injected (malicious) code (code injection attacks) or to existing modules of
the vulnerable program (code reuse attacks). In the former case, the attacker
can get control of the PLC with its injected code. In the latter case, the
attacker needs to collect appropriate gadgets from the program, then she will
synthesize a shellcode that will allow her to get control of the PLC.

3.2 Modeling Memory Safety Overhead

To ensure memory-safety, firmware and control software of a PLC and kernel
of the hosting OS should be compiled with a memory-safety tool. Hence the
memory-safety overhead (MSO) will be added to the execution time of the PLC.
PLCs handle two main processes – a communication process and a scan cycle

14 E. G. Chekole et al.

process. The communication process handles any network communication related
tasks, e.g., creating connections with communicating entities and receiving and
sending network requests. The scan cycle thread handles the main PLC process
that involves three operations: scanning inputs, executing the underlying control
program and updating outputs. The PLC scan cycle starts by reading the state
of all inputs from sensors and storing them to the PLC input buffer. Then, it will
execute the control program of the PLC and issue control commands according
to the state of sensor inputs. The scan cycle will be concluded by updating output
values to the output buffer and sending control commands to the actuators.

The measurement of the actual time elapsed by the PLC scan process, i.e.,
the time elapsed to scan inputs, execute the PLC program and update outputs
is reflected via scan time (Ts). By hardening the PLC with memory-safety pro-
tection, we also increase the scan time, which is attributed to the memory safety
overhead. Concretely, the memory safety overhead is computed as follows:

MSO = T̂s − Ts, (1)

where T̂s and Ts are scan time with and without memory-safe compilation,
respectively. A detailed account of modeling Ts is provided in our earlier
work [30].

3.3 Quantifying Tolerability

A typical CPS involves hard real-time constraints. With memory-safe compila-
tion, we introduce additional overhead, specifically increasing the scan time of
a PLC (cf. Eq. (1)). We define the notion of tolerability to check whether the
induced overhead by the memory-safe compilation still satisfies the real-time
constraints imposed by the CPS.

Concretely, a typical scan cycle of the PLC must be completed within the
duration of the specified cycle time (Tc). We define two notions of tolerability –
(1) for average-case and (2) for the worst-case. In particular, after enabling
memory-safe compilation, we compute the scan time (i.e., T̂s) for n different
measurements and compute the respective average and worst-case scan time.
Formally, we say that the MSO is tolerable in average-case if the following con-
dition is satisfied: ∑n

i=1 T̂s(i)
n

≤ Tc (2)

In a similar fashion, MSO is tolerable in the worst-case with the following con-
dition:

n
max
i=1

T̂s(i) ≤ Tc (3)

where T̂s(i) captures the scan time for the i-th measurement after the memory-
safe compilation.

Enforcing Full-Stack Memory-Safety in CPS 15

4 Enforcing Full-Stack Memory-Safety

It is often mistakenly believed that there is no operating system in PLCs.
Most PLCs today are just user-mode applications running on top of POSIX-
like operating systems such as Linux OS. For example, Allen-Bradley PLC5 has
Microware OS-9 [34]; Allen-Bradley Controllogix has VxWorks [34]; Schneider
Quantum has VxWorks [34]; Emerson DeltaV has VxWorks [34]; LinPAC has
Linux OS [35]; OpenPLC has Linux OS [36]; User-programmable Linux® con-
trollers has Linux OS [37]; and so on. Thus, the PLCs work as a software stack
running on top of the underlying OS. Therefore, the overall architecture of the
control system consists of two main parts: the application stack (that includes
the PLC firmware and control software) and the underlying OS.

As discussed in the introduction, the PLC firmware and the control software
might have memory-safety vulnerabilities as they are often written in C/C++
due to performance reasons. As such, memory-safety attacks could exploit such
vulnerabilities to attack PLCs. Similarly, operating systems are also often imple-
mented in C/C++, hence they might also have memory-safety vulnerabilities.
For example, a VxWorks vulnerability (reported on US-CERT [38]) affected
Rockwell and Siemens products. Therefore, memory-safety attacks could also
exploit vulnerabilities on the operating systems. In particular, attacks could
exceptionally target vulnerabilities in the kernel (as also recent trends show in
CVE [13]); because the kernel is the core of the machine’s OS that is responsi-
ble for several critical tasks, e.g. memory management, CPU allocation, system
calls, input/output handling, and so on.

To address these security concerns, we proposed a full-stack memory-safety
solution that comprises a user-space and kernel-space memory-safety enforce-
ments. The former refers a memory-safety enforcement to the PLC firmware
and control software whereas the later refers a memory-safety enforcement to
the OS kernel where the PLC is running on. In this research work, we use Open-
PLC controller [36] – a software stack running on top of Linux OS – and the
following sections discuss how we enforced the two memory-safety solutions.

4.1 Enforcing User-Space Memory-Safety

As stated on the introduction, our approach to counter memory-safety attacks
at user-space level is by secure compiling of the PLCs’ firmware and control
software. We ported ASan for that, but porting ASan to our CPS design was not
a straightforward task because of its compatibility and dynamic library linking
problems. Thus, we fixed those problems by modifying and rebuilding its source
code and by enabling dynamic library linking runtime options.

To do the secure compilation, we also need to integrate ASan with a native
C/C++ compiler. Fortunately, ASan can work with GCC or CLANG with a
-fsanitize=address switch – a compiler flag that enables ASan at compile
time. Therefore, we compiled our OpenPLC firmware ad control software using
GCC with ASan enabled.

16 E. G. Chekole et al.

4.2 Enforcing Kernel-Space Memory-Safety

As discussed on Sect. 2.4, KASan [27] is a memory-safety tool designed for the
Linux kernel. Therefore, we compiled the Raspberry PI Linux kernel (where
our controller is running on) with KASan to detect kernel-level memory-safety
violations, such as buffer overflows and dangling pointers. To do so, we configure
the kernel with a KASAN=y configuration option. But, doing so was not also a
straightforward task because of an architectural comparability problem to work
on a 32-bit Raspbian kernel. Because KASan is designed only for the x86-64 and
ARM64 architectures. To solve the problem, we did a custom kernel build by
cross-compiling with a 64-bit Linux OS.

4.3 Detection and Mitigation

As discussed on Sects. 2.3 and 2.4, ASan and KASan instrument the protected
program to ensure that memory access instructions never read or write the so
called “poisoned” redzones [20]. Redzones are small regions of memory inserted
in between any two stack, heap or global objects. Since the program should
never address them, access to them indicates an illegal behavior and it will be
considered as a memory-safety violation. This policy detects sequential buffer
over/underflows, and some of the more sophisticated pointer corruption bugs
such as dangling pointers (use-after-free) and use-after-return bugs (see the full
list on Table 3). With the ASan enforcement, we detected two global buffer over-
flow vulnerabilities on the OpenPLC Modbus implementation.

The mitigation approach of ASan and KASan is based on the principle of
“automatically aborting” the vulnerable program whenever a memory-safety
violation is detected. It is effective in restricting memory-safety attacks not to
exploit the vulnerabilities. However, this approach might not be acceptable in a
CPS environment since it highly affects availability of the system and leaves the
control system in an unsafe state. Thus, we are currently working on a different
mitigation approach to address these limitations.

5 Experimental Design

Unfortunately, SWaT is based on closed-source proprietary Allen Bradely PLCs,
hence we cannot modify their firmware to enforce memory-safety solutions. Thus,
we designed open-SWaT – a mini CPS based on open source PLCs that mimics
features and behaviors of SWaT. By doing so, we managed to conduct our exper-
iment on realistic and closed-source proprietary PLCs, indirectly. We discussed
design details of open-SWaT in the following sections.

5.1 open-SWaT

open-SWaT is designed using OpenPLC [36] – an open source PLC for industrial
control systems. With open-SWaT, we reproduce operational details of SWaT;

Enforcing Full-Stack Memory-Safety in CPS 17

in particular we reproduce the main factors (mentioned on Sect. 6.4) that have
significant impact on the scan time and MSO. In general, the design of open-
SWaT consists of the following details.

PLCs: we designed the PLCs using OpenPLC controller that runs on top of
Linux on Raspberry PI. To reproduce hardware specifications of SWaT PLCs,
we specified 200 MHz fixed CPU speed and 2Mb user memory for our PLCs.

RIO: we use Arduino Mega as RIO terminal. It has AVR based processor with
16 MHz clock speed. It consists of 86 I/O pins that can be directly connected
to the I/O devices. To reproduce the number of I/O devices of SWaT, we used
32 DI (push-buttons, switches and scripts), 13 AI (temperature and ultrasonic
sensors) and 16 DO (light emitter diodes (LEDs)).

PLC program: we have designed a control program written in ladder diagram
that has similar complexity to the one in SWaT (a sample diagram is shown
on Fig. 3 (in Appendix)). It consists of various types of instructions such as
logical (AND, OR, NOT, SR (set-reset latch)), arithmetic (addition (ADD),
multiplication (MUL)), comparisons (equal (EQ), greater than (GT), less than
(LT), less than or equal (LE)), counters (up-counter (CTU)), timers (turn on
timer (TON), turn off timer (TOF)), contacts (normally-open (NO), normally-
closed (NC)), and coils (normally-open (NO), normally-closed (NC)). We stated
complexity of the program both in terms of number of instructions and lines
of code (LOC). The overall PLC program consists of 129 instructions; details
are shown on Table 4 (in Appendix). Size of the program (when translated to C
code) is 508 LOC.

Fig. 1. Architecture of open-SWaT [30]

Communication frequency: the com-
munication architecture of open-
SWaT (illustrated on Fig. 1) consists
of analogous communicating compo-
nents with that of SWaT. Open-
SWaT uses both type of modbus
communication protocols – modbus
TCP (for Ethernet or wireless com-
munication) and modbus RTU (for
serial communication). The commu-
nication among PLCs is via modbus
TCP or modbus RTU whereas the
communication between PLCs and
the SCADA system is via modbus
TCP. Frequency of communication
among PLCs and the SCADA system
is similar to that in SWaT. The communication between PLCs and Arduino is
via USB serial communication. The frequency of receiving inputs from Arduino
or sending outputs to Arduino is 100 Hz.

Real-time constraint: based on the real-time constraint of SWaT, we set 10 ms
cycle time (real-time constraint) to each PLC in open-SWaT.

18 E. G. Chekole et al.

SCADA system: we use ScadaBR [39], a full SCADA system consisting of web-
based HMI.

In summary, the design of open-SWaT is expected to be very close to SWaT.
In particular, the PLCs (in both cases) are expected to operate similarly. Because
their hardware specifications, the inputs they receive from sensors, the PLC
program they execute, the control command they issue, the number of nodes
they are communicating with, the frequency of communications, and so on, are
designed to be similar. Thus, we expect that the MSO in open-SWaT would also
remain close to that in SWaT. Therefore, if the MSO is tolerable in open-SWaT,
it would be the same for SWaT. In the future, we plan to replace the PLCs at
SWaT with the open-source and memory-safety enabled PLCs of open-SWaT.

5.2 Measurement Details

We have implemented a function using POSIX clocks (in nanosecond resolution)
that measures execution time of each operation in the PLC scan cycle. The
function measures elapsed time of each operation. Results will be then exported
to external files for further manipulation, e.g., computing MSO and plotting
graphs. We run 50000 scan cycles for each PLC operation to measure the overall
performance of the PLC.

6 Evaluation and Discussion of the Results

In this section, we performed a detailed evaluation and discussion of the experi-
mental results to figure out whether the memory-safety tools are accurate enough
to detect memory-safety violations and efficient enough to work in a CPS envi-
ronment. In brief, our evaluation has three parts: security (accuracy) – detection
accuracy of ASan and KASan, performance (efficiency) – tolerability of its run-
time overhead in CPS, and memory usage overheads.

6.1 Security

As a sanity check on our configuration, we have evaluated our setup against a
wide-range of memory-safety vulnerabilities to explore the detection accuracy
of ASan and KASan. The results show that, as in the original paper [20], ASan
detects memory-safety violations with high accuracy – without false positives for
all the vulnerabilities listed on Table 3 (in Appendix) and rare false negatives
for global buffer overflow and use-after-free vulnerabilities due to the exceptions
discussed on [20].

As discussed on Sect. 2.4, KASan’s error coverage is purposely limited to
buffer overflows and use-after-free vulnerabilities for performance reason. We
evaluated its detection accuracy against these vulnerabilities in the Linux kernel
and it accurately detects them; no false positives or negatives were discovered
or reported so far. Both tools also effectively mitigate the detected violations
regardless of the mitigation limitations discussed on Sect. 4.3.

Enforcing Full-Stack Memory-Safety in CPS 19

6.2 Performance

According to published benchmarks [20], the average runtime overhead of ASan
is about 73%. However, all measurements were taken on a non-CPS environment.
With our full-stack memory-safety enforcement, i.e., ASan + KASan, the average
overhead is 94.32%. The overall performance report of the PLC including the
execution time of each operation and its respective MSO is depicted on Table 1.

To evaluate tolerability of this overhead, we have checked if it satisfies the
conditions defined on Eq. (2) (for average-case) and Eq. (3) (for worst-case). As
shown on Table 1, mean(T̂s) = 865.10µs, and Tc = 10000µs. Therefore, accord-
ing to Eq. (2), the overhead is tolerable for SWaT with the average-case scenario.

To evaluate the tolerability in the worst-case scenario, we check if it satis-
fies Eq. (3). As shown on Table 1, max(T̂s) = 5238.46µs, and Tc = 10000µs.
It is still tolerable, thus ASan satisfies the real-time constraint of SWaT both
in the average-case and worst-case scenarios. Therefore, we can conclude that
SWaT would tolerate the overhead caused by memory-safe compilation, while
significantly increasing its security.

Table 1. Memory-safety overheads (MSO)

Operations Number

of cycles

Network

devices

CPU speed

(in MHz)

Ts (in µs) T̂s (in µs) MSO (mean)

Mean Max Mean Max in µs in %

Input scan 50000 6 200 114.94 995.10 204.53 1202.28 89.59 77.95

Program execution 50000 6 200 150.32 716.62 305.59 1982.57 155.27 103.29

Output update 50000 6 200 179.93 1020.47 354.98 2053.61 175.05 97.29

Full scan time 50000 6 200 445.19 2732.19 865.10 5238.46 419.91 94.32

6.3 Memory Usage

We also evaluated memory usage overheads of our security measure. Table 2 (in
Appendix) summarizes the increase in virtual memory usage, real memory usage,
binary size and shared library usage collected by reading VmPeak, VmRSS,
VmExe and VmLib fields, respectively, from /proc/self/status. It shows a huge
increase in virtual memory usage (30.45×). This is mainly because of the allo-
cation of large redzones with malloc. However, the real memory usage overhead
is only 1.40×. These overheads are still acceptable since most PLCs nowadays
come with at least 1 GB memory size.

6.4 Validation and Sensitivity Analysis

More generally, how can we evaluate a system’s tolerability to overheads? On the
one hand, we may perform an empirical analysis such as the one discussed in the
previous subsections. But we may also attempt to isolate the individual factors
impacting performance on a CPS in order to perform a design-time analysis.

20 E. G. Chekole et al.

Empirical Analysis. Suppose the tolerability argument is represented by
Φ, where Φ represents Eq. (2) (for average-case) and Eq. (3) (for worst-case).
We have empirically measured the scan time of each 50000 scan cycles, say
T̂s,1, . . . , T̂s,50000. Because of the fact that the bar between the worst-case scan
time measured, i.e., max(T̂s) = 5238.46µs and the tolerability limit, i.e.,
Tc = 10000µs is still 47.62%, we can fairly conclude that the probability of
getting T̂s

′
such that T̂s

′
� Φ is very rare. Therefore, the empirical analysis can

be used as one way of validating tolerability of the MSO even though it can-
not prove completeness of the argument. However, a more thorough analysis is
needed to conclude that there are no corner cases that might suddenly occur
and cause more significant delays.

WCST Analysis. Thus, a deeper analysis to validate the tolerability argument
is needed. This is a theoretical analysis (beyond the empirical results) to show
that there would not occur a new WCST T̂s

′
such that T̂s

′
> Tc. For simplicity,

let us refer the occurrence of the condition T̂s
′
> Tc as an intolerability condition.

For this analysis, first we experimentally identified the main factors that can have
significant effect on the PLC scan time and MSO. We discussed below how the
factors can affect the scan time and why they would not lead to the intolerability
condition.

– CPU speed (SCPU ∈ R): obviously, clock speed of the processor is a major
factor for the PLC performance. It determines how much clock cycles the CPU
performs per second, hence it determines how much instructions the PLC can
process per second. SCPU affects all operations of the PLC. However, since
SCPU is fixed with “userspace” governor, it would not lead to intolerability.

– Memory size (SM ∈ R): size of memory is fixed. The memory size needed
for memory mapping and redzones allocation (due to the memory-safe com-
pilation) is already allocated at compile-time. Cache memory size is not also
a big issue in CPS. Because CPS data such as sensor data, control commands
and state information get updated very frequently. Thus, data caching is not
that much relevant in CPS. Therefore, SM would not lead to intolerability.

– Number of sensors (NS ∈ N): the number of input devices (sensors) con-
nected to the PLC is one factor that significantly affect the PLC scan time
and MSO. Because, the time to scan inputs depends on the number of sensors
connected with the PLC. However, NS is fixed, hence it would not cause the
intolerability condition to happen.

– Number of actuators (NA ∈ N): the number of output devices (actuators)
connected to the PLC is also another factor that has significant effect on the
PLC scan time and MSO. Because, the time to update outputs depends on
the number of output devices connected with the PLC. However, since NA is
fixed, it would not lead to intolerability.

– Complexity of the PLC program (CP ∈ R
Z): As discussed on Sect. 5.1,

the PLC program can consist of various types of instructions. Each instruc-
tion has its own execution time. Therefore, CP can be expressed in terms of

Enforcing Full-Stack Memory-Safety in CPS 21

the number and type of instructions that the overall program consists of (Z =
{number of instructions, type of instructions}). As such, it is a major factor
for the PLC scan time as it affects the control program execution time. How-
ever, CP is fixed and the program does not also contain loops or recursion
functions. Thus, it would not lead to the intolerability condition.

– Communication frequency (CF ∈ R): the PLC communicates with vari-
ous devices such as RIO (sensors and actuators), other PLCs and SCADA sys-
tems. The communication frequency can be expressed in terms of the number
of packets the PLC sends or receives to/from other communicating devices.
Handling all such communications can take significant amount of time. In par-
ticular, it significantly affects the PLC’s performance when the PLC handles
the concurrency issues between the scan cycle and communication threads
to access shared resources, such as shared buffers [30]. Therefore, the com-
munication frequency between the PLC and other communicating entities is
another factor for the PLC scan time. However, when the PLC communicates
with n nodes, it receives or sends packets with a constant rate. Thus, the CF

is fixed. In addition, realistic PLCs (as real-time systems) efficiently handle
concurrency problems. Therefore, the CF would not result the intolerability
condition.

We also performed a sensitivity analysis on the factors in regard to its effect
on the PLC scan time and MSO. This analysis will help us to extrapolate math-
ematical formulas predicting the expected MSO and its tolerability to a given
CPS. A detailed account of our sensitivity analysis is provided in our previous
work [30].

7 Related Work

In this section, we explore related works done in providing memory-safety solu-
tions against memory-safety attacks and measuring and analyzing memory-
safety overheads in the CPS environment.

In our earlier work [30], we enforced ASan to a CPS environment and mea-
sured its runtime overhead (81.82%). However, it was only a user-space enforce-
ment and the critical kernel-level security concern was ignored. To address that
limitation, we enforced a full-stack memory-safety, i.e., ASan + KASan, in our
current work. With a similar setup but a different kernel configuration, the aver-
age overhead of the proposed solution is 94.32%. Meaning, it incurs an additional
overhead of 12.5%, but with a significant boost in security. To enhance compre-
hensiveness of our experimental results, we also increased the number of scan
cycles (whose scan time is empirically measured) from 10000 to 50000.

SoftBoundCETS is a compile-time code-instrumentation tool that detects
all violations of spatial memory-safety (SoftBound [21]) and temporal memory-
safety (CETS [22]) in C. It is a complete memory-safety tool that works under
the LLVM environment. However, its runtime overhead is very high (116%) as
compare to ASan (73%). In addition, it is incompatible for the CPS environment;
because it is implemented only for the x86-64 target architecture and it is also
dependent on the LLVM infrastructure.

22 E. G. Chekole et al.

Cooprider et al. [40] enforced efficient memory-safety solution for TinyOS
applications by integrating Deputy [41], an annotation based type and memory-
safety compiler, with nesC [42], a C compiler. Thus, they managed to detect
memory-safety violations with high accuracy. To make this memory-safety solu-
tion practical in terms of CPU and memory usage, they did aggressive opti-
mization by implementing a static analyzer and optimizer tool, called cXprop.
With cXprop, they managed to reduce memory-safety overhead of Deputy from
24% to 5.2%, and they also improved memory usage through dead code elimina-
tion. However, their solution has limitations to apply it in a CPS environment,
because it is dependent on runtime libraries of TinyOS.

Zhang et al. [43] modeled the trade-off between privacy and performance in
CPS. While he leveraged the differential privacy approach to preserve privacy
of CPS, he also analyzed and modeled its performance overhead. He proposed
an approach that optimizes the system performance while preserving privacy
of CPS. This work is interesting from point of view of analyzing performance
overheads in CPS, but it is not from memory-safety perspective.

Stefanov et al. [44] proposed a new model and platform for the SCADA
system of an integrated CPS. With the proposed platform, he modeled real-time
supervision of CPS, performance of CPS based on communication latencies, and
also he assessed and modeled communication and cyber security of the SCADA
system. He followed a generic approach to assess and control various aspects
of the CPS. However, he did not specifically work on memory-safety attacks
or memory-safety overheads. Vuong et al. [45] tried to evaluate performance
overhead of a cyber-physical intrusion detection technique. But, it was not on
memory-safety either.

Several CFI based solutions (e.g., [18,19]) have been also developed against
memory-safety attacks. However, CFI based solutions have some limitations in
general (i) determining the required control flow graph (often using static anal-
ysis) is hard and requires a significant amount of memory; (ii) attacks that do
not divert control flow of the program cannot be detected (for instance using
Data Oriented attacks [46]). These and other reasons can limit the applicability
of CFI solutions in the CPS environment.

In summary, to the best of our knowledge, there is no prior research work that
enforced a full-stack memory-safety solution specifically to the CPS environment,
and that measured and evaluated tolerability of the induced memory-safety over-
head in accordance to the real-time constraints of cyber-physical systems.

8 Conclusion

In this work, we presented the results of implementing a strong full-stack
memory-safety enforcement in a simulated albeit realistic industrial control sys-
tem using ASan and KASan. Our setup allowed us to benchmark and empirically
measure the runtime overhead of the enforcement and, based on the real-time
constraints of an ICS, to judge the applicability in a realistic scenario. Our exper-
iments show that the real-time constraints of SWaT can be largely met even when

Enforcing Full-Stack Memory-Safety in CPS 23

implementing a strong memory-safety countermeasure in realistic hardware. We
also preliminary discuss what factors impact the performance of such a system,
in a first attempt to generalize our results.

In the future, we intend to study other CPS with different constraints, e.g.,
in power grid and urban transportation systems. Such studies will allow us to
extrapolate formulas predicting the tolerability of systems to MSO and thus
aiding in the design of resilient CPS before such systems are deployed.

Appendix

Table 2. Memory usage overheads (in MB)

Category Original Instrumented Increase

Virtual memory usage 20.412 621.580 30.45×
Real memory usage 8.172 11.476 1.40×
Binary size 0.138 0.316 2.29×
Shared library usage 2.832 4.300 1.52×

Fig. 2. The CPS architecture and memory-safety attacks [30]

24 E. G. Chekole et al.

Table 3. Detection accuracy of ASan

Vulnerabilities False positive False negative

Stack buffer overflow No No

Heap buffer overflow No No

Global buffer overflow No Rare

Dangling pointers No Rare

Use-after-return No No

Initialization order bugs No No

Memory leaks No No

Fig. 3. Sample PLC program in ladder diagram [30]

Table 4. Instruction
count

Instructions Count

Logical

AND 17

OR 14

NOT 5

SR 1

Arithmetic

ADD 1

MUL 2

Comparisons

EQ 3

GT 3

LT 2

LE 2

Timers

TON 3

TOF 9

Counters

CTU 1

Selections

SEL 1

MAX 1

Contacts

NO 38

NC 3

Coils

NO 21

NC 2

Total 129

References

1. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new
frontier. In: SUTC 2008 (2008)

2. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, 2nd edn, version 2.0 edn. LeeSeshia.org (2015)

3. Lee, E.A.: Cyber physical systems: design challenges. In: ISORC 2008 (2008)
4. MITRE: Common Vulnerabilities and Exposures. https://cve.mitre.org/
5. CVE-5814. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5814

https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5814

Enforcing Full-Stack Memory-Safety in CPS 25

6. CVE-6438. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6438
7. CVE-6436. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6436
8. CVE-0674. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0674
9. CVE-1449. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1449

10. CVE-0929. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0929
11. CVE-7937. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7937
12. CVE-5007. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-5007
13. NVD: NVD Statistics on The Linux Kernel Vulnerabilities (2018). https://

nvd.nist.gov/vuln/search/results?adv search=false&form type=basic&results
type=overview&search type=all&query=linux+kernel

14. Berger, E.D., Zorn, B.G.: DieHard: probabilistic memory safety for unsafe lan-
guages. In: PLDI 2006 (2006)

15. Novark, G., Berger, E.D.: DieHarder: securing the heap. In: CCS 2010 (2010)
16. Kharbutli, M., Jiang, X., Solihin, Y., Venkataramani, G., Prvulovic, M.: Compre-

hensively and efficiently protecting the heap. In: ASPLOS 2006 (2006)
17. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS

2005, pp. 340–353 (2005)
18. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX 2013
19. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,

L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
USENIX 2014, pp. 941–955 (2014)

20. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast
address sanity checker. In: USENIX ATC 2012 (2012)

21. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: PLDI 2009 (2009)

22. Nagarakate, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: compiler enforced
temporal safety for C. In: ISMM 2010 (2010)

23. Simpson, M.S., Barua, R.K.: MemSafe: ensuring the spatial and temporal memory
safety of C at runtime. Softw.: Pract. Exp. 43(1), 93–128 (2013)

24. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: CGO
2011 (2011)

25. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: type-
safe retrofitting of legacy software. ACM Trans. Progr. Lang. Syst. 27(3), 477–526
(2005)

26. Eigler, F.C.: Mudflap: Pointer Use Checking for C/C++. In: GCC Developer’s
Summit. Red Hat Inc (2003)

27. KASAN: The Kernel Address Sanitizer (2018). https://www.kernel.org/doc/html/
v4.12/dev-tools/kasan.html

28. iTrust: Secure Water Treatment (SWaT) Testbed. https://itrust.sutd.edu.sg/
research/testbeds/secure-water-treatment-swat/

29. Ahmed, C.M., Adepu, S., Mathur, A.: Limitations of state estimation based cyber
attack detection schemes in industrial control systems. In: SCSP-W 2016 (2016)

30. Chekole, E.G., Castellanos, J.H., Ochoa, M., Yau, D.K.Y.: Enforcing memory
safety in cyber-physical systems. In: Katsikas, S., et al. (eds.) SECPRE 2017,
CyberICPS 2017. LNCS, vol. 10683, pp. 127–144. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72817-9 9

31. AddressSanitizer Github Repository. https://github.com/google/sanitizers/wiki/
AddressSanitizerComparisonOfMemoryTools

32. KASAN Wiki: The Kernel Address Sanitizer Wiki (2018). https://github.com/
google/kasan/wiki

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-5007
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=all&query=linux+kernel
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=all&query=linux+kernel
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=all&query=linux+kernel
https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
https://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
https://doi.org/10.1007/978-3-319-72817-9_9
https://doi.org/10.1007/978-3-319-72817-9_9
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki

26 E. G. Chekole et al.

33. KASAN Bug Report: List of Kernel Bugs Detected by KASan (2018). https://
github.com/google/kasan/wiki/Found-Bugs

34. TOFINO SECURITY. https://www.tofinosecurity.com/blog/plc-security-risk-
controller-operating-systems/

35. LinPAC. http://www.icpdas.com/root/product/solutions/pac/linpac/linpac-
8000 introduction.html/

36. OpenPLC. http://www.openplcproject.com/
37. WAGO: Linux Programmable Fieldbus Controller
38. CERT.ORG: Vulnerability Notes Database
39. ScadaBR. http://www.scadabr.com.br/
40. Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J.: Efficient memory safety

for TinyOS. In: SenSys 2007, pp. 205–218 (2007)
41. The Deputy Project (2007). http://deputy.cs.berkeley.edu
42. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC

language: a holistic approach to networked embedded systems. In: PLDI 2003
(2003)

43. Zhang, H., Shu, Y., Cheng, P., Chen, J.: Privacy and performance trade-off in
cyber-physical systems. IEEE Netw. 30(2), 62–66 (2016)

44. Stefanov, A., Liu, C.C., Govindarasu, M., Wu, S.S.: SCADA modeling for perfor-
mance and vulnerability assessment of integrated cyber-physical systems. Intern.
Trans. Electr. Energy Syst. 25(3), 498–519 (2015)

45. Vuong, T.P., Loukas, G., Gan, D.: Performance evaluation of cyber-physical intru-
sion detection on a robotic vehicle. In: IEEE International Conference On Com-
puter and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting (2015)

46. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-oriented
programming: on the expressiveness of non-control data attacks. In: SP 2016 (2016)

https://github.com/google/kasan/wiki/Found-Bugs
https://github.com/google/kasan/wiki/Found-Bugs
https://www.tofinosecurity.com/blog/plc-security-risk-controller-operating-systems/
https://www.tofinosecurity.com/blog/plc-security-risk-controller-operating-systems/
http://www.icpdas.com/root/product/solutions/pac/linpac/linpac-8000_introduction.html/
http://www.icpdas.com/root/product/solutions/pac/linpac/linpac-8000_introduction.html/
http://www.openplcproject.com/
http://www.scadabr.com.br/
http://deputy.cs.berkeley.edu

Model Checking the Information Flow
Security of Real-Time Systems

Christopher Gerking1(B), David Schubert2, and Eric Bodden1,2

1 Heinz Nixdorf Institute, Paderborn University,
Paderborn, Germany

christopher.gerking@upb.de
2 Fraunhofer IEM, Paderborn, Germany

Abstract. Cyber-physical systems are processing large amounts of sen-
sitive information, but are increasingly often becoming the target of
cyber attacks. Thus, it is essential to verify the absence of unauthorized
information flow at design time before the systems get deployed. Our
paper addresses this problem by proposing a novel approach to model-
check the information flow security of cyber-physical systems represented
by timed automata. We describe the transformation into so-called test
automata, reducing the verification to a reachability test that is carried
out using the off-the-shelf model checker Uppaal. Opposed to related
work, we analyze the real-time behavior of systems, allowing software
engineers to precisely identify timing channels that would enable attack-
ers to draw conclusions from the system’s response times. We illustrate
the approach by detecting a timing channel in a simplified model of a
cyber-manufacturing system.

Keywords: Model checking · Information flow · Security · Real time

1 Introduction

Cyber-physical systems [35] are entrusted a fast-growing amount of sensitive
data, but are inherently vulnerable to security breaches such as manipulation
or leakage of information [15,25]. One subtle attack vector are timing chan-
nels [11], allowing attackers to infer sensitive information by observing the sys-
tem’s response times. In the worst case, such hidden flows of information could
even be exploited to manipulate the physical behavior and compromise the safety
of systems. Thus, to make cyber-physical systems secure by design [39], it is
essential to verify their information flow security before they get deployed.

Model-driven engineering is a widely used approach to securing cyber-
physical systems [38], making the software under development accessible to for-
mal verification. A well-established formal definition of information flow security

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS Artifact Evaluation Committee.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 27–43, 2018.
https://doi.org/10.1007/978-3-319-94496-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_3&domain=pdf

28 C. Gerking et al.

is noninterference [26] which requires that the observable behavior of systems
must not depend on secrets. A well-known verification approach for noninter-
ference is bisimulation, checking that a system exhibits the same observable
behavior as a restricted variant of itself that is known to be secure by defini-
tion [19].

Nevertheless, checking the information flow security of cyber-physical sys-
tems is a challenging problem for software engineers because they are faced with
real-time systems, restricted by hard real-time constraints imposed by their phys-
ical environment [12]. Therefore, models of cyber-physical systems are based on
formalisms like timed automata [5], and the real-time behavior of these models
needs to be taken into account during verification to detect leaks like timing
channels. Verification techniques such as model checking of timed automata are
available [4], but involve sophisticated tools that are hard to implement from
scratch. In this paper, we therefore address the problem of applying off-the-shelf
verification tools to check the information flow security of real-time systems.

Bisimulation of real-time systems is known to be decidable by existing verifi-
cation techniques [14]. Nevertheless, previous approaches towards applied verifi-
cation of information flow security have not taken into account real-time behav-
ior [3,17,20,32]. Therefore, they fail to detect leaks such as timing channels
precisely. Related work on the information flow security of timed automata
exists [6,8,13,34,45], but has spent little effort on how to apply tool-supported
model checking techniques in practice. Thus, in summary, none of the previous
approaches fully combines real-time behavior with applied model checking.

In this paper, we fill in these gaps by reducing the check for noninterference
of timed automata to a refinement check, adapting the work by Heinzemann
et al. [30] to the application field of information flow security. This check is
based on model transformations to construct a test automaton [1], introducing a
dedicated location that is only reachable when violating a bisimulation between
the original automaton and a secure-by-definition variant of itself. By model
checking the reachability of these dedicated locations using the off-the-shelf tool
Uppaal [9], we obtain a novel verification technique for the information flow
security of real-time systems. In contrast to related approaches, our work is
based on timed automata, taking into account the real-time behavior of cyber-
physical systems. Unlike other related work, we focus on applied model checking
to meet the needs of software engineering practitioners.

We illustrate the approach using a simplified model of a cyber-manufacturing
system that interacts with a cloud-based service market. The system must not
allow market participants to draw any conclusions about business secrets.

In summary, this paper makes the following contributions:

– We propose a model transformation process, reducing the check for informa-
tion flow security of real-time systems to a model checking problem.

Model Checking the Information Flow Security of Real-Time Systems 29

– At the core of this process, we illustrate the construction of test automata to
check noninterference of timed automata.

– We give a proof of concept by detecting a timing channel in a simplified model
of a cyber-manufacturing system.

Paper Organization: We introduce fundamentals in Sect. 2, and discuss related
work in Sect. 3. In Sect. 4, we describe our approach of checking information
flow security of real-time systems. We give a proof of concept in Sect. 5, before
concluding in Sect. 6.

2 Fundamentals

In this section, we recall timed automata (cf. Sect. 2.1), timed bisimulation (cf.
Sect. 2.2), and noninterference (cf. Sect. 2.3). Based on these fundamental con-
cepts, we introduce our motivating example in Sect. 2.4.

2.1 Timed Automata

The formalism of timed automata [5] is used to model real-time behavior of
stateful systems. A timed automaton is essentially a directed graph containing
a finite set of locations, connected by a finite set of labeled edges. We use the
definition of timed automata by Bengtsson and Yi [10]. Timed automata extend
finite automata by real-valued variables that represent clocks. Clocks are initial-
ized with zero, increase at the same rate, and may be set back to zero by using
resets that can be assigned to edges.

Clock constraints restrict the behavior of an automaton with respect to the
valuation of its clocks. A clock constraint is a conjunction of atomic constraints
of the form x ∼ n or x − y ∼ n, where x and y are clocks, n ∈ N, and ∼ ∈
{≤, <,=, >,≥} [10]. Clock constraints are used as invariants and time guards.
Invariants are assigned to locations. An active location is forced to be left by
firing an edge before the location’s invariant expires. Therefore, invariants have
to be downward closed, i.e., only ≤ and < operators are permitted. Time guards
are assigned to edges. An edge may fire (i.e., it is enabled) only if its time guard
evaluates to true. In addition, edges are labeled with actions, whereas firing an
edge represents the execution of the action its is labeled with. To represent edges
without an action, we refer to τ as the empty action.

Assuming a set C of clocks, a set B(C) of clock constraints, and an alphabet
Σ of actions, the syntax of a timed automaton is defined as follows [10]:

Definition 1. A timed automaton A is a tuple 〈L, l0, E, I〉 where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– E ⊆ L × B(C) × Σ × 2C × L is the set of edges where ρ ∈ B(C) is the time

guard, μ ∈ Σ is the action, and λ ∈ 2C is the set of clock resets,
– I : L → B(C) assigns invariants to locations.

30 C. Gerking et al.

Uppaal1 [9] is an off-the-shelf model checker for timed automata that is com-
monly applied by software engineering practitioners, and frequently integrated
into domain-specific verification tools [43]. In the scope of this paper, we apply
Uppaal to verify the information flow security of timed automata.

2.2 Timed Bisimulation

Bisimulation is a notion of observational equivalence that requires the observable
behavior of two systems to be indistinguishable. Timed bisimulation is an exten-
sion of bisimulation for real-time systems which is known to be decidable [14].
Intuitively, two systems are equivalent in terms of timed bisimulation if they
execute the same sequences of observable actions in the same time intervals. We
refer the reader to [10] for a formal definition in the context of timed automata.

There are two variants of timed bisimulation. Strong timed bisimulation is
more restrictive as it considers all actions of a system as being observable, includ-
ing τ actions. In the context of our paper, this assumption is too strong because
we consider τ actions as internal and, therefore, not observable. In contrast to
this, weak timed bisimulation ignores the execution of internal τ actions [14]. In
the following, we consider only this weak variant of timed bisimulation between
two timed automata A and B (denoted by A ≈ B), and refer to it as timed
bisimulation for brevity.

2.3 Noninterference

Noninterference was introduced by Goguen and Meseguer [26] to define infor-
mation flow security of deterministic finite automata, such that the publicly
observable behavior must not depend on sensitive information. If so, public
observations never enable an unprivileged actor to distinguish whether or not
sensitive information was processed. In particular, no conclusions are possible
about which sensitive information was actually received. To characterize the sen-
sitivity of information, noninterference is based on a separation between sensitive
(or high) actions ΣH and public (or low) actions ΣL with ΣH , ΣL ⊆ Σ.

For nondeterministic systems such as timed automata, noninterference is fre-
quently defined on the basis of bisimulation [19,34,45]. Noninterference holds
if the publicly observable behavior of a system cannot be distinguished from
a restricted behavior that is secure by definition. To define this property more
precisely, we distinguish between input actions received from the environment,
and output actions sent to the environment. Based on this distinction, noninter-
ference reduces to a bisimulation of the publicly observable behavior between

1. the original system, and
2. a secure-by-definition system with all sensitive input actions disabled.

1 http://uppaal.org

http://uppaal.org

Model Checking the Information Flow Security of Real-Time Systems 31

Disabling sensitive input actions ensures that the secure-by-definition system
behaves as if no sensitive information is ever processed. By disabling only input
actions, we assume that all sensitive information is received from the environ-
ment, and never generated internally without depending on sensitive inputs [29].

To identify deviations only in the publicly observable behavior, non-public
actions need to be hidden from the bisimulation, i.e., treated as non-observable.
In the following definition, \I denotes the disabling of inputs, and / the hiding
of actions, whereas ΣL̄ = Σ \ ΣL is the set of non-public actions.

Definition 2. Timed noninterference holds for a timed automaton A, if and
only if A / ΣL̄ ≈ (A \I ΣH) / ΣL̄.

2.4 Motivating Example

In our approach, we assume timed automata to be embedded in component-
based software architectures, which are commonly used for the software design
of cyber-physical systems [16]. In Fig. 1, we show a software component named
ManufacturingSystem as a model of our example announced in Sect. 1. The compo-
nent embeds a timed automaton that drives the application-level communication
between the system and its environment. The communication is carried out by
means of asynchronous message passing, whereas the set of messages corresponds
to the alphabet Σ. Accordingly, when messages are received, they are buffered
until they are processed by an input action of the automaton. Asynchronous
communication is a characteristic property of cyber-physical systems because
they are often spatially divided and dynamically interconnected over wireless
networks. In Fig. 1, we use / to separate input from output actions.

ManufacturingSystem

market

internal

external

Legend:

Port

Component

Loca on

Ini al
Loca on

c ≤ 3

c ≤ 9 c ≤ 7

internal.submit
c < 3 c = 3 /

external.requery

/ market.suborder

external.resubmit

Edge

market.order / internal.query
c := 0

Fig. 1. Example timed automaton of a cyber-manufacturing system

Our example component uses three ports to pass messages. The market port is
used to interact with the service market. Whenever a production order is received
from the market, the internal port is the preferred way to access the product
specification, provided that it is available as an in-house resource. Alternatively,

32 C. Gerking et al.

access to the specification may also be purchased from a business partner over the
external port. The messages passed over the market port are public (represented
by the set ΣL), whereas the messages passed over the internal port are sensitive
(represented by ΣH). In our example, messages passed over the external port are
not further characterized as public or sensitive because information flow needs
to be detected only from the internal to the market port.

In the following, we describe the behavior of the automaton from Fig. 1.
Whenever the automaton is in its initial location and receives an order message
from the market, it sends a query for the product specification over the internal

port. At the same time, it sets the clock c to zero which acts as a timeout. If
the internal port does not provide the specification in terms of a submit message
within three time units (i.e., the company does not possess the specification), a
requery message is sent over the external port to purchase the specification from a
business partner. In this case, the example system assumes that the specification
is provided in terms of a resubmit message within four further time units (c ≤ 7),
i.e., a deadlock caused by an overdue message can never occur. Finally, if the
specification is delivered from either the internal or external port, the system orders
the corresponding subproducts from the market by sending a suborder message
in the time interval c ≤ 9.

However, the system violates timed noninterference because the effective tim-
ing of the public suborder message depends on whether or not the specification
is possessed by the company. If possessed, the specification is provided by the
sensitive internal port, and suborder may be sent when c < 3. Otherwise, when pro-
vided by the external port, the suborder message can only be sent when c ≥ 3. This
deviation represents a timing channel that allows market participants to infer
whether the company possesses the product specification or not. This knowledge
is sensitive information that could be exploited in a future attack to gain access
to the specification. Due to the subtleties of real time, such leaks can easily
remain undetected during software design, and thus require a tool-supported
verification technique.

3 Related Work

In Sect. 3.1, we recall general approaches towards checking information flow secu-
rity, which are complementary to our work. In Sect. 3.2, we discuss related work
on the information flow security of time-dependent systems.

3.1 Complementary Approaches

Unwinding [27] is a traditional verification technique to infer global information
flow security from local properties of individual system actions (e.g., state tran-
sitions). In the context of real-time systems, this approach is hindered by the
infinite, real-valued state space which makes such local properties hard to iden-
tify. Language-based security [42] is concerned with secure information flow at
the level of programming languages, thus using a different model of computation

Model Checking the Information Flow Security of Real-Time Systems 33

compared to our automata-based approach. In this area, type systems are often
used to enforce information flow security of programs statically. Furthermore,
a technique called self-composition has been proposed [7], reducing language-
based security to a logical formulation that is amenable to automated verifi-
cation, similar to our approach in the context of automata-based systems. We
refer the reader to [21,37] for a comparison of information flow security under
different models of computation. Another complementary approach is the one by
Finkbeiner et al. on model checking hyperproperties [18]. Unlike standard safety
or liveness properties, hyperproperties relate different executions of a system.
Thereby, they cover information flow security properties like noninterference.
Whereas hyperproperties involve a novel theory of specification and verification,
our focus is on applied verification using off-the-shelf tools.

3.2 Time-Dependent Information Flow Security

In Table 1, we compare related work on the information flow security of time-
dependent systems against the core characteristics of our approach, which com-
bines dense real-time behavior with applied verification. Furthermore, we build
on automata as the underlying model of computation, which are commonly
used as a natural, well-established modeling approach [36]. Finally, according
to our example given in Sect. 2.4, we focus on application-level modeling, i.e., we
abstract from responsibilities like scheduling.

Table 1. Comparison of related works on time-dependent information flow security

Dense
real-time

Automata-
based

Application
level

Applied
verification

Evans and Schneider [17] ✗ ✗ ✓ ✓

Focardi et al. [20] ✗ ✗ ✓ ✓

Akella et al. [3] ✗ ✗ ✓ ✓

Agat [2] ✗ ✗ ✓ ✗

Giacobazzi and Mastroeni [24] ✗ ✗ ✓ ✗

Rafnsson et al. [40] ✗ ✗ ✓ ✗

Köpf and Basin [32] ✗ ✓ ✗ ✓

Roscoe and Huang [41] ✓ ✗ ✓ ✗

Son and Alves-Foss [44] ✓ ✗ ✗ ✗

Kashyap et al. [31] ✓ ✗ ✗ ✗

Cassez [13] ✓ ✓ ✓ ✗

Lanotte et al. [34] ✓ ✓ ✓ ✗

Benattar et al. [8] ✓ ✓ ✓ ✗

Vasilikos et al. [45] ✓ ✓ ✓ ✗

Barbuti and Tesei [6] ✓ ✓ ✓ (✓)

This paper ✓ ✓ ✓ ✓

34 C. Gerking et al.

The works by Evans and Schneider [17], Focardi et al. [20], and Akella
et al. [3] analyse the security of process algebras. Existing verification techniques
like theorem proving [17] or partial model checking [20] are applied, even in the
context of cyber-physical systems [3]. By using process algebra, the authors dif-
fer from our automata-based approach in terms of their model of computation.
In the context of language-based security, the work by Agat [2], Giaccobazzi and
Mastroeni [24], as well as Rafnsson et al. [40] uses imperative programs as yet
another model of computation. In contrast, the work by Köpf and Basin [32] on
synchronous systems is automata-based and also amenable to applied verifica-
tion. However, all of the above approaches are limited to discrete time, which is
insufficient to capture the real-time behavior of cyber-physical systems.

In contrast, other existing approaches consider dense real-time behavior.
Roscoe and Huang [41] use process algebra and thereby differ from our automata-
based approach. Son and Alves-Foss [44] as well as Kashyap et al. [31] both focus
on scheduling of real-time tasks, i.e., do not address the application level.

In the context of timed automata, Cassez [13] presents a real-time security
property called timed opacity as a generalization of noninterference. The author
proves the undecidability of the verification problem, i.e., is not concerned with
applied verification. Lanotte et al. [33] consider real-time privacy properties of
timed automata, and reduce the verification of such properties to a reachability
analysis [28], similar to this paper. In [34], the same authors consider nonin-
terference of timed automata extended by probabilistic behavior. However, the
application of existing model checking techniques is beyond the scope of their
approach. Benattar et al. [8] enable the synthesis of controllers that ensure non-
interference of timed automata. According to this constructive approach, they
do not consider applied verification as well. Vasilikos et al. [45] address the secu-
rity of timed automata that leak some information intentionally. The authors
propose an algorithm to impose local security constraints on the elements of an
automaton, however, do not enable applied verification using off-the-shelf tools.

Barbuti and Tesei [6] verify noninterference of timed automata. Similar to
our approach, they reduce the verification to a reachability analysis using applied
model checking. However, their approach only checks that sensitive information
does not influence the reachability of locations. This approximation gives rise to
both false positive and false negative errors, and thus is not capable to provide
any security guarantee. Nevertheless, the approach by Barbuti and Tesei [6] is
the only one that resembles the core characteristics of our paper (cf. Table 1).

4 Checking Noninterference of Timed Automata

In the following, we describe our approach of checking the information flow
security of real-time systems. In Sect. 4.1, we give an overview on our approach,
and describe the construction of the underlying test automata in Sect. 4.2.

Model Checking the Information Flow Security of Real-Time Systems 35

4.1 Refinement Checking

We reduce the verification of timed noninterference to a refinement check for real-
time systems as proposed by Heinzemann et al. [30]. The aforementioned work
allows to verify refinement relations between real-time systems to check that an
abstract behavior is correctly refined by a concrete behavior. The authors reduce
the verification to a reachability test [1] that is carried out using model checking
techniques. One possible refinement definition is timed bisimulation, as also used
to define timed noninterference (cf. Definition 2). Thus, in this paper, we adopt
the notion of refinement to check timed noninterference. In Fig. 2, we give an
overview on our approach as an extension of the work by Heinzemann et al. [30].

In step 1 , we transform a timed automaton A, as described in Sect. 2.4,
into an auxiliary automaton Asec that is secure by definition because sensitive
inputs are disabled. This restriction corresponds to the automaton A \I ΣH

from Definition 2. We disable sensitive inputs by removing the corresponding
edges from A. In the context of the motivating example, Fig. 3a depicts the
removal of the edge that processes the submit input over the sensitive internal

port.

Refinement Check

[Error Location
Reachable] [else]

Legend: ArtifactStep

Parallel Test System (Aadj || TA)

Parallel
Composition

Reachability Analysis

Disable
Sensitive Inputs
1

4

5

Adjust System

Automaton Aadj

Automaton A

3

Test Automaton TA

Construct
Test Automaton

Automaton
Asec = A \I ΣH

2

Control/Data Flow

insecure secure

Fig. 2. Reduction of the noninterference check to a refinement check [30]

The resulting automaton Asec enables us to execute a specialized version
of the refinement check for timed bisimulation, as proposed by Heinzemann
et al. [30]. Thereby, we detect cases where a timed bisimulation between the
original automaton A and the secure-by-definition automaton Asec is violated
because A deviates from the publicly observable behavior of Asec. At the core of
the approach is a test automaton [1] that acts as an oracle for the information

36 C. Gerking et al.

flow security of the original automaton. In particular, the test automaton detects
cases in which the behavior of the original automaton violates timed noninterfer-
ence. To this end, step 2 transforms the automaton Asec into a test automaton
TA, introducing a dedicated error location that is reachable when violating timed
noninterference by deviating from the secure-by-definition behavior.

As a challenge for the construction of the test automaton, we need to hide
all non-public actions from the bisimulation (cf. Definition 2) because only devi-
ations in the public behavior are violations of timed noninterference. In Fig. 3b,
we depict those actions that need to be hidden. A natural approach to hide an
action is to remove it from the corresponding edge [6,34], i.e., to replace it by a
τ action. However, removing input actions may lead to an increased nondeter-
minism. The reason is that this approach potentially produces multiple τ tran-
sitions that are all executable on the same condition because they are no longer
distinguishable by their input actions. However, the refinement check proposed
by Heinzemann et al. is restricted to systems with a deterministic transition
function [30], i.e., at most one edge can fire on a certain condition. Therefore,
in contrast to the default test automata for timed bisimulation [30], our test
automata must take responsibility for hiding non-public actions. We describe
the construction of these specialized test automata in the upcoming Sect. 4.2.

c ≤ 9 c ≤ 7

market.order / internal.query
c := 0

internal.submit
c < 3 c = 3 /

external.requery

/ market.suborder

external.resubmit

c ≤ 3

(a) Disabling sensitive inputs

c ≤ 9 c ≤ 7

market.order / internal.query
c := 0

c = 3 /
external.requery

/ market.suborder

external.resubmit

internal.submit
c < 3

c ≤ 3

(b) Hiding non-public actions

Fig. 3. Disabling and hiding of actions in the motivating example

To ensure that the test automaton acts as the oracle for the original automa-
ton, we need to couple both automata with each other. Therefore, step 3 cre-
ates an adjusted automaton Aadj that has the same behavior as A. However, it
synchronizes with the test automaton whenever both execute the same action.
Furthermore, Aadj supports the hiding of non-public actions in the same fashion
as the test automaton. In step 4 , we compose both TA and Aadj in parallel to
enable synchronized execution of the automata. In the final step 5 , the check
for timed noninterference reduces to analyzing the resulting parallel test system
for reachability of the error location. This reachability test [1] is carried out
by means of the Uppaal model checker, using its parallel composition operator
|| to enable the synchronizations between both automata [10]. In the end, the
automaton A is secure in terms of timed noninterference, if and only if the error
location is unreachable on all execution paths.

Model Checking the Information Flow Security of Real-Time Systems 37

4.2 Test Automata Construction

To generate test automata, we adjust the construction schema for timed bisimu-
lation proposed by Heinzemann et al. [30] such that it hides non-public commu-
nication, as demanded by Definition 2. We adopt the notion of a dedicated error
location (named Err in our case) that is reachable if and only if timed nonin-
terference is violated. Figure 4 illustrates our construction schema including the
Err location. We apply this schema for each edge S → S′ of Asec. Our construc-
tion must ensure that TA will 1 accept secure communication (allowed by Asec

and correctly present in the original automaton A), 2 reject insecure commu-
nication (i.e., public communication that is not allowed by Asec but incorrectly
present in A), and 3 detect the absence of communication (i.e., public commu-
nication that is allowed by Asec but incorrectly absent in A). Before going into
details about the three cases, we introduce additional notation used in Fig. 4.
Synchronous input and output actions are denoted by μ? and μ! respectively.
The set Θ(S) includes all actions that are allowed in a location S, i.e., all actions
of outgoing edges of S. The invariant of S is denoted by I(S). In accordance with
Definition 1, ρ is a time guard, and λ is a set of clock resets.

3

2a

2b

1

Fig. 4. Construction schema for test automata

Accepting Secure Communication. The edge labeled with 1 in Fig. 4
ensures that secure communication is accepted by TA. For each edge S → S′

in Asec, we add an edge STA → S′
TA to TA. Asynchronous actions of S → S′

are transformed into synchronous actions to enable synchronization with Aadj

when processing the same messages during parallel composition. Here, a syn-
chronous output action μin! is created from an asynchronous input action μin,
or a synchronous input action μout? is created from an asynchronous output
action μout. The set of clock resets λ is transferred to STA → S′

TA. Finally, we
need to preserve the time intervals in which actions are executed. To that end,

38 C. Gerking et al.

the time guard of STA → S′
TA is the conjunction of the original time guard ρ

and the invariant I(S) of S. Thus, STA → S′
TA is enabled whenever S → S′ is

enabled.

Rejecting Insecure Communication. Insecure communication includes two
cases: 2a executing a public action that is not allowed in a location S because no
outgoing edge is labeled with it, and 2b executing a public action that is allowed
in S, but violates the timing defined in Asec. For case 2a, Fig. 4 introduces an
edge STA → Err for each public action min or mout that is not allowed in S, i.e.,
for all actions in ΣL \ Θ(S). The time guard I(S) of these edges ensures that Err
is reachable only by actions executed during the activity of S. In contrast to the
construction by Heinzemann et al. [30], only public actions make Err reachable.
For the opposite case of non-public communication, we add a loop STA → STA

for each message that is not in ΣL ∪ Θ(S). Thereby, instead of switching to the
Err location, TA hides all non-public actions that are not allowed.

To handle the timing violations of case 2b, we create one more edge STA →
Err labeled with the allowed action μout or μin of S → S′. However, this edge is
enabled exactly at those times when Asec does not allow the action. To this end,
the time guard of the edge is the conjunction of the negated enabling conditions
for all edges S → Si in Asec that execute the same action as S → S′. The
resulting time guard is

∧
i ¬(ρi ∧ I(S)) where ρi is the time guard of S → Si.

Thereby, we ensure that the edge can fire when exceeding the upper bounds of the
time intervals in which the action is allowed to execute, or when falling below the
lower bounds. In contrast to Heinzemann et al. [30], the edge leads to Err only
in case of public messages from ΣL. For non-public messages, analogously to case
2a, we construct a loop STA → STA. This edge has the same enabling conditions,
however, hides the corresponding non-public action instead of switching to Err.

Detecting Absent Communication. Timed noninterference demands that
all public actions executable by Asec are executable by the original automaton
A in the same time intervals. To check such restrictions, Heinzemann et al. [30]
add the constructs labeled with 3 in Fig. 4. We adopt this construction only if
μout or μin is public (i.e., in ΣL). In this case, the location R represents a check
for required communication. Due to the time guard ρ ∧ I(S), it is reachable
during the full time interval in which the edge S → S′ is enabled.

If A preserves the time interval in which Asec can execute the public action,
then the edge R → N is enabled whenever R is entered. The location N rep-
resents a neutral state of the analysis that is reachable whenever the required
public action is properly executed. N has no outgoing edges because the execu-
tion does not have to be further explored from here. Instead, the location S′

TA

is always reachable when N is reachable and ensures regular execution.
If at some time during its interval, the required public action can not be

executed (because A lowers the upper bound or raises its lower bound), then
R → N is not enabled. In this case, the edge R → Err fires by synchronizing
over an auxiliary channel named fallback. Synchronization over this channel is

Model Checking the Information Flow Security of Real-Time Systems 39

always enabled, however, it has the lowest priority compared to all other channels
used for communication. Thereby, Err is only reachable when the required public
communication is absent.

5 Proof of Concept

In this section, we showcase the utility of our approach in the scope of the
example given in Sect. 2.4. To this end, we demonstrate that our technique out-
performs the related work by detecting a timing channel that remains undetected
using the approach by Barbuti and Tesei [6]. We show that our technique rejects
the insecure system, but accepts a mitigated system that is noninterferent.

To verify the information flow security of timed automata, Barbuti and Tesei
check that disabling sensitive actions does not affect the reachability of loca-
tions. In the scope of our example, the corresponding transformation was shown
in Fig. 3a. Clearly, disabling the sensitive submit action does not affect the reach-
ability of locations (compared to Fig. 3b) because all locations are still reachable.
Thus, the timing channel described in Sect. 2.4 remains undetected by the app-
roach, and therefore represents a false negative because the insecure system is
regarded as secure.

In contrast, Fig. 5 illustrates the parallel composition of the adjusted automa-
ton Aadj (Fig. 5a) and the test automaton Ta (Fig. 5b) as proposed in this paper.
As an artifact for reproduction, we provide a corresponding model that is ver-
ifiable by the Uppaal model checker [23]. Due to lack of space, Fig. 5 merges
multiple edges between the same source and target locations into a single edge
with alternative synchronization labels. Furthermore, we omit the names of ports
over which messages are sent or received. Finally, since edges with a conjunction
of actions are not allowed in Uppaal, we use a committed location [10] (labeled
with c in Fig. 5) to divide the order and query actions into two consecutive edges.
Figure 5 also depicts the additional loops added to both automata for hiding
non-public communication, as described for the test automata in Sect. 4.2.

Fig. 5. Parallel test system for the motivating example

40 C. Gerking et al.

In the situation depicted in Fig. 5, the system has already processed the
message sequence order, query, submit (in the time interval c < 3). Since sensitive
inputs are disabled in Ta, it can only execute a loop when processing the sensitive
submit message. Next, the public suborder message to be sent by Aadj corresponds
to case 2a of our construction in Sect. 4.2. Thus, Ta will regard the message
as insecure, and reject it by switching to the Err location. The reason for this
violation is that Aadj sends the public suborder message too early, i.e., in the
time interval c ∈ [0, 3]. Thus, in its current location (cf. Fig. 5b), Ta regards the
message as not allowed and switches to Err.

Figure 6 shows the countermeasures taken to mitigate the timing channel.
In Fig. 6a, we depict the time guard c = 9 added to delay the suborder message.
Consequently, the timing of the message does no longer depend on whether or not
the product specification was provided over the sensitive internal port. Figure 6b
depicts the resulting changes of the test automaton. Since the timing of the
suborder message is now fixed, the Err location is no longer reachable. Accordingly,
our construction correctly identifies the mitigated system as noninterferent.

Fig. 6. Mitigation of the timing channel in the motivating example

6 Conclusions and Future Work

This paper proposes a novel check for the information flow security of real-time
systems given in the form of timed automata. Our approach is based on noninter-
ference as a well-established definition of secure information flow. To provide a
verification technique that applies existing tools and takes into account real-time
behavior, we adapt the work on refinement checking by Heinzemann et al. [30] to
the field of security. We describe the construction of test automata, introducing
a dedicated location that indicates violations of noninterference whenever it is
reachable during execution. Thereby, we reduce the problem to a reachability
test that is supported by model checking techniques used in software engineer-
ing practice. In particular, we apply the well-established Uppaal model checker
for timed automata as our underlying verification engine. Our proof of concept
demonstrates the advantages of our approach by detecting a timing channel that
would remain undetected using the most closely related work.

Model Checking the Information Flow Security of Real-Time Systems 41

The proposed idea provides software engineering practitioners with a tool-
supported verification technique for the information flow security of timed
automata, taking into account specific characteristics of cyber-physical systems
like real-time behavior and asynchronous communication. Thereby, we enable
engineers to identify information leaks such as timing channels early, and ensure
security by design. For cyber-physical systems, this is of vital importance to
avoid product recalls or even safety-critical attacks.

Our approach is part of ongoing work on tracing information flow security in
cyber-physical systems engineering [22]. In future work, we will provide tool sup-
port for our approach in the context of a model-driven software design method
for cyber-physical systems. In particular, to check the information flow security
of hierarchical component architectures, our work needs to be extended to a
compositional verification approach. Thereby, we seek to preserve security when
composing overall software systems from single secure components.

Acknowledgments. The authors would like to thank Johannes Geismann and Marie
Christin Platenius for helpful comments on drafts of this paper.

References

1. Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability testing for
timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054177

2. Agat, J.: Transforming out timing leaks. In: POPL 2000, pp. 40–53. ACM (2000)
3. Akella, R., Tang, H., McMillin, B.M.: Analysis of information flow security in

cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 3(3–4), 157–173 (2010)
4. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-

put. 104(1), 2–34 (1993)
5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
6. Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fundamenta

Informaticae 54(2–3), 137–150 (2003)
7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)
8. Benattar, G., Cassez, F., Lime, D., Roux, O.H.: Control and synthesis of non-

interferent timed systems. Int. J. Control 88(2), 217–236 (2015)
9. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool

suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

10. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

11. Biswas, A.K., Ghosal, D., Nagaraja, S.: A survey of timing channels and counter-
measures. ACM Comput. Surv. 50(1), 6:1–6:39 (2017)

12. Broman, D., Derler, P., Eidson, J.: Temporal issues in cyber-physical systems. J.
Indian Inst. Sci. 93(3), 389–402 (2013)

https://doi.org/10.1007/BFb0054177
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3

42 C. Gerking et al.

13. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H.,
Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576,
pp. 21–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-
1 3

14. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 24

15. Chattopadhyay, A., Prakash, A., Shafique, M.: Secure cyber-physical systems: cur-
rent trends, tools and open research problems. In: DATE 2017, pp. 1104–1109.
IEEE (2017)

16. Crnkovic, I., Malavolta, I., Muccini, H., Sharaf, M.: On the use of component-based
principles and practices for architecting cyber-physical systems. In: CBSE 2016,
pp. 23–32. IEEE (2016)

17. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP
using PVS. In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.)
ESORICS 2000. LNCS, vol. 1895, pp. 222–237. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722599 14

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

19. Focardi, R., Gorrieri, R.: A taxonomy of security properties for process algebras.
J. Comput. Secur. 3(1), 5–34 (1995)

20. Focardi, R., Gorrieri, R., Martinelli, F.: Real-time information flow analysis. IEEE
J. Sel. Areas Commun. 21(1), 20–35 (2003)

21. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process cal-
culi security. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 299–315.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5 19

22. Gerking, C.: Traceability of information flow requirements in cyber-physical sys-
tems engineering. In: CEUR Workshop Proceedings, DocSym@MoDELS 2016, vol.
1735 (2016)

23. Gerking, C.: Detection of a timing channel in an UPPAAL model of a cyber-
manufacturing system (2018). https://doi.org/10.5281/zenodo.1034024

24. Giacobazzi, R., Mastroeni, I.: Timed abstract non-interference. In: Pettersson, P.,
Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 289–303. Springer, Heidelberg
(2005). https://doi.org/10.1007/11603009 22

25. Giraldo, J., Sarkar, E., Cárdenas, A.A., Maniatakos, M., Kantarcioglu, M.: Security
and privacy in cyber-physical systems: a survey of surveys. IEEE Des. Test 34(4),
7–17 (2017)

26. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE S&P,
pp. 11–20. IEEE (1982)

27. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE S&P, pp.
75–87. IEEE (1984)

28. Gorrieri, R., Lanotte, R., Maggiolo-Schettini, A., Martinelli, F., Tini, S.,
Tronci, E.: Automated analysis of timed security. Int. J. Inf. Secur. 2(3–4), 168–186
(2004)

29. Guttman, J.D., Nadel, M.E.: What needs securing. In: CSFW, pp. 34–57. MITRE
Corporation Press (1988)

30. Heinzemann, C., Brenner, C., Dziwok, S., Schäfer, W.: Automata-based refinement
checking for real-time systems. Comput. Sci. - R&D 30(3–4), 255–283 (2015)

https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1007/3-540-56496-9_24
https://doi.org/10.1007/10722599_14
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-540-31982-5_19
https://doi.org/10.5281/zenodo.1034024
https://doi.org/10.1007/11603009_22

Model Checking the Information Flow Security of Real-Time Systems 43

31. Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive
secure information flow. In: IEEE S&P, pp. 413–428. IEEE (2011)

32. Köpf, B., Basin, D.: Timing-sensitive information flow analysis for synchronous
systems. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 243–262. Springer, Heidelberg (2006). https://doi.org/10.1007/
11863908 16

33. Lanotte, R., Maggiolo-Schettini, A., Tini, S.: Privacy in real-time systems. Elec-
tron. Notes Theor. Comput. Sci. 52(3), 295–305 (2001)

34. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based infor-
mation flow analysis. IEEE Trans. Softw. Eng. 36(5), 719–734 (2010)

35. Lee, E.A.: CPS foundations. In: DAC 2010, pp. 737–742. ACM (2010)
36. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-

erties. Electron. Notes Theor. Comput. Sci. 168, 61–75 (2007)
37. van der Meyden, R., Zhang, C.: A comparison of semantic models for noninterfer-

ence. Theor. Comput. Sci. 411(47), 4123–4147 (2010)
38. Nguyen, P.H., Ali, S., Yue, T.: Model-based security engineering for cyber-physical

systems. Inf. Softw. Technol. 83, 116–135 (2017)
39. Peisert, S., Margulies, J., Nicol, D.M., Khurana, H., Sawall, C.: Designed-in security

for cyber-physical systems. IEEE Secur. Priv. 12(5), 9–12 (2014)
40. Rafnsson, W., Jia, L., Bauer, L.: Timing-sensitive noninterference through com-

position. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 3–25.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 1

41. Roscoe, A.W., Huang, J.: Checking noninterference in timed CSP. Formal Asp.
Comput. 25(1), 3–35 (2013)

42. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

43. Schivo, S., Yildiz, B.M., Ruijters, E., Gerking, C., Kumar, R., Dziwok, S.,
Rensink, A., Stoelinga, M.: How to efficiently build a front-end tool for UPPAAL:
a model-driven approach. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA
2017. LNCS, vol. 10606, pp. 319–336. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69483-2 19

44. Son, J., Alves-Foss, J.: A formal framework for real-time information flow analysis.
Comput. Secur. 28(6), 421–432 (2009)

45. Vasilikos, P., Nielson, F., Nielson, H.R.: Secure information release in timed
automata. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
28–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 2

https://doi.org/10.1007/11863908_16
https://doi.org/10.1007/11863908_16
https://doi.org/10.1007/978-3-662-54455-6_1
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-89722-6_2

Off-Limits: Abusing Legacy x86 Memory
Segmentation to Spy on Enclaved

Execution

Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx(B)

imec-DistriNet, KU Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{jo.vanbulck,frank.piessens,
raoul.strackx}@cs.kuleuven.be,

jago.gyselinck@student.kuleuven.be

Abstract. Enclaved execution environments, such as Intel SGX, enable
secure, hardware-enforced isolated execution of critical application com-
ponents without having to trust the underlying operating system or
hypervisor. A recent line of research, however, explores innovative
controlled-channel attacks mounted by untrusted system software to par-
tially compromise the confidentiality of enclave programs. Apart from
exploiting relatively well-known side-channels like the CPU cache and
branch predictor, these attacks have so far focused on tracking side-
effects from enclaved address translations via the paging unit.

This paper shows, however, that for 32-bit SGX enclaves the unac-
claimed x86 segmentation unit can be abused as a novel controlled-
channel to reveal enclaved memory accesses at a page-level granularity,
and in restricted circumstances even at a very precise byte-level granu-
larity. While the x86 paging unit has been extensively studied from both
an attack as well as a defense perspective, we are the first to show that
address translation side-channels are not limited to paging. Our find-
ings furthermore confirm that largely abandoned legacy x86 processor
features, included for backwards compatibility, suggest new and unex-
pected side-channels.

Keywords: Intel SGX · Controlled-channel · x86 · Paging
Segmentation

1 Introduction

Most popular operating systems and virtual machine managers have now been
around for multiple decades. During this period, a steady stream of critical

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS Artifact Evaluation Committee.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 44–60, 2018.
https://doi.org/10.1007/978-3-319-94496-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_4&domain=pdf

Off-Limits: Abusing Legacy x86 Memory Segmentation 45

vulnerabilities has been found in their expansive code bases. These vulnerabilities
continue to be problematic for any application that wishes to do secure compu-
tations on such a platform. In order to shield applications from potentially mali-
cious or compromised system software, a significant research effort has recently
been put into creating Protected Module Architectures (PMAs) [7,16,17,22].
These architectures offer isolated execution for security sensitive application
components, while leaving the underlying system software explicitly untrusted.
With the introduction of its Software Guard Extensions (SGX) [1,6,17], Intel
brought their implementation of a PMA to the mass consumer market. Con-
ceived as an extension to the x86 instruction set architecture, SGX provides
strong trusted computing guarantees with a minimal Trusted Computing Base
(TCB), which is limited to the protected module or enclave, and the processor
package.

Recent research [15,18,21,24–27] has shown, however, that the combination
of SGX’s strong adversary model and reduced TCB allows a privileged attacker
to create high resolution, low-noise controlled-channels that leak information
about the enclave’s internal state. More specifically, enclave programs still rely
on the untrusted operating system to manage shared platform resources such as
CPU time or memory. Within SGX’s adversary model, an attacker may attempt
to leverage control over these resources to infer enclave secrets. Notably, Xu et
al. [27] first showed how to recover rich information such as full images and
text from a single enclaved execution by carefully restricting enclave page access
rights and observing the resulting page fault sequences. Since their seminal work,
more conventional side-channels such as the processor cache [2,10,18] and branch
prediction unit [15] have also been improved in the context of SGX.

Considering that innovative page fault attacks [21,27] only recently became
relevant in a kernel-level PMA adversary model, they have received considerable
attention from the research community. A good level of understanding of page
table attack surface has since been built up by (i) exploring stealthy attack vari-
ants [25,26] that abuse other side-effects of the page table walk, (ii) developing
software-based defense mechanisms [4,5,20,23] for off-the-shelf SGX processors,
and (iii) designing fortified PMAs [7,8] that rule out these attacks at the hard-
ware level. This paper shows, however, that enclaved memory accesses in 32-bit
mode not only leak through page tables, but also through the largely overlooked
x86 memory segmentation unit. A feature that is for the most part disabled
on 64-bit systems, but regains relevance when considering 32-bit enclaves. We
advance the understanding of address translation controlled-channels by show-
ing that under certain assumptions, attackers can leverage control over segment
limits to infer byte-granular memory access patterns from an enclaved execution.
Furthermore, our findings illustrate that the backwards compatibility require-
ment of modern x86 processors suggests new and unexpected side-channels stem-
ming from largely abandoned legacy features. In summary, the contributions of
this paper are:

– We show how for 32-bit enclaves the x86 segmentation unit can be abused
as a novel, noise-free side-channel to reveal precise byte-granular control flow
and instruction sizes in the first megabyte of a victim enclave.

46 J. Gyselinck et al.

– We explain how for the remainder of the enclave address space, segmentation
attacks can infer memory accesses at a conventional page-level granularity.

– We implement our attacks and practically demonstrate their enhanced preci-
sion by defeating a recently proposed branch obfuscation defense.

– We reveal an undocumented Intel microcode update that silently blocks our
attacks without updating the processor’s security version number. Only the
very recent Spectre CPU updates can adequately prevent our attacks.

2 Background

We first present Intel SGX and our attacker model, before introducing the nec-
essary background on x86 memory organization.

2.1 Intel SGX and Adversary Model

Recent Intel processors include an architectural extension called the Soft-
ware Guard Extensions (SGX) [1,11,17] which bring strong, processor-enforced
confidentiality and integrity guarantees for protected software modules called
enclaves. SGX enclaves live inside a conventional OS process, and span a con-
tiguous virtual address range (ELRANGE) for their protected code and data. The
processor’s memory access control logic takes care to block any access to ELRANGE
from outside the corresponding enclave, regardless of the current CPU privilege
level. Furthermore, to prevent active memory mapping attacks [6] performed by
a kernel-level attacker in control of page table mappings, the processor verifies
that every physical enclave address is accessed via the expected virtual address.

SGX includes several new x86 instructions to switch the processor in and
out of enclave mode. EENTER allows to transfer control to a specific point in
the enclave, while its counterpart EEXIT returns control flow back to untrusted
memory. In case of an interrupt or fault during enclaved execution, an Asyn-
chronous Enclave eXit (AEX) occurs. Much like leaving an enclave, AEX saves
the enclave’s state to later be resumed, while again clearing any processor state
that may leak information. After the reason for the interrupt has been serviced,
the enclave can be resumed using the ERESUME instruction.

SGX considers even the kernel as potentially malicious. Our attacks assume
a less powerful attacker; we show that user-level capabilities suffice to control
the segmentation unit. However, as will be indicated in our attack descriptions,
we make use of a secondary framework to execute our attacks. While these are
often interchangeable, some require a more privileged attacker. In case such a
secondary framework is chosen, the attacker model should be upgraded accord-
ingly. In general, we also assume the attacker has access to the enclave’s object
code, unless explicitly stated otherwise.

At the system level, we focus exclusively on 32-bit enclaves, for segmentation
is practically disabled in 64-bit mode. Furthermore, as discussed in more detail
in Sect. 5, we assume the processor runs one of the vulnerable microcode versions
listed in AppendixA.

Off-Limits: Abusing Legacy x86 Memory Segmentation 47

Fig. 1. On x86 logical addresses pass through the segmentation and paging units
respectively. The resulting physical address is additionally sanitized by SGX.

2.2 x86 Memory Management

To enable SGX enclaves to be easily integrated in legacy applications, they live
in the same address space. Unfortunately this implies that the architectural com-
plexities of x86 memory organization play a crucial role in assessing SGX’s isola-
tion properties [6]. Memory management in the IA-32 architecture [11] proceeds
via two distinct hardware components, visualized in Fig. 1. Application software
uses logical addresses, which are first passed through a dedicated segmentation
unit to yield linear addresses as an input to the paging unit. SGX finally enforces
some (limited) additional checks on the resulting physical addresses.

The Segmentation Unit. Segmentation serves as a way to divide the logi-
cal address space into segments. The x86 hardware provides 6 segment registers
(%CS, %DS, %SS, %ES, %FS and %GS) to directly reference segments. Each machine
instruction either explicitly references a segment register, or one is implied. Push-
ing or popping data from the stack, for example, always references the stack
segment (%SS). Similarly, the instruction pointer (%eip) is always relative to the
code segment (%CS). Move instructions to memory always imply the data seg-
ment (%DS). Segments %FS and %GS are typically used for thread-local storage.

Figure 2 displays how the segmentation unit operates during the execution
of an instruction. For each segment referenced, its segment descriptor is located
in the Local Descriptor Table (LDT) or Global Descriptor Table (GDT). Each
descriptor records the base (linear) address of the segment, its limit and the
associated access rights (i.e., read, write, execute). When the instruction does not
violate the access rights to the segment, and the logical address remains within
the segment limits, the linear address is calculated by adding the segment base
to the logical address. Otherwise a General Protection fault (#GP) is issued.

In 32-bit mode segment descriptors measure only 64 bits in size. This is too
limited to store 32-bit base and limit addresses, plus other attributes (e.g., access
rights). To resolve this issue, only a 20-bit limit field is used in combination with a
special granularity bit. When this bit is clear, limits can be specified up to 220−1
(1 MiB) at byte granularity. Otherwise the limit field is interpreted at 4 KiB
granularity, allowing the logical address space to reach (220 − 1) ∗ 4096. As the
12 least significant bits of this limit are not checked, the full 232 address space
can be accessed [11, Sect. 5.3].

Over time, segmentation has evolved to become more and more obsolete. In
64-bit mode, the processor ignores the segment descriptor registers for %DS, %SS
and %ES, limit checks are no longer performed and the base of %CS is always
treated as zero. [11, Sect. 3.4]

48 J. Gyselinck et al.

Fig. 2. The segmentation unit checks that each referenced segment adheres to the
segment’s limitations described in the descriptor table

The Paging Unit. After the segmentation unit translated a logical address to a
linear one, the paging unit translates it in turn to a physical address. It does so by
dividing the linear address space in fixed memory regions called pages. The base
address of each referenced page is located in an in-memory page table structure
maintained by the operating system. After the page table walk, the processor
obtains the physical page base address, plus the associated access rights and
other attributes (e.g., whether the page is present or has been accessed before).

3 Segmentation-Based Attacks

Intel SGX enclaves execute in the same logical address space as their host pro-
cess. Just like logical addresses used in the untrusted (legacy) part of a process
pass through the segmentation and paging unit, so do the addresses referenced
during SGX enclave execution. These address translation units are under com-
plete control of the potentially malicious kernel. To prevent an attacker from
mistranslating enclave addresses, Intel SGX applies additional checks as a final
step (see Fig. 1). During enclave creation, the processor records for every enclave
page the logical address they should be loaded at and to which physical address
they should be translated to. The kernel is still in control over all memory allo-
cation decisions. She can for example decide to evict enclave pages from main
memory, but the hardware will check whether the memory translation units have
been set up correctly.

Unfortunately, SGX’s untrusted page table design also opens up powerful
controlled-channel attacks. Early page fault-driven attacks [21,27] and more
recently improved fault-less page table-based attacks [25,26] show that pag-
ing mechanisms can be abused by an attacker to leak enclave memory accesses
at page-level granularity. When these memory accesses are secret-dependent,
they may reveal sensitive information. To the best of our knowledge, academic
research has only looked into leveraging the paging unit. For an SGX-capable
processor in 32-bit mode however, the segmentation unit also interposes on every
enclaved address translation.

Off-Limits: Abusing Legacy x86 Memory Segmentation 49

3.1 Interaction Between Segmentation and SGX

The Intel Programming Reference Manual [12] states that “enclaves abide by
all the segmentation policies set up by the OS”, but several sanity checks on
the segmentation policy have been put in place. For example, it is enforced
that the %CS, %DS, %SS and %ES registers point to segment descriptors which
have their base address set to zero, as any other value could maliciously change
the interpretation of enclaved code. Trusted in-enclave segment selectors and
descriptors for the %FS and %GS segments are saved and replaced on enclave
entry to facilitate access to the enclave’s thread local storage. This means that
the %FS and %GS segments are immune to the attacks described in this paper, for
any modifications made by an attacker will not propagate to enclaved execution.

We make the crucial observation that, while the Intel SGX hardware forces
segment descriptor base addresses to be 0x0, their limit is still under the control
of an attacker. Reducing the limit of a segment, will cause a general protection
fault whenever an attempt is made to cross it. In Sect. 2.2 we have discussed that
segment limits can be specified at byte-granularity up to the 1 MiB boundary.
Limits past this bound can only be specified at 4 KiB granularity.

3.2 Attack #1: Page Granular Attacks

We will first explore the possibilities when the granularity flag is set. As said
before, this will allow to leak information about memory accesses at page gran-
ularity. When compared to the earlier explored page fault-driven attacks, there
is one fundamental difference. Restricting page access rights makes small chunks
of memory inaccessible for the processor, while leaving others completely unaf-
fected. Segmentation presents a rougher, binary condition; either a memory loca-
tion is within the segment or it is not. In other words, moving the segment limit
not only influences a single page, but all pages that are now above the segment
limit.

It is this difference that presents an interesting challenge. We present a run-
ning example code snippet in Fig. 3 with some sample enclave code that repre-
sents a simple voting mechanism. We assume the vote being cast is secret and
that the attacker wishes to derive its value. For simplicity we assume all functions
of interest are aligned on their own pages. To illustrate the problem, imagine the
vote function being executed, with the segment limit taken as indicated on Fig. 3.
Now assume that the attacker observes a general protection fault. Clearly, this
may occur when the vote function was called for candidate B, as the handler
for that candidate is outside of the segment. However, a second possibility also
exists where the vote is for candidate A. Here, control will be passed back to
the vote function, which in turn calls the total vote handler, causing a general
protection fault as well. The two general protection faults will be identical to an
attacker, who is now unable to derive any information. To solve this, we combine
the segmentation unit with a secondary framework. In most of our examples, we
use the page-fault side-channel as an extra layer of information for simplicity
of illustration. This side-channel then functions as an oracle to indicate to the

50 J. Gyselinck et al.

Fig. 3. Example enclave with secret dependent control transfer.

attacker whether the memory access has passed the segmentation stage. The
exact same can also be achieved by monitoring the page accessed bit [25,26].
Alternatively, we can make sure the enclave takes just one step, for which a
single stepping interrupt framework such as SGX-Step [24] can be used.

Since this first attack has the same granularity as the original page fault
driven attacks, it would not be useful in this context to use that same side-
channel as the secondary framework. At the same time, replicating previous
page table-based attacks results [21,25–27] without using the paging unit demon-
strates that state-of-the-art defenses that move the page tables into enclave mem-
ory [7,8] may not suffice for 32-bit enclaves. Because of this, we illustrate how
we can replicate page fault-driven attacks using solely the segmentation unit and
SGX-Step, without the need to alter page table entries.

Reconsider the running example of Fig. 3, where we wish to extract which
candidate was voted for. Initially, we set the limit of %CS at 0x3000, making
pages of both candidate handlers inaccessible. The attacker is then guaranteed
to observe a general protection fault when the enclave is single stepped until one
of the handlers is called. At this point, the attacker can move the segment limit
to also include the handler for candidate A (limit at 0x4000). When the enclave
is resumed, the single-stepping framework makes sure at most one instruction is
executed, after which two situations can be distinguished:

1. No fault is observed, which indicates that the vote was for candidate A.
Control is successfully passed to the handler for that candidate, which is
located within the segment.

2. A second general protection fault is observed. This indicates that the vote was
for candidate B, as only a call to this function crosses the segment boundary.

Off-Limits: Abusing Legacy x86 Memory Segmentation 51

Table 1. Segmentation plus paging configurations and whether they generate a General
Protection fault (#GP) or Page Fault (#PF).

eip ≤ limit page access rights (eip + inst size) ≤ limit Fault type

✗ - - #GP1
✓ ✓ ✗ #GP2
✓ ✗ - #PF

3.3 Precise Byte Granular Attacks

In this section, we present the most fine-grained attacks that are possible using
the segmentation unit. Keep in mind that these are also the attacks with the
most limitations. Again, they are applicable to 32-bit enclaves only, where the
region of interest to the attacker is located within the first megabyte of the
victim enclave’s memory layout.

The segmentation and paging unit are closely integrated. While conceptu-
ally they can be regarded as executing one after the other at the architectural
level (see Fig. 1), we found this to be inaccurate at the microarchitectural level.
We will show that by carefully setting segment limits and page rights, detailed
information about the control flow and even instruction sizes leak to an attacker.

Combining the Segmentation and Paging Units. Only when an instruc-
tion is completely contained within the limits of the code segment, it may exe-
cute. When the instruction falls outside the code segment’s limit, a #GP is
generated. An interesting edge case occurs, however, when a multi-byte instruc-
tion starts within the code segment, but passes its boundaries. In that case, the
fault thrown depends on the paging unit: only when the page the instruction
is located on has execute permissions, a #GP is thrown. Otherwise, the paging
unit generates a Page Fault (#PF). This behavior is summarized in Table 1.

We conclude that the segmentation and paging units verify access rights
and limits in parallel at the microarchitectural level. We suspect that the exact
outcome may differ between different processor generations and models, but
always found stable outcomes on a single machine.

Attack #2: Inferring Instruction Sizes. Previous enclaved execution side-
channel attacks [2,15,18,25,27] rely on static analysis of the victim enclave’s
source code. In some cases however, the object code of the enclave may not
be available to the attacker or it may be randomized on enclave load [19]. If
so, it may be of interest to the attacker to learn as much as possible about the
instructions that are being executed [14]. For example, when code is randomized,
this information may reveal the location of crucial functions by comparing the
leaked outline to the non-randomized object code. To this end, we contribute a
novel approach to infer enclaved instruction sizes by leveraging the segmentation
and paging units and applying the techniques mentioned before.

52 J. Gyselinck et al.

Fig. 4. Fault sequence attack to infer instruction size (three vs. two bytes).

To infer instruction sizes, we retake the idea of having two layers of informa-
tion: the segmentation and the paging unit. An intuitive approach would be to
take the segment limit at the start of an instruction, while revoking the access
rights to the underlying page. Surely, this leads to a first general protection
fault, as the instruction falls outside of the segment. In consecutive steps, we
may gradually increase the segment limit with a single byte, until we observe a
page fault. This would imply that the whole instruction is now within the seg-
ment, thus also revealing the instruction size. However, as explained above, the
x86 segmentation and paging units work in parallel at the hardware level. We
experimentally confirmed that including the first byte of an instruction into the
segment is enough to activate the paging unit. As a result, as long as the under-
lying page access rights are revoked, a page fault will be reported regardless of
instruction size.

Our practical attack therefore combines information leakage from both the
paging and segmentation units. Figure 4 illustrates how an attacker can distin-
guish an exemplary three-byte instruction from a two-byte one. Initially, after
interrupting the enclave before the instruction of interest, we set the code seg-
ment limit to include two bytes of the instruction about to be executed, and
assign read/write/execute permissions to the underlying page. Next, the enclave
is continued through the ERESUME instruction, and we observe a general protec-
tion fault #GP1 or #GP2, depending on whether the code segment limit vio-
lation was caused by either the current or the next instruction.1 At this point,
however, the attacker has no way of distinguishing #GP1 and #GP2, as both
show up as identical general protection faults raised by the segmentation unit.

To overcome this challenge, we introduce the notion of fault sequence attacks
as a novel generalization of the page fault sequences originally presented by Xu
et al. [27]. That is, before resuming the victim enclave a second time, we configure
the code segment limit to include the first byte of the instruction of interest and
revoke access rights to the underlying page. According to Table 1, we now only
observe a #GP when the secret in-enclave instruction pointer falls outside of
the code segment. In case the enclaved instruction was larger than two bytes, on
the other hand, the instruction pointer was not incremented and a #PF will be
1 Note that we assume here that the next instruction is located immediately after

the current one in memory. We explain in the next section how segmentation-based
attacks can infer secret target addresses in case of jump instructions.

Off-Limits: Abusing Legacy x86 Memory Segmentation 53

Fig. 5. Using byte-granular segment limits, we can infer very precise control flow.

observed since the first byte of the instruction is included in the code segment.
As such, our approach observes the combined sequence of general protection and
page faults to infer the secret in-enclave instruction pointer.

Attack #3: Inferring Branch Target Addresses. When we are able to
set segmentation limits with a byte-level granularity, we can infer much more
fine-grained control flow than page-unit-based attacks [21,25–27]. Consider the
C code of Fig. 5 and its translation to assembly. Even though the condition of
secret results in the execution of only a few different instructions, we are able
to infer which branch is taken and thus the boolean value of secret.

An attacker could first interrupt enclave execution by retracting the access
rights of the page on which the “foo” function is located. Next, the page access
rights can be restored, while lowering the segment limit to exclude any instruc-
tion past line 4 in the assembly listing. Placing the segment limit at this address
excludes both control flow branches while just including the je (i.e., “jump
equal”) instruction.

Regardless of the value of secret, a general protection fault will occur when
the enclave is resumed. When secret evaluates to false, the cmp (i.e., “compare”)
instruction on line 3 will have set the equal flag. Executing the je instruction
on line 4 will then result in a #GP fault as the jump destination crosses the seg-
ment boundary. When the enclave is resumed after the fault is handled, another
attempt will be made to execute the je instruction.

Alternatively, the secret evaluates to true. In that case the jump will not be
taken. A general protection fault is issued as line 5’s nop (i.e., “no-operation”)
instruction is (completely) located past the code segment’s bounds.

To distinguish the two cases, we again rely on the paging unit and leverage
the differences in microarchitectural behavior when an instruction is located in-
or outside of the code segment on a non-executable page. Specifically, we revoke
access rights to the underlying page, while leaving the segment limit untouched.
When the enclave is resumed, two cases can occur:

– General protection fault is issued: This implies that the instruction must
be located past the limits of the code segment. Hence, the enclave attempted

54 J. Gyselinck et al.

to execute the nop instruction on line 5. This could only occur when secret
was true and the cmp instruction cleared the equal flag.

– Page fault is issued: This is similar to non-branching instructions that
are located on a non-executable page within the code segment. Conditional
jump instructions will also lead to a #PF when they are located within the
code segment, even when their target points outside the code segment. Hence,
we can derive that the je instruction attempts to continue execution at its
specified target. This implies that the cmp instruction cleared the equal flag,
and thus secret was false.

The above mechanism only works when targeting forward jump instructions.
With backward jumps, execution will branch within the segment and another
approach is required. We discuss this in more detail in the following section.

4 A Practical End-to-End Attack Scenario

In this section, we present a practical attack scenario that exploits the increased
attack surface stemming from the x86 segmentation unit. Specifically, we show
how the ability to infer precise byte-granular control flow information (attack
variant #3) defeats state-of-the-art branch prediction hardening techniques.

Recent research on branch shadowing attacks [15] demonstrated that fine-
grained enclave-private control flow leaks through the CPU-internal branch tar-
get buffer. This work also included a compile-time defense scheme called Zigzag-
ger. The key idea, illustrated in Fig. 6, is to obfuscate secret-dependent target
addresses via an oblivious cmove (i.e., “conditional move”) instruction,2 followed
by a tight trampoline sequence of unconditional jumps that ends with a single
indirect branch instruction. Zigzagger’s security argument relies on the obser-
vation that (i) the branch shadowing attack in itself cannot directly infer the
target address of the indirect branch at zz4, plus (ii) recognizing the uncondi-
tional jumps zz1 to zz3 becomes considerably more challenging when rapidly
jumping back and forth between the instrumented code and the trampoline. Pre-
vious research on precise interrupt-driven attacks [24] has shown that condition
(ii) is insufficient for an SGX attacker that can reliably single-step enclaved exe-
cution. To date, however, no practical attack demonstration against Zigzagger-
instrumented code has been presented. We show that, when the hardened code
lives in the first megabyte of a 32-bit victim enclave, condition (i) additionally
does not hold, for general protection faults deterministically reveal the secret-
dependent indirect branch target address.

We attack the Zigzagger defense by combining our segmentation attacks with
SGX-Step [24]. We first revoke access rights for the page on which the Zigzag-
ger code is located. This provides us with a starting point where we can set up
our attack. Initially, we want the instrumented code to execute up to the secret

2 The cmove instruction packs a condition and move into a single instruction. The
move is only performed when the equal flag in the processor’s status register is set.

Off-Limits: Abusing Legacy x86 Memory Segmentation 55

Fig. 6. Example code snippet [15] protected by Zigzagger. The secret branch address
in edx is obfuscated with cmov and a tight jmp trampoline sequence.

dependent jump in zz4. As the Zigzagger trampoline is located above the instru-
mented code in memory, we can achieve this by lowering the code segment limit
to exclude zz4 (limit A in Fig. 6). Once page access rights have been restored,
the enclave is resumed, after which a general protection fault is observed when
execution reaches zz4. At this point a secret dependent jump is about to be
made. Note that with segmentation alone, determining which branch will be
taken is not possible, as lowering the segment limit to exclude any of the two
secret dependent branches also excludes the jump instruction. This is where we
require a secondary framework. By using SGX-Step’s precise interrupt capabili-
ties we can make sure that if we reset the segment limit and resume the enclave,
at most one instruction is executed. The interrupt can also arrive early, however,
after which a zero-step is taken meaning no enclaved instructions are executed.
Because of this, the attacker should verify on the next interrupt whether the
jump in zz4 has executed. To do this, we revoke access rights to the page on
which the Zigzagger code is located, as well as lowering the segment limit to
exclude zz4 (limit A in Fig. 6). Next, two types of faults can occur:

– #PF: The current instruction is within the segment, as we can pass the
segmentation stage. A page fault occurs because the access rights for the
underlying page have been revoked.

– #GP: zz4 is still being executed, the indirect branch instruction is outside of
the code segment, causing a general protection fault. This indicates that the
interrupt arrived too early, causing a zero-step. In this case, we can simply
retry the single-stepping process above.

Once it has been established that the jump has been executed, we can execute
a final test to see which one of the branches has been jumped to. We keep
page access rights revoked, but lower the segment limit to now also exclude all
Zigzagger code from b2 on (limit B in Fig. 6). When the enclave is resumed,
again two types of faults may occur, following the same pattern as above:

56 J. Gyselinck et al.

– #PF: The current instruction is within the code segment. Execution is at
b1, also indicating that a is not equal to 0.

– #GP: The current instruction is now outside of the code segment. This
indicates that execution is at b2 and a is equal to 0.

To evaluate our attack, we create an experimental setup where the enclaved
Zigzagger code is executed 1000 subsequent times, with random values for the
secret a. Our attack was able to correctly infer the secret branch target address
in the vast majority (98%) of those runs. For the other runs, our 32-bit SGX-
Step port did not interrupt the victim enclave early enough. We are confident,
however, that our 32-bit port could be further fine-tuned to uphold the guarantee
that no more than one instruction is executed before an interrupt. This would
eliminate misses of the attack window to achieve a 100% success rate, at the
expense of more interrupts arriving too early.

5 Discussion and Mitigations

Our work shows that for 32-bit enclaves, the attack surface from address trans-
lation is not limited to paging, but also encompasses the often overlooked x86
segmentation unit. This finding may have profound consequences for state-of-
the-art defenses [7,8] that move page table memory out of reach of an attacker.
Indeed, we showed that page-granular access patterns can be revealed without
altering page table entries (attack variant #1). Moreover, we demonstrated that
memory accesses in the first megabyte of a 32-bit enclave are additionally vul-
nerable to very precise byte-granular segmentation-based attacks. We showed
how this ability (variant #3) can be abused to directly circumvent innovative
control flow obfuscation hardening techniques [15], and can be leveraged to infer
instruction sizes (variant #2). The latter may in turn break fine-grained, in-
enclave address space layout randomization techniques [19].

Our attacks are restricted to 32-bit enclaves only, as x86 processors prac-
tically disable segmentation in 64-bit mode. At this point in time, it is hard
to estimate how wide-spread 32-bit enclaves are, or eventually will be. SGX
is still a developing technology and only time will tell whether people wish to
enclave their legacy 32-bit software. While this assuredly limits the applica-
bility of segmentation-based attacks, it also confirms an important hypothesis.
Namely, that supporting 32-bit enclave software in the interest of backwards
compatibility may introduce unexpected security vulnerabilities – as has been
suggested before [6]. Exploring such legacy aspects could furthermore bring valu-
able insights for the design and verification of novel hardware-software PMA co-
designs [7,9]. As such, we encourage further research to explore the additional
attack surface stemming from enclave interaction with legacy x86 features.

While developing our attack framework, we found that recent Intel microcode
updates silently address segmentation-based attacks against 32-bit enclaves.
Remarkedly, we could not find any official Intel reference that documents this
behavior, and can only hypothesize on the extra security checks. Specifically,
we found that the patched EENTER/ERESUME instructions now immediately fault

Off-Limits: Abusing Legacy x86 Memory Segmentation 57

whenever any of the segment limits fall within ELRANGE. While this effectively
prevents all attack variants #1 to #3, we confirmed that the current solution still
leaves (limited) segmentation-based attack surface. That is, an adversary can still
detect the use of a particular segment by setting the segment limit to exclude
the enclave base address, and observing a general protection fault whenever the
segment is accessed during the enclaved execution. Since %CS/DS are always ref-
erenced on enclave entry, and %FS/GS are loaded from a trusted in-enclave data
structure, only the use of %SS/ES can be established in this manner.

We had to fall back to manual testing to identify vulnerable microcode ver-
sions. Our results are summarized in Appendix A. As a crucial observation,
however, we found that the relevant microcode updates do not increase the
CPU Security Version Number (CPUSVN), which reflects the processor’s TCB
measurement for local and remote enclave attestations [1]. Importantly, since
SGX’s attacker model assumes a potentially malicious kernel, microcode revi-
sions that do not increase CPUSVN can be silently rolled back without alerting
the victim enclave or remote stakeholder. Only the very recent Spectre [3,13]
microcode patches increase CPUSVN and adequately prevent our attacks. Our
findings therefore provide additional evidence that (32-bit) enclave attestations
with a pre-Spectre CPUSVN should be considered untrustworthy.

6 Conclusion

Recent research on Intel SGX side-channel attacks has focused on the paging
unit, caches and branch target buffer. In this paper we have looked into a previ-
ously unexplored hardware component: the segmentation unit. We found that for
32-bit enclaves, segmentation-based attacks may reveal security sensitive infor-
mation. By combining microarchitectural behavior originating from the interplay
between the IA-32 segmentation and paging unit, our generalized notion of fault
sequence attacks can infer very detailed information. When a 32-bit enclave uses
the first 1 MiB of its address space, fine-grained control flow plus instruction
sizes can be leaked to an attacker. We furthermore showed how segmentation-
based attacks additionally reveal memory accesses past the 1 MiB boundary at
a conventional page-level granularity.

We found that Intel has silently patched segmentation-based enclave attack
surface, but without updating the CPUSVN number. This implies that kernel-
level attackers are able to rollback the microcode revisions unnoticed, until
SGX remote attestation schemes reject attestation reports of processors with old
microcode revisions. Only with the very recent microcode patches that address
the Spectre attacks, will the CPUSVN number be increased and exploitation of
the segmentation unit be adequately prevented.

Responsible Disclosure and Availability. We responsibly disclosed our results to
Intel and a microcode patch has been distributed. To ensure the reproducibility
of our results, and to encourage future research that explores 32-bit enclave

58 J. Gyselinck et al.

vulnerabilities, we have made the full source code of our segmentation attack
framework, 32-bit SGX-Step port, and SGX SDK runtime modifications publicly
available.3

Acknowledgements. This work was partially supported by the Research Fund KU
Leuven. Jo Van Bulck and Raoul Strackx are supported by a grant of the Research
Foundation – Flanders (FWO).

A Vulnerable Microcode Versions

Only very recently, Intel provided microcode revisions to foil our segmentation-
based attacks. We tested the following microcode revisions for our Skylake
machine:

Version Release date CPUSVN Vulnerable

0x1E unknown 020202ffffff00000000000000000000 Yes

0x2E unknown 020202ffffff00000000000000000000 Yes

0x9E unknown 020202ffffff00000000000000000000 Yes

0x4A unknown 020202ffffff00000000000000000000 Yes

0x8A unknown 020202ffffff00000000000000000000 Yes

0xBA April 9th, 2017 020202ffffff00000000000000000000 No

0xC2 November 16th, 2017 020702ffffff00000000000000000000 No

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13. ACM,
New York (2013)

2. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.-
R.: Software grand exposure: SGX cache attacks are practical. In: 11th USENIX
Workshop on Offensive Technologies (WOOT 2017). USENIX Association, Van-
couver (2017)

3. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SgxPectre attacks:
leaking enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085
(2018)

4. Chen, G., Wang, W., Chen, T., Chen, S., Zhang, Y., Wang, X., Lai, T.-H., Lin, D.:
Racing in hyperspace: closing hyper-threading side channels on SGX with contrived
data races. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE (2018)

5. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjà vu. In: Proceedings of the 2017 Asia Confer-
ence on Computer and Communications Security, Asia CCS 2017, pp. 7–18. ACM
(2017)

3 https://distrinet.cs.kuleuven.be/software/off-limits/.

http://arxiv.org/abs/1802.09085
https://distrinet.cs.kuleuven.be/software/off-limits/

Off-Limits: Abusing Legacy x86 Memory Segmentation 59

6. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86 (2016)

7. Costan, V., Lebedev, I., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: 25th USENIX Security Symposium (USENIX Security
2016), pp. 857–874. USENIX Association, Austin (2016)

8. Evtyushkin, D., Elwell, J., Ozsoy, M., Ponomarev, D., Ghazaleh, N.A., Riley, R.:
Iso-X: a flexible architecture for hardware-managed isolated execution. In: 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 190–
202, December 2014

9. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: using verification
to disentangle secure-enclave hardware from software. In: Proceedings of the 26th
Symposium on Operating Systems Principles. ACM (2017)

10. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel SGX. In:
Proceedings of the 10th European Workshop on Systems Security (EuroSec 2017)
(2017)

11. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Manual
(2017)

12. Intel Corporation: Intel R© Software Guard Extensions Programming Reference
(2017)

13. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: exploiting speculative
execution. ArXiv e-prints, January 2018

14. Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M.,
Kang, B.B.: Hacking in darkness: return-oriented programming against secure
enclaves. In: 26th USENIX Security Symposium (USENIX Security 2017), pp.
523–539. USENIX Association (2017)

15. Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In: 26th USENIX
Security Symposium (USENIX Security 2017), pp. 557–574. USENIX Association,
Vancouver (2017)

16. Maene, P., Gotzfried, J., De Clercq, R., Muller, T., Freiling, F., Verbauwhede,
I.: Hardware-based trusted computing architectures for isolation and attestation.
IEEE Trans. Comput. (2017)

17. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP 2013, p. 10:1. ACM, New
York (2013). https://doi.org/10.1145/2487726.2488368

18. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

19. Seo, J., Lee, B., Kim, S., Shih, M.-W., Shin, I., Han, D., Kim, T.: SGX-shield:
enabling address space layout randomization for SGX programs. In: Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA (2017)

20. Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: 24th Annual Network and Distributed System
Security Symposium (NDSS) (2017)

https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1

60 J. Gyselinck et al.

21. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security (ASIA CCS), pp. 317–328. ACM (2016)

22. Strackx, R., Noorman, J., Verbauwhede, I., Preneel, B., Piessens, F.: Protected
software module architectures. In: Reimer, H., Pohlmann, N., Schneider, W. (eds.)
ISSE 2013 Securing Electronic Business Processes, pp. 241–251. Springer, Wies-
baden (2013). https://doi.org/10.1007/978-3-658-03371-2 21

23. Strackx, R., Piessens, F.: The Heisenberg defense: proactively defending
SGX enclaves against page-table-based side-channel attacks. arXiv preprint
arXiv:1712.08519, December 2017

24. Van Bulck, J., Piessens, F., Strackx, R.: SGX-step: a practical attack framework for
precise enclave execution control. In: Proceedings of the 2nd Workshop on System
Software for Trusted Execution, SysTEX 2017, pp. 4:1–4:6. ACM (2017)

25. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your
secrets without page faults: stealthy page table-based attacks on enclaved execu-
tion. In: Proceedings of the 26th USENIX Security Symposium. USENIX Associ-
ation (2017)

26. Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang,
H., Gunter, C.A.: Leaky cauldron on the dark land: understanding memory side-
channel hazards in SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, pp. 2421–2434. ACM, New
York (2017)

27. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 640–656. IEEE (2015)

https://doi.org/10.1007/978-3-658-03371-2_21
http://arxiv.org/abs/1712.08519

One Leak Is Enough to Expose Them All

From a WebRTC IP Leak to Web-Based Network
Scanning

Mohammadreza Hazhirpasand(B) and Mohammad Ghafari

Software Composition Group, University of Bern, Bern, Switzerland
{mhhazhirpasand,ghafari}@inf.unibe.ch

Abstract. WebRTC provides browsers and mobile apps with rich real-
time communications capabilities, without the need for further software
components. Recently, however, it has been shown that WebRTC can
be triggered to fingerprint a web visitor, which may compromise the
user’s privacy. We evaluate the feasibility of exploiting a WebRTC IP
leak to scan a user’s private network ports and IP addresses from out-
side their local network. We propose a web-based network scanner that
is both browser- and network-independent, and performs nearly as well
as system-based scanners. We experiment with various popular mobile
and desktop browsers on several platforms and show that adversaries not
only can exploit WebRTC to identify the real user identity behind a web
request, but also can retrieve sensitive information about the user’s net-
work infrastructure. We discuss the potential security and privacy conse-
quences of this issue and present a browser extension that we developed
to inform the user about the prospect of suspicious activities.

Keywords: Web-based network scanner · IP leak · Browser security

1 Introduction

Web browsers are amongst the most widely-used software applications to search
and explore the Internet. A web browser is not just a container for web pages, but
over the last few years it has been increasingly used for building cross-platform
and hybrid apps in handheld devices. As a consequence, this common gateway
to the Internet has been increasingly targeted by adversaries, and web-based
attacks are becoming increasingly common [1].

Although modern browsers incorporate various protection techniques to
achieve strong security [2], improvements in the features of these software appli-
cations may nevertheless compromise user privacy and introduce new security
vulnerabilities [3]. In particular, the advent of HTML5 and CSS3 not only enables
the construction of more diverse and powerful web sites and applications, but also
brings on more risks especially to personal web privacy. For instance, the Canvas
API enables the creation of animations and graphics in the web environment, but

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 61–76, 2018.
https://doi.org/10.1007/978-3-319-94496-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_5&domain=pdf

62 M. Hazhirpasand and M. Ghafari

also facilitates the tracking of the user’s browser and operating system due to dif-
ferent image processing engine and fonts settings [4]. The Geolocation API pro-
vides the physical location of a user, thereby potentially compromising the user’s
privacy [5]. In general, HTML5 facilitates web browser fingerprinting wherein one
collects various pieces of information to distinguish a user from the general flow
of those who surf the Internet.

In this paper we focus on the risk posed by WebRTC, a set of HTML5
APIs that enable real-time communication over peer-to-peer connections, e.g.,
in-browser calling and video conferencing. Previous research has shown that
WebRTC leaks a web visitor’s real identity even behind a VPN [6]. We build on
the state of the art, and examine the extent to which this issue could jeopardize
the security and privacy of internal members of a network. We propose a web-
based network scanner that exploits the WebRTC IP leak to collect the network
information. Unlike existing Javascript scanners that are often imprecise due
to several assumptions about the network and browsers, our proposed scanner
is both browser- and network-independent. It employs a few heuristics such as
predicting a port status based upon the round-trip delay time, and reducing the
scan time by using a pop-up window, etc.

We conduct various experiments in a private network of 20 active nodes. The
network is running at 100 Mbp speed, and a FortiGate Unified Threat Manage-
ment (UTM) protects the network from outside threats. We assess the IP leak
in the latest versions of browsers such as Google Chrome, Mozilla Firefox, and
Opera, and in various desktop and mobile operating systems. We also compare
the performance of our web-based scanner with that of several system-based
scanners.

We found that except on iOS, major browsers like Firefox and Chrome are
subject to the WebRTC leakage issue regardless of the underlying operating
system. In our experiment, Safari on Mac, and Microsoft Edge on Windows
were the only browsers that support WebRTC but do not leak the IP address,
and iOS was the only operating system that did not suffer from this issue in
any of the tested browsers. Through our scanning approach we identified a great
number of active hosts and open ports in a test network. For instance, within
about 30 s we could scan a complete IP range and discover all active nodes, as
well flag those whose http ports were open. Once we identified active nodes,
within 23 s we could scan 7 open ports that disclose various network services
and running applications in this private network. We acknowledge that our web-
based scanner performs almost as fast and precisely as system-based scanners.

Consequently, WebRTC information leakage does not pose a threat only for
a web visitor but also all other members in her network, and we conclude that
the privacy risk imposed by WebRTC could be considered high. We developed a
browser extension that shields Google Chrome and Mozila FireFox against the
WebRTC IP leak without compromising its features and applications.

In the remainder of this paper, Sect. 2 presents some background and attack
vectors through which an adversary can exploit WebRTC IP leakage. Section 3
explains our web-based port scanning approach, followed by our experiment and
the obtained results in Sect. 4. Section 5 illustrates a few attacks that we could

One Leak Is Enough to Expose Them All 63

run against nodes in a private network, and demonstrates a browser extension
that we developed for protecting against such attacks. Section 6 presents an
overview of the research most relevant to this work, and finally Sect. 7 concludes
the paper.

2 Background

Using WebRTC every connected device, whether it is a computer, tablet, televi-
sions, or smart gadget, can become a communication device without the instal-
lation of any third-party plug-ins. WebRTC is free, open source, and easy to
use, and as of this writing, most browsers on different platforms from a desktop
computer to a mobile device support WebRTC. Its broad adoption by many
applications such as Google Hangouts, Facebook Messenger, Whatsapp, and
Firefox Hello makes it hard for users to disable this feature [7]. Three HTML5
APIs, namely getusermedia, rtcpeerconnection, and rtcdatachannel, com-
prise the main part of WebRTC. To initiate a WebRTC application, browsers
will request the user to grant permission to use WebRTC, and otherwise, the
application would not run. This improves a user’s privacy to ensure that their
camera or microphone is not accessed from an untrusted web site.

Getting the private IP address of a website visitor used to be an arduous
task especially as long as an adversary does not have physical access to the
visitor’s network, and the visitor uses TOR-like browsers, or is behind a VPN
or an HTTP proxy. However, a web session in a WebRTC-powered browser
may disclose critical network information without notice to an adversary even
when the aforementioned privacy protection mechanisms are in place [8]. In
effect, WebRTC needs to find the best path between two nodes. When estab-
lishing a peer-to-peer connection between two nodes, the private IP address of
the user can be extracted with Javascript, from a Session Description Protocol
(SDP) object. Consequently, WebRTC information leakage allows an adversary
to silently identify the real IP address of a web visitor. This enables adversaries
to scan open ports on her computer, collect information about running services
and applications, and exploit a vulnerability in these programs to undertake an
attack.

The WebRTC leakage issue is very similar to a recent information leakage
discovered in Hotspot Shield, one of the most popular VPN providers with half
a billion users.1 First, they disclose some information regarding the network
interfaces of a user. Second, both VPNs and proxies fail to protect the real
IP address of the user. Third, the aforementioned information leaks without
requiring any user permission. On the other hand, WebRTC as a part of HTML5
runs on nearly all major browsers on different platforms, and its privacy and
security issues threaten a significantly large number of users in the globe.

There are at least three main attack vectors through which an adversary
can attack a web client, and retrieve information from the victim. A seemingly
legitimate but malicious website can include a malicious script in a web response
1 https://nvd.nist.gov/vuln/detail/CVE-2018-6460.

https://nvd.nist.gov/vuln/detail/CVE-2018-6460

64 M. Hazhirpasand and M. Ghafari

to the client and wait for the results. In a man-in-the-middle attack, an adversary
secretly relays and possibly injects a script into the communication between two
parties, and collects the scan results. In a cross-site scripting attack, lack of
rigorous input validation allows an adversary to inject malicious scripts into
otherwise benign and trusted websites.

3 Port Scanning

This section explains our approach using WebRTC IP leakage issue to scan
private nodes within a network. It is developed in Javascript and is browser-
independent.

Once the script starts to execute, it checks whether a target browser supports
WebRTC or not. If not, some basic information such as the browser’s user agent
string, as well as the public IP address will be returned, and the execution process
will terminate. Otherwise, if the acquired IP falls within the ranges of private
IPv4 address spaces, we proceed with port scanning.

We adopt a scanning heuristic based on timing. Through several experiments
in different networks we learned that examining the round-trip delay time (RTT)
within a private network could be used to estimate the status of a node in the
network. We collected the elapsed time and the response message to various
connection requests in a network from the browser’s console. We observed that
the timing is pretty much the same in various browsers, yet depends on the
network latency, which is not known a priori. On the other hand, we observed
that within each network the timings fall into three time windows that we can
associate with open port, refused connection, and timeout. An open port indi-
cates that the node is active and has a running service on the queried port.
When a firewall refuses the connection or the port is closed, a connection refused
response is expected. This message implies that the queried node (i.e., the IP
address) exists in the network, whereas a timeout response means that there is
no such node in the network. Such messages only appear in the browser’s console
and, for security and privacy reasons, Javascript cannot access them. Neverthe-
less, we consistently observed that the response to a successful connection (i.e.,
open port) is received earlier than a refused connection, and always a timeout
is received much later than the other two. We therefore propose to cluster the
initial scanning results based on their timings to determine a reliable threshold
for the status of a request in a private network.

We applied a clustering heuristic that works as follows. First, we sort the
data points (i.e., scanning results) in ascending order, and store the result in
a set. Next, we compute the absolute distance between every two consecutive
data points, and store them in another set. The top three values in the latter
set present the three significant changes in the data. Therefore, the data points
in the first set whose indices correspond to the indices of the top three values in
the other set indicate the boundaries of the clusters, respectively.

The clustering heuristic is implemented in Javascript and runs only once on
the client side to automatically guide the scanning in each network. Alternatively,

One Leak Is Enough to Expose Them All 65

the timings can be plotted on the server side and the adversary can manually
set the proper boundary of each cluster.

We could therefore deduce the timing thresholds based on each cluster. For
instance, Table 1 shows the obtained clusters in a full range IP scan for http
ports within our test network. If the response time in our network is less than
500 ms, we assume the expected port is open. In case of a refused connection,
a response is expected in between 700 to 1400 ms. A response timeout usually
takes much longer (i.e., on average above 18 s).

Table 1. The time span thresholds in ms, computed only for our network

Open port Refused connection Timeout

<500 700 � 1400 18000<

Making a connection request is feasible via an Image tag, a WebSocket
request or an XMLHttpRequest (XHR). The first method uses an tag
in order to load a hypothetical picture from a remote location (i.e., a node in
the private network). We assume the expected port is open, only if the request
fires the onload or the onerror events in the expected threshold. The second
method uses the Websocket API, which enables interaction between a browser
and a node in the network with lower overhead than http. In this method, we
measure the timing as long as the the connection status is on the connecting
state (i.e., the readyState attribute is 0). The third method uses XHR, and we
check the value of statusText attribute. Due to the restriction of the same-
origin policy this value is error if there is a response from the remote location.
Otherwise, In XHR a timeout response often takes 21 s and therefore we abort
the connection if it takes more than the maximum threshold of interest (i.e.,
1400 ms).

The time required for port scanning is critical as a web session on a particular
website may be short. We decreased the scanning time by scanning in parallel.
In particular, we employed the popup window technique to split the number of
IPs to scan between the main window and a very small popup window that we
open in the rightmost corner of the screen and behind the main window. Such
parallelism improves the scanning time up to 44% in total.2 Moreover, when
several clients within the same network are infected, we distribute the scanning
amongst these nodes and aggregate the results in the end.

The scanning continues till it completes or as long as the victim is navigating
within the infected page. We periodically persist the scanning results to local
storage on the victim’s browser to minimise data loss in circumstances where the
scanning cannot proceed (e.g., when the victim navigates to a different website,
or closes the browser). Moreover, we realised when the infected tab is not active
or when a browser is minimized, the scanner may not perform as expected due

2 We send a new request every 200ms.

66 M. Hazhirpasand and M. Ghafari

to “background timer throttling” policies. In fact, in such circumstances both
Chrome and Firefox enforce a timer task to run at most every 1000 ms.3 We
resume an incomplete scan once it is feasible (e.g., when the victim visits the
page again), and finally collect the network information.

4 Experiment

In this section, we conducted an experiment to find the IP address of a website
visitor, and scanned nodes within the visitor’s network. The visitor’s network is a
test lab designed to evaluate the performance of our port scanner. We simulated
a malicious website by injecting a script (i.e., our scanner) into the comment
section of a website, so that when a visitor clicks on the “show comments”
button, the script will run on the visitor’s private network. We collected the
private network information of the website’s visitors in our experiment, and ran
a few attacks against the internal nodes in the network.

We further evaluated the generalizability of our network scanning approach
by carrying out another experiment in a wireless network with which we were
not familiar in advance.

4.1 Setup

Table 2 presents an overview of 20 active machines in our first experimental net-
work. We manually added Android and iOS devices to this network for exper-
imentation purposes. The whole network is protected by a FortiGate Unified
Threat Management (UTM) firewall with a default configuration. Five Win-
dows machines in the network are also protected by Kaspersky products, and
the remaining ones are equipped only with the default firewall installed on each
machine.

Table 2. Test lab nodes and their open ports

OS No of machines Open ports

Windows 14 80,443,445,3306,110,1433,25,43,7,139,902

Linux 3 80,443,8080,22

MacOS 1 21,22

Android 1 2221

iOS 1 5612

We examined the WebRTC information leakage issue in the latest versions
of major browsers in each operating system. In particular, we tested the Google
Chrome, Chromium, Mozilla Firefox, Internet Explorer, Microsoft Edge, Safari,
3 https://developers.google.com/web/updates/2017/03/background tabs.

https://developers.google.com/web/updates/2017/03/background_tabs

One Leak Is Enough to Expose Them All 67

Samsung Internet, and Opera browsers. We performed two tests; in the first test
the scan goes from IP address 1 to 254 to identify active nodes in general, and in
particular to flag web servers in the victim’s private network. In the second test
we collect more information about the target network by scanning a broader
range of ports only on the active nodes that were identified in the previous
test. Generally, scanning the whole range of ports could be time-consuming and
users do not spend more than several minutes on a typical web page. Moreover,
adversaries usually look for ports that are often associated to particular software
systems that they can exploit. Therefore, it is common to scan only a number
of ports on a victim’s machine. Table 3 presents the list of ports that we scan in
each node in the second experiment. We selected these ports randomly from the
entire list of open ports in the network.

Table 3. The open ports in the target network

Port Description

3306 MySQL database system

1433 Microsoft SQL Server database management system (MSSQL) server

8080 Apache Tomcat

902 VMware ESXi

2221 WiFi FTP Server android application

445 Windows shares

80 Hypertext Transfer Protocol (HTTP)

In another experiment, we also ran the same two tests via a browser connected
to the wireless network. In both experiments we use our clustering heuristic
which automatically determines the status of a network request. We compare
our results with three popular IP/Port scanning software tools, namely Angry
IP Scanner4, Advanced IP Scanner5, and Advanced Port Scanner6. We set http
port, banner grabber, and ping options in the first test. We repeat each test five
times to mitigate bias in the measured performance.

There exist a few security tools that employ WebRTC to get the internal
IP addresses of a victim’s network. For instance, a tool named BeEF (http://
beefproject.com) has a feature called “Get Internal IP Address”, however, our
experiment with this tool showed that it suffers from a large number of false
positives so that, in the interest of space, we do not discuss it in this paper.

4.2 Result

Table 4 presents a list of popular browsers that were examined for the WebRTC
private IP leak. We found that except on iOS, major browsers like Firefox and
4 http://angryip.org.
5 http://www.advanced-ip-scanner.com.
6 https://www.advanced-port-scanner.com.

http://beefproject.com
http://beefproject.com
http://angryip.org
http://www.advanced-ip-scanner.com
https://www.advanced-port-scanner.com

68 M. Hazhirpasand and M. Ghafari

Chrome are subject to the WebRTC private IP leak regardless of the underlying
operating system. In our experiment, Safari on Mac, and Microsoft Edge on
Windows were the only browsers that support WebRTC but do not leak the IP
address, and iOS was the only operating system that did not suffer from this
issue in any of the tested browsers.

Further investigation is needed into the implementation of these browsers to
uncover the reason they do not leak the private IP address of a user.

Table 4. The state of WebRTC support in major browsers

Browser Version OS WebRCT Private IP Leak

Google Chrome 63 Windows Yes Yes

Mozilla Firefox 57 Windows Yes Yes

Internet Explorer 11 Windows No No

Microsoft Edge 16 Windows Yes No

Opera 49 Windows Yes Yes

Mozilla Firefox 54 Android Yes Yes

Google Chrome 59 Android Yes Yes

Opera Mini 32 Android No No

Samsung Browser 6.2 Android Yes Yes

Safari 11 Mac Yes No

Google Chrome 63 Mac Yes Yes

Mozilla Firefox 58 Mac Yes Yes

Safari 10 iOS Yes No

Google Chrome 64 iOS Yes No

Mozilla Firefox 10 iOS Yes No

Opera Mini 16 iOS No No

Mozilla Firefox 51 Ubuntu Yes Yes

Chromium 35 Ubuntu Yes Yes

Opera 51 Ubuntu Yes Yes

Google Chrome 64 Ubuntu Yes Yes

We successfully identified 20 active nodes and flagged 8 whose http ports
were open in the first experiment. The average time to scan a complete range
in all three methods in the main window of a browser is around 55 s. When the
scanning is also assigned to a popup window the time significantly decreases to
about 31 s (i.e., 44% improvement).7 We realised that the IMG tag approach
may make the victim aware of ongoing suspicious activities. For example, in our
experiment Firefox shows the IP addresses that are being loaded in the status
bar.
7 Distributing the work amongst more popup windows could improve the speed, but
the risk that they will be noticed by the user increases as well.

One Leak Is Enough to Expose Them All 69

Fig. 1. The performance of scanners in the first test, first experiment

Fig. 2. The comparison of scanners in the second test, first experiment

Figure 1 presents a comparison of our web-based scanner with two state-of-
the-art network scanner tools. All the scanners are successful at identifying the
nodes in the network. System-based scanners perform faster than our web-based
scanner but only slightly faster when a popup window is employed. Moreover,
system-based scanners have a higher privilege to scan all ports, perform ICMP
requests, and use multi-threaded features. In contrast, in this experiment we
found that due to security concerns Javascript is not allowed to communicate
with all ports. In fact, out of 65535 ports, Javascript was banned from scanning
59 ports. These ports are listed in Table 8 in the Appendix. In addition, the
performance of our scanner depends on the system resources that are allocated
to the infected tab in a browser, as discussed in Sect. 3.

Figure 2 illustrates the results of the second test in which we scanned several
ports listed in Table 3. The average time for scanning dropped significantly in
all methods as we only scanned the active nodes i.e., 20 machines.

70 M. Hazhirpasand and M. Ghafari

Amongst 20 machines in the network, 14 had at least one open port. Table 5
presents the obtained results. The remaining six machines were not identified as
none of their open ports were listed in Table 3.

Table 5. The identified open ports w.r.t. the ports listed in Table 3

Open ports OS

1 80,443,3306 Windows

2 80,443,445,1433,3306 Windows

3 80,443,445,3306 Windows

4 80,443,445 Windows

5 445 Windows

6 902 Windows

7 80,443,445,3306 Windows

8 80,443,445 Windows

9 80,443,445 Windows

10 445 Windows

11 445 Windows

12 80,443 Linux (Ubuntu)

13 8080 Linux (Arch)

14 2221 Android

Fig. 3. The performance of scanners in the first test, second experiment

In the following, we briefly discuss the results obtained in the second experi-
ment within a wireless network. According to Fig. 3, the performance of scanners
in the first test is consistent with our findings in the previous experiment, though
the Angry IP Scanner has performed slightly better than before. We found the

One Leak Is Enough to Expose Them All 71

number of identified active nodes varies a bit as few clients connected or discon-
nected to the network during our experiment. In the second test we examined
the status of the ports in Table 3, and amongst 68 active nodes we found 17
nodes with open ports (see Fig. 4). It is worth mentioning that the scan com-
pletion in our web-based scanner took much longer than the second test in the
first experiment as there were about five times as many nodes, and we did not
employ any parallelism.

Fig. 4. The comparison of scanners in the second test, second experiment

Therefore, the obtained results in our experiments confirm that our app-
roach for network scanning performs reliably and independent of the underlying
network.

4.3 Threats to Validity

The firewall in our test lab was set up with its default configuration, and did
not prevent port scanning. In fact, perimeter firewalls often control the flow of
network traffic entering or leaving an organization, whereas the origin of scanning
is an internal node, and this bypasses many existing rules on firewall systems.
Moreover, finding the right timing thresholds is a non-trivial task due to the
network congestion, in-place firewall systems, and various policies like timing
and resource allocation in browsers. Hence, a node whose response time takes
longer than the selected thresholds may mistakenly be assumed to be unavailable.
We mitigated this threat by scanning only when the infected tab is the active
tab in a browser, and employing a clustering technique to predict a port status.
Finally, our experiment was limited to IPv4 scanning and the obtained results
may not generalise to IPv6.

5 Risks and Countermeasures

Besides serious privacy concerns that a remote network scanning imposes, the
collected information facilitates a number of attacks against the nodes in a

72 M. Hazhirpasand and M. Ghafari

network. In this section, we briefly mention a few attacks that we conducted, and
thereafter, we present our simple approach, implemented as a browser extension,
to protect against such attacks.

5.1 Attacks

We run a Denial of Service (DoS) attack against a web server in the network
through the browser of a legitimate client in the network. This is interesting
as security devices often underestimate the likelihood that such an attack may
happen from inside a network. We use a web worker in Javascript, running in the
background without interfering with the user interface, to flood the target web
server with many XHR requests. The attack can be turned into a Distributed
DoS attack if we can infect more browsers in the network.

Table 6 presents the maximum number of requests that we could send within
one minute from various browsers to the target web server, without impacting
the user experience and the browser responsiveness. We also measured the page
load before and at the time of the attack, and found that it increases by 20%
delay when running the attack.

Table 6. Number of requests from each browser during a DoS attack

Browser Platform Requests in one minute

Google Chrome Windows 5820

Mozilla Firefox Windows 5210

Opera Windows 5442

Mozilla Firefox Linux (Ubuntu) 3266

Google Chrome Linux (Ubuntu) 4085

Mozilla Firefox Android 4231

Google Chrome Android 3005

Opera Mini Android 3845

Next, we run a brute-force attack to mine sensitive files and directories from
web servers. We selected 600 common paths, and measured the performance
when targeting one, three, and five web servers. We checked the availability of
a remote path via JSONP as it is able to establish GET requests without the
restriction of the same-origin policy. In particular, JSONP expects a response
only in JSON format, otherwise if the path exists it returns a parsererror
message, and if it does not exist it returns an error message. Table 7 presents
the obtained results.

Internal web applications often lack spam protection mechanism like Captcha
code for authentication. Therefore, we can brute-force the login page in such
applications. We speculated on the type of web applications installed on each
web server based on the identified paths. In one case where we could identify the

One Leak Is Enough to Expose Them All 73

Table 7. The path brute-force results in one minute

No of web servers Examined paths Identified paths

1 600 12

3 200 15

5 120 18

presence of a protected directory of image files, we remotely brute forced 1000
common passwords within 80 s. In particular, in each request we sent credentials
as a POST request to the login page through a hidden iframe element within
the infected page. As we are aware of a protected image, we load the image using
the IMG tag. In case the image loads successfully, it means the session is set for
the visitor, and the last tried password is correct.

5.2 WebRTC IP Leak Guard

The easiest way to shield against a WebRTC IP leak is to disable it in the
browser. Extensions like WebRTC Block and WebRTC Control offer this possi-
bility to a browser, however the risk is that users may not remember to disable
WebRTC after each use. There exist a couple of browser extensions like WebRTC
Leak Prevent, and WebRTC Network Limiter that allow only the use of pub-
lic IP in WebRTC. Nevertheless, not all browsers support this feature as it may
inhibit the adoption of many useful applications for which WebRTC is proposed.

We have developed a browser extension for Google Chrome and Mozilla Fire-
fox that monitors the network information, and warns about requests that may
be related to scanning and attacking internal nodes within a network. In par-
ticular, it records the connections destined to local IP addresses, and once the
number of such connections exceeds a certain configurable threshold, the exten-
sion will notify the user of a suspicious activity. The extension has also a whitelist
feature that contains addresses for Intranet applications and services that will
not be monitored.

6 Related Work

In this section we review related work that studies WebRTC from a security
and privacy standpoint. Recent research has highlighted the role of choosing the
right browser and VPN in order to avoid WebRTC leakage [6]. The author found
that TorGuard is the least privacy-compromising VPN service, while VyprVPN
and ExpressVPN failed to prevent WebRTC IP leaks. Similar to our findings,
he found Safari to be the most privacy-preserving browser. In a study of the top
one million sites on Alexa [9], the authors found WebRTC being used to discover
local IP addresses without user interaction on 715 sites, and mainly for tracking.

74 M. Hazhirpasand and M. Ghafari

In a research on web device fingerprinting [8], the authors classified 29 browser-
based device fingerprinting techniques in which WebRTC is graded as a medium-
level threat. A study of the fingerprintability of browsers found that WebRTC
exposes identical device IDs of hardware components like webcam, microphone
and speaker across multiple browsers when visiting a particular website [10].
While the aforementioned studies mostly focused on WebRTC IP leakage for user
fingerprinting, Reiter and Marsalek [11] used WebRTC for conducting a couple
of attacks like DDoS against a remote peer in the network. They also proposed
the possibility of targeting internal nodes within a network by using a Javascript
network scanner, named jslanscanner.8 However, our investigation reveals that
this scanner is bound to identify routers within a network by probing their well-
known default IP addresses and under the assumption that some expected image
files are available on these routers. Our experiments showed that this scanner
produces a very large number of false positives due to its predefined threshold
(i.e., 15 s) for open ports, which varies in miscellaneous circumstances discussed
earlier in Sect. 3.

To sum up, previous work mainly mentioned WebRTC information leaks,
but their experiments were mostly limited to the choice of VPNs and browsers.
Moreover, scanner tools like BeEF that use WebRTC suffer from a large number
of false positives. We conjecture that this is due to their failure in adapting the
appropriate timing with respect to a target network.

7 Conclusion

We focus on exploiting the WebRTC IP leakage issue for collecting critical infor-
mation about a private network. In particular, we propose a web-based scanner
that leverages this IP leakage to infiltrate a private network, and to discover
active nodes and their open ports. The proposed scanner adopts a simple clus-
tering algorithm to bypass the restrictions of previous web-based scanners that
need to decide about the network latency a priory.

We compare our approach with state-of-the-art network scanners. Regard-
less of 59 ports that are banned from being scanned in Javascript, our web-based
scanner performs only slightly slower than the system-based scanners. We briefly
discuss several security implications of this issue, and introduce a browser exten-
sion that we developed for Chrome and Firefox for informing the user about such
dubious activities in these browsers.

Acknowledgments. We appreciate the valuable feedback from Prof. Oscar Nier-
strasz, as well as all parties who kindly allowed us to carry out several tests in
their private networks. We gratefully acknowledge the funding of the Swiss National
Science Foundations for the project “Agile Software Analysis” (SNF project No.
200020 162352, Jan 1, 2016–Dec. 30, 2018) (http://p3.snf.ch/Project-162352). We also
thank CHOOSE, the Swiss Group for Original and Outside-the-box Software Engineer-
ing of the Swiss Informatics Society, for its financial contribution to the presentation
of this paper.

8 https://code.google.com/archive/p/jslanscanner/.

http://p3.snf.ch/Project-162352
https://code.google.com/archive/p/jslanscanner/

One Leak Is Enough to Expose Them All 75

Appendix

Table 8. The 59 ports that were banned for scanning via Javascript

Port Assignment description Port Assignment description

0 Reserved 139 NETBIOS Session Service

1 TCP Port Service Multiplexer 143 Internet Message Access Protocol

7 Echo 179 Border Gateway Protocol - BGP

9 Discard 389 Lightweight Directory Access Protocol

11 Active Users 465 URL Rendezvous Directory for SSM -

Message Submission over TLS protocol

13 Daytime 512 remote process execution; authentication

performed using passwords and UNIX login

names

15 Unassigned 513 automatic authentication performed based

on priviledged port numbers

17 Quote of the Day 514 cmd like exec, but automatic authentication

is performed as for login server

19 Character Generator 515 spooler

20 File Transfer [Default Data] 526 newdate

21 File Transfer Protocol [Control] 530 rpc

22 The Secure Shell (SSH) Protocol 531 chat

23 Telnet 532 readnews

25 Simple Mail Transfer 540 uucpd

37 Time 556 rfs server

42 Host Name Server 563 nntp protocol over TLS/SSL (was snntp)

43 Who Is 587 Message Submission

53 Domain Name Server 601 Reliable Syslog Service

77 any private RJE service 636 ldap protocol over TLS/SSL (was sldap)

79 Finger 993 IMAP over TLS protocol

87 any private terminal link 995 POP3 over TLS protocol

95 SUPDUP 2049 Network File System - Sun Microsystems

101 NIC Host Name Server 4045 Network Paging Protocol

102 ISO-TSAP Class 0 6000 X Window System

103 Genesis Point-to-Point Trans Net

104 ACRNEMA Digital Imag. & Comm. 300

109 Post Office Protocol - Version 2

110 Post Office Protocol - Version 3

111 SUN Remote Procedure Call

113 Authentication Service

115 Simple File Transfer Protocol

117 UUCP Path Service

119 Network News Transfer Protocol

123 Network Time Protocol

135 DCE endpoint resolution

76 M. Hazhirpasand and M. Ghafari

References

1. Zhang, M., Lu, S., Xu, B.: An anomaly detection method based on multi-models
to detect web attacks. In: Computational Intelligence and Design, pp. 404–409,
December 2017

2. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: new data-only attacks and defenses.
In: Proceedings - 2nd IEEE European Symposium on Security and Privacy, EuroS
and P 2017, pp. 366–381 (2017)

3. Luangmaneerote, S., Zaluska, E., Carr, L.: Inhibiting browser fingerprinting and
tracking. In: Proceedings - 3rd IEEE International Conference on Big Data Secu-
rity on Cloud, BigDataSecurity 2017, 3rd IEEE International Conference on High
Performance and Smart Computing, HPSC 2017 and 2nd IEEE International Con-
ference on Intelligent Data and Securit, pp. 63–68 (2017)

4. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting Canvas in HTML5. In: Web
2.0 Security & Privacy (W2SP), vol. 20, pp. 1–12 (2012)

5. Yoon, S., Jung, J., Kim, H.: Attacks on web browsers with HTML5. In: 2015
10th International Conference for Internet Technology and Secured Transactions,
ICITST 2015, pp. 193–197 (2016)

6. Al-Fannah, N.M.: One leak will sink a ship: WebRTC IP address leaks, pp. 1–12.
arXiv preprint arXiv:1709.05395 (2017)

7. Cox, J.H., Clark, R., Owen, H.: Leveraging SDN and WebRTC for rogue access
point security. IEEE Trans. Netw. Serv. Manag. 14(3), 756–770 (2017)

8. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authen-
tication. In: Proceedings of the 32nd Annual Conference on Computer Security
Applications - ACSAC 2016, pp. 289–301 (2016)

9. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS 2016, no. 1, pp. 1388–1401 (2016)

10. Al-Fannah, N.M., Li, W.: Not all browsers are created equal: comparing web
browser fingerprintability. In: Obana, S., Chida, K. (eds.) IWSEC 2017. LNCS,
vol. 10418, pp. 105–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-64200-0 7

11. Reiter, A., Marsalek, A.: WebRTC: your privacy is at risk. In: Proceedings of the
Symposium on Applied Computing - SAC 2017, pp. 664–669 (2017, in Press)

http://arxiv.org/abs/1709.05395
https://doi.org/10.1007/978-3-319-64200-0_7
https://doi.org/10.1007/978-3-319-64200-0_7

PrivacyMeter: Designing and Developing
a Privacy-Preserving Browser Extension

Oleksii Starov(B) and Nick Nikiforakis

Stony Brook University, Stony Brook,
NY 11794, USA

{ostarov,nick}@cs.stonybrook.edu

Abstract. Anti-tracking browser extensions are popular among web
users since they provide them with the ability to limit the number of
trackers who get to learn about their browsing habits. These extensions
however are limited in that they ignore other privacy signals, such as, the
presence of a privacy policy, use of HTTPS, or presence of insecure web
forms that can leak PII. To effectively inform users about the privacy
consequences of visiting particular websites, we design, implement, and
evaluate PrivacyMeter, a browser extension that, on-the-fly, computes
a relative privacy score for any website that a user is visiting. This score is
computed based on each website’s privacy practices and how these com-
pare to the privacy practices of other pre-analyzed websites. We report
on the development of PrivacyMeter with respect to the requirements
for coverage of privacy practices, accuracy of measurement, and low per-
formance overhead. We show how relative privacy scores help in inter-
preting results as different categories of websites have different standards
across the monitored privacy parameters. Finally, we discuss the power of
crowdsourcing for privacy research, and the existing challenges of prop-
erly incorporating crowdsourcing in a way that protects user anonymity
while allowing the service to defend against malicious clients.

1 Introduction

The modern web is home to many online services that request and handle sen-
sitive private information from their users. For example, most of the popular
websites require personal information to create an account, including one’s email
address, name, and date of birth, or even ask users to provide similar informa-
tion in order to just submit a contact form. Unfortunately, this sensitive data is
not always collected and handled in the most confidential and secure way possi-
ble. Previous research has shown how websites may leak user information, either
due to poor programming practices [6,13,18,26], or through the intentional out-
sourcing of functionality to third-party services [6,26]. One of the most intrusive

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS Artifact Evaluation Committee.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 77–95, 2018.
https://doi.org/10.1007/978-3-319-94496-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_6&domain=pdf

78 O. Starov and N. Nikiforakis

scenarios is the leakage of a user’s personally identifiable information (PII) to
web trackers, which can then match it with existing pseudonymous user iden-
tifiers (such as cookies and browser/device fingerprints) and thus deanonymize
the user across browsing sessions and websites.

Despite the magnitude of this problem, users today have few, if any, options,
for protecting their PII against accidental and intentional leakage. Generic anti-
tracking extensions, such as Ghostery [9], Disconnect [8], and uBlock Origin [29]
or other ad blockers [4,5,28], operate solely using manually-curated blacklists
which, due to their reactive nature, are destined to be always out of date [19].
Moreover, these anti-tracking extensions only account for domains belonging to
tracking companies and thus cannot account for non-tracking-related third-party
domains which happen to receive a user’s PII due to the poor programming
practices of the first-party website with which the user interacts. In addition,
current anti-tracking extensions are rather myopic in the sense that they only
care about the third-party trackers available on a webpage, but ignore other
signals (such as the presence of a privacy policy, or the use of HTTPS) which
are directly correlated with the confidentiality of user data. Finally, next to the
lack of technology, websites are becoming more and more hostile towards any
kind of client-side tracking-blocking tools forcing users to whitelist them before
they can get access to their content [11,12,20], taking away what little control
users had regained.

As such, the sole focus on blocking trackers may not be sufficient to pre-
serve the privacy of web users, and more attention should be given to improve
their overall awareness about the privacy-related consequences of visiting any
given website. For example, in addition to a list of detected trackers, a privacy-
preserving browser extension can convey to non-technical users, which of those
trackers pose a serious threat to their privacy—and therefore must be blocked—
and which are reliable and can be allowed. Similarly, such a tool should take
into account and evaluate as many additional privacy practices on a website as
possible, in order to provide user with a complete picture of the expected privacy
guarantees.

To effectively inform users about the privacy consequences of visiting par-
ticular websites, we propose, design, implement, and evaluate PrivacyMeter,
a browser extension that, on-the-fly, computes a relative privacy score for any
website that a user is visiting. This score is computed based on each website’s
privacy practices (e.g., reputation of trackers, amount of third-party content or
presence of insecure “leaky” web forms) and how these compare to the privacy
practices of other pre-analyzed websites. In addition to the overall risk score,
PrivacyMeter also provides users with contextual information about the dis-
covered privacy issues (e.g., “many aggressive trackers”, or “many inputs are
submitted to third parties”), and what actions are advised. This is a clear depar-
ture from virtually all other available browser extensions which merely inform
the user about the total number of trackers on any given page and assume that
the user is somehow capable of using this information in a constructive manner.

In this paper we provide details on the design and development of
PrivacyMeter, including the covered privacy practices and encountered imple-

PrivacyMeter 79

mentation challenges, as well as additional envisioned features, which may be
implemented in later versions. Development of such a privacy-preserving browser
extension is not trivial as each privacy-related feature must be reliably and accu-
rately retrieved, the overall privacy scores calculated in the same fashion over all
of the websites in order to guarantee their comparability, and the results must
be presented on time with low performance overhead. At the same time, there is
another level of challenges, which lie in the research and crowdsourcing nature
of the tool.

The key contributions of this paper are as follows:

– We describe our case study of implementing a complex privacy-preserving
browser extension, PrivacyMeter, which provides a real-time privacy quan-
tification for the web, and has strong requirements for coverage, accuracy, and
performance.

– We identify and group important privacy features of websites in order to
design an informative user interface, which combines comparable privacy val-
ues with immediate unconditional warnings.

– We show how relative privacy score helps in improving the privacy awareness
as different categories of websites have different privacy standards across the
monitored privacy parameters.

– We measure the performance overhead from PrivacyMeter and compare it
to Ghostery, a state-of-the-art commercial anti-tracking extension.

– We describe the benefits of crowdsourcing as a necessary feature both for
the quality of PrivacyMeter, as well as for the further research benefits.
At the same time, we discuss the challenges in adopting crowdsourcing in
any privacy-preserving tool due to: (a) higher anonymity and transparency
requirements when collecting the data; (b) potential of a polluted data from
malicious clients.

2 Design and Interface

PrivacyMeter is developed as a browser extension which, upon installation,
enhances each tab of a web browser with new privacy-related information. When-
ever a user visits a new website, PrivacyMeter computes a numerical privacy
score for that website, which is an overall count of detected privacy issues, and
warns the user about privacy risks by changing the color of its icon from green to
yellow or red depending on the severity of the identified risks. Each issue can be
a definite privacy risk (e.g., if a web page does not use HTTPS or does not have
a privacy policy), or a potential relative privacy risk (e.g., if a web page has 17%
more third-party trackers than average for similar websites). PrivacyMeter
augments, in a non-intrusive fashion, the UI of the browser to add the computed
number of privacy issues to its icon in the right top corner of the URL bar, and
gives users the ability to find the rationale behind this score as well as advice on
how to proceed by clicking it.

Figure 1a shows an example of the extension’s popup with details on the dis-
covered privacy-related issues at the money.cnn.com page. The interface consists

http://money.cnn.com

80 O. Starov and N. Nikiforakis

Fig. 1. UI and information provided by PrivacyMeter on the example of visiting
money.cnn.com page: (a) comparing privacy features to any other websites; (b) com-
paring privacy features to other news websites. (Color figure online)

of the two main parts: (1) box plots to show the relative privacy risks; (2) text
warnings with definite privacy risks (or with additional details about relative
risks). In both cases, we use the aforementioned three-color scheme to highlight
the severity of the threat, where green is used as “safe”, yellow as “potentially
dangerous”, and red as “dangerous” level. For instance, if the web page contains
too many trackers (in comparison with other similar sites), the corresponding
box plot will be colored with yellow or red. Similarly, if the page contains any
number of low-reputation trackers, the corresponding message will be highlighted
with red. PrivacyMeter also gives users the ability to get additional details,
whether by hovering the mouse over the particular box plot, or by clicking on
each text warning.

The main functionality of PrivacyMeter is to provide users with under-
standable privacy scores of the websites that they visit. To be usable, these scores
must reflect the privacy practices of websites in such a way, that users intuitively

http://money.cnn.com

PrivacyMeter 81

understand and agree with them. As such, in order to evaluate the severity of a
particular relative privacy issue we compare the value for the current web page
to the mean value over other websites: if it is greater than the mean plus one
standard deviation, we mark it as “potentially dangerous,” and if it is greater
than the mean plus two standard deviations, we mark it as a “dangerous” issue.
The overall privacy score presented to a user is the number of all the privacy
issues found on the page, which is colored with red if at least one of the issues
falls into the “dangerous” category.

Despite our best efforts to score privacy issues in an objective way, we antic-
ipate that a fraction of advanced users may not entirely agree with the default
scoring thresholds or with the set of privacy features that comprise our privacy
score. To maintain the usability of our tool, we allow users to remove some fac-
tors from the score calculation on the extension’s setting page to better reflect
their privacy preferences. Similarly, PrivacyMeter provides an option to com-
pare relative factors to median and the third quartile of a distribution instead of
the mean-based comparison, as well as to change the base threat level (whether
to relax it by counting considerable risks as safe, or to consider any number of
trackers or leaky web forms as dangerous).

The text warnings assist users with the decision whether to limit (or stop)
the browsing of a web page. For instance, when a leaky form is discovered, the
corresponding message advises user to refrain from trusting the website with
their PII. We decided to use box plots in addition to the text warnings with
the assumption that visual information is easier and quicker to understand.
Particularly, we chose box plots for the type of plot as those clearly show how a
single data point compares to the overall distribution of values. We argue that
with a little training, even non-technical users are able to read such visualizations
faster then text explanations, and develop an intuition about relative privacy
risks.

As an additional functionality, PrivacyMeter’s interface provides a control
to select a category for the current website. In this case, all the relative privacy
risks will be compared to other known web pages of only the selected category.
For instance, Fig. 1b shows how the picture changes for money.cnn.com if we
consider only news websites. Given that news sites tend to have more trackers
than other types of websites (we quantify this in Sect. 3), the 43 trackers of
money.cnn.com are not considered an outlier and therefore PrivacyMeter’s
warnings regarding the number of trackers disappear. We argue that this ability
to compare with other similar websites helps web users to translate raw numbers
into the privacy expectations, i.e., to immediately gauge whether their website
of interest stands out in a positive (i.e. more private than average) or negative
(i.e. less private than average) direction.

Monitored Privacy Practices

To provide a representative privacy score, PrivacyMeter must account for
different privacy practices, web security vulnerabilities, and other factors on a
website. As we explained above, factors which are potential privacy risks can be

http://money.cnn.com
http://money.cnn.com

82 O. Starov and N. Nikiforakis

represented by comparative metrics, whereas factors which are definite risks are
usually represented using binary values. PrivacyMeter deploys mechanisms
to test a web page against the following four main groups of privacy risks (each
group has a correspond box plot on the interface in Fig. 1):

– Third-party trackers. To measure the potential privacy risk due to third-
party trackers, we first calculate the comparative metric on how the number
of trackers differs from the average number of trackers for similar websites.
The result is visualized on the corresponding box plot. Second, we answer
additional questions that may also correlate with the potential privacy risks,
such as what is the number of trackers served from international servers.
Similarly, the severity of the warning message depends on how this quantity
deviates from the average but it is, by default, marked as “potentially dan-
gerous” even if only one international tracker is present. Finally, an example
of a definite privacy risk marked as “dangerous” is the presence of trackers
with low reputation (according to the Web-of-Trust score [30]).

– Fingerprinting activity. Fingerprinting activity may correlate with intru-
sive tracking, either from an advanced third-party tracker or the first-party
website. The privacy threat lies in the fact that fingerprinting is immune to
the deletion of stateful identifiers (such as cookies) and thus harder to avoid.
The main metric we calculate is a relative number of unique called APIs (as
utilized by Lerner et al. [15]), which are known to be used for fingerprinting
browsers and devices. The corresponding box plot visualizes the comparison
with the sample distribution. In addition, we show a separate warning for
the cumulative number of API calls, which may correlate with continuous
fingerprinting attempts.

– Third-party content. If a web page is populated with third-party content,
a user may be easily tricked into interacting and sharing sensitive information
with parties other than the ones expected. For instance, a website may load a
large number of iframes with third-party ads completely overlaying the page,
or it may incorporate a third-party form widget. PrivacyMeter answers the
question on how the number of third-party widgets differs from the average for
similar websites. In future versions, we can also warn about signs of visually
overlapping iframes.

– Leaky web forms. PrivacyMeter has ability to identify web forms that
may leak entered information, such as forms implemented with HTTP GET
method and thus exposing the entered values in URL and HTTP Referer head-
ers, forms submitting without HTTPS or forms directly submitting to a third-
party domain. Next to warning messages about the presence of such forms, we
provide a comparison on the number of leaky forms in the corresponding box
plot. The rationale for that lies in the fact that some categories of websites
may include numerous unsafe search forms, or other forms that do not neces-
sary request PII or other sensitive private information. In our current version
of PrivacyMeter, we assign a dangerous level to a leaky web form if it con-
tains a large number of visible inputs (such as the ones used during account
creation), or one or more sensitive fields (such as a password field).

PrivacyMeter 83

In addition, PrivacyMeter collects features that can be used as “proxies”
of the level of privacy and security awareness of the website owners. For example,
PrivacyMeter checks whether a P3P privacy policy is available to the users.
Even though we are fully aware that such a policy is not a guarantee of proper
privacy measures, we argue that its absence is a strong negative indicator. We
also detect signs of mixed HTTP/HTTPS inclusions, and out-of-date versions of
web servers, which quantifies the extent to which website administrators update
their software. The overall privacy score is calculated as a sum of issues found
among these parameters, and users are also notified about each separate issue
as shown in Fig. 1. Note that PrivacyMeter is unique in that it goes above
and beyond the measuring of standard privacy practices, by also measuring
security issues which could be abused to compromise the confidentiality of a
user’s private information (such as a web server getting compromised and the
user’s data exfiltrated, because of the use of out-of-date software with known
exploitable vulnerabilities).

Architectural Challenges

In the previous section, we provided a list of factors that PrivacyMeter uses to
calculate the privacy score of a website. The extension part of PrivacyMeter
is responsible for retrieving them using a combination of static and dynamic
techniques, as those are allowed by modern browser-extension frameworks. Even
though some of these factors can be straightforwardly detected, e.g., version of a
web server or mixed HTTP/HTTPS requests, others could pose technical chal-
lenges. For instance, a privacy policy may be present in a wide range of locations
(making it hard to automatically locate) and trackers may use stealthy tracking
techniques to avoid being easily detected. As such, the current architecture of
PrivacyMeter’s extension, shown on Fig. 2a, already includes several modules
running in the contexts of extension’s background script, content scripts, as well
as inside the web page context. In order to identify privacy risks, each module
runs a set of tests on every newly visited web page, and analyzes every new web
request.

Given the goal of building a user-friendly and reliable privacy-enhancing
system, we can distinguish the following three challenges in the realization of
the client-side logic.

Coverage of Privacy Factors. PrivacyMeter incorporates open source
code from Adblock Plus to implement our tracker filter, and uses an up-to-date
EasyPrivacy list to identify trackers. As we mentioned earlier, such blacklists,
by definition, cannot guarantee detection of all trackers. Thus, PrivacyMeter
deploys another module to detect indirect signs of intrusive tracking, namely
fingerprinting activity. On Fig. 2a, the FAPI monitor reports to the main score
engine all the calls to fingerprinting-related APIs. In order to listen API calls
from a web page, the module injects proxy code to the context of each visited web
page, which intercepts more than 60 APIs of interest (e.g., navigator.plugins to
attempt enumerating plugins or HTMLElement.getBoundingClientRect involved

84 O. Starov and N. Nikiforakis

Fig. 2. PrivacyMeter’s architecture: (a) client-side modules inside browser extension;
(b) server-side support with the central database and automatic crawler.

in font enumeration via JavaScript [21]). For a complete list of APIs see
AppendixB.

Comparability of the Values. PrivacyMeter compares many parameters
among different websites in order to calculate a relative privacy scores. To make
this comparison representative and fair, the tests must be performed in the
same fashion across all the web pages. For instance, one challenge is to unify the
duration of measurements as users spend different time on different websites.
We can imagine a situation where a new tracking script is dynamically loaded
on the page after a one-minute delay, or after a particular user action. While
this does not affect the client-side functionality of the extension as the privacy
score shown to the user is dynamically updated, on the back end we take into
account that one URL may naturally have different measurements, and we want
to record the duration of each test. Another affected factor is the fingerprinting
activity, though in this case later API calls may be a legitimate result of the
user’s actions on a page, and should not be attributed to the tracker’s script. To
allow the comparison of fingerprinting APIs we decided to record fingerprinting
activity only during the first five seconds on the page, assuming that the most
tracking activity happens immediately after loading tracking scripts. Naturally
this threshold is configurable and can be changed to fit different use cases.

Performance Side-Effects. An important requirement of PrivacyMeter is
that of low performance overhead as this directly affects the usability of the tool.
As such, we use the state-of-the-art code by Adblock Plus to detect tracking
requests as fast as possible, and optimize each custom monitoring module to
perform less comparisons and function calls when analyzing new requests, web
forms, and iframes. Moreover, we deploy the following strategies:

– Lazy-loading and batch processing. When a web page is loading, new
trackers, web forms, iframes and API calls appear one by one. In real-time,
each new item has to be processed by the corresponding PrivacyMeter’s

PrivacyMeter 85

module, and the overall privacy score has to be updated. A naive approach
would be to process each item separately and immediately request a redrawing
of the privacy score. Practically, this results in high performance overhead as
numerous messages are generated passing between different contexts of the
browser extension. Moreover, information such as a tracker’s Web-of-Trust
score is requested from the back-end via HTTP requests, and it can therefore
be expensive to issue a separate request for each tracker. Similarly, a call
to the function that provides geolocation based on a tracker’s IP address is
also time-consuming. As such, we decided to use batch-processing after lazy
loading of new items. Technically, we launch a periodical update event which,
once every 0.5 s, surveys all the modules about newly gathered information,
and re-calculates the privacy issues and score. This helps to decouple the
extension’s UI from the score calculations, and keep it responsive to other
user actions.

– Client-side and server-side caching. Even with batch processing, we issue
at least one bulk request to the back-end per visited URL in order get addi-
tional information like Web-of-Trust scores for encountered trackers. This
may be expensive in terms of bandwidth, as well as unnecessary as reputa-
tion of trackers may not change that often. To reduce the number of requests
to the back-end, we keep an internal client-side cache for tracker information,
empirically setting each record’s TTL to one week. Similarly, we cache the
ground truth with statistics about relative privacy parameters, received from
the centralized database, as well as EasyPrivacy lists for two days. Finally,
we keep a server-side cache to avoid overloading APIs that are external to
our infrastructure, such as those provided by the Web-of-Trust [30].

Invisibility of the Extension. Finally, we do not want trackers or websites to
find out the presence of PrivacyMeter in the user’s browser. Previous research
has shown that browser extensions may be discovered through a variety of meth-
ods [23,24], including detection via their DOM side-effects [25]. PrivacyMeter
has to modify a page’s DOM in order to intercept the fingerprinting API calls.
Specifically, PrivacyMeter injects a script into page before any other script
runs, which overrides all the fingerprinting APIs. To hide this DOM modifi-
cation, we immediately remove the script tag after all APIs are patched and
mask possible signs of the overridden functions, e.g., by ensuring that when the
toString method is called, our extension returns the appropriate output as if
the method was never overridden.

To calculate a relative privacy score, PrivacyMeter must have information
about the privacy practices of popular websites on the web. For example, in order
to be able to provide a meaningful relative privacy score of a new sports page,
PrivacyMeter needs data about the privacy practices of other popular sports
pages. Thus our architecture includes a central database with cached privacy
statistics as presented on Fig. 2b. To ensure that our collected data remains up-
to-date, we deploy a separate crawler, which runs continuously and analyzes a
large fraction of popular websites. Given the flexibility of our design, a crawler is
implemented as an automated browser with the same PrivacyMeter extension

86 O. Starov and N. Nikiforakis

installed, which is instructed to visit a range of websites and report the calculated
privacy statistics so that they can be included in our centralized database.

3 PrivacyMeter’s Evaluation

In this section, we report on the PrivacyMeter’s evaluation as a privacy pre-
serving browser extension. First, we show the benefits of a relative privacy score,
which is one of the key functionalities of PrivacyMeter, comparing privacy
practices across different website categories. Second, we test the performance
overhead added by the extension to the daily browsing of users.

Relative Privacy Score. In this work, we argue that the ability to compare
privacy practices of a website to privacy practices of other similar websites is a
necessary function of a modern privacy preserving tool. First of all, it gives users
more fine-grained options in order to protect their privacy. For example, with
traditional blockers a non-technical user has only two options: either to block all
the trackers, or to allow them all. In this case, when a content publisher deploys
an anti-blocker solution [11,12,20], the user ends up with the choice whether
to allow all tracking or leave the website. While savvy users may be able to
find a third choice (e.g. whitelist enough of the trackers to be able to utilize
the website), this approach is out-of-reach for the majority of web users. With
PrivacyMeter’s relative privacy comparison, we equip all users with sufficient
information to assist them in making a decision to keep on trusting the website
or seek a different website of the same category.

Therefore, the next logical question that arises is whether different
groups of websites and web pages have different privacy practices, making
PrivacyMeter’s relative comparison between websites a useful and desirable
feature. To answer this question, we compare the four main relative privacy fea-
tures, currently supported by the PrivacyMeter extension, across Alexa’s 17
categories of websites, such as, “Sports” and “News.” By crawling Alexa’s top
500 websites per each category we populate PrivacyMeter’s database with a
total of 6,580 distinct URLs on the 6,049 TLD+1 domains with known cate-
gories. Figure 3 compares the resulting box plots on the number of trackers and
fingerprinting APIs.

One can notice that the distributions of the number of trackers and finger-
printing APIs indeed vary across website categories. For example, web pages
belonging to the adult category tend to have almost no trackers, and hence
lower fingerprinting activity, presumably due to the sensitivity of the service
and with the goal to earn the trust of the users. Similarly, websites for kids and
teens also deploy less tracking as a response to stricter privacy regulations. Con-
trastingly, news and sports pages (followed by shopping and recreation pages)
tend to include more trackers, and tend to be involved more in fingerprint their
users’ browsers. At the same time, web pages belonging to the “Computers”
category appear to not be utilized a large number of third-party trackers. This
can be partially explained by the fact that sufficiently large companies, such

PrivacyMeter 87

0

50

100
Tr

ac
ke

rs

 0

 20

 40

 O
ve

ral
l

Adu
lt

Arts

Bus
ine

ss

Com
pu

ter
s

Gam
es

Hea
lth

Hom
e

Kids
/Te

en
s

New
s

Rec
rea

tio
n

Refe
ren

ce

Reg
ion

al

Scie
nc

e

Sho
pp

ing

Soc
iet

y

Spo
rts

Category

Fi
ng

er
pr

in
tin

g
AP

Is

Fig. 3. Box plots for number of trackers and number of fingerprinting API calls per
each of 17 Alexa’s website categories, as well as the overall distribution.

as, Apple, Google, and Facebook, tend to utilize their own, in-house, tracking
solution rather than rely on third parties.

In terms of third-party iframes and leaky web forms, only some distribution
parameters, such as median, are different (see Fig. 5 in AppendixA). For exam-
ple, news and sports pages clearly have more third-party iframes than other web
pages. This could be because these types of pages rely on advertising for mone-
tization and therefore are likely to be utilizing a large number of distinct iframes
where ads are rendered. It is worth noting that PrivacyMeter will count each
loaded third-party iframe, even if it was substituted with another one. Next to
these general trends, we can spot categories with strongly-pronounced outliers
especially on the “leaky” forms box plot. For example, news websites have many
outliers with websites containing up to 200 leaky web forms (our crawler counts
each instance of a leaky form since the more present a form is on a website, the
more likely a user is to interact with it).

Overall, our results support the premise that incorporating similar box plots
to the PrivacyMeter’s interface and comparing privacy scores of a particular
web page to them, can reveal whether the current website is an outlier or not,
in terms of other sites of the same category.

Performance Overhead. In order to test the performance of PrivacyMeter,
we decided to compare it to Ghostery, a state-of-the-art commercial blocker
which, according to prior work [19], detects more trackers than competing exten-

88 O. Starov and N. Nikiforakis

(a)

(b)

0

10

20

30

0 5 10 15
Page Load, sec.

W

eb
si

te
s

Extension
Ghostery

PrivacyMeter

0

10

20

30

1 0 1 2 3 4

DOM Load, sec.

W

eb
si

te
s

Extension

Ghostery

PrivacyMeter

Fig. 4. Comparison of the performance overhead by PrivacyMeter and Ghostery
extensions based on top 50 websites: (a) overall page load overhead; (b) delay to the
DOMContentLoaded event. (Color figure online)

sions. Ghostery, like PrivacyMeter, does not, by default, block trackers but
instead presents the list of detected trackers, which makes the performance com-
parison appropriate. We visited the top 50 websites according to Alexa’s rank-
ing with and without each extension. During each visit we recorded times of the
DOMContentLoaded and Load page events. Each test was repeated 10 times with
caching disabled in order to retrieve the average timing. For the measurements,
we utilized a laptop with 8 GB of RAM, Intel’s i3 CPU, Ubuntu 14.04 and the
latest version of Google Chrome. We present the performance overhead as the
time difference between the average page load time with an extension present
and absent.

Even with the additional modules of PrivacyMeter (described in Sect. 2),
our extension introduces 0.138 s of delay to the DOM loading, and 1.217 to the
overall page loading, while Ghostery adds 1.412 and 2.546 s correspondingly.
Figure 4 compares the distribution of delays introduced by each extension for
both of the load events. Note that the negative values mean that, for those
particular websites, the overhead from PrivacyMeter is less than the loading
variance due to network conditions and system load.

PrivacyMeter 89

According to Fig. 4a and b, PrivacyMeter is faster for most sites. At the
same time, PrivacyMeter slows down only two particular websites more than
Ghostery, in terms of the page load event. Namely, those are www.yahoo.com
(12.7 s) and www.cnn.com (18.3 s). If in the first case we encountered two long
delays out of 10 attempts, which increased the average of our measurements
(the delays were likely due to increased size of remote content and previously
unseen trackers). The second case can be clearly explained by the large number
of trackers, fingerprinting calls, and third-party iframes loaded. Note that for the
similarly resource-heavy www.nytimes.com, both extensions add more than 8 s of
delay. It is worth pointing out that a 10 s delay does not mean that the user needs
to wait for 10 s before being able to consume the content of the page. Browsers
start rendering content immediately therefore users can start interacting with a
website much earlier than the firing of the DOMContentLoaded and Load page
events.

To quantify the frequency with which PrivacyMeter queries our back-end
for the information about trackers, we calculated how many unique tracking
domains a user may encounter while visiting 10, 100 and 1000 different URLs
in a row. For the simulation we analyzed the same 6,580 URLs of Alexa’s top
websites across all the categories. Table 1 presents the resulting statistics. If a
user visits 100 different websites during a week (the life time of the client-side
cache), PrivacyMeter will make approximately 65 requests for the additional
information about newly encountered trackers. If a user visits 1000 websites,
PrivacyMeter will initiate at most 495 batch requests.

4 Crowdsourcing

An additional component of PrivacyMeter’s architecture is the ability to col-
lect privacy scores and privacy statistics of web pages that users browse. If users
opt-in to our crowdsourcing mechanism, PrivacyMeter will, after generating a
page’s privacy score, communicate that score and its individual parameters back
to our central server. This crowdsourcing mechanism will enrich our database
with entries for websites that the active users of PrivacyMeter find relevant,
and will help the crawler to keep available statistics up-to-date. Consequently,
the accuracy of the privacy score will be continuously adjusted to provide proper,
up-to-date values.

To protect the anonymity of users who opt-in to crowdsourcing, Privacy-
Meter does not collect any PII. Instead, for users who have opted-in, the exten-
sion reports to its backend the following privacy practices per web page: list of
present trackers (their URLs), fingerprinting APIs called (and their counts), list
of third-party iframes, and the list of “leaky” web forms. Our extension does not
utilize any stateful/stateless identifiers that would allow us to reconstruct a user’s
session. Finally, in order to be fully transparent, the code of PrivacyMeter is
made available as open source and the extension itself does not utilize any obfus-
cated JavaScript code.

www.yahoo.com
www.cnn.com
www.nytimes.com

90 O. Starov and N. Nikiforakis

Table 1. Simulated numbers of encountered trackers while browsing popular websites

Websites # Trackers # New encounters

Min Avg Max Min Avg Max

10 4 65 188 3 8 10

100 154 271 365 48 65 83

1000 824 925 1043 397 445 495

Next to the improving of the tool itself, the ability to collect crowdsourced
statistics about the privacy practices of websites will help to drive future pri-
vacy research that will benefit end users. For instance, the collected data can
allow us to understand how privacy risks evolve and inform policies and future
technical countermeasures. Even with our currently small user base (17 users at
the time of this writing, most of whom are researchers participating in the Data
Transparency Lab initiative [7]), we already see the benefits of crowdsourcing,
which gives us ability to discover more trackers when considering other URLs of
the same website in addition to its front page. Namely, these PrivacyMeter
users contributed privacy reports for an additional 7K URLs (belonging to both
popular and less popular websites) which were not part of our crawling efforts
on which 1,015 previously unseen tracking domains were detected.

5 Future Work

In terms of future work, our next step is to conduct user studies (using either
online platforms such as Amazon Mechanical Turk or recruiting students from
our institute) to quantify how much more helpful users find the output of
PrivacyMeter, compared to traditional output of existing browser extensions,
such as, Ghostery. In this paper we decided to focus on the engineering and
implementation challenges of building a privacy-preserving browser extension
which are separate from followup user studies.

Next to user studies, we plan on adding detection capabilities for identi-
fying malicious web clients. As with any system supported by user-provided
data, malicious users can attempt to poison PrivacyMeter’s central database
by submitting false reports. To the best of our knowledge no privacy browser
extension deploys a client-side protection against that. We plan to mitigate this
kind of abuse through a combination of client-side and server-side techniques
including using proof-of-work algorithms [10] at the client side (to slow down
automated submissions) and IP-address-based majority voting at the server side
(to filter-out reports containing outliers).

PrivacyMeter 91

6 Related Work

The modern market of privacy-preserving browser extensions is mainly repre-
sented by anti-tracking blockers [4,5,8,9,22,28,29]. While some of them attempt
to provide additional information like categories of trackers, such as advertise-
ment or analytics [8,9], the majority are general blockers, which just show users
the list of discovered tracking domains. Similarly, to the best of our knowledge,
PrivacyMeter is the first browser extension to evaluate a range of privacy
practices of visited web pages in a single solution, as well as to calculate a rela-
tive privacy score, comparing each site with other similar sites.

Leon et al. in 2011 evaluated the usability of nine blocking tools including
Adblock Plus and Ghostery [14]. The study reports many issues revolving around
the configuration and usage of these tools. Malandrino et al. also point out issues
with user awareness and effectiveness of blocking tools [17]. As such, other pri-
vacy preserving extensions attempt to deceive trackers, e.g. AdNausem [1] auto-
matically clicks on all blocked ads in an effort to confuse trackers about a user’s
true interests. Similarly, TrackMeNot [3] simulates dummy search queries, and
BrowsingFog [27] obfuscates browsing history against extension-level trackers.
Chameleon [2] attempts to unify fingerprinting features of the Chrome browser
(similar to the Tor Browser), in order to break fingerprintability. Despite their
benefits, none of the aforementioned tools provide feedback to users about the
privacy practices of each visited website.

The work that is the closest to ours is the PrivacyScore website by Maass et
al. [16], which deploys automated scanning of websites and allows its users to get
security and privacy features for websites of their interest. A major difference
is the vantage point of these two tools since, in our work, PrivacyMeter is a
browser extension running on the client-side and therefore having access to all of
the content that a server-side crawler cannot access (such as content behind reg-
istration walls). Moreover, PrivacyMeter’s calculates a privacy score dynam-
ically which means that the score that the user sees is always representative of
the current state of the website, and is not a previous score from the last time
that the site was crawled.

7 Conclusion

As companies seek to collect more and more data about our online activity, it
is imperative that users develop an understanding of privacy issues on the web,
rewarding responsible websites with their visits while shunning away from web-
sites employing intrusive privacy practices. In this paper, we described the design
and implementation of PrivacyMeter, a browser extension (with a server back-
end) which aims to provide users with actionable information about a website’s
privacy-related practices and how it compares to other sites of the same category.
We demonstrated that PrivacyMeter’s performance overhead is less than that

92 O. Starov and N. Nikiforakis

of popular alternatives while offering more functionality. We have open-sourced
PrivacyMeter and we hope that, in addition to helping users online, our work
can be used as a case-study for building privacy-preserving tools.

Availability: The demo of the PrivacyMeter extension is available at Chrome
Store: http://bit.ly/PrivacyMeter.

Acknowledgments. We thank the reviewers for their valuable feedback. This work
was support by the National Science Foundation under grants CNS-1527086 and CNS-
1617593 as well as by the Data Transparency Lab.

Appendix A

0

50

100

150

Th
ird

−p
ar

ty
 If

ra
m

es

0

50

100

150

200

 O
ve

ral
l

Adu
lt

Arts

Bus
ine

ss

Com
pu

ter
s

Gam
es

Hea
lth

Hom
e

Kids
/Te

en
s

New
s

Rec
rea

tio
n

Refe
ren

ce

Reg
ion

al

Scie
nc

e

Sho
pp

ing

Soc
iet

y

Spo
rts

Category

Le
ak

y
Fo

rm
s

Fig. 5. Box plots for number of third-party iframes and number of leaky web forms
per each of 17 Alexa’s website categories, as well as the overall distribution.

http://bit.ly/PrivacyMeter

PrivacyMeter 93

Appendix B

The list of fingerprinting-related APIs currently intercepted by PrivacyMeter:

window. phantom
window.callPhantom
window.chrome.webstore
window.devicePixelRatio
window.domAutomation
window.domAutomationController
window.indexedDB
window.localStorage
window.mozRTCPeerConnection
window.RTCPeerConnection
window.RunPerfTest
window.sessionStorage
window.TouchEvent
window.webdriver
window.webkitRTCPeerConnection
navigator.appCodeName
navigator.appName
navigator.appVersion
navigator.cookieEnabled
navigator.cpuClass
navigator.doNotTrack
navigator.hardwareConcurrency
navigator.javaEnabled
navigator.language
navigator.languages
navigator.maxTouchPoints
navigator.mediaDevices
navigator.mimeTypes
navigator.onLine
navigator.platform
navigator.plugins

navigator.product
navigator.productSub
navigator.userAgent
navigator.vendor
navigator.vendorSub
screen.availHeight
screen.availLeft
screen.availTop
screen.availWidth
screen.colorDepth
screen.height
screen.orientation
screen.pixelDepth
screen.width
HTMLCanvasElement.getContext
HTMLCanvasElement.getImageData
HTMLCanvasElement.toDataURL
CanvasRenderingContext2D.fillText
CanvasRenderingContext2D.getImageData
CanvasRenderingContext2D.strokeText
WebGLRenderingContext.getExtension
WebGLRenderingContext.getParameter
WebGLRenderingContext.getShaderPrecisionFormat
HTMLElement.addBehavior
HTMLElement.getBoundingClientRect
HTMLElement.offsetHeight
HTMLElement.offsetWidth
Date.getTimezoneOffset
document.createEvent(“TouchEvent”)
document.addEventListener(“mousemove”)

References

1. AdNauseam. http://adnauseam.io/
2. Chameleon. https://github.com/ghostwords/chameleon
3. TrackMeNot. https://cs.nyu.edu/trackmenot/
4. AdBlock. https://getadblock.com/
5. Adblock Plus. https://adblockplus.org/
6. Chaabane, A., Ding, Y., Dey, R., Kaafar, M.A., Ross, K.W.: A closer look at

third-party OSN applications: are they leaking your personal information? In:
Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 235–246.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2 23

7. Data Transparency Lab. http://datatransparencylab.org/
8. Disconnect—Online Privacy & Security. https://disconnect.me/
9. Ghostery. https://www.ghostery.com/

10. Hashcash: Proof-of-work algorithm. http://www.hashcash.org/
11. Hruska, J.: Forbes forces readers to turn off ad blockers, promptly serves mal-

ware (2016). http://www.extremetech.com/internet/220696-forbes-forces-readers-
to-turn-off-ad-blockers-promptly-serves-malware

http://adnauseam.io/
https://github.com/ghostwords/chameleon
https://cs.nyu.edu/trackmenot/
https://getadblock.com/
https://adblockplus.org/
https://doi.org/10.1007/978-3-319-04918-2_23
http://datatransparencylab.org/
https://disconnect.me/
https://www.ghostery.com/
http://www.hashcash.org/
http://www.extremetech.com/internet/220696-forbes-forces-readers-to-turn-off-ad-blockers-promptly-serves-malware
http://www.extremetech.com/internet/220696-forbes-forces-readers-to-turn-off-ad-blockers-promptly-serves-malware

94 O. Starov and N. Nikiforakis

12. Iqbal, U., Shafiq, Z., Qian, Z.: The ad wars: retrospective measurement and anal-
ysis of anti-adblock filter lists. In: Proceedings of the 2017 Internet Measurement
Conference, IMC 2017 (2017)

13. Krishnamurthy, B., Naryshkin, K., Wills, C.E.: Privacy leakage vs. protection mea-
sures: the growing disconnect. In: Web 2.0 Security and Privacy Workshop (2011)

14. Leon, P., Ur, B., Shay, R., Wang, Y., Balebako, R., Cranor, L.: Why Johnny can’t
opt out: a usability evaluation of tools to limit online behavioral advertising. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2012, pp. 589–598. ACM, New York (2012). https://doi.org/10.1145/2207676.
2207759

15. Lerner, A., Simpson, A.K., Kohno, T., Roesner, F.: Internet Jones and the raiders
of the lost trackers: an archaeological study of web tracking from 1996 to 2016. In:
USENIX Security Symposium (2016)

16. Maass, M., Wichmann, P., Pridöhl, H., Herrmann, D.: PrivacyScore: improving pri-
vacy and security via crowd-sourced benchmarks of websites. In: Schweighofer, E.,
Leitold, H., Mitrakas, A., Rannenberg, K. (eds.) APF 2017. LNCS, vol. 10518, pp.
178–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67280-9 10

17. Malandrino, D., Petta, A., Scarano, V., Serra, L., Spinelli, R., Krishnamurthy, B.:
Privacy awareness about information leakage: who knows what about me? In:
Proceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic
Society, WPES 2013, pp. 279–284. ACM, New York (2013). https://doi.org/10.
1145/2517840.2517868

18. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:
IEEE Symposium on Security and Privacy, pp. 413–427. IEEE Computer Society
(2012). http://dblp.uni-trier.de/db/conf/sp/sp2012.html#MayerM12

19. Merzdovnik, G., Huber, M., Buhov, D., Nikiforakis, N., Neuner, S., Schmiedecker,
M., Weippl, E.: Block me if you can: a large-scale study of tracker-blocking tools.
In: Proceedings of the 2nd IEEE European Symposium on Security and Privacy
(IEEE Euro S&P) (2017)

20. Mughees, M.H., Qian, Z., Shafiq, Z.: Detecting anti ad-blockers in the wild. Proc.
Priv. Enhancing Technol. 2017(3), 130–146 (2017)

21. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting. In:
Proceedings of the 34th IEEE Symposium on Security and Privacy (IEEE S&P),
pp. 541–555 (2013)

22. Privacy Badger—Electronic Frontier Foundation. https://www.eff.org/
privacybadger

23. Sanchez-Rola, I., Santos, I., Balzarotti, D.: Extension breakdown: security anal-
ysis of browsers extension resources control policies. In: 26th USENIX Security
Symposium, pp. 679–694 (2017)

24. Sjösten, A., Van Acker, S., Sabelfeld, A.: Discovering browser extensions via web
accessible resources. In: Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pp. 329–336. ACM (2017)

25. Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of browser
extensions. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 941–956,
May 2017. https://doi.org/10.1109/SP.2017.18

26. Starov, O., Gill, P., Nikiforakis, N.: Are you sure you want to contact us? Quanti-
fying the leakage of PII via website contact forms. PoPETs 2016(1), 20–33 (2016).
http://www.degruyter.com/view/j/popets.2016.2016.issue-1/ popets-2015-0028/
popets-2015-0028.xml

https://doi.org/10.1145/2207676.2207759
https://doi.org/10.1145/2207676.2207759
https://doi.org/10.1007/978-3-319-67280-9_10
https://doi.org/10.1145/2517840.2517868
https://doi.org/10.1145/2517840.2517868
http://dblp.uni-trier.de/db/conf/sp/sp2012.html#MayerM12
https://www.eff.org/privacybadger
https://www.eff.org/privacybadger
https://doi.org/10.1109/SP.2017.18
http://www.degruyter.com/view/j/popets.2016.2016.issue-1/popets-2015-0028/ popets-2015-0028.xml
http://www.degruyter.com/view/j/popets.2016.2016.issue-1/popets-2015-0028/ popets-2015-0028.xml

PrivacyMeter 95

27. Starov, O., Nikiforakis, N.: Extended tracking powers: measuring the privacy dif-
fusion enabled by browser extensions. In: Proceedings of the 26th International
Conference on World Wide Web. WWW 2017, pp. 1481–1490, International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva
(2017). https://doi.org/10.1145/3038912.3052596

28. uBlock. https://www.ublock.org/
29. uBlock origin. https://chrome.google.com/webstore/detail/ublock-origin/cjpalhd

lnbpafiamejdnhcphjbkeiagm
30. Safe Browsing Tool—WOT (Web of Trust). https://www.mywot.com/

https://doi.org/10.1145/3038912.3052596
https://www.ublock.org/
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://www.mywot.com/

Security Analysis of Drone
Communication Protocols

Christian Bunse and Sebastian Plotz(B)

Hochschule Stralsund, Zur Schwedenschanze 15, 18435 Stralsund, Germany
{Christian.Bunse,Sebastian.Plotz}@hochschule-stralsund.de

Abstract. Unmanned aerial vehicles (UAV) are increasingly used by
hobbyists, companies, and the public sector [1] for a number of pur-
poses. Although this is good, UAVs bear the physical risks of aircrafts
as well as those of unmanned systems. Taken into account the exponen-
tially increasing number of UAVs (i.e., there will be approximately 1.26
million UAVs in Germany by 2018), these risks are becoming more likely
to occur. In addition to operational risks, there are also security related
risks. UAVs are typically remotely controlled, which, in turn, opens ways
for cyber-attacks (e.g., denial of service or taking over control). In this
paper we demonstrate that taking over control of commercially available
UAVs is feasible and simple. In detail, we examine and analyze a stan-
dard UAV communication and control protocol (i.e., the DSM protocol
family by Spektrum Inc.). We discuss common approaches for attacks,
minor observations, and associated security vulnerabilities of this proto-
col. Since the number of commercially available communication compo-
nents is small, these findings can easily be ported to other protocols such
as (HOTT, S-FHSS, FrSky, and others). Finally, we make some recom-
mendations which, if implemented, will significantly improve the security
of UAV operations.

Keywords: Drone · UAV · Security · Wireless · Radio protocol
Reverse engineering

1 Introduction

Unmanned Aerial Vehicles (UAV), commonly referred to as drones, are in wide-
spread use throughout private, commercial, and military domains. According
to professional journals1 there is an estimation that by 2018 there will be 1.26
million UAVs only in Germany. Their use range from recreational purposes to
tasks such as aerial surveillance or -photography/videography/sensography, as
well as military purposes. However, as flying objects with a potential high risk
of damage, it is important to understand UAVs security and safety risks as well
as the potential impact such risks might have.

1 http://www.drohnen-journal.de.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 96–107, 2018.
https://doi.org/10.1007/978-3-319-94496-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_7&domain=pdf
http://www.drohnen-journal.de

Security Analysis of Drone Communication Protocols 97

Even high-end professional UAVs are based on known computing architec-
tures that were not designed to be highly secure. This has led to a number
of incidents where opponents claimed that they managed to force down hos-
tile UAVs by interfering with control signals [20]. Such incidents have yet not
be reported for private or commercial UAVs but these too are based on known
components. Interestingly, vendors rely on the secrecy of the design or implemen-
tation as the main method of providing security for the system. Thus, attackers
can use standard “hacking” tools to “easily” take control of a UAV in order to
hinder it completing its tasks or, even worse, to create damage. Beneath UAV
hijacking most UAVs collect and store data locally. Often stored data is not
encrypted and even its transmission (wireless telemetry) can be easily overheard
by third parties. Interestingly, the effect of hyping new devices (e.g., “Internet
of Things” (IoT)) that are vulnerable to “standard” attacks over the Internet is
true for UAVs or drones as well. As a consequence, there is an urgent need for
improving UAV security. First steps have already been done by European and
National aviation authorities in form of new laws. But, more research is needed
that systematically examines security threats in current UAV technology and to
define means for mitigating these threats.

This paper examines potential security risks of UAV communication proto-
cols (e.g., AFHDS 2A, DSM2, DSMX, D8 or D16 [2]). In detail, vendors rely
on frequency hopping, spectrum spreading, and key sharing (aka “binding”) as
active security measures. However, legally vendors can only operate on ISM
bands with a focus on the 2.4 GHz band using communication approaches that
are based on packet-based transmission. Thus, they are closely related to proto-
cols such as IPv4, but do not use security measures such as cryptography. This
makes them vulnerable against known attacks. We will demonstrate this vulner-
ability by hijacking a UAV (drone) using known strategies. In addition, we will
provide some ideas on how the security of UAV protocols can be improved while
keeping properties regarding latency and throughput.

The remainder of this paper is structured as follows. Section 2 presents a short
overview on related work regarding the security (and safety) of UAVs. Section 3
provides an overview on communication technology for UAVs and especially
provides some insights into common properties and structures of UAV com-
munication. Section 4 proposes a number of approaches for taking over a UAV
during flight. Finally, Sect. 5 summarizes the results of the paper and gives a
short outlook on future work.

2 Related Work

In this paper, the acronym UAV is used to represent a power-driven, reusable
plane or copter that is operated without a human pilot on board [3]. Unmanned
missiles or bombs are outside the scope of this paper. Most UAVs have remote
control and communication means. Control by wireless communication bears the
danger of misuse. However, research on UAVs is mainly focused on autonomous
behavior and control. [4] provides an overview of the field and identifies the
following research challenges:

98 C. Bunse and S. Plotz

– Aerial Surveillance and Tracking
– Collision and Obstacle Avoidance
– Formation Reconfiguration
– High Level Control
– Hardware and Communication.

As mentioned, wireless communication with other cooperating UAVs and/or
the ground is key regarding security aspects. The UAV to ground problem typ-
ically addresses questions such as “out of line-of-sight” or “long-range commu-
nications”. Interestingly security issues and especially the security of UAV com-
munication protocols is often neglected. [5] provides an overview on general
cyber-attack methods and on networked systems that are then used to identify
possible threats and vulnerabilities of current UAVs. In general one can distin-
guish between four major attack vectors:

1. Hardware Attacks: Physical impact by shotguns, trained hawks, EMP
pulses, etc. Such techniques are used in the context of preventing attacks
or interceptions to critical buildings or sites. This might also include a direct
attack to a UAV in case of getting physical access to the device. For instance,
during the maintenance, one can purposefully or inadvertently infect an UAV
with malware or replace boards or ICs.

2. Wireless Attacks: Wireless attacks make use of the wireless communication
channels to alter data on-board the UAV autopilot. The worst case scenario
for this attack is an attacker who manages to break the protection of the UAV
communication channel. Once this occurs, an attacker can gain full control of
the UAV if the communication protocol is known. For example, it has been
shown that the DSMX protocol is vulnerable to a brute force attack [12].
Specifically developed hardware and remote control were used to carry out
the attack [19]. Unfortunately, the published material does not contain all
the information needed to carry out the attack. In this paper, the available
information was therefore used as a guide for carrying out the attack with
standard hardware (see Sect. 4). The missing information on how the DSMX
protocol works was taken from the implementation of the DIY Multiprotocol
TX module project [15]. In addition, missing details of the brute force attack
are presented in this paper.

3. Sensor Spoofing: Sensor spoofing attacks are directed towards on-board
sensors that depend on the outside environment. Examples of such sensors
are the GPS receivers, vision, radar, sonar, lidar, and IR sensors. An attacker
can send false data through the GPS channels, or blind any of the vision
sensors. The UAV autopilot relies heavily on sensor data for guidance and
navigation, so corrupted sensor data can be very dangerous.

[6] identified additional threats to UAVs in an effort to have a better public
discussion of realistic attacks that vendors need to take into consideration when
designing their products. In detail, the authors implemented and tested several
attacks and considered privacy issues regarding drones that are controlled by

Security Analysis of Drone Communication Protocols 99

WLAN (i.e., hobbyist class). They further advocate to apply known IT security
measures to UAVs as well.

For a comprehensive list of additional vulnerabilities found on UAVs as well
as attack tools and methodologies, refer to [7].

3 Protocol Principles

Wireless communication of UAVs is based on wireless radio protocols. We there-
fore will examine the typical structure and elements of messages of a radio pro-
tocol. Subsequently, we describe the processing steps that are carried out by the
radio chip in order to send or receive messages. To send a message, the data must
first be encoded and then modulated. The individual steps for sending a message
are shown graphically in Fig. 1. The bit sequence of the message is hereinafter
referred to as “message bits” and the bit sequence of the encoded message as
“data bits”. The Frequency Hopping Spread Spectrum (FHSS) method
is often used to make data transmission more resistant to interferences.

Fig. 1. Sending messages

To receive a message, the described steps are carried out in the reversed
order. The received signal is first demodulated and then decoded. The steps for
receiving a message are shown in Fig. 2.

Fig. 2. Receiving messages

3.1 Structure of a Message

This section describes the typical structure of messages in a radio protocol. The
following is an overview of the components of messages that are used in many
protocols:

– The messages of most protocols begin with the preamble. The preamble
typically consists of an alternating bit sequence (1010...10 or 0101...01).
It is used to synchronize the clock so that the received signal can be sampled
at the correct times. The length of the preamble depends on the protocol
used.

100 C. Bunse and S. Plotz

– The preamble is usually followed by a constant bit sequence defined by the
protocol, called Start Of Frame (SOF). It marks the beginning of the
actual data.

– The length field contains information about how much data is transferred in
the current message. The value of this field is typically set automatically by
the radio chip.

– In order to check whether a data packet has been transmitted without errors,
many protocols contain a checksum field with a checksum. The recipient also
calculates a checksum of the received message. If the calculated checksum does
not match the received one, the receiver will assume an incorrect transmission
and will discard the packet. The Cyclic Redundancy Check (CRC) method
is often used to calculate the checksum. The calculation and checking of the
checksum is typically handled by the radio chip.

– The bit sequence called End Of Frame (EOF) identifies for many protocols
the end of a message. The bit sequence is determined by the protocol.

3.2 Encoding

After the previous section dealt with the typical structure of messages of a radio
protocol, this section deals with the encoding of the message. Encoding describes
the conversion of message bits into data bits, which are then transmitted via the
physical channel. The encoding is done to make the signal more robust against
interferences during radio transmission. A frequently used method is Direct
Sequence Spread Spectrum (DSSS). In this method, the message bits are
XORed with pseudonoise (PN) codes (see Fig. 3).

Fig. 3. Direct Sequence Spread Spectrum (DSSS) (modified, [8])

In the shown example, each bit of the message bits is encoded by four bits
in the data bits. This makes it easier to detect and correct errors that may have
occurred. The message bits can only be reconstructed if the PN codes are known.

3.3 Modulation

After the message has been encoded, it now has to be modulated. Modulation
is the process by which the user data to be transmitted changes (modulate) a
carrier signal. This can be done in different ways. For example, frequency shift
keying (FSK) changes the frequency of the carrier signal. If a binary 1 is to be
transmitted, the frequency of the carrier signal is increased (see Fig. 4).

Security Analysis of Drone Communication Protocols 101

Fig. 4. Frequency shift keying (FSK) (modified, [9])

3.4 Frequency Hopping Spread Spectrum (FHSS)

Frequency Hopping Spread Spectrum (FHSS) is a method in which the car-
rier frequency is continuously changed. A unique sequence of frequency channels
is determined by the receiver and transmitter during the binding process2. The
receiver and transmitter then have to synchronize to ensure successful data trans-
mission: For example, the receiver could wait for a packet on the first frequency
of the negotiated sequence. After the receiver has received a packet, it switches
to the next frequency in the sequence. The transmitter also jumps to the next
frequency after sending a packet. The FHSS method makes data transmission
more resistant to interferences: If a channel is occupied, the transmission is only
disturbed for a short period of time. On the other hand, it becomes more difficult
for an attacker to intercept communication if the hopping sequence is unknown.

4 Demonstration

This chapter demonstrates an attack vector to the DSMX protocol by Spek-
trum [12]. For this reason, we will first discuss the general steps to attack a
protocol and take control of a UAV. Then the practical implementation of the
attack and the results will be discussed.

4.1 Approach

In the following, we will first show how a protocol for controlling a drone can be
attacked.

1. Get documentation: First the communication (protocol) between a UAV
and its base station (e.g., a remote control unit or a computer) has to be
analyzed. Although there is no real communication standard3 the underlying
basis boils down to four different radio chips: A7105, CC2500, NRF24L01
and CYRF6936 [10]. Identifying the radio chip and obtaining its freely avail-
able documentation is the starting point for all future actions. In detail, this

2 The concrete procedure is laid down in the protocol.
3 The Deviation project (www.deviationtx.com) lists more than 50 different protocols

and subprotocols.

www.deviationtx.com

102 C. Bunse and S. Plotz

step allows to learn about frequency bands and channels as well as spread-
spectrum or modulation techniques.

2. Capture data packet: Due to methods such as FHSS there is no single,
easily identifiable frequency that carries data packets. A software defined
radio (SDR) together with supporting software (e.g., Universal Radio Hacker)
or the radio chip itself can be used to scan for active channels. A second
option is to monitor the configuration of the channel to be used directly via
SPI sniffing on the radio chip. Matching frequencies can then be determined
by examining the documentation. Now messages can be recorded using an
SDR and then be demodulated. The resulting byte sequence has then to be
further analyzed (e.g., check whether it starts with the expected preamble).
Data packets can also be received directly by using the original radio chip.

3. Reverse DSSS: If the DSSS method was used for encoding a
packet/message, its PN codes have to be identified in a further step. Since,
often a SPI (Serial Peripheral Interface) interface is used to control the radio
chip, PN codes can be obtained via SPI sniffing.

4. Identify hopping sequence: In the next step, the actual hopping sequence
or the algorithm used to derive the sequence has to be determined. In order
to do so, either obtaining channel configuration via SPI sniffing or by SDR
based sniffing and analysis can be used [11].

5. Attack: Once all necessary information has been collected, the final step
is to attack (i.e., to take over control). This can be achieved, by a timing
attack that makes use of the applied channel hopping procedure. In detail,
data packets of the attacker are send shortly before the data packets of the
legitimate operator. The UAV receives the attacker’s data packets and imme-
diately changes its frequency (due to FHSS). As a result, the data packets of
the legitimate owner are no longer received and the attacker has full control.

4.2 Practical Implementation

This section discusses the practical implementation of the attack and the
results. For this purpose, the most important properties of the radio chip used
(CYRF6936) and the DSMX protocol are described first. Figure 5 shows the
structure of a data packet for the CYRF6936.

Fig. 5. Packet structure CYRF6936 [13]

The packet begins with a preamble, which is followed by the Start of packet
(SOP) symbol. The SOP marks the beginning of the packets’ payload (cf. SOF in

Security Analysis of Drone Communication Protocols 103

Sect. 3.1). In addition, it encodes the data rate for the remainder of the packet.
The radio chip must be able to detect the previously configured SOP symbol
in order to receive a packet. If this fails, no packet can be received. The LEN
field contains the number of bytes transferred and the DATA part of the packet
contains the user data. The CRC field contains a checksum to verify that the
packet has been transmitted correctly. A CRC16 algorithm is used to calculate
the checksum. The CRC16 is performed only on the length and data fields of the
packet. Received packets for which the CRC check fails are still available to the
application. The CRC16 can be seeded with a user specified 16-bit value [13].

Before a UAV can be controlled using the DSMX protocol, the remote control
unit and the receiver in the UAV drone must be bound. During this binding,
4 bytes of the transmitter’s radio chip ID are transferred. Since the binding
procedure only has to be performed once for a sender-receiver pair, an attacker
usually cannot intercept these packets. A binding packet has a length of 16 bytes.
Table 1 shows the contents of a binding packet.

Table 1. DSM binding packet [14]

Byte position Content

0–3 Radio chip ID byte 0–3 (inverted)

4–7 Radio chip ID byte 0–3 (inverted)

8–9 Checksum over bytes 0 to 7 of the packet

10 0x01 (constant value)

11 Number of RC channels

12 Subprotocol used

13 0x00 (constant value)

14–15 Checksum over bytes 8 to 13 of the packet

After the binding process has been successfully completed, transfer or data
packets are sent to control the drone. The structure of a transfer packet is shown
in Table 2. A transfer packet also has a length of 16 bytes.

Table 2. DSM transfer packet [14]

Byte position Content

0 Radio chip ID byte 2

1 Radio chip ID byte 3

2–15 Data

104 C. Bunse and S. Plotz

Since the SOP symbols, the PN codes, the CRC seed and the hopping
sequence4 are derived from the 4 bytes of the radio chip ID, these must be
known in order to be able to take over the drone. In each transfer packet, bytes
2 and 3 of the radio chip ID are transmitted. In order to receive a transfer
packet using the CYRF6936, both the SOP symbol used and the PN code must
be known. The DSMX protocol uses a predefined set of byte sequences for the
SOP symbols and PN codes. Since the SOP symbols and PN codes are already
known (see [15]), we did not have to determine them using SPI sniffing. Only
eight different combinations of SOP symbols and PN codes are used per chan-
nel [15]. Which of the eight combinations is used in each case depends on the
bytes 0–2 of the radio chip ID.

The next step of the attack is capturing a transfer packet. A brute force
approach has been implemented for this purpose: Starting with the first channel
used by the DSMX protocol (3), an attempt was made to receive a packet. For
each channel, the eight possible combinations of SOP symbols and PN codes were
tested. The receiver waits a little longer than a run of 23 channels would take to
receive a packet (in this example 250 ms). If this is successful, bytes 2 and 3 of the
radio chip ID can now be read from the received transfer packet. The bytes 0 and
1 of the radio chip ID are used as the seed for the CRC16 algorithm. These can
now also be determined using a brute force approach: The CRC16 algorithm has
been implemented for this purpose. The algorithm gets called with the data of
the packet just received and with the possible values for the seed. If the calculated
CRC value matches the CRC value of the last received packet, the correct seed
(and thus also the bytes 0 and 1 of the radio chip ID) has been carried out. In the
next step, the hopping sequence used has to be found. It is already known how
the hopping sequence is derived from the 4 bytes of the radio chip ID [16]. Now
that all 4 bytes of the radio chip ID have been determined, the hopping sequence
can be calculated easily. In the last step, synchronization with the target system
must now be carried out. To prepare for synchronization, the exact time intervals
between the individual packets had to be determined first. For this purpose, the
implementation of the DSMX protocol was temporarily adapted so that only
one channel is used. This made it possible to record several consecutive packets
with the help of an SDR and suitable software (for example the Universal Radio
Hacker) and to measure the time intervals. During the attack, the program waits
for the packet to be received on the first channel of the hopping sequence. If this
could be successfully received, the following packets are sent shortly before those
of the legitimate owner. To avoid a time deviation when sending the packets,
the program attempts to receive the packet from the actual owner after every
second packet sent. This corresponds to a resynchronization. As soon as the own
data packets are sent shortly before the owner’s packets, the attacker has gained
control of the drone.

For the described attack we used a Banggood 4-in-1 STM32 module (see
Fig. 6). This module contains a CYRF6936 chip as well as a CC2500, A7105 and
NRF24L01 chip. The firmware of the DIY-Multiprotocol-TX-Module project

4 In the DSMX protocol, the hopping sequence is a sequence of 23 channels.

Security Analysis of Drone Communication Protocols 105

has been adapted accordingly. The module was plugged into a Frsky Taranis
X9D Plus remote control unit to take over the drone (Fig. 7). Table 3 shows the
measurement results of the practical implementation of the attack.

Fig. 6. 4-in-1 STM32 module [17] Fig. 7. Taranis X9D Plus [18]

Table 3. Results of the practical attack

Step Duration

Receive transfer packeta 10848878µs (≈10 s)

Brute force CRC seed 623649µs (≈0.6 s)

Overall 11645488µs (≈11 s)
aThis time includes the time to determine a
channel and the combination of SOP symbol
and PN code used. This time also depends on
the smallest channel of the hopping sequence
used, since the brute force approach starts with
the smallest possible channel.

In this section we were able to demonstrate that it is possible to take over a
drone in about 11 s when the DSMX protocol is being used. It can be assumed
that this is also possible with other protocols.

5 Summary and Conclusions

Unmanned Aerial Vehicles are popular in many application domains and their
sheer number is dramatically increasing. As aerial vehicles UAVs bear inher-
ent dangers, which have to be carefully addressed. UAVs are typically remotely
controlled using wireless communication protocols. Interestingly, most of these
protocols are based on one of four physical communication units. Furthermore,
the principles of protocols that make use of these communication units are either
publicly known or can be re-engineered using a software defined radio (SDR).
This allows the use of known attacks vectors such as man-in-the-middle or timing
attacks to take over control.

In this paper we described and demonstrated an approach for attacking a
UAV in order to take over control. We described an attack vector for UAVs

106 C. Bunse and S. Plotz

using the DSM protocol family by Spektrum Inc. that is mainly used for hobby-
ist and semi-professional UAVs. In detail, we identified the used communication
chip (i.e., a CYRF6936) and reverse engineered relevant protocol details. The
CYRF6936 chip is commercially available and is designed to implement wire-
less device links operating in the worldwide 2.4 GHz ISM frequency band. The
CYRF6936 is a fundamental unit that provides communication features. Thus,
security means have to be implemented by the communication protocol itself.
Interestingly a closer look onto the DSM protocol family revealed that although
a kind of key exchange (i.e., bind procedure) is used, security is limited to a
few bytes. By brute-forcing these bytes (i.e., the PN codes) the CRC seed as
well as the frequency hopping sequence can be determined. By using a timing-
attack (i.e., sending the attack packets shortly before the original packet), it was
possible to easily take over control in seconds.

Due to the limited number of communication chips, and the known details
of many protocols as described in the context of the Deviation project (www.
deviationtx.com) this approach can easily be transferred to other protocols. Com-
bined with a protocol analyzer using AI-technologies to identify the used proto-
col, attackers can take control of nearly any UAV.

In order to increase the security of the DSM protocol family, and in the long
run of all known drone communication protocols it is recommend that transfer-
ring the secret key, negotiated during the binding phase, within the standard
transfer packets should be avoided. This discloses parts of the secret every 11
or 22 ms. In order to prevent an attacker from receiving the transmitted packets
using a CYRF6936 chip, the SOP codes used should not be known in advance
and should depend on the negotiated secret. Furthermore, it is recommended to
use the longest possible secret (at least 6 bytes). This makes a brute force attack
considerably more difficult and ensures stronger authentication of the legitimate
owner. Finally, it is recommended to use cryptographic methods. These should
be publicly known and acknowledged. However, it should be noted that hard-
ware resources are limited and that response times must be adhered. Thus, the
right balance of security and performance has to be conserved.

In summary, we believe that addressing the discussed vulnerabilities and
developing a “secure” protocol will help preventing the majority of software
centric attacks. However, this may weaken defenses regarding site protection.
Further work is necessary to investigate other attack vectors and protocols. In
summary, we hope that our work will be a basis for future security analyses and
efforts in the domain of Unmanned Aerial Vehicles.

References

1. Allianz Global Corporate: Rise of the Drones - Managing the Unique Risks Asso-
ciated with Unmanned Aircraft Systems (2016). http://www.agcs.allianz.com/
assets/PDFs/Reports/AGCS Rise of the drones report.pdf

2. Oscar Liang: RC TX RX Protocols Explained: PWM, PPM, SBUS, DSM2,
DSMX, SUMD (2015). https://oscarliang.com/pwm-ppm-sbus-dsm2-dsmx-sumd-
difference/

www.deviationtx.com
www.deviationtx.com
http://www.agcs.allianz.com/assets/PDFs/Reports/AGCS_Rise_of_the_drones_report.pdf
http://www.agcs.allianz.com/assets/PDFs/Reports/AGCS_Rise_of_the_drones_report.pdf
https://oscarliang.com/pwm-ppm-sbus-dsm2-dsmx-sumd-difference/
https://oscarliang.com/pwm-ppm-sbus-dsm2-dsmx-sumd-difference/

Security Analysis of Drone Communication Protocols 107

3. Pappalardo, J.: Unmanned aircraft roadmap reflects changing priorities. National
Defense 87(392), 30 (2003)

4. Ryan, A., Zennaro, M., Howell, A., Sengupta, R., Hedrick, J.K.: An overview of
emerging results in cooperative UAV control. In: 43rd IEEE Conference on Decision
and Control, 14–17 December 2004, Atlantis, Paradise Island, Bahamas (2004)

5. Kim, A., Wampler, B., Goppert, J., Hwang, I.: Cyber attack vulnerabilities analysis
for unmanned aerial vehicles. Infotech@Aerospace J. (2012)

6. Valente, J., Cardenas, A.A.: Understanding security threats in consumer drones
through the lens of the discovery quadcopter family. In: IoT S&P 2017, 3 November
2017, Dallas. TX, USA (2017)

7. Walters, S.: How can drones be hacked? the updated list of vulnerable drones
& attack tools, October 2016. https://medium.com/swalters/how-can-dronesbe-
hacked-the-updated-list-of-vulnerable-drones-attack-tools-dd2e006d6809

8. Slimane, B.: Spread Spectrum. http://slideplayer.com/slide/4800123/
9. Mietke, D.: Frequenzumtastung. http://elektroniktutor.de/signalkunde/fsk.html

10. Pascal Langer: Protocols details. https://github.com/pascallanger/DIY-Multipr
otocol-TX-Module/blob/master/Protocols Details.md

11. Shin, H., Choi, K., Park, Y., Choi, J., Kim, Y.: Security analysis of FHSS-type
drone controller. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp.
240–253. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2 20.
https://syssec.kaist.ac.kr/pub/2015/shin wisa2015.pdf

12. Jonathan Andersson Attacking DSMx with Software Defined Radio. https://
pacsec.jp/psj16/PSJ2016 Andersson Hacking DSMx with SDR PacSec 2016 Engl
ish.pdf

13. Cypress Semiconductor: Technical Reference Manual. http://www.cypress.com/
file/136666/download

14. PaparazziUAV: DSM. https://wiki.paparazziuav.org/wiki/DSM
15. Multiprotocol TX Module: DSM protocol. https://github.com/pascallanger/DIY-

Multiprotocol-TX-Module/blob/master/Multiprotocol/DSM cyrf6936.ino
16. RC Groups: DSMX Hacking. https://www.rcgroups.com/forums/showthread.

php?1759502-DSMX-Hacking
17. Multiprotocol TX Module: Multiprotocol Module Hardware Options. https://

github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/docs/Har
dware.md

18. FrSky: Taranis X9D Plus. https://www.frsky-rc.com/product/taranis-x9d-plus-2/
19. Goodin, D.: Drone hijacker. https://www.youtube.com/watch?v=2YjQPPc5VW4
20. Kipkemoi, P.: Drone hacking - how safe is your drone? http://www.droneguru.net/

drone-hacking-how-safe-is-your-drone/

https://medium.com/swalters/how-can-dronesbe-hacked-the-updated-list-of-vulnerable-drones-attack-tools-dd2e006d6809
https://medium.com/swalters/how-can-dronesbe-hacked-the-updated-list-of-vulnerable-drones-attack-tools-dd2e006d6809
http://slideplayer.com/slide/4800123/
http://elektroniktutor.de/signalkunde/fsk.html
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Protocols_Details.md
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Protocols_Details.md
https://doi.org/10.1007/978-3-319-31875-2_20
https://syssec.kaist.ac.kr/pub/2015/shin_wisa2015.pdf
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf
http://www.cypress.com/file/136666/download
http://www.cypress.com/file/136666/download
https://wiki.paparazziuav.org/wiki/DSM
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Multiprotocol/DSM_cyrf6936.ino
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/Multiprotocol/DSM_cyrf6936.ino
https://www.rcgroups.com/forums/showthread.php?1759502-DSMX-Hacking
https://www.rcgroups.com/forums/showthread.php?1759502-DSMX-Hacking
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/docs/Hardware.md
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/docs/Hardware.md
https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/docs/Hardware.md
https://www.frsky-rc.com/product/taranis-x9d-plus-2/
https://www.youtube.com/watch?v=2YjQPPc5VW4
http://www.droneguru.net/drone-hacking-how-safe-is-your-drone/
http://www.droneguru.net/drone-hacking-how-safe-is-your-drone/

Idea: Automatic Localization of Malicious
Behaviors in Android Malware
with Hidden Markov Models

Aleieldin Salem(B), Tabea Schmidt, and Alexander Pretschner

Technische Universität München, Munich, Germany
{salem,tabea.schmidt,pretschn}@cs.tum.edu

Abstract. The lack of ground truth about malicious behaviors exhib-
ited by current Android malware forces researchers to embark upon a
lengthy process of manually analyzing malware instances. In this paper,
we propose a method to automatically localize malicious behaviors resid-
ing in representations of apps’ runtime behaviors. Our initial evalua-
tion using generated API calls traces of Android apps demonstrates the
method’s feasibility and applicability.

1 Introduction

Current Android malware is implemented to leverage user trust in the Android
ecosystem (i.e., applications, developers, marketplaces, etc.), and their desire to
acquire new applications (hereafter apps). Nowadays, malware authors either
graft popular benign apps with malicious payloads in a practice widely known
as piggybacking [4], or opt to implement their instances as apps that offer fake,
benign functionalities (e.g., a Sudoku with ten puzzles), concealing the malicious
payloads residing in them [7].

Regardless of how apps are represented (e.g., API call traces or control-flow
graphs), the majority of their representations is expected to comprise benign
behaviors, while only the minority depicts the malicious ones. For example, if
we consider API call traces as representations of the apps’ runtime behavior, only
a relatively small subset of calls in the trace should belong to the (grafted) mali-
cious payloads. In other words, the malicious behaviors are usually surrounded
by noisy, benign counterparts, rendering their detection difficult.

In theory, it is possible to detect such elusive malicious behaviors via cross-
referencing app representations with repositories of previously-analyzed mali-
cious behaviors. However, the process of gathering malicious apps and manually
analyzing them to localize the malicious behaviors dwelling within them often
spans years [4,7]. Consequently, there is a need for techniques to automatically
locate malicious behaviors within representations of Android apps. In this paper,
we propose a method using hidden Markov models to detect the existence of
malicious behaviors in API call traces of Android apps and localize them within
the trace.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 108–115, 2018.
https://doi.org/10.1007/978-3-319-94496-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_8&domain=pdf

Idea: Automatic Localization of Malicious Behaviors in Android Malware 109

The contributions of this paper are: (a) we implemented a method based on
hidden Markov models to automatically point out malicious behaviors within
API call traces of Android (malicious) apps and evaluated its feasibility using
generated data, (b) we make our implementation available to help researchers
reproduce our results, and (c) we discuss potential enhancements to our method
to be effective on real-world malware.

The paper is organized as follows: In Sect. 2, we discuss the notions and
assumptions upon which we built our method. An overview of the design and
implementation of our method is given in Sect. 3. Section 4 discusses the pre-
liminary experiments we conducted to determine the feasibility of our proposed
method. We conclude the paper and propose future enhancements in Sect. 5.

2 Preliminaries

To the best of our knowledge, the majority of efforts to localize (or extract) mali-
cious segments from Android malware (e.g., [3,5,9,10]), rely on static analysis
of Android apps, which might be countered via techniques such as code obfus-
cation, dynamic code loading, encryption, etc. [6]. Regardless of the techniques
employed by malware instances to conceal their payloads from static analysis
techniques, such payloads will ultimately execute and reveal themselves in rep-
resentations of the apps’ runtime behaviors (e.g., API call traces). Consequently,
we focus on the runtime behaviors, particularly API call traces, of apps as our
source of information about the apps’ intentions.

As discussed earlier, in current Android malware, benign and malicious seg-
ments might be intertwined, which will also manifest in their runtime behaviors.
That is to say, API traces of Android malware are expected to comprise calls
issued by the benign segments of the apps along with calls issued by their mali-
cious counterparts. We refer to API calls issued by an app’s benign segments and
malicious segments as benign behaviors and malicious behaviors, respectively.

There are two main problems with automatically localizing malicious behav-
iors from API call traces. Firstly, given the increasing utilization of triggers
in Android malware, we cannot guarantee that the malicious behaviors have
already been executed and, hence, are present in an app’s API call trace. Sec-
ondly, assuming that a given API call trace contains malicious behaviors, we do
not know which parts of the trace resemble such behaviors.

The former problem is, in fact, that of stimulating an Android app and
monitoring its runtime behavior, which is out of this paper’s scope. Consequently,
our solution assumes that malicious apps have been thoroughly stimulated, and
their corresponding API call traces indeed contains the malicious behaviors they
withhold.

To address the latter problem–which is the one the paper attempts to solve–
we build our solution on the following assumptions:

Assumption 1: In Android malware, malicious segments usually differ from
their benign counterparts in functionality and runtime behavior.

https://github.com/tum-i22/localizing-android-malicious-behaviors

110 A. Salem et al.

Assumption 2: Given a model representing all benign behaviors, we can
localize malicious behaviors by finding segments (e.g., API calls in a trace)
that are anomalous.
Assumption 3: Utilization of sensitive data and system resources often
reveals the intentions of apps (i.e., malicious or benign).

3 Implementation

In this section, we present the proposed method to automatically localize mali-
cious behaviors in Android malware, depicted in Fig. 1 and discuss its different
operations.

Benign
Traces

Traces

Benign

Malicious
Behaviors

Traces

Benign

Traces
Test

using
Classify

HMM (Ω)

malicious
Inject

behaviors

Injected

Behaviors
Malicious

Compare

labeled as
Malicious

Traces

(3.1.a)
(3.2.b)

(3.1.b)

(3.3.a)

(3.3.b)

HMM (Ω)

Localize malicious
behaviors using

Malicious
Behaviors

Localized

Localization
Accuracies

Detection
+

(3.2.a)
Training

Test
Malicious

Fig. 1. An overview of the proposed method to automatically localize malicious behav-
iors from Android malware. Ellipses depict inputs/outputs, and rectangles depict oper-
ations performed on them. The blue labels refer to the section in which an operation
is discussed. (Color figure online)

3.1 Data Generation

To assess the performance of our localization method, we need API traces of
malicious apps, in which the malicious segments are known, which is usually not
available. Consequently, we demonstrate the validity and feasibility of our pro-
posed method using data we generated from API call traces of benign apps. The
Data Generation module is responsible for generating such data that resemble
real-world Android malware.

As discussed earlier, current Android malware comprises benign and mali-
cious segments, which manifests in their API call traces with benign behaviors
being the majority. Thus, we can generate a malicious trace by injecting mali-
cious behaviors into presumably benign ones. We surveyed the literature for
behaviors exhibited by common current Android malware families (e.g., Dog-
win, Airpush, and FakeInst), represented the textual description of such behav-
iors into a sequence of API calls, and stored them.

To avoid unintentionally facilitating the process localizing malicious behav-
iors residing in an API call trace, we ensured that the malicious behaviors are

Idea: Automatic Localization of Malicious Behaviors in Android Malware 111

not designed to be anomalous to their benign counterparts. That is to say, the
defined malicious behaviors (a) use the same API calls utilized by their benign
counterparts, and (b) are semantically valid (e.g., not reading a file before open-
ing it).

The data generation process starts by randomly splitting API call traces
(step 3.1.a) of benign apps into training (two thirds) and test (one third) traces.
We wrote a tool that, given a probability (p) and a benign test trace, retrieves
a random behavior from the Malicious Behaviors database, and injects it as a
block into the trace with the probability (p), as seen in step (3.1.b). The larger
the value of (p), the more likely the retrieved malicious behavior can be found
in the trace. The decision to optionally inject the behavior multiple times into a
trace was made to resemble the scenario of a frequently-executing code segment
(e.g., in a loop or invoked via a Timer), which is common in contemporary
Android malware [7].

3.2 Training and Detection

The benign training traces are used to train a classifier (step 3.2.a) that is (a)
capable of representing all benign behaviors in the training traces, and (b) able
to point out anomalous behaviors in a trace. In this paper, we use a hidden
Markov model (Ω) to accomplish these tasks. A hidden Markov model is trained
with sequences of observations that belong to states that are unknown to the
model (i.e., hidden), and can only be inferred from the observations. Within this
context, the states are malicious or benign, the sequences are API call traces, and
the observations are individual API calls. If the model (Ω) is exclusively trained
using sequences belonging to one state (e.g., benign), it will represent the prob-
abilities of encountering specific observations at a particular point in time (e.g.,
the probability of encountering android.app.Activity.startActivity as the
first API call in a benign trace). In essence, the trained model is a probabilistic
average of all benign behaviors found in the training traces [8].

In step (3.2.b), we use (Ω) to classify the benign test traces and the generated
test malicious traces as malicious and benign. This step can be considered the
first step in localizing malicious behaviors by highlighting an entire trace as
malicious. The next step would be to pinpoint the malicious behaviors residing
within the trace.

Given a test trace (T = [api1, api2, . . . , apin]), the model (Ω) can calculate
the probability P (T |Ω) = P (apit=1

1 |Ω)×P (apit=2
2 |Ω)×. . .×P (apit=n

n |Ω), which
depicts the likelihood of the observations in (T) to be generated by (Ω). Since
the model (Ω) has been exclusively trained using benign traces, the probability
P (T |Ω), in fact, calculates the probability of (T) being benign. Intuitively, the
lower this probability is, the more likely it is for the test trace (T) to be malicious.

To classify traces, we need to specify a value for the probability P (T |Ω)
below which, a trace is classified as malicious. As seen above, such probabil-
ity is a result of a series of multiplications, which leads to small, unintuitive
values (e.g., 0.0000135). Hence, we can rescale the value of P (T |Ω) into its log-
likelihood log P (T |Ω), which yields more intuitive negative numbers (e.g., −100).

112 A. Salem et al.

We refer to this log likelihood decision boundary as threshold (τ). In this case, the
lower the threshold (τ) (i.e., larger negative numbers), the lower the probability
P (T |Ω), the more likely it is for the trace (T) to be malicious.

Lastly, the length of a test trace affects the calculated log likelihood, primarily
since it results in more multiplications that occur to calculate P (T |Ω). Given
that different apps might yield API call traces of different lengths, we limit the
length of all test traces during the classification phase to a maximum value (λ).

3.3 Localization

Based on its classification counterpart, the localization process (step 3.3.a)
attempts to point out the most anomalous sequence of API calls in a trace and
returns it as the malicious behavior. Given a trace (Tmal), deemed as malicious
by (Ω), we recursively split it into two halves (T 1

mal) and (T 2
mal), and calculate

the log likelihood for each half. The half yielding the lower likelihood is consid-
ered more malicious, and is, hence, further halved. This process continues until
either the value of the log-likelihood seizes to decrease, or the length of the half
reaches a lower bound value (e.g., three API calls). The half yielding the lowest
log likelihood is labeled as the candidate malicious behavior in the trace.

In step (3.3.b), we compare, for each test trace classified as malicious, how far
the behavior localized (in step 3.3.a) is from the one injected into its correspond-
ing benign trace (in step 3.1.b) (i.e., ground truth). The distance between the
two behaviors is calculated in terms of different API calls. The average distance
across all malicious test traces is stored as localization accuracy.

4 Evaluation

To evaluate the feasibility of our proposed method, we ran the process in Fig. 1
25 times on a dataset of 1882 API call traces representing the runtime behav-
iors of benign Android apps we downloaded from the Google Play store. The
collected apps were chosen randomly to represent different app categories. To
obtain app traces, we deployed each app on an Android virtual device and inter-
acted with it for 60 s using a random-based UI manipulation tool we developed,
called Droidutan [1]. The API calls issued by each app were kept track of using
droidmon [2].

To have a comprehensive view of how our method performs under different
circumstances, we varied the insertion probability (p) to 0.1, 0.25, 0.5, and 0.75,
the classification threshold (τ) to −100, −250, −500, −750, and −1000, and the
maximum trace length (λ) to 50, 100, 200, and 300 API calls.

Table 1 contains the average classification accuracies achieved by (Ω) on the
test traces after 25 runs with different values for (p), (τ), and (λ) (i.e., step
3.2.b). As discussed earlier, classification is considered the first step of localizing
malicious behaviors. Low classification accuracies imply that malicious traces
are classified as benign and vice versa. Consequently, the localization phase will
operate on misclassified traces, ultimately yielding incorrect malicious behaviors.

Idea: Automatic Localization of Malicious Behaviors in Android Malware 113

As seen in Table 1, the model (Ω) is capable of correctly assigning up to
99% of the traces to their correct classes (i.e., malicious or benign). We have
noticed the existence of a direct relationship between the classification threshold
(τ) and the API sequence length (λ), that affect the classification accuracies.
We argue that long API traces (i.e., high λ) require larger thresholds (τ) to
accommodate the increasing number of multiplications that occur in calculating
the log-likelihood log P (O|Ω). We also noticed that longer traces, the more the
information (Ω) can infer about the app’s behavior, which is reflected in the
model’s ability to classify them correctly. Lastly, we speculated that with low
values of (p), the malicious behaviors will less likely be injected into the benign
traces, making it more difficult for (Ω) to detect malignancy in such traces.
However, the tabulated results show that (Ω) is capable of recognizing anomalous
behaviors in an API call trace inserted with a probability as low as p = 0.1, with
accuracies as high as ≈80% (i.e., with τ = −250 and λ = 100).

Table 1. Detection test accuracies of achieved using the HMM classifier (Ω) using
different insertion probabilities (p), thresholds (τ), and trace lengths (λ).

p=0.1 p=0.25 p=0.5 p=0.75

τ
λ

50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

-100 0.60 0.52 0.53 0.55 0.61 0.53 0.56 0.59 0.61 0.54 0.59 0.63 0.62 0.54 0.59 0.65
-250 0.49 0.79 0.53 0.55 0.48 0.85 0.56 0.59 0.67 0.85 0.59 0.63 0.68 0.86 0.59 0.65
-500 0.49 0.48 0.86 0.58 0.48 0.59 0.91 0.63 0.47 0.67 0.92 0.66 0.47 0.67 0.92 0.68
-750 0.49 0.48 0.58 0.86 0.48 0.47 0.70 0.92 0.47 0.49 0.76 0.93 0.47 0.56 0.76 0.93
-1000 0.49 0.48 0.47 0.64 0.48 0.47 0.55 0.77 0.47 0.46 0.64 0.95 0.47 0.45 0.64 0.99

In Fig. 2, we plot the average differences between the behaviors localized in
the traces classified as malicious (in step 3.3.b) and the behaviors inserted into
such traces (in step 3.1.b). For simplicity, we inserted only one behavior into a
benign test trace. The average length of a malicious behavior is three API calls.
Hence, we set the lowest length of a candidate behavior to be of three API calls.
For every value of (p) and length (λ), we used the value of (τ) that yielded the
best classification accuracy.

Considering all of the five behaviors we inserted into the test traces, the
average differences with insertion probabilities p = 0.1, p = 0.25, p = 0.5,
and p = 0.75 were 1.72, 1.58, 1.49, and 1.63, respectively. That is to say, our
localization algorithm based on the model (Ω) localized the actual behavior
inserted into an API call trace with an error margin (i.e., the difference in API
calls), of 1.6 API calls.

We noticed that some behaviors are more difficult to localize than others
because they comprise API calls frequently used by benign behaviors. This leads
the model (Ω) to consider them as benign behaviors. Another observation is
that, regardless of the value of (p), the highest differences between the localized

114 A. Salem et al.

behaviors and the ground truth were achieved at λ = 300. We argue that with (λ)
values of 50, 100, and 200, the traces will be halved until two traces of length two
and three will be left. Since we only consider API call blocks of length three, this
increases the likelihood of localizing the exact behavior inserted into the trace.
However, with λ = 300, the algorithm might wind up with blocks of length three
and four. If the malicious behavior dwells in the latter block, there will always
be a difference of one API call.

50 10
0

20
0

30
0

1.0

1.5

2.0

2.5

Behavior 1
Behavior 2
Behavior 3
Behavior 4
Behavior 5

(a) p = 0.1

50 10
0

20
0

30
0

0.5

1.0

1.5

2.0

2.5

Behavior 1
Behavior 2
Behavior 3
Behavior 4
Behavior 5

(b) p = 0.25

50 10
0

20
0

30
0

0.5

1.0

1.5

2.0

2.5

Behavior 1
Behavior 2
Behavior 3
Behavior 4
Behavior 5

(c) p = 0.5

50 10
0

20
0

30
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Behavior 1
Behavior 2
Behavior 3
Behavior 4
Behavior 5

(d) p = 0.75

Fig. 2. The average (after 25 runs) differences (Y-axis) in API calls between the
injected behaviors and the ones localized in step (3.3) with different insertion proba-
bilities (p) and trace lengths (λ) (X-axis).

5 Conclusions and Future Work

Being able to automatically localize malicious behaviors enables researchers to
understand the trends and techniques adopted by current Android malware, and
perhaps build repositories or models of malicious behaviors to detect malicious
apps. In this paper, we presented a method to automatically localize malicious

Idea: Automatic Localization of Malicious Behaviors in Android Malware 115

behaviors found within runtime representations of Android malware viz., API
call traces. To evaluate and demonstrate the feasibility of our method, we uti-
lized generated data and showed that using a hidden Markov model, not only
can we detect malicious behaviors with almost 99% accuracy, but we can localize
malicious behaviors with the proximity of 1.6 API call. We plan on enhancing
our method as follows. Firstly, we plan to run our method against traces of
real Android malware and compare the behaviors found by our method with
those manually extracted by researchers, such as in [7]. Secondly, in this paper,
we assumed that malicious behaviors dwell as blocks of API calls within the
API call trace. However, they could also be scattered along the trace, because
the malicious behavior runs in a thread (e.g., a Service). To cope with this
variation, we plan on enhancing our localization method that is based on bisect-
ing the trace. Thirdly, using the malicious behaviors found and localized within
real-world malware, we will train classifiers and verify whether they can detect
malicious instances not used during training. Lastly, we will offer our implemen-
tation and findings to the malware research community.

References

1. Droidutan. https://github.com/aleisalem/Droidutan
2. Droidmon. https://github.com/idanr1986/droidmon
3. Li, L., Li, D., Bissyande, T.F., Klein, J., Cai, H., Lo, D., Le Traon, Y.: Automati-

cally locating malicious packages in piggybacked android apps. In: Proceedings of
the 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering
and Systems, MOBILESoft 2017, pp. 170–174 (2017)

4. Li, L., Li, D., Bissyande, T., Klein, J., Le Traon, Y., Lo, D., Cavallaro, L.: Under-
standing android app piggybacking: a systematic study of malicious code grafting.
IEEE Trans. Inf. Forensics Secur. 12, 1269–1284 (2017)

5. Pan, X., Wang, X., Duan, Y., Wang, X., Yin, H.: Dark hazard: learning-based,
large-scale discovery of hidden sensitive operations in android apps. In: Proceedings
of Network and Distributed System Security Symposium, NDSS 2017, (2017)

6. Rasthofer, S., Arzt, S., Triller, S., Pradel, M.: Making malory behave maliciously:
targeted fuzzing of android execution environments. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering, ICSE 2017, pp. 300–311 (2017)

7. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current
android malware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS,
vol. 10327, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60876-1 12

8. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Comput. Virol. 2,
211–229 (2006)

9. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp.
163–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 10

10. Zheng, M., Sun, M., Lui, J.: Droid analytics: a signature based analytic system
to collect, extract, analyze and associate android malware. In: Proceedings of the
12th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications. TrustCom 2013, pp. 163–171 (2013)

https://github.com/aleisalem/Droidutan
https://github.com/idanr1986/droidmon
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-11203-9_10

Idea: Benchmarking Android Data Leak
Detection Tools

Claudio Corrodi(B), Timo Spring, Mohammad Ghafari, and Oscar Nierstrasz

Software Composition Group, University of Bern, Bern, Switzerland
corrodi@inf.unibe.ch

http://scg.unibe.ch/

Abstract. Virtual application stores for mobile platforms contain many
malign and benign applications that exhibit security issues, such as the
leaking of sensitive data. In recent years, researchers have proposed
a myriad of techniques and tools to detect such issues automatically.
However, it is unclear how these approaches perform compared to each
other. The tools are often no longer available, thus comparing different
approaches is almost infeasible.

In this work, we propose an approach to execute static analysis tools
and collect their output to obtain unified reports in a common format.
We review the current state-of-the-art in Android data leak detection
tools, and from a list of 87 approaches, of which we were able to obtain
and execute five. We compare these using a set of known vulnerabilities
and discuss the overall performance of the tools. We further present an
approach to compare security analysis tools by normalising their inter-
faces, which simplifies result reproduction and extension.

Keywords: Data leak · Android · Benchmarking

1 Introduction

Security of mobile applications is a hot topic in both research and industry.
Recent research has suggested that many applications in popular virtual stores,
such as Google’s Play Store or Apple’s App Store, suffer from security vulnerabil-
ities. There exist many approaches to automatically detect data leak issues (i.e.,
situations where sensitive data may be leaked). Although taxonomies exist that
catalogue and categorise such approaches [1–4], there is a lack of experimental
evidence comparing the existing approaches.

In this paper, we tackle the following two research questions.

RQ 1. To what degree are security analysis approaches and results in the
domain of Android data leak detection reproducible?

Anecdotal evidence from other domains led us to believe that artefacts and
tools presented in research papers are rarely available online or by other means.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 116–123, 2018.
https://doi.org/10.1007/978-3-319-94496-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_9&domain=pdf

Idea: Benchmarking Android Data Leak Detection Tools 117

We answer this question by reviewing the state-of-the-art approaches, trying
to obtain their artefacts through various means (e.g., using search engines or
contacting the authors), and running them to obtain results similar to those
originally reported.

RQ 2. How do data leak analysis tools perform (individually and compared
to each other) on a common set of applications?

We run the artefacts on a set of applications with known vulnerabilities and
report on precision and recall for each tool. We present a benchmark suite that
allows us to easily run several tools on the same set of target applications and
obtain reports in a normalised form.

We report on our findings by performing pairwise analysis on the tools, after
running them on a set of synthetic applications with known vulnerabilities.

2 Related Work

There exists a wide range of related work. While a thorough discussion goes
beyond the scope of this idea paper, we list those most relevant to our research.

Android Security Analysis Literature. Our literature review was mostly focused
on works mentioned in the following taxonomies.

Sadeghi et al. present a large-scale overview of Android security analysis in
general [3]. In particular, we used their categorization of security problems as
starting point for our work [3, p. 12, Table 3]. Similarly, Sufatrio et al. published
a taxonomy on Android analysis tools [5], as did Reaves et al. [2]. Gadient et al.
have studied the prevalence of security issues in Android applications, including
data leak vulnerabilities [6,7], and confirm that such issues are in fact common
among Android applications.

Comparing Software Artefacts. In 2016, Amann et al. have analysed artefacts for
detecting application programming interface (API) misuse violations [8]. Their
approach is similar to ours in that they developed a framework for comparing
such tools.

DroidBench1 is a benchmark for evaluating analysis tools. Because vulnera-
bilities are documented in these applications, they are well-suited for the quali-
tative analysis we present in this work.

The work by Reaves et al. comes closest to ours. In their study, they use
DroidBench to analyse results obtained from a set of seven Android analysis
tools [2]. However, the only one in common with our set is FlowDroid. In contrast
to our work, the evaluation lacks a comparison of tools amongst each other.

3 Classification and Selection of Android Analysis Tools

The process of reviewing relevant literature, identifying (potential) artefacts,
and categorising them is straightforward. In this section, we briefly present the
relevant steps.
1 https://github.com/secure-software-engineering/DroidBench.

https://github.com/secure-software-engineering/DroidBench

118 C. Corrodi et al.

Literature Review. We started our process by taking a broad view on security
analysis in reviewing related work. We focus on the works mentioned in the recent
taxonomy by Sadeghi et al. [3]; we further reviewed two additional taxonomies
to ensure that we did not miss any relevant approaches [2,5]. Based on those, we
obtained and reviewed an initial list of 87 artefacts. Due to space constraints,
we do not list them individually here and instead refer the interested reader to
the mentioned taxonomies.

Next, we tried to obtain all artefacts by employing the following strategy:

1. review the paper, look for links or directions on how to obtain the artefact,
2. search online with contemporary search engines for the artefact, and
3. contact the authors and inquire whether the tool is available or can be made

available to us (at most two requests by email).

In 60 cases, we sent requests to the authors. Of those, a staggering 49
remained unanswered.

We excluded several works for the following reasons. In four cases, the authors
refused to give us access, either because their tools are commercially used or
discontinued. Thirteen of the artefacts are not tools that can be executed but
instead formal models. Nine tools are based on dynamic approaches; in this work,
we focus on static ones exclusively. Four tools are not in the same domain, despite
having been mentioned to be in the main taxonomy we used as a source [3]. Two
additional tools are not relevant because they do not perform analysis on single
applications and do not report data leaks. In one case, we failed to set up the
tool due to poor documentation.

Selected Tools. After eliminating most of the tools as described, we ended up
with a set of five tools for our benchmark: FlowDroid, HornDroid, IccTA, IC3
(Epicc), and COVERT.

FlowDroid [9] is a taint analysis tool based on the Soot and Heros frameworks.
Its analysis is context-, flow-, and object-sensitive.

HornDroid [10] uses a combination of static and formal analysis.
IccTA [11] is an inter-component communication based taint analysis tool,

suited for any data-flow analysis. IccTA uses both Epicc and IC3 [12] as part of
its analysis.

IC3 (Epicc) [12] detects inter-component communication with a focus on
inferring values of complex objects with multiple fields, such as intents or URIs.
It uses Dare for decompiling, and FlowDroid to generate an interprocedural
control flow graph.

COVERT [13] is a static and formal security analysis tool. Its main focus is
inter-application communication and escalation of privileges. COVERT performs
value-, context-, and flow-sensitive analysis.

In the remainder of this paper, we present our approach to evaluating and the
results obtained from analysing DroidBench vulnerabilities with these artefacts.

Idea: Benchmarking Android Data Leak Detection Tools 119

4 Benchmark Implementation

To easily compare the selected tools, we implemented a Java benchmark suite
that allows us to collect results from individual tools. The benchmark then parses
each tool’s results and creates standardised reports and consolidates results,
which allows us to easily review the reports, compare tools, and perform statis-
tical analyses.

The implementation is straightforward. Pairs of runners and parsers corre-
spond to individual tools. Runners handle setting up the tool environment and
executing it accordingly, while parsers read and interpret the output for further
(consolidated) processing.

To include a tool in the benchmark, one has to do the following. First one
needs to set up the tool so that it can be executed from the command-line, and
the output is stored on the file system. Second, one has to provide a runner in
the benchmark that specifies how the artefact is executed (by implementing a
single Java interface that provides information such as where resulting files and
logs are stored), and third, provide a parser that creates reports (i.e., objects
holding information about a reported data leak).

The benchmark can be executed on a given Android application binary. Then,
all relevant tool output files are collected and consolidated reports are generated.
For each detected vulnerability, we list the class and method in which the leak
happens, and the actual sink where the leak happens, as well as the analysis
tools that detected the vulnerability.

An important aspect of implementing such a benchmark is extensibility. With
a simple way to add additional tools—by implementing a runner for executing
the tool on a given target application and a parser for obtaining the generated
output—it is straightforward to obtain fresh results with a set of tools. This
allows users to compare several tools on a level playing field. Furthermore, pub-
lishing the tools and their corresponding runners and parsers simplifies future
evaluation and reproduction of results.

The benchmark and data are available online2.

5 Experimental Setup

To answer the research questions, we use our benchmark to execute the five tools
IccTA, IC3 (Epicc), HornDroid, FlowDroid, and COVERT.

For a fair comparison, one needs to make sure that the tools use the same
lists of sources and sinks. Here, we use the SuSi tool [14] to obtain such a list.

We then configure all tools to use, where applicable, the same (i) sources and
sinks list, as generated by SuSi, (ii) callback list, (iii) android.jar (API level 23),
and (iv) apktool.jar (2.3.1).

As many others in recent research into Android security analysis, we use
the set of programs provided in DroidBench for our analysis. We decided to

2 https://github.com/ccorrodi/android data leak detection.

https://github.com/ccorrodi/android_data_leak_detection

120 C. Corrodi et al.

Table 1. Raw counts of true/false positives/negatives.

Metric FlowDroid HornDroid COVERT IC3 IccTA

True positive 99 99 8 4 97

False positive 54 87 3 37 59

True negative 90 57 141 107 85

False negative 26 26 117 121 28

Table 2. Collected metrics for each tool as observed on DroidBench vulnerabilities.
Bold values indicate maxima for the respective metric.

Metric FlowDroid HornDroid COVERT IC3 IccTA

Accuracy 0.703 0.580 0.554 0.413 0.677

Precision 0.647 0.532 0.727 0.098 0.622

Recall 0.792 0.792 0.064 0.032 0.776

select this benchmark because it specifically targets data leak vulnerabilities,
and because individual vulnerabilities are described in text, thus providing us
with a ground truth. This enables us to review the reports generated by our
tool, and identify reports as true or false positives or negatives.

After running the benchmark with the normalised configuration on all Droid-
Bench applications, two authors reviewed the obtained reports. For each Droid-
Bench application, we proceed as follows. First, we record the vulnerabilities
specified in the code (i.e., the vulnerabilities stated by the DroidBench authors).
Second, for each detected leak that corresponds to a DroidBench vulnerability,
we record the tools that detect it (true positives), and those that do not (false
positives). Third, for each additional report, we record the tools that report
it (false positive), and those that do not (true negative). After processing 125
DroidBench vulnerabilities, we can report on each tool’s precision and recall.

Because we have evaluated the tools using the same configurations and on
the same dataset, we can also perform pairwise comparisons. We do this using
McNemar’s Test [15], which is a statistical test for determining whether, based
on our observations, two tools are likely to report the same issues.

6 Results

Executing the analyses results in 269 distinct reports from the tools. We reviewed
all reports manually and determined for each report whether it matches a vul-
nerability described in DroidBench and which tools are reporting it.

Table 1 summarises our results. What is striking is the poor performance of
IC3, which reports 41 data leaks, of which only 4 are true positives. Furthermore,
we note that COVERT and IC3 only produce 11 and 41 reports respectively, a
far cry from what the other tools report.

Idea: Benchmarking Android Data Leak Detection Tools 121

Table 3. χ2-values from McNemar’s test for each pair of tools. Bold indicates a sta-
tistically significant difference.

HornDroid COVERT IC3 IccTA

FlowDroid 9.94 10.56 35.29 2.77

HornDroid 0.2 8.53 6.01

COVERT 26.33 6.97

IC3 28.99

Table 2 shows accuracy, precision, and recall for each tool. Here, recall is of
particular interest, as it only includes DroidBench vulnerabilities in the calcula-
tion. We observe that both FlowDroid and HornDroid perform equally well on
the dataset, reporting almost 80% of the vulnerabilities. However, as we will see
below, the sets of reported issues do not match completely.

Both IC3 and COVERT distinguish themselves from the other artefacts in
that they report very few leaks. Unfortunately, this does not result in better
accuracy or recall. The precision of COVERT, however, is high; 8 out of 11
reports are true positives.

It is worth to note that 113 of the 125 DroidBench vulnerabilities—or
90.4%—are reported by at least one tool. We think that this is surprisingly high,
considering the wide variety of applications and vulnerability characteristics.

Next, we investigate how the performances of two tools relate to each other.
We apply McNemar’s Test [15] to obtain a measure that expresses similarities
between two detectors.

A χ2 value above χ2
1,0.01 = 6.635 (which corresponds to a confidence interval

of 99%) indicates that there is a statistically significant difference between the
performances of the two classifiers. Otherwise, the null hypothesis (i.e., that two
tools perform equally well) holds with a probability of at least 99%.

Table 3 summarises the findings. Bold values indicate places where a statis-
tically significant difference between two tools has been observed.

Most pairs of tools report different sets of leaks with a statistically signifi-
cant difference. As McNemar’s Test exclusively considers the cases where tools
disagree, this means that for each pair, one tool is wrong more frequently than
the other. However, according to the underlying raw data, there is no tool that
performs clearly better than all others.

FlowDroid is less often wrong than any other tool. However, it is important
to note that FlowDroid and IccTA perform very similarly; they disagree in only
13 cases. This is reflected in Table 3, as the corresponding χ2 value indicates
that there is no statistically significant difference in performance of the tools.

Similarly, the χ2 value between HornDroid and IccTA is below the threshold.
As an odd occurrence, COVERT and HornDroid also exhibit a very low χ2

value. This happens even though the two tools report vastly different sets, as
evident in Table 1. In this case, McNemar’s test may not be best suited, as it
only considers the difference of the disagreeing reports, which, in this case, is

122 C. Corrodi et al.

very low. Nevertheless, the test is well-suited to compare classifiers in general,
and, using additional data, constitutes a valuable metric in our analysis.

7 Threats to Validity

The benchmark we implemented may contain bugs that directly influence the
results. To mitigate this threat, we implemented unit tests during development,
and manually verified the generated output on a regular basis.

There may be vulnerabilities in the synthetic applications of DroidBench that
are not reported as such. This may influence precision and recall of the tools.
To mitigate this thread, we manually reviewed potential false positives (without
finding any true positive vulnerabilities not documented by DroidBench).

Both DroidBench and FlowDroid originate from the same research group, so
it may be possible that there is a selection bias that favours FlowDroid.

It is possible that we have made mistakes in configuring some of the tools
that we tested. We mitigate this threat by only making minimal changes to a
tool’s configuration. Whenever possible, we use the tools as distributed.

Finally, the different publication years suggest that the original authors likely
did not work with the same target Android version. Our choice to normalise
configurations, in particular using the same sources, sinks, and Android version,
may thus influence the results. Nevertheless, we argue that the threat is minimal,
and that using the same configuration for the tools is a sensible choice.

8 Conclusions and Future Work

In this paper, we investigate to what degree static tools that assess data leaks
in Android application domain are available, and how they work in practice. We
report the progress from an initial list of 87 tools and approaches and describe
the elimination process, after which we arrive at five tools that are suitable for
our analysis.

We present a benchmark suite that easily allows us to consolidate results
from the tools. To ensure a fair comparison, we configure the tools so that they
use the same configurations. Furthermore, we apply them to the same targets,
and avoid cherry-picking particular DroidBench vulnerabilities.

We observe that most tools suffer from a high amount of false positives and
negatives. When we compare pairs of tools, they show, with few exceptions,
statistically significant differences in their performances.

In our future work, we plan to use our benchmark suite with real-world
applications and not just synthetic ones. We plan to also study the root causes
of poor performance in the tools.

Acknowledgements. We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software Analysis” (SNSF project
No. 200020–162352, Jan 1, 2016 - Dec. 30, 2018). We also thank CHOOSE, the Swiss
Group for Original and Outside-the-box Software Engineering of the Swiss Informatics
Society, for its financial contribution to the presentation of this paper.

Idea: Benchmarking Android Data Leak Detection Tools 123

References

1. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. (CSUR) 44(2), 6:1–
6:42 (2008)

2. Reaves, B., Bowers, J., Gorski III, S.A., Anise, O., Bobhate, R., Cho, R., Das, H.,
Hussain, S., Karachiwala, H., Scaife, N., Wright, B., Butler, K., Enck, W., Traynor,
P.: *Droid: assessment and evaluation of Android application analysis tools. ACM
Comput. Surv. 49(3), 55:1–55:30 (2016)

3. Sadeghi, A., Bagheri, H., Garcia, J., Malek, S.: A taxonomy and qualitative com-
parison of program analysis techniques for security assessment of Android software.
IEEE Trans. Softw. Eng. 43(6), 492–530 (2017)

4. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of
Android malware and Android analysis techniques. ACM Comput. Surv. 49(4),
76:1–76:41 (2017)

5. Sufatrio, Tan, D.J.J., Chua, T.-W., Thing, V.L.L.: Securing Android: a survey,
taxonomy, and challenges. ACM Comput. Surv. 47(4), 58:1–58:45 (2015). https://
doi.org/10.1145/2733306. Article no. 58

6. Gadient, P.: Security in Android applications. Masters thesis. University of Bern,
August 2017

7. Ghafari, M., Gadient, P., Nierstrasz, O.: Security smells in Android. In: 17th
IEEE International Working Conference on Source Code Analysis and Manipu-
lation (SCAM), pp. 121–130, September 2017

8. Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N., Mezini, M.: MUBench: a bench-
mark for API-misuse detectors. In: 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), pp. 464–467 (2016)

9. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. SIGPLAN Notices, vol. 49, no.
6, pp. 259–269 (2014)

10. Calzavara, S., Grishchenko, I., Maffei, M.: Horndroid: practical and sound static
analysis of Android applications by SMT solving. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 47–62, March 2016

11. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: IccTA: detecting inter-component privacy
leaks in Android apps. In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering - Volume 1, pp. 280–291 (2015)

12. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon,
Y.: Effective inter-component communication mapping in Android with Epicc: an
essential step towards holistic security analysis (2013)

13. Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: Covert: compositional analysis of
Android inter-app permission leakage. IEEE Trans. Softw. Eng. 41(9), 866–886
(2015)

14. Bu, W., Xue, M., Xu, L., Zhou, Y., Tang, Z., Xie, T.: When program analysis meets
mobile security: an industrial study of misusing Android internet sockets. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pp. 842–847. ACM (2017)

15. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12(2), 153–157 (1947)

https://doi.org/10.1145/2733306
https://doi.org/10.1145/2733306

Idea: Visual Analytics for Web Security

Victor Le Pochat(B) , Tom Van Goethem, and Wouter Joosen

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{victor.lepochat,tom.vangoethem,wouter.joosen}@cs.kuleuven.be

Abstract. The growing impact of issues in web security has led
researchers to conduct large-scale measurements aimed at analyzing and
understanding web-related ecosystems. Comprehensive solutions for data
collection on a large set of websites have been developed, but analysis
practices remain ad hoc, requiring additional efforts and slowing down
investigations. A promising approach to data analysis is visual analytics,
where interactive visualizations are used to speed up data exploration.
However, this approach has not yet been applied to web security, and
creating such a solution requires addressing domain-specific challenges.

In this paper, we show how visual analytics can help in analyzing the
data from web security studies. We present a case study of leveraging an
interactive visualization tool to replicate a security study, and evaluate
a prototype tool implementing visual analytics techniques designed for
web security. We conclude that such a tool would provide a solution that
allows researchers to more effectively study web security issues.

1 Introduction

Cyber attacks, data breaches and other forms of cybercrime are increasingly
common on the Internet today, making an ever larger impact on our society and
economy. To maintain the security of the web in the light of these incidents, the
ecosystems of security practices and illicit operations warrant extensive analysis,
in order to obtain an overview and gather valuable insights, which ultimately
allows for creating better defenses. A variety of large-scale web security observa-
tions have been performed for that purpose [1,2,5,19]. However, while compre-
hensive reusable solutions have been developed for data collection [4,5], there
are no such solutions for the subsequent analysis phase.

Open-source releases of data analysis code from recent web security stud-
ies [1,2] show that current practices for data analysis remain ad hoc and largely
underdeveloped. This leads to duplicated efforts, and as analysis tasks may be
labor-intensive, they take up time that researchers could use instead to focus
on the security issues themselves. However, researchers have no choice but to
develop custom solutions, as no comprehensive solution for data analysis spe-
cific to web security studies exists in the literature up to date. Creating such
a general, reusable and performant framework would allow researchers to gain
better insights into their large-scale data and expedite their research, ultimately
leading to them being able to investigate and respond to more phenomena at a
faster pace.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 124–132, 2018.
https://doi.org/10.1007/978-3-319-94496-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_10&domain=pdf
http://orcid.org/0000-0003-2297-8328

Idea: Visual Analytics for Web Security 125

Fig. 1. The pipeline of a visual analytics approach to data analysis for web security,
with below each stage the challenge it addresses.

Visual analytics is a promising approach to data analysis [10] which stud-
ies the integration of visualization and interaction into this process [16], using
the former to leverage the increased data processing power of the human per-
ception [10] and the latter to encourage data exploration. It has already been
explored within cyber security in the domains of network security [14] and mal-
ware analysis [20]. However, it has not yet been applied for web security, despite
its benefits to exploring vast data sets.

While the solutions from the other domains can serve as inspiration, they can-
not be directly adopted for web security, as each domain has its own challenges
that need to be addressed in visual analytics applications. In prior work [11],
we presented an overview of four such challenges, and constructed a design of
a visual analytics approach for web security, showcasing techniques that can
address these domain-specific challenges. Figure 1 shows the pipeline of this
design, alongside the challenges that each step seeks to solve.

In this paper, we explore the application of visual analytics to improve com-
mon analysis practices in web security studies. As an example of such an applica-
tion, we develop a case study of using an interactive visualization tool to repli-
cate a security study. Finally, we perform an initial validation of a prototype
that implements our design, to evaluate whether its techniques are beneficial for
analyzing the large web security data sets that are collected or publicly available.

2 Motivation

In order to gather correct and comprehensive insights from the large data sets
that are collected for web security studies, it is important that the analysis
process used can cope with the scale and diversity of that data. We discuss how
visual analytics applications would be appropriate for this analysis, taking into
account the specific characteristics of web security data.

Nowadays, web security studies routinely measure data for a large section
of the Internet: Amann et al. [1] covered 193 million domains in their study of
the HTTPS ecosystem, Englehardt and Narayanan [5] mapped online tracking
through 90 million requests originating from one million websites, and Durumeric
et al. [4] set up Censys for access to regular snapshots of the IPv4 address space.
Through visualization, these large amounts of data can be represented within
a single view, e.g. using aggregation. The visual representation makes it easier

126 V. Le Pochat et al.

to discover global patterns and detect outliers, which are often interesting data
points from a security perspective. Interactive operations can then allow zooming
into the interesting parts of the data to study them in more detail and determine
whether they have some special properties. Alternative or domain-specific repre-
sentations of the data can provide additional insights: displaying server location
data on a map may reveal geographical distributions, while plotting the IPv4
address space on a Hilbert curve [9] uncovers patterns in adjacent subnets.

The studies usually entail collecting different kinds of data and searching
relations among them and with other data sets. Amann et al. [1] determined
the correlation between the application of several security mechanisms related
to TLS, while Vissers et al. [19] determined the distribution of sites with cloud-
based security across the Alexa top 1 million websites. Multiple data sets can be
explored simultaneously by placing their visual representations on a dashboard.
By providing interactive combination of data sets, it is not necessary to consider
possible correlations upfront: instead, hypotheses based on the patterns and
insights found while exploring the data can immediately be tested by linking
relevant data sets. Moreover, other data sets, including publicly available ones,
could be imported to further augment the data that was collected. Interactions
for making selections and synchronizing them across data sets allow for changes
made in a certain view to automatically affect the visible data in other charts.

These examples show how visual analytics methods can be used in web secu-
rity studies to support common analysis tasks, in order to speed up and enhance
insight gathering and scale up the breadth of the studies. This helps researchers
to have a more complete overview of web security ecosystems.

3 Case Study

As a case study of analyzing web security data using an interactive visualization
tool, we replicate an experiment conducted by Englehardt and Narayanan as part
of their large-scale study of online tracking on Alexa’s top 1 million sites [5]. We
used a custom web crawler to repeat their measurement of inclusions of third-
party resources on those sites in April 2017, collecting 19.6 million inclusions.

The first step toward visually analyzing the data is making the inclusions
data set easily accessible in the visualization tool. The data set is transformed to
standardized data records and a context (a data type and description) is added,
to remove the heterogeneity and ambiguity of data formats and sources. In order
to provide interactive control of our crawler, we establish a link between it and
the inclusions data set, which enables the dispatching of queries for additional
data from within the interactive visual interface.

We can now use the interactive tool to start the crawling process. We load the
top one million websites and their rank, whose data is sourced from a publicly
available CSV file provided by Alexa1, into a chart. The distribution of sites is
shown in a bar chart, and by zooming into the desired range (through clicking

1 https://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

https://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Idea: Visual Analytics for Web Security 127

go
og
le-
an
aly
tic
s.c
om

go
og
lea
pis
.co
m

do
ub
lec
lick

.ne
t

go
og
le.
co
m

fac
eb
oo
k.c
om

fac
eb
oo
k.n
et

gs
tat
ic.
co
m

go
og
les
yn
dic
ati
on
.co
m

go
og
le.
be

fbc
dn
.ne
t

tw
itte
r.c
om

go
og
let
ag
ma
na
ge
r.c
om

go
og
lea
ds
erv
ice
s.c
om

bo
ots
tra
pc
dn
.co
m

ad
nx
s.c
om

yo
utu
be
.co
m

am
az
on
aw
s.c
om

clo
ud
fla
re.
co
m

clo
ud
fro
nt.
ne
t

ya
nd
ex
.ru

0

100,000

200,000

300,000

400,000

500,000

600,000

Fig. 2. A visualization of the third parties that are most included in Alexa’s top 1
million sites.

or dragging) we could select e.g. only the top 100 000 sites. However, we want to
collect data for all sites so we do not change the view. In a separate chart, we
load the data set for the inclusions per domain. No crawling has occurred yet,
so the data set and therefore the chart are empty for now.

Based on the shared domain data type, the tool knows that the two data sets
are compatible. This, together with the link between the inclusions data and the
crawler, allows us to interactively select and queue the one million sites from the
Alexa data set, for which the crawler will collect and store the requested data.

We analyze the data with our tool once the crawling operation has completed,
but could check on a preliminary distribution while it is ongoing. We load the
inclusions data set into a new chart. Based on the domain data type, the tool
automatically chooses a bar chart that displays the (sorted) aggregate number
of sites that include a certain third party. Figure 2 shows the generated chart,
replicating the original chart [5, Fig. 2].

By comparing both charts, we can see how tracking practices have changed
in the 15 months between the original crawl and ours. In general, inclusions
have decreased for the most popular sites. Google domains still serve the most
included resources, with Google Analytics as the top domain. The top 10 has
not changed much (differences are due to the merged googleapis.com and a
localized Google domain), but in the next 10 we see more movement, with CDNs
pushing out trackers such as BlueKai and MathTag. The visual representation
of the data makes it easier to detect these patterns and changes.

We can continue exploring the data to obtain further insights: we can request
more detailed data, the domains can be filtered or used as a filter with another
chart to study additional properties, and distributions or correlations can be
checked through combination with another data set.

128 V. Le Pochat et al.

Fig. 3. The interface of the prototype visualization client, with a dashboard allowing to
select data sets (1) and explore them simultaneously. The data set on the left is filtered
on the items visible in the top right chart (2), where two data sets on the same set of
items are combined (3). The bottom right chart shows data that has been interactively
obtained using a crawler (4).

For their analyses, Englehardt and Narayanan created the OpenWPM plat-
form [5], designed to simplify and automate data acquisition for web privacy
studies. Our approach is complementary, as it provides interactive visual anal-
ysis of the obtained data, with both processes being linked in the visualization
client. Moreover, the platform’s crawls can be interactively launched and man-
aged, which makes replicating studies straightforward (even periodically).

4 Design Evaluation

We implemented a prototype visualization tool, shown in Fig. 3, based on the
design in our prior work [11] addressing the challenges we identified for bringing
visual analytics to web security. We perform an initial evaluation of the prototype
on three different aspects, which form proxies for evaluating utility and usability.
More functionality makes a tool applicable to more use cases. For performance,
a more responsive tool does not interrupt the train of thought. For productivity,
requiring less effort to visualize data leads to more fluent exploration.

4.1 Functionality

We evaluate our tool’s functionality using four criteria obtained from the sur-
veys of open-source and commercial visual analytics systems by Harger and
Crossno [8] and Zhang et al. [22] respectively: (1) data source support, (2) visu-
alization and interaction techniques, (3) data analysis methods and (4) system
architecture.

We hide the heterogeneity of data sources used in web security through a
transformation into standardized records. This allows us to support displaying

Idea: Visual Analytics for Web Security 129

individual data sets from any data source. Two data sets of the same source can
be combined interactively, however, supporting the composition of multiple data
sets across sources is not yet supported. This would require a more complex data
retrieval setup since data can no longer be combined at the database level.

The charts we add follow best practices from information visualization [17], in
order to ensure correct interpretation of the data without requiring visualization
expertise. Web security data comprises multiple data types, and currently our
charts can display numerical and geospatial data. Graph and temporal data are
currently unsupported, but our modular approach to charts simplifies extending
the tool with appropriate visualizations. As for interaction, we support filtering
and zooming to study data both as an overview and in depth [15], as well as
linking and brushing [21] to enable synchronization of selections across data sets.

We have not yet added any interactive data analysis, such as statistical mea-
sures or data mining algorithms. These analyses would be interactively applied
in the client but executed on the server, as the calculations need to be performed
before aggregating the data.

We implement our tool using the client-server model, which places the burden
of retrieval and processing of the raw large-scale data on the server. This reduces
the processing power needed on the client and allows it to be web-based and
therefore accessible across devices and platforms.

4.2 Performance

We focus our performance evaluation on how well the process scales with data
sets of increasing size, as web security studies often yield large amounts of data.
To achieve better scalability, we integrate default aggregation into our design,
and we only request non-aggregated records upon explicit selection. We evaluate
two performance aspects: the time needed to answer a data request, as this
affects the responsiveness of our tool and therefore the exploration process [12],
and the size of the resulting data, which affects the processing speed and transfer
time. We test on data sets of 0.1, 1 or 10 million randomly generated items with
attributes of either 100, 1,000 or 10,000 possible values.

For both the aggregated and non-aggregated approach, the time needed to
retrieve the whole data set scales linearly with the size of the data set. However,
the request for aggregated data is answered around ten times faster, leading
to better responsiveness for larger data. Regarding the size of the response,
aggregated data scales with the number of bins, but non-aggregated data scales
with the size of the data set. For our test set, the latter yields a document that
is at least six orders of magnitude larger.

4.3 Productivity

While visual interfaces are known to speed up analysis of cyber security data [7],
analysts may avoid the process of creating visualizations due to it being difficult
and labor-intensive [6]. We reduce this effort through automation of two phases:
setting up the transformation of data sets to standardized records and selecting

130 V. Le Pochat et al.

appropriate charts based on the data type. We evaluate the complexity of our
visualization tool by repeating analyses using the original data from a study by
Vissers et al. [18] on the parked domains ecosystem.

Data sets are transformed by executing code that describes data access and
parsing. This code can be custom developed, which for a transformation to aggre-
gated data requires 29 logical lines using the methodology of Nguyen et al. [13];
in total there are 28 such transformations. Automatically generating this code
requires less configuration: for an SQL database 8 parameters are sufficient.

To quantify the effort of visualizing and exploring data, we estimate the
number of actions and time needed using the Keystroke-Level Model [3]. Creating
a new chart takes 4.0 s for four operations. Applying an operation to a chart
(e.g. combining two data sets) takes 6.6 s for six operations. Combining these
tasks into an analysis where two data sets are loaded, a selection is made in one
chart and that selection is then applied to the other chart, takes 17 s.

4.4 Discussion and Future Work

Our evaluation shows that several design elements have a positive impact on
the three evaluated aspects and therefore on utility and usability: abstracting
over data sources expands functionality, aggregation improves responsiveness
and automation reduces the visualization effort. Opportunities for further devel-
opment lie in additional data processing and analysis functionality as well as
further simplification of the visualization process.

In order to formally evaluate the utility and usability of our tool, we plan to
validate it through a user study with web security researchers and analysts. This
validation will allow us to more conclusively determine if our visual analytics
approach is an adequate solution for enhancing their analysis workflow.

5 Conclusion

Through an overview of common analyses in web security studies and the devel-
opment of a case study, we demonstrate how visual analytics can be advantageous
for analyzing and extracting insights from the vast amounts of web security data
generated and publicly available. However, domain-specific challenges need to be
addressed in order to develop a useful and usable solution. Through an initial
evaluation of a prototype tool, we show that techniques such as data abstrac-
tion, aggregation and automated visualization effectively tackle these challenges
to enhance the exploration and interpretation of large web security data sets.

In the future, we plan to make our visualization tool available to the wider
communities of researchers and analysts, as a platform for stimulating collabora-
tion through shared data sets and analyses. In combination with easier (periodic)
replication of previous studies, this opens up even more possibilities to analyze
ecosystems and test hypotheses using the wealth of available data.

Acknowledgments. This research ispartially fundedbytheResearchFundKULeuven.

Idea: Visual Analytics for Web Security 131

References

1. Amann, J., Gasser, O., Scheitle, Q., Brent, L., Carle, G., Holz, R.: Mission accom-
plished?: HTTPS security after DigiNotar. In: Proceedings of the IMC, pp. 325–340
(2017)

2. Cangialosi, F., Chung, T., Choffnes, D., Levin, D., Maggs, B.M., Mislove, A., Wil-
son, C.: Measurement and analysis of private key sharing in the HTTPS ecosystem.
In: Proceedings of the CCS, pp. 628–640 (2016)

3. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Inter-
action. Lawrence Erlbaum Associates, Mahwah (1983)

4. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search
engine backed by internet-wide scanning. In: Proceedings of the CCS, pp. 542–553
(2015)

5. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the CCS, pp. 1388–1401 (2016)

6. Fink, G.A., North, C.L., Endert, A., Rose, S.: Visualizing cyber security: usable
workspaces. In: Proceedings of the VizSec, pp. 45–56 (2009)

7. Goodall, J.R.: Visualization is better! A comparative evaluation. In: Proceedings
of the VizSec, pp. 57–68. IEEE (2009)

8. Harger, J.R., Crossno, P.J.: Comparison of open-source visual analytics toolkits.
In: Proceedings of the VDA. SPIE (2012)

9. Irwin, B., Pilkington, N.: High level Internet scale traffic visualization using Hilbert
curve mapping. In: Goodall, J.R., Conti, G., Ma, K.L. (eds.) VizSEC 2007. Math-
ematics and Visualization, pp. 147–158. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78243-8 10

10. Keim, D.A.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44
(2001)

11. Le Pochat, V., Van Goethem, T., Joosen, W.: Towards visual analytics for web
security data. In: Proceedings of the PAM (Posters) (2018). Extended abstract.
https://lirias.kuleuven.be/handle/123456789/618030

12. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis.
IEEE Trans. Vis. Comput. Graph. 20(12), 2122–2131 (2014)

13. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A SLOC counting stan-
dard. In: Proceedings of the COCOMO. USC CSSE (2007). http://csse.usc.edu/
TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf

14. Shiravi, H., Shiravi, A., Ghorbani, A.A.: A survey of visualization systems for
network security. IEEE Trans. Vis. Comput. Graph. 18(8), 1313–1329 (2012)

15. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of the VL, pp. 336–343 (1996)

16. Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Devel-
opment Agenda for Visual Analytics. IEEE Computer Society Press, Washington
(2005)

17. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press,
Cheshire (1983)

18. Vissers, T., Joosen, W., Nikiforakis, N.: Parking sensors: analyzing and detecting
parked domains. In: Proceedings of the NDSS. Internet Society (2015)

19. Vissers, T., Van Goethem, T., Joosen, W., Nikiforakis, N.: Maneuvering around
clouds: bypassing cloud-based security providers. In: Proceedings of the CCS, pp.
1530–1541 (2015)

https://doi.org/10.1007/978-3-540-78243-8_10
https://doi.org/10.1007/978-3-540-78243-8_10
https://lirias.kuleuven.be/handle/123456789/618030
http://csse.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf
http://csse.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf

132 V. Le Pochat et al.

20. Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D.A., Aigner,
W.: A survey of visualization systems for malware analysis. In: Proceedings of the
EuroVis - STARs, pp. 105–125. Eurographics Assoc. (2015)

21. Ward, M.O.: Linking and brushing. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, pp. 1623–1626. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-0-387-39940-9 1129

22. Zhang, L., Stoffel, A., Behrisch, M., Mittelstadt, S., Schreck, T., Pompl, R., Weber,
S., Last, H., Keim, D.A.: Visual analytics for the big data era - a comparative
review of state-of-the-art commercial systems. In: Proceedings of the VAST, pp.
173–182 (2012)

https://doi.org/10.1007/978-0-387-39940-9_1129
https://doi.org/10.1007/978-0-387-39940-9_1129

Author Index

Bodden, Eric 27
Brechelmacher, Otto 1
Bunse, Christian 96

Chattopadhyay, Sudipta 9
Chekole, Eyasu Getahun 9
Corrodi, Claudio 116

Gerking, Christopher 27
Ghafari, Mohammad 61, 116
Gyselinck, Jago 44

Hazhirpasand, Mohammadreza 61
Huaqun, Guo 9

Joosen, Wouter 124

Krenn, Willibald 1

Le Pochat, Victor 124

Nierstrasz, Oscar 116
Nikiforakis, Nick 77

Ochoa, Martín 9

Piessens, Frank 44
Plotz, Sebastian 96
Pretschner, Alexander 108

Salem, Aleieldin 108
Schmidt, Tabea 108
Schubert, David 27
Spring, Timo 116
Starov, Oleksii 77
Strackx, Raoul 44

Tarrach, Thorsten 1

Van Bulck, Jo 44
Van Goethem, Tom 124

	Preface
	Organization
	Contents
	A Vision for Enhancing Security of Cryptography in Executables
	1 Introduction
	2 The Vision
	3 Available Already
	3.1 Supporting Tools
	3.2 First Results
	3.3 Evaluation

	4 Conclusion
	References

	Enforcing Full-Stack Memory-Safety in Cyber-Physical Systems
	1 Introduction
	2 Background
	2.1 Overview of CPS
	2.2 Overview of SWaT
	2.3 ASan
	2.4 KASan

	3 Attacker Model and Memory Safety Overhead
	3.1 Attacker Model
	3.2 Modeling Memory Safety Overhead
	3.3 Quantifying Tolerability

	4 Enforcing Full-Stack Memory-Safety
	4.1 Enforcing User-Space Memory-Safety
	4.2 Enforcing Kernel-Space Memory-Safety
	4.3 Detection and Mitigation

	5 Experimental Design
	5.1 open-SWaT
	5.2 Measurement Details

	6 Evaluation and Discussion of the Results
	6.1 Security
	6.2 Performance
	6.3 Memory Usage
	6.4 Validation and Sensitivity Analysis

	7 Related Work
	8 Conclusion
	References

	Model Checking the Information Flow Security of Real-Time Systems
	1 Introduction
	2 Fundamentals
	2.1 Timed Automata
	2.2 Timed Bisimulation
	2.3 Noninterference
	2.4 Motivating Example

	3 Related Work
	3.1 Complementary Approaches
	3.2 Time-Dependent Information Flow Security

	4 Checking Noninterference of Timed Automata
	4.1 Refinement Checking
	4.2 Test Automata Construction

	5 Proof of Concept
	6 Conclusions and Future Work
	References

	Off-Limits: Abusing Legacy x86 Memory Segmentation to Spy on Enclaved Execution
	1 Introduction
	2 Background
	2.1 Intel SGX and Adversary Model
	2.2 x86 Memory Management

	3 Segmentation-Based Attacks
	3.1 Interaction Between Segmentation and SGX
	3.2 Attack #1: Page Granular Attacks
	3.3 Precise Byte Granular Attacks

	4 A Practical End-to-End Attack Scenario
	5 Discussion and Mitigations
	6 Conclusion
	A Vulnerable Microcode Versions
	References

	One Leak Is Enough to Expose Them All
	1 Introduction
	2 Background
	3 Port Scanning
	4 Experiment
	4.1 Setup
	4.2 Result
	4.3 Threats to Validity

	5 Risks and Countermeasures
	5.1 Attacks
	5.2 WebRTC IP Leak Guard

	6 Related Work
	7 Conclusion
	References

	PrivacyMeter: Designing and Developing a Privacy-Preserving Browser Extension
	1 Introduction
	2 Design and Interface
	3 PrivacyMeter's Evaluation
	4 Crowdsourcing
	5 Future Work
	6 Related Work
	7 Conclusion
	References

	Security Analysis of Drone Communication Protocols
	1 Introduction
	2 Related Work
	3 Protocol Principles
	3.1 Structure of a Message
	3.2 Encoding
	3.3 Modulation
	3.4 Frequency Hopping Spread Spectrum (FHSS)

	4 Demonstration
	4.1 Approach
	4.2 Practical Implementation

	5 Summary and Conclusions
	References

	Idea: Automatic Localization of Malicious Behaviors in Android Malware with Hidden Markov Models
	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 Data Generation
	3.2 Training and Detection
	3.3 Localization

	4 Evaluation
	5 Conclusions and Future Work
	References

	Idea: Benchmarking Android Data Leak Detection Tools
	1 Introduction
	2 Related Work
	3 Classification and Selection of Android Analysis Tools
	4 Benchmark Implementation
	5 Experimental Setup
	6 Results
	7 Threats to Validity
	8 Conclusions and Future Work
	References

	Idea: Visual Analytics for Web Security
	1 Introduction
	2 Motivation
	3 Case Study
	4 Design Evaluation
	4.1 Functionality
	4.2 Performance
	4.3 Productivity
	4.4 Discussion and Future Work

	5 Conclusion
	References

	Author Index

