Shiping Chen
Harry Wang
Liang-Jie Zhang (Eds.)

LNCS 10974

Blockchain - ICBC 2018

First International Conference
Held as Part of the Services Conference Federation, SCF 2018
Seattle, WA, USA, June 25-30, 2018, Proceedings

agﬁﬁ

ICBC

Blockchain

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10974

More information about this series at http://www.springer.com/series/7410

Shiping Chen - Harry Wang
Liang-Jie Zhang (Eds.)

Blockchain — ICBC 2018

First International Conference

Held as Part of the Services Conference Federation, SCF 2018
Seattle, WA, USA, June 25-30, 2018

Proceedings

@ Springer

Editors

Shiping Chen Liang-Jie Zhang

CSIRO Computational Informatics Kingdee International Software Group Co., Ltd
Marsfield, NSW Shenzhen

Australia China

Harry Wang

University of Delaware

Newark, DE

USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-94477-7 ISBN 978-3-319-94478-4 (eBook)

https://doi.org/10.1007/978-3-319-94478-4
Library of Congress Control Number: 2018947343
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4603-0024

Preface

The International Conference on Blockchain (ICBC) aims to provide an international
forum for both researchers and industry practitioners to exchange the latest funda-
mental advances in the state-of-the-art technologies and best practices of blockchain, as
well as emerging standards and research topics that would define the future of
blockchain.

This volume presents the accepted papers for the 2018 International Conference on
Blockchain (ICBC 2018), held in Seattle, USA, during June 25-30, 2018. All topics
regarding blockchain technologies, platforms, solutions, and business models align
with the theme of ICBC. Topics of interest include, but are not limited to, new
blockchain architecture, platform constructions, blockchain development and block-
chain services technologies as well as standards, and blockchain services innovation
lifecycle including enterprise modeling, business consulting, solution creation, services
orchestration, services optimization, services management, services marketing, and
business process integration and management.

We accepted 23 papers, including 16 full papers and seven short papers. Each was
reviewed and selected by at least three independent members of the ICBC 2018
International Program Committee. We are pleased to thank the authors whose sub-
missions and participation made this conference possible. We also want to express our
thanks to the Organizing Committee and Program Committee members, for their
dedication in helping to organize the conference and reviewing the submissions. We
owe special thanks to the keynote speakers for their impressive speeches.

May 2018 Shiping Chen
Harry Wang
Liang-Jie Zhang

Organization

General Chairs

Chunxiao Xing Tsinghua University, China
Yong Liu Zhongguancun Internet Finance Institute, China

Program Chairs

Shiping Chen CSIRO Data61, Australia
Harry Wang University of Delaware, USA

Application and Industry Track Chairs

Fabrizio Lamberti Politecnico di Torino, Italy
Khaled Salah Khalifa University of Science, Technology
and Research (KUSTAR), UAE
Luo Lei University of Electronic and Science Technology

of China (UESTC)

Program Vice Chair

Hanhua Chen Huazhong University of Science and Technology,
China

Services Conference Federation (SCF 2018)

General Chairs

Calton Pu Georgia Tech, USA
Wu Chou Essenlix Corporation, USA

Program Chair

Liang-Jie Zhang Kingdee International Software Group Co., Ltd, China

Finance Chair

Min Luo Huawei, USA

VI Organization

Panel Chair

Stephan Reiff-Marganiec University of Leicester, UK

Tutorial Chair

Carlos A. Fonseca IBM T.J. Watson Research Center, USA

Industry Exhibit and International Affairs Chair

Zhixiong Chen Mercy College, USA

Organizing Committee

Huan Chen (Chair) Kingdee International Software Group Co., Ltd, China
Jing Zeng (Co-chair) Tsinghua University, China
Cheng Li (Co-chair) Tsinghua University, China
Yishuang Ning (Co-chair) Tsinghua University, China
Sheng He (Co-chair) Tsinghua University, China

Steering Committee

Calton Pu Georgia Tech, USA
Liang-Jie Zhang (Chair) Kingdee International Software Group Co., Ltd, China

ICBC 2018 Program Committee

Fabrizio Lamberti Politecnico di Torino, Italy

Allen Wei-Lun Chang Tamkang University, Taiwan, China
Ligiang Wang University of Central Florida, USA
Mustafa Canim IBM T.J. Watson Research Center, USA
Nuno Laranjeiro University of Coimbra, Portugal

Xumin Liu Rochester Institute of Technology, USA
Pelin Angin Middle East Technical University, Turkey
Massimo Mecella Sapienza Universita di Roma, Italy
Marouane Kessentini University of Michigan, USA

Wubin Li Ericsson Research, Italy

Yu Qi Rochester Institute of Technology, USA
Xiaofeng Yu Nanjing University of Financeand Economics, China
Walid Gaaloul TELECOM SudParis, France

Sameep Mehta IBM Research India

Suoratik Mukhopadhyay Louisiana State University, USA

Guozhu Dong Wright State University, USA

Akhil Kumar Pennsylvania State University, USA

Tao Chen University of Birmingham, UK

Praveen Jayachandran IBM India

Roberto Natella
Pengcheng Zhang
Mohamad Reza Hoseiny
Stefan Tai

Waldemar Hummer
Amjad Gawanmeh
Pengcheng Xiong Xiong
Francois Charoy

Jun Shen

Latifur Khan

Richard Mark Soley
Nuno Antunes

John Miller

Lina Yao

Xiang Zhao

Chao Wang

Hailong Sun

Wei Li

Haopeng Chen

Shi Rui-Sheng

Luca Cagliero
Shigeru Hosono
Ashiq Anjum
Bo Cheng

Guoquan Wu

Huan Chen

Yun Yang Yang
Daphne Soe-Tsy Yuan
Albert Lam

Han Rui

Winnie Cheng
Wanchun Dou
Roberto Di Pietro
Yan Bai

Fahimeh Farahnakian
Jiuyun Xu
Ernesto Damiani
Bruno Cabral
Salima Benbernou
Rui Andr

Damian Andrew Tamburri

Organization

Federico II University of Naples, Italy
Hohai University, China

The University of Sydney, Australia
Berlin University, Germany

IBM Research, USA

Khalifa University, Abu Dhabi, UAE
Apache Hive PMC, USA

University of Lorraine, France
University of Wollongong, Australia
University of Texas at Dallas, USA
Object Management Group, USA
University of Coimbra, Portugal
University of Georgia, USA

The University of New South Wales, Australia

National University of Defense, China
University of Science and Technology, China
Beihang University, China

The University of Sydney, Australia
Shanghai Jiao Tong University, China

Beijing University of Posts and Telecommunication

School of Humanities, China
Politecnico di Torino, Italy
NEC Corporation, Japan
University of Derby, UK

IX

Beijing University of Posts and Telecommunications,

China
Chinese Academy of Sciences, China

Kingdee International Software Group Co., Ltd, China

Swinburne University of Technology, Australia

National Chengchi University, China

Hong Kong Baptist University, Hong Kong,
SAR China

Chinese Academy of Sciences, China

American Express, USA

Nanjing University, China

University of Rome, Italy

University of Washington Tacoma, USA

University of Turku, Finland

China University of Petroleum, China

University of Milan, Italy

University of Coimbra, Portugal

Paris Descartes University, UK

CISUC, University of Coimbra, Portugal

Jheronimus Academy of Data Science, TU/e,
The Netherlands

X Organization
Katt Basel

Joao E. Ferreira
Georgiana Copil
Upendra Sharma
Houbing Song
Onur Altintas
Natalia Kryvinska
Ladjel Bellatreche
Shiping Chen
Yen-Hao Hsieh
Rushikesh Joshi
Shruti Kunde
Jian Cao
Jie Xu
Nagarajan Kandasamy
Jiayu Zhou
Kisung Lee Lee
Banage T. G. S.
Bhanu Prasad
Stephan Reiff-Marganiec
Rik Eshuis
Pradeep Kumar
Murukannaiah
Javid Taheri Taheri
Muhammed Younas
Rami Bahsoon
Haytham ElGhazel
Xiaofang Zhou
Paci Federica Maria
Markus Kirchberg

Mohamed Mohamed
Vijay Naik

Ajay Mohindra
Mohamed Sellami
Samir Tata

Ingo Weber
Qinghua Lu

Norwegian Information Security Laboratory (NISlab)
University of Gjevik, Norway

Universidade de Sido Paulo, Brazil

TU Wien, Austria

IBM T.J. Watson Research Center, USA

West Virginia University, USA

Toyota, Japan

University of Vienna, Austria

LIAS/ISAE-ENSMA, France

CSIRO, Australia

Tamkang University, Taiwan, China

IIT Bombay, India

TCS, Hong Kong, SAR China

Shanghai Jiaotong University, China

University of Leeds, UK

Drexel University, USA

Arizona State University, USA

Louisiana State University, USA

Kumara Sabaragamuwa University of Sri Lanka

Florida A&M University, USA

University of Leicester, UK

Eindhoven University of Technology, The Netherlands

Rochester Institute of Technology, USA

Karlstad University, Sweden

Oxford Brookes University, UK

University of Birmingham, UK

Polytech Lyon, France

University of Queensland, Australia

University of Southampton, UK

VISA Inc. and National University of Singapore,
Singapore

IBM Research - Almaden, USA

IBM T.J. Watson Research Center, USA

IBM T.J. Watson Research Center, USA

ISEP

IBM Research, USA

CSIRO Data61, Australia

CSIRO, Australia

Contents

Research Track: Blockchain Research

Using Ethereum Blockchain in Internet of Things: A Solution for Electric
Vehicle Battery Refueling
Haoli Sun, Song Hua, Ence Zhou, Bingfeng Pi, Jun Sun,
and Kazuhiro Yamashita

A Simulation Approach for Studying Behavior and Quality

of Blockchain Networks.
Bozhi Wang, Shiping Chen, Lina Yao, Bin Liu, Xiwei Xu,
and Liming Zhu

A Design of Digital Rights Management Mechanism Based
on Blockchain Technology.
Zehao Zhang and Li Zhao

InfiniteChain: A Multi-chain Architecture with Distributed Auditing

of Sidechains for Public Blockchains.
Gwan-Hwan Hwang, Po-Han Chen, Chun-Hao Lu, Chun Chiu,
Hsuan-Cheng Lin, and An-Jie Jheng

Research Track: Smart Contracts

A Method to Predict the Performance and Storage of Executing Contract
for Ethereum Consortium-Blockchain
Huijuan Zhang, Chengxin Jin, and Hejie Cui

Smart Contract Programming Languages on Blockchains: An Empirical
Evaluation of Usability and Security
Reza M. Parizi, Amritraj, and Ali Dehghantanha

Applying Design Patterns in Smart Contracts: A Case Study
on a Blockchain-Based Traceability Application
Yue Liu, Qinghua Lu, Xiwei Xu, Liming Zhu, and Haonan Yao

AODV-Based Routing for Payment Channel Networks
Philipp Hoenisch and Ingo Weber

XII Contents

Application Track: Blockchain Solutions

Faster Dual-Key Stealth Address for Blockchain-Based Internet

of Things Systems. 127
Xinxin Fan
Blockchain-Based Solution for Proof of Delivery of Physical Assets 139

Haya R. Hasan and Khaled Salah

Towards Legally Enforceable Smart Contracts 153
Dhiren Patel, Keivan Shah, Sanket Shanbhag, and Vasu Mistry

Border Control and Immigration on Blockchain 166
Dhiren Patel, Balakarthikeyan, and Vasu Mistry

Application Track: Business Models and Analyses

RPchain: A Blockchain-Based Academic Social Networking Service
for Credible Reputation Building. 183
Dong Qin, Chenxu Wang, and Yiming Jiang

IPFS-Blockchain-Based Authenticity of Online Publications. 199
Nishara Nizamuddin, Haya R. Hasan, and Khaled Salah

Blockchain Framework for Textile Supply Chain Management: Improving
Transparency, Traceability, and Quality 213
Magdi ElMessiry and Adel ElMessiry

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market. . . . 228
Liping Deng, Jin Che, Huan Chen, and Liang-Jie Zhang

Short Paper Track: Fundamental Research

FBaaS: Functional Blockchain as a Service 243
Huan Chen and Liang-Jie Zhang

LedgerGuard: Improving Blockchain Ledger Dependability 251
Qi Zhang, Petr Novotny, Salman Baset, Donna Dillenberger,
Artem Barger, and Yacov Manevich

Blockchain-Based Research Data Sharing Framework for Incentivizing
the Data OWNers.ttt e e 259
Ajay Kumar Shrestha and Julita Vassileva

A Novel Blockchain as a Service Paradigm 267
Zhitao Wan, Mingiang Cai, Jinqing Yang, and Xianghua Lin

Contents X1II

Short Paper Track: Application Researches

A Business-Oriented Schema for Blockchain Network Operation 277
Sheng He, Chunxiao Xing, and Liang-Jie Zhang

Your Device and Your Power, My Bitcoin. 285
Song Li and Scott Wu

Blockchain in Global Trade 293
Jack Duan and Milan Patel

Author Index e 297

Research Track: Blockchain Research

q

Check for
updates

Using Ethereum Blockchain in Internet
of Things: A Solution for Electric Vehicle
Battery Refueling

Haoli Sunl(%), Song Hua!, Ence Zhou!, Bingfeng Pi!, Jun Sun?,
and Kazuhiro Yamashita®

! Fujitsu Research and Development Center, Suzhou, China
{sunhaoli, huasong, zhouence, winter. pi}@cn. fujitsu. com
% Fujitsu Research and Development Center, Beijing, China
sunjun@cn. fujitsu. com
3 Fujitsu Laboratories, Kawasaki, Japan
y-kazuhiro@jp. fujitsu. com

Abstract. Internet of Things (IoT) technology has become more and more
popular recently. However, due to the limited resources of IoT devices and the
centralized system architecture, some severe issues remain difficult to solve,
such as: overload of centralized server, single point of failure, and the possibility
of malicious usage of personal information. Blockchain technology has achieved
big success in cryptocurrency trading. It has many unique features, such as
consensus mechanism, peer to peer communication, implementing trust without
a trusted third party, and transaction based on smart contract. Blockchain
appears to be suitable to help building a distributed and autonomic IoT system to
overcome the aforementioned problems.

In this paper, we introduce an Ethereum blockchain based rich-thin-clients
IoT solution to solve the problems caused by limited resources of IoT devices
when adopting mining mechanism of blockchain in IoT scenarios. Rich clients
and thin clients can both provide blockchain accessing and data collecting
functions while only rich clients with more resources can perform mining
process. Furthermore, based on the solution, we present an electric vehicle
battery refueling system in which battery swapping approach is adopted. We
also explain the rationality of our solution by experiments and compare our
solution with other blockchain based IoT solutions. Our conclusion is that our
blockchain-IoT solution is suitable for various IoT scenarios while avoiding the
problems caused by the limited resources of IoT devices.

Keywords: Internet of Things (IoT) - Blockchain - Ethereum
Battery refueling

1 Introduction

Blockchain was first introduced by Satoshi Nakamoto in 2008 as the underlying data
structure of Bitcoin [1]. As its name suggested, a blockchain is a chain of blocks, in which
each block contains a number of transactions which are hashed in a Merkle Tree [2].

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 3-17, 2018.
https://doi.org/10.1007/978-3-319-94478-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_1&domain=pdf

4 H. Sun et al.

ﬁlock n \ ﬁlock n+1 \

Block Header Block Header
— [Previous Hash] [Nonce] { Previous Hash] [Nonce] —
Merkle Root L Merkle Root

Hash01 Hash23 Hash45 Hash67

Hash0]J (Hash1 [Ha:hZ][Ha$h3] [Ha$h4] Hash5) (Hash6)Hash7
&Txo][m] (x2] (Ox3] w’x4][Tx5] [Tx6][Tx7)

Fig. 1. Typical structure of a blockchain

By storing the hash value of the previous block, each block refers to its previous block,
forming a chain structure. Figure 1 shows the typical structure of a blockchain. Together
with peer-to-peer communication, consensus between miners such as Proof of Work
(PoW), asymmetric encryption and digital signature, a blockchain system can provide a
temper-proof and immutable value-transfer network which facilitates the booming of
cryptocurrencies. This kind of blockchains which mainly used in cryptocurrencies can be
defined as blockchain 1.0 [3].

Although Bitcoin supports scripts to define simple rules, the scripts are Non-
Turing-Complete. In order to make blockchain suitable for more scenarios other than
cryptocurrency, Ethereum [4] introduced smart contract which can be constructed with
Turing-Complete programming languages (e.g. solidity [5]). Smart contracts are exe-
cutable code stored on blockchain, defining what information to store and what
transactions to execute. Theoretically, all transaction based state machines can be built
by smart contracts. Figure 2 shows the mechanism of smart contracts. If an application
is built only by Ethereum-like blockchain without cyber-physical interaction or other
external facilities, it is defined as blockchain 2.0, which means blockchain based
economic, market, and financial related applications [3].

Blockchain 3.0 means blockchain based applications beyond the scenarios of
blockchain 2.0 [3]. For example, blockchain based naming systems [6, 7], health caring
systems, IoT systems [8—11, 21, 22] and so on. As for blockchain based IoT systems,
besides the blockchain related factors such as consensus method, smart contract support

check external data source

Preset trigger condition e

(specific time« event etc.) —— condft!on 1: response 1
i _ condition 2: response 2

Smart Contracts condition 3: response 3 |
Preset response rules e |
(specific ransaction = condition n:responsen_
action etc.)
State Value

------ | block |—>] block [——>| block |—] block |—[block |—> -

Fig. 2. The mechanism of smart contracts

Using Ethereum Blockchain in Internet of Things 5

or not and state machine management, IoT related factors such as the constraint of
computing power, memory of devices and network bandwidth, and security of devices
must also be considered. However, the problem that the limited resources of IoT
devices cannot well support the mining process of blockchain nodes occurs frequently.
In this paper, we introduce a rich-thin-clients solution for blockchain based IoT systems
to solve the problem.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some
blockchain based IoT solutions. In Sect. 3, we propose an Ethereum blockchain based
rich-thin-clients IoT solution and an implementation of EV battery refueling system
using the proposed solution. A performance experiment is also introduced in Sect. 3 to
prove the efficiency of the proposed solution. In Sect. 4, we compare our blockchain
based IoT solution with others. In Sect. 5, we provide conclusions and future work.

2 Blockchain Based IoT Solutions

IoT means the Internet to which “things” (devices, sensors, actuators, etc.) are con-
nected. The data from the physical world is gathered by sensors, delivered through the
Internet. The users (or control unit) of IoT systems can analyze the gathered data to
discover trends or patterns, or change the status of actuators based on the data. IoT
technology has been developing rapidly these years. Gartner, Inc. forecasted that by
2020, 20.8 billion IoT devices will be connected to the Internet [15].

However, due to the limited computing power, storage and network bandwidth of IoT
devices [16] and the centralized system architecture, some severe issues remain difficult
to solve. Minhaj and Khaled listed out the security issues of different layers in IoT systems

ELINNTS EEINTS

[16], such as “jamming adversaries”, “insecure physical interface”, “insecure neighbor
discovery”, “sinkhole and wormhole attacks”, “sybil attacks” and so on. Besides, Nir [17]
summarized IoT challenges mainly caused by the centralized architecture of current IoT
systems: “costs and capacity constraints”, “deficient architecture”, “cloud server down-
time and unavailability of services”, and “susceptibility to manipulation”.

Marco et al. [18] suggested that a hierarchical architecture, in which additional
applications should be built on top of an underlying blockchain, is suitable for building
IoT systems, e.g., the architecture of Blockstack [7] which is proposed by Muneeb
et al. Blockstack is a global naming and storage system, by which users can register
name-value pairs. The name-value pairs are generated according to particular private
keys, and only the owner of the private keys can perform writing or updating opera-
tions on the name-value pairs. Blockstack separates “control plane” from “storage
plane”, which makes Blockstack outperforms Namecoin [6]. Furthermore, the authors
believe that various state machines can be built in the “Control plane” of BlockStack.

Ali et al. [8] proposed a blockchain based IoT solution for smart homes, and they
conducted further researches about their proposed solution [19, 20]. The system
architecture of their solution is also hierarchical, consisting of “smart home”, “overlay
network”, and “cloud storage”. “Smart home” contains all smart devices in the home,
local blockchain, smart home manager (SHM) [20], and local storage. “Overlay net-
work” connects smart homes and cloud storages, and it provides distributed trust by

overlay blockchain. “Cloud storage” is used to store data from smart home in order to

6 H. Sun et al.

provide data to other services on the Internet. Considering IoT devices do not have
enough resources to support PoW, the authors designed their proposed system archi-
tecture without PoW. In a smart home, local blockchain is centrally managed by the
owner through SHM. The nodes of overlay network could be SHMs and other devices
with relatively high resource. The nodes are grouped in clusters to decrease network
overload, and one of the nodes in each cluster is elected as a cluster head (CH). CHs are
responsible for evaluating if other CHs are trustable by maintaining a trust rating based
on direct and indirect evidence. The overlay blockchain is maintained by the CHs,
since consensus mechanism is not adopted in this system, forking of blockchain is
permitted. The authors came to the conclusion that the architecture they proposed keeps
the benefits of traditional blockchain such as privacy and security while eliminating
PoW of traditional blockchain for better performance.

Seyoung et al. [9] constructed an automatic electricity usage adjustment system
based on Ethereum. The system consists of the Ethereum blockchain, a smart phone
and three Raspberry Pis respectively representing an electricity meter, an air condi-
tioner and a lightbulb. Since the smart contracts can define the behaviors of IoT
devices, a user can set up policies of how the devices work using a smart phone. For
example, user can define a threshold of electricity usage, once the threshold is reached,
the air conditioner will change to energy saving mode. The authors used RSA algo-
rithm to provide public key and signature functions instead of Ethereum accounts for
fine-granularity.

Besides, Kamanashis et al. [10] proposed a general architecture for a blockchain
based smart city solution, they utilized different blockchain systems in their solution,
such as using both Ethereum and NXT in communication layer and using both per-
missionless and permissioned distributed ledgers in database layer, which may be an
inspiring idea for utilizing blockchain systems in complex 10T scenarios.

In summary, the IoT issues which can be solved by blockchain are mainly the
issues caused by the centralized architecture of current IoT systems. Some of the issues
are listed:

e Central server failures: failures may be caused by fault of software or attacks.
¢ Single point of failure: a compromised device can cause failures of entire system.
e Lack of privacy: personal information saved in central server may be abused.

Blockchain can solve the above issues because its decentralized architecture can
prevent central server failures or single point of failure, and its public-private key
encryption can provide pseudonymity [18] to protect personal information at some
degree. However, the issues caused by the limited resources of IoT devices still remain
difficult to solve: on one hand, most of the IoT devices do not have enough resources to
support PoW, on the other hand, if a device is not a node of blockchain network, its
security and identity is difficult to be guaranteed.

Besides, we found that the following factors are essential for constructing block-
chain based IoT systems:

e What underlying blockchain system should be used?
— What consensus method should be used?

Using Ethereum Blockchain in Internet of Things 7

— Is Turing-Complete programming necessary or not? (Requiring smart contracts
or not?)

— How to manage state machines?

— How should security and privacy be guaranteed?

e How to combine blockchain with IoT?

— How to enable cyber-physical interaction?

— If IoT devices need to be blockchain nodes or not?

— How to design the system architecture? (hierarchical architectures are often
adopted [7, 8, 10, 11, 22])

— How to design the topology of IoT devices and blockchain nodes? (Such as
clusters in [8], a cluster is a star topology. And the topology between CHs is
P2P)

3 Ethereum Blockchain Based Rich-Thin-Clients IoT
Solution

In this section, we propose an Ethereum blockchain based rich-thin-clients IoT solu-
tion. We designed a rich-thin-clients architecture to solve the aforementioned dilemma
between limited resources of IoT devices and the concerns for centralized architecture.
The thin clients, which are responsible for user interaction and IoT data collection, can
be considered as IoT devices with constrained resources; the rich clients, which are thin
clients plus full blockchain nodes, can be considered as devices that have resources
greater than or equal to personal computers. We use a private Ethereum blockchain
network built by ourselves as our underlying blockchain system. Not only because it
supports smart contracts by which we can design relatively complex interaction
between different IoT devices and between human users and devices, but also due to
the fact that it can generate a new block faster than Bitcoin [9, 23]. We also utilized the
original consensus method: PoW, and the original encryption method: Ethereum
account.

3.1 System Architecture and Topology

We designed a rich-thin-clients architecture which differs from the hierarchical archi-
tecture in that rich clients and thin clients have some overlapped functions while layers
or components in a hierarchical architecture usually perform different functions.

Figure 3 shows the rich-thin-clients architecture. Rich client and thin client can
both provide a GUI for users, invoke blockchain (BC) APIs through BC interface
which is deployed in a rich client, define business logics and collecting IoT data
(optional for rich clients), but only a rich client contains a full BC node which can
perform mining and contains all transaction records of the BC system.

Figure 4 shows the overall architecture and the topology formed by rich clients and
thin clients. Each rich client contains a fully functional Ethereum BC node which can
perform mining and run PoW consensus algorithm with other Ethereum BC nodes. The
rich clients form a P2P network, just like public Ethereum BC nodes do. The thin

8 H. Sun et al.

clients connected to one same rich client form a star topology with the rich client. Since
only the rich clients with high resources perform mining and consensus algorithm, our
network should be similar to the public Ethereum BC network in performance, thus the
dilemma between limited resources of IoT devices and the concerns for centralized
architecture can be solved.

Rich client

User operation unit

eul _\ Full BC node

Smart Transaction| ... | Transaction
_ contracts records records

loT data collecting

Optional, currently only used
in battery swapping scenario

Thin client Thin client \ Thin clien
Fig. 3. Rich-thin-clients architecture
Thin dlient /1 Thin cient <
i ient i i i —— Star
>R'°h client g R'Ch client ! /Thin client
Thin dlient Full ?Q,HOde Full BQ\r\lode\‘ AN
PN B -
i P2p
Rich-cli Rich client
Full BC node Full BG node
, Thin client \
Thin client Thin client
Thinclient T~
N

loT data sources (sensors)

Fig. 4. Overall system architecture

Using Ethereum Blockchain in Internet of Things 9

3.2 Privacy and Security

We use Ethereum account mechanism to identify each client and to encrypt transac-
tions. We assign unique Ethereum account for each client, so that they can be uniquely
identified in our system. Each client gets its unique public key and private key along
with its Ethereum account. And since the accounts are not directly connected to per-
sonal information in the real world, this could provide privacy to users.

In an IoT system, IoT devices (thin clients) are the most vulnerable parts facing
attacks. If an IoT device is hacked, the attacker may adopt three operations:

1. Steal the property of the account which was used on this device. Unfortunately, this
problem is unsolvable by using centralized architecture nor decentralized
architecture.

2. Hack other devices through this device. This situation may cause severe issues in a
centralized system, because the central servers may get attacked through an IoT
device, but it will not happen in a decentralized architecture.

3. Fake an account or send faked data through this device. Since only the rich clients
can generate a valid account, the faked account cannot be validated in our system.
And thanks to blockchain’s validation mechanisms when generating blocks, invalid
transactions or accounts will be refused.

Furthermore, even if a rich client is hacked, since it’s just a single node in the
blockchain network, other rich clients will reject the invalid requests sent from it.

3.3 Implementation of Ethereum Based Cyber-Physical Battery
Refueling System

Electric Vehicle Battery Refueling. Due to the development of battery technologies
and the environmental awareness, EV technologies have been developing rapidly in
last decades. With large-scale utilization of EV technologies, the release of greenhouse
gases can be reduced, and the energy utilization can be more efficient. However, battery
refueling is still a problem which have not been well solved. There are three major EV
battery refueling methods: Alternating Current (AC) charging, Direct Current
(DC) charging and battery swapping. AC charging can be adopted in an EV owner’s
garage. It’s convenient but time-consuming. It will cost more than eight hours to fully
charge a depleted EV battery by AC charging. DC charging can be provided by
charging station. It will cost 1-2 h to fully charge a depleted EV battery by DC
charging. However, DC charging may harm EV battery because of the large power.
Battery swapping is the least time-consuming one among the three EV battery refueling
methods. It will cost only a few minutes to swap a depleted battery for a fully charged
one by a battery swapping station [12].

Tesla Inc. and NIO Inc. introduced their EV battery swapping technologies in 2013
and 2017 respectively [13, 14], suggesting that battery swapping may be a promising
solution for EV battery refueling. In our previous work [12], a blockchain based EV

10 H. Sun et al.

battery swapping system (in the form of a web application) was proposed to evaluate
the batteries to be swapped fairly by smart contracts and to manage the batteries’
information such as its manufacturer, brand, power capacity, price and refueling
history.

It is actually an IoT scenario to use our previous blockchain based EV battery
swapping system in real situation, since the battery swapping stations and EVs have to
be connected to the Internet, and the cyber-physical interaction of the battery infor-
mation has to be involved. In this section, we verify if our blockchain based IoT
solution can be utilized in the EV battery swapping scenario.

Architecture of the Battery Swapping System. We implemented the battery swap-
ping system based on our proposed rich-thin-clients architecture. Figure 5 shows how
the system is composed.

We use Raspberry Pi (RPi) [24] as the hardware of a thin client, each thin client
represents an EV. In each EV, “truffle” [25] is used to invoke Remote Procedure Call
(RPC) service of blockchain, and a local “express” [26] server is used to control the
cyber-physical-interaction. We use USB disks which can be connected to RPi to
represent real batteries, the information of each battery is stored in a file in each
corresponding USB disk. Figure 6 shows the static information and the dynamic
information of a typical battery information file. (Static information and dynamic
information is introduced later in “Smart Contracts” of 3.3.)

A station consists of a battery swaping interface (an RPi works like an EV) and a
full Ethereum node. We use “Geth” [27] as the command line interface for running full
Ethereum nodes and providing RPC service for invokers.

Station

RPio: Battery swap interface
Full Ethereum node

Sma Transaction| s« | Transaction
contract records records

I“|“|
/

RPir: EV / RPi,: EV, ‘ \RPin: EVa

Fig. 5. Architecture of the battery swapping system

Using Ethereum Blockchain in Internet of Things 11

"batteryID":

"ownerAddr 5

"filePath’ /media/usb@/battery_information.json™,

"staticInf {
"brand": "Samsung",
"maxChargingCount™: 200,
"maxDischargingCount™: 200,
"maxYearLimited": 20,
"maxChargingTotalTime": 2000,
"maxDischargingTotalTime": 2000,
"manufactureYear": 2017,
"manufactureMonth™: 11,
"manufacturePrice”: 200

“energy

=SOC*™:

"chargingCount™: "1"
"dischargingCount
"chargingTotalTime
"dischargingTotalTime": "2"

Fig. 6. An example of battery information file

Smart Contracts. We implemented three smart contracts to manage the state machine
of the battery swapping system [12]:

e “BatteryProcess” smart contract is used to operate and store battery information. It
stores the batteries’ static information and dynamic information. Static information
is determined since a battery was produced and cannot be altered, such as brand,
production time, manufacture price, and so on. Dynamic information is used to
show a battery’s status, such as charge times, state of charge (SOC), price, owner’s
account, and so on.

e “BalanceProcess” smart contract is used to manage value transfer between accounts.
Given that it is not rational to require every EV user to have Ether [4], we defined a
token called E-coin as the currency in our system.

e “BatteryInterface” smart contract provides API interfaces for three types of terminal
users: station operator, EV owner and super account. EV owners can discharge the
battery in their own EV, and they can send a battery swapping request to a battery
station and wait for the confirmation. Station operators are the employees of battery
station. They can charge, discharge, and recycle batteries belong to the battery
station, and they can approve or deny a battery swapping request sent by EV
owners. Super account is the system manager of this battery swapping system, he
can create other types of accounts, grant E-coins, define the GAS required to invoke
smart contracts, and so on.

System Flowchart. Figure 7 shows how the system works. At first, the EV has a
depleted battery which belong to the brand of TOY, and the station has two fully

12 H. Sun et al.

Before battery swapping EV owner applies for swapping After battery swapping

.C.)s(elect BYD

SUM BYD

Station operator confirms

[]
Swap

Swap
BYD TOY i
............... e Confirm /J
Check whether the batteries are correct @ o Station operator
e o 63000 B : Check whether the
@ Inconsistent l batteries are correct

© Station operator

ID list don’t match
Ether account Oxe5bb2ef40a2b110d74820c46d9f34c7ef2a91137

£-Coin baiance: 9619 coins

Consistent

Fig. 7. System flowchart

charged batteries which belong to the brand of SUM and BYD respectively. Then the
EV owner accesses the GUI of battery swapping system and send a swapping request to
swap his TOY battery with station’s BYD battery. After the station operator confirms
the swapping request, the ownership information stored in blockchain is changed.
However, at this point of time, the corresponding “real” batteries (USB disks) have not
been swapped yet, so the inconsistency between cyber information and physical
information is alerted. Finally, after the swapping of corresponding batteries, there is no
alert any more, and the current battery status can be checked.
There are three kinds of major operations in the working procedure:

e [Initialization. EV and Station perform initialization respectively. The system on
RPi will read the information of all the batteries inserted on RPis’ USB interfaces,
and the smart contracts will create a battery record based on the static information of
each “real battery” and generate a unique battery ID, meanwhile, the generated
battery ID will be written into the battery information file inside the USB disk.

e Battery information consistency checking. Every time an EV owner or a station
operator accesses the index page which shows the information of batteries belong to
the EV or station, the system will check whether the batteries’ static information
recorded in USB disks are consistent with the batteries’ static information on
blockchain. If any inconsistency is found, an alert box will pop up. After an EV
owner submits a swapping request, and a station operator confirms the request, the
corresponding USB disks must be changed to remove inconsistency.

e Battery charging and discharging. When a user performs charging operation or
discharging operation on a battery, the system will change the dynamic information
of the battery on blockchain while changing the dynamic information recorded on
USB disk according to the battery ID.

Using Ethereum Blockchain in Internet of Things 13

3.4 Experiments

In order to find a proper way to utilize Ethereum in the rich-thin-clients architecture, we
have tried three different kinds of implementations, which are presented in Fig. 8.

The 1% implementation (Fig. 8(a)) is deploying a Geth client and a full Ethereum
node on a Raspberry Pi which is utilized as the rich client, and starting mining on the
Raspberry Pi. The 2™ implementation (Fig. 8(b)) is deploying Geth client without
mining on each Raspberry Pi and deploying Geth and a full Ethereum node on a PC,
the Ethereum nodes on Raspberry Pis synchronize data from the mining node. The 3™
implementation (Fig. 8(c)) is deploying a Geth client and a full Ethereum node only on
the PC of a rich client, the Raspberry Pi of the rich client works only as a battery
swapping interface.

The 1% implementation caused system crash soon after the starting of mining,
because the resources of a Raspberry Pi cannot support the mining of a full Ethereum
node, so it was excluded from the performance comparison.

We conducted quantitative comparison between the 2™ implementation and the 3™
implementation. As for experimental environment, Raspberry Pi 3B+ with ARMv7
1.2 GHz CPUs, 1 GB RAM and Raspbian OS, and PC with Intel 2.0 GHz 64 bit
CPUs, 66 GB RAM and Ubuntu 16.04.2 OS were used. We monitored the CPU and
memory usage percentages of the Raspberry Pi in thin clients of the 2™ implementation
and the 3" implementation. Furthermore, we timed the EV discharging as an index to
show the efficiency of each implementation. We conducted the experiments by
repeating the battery swapping system’s typical scenario which consists of the pro-
cesses of initialization, EV discharging batteries, battery swapping and station charging
batteries. Figure 9 shows how the CPU, memory and network usage change during one
time of experiment, indicating that the 2™ implementation clearly requires more CPU
and memory usages than the 3" implementation. Figure 10 shows the statistical results
of 10 times of repeated experiments, indicating that the 3" implementation requires less
resources and costs less time when performing EV discharging process. We can tell
from the results that the 3™ implementation outperforms the 2™ implementation, thus
we used the 3™ implementation in our previously proposed solution.

(a) (b) (c)

Station Station Station
RPi4 RPi RPi4
Battery swap interface Battery swap eqi:?[:eunmo de Battery swap. E’]ti:tiar:eunrg de
Ethereum mining node interface 9 interface 9
Geth rpc Geth rpc///f ~——Geth rpc
- Geth rpc Geth rpc B
RPi: EVy -ss RPip: EVig RPiz: EV1 | «-s RPip: EVpg RPix: EVy ++s RPig: EVyyg
Full Ethereum node on R Pi + Geth client (no mining) on R Pis + Full Ethereum node on PC
System crash & full Ethereum node on PC + Better performance

Better security

Fig. 8. Different implementations of rich-thin-clients architecture

14 H. Sun et al.

CPU & MEM usage change over time Network usage change over time

— sent KB/sec
—— received KB/sec

100 —— CPU usage percentage
—— MEM usage percentage

200

©
c
3
g 80 0]
o] 2
b= m 1s0
O 60 !h
o o
8_ W % 100
[0} [2]
> =
g £
o T S
s UL
0 % 0 JAL-‘_M\ r\L"‘
0 50 100 200 250 300 0 S0 100 150 200 250 300 350 400

150
ste step
Implementation in which RPis work with Geth (the 2" implementation)

CPU & MEM usage change over time Network usage change over time
s —— CPU usage percentage —— sent KB/sec
~—— MEM usage percentage T 250 ~— received KB/sec
15.0 8
(8]
% 12.5 8 200
2

£ m
© 1100 x 150
g o)
o 7 § 100
(]
D so 3
[0} x
» S s
=) o

: LN L

2 .

o 20 40 60 80 100 120 140 160 o 50 100 150 200 250 300 350
step

ep
Implementation in which RPis work without Geth (the 3™ implementation)

Fig. 9. Comparison of CPU, memory and network usages for two different implementations

60
(KB/sec)
50

40
(second)

20 (percentage)

2

0 (percentage)
10

0 | . |

time for EV discharge average CPU usage average MEM usage average network usage

m RPi with geth (the 2nd implementation) = RPi without geth (the 3rd implementation)

Fig. 10. Statistical performance comparison between two different implementations

Using Ethereum Blockchain in Internet of Things 15

4 Comparison Between Blockchain Based IoT Solutions

We made a comparison between our solution and other blockchain based IoT solutions.
Table 1 shows the comparison result of some major features. Due to the usage sce-
narios of the solutions are totally different, so that the performance comparison between
different solutions is absent in this paper.

Table 1. Comparison between blockchain based IoT solutions

Solution or BC related features Major data | Architecture
Application Underlying BC Consensus | Support | State Security & Privacy storage
system method smart management
contract?
Battery swapping (Our | Non-public PoW Yes By Ethereum account In Ethereum | * Rich-thin-
solution) Ethereum Ethereum mechanism clients
* P2P + star
topology
Automatic electricity Public Ethereum PoW Yes By Public key & private | In Ethereum | P2P
usage adjustment Ethereum key based on RSA topology
algorithm
Smart city Hybrid Unspecified | Yes Unspecified | « By blockchain On BC Hierarchical
(Ethereum + other protocols
BC, e.g.NXT) « Recommend private
ledgers
Blockstack (A global | Public Bitcoin PoW No By “control | Depend on the In “storage | Hierarchical
naming and storage plane” underlying plane”
system) blockchain
BC-based smart home | Bitcoin-like No No By BC and | « Public/private keys, | *Local Hierarchical
consensus Policy shared key storage
headers « By PK lists *Cloud
storage
LoRaWAN IoT (A low | Bitcoin-like PoW No By BC « LoRaWAN is On BC Hierarchical
power wide area already safe
technology) * Public-key
cryptography and
digital signature

Since we use Ethereum as underlying blockchain system, our solution surpasses the
solutions which use Bitcoin as underlying blockchain system [7, 8, 11] in terms of
flexibility of constructing state machines (supporting smart contract). Although
Blockstack [7] also supports various state machines, there is no evidence to indicate
that its state machine constructing mechanism is more convenient than smart contract
of Ethereum. As for the automatic electricity usage adjusting system proposed by
Seyoung et al. [9], although Ethereum blockchain is used, there is no value-transfer
mechanism involved in their system, so Ethereum’s advantages are not fully utilized in
their solution.

16 H. Sun et al.

5 Conclusions and Future Work

This paper proposes an Ethereum blockchain based IoT solution, introduces a battery
swapping system implemented based on the solution and experiments to test the sys-
tem’s performance indexes, and compares our solution with other blockchain based IoT
solutions. We use Ethereum (a blockchain system which supports smart contracts) to
solve the issues caused by traditional centralized IoT architecture. And by adopting a
rich-thin-clients architecture, the dilemma between limited resources of IoT devices
and the concerns for centralized architecture can be solved. Besides, the usage of our
solution is not limited to battery swapping application, other IoT applications such as
trading systems for sensor data or other digitalized property [21, 22] may also benefit
from our proposed architecture.

In future studies, we would like to build a more practical battery swapping system
with actual vehicle system instead of Raspberry Pi and to include multiple stations to
simulate real usage scenarios.

References

1. Satoshi, N.: A peer-to-peer electronic cash system (2008)

2. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium on
Security and Privacy, pp. 122-122. IEEE (1980)

3. Melanie, S.: Blockchain: blueprint for a new economy. O’Reilly Media Inc., Sebastopol
(2015)

4. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper (2014)

5. Solidity Documentation, http://solidity.readthedocs.io/-en/latest/index.html. Last accessed
07 Feb 2018
6. Namecoin Homepage. https://namecoin.org. Last accessed 07 Feb 2018

7. Muneeb, A., Jude, N., Ryan, S., Michael, J.F.: Blockstack: a global naming and storage
system secured by blockchains. In: USENIX Annual Technical Conference, pp. 181-194.
(2016)

8. Ali, D, Salil, S., Raja, J.: Blockchain in internet of things: challenges and solutions. arXiv
preprint, arXiv:1608.05187 (2016)

9. Seyoung, H., Sangrae, C., Soohyung, K.: Managing IoT devices using blockchain platform.
In: 2017 19th International Conference on Advanced Communication Technology (ICACT),
pp. 464-467. IEEE (2017)

10. Kamanashis, B., Vallipuram, M.: Securing smart cities using blockchain technology. In:
2016 IEEE 18th International Conference on High Performance Computing and Commu-
nications; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1392-1393. IEEE
(2016)

11. Jun, L., Zhiqi, S., Chunyan, M.: Using blockchain technology to build trust in sharing
LoRaWAN IoT. In: Proceedings of the 2nd International Conference on Crowd Science and
Engineering, pp. 38-43. ACM (2017)

12. Song, H., Ence, Z., Bingfeng, P., Jun, S., Yoshihide, N., Hidetoshi, K.: Apply blockchain
technology to electric vehicle battery refueling. In: Proceedings of the S51st Hawaii
International Conference on System Sciences (2018)

http://solidity.readthedocs.io/-en/latest/index.html
https://namecoin.org
http://arxiv.org/abs/1608.05187

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.
27.

Using Ethereum Blockchain in Internet of Things 17

Tesla Bttery Swap Event. https://www.tesla.com/videos/battery-swap-event. Last accessed
08 Feb 2018

NIO Power. https://www.nio.com/en/nio-power. Last accessed 08 Feb 2018

Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent From
2015, https://www.gartner.com/newsroom/id/3165317. Last accessed 11 Feb 2018

Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. In:
Future Generation Computer Systems (2017)

Nir, K.: Can blockchain strengthen the Internet of Things? IT Prof. 19(4), 68-72 (2017)
Marco, C., Antonio, V., Juan, C.D.M.: Blockchain for the Internet of Things: a systematic
literature review. In: 2016 IEEE/ACS 13th International Conference of Computer Systems
and Applications (AICCSA), pp. 1-6. IEEE (2016)

Ali, D., Salil, S., Raja, J., Praveen, G.: Blockchain for IoT security and privacy: the case
study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 618-623. IEEE (2017)

Ali, D., Salil, S., Raja, J.: Towards an optimized blockchain for IoT. In: Proceedings of the
Second International Conference on Internet-of-Things Design and Implementation,
pp. 173-178. ACM (2017)

Dominic, W., von Bomhard, T.: When your sensor earns money: exchanging data for cash
with bitcoin. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication, pp. 295-298. ACM (2014)

Yu, Z., Jiangtao, W.: An IoT electric business model based on the protocol of bitcoin. In:
2015 18th International Conference on Intelligence in Next Generation Networks (ICIN),
pp. 184-191. IEEE (2015)

Cryptocurrencies with much faster block times than bitcoin. https://themerkle.com/4-
cryptocurrencies-with-much-faster-block-times-than-bitcoin. Last accessed 24 Feb 2018
Raspberry Pi Homepage. https://www.raspberrypi.org. Last accessed 27 Feb 2018

Truffle. https://github.com/trufflesuite/truffle. Last accessed 27 Feb 2018

Express. https://github.com/expressjs/express. Last accessed 27 Feb 2018

Geth. https://github.com/ethereum/go-ethereum/wiki/geth. Last accessed 27 Feb 2018

https://www.tesla.com/videos/battery-swap-event
https://www.nio.com/en/nio-power
https://www.gartner.com/newsroom/id/3165317
https://themerkle.com/4-cryptocurrencies-with-much-faster-block-times-than-bitcoin
https://themerkle.com/4-cryptocurrencies-with-much-faster-block-times-than-bitcoin
https://www.raspberrypi.org
https://github.com/trufflesuite/truffle
https://github.com/expressjs/express
https://github.com/ethereum/go-ethereum/wiki/geth

)

Check for
updates

A Simulation Approach for Studying Behavior
and Quality of Blockchain Networks

Bozhi Wang'®™®, Shiping Chen'?, Lina Yao', Bin Liu'?,
Xiwei Xul’2, and Liming Zhu'?

! University of New South Wales, Sydney, NSW 2062, Australia
bozhi. wang@student. unsw. edu. au
2 CSIRO Data61, Sydney, NSW 2110, Australia

Abstract. Blockchain, as the fundamental technology of Bitcoin, tends to be
an-other technology revaluation of the Internet, due to its unique security,
trustworthiness and reliability. However, due to the massive deployment and
high running cost, it is hard for researchers to study the dynamic behavior of a
large and alive Blockchain network, e.g., Bitcoin. In this paper, a proposal on a
simulation approach to study Blockchain protocols in sizable Blockchain net-
works is made. First, several key requirements for software tools to simulate
Blockchain are identified. Secondly, the focus is on the selection and definition
of key performance metrics to quantify Quality of Blockchain (QoB). We aim to
demonstrate the proposed idea by using an existing simulation tool to duplicate
a simplified Blockchain Proof of Work (PoW) protocol with different parameters
and observations. Our case study shows that it is possible and practical to use a
simulation approach to study Blockchain networks with different network sizes
and protocols.

Keywords: Blockchain - Proof of Work (PoW) - Discrete-event simulation
Performance metric - Quality of Blockchain (QoB)

1 Introduction

For the past few years, people can do almost everything on the Internet. However, most
of the online transactions from person to person, no matter email, money, music or
anything else, rely on big intermediaries, such as email services, banks and telecom-
munications operators. There are growing problems with such centralized systems. For
example, our privacy is under infringement; the cost of sending money overseas turns
out to be too high and takes days. Things started to change in 2008, when Satoshi
Noakmoto published his paper, “Bitcoin: A Peer-to-Peer Electronic Cash System” [1].
The key technology of Bitcoin, called Blockchain, shows its strength in the future
Internet to enable decentralization as a new paradigm for large-scale distributed sys-
tems. While TCP/IP is the communicating protocol between computers, Blockchain is
its trust mechanism and their cooperation protocol. Blockchain offers some unique
capabilities/features, such as decentralized, reliability and immutability, which enabled
people to establish trust and do transactions without relying on a trusted third party. Till
now, Blockchain is starting to show its potentials in many interesting domains, such as
transnational payment, distributed storage, food provenance and etc.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 18-31, 2018.
https://doi.org/10.1007/978-3-319-94478-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_2&domain=pdf

A Simulation Approach for Studying Behavior and Quality 19

Before Blockchain could be widely adopted in other areas, it still has a number of
issues to be solved. First, the current mining (PoW- Proof of Work) mechanism of
Blockchain are wasting a large amount of computing power on computation, which is
necessary for POW but meaningless and costly. Second, every node in the network has
a complete ledger. As time passing by, the ledger will become larger and larger. And
when a miner verifies a transaction, it should track all the historical transactions
recorded on the blockchain. The performance issue is getting worse and worse. Then,
though Blockchain is an anonymous system, all the transactions are publicly available,
which may cause privacy issue. Lastly, in the current Bitcoin network, a common
security strategy is to wait six blocks to confirm the transactions in the last block, which
last around one hour, which significantly limits the adoption and applications of the
current Blockchain technologies. With these problems, many ideas are proposed yet
still under developing, such as IOTA [19], EOS.

On the other hand, most current blockchain systems are driven by electronic
money. For example, the open source Etherum, once creating a smart contract, it costs
some ETH, the cryptocurrency on Ethereum blockchain. When conducting some tests
and/or updating, it is also very expensive and has side-effects and/or interruptions on
the main blockchains. So we need an approach to testing new ideas in different scopes
and sizes of blockchain networks with little costs and impacts on the existing real
blockchain networks. Simulation is a good way out. It doesn’t cost much, and could
find out any tiny change in the system.

In this paper, we propose a simulation approach to study the large-scale Blockchain
networks. First, we identify key requirements for the simulation software for imple-
menting PoW protocols. Second, we collect and define a number of performance
metrics to quantify the Quality of Blockchain (QoB). Then, we demonstrate the pro-
posed idea using a simple simulation tool to duplicate a simplified Bitcoin PoW pro-
tocol using different configurations. Our case study shows that it is possible and
practical to study a large-scale Blockchain network using simulation software.

The rest of this paper is organized as follows. Section 2 gives an overview of the
PoW protocol in Bitcoin and defines some metrics for QoB. In Sect. 3, we identify the
key criteria for functionality and capabilities required by Blockchain simulators.
Section 4 shows a simple Blockchain simulator by leveraging SimPy. Section 5 pre-
sents some related work. We conclude the paper in Sect. 6.

2 Overview of Blockchain

2.1 Blockchain

Essentially, Blockchain is a peer-to-peer distributed ledger database, which consists of
connected data blocks. The connection pointer between blocks is the Header Hash
processed by cryptographic hash function that protects the transactions in every block,
as well as the connected blocks. Thus, any of the historical transaction cannot be
changed without invalidating a chain of Header Hash.

20 B. Wang et al.

p Header
Version

>| Prev-block || Timestamp || Nonce || Bits

Next Block

Previous Block

| Merkle-root |

Transaction
number

Hash 1234 Body

| Hash 1 | | Hash 2 | | Hash 3 | | Hash4|
A 3 A

A

Transaction Transaction| |Transaction Transaction
1 5 3 4 ||

Fig. 1. The internal structure of block

In Bitcoin system, one block is created about every ten minutes. Transactions
happening in the Bitcoin system are saved in the blocks. A block contains a Header and
a Body, as shows in Fig. 1. The Header contains metadata of the block, such as
Version, Prev-block pointing to the previous block, Timestamp, Nonce, Bits,
Merkle-root etc. The body mainly includes the details of the transactions in the
structure of Merkle Tree. These transactions form a publicly global ledger in Block-
chain system, where the transactions recorded in the ledger could be queried by anyone
who can access Internet. Every transaction is signed by a digital signature of the sender
to ensure they are un-forged and not duplicated. The Merkle Tree with all the trans-
actions has a unique Merkle-root calculated by the Hash procedure, which is recorded
in the Header.

The Block is created through mining process, which is an exhaustive random
number algorithm. During this process, the miners package the hash value of the
previous block and all the transactions have happened in the latest ten minutes, and find
a value for Nonce to calculate a hash value with 256 bits. The mining process is aimed
to find the value of Nonce that makes the hash value meets some requirements, such as
having a certain number of zeros in the first bits. The miner, who successfully find such
a value, gets the right to write the new block to the blockchain by broadcasting the new
block to the Bitcoin other nodes to verify (Fig. 2).

A Simulation Approach for Studying Behavior and Quality 21

))) H()
Previous _Block Previous Block Previous Block
Hash pointer: Hash pointer: Hash pointer:
H() H() H()
DATA DATA DATA

Fig. 2. The structure of blockchain

The system has a competition mechanism for miners to compete for the right of
writing, which calls Proof of work (describe in the next part). During the process, the
more computing power a miner spends, the larger possibility the miner can get the
right. If the new block is successfully added into the blockchain, the miner will get
some reward. Also, it is possible for two different miners to find new blocks almost at
the same time. The two blocks might be verified and accepted by a subset of the Bitcoin
network, which form a fork. In such a case, the other miners need to choose the fork
which with larger number of blocks (implying heavier work).

2.2 Proof of Work Protocol in Bitcoin Blockchain

The distributed system consensus algorithm which appeared in 1980s is the foundation
of Blockchain Consensus. There are several Byzantine Fault Tolerance protocols which
used in different Blockchain platforms, such as PBFT (Practical Byzantine Fault
Tolerance), Raft, PoW (Proof of Work), PoS (Proof of Stake), DPoS (Delegated
Proof of State). Bitcoin Blockchain uses PoW (Fig. 3).

The main work of PoW is to do a lot of SHA256 hash calculations during the
mining process. The process to reach consensus is discussed as below.

1. A user initiates and signs a new transaction, broadcasts to the whole network asking
for accounting.

2. The miner, which receives the transaction, puts it in the Mempool.

3. For every round of computation, the miner add all the transactions in the Mempool
to create the body of a new block, and works on PoW procedure, to find out one
proof of work with enough difficulty.

4. The miner who wins the competition broadcasts the new block to the Bitcoin
network.

5. Other miners who receive the new block verify all the transactions in the block to
ensure they are all valid and new.

6. Once the new block is accepted by the whole network, it is added at the end of the
blockchain.

22 B. Wang et al.

Mining
Block X

Bingo!
Find Block X
Transaction 1in Block / |)

k|

Mining
Block X+1

Bingo!
Find Block X+1
Transactions in Block

L]
Mining
Block X+2 Mining
Block X+1

/< Transaction 1 in Mempool)

\

Rejected

Fig. 3. Proof of work procedure

it

=

l

Broadcast

Timeline

Mining

Verifying

Accepted
Add to chain

Rejected

Through the mining process discussed above, the transactions from different users
are written in the blockchain, which is hosted on every single node within the network.
So we can get a distributed and high reliable and consistent global ledger.

2.3 Parameters and QoS Metrics for a Blockchain Network

In this section, we collect and define some metrics for QoS of Blockchain (Fig. 4). We
can define and simulate a Blockchain Network using these metrics. We ignored both
orphaned blocks and network delay in our simulator. It will be fixed in the future

research.

TBN (Total Block Number). The number of blocks that have been mined in a

specific time period

ABS (Average Block Size). The average block size in MB.
BCT (Block Commit time). The average time needed to commit a block to the

main chain since being created.

TPB (Transactions per Block). The average number of transactions per block
ATS (Average Transaction Size). The average transaction size in Byte.

A Simulation Approach for Studying Behavior and Quality 23

TCT (Transaction Confirmation Time). The average time for a transaction to be
accepted into a mined block.

TPD (Transactions per day). The number of daily confirmed transactions.

MS (Mempool Size). The aggregate number of transactions waiting to be
confirmed.

ABS ATS
Block A Mempool

Head
Transaction1 | Transaction2 & Transaction)
T 1 out
Transaction2
Transaction M |
TCT —Ms
Block B N
TPB Head
(MN) Transaction1 Transaction2
Transaction in Transaction)
From Node X
Transaction N |

Fig. 4. QoS metrics for a blockchain network

We use these metrics to measure the quality of the Blockchain system. TBN
directly related to simulation time. BCT is approximately equals to 6 times of mining
time. Block Size includes the header and some transactions, and is limited by
1000000B (defined by Bitcoin source code). ABS is an indicator that shows whether
the block is filled. One transaction needs to use the storage 4 times the simple message.
After the update ‘Segregated Witness’ on 8/24/2017 [20], the extra 3 times does not
calculate in Block size, which expand TPB. Transaction size range and transactions per
seconds are the settings we want to change to measure the performance, which turns to
be ATS and TPD after statistics. TCT shows how long one transaction is accepted, MS
shows the waiting list of transactions.

In the system sight, we want the block to be filled (ABS as large as possible, TPB
as many as possible), so we can transport more information at the same time. In client’s
view, TCT is the most important QoB, i.e. the less TCT is, the more effective the
Blockchain network.

3 Requirements for Blockchain Simulation

In order to realize a Blockchain simulator, there are several requirements we should
consider, as shown below:

e Timing simulation: The Blockchain’s scale rises with time. Mining time, trans-
action time and network delay affect the performance of the system a lot.

e Broadcasting: In reality, we use multicast to realize IP communication. In the
simulation, it turns out to be an ideal situation. So we need to broadcast all the
transactions.

24

4

B. Wang et al.

Event-driven: A miner can change its status once some event happens during
mining. The simulator should be event-driven to fit this pattern.

Message Processing: Once a miner finds a new block, the miner broadcasts its
block, at the same time other nodes receive the new block (which packaged as a
message) and make its own response. So the software should support message
processing.

Concurrency: The Blockchain network is comprised of many doing different but
similar things (mining, verifying, receiving or sending messages) at the same time.
Concurrency is required as well.

Case Study — Simulate Blockchain Using SimPy

In this section, we demonstrate how to simulate a simple blockchain PoW by lever-
aging SimPy’s capabilities and using the criteria above.

SimPy is a bare simulation API implementation written in Python. In SimPy, the

basic simulation entities are processes. These processes can execute in parallel and may
exchange Python objects among each other. Most processes include an infinite loop in
which the main actions of the process are performed. The simulator is written by
SimPy3.0.10 under python 3.6.0.

Computer parameter:

OS: Ubuntu 14.04 64 bit

CPU: Inter(R) Core(TM) i7-7700 CPU@ 3.60 GHz

Memory: 16G

Consider the PoW procedure we have mentioned in Sect. 2.2, our simulator is

working with three processes:

1.

2.

Producing transactions. As showed in Fig. 5, we create a transaction with its size
and creating time randomly, then set it in the Mempool.

def transaction generator (pnv):

while True:
yield env.timeout(random.randint(TRANSAC TIME[@], TRANSAC TIME[1]))
size = random.randint(BLOCK_SIZE[©], BLOCK SIZE[1])
global tranNO
tranNO += 1
transactions_list.append({'size': size, 'creatTime': env.now, 'inBlockTime': 0})

Fig. 5. Transaction process

Producing blocks. As showed in Fig. 6, we randomize a node as the miner of the
block, and then set it mining time randomly. Then calculate the number of trans-
actions could be written into the block, package all these transaction details and then
broadcast. Confirm the block before six blocks if it is the branch with biggest
computing power, add it into Blockchain (As we didn’t consider the situation of
orphaned blocks, it is just a confirmation without comparing).

A Simulation Approach for Studying Behavior and Quality 25

def message generator(env, out_pipe):

A process whic

while True:
yield env.timeout(random.randint(MINGING TIME[6], MINGING_TIME[1]))
nodeID = random.randint(@, NUN_OF_NODES - 1)

global tranFin, tranNO

eventID = 0

event = events[eventID]

blockID = current_blockID[nodeID]

current_blockID[nodeID] += 1

weight = 0

length = 0

while (tranFin < tranNO - 1) and (weight + transactions_list[tranFin + 1]['size'] < BLOCKSIZE):
length += 1
tranFin += 1
weight += transactions_list[tranFin]['size']
transactions_list[tranFin]['inBlockTime'] = env.now

block = {'owner': nodeID, 'blockID': blockID, 'state’': @, 'blockSize': weight, 'transactionNO': length,
‘creatTime': env.now, 'power’: O, ‘commitTime': 0, 'note’': 'null'}

Fig. 6. Block process

3. Every miner is a process (Fig. 7): once a miner receives a transaction or block, it
verifies it. The process adds the block at the end of its own chain and confirm the
block before six blocks.

def message_consumer(id, env, in_pipel):
while True:
myID = id
my current block id = current_blockID[myID]
msg = yield in_pipe.get()

senderID = msg[0]

if senderID !'= myID:

s = msg[2]

block = json.loads(s)

blockID = block["blockID"]

key = str(blockID)

if blockID >= current_blockID[myID]:
current_blockID[myID] = blockID + 1
blockchains_list[myID].update({key: block})

Fig. 7. Message process

In order to have a clear look at the mempool, we set a fourth process (Fig. 8) just
for recording.

def transaction mempool(pnv):
while True:
yield env.timeout(WAITING TRAN_TIME)
global tranFin, tranNO
waiting tran_num.append(tranNO - tranFin - 1)

Fig. 8. Mempool process

26 B. Wang et al.
There are several parameters we can change during simulation (Table 1):

Table 1. Parameters in simulation

Parameters Description Default
SIM_TIME The amount of time that simulation runs 24 h
NUN_OF_NODES | The number of nodes in simulation 512
MINGING_TIME | The rank of time that a block could be mined [8, 10] min
BLOCKSIZE The limited size of a single block 1000000B
TRANSAC_SIZE | The rank of size that a single transaction could be | [100, 2000] B

The time in the simulation is calculated by 0.1 s, as the transaction is 1 Byte.

The parameters above configure how the simulator runs. In the real Bitcoin net-
work, most of these parameters are formulated or limited. We can change these
parameters in order to find out how it affects the Bitcoin network. In this version of
simulator, we ignored network delay and orphan blocks.

With this simulator, we can get some important information about the Blockchain
in each node. Due to Blockchain’s working method, every node gets a similar but not
the same chain. Once we consider the network delay, the chain on different nodes may
have a little different. In our case, the only different is commitTime caused by the block
creator. One Blockchain in node O create with default settings shows below. The first
diagram in Fig. 9 shows the first few blocks in the network which includes Master
Block, the second diagram shows the latest blocks includes some Blocks haven’t been
committed yet.

{"owner": -1, "blockID": @, "state": 1, "blockSize": @, "transactionNO": O,
"creatTime": O, "power": 0, “"commitTime": 33166, "note": "Master block"}

{"owner": 84, "blockID": 1, "state": 1, "blockSize": 999483, "transactionNO": 960,
"creatTime": 5901, "power": 5901, "commitTime": 38996, "note": "null"}

{"owner": 26, "blockID": 2, "state": 1, "blockSize": 998162, "transactionNO": 955,
"creatTime": 11451, "power": 11451, "commitTime": 44608, "note": "null"}

{"owner": 161, "blockID": 3, "state": 1, "blockSize": 999801, "transactionNO": 978,
"creatTime": 16791, "power": 16791, "commitTime": 49133, "note": "null"}

{"owner": 253, "blockID": 4, "state": 1, "blockSize": 998736, "transactionN0": 959,
"creatTime": 21938, "power": 21938, "commitTime": 54455, "note": "null"}

{"owner": 379, "blockID": 5, "state": 1, "blockSize": 999108, "transactionNO": 941,

{"owner": 121, "blockID": 153, "state": 1, "blockSize": 999862, "transactionNO": 969,
"creatTime": 824690, "power": 32049, "commitTime": 856996, "note": "null"}

{"owner": 304, "blockID": 154, "state": 1, "blockSize": 998800, "transactionNO": 958,
"creatTime": 830524, "power": 32765, "commitTime": 862147, "note": "null"}

{"owner": 92, "blockID": 155, "state": ©, "blockSize": 999817, "transactionNO0": 947,
"creatTime": 835648, "power": 32631, "commitTime": @, "note": "null"}

{"owner": 166, "blockID": 156, "state": @, "blockSize": 998939, "transactionNO": 957,
"creatTime": 840779, "power": 31774, "commitTime": @, "note": "null"}

{"owner": 180, "blockID": 157, "state": @, "blockSize": 998882, "transactionNO": 928,
"creatTime": 845959, "power": 31650, "commitTime": @, "note": "null"}

{"owner": 75, "blockID": 158, "state": O, "blockSize": 999461, "transactionN0": 960,
"creatTime": 851238, "power": 31586, "commitTime": @, "note": "null"}

{"owner": 195, "blockID": 159, "state": ©, "blockSize": 999956, "transactionNO": 945,
"creatTime": 856979, “power": 32289, "commitTime": O, "note": "null"}

{"owner": 28, "blockID": 160, "state": @, "blockSize": 999908, "transactionNO": 935,
"creatTime": 862131, "power": 31607, "commitTime": @, "note": "null"}

Fig. 9. Blockchain information in node 0O

A Simulation Approach for Studying Behavior and Quality 27

We do some simulations with different settings, the result shows below.

Average Block Size

0
100~2000 100~200

Transaction Size

Fig. 10. ABS (change transaction size)

In Fig. 10, as the number of transactions per day and the block size keeps, only
when the transaction size is from 100B to 2000B, transactions make the block full.
When the transaction is small, more transactions could be recorded in one block. Once
there are not enough transactions, the block won’t be filled. In real system, mining a
block cost a lot, so we want it contain as much information as possible, but not racing.

In Fig. 11(a), it shows details during one day that the mempool size keeps in a low
level. The transactions do not need to wait for a long time to be set in a block. Also in
Fig. 11(b) and (c), when the transaction per second changes, the mempool size may
keep in a low level or go straight high. Once the mempool size goes high, the system
will become more and more redundant. Just like in Fig. 13, the transaction commit time
rises with time. In the real network, the transaction number depends on different events,
which have peak and off-peak time. As well as the transaction size. In further research,
we will test the network with huge transactions in a limited time and the ability the
network could solve with the stacked Mempool.

In Fig. 12, the number of nodes has little impact on the Blockchain performance.
During our simulation, the node could be up to 20000. Actually, the increase of node
number will give the system more computing power, which may cause a shorter mining
time. Once the mining time is out of range, the system will improve the difficulty of
calculation, which finally keeps the mining time limited. In our simulation, the mining
time is randomized is in a range. So the increase of node number just cause some
pressure on Memory.

In Figs. 10 and 11(a), we change the same settings. But it shows good performance
in Fig. 11(a) which turns to be clients’ view, bad performance in Fig. 10 which shows
the miners’ view. It turns out to be different.

Our simulation can show that different parameters change the behavior of the whole
network. In future work, we will learn more about how the parameters affect the
behavior and how to find out a best setting which will show good performance in both
clients’ and miners’ view.

28 B. Wang et al.

1200 T i :
Transaction Size ——100~200
100~500
000 100~1000
. A ——200~500
X) / \ N . \ [A 200~1000|
800 \ f [/ / |

Transactions
o
3
3
T
I

a

8
T
|

\/ v i

. \ ‘

0 5 10 15 20 25
Simulation Time(hours)
(a)
.
10210 i
Transactions per second
9
8 il

Transactions
w & 0 o
T
!

0 5 10 15 20 25
Simulation Time(hours)

(b)

1200 T T

Transactions per second

1000 [~ 1~2 =
1~3
15

=
8

Transactions.
2
3
5]
T
i

0 I | L
0 5 10 15 20 25
Simulation Time(hours)

(c)

Fig. 11. (a): Mempool size (change transactions size) (b): Mempool size (change transaction
per second) (c¢): Mempool size (change transactions per second)

163 =

Total Block Number

159 - v 1

L |
4 8 16 32 64 128 256 512 1024
Total Node Number

Fig. 12. Total block number (change total node number)

A Simulation Approach for Studying Behavior and Quality 29

3

Transaction Commit Time(hour)
© 4N w 5 o o N ® ©

0 10 20 30 40 50 60 70 80 90 100
Simulation Time(hour)

Fig. 13. transaction commit time

With these results, we can made the following observations:

e Our metrics are effective in QoS of Blockchain, we can get a clear view on the
performance of the Blockchain.

e Once we jump the mining part and set the mining time in a range, the increase of
node number won’t influence our simulation till now. But it may cause higher
possibility fir nodes to create an orphaned block in the future research.

e Changes in transaction size and transaction per second will show up in the Mem-
pool size. With the rising of Mempool size, the users’ experience will become
worse because of the long transaction commit time.

e The transaction amount has peak and off-peak time in the real network, so we need
a certain amount of Mempool size to keep the block filled and keep the system
efficiently. Not too much, not rising all the time, but in a limited size.

5 Related Work

Rajitha et al. [2] used architectural performance modelling and the same incident
management exemplar for this approach provided by Weber et al. [4] to measure the
latency arising from the Blockchain-related factors, such as the configuration of the
number of confirmation blocks and inter-block times. Their management system shows
that predictions of median system level response time with a relative error mostly under
10%. Their approach could be used in the design of blockchain-based systems. Their
model mostly regards as API, so they ignore the Blockchain mining network, node
communication, or consensus algorithm. They modeled the resource and performance
characteristics of a local node as a component. In our research, the consensus is one of
the main points, which may highly influence the performance in no matter network
view or user’s view. But their modelling concepts are well-aligned with component-
based development and support the re-use of constructed models and components.
Gobel et al. [5] developed two Blockchain simulators, based on the DESMO-J
simulation framework [7]. They studied the effect of communication delay in Bitcoin
Blockchain under a ‘selfish-mine’ strategy. First, they use a simplified Markov model
that tracks the contrasting states which includes a small amount of dishonest (selfish)
miners to establish that the use of block-hiding strategies, such as selfish-mine, which

30 B. Wang et al.

may cause the increase of orphan blocks. Then they use a spatial Poisson process
model to study values of Eyal and Sirer’s parameter vy, to find out the proportion an
honest miner mine a block which previous block is mined by an honest miner. Finally,
they use discrete-event simulation to study the behaviour of a network of Bitcoin
miners, which includes selfish-mine action under a network with communication delay
between miners. Their study found out that if dishonest miners are exist, the perfor-
mance of both honest and dishonest miners will become worse, the system also can
monitor the production of orphan blocks to find out the behavior of selfish-mining. We
haven’t mention selfish-miner yet, we could consider it in the further research.

Grevais et al. [6] provided a complete Bitcoin simulator written by NS2. They
introduce a novel quantitative framework to analyze the security and performance
implications of various consensus and network parameters of PoW blockchains. They
find some method to fight against or limit double-spending and selfish mining under
their framework, by changing the basic settings such as network propagation, different
block sizes, block generation intervals, information propagation mechanism, and the
impact of eclipse attacks. Under their framework, they can find a balance between
performance and security in Blockchain Network. Compared with our simulator, their
simulator is kind of complete but facing the problem on the number of nodes. All the
simple node’s location and its network delay should be defined individual. And it
simulates the procedure of mining as well, which cost a lot of performance. When the
node number rises, the simulator takes a bad respond.

Goswami [8] discuss the factors that make Block-chain largely non-scalable. They
provide the simulator written by java. This research delves into the scalability issue of
blockchains and provides a comparative analysis of several blockchain parameters with
real time data. It delves into the factors that make block chains largely non-scalable.
This is done by the simulation of blockchain. It then addresses the various mechanisms
that can be employed to resolve this limitation through measuring the differences
between the simulator and real time scenarios. Their simulator which simulated the
PoW work without node communication, just finish the work in one client. It’s
effective but getting troubles in combination with real network.

6 Conclusion

In this paper, we collect and define a number of key performance metrics to quantify
the Quality of Blockchain (QoB). We also use a simple simulation tool to simulate a
simplified Blockchain Proof of Work (PoW) protocol within different arguments and
our observations. The results shows its relation between the basic settings and the
Quality of Blockchian. It shows that it is possible and practical to use a simulation
approach to study Blockchain networks with different network sizes and protocols. The
next step of our work is to make network delay which may cause orphan block into
consideration, and then try some other Consensus such as DPoS, PBFT (Fabric) and
Tangle (IOTA).

A Simulation Approach for Studying Behavior and Quality 31

References
1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Rajitha, Y., Staples, M., Weber, I.: Predicting latency of blockchain-based systems using

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

architectural modelling and simulation. In: 2017 IEEE International Conference on Software
Architecture (ICSA 2017), pp. 253-256 (2017)

. Weingartner, E., Vom Lehn, H., Wehrle, K.: A performance comparison of recent network

simulators. In: 2009 IEEE International Conference on Communications (ICC 2009), pp. 1-5
(2009)

. Weber, L., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted

business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329-347. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45348-4_19

. Gobel, J., et al.: Bitcoin blockchain dynamics: the selfish-mine strategy in the presence of

propagation delay. Perform. Eval. 04, 23-41 (2016)

. Gervais, A., et al.: On the security and performance of proof of work blockchains. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 3-16 (2016)

. Page, B., Kreutzer, W.: Simulating discrete event systems with UML and JAVA. Environ.

Sci. Pollut. Res. 13(6), 441 (2006)

. Goswami, S.: Scalability analysis of blockchains through blockchain simulation. University

of Nevada, Las Vegas (2017)

. Fairley, P.: Blockchain world-feeding the blockchain beast if Bitcoin ever does go

mainstream, the electricity needed to sustain it will be enormous. IEEE Spectr. 54(10), 36—
59 (2017)

Augot, D., Chabanne, H., Chenevier, T., George, W., Lambert, L.: A user-centric system for
verified identities on the Bitcoin blockchain. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Hartenstein, H., Herrera-Joancomarti, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol.
10436, pp. 390-407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_22
Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.
IEEE Access 4, 2292-2303 (2016)

Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In: 2013 IEEE
Thirteenth International Conference on Peer-to-Peer Computing, pp. 1-10 (2013)

Eyal, L, et al.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI, pp. 45-59 (2016)
Gervais, A., et al.: Tampering with the delivery of blocks and transactions in Bitcoin. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 692-705 (2015)

Kogias, E.K., et al.: Enhancing Bitcoin security and performance with strong consistency via
collective signing. In: 25th USENIX Security Symposium, pp. 279-296 (2016)

Kosba, A, et al.: Hawk: the blockchain model of cryptography and privacy-preserving smart
contracts. In: 2016 IEEE Symposium on Security and Privacy, pp. 839-858 (2016)
Pazmifo, J.E., Rodrigues, C.K.S.: Simply dividing a Bitcoin network node may reduce
transaction verification time. SIJ Trans. Comput. Netw. Commun. Eng. 3(2), 17-21 (2015)
The Ethereum community. Ethereum White Paper, July 2015. https:/github.com/ethereum/
wiki/wiki/WhitePaper

Popov, S.: The Tangle. IOTA White Paper (2017). https://iota.org/IOTA_Whitepaper.pdf
https://en.wikipedia.org/wiki/SegWit

http://dx.doi.org/10.1007/978-3-319-45348-4_19
http://dx.doi.org/10.1007/978-3-319-45348-4_19
http://dx.doi.org/10.1007/978-3-319-67816-0_22
https://github.com/ethereum/wiki/wiki/WhitePaper
https://github.com/ethereum/wiki/wiki/WhitePaper
https://iota.org/IOTA_Whitepaper.pdf
https://en.wikipedia.org/wiki/SegWit

q

Check for
updates

A Design of Digital Rights Management
Mechanism Based on Blockchain
Technology

Zehao Zhang and Li Zhao®™)

Research Institute of Information Technology, Tsinghua University, Beijing, China
zhangzeh16@mails.tsinghua.edu.cn, zhaoli@tsinghua.edu.cn

Abstract. Digital rights management (DRM) has been widely used in
digital content protection nowadays and has made a great contribution to
the protection of digital content. However, the traditional DRM technol-
ogy has several disadvantages such as centralization, non-transparency of
copyright information and transaction information. Centralized servers
are vulnerable to be attacked and opaque information is not user-friendly.
The blockchain technology which has emerged in recent years has the
advantages of decentralization, collective maintenance, security, and reli-
ability. It can be a great solution to the above problems. In this paper,
we propose a design of DRM Mechanism based on blockchain technology.
We record the copyright transaction information and license information
on the blockchain to make information transparent and safe. We use
smart contact to ensure the reliability of copyright transaction and issue
licenses automatically, which eliminates the need for centralized servers
to verify identities and issue licenses. Our mechanism allows copyright
owners to set prices for different content usage rules as they wish. Cus-
tomers choose the usage rules they would like to purchase flexibly. We
also design a blockchain based license structure, which is close to the
current DRM standards and easy to be promoted.

Keywords: DRM - Blockchain technology - License + Transaction
Smart contract

1 Introduction

With the rapid development of internet technology, the global information pro-
cess is promoted continuously. The application of information technology has
been expended to all the fields, so that digital content can spread quickly and
widely all the time. Due to its openness, digital features, content is facing a
significant risk of being malicious disseminated, copied, tampered at any time,
which has led to higher demand for digital rights management. Digital Rights
Management (DRM) [9] refers to the realization of system solutions through the
use of information security technology to ensure legitimate users’ normal use of
digital content. It also protect the legitimate income of producers and owners of

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 32-46, 2018.
https://doi.org/10.1007/978-3-319-94478-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_3&domain=pdf

A Design of Digital Rights Management Mechanism 33

digital media content. After the copyright infringement problem occurs, it can
identify the authenticity of the copyright information and make a correct deter-
mination of copyright ownership. Many international organizations and compa-
nies have formulated DRM standards and these DRM standards have made a
great contribution to protecting digital rights.

However, traditional DRM technology have several disadvantages because
of its centralization. First of all, the transaction of copyright is supported by
centralized server, and the issuing of licenses needs centralized server too. Once
the centralized server is attacked, the service is in a great risk of paralysis.
Secondly, the specific information of copyright and transaction is not public to
users so it is not transparent. Individual content producers must sell their content
to large video site or media platform to seek for DRM protection. What’s more,
the identities in traditional DRM technology need to be verified through multiple
interactions, which is cumbersome and inconvenient.

To solve the problems above, the blockchain technology is an excellent choice.
Blockchain technology is the core supporting technology of digital cryptocur-
rency system represented by Bitcoin. It originated from the foundational paper
published by Satoshi Nakamoto in 2008 [1]. Blockchain is a kind of decentralized
shared ledger that assembles data blocks into specific data structures in a chain
manner in chronological order and it guarantees irreversibility and unforgeability
in a cryptographic way. Blockchain uses encrypted chain block structures to vali-
date and store data, uses distributed node consensus algorithms to generate and
update data, and uses automated script code to program and manipulate data.
Blockchain has decentralized, time-sensitive data, collective maintenance, pro-
grammable, secure and trusted features. In terms of the application of blockchain
technology, Bitcoin realized a payment method which does not require any third-
party financial institution for the first time. Ethereum [2] added smart contracts
based on electronic cash technology, making both financial and non-financial
agreements intelligent. There are many applications and platforms [3-5] based
on blockchain technology that devote to making blockchain technology step into
our lives.

The purpose of this paper is using the decentralized, safe and credible char-
acteristics of blockchain technology to improve the traditional DRM technology
so as to make up for the technical defects mentioned in the previous article. The
contribution of this paper is as follows: (1) We record copyright transactions on
the blockchain to make the transaction information safe, reliable and transpar-
ent. We have designed a mechanism that allows copyright owners to set prices for
different content usage rules flexible. Consumers are free to choose the purchase
rules they use. At the same time we use smart contracts to ensure the reliability
of the transaction. There is no need for interactive information between copyright
owners and consumers. The blockchain technology based DRM mechanism we
proposed provides a more credible means of protecting copyrights for individual
content producers, and the authorization of copyrights is also extremely scal-
able. (2) Our license information is recorded on the blockchain, and the license
information is safe and transparent as well. We use smart contracts to issue

34 Z. Zhang and L. Zhao

licenses automatically. In this way, we eliminate the need for centralized servers
to issue licenses, and also eliminate the need for interactive verification between
user and server identities. We simplify the process. (3) We designed a license
structure suitable for blockchain, which can be used for automatic packaging
and distribution of licenses by smart contracts. At the same time, the designed
license structure is close to the current DRM standards, which is beneficial to
the promotion of this blockchain-based license structure.

The rest of this paper is organized as follows. Section 2 presents the related
works, mainly contains blockchain technology, DRM, and the application of
blockchain technology in DRM so far. Section 3 describes the design of license,
whereas Sect.5 describes the design of DRM mechanism based on blockchain
technology. The conclusions and future work are in Sect. 6.

2 Related Works

2.1 Blockchain Technology

Blockchain technology is considered to be the fifth type of disruptive innovation
as a successor to mainframes, personal computers, the Internet, mobile/social
networks [10]. Its features contains decentralization, time-series data, collective
maintenance, programmability, security and reliability, etc. In the distributed
system where nodes do not need to trust each other. Blockchain technology
achieves point-to-point transactions, coordination, and operations. Thus it pro-
vides solutions to the problems of high costs, inefficiency, and insecure data
storage that exist in centralized organizations. Blockchain technology is the
embryonic form of the next-generation Internet. The existing Internet is just
an information Internet. Without the centralization of banks and other institu-
tions, the exchange of value cannot be achieved. The next-generation Internet,
achieves not only the information communication, but also the value communi-
cation, and the cornerstone is blockchain technology. Blockchain technology is
expected to achieve a transformation from the current information Internet to
the next generation of value Internet, which will completely reshape the human
social activities just like what the information Internet has made. The character-
istics of blockchain technology make it widely used in digital cryptocurrencies,
financial systems, and social systems. Innovative technologies have been used
in the financial, medical, education, and Internet of Things fields to solve key
issues in the industry. For example, filecoin [6] is a decentralized storage network
that turns cloud storage into an algorithmic market which combines blockchain
technology and IPFS [7] technology. It provides a good choice for file secure stor-
age. MedRec [8] is a novel decentralized record management system to handle
EMRs, using blockchain technology. Their system gives patients a comprehen-
sive, immutable log and easy access to their medical information across providers
and treatment sites.

A smart contract is an instance of a computer program that runs on a
blockchain which has a unique address. Any user can create a contract by pub-
lishing a transaction to a blockchain. Once a smart contract’s program code has

A Design of Digital Rights Management Mechanism 35

been created, it cannot be changed and will be executed whenever a message
from a user or other contract is received. The behavior of the contract is deter-
mined by the publisher while receiving a message. Smart contract can read and
write stored files, send messages to other users or contracts. It can also deposit
currency into the account balance or send it to other users or contracts. The
terms of contracts cannot be changed. Therefore, contracts cannot be changed.
The principle of smart contracts is shown in Fig. 1.

Transactions
Sending value to the
contract

| 1

1

Smart contract i>€ondition 1:Response 1 |

Events X | :
Sending information - Pres'e.t trigger | :
to the contract conditions and :::>Condition 2:Response 2 |
response rules | |

| |

I

Value State i>€ondition 3:Response 3 |
I

—| Block > Block » Block |——»

Fig. 1. Smart contract working principle

In this paper, we make use of the security and reliability features of the
blockchain technology. We record copyright transaction information and license
information on the blockchain, making the information safe and trustworthy. We
use smart contracts to issue licenses automatically and also use smart contracts
to ensure the reliability of copyright transactions.

2.2 Digital Rights Management

Digital rights management (DRM) [11,12] is a type of management system devel-
oped to enable secure distribution, and more importantly, to disable illegal dis-
tribution of paid content. DRM technologies are being developed as a means
of protection against the online piracy of commercially marketed material. The
high-level architecture and major components of a typical DRM system are
shown in Fig. 2.

To ensure a great security of digital content, international organizations
and companies have formulated many DRM standards. Open Mobile Alliance
released the OMA DRM 1.0 standard officially in November 2002 [13,14]. OMA
DRM is mainly designed for mobile data services and fixed data services, and
it has been updated to version 2.0 now. Marlin DRM was introduced by the
United States Intertrust company in 2005, co-founded with four other compa-
nies: Panasonic, Sony, Philips and Samsung [15,16]. The goal of Marlin DRM

36 Z. Zhang and L. Zhao

Content
Metadata

Issue License

Content Server

License Server

Devices

Fig. 2. High-level architecture and major components of a typical DRM system

is to implement a DRM system compatible with a wide range of consumer elec-
tronic devices. Google spent heavily to buy the video digital rights manage-
ment software company Widevine in December 2010 [17]. Widevine DRM helps
Google make up for the shortcomings in digital copyright protection and helps
Android become the dominant mobile OS today. CCTV and Tsinghua Univer-
sity established China DRM Forum in November 2004 with the support of The
State Administration of Radio Film and Television (SARFT). The forum aims
to promote the development of DRM in China and protect the rights and inter-
ests of every participant in the digital content industry chain to build a sound
environment for the development of digital content [18].

DRM has made great progress in the world. However, the traditional DRM
technology has several disadvantages because of its centralization. Centralized
servers are vulnerable to be attacked and opaque information is not user-friendly.
The blockchain technology is thought to be a good solution for these disadvan-
tages. Since the emergence of such a great technology as blockchain, there has
not been a set of proper DRM mechanisms combined with blockchain technology.
This paper has made an attempt. We hope to promote the development of DRM
mechanisms based on blockchain technology. The license structure we proposed
is close to current DRM standards, which is beneficial for the promotion of this
blockchain-based license structure.

2.3 DRM Based on Blockchain Technology

There have been several papers make trys on combining DRM with blockchain
technology. Xu et al. [19] proposed a network media’s digital rights management
scheme based on blockchain. They hope to provide an important support for the
network media platform to build a sustainable development of benign ecological
environment. But they only record the transaction information on the blockchain
and ignore the copyright information, which makes the design incomplete. The

A Design of Digital Rights Management Mechanism 37

blockchain they used is private clockchain which is not decentralized completely.
Fujimura et al. [20] propose a concept for a new rights management system
based on the blockchain technology, and clarified problems that occur when
they applied the blockchain technology to the rights management system. They
record the copyright information on the blockchain, but the transaction between
copyright owners and consumers occur out of the blockchain, which means we
need a central institution to ensure the copyright purchasing. This feature makes
the decentralization not complete. The mechanism proposed in this paper avoids
the disadvantages of the above papers. We record both copyright transaction
information and license information on the public blockchain. On the one hand,
we use the smart contracts to ensure the reliability of copyright purchasing, and
record the transactions on the blockchain. We don’t need any central institution.
On the other hand, we make use of smart contracts issuing licenses automatically,
and record the licenses on the blockchain. In this way, both the content providers
and the consumers could query and verify the copyright information at any
moment, and furthermore, no one could tamper the copyright information.

3 Design of License

We make use of smart contracts issuing licenses automatically. After the content
provider sets the price of the content according to the rules, the consumer who
wants to purchase the content makes price estimation according to his own needs.
Then the consumer sends information to the smart contract to purchase. The
contract will package the license according to the needs of the purchase and send
it to the consumer account.

3.1 License Structure

License consists of elements such as content, authorized accounts, rights, key,
key usage rules, and hash values, which is shown in Fig. 3(a).

When the license is issued, it is composed of the license indexing unit and
one or more subsequent basic units. All the units except the indexing unit are
basic units. The elements described in the logical structure of the license are
described as below:

(1) License Indexing Unit: The license indexing unit is the first unit of the
license. The license indexing unit includes the version, license ID, and basic
unit number. The license ID is the unique identity of a license. The basic
unit number is the number of basic units.

(2) Content: Content is a digital thing, such as pictures, text, audio, video, etc.
The license stores a unique identifier for the content, contentID.

(3) Authorized Account: The authorized account is the owner of the rights to
the specified content. It is the account of the consumer who purchased the
copyright in the blockchain.

(4) Rights: Rights refer to the rights of using content, such as playing, storing,
etc.

38 Z. Zhang and L. Zhao

license
index
type(1 Byte)
content
authorized user Index(1 Byte)
rights
| h(2 B
key ength(2 Bytes)
key rules
data(N Bytes
hash (N Bytes)
(a) License structure (b) License unit encoding structure

Fig. 3. License

(5) Key: The key refers to the key information contained in the license, such
as the encryption algorithm and key data. The key data is encrypted by
the consumer’s public key and can only be decrypted with the consumer’s
private key.

(6) Key usage rules: Key usage rules define how consumers can use keys, includ-
ing the start time, the end time, time period, number of times and other
relevant rules. The license is generated in the form of a purchase chosen by
the consumer, and the consumer can only use the key according to the rules.

(7) Hash: The hash refers to the hash of all previous units and is used to verify
the integrity of the license data. When consumers receive a license, they
should check the hash first.

3.2 License Unit Encoding Structure

Both the license indexing unit and the basic unit in the license are composed of
three parts: unit identification, length, and data. The unit encoding is as shown
in the Fig. 3(b).

The unit identification consists of 2 bytes, including the type and index. The
first byte is the type, and the second byte is the index of the unit in the license,
which is used to support the segmented transmission of the license. The length
section is the length of the actual data information of the unit and is represented
by two bytes. The data section is the actual data of the unit and is represented
by N bytes.

A Design of Digital Rights Management Mechanism 39

4 Copyright Transaction

The content providers and the customers can choose to be a peer of our
blockchain or choose to link to one trusted peer our blockchain platform pro-
vides. The peers need to be listening to messages from the smart contract all
the time. The copyright transaction is shown in the Fig. 4.

: ce setting
i Margin o Smart :
i H > mal :
C(;;;x:egrht ; contract :Price quering Consumer
H i Price ol
i Purchasing
«—-and deposit
_______________ _i_Tade __:) i .
successful
_ Deposit retur posit returr
................ Bhata | SN
recorded recorded

Blockchain

Fig. 4. Copyright transaction

4.1 Price Settings

We have designed a flexible license authorization system that allows copyright
owners to set a price for their content. As the license structure mentioned in
Sect. 3.1, the rights and key usage rules are designed for authorization. The
copyright owners can set the price of the rights for their content, such as the
price for playing the content, the price for storing the content, etc. They can
also set the price corresponding to the key usage rules for their content. For
example, the content can be used by time, number of times, or time period,
etc. Corresponding to different key usage rules, copyright holders need to pass
different parameters to the smart contract. If they want contents to be used by
time, the copyright owners need to set the price required by the unit time. To
be used by the number of times, the copyright owners need to set the price for
each time. To be used by the time period, the copyright owners need to set the
time period and the price corresponding to this time period. The price between
the right and the key usage rules is in additive relation. The copyright holder’s
setting of the price will be written into the transaction information between the
node and the smart contract, so that it will be written into a block and recorded
in the blockchain.

When consumers choose to purchase a product, they search for the optional
rights first and key usage rules corresponding to the content through the smart

40 Z. Zhang and L. Zhao

contract. Then they need to choose the rights and key usage rules according
to their own needs. The smart contract will return the price to be paid. After
the consumers have paid successfully, the smart contract will package and send
the licenses to the consumers automatically according to the demand. Among
them, consumer information such as content inquiries and purchases, as well as
license information sent by smart contracts, will be written into the transaction
information between the nodes and the smart contract, which will be written
into a block and recorded in the blockchain.

In this way, buyers and sellers can trade flexibly according to their interests.
At the same time, all trading information and copyright information are recorded
in the blockchain, and both sides can check at any time. The use of smart contract
also eliminates the direct interaction between copyright owners and consumers.

4.2 Trade Pledge

Copyright trading is guaranteed by smart contracts. When a copyright owner
publishes his content to a smart contract, he will pay a certain amount of deposit.
This deposit ensure that the trade can be proceed smoothly. The copyright
trader can add deposit to his account at any time. Consumers are required
to pay a 5% premium over the content price when choosing to purchase the
copyright of a content. After the license is sent to the consumer and checked
successfully, the consumer will feed back information that the content can be
consumed successfully to the smart contract. At this time, the smart contract
will return the 5% deposit of the content price to the buyers and sellers of
the trade. In this way, we can ensure the reliability of the trade. Once one
side destroys the trade, the deposit will not be returned to this side. With the
support of blockchain technology, trades guaranteed by smart contracts are safe
and credible.

5 Design of Blockchain-Based DRM Mechanism

5.1 Blockchain-Based DRM Mechanism Prototype

Figure5 shows the blockchain-based DRM mechanism prototype. Content
providers, consumers, and advertisers use blockchain clients to interact with
nodes. Nodes are responsible for basic functions such as interaction with smart
contracts and blocks production. The digital content can only be used by the
client. The rules and keys used are obtained from the license. This avoids the
fraudulent use of digital content.

A Design of Digital Rights Management Mechanism 41

Blockchain

Consumer

Client

Content provider

Content provider

Consumer

Service provider Advertiser

Fig. 5. Blockchain-based DRM mechanism prototype

5.2 DRM Mechanism Process

The business process of the blockchain-based DRM mechanism is shown in Fig. 6.

Content Smart
producer contract
Dnata enrcyption
Price settings

I
]
I
]
|
1
]
[Enrcyptedicontent __ __ _ Y >
]
]
]
]
I
I
]
]
|

Query and payment

Consumer publickey

I
1
1
1
I
D Rag e
L
I
1
|
1
I
1
I
1
1
1
I
|
1
I
1
I

Encrypted key

D License packaging
License

Feedback

Key encryption and
content encryption

Deposit return Deposit return

Fig. 6. The business process of the blockchain-based DRM mechanism

Step 1 A content producer encrypts the digital content and obtains the encrypted
data and key data. Then the content producer keeps the key data for the
follow using.

Step 2 The content producer, also called as copyright owners, interacts with
smart contracts to set the price of the corresponding content rights and key
usage rules.

Step 8 A consumer obtains the encrypted content he wants to use through an
off-chain way. The consumer can obtain content through a centralized video
site, or through a peer-to-peer network such as IPFS.

Step 4 The consumer interacts with the smart contract to find out how he/she
can use the content and how much he/she have to pay for their needs. Then
the consumer chooses the rights and the key usage rules he/she would like to

pay.

42 Z. Zhang and L. Zhao

Step 5 The smart contract sends the consumer’s public key information to the
content producer. The content producer uses the consumer’s public key to
encrypt the key data which was used to encrypt the content, and sends the
encrypted key data to the smart contract.

Step 6 The smart contract packages the index, content, authorized accounts,
rights, keys, key usage rules and hash together, according to the rights and
key usage rules chosen by the consumer, as the way mentioned in Sect. 3.1.
Then the smart contract sends the license to the consumer.

Step 7 After the consumer obtains the license, the consumer uses his private key
to decrypt the encrypted key data according to the key encryption algorithm.
Then the plaintext of key data is obtained. At this time, the consumer could
use the key to decrypt the encrypted content to get the plaintext of content.

Step 8 The consumer feedbacks the message to the smart contract that the
license can be used correctly. Then the copyright transaction is completed.
The buyer and seller’s deposit is returned to their respective accounts. The
entire blockchain-based DRM process is completed.

5.3 Storage Management

Storage management mainly consists of three parts:

(1) Copyright Trading and License Information Storage: In essence, blockchain is
a distributed database that can be used to store and transmit dispersed data.
When we implement the DRM mechanism based on blockchain technology,
we can store copyright transaction information and license information on
the blockchain. In this way, users can check their transaction records and
authorization information or authorized information at any time. Moreover,
because this information is stored on the blockchain, it also has features that
cannot be tampered with forgeries. The block structure is shown in Fig. 7.
With using the hash chain and time signature technology, we can build a
proof of these data. The license on the smart contract is temporarily stored
in a part of the memory of the smart contract after being assembled. After
the license’s being sent to the consumer, the occupied memory is released.

(2) Content storage: After the content producer completes content creation, the
content producer encrypts the content to obtain the encrypted content data,
content ID and key. The encrypted content data is stored on a centralized
video site or on a decentralized peer-to-peer network for consumers’ down-
loads. The key is stored by the content producer himself, waiting to be
encrypted with the consumer’s public key later. Content IDs are published
by content producers on smart contracts for consumers’ inquiries.

(3) Account information storage: Both content producers and consumers need
to register accounts on the blockchain platform, and need to store certain
virtual currency in the account to complete subsequent copyright transac-
tions. The smart contract stores the account information by mapping. The
accounts are divided into two categories. The content producer’s account

A Design of Digital Rights Management Mechanism

hash 1

e

hash 12

hash 34

Previous . Objective
| block | | Timestamp | | Nonce | | Py
Merkle root
Transaction

| hash 2 |

| hash | | hash |
3 4
[I

Transaction

Transaction

Copyright trade
information

License
information

Transa

ction

Transa
ction

Fig. 7. Block structure

needs to store information such as address, virtual currency balance, con-
tent ID, price settings, and so on. Consumer accounts need to store virtual
currency balances, public keys, addresses, and so on.

5.4 Copyright Information Management

Recording copyright information on the blockchain enables low-cost copyright
confirmation of digital content. Individual content creators can publish content
on the blockchain that implements our DRM mechanism easily. So that they
don’t have to sell content rights to a large media company or a media platform.
Content creators can price their own content flexibly, set copyright rules for their
content, and gain greater autonomy. At the same time, copyrights are recorded
on the blockchain and cannot be tampered, which also solves the problem of
copyright disputing fundamentally. Consumers can view published content and
price information at any time, and purchase copyrights according to their inter-
ests for content using. Once the copyright is purchased, both buyers and sellers
cannot make changes. Consumers don’t need to worry about the fact that the
purchased copyright will be tampered with or cancelled. The information in the
blockchain is transparent.

Large online media platform can also add copyrighted digital products on the
blockchain under our new DRM mechanism too. With blockchain technology, the
platforms can track and monitor the use of copyright. At the same time they
can record the consumer’s user behavior and analyze the data to find out which
products are more popular with consumers and introduce more high-quality
digital products. The most important thing is that the decentralized blockchain
systems are harder to be broken than the centralized servers.

We believe that the blockchain-based DRM mechanism can make the living
environment of digital content more fair and more harmonious. Due to the con-

44 Z. Zhang and L. Zhao

venience and permanency of copyright confirmation, we can also develop more
application scenarios such as the copyright notarization, crowdfunding, certifi-
cate authentication and so on.

5.5 Transaction Management

We record all the information that users interact with smart contracts on the
blockchain, including the content publisher’s releasing information on the con-
tent, the price setting information on the content copyright use rules, the con-
sumer’s inquiry on the content price, the consumer’s purchase of the digital
content on the preference, and the smart contract feedback margin informa-
tion. These transaction information is recorded in the blockchain to ensure that
transactions can be tracked and queried at any time. Once the transactions
are created, they will be broadcasted on the blockchain network. The nodes
in the blockchain create blocks for these transactions and calculate the block’s
hash. The node that acquires the right to credit will link the new block to
the blockchain, thus saving the information permanently. Using blockchain to
record transaction information can greatly reduce transaction costs and improve
transaction efficiency. Each node can view and check all transaction information
at any time. The blockchain’s consensus algorithm ensures that records cannot
be forged. The blockchain’s digital signature technology also reduces fraudulent
transactions. This kind of management can achieve efficient and secure trans-
actions and thus promote the healthy development of digital content protection
environments.

5.6 Potential Business Benefits

Using the proposed blockchain-based DRM mechanism model, we can reason-
ably coordinate the relationship between content providers, service providers,
consumers and advertisers. Firstly, content providers, both individual content
creators and content production companies, have a clear understanding of how
much consumers love their content. Secondly, smart contracts ensure the unforge-
able nature of transactions and copyright information, and consumers will feel
comfortable using them. For service providers, blockchain technology gives value
to digital content. For example, if a digital content only sells 10,000 copies, the
lifecycle of each content can be tracked using blockchain technology. The owner
of the licenses can be queried on the blockchain, we could also provide trans-
fer function of license, so that the digital content has a collection of meaning.
For advertisers, using our model can clearly see the number of digital content
using with advertisement, so as to know the effectiveness of advertising. They
do not have to doubt the authenticity of the data, so that advertising costs the
value for money they paid. We believe our model will provide a healthy develop-
ment environment for the production, dissemination and consumption of digital
content.

A Design of Digital Rights Management Mechanism 45

6 Conclusion and Future Work

In this paper, we designed a new DRM mechanism based on blockchain technol-
ogy. We use the decentralized, safe and credible characteristics of blockchain tech-
nology to make up for the shortcoming of centralized traditional DRM technol-
ogy. We record copyright transactions and license information on the blockchain,
which makes them safe, reliable and transparent. At the same time we use smart
contracts to ensure the reliability of the transaction and the issuing of licenses.
There is no need for interactive information between the copyright owner and the
consumer, and we don’t need centralized license server to issue licenses either. In
this way, we simplify the process and save the costs. The license structure based
on blockchain technology we proposed is close to the current DRM standards,
which is suitable for promotion.

One defect of our work may be the peers of our blockchain platform have to
be high-powered to deal with high concurrent key acquisition. We will work to
solve or weaken this problem in the future. The future direction of this work is
the realization of this new blockchain based DRM mechanism. Considering the
need for high concurrency, we plan to make a try on EOS blockchain for the
first time. We will test the performance of this new mechanism and improve the
performance. Then we aim to promote this new DRM mechanism for a better
protection of digital content.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2008)

2. Ethereum White Paper. https://github.com/ethereum/wiki/wiki/White-Paper.
Accessed 30 Mar 2018

Bitshares Forum. https://bitsharestalk.org/index.php. Accessed 30 Mar 2018
EOS.IO Homepage. https://eos.io. Accessed 30 Mar 2018

5. Hyperledger Fabric Homepage. https://www.hyperledger.org. Accessed 30 Mar
2018

Filecoin Homepage. https://filecoin.io. Accessed 30 Mar 2018

7. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. Eprint Arxiv
(2014)

8. Azaria, A., Ekblaw, A., Vieira, T., et al.: MedRec: using blockchain for medical
data access and permission management. In: International Conference on Open
and Big Data, pp. 25-30. IEEE (2016)

9. Ru, Z., Yu, Y., Xiao, Z.: Information security professional series: digital rights
management. Beijing University of Posts and Telecommunications Press, Beijing
(2008)

10. Yong, Y., Feiyue, W.: Development status and prospect of blockchain technology.
J. Autom. 42(4), 481-494 (2016)

11. Van Tassel, J.: Digital Rights Management: Protecting and Monetizing Content.
Focal Press, Waltham (2016)

12. Zhang, Z., Fan, K.: Digital rights management and security technology, pp. 96-106.
National Defense Industry Press, Beijing (2013)

13. Irwin, J.: Digital rights management: the open mobile alliance DRM specifications.
Inf. Secur. Tech. Rep. 9(4), 22-31 (2004)

o

o

https://github.com/ethereum/wiki/wiki/White-Paper
https://bitsharestalk.org/index.php
https://eos.io
https://www.hyperledger.org
https://filecoin.io

46

14.

15.

16.

17.
18.

19.

20.

Z. Zhang and L. Zhao

Choi, J., Aiken, W., Ryoo, J., et al.: Bypassing the integrity checking of rights
objects in OMA DRM: a case study with the MelOn Music Service. In: Proceedings
of the 10th International Conference on Ubiquitous Information Management and
Communication, p. 62. ACM (2016)

Keoh, S.L.: Marlin: toward seamless content sharing and rights management. IEEE
Commun. Mag. 49(11), 174-180 (2011)

Srinivas, T.S., Narasimha, V.B., Puroshothammam, M.E.: Analysis of interoper-
ability services of various DRM schemes and associations with Marlin scheme.
Indian J. Sci. Technol. 10(17) (2017)

Widevine home page. http://www.widevine.com. Accessed 30 Mar 2018

China DRM Forum. China Radio, Film and Television Digital Management (DRM)
Technology White Paper. China Radio, Film and Television Technology Division
(2011)

Xu, R., Zhang, L., Zhao, H., et al.: Design of network media’s digital rights manage-
ment scheme based on blockchain technology. In: IEEE, International Symposium
on Autonomous Decentralized System, pp. 128-133 (2017)

Fujimura, S., Watanabe, H., Nakadaira, A., et al.: BRIGHT: a concept for a decen-
tralized rights management system based on blockchain. In: IEEE, International
Conference on Consumer Electronics, Berlin, pp. 345-346. IEEE (2016)

http://www.widevine.com

q

Check for
updates

InfiniteChain: A Multi-chain Architecture
with Distributed Auditing of Sidechains
for Public Blockchains

Gwan-Hwan Hwangl’z(M), Po-Han Chenl, Chun-Hao Lul,
Chun Chiu!, Hsuan-Cheng Lin', and An-Jie Jheng1

! TideTime Sun Limited, Kowloon, Hong Kong
2 Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, Taiwan
gwanhwan. hwang@gmail. com

Abstract. InfiniteChain proposes an all-new type of distributed auditing as well
as a method for multi-chain operation that overcomes bottlenecks encountered
thus far by state-of-the-art blockchain technologies and their implementation in
commercial applications. Transactions are first processed outside of the main
chain and index Merkle trees and distributed auditing are then employed to
perform fraud proofs for these transactions in the sidechain. Its advantages
include high bandwidth of transactions, protection of transaction privacy, and
fusion with existing centralized commercial scenarios. The implementation and
experimental results demonstrate the feasibility of the proposed system.

Keywords: Blockchain - Sidechain - Distributed auditing

1 Introduction

Bitcoin is a cryptocurrency with decentralized controls that was created in 2009. The
blockchain technology it is based on is now widely accepted and used in many
industries. Apart from becoming an internationally recognized currency, people are
now hoping that this shared value system will enable the development of decentralized
applications (Dapp) in each industry based on blockchain technology.

In addition to its use in cryptocurrency transactions, the advantages of blockchains,
such as decentralized information verification and resistance to tampering, have been
noted by various fields. Key applications include value registry, value web, and value
ecosystem services. Industries with related applications include logistics, financial
systems, medical records, the collection and verification of data in the Internet of
Things (IoT), supply chain management, stocks or options trading, social networking
software, electronic patient records, micropayment/mobile payment systems, asset
transactions, and distribution of digital products. People are hoping that blockchains
will be able to play the role of trusted machines in the operation of such systems.
Keeping a detailed record of related information and solving information asymmetry
problems will enable a trusted record to be established. In the use cases mentioned
above, large amounts of information will need to be recorded on the blockchain.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 47-60, 2018.
https://doi.org/10.1007/978-3-319-94478-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_4&domain=pdf

48 G.-H. Hwang et al.

Nevertheless, blockchain technology has encountered bottlenecks in the course of
its development. If these cannot be overcome, it will be difficult for the blockchain to
be fully implemented in the different application scenarios mentioned above. Each of
these problems will be explained below.

The first problem is insufficient blockchain bandwidth. Blockchain’s decentralized
operation is dependent on Internet users worldwide for its maintenance and use. Any
user can therefore use block transactions to exchange cryptocurrency, write smart
contracts, or record information. Bitcoin and Ethereum are, however, limited to no
more than 7 and 25 transactions per second (TPS) [1], respectively. If no technology
available can place large numbers of transactions on the blockchain, it will simply not
be practical to solve information asymmetry by storing transactions on the blockchain.

T@@ Tﬁ@@

99| |98

99| |90
oo
psiny s 1 ,

g el
D, ® ol

—— Block Producer

P2P Network E';]
;]Node @ Transaction

Fig. 1. A public blockchain

fululys @
Blockchain | @@ @ @ “—
0P| | DDD D

ualusls)
T@@Eﬁ

Public blockchains are generally considered to have a global consensus'. As shown
in Fig. 1, the decentralized operation of the blockchain basically uses a consensus
protocol such as Proof of Work (PoW) or Proof of Stake (PoS) to obtain or select a
block producer from participating nodes. The block producer then collects transactions
through a Peer-to-Peer (P2P) network and records these transactions in a single block
within the blockchain using electronic signatures and a hash function. All nodes in the
public blockchain participating in the consensus protocol must continuously update any
changes to the data in the blockchain as well as obtain transactions that ordinary users
want to place on the blockchain. Large amounts of information must therefore be
exchanged over P2P networks, thus making it impossible to increase transaction
bandwidth.

A “private blockchain™ or “consortium blockchain” is a method that attempts to
solve the problem of insufficient transaction bandwidth. The number of participating
blockchain nodes is limited to facilitate rapid propagation and the use of special

! Bitcoin and Ethereum have between 8,000-10,000 participating nodes at any given time, many of
which are also mining pool nodes with massive processing power.

InfiniteChain: A Multi-chain Architecture 49

consensus protocols (e.g., all types of PoS, BFT, and PoA), which contribute to
speeding up the selection of block producers. There is obviously a big credibility gap
between private blockchains and public blockchains. The core philosophy of a
decentralized system is to reduce the access threshold and remove restrictions on
participating nodes so that no monopoly on trust machines can be formed. In a private
chain, the smaller number of nodes increases vulnerability to 51% attacks” and prevents
global consensus.

Some public chain developments intend to increase speed by adopting an archi-
tecture with a smaller number of nodes, but that leaves them vulnerable to 51% attacks
as well as Distributed Denial-of-Service Attack (DDoS) attacks that result in the
stoppage of the entire blockchain.

The second problem is insufficient blockchain payload space. As described pre-
viously, in each type of system the public blockchain plays the role of the trust
machine. As large amounts of transaction records are pushed onto the blockchain, the
amount of data on the blockchain will rapidly increase within a short amount of time.
Depending on the consensus model, full nodes of the blockchain must store every
block on the blockchain and the transactions they contain. The consensus protocol of
Bitcoin, for example, restricts the growth in blockchain capacity to around 70 GB per
year. In the absence of such restrictions, the propagation and storage of blocks becomes
a major problem. This situation is also known as “blockchain bloat.” VISA reported
that it generated a total of 92.064 million payment transactions in 2015. If translated
into the data structure used for Bitcoin transactions, it would amount to around 2,900
transactions per second and 47 TB of storage space. This already far exceeds the hard
drive space on an ordinary computer.

The third problem is lack of privacy protection. All the transactions stored in a
public blockchain are replicated in nodes from all over the world. At the moment,
privacy protection in blockchains consists mainly of using a mechanism similar to
money-laundering to conceal information about cryptocurrency transactions. There are
two main methods: (1) Cryptography accumulators [2], used by Zerocoin, and
(2) CoinJoin [3], used by SharedCoins, Dark Wallet, CoinShuffle, the PrivateSend
feature of Dash, and JoinMarket. Cryptocurrency transaction information recorded on
the blockchain gives no indication of the sender.

The two methods above can only be used for cryptocurrency transactions and so
cannot be used for other general transactions or contracts. The popularity of Ethereum’s
smart contract is due to its ability to handle general transactions or contracts, not just
cryptocurrency transactions. These include asset transactions and patent licensing as
well as contract, document, and information records. Smart contracts for non-
cryptocurrency transactions cannot make use of cryptocurrency’s privacy protection
technology, thus limiting the system’s scope of application.

The fourth problem is that the blockchain currently has limited application sce-
narios. The concept of decentralization has gained acceptance in some circles: the
forging and trading of cryptocurrencies, for example, can now be completely

2 A 51% attack is where control over more than 51% of the nodes gives the controllers the ability to
modify blocks or control their production.

50 G.-H. Hwang et al.

implemented using a decentralized model. However, human economic activities are
influenced by law, habit, legacy systems, and interpersonal relationships. Dispensing
completely with centralized operations is impossible. Industries with related applica-
tions, such as: logistics, financial systems, medical records, the collection and verifi-
cation of data in the Internet of Things (IoT), supply chain management, share or rights
transactions, social networking software, electronic patient records, micropayment/
mobile payment systems, asset transactions, and distribution of digital products—
nearly all of these applications still require a centralized agent or intermediary. If the
public blockchain cannot be integrated with industries that have similar centralized
operations, the use of the blockchain as a trust machine will be greatly limited.

The following example uses digital product distribution to explain why that is the
case. For digital products such as e-books, music, movie rentals, and electronic tickets,
the widespread use of the Internet and larger bandwidth has popularized sales over
online platforms. To expand their sales channels, the rights-holder will usually com-
mission agents to make sales over the agent’s network platform. The agent collects
payments from users and maintains a record of accounts. The accounts are then pro-
vided to the rights-holder at fixed intervals with details on downloads and corre-
sponding royalties. However, since the accounts are recorded and maintained by the
agent, the rights-holder is unable to verify their authenticity. For example, the agent’s
records may contain accidental omissions or other errors due to bugs in the system. Or
the agent may deliberately forge or modify the records to reduce the amount of roy-
alties payable to the rights-holder.

Based on the explanations above, we can now give a summary of the current
problems to be solved:

Problem P1: Blockchain transaction speeds are too slow. How can the blockchain
handle a large number of transactions in a short period of time?

Problem P2: How can blockchain bloat be avoided when storing large numbers of
transaction records on the blockchain?

Problem P3: How can the privacy of involved parties be protected when records for
transactions other than cryptocurrencies are written to the blockchain?

Problem P4: In the real world, the division of labor in the commercial environment
means that intermediaries (or agents) cannot be easily replaced. They may also form a
wall between digital asset publishers and consumers. So how can we retain a system
with many intermediaries while providing transparent, reliable, and verifiable con-
sumption records?

These four problems are tightly interrelated. For example, if Problem P1 is solved
and blockchain’s transaction bandwidth is greatly expanded, then Problem P2 seems
inevitable. Large numbers of transaction records on the blockchain will lead to
excessive data storage. If Problem P3 is solved, the privacy of the transaction parties
will be protected and third parties will not be able to obtain transaction details, but then
Problem P4, that of dishonest agents, may become even worse.

In this paper, we propose a multi-chain architecture to completely solve all of these
problems. Transactions are first processed outside the main blockchain. A hash value
which can be considered as a condensed fingerprint of these processed transactions is

InfiniteChain: A Multi-chain Architecture 51

first recorded in a contact® of the main blockchain after the end of these transactions.
Then, we apply a scheme called “distributed auditing” in which all participants
examine their own transactions according to the uploaded fingerprint in the contact. In
case there is anything wrong, such as incorrect or missing transactions, a participant
can generate a small-sized cryptographic proof which can be sent to the contact to issue
an objection (or even prove fraud). The pre-arranged function in the contact accepts the
cryptographic proof and can then perform specific actions, such as paying bonds to the
participant.

This paper is organized as follows. Section 2 shows the multi-chain architecture of
InfiniteChain, including how we perform fraud proof in sidechains in index Merkle
trees and distributed computing. In Sect. 3 we discuss how problems P1, P2, P3, and
P4 are solved according to the proposed InfiniteChain technology. The implementation
details and experimental results are presented in Sect. 4 and conclusions are drawn in
Sect. 5.

2 A Multi-chain Architecture

The architecture of the proposed multi-chain blockchain is shown in Fig. 2. A mul-
ti-chain is a joint operating model consisting of the main blockchain and several
sidechains. Generally speaking, transactions that do not need to be processed quickly,
such as cryptocurrency transactions or individual contract records, are first sent directly
into the P2P network and then linked to the main chain by nodes that have become
block producers.

P2P network

— " Logisties . —P— ;}-@ﬁ o {
--------------- R 7 -
e g® T € -
Sidechain | =---=--cesecceoeee- R/v o @ . @
Stock Transactions ‘m L) e ED“ F
................... - .

! -
-

................... R
- Micropayment — Block Producer

?

Q Node @ Transaction R Root hash completed by sidechain

Fig. 2. The multi-chain architecture

3 In the follows, we use contract to represent an entity, similar to Ethereum’s smart contracts.

52 G.-H. Hwang et al.

High-volume transactions, or those that require centralized matchmaking, however,
are first processed on a sidechain. A hash value for the transactions is then generated
and sent to a node in the P2P network and linked to the main chain. The sidechain runs
at a high speed and accumulates a large number of transactions after a certain amount
of time. The auditing node responsible for the decentralized operation of the sidechain
then generates a hash value and corresponding identification code, which is then sent to
the main chain.

The maintenance and operation of the main chain is the same as the operation and
management of ordinary public blockchains. Sidechain operations are initiated by
industry applications (e.g., transaction agent platforms, professional brokers, invest-
ment banks, securities companies, auditors, appraisers, lawyers, toolkit developers).
For market and business development, different sidechains are managed and operated
for individual business types. Sidechains must regularly synchronize their information
with the main chain to avoid counterfeiting or tampering of data.

2.1 Existing Sidechain Technologies

There are several techniques for running transactions outside of the main chain before
adding them to the main chain. After explaining each of these techniques, we will look
at how InfiniteChain’s sidechains are different. The first technique uses “relay-based”
sidechains. Assets are transferred between the main chain and sidechain before the
transaction is conducted on the sidechain [4, 5]. The assets are transferred back to the
main chain after a certain time. This reduces the number of transactions that take place
on the main blockchain. Implementations of this system include BTC-Relay [6] and
Rootstock [7]. The problem of the relay-based technique is implementing a 2-way peg
protocol. For example, the blockchain of Bitcoin is impossible to establish such a
relayer.

Another type is “channel-based” and usually referred to as “off-chain.” Lightning-
network [8] and Raiden [9], for example, use off-chain transactions to increase their
TPS. In this method, there is no need to use nodes to obtain consensus about trans-
actions produced in sidechains. A payment channel is created in advance on the main
chain and all the participants in the transactions made over this channel exchange
electronically signed information outside of the main chain to indicate that transactions
have taken place. A summary of these transactions are then written back to the main
chain. Both of the above methods only offer a solution for high-frequency transfer of
cryptocurrency or tokens and cannot be applied directly to contract records and other
non-cryptocurrency transactions. In addition, this approach requires a prepayment in
the channel and the Internet connection in real time to avoid receiving transactions
from others, conditions that can be difficult to apply.

InfiniteChain uses an agent type (Proxy-Based) system for its sidechains. In this
type of scenario, the user will commission a platform or agent to assist them in chaining
the transaction and submitting non-defective modifications into the consensus system.
Thus, the effectiveness of the application is achieved by the underlying data structure.
An unlimited number of lower sidechains can be generated at any time when needed,
making InfiniteChain suitable for solving the problems of real-world scenarios inter-
facing with the blockchain. In InfiniteChain we employ index Merkle trees and invent a

InfiniteChain: A Multi-chain Architecture 53

scheme called distributed auditing to have the main chain’s block producers perform
fraud proofs for sidechain transactions.

2.2 Sidechain Fraud Proof Performed by Nodes of Main Chain

In the multi-chain operation of InfiniteChain, the main chain is a public blockchain and
so can obtain global consensus. It effectively validates the operating of agents which
manifest the transactions in sidechains. Our idea is for block producers to perform fraud
proof of transactions in sidechains. The multi-chain architecture of InfiniteChain can
therefore solve all of the problems outlined in Sect. 1.

For fraud proof of transactions in sidechains, we propose a process of distributed
auditing which is based on our index Merkle tree data structure.

Index Merkle Tree
The transactions conducted in a sidechain of InfiniteChain are stored in an index
Merkle tree, which is not only a binary tree but also a hash tree. A Merkle tree is a tree
of hashes in which the leaves are hash values and the top of the tree is occupied by a
root hash. A root hash, which represents a fingerprint of transactions stored in the
corresponding Merkle tree, and a slice of Merkle tree are sufficient to prove the
existence of a transaction in a Merkle tree. The hash value of a transaction is stored in
one of the leaf nodes in the Merkle tree. Further up the tree, an internal node stores a
hash value that is the hash of the concatenation of all the hash values of its child nodes.
Figure 3 shows a Merkle tree with a height of four and eight leaf nodes and Fig. 4
shows a slice of a Merkle tree that is nine nodes high. If we would like to prove a
transaction does not exist in a Merkle tree, we have to scan all the transactions in a
Merkle tree. A Merkle tree is therefore not sufficient in the fraud proof of a sidechain,
because block producers can only execute functions in contract with small-sized
parameters®. We will employ the index Merkle tree proposed in [10]° as a data structure
to store transactions in a sidechain.

‘ o Root Node

Tree Height . Internal Node

‘ |D] Leaf Node

o 1 2 3 4 5 6 7 D ofleaf nodes

Fig. 3. A binary Merkle tree with a height of four

The hash value of a transaction is stored in one of the leaf nodes of the index
Merkle tree according to the index function I'. If a Merkle tree is a full binary tree, it

4 Refer to Sect. 4 for details.
5 The index Merkle tree is called an FBHTree in [10].

54 G.-H. Hwang et al.

D % 97

Fig. 4. A slice of an FBHTree that is nine nodes high

has 2V7! leaf nodes if its height is N. The index function I" returns the ID of a leaf node.
In this paper, we propose the index function I' to be:

I'(Transaction ID) = SHA-256° (Transaction ID) mod 2V!

That is, I returns 0 to 2! if the height of the index Merkle tree is N. Hash values
of different transactions may be stored in the same leaf node due to a collision of the I
function. In addition to proof of existence of a transaction in an index Merkle tree,
proof of inexistence can also be easily applied with a small-sized cryptographic proof.
Given a transaction with an ID of 7 and root hash R of an index Merkle tree, if I'(7) = x,
then we obtain the slice of the node whose ID is x and check if ¢ exists according to this
slice, because the protocol of operating an index Merkle tree has each transaction stored
in a fixed slice. For the details of the index Merkle tree, refer to [10]. With index
Merkle trees, we invent a form of distributed auditing that can do fraud proof for
transactions in sidechains.

Distributed Auditing

The operation of a single sidechain is divided into multiple stages. Each stage contains

the execution and auditing of some transactions. There is a corresponding contact of the

sidechain in the main chain that keeps necessary information and functions for the

sidechain’s operation. An index Merkle tree will be generated in each stage. That agent

is responsible for keeping and maintaining it. Its root hash will be put into the contact.

Refer to Fig. 5 for steps involved in a stage.

Step (1): The agent responsible for initiating a stage starts by conducting a series of
transactions with participants (or consumers).

Step (2): After a certain period of time, the agent sends processed transactions)
from Step (1) to the audit node.

Step (3): The audit node uses transactions y to generate an indexed Merkle tree
(IMT). The IMT is also used to generate a root hash value R. R and the
corresponding identification tag, such as its stage number, are sent to its

S The SHA (Secure Hash Algorithm) is one of a number of cryptographic hash functions. SHA-256
algorithm generates an almost-unique, fixed size 256-bit (32-byte) hash.

InfiniteChain: A Multi-chain Architecture 55

' ([ooe|Tooe|Tone|Toae| Pockerodes Node
Mainblockchain oo | |l el e «—f |
! " 209 |90 |eee| oo |«—)
Publeblockehain | g @0 | P00 (999 |90® Q [;}

Participants’s self-audited results are sent to main b]ockchaln @

»

R Slices (Some transactions) @ P2P network

|
After a period of time R (32 bytes)
Transactions
in the ledger 2 Indexed
Agent/Intermediary 2> Merkle tree

Participants

D-DED-

Auditing node

Fig. 5. A sidechain with distributed auditing

contact in the main chain for storing. All participants can use the
identification tag from the contact in the main chain to obtain R.

Step (4): Participants are responsible for auditing their own transactions to see if they
were correctly placed in the IMT:

e The given root hash value R is used to ask the auditing node to return
the corresponding slices of the participant’s own transactions, with each
slice representing one such transaction. Since R is anchored to the main
chain, an audit of the slice that does not turn up a particular transaction
is cryptographic proof that the agent did not put their own transaction
into the IMT.

Step (5): If the participant’s audit finds that the agent provided missing or incorrect
data, the associated information is signed and then sent to a node for
arbitration by block producers by calling an arbitration function in the
contact. If arbitration finds that the agent made an error, then the participant
receives a share of the bond which was previously stored in the contact.

Step (6): The agent pays royalties to the rights-holder. A rights-holder can use R and
the IMT to verify that a royalty payment’ is free from error.

The integrity of transactions generated by sidechain operations is maintained by all
participants. Participants and the agent both electronically sign their transaction
information to realize mutual non-repudiation. In Step (4), multiple participants are
involved in auditing the existence and integrity of transactions on the sidechain. Any

7 The IMT can store a lot of different activities, such as electronic voting.

56 G.-H. Hwang et al.

omissions or errors found in an agent’s transactions are arbitrated by nodes on the main
chain by calling a function in the contact. If arbitration is passed, then the bond is
automatically shared among the participants who issued the arbitration; if not, it is
refunded to the agent®. This boosts the incentive for participants to take part in an audit.

3 Why Are Problems P1, P2, P3, and P4 Solved?

An InfiniteChain will contain many sidechains. Transactions are conducted in different
sidechains. A single transaction agent is usually responsible for all transactions from a
matchmaking service. Transactions processed by a sidechain agent do not need to be
immediately placed on the blockchain. The hash value for a ledger containing N
transactions is eventually placed on the blockchain: the equivalent of placing N
transactions on the blockchain all at once. In practice, placing the hash value of a
transaction ledger on the blockchain only takes up the bandwidth of a single transac-
tion. In this manner, the transaction bandwidth of the blockchain can therefore be
expanded almost indefinitely. The number of transactions per second is no longer
constrained by the limitations of the main chain. Not having a limit of transactions per
second means that fast speeds can be attained.

Since public blockchains can currently handle dozens of transactions per second,
the speed of an InfiniteChain blockchain can now be easily increased to tens of millions
of transactions per second, as shown in the following formula:

Transactions per second = (Average number of blocks generated per second)
X (Average number of transactions per block)

x (Average number of transactions per InfiniteChain ledger)

If we set the main chain’s transactions per second to 10, then the entire block-
chain’s transactions per second =10 X 1,000,000 = 10,000,000 TPS. We can therefore
achieve 10 million TPS with ease. This technique elevates the practicality of the
blockchain to a whole new level. Problem P1 has now been solved.

InfiniteChain’s approach is to let the agent conduct transactions. We refer to this as
a sidechain operation. After a certain amount of time, the root hash of this sidechain is
placed on the main chain. Since the transaction ledger formed by the sidechain does not
need to be stored on the main chain, Problem P2, namely information bloat, does not
exist on the main chain, nor does InfiniteChain’s fix for Problem P1 create Problem P2.
The details of all sidechain transactions are in the safekeeping of the responsible agent.
Since its root hash and identification tag have already been placed on the main chain,
they cannot be altered by the agent.

During sidechain operations, all transactions are stored securely in index Merkle
trees. Transaction details are also encrypted with the public keys of the participant and
digital asset provider. Only the participant and digital asset provider can use their

8 Alternately, the mistake of agent or error can be recorded in the contact.

InfiniteChain: A Multi-chain Architecture 57

private keys to validate their own transactions. The privacies of the participant and
digital asset provider are therefore protected. Problem P3 has now been solved.

Since only hash values of index Merkle trees are published, participants and digital
asset providers can use the index function to immediately pinpoint the leaf node for a
particular transaction in the index Merkle tree. When a participant wishes to audit their
own transaction and see if it was correctly stored in the transaction ledger, the par-
ticipant can submit a transaction audit request to the agent. As the participant already
has the transaction serial number (the completed transaction is electronically signed by
the agent and so cannot be repudiated by the agent), the agent must then present the
slice for the transaction. The participants can then use the root hash of the ledger and
the slice for the transaction to verify the integrity of the transaction and whether it
exists in the transaction ledger. Problem P4 has now been solved.

4 Experimental Results

We have performed a series of experiments to demonstrate the feasibility of the pro-
posed architecture. We installed a cloud server as our auditing node: a virtual machine
of AWS EC2 r4.xlarge with 4 CPUs. The operating system was Ubuntu 16.04. Node.js
8.6.0 was employed to implement the auditing node. We divided the experiments into
three major parts, including measuring the time required to generate an index Merkle
tree, the time required to extract slices from an index Merkle tree, and the required gas
consumed in the function execution of smart contract in the Ethereum blockchain.

The time and its standard deviation required to generate an index Merkle tree is
shown in Table 1. For an index Merkle tree which contains less than 10,000 trans-
actions, we only require about 4.6 s for generation.

Table 1. The time required to generate an index Merkle tree

of transaction | Average time (ms) | Standard deviation (ms)
100 26.22 10.79
1,000 282.79 13.20
10,000 4685.59 175.94
100,000 62380.20 1015.32
1,000,000 1052168.24 44106.64

Table 2 lists the time required to extract slices from index Merkle trees, which is
the operation of Step (4) in Fig. 5. We store different numbers of transactions with
different heights. We only needed less than one millisecond to extract a slice even when
an index Merkle tree contained one million transactions.

In the third part of our experiment, we implemented the InfiniteChain in the public
blockchain, Ethereum. Ethereum provides a decentralized Turing-complete virtual
machine, the Ethereum Virtual Machine (EVM), which can execute scripts using an
international network of public nodes. Gas is the internal pricing for running a trans-
action or contract in Ethereum. Using more computation and storage in Ethereum

58 G.-H. Hwang et al.

means that more gas is used (See the yellow paper for a breakdown of operations and
respective gas costs [11]). One fundamental reason for metering is that it provides an
incentive for miners to operate the contract code [12].

Table 2. The time required to extract slices from index Merkle trees

of Height of the index Merkle Average time Standard deviation
transaction tree (ms) (ms)
100 7 0.47 1.32
1,000 10 0.18 0.08
10,000 14 0.30 0.27
100,000 17 0.42 1.24
1,000,000 20 0.54 1.33

Since computation with global consensus is expensive, transactions have a gas limit
field to specify the maximum amount of gas which the sender is willing to buy. If the
gas used exceeds this limit during execution, processing is stopped, which protects full
nodes from attackers who could make them execute infinity loops without a gas limit. If
a transaction would take longer than a block to process, then it would not be included in
the block.

A block also has a field called gas limit. It defines the maximum amount of gas all
transactions in the whole block combined are allowed to consume. Its purpose is to
keep block propagation and processing time low, thereby allowing for a sufficiently
decentralized network [13]. Consensus protocol allows the miner of a block to adjust
the block gas limit by a factor of 1/1024 (0.0976%) in either direction [14, 15].
Currently, the gas limit is around eight million. Refer to Table 3. In our experiment, the
highest gas is 3.7 million, in which the height of the index Merkle tree is 20, for storing
one million transactions, with 9 transactions in the leaf node. According to our previous
experiments about index Merkle tree, the maximum number of transactions in a leaf
node is 8 [10]. The size of cryptographic proof and required gas are therefore small
enough to be performed as a function in Ethereum smart contract.

Table 3. Gas consumption in Ethereum blockchain platform. a: Height of the index Merkle tree,
B: Number of transactions in the leaf nodes

a B
1 3 5 7 9

3 | 315422 | 511245| 810761 | 1216315 | 1730911
5 | 548841 | 744664 | 1044305 | 1450118 | 1964195
10| 1138873 | 1334255 | 1633713 | 2039442 | 2553564
15| 1736287 | 1931590 | 2230814 | 2636102 | 3150952
20| 2340295 | 2526356 | 2835031 | 3240553 | 3755455

InfiniteChain: A Multi-chain Architecture 59

5 Conclusion

Decentralized application systems based on blockchain technologies are just now
beginning to enter our everyday lives. However, experts have pointed out some bot-
tlenecks in the basic technology. As noted in Sect. 1, these are Problem P1 (insufficient
bandwidth), Problem P2 (blockchain bloat), Problem P3 (difficulty protecting privacy),
and Problem P4 (difficulty integrating with centralized scenarios). If any one of these
problems remains unsolved, then the dream of blockchains becoming trust machines
will be just that, a dream. The blockchain will be limited to a platform for mining and
trading cryptocurrency, or will only be used in a limited number of application
scenarios.

In this paper we propose a multi-chain architecture which employs distributed
auditing to perform fraud proof in the sidechain. An efficient and effective fraud proof
solves problems P1, P2, P3, and P4. Experimental results shown in Sect. 4 demonstrate
that the index Merkle tree is able to an appropriate data structure for supporting fraud
proof. The cryptographic proof generated from an index Merkle tree is small enough to
be validated in a contract of public blockchains.

In future work, we are extending distributed auditing to implement a real-time and
low-cost cash flow sidechain. A contract published to the main chain is used to control
the cash flow exchange of participants in the sidechain. General cash flow does not
need to pass through the main chain, which speeds up the main chain. An agent is
responsible for accepting and processing the remittance, deposit, and withdrawal
requests from participants. The index Merkle tree is still the basis for the agent’s
generation of cryptographic proofs for fraud proofs.

References

1. Banjo, Y.: Ethereum won’t scale like you’ve been told. https://medium.com/@yobanjo/
ethereum-wont-scale-like-you-ve-been-told-cae445bef539. Accessed 10 Apr 2018

2. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital
signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274-285.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

3. Maxwell, G.: CoinJoin: bitcoin privacy for the real world. http://bitcointalk.org. Accessed 10
Apr 2018

4. A simple explanation of bitcoin sidechains. https://gendal.me/2014/10/26/a-simple-
explanation-of-bitcoin-sidechains/. Accessed 10 Apr 2018

5. How Two New Sidechains Proposals Could Change Bitcoin’s DNA. https://www.coindesk.
com/two-new-sidechains-proposals-change-bitcoins-dna/. Accessed 10 Apr 2018

6. BTC-Relay, A bridge between the Bitcoin blockchain & Ethereum smart contacts. http:/
btcrelay.org/. Accessed 10 Apr 2018

7. Rootstock ~ Whitepaper. http://www.the-blockchain.com/docs/Rootstock-WhitePaper-
Overview.pdf. Accessed 10 Apr 2018

8. Lightning Network: Scalable, Instant Bitcoin/Blockchain Transactions. https:/lightning.
network. Accessed 10 Apr 2018

9. Raiden Network - Fast, cheap, scalable token transfers for Ethereum. https://raiden.network/.
Accessed 10 Apr 2018

https://medium.com/%40yobanjo/ethereum-wont-scale-like-you-ve-been-told-cae445bef539
https://medium.com/%40yobanjo/ethereum-wont-scale-like-you-ve-been-told-cae445bef539
http://dx.doi.org/10.1007/3-540-48285-7_24
http://bitcointalk.org
https://gendal.me/2014/10/26/a-simple-explanation-of-bitcoin-sidechains/
https://gendal.me/2014/10/26/a-simple-explanation-of-bitcoin-sidechains/
https://www.coindesk.com/two-new-sidechains-proposals-change-bitcoins-dna/
https://www.coindesk.com/two-new-sidechains-proposals-change-bitcoins-dna/
http://btcrelay.org/
http://btcrelay.org/
http://www.the-blockchain.com/docs/Rootstock-WhitePaper-Overview.pdf
http://www.the-blockchain.com/docs/Rootstock-WhitePaper-Overview.pdf
https://lightning.network
https://lightning.network
https://raiden.network/

60

10.

11.

12.

13.

14.

15.

G.-H. Hwang et al.

Hwang, G.-H., Chen, H.-F.: Efficient real-time auditing and proof of violation for cloud
storage systems. In: The 9th IEEE International Conference on Cloud Computing (IEEE
Cloud 2016), 27 June-2 July 2016, San Francisco, USA (2016)
http://gavwood.com/Paper.pdf. Accessed 10 Apr 2018
https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17feldc. Accessed 10 Apr
2018

https://bitcoin.stackexchange.com/questions/39132/what-is-gas-limit-in-ethereum. Accessed
10 Apr 2018
https://www.reddit.com/r/ethereum/comments/6g6tww/there_are_hundreds_or_even_
thousands_of_pending/dinzrgq/. Accessed 10 Apr 2018
https://www.etherchain.org/tools/gasLimitVoting. Accessed 26 Jan 2018

http://gavwood.com/Paper.pdf
https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17fe1dc
https://bitcoin.stackexchange.com/questions/39132/what-is-gas-limit-in-ethereum
https://www.reddit.com/r/ethereum/comments/6g6tww/there_are_hundreds_or_even_thousands_of_pending/dinzrgq/
https://www.reddit.com/r/ethereum/comments/6g6tww/there_are_hundreds_or_even_thousands_of_pending/dinzrgq/
https://www.etherchain.org/tools/gasLimitVoting

Research Track: Smart Contracts

®

Check for
updates

A Method to Predict the Performance
and Storage of Executing Contract for
Ethereum Consortium-Blockchain

Huijuan Zhang®™), Chengxin Jin®™, and Hejie Cui™)

Tongji University, 1239 Siping Rd, Shanghai, People’s Republic of China
mszhj@tongji.edu.cn, jinchengxin@outlook.com, cuihejie3317710@gmail.com

Abstract. As the fundamental technology of Bitcoin, blockchain
enables people to deal with trust problems in network. Ethereum, as a
well-known public blockchain, is favored by large companies and organi-
zations for its excellent account model and Turing-complete smart con-
tracts, and is widely used to develop consortium-blockchain. However,
the performance and storage of executing contract gradually degrade
as the transaction volume increases. Meanwhile, compared with public
blockchains, companies need a more accurate estimation of prospective
performance and storage based on business scale for decisions making
or early warnings. In this paper, a prediction model derived from the
core structure of Ethereum’s “World State” is proposed. The proposed
model predicts the performance and storage of executing contract based
on transaction volume. The comparison between the experimental and
predicted data reveals that this model can perform a relative accurate
prediction of the prospective system’s performance and storage.

Keywords: Blockchain - Ethereum - Contract + Performance - Storage

1 Introduction

Ethereum (3], as the successor of Bitcoin [5], establishes a Turing-complete smart
contract on blockchain to realize distributed application DApps [6]. Meanwhile,
the account-based design of Ethereum provides convenience for the docking of
existing business models (compared with UXTO model). Thus many companies
choose Ethereum to build their consortium-blockchain system or develop on
it (for example EEA [1]) based on two points. As a result, Compared with
the public Ethereum blockchain, Ethereum consortium-blockchain mainly uses
the transaction to execute the contract instead of making a transfer of ETH
cryptocurrency. Therefore, this paper focuses on the performance and storage of
executing the Ethereum contract.

However, the test results show that when the transaction volume reaches a
certain scale, the execution performance of Ethereum will significantly reduce
and large storage space will be occupied. (e.g. when the limit of block generation
rate was modified to one block per second, the TPS of a contract, which is

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 63-74, 2018.
https://doi.org/10.1007/978-3-319-94478-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_5&domain=pdf

64 H. Zhang et al.

about 200 at start, would reduce to 100 as the transaction volume reaches one
million). For companies, predicting the prospective performance and storage are
important indicators in making technical decisions, and also allow companies to
prepare for hardware, monitoring and plans in advance. Thus, it is necessary
to predict the prospective performance and storage of the system in Ethereum
consortium-blockchain based on the business scale.

In public Ethereum blockchain, it’s impossible to predict the distribution
and complexity of smart contract since anyone can deploy a contract easily.
As a result, it’s hard to accurately estimate the perspective performance and
storage. Nevertheless, it is possible to predict the performance and storage in
Ethereum consortium-blockchain resulting from that the participants are the
authorized nodes; that the relatively-fixed smart contract with evaluable com-
plexity is determined by business model; and that the transaction volume is
determined by business scale.

The prediction method proposed in this paper speculates the performance
and storage by analyzing the relationship between transaction volume and
“World State” [7]. “World State” is the core part of Ethereum. The account sys-
tem maps the state data as key/value form and stores them in Level DB through
this special structure [13]. “World State” is implemented using “the modified
Merkle Patricia tree (trie)” [4] (hereinafter referred to as MPT). PATRICIA trie
(Patricia tree) is a space-optimized version of the traditional trie data structure,
in which every node with only one child is merged with its child. This data struc-
ture was firstly proposed by Morrison [16] in 1968, and then well analyzed in
“The art of computer programming” by Knuth [17] in 1973. The “Merkle” part
of the radix trie arises in the fact that a deterministic cryptographic hash of a
node is used as the pointer to the node, leading to the fact that the Ethereum
could trace the history state through root of “World State” in any block header.
The contract in Ethereum is called transaction. Depending on the implemen-
tation of Ethereum [2], the time consumed by a transaction call for contract is
mainly determined by the execution time of Ethereum Virtual Machine (EVM)
[7] and by the modification of the “World State”. Meanwhile, the increment of
data generated by this transaction depends on the transaction scale and the
increment amount of the “World State”. With the transaction volume growing,
the “World State” becomes larger, resulting in the rise of time consumption
and data space. Consequently, the estimation of performance and storage can be
obtained under the premise of figuring out the relationship between transactions
volume and “World State”.

This paper is focused on the relationship between the performance and stor-
age increment of “World State” after the transaction volume reaches a certain
scale, and a prediction formula is proposed for this relationship. Using this for-
mula, companies could predict the prospective time consumption of executing a
transaction and the storage occupancy based on the transaction volume. At the
end of the paper, a suggestion is raised for the design of contract in Ethereum
consortium-blockchain.

A Method to Predict the Performance and Storage of Executing Contract 65

The rest of this paper is organized as follows. Section2 reviews relatived
development on blockchain. Section3 gives the key technologies to introduce
how to predict the performance and storage. Section 4 provide the experiments
to prove the predict methods. Section 5 concludes this paper.

2 Relatived Work

Since blockchain is a distributed ledger maintained by all participants, many
researches have been focused on PBFT [11] and other consensus algorithms to
improve the efficiency. In this case, the performance of executing contract would
become the bottleneck restricting the system, but this research area is rarely
explored at present. For the contract of Ethereum, most researches are focused
on the security [9] of smart contract or improving its smartness [10], while the
effect of execution efficiency is scarcely investigated. High-Performance Comput-
ing is discussed for Ethereum Tokens [18], but not the performance bottleneck
of Ethereum itself. The assessment [8] results show that the performance will
decline and delay be high when the transaction volume grows (10,000 transac-
tions), however the test volume in that paper is small and there are few anal-
ysis details. In terms of storage, EtherQL [12] provides highly-efficient query
primitives for analyzing blockchain data, but not for predicting the size of data
space. On the other hand, the properties of PATRICIA trie are very important
due to the highly-correlated relationship between the performance/storage and
“World State”, as well as the close tie of “World State” MPT implementation
with PATRICIA trie. Some existing papers point out that the height of the
PATRICIA trie behaves quite differently across regions: it exhibits an exponen-
tial of a Gaussian distribution, which satisfies log(n) [15]. There is another paper
analyzing the relationship between the average height and random inserting in
PATRICIA trie. To sum up, there is not a single paper concentrating on MPT
and the relationship between performance/storage and MPT.

3 Key Technologies

3.1 Influencing Factors

In Ethereum, the time consumption of executing a transaction could be divided
into two parts: the EVM execution time and the cost of modifying “World State”,
while the storage increment is composed of transaction volume and state data of
changed “World State”. Since the contracts in consortium-blockchain are usually
fixed and predictable, the time consumption of EVM and the transaction volume
tend to be stable. Therefore, the root cause for the change in performance and
storage is the maintenance cost of “World State”.

After every transaction is executed through a smart contract, it eventually
modifies the tree node of “World State”. The state of Ethereum is the result
of mapping 160-bit address and account state in the tree, which is called State
Trie. An account state corresponds to a leaf node while its address is depicted

66 H. Zhang et al.

as the path from the root to the node. In Ethereum, the smart contract is also
an account. Each contract account has its data storage, called Storage Trie.
Data storage is also implemented using the MPT tree. Hence, the “World State”
tree of Ethereum is actually composed of two parts: an upper account tree and
a lower storage one. There are two ways to create an Ethereum contract: one is
creating from a transaction, the other is from an old contract. The new contract
will be stored in State Trie of “World State” and contract data in Storage Trie
whose root points to the contract. For a specific business logic, depending on
how the contract is implemented, the data entering the “World State” would be
mainly distributed in State Tire (constantly create new contract to store more
data) or Storage Trie (create a single contract to store a large amount of data)
or between (a balanced distribution of State Tire and Storage Trie).

The nodes of an MPT tree are divided into leaf, expansion, and branch
(NULL is not within the scope of our discussion). Leaf nodes and expansion nodes
are similar in size, while branch nodes are much larger. The “World State”
would be modified for multiple times according to the design of contract after
the transaction calls a contract. Due to the features of tracing history, every
modification would generate a new path from the new leaf to the root. In the
implementation of Ethereum, when searching a node in the path or inserting a
new node, the system would execute function sha3() and read/write LevelDB
which brings more time consumption, and the size of new node corresponds to
the data increment in this modification. Therefore, if the height of current new
leaf can be predicted, it is possible to infer the performance and data increment.
The random hash of Ethereum address results in the random modification for
MPT, thus the average height of the leaf nodes would increase as the times of
modification increase. When a state change occurs for MPT, it is possible to
speculate the execution time and storage space increment if the current tree
height of new leaf nodes could be estimated.

As a result, predicting the performance and storage occupancy of a transac-
tion can be achieved by analyzing the times of modification for “World State” or
testing the business contract, and calculating the time consumption and storage
based on the current height of “World State” in MPT.

3.2 Height of MPT

MPT is evolved from PATRICIA trie. In the implementation of MPT, a branch
node could hold 16 branches. When the branches reach a certain scale, most
nodes in MPT would become branch nodes, while the extension nodes are com-
pressed prefix in PATRICIA trie. Therefore, MPT could be seen as a 16-ray
PATRICIA trie.

Considering of the huge space of 160-bit address, the random selection of
address could be approximated as an asymptotic distribution. Besides, the
address would be executed by sha3() to become the key of MPT, so the proba-
bility of choosing which alphabet be inserted into MPT is equal. As the result,
the height of MPT can be regarded as the expected height of a 16-ray Patri-

A Method to Predict the Performance and Storage of Executing Contract 67

cia tree with the universal asymptotic distribution insertion of equal-probability
alphabet.

According to Devroye [14], the expectated height of universal asymptotic
PATRICIA trie is given by

E{H,} ~clogn
where ¢ = 2/logs(1/ 3, p3)
and the highest node is expressed by

H, —logan
N
v2logan

Hence, the expectation and the max height of 16-ray MPT (p; = 1/16,1 < j <
16) can be obtained as:

E{H,} ~ log(n)/2
H. = 2y/2logan+logan
n 4

3.3 The Prediction of Transaction Performance and Storage

A simple instance of Ethereum contract is used to describe the relationship
between the transaction and performance/storage, as shown in Fig. 1.

pragma solidity 0.4.16;

constract Order {
uint256 private order_no;
func Order (uint256 _no) { _no = order_mno; }
func doOrder() { ... }

}

constract Business {
uint256 private version;
func createOrder (uint256 _no) returns (address) {
Order o = new Order(_no);
o.doOrder () ;
return o;
}
}

Fig. 1. Simple business model contract in Ethereum consortium-blockchain.

When a transaction calls the function createOrder in contract business, the
Ethereum actually loads the contract business code from State Trie into EVM,
and calls the function createOrder to create a new contract order (account),

68 H. Zhang et al.

and then the function in new contract will be invoked. At the committing phase
of the entire process, the data in cache would be inserted to “World State” to
form a new world state and generate a series of new nodes. The tree root of the
current world state is written to the new block so that the state can be extracted
from this block. Like block 3 in Fig.2, the path from the leaf contract “Order”
to the root is the new inserted node in block 3 compared with block 2. These
nodes are the potential influential factors that affect efficiency and storage. The
contract “Order” and “Business” are stored in State Trie, and the attributes
“order no”, and “version” are stored in the instance of contract “Order” and
“Business”. It’s obvious that the State Trie and Storage Trie would insert data
continually as long as the transaction calls function createOrder.

block 1 . | block 2 . | block3
1 MPT root = | MPT root > MPTroot [
s
State
Trie S
“Business Order
Constract Constract
Storage ‘
Trie ~
L O

Fig. 2. “World State” in Ethereum.

For a specific business model, the State Trie and Storage Trie would be
assigned different proportions of data depending on the design of contract in the
consortium-blockchain. In general case, three types of models can be designed,
as shown in Fig. 3:

1. The data are distributed on State Trie by the method of creating new con-
tracts from old contract.

2. For the minority contracts with complex storage structure, the data are
mainly stored in the Storage Trie of those contracts.

3. New contracts are created and appropriate contracts data storage is designed,
and the data are allocated to State Trie and Storage Trie as needed.

Thus, after the prediction of the height of MPT, different designs of contracts
would lead to different prediction methods, but the design ideas are the same.

A Method to Predict the Performance and Storage of Executing Contract 69

State
Trie

N

model 1 model 2 model 3

Storage
Trie

Fig. 3. Three type of business model.

It is supposed that the contract is designed as the first type, which mainly
distributes the data on the State Trie. Considering a general business scene, a
transaction would deploy a times contract (e.g. the Order contract in Fig.1)
for a business request, and the time consumption of executing or generating
every node is ¢ (including the calculation of sha3() and database access time).
For the situation depicted above, when the transaction volume reaches n and a
new transaction is executed, the average time consumption of modifying MPT
is given by

t
Tmpt (n) = ilog(an)

The max time consumption is represented by

Trptmaz(n) = %(2\/2logz(an) + loga(an))

Ethereum uses Level DB as the database to store key/value. The key to accessing
database is irregular on account of the discreteness of hash. The LevelDB has
an excellent performance in reading/writing continuously, while bad for random
key [13]. Therefore, the time ¢ for accessing Level DB would be longer as the
amount of data storage increases. In fact, the test results show that if n is large
enough, the value of ¢ will increase and the efficiency will degrade largely for
some data which not hit LevelDB cache at times.

Then, the T,.c. is added to execute the contract in virtual machine. After n
transactions are executed, the average execution time and the maximum time of
a transaction are given by

Tavg (’Il) == Tezec + Tmpt (Tl)
Tax (TL) = Tegec + Tmpt,maac (n)

Because of the discreteness of hash, the common prefixes between addresses are
hardly identical. So, most nodes of MPT are on the branch. When n is large, it
can be assumed that the branches are fully filled. At the same time, since the
length of address is fixed, only the leaf nodes can store state, rather than the
branch or extension nodes. It is assumed that the filled branch size is sy, the size

70 H. Zhang et al.

of the leaf node is s;, the storage space occupied by the account state is s,, and
the sum of storage trees for each account is represented by s’. After performing
n transactions, the storage increment resulting from modifying the MPT tree is

calculated by

l ,
Sipt(n) = s (Og(;m)—l) 48 48,4+ s

the maximum storage increment is given by

24/2logz(an) + loga(an) 1)
4

+ 5+ Sats

Smam(n) = Sp (

The size of the transaction itself is S;. The total storage and maximum space
occupation after n times of transaction executions are expressed as

Ssum,avg(n) = nSt + E?:O S’mpt (n)
Ssum,max (n) = nSt + Z?:O Smaz (n)

The same analysis also applies to designing the contracts of type 2 and 3.

4 Experiment

4.1 Experimental Method

Experiments are conducted based on the formula in Sect. 3.3 to verify the cor-
rectness of the proposed prediction method. The recorded experimental data are
compared with the predicted data. Three dimensions of data are collected in
the experiment, i.e. the tree height of the State Trie in the “World State”, time
consumption of execution, and the storage occupancy after transaction.

The testing conditions of the experiment are as follows: 1. Build a single
Ethereum node, without networking. 2. Modify the logic of generating block so
that one block will only package one transaction (e.g. each transaction would
have one submit, to avoid the impact of the Ethereum cache on the experimental
results). 3. Using the simple contract presented in Fig.1, only one new Order
account contract will be created each time when the createOrder method is
called in this contract. 4. Execute randomly one million transactions in the
system. We use a single server to establish the test environment which consists
of two Intel Pentium CPU, 8 G RAM and SSD for storage.

The contract design presented in Sect. 3.3 meets the first-type contract model
in Fig. 3, where the data is mainly distributed on State Trie. The design of the
contract indicates that each transaction creates a new contract and only changes
the State Trie once, that is ¢ = 1(do nothing in doOrder()). According to the
implementation of MPT, when the branch is full, its size is s, = 532 + 32 =
564 B, the leaf is smaller than s; = 96 B, and s, = 70+32 = 102 B. The storage s’
is regarded as 0, and the average time consumption of each visit to the database
is t = 0.03ms (Since the performance of LevelDB random access will decrease
drastically as the amount of data increases, t will continue to increase. For the

A Method to Predict the Performance and Storage of Executing Contract 71

sake of simplicity, the average value in a test is used here). Further, as Level DB
will compress the stored data, we use the sum of key and value which would be
stored in LevelDB for space occupancy instead of the amount of space in disk.

Taking the above data into the equations in Sect. 3.3, the prediction formula
can be expressed by

Hmaw (n) _ 2\/2l0g2(2)+log2 (n)

Hypg(n) = 28

0.06xlog(n
Tpredict (n) = fg()

Spredic(n) = 564+ (242 — 1) + 96 + 102

4.2 Experiment Result

The experimental data are collected and analyzed. In the following figures, the
sampling of the experimental data is represented by a red dot, and the blue
curve represents the prediction curve.

Transactions and MPT Height. Figure4 is the prediction for the height of
Storage Trie. The fitting curve of Hfiping(n) = 0.356594log(n) + 1.767782 is
obtained based on the actual sampling data. This curve shows the change of the
actual tree height, which is represented by the green curve in the figure. The
orange curve is the predicted maximum tree height. It can be found from Fig. 4
that our prediction curve is certainly close to the fitting curve, and the sampling
points are mainly distributed on both sides of the curve. Besides, there are almost
no sample points going over the orange curve, indicating that the prediction
curve can predict the tree height of the State Trie better as the transaction
volume increases. At the same time, the prediction of the maximum tree height
also indicates the change in the upper limit of the tree height.

max_height : func(n) = 21212920 *legatn)

“prédiction: funcln) =

Tog(n)
il

fitting : func(n) = 0.356594l0g(n) + 1.767782
—e. fitting
prediction sample data point
max_height
1 + sample data point

mpt height
OCrRNWRUON®

sum of txs
o 200000 400000 600000 800000 1000000

Fig. 4. Transactions and MPT height. (Color figure online)

Transactions and Time Cost. Figureb is the prediction for the number of
transactions and time cost. As t changes in the production environment, and
the change is mainly determined by LevelDB, which is beyond the scope of this

72 H. Zhang et al.

paper, a fixed value t is adopted as replacement in the prediction curve. It can be
found from Fig.5 that for the transaction volumes less than 200,000, there are
deviations between the predictive value and actual experimental value. This is
because the actual t is much smaller than the adopted fixed value. As the trans-
action volume increases, the experimental data tends to be evenly distributed on
both sides of the curve. Although a simple method is used here for the predicted
value, the experimental results validate this prediction. An ideal prediction curve
can be obtained if the fixed ¢ is replaced by getting the relationship between the
read time t and data volume of the Level DB from an actual test or a theoretical
calculation.

—e— prediction o .
o sample data point

©
@

prediction time gost: func(n) = w

time cost
o o
> o
.

.

.

.

.

3
.

O
N

0o s - 0 5 ee®® '" s,
2 o & ™ cample'tata point
sum of txs

0 200000 400000 600000 800000 1000000

o
)

Fig. 5. Transactions and time cost.

Transactions and Storage. Figure6 is the prediction for the number of trans-
actions and storage occupation. On account of the multi-level cache in the imple-
mentation of Ethereum, a scheme of one-transaction-one-block is adopted in
testing. Thus, the testing object here is the change in maximum space occupa-
tion. In production environment, if multiple transactions are packaged in one
block, the data cache will cause the actual stored data to be smaller than the
prediction (it is found in testing that if more than 100 transactions are stored in
a block, the storage occupancy is roughly half of the prediction). Adding Lev-
elDB compression, the space will be smaller. Thus, it can be concluded that the
growth of the storage under the current test conditions is consistent with the
prediction.

—e— prediction
o sample data point

sum of txs
0 200000 400000 600000 800000 1000000

Fig. 6. Transactions and storage

From the results of these three experiments, we can see the prediction
method presented in the third chapter is more consistent with the experimental
expectation.

A Method to Predict the Performance and Storage of Executing Contract 73

5 Conclusions

When companies use the Ethereum consortium-blockchain, they need to make
predictions about the prospective performance and storage of the system if the
transaction reaches a certain scale. This paper analyzes the core issues that affect
the performance and storage of Ethereum is the “World State”. According to
the analysis result that “World State” is implemented by MPT, the relation-
ship between MPT performance or storage increment and transaction volume
n is obtained to be log(n). On the other hand, the “World State” is made up
of the upper layer of State Trie and the underlying layer of Storage Trie. The
data distribution would be different based on the organization of contracts. The
formulas are offered for a business model to predict the relationship between
transaction volume and performance/storage based on State Trie. Other busi-
ness models can be derived by the same method. In this way, the companies
can deduce the prospective performance and storage of blockchain according to
their own contracts under the premise that its business scale can be predicted
(transaction volume).

At the same time, when transaction scale could be estimated, we can properly
design the contracts in order to minimize the consumption of performance and
storage, so that the data distribution between the State Trie and Storage Trie
could reach an inflection point, which minimizes the costs of performance and
storage. Therefore, it is suggested that the contract developer can estimate the
future transaction volume in advance and properly allocate the data in the state
tree and storage tree to achieve the optimal efficiency and storage when writing
the contract.

References

1. Enterprise Ethereum Alliance. https://entethalliance.org/

2. GitHub. ethereum/cpp-ethereum. https://github.com/ethereum/cpp-ethereum

3. Etherchain.org. etherchain.org - The Ethereum Blockchain Explorer. https://
etherchain.org/

4. GitHub. ethereum/wiki. Merkle Patricia Trie Specification (also Merkle Patricia
Tree). https://github.com/ethereum/wiki/wiki/Patricia- Tree

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

6. Buterin, V.: A Next-Generation Smart Contract and Decentralized Applica-
tion Platform, Ethereum White Paper. https://github.com/ethereum/wiki/wiki/
White-Paper

7. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

8. Pongnumkul, S.; Siripanpornchana, C., Thajchayapong, S.: Performance analysis
of private blockchain platforms in varying workloads. In: 2017 26th International
Conference on Computer Communication and Networks (ICCCN), Vancouver, BC,
pp. 1-6 (2017)

https://entethalliance.org/
https://github.com/ethereum/cpp-ethereum
https://etherchain.org/
https://etherchain.org/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf

74

10.

11.

12.

13.
14.

15.

16.

17.

18.

H. Zhang et al.

Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164-186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6-8

Loi, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2016), pp. 254-269. ACM, New York (2016).
https://doi.org/10.1145/2976749.2978309

Sankar, L.S., Sindhu, M., Sethumadhavan, M.: Survey of consensus protocols
on blockchain applications. In: 2017 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), Coimbatore, pp. 1-5 (2017).
https://doi.org/10.1109/ICACCS.2017.8014672

Li, Y., Zheng, K., Yan, Y., Liu, Q., Zhou, X.: EtherQL: a query layer for blockchain
system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DAS-
FAA 2017. LNCS, vol. 10178, pp. 556-567. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-55699-4_34

LevelDB github page. https://github.com/google/leveldb

Devroye, L.: Universal asymptotics for random tries and PATRICIA trees. Algo-
rithmica 42, 11 (2005). https://doi.org/10.1007/s00453-004-1137-7

Knessl, C., Szpankowski, W.: Heights in generalized tries and PATRICIA tries.
In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 298-307.
Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_31

Morrison, D.R.: PATRICIA practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514-534 (1968)

Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III.
Addison-Wesley, Redwood City (1973)

Dhillon, V., Metcalf, D., Hooper, M.: Ethereum Tokens: High-Performance Com-
puting. Blockchain Enabled Applications. Apress, Berkeley (2017)

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ICACCS.2017.8014672
https://doi.org/10.1007/978-3-319-55699-4_34
https://doi.org/10.1007/978-3-319-55699-4_34
https://github.com/google/leveldb
https://doi.org/10.1007/s00453-004-1137-7
https://doi.org/10.1007/10719839_31

q

Check for
updates

Smart Contract Programming Languages
on Blockchains: An Empirical Evaluation
of Usability and Security

Reza M. Parizil(m), Amritrajl, and Ali Dehghantanha2

! Department of Software Engineering and Game Development,
Kennesaw State University, Kennesaw, GA 30060, USA
rparizil@kennesaw. edu, amritra@students. kennesaw. edu
% Department of Computer Science, University of Sheffield, Sheffield, UK
a.dehghantanha@sheffield. ac. uk

Abstract. Blockchain is a promising infrastructural technology that is finding
its way into a growing number of domains like big data, finance, and medical.
While blockchain has come to be thought of primarily as the foundation for
Bitcoin, it has evolved far beyond underpinning the virtual currency. As it
becomes progressively popular, the need for effective programming means
would be more demanding. Blockchain programming as a core means provides
accounts of the ‘code is law’ that specifies agreements between parties and
allows its stakeholders to still trust the platform to execute the agreed-upon
contract (known as smart contract) as expected. Although it seems straightfor-
ward in theory, it is hardly the case when it comes to real-life situations. There
have been several instances that show smart contracts are riddled with issues and
vulnerabilities in code, causing damages. What’s for sure is lacking is that the
existing languages are not living up to the point to be able to unleash the full
potential of the blockchain, as often have resulted in buggy code with a steep
learning curve for developers. This denotes that the current research on contract
development is not sufficient and is still in a stage of infancy. In order to
advance the state of the research in this area, an evaluation of the current
state-of-the-art practices in a thorough and experimental manner is required.
Thus, the objective of this paper is to give a comprehensive analysis of such
domain-specific programming practices from critical points of usability and
security to provide a working guideline for newcomers and researchers.

Keywords: Blockchain - Blockchain coding - Smart contract platforms
Smart contract programming - Decentralized computing and development

1 Introduction

Blockchain [1] is a new trend rising fast from the community and the enterprise world.
A blockchain is theoretically an incremental list of records called blocks which are
linked together and secured using cryptography, forming a chain in the process. Copies
of this chain are stored across several peers on a network who can all see the chain and
its contents. To add a new block, a peer must find a key to a random pattern generated

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 75-91, 2018.
https://doi.org/10.1007/978-3-319-94478-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_6&domain=pdf

76 R. M. Parizi et al.

using cryptography and verify the block itself. As soon as a peer adds a new block, it
also broadcasts this addition to all the other peers on the network, so they can update
their copies of the blockchain.

Blockchain has already disrupted a wide range of industries including Finance,
Cloud computing, Privacy, Security etc. Also, in the recent years, an interesting new
application of blockchain has surfaced, i.e. Smart contract [2]. Smart contracts are
self-executing contracts where the terms of the agreement between multiple parties are
directly written into lines of code. The code and the agreements contained therein exist
across a blockchain network. Smart contracts allow trusted transactions and agreements
to be carried out among disparate, anonymous parties without the need for a central
authority, legal system, or an external enforcement mechanism. They render transac-
tions traceable, transparent, and irreversible. Recognition of the unique challenges of
smart contract programming has inspired developers to create domain-specific lan-
guages, such as Solidity [3] to ease development.

Although it is a promising domain, Smart contracts, in its first decade has been
plagued by unfortunate incidents. In June 2016, vulnerabilities in the DAO code was
exploited to empty out more than 2 Million (40 Million USD) ether [4]. The attack took
advantage of the reentrancy problem in the ‘splitDAQO’ function of the code. Since, the
program was not designed carefully, a call to the function that behaved as a regular call
was modified into a recursive call and used to make multiple withdrawals when only
one was to be authorized.

Also, in November 2017, a developer [S] whilst fixing a bug that let attackers steal
32 million USD from a few multi-signature wallets accidentally left a second bug in the
system that allowed one user to become the sole owner of every single multi-signature
wallet. Realizing the mistake, the developers tried to fix damages by deleting the
program instead of returning the funds to their original owners. This act of deletion of
the program simply locked all the funds in those multi-signature wallets permanently.
Unlike most cryptocurrency hacks, however, the money was not deliberately taken
instead, it was permanently locked by accident and lack of understanding of the
program.

The above incidents show that even the most experienced developers can leave
behind security vulnerabilities and bugs that are exploitable and failure prone. Thus,
there is still a steep learning curve for developers when it comes to contract pro-
gramming. This steep learning curve makes it even more difficult for new developers to
write correct and safe contracts. As of current date, the state of empirical studies in the
domain of smart contract development is still in infancy. Hence, the objective of this
paper is to take this initiative by providing an empirical evaluation of smart contract
programming languages, in order to shed light on future directions of its development
research, education and practices. To this end, we assessed the usability and security
vulnerability aspects of three domain-specific languages namely Solidity, Pact and
Liquidity (see Sect. 2). The results demonstrated that although Solidity is the most
usable language for a new developer to program smart contracts, it is the least secure
language to vulnerabilities. While, Liquidity and Pact demonstrated better security
results, implying it is harder for new developers to leave behind bugs and security
vulnerabilities when working with Pact and Liquidity, but they show less usability
compared to Solidity.

Smart Contract Programming Languages on Blockchains 77

The remainder of this paper is organized as follows. Section 2 gives an overview of
the smart contract programming languages and state-of-the-art practices for building
smart contracts; Sect. 3 presents and describes the details of the experiment and its
evaluation results; Sect. 4 presents the related work; and lastly, Sect. 5 reports the
conclusion and future work.

2 Smart Contract Programming Languages

In this section, we discuss widely used smart contract programming languages namely
Solidity, Pact, Liquidity. We have also discussed sample contracts implemented with
each of the mentioned programming languages to provide an insight into real-world
contract development.

2.1 Solidity and the EVM

Solidity [3] is a statically-typed programming language with a similar syntax to
ECMAScript (JavaScript) built for writing smart contracts. It is the primary choice
language for implementing smart contracts on the Ethereum [6] platform.

Ethereum is an open source, decentralized platform for building smart contracts. It
facilitates the development and execution of complex applications such as financial
exchanges and insurance contracts on a distributed platform. The core of Ethereum is
the Ethereum Virtual Machine (EVM), which executes code of random algorithmic
complexity. Solidity is designed for developing smart contracts that run on the EVM.
Solidity contracts are first compiled to bytecode which is ultimately executed on the
EVM.

Like other blockchains, Ethereum includes a peer-to-peer network protocol. The
Ethereum blockchain database is maintained and updated by several nodes connected
to the network. Every node on the network runs the EVM and executes the same set of
instructions.

The Ethereum platform itself is featureless or value-agnostic. It is up to organi-
zations and developers to decide what it should be used for. However, certain appli-
cation types benefit more than others from Ethereum’s capabilities. Specifically,
Ethereum is suited for applications that automate direct interaction between peers or
facilitate coordinated group action across a network. For instance, applications for
coordinating peer-to-peer marketplaces, or the automation of complex financial con-
tracts. When it comes to programming on Ethereum, there are some key points to
notice from the Ethereum Design Rationale document [7].

Sample Contract Implementation. In Fig. 1, we show a smart contract for an
imaginary cryptocurrency, we named ‘SampleCrypto’. SampleCrypto can only be
issued by its developer and can be transferred to a receiver with his/her address.

78 R. M. Parizi et al.

pragma solidity "0.4.0;
Sample contract for SampleCrypto

contract SampleCryptof{
address public developer;
mapping (address => uint) public balance;

Notifies when a transaction is complete
event transaction(address from, address to, uint amount);

function SampleCrypto()
g 5
U

developer = msg.sender;

function create(address receiver, uint amount)

if(msg.sender != developer)
throw;
balance[receiver] += amount;

function receiver(address receiver, uint amount)

if(balance[msg.sender] < amount)

throw;
balance[msg.sender] -= amount;
balance[receiver] += amount;
transaction(msg.sender, receiver, amount);

Fig. 1. SampleCrypto implementation in Solidity

2.2 Pact

Pact [8] is a programming language for writing smart contracts to be executed by the
Kadena [9] blockchain. Pact empowers developers to implement robust, performant
transactional logic, executing mission-critical business operations quickly and safely.

Pact is immutable, Turing-incomplete and favors a declarative approach over
complex control-flow. This makes bugs harder to write and easier to spot. Pact smart
contracts are designed to enforce business rules guarding the update of a
system-of-record: complex, speculative application logic simply does not belong in this
critical layer.

Sample Contract Implementation. We present an example Pact code [8], imple-
menting a simple “account balance” smart contract, with functions to create accounts
and transfer funds, in Fig. 2. A detailed description of the above contract including
information on Installing the module, Keyset Definition, Module Definition,
Table Creation and finally, Invoking the ‘accounts’ module can be found at [8].

2.3 Liquidity

Liquidity [10] is a high-level typed smart-contract language for Tezos [11]. It is a fully
typed functional language, it uses the syntax of OCaml [12] and strictly complies with
Michelson [13] security restrictions. A formal verification framework for it is under
development, to prove the correctness of smart-contracts written in Liquidity.

Smart Contract Programming Languages on Blockchains 79

(define-keyset 'accounts-admin
(read-keyset "accounts-admin-keyset™))

(module a int ‘accounts-admin
"Simple account functionality."

(defschema 1
"Schema for accounts table.™
) :decimal
int:decimal
eyset:keyset
te)
(deftable ints:{account})
(defun t cc (address keyset)
(insert accounts address
{ "balance"”: 0.0, "amount”: 0.0, "keyset"”: keyset,
"note": "Created account™ }))
(defun transfer (src dest amount)

"transfer AMOUNT from SRC to DEST"
(with-read accounts src
{ "balance”:= src-balance
>, "keyset"™ := src-ks }
(enforce-keyset src-ks)
(check-balance src-balance amount)

(with-read accounts dest { "balance”:= dest-balance }
(write accounts src

{ "balance”: (- src-balance amount)

> "amount”: (- amount)

>, "note": { "transfer-to": dest } })
(write 'accounts dest

{ "balance"”: (+ dest-balance amount)

> amount”™: amount

> "note": { "transfer-from": src } })))))
(defun e alance (balance amount)

(enforce (<= amount balance) “"Insufficient funds"))

)

(create-table accounts)

Fig. 2. Account balance smart contract in Pact

The Liquidity language provides three key features: (1) full coverage of the
Michelson language: anything that can be written in Michelson can be written in Lig-
uidity. (2) local variables instead of stack manipulations: values can be stored in local
variables. The only restriction is that local variables do not survive to Contract.call,
following the philosophy of Michelson to force explicit storage of values to limit reen-
trancy bugs. (3) high-level types: types like sum-types and record-types can be defined
and used in Liquidity programs. Liquidity’s contract format can be found in [10].

Sample Contract Implementation. The following contract [14], shown in Fig. 3, is a
simple voting system that requires a user to have at least 5 tz to submit a vote.

The contract will display an error message “Not enough money, at least 5 tz to
vote” if the user attempts to vote with a balance lower than 5 tz.

In Table 1, we have summarized the smart contract programming languages dis-
cussed in this section. The table lists the major platform that supports or plans to
support these languages. We have also listed some of the key features of these lan-
guages in the designated column.

80 R. M. Parizi et al.

[%%version ©.15]

let%init storage (myname : string) =
Map.add myname © (Map ["ocaml"”, ©; "pro", 0])

let%entry main
(parameter : string)
(storage : (string, int) map)
: unit * (string, int) map =

let amount = Current.amount() in

if amount < 5.00tz then
Current.failwith "Not enough money, at least 5tz to vote™
else
match Map.find parameter storage with
| None -> Current.failwith "Bad vote"
| Some x ->
let storage = Map.add parameter (x+1) storage in
((), storage)

Fig. 3. Smart contract with Liquidity

Table 1. Summary of smart contract programming languages

Programming Major Key features
languages platforms
Solidity Ethereum * Statically typed
* Supports inheritance, libraries and complex user-defined
types
Pact Kadena * Turing-incomplete safety-oriented design

* Human-readable, on-ledger code

« Atomic execution (transactions)

* Module definition and import

* Unique “key-row” + columnar database metaphor

* Expressive syntax and function definition

* Single-signature and multi-signature public-key
authorization

* Type inference

Liquidity Tezos * High-level types: types like sum-types and record-types can
be defined and used in Liquidity programs

* Full coverage of the Michelson language: Anything that can
be written in Michelson can be written in Liquidity,

* Local variables instead of stack manipulations

3 Empirical Evaluation

The goal of our empirical study is to determine the usability and security vulnerabilities
of the smart contract programming languages discussed in the previous section. Our
study was designed around the scenario in which the formal descriptions of three smart
contracts were provided to human test subjects to implement using an assigned smart
contract programming language while assessing the usability and analyzing the types of

Smart Contract Programming Languages on Blockchains 81

bugs and security vulnerabilities that developers can leave behind in the contracts. We
therefore, designed our experimental study based on the following research questions
(referred to as RQ’s):

RQ1. How do the languages under study stack up in terms of usability to new
contract developers?

RQ2. What are the common security issues left behind in the contract by new
developers?

3.1 Experimental Planning

Conducting an empirical study involving human subjects can lead to several challenges
and pitfalls. Guidelines exist in the literature [15] to help researchers to carry out such
type of studies. These guidelines helped us to design our experiment, especially
because a frequent problem with controlled empirical studies is that, due to their cost
and complexity, they are often limited in size.

We have divided our experimental planning into four parts, namely fest subjects,
test contracts, measures, and experimental design. We discuss the experimental setup
in the sub-sections below:

Test Subjects. We sent email invitations to undergraduate students and graduate
research assistants in the College of Computing and Software Engineering (CCSE) at
Kennesaw State University (KSU), US to participate in our study. The email described
the aim and objective of our experiment (which is to perform an empirical evaluation of
smart contracts programming language based on usability and security), location, time,
expected length of the experiment and an RSVP link. We received a response from a
total of 15 undergraduate students and Graduate research assistants within the men-
tioned deadline. Each subject had prior experience with at least one general purpose
programming language and object-oriented concepts.

Test Contracts. We prepared formal descriptions of three test contracts in the form of
scenario paragraphs for the test subjects in our experiment. The three contracts were
selected after a careful evaluation of several smart contracts from various online
sources that are prone to security vulnerabilities when implemented by new developers.
The prepared formal descriptions were carefully checked for completeness and
ambiguity.

Table 2 gives a brief description of the three test contracts chosen for our experi-
ment. Each test subject had to implement these three contracts in a randomly assigned
smart contract programming language, as described in detail in the experimental
design.

Measures. To quantify usability, we used a built-in timer (as part of the helper pro-
gram in the experiment environment) to measure the average times of implementation
of each contract in an assigned programming language for each test subject (in min-
utes). The longer the subjects took to implement a contract, the lower would be the
usability of the language to a new developer. To arrive at more solid results, we
additionally asked the subjects to answer a questionnaire regarding the usability of the
assigned smart contract programming language at the end of the experiment in the exit

82 R. M. Parizi et al.

Table 2. Summary of the test contracts for our study

Test contract Description Reference
Contract 1: A contract to keep a record of balances for each address | [16]
HoneyPot that puts currency in it and allow these addresses to get

them later
Contract 2: Bank A contract to deposit/withdraw money into a user’s bank | [17]
Account account
Contract 3: King of | A simple contract in which the highest bidder becomes [18]
the currency the leader of a group

questionnaire. We asked the subjects to rate the usability of the language on a scale of
1.0-10.0, 1.0 being extremely difficult to use and 10.0 being extremely usable. We also
asked them for their comments on the language, such as what did they find easy? What
did they find difficult?

We used a two-facet method to capture and analyze security vulnerabilities in the
implemented smart contracts. Firstly, we ran the implemented contracts against six
known security vulnerabilities including, Callstack Depth Attack Vulnerability, Reen-
trancy Vulnerability, Assertion Failure, Timestamp Dependency, Parity Multigeniture
Bug 2 and Transaction-Ordering Dependence (TOD) with the help of ‘OYENTE’ [19,
20] tool. OYENTE is an automated security analysis tool for revealing the
above-mentioned security vulnerabilities in smart contracts. Secondly, we analyzed the
implemented contracts manually to check for further vulnerabilities that were not
covered by the tool including DoS (Denial of Service) with (Unexpected) revert and
DoS with Block Gas Limit in Solidity [21]. The more these vulnerabilities surface in a
contract (from both automated and manual parts), the less secure the underlying con-
tract programming language would be.

Experimental Design. We prepared 15 envelopes each of which contained the formal
description of the three smart contracts and the smart contract programming language
that these contracts need to be implemented with. Each envelope was also assigned an
Envelope ID number which helped us to keep track of the language the contracts need
to be implemented in. The envelopes were prepared such that only 5 envelopes would
contain the language L; (where L; € {Solidity, Pact, Liquidity}). Hence, out of our 15
test subjects, only 5 random chosen subjects would implement the test contracts in a
language L;. We made sure that we assigned test subjects computers such that no two
subjects who had to implement the contracts in the same language sit alongside each
other. Each language was to be implemented on an online compiler, i.e. we used Remix
[22] for Solidity, Try-Pact [23] editor/compiler for Pact, and Liquidity online
editor/compiler [14] for Liquidity.

Table 3 summarizes the organization of our experiment. As shown in the table,
there were 5 test subjects who worked on implementing the given three smart contracts
in the assigned smart contract programming language.

Smart Contract Programming Languages on Blockchains 83

Table 3. Organization and assignment of envelopes and languages in the experiment

Subject ID Envelope ID Language
01, 04, 07, 10 and 13 | 03, 06, 09, 12 and 15 respectively | Solidity
02, 05, 08, 11 and 14 |01, 04, 07, 10 and 13 respectively | Pact

03, 06, 09, 12 and 15|02, 05, 08, 11 and 14 respectively | Liquidity

3.2 Experimental Execution

To avoid fatigue, we decided to conduct our experiment in two sessions. The first
session was a background and demo session. During this session, each subject received
a starter pack consisting of their subject ID, a statement of consent, a background
questionnaire, instructions regarding the experiment, a printout of the demo slides and
an exit questionnaire. Before commencing with the demo, each subject was required to
fill in the questionnaire based on their background and programming experience and
sign a statement of consent to participate in our experimental study.

After the statement of consent and background questionnaire were signed, com-
pleted and collected, we proceeded with a small presentation on the basics of smart
contracts programming to familiarize the subjects with the same. Next, we conducted a
Q&A session with the subjects to answer any of their questions and concerns. When all
the questions were answered and any confusions cleared, we asked the test subjects to
take a 45-min break to refresh themselves. We also asked them to keep their starter
packs with them in case they needed to review the slides during the break.

After the break, we commenced the second session of our experiment. This session
was for the practical implementation of test contracts. Each test subject was handed a
sealed envelope with an envelope ID number on it (this helped us to keep track of the
smart contract language that the envelope’s contracts need to be implemented in). Each
envelope had a formal description of the three test contracts and the language in which
the subjects were assigned to implement these contracts. After all the envelopes were
handed, we matched the subject ID’s with envelope ID’s to keep a track on our
experiment. We then asked the subjects to open their envelopes and read all the
problem statements thoroughly, we then conducted a second Q&A session to remove
all doubts and confusions regarding the problem statements and the programming
languages that they were assigned. When this was over, we asked them to implement a
simple warm-up “Hello world” exercise in the language they were assigned. Finally,
when all the subjects were done with the warm-up exercise, we asked them to begin
working on their problems and started a timer for each subject.

The subjects were given two hours to implement all the contracts, and we asked
them to remain seated even if they finished their task before the time limit. To be
considered “finished”, we required them to be certain that their test contracts compiled
successfully on the online compilers mentioned earlier.

Including presentation and break, the duration of the experiment was three hours
and forty-five minutes. The experiment was completed under “exam conditions”, i.e.,
subjects were not allowed to communicate with others, or consult with other sources to
avoid introducing biases into the experimental findings. Finally, after the end of the
experiment, each subject was asked to fill in the exit questionnaire before leaving.

84 R. M. Parizi et al.

3.3 Experimental Results and Analysis

Following the experimental execution process described in the preceding section, we
collected the required experimental data and carefully analyzed all the data collected to
arrive at conclusions. We now present these results in response to our research
questions.

RQ1: How do the languages under study stack up in terms of usability to new
contract developers? The data collected for measuring the usability of smart contracts
programming languages is shown in Tables 4 and 5. Table 4 summarizes the average
implementation times of each test smart contract with a given smart contract pro-
gramming language (i.e. Solidity, Pact and Liquidity). We found that the average
implementation time of each contract was significantly lower in case of Solidity as
compared to Pact and Liquidity.

Table 4. Summary of the implementation times of the test contracts

Language | Average Average Average Total average
implementation implementation implementation implementation
time (Contract 1) | time (Contract 2) | time (Contract 3) | time

Solidity 13 min 26 s 20 min 07 s 19 min 14 s 52 min 47 s

Pact 17 min 31 s 31 min 16 s 33 min 32 s 82 min 19 s

Liquidity 14 min 21 s 23 min 21 s 27 min 51 s 65 min 33 s

We observed the data extracted from the experiment to be consistent across all three
test contracts and languages for all test subjects, i.e. each test subject who implemented
the three test contracts with Solidity did so faster than every test subject who imple-
mented the contracts with Pact or Liquidity. Similar observation was made in case of
Liquidity and Pact, i.e. each subject who implemented test contracts with Liquidity did
so faster than every subject who implemented the contracts with Pact.

In Fig. 4, we represent the average implementation times of each test contract
(shown in Table 4) with each smart contract programming language in our experiment.
We made an interesting observation for Test Contract 1, i.e. the average implemen-
tation times of test contract 1 with Solidity and Liquidity were almost similar, i.e.
Aty g1 < 1 min (where Aty g, = Average implementation time of test contract 1 with
Liquidity - Average implementation time of test contract 1 with Solidity = 55 s). But,
this time difference increased significantly (i.e. At go = 3 min 14 s and At; g3 = 8 min
37 s) with the increased complexity of test contracts 2 and 3 as compared to test
contract 1. We made another anomalous observation for implementation times of test
contract 2 and 3, i.e. In case of Solidity, the average implementation time of test
contract 3 is lower than average implementation time of test contract 2. On the other
hand, this is not the case for Pact and Liquidity, as the average implementation time of
test contract 3 is higher with these languages when compared to the average imple-
mentation time of test contract 2. But, since, the average implementation time of test
contract 2 and 3 is lower with Solidity when compared to average implementation
times with Pact and Liquidity, this observation has negligible value.

Smart Contract Programming Languages on Blockchains 85

Average implementation times

40

30
20

Contract 1 Contract 2 Contract 3

Minutes

B Solidity M Pact M Liquidity
Fig. 4. Average implementation times of all contracts with Solidity, Pact and Liquidity

Additionally, Fig. 5 represents the total average implementation times of all three
test contracts implemented with each smart contract programming language in our
experiment, i.e. Solidity, Pact and Liquidity. The figure shows that the total average
implementation time of all test contract with Solidity is 52 min and 47 s. The total
implementation time increased by 24.2% to 65 min and 33 s with Liquidity and almost
by 56% to 82 min and 19 s with Pact as compared to total average implementation time
with Solidity.

Total Average Implementation times

0 20 40 60 80 100

Minutes
M Liquidity ®Pact ®Solidity

All contracts

Fig. 5. Total average implementation times of all contracts with Solidity, Pact and Liquidity

Finally, Table 5 summarizes the results from the exit questionnaire which was
completed by the test subjects at the end of the experiment. The table represents the
average usability score as graded by the test subjects to their respective assigned
language for the experiment. The higher the average usability score (see Sect. 3.1 -
Measures) the more usable the language is to a new developer.

86 R. M. Parizi et al.

Table 5. Average usability score from the exit questionnaire of the test subjects

Language | Average usability score by test subjects
Solidity |8
Pact 4.5
Liquidity |5.5

Summarizing the overall usability results of our experiment, we see that the average
implementation times of each contract are such that - tgc; < tyc; < tpc; for test contract
1, tgco < tico < tpen for test contract 2 and tges < tpc3 < tpez for test contract 3
respectively (where, tsci, tic; and tpc; are the average implementation times of test
contract ‘i’ with Solidity, Liquidity and Pact respectively and i € {1,2,3}). This leads to
the subsequent result regarding the total implementation times of all 3 test contracts, i.e.
Ts < T < Tp (where, Ts, Ti. and Tp are the total average implementation times of all 3
test contracts). Additionally, from the results of the exit questionnaire in Table 5 we see
— Ug > UL, > Up (where, Ug, U and Up are the average usability scores of Solidity,
Liquidity and Pact respectively). For a language to have higher usability, we require it
to have faster implementation times and high usability scores in the exit questionnaire.
Hence, it is clear from the results presented in this section that the usability of
Solidity > Liquidity > Pact for a new developer.

RQ2: What are the common security issues left behind in the contract by new
developers? We analyzed the implemented test contracts for security vulnerabilities
using the ‘OYENTE’ tool and methods described in Sect. 3.1. While we couldn’t find
any security vulnerabilities for Liquidity and Pact implemented contracts similar could
not be said for Solidity implemented contracts. The results of our security analysis are
summarized in Table 6.

Table 6. Security issues found in the implemented test contracts

Contract | Solidity Pact | Liquidity
Contract 1 | Reentrancy vulnerability - (5/5 contracts) None | None
Contract 2 | Reentrancy vulnerability - (1/5 contracts) None | None
Contract 3 | DoS with (Unexpected) revert - (5/5 contracts) | None | None

For test contract 1, we found that all implemented contracts by the test subjects
were vulnerable to Reentrancy attacks. Similar results were found for test contract 3,
where all the implemented contract were prone to DoS with (unexpected) revert vul-
nerability [21]. Meanwhile, for test contract 2, only one of the implemented contract
was vulnerable to Reentrancy vulnerability.

A Reentrancy attack occurs when a function ‘x’ calls a function ‘y’ in an external
contract, which makes a reentrant call to ‘x’. If x’s call to ‘y’ occurs while the contract
is in an inconsistent state, then the reentrant call may make invalid assumptions about
the initial state of the contract. This reentrancy vulnerability was recently exploited to
steal over $40 million [24]. This problem is difficult and error-prone to avoid in

Smart Contract Programming Languages on Blockchains 87

Solidity, this is because one shall reason about reentrant call anytime an external call is
made from a function. Since, sending money always results in an external call when
using Solidity, this becomes a frequent vulnerability. In general, external calls from
function ‘x” in contract C may invoke additional calls on C to any function, not just ‘x’,
via an intermediate external invocation. This is more problematic than internal-only
calls because the external contract is likely to assume C is in a consistent state.

Figure 6 visually represents the security vulnerabilities in all the implemented
contracts with the Solidity, Pact and Liquidity languages. No security vulnerabilities
were found in the Pact and Liquidity implemented contracts but 11 (approx. 73%)
Solidity contracts were found to be vulnerable out of a total of 15 implemented. Out of
these 11 vulnerable contracts, 6 had Reentrancy vulnerabilities and 5 were vulnerable
to DoS with (unexpected) revert. Only 4 out of 15, i.e. about 27% of Solidity imple-
mented contracts were found to be secure.

Implemented Solidity Implemented Pact Contracts Implemented Liquidity
Contracts Contracts

20060

= Reentracy Vulnerable
u Secure Contracts
= DoS with Revert = Secure Contracts = Secure Contracts

Fig. 6. Security vulnerabilities in all implemented contracts

While using Solidity it is often difficult for even experienced developers to avoid
certain pitfalls [5], it is no surprise that the implemented Solidity contracts were prone
to security vulnerabilities as the subjects for our experiment can be considered as new
and inexperienced contract developers. Hence, from the results of our experiment and
in response to our second research question: RQ2, we found that contracts implemented
by new developers with Solidity are more prone to security vulnerabilities as compared
to smart contracts implemented with Liquidity and Pact. Even though, no vulnerabil-
ities were found in Pact and Liquidity implemented contracts, this by no means nec-
essarily suggests that Pact and Liquidity contracts are 100% immune to security
vulnerabilities. It just implies that it is harder for new developers to leave behind bugs
and security vulnerabilities when working with Pact and Liquidity as compared to
Solidity.

3.4 Threats to Validity

This section discusses the threats to validity for this experiment. The threats to external
validity primarily answer the question of how representative the human subjects, the

88 R. M. Parizi et al.

test contracts, and used tools are. Some of our subjects were essentially students and
did not have professional smart contract development experience. However, analysis of
the results indicated that subjects had similar programming experience and managed to
implement their contracts in similar times as others in their group. The test contracts
used in our study were not developed by the subjects and may have been unfamiliar to
them. To mitigate this, we had organized Q&A and warm-up sessions. We made sure
to provide sufficient time to our test subjects for the experiment and this was confirmed
in the exit questionnaire, where we asked the subjects if they felt they had been given
enough time for the experiment. All test subjects stated to have had enough time to
complete the experiment. Additionally, the test contracts selected for the experiment
can be considered relatively simple for experienced developers. Hence, it is possible
more complex contracts may yield different results. As no previous human studies have
been done in this area, we believe beginning with reasonable-scale studies and the
lessons learned is prudent to pave the way for larger studies.

The threats to internal validity are implementation effects that could have possibly
biased our test results. We designed the formal descriptions of the chosen test contracts
carefully for intuition. To check the completeness of our description we conducted pilot
research where we provided the prepared formal description to experienced developers
and professors for constructive criticism, fault detection and completeness checking.
Only when all errors were rectified in our formal descriptions, we decided to go ahead
and commence our experiment.

3.5 Discussion

Based on the presented results and comparisons from our experiment, we found that
Solidity is the most usable language to a new developer when it comes to programming
smart contracts. We found from our exit questionnaire, that this was because of
Solidity’s intimacy to general purpose programming languages such as Java or C#,
which are often used by developers and students in professional and academic envi-
ronments respectively.

But unfortunately, when it comes to security vulnerabilities in smart contract
implemented by new developers, Solidity lacks behind as we found it to be most prone
to security vulnerabilities. Although being usable is a huge plus, on the other hand
being prone to security vulnerabilities is a huge downside as these security vulnera-
bilities can be exploited by malicious users to cause financial damages as seen from the
recent attacks on the Ethereum platform [25]. Meanwhile, Liquidity and Pact are still
new languages which lack high usability at this time but seem more secure than
Solidity for now. Ultimately, all the three languages have their pros and cons. The
exciting thing to note here is all the three languages are changing and evolving with
time and research. Hence, our work aims to help contribute towards forming the body
of knowledge for the continuous growth and evolution of this infant domain.

Smart Contract Programming Languages on Blockchains 89

4 Related Work

Our work is related to assessing and comparing the programming languages for smart
contract development. There are in fact very few numbers of related studies known for
evaluation of smart contract programming languages or platforms. In this section, we
present an overview of all the related work, which has been proposed in the literature in
recent years.

The work in [26], compares Ethereum, IBM Open Blockchain (Hyperledger pro-
ject) [27], Intel Sawtooth lake [28], BlockStream Sidechain Elements [29] and Eris [30]
platforms. This study suggests Ethereum to be the primary choice of platform in terms
of scalability, development, documentation and support. As Intel Sawtooth Lake
wasn’t fully implemented at the time, the authors conclude that Ethereum is the better
solution for developers as it had no security issues known at the time.

In another work [31], the authors analyze the usage of smart contracts platforms
from various perspectives. The study examines a sample of 6 platforms, namely Bitcoin
[32], Ethereum [33], Counterparty [34], Stellar [35], Monax [36] and Lisk [37] for
smart contracts by highlighting some of the key differences in terms of type of
blockchain, contract language and volume of daily currency transfers. A sample of 834
contracts was studied for the 2 platforms — Bitcoin and Ethereum, categorizing each of
them by application domain, and measuring the relevance of each of these categories.
They concluded that about 80% of the Ethereum contracts use at least one of the nine
design patterns presented in the paper.

There have also been assessment kind of works that study different blockchain
technologies. Anderson et al. [38] compare three blockchains - Ethereum, Namecoin,
and Peercoin. For Ethereum, the authors briefly analyze the issues that are introduced
by the negligent design of smart contracts. In the case of Namecoin, the focus was, how
the name registration is used and had developed over time. For Peercoin, the interest
was in the use of proof-of-stake. Similarly, Seijas et al. [39] compare a variety of smart
contract platforms. Their work also provides an overview of the scripting languages
used in cryptocurrencies, particularly scripting languages of Bitcoin, Nxt and Ether-
eum. Their work covers technologies that might be used to underpin extensions and
innovations in scripting and contracts, including technologies for verification (e.g.,
zero-knowledge proofs, proof-carrying code and static analysis), as well as approaches
to making systems more efficient, e.g. Merkelized Abstract Syntax Trees.

Studies that analyze the security of Ethereum smart contracts have been growing
recently. For instance, the work proposed in [25] surveys vulnerabilities and attacks on
the Ethereum contracts, while, works [20, 40] propose analysis techniques to detect
these vulnerabilities.

Majority of the work listed in this section mainly compares and analyzes the
various smart contract platforms. There has been a lack of empirical data on how
domain-specific smart contract programming languages might work in tandem with
developers and their comparative quality measures such as usability and security.
Hence, our work took the first step by providing an experimental analysis of three
current domain-specific programming languages. We hope that our proposed work can

90 R. M. Parizi et al.

be useful in the process of building a body of empirical knowledge helping developers
and organizations write safer and more secure smart contracts.

5 Conclusion and Future Work

Research on smart contract programming’s evaluation is quite young and there is still a
long road ahead to reach its maturity. This paper realizes an evaluation of the current
languages as a fundamental step towards reaching this maturity and obtaining useful
advances. The given evaluation included an experiment that was performed to compare
the usability and security vulnerability of the three domain-specific languages, namely
Solidity, Pact and Liquidity. The experiment results demonstrated that although
Solidity is the most usable language for a new developer to program smart contracts, it
is the least secure language to vulnerabilities. On the other hand, Liquidity and Pact
show lower usability but seem secure for now. Consequently, our results contribute to
the body of experimental evidence about the usability and security of the smart contract
programming languages, which is currently scarce.

In future, we intend to conduct more experiments in order to improve the gener-
alizability of our results in this paper. There are several points that can be suggested to
be reinforced towards obtaining more solid conclusions for the comparison of smart
contract programming languages. These might include the conduction of experiments
with (i) extra object programs (test contracts) that will comprise larger systems with
varied context parameters such as application domain or size; (ii) more
diversified-background of human subjects; (iii) new upcoming smart contract pro-
gramming languages that are being developed.

References

1. Peck, M.E.: Blockchains: how they work and why they’ll change the world. IEEE spectrum
(2017)

2. Cuccuru, P.: Beyond bitcoin: An early overview on smart contracts. Int. J. Law Inf. Technol.
25, 179-195 (2017)

3. Solidity. https://solidity.readthedocs.io/en/develop/

4. Sirer, E.G.: Thoughts on The DAO Hack. http://hackingdistributed.com/2016/06/17/
thoughts-on-the-dao-hack/

5. Hern, A.: “$300 M in Cryptocurrency” Accidentally Lost Forever Due To Bug. https://
www.theguardian.com/technology/2017/mnov/08/cryptocurrency-300m-dollars-stolen-bug-
ether

6. Ethereum Project. https://www.ethereum.org/

7. Design Rationale. https://github.com/ethereum/wiki/wiki/Design-Rationale

8. Popejoy, S.: The pact smart-contract language (v1.5), pp. 1-15 (2017)

9. Kadena. http://kadena.io/#/

0. Liquidity, a simple language over Michelson. https://github.com/OCamlPro/liquidity/blob/
master/docs/liquidity.md

11. Tezos. https://www.tezos.com/

12. OCaml Documentation. https://ocaml.org/docs/

https://solidity.readthedocs.io/en/develop/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.ethereum.org/
https://github.com/ethereum/wiki/wiki/Design-Rationale
http://kadena.io/
https://github.com/OCamlPro/liquidity/blob/master/docs/liquidity.md
https://github.com/OCamlPro/liquidity/blob/master/docs/liquidity.md
https://www.tezos.com/
https://ocaml.org/docs/

13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.
28.
29.
30.
31.

32.
33.

34.
35.
36.
37.
38.

39.

40.

Smart Contract Programming Languages on Blockchains 91

Ii, S.: Michelson : the language of Smart Contracts in I - Semantics

Liquidity Online Editor. http://www .liquidity-lang.org/edit/

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28, 721-734 (2002)

Guimaraes, G.: Reentrancy attack on smart contracts: how to identify the exploitable and an
example of an attack contract. https://medium.com/@gus_tavo_guim/reentrancy-attack-on-
smart-contracts-how-to-identify-the-exploitable-and-an-example-of-an-attack-4470a2d8dfe4
Martinsson, F.: Smart contract programming on Ethereum - solidity beginners tutorial part 2.
https://www.youtube.com/watch?v=F4XQFEievlJI

Konstantopoulos, G.: How to secure your smart contracts: 6 solidity vulnerabilities and how
to avoid them (Part 2). https://medium.com/loom-network/how-to-secure-your-smart-
contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834

Opyente. https://oyente.melon.fund/#version=soljson-v0.4.21+commit.dfe3193c.js

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In:
Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications
Security — CCS 2016, pp. 254-269 (2016)

Smart Contracts - Best practices (Known attacks). https://github.com/ConsenSys/smart-
contract-best-practices/blob/master/docs/known_attacks.md

Remix. http://remix.ethereum.org/#optimize=false&version=soljson-v0.4.2 1 +commit.
dfe3193c.js

Try Pact. http://kadena.io/try-pact/

Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. Al Matters 1,
19-21 (2014)

Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart contracts (SoK),
pp. 1-24 (2017)

Macdonald, M., Liu-Thorrold, L., Julien, R.: The blockchain: a comparison of platforms and
their uses beyond bitcoin. Work. Pap., pp. 1-18 (2017)

Hyperledger. https://www.hyperledger.org/

Intel: Intel: Sawtooth Lake. https://intelledger.github.io/

BlockStream Sidechain Elements. https://blockstream.com/technology/

Documentation for Eris. https://abal.moe/Eris/docs

Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns (2017)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9 (2008). www.Bitcoin.Org
Buterin, V.: A next-generation smart contract and decentralized application platform. http://
buyxpr.com/build/pdfs/EthereumWhitePaper.pdf

Counterparty: Protocol Specification. https://counterparty.io/docs/protocol_specification/
Stellar. https://www.stellar.org/

Monax. https://monax.io/

Lisk. https://lisk.io/

Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, 1.: New kids on the block: an
analysis of modern blockchains (2016)

Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for distributed ledger
technology. Cryptology ePrint Archive, Report 2016/1156 (2016). http://eprint.iacr.org/
2016/1156

Bhargavan, K., Swamy, N., Zanella-Béguelin, S., Delignat-Lavaud, A., Fournet, C.,
Gollamudi, A., Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T.:
Formal verification of smart contracts. In: Proceedings of 2016 ACM Workshop on
Programming Languages and Analysis for Security — PLAS 2016, pp. 91-96 (2016)

http://www.liquidity-lang.org/edit/
https://medium.com/%40gus_tavo_guim/reentrancy-attack-on-smart-contracts-how-to-identify-the-exploitable-and-an-example-of-an-attack-4470a2d8dfe4
https://medium.com/%40gus_tavo_guim/reentrancy-attack-on-smart-contracts-how-to-identify-the-exploitable-and-an-example-of-an-attack-4470a2d8dfe4
https://www.youtube.com/watch?v=F4XQFEievJI
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://oyente.melon.fund/#version%3dsoljson-v0.4.21%2bcommit.dfe3193c.js
https://github.com/ConsenSys/smart-contract-best-practices/blob/master/docs/known_attacks.md
https://github.com/ConsenSys/smart-contract-best-practices/blob/master/docs/known_attacks.md
http://remix.ethereum.org/#optimize%3dfalse%26version%3dsoljson-v0.4.21%2bcommit.dfe3193c.js
http://remix.ethereum.org/#optimize%3dfalse%26version%3dsoljson-v0.4.21%2bcommit.dfe3193c.js
http://kadena.io/try-pact/
https://www.hyperledger.org/
https://intelledger.github.io/
https://blockstream.com/technology/
https://abal.moe/Eris/docs
http://www.Bitcoin.Org
http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf
http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf
https://counterparty.io/docs/protocol_specification/
https://www.stellar.org/
https://monax.io/
https://lisk.io/
http://eprint.iacr.org/2016/1156
http://eprint.iacr.org/2016/1156

q

Check for
updates

Applying Design Patterns in Smart

Contracts
A Case Study on a Blockchain-Based Traceability

Application

Yue Liu!, Qinghua Lu'23®) Xiwei Xu??, Liming Zhu??, and Haonan Yao!

L College of Computer and Communication Engineering,
China University of Petroleum (East China), Qingdao, China
ginghua.lu@data6l.csiro.au
2 Data61, CSIRO, Sydney, Australia
3 School of Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. Blockchain, the technology Bitcoin lives on, is an emerging
research field due to its nature of decentralisation, and properties of
data immutability and transparency. Smart contracts are the programs
executed on programmable infrastructure provided by blockchain, which
can manage complex business logic, extending the field significantly. As
blockchain technology is still at an early stage, there are little works
on applying software architectural methods to the design of blockchain-
based applications. In this paper, we summarise eight smart contract
design patterns based on existing smart contracts and our experience,
and classify them into four categories: Creational Patterns, Structural
Patterns, Inter-Behavioral Patterns, and Intra-Behavioral Patterns. We
share some experiences of applying the presented design patterns of
smart contract on a real-world blockchain-based traceability applica-
tion, and also discuss how patterns can improve the quality attributes of
blockchain-based application.

Keywords: Blockchain + Smart contract - Interoperability
Adaptability

1 Introduction

Blockchain, the technology behind Bitcoin [5], is a decentralised append-only
data store, where all participants in the network can reach agreements on the
states of transactional data, without relying on a centralised system. Data trans-
parency and immutability are the key characteristics of blockchain technology,
which can help prevent tempering or revising the submitted transactions on
blockchain.

Besides the distributed ledger as a data storage, blockchain provides a
general-purpose programmable infrastructure. Smart contracts [6] are programs
deployed and running on blockchain, which can express triggers, conditions and

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 92-106, 2018.
https://doi.org/10.1007/978-3-319-94478-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_7&domain=pdf

Applying Design Patterns in Smart Contracts 93

business logic [9] to enable more complex programmable transactions. Many
startups, enterprises, and governments [7] are currently exploring blockchain
applications in areas as diverse as supply chain, electronic health records, vot-
ing, energy supply, ownership management, identity management, and protect-
ing critical civil infrastructure. However, since blockchain technology is still at
an early stage, there are little works on applying software architectural meth-
ods to the design of blockchain-based applications, particularly design of smart
contracts.

In software architecture community, a blockchain taxonomy has been pro-
posed to compare different blockchain platforms and assist in the design and
evaluation of software architectures using blockchain technology [11]. Other
than taxonomy, architectural design patterns is also a mechanism to classify
and organise the existing solutions.

A design pattern is a reusable solution to a problem that commonly occurs
within a given context during software design [3]. We investigate some exist-
ing patterns for distributed system, peer-to-peer system and software design
patterns in general, and assess the applicability of the existing patterns to the
design of smart contracts. The study results in the experiences that there are
some reusable solutions that can be applied to the design of smart contract in a
blockchain-based system.

In this paper, we first summarise and classify eight smart contract design
patterns. The patterns are divided into four categories: Creational Patterns,
Structural Patterns, Inter-Behavioral Patterns and Intra-Behavioral Patterns.
By using the patterns, blockchain can not only be used for storing or exchanging
data, but also handle with more complicated programs with complex logic, which
can benefit developers on building blockchain-based applications. Besides, we use
a real-world blockchain-based traceability system, originChain, as a case study to
show how to apply design patterns to smart contracts. The architecture design of
originChain is briefly discussed in our previous work [4]. This paper focuses more
on the structural design of smart contracts, gives more details of several design
patterns, and we also share some experiences of applying the patterns to improve
the quality attributes of originChain, such as adaptability and interoperability.

The remainder of this paper is organised as follows. Section 2 discusses back-
ground information and introduces the related work. Section 3 summarises design
patterns for smart contracts and classifies them into four categories. Section 4
presents how to apply those patterns on a blockchain-based traceability appli-
cation. Sectiond discusses the lessons learned from this case study. Section 6
concludes the paper and outlines future work.

2 Background and Related Work

2.1 Blockchain and Smart Contracts

When Bitcoin was released to public, its capability was limited, providing merely
a public ledger to record the transactions related to a specific digital crypto-
currency [8]. Since a programmable infrastructure called smart contract has been

94 Y. Liu et al.

deployed, the blockchain technology is considered enhanced, as it is enable to
deal with more complex transactions, such as triggers, conditions and business
logic [9], what users need to do is to authorise their operations via cryptographic
signature.

Solidity, a Turing-complete programming language for writing smart con-
tract, is supported by several blockchain platforms that implement Ethereum
Virtual Machine! such as Ethereum and Parity. Solidity is similar to the object-
oriented programming languages, a contract in Solidity can be considered as a
“class” in Java. In addition, Solidity also has the mechanisms such as interface,
inheritance, and exception, etc. Due to such properties of Solidity, it is possible
to apply existing design patterns to the Solidity-based smart contracts.

2.2 Designing Blockchain-Based Applications

Although blockchain is young, there are a lot of enterprises, institutions, and
governments all over the world who are interested in this technology and investi-
gating the applications based on it. Big companies, like Microsoft?, IBM?, Ama-
zon* provide convenient and instant service of building up a private blockchain.
Such works are considered as the combination of cloud service and blockchain
technology.

In academia, from the perspective of software architecture, blockchain tech-
nology has been considered as a connector to store data in software architec-
ture [10], and the trade-off analysis of choosing blockchain instead of traditional
centralised database was discussed in [11]. P. Zhang and his colleagues [12],
shared the experience of designing a blockchain-based healthcare platform, to
which they applied several software patterns to improve the application scala-
bility.

There are some works on design patterns of smart contract for blockchain-
based application. In [2], J. Eberhardt and S. Tai proposed four patterns, includ-
ing challenge response pattern, off-chain signatures pattern, content-addressable
storage pattern, delegated computation pattern, and low contract footprint pat-
tern, which mainly focus on the separation of on-chain and off-chain for data and
computation. Bartoletti and Pompianu [1] demonstrated an empirical analysis of
smart contracts, in which they collected hundreds of smart contracts and divided
them into several categories: token, authorisation, oracle, randomness, poll, time
constraint, termination, math and fork check. However, each kind of the smart
contracts presented in this analysis has a specifically functional feature, there is
a lack of a systematic analysis on smart contracts against architectural proper-
ties, which is the focus of this paper. This study focuses more on the architecture
design of smart contracts, we emphasise the interoperation among contracts, and
present the pseudocode of some patterns.

! https://solidity.readthedocs.io/en/develop/.

2 https://azure.microsoft.com/en-us/solutions/blockchain/.
3 https://www.ibm.com/blockchain/.

* https://amazonaws-china.com/cn/partners/blockchain,/ .

https://solidity.readthedocs.io/en/develop/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.ibm.com/blockchain/
https://amazonaws-china.com/cn/partners/blockchain/

Applying Design Patterns in Smart Contracts 95

3 Design Patterns of Smart Contract

In this section, we summarise several design patterns [3], and discuss the tech-
nical details of each pattern. The patterns are categorised as following: (1) Cre-
ational Pattern abstracts the process of instantiation, helping developers create
smart contracts independently, (2) Structural Pattern focuses on the relationship
between contracts and their instances, (3) Inter-Behavioral Pattern can enhance
the flexibility when contract instances need to operate with each other, (4) Intra-
Behavioral pattern is aimed to improve a particular property, like interoperability
or adaptability of the whole system.

3.1 Interaction Among Design Patterns

Figure1 illustrates a high-level design of applying eight software patterns in
a blockchain-based application. Developers can instantiate a contract instance
through Contract Composer, if the instance contains several objects, and Con-
tract Factory, if the instance has a relatively simple structure, and the address of
instance is stored in a Contract Facade instance for optimal management. Before
a contract instance in Contract Facade is called, the authenticity of the caller
needs to be examined by Hash Secret or Multi-Signature, depending upon the
situation. The caller’s identification result is checked by server, if it is valid, the
operations will be passed to Contract Mediator, which carries out the implemen-
tation. When there are new requirements according to the issue of regulation in
a certain industry area, Contract Decorator helps update a particular contract
instance or the whole Contract Composer into a new one, by encapsulating the
old-version via contract address and appending the new requirements. The new-
version contract instances have different addresses, thus Contract Observer is
needed to update the corresponding contract information in Contract Facade.

additional — certain
requirements Developer operation and
authorisation
encapsulate via
F —
m old contract Y
Contract address “ Q M
decorator Contract Contract | Hash Multi- |
composer factory secret signatura
‘ —
pass new initialise ‘ .
address ’ instance verify o E
z JB ﬂ: Server
Contract . Contract Contract
observer notify and update facade invoke mediator pass the
operation

@@@ Blockchain

Fig. 1. Structural design of smart contracts.

96 Y. Liu et al.

3.2 Creational Pattern

Contract Factory. As the compiled code of a smart contract deployed on
blockchain is not readable, it is tedious to deploy and manage smart contracts
that have same properties but aim to diverse clients. With the help of this
pattern, developers do not need to deploy the smart contracts one after another,
but deploy a contract factory once, through which the required multiple instances
can be instantiated.

Contract Composer. In a blockchain-based application, the combination of
services or objects is inevitable. Consequently, how to effectively control such
a combination becomes a challenge to developers, especially under the condi-
tion that each service or object is represented in the form of smart contract.
Compared with Contract Factory, Contract Composer focuses on the complex
structure of a contract instance, as it can construct a complicated target through
multiple small pieces.

3.3 Structural Pattern

Contract Decorator. Once a smart contract is deployed on blockchain, it
is not allowed to modify or update the source code of that contract. Contract
Decorator pattern can avoid rewriting the whole contract when there are new
requirements, developers just need to encapsulate the old contracts and append
the required features into a new version of the contract through this pattern, to
achieve updatability and modifiability.

Contract Facade. Managing smart contracts may be a burdensome work as
there are massive contracts having similar features in a blockchain-based sys-
tem. Contract Facade pattern can relieve such pressure via providing a simple
interface by coping with contract addresses. Such an interface is also in the form
of smart contract, for developers to call the functions of similar contracts.

3.4 Inter-behavioral Pattern

Contract Mediator. In a business process, smart contracts need to interact
with each other to finish a certain activity, which may result in tight coupling
of the contracts. Contract Mediator pattern aims to reduce the communication
complexity of smart contracts, an instance of this pattern is in the form of smart
contract, which collects and encapsulates the interactions and invocations from
one contract to the others, to decoupling the smart contracts.

Contract Observer. When a smart contract is modified due to the chang-
ing requirements in industry, all the related contracts need to be informed and
updated automatically. Contract Observer pattern can deal with such problem

Applying Design Patterns in Smart Contracts 97

to achieve interoperability and updatability among the contracts via an observer
instance. An instance of Contract Observer needs to define the objects and infor-
mation involved, once there are any changes, it should notify all the objects to
update information.

3.5 Intra-behavioral Pattern

Intra-Behavioral Patterns do not contribute to the contract architecture as much
as the three categories mentioned above, but each one has the ability to work
both independently and collaboratively. In this study, Hash Secret and Multi-
Signature are proposed, they have at least one specific property to advance the
non-functional requirements of a blockchain-based application respectively.

Hash Secret. This pattern can help a user to achieve authorisation of a partic-
ular activity to unknown authorities, by generating a digital secret key known
as the hash secret. When the authority is decided, it will then receive the hash
secret and thus have the ability to finish further task.

Multi-signature. As there are multiple authorities in a blockchain network,
this pattern can provide a flexible way to achieve better cooperation. A trans-
action is valid only when there are enough signatures from the authorities. In
addition, this pattern can also be considered as an individual safeguard mecha-
nism as the current blockchain technology does not provide a way to recover the
lost private key.

4 Applying Design Patterns in the Traceability System

In this section, we apply five of the above patterns to a real-world blockchain-
based traceability system proposed in [4]: Contract Composer, Contract Facade,
Contract Observer, Hash Secret, and Multi-Signature. Contract Factory is com-
monly used in many blockchain-based applications, thus in this paper we decide
not to demonstrate this pattern. Contract Mediator and Contract Decorator
need further refinement, consequently these two patterns will be included in our
future work.

4.1 Traceability Systems

Tracking products during production and distribution for the relevant product
information (e.g., originality, transportation route and location, and quality cer-
tificate) is the main goal of a traceability system. Figure 2 demonstrates the busi-
ness process of product traceability. A government-certified traceability company
can provide traceability services to product suppliers and retailers, by sending
staffs to inspect major operation flow, namely to examine factory and freight
yard, and contact third-party labs to do sample testing, and if the requirements

98 Y. Liu et al.

Supplier O tggngfiﬁ{ Receive O
/ Retailer y certificate

service

. Check Issue
Admin application 87 %
Factory Examine
examiner factory

Traceability provider

Freight Check Supervise
yard . Seal
. products loading
examiner
Sample
Lab testing

Fig. 2. Process of traceability services.

are met, the traceability company issues inspection certificates which represent
the verification of quality and originality of products.

A real-world blockchain-based product traceability system called originChain
was proposed in [4], in which the conventional centralised database is combined
with decentralised blockchain technology. The supply chain industry requires
data transparency and immutability to ensure the reliability of product infor-
mation, which makes blockchain technology suitable for traceability system.

In originChain, we decided to store sensitive and small data on-chain, such as
the hashes of certificates, the on-site freight yard photos and other traceability
information like the result of sample testing, for data integrity, while the raw
data are stored off-chain in the database. Applying some design patterns of smart
contract to originChain can improve the quality of the whole system.

4.2 Contract Composer for Flexibility on Contract Instantiation

A Contract Composer instance is demonstrated in Listing 1.1. When a product
supplier signs a legal agreement with traceability company, an on-chain version
of the agreement should be created. An employee of the traceability company
should input the basic information, including the names of the trading parties
and the hash of agreement, and some required transaction information, such
as price and valid period of each service selected according to the agreement.
After inspection, the employee should call confirm() function, which can prevent
revision to the data stored in this on-chain agreement. In addition, the address
of the on-chain agreement should be appended into the actual legal agreement
for data integrity.

For a contract that needs to contain many other objects, Contract Composer
helps to improve flexibility when creating a contract instance. In a traceabil-
ity process, factory examination, freight yard examination and sample testing
are the optional services, and there is a Service interface in which a function is

Applying Design Patterns in Smart Contracts 99

defined but not implemented. For each service, there is a contract that imple-
ments the Service interface, overrides the abstract function, and stores the trans-
action information. In LegalAgreement contract, a service is initialised when the
corresponding function is called, and after confirmation, the variable “confirmed”
ensures that the data stored in the contract cannot be revised.

4.3 Contract Facade for Connectivity Between Contracts

Every batch of products needs contracts to store the hash of those sensitive
traceability service data such as freight yard photos, sample test results, and
inspection certificates, which should relate to the legal agreement of the corre-
sponding companies, either. In Listing 1.2, a Freight YardServiceFacade contract
is generated to connect the on-chain legal agreements generated by Contract
Composer and the data contracts which store the traceability information. An
originChain employee needs to provide batch number and address of on-chain
legal agreement when calling function link(), in which a new instance of Freight-
YardData contract is created, the on-chain legal agreement address and the
FreightYardData contract address are connected via the batch number. Simi-
larly, other traceability services have their data contract too. There are accesses
for the corresponding staffs of each traceability service process to upload the
sensitive data. A freight yard examiner invokes setFreight YardPic() function to
upload the hash of freight yard photos, while the smart contract records the
address of that examiner automatically.

As mentioned in Sect. 3, here Contract Facade pattern helps connect two
separate smart contracts. There can be more contracts linked by this pattern,
nevertheless, connection of multiple contracts may result in a complicated facade
contract, thus, developers should reach a balance in a facade contract according
to their proximity.

4.4 Contract Observer for Updatability and Interoperability

A legal agreement needs to be revised when there are new regulations released
by government. For example, the new Food Safety Law of China regulated new
requirements on the formulation of national food safety standards and food safety
traceability systems. Furthermore, it can be revised when the corresponding
companies reach a new agreement on the traceability services. In either of the
two cases, the on-chain legal agreement should be replaced by the new version.
A direct way is to issue a new legal agreement contract and replace the old
version address with the new one in all related contracts, however, it is tedious
and unsafe to do the revision manually. Contract Observer pattern can deal with
such problem.

Listing 1.3 demonstrates such a situation that the address of an old legal
agreement needs to be updated to the new version. Facade is an interface, in
which there is an abstract function update(). FreightYardServiceFacade, Fac-
toryServiceFacade and LabServiceFacade are the contracts that connect legal
agreement and the data contracts, they all implement the interface Facade.

100 Y. Liu et al.

interface Service{
function setupContract(string sDate, string eDate, uint
temPrice) ;
}
contract FactoryExamination is Service{
string startingDate;
string endingDate;
uint price;
function setupContract(string sDate, string eDate, uint
temPrice){
startingDate = sDate;
endingDate = eDate;
price = temPrice;}
function getInfo constant returns (string, string, uint){
return startingDate, endingDate, price;}

}
contract FreightYardExamination is Service{...}
contract SampleTesting is Service{...}

contract LegalAgreementq{
address firstParty;
address secondParty;
bytes32 contractHash;
FactoryExamination FactoryService;
FreightYardExamination FreightService;
SampleTesting LabService;
bool confirmed;
function LegalContract (address firstP, address secondP,
bytes32 cHash){
if (!confirmed){
firstParty = firstP;
secondParty = secondP;
contractHash = cHash;}
}
function setFactoryService(string temStart, string temEnd,
uint temPrice){
if (! confirmed){
FactoryService = new FactoryExamination();
FactoryService.setupContract (temStart, temEnd,
temPrice) ;}

}
function setFreightService(string temStart, string temEnd,
uint temPrice){...}
function setLabService(string temStart, string temEnd,
uint temPrice){...}
function confirm(){
confirmed = true;
}

Listing 1.1. Contract composer.

Applying Design Patterns in Smart Contracts 101

LegalAgreementObserver is similar to the reception in a company, receiving infor-
mation and notifying the corresponding departments. An originChain employee
invokes subscribe() function to add the three Facade Contracts into “subscriber”
in advance, and when the new on-chain legal agreement is created, the function
notify() is called, to inform all the “subscriber” contract to update the legal
agreement address.

contract LegalAgreementq{...}
contract FreightYardData{
bytes32 [] freightYardPic;
address [] freightYardExaminer;
function setFreightYardPic(bytes32 pic, address uploader){
freightYardPic.push(pic);
freightYardExaminer .push(uploader);
}
function getFreightYardPic (uint i) constant returns (
bytes32, address){
return (freightYardPic[i], freightYardExaminer[i]);

}
interface Facade{...}
contract FreightYardServiceFacade is Facade{
mapping (string => address) legalAgreement;
mapping (string => address) traceData;
mapping (address => string []) batchNo;
function link(string batchID, address LegalAgreementAddr){
legalAgreement [batchID] = LegalAgreementAddr;
traceData[batchID] = new FreightYardData();
batchNo[LegalContractAddr].push(batchID);
}
function setFreightYardPic(string batchID, bytes32 pic){
FreightYardData(traceData[batchID]).setFreightYardPic (
pic, msg.sender);
}
function getFreightYardPic(string batchID, uint i)
constant returns (bytes32, address){
return FreightYardData(traceData[batchID]).
getFreightYardPic (i);

Listing 1.2. Contract facade.

4.5 Hash Secret for Adaptability

A Hash Secret contract is shown in Listing 1.4. Every hash secret needs a struct
to store hash key, while the boolean variable “init” can prevent the situation
that a caller calls function initial() twice and then the previous hash key will

102 Y. Liu et al.

be revised without permission. The ciphertext of each hash secret should be
generated off-chain but verified on-chain, which leads to the difference between
the two parameters in function changeKey() and verify().

Hash Secret can be used as both on-chain and off-chain component for per-
mission control in a blockchain-based application system. For instance, when a
batch of products needs sample testing service, Hash Secret can help with the
dynamic binding of labs. An originChain employee initiates a hash secret and
links it with his/her own address by invoking initial() function, then releases
the address and plain-text of hash key to the available labs off-chain. Only the
authorised labs can acquire “true” from the verify() function and upload the
result of sample testing. As an on-line component, Hash Secret contract should
be inherited or contained by another contract, and if it is used as an off-chain
component, Hash Secret can interact with database or other components by
webd library®.

contract LegalAgreementq{...}

interface Facade{
function update(address oldAddr, address newAddr){};
}
contract FreightYardServiceFacade is Facade{
mapping (string => address) legalAgreement;
mapping (address => string []) batchNo;
function update(address oldAddr, address newAddr){
for(uint i = 0; i < batchNo[oldAddr].length; i++){
legalAgreement [batchNo[0ldAddr][i]] = newAddr;
batchNo [newAddr] . push(batchNo[oldAddr][i]);
}
delete batchNo[oldAddr];

}
}
contract FactoryServiceFacade is Facade{...}
contract LabServiceFacade is Facade{...}

contract LegalAgreementObserver{
address [] subscriber;
function subscribe(address facadeAddr){
subscriber.push(facadeAddr) ;
}
function notify(address oldAddr, address newAddr){
for(uint i = 0; i < subscriber.length; i++)
Facade (subscriber[i]) .update (0ldAddr , newAddr);

Listing 1.3. Contract observer.

5 https://github.com/ethereum /web3.js.

https://github.com/ethereum/web3.js

Applying Design Patterns in Smart Contracts 103

4.6 Multi-signature for Adaptability

Multi-Signature, similar to Hash Secret pattern, can act as both on-chain
and off-chain component, Listing 1.5 mimics the multi-signature mechanism in
Ethereum. In originChain, a client sends a request of issuing quality certificate,
which requires the approval from traceability company, labs, and other related
departments, then the result should be decided by these authorities.

The authorisation of Hash Secret is dynamic, while the authorities in Multi-
Signature should be defined in advance. A request can be “agree request”, aiming
to the external business as issuing certificates, or “update request”, aiming to
the internal business of the authorities, such as changing authority address, and
threshold of accepting a request. Different requests use different thresholds, but
share the same pre-defined authority addresses. Each authority invokes the corre-
sponding Signature() function to accept the request, and the request result is true
if there are enough valid signatures. If so, further operations can be implemented.
A requester can call cancelAgreeRequest() or cancelUpdateRequest() function to
withdraw invalid request.

contract HashSecret{
struct hashSecret{
bytes32 hashKey;
bool init;
}
mapping (address => hashSecret) secret;
function initial(bytes32 key){

if (secret [msg.sender].init != true){
secret [msg.sender].hashKey = key;
secret [msg.sender].init = true;}
}
function changeKey(string oldKey, bytes32 newKey){
if (secret [msg.sender].init == true)
if (secret [msg.sender].hashKey == sha256 (oldKey))
secret [msg.sender].hashKey = newKey;
}
function verify(address initiator, string inputKey)
constant returns (bool){
if (secret[initiator].hashKey == sha256 (inputKey))
return true;
else
return false;
}
}

Listing 1.4. Hash secret.

5 Discussion

The patterns are divided into four categories in this study to improve the non-
functional requirements of blockchain-based applications, and in this section we

104 Y. Liu et al.

share some experiences that learn from applying several proposed patterns to a
blockchain-based application.

contract multiSignatureq

uint total;

address[] authorities;

uint agreeThreshold;

uint updateThreshold;

address agreeRequester;

address updateRequester;

mapping (address => bool) agreeState;

mapping (address => bool) updateState;

function multiSignature(uint totalAut, uint aThres, uint

uThres, address[] aut){...}

function agreeSignature (){
agreeState [msg.sender] = true;

}

function agreeResult () returns (bool){
uint k = 0;

for(uint i = 0; i < total; i++){
if (agreeState [authorities[i]] == true)
k++;
}

if (k >= agreeThreshold)
return true;
else
return false;
}
function initialAgree() intermnal{...}
function cancelAgreeRequest (){
if (msg.sender == agreeRequester)
initialAgree () ;
}
function updateSignature(){...}
function updateResult() returns (bool){...}
function initialUpdate() internal{...}
function updateAuthorityList (uint newTotal, address[] par)
{...}
function updateAgreeThreshold(uint newThres){...}
function cancelUpdateRequest(){...}

Listing 1.5. Multi-signature.

Interoperation Among Smart Contracts. Creational Pattern, Struc-
tural Pattern and Inter-Behavioral Pattern focus on the structural design of
smart contracts. Contracts are interactive when applying these patterns, for
example, in Sect.4.4, interface Facade is implemented by three facade con-
tracts, all of which contain the addresses and invocations of LegalAgreement.

Applying Design Patterns in Smart Contracts 105

LegalAgreementObserver contains the addresses of the three facade contracts,
and invokes them via interface Facade.

Smart contracts inherit, contain, or invoke each other, which enriches the
architectural design, when applied these three kinds of patterns. Creational
Pattern concentrates on the instantiation of smart contracts, Structural Pat-
tern helps manage the relationship among contracts, Inter-Behavioral Pattern
enhances the flexibility when contract instances operating with each other.

However, the issue of a structured contract includes more complex permis-
sion control and cost. Applying such patterns brings the consequence that the
architecture of a smart contract may be complicated if it clutters an excess of
functions. Moreover, it is hard to manage permission control as a complicated
contract may involve multiple roles. Developers need to make reasonable sepa-
ration when designing smart contracts to balance the coupling degree.

Independence of Intra-behavioral Patterns. Every Intra-Behavioral Pat-
tern can work both individually or with other contracts as they do not need to
rely on other smart contracts, namely, they do not need to inherit, contain or
invoke other contracts but the contrary. Taking Hash Secret as an example, it
provides a flexible way to implement permission control, either off-chain or on-
chain. In Fig. 1, Hash Secret verifies a network participant’s identity and sends
the result to server, only the authorised ones can continue to further operations.
Apart from that, smart contracts can inherit or embody this contract to obtain
the ability of on-chain permission control.

Reusable Logic Saves Storage. Storage is one of the limitations of blockchain
technology. According to blockchain’s properties, every participant has a local
replica of the whole transaction history, moreover, any revision or deletion to
the existing transactions is not allowed, thus joining a blockchain network can
be a heavy burden to individual’s storage. Design patterns provide smart con-
tracts reusable logic, which helps relieve such burden. For example, developers
can change the secret key in Hash Secret, and revoke the request or update
the authority information in Multi-Signature on demand to achieve reusability.
Besides, Contract Decorator aims to encapsulate the old contracts into the new
ones, which can also be considered as a method of saving storage.

6 Conclusion and Future Work

In this paper, we propose a taxonomy of the design patterns for smart contracts,
and share the experiences of applying several patterns of Solidity-based smart
contract to a real-world blockchain-based traceability system called originChain.
Blockchain’s unique properties provide new thoughts to application architecture,
in which blockchain technology acts as a special component. The design patterns
affect some specific aspects of the blockchain-based application, such as updata-
bility, adaptability and interoperability.

106 Y. Liu et al.

We divide the design patterns into four categories: Creational Pattern, Struc-
tural Pattern, Inter-Behavioral Pattern and Intra-Behavioral Pattern, according
to their contribution to the architecture design of smart contracts. Specifically,
we apply Contract Composer, Contract Facade, Contract Observer, Hash Secret,
and Multi-Signature to a real-world blockchain-based application to improve the
non-functional requirements.

Smart contracts used to be standalone and aimed at a specific function, but
now in a blockchain-based application, smart contracts can cope with some com-
plex business process instead of barely store the data. Applying some software
design patterns to smart contracts helps developers to have a better design on
the architecture of smart contracts.

The future work includes summarising more design patterns of smart con-
tract, refining the taxonomy, and giving more detailed discussion about the pat-
terns. In addition, we will optimise the blockchain-based traceability system and
extend blockchain technology to other potential industries.

References

1. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. ArXiv e-prints, March 2017

2. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3-15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5_1

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
Reusable Object-oriented Software. Pearson Education, London (1995)

4. Lu, Q., Xu, X.: Adaptable blockchain-based systems: a case study for product
traceability. IEEE Softw. 34(6), 21-27 (2017)

5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

6. Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. Al
Matters 1(2), 19-21 (2014). https://doi.org/10.1145/2685328.2685334

7. Staples, M., Chen, S., Falamaki, S., Ponomarev, A., Rimba, P., Weber, A.B.T.I.,
Xu, X., Zhu, J.: Risks and opportunities for systems using blockchain and smart
contracts. Technical report, Sydney (2017). Data61(CSIRO)

8. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly, Sebastopol (2015)

9. Weber, 1., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329-347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

10. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The blockchain as a software connector. In: The 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Venice, Italy (2016)

11. Xu, X., Webber, 1., Staples, M., et al.: A taxonomy of blockchain-based systems for
architecture design. In: IEEE International Conference on Software Architecture
(ICSA), Gothenburg, Sweden (2017)

12. Zhang, P., White, J., Schmidt, D.C., Lenz, G.: Applying Software Patterns to
Address Interoperability in Blockchain-based Healthcare Apps. ArXiv e-prints,
June 2017

https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1145/2685328.2685334
https://doi.org/10.1007/978-3-319-45348-4_19

®

Check for
updates

AODV-Based Routing for Payment
Channel Networks

Philipp Hoenisch and Ingo Weber(®

Data61, CSIRO, Sydney, Australia

philipp@hoenisch.at, ingo.weber@data6l.csiro.au

Abstract. Payment Channel Networks such as the Lightning Network
(LN), Raiden or COMIT were created to tackle the scalability prob-
lems of their underlying blockchains, by moving from expensive and slow
on-chain transactions to inexpensive and fast off-chain ones. However,
those networks are unregulated and decentralised, comprise point-to-
point channels that may be opened or closed without coordination or
warning, and fees may change at any time — making routing over these
networks a hard problem. In addition, by connecting different blockchains
using such off-chain networks, an immense network of channels will evolve
which is under continues change. Routing needs to take into account the
current network status, availability and distributions of channels’ fund-
ing, fees for each node, and exchange rates between different currencies.
In this work, we identify requirements for such a routing protocol and
adapt the Ad-hoc On-Demand Distance Vector Routing (AODV) proto-
col to this end by enhancing the messages with information on fees and
exchanges rates. This approach allows finding suitable routes through the
network, while intermediate nodes can maintain their economic incen-
tives. We simulate different network topologies and evaluate the adapted
AODV protocol on 3 different networks of 500, 1,000 and 5,000 nodes.

1 Introduction

Ever since the first appearance of Bitcoin in 2008 [16] a multitude of blockchain
derivatives and other implementations have emerged. The general purpose is to
decentralise the management of a particular asset, such as a cryptocurrency,
by removing the need of a trusted central entity and to create a network of
untrusted nodes. However, common problems of blockchains include slow confir-
mation and commit times and high transaction fees. For Bitcoin, a transaction
is often regarded as committed (irreversible) after 6 confirmation blocks, taking
on average 60 min. Due to this commit delay and high transaction fees (recently
between USD 0.50 and 50 on Bitcoin), small payments and particularly micro-
payments (i.e. payments of a few cents or even a fraction of a cent) are not
very economical. In addition, many blockchains have a throughput (7 to 20
transactions per second, tps) that is many orders of magnitude below that of
payment networks like VISA (up to 47,000 tps).

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 107-124, 2018.
https://doi.org/10.1007/978-3-319-94478-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_8&domain=pdf

108 P. Hoenisch and I. Weber

In order to tackle this problem, researchers proposed to not settle every trans-
action on the chain but rather move some transactions off-chain, allowing two
parties to interact with each other directly. By tracking their payments between
each other on their own, the two parties are able to avoid expensive and time-
consuming interactions with the blockchain. Should there be a dispute regarding
the balance or should one party become unresponsive, the most recent balance
sheet provided by either of the two parties can be settled on the blockchain (on-
chain). The Lightning Network (LN) is the most prominent of these off-chain
solutions [20]. It proposes to create an overlay network of off-chain payment chan-
nels — i.e. Payment Channel Network (PCN) — where transaction between two
parties are not recorded on the Bitcoin blockchain. For that, two parties create a
pair of transactions first: a funding transaction and a spending transaction. The
former one specifies the total amount held in the channel, i.e. either one or both
of the participants pay an arbitrary amount into this channel. The other transac-
tion specifies the output, i.e. it defines which party receives how much from the
total amount. Only the funding transaction is settled directly on the blockchain
whereas the output transaction can be delayed to a point of time in the future. If
one of the party wants to pay the other party, it updates the output transaction
mirroring the actual state. Note, the actual output transaction involves a com-
plex reconciliation between the two parties, its process is described in detail in
[20]. Decker et al. in [4] presented an alternative. While the LN was specifically
designed for Bitcoin, PCNs can be realised on other blockchains as well if they
provide a minimal scripting language that allows realising so called Hash-time
Lock Contract (HTLC). Alternatives include the Raiden Network (Ethereum)
[22], Sprites (Bitcoin) [12] or COMIT (cross-chain) [8].

Opening a channel only makes sense for recurring payments to (or through)
the respective other party. To transact with parties where no direct channel
exists, multiple payment channels can be chained together. The payment is then
routed through the network with one or more intermediaries. This however gives
rise to a major challenge: how to find an optimal (or acceptable) route through
the network, i.e., from the sender of a payment to the recipient. The route needs
to be acceptable (and ideally optimized) in terms of to specific criteria such as
routing fees, exchange rates, and reliability. The routing within the LN applies
a proactive routing protocol: each node broadcasts the information about its
neighbours (e.g. the nodes which itself is connected to via a channel) through
the network. Hence, the downside of this is that a lot of information needs
to be send around prior a route can be established. Consequently, each node
has complete knowledge about the network topology. So far, only information
about the channel funding is included, but not the funding distribution, i.e. how
much of the funding is currently on which side and the solution is limited to
the Bitcoin blockchain. Obviously broadcasting global topology information is
costly and introduces its own scalability limits, which are particularly severe
when considering a cross-chain network.

We argue that, without a fully automated solution for payment routing, with
localized routing and the ability to adapt to the ever-changing environment of

AODV-Based Routing for Payment Channel Networks 109

such a network, PCNs cannot realize their true potential or achieve meaningful
coverage on a global scale. Hence, we make the following contributions:

— We present an adaptation of an Ad-hoc On-demand Distance Vector (AODV)-
based routing algorithm for a network of off-chain payment channels.

— Our approach can cater for different currencies, hence allowing to route pay-
ments across multiple blockchains.

— We evaluate the applicability of our routing protocol experimentally and dis-
cuss advantages and disadvantages.

In the next section, we discuss related work in the field of (payment) rout-
ing. Afterwards we formulate the requirements of the routing protocol in Sect. 3
followed by the protocol in Sect.4 and its evaluation in Sect.5. We discuss the
results in Sect. 6 and conclude in Sect. 7.

2 Related Work

Routing can be described as the technique of “[...] sending a unit of information
from point A to point B by determining a path through the network, and by
doing so efficiently and quickly [...]” [11, Chap. 1, p. 3]. This topic has received
a lot of attention in research and industry resulting in various different routing
algorithms as routing is fundamental to power almost any small to large network
efficiently. Examples range from Circular Switched Telephone Networks (PSTN)
over Mobile Ad Hoc Network (MANET) to packet routing on the Internet. How-
ever, routing on payment channels has hardly been examined. Hence, we expand
our search into the other fields. Especial the area of MANET networks is relevant,
as these show similar characteristics as PCNs: Nodes may appear and disappear
irregularly, be offline for a while (e.g. as do connections do in MANET) or the
channel balances might change frequently. Routing protocols can be classified
into five major types: reactive, proactive, hybrid (i.e. a combination out of both:
reactive and proactive), hierarchical and coordinate-based.

Reactive protocols perform route discovery on-demand. They do so by flood-
ing the network with route discovery requests. Two famous examples are Ad-hoc
On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) [9,19].
They work best in a highly dynamic environment (in cases where the network
topology changes quickly). In contrast to that proactive routing protocols work
well in static scenarios (whenever an update occurred, information is spread).
In most cases, each single node maintains a routing table and can decide on the
route on its own. Examples of such routing protocols are Destination-Sequenced
Distance Vector routing (DSDV) and Wireless Routing Protocol (WRP) [15].
The offsite of re- and pro-active protocols is that excessive flooding can lead to
network clogging. Hence, a combination of both achieves a better performance
across a wide range of scenarios. Hybrid routing protocols such as Zone Rout-
ing Protocol (ZRP) or Enhanced Interior Gateway Routing Protocol (EIGRP)
in which each node maintains a routing table on the routes inside its zone, for
destinations outside the zones, a route discovery procedure is employed [1,7]. In

110 P. Hoenisch and I. Weber

contrast to these kind of algorithms, hierarchical and coordinated-based proto-
cols rather use location-based algorithms than flooding the network with mes-
sages. Two examples of hierarchical routing protocols are LANMAR, [18], L+[14]
and two coordination-based protocols are GPSR [10] and BVR [5]. These kinds
of algorithms use location-dependent addresses to route information.

These routing protocols were mostly designed for MANET, however, PCN
may differ, e.g., additional hops may increase the overall expanses, a route
response changes the networks state as funds will need to be locked or a found
route might be only usable up to a certain amount of times as the involved
channels might run out of funding. Nevertheless, routing in off-chain channel
networks can benefit from ideas of MANET routing protocols.

An example for hybrid routing is the protocol Flare which is meant to replace
the current DSR-based routing protocol employed in the LN [21]. Nodes pro-
actively gather information about the network topology from neighbour nodes
(as in DSR) and from beacons which are close (in the sense of Bitcoin addresses).
Hence, a sender can decide on the route and issue the payment. Each node
broadcasts in a regular interval (or when a change occurred) its local information
to their neighbours. If a node receives an update message it first updates its local
routing table and enhances the information in the received message with its local
information and forwards it to its neighbours. Messages can be encrypted using
onion routing [23]. The Ripple Network integrates a path-finding algorithm called
ripple paths [24]. Payments can be rippled through several nodes. This involves
moving debt around. Cross currency payments are possible through so called
order books. However, how exactly a path is found is not clearly defined.

Flare is closest to our work. However, the fundamental difference to our
assumptions is that while Flare focuses primarily on security and censorship
resistance for the sending node, we focus on the autonomy of each single inter-
mediate node. Each node should not be forced to forward a payment into a cer-
tain direction. This decision is driven from the economical point of view, as we
assume, nodes primarily focus on profit maximisation and hence are more likely
to select routes which ensure high profit. Notably, we covered mostly abstract
algorithm of each category within this section. There are various adaptations
focusing on more concrete problems, e.g. an improved AODV protocol against
"black hole’ attacks [13], reducing the message overhead of AODV using availabil-
ity prediction [2], adaptive multipath source routing for DSR [28] or an anony-
mous DSR protocol or AODV routing [26,30]. We argue that if the most abstract
protocol is suitable, the improved version might lead to even better results.

3 Requirements and Algorithm Selection

In order to find a suitable routing algorithm for transferring values (in the form of
cryptocurrencies) from a sender to a receiver via one or more intermediate nodes
in an inexpensive and reliable way we define the requirements for the routing
protocol similar to the ones in Flare in [21]. These requirements were formed from
community beliefs [17]. Hence, we derived the following requirements which are
imposed directly in the LN:

10.

AODV-Based Routing for Payment Channel Networks 111

. Autonomy and self-reliance: In order to provide high availability and a

failure resistant network, the nodes need to be self-configurable: each node
should be able to act autonomously and independently. Hence, a node should
be able to act as a sender or recipient at the same time and should be able
to route payment requests in any direction. In addition, the functionality of
the network must be preserved despite of random changes in the network’s
topology or due Byzantine behaviour of some nodes.

Cost guaranties: Each node in this network may charge a certain fee to
forward a payment. In addition, when crossing different blockchains, the
bridging node will ask for a specific exchange rate between two currencies.
Hence, it is essential that the overall cost to issue a payment across the
network from a sender to the final recipient is known prior to its execution.
This is required, as the sender wants to ensure that the desired amount
arrives at the final recipient and is not eaten up by fees or exchange rates.
Time-lock guaranties: It is required that each payment (channel update)
is assigned with a time-lock (compare HTLC [20]). This serves two purposes,
first, the receiver needs enough time to redeem the payment, and second,
the sender needs to have enough time to rollback in case a failure occurred.
Flexibility: The routing protocol needs to be flexible enough to take fre-
quent changes into account. Changes in a huge network are likely to happen
in various aspects: channels may appear or disappear, the channel’s fund-
ing distribution may change, nodes may update their fees or nodes between
blockchains may change the rates in order to not lose money.

Prevent network partitioning: A single (or several) failing nodes should
not forestall payment routing or split the network in sub-networks. A node
should always be able to find a route to a desired opponent, i.e. no other
node should be able to prevent a payment. In other words: if a route exists
between two nodes, the routing protocol should be able to find it.
Real-time: A major goal of PCNs is to enable instant micropayments.
Hence, it is natural that the routing protocol needs to be very fast. Hence,
network traffic delays are the only timely constraints which are allowed, i.e.
the routing should take less than a few seconds.

Up-to-dateness: Having up to date information available is crucial for
finding the best route through the network. Hence, a requirement is that a
found route contains up to date information about fees and exchange rates.
Lightweight and scalable: It is expected that the off-chain channel net-
work will grow over time. Hence, routing should be able to adapt and scale
with it. In addition, routing should only use a moderate amount of resources.
Trustlessness: Routing should withstand when nodes show Byzantine
behaviour (i.e. are lying about fees or routes).

Optimal solution for each node: The routing protocol should allow each
node to act within its own economic incentives. These will differ from node
to node, e.g. a node issuing a payment may want to send the payment
along the cheapest, fastest or the path with the highest success rate. Con-
trary, intermediate or forwarding nodes are driven by different incentives.
For example, some may provide the cheapest route or aim for high reliability.

112 P. Hoenisch and I. Weber

Hence, intermediate nodes may not forward routes if this compromises their
reputation.

Algorithm Selection — AODV. We have chosen the above mentioned 10
requirements in order to have a reliable and usable network. It should be noted
that especially the last point is from highest priority as we want to guarantee
each participant’s economic incentives. The point lead to the routing protocol
selection of AODV. AODV is a routing protocol originally designed for MANET
and other wireless ad hoc networks. Key features are the ability to quickly adapt
to dynamic condition changes, a low processing and memory overhead and loop
freedom at all times [19]. As the name implies, a route is established only on
demand on a hop-by-hop basis. Each node should only have one option to send
the message through the network (notable, a sending node which is connected
to multiple neighbours might end up with multiple routes) as each intermediate
node can decide how to forward the message to the final receiver.

One of our main assumption about the network is that it is under continue
change. Even more, we assume that network changes are more likely to happen
than nodes are sending payments around. Examples for frequent changes are (I)
Channel balances change frequently, i.e. a route which was valid before a payment
must not necessarily be valid after that payment. (II) Fees may change frequently.
Each intermediate node can charge an arbitrary amount of fee when forwarding
a payment. This node may regularly update that fee in order to keep its channels
balanced. For example, if one channel is at risk of running out of liquidity, the
node could charge a higher fee when forwarding payments through that channel.
(III) Exchange rates may change quickly. Nodes between two blockchains will
need to adapt the exchange rate frequently. Otherwise this node may be at risk of
losing money. (IV) Nodes may be offline (or not reachable) for some time. While
it is fundamental that nodes are online at all time during a payment as this node
needs to accept and forward payment request, if an intermediate node is offline
(even for a short amount of time), the network should adapt accordingly.

An alternative would have been a proactive routing algorithm similar to Flare
which is based on source routing [21]. In contrast to AODV, source routing can
be easily combined with Onion Routing and brings a higher level of security to
the network participants. It allows to encrypt the payment message in different
layers so that no intermediate node in between is aware of what the message’s
final destination will be or who the original sender was. However, the downside
of this is that a sending node can indirectly attack an arbitrary node in the
middle, e.g. by draining its liquidity (locking it up) for some time so that it can-
not forward any more payments. Even worse, if the message is encrypted, the
attacked node will not even know who it gets attacked from in the first place. A
more detailed discussion of this attack can be found in Sect. 6. The other main
difference between a reactive and a proactive approach is that reactive rout-
ing eliminates the need of periodically flooding the network with table update
messages. However, the disadvantage of this approach is that a route request
messages may flood the network, i.e. a large amount of messages may be sent

AODV-Based Routing for Payment Channel Networks 113

around until a suitable route has been found. We have decided for a reactive
routing algorithm as it has the abilities of obtaining an up to date route, being
loop free and a quick adaptation to the ever-changing network conditions. In
addition, as each node can decide on its own how and where to route a payment
to, it is easier to maintain its economic incentives.

4 AODV-Based Routing in PCN

System Model. Before defining to the routing protocol in pseudo code in
Sects. 4.1 and 4.2 we define our PCN as an undirected graph G = (N, C') whereas
N is the set of all nodes and C is the set of channels between the nodes C' C
{(n1,n2) | n1,ne € N}. Each node n represents an independent party who wants
to participate in the network either by playing an active role as payer or payee, or
passively by earning money as an intermediate node which forwards payments.
Each node is assigned with a globally unique id. Further, for Ve € C we define
bal(n,c) as a the current balance of node n in channel ¢ as a binary function
Bal : N x C' — [0,400). If a node n is not part of the channel the balance
function is not defined, i.e. Vn € N, ¢ = (n1,n2) € C, n ¢ {n1,ny} <~
Tbal(n, c) (read as bal(n,c) is not defined). When forwarding a payment over a
channel ¢ an intermediate node n may charge a fee f € (—oo, +00) and provide
a rate r € [0,+00). This means, the cost to send an amount z via a node n;
is p; = r; X x + f;, i.e. the sending node has to pay p; so that x arrives at
the next node while the intermediate node will deduct f; for itself. Hence, the
total cost p (for payment) to send a payment from a starting node n; over the
intermediate nodes ny and ng to node ny can be expressed as p = ps(p2(x)) or
p =713 X (rg x x + f2) + f3. Notably, if an intermediate node is in between two
blockchains, the arriving amount z is in a different currency. Note that nodes are
deliberately enabled to offer a negative fee for forwarding a request. By providing
this incentive, i.e. making routes through them cheaper compared to potential
other available routes, the forwarding node is able to rebalance its channels in a
specific way.

The payment process consists of two phases: first, the route discovery phase
(Sect. 4.1) and second, the route selection phase (Sect.4.2).

4.1 Route Discovery

As designed in the RFC of AODV a route discovery is only issued when a node
decides to send a payment over the network: a route request is broadcast to
each connected node, i.e. nodes which are connected via a payment channel:
REQ = <N, Nd, N, NTd, NTo, dreqa droute7 #mawa #rat& #f€€7 #hops>- The route
request is defined as RE(Q whereas n,, defines the route request originator. This is
needed so that each node can update its local routing table with a path towards
No. Nq is the desired recipient and n; is the last hop, i.e. the node this request was
send from. nry and nr, define a sequence number. The former one is the latest
sequence number received in the past by the originator n, for any route towards

114 P. Hoenisch and I. Weber

the destination ng. The latter one is the sequence number to be used in the route
towards the originator n, of the route request. d,., defines the lifetime of the
request, i.e. how long this request is valid. These fields can be found in the original
AODV as well. #,0ps defines the amount of intermediate nodes (or hops) to the
request originator n,. However, in order to have a more sophisticated algorithm
we enhanced the RE(Q with additional fields. Whenever a node sends out a
route request, we use this chance to establish a route backwards (i.e. towards
the originator) on each node which receives the request. Hence, we added 3 more
fields: d;oute defines how long the route towards n,, is valid, #,qte is the rate to
reach this node and # .. represents the cost to reach this node.

As by definition of the channel network, each channel has a certain capacity,
hence each node has a certain maximum it can pay over a specific channel
(bal(n,c)). While this is the overall maximum, a specific node may only be
willing to forward a fraction of it, i.e. #.42. Notably, #mae < bal(n;,c) where
i is the current node forwarding this request over channel c¢. This value varies
depending on the request. Further, if a node receives a REQ and is not the
destination node, it first updates the REQ before forwarding it. The fields n,
and ng remain unchanged, n; is set to the current node. The rate #,,¢ is updated
with its local rate times the former rate and so is the new fee the sum of the
local fee and the former fee. In order to compute the new #,,,, the current node
checks how much it can send over the channel to n; (#mazoid) and takes the
minimum of those two values, i.e. #mazNew = Min(F#Fmazoids FmazCur). The
same applies for the expiry time d;,yqyte, i-€. the current node updates this field
with the minimum between the last d,,te and the time it is willing to offer this
route to n,. Hence, using RE(Q each receiving node receives the information of
how much it can send towards the originator n, (#mazNew), for how long the
route is valid dyoute- In terms of units, the expiry date is expressed using the
unix timestamp format. The rate and the fee are floating-point numbers in order
to be able to represent the smallest unit of an arbitrary currency, e.g. 1 Satoshi.

Algorithm 1 shows a pseudo code of how a RE(Q is handled if received by a
node. Lines 1 and 2 perform validation steps. First, the local node checks the
req is still valid, i.e. if req.d,.q has not been expired and the max amount of
hops has not been reached (#nops < MAX_HOPS), i.e. if the REQ is dropped
if it has traversed more than M AX_HOPS intermediate nodes. Afterwards, it
checks if a valid channel exists to the last hop and if this channel has enough
balance. Thereupon, the local node checks in its routing table if a route towards
n, is already present (line 3). If this is the case, the node checks whether the
current req is better than the routing table entry. Within this check, the local
node can follow its own economic incentives, e.g. take a lower rate and fee, a
longer time expiry date, etc. The new routing table entry is created in line 5. In
the next line 7, it is checked if this req has already been handled before, i.e. for
this case the req.nry is taken. If so, no further actions are performed. In line 8
it is checked whether the local node is already the final recipient. If this is the
case, a REP is returned to the last hop n; (see Sect.4.2). Similar, in line 11
the local node checks if a route is already known to the destination node ng.

AODV-Based Routing for Payment Channel Networks 115

Algorithm 1. handleRouteReq(req)
Input: req: Route Request data

1 if lisValid(req) then return;

2 if IchannelToEzists(req.n;) OR bal(req.n;,c) < 0 then return;

3 t, = getRoutingTableTo(req.no);

4 if t, != null AND req is better than routing table entry then

5 ‘ t, = updateTable(req.n,, req);

6 end

7 if reqAlreadyHandled(req.nrq) then return;

8 if this == req.nq then

9 ‘ sendRouteRep(req.n;); //node is destination, send rep to requester;
10 end

11 tq = getRoutingTableTo (req.nd);

12 if t4 != null then

13 ‘ sendRouteRep(t,.ny,); //take from routing table and send response;
14 end

15 req.Frate = this. #rate; req.#fee += this.#fee; r€q. Fmae = Min(req.#maaz

this.#maz); req.n; = this; req.#nops++;
16 lockFunding(req.n;, req.-#maws 7€q.Aroute);
17 for c in outgoingChannels do
18 ‘ sendReq(req, c.counterNode);
19 end

If so, a REP is returned to the next hop in the routing table entry. If the local
node is an intermediate node the REQ will be forwarded to all nodes to which
the local node has a channel to. Hence, starting from line 15, the REQ will be
updated, i.e. the new rate and fee to the next node is calculated and the last hop
n; is set to the current node. Also, the hop count (req.#0ps) is updated and
incremented by 1. Since within the REQ the node also promises a route towards
N, the local node has to lock up some funds for some time (line 16). This is
needed, in order to ensure enough funding is available for a payment over this
route. Notably, as it is required to lock funds up, a node can decide on its own
whether it will forward the REQ or not. So, at any time, a local node can decide
not to forward a REQ at all, this is however not depicted in the algorithm.

4.2 Route Selection

As soon the REQ has reached its destination node ng, or if a route towards
the destination was already known by an intermediate node, the route responds
message (REP) is returned towards the originator. REP has a similar format
as REQ REP = <Moo, Nd, N, NTd, NT o, droutea #maw7 #ratev #fee>-

The field n, defines the originator of the message, i.e. it is the destination
node ng of the REQ message. Similar to that, ng is the destination of REP (or
the originator n, of REQ). n; follows the same principle, i.e. it is always set to
the last hop the message was send from. nry and nr, define sequence numbers.

116 P. Hoenisch and I. Weber

Algorithm 2. handleResponse(rep)

Input: rep: Route Response

1 if lisValid(rep) then return,

2 if IchannelToEzists(rep.n;) || !channellsFunded(rep.n;) then return;

3 t, = getRoutingTableTo(rep.n,);

4 if t, == null || rep is better than t, then

5 ‘ updateTable(rep.n,, rep); //new rep is better, update table;

6 else

7 ‘ return; //known route is better;

8 end

9 if this == rep.ng then

10 ‘ return; //local node was original requester

11 end

12 tq = getRoutingTableTo(rep.ng);

13 if t4 == null then

14 ‘ return;//error, no route to origin found

15 end

16 rep.Hrate ¥= this.#rate; 7€D.H fee += this.F# fee; T€PHmae = Min(rep.#mae »
this.#maz); T€D-Fhops++; Tep.n; = this;

17 lockFunding(t,.nextHop, rep.#maxz, T€P-Aroute);

18 sendRep(rep, tq.nextHop);

The former one is the latest sequence number of the route’s destination node
and the latter one is the sequence number to be used in the route towards the
originator n, of the route request. d,oute defines how long the route towards n,
is valid, #qse is the rate to reach this node and # .. represents the fee.
Algorithm 2 shows the pseudo code of how a RE P message is handled: similar
to handling the route request message, in line 1 and 2 the REP is verified to
be valid. In this case, the field d, oy is checked, i.e. if the route promised in
REP has not yet expired. If this is the case it is checked if enough funding is
available in the channel towards the last hop. In line 3 the local routing table is
checked whether a route is already present to the node rep.n, and if the known
route is better than the new route in REP. Again, the local node can follow its
own economic incentives and accept only routes which are suitable. If the new
route is better, or no routing table entry exists, the routing table is updated with
a new entry towards the destination node. On the contrary, if a route already
exists, the process ends here (line 7). In line 9 it is verified if the local node is
the destination, i.e. the REP has reached the original requester of this route
request. If this is the case, the process ends here and the local node can issue a
payment along this route. Alternatively, the local node is an intermediate node
and is meant to forward the REP. For that, it checks in the routing table if a
route is known towards ng (see line 12). If no route is found, the process ends
here as it is not possible to forward the REP. Consequently, if the route towards
ng is known, the RE P message is updated. Starting from line 16 to 16 the rate
(rep.#rate), fees (rep.# ree), the max amount for this route (rep.#maqz), the last

AODV-Based Routing for Payment Channel Networks 117

hop (rep.n;) and the hop count (rep.#pops) is updated. Afterwards, the node
locks the max amount of the promised route (rep.#mq.) in line 17 and forwards
the route to the next node according to the routing table entry (t4.nextHop)
in line 18. Similar to the route discovery phase, the most important part is
the locking of the funds in a specific channel for the time the route is valid
(rep.droute) @s can be seen in line 17. Since this information is only kept offline
in a local node, it only represent a promise that the funds are available but it
does not give a 100% guarantee that the route is valid until rep.d, oyt expired.

Figure 1a show the process of how a route from node A to node E is estab-
lished. For that, node A sends a route request (REQ1) to its connected neigh-
bours, i.e. B. In turn, B forwards this request to C and D (REQs,, REQ2,) and
so on. Eventually, the REQ arrives at node E which returns a REP message
towards the originator A. Notable, since each REQ contains the information
of how to reach the originator node, every node in this example has now the
information of how to route towards A. The path the REP message follows is
comparably simpler. As it can be seen in Fig. 1b, node E issues the first REP;
message along the path towards A. Hence, the message first passes node D
(REP,), then node B (REP,) and eventually arrives back at node A (REP3).
If node C now wants to pay A it can do so immediately as it has already all the
information. If C wants to pay E, it will only need to issue one REQ towards B.
B knows already the required information and returns RE P immediately. Hence,
the more active the overall network is, the less messages will be needed to find
a route. After having explained the algorithm, we will evaluate it in Sect. 5.

(a) REQ phase (b) REP phase (c) Ig. redundant messages

Fig. 1. REQ and REP phase, and ignoring redundant messages

5 Evaluation

In order to understand if the adapted AODV routing protocol (i.e. by enhancing
the messages with information on fees and exchanges rates) is applicable for
payment routing in PCNs we evaluated it in a simulated environment. As at the
time of writing the LN just went live on the Bitcoin main net!, no real data
about how the network will look like in big scale was available. Hence, we have
to come up with some assumptions in regard to the network topology in Sect. 5.
The results of the evaluation are discussed in Sect. 6.

! https://Inmainnet.gaben.win/.

https://lnmainnet.gaben.win/

118 P. Hoenisch and I. Weber

Setup. We evaluate our routing protocol on 3 different network topologies, with
500 nodes, 1,000 nodes, 5,000 nodes. In regards of the network, we divide the
nodes among 3 different blockchains, e.g. BTC, ETH and LTC. Each node is
placed at random in one of these 3 blockchains with a uniform probability of
p = 0.3. In the next step we take the smallest blockchain (i.e. the one with the
least amount of nodes n) and select randomly between 1 and |n4| nodes. These
nodes are Liquidity Providers between two blockchains, i.e. they have a wallet on
both blockchains enabling routing between them. We repeat the same procedure
and connect the smallest chain with the second chain. The same is repeated
between the remaining two blockchains. In the next step we randomly connect
the nodes within each chain according the dynamics of small-world networks as
presented by Watts and Strogatz [29]. We chose k = 4 as the average connection
between each node within each chain and a probability of rewiring of p = 0.3. To
generate the graph, we used the WattsStrogatzGenerator (http://graphstream-
project.org). We decided to have the funding on each channel side randomly
generated with a value f = [1,100]. We ignored the different currencies, meaning
that the overall maximum a channel can have is M AX (bal(c)) = 200 BTC
(100 BTC on each side of the channel) and the minimum is MIN (bal(c)) = 2
LTC (1 LTC on each side). As exchange rates between BTC:LTC, LTC:ETH
and BTC:ETH we took fix values as monitored from http://coinmarketcap.com
(2017/09/25, 3:25 pm UTC+10): 1 ETH=0.07508560 BTC, 1 LTC =0.01262120
BTC and 1 LTC=0.16506884 ETH. Each Liquidity Provider offers the same
exchange rate; however, each node randomly charges a fee when forwarding
payments (rep.# fee Or req.# fee). This fee is randomly generated only once per
node and is between *.# fc. = [0,1] * 107°. The details of generated topologies
can be found in Table 1. Notably, since channels are bidirectional a connection
between two nodes counts as one channel.

Table 1. Evaluation settings

Nodes 500 1000 5000
Channels 1098 2367 10689

BTC |ETH | LTC|BTC | ETH | LTC | BTC ETH | LTC
Nodes 149 147 204 285 |306 409 |1519 | 1496 | 1985
Channels 298 294 408 |570 612 |818 |3038 |2992 |397
BTC-ETH channels | 13 257 408
BTC-LTC channels | 76 103 193
ETH-LTC channels |9 7 88

Scenario & Evaluation Criteria. In order to verify the quality of our app-
roach we run 1,000 randomly generated transactions on each network topology,
i.e. we randomly select one node which pays another random node. The payment
amount is randomly generated with # = [0,1] x 10~°. Notable, while in theory

http://graphstream-project.org
http://graphstream-project.org
http://coinmarketcap.com

AODV-Based Routing for Payment Channel Networks 119

it is possible to have even smaller values as payments are not recorded on the
blockchain immediately and hence are not limited to it, this would require a
different setup. This means, if a payment is 1/10 of a satoshi, we would need
10 of these payments in order to have a noticeable change, hence, we ignored
this factor. The limiting factor of the AODV routing protocol is the hop count
(MAX_HOPS), i.e. if the REQ has traversed more than M AX_HOPS inter-
mediate nodes, the request is dropped. Hence, we run each transaction with
different MAX _HOP, i.e. with an MAX_HOP = [0, N] where N is the cheap-
est possible path but capped with 10. Differently expressed, if two nodes are
connected directly the hop count is 0 and there is one channel between them.
If there is an additional node in between, the hop count 1 and there are two
channels between them. Hence, we have a maximum of 10 hops or a maximum
of 11 channels. The cheapest possible path was computed manually using the
Floyd-Warshall all pair shortest path algorithm [3, pp. 558-565]. As a single
route request may change the networks topology we reset the nodes and the
channel states before each new request. We compare the found routes with the
optimal path, i.e. the cheapest overall path for each hop count. This means that
a lower hop count could lead to a more expensive route than the optimal. In
addition, we count the overall messages which were send around and measure
the reachability, i.e. how many transactions where successfully depending on the
hop count.

6 Discussion

The results of our evaluation can be found in Fig. 2 (not showing the 1,000 nodes
scenario due to space constraints). As mentioned above in Sect. 5 we have 3 dif-
ferent network topologies with 500, 1,000 and 5,000 nodes. On each topology we
ran 1,000 randomly selected transactions, i.e. the payer and payee were selected
randomly. Each transaction was run 0 to N times where N is capped with 10
or with the shortest optimal route. Hence, the higher the HOPS get, the less
transactions are executed. Two nodes are separated by 1 hop if there is a single
intermediate node in between or by 0 hops if they are connected directly. P is the
arithmetic mean of the performance P. It indicates how much more expensive
the found paths were on average compared to the optimal shortest path (The
optimal shortest path was calculated using Floyd-Warshall algorithm.), e.g. an
P of 1.53 means that on average the found path was 1.53 times more expensive
than the optimal path. In addition, o5 states its standard deviation. For sim-
plicity reasons we normalised the number of send REQ and REP messages by
dividing it through the amount of transaction (#rx).

As the figures clearly show, the performance P goes towards 1 slowly the
higher the max allowed of hops get (M AX_HOP). The reason why we do not
hit 1 at 10 already is twofold. First, we allowed only a max amount of 10 hops
although there were a few transactions with an optimal route with more than
10 hops, i.e. for 500 nodes 3.9%, for 1,000 nodes 1.6% and for 5,000 nodes 16.3%
needed more than 10 hops to find an optimal solution. Besides, the standard

120 P. Hoenisch and I. Weber

deviation of the P decreases with the number of hops. Hence, we can say that
our routing finds more results closer to the actual optimal route. The chance of
being able to find the optimal route depending on the hops is expressed by % <
Optimal. As it can be seen, the higher the hop count is the higher the chance to
finding the optimal solution the closer we get to it. The second reason why this
number approximates slowly to 1, is that there is a chance that the optimal route
is never found, although the maximum allowed hops would allow for it. This can
be reduced to the fact that we try to keep the amount of unnecessary messages
low. For example, each node handles each REQ and REP only once unless its
information is fresher or better. Figure lc shows a route request (transaction)
from A to E. In the first phase, A sends a request to B and D (REQ;, and
REQ1,). As soon as received, these nodes forward their messages REQ2, and
REQ2, from B to C and D and REQ, from D to E. As D has received a REQ)
for a payment from A to E prior from A, it ignores the message from B. This
could be a limiting factor if the route from A to D via B is cheaper than A to
D. However, we made this decision knowingly in order to reduce the amount
of REQ which are send around, as otherwise the network would get flooded
completely. In addition, in order to have a higher probability of finding a better
route, we allowed for the following. If the REQ from B arrives at D when D
has already found a route to E it returns indeed a RE P message. Hence, in this
example, A would receive two RE P messages from which it can chose the more
suitable one. This fact explains why our results show a relatively high amount
of REP. The figures show the total amount of REQ and REP messages in
the network normalised by the amount of sent transactions. It is obvious that
the amount increases almost exponential with the amount of allowed hops. The
problem lays in the information each node is acting on, i.e. while nodes to ignore
already handled RE(@ messages it cannot know whether a node has already
received this message from a different node or not. A simple solution would
be to add information to the REQ/REP message where it has already been.
However, while this would reduce the amount of messages, it would increase
the size of it. Interestingly, while for 500 nodes and 1,000 nodes we were able
to achieve a reachability of over 99% for 5,000 nodes we were able to achieve
a similar number only with 7 hops. This lead to a dramatic increase of REQ
messages which were send around, i.e. while we had a reachability of 80% and
6,405 RE(Q messages for 6 hops we had a reachability of 98% and 12,097 REQ
messages for 7 hops. Hence, we would recommend to have a dynamic value for
the maximum allowed hops, i.e. if the network grows the maximum hop count
should increase. Notably, the amount of REQ is decreasing over time heavily as
nodes cache route information for some time. In the example in Fig. 1c at least
5 RE(Q messages are broadcast as A wants to pay E initially. If B wants to pay
E in a later phase as well, it might have the information already available and
does not need to send a RE() message but can execute a payment straight away.

While the numbers show that the adaptation of AODV for payment routing
in off-chain channel networks is quite feasible for networks of nodes up to a few
thousand participants we doubt it is scalable for millions of users or more. As

AODV-Based Routing for Payment Channel Networks 121

—~Performance % < Optimal Reachability REQ REP

2 3500 2 30000

3000 25000

N SN

- 3
[oo
8 1 1 15000 &
3os 1500 g g

06 1000 06 10000

04 0.4

02 S0 02 2000

0 0 0 e 0
0o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Max hops Max hops
(a) 500 Nodes (b) 5000 Nodes

Fig. 2. Evaluation results in % (left scale) and number of messages (right scale)

in AODV the message size is comparably small (~80 bytes) a network should
be able to handle easily several thousand requests simultaneously as this would
end up in only a few megabytes. Although established routes may expire over
time, using a route maintenance message, crucial information can be updated.
For that, the original route request issuer sends out a maintenance message
along the desired route. Each intermediate node updates the information with
its current fees and the distribution of funds in its channels and forwards the
message along the path. Hence, once a route is established between two nodes,
it may be reused infinitely if updated regularly.

Compared to Flare, our AODV-based protocol does not consider security
protection of the message or its content. Hence, the sender and receiver may
be publicly known along the payment route. However, significant attempts have
been done to secure the AODV routing protocol [6]. Different extensions to
AODV to increase the security have been proposed in the past: e.g. SAODV or
ARAN which authenticates non-mutable fields and mutable information (hop
count) of the message, using digital signature and hash chain [25,27,30]. These
extensions can prevent tampering of control messages and data dropping attacks.
We argue that a protection of data tempering in a REP or RE(Q) message is
not necessarily required as a route execution follows the atomic principle, i.e.
either all transaction are successful or all fail. This means, if an intermediate
node lies about the fees it would take (it promises a lower fee but would take a
higher fee by falsifying the RE P message), the payment will fail later on as the
sender will only attach enough money so that the desired amount arrives at the
receiver who in turn will reject the payment. Privacy and anonymity has been a
direct focus of Flare which integrates Onion Routing in a way that only the last
node actually knows who has been sending something to whom, all the nodes
in the middle just forward it to the next hop. There is more privacy in such a
system, however it has been shown that in cases where every node broadcasts
the transaction onto the blockchain in similar time frames, clues of the routing
can be deducted by the entire network. Even more, in source routing, edge nodes

122 P. Hoenisch and I. Weber

can misuse this anonymity and attack an intermediate node in a way that it is
unable to forward future payments. To do so, the attacker will need to have
a higher funding (either concentrated on one node or several nodes) than the
victim and it will need to be able to controller the payee. The attacker issues a
payment request via an intermediate node, which will need to lock up funding
for some time. This lock will be released automatically in case the payment was
not successfully. However, in the meantime this node cannot use this funding
for other purposes such as participating in other payment processes and will not
earn money through additional fees. The same attack can be done using AODV.
However, the difference is that in AODV each sender is known to intermediate
nodes while this is not the case if using Onion Routing where the sender (and the
final receiver) remains anonymously. Hence, using AODV each node can protect
itself by either accepting or rejecting route requests by specific nodes.

Last but not least, a general problem of decentralised routing requires each
participating node to be online as offline nodes are not able to forward any
requests. This is why, the LN (or other PCNs) incentives nodes to stay online
as they can earn transaction fees by routing payments through them.

7 Conclusion

In this paper we presented an adaptation of AODV for payment routing in
payment channel networks such as Lightning, Raiden, or COMIT. We enhanced
the messages with information on fees and exchanges rates in order to find a
economical route through the network. AODYV is a reactive routing protocol that
only establishes a route when needed, thus avoiding the overhead of superfluous
messages sent in a proactive routing protocol. However, AODV carries the risk
of flooding the network if the maximal amount of hops is not set correctly. Our
experiments reveal that the adapted AODV can easily be used in a network
up to a few thousand nodes. Hence, AODV-based routing can be integrated into
PCN. In future work we will focus on routing protocols that scalable further
and evaluate how fee management of nodes impact the liquidity flow. Among
respective developers, limited liquidity is a well-known problem for off-chain
channel networks which remains to be solved.

References

1. Albrightson, B., Garcia-Luna-Aceves, J., Boyle, J.: EIGRP - a fast routing protocol
based on distance vectors (1998)

2. Chao, L., Aiqun, H.: Reducing the message overhead of AODV by using link avail-
ability prediction. In: Zhang, H., Olariu, S., Cao, J., Johnson, D.B. (eds.) MSN
2007. LNCS, vol. 4864, pp. 113-122. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77024-4_12

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

https://doi.org/10.1007/978-3-540-77024-4_12
https://doi.org/10.1007/978-3-540-77024-4_12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

AODV-Based Routing for Payment Channel Networks 123

Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3-18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3_1

Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica,
I.: Beacon vector routing: scalable point-to-point routing in wireless sensornets.
In: Proceedings of Symposium on Networked Systems Design and Implementation
(2005)

Gharehkoolchian, M., Hemmatyar, A.M.A., Izadi, M.: Improving security issues
in MANET AODV routing protocol. In: Mitton, N., Kantarci, M.E., Gallais,
A., Papavassiliou, S. (eds.) ADHOCNETS 2015. LNICST, vol. 155, pp. 237-250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25067-0-19

Haas, Z.J., Pearlman, M.R., Samar, P.: The Zone Routing Protocol (ZRP) for Ad
Hoc Networks. IETF Internet Draft (2002)

Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT - cryptographically-
secure off-chain multi-asset instant transaction network (2017). http://www.comit.
network/doc/COMIT%20white%20paper%20v1.0.2.pdf

Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. Springer, Boston (1996).
https://doi.org/10.1007/978-0-585-29603-6_5

Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: International Conference on on Mobile Computing and Networking.
ACM (2000)

Medhi, D.: Network routing: algorithms, protocols, and architectures (2010)
Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that
go faster than lightning (2017)

Mistry, N., Jinwala, D.C., Zaveri, M., et al.: Improving AODV protocol against
blackhole attacks. In: International Multi Conference of Engineers and Computer
Scientists (2010)

Mitton, N., Fleury, E.: Distributed node location in clustered multi-hop wireless
networks. In: Cho, K., Jacquet, P. (eds.) AINTEC 2005. LNCS, vol. 3837, pp.
112-127. Springer, Heidelberg (2005). https://doi.org/10.1007/11599593_9
Murthy, S., Garcia-Luna-Aceves, J.J.: An efficient routing protocol for wireless
networks. Mob. Netw. Appl. 1, 183-197 (1996)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 17 Apr 2017

Pacia, C.: Lightning network skepticism (2015). https://chrispacia.wordpress.com/
2015/12/23/lightning-network-skepticism/. Accessed 22 Mar 2018

Pei, G., Gerla, M., Hong, X.: LANMAR: landmark routing for large scale wireless
ad hoc networks with group mobility. In: ACM International Symposium on Mobile
Ad Hoc Networking and Computing (2000)

Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Second
IEEE Workshop on Mobile Computing Systems and Applications (1999)

Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments (2015)

Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an
approach to routing in lightning network (2016)

Raiden: Raiden network (2016). http://raiden.network/. Accessed 07 Aug 2017
Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE J. Sel. Areas Commun. 16, 482-494 (1998)

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-25067-0_19
http://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
http://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://doi.org/10.1007/978-0-585-29603-6_5
https://doi.org/10.1007/11599593_9
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
http://raiden.network/

124

24.
25.

26.

27.

28.

29.

30.

P. Hoenisch and I. Weber

Ripple: Ripple paths. https://ripple.com/build /paths. Accessed 12 Sept 2017
Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A secure
routing protocol for ad hoc networks. In: IEEE International Conference on Net-
work Protocols (2002)

Song, R., Korba, L., Yee, G.: AnonDSR: efficient anonymous dynamic source rout-
ing for mobile ad-hoc networks. In: ACM Workshop on Security of Ad Hoc and
Sensor Networks (2005)

Wadbude, D., Richariya, V.: An efficient secure AODV routing protocol in
MANET. Int. J. Eng. Innov. Technol. 1, 274-279 (2012)

Wang, L., Shu, Y., Dong, M., Zhang, L., Yang, O.W.: Adaptive multipath source
routing in ad hoc networks. In: IEEE International Conference on Communications
(2001)

Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world” networks. Nature
393, 440-442 (1998)

Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: Proceedings of
the 1st ACM workshop on Wireless Security (2002)

https://ripple.com/build/paths

Application Track:
Blockchain Solutions

®

Check for
updates

Faster Dual-Key Stealth Address
for Blockchain-Based Internet
of Things Systems

Xinxin Fan(®)

ToTeX, Menlo Park, USA
xinxin@iotex.io

Abstract. Stealth address prevents public association of a blockchain
transaction’s output with a recipient’s wallet address and hides the actual
destination address of a transaction. While stealth address provides an
effective privacy-enhancing technology for a cryptocurrency network, it
requires blockchain nodes to actively monitor all the transactions and
compute the purported destination addresses, which restricts its applica-
tion for resource-constrained environments like Internet of Things (IoT).
In this paper, we propose DKSAP-loT, a faster dual-key stealth address
protocol for blockchain-based IoT systems. DKSAP-loT utilizes a tech-
nique similar to the TLS session resumption to improve the performance
and reduce the transaction size at the same time between two commu-
nication peers. Our theoretical analysis as well as the extensive experi-
ments on an embedded computing platform demonstrate that DKSAP-
loT is able to reduce the computational overhead by at least 50% when
compared to the state-of-the-art scheme, thereby paving the way for its
application to blockchain-based IoT systems.

Keywords: Dual-key stealth address - Blockchain - Internet of Things

1 Introduction

The Internet of Things (IoT) has been connecting extraordinarily large number
of smart devices to the Internet and driving the digital transformation of indus-
try. Unfortunately, existing cloud-centric IoT systems have a number of signifi-
cant disadvantages such as high system maintenance costs, slow response time,
security and privacy concerns, etc. Blockchain, a form of distributed, immutable
and time-stamped ledger technology, has been perceived as a promising solution
to address the aforementioned problems and to securely unlock the business and
operational values of IoT. The combination of blockchain and IoT facilitates the
sharing of services and resources, creates audit trails and enables automation of
time-consuming workflows in various applications. While combining these two
technologies is creating new levels of trust, the decentralized network and public
verifiability of blockchain transactions often do not provide the strong security
and privacy properties required by the users.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 127-138, 2018.
https://doi.org/10.1007/978-3-319-94478-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_9&domain=pdf

128 X. Fan

During the past few years, quite a few cryptographic techniques such as
ring signature [10], stealth address [1], and zero-knowledge proof [4] have been
employed to ensure transaction privacy for senders, receivers and transaction
amount in blockchains [8,11,13,22]. This work focuses on stealth address, a
privacy protection technique for receivers of cryptocurrencies. Stealth address
requires the sender to create random one-time addresses for every transaction
on behalf of the recipient so that different payments made to the same payee
unlinkable. The most basic stealth address scheme [1] was first sketched by a
Bitcoin Forum member named ‘ByteCoin’ in 2011, which was then improved in
[13,19] by introducing the random ephemeral key pair and fixing the issue that
the sender might change the mind and reverse the payment. Later on, a dual-key
enhancement [18] to the previous stealth address schemes was implemented in
2014, which utilized two pairs of cryptographic keys for designated third parties
(e.g., auditors, proxy servers, read-only wallets, etc.) removing the unlinkability
of the stealth addresses without simultaneously allowing payments to be spent.

The dual-key stealth address protocol (DKSAP) provides strong anonymity
for transaction receivers and enables them to receive unlinkable payments in
practice. However, this approach does require blockchain nodes to constantly
compute the purported destination addresses and find the corresponding matches
in the blockchain. While this process works well for full-fledged computers, it
poses new challenges for resource-constrained IoT devices. Considering the lim-
ited energy budget of smart devices, we propose a lightweight variant of DKSAP,
namely DKSAP-loT, which is based on the similar idea as the TLS session
resumption [2,14] and requires both the sender and receiver to keep track of
the continuously updated pairwise keys for each payment session. DKSAP-IoT is
able to improve the performance of DKSAP by at least 50% and reduce the trans-
action size simultaneously, thereby providing an efficient solution to protecting
the privacy of recipients in blockchain-based IoT systems.

The rest of the paper is organized as follows: Sect. 2 gives a brief overview of
the elliptic curve cryptography, followed by the description of the dual-address
stealth address protocol (DKSAP) in Sect. 3. In Sect. 4, we present DKSAP-IoT,
a faster dual-key stealth address protocol for blockchain-based IoT systems.
Section 5 analyzes the security and performance of the proposed scheme. Finally,
Sect. 6 concludes this contribution.

2 Preliminaries

An elliptic curve F over a field F is defined by the Weierstrass equation:
E(F): v + arzy + asy = 2° + asx? + agx + ag,

where a1, ag, as, aq, ag € F and the curve discriminant A # 0. The set of solutions
(z,y) € F x F satisfying the above equation along with the identity element
O, or point-at-infinity, form an abelian group under the addition operation +
(i.e., the chord-and-tangent group law). It is this abelian group that is used in
the construction of elliptic curve cryptosystems. Given an elliptic curve point

Faster Dual-Key Stealth Address for Blockchain-Based IoT Systems 129

G € E(F) and an integer k, the scalar multiplication kG is defined by the
addition of the point G to itself k£ — 1 times, i.e.,

KG=G+G+-+G.
—_——
k — 1 additions

The scalar multiplication is the fundamental operation in elliptic curve based
cryptographic protocols such as the Elliptic Curve Diffie-Hellman (ECDH) key
agreement [16] and the Elliptic Curve Digital Signature Algorithm (ECDSA)
[16], etc. The security of elliptic curve cryptosystems is based on the difficulty
of solving the Elliptic Curve Discrete Logarithm Problem (ECDLP) [6,7]. This
problem involves finding the integer k£ (0 < k < n) given a point kG, where
n is the group order of E(F). The 15 elliptic curves have been recommended
by NIST in the FIPS 186-2 standard for U.S. federal government [3], which
are also contained in the specification defined by the Standards for Efficient
Cryptography Group (SECG) [17]. For example, the elliptic curve used in Bitcoin
is called secp256kl with parameters specified by SECG [17]. For more details
about elliptic curve cryptography, the interested reader is referred to [5].

3 Dual-Key Stealth Address Protocol (DKSAP)

The first full working implementation of DKSAP was announced by a developer
known as rynomster/sdcoin in 2014 for ShadowSend [18], a capable, efficient
and decentralized anonymous wallet solution. The DKSAP has been realized in a
number of cryptocurrency systems since then, including Monero [8], Samourai
Wallet [15], TokenPay [20], just to name a few. The protocol takes advantage
of two pairs of cryptographic keys, namely a ‘scan key’ pair and a ‘spend key’
pair, and computes a one-time payment address per transaction, as illustrated
in Fig. 1.

When a sender A would like to send a transaction to a receiver B in a stealth
mode [18], DKSAP works as follows:

1. The receiver B has a pair of private/public keys (vg, Vi) and (sg, Sg), where
vp and sp are called B’s ‘scan private key’ and ‘spend private key’, respec-
tively, whereas Vg = vgG and Sp = s are the corresponding public keys.
Note that none of Vp and Sp ever appear in the blockchain and only the
sender A and the receiver B know those keys.

2. The sender A generates an ephemeral key pair (r4, Ra) with R4 = 7r4G and
0 <ry <n,and sends R4 to the receiver B.

3. Both the sender A and the receiver B can perform the ECDH protocol to
compute a shared secret:

cap = H(ravgG) = H(raVg) = H(vgR4),

where H(-) is a cryptographic hash function.

130 X. Fan

l3=ieccaiver B's Stealth Address

Scan Public Key: Vg
Spend Public Key: Sp

Sender A Receiver B eceiver B's ate
(IJ Scan Private Key: vp
< Spend Private Key: sp
N

Generate Ry = raG
Compute Ta = H(raV3)G + Sp

¢ Compute
) Ti = H(vaRA)G + Sp
=
. Accept the payment and
Ephemeral Public Key: Ry Yes comp‘:ne e e);)hemeral
I:P)esnnatltu: Publl‘c :<Oeg: Ty 7 private key for spending
ayment Amount:
") 00 o f = HOR0) + 50

The transaction

Wait for the next
transaction block

Auditor Proxy Server

Fig. 1. The Dual-Key Stealth Address Protocol (DKSAP)

4. The sender A can now generate the destination address of the receiver B to
which A should send the payment:

Ty = capG + Sp.

Note that the one-time destination address T4 is publicly visible and appears
on the blockchain.

5. Depending on whether the wallet is encrypted, the receiver B can compute
the same destination address in two different ways:

Ty =capG+ Sp = (cap + sB)G.
The corresponding ephemeral private key is
t'y = cap + sB,

which can only be computed by the receiver B, thereby enabling B to spend
the payment received from A later on.

In DKSAP, the receiver B needs to actively scan the blockchain transactions,
calculate the purported destination address and compare it with the one in each
block until a match is found. In the case that an auditor or a proxy server exists
in the system, the receiver B can share the ‘scan private key’ vp and the ‘spend
public key’ Sp with the auditor/proxy server so that those entities can scan the
blockchain transactions on behalf of the receiver B. However, they are not able
to compute the ephemeral private key ¢, and spend the payment received from
the sender A.

Faster Dual-Key Stealth Address for Blockchain-Based IoT Systems 131

4 Faster Dual-Key Stealth Address Protocol for Internet
of Things (DKSAP-IoT)

In this section, we describe a faster dual-key stealth address protocol called
DKSAP-IoT, which is dedicatedly designed for blockchain-based IoT systems.

4.1 Design Rationale

In DKSAP, the receiver B scans the blockchain and calculates the purported
destination address for each transaction, which requires computations of two
scalar multiplications, including one random-point scalar multiplication with
the ephemeral public key R4 and one fixed-point scalar multiplication with the
base point G. For resource-constrained IoT devices, computing two scalar multi-
plications continuously for each blockchain transaction is going to drain battery
power of smart devices dramatically. Furthermore, containing an ephemeral pub-
lic key in each stealth payment increases the size of the transaction and incurs
additional communication overhead for IoT devices as well.

Motivated by the TLS session resumption techniques [2,14], we aim to accel-
erate the process for receivers finding the matched destination address by extend-
ing the lifetime of the shared secret between senders and receivers. While both
the session ID [2] and the session ticket [14] are fixed in TLS for a given period of
time between the client and server, the sender does need to generate a one-time
destination address for each payment sent to the same recipient in our case. To
this end, both the sender and receiver will apply the cryptographic hash function
to their shared secret for subsequent N transactions before the sender initiates
a shared secret update with a fresh ephemeral public key. This key evolving
process is shown in Fig. 2, which leads to the design of DKSAP-loT, a faster
dual-key stealth address protocol for blockchain-based IoT systems, as detailed
in the next subsection.

Sender I l

Send Ephemeral Send Ephemeral

Compute Shared ‘ _ _
Public Key R Secret ¢ H hy = H(c) P 4’{ hy = H(ky-1) Public Key R’

Receiver

Compute Shared
Secetd |

Fig. 2. The key evolving process between the sender and receiver in DKSAP-loT

4.2 DKSAP-loT Specification

DKSAP-IoT is similar to DKSAP except that whenever the sender and receiver
establish a shared secret using ECDH it will be continuously and pseudoran-
domly updated with a cryptographic hash function and used in their subsequent

132 X. Fan

N stealth transactions. Both the sender and receiver maintain the transaction
state (i.e., shared secret, counter, etc.) locally and update it after each stealth
transaction. A high-level description of DKSAP-IoT is depicted in Fig. 3.

Shared

Secret Counter

Receiver
M B

heny | cntp

Yes B

Sender A

in the table and
cntg < N?

=Reoeiver B's Stealth Address

Scan Public Key: V
Spend Public Key: Sp

... —, Destination Public Key: Ty
Payment Amount: 50

Generate Ry = r4G
Compute iy = H(r4Vs)
Compute Ty = hyG + Sp

|

Ephemeral Public Key: R4

> +**—>| Destination Public Key: T4
Payment Amount: 100

Initialize the ephemeral

I public key counter cntg = 0

Scan Private Key: vp
Spend Private Key: sp

Receiver B

Sender

Expected
Destination
Key Pair

Shared

Secret Counter

A

hny | cnty

[

Contain ephemeral
public key R4 ?

Compute hy = H(vgRy)

T} inthe table and
cnty < N?

and T} = hyG + Sp

Yes

No

Update the counter and shared secret
cntp < cntp + 1, henty H(honty-1),

|

Wait for the next
transaction block

Accept the payment and
compute the destination
private key for spending
ho + sp

=

Initialize the ephemeral public
key counter cnty = 0

]

Update the counter, shared secret,
and expected destination key pair
cnty « cnty + 1
hens, < H(hent,-1)
T} = hew, G + Sg

-
ty = hew, + 58

Fig. 3. The Dual-Key Stealth Address Protocol for IoT (DKSAP-IoT)

In a blockchain-based IoT system, two smart devices A and B can process a
transaction in a stealth mode using DKSAP-loT as described below:

1. The receiver device B is pre-installed with a ‘scan key’ pair (vg,Vp) and a
‘spend key’ pair (sp, Sp) as in DKSAP, where Vg = vpG and S = spG.

2. For sending a transaction to B, the sender device A first checks whether B is
in A’s receiver list. If B is in the list and the counter value cnip is less than
N (i.e., A has communicated with B before), A retrieves the shared secret
hentp from the table and computes the destination public key:

TA == hcntBG + SB.

The stealth transaction that only contains the destination public key T4 as
well as the payment amount is then added into the blockchain. In the case
that B is not in the list or the counter value is greater than N, A generates

Faster Dual-Key Stealth Address for Blockchain-Based IoT Systems 133

a fresh ephemeral public key R4 = r4G and calculates the shared secret
ho = H(raVp) as well as the destination public key as in DKSAP:

Ty = hoG + Sp.

Here the stealth transaction is composed of the ephemeral public key R4,
the destination public key T4 and the payment amount. After putting the
transaction on the blockchain, the sender A will initialize the ephemeral public
key counter cntp = 0. In both cases, the counter cntp and the shared secret
hent, Will be updated as well:

entg —centg+ 1, hepty — H(hentg—1)-

Note that only the counter cntp is updated when it reaches N.

3. Upon receiving a stealth transaction, the receiver B first checks whether the
transaction contains an ephemeral public key R 4. If it is, B computes the
purported shared secret and destination public key:

ho = H(UBRA), T;l = hoG + Sp.

If the purported destination public key 7% matches the received one (i.e.,
T, = Ta), B accepts the payment from A and computes the corresponding
private key for spending:

t:4 = hg + spB.

B also sets the ephemeral public key counter cnt 4 to be 0, updates the counter
and shared secret, and precomputes the expected destination key pair for the
next stealth transaction from A:

enty —centa+ 1, hent, — H(henty—1)s (1)

T,Iax:hcntAG‘f'SB, tlA:hcntA—i-SB. (2)

When B receives a stealth transaction without an ephemeral public key, B
will check whether the received destination public key T4 is contained in its
list of senders. If a match is found and the value of the counter cnt 4 is less
than or equal to N, B retrieves the corresponding destination private key ¢,
as the spending key and updates the transaction state information accordingly
with the Egs. (1) and (2). Again only the counter cnt, is updated when it
reaches V.

In DKSAP-IoT, stealth transactions are divided into two categories depending
on whether ephemeral public keys are included in the blocks. For the first stealth
transaction between two blockchain nodes, the receiver needs to conduct the
same operations as DKSAP, followed by a more efficient preparation process for
the next transaction. For the subsequent N stealth transactions between the
same peers, generating a fresh ephemeral key is no longer needed on the sender
side. Meanwhile, the receiver only performs a fast table look-up as well as the

134 X. Fan

transaction state updates, which facilitates the receiver to quickly filter out the
designated transactions.

Given the ‘scan private key’ vp and the ‘spend public key’ Sp, the audi-
tor/proxy server is able to calculate all the destination addresses for the receiver
B, thereby tracking or forwarding all the transactions to B. However, both the
auditor or the proxy server cannot derive the corresponding ephemeral private
keys and spend the funds.

5 Security Analysis and Performance Evaluation

In this section, we analyze the security and performance of DKSAP-loT and
report its implementation on a Raspberry Pi 3 Model B, a good representative
of moderately resource-constrained embedded devices.

5.1 Security Analysis

DKSAP-IoT follows the same threat model as DKSAP, in which the adversary
aims to determine the corresponding recipients by observing the transactions on
the blockchain. DKSAP-loT provides the following security properties:

— Receiver Anonymity: DKSAP-IoT offers strong anonymity for receivers and
ensures the unlinkability of payments received by the same payee. For each
payment to a stealth address, the sender computes a new normal address T4
on which the funds ought to be received. Given two destination addresses
TX) = h;G + Sp and TIEXJ) = hjG+ Sp (0 < 4,5 < N) for the same receiver
B, the adversary is not able to link them thanks to the difficulty of ECDLP.

— Forward Privacy: DKSAP-loT provides forward secrecy due to the usage of
a cryptographic hash function for updating the shared secret continuously for
N stealth transactions. If the adversary compromises the device and obtains
hy for the I*" (0 < [< N) stealth transaction, he/she is still not able to link
previous transactions because of the properties of the hash function.

— Stealth Transaction Hiding: In DKSAP, transactions in the stealth mode
can be easily distinguished from regular ones in the blockchain due to the
presence of ephemeral public keys, thereby resulting in some loss of privacy.
However, the ephemeral public key only needs to be updated every N stealth
transactions for two communication peers in DKSAP-IoT and those stealth
transactions in between are not distinguishable from regular ones.

Since both the sender and receiver need to locally maintain the state infor-
mation for their peers in DKSAP-lIoT (See Fig.3), these tables, together with
the device private keys, should be stored in the encrypted form for mitigating
the risk that IoT devices might get compromised. Considering that the hardware
AES engine is widely available on many IoT devices, the computational overhead
for encrypting/decrypting those sensitive information is quite small.

Faster Dual-Key Stealth Address for Blockchain-Based IoT Systems 135

5.2 Performance Evaluation

Computational and Communication Overhead. We assume that a sender
is going to send N stealth transactions to a receiver using blockchain. Let RP,
FP and H denote the computation of a random-point scalar multiplication, a
fixed-point scalar multiplication and a cryptographic hash function, respectively.
Table 1 gives a comparison between the DKSAP and DKSAP-IoT in terms of their
computational overhead.

Table 1. Computational overhead of DKSAP and DKSAP-loT for sending N stealth
transactions between two blockchain nodes

Scheme Sender Receiver

#RP | #FP | #H | #RP | #FP | #H
DKSAP N 2N N |N N N
DKSAP-IoT |1 N+1/ N |1 N N

From Table 1, one can see that DKSAP-loT is able to reduce the number of
RP and FP by N — 1 on the sender side, respectively, when compared to the
DKSAP. Moreover, DKSAP-loT can also save N — 1 RP on the receiver side.
With respect to the communication overhead, the sender in DKSAP-loT only
needs to contain a fresh ephemeral public key in the first stealth transaction,
thereby saving the transmission of N — 1 elliptic curve points.

Software Implementation. To validate the performance improvements of
DKSAP-IoT, we implemented an optimized elliptic curve cryptography library,
namely libsect283k1', using the 283-bit binary Koblitz curve specified in [17]:

E(Fgess) : > + oy = 2 + 1,

where the binary field Fozss is defined by f(z) = 2283 + 2'2 + 27 + 2° + 1. The
library was written in C and compiled using the GNU C Compiler (GCC). A
number of efficient techniques, such as the lambda coordinates [9], the window
7NAF method [5], the pre-computation [21], etc., have been utilized to optimized
the performance of the libsect283k1 library. Moreover, BLAKE-256 [12] is chosen
as the hash function in our library due to its high performance cross multiple
computing platforms. When running our library on a Raspberry Pi 3 Model B,
the timings for the computation of RP, FP and H are shown in Table 2.

Table 2. Timings for computing RP, FP and H on a Raspberry Pi 3 model B

RP FP H
3.67 ms | 3.12 ms | 5.26 us

! libsect283k1 will be integrated into the IoTeX testnet and mainnet as part of the
jotex-core (see https://github.com/iotexproject/iotex-core).

https://github.com/iotexproject/iotex-core

136 X. Fan

Note that the computation of the hash function is about three orders of mag-
nitude faster than that of the scalar multiplication over an elliptic curve. There-
fore, using the hash function to update the shared secret and extend its lifetime
brings significant performance benefits for IoT devices. Figure4 compares the
performance of the DKSAP and DKSAP-lIoT on both sender and receiver sides
for sending N = 10,20 and 30 stealth transactions, respectively.

Sender
350
290.05
300
m
250
% 195.36
2 200
E 150
= 98.68 105.32
100 72.35
38.52
5 - .
0 —
N=10 N=20 N=30
EDKSAP ® DKSAP-loT
Receiver
250
207.34
__ 200
£
£ s 138.12
£ 100.57
£ 100
= 67.58 65.93
- . 36.64
. —
N=10 N=20 N=30

B DKSAP ® DKSAP-loT

Fig. 4. Performance comparison of the DKSAP and DKSAP-IoT for sending N = 10,20
and 30 stealth transactions

From Fig. 4, one notices that the overall cost of DKSAP-IoT is less than 50%
of DKSAP, mainly because extending the lifetime of the shared secret with a
cryptographic hash function enables both the sender and receiver to reduce the
number of RP from N to 1. Moreover, the computation of the hash function is
almost negligible compared to the scalar multiplication over the elliptic curve. In
addition, DKSAP-IoT can save the transmission of 72- (N —1) bytes for N stealth

Faster Dual-Key Stealth Address for Blockchain-Based IoT Systems 137

transactions. For resource-constrained IoT devices, the improved performance
and reduced transaction size by DKSAP-loT leads to significant power savings
and extended battery life.

6 Conclusion

In this paper, we propose an efficient dual-key stealth address protocol DKSAP-
loT for blockchain-based IoT systems. Motived by the TLS session resumption
techniques, we apply a cryptographic hash function to continuously update a
shared secret between two communication peers and extend the lifetime of this
shared secret for additional N transactions. Both the sender and receiver need
to maintain the state information locally in order to keep track of the pair-
wise session keys. The security analysis shows that DKSAP-loT provides receiver
anonymity and forward privacy. When implementing DKSAP-IoT on a Raspberry
Pi 3 Model B, we demonstrate that DKSAP-loT can achieve at least 50% perfor-
mance improvement when compared to the original DKSAP, besides significant
reduction of the transaction size in the block. Our work is another logic step
towards providing strong privacy protection for blockchain-based IoT systems.

Acknowledgement. The author would like to thank the IoTeX team for the great
support during the course of writing this paper and the anonymous reviewers for their
insightful comments.

References

1. ByteCoin: Untraceable transactions which can contain a secure message are
inevitable. Bitcoin Forum. https://bitcointalk.org/index.php?topic=5965.0

2. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard) (2008). https://tools.ietf.org/html/rfc5246

3. Federal Information Processing Standards Publication 186—2. Digital Signature
Standard (DSS). National Institute of Standards and Technology (2000)

4. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

5. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Secaucus (2003). https://doi.org/10.1007/b97644

6. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203-209 (1987)

7. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417-426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X_31

8. Monero. Stealth Address. https://getmonero.org/resources/moneropedia/
stealthaddress.html

9. Oliveira, T., Lépez, J., Aranha, D.F., Rodriguez-Henriquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptographic Eng. 4(1),
3-17 (2014)

10. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASTACRYPT 2001. LNCS, vol. 2248, pp. 552-565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

https://bitcointalk.org/index.php?topic=5965.0
https://tools.ietf.org/html/rfc5246
https://doi.org/10.1007/b97644
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://getmonero.org/resources/moneropedia/stealthaddress.html
https://getmonero.org/resources/moneropedia/stealthaddress.html
https://doi.org/10.1007/3-540-45682-1_32

138

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

X. Fan

Rynomster, Tecnovert.: Shadow: Zero-knowledge Anonymous Distributed Elec-
tronic Cash via Traceable Ring Signatures. https://coss.io/documents/white-
papers/shadowcash.pdf

Saarinen, M.-J., Aumasson, J.-P.: The BLAKE2 Cryptographic Hash and Message
Authentication Code (MAC). RFC 7693 (Informational) (2015). https://tools.ietf.
org/html/rfc7693

van Saberhagen, N.: CryptoNote v 2.0. https://cryptonote.org/whitepaper.pdf
Salowey, J., Zhou, H., Eronen, P., Tschofenig, H.: Transport Layer Security (TLS)
Session Resumption without Server-Side State. RFC 5077 (Proposed Standard)
(2008). https://tools.ietf.org/html/rfc5077

Samourai. https://samouraiwallet.com/index.html

Standards for Efficient Cryptography Group, SEC 1: Elliptic Curve Cryptography,
Version 2.0. http://www.secg.org/secl-v2.pdf

Standards for Efficient Cryptography Group, SEC2: Recommended Elliptic Curve
Domain Parameters version 2.0. http://www.secg.org/sec2-v2.pdf

The Shadow Project. Dual-key Stealth Addresses, in part of Shadow Documenta-
tion. https://doc.shadowproject.io/#dual-key-stealth-addresses

Todd, P.: [Bitcoin-development] Stealth Addresses. https://www.mail-archive.
com/bitcoin-development@lists.sourceforge.net/msg03613.html

TokenPay: TokenPay - The World’s Most Secure Coin (Whitepaper). https://www.
tokenpay.com/whitepaper.pdf

Yu, W., Musa, S.A., Xu, G., Li, B.: A Novel Pre-Computation Scheme of Window
TNAF for Koblitz Curves. IACR Cryptology ePrint Archive, Report 2017/1020
(2017). https://eprint.iacr.org/2017,/1020

Zcash. https://z.cash/technology /index.html

https://coss.io/documents/white-papers/shadowcash.pdf
https://coss.io/documents/white-papers/shadowcash.pdf
https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc7693
https://cryptonote.org/whitepaper.pdf
https://tools.ietf.org/html/rfc5077
https://samouraiwallet.com/index.html
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doc.shadowproject.io/#dual-key-stealth-addresses
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.tokenpay.com/whitepaper.pdf
https://www.tokenpay.com/whitepaper.pdf
https://eprint.iacr.org/2017/1020
https://z.cash/technology/index.html

q

Check for
updates

Blockchain-Based Solution
for Proof of Delivery of Physical Assets

Haya R. Hasan®™ and Khaled Salah®™®

Department of Electrical and Computer Engineering,
Khalifa University of Science, Technology and Research, Abu Dhabi, UAE
{haya. hasan, khaled. salah}@kustar. ac. ae

Abstract. To date, building a highly trustworthy, credible, and decentralized
proof of delivery (POD) systems to trace and track physical items is a very
challenging task. This paper presents a blockchain based POD solution of
shipped physical items that uses smart contracts of Ethereum blockchain net-
work, in which tracking, and tracing activities, logs, and events can be done in a
decentralized manner, with high integrity, reliability, and immutability. Our
solution incentivizes each participating entity including the seller, transporter,
and buyer to act honestly, and it totally eliminates the need for a third party as
escrow. Our proposed POD solution ensures accountability, punctuality,
integrity and auditability. Moreover, the proposed solution makes use of a Smart
Contract Attestation Authority to ensure that the code follows the terms and
conditions signed by the participating entities. It also allows the cancellation of
the transaction by the seller, buyer and transporter based on the contract state.
Furthermore, the buyer can also ask for a refund in certain justifiable cases. The
full code, implementation discussion with sequence diagrams, testing and ver-
ification details are all included as part of the proposed solution.

Keywords: Proof of delivery - Blockchain - Ethereum - Smart contracts

1 Introduction

With the widespread of technology and the internet, online shopping or trading have
become part of people’s daily activity. Often at the comfort of their homes, people start
searching for a desirable item and wonder if there is an online vendor that can provide
the item in a perfect condition to their door step. Meeting the needs of today’s world,
lots of online stores have launched and provided delivery services and even world-wide
shipping. Thus, there is an immense need to have a solution that provides proof of
delivery of any physical item such as a piece of clothing, book, home essentials etc.
delivered between any two parties.

Proof of Delivery (POD) or ‘last mile’ of delivery is crucial as it shows that an item
has reached its final and required destination. In real world, courier and delivery service
companies use trackers and proof of delivery systems to ensure that their customers’
needs are met on time and without delays. Not only punctuality is important, but also
the delivery of the item as is from the initial source is extremely vital.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 139-152, 2018.
https://doi.org/10.1007/978-3-319-94478-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf

140 H. R. Hasan and K. Salah

Today’s proof of delivery systems are typically based on signed papers and doc-
uments which are carried with the transporter to the recipient. Other courier services
might depend on an electronic hand-held device used to obtain the signature of the
recipient with a valid ID. This is cumbersome and does not provide total trust for
delivery, whereby there is no true and genuine verification by the courier for the
signature and the ID of the recipient which can be fake. Even, the courier cannot be
trusted. Furthermore, online retailers depend on a third party for shipment. For
instance, Amazon depends on several regional courier companies for their delivery
services, such as UPS, FedEx, DHL, Pilot and many others [1, 2]. In addition, today’s
delivery service is completely centralized, costly, and extremely hard to manage. In
general, centralized systems suffer from privacy invasion, being a single point of
failure, and mistrust which can lead to corruption and attacks.

Problem Statement. To date, trusted online trading between two unknown parties is
not yet established without a centralized trusted third party. There is an immense need
for a proof of delivery and tracking of shipped items with a highly trusted, secure, and
decentralized traceability and auditability.

Blockchain is a new disruptive technology that possesses a lot of features that make
it ideal for tracking systems. Hence, making it a perfect candidate for creating proof of
delivery solutions. Blockchain is an immutable, distributed ledger that is tamper-proof
with ordered logs [3, 4]. Ethereum smart contracts made blockchain programmable, as
it allowed the execution of code, making it even more powerful [4]. An ideal proof of
delivery system should satisfy the following desirable characteristics:

e Accountability: It should be possible to trace back the actions performed to the
system to the actual initiating entity.
Authorization: Each party in the system is allowed to only perform certain roles.
Auditability: It should be possible to track all activities performed by the acting
entities and hence, to trace back the item’s state and route.

¢ Integrity: No one should be able to modify the audits and agreed upon terms and
conditions.

e Punctuality: The system should be able to time every action and deliver the item on
time to the customer.

e Honesty: Each of the participating entities (seller, transporter and buyer) should be
incentivized to act honest and do their part legitimately.

In this paper, we propose a blockchain solution for the proof of delivery of physical
items that solves the issue of trust, tracking, tracing back and proves the item reached
its final and legitimate destination. The solution can be extended to include interme-
diary destinations before the final one and can be easily integrated with a Know Your
Customer (KYC) protection to add an extra layer of security. We show in our solution
that all parties involved in the contract are all equally trusted with the same authority
levels. Their roles allow them to execute certain functions only, hence managing the
contract flow using role restriction. The main contributions of the paper can be sum-
marized as follows:

e We propose a blockchain-based proof of delivery solution that utilizes tamper-proof
logs for auditability and traceability.

Blockchain-Based Solution for Proof of Delivery 141

e OQOur solution utilizes an equal agreed upon collateral to incentivize each of the
participating entities to act honest. Our PoD solution ensures integrity of the signed
terms and conditions form by using InterPlanetary File System (IPFS) hash in the
smart contract. Also, the smart contract code is attested by the smart contract
attestation authority to ensure that it follows the signed terms and conditions.

e We demonstrate accountability in our solution by using keys and hashes for veri-
fication of the true legitimate receiver. We also show how our solution addresses
issues related to customer loyalty and delivery punctuality. Refund and cancellation
are also taken care of to preserve the rights of the seller, buyer and transporter.

e We present a complete system architecture, sequence diagrams and the full code
with the implementation and testing details.

The remainder of this paper is organized as follows. Section 2 provides the related
work. Section 3 presents the system architecture of the proposed solution. Section 4
describes the important aspects of the implementation. Section 5 illustrates the testing
and validation of the smart contract code and Sect. 6 concludes the paper.

2 Related Work

This section presents the work that is available in the literature for proposed algorithms
and techniques for proof of delivery of physical items. All blockchain solutions try to
solve the trust issue between the seller, buyer and transporter while tracking the item’s
state through the logged events.

For instance, [5] proposes using a secure hash and a key that is given by the seller
to the transporter along with the item. Once the transporter arrives to the destination,
the buyer would enter the key and the hash of the key is compared with the hash
already available in the contract. This method is simple and easy to implement. It uses
the contract as an escrow. Therefore, the item’s price would only be given to the seller
once the hash verification is done. However, it involves trusting the transporter not to
manipulate the key. Furthermore, its success depends on all the parties acting honest
and trust worthy and this cannot be guaranteed.

On the other hand, localethereum [6], an Ethereum market place, does not use the
contract as an escrow. It uses a third party as a funded escrow. The seller and buyer or
traders agree upon a trusted third party as escrow that they would trust till the end of the
transaction. Also, in case of dispute, the involved parties can allow localethereum to act
as an arbitrator. Although using a third party as an escrow costs more and also requires
more incentives for trust and honesty, having an arbitrator incase of a dispute makes it
more convenient.

Furthermore, BitBay [7], a decentralized marketplace which provides a platform for
users to trade and sell, uses a ‘double-deposit escrow’. This means that a collateral is
deposited by the traders or buyer and seller that is equal to double the item price being
traded or sold. BitBay eliminates the need of a trusted third party as an escrow. Hence,
it uses the contract itself as an escrow that takes all the deposits until the transaction is
completed. BitBay also does not act as a moderator themselves in case of issues unlike
localethereum. However, using BitBay the delivery of a physical item would require

142 H. R. Hasan and K. Salah

trusting a third party for the transportation. There is no guarantee that the transporter
would not manipulate the delivered item or create a delay.

An important point is also to be able to integrate the system with a KYC procedure
to verify the identity of the parties involved in the contract. For instance, this can be
achieved by using a certification body that takes the signed personal information of a
user and stores their hash in the blockchain. Later on, when a user would like to register
in a service, the service providers would verify the submitted signature hash with the
hash value of the personal information acquired from the certification body. If both the
hashes match, then the identification is complete [8].

3 Proposed Blockchain Solution

In this section, we propose a solution that utilizes the Ethereum blockchain to create a
system that is decentralized, provides trust, and uses immutable logs and events. This
system is a solution for selling physical items with a proof of delivery and without the
need of an intermediary service such as a broker or an agent. This is done by using
smart contracts which facilitate the automation of the process and help in saving the
history of all transactions without alterations.

3.1 System Overview and Design

The proposed solution is focused on proof of delivery of physical items between a
seller and an interested buyer. A transporter is also part of the contract to ensure the
item delivery is carried out and all other parties are notified about the status of the item
during delivery. An agreed upon and trusted arbitrator by the seller, buyer and trans-
porter is also part of the contract and can only step in incase of a dispute. Each of the
mentioned participants possess an Ethereum address and they all sign an agreement
form which has all the terms and conditions of the contract. Furthermore, an important
part of our solution, is the attestation of the contract from a certified trusted authority,
Smart Contract (SC) Attestation Authority. The attestation guarantees to all partici-
pating entities that the smart contract follows the signed agreement terms and condi-
tions. The roles of the Ethereum entities in the smart contract are as follows:

Seller: The seller is the owner of the item to be sold. The seller creates the contract,
signs the agreement terms and conditions form, deposits a collateral, and provides
keys to both the buyer and transporter.

Buyer: The buyer is the entity that shows interest in the item being sold. The buyer
agrees to the terms and conditions, deposits a collateral along with the item price,
and requests an item key to be able to take the item from the transporter when
delivered.

Transporter: The transporter’s main role is to deliver the item as received between
the seller and buyer.

Arbitrator: The arbitrator is a trusted third party that is agreed upon by the seller,
buyer and transporter who will only get involved in case of a dispute to solve the
issues off the chain.

Blockchain-Based Solution for Proof of Delivery 143

SC Attestation Authority: The smart contract attestation authority ensures that the
smart contract complies with the terms and conditions signed by the involved
parties in the agreement form.

e\t 6
NE 0,
((\z“ 3
RN &>
o > o
& >
2 7o, Y,
% Transporter 0 %9
© ©
. £ @,
% o
A g %
®l »
& @
1Bk
o
HEE
© <| =
sl gla
2z ERe]
Seller = 23 S Buyer
3 ol &)
. o
R4 S S 318
Sn b3 g
Si®
o
=N

Smart contract

Fig. 1. System architecture of the Ethereum-based solution showing the main participating
entities participating in a successful transaction

The smart contract of the proposed solution follows a certain algorithm that flows in
a sequence that should be followed by the participating entities to preserve everyone’s
right. All actions that take place off the chain are accompanied by functions in the
contract that trigger logged events and notifications. The contract receives the agreed
upon collateral which is in our case twice the item price from the seller, buyer and
transporter as they are equally trusted by each other and by the smart contract. The
collateral can be of any reasonable value as long as it is equal among all entities. The
funds are held by the contract, so the contract acts as escrow until the payment is settled
based on the events and verification results. The smart contract contains the following:

e Modifiers: Modifiers ensure that transactions and functions are executed by the right
legitimate entities and that the payable functions only accept the correct intended
payment before proceeding. Modifiers change the function that uses them to allow it to
execute based on the result of another code that is first executed inside the modifier. For
example, requiring the collateral by each entity to be twice the actual price of the item or
requiring a certain function to be executed by only the seller, buyer, transporter or any
one of them is specified using the modifiers: costs (), OnlySeller (), Only-
Buyer (), OnlyTranspoter (), OnlySeller_Buyer_Tranporter ().

o Events: After the execution of a function, an event is used to create notifications
and saved logs. Events help in tracing and in notifying all participating parties about
the current state of the contract and current activities.

144 H. R. Hasan and K. Salah

e Variables: Variables help in saving important values that preserve the state of the
contract as it changes along with the functions. Variables used in the contract hold
addresses of the participating entities, IPFS hash of the agreement terms and con-
ditions form, item’s details such as price and ID, and current contract state.

Figure 1 shows the system architecture of the proposed blockchain solution that
shows the transactions between the seller, buyer and transporter. All the parties sign the
terms and conditions agreement form and agree to its content by depositing a collateral
that is twice the item price. Then the seller prepares the item and hands it over to the
transporter along with a key (Keyt). Every item has two keys that are given by the
seller, i.e. a key that is given to the transporter and a key that is handed over to the
buyer (Keyg). The transporter delivers the item to the buyer and they both exchange
their keys. This ensures that the transporter has reached the intended buyer. Both of the
transporter and buyer enter the keys to the contract and verification takes place. The
smart contract computes the hashes of the keys entered and if the hashes match, then
the payment is settled. The buyer is refunded one item price, the transporter gets back
twice the item price that was deposited as collateral with 10% of the item price
additional payment for the delivery service. Lastly, the seller gets the rest of the ether
deposits which include the rest of the deposited collateral and the payment of the item
price by the buyer.

SC Attestation Authority
Smart Contract

A

Attested SC

Q

Search SC Address

for Verification List of Attested SCs,

Provide attested SC
address & result

Fig. 2. Attested SC pointing to the Ethereum address of the SC Attestation Authority which also
has a list of all the Ethereum addresses of the attested contracts

The contract used in the blockchain solution is an attested contract. Hence, the
contract code and flow was verified and attested by the Smart Contract (SC) Attestation
Authority. Therefore, the attested SC includes the Ethereum address of the attestation
authority that verified the contract code and ensured that it agrees to the terms and

Blockchain-Based Solution for Proof of Delivery 145

conditions in the agreement form that is signed by all the parties of the contract.
Moreover, the SC Attestation Authority has a complete list of the all the Ethereum
addresses of the attested contracts. This provides a way for the participating entities to
trust the contract content and to be able to verify that it has truly been attested and is
now trustable. Figure 2 shows the attested smart contract and the SC Attestation
Authority contract along with their relationship.

4 Implementation Details

The smart contract code is written in Solidity using the web-based IDE, Remix. The
code focuses on three main entities, the seller, transporter and buyer to acquire the
proof of delivery of a physical item. However, there are two other entities that also
contribute in making the contract more trustable. The arbitrator steps in incase of a
dispute and the SC Attestation Authority attests and verifies that the contract code
matches the terms and conditions signed by each of the actively participating entities.

Figure 3, shows the sequence diagram that demonstrates the flow of the code. The
code represents a seller who has an item and would like to sell it to an interested buyer.
Therefore, a transporter is needed to deliver the packaged item between the seller and
the buyer. At the beginning of the contract, the seller, transporter and buyer are all
required to sign the attested terms and conditions agreement form. The agreed upon
collateral which is twice the item price is automatically deducted from each party that
signs the form. The form’s IPFS hash is available in the contract so that each of the
seller, buyer and transporter will be able to access the same form using the IPFS hash
provided in the contract. This will ensure the data integrity of the content of the
agreement form is well maintained.

The transporter is provided with a key along with the physical item. The trans-
porter’s key (Keyr) is handed over to the transporter while the key is kept unrevealed to
the buyer. On the other hand, the buyer also has a key which the transporter is unaware
of its content, (Keyg). The keys are exchanged between the transporter and the buyer
upon the successful delivery of the item. The hashes of the concatenated strings is
computed twice, once by the transporter and another time by the receiver. Verification
is then done by the contract to check that the hashes match. If the hashes match, then
the transaction is successful and the buyer gets back half of the deposited collateral.
The transporter also gets back the deposited collateral in addition to the transportation
fees and the rest goes to the seller. The above is demonstrated in Alternative 1, in
Fig. 3. Alternative 2 and 3 that are illustrated in Fig. 3, take place if the verification
hashes do not match or any of the transporter or receiver fail to enter the verification
keys on time. In this case, the deposited collateral gets transferred to the trusted
arbitrator that was agreed upon by all the parties at the beginning of the contract.

It is important to note that the contract code is written in a way that allocates a time
window for each action to preserve the rights of the other parties involved. For
instance, when the packaged item is received by the transporter, the time is stored in the
contract and is later checked to verify if the delivery time was exceeded or not. The
buyer has the right to request a refund if the time is exceeded. This can be done using
the refund () function.

146 H. R. Hasan and K. Salah

Seller Transporter Smart contract Buyer

SignTermsAndConditions()

SignedTermsAndConditions -

SjgnTermsAndConditions()
| SignedTermsAndConditions

SignTermsAndCondition()

SignedTermsAndConditions

createPackageAndKey()

PackageCreatedBySeller

deliverPackage()

PackagelsOnTheWay

requestPackageKey()

PackageKeyGivenToBuyer N

verifyTransporter(string KeyT, string KeyB)
g Alternative 1:
ArrivedToDestination Successful

verifyKeyBuyer(string KeyT, string KeyB) Verification by
h both Receiver and

BuyerEnteredVerificationKeys Transporter.

verification
SuccessfulVerification 0

verifyTransporter(string KeyT, string KeyB) Altermative 2.3:
N ArrivedToDestination 1| Dispute case. If
o both or either of

verifyKeyBuyer(string KeyT, string KeyB) the Transporter or

o Receiver fail to
'« BuyerEnteredVerificationKeys ol sereRE

D verification() verification.

VerificationFailure

EtherTransferredToArbitrator

Fig. 3. Sequence diagram of the smart contract code that shows the flow for a successful and an
unsuccessful transaction

Furthermore, the buyer also needs to enter the keys for verification after the
transporter has called the verifyTrasnporter () function by a maximum of
15 min. If the buyer exceeds the time window allocated for verifying the keys, the
transporter has the right to leave after calling the BuyerExceededTime () function.
In this function, the time window is checked, and the arbitrator gets involved to solve
the issue off the chain. Figure 4, shows the implementation of the verification functions
of both the transporter and buyer.

Blockchain-Based Solution for Proof of Delivery 147

function verifyTranspoter(string keyT, string keyR) OnlyTransporter{
require(state == contractState.PackageKeyGivenToBuyer);
ArrivedToDestination("Transporter Arrived To Destination and entered keys
verificationHash[transporter] = keccak256(keyT, keyR);
state = contractState.ArrivedToDestination;
startEntryTransporterKeysBlocktime = block.timestamp;

, msg.sender);

}

function verifyKeyBuyer(string keyT, string keyR) OnlyBuyer{
require(state contractState.ArrivedToDestination);
BuyerEnteredVerificationKeys("Reciever entered keys, waiting for payment settlement", msg.sender);
verificationHash[buyer] = keccak256(keyT, keyR);
state = contractState.buyerKeysEntered;
verification();

}

function BuyerExceededTime() OnlyTransporter{
require(block.timestamp > startEntryTransporterKeysBlocktime + buyerVerificationTimeWindow &&
state contractState.ArrivedToDestination);
BuyerExceededVerificationTime("Dispute: Buyer Exceeded Verification Time", msg.sender);
verification();

Fig. 4. Contract code showing the key verification functions and time window checking (The
full code is available at: https://github.com/smartcontract694/POD_Physicalltems).

Once the buyer enters the keys, the verification () function is automatically
called as it is an internal function. The function compares the hashes of the transporter
and buyer. If the hashes are equal, the verification is successful and the buyer receives
half of the deposited collateral, the transporter receives his full collateral in addition to
his transportation fees and the seller receives back the rest of the deposits. However, if
the hashes are not equal, which could mean that either of the transporter or receiver
failed to enter the right keys, all deposits are transferred to the arbitrator and the dispute
is solved off the chain. This is demonstrated in Fig. 5 which shows the code of the
verification () function.

function verification() internal{

require(state == contractState.buyerKeysEntered);

if(verificationHash[transporter] == verificationHash[buyer]){
SuccessfulVerification("Payment will shortly be settled , successful verification!");
buyer.transfer(itemPrice);
transporter.transfer((2*itemPrice) + ((10*itemPrice)/100));//receiver gets 10% of item price delivered
seller.transfer((2*itemPrice)+((90*itemPrice)/100));
state = contractState.PaymentSettledSuccess;

}

else {//trusted entity the Arbitrator resolves the issue
VerificationFailure("Verification failed , keys do not match. Please solve the dispute off chain. No refunds.");
state = contractState.DisputeVerificationFailure;
arbitrator.transfer(this.balance);//all ether with the contract
state = contractState.EtherWithArbitrator;
EtherTransferredToArbitrator("Due to dispute all Ether deposits have been transferred to arbitrator ", arbitrator);
state = contractState.Aborted;
selfdestruct(msg.sender);

Fig. 5. Contract code showing the verification function (The full code is available at: https:/
github.com/smartcontract694/POD_Physicalltems).

https://github.com/smartcontract694/POD_PhysicalItems
https://github.com/smartcontract694/POD_PhysicalItems
https://github.com/smartcontract694/POD_PhysicalItems

148 H. R. Hasan and K. Salah

Furthermore, each function in the contract requires a certain previous state for it to
be successfully executed. This plays a vital role in the ability of a certain entity to
cancel the purchase. The buyer can cancel the purchase without penalty if the item has
not yet been delivered and a transporter can cancel the delivery before taking the item
from the seller. A mapping that maps the address of each of the buyer, seller and
transporter along with a boolean is used to control the cancellation. At the beginning all
items of the mapping are initialized with true. After the package is created and the keyr
is handed to the transporter, the transporter and seller cannot cancel the purchase.
Hence, their mapping items are changed to false as illustrated in Fig. 6. Moreover,
when the package has been handed over to the transporter, the buyer cannot cancel the
purchase and the mapping of the buyer also gets changed to false. Hence, the can-
cellation function always checks the state to know which stage the item is in and if the
cancelling entity has the right to cancel or not using the mapping details.

sender or transporter can cancel the transaction before the package is created with the key
function createPackageAndKey() OnlySeller returns (string){
require(state contractState.MoneyWithdrawn);
PackageCreatedBySeller("Package created and Key given to transporter by the sender ", msg.sender);
state contractState.PackageAndTransporterKeyCreated;
cancellable[msg.sender] false;
cancellable[transporter]=false;
return "0x378032c1a780b%9ab6b0e29afb705ee™;
}

iver ca ancel as 1 package is not with the transporter

/r s g as t
function deliverPackage() OnlyTransporter{
require(state contractState.PackageAndTransporterKeyCreated);
startdeliveryBlocktime = block.timestamp;//save the delivery ti

cancellable[buyer] false;
PackageIsOnTheWay("The package is being delivered and the key is received by the ", msg.sender);
state contractState.ItemOnThelWay;

Fig. 6. Functions in the contract code that show ‘state’ requirements (The full code is available
at: https://github.com/smartcontract694/POD_Physicalltems).

5 Testing and Validation

The smart contract code has been tested for several important aspects and test cases that
are discussed in this section.

5.1 Test Case 1: Payable Collateral Amount

The contract code has one payable function. This function uses a modifier called
costs () which ensures that the ether deposited is equal to the agreed upon collateral
which is twice the item price. Figure 7 shows the logs of a successful deposit with-
drawal made by the sender upon signing the terms and conditions agreement form. The
figure also shows that the successful transaction took a value of 4 ether since the item
price is 2 ether in this contract.

https://github.com/smartcontract694/POD_PhysicalItems

Blockchain-Based Solution for Proof of Delivery 149

Fig. 7. Log details of a successful deposit transaction by the seller.

5.2 Test Case 2: Role Restriction

To ensure the proper functionality of the code based on the actions of the participating
entities, the contract’s functions are restricted based on the role. All the functions of the
contract have been tested successfully for role restriction. Hence, if the arbitrator for
instance whose address is “0x583031d1113ad414{02576bd6afabfb302140225 tries to
request the package key of the buyer, the transaction fails as illustrated in Fig. 8.

Fig. 8. Log details of a failed transaction due to role restriction.

5.3 Test Case 3: Matching Verification Keys

A successful test case was tested to ensure that the verification of the hashes works as
expected and the payment settlement. As can be seen in Fig. 9, the keys entered
provide similar hashes and as a result, the transaction is successful. The buyer gets back
a deposit of 2 ether, the transporter gets back 2 ether in addition to 10% of the item
price as transportation fees and the seller gets back the rest of the deposited collateral.
Figure 10 shows the ether deposits at the end of the successful transaction, with the
seller, transporter and buyer having 101.8, 100.2 and 98 ether respectively.

150 H. R. Hasan and K. Salah

Fig. 9. Log details of a successful transaction and payment settlement.

Account 0x4b0...4d2db (97.99999999999985227 ¥] 0
o Oxca3...a733c (101.799999999993549836 ether)
Gas limit 0x147...c160c (100.199999999999854868 ether)
0x4b0...4d2db (97.999999999999852273 ether)
Value 0x583...40225 (100 ether)

Fig. 10. Ether deposits at the end of a successful transaction.

5.4 Test Case 4: Dispute and Arbitrator Role

In the case of the keys entered by the buyer and transporter are not matching, a dispute
occurs and the arbitrator steps in. All the ether deposits that are held with the contract
are transferred to the arbitrator and the dispute is solved off the chain. As can be seen in
Fig. 11, the arbitrator at the end of an unsuccessful transaction has 12 ether, since each
of the three parties has deposited 4 ethers when signing the agreement form. Figure 12,

shows the events that take place during a dispute and before the contract gets to the
‘aborted’ state.

Account 0x4b0...4d2db (95.99999999999987392 v] 0
o Oxca3...a733c (95.999999999993549836 ethe)
Gas limit 0x147...c160c (95.999999999999831534 ethe)
0x4b0...4d2db (95.999999999999873941 eth
Value 0x583...40225 (112 ether)

Fig. 11. Ether deposits at the end of an unsuccessful transaction.

Blockchain-Based Solution for Proof of Delivery 151

Fig. 12. Events at the end of an unsuccessful transaction.

6 Conclusion

This paper has presented a blockchain solution which facilitates the trading and
tracking of sold items between two parties in a decentralized way. The solution pro-
vides a proof of delivery of physical items taking advantage of the security and
immutability that blockchain provides. Our proposed solution is generic enough and
can be applied to almost all shipped physical items and assets. In this paper, we focused
on providing, implementing, and testing the smart contract code and algorithm of the
PoD solution that show cases the ability to prove the delivery of an item using an equal
deposited collateral by the seller, transporter and buyer. In the paper, we showed and
discussed how our solution can provide PoD key features and requirement that include
integrity, accountability, authorization, punctuality and honesty. As a future work, we
plan to extend our solution to implement aspects related to confidentiality and privacy.
Also, work is underway to develop completed DApps with different views for seller,
buyer, and transporter.

References

1. “Help & Customer Service”, Amazon Shipment Updates via Text Terms and Conditions.
https://www.amazon.com/gp/help/customer/display.html/ref=hp_left_v4_sib?ie=UTF8&node
1d=201910790

2. “Help & Customer Service”, Shipping Carrier Contacts. https://www.amazon.com/gp/help/
customer/display.html/ref=hp_ss_qs_v3_rt_ci?ie=UTF8&nodeld=201117350

3. Toyoda, K., et al.: A novel blockchain-based product ownership management system (POMS)
for anti-counterfeits in the post supply chain. IEEE Access PP(99), 1 (2017)

4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.
IEEE Access 4, 2292-2303 (2016)

https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_left_v4_sib%3fie%3dUTF8%26nodeId%3d201910790
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_left_v4_sib%3fie%3dUTF8%26nodeId%3d201910790
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_ss_qs_v3_rt_ci%3fie%3dUTF8%26nodeId%3d201117350
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_ss_qs_v3_rt_ci%3fie%3dUTF8%26nodeId%3d201117350

152 H. R. Hasan and K. Salah

5. “Two party contracts”, Dapps for Beginners (2018). https://dappsforbeginners.wordpress.
com/tutorials/two-party-contracts/

6. “How Our Escrow Smart Contract Works”, localethereum.com’s official blog (2018). https://
blog.localethereum.com/how-our-escrow-smart-contract-works/

7. “Double Deposit Escrow — BitBay”, BitBay (2018). https://bitbay.market/double-deposit-
escrow. Accessed 28 Mar 2018

8. “Open Source Products”, KYC (Know Your Customer) (2018). https://guide.blockchain.z.
com/en/docs/oss/kyc/

https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
https://blog.localethereum.com/how-our-escrow-smart-contract-works/
https://blog.localethereum.com/how-our-escrow-smart-contract-works/
https://bitbay.market/double-deposit-escrow
https://bitbay.market/double-deposit-escrow
https://guide.blockchain.z.com/en/docs/oss/kyc/
https://guide.blockchain.z.com/en/docs/oss/kyc/

q

Check for
updates

Towards Legally Enforceable Smart Contracts

Dhiren Patell, Keivan Shahl, Sanket Shanbhagl,
and Vasu Mistryz(g)

' Veermata Jijabai Technological Institute, Mumbai 400019, India
2 National Institute of Technology, Surat 395007, India
vasub23b@gmail. com

Abstract. A smart contract is a computer program that is stored and executed
on a decentralized system such as a Blockchain. At present, smart contracts have
a unique value proposition but cannot be enforced in some of the existing
judicial frameworks. In this paper, we propose a framework to create and
execute legally binding smart contracts. We experimented with a Distributed
Outsourcing Developer Marketplace aka Freelancer application use case
deployed on Ethereum Blockchain. Our findings are useful in the sense that as
per respective national legal frameworks, smart contracts can be made legally
enforceable by incorporating crypto primitive like digital signature.

Keywords: Blockchain and distributed ledger technology
Distributed software - Smart contract

1 Introduction

Blockchains are distributed digital ledgers of cryptographically signed transactions that
are grouped into blocks. Each block is linked to the previous one after validation and
consensus of all participating nodes. As new blocks are added, older blocks become
more difficult to modify. New blocks are replicated across all copies of the ledger within
the network, and any conflicts are resolved automatically using established rules [1].

A transaction on the blockchain is a digitally signed item broadcast to the P2P
network of a blockchain. A transaction can be signed by one or more entities (multi-
signature). In cryptocurrency, a standard transaction specifies sending tokens from one
account to another. A transaction fee is a nominal amount paid to have a valid
transaction verified and written in a block. A wallet contains every necessary infor-
mation to generate the owner of public key(s), which is sufficient to transfer assets of
the owner of the wallet in a blockchain and display the content of the associated
account [2].

A smart contract is a computer program that is stored and executed on a decen-
tralized system e.g. a blockchain. A smart contract can perform calculations, store
information, and automatically send funds to other accounts. Thus, smart contracts can
be seen as automating the marketplace system and allowing different parties to work
without mutual trust between each other.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 153-165, 2018.
https://doi.org/10.1007/978-3-319-94478-4_11

http://orcid.org/0000-0002-2841-5318
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf

154 D. Patel et al.

Smart contracts are a new form of pre-emptive self-help that should not be dis-
couraged by the legislatures or courts [3]. A smart contract may give rise to legally
enforceable obligations. These issues are treated differently from country to country.
Meanwhile, at this time, different jurisdictions are grappling with, endorsing, or
revoking different legislative provisions to regulate the use of DLT (Distributed Ledger
Technology) systems in different contexts. For example, smart contracts that underpin
transactions in ICOs (Initial Coin Offerings — e.g. KodakCoin) may be completely
illegal in some jurisdictions, while a smart contract that handles intra-institutional
banking and other financial transactions may be quite legal, in the same jurisdiction or
elsewhere [4].

There are those who promote the “code is contract” approach (that is, that the
entirety of a natural language contract can be encoded). On the other hand, there are
those who see smart contracts as black boxes consisting of digitising performance of
business logic (e.g. payment), which may or may not be associated with a natural
language contract. In between these two extremes, a number of permutations are likely
to emerge including, a “split” smart contract model under which natural language
contract terms are connected to computer code via parameters that feed into computer
systems for execution. Also, legally binding contractual effect depends on a number of
variables. It is tempting to conclude that, just because the moniker “smart contract”
includes the word contract, it is a legally binding contract as a matter of law. This is not
necessarily correct [5].

In this paper, we propose a framework to create and execute legally binding smart-
contracts with a validation use-case of classical Freelancer application.

Rest of the paper is organized as follows: Sect. 2 discusses motivation and back-
ground of Blockchain, Smart Contract and its legal standing and discusses relationship
between programmable contract and legal contract. In Sect. 3, we take use case of
distributed outsourcing developer market place and discuss smart contract implemen-
tation in detail. In Sect. 4, we propose directives for how smart contract can be legally
enforced using the same application using few cryptographic primitives, with con-
clusions and references at the end.

2 Relationship Between Programmable Smart Contracts
and Legal Contracts: Motivation and Background

Blockchains are immutable digital ledger systems implemented in a distributed fashion
(i.e. without a central repository) and usually without a central authority. At their most
basic level, they enable a community of users to record transactions in a ledger that is
public to that community, such that no transaction can be changed once published [1].

A block is an individual unit of a blockchain, composed of a collection of trans-
actions and a block header. A block header keeps a collection of metadata about the
block that contains a hash-value of its parent in the blockchain, and a hash of the
aforementioned metadata and the data of the block itself [2].

The term “Smart Contracts” has existed for more than two decades — A set of
promises, specified in digital form, including protocols within which the parties per-
form on the other promises [6]. However, in 2014, Vitalik Buterin invented a new

Towards Legally Enforceable Smart Contracts 155

generation of smart contracts: decentralized and immutable once it exists in DLT
systems [7].

The endeavor of standards in the context of smart contracts, is to consider how
contracts are written, how they are enforced, and how to ensure that the automated
performance of a contract is faithful to the meaning of any relevant legal documen-
tation. A smart contract is an automatable and enforceable agreement. Automatable by
computer, although some parts may require human input and control. Enforceable
either by legal enforcement of rights and obligations or via tamper-proof execution of
computer code [8] (Fig. 1).

legal view
There are legal and contractual activities which can
be automated or which cannot/should not.

legal smart distributed
contracts contracts applications

There are distributed applications with or
without legal binding character.

Smart contracts are distributed technical
applications with a legal binding view
result.

Fig. 1. Relationship between legal and technical view [4]

Some smart contracts can be very simple, like putting a timestamp on a transaction
while some are more complex and require the formal agreements of parties beforehand.
In this case, they can be, depending on the case, considered as a legal contract. Smart
contracts may also be legal contracts when they are enforceable by traditional legal
methods. Contracts that do not require complex statements of terms and conditions or
adjectives and adverbs to describe what is reasonable are better suited to automation
than contracts that require complex legal terms to explain the nature of the parties’
obligations [8]. As articulated by Farrell et al. — “It follows from this that if smart
contracts are to be used meaningfully in commercial contracts then they will need to be
blends of both coded and natural language terms” [9].

This delineation between types of contractual arrangement that may or may not be
suited to automation in a smart contract will be useful when deciding whether it is
appropriate or necessary to apply standards to DLT systems —based smart contracts,
and if so, what that standards will look like [8].

156 D. Patel et al.

3 Use Case: Distributed Outsourcing Developer Marketplace

The Distributed Outsourcing Developer Marketplace is a freelancing system. A client
posts a particular project needed to be made by a developer. The developer who accepts
this project is known as a freelancer. A freelancer or freelance worker is a term
commonly used for a person who is self-employed and may not necessarily committed
to a particular employer long-term. Freelance workers are sometimes represented by a
company or a temporary agency that resells freelance labor to clients; others work
independently or use professional associations or websites to get work [10].

Current freelancing systems are provided by third parties and rely on trust by both
the freelancer and the client on this central third party. Using a Blockchain based
system can completely remove this element of trust on a central entity. This will help in
eliminating hefty commissions and replace it with smart contract deployment and
update costs which are often significantly cheaper. Also, being decentralized, this
system is completely unbiased and no single entity can monopolize the system under
normal circumstances. Using a cryptocurrency such as ether leads to immensely faster
processing times and quick fund transfers.

We have implemented a freelancing system using Solidity Smart Contracts
deployed on Ethereum. The Smart Contract defines the milestones and the payment for
each milestone which would be sent as ether. The contract is deployed with the client,
freelancer and the milestone details. In the present format, this contract cannot be
legally enforced since there is no contract in legal phrasing available.

3.1 Freelancer System

The first version of our project was based on the popular website freelancer.com [12].
Following terms are useful in understanding our proposal:

e Client: The person/entity posting the project to be completed

e Freelancer: The developer who takes a project posted by a client and gets paid to
do it.

e Milestone: Smaller sub-tasks to be completed leading to partial realization of the
amount.

e Smart-contract: The software code deployed on the blockchain which is running the
distributed marketplace.

The workflow was as follows:

— The client posts his project online, with the task he wants to be completed, broken
down into smaller tasks called “Milestones” [13]. The client then defines a stipu-
lated amount of money to be paid to the freelancer on the completion of each
milestone (in ether) along with their deadlines. With this information a smart
contract is deployed on the blockchain by the client, containing information about
the amount of each milestone, the deadlines. The client has to pay the cost of all the
milestones upfront as well as the gas needed to deploy the contract.

http://www.freelancer.com

Towards Legally Enforceable Smart Contracts 157

This contract now acts as an escrow account which holds the funds until completion
of any milestone.

Once the contract is deployed on the blockchain, this task is then advertised to all
freelancers on the system. The freelancer can choose to accept the task using an API
call to the smart contract.

Upon completion of a milestone, the freelancer uses an API call to change the state
of the smart contract and upon confirmation by the client, the stipulated amount is
automatically paid to the freelancer by the smart contract.

Our system also supports features like canceling any milestone and refunding the
amount back to the client on a failed task.

This system is depicted in Fig. 2.

CLIENT

4 Uploacs
b Tasksand
h Milestones
@ Approves a Freelancer
& Allocates
Etherfor

Smart Contract

e Contract Advertisement
with Details

Freelancers
Bid

FREELANCER

*

Smart Contract

Deployed

on Blockchain G’
Other Users on
BLOCKCHAIN the Blockchain
LN]
° L]
()

“ Deployment Deployment u
Notice Notice
L] °
()
L]
e o0 ..

K

o Milestone
Completed

Milestone
Completion @

Notification

Accept/ v
Reject :
Cancel g

< Client Wallet Milestone
Refund Added Cancelled
oo

Reject 0

7

Milestone Freelancer Wallet =
Completed Amount Added
el

ARBITRATOR

Fig. 2. Use case ‘Freelancer’: implementation workflow on Ethereum blockchain

158 D. Patel et al.

The Basic structure of the Freelancer Smart Contract is as follows:
Attributes.

1. Client Address: This is the public key (address) of the client on the Ethereum
Blockchain. For all purposes this is the identity of the client that is used by the
blockchain.

2. Freelancer Address: This is the public key (address) of the freelancer on the
Ethereum Blockchain. For all purposes this is the identity of the freelancer that is
used by the blockchain.

3. Task Description: This is the link to the plain text description of the entire task
along with the various milestones and amount as laid out by the Client.

4. Review Time: It is the time that the client is given to review a submission made by
the freelancer after which the freelancer can collect the payment is the client fails to
review.

5. Milestones: This are the various milestones of the outsourced task. Each of the
milestone contains the following details.

a. Amount: The amount in ether that is to be paid out to the freelancer on proper
completion of the current milestone.

b. Deadline: The time by which the freelancer is expected to complete the task.

c. Status: The current status of the milestone. It has various possible states such as
Completed, Canceled.

Functions.

1. Milestone Complete:
The function that the freelancer calls to mark a milestone that he has done as
complete. After this the milestone work is reviewed by the client.

2. Milestone Review:
The function that the client calls to review the Milestone and mark it as complete,
rejected or canceled.

4 Towards Legally Bound Smart Contracts

We demonstrated Freelancer use case implementation on Ethereum Blockchain (as
depicted in Fig. 2) at the “Smart contract with Blockchain and IoT workshop” held at
VIJTI Mumbai in Feb 2018. And after feedback discussions and deliberations, we found
that a smart contract cannot be upheld in the court of law as a valid legal document.
This is a major concern as any dispute between the client and the freelancer cannot be
upheld in the court of law. Even though the code on a smart contract is completely
correct and immutable, it still cannot be treated as a legal document. Also, it is difficult
to debate the technical details of a smart contract as lawyers and judges are usually not
familiar with advanced cryptographic algorithms and their correctness.

Towards Legally Enforceable Smart Contracts 159

Some important terminology:

e [egal-contract: The legal equivalent of the smart contract. It contains the signato-
ries, the milestone and the payment schedule in judicial parlance.

e Template Legal-contract: This is a pseudo legal contract constructed with blank
fields where changing parameters like client, freelancer details and milestone details
will be filled in automatically.

e [PFS: Interplanetary File System, is a peer-to-peer distributed file system that seeks
to connect all computing devices with the same system of files. In some ways, IPFS
is similar to the World Wide Web, but IPFS could be seen as a single BitTorrent
swarm, exchanging objects within one Git repository. In other words, IPFS provides
a high-throughput, content-addressed block storage model, with content-addressed
hyperlinks [11].

To incorporate a legal framework in our system, we modified our original system as
follows:

Once the client and freelancer are chosen on the website, they are given a form,
where they simply have to fill out their legally binding details. Using these details, a
legally binding contract (written in plain text) is drafted between the client and free-
lancer which contains clauses for each milestone along with their deadlines and
amounts. This is done automatically by dynamically creating clauses which are
appended to a base template contract. For different use-cases, a more advanced tem-
plate engine maybe required. In case of dispute, the wordings of the legal contract shall
be treated as final. Thus, the base template contract needs to be carefully drafted by a
professional to ensure its infallibility.

The legal contract is then stored on a publicly available distributed file-system e.g.
IPFS. We have chosen to utilize IPFS because the design of IPFS ensures immutability
and non-reliance on a central server [11].

The client then deploys the smart contract on Ethereum. He has to pay all the
milestone fees upfront. The hash of the legal contract is included in the constructor
when the smart contract is deployed. This hash field on the smart contract is constant
once set and cannot be changed. This acts as a link between the smart contract and the
legal document.

Now, both parties fetch the document from IPFS and sign it with their digital
certificates and upload this to IPFS. The hash of their signed document is then added to
the smart contract via an API call which can only be invoked by the client and
freelancer. The smart contract then begins execution only after legal document is
signed and uploaded by both the client and the freelancer. This ensures that both parties
have verified and signed a legal contract in addition to accepting the smart contract
code.

This modified implementation (incremental portion of legal binding) is depicted in
Fig. 3.

160 D. Patel et al.

Any Publically Accesible
Digital Data Storage
(eg: IPFS)

Legal
Contract

Client Freelancer
Client Freelancer|
Digitally Digitally
signs signs
contract contract
N
p— pa— . g
j—’ Signed Signed | /4
— Legal Legal
4 Contract Contract

A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

A4

Link and
Hash of
Legal
Added to contract 'Added to
Smart Smart
contract contract

Smart Contract on the
BlockChain
(eg: Ethereum)

Smart
Contract
Starts

Fig. 3. Binding legality to smart contract

Towards Legally Enforceable Smart Contracts 161

As depicted in Figs. 2 and 3, the Legal Contracts defined are enforceable because
of the usage of digital-signatures which is a cryptographic method used to validate/sign
documents in digital format.

The contract is deployed by the client with the appropriate task and participant
details (Pseudocode for the same is given at the end of the section Figs. 4 and 5). Once
the contract is deployed, the smart contract sets all global variables, but does not begin
execution. Both the client and freelancer hash the legal document using their corre-
sponding digital keys and call the signContract (string signedData) func-
tion with the hash. This function sets the corresponding global variables and marks the
signed status as true. Once both the client and freelancer have signed the contract, it
begins execution.

After completing a single milestone, the freelancer sends the completed work to the
client and then calls the markMilestoneComplete (uint id) with the id of the
milestone he has completed. This function makes appropriate checks on the id, status
and deadline of the milestone and if everything is correct, sets the milestone status to
‘Completed’. This change can be seen by the client on the blockchain without using
any gas. If he finds the work satisfactory, the client calls the reviewMilestone
(id, Review) function which sets the status of the milestone as per the clients
review and sends the payment of the milestone to the freelancer if the client accepts the
milestone.

Depending on the country this system may or may not be legally accepted. Thus we
introduced the term verified signatures to mean signatures verified to that extent such
that it is legally valid. We examined the situation of such digital signatures in India and
how to enforce their legal validity [14].

In relation to a digital signature, electronic record or public key, with its gram-
matical variations and cognate expressions means to determine whether

— The initial electronic record was affixed with the digital signature by the use of
private key corresponding to the public key of the subscriber;

— The initial electronic record is retained intact or has been altered since such elec-
tronic record was so affixed with the digital signature.

From the IT Bill-2000 [14] “Where any law provides that information or any other
matter shall be authenticated by affixing the signature or any document shall be signed
or bear the signature of any Person then, notwithstanding anything contained in such
law, such requirement shall be Deemed to have been satisfied, if such information or
matter is authenticated by means of Digital signature affixed in such manner as may be
prescribed by the Central Government.”

In simpler terms, any digital signature stands to be deemed verified and legally
valid only when a digital certificate is issued by a Certifying Authority. There are
provisions for new parties to apply and be approved as a certificate authority.

To resolve the issues of validity of digital signatures in the Indian context, we
assume that there is a certified company (Certifying Authority) which can issue Digital
Certificates for use on FEthereum network using the same Ethereum wallet
public/private key pair for the Digital Certificate.

162 D. Patel et al.

Considering above context, we introduce necessary provisions to make smart
contract legally enforceable.

Pseudocode for legally enforceable smart contract.

// A structure representing a single milestone
struct Milestone ({
// Latest UNIX time the milestone can be paid
uint deadline;
// Data defining how much ether is to be sent
uint payEther;
// Current Status of the milestone
MilestoneStatus status;
// UNIX time when the milestone was marked DONE
uint completionTime;

}

// This enum represents the status of a milestone
enum MilestoneStatus {
AcceptedAndInProgress,
Completed,
AuthorizedForPayment,
Canceled,
Done
}
// Apart from the above variables, the contract will also
// have variables to store the client and freelancer
// addresses as well as contract details and milestone
// details (in an array of struct Milestone).
// It also includes a field for the address of the linked
// legal contract on IPFS.

// The following function is used by client as well as
// freelancer.
// To sign the smart contract after it has been deployed.
function signContract(string signedData) {
if (msg.sender == client_address) ({
clientSign = signedData;
emit ContractSigned(msg.sender);
// The client has now signed the contract.
} else if (msg.sender == freelancer_address) {
freelancerSign = signedData;
emit ContractSigned(msg.sender);
// The freelancer has now signed the contract.

Fig. 4. Pseudocode part 1

Towards Legally Enforceable Smart Contracts 163

// The following function is called by the freelancer.

// It is used to mark a given milestone as complete.

function markMilestoneComplete(uint ID) {

if (ContractSigned) {
if (ID is valid && msg.sender is Freelancer) {
if (milestone is not Completed) {
if (milestone deadline has not passed) {

milestone.status = Completed;
milestone.completionTime = now();
emit ProposalStatusChanged(ID);

}

// This function is called by the client to approve a
// task completed by the freelancer
// This function would payout money to the freelancer of
// the current milestone if the Client
// reviews the Milestone as Accepted.
function reviewMilestone(uint ID, status Review) {
if (ContractSigned) {
if (ID is valid AND msg.sender is Client) {
MilestoneStatus &status = milestone.status;
if (status == Completed) {
if (Review == ACCEPT) ({
milestone.status = AuthorizedForPayment;
doPayment () ;

}
else if (Review == REJECT) {
milestone.status = AcceptedAndInProgress;

}

else if (Review == CANCEL) {
milestone.status = Canceled;

}

else {
ABORT();

}

}
emit ProposalStatusChanged(ID);

Fig. 5. Pseudocode part 2

164 D. Patel et al.

5 Conclusions

In decentralized market place using Blockchain and Distributed ledger technology,
transaction facilitation and matching are improved substantially due to unmodified
access to information. This has enabled smart-contract based systems allowing trustless
parties to transact directly adhering to the disclosed terms, without manipulation by
intermediary platforms. Smart contracts are becoming integral part of many critical
systems allowing exchange of payments and services with preset rules. In this paper,
we have shown how freelancer application can be deployed in decentralized e-market
place using Ethereum Blockchain and how smart contracts can be made legally
enforceable with the help of digital signature; making them acceptable between
involved parties as well as jurisdiction’s legal framework. Our future work is focused
on extension of this framework for multi-country cross border contracts involving
different legal requirements.

Acknowledgements. For icons.
1. Contract by Dmitry Mirolyubov from the Noun Project
2. Court order by Anbileru Adaleru from the Noun Project
3. Developer by I Putu Kharismayadi from the Noun Project
4. Client by Miguel C Balandrano from the Noun Project
5. Contract signing by Vectors Market from the Noun Project

References

1. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Draft NISTIR
8202, NIST, U.S. (2018)

2. Wurster, S., et al.: Specification on blockchain technology. ISO/TC 307, Tokyo (2017)

3. Raskin, M.: The law and legality of smart contracts. 1 Georgetown Law Technology Review
304, GeorgeTown (2017)

4. Frank, R.: Smart contracts PreDraft. ISO/TC 307, Tokyo (2017)

5. R3, Norton Rose: Can smart contracts be legally binding contracts? http://www.
nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.
pdf. Accessed 25 Mar 2018

6. Szabo, N.: Smart contracts: building blocks for digital markets. http://www.fon.hum.uva.nl/
rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart_contracts_2.html. Accessed 10 Mar 2018

7. Wood, G.: Ethereum: a secure decentralized generalized transaction ledger. http://gavwood.
com/paper.pdf. Accessed 26 Feb 2018

8. Clack, C., Bakshi, V., Braine, L.: Smart contract templates: foundations, design landscape
and research directions (2016). https://arxiv.org/pdf/1608.00771.pdf. Accessed 15 Mar 2018

9. Farrell, S., Machin, H., Hinchliffe, R.: Lost and found in smart contract translation —
considerations in transitioning to automation in legal architecture. http://www.uncitral.org/
pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHL
IFFE-Smart_Contracts.pdf. Accessed 21 Feb 2018

10. Freelancer definition. https://en.wikipedia.org/wiki/Freelancer. Accessed 15 Mar 2018

http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://arxiv.org/pdf/1608.00771.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
https://en.wikipedia.org/wiki/Freelancer

11.

12.
13.

14.

Towards Legally Enforceable Smart Contracts 165

Benet, J.: IPFS. https://ipfs.io/ipfs/QmR7GSQM93Cx5eAgb6abyRzNdel FQv7uL6X 104
k7zrJa3LX/ipfs.draft3.pdf. Accessed 27 Feb 2018

Freelancer website. https://www.freelancer.com. Accessed 12 Jan 2018

Thoen, L.: Milestone payments. https://blog.freelancersunion.org/2014/05/15/dont-get-
stiffed-how-ask-milestone-payments. Accessed 7 Mar 2018

Information Technology Act, India (2000). http://www.dot.gov.in/sites/default/files/
itbill2000_0.pdf. Accessed 28 Feb 2018

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://www.freelancer.com
https://blog.freelancersunion.org/2014/05/15/dont-get-stiffed-how-ask-milestone-payments
https://blog.freelancersunion.org/2014/05/15/dont-get-stiffed-how-ask-milestone-payments
http://www.dot.gov.in/sites/default/files/itbill2000_0.pdf
http://www.dot.gov.in/sites/default/files/itbill2000_0.pdf

)

Check for
updates

Border Control and Immigration
on Blockchain

Dhiren Patel', Balakarthikeyan', and Vasu Mistryz(g)
! Veermata Jijabai Technological Institute, Mumbai 400019, India
% National Institute of Technology, Surat 395007, India
vasub23b@gmail. com

Abstract. In this paper, we propose a system using Blockchain technology to
create a decentralized, secure, and scalable departure and arrival records of
passengers. We provide a framework using Hyperledger Fabric, for maintaining
the inter-port records of the passenger’s entry and exit into a country as well as
to facilitate gateless entry back to the passenger’s country. We attempt to mit-
igate privacy and legal concerns over biometric data storage on the blockchain.
We also explore the possibility of modifying the existing kiosks to work with
the blockchain architecture at the backend so that passengers are not required to
get familiar with a new procedure.

Keywords: Blockchain and distributed ledger technology * Immigration
Gateless entry

1 Introduction

Borders between countries are strictly enforced to prevent illegal movement of
people/goods into the country. A huge number of people cross international borders
daily. This means effective, secure and scalable record keeping of entries and exits
must be performed. For national security, it is crucial that these records are immutable
to any attack/alterations. It is important to ensure that movement of people across
borders happens easily and seamlessly. It is also imperative for nations to share their
records to provide a strict and efficient control mechanism. At the same time these
records must be securely stored complying with privacy laws and regulations of that
country. This has made it all the more imperative to implement systems to alleviate all
the above concerns.

The aim of this work is to implement a secure, decentralized, immutable seamless
border control system to enable governments to easily and effectively log people
exiting and entering their nations. This system also brings into sync every other port of
entry into a unified decentralized system. It also aims to create separate data-paths for
international transmission of departure records. The system will also include methods
to securely store biometric information to validate/verify passengers automatically.

Rest of the paper is organized as follows: Sect. 2 discusses motivation based on
Existing systems, strength of Blockchain Technology and enlists the Security Vul-
nerabilities in Existing Systems. Section 3 explains fundamentals and basics of
Hyperledger framework. Section 4 discusses the proposed workflow for maintaining

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 166-179, 2018.
https://doi.org/10.1007/978-3-319-94478-4_12

http://orcid.org/0000-0002-2841-5318
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_12&domain=pdf

Border Control and Immigration on Blockchain 167

arrival and exit records of the passengers. Section 5 discusses the implementation
architecture on Hyperledger. Section 6 discusses Mitigating privacy and legal concerns
over biometrics on the blockchain with Conclusions and References at the end.

2 Motivation and Background

2.1 Existing Border Control Systems

In a typical workflow for a passenger leaving a country via a port of exit he/she would
be required to swipe passport at a passport scanner which records the details and then
an immigration officer validates and stamps the exit out of the country. The passenger
now proceeds towards the boarding gates and takes the flight to the destination.

The next stage is the submission of the Advanced Passenger Information System
(APIS) data to the destination country by the flight carrier. The APIS was introduced by
the US Customs and Border Protection and is a required criterion for many nations [1].
In India, each flight vessel is obligated to send the APIS data to the destination airport
within 15 min of take-off from the origination point [2]. The UK government also has
similar rules [3].

Similar systems are there for entry into a country. Common system operational in
many countries including the United States are fast-tracked and quick-entry systems
like the Global Entry Program. Global Entry allows rigorous background checks
verified passport holders to skip lines and an immigration desk and walk to a Global
Entry Kiosk to generate an exit pass. The kiosk scans the passports and collects
fingerprints to verify authenticity of the passport holder [4].

Mobile passports have also made headway into certain nations as an easy process to
clear immigration and skip the lines [5].

All of these systems have clearly contributed to ease of air-travel especially for
citizens and have helped alleviate extensive screening and congestions at airports.
Similar systems exist for entry through rail/sea. The downside being each of these
systems have exposed us to new points of failures and security breaches.

The centralized structure, and the difficulty involved in keeping records securely
synchronized across entry points are key issues the proposed system tackles. It also
paves the way for nations to receive passenger information seamlessly without trust on
a third-party. The proposed system allows nations to leverage biometric identities of
their citizens to validate their entry. In addition the system can be integrated with
existing automated kiosks making adoption easier.

2.2 Blockchain

Blockchains are distributed digital ledgers of cryptographically signed transactions that
are grouped into blocks. Each block is linked to the previous one after validation and
consensus of all participating nodes. As new blocks are added, older blocks become
more difficult to modify. New blocks are replicated across all copies of the ledger in the
network, and any conflicts are resolved automatically using established rules [6].

168 D. Patel et al.

At their most basic level, blockchain enables a community of users to record
transactions in a ledger that is public to that community, such that no transaction can be
changed once published. A block is an individual unit of a blockchain, composed of a
collection of transactions and a block header. A block header keeps a collection of
metadata about the block that contains a hash-value of its parent in the blockchain, and
a hash of the aforementioned metadata and the data of the block itself [7].

In a public or permissionless blockchain anyone can participate without a specific
identity. Public blockchains typically involve a native cryptocurrency and often use
consensus based on “proof of work” (PoW) and economic incentives. Permissioned
blockchains, on the other hand, run a blockchain among a set of known, identified
participants. A permissioned blockchain provides a way to secure the inter-actions
among a group of entities that have a common goal but which do not fully trust each
other, such as businesses that exchange funds, goods, or information. By relying on the
identities of the peers, a permissioned blockchain can use traditional Byzantine-fault
tolerant (BFT) consensus [8].

2.3 Security Vulnerabilities and Weak Points in the Current System

The major associated problem with the current method of entry/exit is the centralized
nature of data, making it an easy target of attacks and attempts at manipulation may
cause complete or partial data loss.

With multitude of kiosks validating data and entering data into this centralized
database, it could be disastrous if security flaws are found in the system.

The next point of failure might be the trust on the Airline carrier to report advance
information of passengers’ arrival. This inherent trust might be misused along with
existing automated passport control kiosks.

Lastly the entry/exit records are always prone to modification either by malicious
third parties or due to internal political pressures etc. This data must be immutable.

The intercommunication between multiple port-of-entries of a country with a
centralized database is also a serious cause of concern in terms of security and
scalability.

Apart from security issues, a simple lapse in stamping/recording of information
might render a person as an invalid entrant into a country with no entry record and with
no way of leaving the nation. This is especially true since many countries rely on a
stamp on the passport to validate arrival, sometimes vis-a-vis maintaining a centralized
record [9]. The adoption of this system prevents possibilities of such incidences
especially for countries not maintaining centralized records.

3 Hyperledger Fabric

Fabric is a distributed operating system for permissioned blockchains that executes
distributed applications written in general-purpose programming languages (e.g., Go,
Java, Node.js) [8].

Border Control and Immigration on Blockchain 169

A distributed application using Fabric consists of two parts:

e A smart contract, called chaincode, which is program code that implements the
application logic and runs during the execution phase. Special chaincodes are for
managing the blockchain system and maintaining parameters, collectively called
system chaincodes [8].

e An endorsement policy that is evaluated in the validation phase. An endorsement
policy acts as a static library for transaction validation in Fabric, which can merely
be parameterized by the chaincode. Only designated administrators may run system
management functions and have the right to modify the endorsement policy [8]
(Fig. 1).

. Chaincode Endorsement Ordering it .
Invocation (1 8 Validat Commit
B execution collection Broadcast/Delivery alication .
1 | G or—
) (1 :
Q
2 S
i 3
> 3 (0/°]
o
i 4) p 4
L 5 5 L 5 i 5
client endorsing endorsing endorsing Peer
peerl peer2 peer3 orderers (non-endorsing)

Fig. 1. Hyperledger Fabric transaction workflow [8]

As Fabric is permissioned, all nodes that participate in the network have an identity.
Nodes in a Fabric network take up one of three roles:

e ‘Clients’ submit transaction proposals for execution, help orchestrate the execution
phase, and, finally, broadcast transactions for ordering [8].

e ‘Peers’ execute transaction proposals, validate transactions and maintain the
blockchain. Only the ‘Endorsing peers’ execute all transactions while all peers
maintain the blockchain ledger [8].

170 D. Patel et al.

4

‘Orderering Service Nodes’ (OSN) (or, simply, orderers) are the nodes that col-
lectively form the ordering service. The ordering service establishes the total order
of all transactions in Fabric, where each transaction contains state updates and
dependencies computed during the execution phase, along with cryptographic
signatures of the endorsing peers that computed them [8].

Proposed Workflow of Border Control System
on Blockchain

4.1 Maintaining Entry/Exit Records on the Blockchain

The proposed workflow is similar to the current workflow with an essential difference
that the immigration officer now marks his immigration decision which is recorded
onto the blockchain. Once all details are recorded the passenger is allowed to pass
through.

In case of a departure workflow, the system automatically finds the corresponding
arrival record into the country for a foreign citizen and validates this departure.
In case of arrival, the system automatically finds the corresponding departure record
of the citizen and validates his entry.

Security/clearing Local ledger Connects to
Starts the flow The agency. Chaincode with biometric country B
software/SDK does checks. of citizens channel

:Kiosk/Immigration)
:Immigration :Endorsing . i
Agent] [System } [Peers] [:Local Ledger] :Country specific
anchor peer

Submit transaction > ! Submit for

endorsement

n _the chaincode

« Endorsement reply

Send to orderer to wtite to local ledger
with biometrics

i Send only APIS Data ! =!:|

Fig. 2. Departure sequence diagram

Border Control and Immigration on Blockchain 171

Immigration Kiosk or Agent Immigration Blockchain System Endorsing Peers

Submit Departure

Transaction _)(Submit for Endorsementl 5 l Verify Security Rocords]
b
Om

Reply
VES
(Add Departure to Ledgej

Check
criminal
records.

\
¢\

Store _ Submit APIS
Biometric transaction to
on local specific country

ledger channel peer

Passenger can
now depart

Fig. 3. Departure activity diagram

4.2 Detailed Example Workflow During Departure

Referring to Fig. 2 we see that the immigration officer submits a transaction for
departure to the system. Here, a transaction refers to the departure of the passenger.

The transaction is then sent to endorsement to the corresponding endorsement
peers. The endorsement peers could be from local security agencies to a central no-flier
database etc. Once the endorsements are successful, the entry is added into the
departure ledger and biometric information stored in the local-ledger if the departing
passenger is a citizen of the given country. In case of a rejection, it is added to a
separate log with rejection comments by the immigration officer. The departure
sequence diagram shows as various stages through with the system passes and its
interaction with the ledger.

The two critical phases involve capturing and storage of biometrics securely to
validate a passenger on return and to post the APIS data on to the specific country
anchor peer so that the destination country is aware of the passenger. The robustness of
the system lies in the fact that since there is no central machinery involved all ledgers in
the airport work in a distributed fashion holding everyone’s records. Additional all
other ports in the nation are also now aware of this departure and biometric record
which can be validated in case of a citizen on his return. Thus the system lacks central
failure points but at the same time maintains a copy accessible with everyone.

A similar system is followed during the arrival of a passenger as noted in Fig. 4.
The passenger admittance is subject to endorsement from the endorsing peers. This
includes security agencies and validating departure record for a citizen. For an

172 D. Patel et al.

Security/clearing Local ledger Arrivals Ledger |
Starts the flow The agency. Chaincode with biometric
software/SDK does checks. of citizens

:Kiosk/Immigration
Agent J

[

:Immigration
System

:Endorsing
Peers

) o

[:Local Ledger]

:Arrivals
Ledger

Lt

| Submit transaction _ |

Submit for

Admitted
R A L AT

endorsement

n the chaincode

Endorsement reply

[if citizen]Get encrypted biometric
from locali ledger

]Verify biometrics !

arrival record to ledge

-

Push

A 1 S

Fig. 4. Arrival sequence diagram

Immigration Kiosk or Agent

Immigration Blockchain System

Endorsing Peers

Submit Arrival
Transaction

Deported

Passenger
admitted

' Submit for Endorsementl

N m
/jé? Reply

YES

_)Clerily Security Recordsj

Check
criminal
records.

N Verify biometrics from

departure blockchain

/[Add Arrival to Ledger J

Fig. 5. Arrival activity diagram

Border Control and Immigration on Blockchain 173

incoming citizen, additionally biometrics shall be compared before final admission.
This automates the procedure for citizens and removes involvement of immigration
officers who now will have a supervisory role.

The following points shall be noted from the swim lane diagrams:-

e The check for corresponding arrival/departure records happens at an endorsement
peer in the defined chaincode.

e Each security agency can define chaincodes, which can search databases and/or
perform complex actions to complete security procedures and provide with an
endorsement.

e The immigration officer can chose not to submit the transaction and directly reject
it. Rejections are recorded in a separate peer node.

e The system can integrate with existing passport-control kiosks, with minor recon-
figuration. The kiosks act as the client triggering the transactions.

5 Implementation Architecture

Hyperledger is the preferred choice for this use case as it provides a fast and scalable
system with features complementing the specific needs and deployment of permis-
sioned blockchains.

Hyperledger does not require mining and instead uses Endorsement for the
Ordering Services. The Hyperledger Certificate Authority (CA) allows developers to
enroll peers using existing public key infrastructure.

The endorsement policy ensures that the Immigration officer might not be the only
endorser for approving a passenger (in this case, giving a vote as to whether the person
gets in or not), additional security agencies can be made part of this endorsement
process. Since endorsement chaincode can be written in non-deterministic languages
like Go/Java, a quick Banned Flier list data lookup can be performed as an additional
endorsing peer.

Each port maintains a minimum of one peer node (Immigration officer endorsing
peer) although multiple peers can be maintained.

Channels provide a way to replace the APIS system with the destination port’s
receiving peer which can now easily be notified of arrival of passengers with all APIS
data encoded on to it.

The following Fig. 6 shows the deployment architecture of the system. Here,
symbols are derived from Hyperledger’s default set of symbols for showing interac-
tions. The oval represents an organization. Peers in an organization are always con-
nected to each other.

e In this deployment, we see Port-1, Port-2 and Endorsing Organizations on a
common channel.

e A separate organization called Airports Authority is maintained as the peer to send
APIS information to specific destination countries. The chaincode in this peer shall
be invoked by the system after successful departure as shown in Fig. 4.

174 D. Patel et al.

Immigration’ Homeland
Authority Security

Intra-country channel

[3 Peer node
(-]

S—

Country

Channel

Query for APIS

Fig. 6. Deployment architecture on Hyperledger

e For the sake of brevity, ordering services on the channel are omitted in the diagram
but are assumed to exist.

The system will integrate with existing kiosks/immigration desks as they will act as
clients interacting with the Immigration System APIs as shown in Figs. 3 and 5.

The data stored on the ledger shall be the basic details as recorded by APIS systems
internationally. This include names, passport number, source and destination ports,
along with carrier vessel identification and boarding pass details [2].

In addition the passenger’s country would store biometric information to validate
the passenger seamlessly on his return.

5.1 Pseudocode for the Immigration System

We provide the pseudocodes using the Hyperledger Composer CTO language con-
taining the model and the script which forms the chaincode in Composer.
Hyperledger Composer is a fast and rapid prototype deployment tool to be used with
Hyperledger Fabric.

In Hyperledger Composer all interactions are performed using participants and
assests. Assets are entities that change their state during the course of a transaction. The
assets are recorded and saved on the blockchain as well as the transactions [10].

We model the system in terms of a passenger asset due to the constraints of
Hyperledger CTO language. It must be noted that in a real installation we need not
model it in a similar way but it is a good representation to store the details of a
passenger and his passport. A passenger asset is identified by his passportNo as a
unique key. In addition we show participants immigration-officer-peer node and the

Border Control and Immigration on Blockchain 175

endorsing agency as assets. In a real deployment we might have multiple endorsing
agencies. We also have defined our depart transaction here and its attributes. Similarly
a transaction for arrival can be created.

Composer — Model (Fig. 7)

Pseudocode 1 Composer Model

1: namespace org.india.immigration

2: asset Passenger identified by passportNo:
passportNo
firstName
lastName
middleName
passportExpiry
visaNo
destCountry
depCountry
depStatus
endorsers

3: Port
portNo
portName

4: participant ImmigrationOfficerPeer identified by officerID
officerld
officerName
port

5. participant EndorserAgency identified by agencyCode
agencyCode
agencyName

6: transaction Depart
departld
Passenger p
ImmigrationOfficerPeer i
officerRemark

Fig. 7. Hyperledger composer — model pseudo-code

Composer — Script (Fig. 8)
/ * x

* A sample Immigration Script API to submit a passenger
departure transaction.

* A dummy endorsement function is shown. This is Jjust to
model it like a hyperledger endorsement returning from

* a chaincode running at a hyperledger endorsement peer.

*/

176 D. Patel et al.

Pseudocode 2 Composer Script
Input:
tx: Transaction data

: function GETENDORSEMENT(tx)
if (tx and passenger data are valid) then

return ”Departure Granted”
else

return ”Departure Not Granted”
end if
: function DEPART(tx)
tz.p.departure_status < GETENDORSEMENT (tx)
tz.p.endorsers.push(endorserld)
assetRegistry + GETASSETREGISTRY (‘org.india.immigration.Passenger’)
return assetRegistry.update(tz.p)

© PSR W

_
= O

Fig. 8. Hyperledger composer — script pseudo-code

The Script shown here is representative of our Immigration System deployment and
in an actual use case the client machines shall interface with the API of our Immi-
gration System to carry out the transaction i.e. letting a passenger depart and our arrive
and collecting valid endorsements etc. The Client only needs to call the API to initiate
the transaction and wait for results to come back. The system will do all the business
logic processing and call appropriate chaincodes to execute the transaction.

Since Hyperledger Composer does not currently support custom Endorsement
policies we have created a dummy endorsement function. In real life as soon as the
transaction is submitted the endorsing peers would run their chaincodes to validate the
transaction and such a dummy function is not needed. Here the function only serves to
remind us about how the transaction would be endorsed.

The Depart (transaction) sets the departure status on the passenger asset
and updates the asset.

"$class": "org.india.immigration.Depart",
"departId": "ee1",

p": "resource:org.india.immigration.Passenger#5523",

"i": "resource:org.india.immigration.ImmigrationOfficerPeer#7609",
"officerRemark": "ECNR, Ok to Board",

"transactionId": "f3fa7a0f-e510-4c1d-8893-9b7948b2a329",
"timestamp": "2018-03-31T06:34:29.5862Z"

Fig. 9. Demo transaction

Border Control and Immigration on Blockchain 177

Figure 9 shows a sample executed transaction summary based on our initial model
on the Composer Playground Web UI [11]. Here we see that the passenger departure is
logged with an ID for easy query. Along with it the passenger asset and the immi-
gration officer asset is also logged. The officerRemark along with timestamp and
transactionID show a valid departure status.

6 Addressing Privacy and Legal Concerns Over Biometrics
on the Blockchain

A very important question arises with regards to privacy of the passenger’s biometric
information and legal issues with its dissemination. Firstly, no biometric information
shall be transmitted outside the passenger’s country and shall be stored as per the laws
of the country e.g. Aadhaar UID system in India.

Countries like Germany provides users an option to use biometric passwords and
the data can be stored in double RSA hashing to implement the same. The above
pseudocode provides a small example of using Double RSA encryption technique. The
code can be easily written in Javascript, by utilizing the popular RSA library called
JSEncrypt [12]. Here a public-private key pair based on passport information or other
has to be generated for a passenger so that his private key is needed for reading his
biometric data from the stored asset. The biometricHash in the stored asset corresponds
to this encrypted biometric data (Fig. 10).

Pseudocode 3 Double RSA technique
Input:
biometricData: An object holding biometric data.

1: procedure ENCRYPTION(biometricData)

2 cryptl < ENCRPYT()

3 crypt2 +ENCRPYT()

4: cryptl.setPublicKey(PassengerPublicKey
5: crypt2.setPublicKey(ImmigrationAgencyPublicKey)
6:
7
8
9

biometrics <biometricData
encl «cryptl.encrypt(biometrics)
encFinal «crypt2.encrypt(encl) > Double RSA encryption
: return encFinal
Input:
encFinal: Holds cipher text after performing double RSA.
10: procedure DECRYPTION(cipherText)
11: cryptl.setPrivateKey(PassengerPrivateKey)
12: crypt2.setPrivateKey(ImmigrationAgencyPrivateKey)
13: decl «+crypt2.decrypt(encFinal)
14: biometricData <cryptl.decrypt(decl)
15: return biometricData

Fig. 10. Double RSA for biometric data pseudo-code

178 D. Patel et al.

The first round of hashing is performed by the passenger’s private key while an
additional hashing is performed by the Border control agencies private key. Passen-
ger’s private key can be generated from his own biometrics/passport, making it
mandatory for the passenger to be present to enable decryption of his record. Thus
although passenger’s biometric identity might exist on the blockchain without the
passenger such data cannot be accessed and utilized thus alleviating any concerns over
privacy of this sensitive data.

7 Conclusions

We have looked at an interesting use case of global nature and implemented a secure,
decentralized, immutable seamless border control system to enable governments to
easily and effectively log people exiting and entering their nations.

In this paper we have addressed the security and reliability issues of current sys-
tems. Using blockchain on Hyperledger, this system brings into sync every other port
of entry into a unified decentralized system. We have shown creation of separate
data-paths for international transmission of departure records. A permissioned infras-
tructure is envisioned where the government security agencies act like gate-keepers
(endorsers) automatically allowing entry/exit. We have also envisioned storage of
biometrics in a local ledger allowing citizens to easily enter their own country while
also keeping privacy concerns at bay. Currently the system is under active develop-
ment. We look forward to further improve the system with simple, automated
interfaces.

References

1. Advanced Passenger Information System Air Canada. https://www.aircanada.com/us/en/aco/
home/plan/travel-requirements/advancepassenger-information.html. Accessed 20 Feb 2018

2. APIS, Bureaus of Immigration India. https://boi.gov.in/content/apis-advanced-passenger-
information-system. Accessed 11 Mar 2018

3. Transfer e-Borders data: general aviation and maritime. https://www.gov.uk/government/
publications/transfer-e-borders-data-general-aviation-and-maritime. Accessed 20 Feb 2018

4. Global Entry U.S. Customs and Border Protection homepage. https://www.cbp.gov/travel/
trusted-traveler-programs/global-entry. Accessed 7 Mar 2018

5. Mobile Passport Control App U.S. Customs and Border Protection. https://www.cbp.gov/
newsroom/national-media-release/new-mobile-passport-control-app-available. Accessed 7
Mar 2018

6. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Draft NISTIR
8202, NIST, U.S. (2018)

7. Wurster, S., et al.: Specification on blockchain technology. ISO/TC 307, Tokyo (2017)

8. Cachin, C., Barger, A., Manevich, Y.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. https://arxiv.org/abs/1801.10228v1. Accessed 20 Mar 2018

9. No arrival stamp on Indian’s passport at Mumbai airport. https://timesofindia.indiatimes.
com/city/mumbai/No-arrival-stamp-on-Indians-passport-at-Mumbai-airport-he-cant-return-
to-UAE/articleshow/47930826.cms. Accessed 15 Mar 2018

https://www.aircanada.com/us/en/aco/home/plan/travel-requirements/advancepassenger-information.html
https://www.aircanada.com/us/en/aco/home/plan/travel-requirements/advancepassenger-information.html
https://boi.gov.in/content/apis-advanced-passenger-information-system
https://boi.gov.in/content/apis-advanced-passenger-information-system
https://www.gov.uk/government/publications/transfer-e-borders-data-general-aviation-and-maritime
https://www.gov.uk/government/publications/transfer-e-borders-data-general-aviation-and-maritime
https://www.cbp.gov/travel/trusted-traveler-programs/global-entry
https://www.cbp.gov/travel/trusted-traveler-programs/global-entry
https://www.cbp.gov/newsroom/national-media-release/new-mobile-passport-control-app-available
https://www.cbp.gov/newsroom/national-media-release/new-mobile-passport-control-app-available
https://arxiv.org/abs/1801.10228v1
https://timesofindia.indiatimes.com/city/mumbai/No-arrival-stamp-on-Indians-passport-at-Mumbai-airport-he-cant-return-to-UAE/articleshow/47930826.cms
https://timesofindia.indiatimes.com/city/mumbai/No-arrival-stamp-on-Indians-passport-at-Mumbai-airport-he-cant-return-to-UAE/articleshow/47930826.cms
https://timesofindia.indiatimes.com/city/mumbai/No-arrival-stamp-on-Indians-passport-at-Mumbai-airport-he-cant-return-to-UAE/articleshow/47930826.cms

10.

11.

12.

Border Control and Immigration on Blockchain 179

Hyperledger Composer. https://hyperledger.github.io/composer/latest/reference/reference-
index. Accessed 28 Mar 2018

Hyperledger Composer Playground. https://composer-playground.mybluemix.net/. Accessed
31 Mar 2018

JSEncrypt. http://travistidwell.com/jsencrypt/. Accessed 28 Mar 2018

https://hyperledger.github.io/composer/latest/reference/reference-index
https://hyperledger.github.io/composer/latest/reference/reference-index
https://composer-playground.mybluemix.net/
http://travistidwell.com/jsencrypt/

Application Track: Business Models
and Analyses

q

Check for
updates

RPchain: A Blockchain-Based Academic
Social Networking Service for Credible
Reputation Building

129 and Yiming Jiang®

Dong Qin', Chenxu Wang
! School of Software Engineering, Xi’an Jiaotong University,
Shanxi, Xi’an, China
2 MoE Key Lab of Intelligent Networks and Network Security,
Xi’an Jiaotong University, Xi’an, China
cxwang@mail.xjtu. edu. cn

Abstract. The development of the Web 2.0 technology has brought the pros-
perity of open science which is devoted to making scientific research, data and
dissemination accessible to all levels of an inquiring society, amateur or pro-
fessional. One of the challenges faced by open science is how to build the
scholarly reputation of participants credibly and fairly. Existing academic social
networking services use peer reviews to address this problem. However, there
are still some drawbacks of these services. They are not friendly to the general
public and lack effective incentive mechanisms to attract ordinary users.
Moreover, these centralized services have the risks that review records might be
tampered or lost. In this paper, we present a blockchain-based academic social
network service model which has irrevocable peer review records, traceability of
reputation building and appropriate incentives for content contribution. In order
to achieve these goals, we propose a novel consensus algorithm named proof of
reputation (PoRe) which utilizes the reputation of participants for consensus.
Finally, we implement a prototype of the model and empirically validate its
security and effectiveness.

Keywords: Blockchain - Academic social network - Reputation building
Proof of reputation

1 Introduction

With the development of the Web 2.0 technology, the academia has entered an era of
collaboration and sharing. The “Open Science” proposal which advocates data sharing,
open peer evaluation, citizen science, and so on, has gradually become the main-stream
of research in the current digital age [1-4]. However, this also brings the problems of
scholarly reputation building and digital copyright protection [1, 5].

There are several academic social networking services (ASNS) such as Research
Gate [9] and Mendeley [10] to overcome these issues [6—8]. However, there are still
some drawbacks [11-13]. First, these services are focused on serving academic scholars,
which counters with the proposal of universal scientific research [11]. Second, these
services lack an appropriate incentive mechanism to attract ordinary participants [12].

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 183-198, 2018.
https://doi.org/10.1007/978-3-319-94478-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_13&domain=pdf

184 D. Qin et al.

Some scholars are reluctant to use ASNS due to the lack of trust in them [13]. Third, the
public peer review mechanisms used by these services may harm the social relationships
among users. In practice, most researchers prefer to review privately [14]. Forth, cen-
tralized ASNS such as Research Gate cannot avoid the security risks associated with
traditional centralized network services. Attacks against these services may result in data
loss or falsification which is fatal to fair reputation building. Therefore, it is desired for
an ASNS that has a high degree of openness and appropriate incentives for participation.

The emergence of the blockchain technology provides us a feasible way to build
such a service. The blockchain technology has several important properties such as
decentralization, traceability, privacy, secure transfer of value and so on. Using
blockchain to store peer-reviewed records ensures the maximum level of security,
because it is almost impossible for attackers to destroy or tamper with the records.
Furthermore, the cryptographic pseudonym provided by blockchain also maximizes the
privacy of peer reviews.

However, it is non-trivial to employ the blockchain technology to build an adequate
ASNS. First, we must design a suitable blockchain model to provide a platform which
should fairly build a user’s reputation based on other peers’ reviews. Second, we have
to develop a credible consensus algorithm to select an eligible peer for block main-
tenance. Third, we must design appreciate incentive policies to attract ordinary par-
ticipants. Finally, we should consider the security problems in the implementation of
the system.

In this paper, we present RPchain, a blockchain based academic social networking
service model. In order to address the first issue, we propose three kinds of transactions,
namely token transactions, content transactions, and vote transactions. Token trans-
actions are used for value transference and exchange. The content transactions repre-
sent the content publicized by users. Content includes topics/issues posted by users,
responses by peers, and smart contracts, etc. Vote transactions represent the votes that
peers give to specific content (in favor of it). In order to ensure fair voting and
systematic security, only users authorized by smart contracts or approved by consensus
are eligible to vote. Votes of contents belonging to the same user are cumulated to
evaluate the user’s reputation. All transactions and contracts are stored in the block-
chain, giving users credible copyright protection and traceability of reputation building.
In addition, we divide the life cycle of RPchain into three phases: the initial phase,
extension phase, and stable phase. Different consensus algorithms are adopted in dif-
ferent phases in order to facilitate the development and stability of the model.

The consensus algorithm is the soul of a blockchain system. However, existing
computing-power-oriented consensus algorithms such as Proof of Work (PoW) used in
Bitcoin is not consistent with the aims of our service-oriented model. In order to
address this issue, we propose a novel consensus algorithm named proof of reputation
(PoRe). PoRe uses the reputation gained by the participant’s published content trans-
actions to reach a consensus. When the content receives votes, the reputation of the
content is assessed based on the weight of those votes (the more the votes, the greater
the contributions). Then, when the conditions permit, users participate in the PoRe
consensus using the reputation obtained by the content transaction. The higher the
reputation value used for consensus, the lower the difficulty of the PoRe consensus, and
the greater the probability that the user will get the next block. That is, the more

RPchain: A Blockchain-Based Academic Social Networking Service 185

contribution of a user to the system, the greater the chance for it to obtain the reward,
which is exactly the virtuous circle required by ASNS.

To address the incentive problem, we introduce three different kinds of rewards,
namely consensus rewards (block rewards), vote rewards, uncle block rewards. Con-
sensus and vote rewards are used to incent users to participate in the maintenance of the
blockchain and give reviews on content. Uncle block rewards are used to compensate
users who fail in the consensus competition but contribute to the system significantly.
We take appropriate approaches to the security issues in the design of RPchain. Finally,
we implement a prototype of the proposed model and conduct experiments to evaluate
its security and effectiveness. We evaluate the performance of the model. Experimental
results show that our model is secure in the presence of malicious nodes and outper-
forms the general blockchain structure in terms of efficiency.

The main contributions of this paper are summarized as follows:

e We present RPchain, an academic social networking service model based on the
blockchain technology. The model is capable of credible reputation building and
academic copyright protection.

e We propose the proof of reputation (PoRE), a reputation-based consensus algorithm
for the maintenance of the blockchain system. PoRe satisfies the requirements that
the more contribution of a user, the greater the probability it gets the write right of a
block and the reward.

e We considered the incentives mechanisms and security issues. Proper incentive
policies are introduced to incent users to participate in the system while guaran-
teeing its security.

e We conduct experiments to evaluate the security and efficiency of RPchain. The
experimental results show that RPchain can ensure the security of the system in the
conditions that the percentage of malicious members is less than 50% in the initial
phase and the proportion of the contents publicized by malicious nodes is no more
than 40%. Moreover, our model outperforms the general blockchain structure in
terms of efficiency.

The rest of this paper is organized as follows. Section 2 reviews the related work. In
Sect. 3, we present the architecture of the model. In Sect. 4, we describe the PoRe
consensus and the blockchain protocol. In Sect. 5, we show the incentive mechanisms.
We conduct experiments to validate the security and efficiency of the system in Sect. 6.
Finally, we conclude the paper in Sect. 7.

2 Related Work

2.1 Blockchain-Based Reputation Building and Social Networks

Sharples et al. [15] proposed to use blockchain to store education records which award
scholars’ reputation. However, they did not propose a specific model. Dennis et al. [16]
attempted to establish a transaction-oriented blockchain reputation system. Schaub
et al. [17] built a model of e-commerce reputation based on blockchain and focused on
the privacy of evaluation. However, they did not optimize the consensus and structure

186 D. Qin et al.

of the blockchain. Konforty et al. [18] built a blockchain-based social network that
focuses on the economy of attention and prioritizes information in a manner that is of
interest. It is noteworthy that Steem employed a content-votes-based consensus method
which is similar to ours [19]. However, the essential difference lies in who have the
right to vote. Steem uses the mechanism of one ticket per token, indicating that
everyone who owns a token has the right to vote. This poses a challenge to the stability
of the system. For instance, an attacker who has enough wealth can easily influence the
voting weight in the consensus. In addition, the system provides lucrative cash bonuses
to content publishers and voters based on how many votes they cast, resulting in
vicious competition. Actually, people are more concerned with the outcome of the vote
rather than the content itself. This will make the community more and more far from its
original intentions. In this paper, we are more concerned with the value of knowledge
itself rather than the tokens.

2.2 Blockchain Consensus

Consensus algorithm is the core of a blockchain system. Because the blockchain is a
peer-to-peer decentralized network, every node can enter and leave the network at any
time. Therefore, it is desired for a reliable consensus algorithm to ensure the consis-
tency of the blockchain and the resistance of “Sybil attacks”. As one of the most
successful applications of the blockchain, Bitcoin uses the PoW consensus algorithm,
requiring nodes to meet certain computing power before it is probable to obtain block
ownership.

Bitcoin’s PoW algorithm uses the hash algorithm to calculate a random value in
order to meet pre-set conditions. Every personal computer can do such a calculation.
This coincides with the original intention of Bitcoin to allow everyone to participate in
the system. However, with the increase of the Bitcoin value, the competition for
hashing power has increased. ASIC mining machines which have a faster computing
speed than CPU and GPU appear. This results in that individual nodes are difficult to
profit only by their own resources. Subsequently, individuals are organized to form
communities of interest-sharing, which are called mining pool. Such a result obviously
departs from the original intention of Bitcoin. At the same time, this also lead to a series
of security problems [20-22]. For example, selfish mining leads to the security
assumption (that the attacker controls hashing computing power less than 50% of the
total network) is threatened. The traditional proof of stack (PoS) algorithm uses the
shares held by users in the system to express their “loyalty” to the system and obtain
the opportunity to add blocks. Although the consumption of resources for hashing
computing is reduced, the initial allocation of tokens has not been well addressed. This
may result in the rich richer. Other consensus mechanisms, such as Ripple [23],
maintain a list of trusted nodes and using voting methods to achieve faster consistency.
The problem is that the voting mechanism does not have a transcendental trust basis.

In this paper, we present the proof of reputation (PoRe). The PoRe chooses system-
friendly participants as the leader of a block and ensures that the behavior of malicious
nodes is limited.

RPchain: A Blockchain-Based Academic Social Networking Service 187

3 RPchain

3.1 RPchain Overview

RPchain is aimed to provide an academic exchange platform for scholars and serve
those who like to contribute to scientific discussions. In the current system, user
identities are represented by encrypted pseudonyms. This ensures private peer reviews.
Each user can establish its own reputation through the corresponding academic
activities. For example, users can post their own academic ideas, vote on other ideas
and discuss with other users. The architecture of the model is shown in Fig. 1.

Blockchain protocol

i 1
[ﬁf] Users : i Transactlon pool i
Blockchain !
Browser i send transactlons ! !
‘ i
e TITTm T T T T T T o i
I ! \L @ i
=3 | .
S i Smart | Trusteddata [Blockchain & !
23 0w,
o ! Contract Oracles ® i
O i
! i
I
latest !
L (Y] o N
O block block block | !
I
I

Blockchain

Fig. 1. The architecture of the RPchain model

In the RPchain model, users view the content and interact with other peers through
the blockchain browser. If a user needs to post a new topic or ask a new question, he
can send a content transaction to a new smart contract which will deal with all the
replies and votes on the topic or question. Users can also send the content transaction to
other similar smart contracts to participate in the discussion. If the user has the right to
vote, he can vote to support the content. When new blocks are found by miners
according to the consensus algorithm, the transactions and smart contracts in the
transaction pool are packaged into the latest block. At the same time, the blockchain
browser obtains the latest state of the blockchain and displays the content to users. All
of the above operations are encapsulated into the blockchain browser, allowing users to
browse RPchain just as if they were browsing a normal academic community, even
without the delay of traditional servers.

3.2 Smart Contracts

A smart contract is essentially a piece of code stored on the blockchain. When some
pre-set state is triggered, the code in the contract is executed automatically. Every node
in the blockchain runs the code to ensure that the results of the execution are correct.

In RPchain, smart contracts are mainly the carriers of content transactions and vote
transactions sent by users. At the same time, in order to facilitate scholars to use the

188 D. Qin et al.

service while guarantee the academic authority of the published content, smart contracts
are also used to register the identity of academic researchers in the real world (RPchain
allows organizations such as Research Gate to endorse users’ identities and ensure their
authenticity). The smart contracts used to process the transactions are pre-given in the
model. If needed, smart contracts use the blockchain oracle to get trusted outside data,
such as the current token price and so on. The adoption of smart contracts greatly
improves the scalability of our model and provide users with diversified services.

3.3 Reputation Building

RPchain builds user reputation based on two kinds of data. One is users’ academic
contributions to the community, including posted topics and reviews on other content.
The other is the external academic contribution in the real world which is certified by
smart contracts. Only users who have a block or authenticated scholar identity in the
blockchain have the right to vote. In the rest of this paper, we call these users as
members. Members vote for content transactions and the weights of votes depend on
the reputation of the members. Each member can only vote once for the same content
transaction.

The more votes a user receives, the higher the user’s reputation in the system. If the
user is a certified scholar, the smart contract can update his/her reputation in RPchain
based on the academic achievements obtained from the real world. Specifically, the
initial weight of votes for all members is 1.0. The weight of the votes of certified
scholars is related to his/her reputation in the real world, usually greater than 1.

3.4 RPchain Life Cycle

As shown in Fig. 2, the life cycle of RPchain is divided into three phases, namely
initial phase, extension phase, and stable phase. Each phase has a specific consensus to
meet the requirements of different developmental stages of the service.

Initialphase Extension phase | Stable phase

Consensus algorlthms

Fig. 2. The life cycle of RPchain

Initial Phase

In order to solve the cold-start problem, the main purpose of the initial phase is to
increase the number of members and content transactions. If the number of members
and content transactions is not sufficiently large, the voting results are not good enough
to reflect the reputation of a user. Hence, in the initial phase, we adopt the PoW
consensus. When the number of content transactions in the blockchain reaches a certain
amount and the proportion of votes in the content transaction exceeds a certain
threshold, the model enters the extension phase.

RPchain: A Blockchain-Based Academic Social Networking Service 189

Extension Phase

In the expansion phase, RPchain uses the PoRe for consensus. In the extension phase,
the aim of the model is to promote users who contribute to the system most as
managers of the blockchain. For security reasons, we use a function Mode() to ran-
domly output a set of content transactions with fixed sizes to participate in the con-
sensus in each round. The hash of the latest block and a specific random value, as input
to the Mode() function, determines which content transactions to participate in the
consensus. RPchain adjusts the size of the content transaction set outputted by the
Mode() function according to the speed of block generation.

Stable Phase

When the community enters into the stable phase, we allow both the PoRe and PoS
consensuses. This satisfies the needs of more nodes and allows more nodes to par-
ticipate in the maintenance of the blockchain.

3.5 Blockchain Structure

In order to optimize the scalability of the general blockchain structure, we employ the
blockchain structure used by Bitcoin-NG [24]. Bitcoin-NG separates the block leader
election process from the serialized transactions. In such a way the latency is limited
only by the propagation delay of the network, and the bandwidth is limited only by the
processing capacity of the individual nodes. As shown in Fig. 3, the blockchain contains
two kinds of blocks, namely key blocks and mini blocks. The key blocks, like the blocks
in the general blockchain structure, are held by winners in the consensus. They are also
the leaders of mini blocks during each consensus round. In each consensus round, the
key block holder is allowed to generate mini blocks at a set rate smaller than a predefined
threshold. Transactions stored in mini blocks are signed by the key block holder. Such a
structure reduces the impact of consensus delay and transaction confirmation time.
When a fork occurs, we use the longest and heaviest principle of Bitcoin-NG to choose
the most efficient chain. This promises the blockchain more security. For ease of
description, the blocks mentioned below are referred to the key block.

Mature part Immature part

Mode() ‘

Mode()
~-O0-0-0-0000%e

Mode()

B
i
E:]HH

R—AQ
[

I
I
i Hash Hash Hash
I

I
i
I
bew..] Blockchain Blockchain Blockchain ___l Key block
Status Status Status ; Y
Previous hash Previous hash Previous hash :
I

----- Tx --L TX |--4 TX p------4 Tx -{- TX - TX p------| Tx -l- TX |---LkMini
! [block
i
j

Fig. 3. The structure of the RPchain

190 D. Qin et al.

Since members’ online time is uncertain, new content transactions usually receive
very few votes at the beginning. In order to make the voting results more credible, we
divide the blockchain into two parts, namely immature part and mature part, as shown
in Fig. 3. Content transactions in the immature part cannot be used to participate in the
PoRe consensus. If the content transaction is in the mature part and is within the output
set of the Mode() function in the current round, it can participate in the consensus.

4 Blockchain Consensus and Protocol

In this section, we describe the PoRe consensus and the blockchain protocol. In order to
explain it more clearly, we first give several relevant definitions.

4.1 Related Definitions

e Hash function H(): A hash function H() is used to verify the integrity of infor-
mation. For example, a H() can be SHA256.

e The state of a block state(): The state() function contains all the relevant infor-
mation about a block, including the Merkel root of the transaction, time stamp,
block height, a target value, the status of the current blockchain, and etc.

e PoW difficulty D: The difficulty D is used to adjust the time interval that a new
block is mined in order to maintain the stable growth of the blockchain, since the
hashing computing power of the whole network is constantly changing.

e (Reputation value R) R represents the current reputation value of the content
transaction.

o KeyGen() — (pk,sk). The KeyGen() function is used to generate a key pair
(pk, sk), where the public key pk represents the address of the user (user’s identity)
in the system, and the private key sk is confidential and is used to sign transactions
in the blockchain.

o Tx(pk;, {pk;, Txis},m). The Tx() function generates a transaction and m represents
the type (tokens, contents, or votes) of the transaction. If it is a token transaction, the
sender is pk;, and the receiver is pk;. In the case of voting transactions and content
transactions, the recipient is the ID TXx;; of other content transactions, which means
voting or reviewing the content transaction.

o Sign(sk,m) — 6. The Sign(sk,m) function is used to signature message m and
outputs ¢ with a private key sk.

o Verify(a,pk,m) — {0,1}. The Verify(o,pk, m) function is used to verify that o is
the output of the user pk after signing the m. If the output of the function is 1, the
validation is successful; otherwise, it is not successful.

o weight(pk;) — w;. The weight function outputs the weight w; of pk;. The weights of
members without smart contract certification are 1.

e Maxvaild(C) — C;. The Maxvaild(C) is used to choose the best chain among
multiple valid chains, where C = {C, C;, ..., C,} is the set of valid chains in the
network, and C; is the most efficient chain of rules. The standard of choice is the
heaviest and longest principle [24].

RPchain: A Blockchain-Based Academic Social Networking Service 191

o Mode(Bpuspn, P, I,rm) — Tx{Txl, Tx,, Txs,. .., Txp}. The Mode(Bpash, P, I, rm)
function is used to output a set of content transactions that allowed PoRe consensus
in a round, where By, is the hash of the current latest block, P is the number of
content transactions allowed for PoRe consensus this turn, rm is a random number
that is generated by “iterated majority function” [25] to prevent stake grinding
attacks and [is the width of the immature part.

4.2 Proof of Reputation

The essence of the blockchain consensus process is to maintain the same status of the
ledger on different nodes. At each consensus round, an eligible node is selected to
update the blockchain ledger. The problem is which one should be selected. In
RPchain, the consensus principle is to choose a user who makes positive contributions
to the system, rather than those who have rich physical resources. Moreover, the model
represents the contribution of a user by its reputation. Therefore, we propose the proof
of reputation (PoRe) for consensus. Particularly, PoRe employs the reputation gained
by the content transactions sent by users in the system to reduce the difficulty of PoW.
This avoids the needs of ASIC mining machines and the risk of centralization. We
assume that a highly reputed user will honestly manage the blockchain.

PoRe-Based Proof of Work. The formal expression of PoRe consensus is:
H (state(),nonce) <F(R;, D)

The output of the F() function is the target value that needs to be satisfied, and it is
determined by the current input reputation value R; and the current PoW difficulty
D. The hash function H() hashes the header information and the nonce of the random
number. Once the generated hash value is smaller than the current target value, it is
considered as a successful PoRe certificate. The larger the reputation value of the
content transaction used to prove, the larger the target value of F(). This means that the
probability of getting the next block in the same physical condition increases versus the
increase of the reputation. Although PoRe has similar advantages to the PoS consensus,
it is essentially different from PoS. PoS determines the difficulty of calculation
according to the number of tokens, whereas the difficulty of PoRe is determined by the
reputation of the content transaction sent by the user.

4.3 Blockchain Protocol

The blockchain protocol determines how nodes reach consensus and update ledgers in
the network. Each node creates its own cryptographic pseudonym in the blockchain
network and uses it as the identity to receive and send messages in the blockchain
network. The miners use the allowed consensus to take ownership of new blocks and
packing transactions in the pool into mini blocks. The miner then broadcasts the latest
blockchain status to the network. Other nodes listen to the network and update the
blockchain to agree on the status. The specific protocol is shown in Table 1.

192 D. Qin et al.

Table 1. The blockchain protocol

1. The node uses KeyGen() to generate a key pair (pk, sk). Then the node can
send Tx() and sign it with Sign().The miners' running protocol monitors the
status of other nodes and updates the local blockchain to the latest chain.

2. The miners use the corresponding consensus algorithm to compete for the
ownership of the next block. The protocol allows different consensus algorithms
to be used in different phases.

a) PoW consensus. The simplified expression of PoW consensus is as follows:
H(state(),nonce) < 2%56/D

The state() is the state snapshot of the current block, including the timestamp,

the target value, the hash of the previous block, and so on. D is the current PoW

difficulty value, with the increase of the total computing power in the network.

And nonce is a random number. The entire PoW is a process that uses hashing

to continually find a nonce that meets the above inequality.

b) PoRe consensus. Miner m; uses the Mode() function to get the current set of

transactions for the PoRe consensus. With the same blockchain status, all miners

using the Mode() function in this round will get the same set of content transac-
tions. If this set does not contain the content transaction signed by m;, m; cannot
participate in the PoRe consensus this round. Conversely, if the set contains at
least one content transaction signed by m;, m; can choose one of them to partici-
pate in the PoRe consensus.

H(state(),nonce) < F(R;, pk;, Tx;q, D)

Where R; is the reputation value of the content transaction with Tx;,; issued by

pk;, specifically expressed as follows:

n
R; = Z weight(pk;)
j=1

n is the number of nodes voting on this content transaction, and the weight func-

tion weight(pk j) outputs the voting weight of the member pk;. For function

F(), the larger the value of R;, the greater the chance of getting the next block.

c¢) PoS consensus. The more shares a node holds in the system and the longer it

takes to hold the shares, the greater the probability to get the next block.
H(state(), nonce) < F(token,t, D)

In the above, token is the number of tokens used for this consensus, t is the time

lag from the begin of the node to hold these shares to the current time.

3. Once a miner successfully calculates a nonce that meets the above inequali-

ty, it broadcasts a block and the latest blockchain to the network. Then it uses

Verify() to verify the transactions in the transaction pool. The verified transac-

tions are packaged into the mini block. This process continues until the next

block is found.

4. After receiving a block, the node verifies the validity of the block and the

transactions contained in the mini blocks, add these blocks, and update the local

chain.

5. If there are multiple valid chains in the current network, that is, a fork occurs,

use Maxvaild() to select the most efficient chain and the transactions in other

chains will be replaced in the transaction pool.

RPchain: A Blockchain-Based Academic Social Networking Service 193

5 Incentive Mechanism

Whenever a new block is mined in the blockchain, some new tokens are generated to
reward the node that mines the block. Not only does this motivate nodes to actively
participate in the maintenance of the blockchain, but also eliminates the need for third-
party issued tokens. In the RP chain, tokens are used to pay for the consumption of
smart contract complexity or as bonuses for some valuable questions. The block holder
receives a certain amount of token rewards and transaction fees as a reward for
maintaining the blockchain. In particular, the block reward using PoRe consensus is
calculated by:

Ry
R=—""_
N (Tx,-d) ’
where Ry is the initial reward and N(Tx;;) is the number of times the content transaction
Tx;; was used for successful consensus. This indicates that the reward of the new block
R is inversely proportional to the number of times (n) the content transaction Tx;; is
used for PoRe consensus. This prevents malicious nodes from reusing the same content
transaction for PoRe consensus. The purpose of charging transaction fees is to motivate
miners to package transactions into the block and limit Dos attacks.

In order to encourage members to vote, we introduce the voting rewards. If a node
successfully uses a content transaction to find a new block with the PoRe consensus,
members who participate in voting the content transaction will split a fixed voting
reward according to the weight of the vote. One issue is that members may only vote
for content transactions that already have many votes in order to increase their chances
of getting a voting rewards. This reduces the quality of community content and affects
the security. To address this issue, we calculated the voting rewards R, got by member
pk; as:

R(t; — t)weight(pk;)
St (6 — tyweight(pk;)’

where weight(pk;) is the voting weight of the member pk;, R is the fixed voting award,
m is the number of members voting on the content transaction, #; is the time when pk;
votes for the content transaction and ¢ is the release time of the content.

In RPchain, we allow miners to include uncle blocks in new blocks to solve the
effects of wasted computing resources and security factors. Including uncle blocks in
the block will get extra token rewards. The included uncle blocks will also get some
token rewards to compensate for the consumption of computing power. The inclusion
of uncle blocks in the block can reduce resource consumption, increase the security of
the main chain, and further promote de-centralization of the chain.

R, =

194 D. Qin et al.

6 Experiment

We implement a prototype of RPchain and assess its security and consensus efficiency.
We build a testbed of 100 nodes using 10 physical computers, with each running 10
virtual machines. We do not consider the impact of propagation delay, and the trans-
actions on each node are prepared in advance.

In the extension phase, the model uses the PoRe consensus and the security of the
model may be impacted by two parameters: the proportion ¢ of malicious members and
the proportion & of content transactions generated by malicious nodes in the initial
phase. Since our model employs the PoW consensus in the initial phase, the parameter
J to some extent represents the proportion of computation power of malicious nodes
throughout the network. As the model uses the Mode() function to randomly select a
set of content transactions, the parameter ¢ represents the probability that a malicious
node is selected to participate in the PoRe consensus. In order to evaluate the security
of the model, we examine the proportion 6 of malicious members in the extension
phase under different values of ¢ and e.

In the experiments, we employ the Chinese restaurant process (CRP) [26] to
simulate the voting process. Imagine that a member reviews the content in the com-
munity and randomly vote on a content transaction. The voted content transactions are
chosen according to the following random process:

1. The first member always votes on the first content transaction.
2. The n-th member votes on an unvoted content transaction with probability ;—=—,

and votes on a voted content transaction with probability where c is the

_c

o+n—1°
number of votes received by the content transaction.

3. If member votes on many content transactions, we view it as a different CRP
process. However, the maximum number of votes received by a specific content

transaction is limited by the number of members.

In the above, o is a scalar parameter of the process. The larger the o, the more likely
that a member vote on an unvoted content transaction. The detailed experimental
settings are described as follows:

1. The initial phase includes 120 blocks (The genesis block not included), and the
immature part width is 20. This indicates that the Mode() function will only get the
content transactions in the first 100 blocks (the mature part) when the model firstly
enters the extension phase. That is, the 121st block will be mined by nodes
according to the PoRe consensus.

2. In the experiment, each block contains about 110 content transactions. We adjust
the probability that a node sends content transactions in each round to limit the
number of content transactions in each block. The set size output by Mode() is set to
200. Currently, we do not consider certified scholars and all members have the same
vote weight of 1.

3. Since CRP cannot simulate the behavior that malicious members are more likely to
vote on malicious content transactions, we set a fixed probability p that a malicious
member vote on a malicious content transaction. In the experiment, p = 0.9. We use
CRP to simulate the voting process of honest members in the initial phase. If there

RPchain: A Blockchain-Based Academic Social Networking Service 195

are N content transactions at the time of the simulation, we only use the first
N values of a CRP result. In each simulation, we set n ~ 120 x 110 x (1 — 3),
o = 10.

Figure 4 shows the blockchain status in the initial phase with a parameter con-
figuration of § = 50%,& = 10%. Figure 4(a) presents the stacked bar plot of the
content transactions publicized by honest and malicious nodes. It is shown that the
content transactions publicized by malicious nodes occupy about 10% of the transac-
tions in each block (recall that each node has a probability to send a content transac-
tion). Figure 4(b) presents the stacked bar plot of the average number of votes received
by content transactions publicized by honest and malicious nodes in each block. It is
shown that content transactions publicized by malicious nodes receive much more
votes than that publicized by honest nodes. However, when the model enters the
extension phase, as illustrated by the solid line A in Fig. 5, the proportion 0 of mali-
cious members decreases stably with the growth of the blockchain. This is because
more honest nodes are selected as members because their content tractions are more
likely to be selected by the Mode() function. The results show that malicious nodes in
the system are limited by both the computation power and the number of the content
transactions. We also conduct experiments with different parameter configurations and
obtain similar results. The situation will be even better if we take into account certified
scholars.

140 - 100
Honest m Malicious Honest ® Malicious
5 120
Do ML |
2100 o
(=]
= 80 S 60
S o
=
g o0 S 40
2 $
G 40 P
= 20
20
0 0
1 11 21 31 41 51 61 71 81 91 1 11 21 31 41 51 61 71 81 91
Block Height Block Height
(a) The number content transactions (b) The average number of votes

Fig. 4. The blockchain status in the initial phase (6 = 50%, ¢ = 10%)

In this experiment, we compare the performance of the Bitcoin-NG structure with
that of the ordinary blockchain structure. We evaluate the efficiency by measuring their
consensus delays. The consensus delay is the best point-consensus-delay the system
achieves for a certain fraction of the time, on average [24]. More formally, the (p, 1)
consensus delay of a system is the p-percentile t-point-consensus-delay. For example,
if 90% of the time, 50% of the nodes agree on the state of the state machine 10 s ago
(but not less than that), then the (50%, 90%)-consensus delay is 10 s. The consensus
delay is affected by the size and generation time of a block. In this experiment, we take

196 D. Qin et al.

60
50
40

30

0(%)

20

10 A

120 130 140 150 160 170 180 190 200 210 220
Block Height

Fig. 5. The blockchain status in the extension phase (A: ¢ = 10%, ¢ = 50%; B: ¢ = 10%,
0 =40%; C: ¢ = 40%, 6 = 50%; D: ¢ = 40%, 6 = 40%;)

the (90%, 90%)-consensus delay based on block generation times. Then we set the
block average generation time to 1 s, which means that in the model using the Bitcoin-
NG’s structure, an average of 1 s to generate a key block. We adjust the generation rate
of the mini-blocks in order to keep the throughputs of the two models with different
structures the same. The experimental results are shown in Fig. 6. It is shown that the
consensus delay increases with the increase of block size. However, the consensus
delay of the model using Bitcoin-NG’s structure is lower than that using the general
blockchain structure. This indicates that our RPchain is more efficient than the common
blockchain model in terms of consensus efficiency.

—@— Bitcoin-NG —@— Normal

Consensus Delay (s)
sy

1 20 40 60 70 90 110 130 140 160 180
Block Size (KB)

Fig. 6. Evaluation of consensus delay

RPchain: A Blockchain-Based Academic Social Networking Service 197

7 Conclusion

In this paper, we present RPchain, a blockchain based academic social networking
service model. Three kinds of transactions are designed to build user reputation based
on other users’ reviews. In order to maintain the virtuous cycle of RPchain, we propose
a novel service-oriented consensus algorithm which exploits users’ reputation to
consensus. We also design appropriate rewards to incent the contributions of users to
the community. Finally, we implement a prototype of the model can conduct experi-
ments to evaluate the security and efficiency of RPchain. The experimental results show
that our system is secure as long as the proportion of malicious members is less than
50% and the proportion of content transactions generated by malicious members is less
than 40%. In addition, our model is more efficient than the general blockchain
structure.

Acknowledgement. The research presented in this paper is supported in part National Natural
Science Foundation of China (No0.61602370, 61672026, 61772411), Postdoctoral Foundation
(No0.201659M2806) of China, Fundamental Research Funds for the Central Universities
(No0.1191320006).

References

1. Nicholas, D., Herman, E., Jamali, H.R.: Emerging Reputation Mechanisms for Scholars.
European Commission, Institute for Prospective Technological Studies (2015)

2. Nosek, B.A., et al.: Promoting an open research culture. Science 348, 1422-1425 (2015)

3. Pearce, N., et al.: Digital scholarship considered: How new technologies could transform
academic work. Education 16(1) (2012)

4. Greenhow, C., Robelia, B., Hughes, J.E.: Learning, teaching, and scholarship in a digital
age: Web 2.0 and classroom research: what path should we take now? Educ. Res. 38(4),
246-259 (2009)

5. Jamali, H.R., Nicholas, D., Herman, E.: Scholarly reputation in the digital age and the role of
emerging platforms and mechanisms. Res. Eval. 25, 37-49 (2015)

6. Egghe, L., Bornmann, L.: Fallout and miss in journal peer review. J. Doc. 69(3), 411-416
(2013)

7. Fitzpatrick, K.: Peer to peer review and the future of scholarly authority. Soc. Epistemol. 24
(3), 161-179 (2010)

8. Zuckerman, H., Merton, R.K.: Patterns of evaluation in science: institutionalisation, structure
and functions of the referee system. Minerva 9(1), 66—-100 (1971)

9. ResearchGate. https://www.researchgate.net. Last accessed 1 Mar 2018

10. Mendeley. https://www.mendeley.com. Last accessed 1 Mar 2018

11. Nicholas, D., Herman, E., Clark, D.: Scholarly reputation building: how does researchgate
fare. IKCDT 6(2), 67-92 (2016)

12. Jeng, W., He, D., Jiang, J.: User participation in an academic social networking service: a
survey of open group users on Mendeley. JAIST 66(5), 890-904 (2015)

13. Kieslinger, B.: Academic peer pressure in social media: experiences from the heavy, the
targeted and the restricted user. First Monday 20(6) (2015)

14. Ford, E.: Defining and characterizing open peer review: a review of the literature. J. Sch.
Publishing 44(4), 311-326 (2013)

https://www.researchgate.net
https://www.mendeley.com

198

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

D. Qin et al.

Sharples, M., Domingue, J.: The Blockchain and Kudos: a distributed system for educational
record, reputation and reward. In: Verbert, K., Sharples, M., Klobucar, T. (eds.) EC-TEL
2016. LNCS, vol. 9891, pp. 490-496. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-45153-4_48

Dennis, R., Owenson, G.: Rep on the roll: a peer to peer reputation system based on a rolling
blockchain. Int. J. Dig. Soc. (IIDS) 7(1), 1123-1134 (2016)

Schaub, A., Bazin, R., Hasan, O., Brunie, L.: A trustless privacy-preserving reputation
system. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016. IAICT, vol. 471, pp. 398-
411. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33630-5_27

Konforty, D., et al.: Synereo: The Decentralized and Distributed Social Network (2015).
Self-published

Steem. https://steem.io. Last accessed 1 Mar 2018

Eyal, I, Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: International
Conference on Financial Cryptography and Data Security, pp. 436-454. Springer,
Heidelberg (2014)

Kwon, Y., et al.: Be selfish and avoid dilemmas: Fork After Withholding (FAW) attacks on
Bitcoin. In: CCS. ACM (2017)

Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:
1112.4980 (2011)

Ripple. https://ripple.com. Last accessed 1 Mar 2018

Eyal, L, et al.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI (2016)

Bentov, 1., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
International Conference on Financial Cryptography and Data Security, pp. 142-157.
Springer, Heidelberg (2016)

Blei, D.: COS 597C: Bayesian nonparametrics. Lecture Notes in Princeton University.
https://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf

http://dx.doi.org/10.1007/978-3-319-45153-4_48
http://dx.doi.org/10.1007/978-3-319-45153-4_48
http://dx.doi.org/10.1007/978-3-319-33630-5_27
https://steem.io
http://arxiv.org/abs/1112.4980
http://arxiv.org/abs/1112.4980
https://ripple.com
https://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf

q

Check for
updates

IPFS-Blockchain-Based Authenticity
of Online Publications

Nishara Nizamuddin, Haya R. Hasan, and Khaled Salah®?

Department of Electrical and Computer Engineering,
Khalifa University of Science, Technology and Research, Abu Dhabi, UAE
{nishara.nizamuddin, haya. hasan,
khaled. salah}@kustar. ac. ae

Abstract. In this paper, we propose a solution to provide originality and
authenticity of published and posted freely online digital content such as books,
music, and movies. Our solution utilizes a blend of newly emerging technolo-
gies that primary include (InterPlanetary File System) IPFS and blockchain
smart contracts. IPFS is used to store digital content with a high integrity and
global accessibility to all, and Ethereum smart contract is used to govern,
manage, and provide traceability and visibility into the history of digital content
from its origin to the latest version, in a manner that is decentralized and
globally accessed with high integrity, resiliency, and transparency. In the paper,
our solution is focused on online book publication, but the solution can be a
framework that can be easily extendible and adoptable for, to other digital and
multimedia content. The full code of our smart contract is provided, with dis-
cussion on implementation and testing of its key functionalities.

Keywords: Ownership authenticity - Originality - Online publishing
Blockchain - Ethereum - Smart contracts

1 Introduction

The Internet and the digital era have unleashed the unique access to information. With
the increased ease in information access and sharing, the authenticity of freely posted
and published digital materials is always questionable. The authenticity of digital
content is a major challenge for today’s online book publishing industry, and digital
content in general, as those of multimedia, movies, music, etc. Digital content, avail-
able on the internet, during its lifetime can be modified, copied, reproduced, translated
into different languages, re-published, and reformatted. There is an immense need for
an appropriate authenticity with the ability to trace and track the publication history of
posted online material to the original author, writer, or artist, with high degree of trust,
credibility, and integrity.

In practice, a hardcopy manuscript of a book or newspaper article can be printed,
scanned, digitized, and translated into different languages—resulting in multiple ver-
sions of the original manuscripts which were published by different publishing entities
or individuals. That is, digital content available across various resources such as online
journals, e-books, and websites can indeed be subjected to illegitimate alteration that

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 199-212, 2018.
https://doi.org/10.1007/978-3-319-94478-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_14&domain=pdf

200 N. Nizamuddin et al.

ultimately leads to tainted information access. Also, there is a lack of a strict audit to
ensure that the digital book is verifiable, complete and accurate. While e-book is
collated and printed from diverse sources, the authenticity and integrity of digital asset
is at stake.

Problem Statement. To date, there exists a lack of authenticity and integrity of digital
content made available online. Freely posted and published online digital contents are
not tampered-proof and their publication history cannot be easily tracked in a credible,
trusted, open, and decentralized manner. As shown in Fig. 1, a book can be published,
and re-published by different publishing entities, and thus producing multiple versions
of the original book. The book is originally written by the author which can be made
available to public users via various resources such as handwritten manuscript, physical
print media, e-books and Internet sources. The credibility of a digital document cannot
be checked at any point as the publishers are not accountable for the content published.
Furthermore, the readers are totally unaware about the accuracy and authenticity of the
available e-book. Typical readers usually accept the online versions of digital manu-
scripts despite being tampered with.

Figure 1 shows the traditional way of public readers accessing digital assets of
e-books from available resources. The original work of the author undergoes various
stages of publication process before it reaches the end user i.e., the readers. Typically,
author writes the book and chooses a main publisher to submit his original work. The
main publisher is granted the publishing permission from the author. Figure 1 illus-
trates the scenario where secondary publishers (P, P,...P,) request for publishing
permission in different versions from the main publisher. The main publisher P grants
permission to the requesting publishers upon agreeing to the terms and conditions are
accepted by both the parties. The same book can have many editions and versions with
different versions being translated in many languages. In today’s book publishing
industry, a certain online book version cannot be traced back to an original author, as
information is usually defragmented and not available to all readers to verify and
examine the authenticity and originality of published content.

e
C‘\-\“eﬁ 1 Chmeseversuonl “
_—

accessed § 4

o
\0\\‘; -
<V S

&S 6‘3«@ Publisher,P ; ; Readers

S :

e S H

& q&““e H

NS

‘N‘o\ e L Reguest to Publish in Hindi Hindi version »
\‘es“o 6‘3‘\‘?}) P Request Granted [= accessed . ?
2, eO\ X . & i
Submit original manuscript N k « ?&Q\,e" : eQU@sp’ et Readers
Request to publish :)i(’ . . R b Publisher P
| ,— : eq[, Vs, . 1n
S ”’4
"z '9,5, N -

| Request Granted
o1, Arabic version

Author Main Publisher P 63, accessed (G b
G
e, 111,// I
Q¥ *‘77 Readers
Publisher P, ;
LL.‘JJ English version hﬁ
accessed '

Publisher P,

Fig. 1. Production of different versions of an online book through various publishers

IPFS-Blockchain-Based Authenticity of Online Publications 201

Blockchain is a newly emerging and disruptive technology that can be key in
providing a solution to authenticity of digital materials. Blockchain is the underlying
technology of the cryptocurrency bitcoin, but now is seen as a distributed ledger that
can be accessed globally by anyone to verify stored data and content, with high
integrity, resiliency, credibility, and above all traceability [1]. All of this is done in
de-centralized manner and without intermediaries. Later, Ethereum smart contracts
provided the ability to upload and execute code that carries out business logic to the
blockchain [2, 3]. The smart contract code resides on a blockchain as multiple functions
with unique addresses that can be called by any user of the blockchain.

Blockchain, however is an expensive medium for data storage, especially for large
data and digital content. For efficient storage of large data and content, we propose
using IPFS file system. IPFS stands for Inter-Planetary File System [4], which is a
distributed, decentralized file system and a platform to store data and files with high
integrity and resiliency. Fundamentally, IPFS is a peer-to-peer, open source, content
addressable globally distributed file system that can be used for storing and sharing
large volume of files with high throughput. Our proposed solution makes use of both
blockchain smart contracts and IPFS, whereby the digital contents are stored on the
IPFS and the IPFS hashes are stored into the blockchain smart contracts to provide
traceability and authenticity. Specifically, the hash generated on storing the documents
to IPFS, can be stored in the smart contracts effectively and documents can be accessed
using the hash. If there is any change in the content of the digital document, the hash
changes, to show that the original content was modified and altered.

In this paper, we propose a combined IPFS-blockchain-based solution to solve the
authenticity and originality of digital content posted freely on the Internet. In the paper
we show how this problem can be solved for online published books, but our solution
can be extended and adopted for, to other digital and multimedia content. We show
how our solution has the ability to trace and track the digital content, with its different
published versions, back to the certified true copy created by the original author. The
main contributions of this paper can be summarized as follows:

e We propose an IPFS-blockchain-based solution and framework for providing
authenticity of published online books and digital content. Our solution provides
decentralized storage and governance with different versions of the original book
being stored, tracked, and traced with high integrity, and resiliency.

e We present and discuss the system design and architecture, along with sequence
diagrams to illustrate the interactions among participants which include author,
main publishers, secondary publishers, and readers.

e We provide the full code of the smart contract, and discuss key implementation and
testing details to demonstrate the proper operations and functionality of the overall
system.

The remainder of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 presents our proposed solution for improving authenticity of
online books. Section 4 describes key aspects of the implementation and testing of the
smart contract. Section 5 concludes the paper.

202 N. Nizamuddin et al.

2 Related Work

In this section, we provide a brief background on the existing approaches found in the
literature related to authenticity and originality of books in the publishing industry
using blockchain technology. Ericsson [5] proposes a blockchain-based system for
tracking the origin of digital assets. It is by converting the digital content and books
into a binary file and to store the hash on blockchain. This hash is stored generally with
an identifier for the owner. The paper focusses on the idea that ownership can be
verified by checking the integrity of digital assets at any point of time. This is achieved
through the verification by a centralized unit for security of digital documents such as
Security Operations Center (SOC) to estimate the legitimacy of digital assets. But the
system itself deviates from the decentralized concept as it operates in the presence of a
centralized security unit and has a precarious state for breach of integrity. Moreover the
file storage is done on a centralized server which can be a single point of failure,
corruption, hacking or compromise.

Gaetani et al. [6] propose a verification ID which can be used for blockchain-based
authenticity of digital assets. This ID is inherently a digital block on the blockchain that
can be used for verification of the e-document. That is, whenever an ID is added to the
blockchain, an identification certifying service combines the public key with the
owner’s ID and transfers the ownership of the private key to the user. A blockchain
centered handshake mechanism is employed to ensure authenticity of the e-document.
But this method suffers detrimental effect as it is purely based on the trust factor on the
requesting entity. As the identity of the requesting body is not always reliable in the
digital world, the system is not stable enough to provide a secure storage and access of
documents online.

The author in [7] proposes a blockchain-based model for publishing online books
and for providing integrity of the digital document. The author achieves authorship by
storing the book/file hash and the owner’s name in pairs. The author argues that by
storing the hash of the file and the block timestamp as pairs, integrity of the
document/file can be proved. If the content of the file was modified, then its hash will
change, and the smart contract won’t be able to access the file, therefore proving that
the file content was modified. Sun ez al. [8] describes a framework for evaluating the
trust issues when storing online documents in decentralized networks. In this paper,
authors present a framework to quantitatively measure trust, model trust propagation,
and defend trust evaluation systems against malicious attacks. This system was used to
secure adhoc routing and support to unmask malicious node in a decentralized envi-
ronment but is not yet implemented as a real-world application.

The authors in [9] propose a blockchain-based personal data management system to
ensure that document owners have complete authority over their asset. This model
features a blockchain-based automated online document access control system thereby
eliminating trust in a third party. Blockchain and off-blockchain storage is combined to
construct a management platform which precedes to trust based computing. But the
work does not describe about the feasibility of storing larger files. Morgan [10] presents

IPFS-Blockchain-Based Authenticity of Online Publications 203

the idea of using blockchain technology to prove the existence of a document using the
timestamping concept. The author discusses a method where the document is presented
to a site which in turn converts the document into a cryptographic hash. The hash
generated represents the content of the document. If the original document is presented,
same hash will be generated, notifying that the document is authentic. However, if
there is any modification of content, the newly generated hash will not match with the
previous hash. The legitimacy of the document can be verified, but this system is not
focused about the authority of the owner on his/her document.

Acronis Notary system described in [11] is a blockchain-based notary service
which aims at providing a solution for timestamping digital documents. As blockchain
is a very expensive storage medium for storing large documents, the proposed approach
is to send file hashes to the Notary service. This service calculates hash value, based on
the received file hashes and saves the new hash obtained, on the Ethereum network.
A verification certificate is provided specifying the technical details of the document.
Whenever the document is reflected in user interface, it is shown as ‘notarized’ or
‘certified’ by Acronis. By doing so, the system gives an assurance to the user that the
online document is identical to the original version, on a bit-by-bit basis. This method
supports providing notarization for document authenticity and a certification that an
e-book existed at some point of time in the chain. But it doesn’t clearly state about the
author’s rights to claim the ownership of digital book in the decentralized environment.

3 Proposed Solution

Our solution is based on using IPFS and smart contracts of Ethereum blockchain. IPFS
is used to store the digital content (of the e-book or multimedia files) in a decentralized,
distributed manner that is publicly and globally accessible by all through the use of
IPES hashes. This IPFS hash is used by the smart contract of Ethereum blockchain to
ensure integrity, originality, and authenticity. The hash value remains the same if the
content of the document or e-book remains intact. If there is an alteration of content
during the publication stages, the IPES hash for the book changes, and would then not
match the hash stored within the smart contract. Therefore, each participating entity can
track back, and verify the accuracy and history of e-books being stored in the file
system and be assured that the book accessed is a legitimate copy of the author’s work.

3.1 System Architecture and Design

Figure 2 illustrates the overall system architecture and design for automating the online
books authenticity, originality, and integrity using IPFS and Ethereum smart contracts.
The proposed solution uses smart contracts to trigger events that are logged to notify
the participating parties to keep track of events and transaction details. The figure
highlights the interactions of the smart contract with main participants that include
author, main publisher P, secondary and other publishers, and readers. The participants
of the smart contract can be summarized as follows:

204 N. Nizamuddin et al.

Ethereum Smart Contract Q IPFS

9. Request to 2. Request for Iy
publish Validation |
1. Create of content }
contract| 4. Approve to =
10. Grant publish ?g,‘
permission to !
z'eGZZ: publish 5. Upload book ‘g}
: to IPFS g
ol
. . |
Author Main Publisher P gl
Other publishers and é(‘:,‘\
List of secondary publishers 6. Request to 7. Grant <
Attested requesting permission download Download 8
Books from P List of all }
Reauests Readers | 8 G2in Access toread |

11. Upload book following the approval from P

Fig. 2. An overview of the system architecture for automating the online books authenticity
using IPFS and Ethereum smart contracts.

e Author: The author or artist is the person who owns the IP and original work of the
book or digital content. The author creates the smart contract and provides per-
mission for one or more publishers to publish his digital content. The main pub-
lisher is also involved in validating and notarizing the book content presented to it
by the publishers. The publisher gets to upload the content on IPFS, only if the
notarization by author is successful. The author also maintains the original hash of
the book.

e Publisher: The publisher is the entity which obtains permission from the author to
publish the manuscript content in various sources such as web pages, printed books
and e-books. The main responsibility of a publisher is to maintain the digital content
intact as presented by author. Also, a publisher uploads the digital content to IPFS
and the IPFS hash is stored in the smart contract with the author’s validation and
verification.

e Other and Secondary Publishers: A book can be translated into different lan-
guages and can have different versions or editions produced by different publishers
who produced the book in agreement with the original author or with the main
publisher.

e Readers: Readers are those who request access for legitimate digital books. The
smart contract provides the readers with trace back functionality to verify the
originality of the book. The readers can access the history of notarizations regarding
the originality, authenticity, and integrity of the book.

In our proposed solution, the author initially writes the book, creates the contract
which includes key attributes about the book to include book title, original hash of the
book and author details. Offline, a main publisher seeks publishing permission from the
author after finalizing publishing terms. The publisher, then requests for an approval
from the original author before uploading the book to IPFS, which returns a hash. The
author then examines the stored IPFS file (with the given IPFS hash) to the original

IPFS-Blockchain-Based Authenticity of Online Publications 205

content submitted to the main publisher. The author concludes that the digital manu-
script is uncorrupted and attests the publisher copy. The author has a list of books he
attested, and also the publishers have a list of book versions attested by them.
Readers or other secondary publishers can also request for content validation his-
tory, to know about authenticity of digital manuscript. Once the book is made available
on the IPFS, a reader or a secondary publisher can request for history of validation
proof. This can be needed to make sure that the document has the notarization of the
main publisher from whom publishing permission was granted and the attestation of
the original author who validated for the main publisher to publish the content. The
smart contract has the ability to display the list of attestations for that the e-book along
with the address of the requesting entity, address of the publisher who provided access
for the document and the address of the original author. The validation history helps to
track and trace back the history of attestation provided for the digital documents.

4 Implementation and Testing

Our smart contract was implemented and tested using Remix IDE http:/remix.
ethereum.org. In this section, we provide the implementation details and focus pri-
marily on testing the correct interaction and functionality among system participants.
Remix IDE offers rich features that make it possible to test and debug smart contracts
prior to deploying them.

4.1 Implementation Details

The code was written in Solidity using the web browser-based IDE, Remix. There are
three entities participating in the contract, author, publisher, readers/secondary pub-
lishers. Each of the entities has an Ethereum address and can participate by calling
functions within the smart contract at certain time stamps. Figure 3, illustrates the
message sequence diagram for granting publishing permission with a successful
attestation and a failed attestation by author. It shows the interaction between publisher,
author and smart contract.

Figure 4 represents the message sequence diagram for successful and failed trace
back of validation history between the requesting readers or secondary publishers, main
publisher and the author. Figure 4 illustrates the flow of traceBackHistory ()
function and events ValidationHistorySuccess and FailedvValida-
tionHistory on successful and failed trace back history of attestations respectively.

Next, we show the important code snippets of our smart contract. The smart contract
code is available at: https://github.com/SmartContractl/DataAuthenticityForOnline
Publications. To track the state of publishers and their approval results we use map-
ping, which represents a key-value pair. We also maintain a mapping to record a list of
approvals by author and the hash provided by publishers during attestation process.
Figure 5 shows mapping where every Ethereum address points to the address of pub-
lishers who submitted request for approval and hashes provided by publishers. Figure 5
also shows a mapping which consists of a list of books approved by authors and a
mapping consisting of state of publishers.

http://remix.ethereum.org
http://remix.ethereum.org
https://github.com/SmartContract1/DataAuthenticityForOnlinePublications
https://github.com/SmartContract1/DataAuthenticityForOnlinePublications

206 N. Nizamuddin et al.

T

-

| . |
provideApprovalResult(true)

: | If validation/attestation by

| === »l Author is successful (if

: | bookHash matches)

createContract() J

|

___________ ContractCreated !

———— e e —|

| " |

| Offline: Choose the publisher and finalize terms |

| |
| : | _— Functions

} ! requestApproval() !

i | —_ Events
| RequestedForApproval | |
e F———— e -l
| |

|
|
|
|

failure (if bookHash do
not match)

T If validation /attestation is

Fig. 3. Message sequence diagram showing scenarios of successful validation and a failed
validation.

Autlhor | | Smart Clontract | | Publisher Readers / Sub-publishers
! . |
| I I
: I traceBackHistory(su';cess) '
| i : | Upon successful trace back of
L_ ____________ "_ _ ValidationHistorySuccgss +: attestation history.
| ¥

| | [
: > Functions :g {traceBackHistory(failure) :,,
| |———, Events | : : Upon failure to trace back
| | b
I | FailedVaIidationHistory{ | | attestation history.
e S aaa R e s »ly

| |

Fig. 4. Message sequence diagram showing scenarios of successful validation trace back and a
history of failed validation trace back.

mapping (address=> bool) public recordList;//addresses of publishers and results (true or false)
mapping (address => bool) public approvedAuthors ;

mapping(address=>string) public bookHashes; //hashes provided by publishers
mapping(address=>publisherState) public publishers;

Fig. 5. Mapping of publishers and books attested by author (See footnote 1).

IPFS-Blockchain-Based Authenticity of Online Publications 207

Figure 6 represents constructor OnlineBooksAuthenticity () which shows
that author is the owner of contract. It comprises of initialization such as the au-
thorName, bookInformation and most importantly consists of the original book
hash. The state of contract initially is NotReady. The author creates the contract and
executes the CreateContract ()' function and invokes ContractCreated
event.

/constructor
function OnlineBooksAuthenticity(){
bookInformation = "Work of Fiction";
author= msg.sender;
authorName= "Danielle Steel";
IPFShashAuthor= "QmXgmSQVTy8pRtKrTPmoWPGXNesehCpP4jjFMTpvGamclp™;

contState = contractState.NotReady;
numberOfRequestsByPublishers = 0;
numberOfApprovalsByAuthor = @;

Fig. 6. Constructor of the smart contract OnlineBooksAuthenticity () code (See
footnote 1)

Figure 7 demonstrates the requestApproval () function for publisher
requesting attestation from the author. At this stage, the state of the contract is
Created and the publisher state will be ReadyToSubmit. The publisher state
changes to SubmittedForApproval and the contract state changes to Wait-
ingToProvideApproval. The event RequestedForApproval is triggered
and the publisher waits for the approval results (True/False) from the author.

function requestApproval(address publisherAddress, string bookHash) NotAuthor {
require(contState==contractState.Created && publishers[publisherAddress] == publisherState.ReadyToSubmit);
publishers[publisherAddress] = publisherState.SubmittedForApproval;
contState = contractState.WaitingToProvideApproval;
bookHashes[publisherAddress] = bookHash; //update the mapping
RequestedForApproval (msg.sender, “Attest and validate document to proceed for publishing”);
numberOfRequestsByPublishers += 1;

}

Fig. 7. Smart contract function for publisher requesting attestation from author (See footnote 1)

In this paper, we have considered two scenarios based on the approval results
provided by the author for every publisher requesting an attestation or validation before
uploading the book to IPFS. We have considered two other scenarios based on the
attestation history results requested by either readers/secondary publisher. The four
scenarios are as follows:

! The code is available at: https:/github.com/SmartContract1/DataAuthenticityForOnlinePublications.

https://github.com/SmartContract1/DataAuthenticityForOnlinePublications

208 N. Nizamuddin et al.

1. If the book validation results i.e. provideApprovalResult () is “True”, the
transaction is successful, and the smart contract directs the publisher to upload the
authentic book to the IPFS and the book is now freely available for readers to
access.

2. If provideApprovalResult () yields “False”, the author does not approve the
online book content as the hash submitted by publisher while requesting for
attestation does not match the original hash of the book which is stored in smart
contract. The change in hash clearly indicates, that the original content was
changed/modified. The author triggers an event soliciting the publisher to amend the
content as per original document and to resubmit for attestation.

3. If the attestation history trace back i.e. traceBackHistory () is successful, the
list of attestation made for the book is provided to requesting entity.

4. When traceBackHistory () is a failure, it indicates that the book accessed is
not validated and hence the requesting entity is provided with the detail that the
book is not an authentic work of author.

4.2 Testing and Validation

In this section, we test the correctness of the interaction among participants, and the
correct functionality of the overall system. Testing of the smart contract ensured that
the flow of the contract followed the correct sequence, validations and refusals of
e-book submitted were tested correctly and the attestation history tack back function-
ality executed correctly. In this paper, the smart contract is tested for 4 different
scenarios. Figure 8 shows the various testing scenarios carried out. The first test group
is on the approval from author to publish the book. It is further classified for testing two
scenarios — Validation success and Failed Validation. The second test group represents
readers or secondary publishers requesting for attestation history details. Test case 2
has two scenarios: Successful traceability, and Failed traceability. All the test cases are
discussed in detail in the next subsection.

Testing Scenarios

Test case: Approval for
publishing an eBook

\: 1. Successful Validation
2. Failed Validation

Test case: Traceability of
Publication History

‘: 3. Successful Traceability
4. Failed Traceability

Fig. 8. Smart contract testing scenarios

IPFS-Blockchain-Based Authenticity of Online Publications 209

Fig. 9. Logs showing event RequestedForApproval triggered (See footnote 1)

4.2.1 Test Case 1

Firstly, we test the smart contract for a successful validation scenario. For testing
purpose, we consider the Ethereum address of the author to be 0xca35b7d915
458ef540ade6068dfe2f44e8fa733c, the addresses of publishers who submit
the request for attestation or validation to be 0x14723a09acff6d2a60dcd-
f7aa4aff308£fddc160c for Publisherl and 0x4b0897b0513fdc7c541b6d
9d7e929c4e5364d2db for Publisher2. We tested, as shown in Fig. 9, the case
when the publisher request for a validation to publish from the author. The event
RequestedForApproval is triggered and Publisherl waits for the author to attest
its content.

The original hash of the book is “QmXgm5QVTy8pRtKrTPmoWPGXNeseh
CpP4jjFMTpvGamclp”. Firstly, we test for the scenario of successful attestation/
validation of book by the author with Publisherl. Upon successful attestation, events
PermissionGrantedToPublish and ValidationSuccess are triggered and
Publisherl is granted the permission to upload the book on IPFS. Figure 10 shows the
scenario of successful validation provided to Publisherl by author.

Fig. 10. Logs showing a successful attestation (See footnote 1)

4.2.2 Test Case 2
Secondly, we test the smart contract for the scenario of a failed validation with Pub-
lisher2. The validation fails because of change in hash provided by Publisher2 while

210 N. Nizamuddin et al.

requesting attestation to publish. The author refuses approval and asks Publisher2 to
resubmit the document after making the necessary amendment. We tested a case, where
Publisher2 submitted a different hash value - “OmYh1A5gcUXXAXEPaVmMY7Frg-
wb6rGwyUgE5uc71ThtuoAUM”. Figure 11 shows that the approval failed, and the
author recommends for amendment of content before resubmitting for attestation again.
Events FailedApproval and ReviseContent are invoked to notify Publisher2
to amend the book content.

Fig. 11. Logs showing a validation failure with events FailedApproval & ReviseCon-
tent triggered (See footnote 1)

4.2.3 Test Case 3

Next, we tested for successful traceability of the attestation history of the document
with a reader whose Ethereum address is 0x583031d1113ad414£f02576b-
d6afabfb302140225. The reader requests to prove that the document is the
original work of the author and has a notarization proof. Figure 12 represents the

Fig. 12. Logs showing event ValidationHistorySuccess triggered to show the content
validation history of the book (See footnote 1)

IPFS-Blockchain-Based Authenticity of Online Publications 211

scenario where the validation history of the document is obtained successfully dis-
playing the address of Publisherl from whom the reader obtained book access, the
address of the original author. Event ValidationHistorySuccess is triggered
and the smart contract assures the reader that the received copy is a legitimate work.
The logs also show that the book was initially attested by author and the readers can
confirm that the received book is authentic.

424 Test Case 4

Lastly, we test for the scenario of attestation trace back failure with 0xdd870-
falb7c4700£2bd7£44238821c26£7392148, the address of the secondary
publisher who requests for attestation history trace back from another publisher
0x583031d1113ad414£02576bd6afabfb302140225. Figure 13 shows the
testing results. Event FailedvalidationHistory is invoked as the attestation is
not done by the actual author. This event indicates that the online book requested by the
secondary publisher is not attested by the Publisher2 to whom the request for validation
history was made.

Fig. 13. Logs showing event FailedvalidationHistory invoked (See footnote 1)

5 Conclusion

In this paper, we have proposed a solution to solve the originality and authorship
authenticity of freely published and posted online books and documents using IPFS and
Ethereum smart contracts. Our solution is focused on authenticity of online books, but
the solution in terms of architecture, design, sequence diagram, logics, smart contract
code, and overall aspects are generic enough to be easily extended and used to provide
the originality and authenticity, as well as integrity, to all other forms of digital assets.
We implemented and verified the functionalities of the smart contract code using
Remix IDE. As a future work, we plan to deploy the smart contracts on the real IPFS
and Ethereum network and develop frontend Decentralized Applications (DApps) with
different views to authors, main publishers, secondary publishers, and readers.

212

N. Nizamuddin et al.

References

10.

11.

. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. White paper
. Toyoda, K., et al.: A novel blockchain-based Product Ownership Management System

(POMS) for anti-counterfeits in the post supply chain. IEEE Access PP(99), 1 (2017)

. ‘Ethereum’. http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html/. Accessed

20 Dec 2017

. Pors, M.: Understanding the IPFS White Paper part 2. https://decentralized.blog/

understanding-the-ipfs-white-paper-part-2.html. Accessed 18 Mar 2018

. Ericsson Home Page, Ericsson White Papers — “Industrial Blockchain and Data Integrity”.

https://www.ericsson.com/hyperscale/cloud-infrastructure/data-centric-security/data-
integrity-assurance. Accessed 16 Feb 2018

. Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone, V.:

Blockchain-based database to ensure data integrity in cloud computing environments. In:
1st Italian Conference on Cyber Security, ITASEC17, Venice, Italy, pp. 146-155 (2017)

. Prusty, N.: Building Blockchain Projects — Develop Real-Time Practical DApps Using

Ethereum and JavaScript, 1st edn. Packt Publishing Ltd., Birmingham (2017)

. Sun, Y., Han, Z., Yu, W., Liu, K.J.R.: A trust evaluation framework in distributed networks:

vulnerability analysis and defense against attacks. In: INFOCOM 2006. Proceedings of the
25th IEEE International Conference on Computer Communications, Spain, pp. 1-13 (2006)

. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect

personal data. In: 2015 IEEE Conference Proceedings of the Security and Privacy
Workshops (SPW), San Jose, CA, USA, pp. 180-184 (2015)

Morgan, P.: Using blockchain technology to prove existence of a document. https:/
bravenewcoin.com/news/using-blockchain-technology-to-prove-existence-of-a-document/.
Accessed 20 Feb 2018

Acronis Inc.: Acronis Notary: a new way to prove data authenticity via blockchain. https://
www.acronis.com/en-us/articles/data-protection. Accessed 21 Feb 2018

http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html/
https://decentralized.blog/understanding-the-ipfs-white-paper-part-2.html
https://decentralized.blog/understanding-the-ipfs-white-paper-part-2.html
https://www.ericsson.com/hyperscale/cloud-infrastructure/data-centric-security/data-integrity-assurance
https://www.ericsson.com/hyperscale/cloud-infrastructure/data-centric-security/data-integrity-assurance
https://bravenewcoin.com/news/using-blockchain-technology-to-prove-existence-of-a-document/
https://bravenewcoin.com/news/using-blockchain-technology-to-prove-existence-of-a-document/
https://www.acronis.com/en-us/articles/data-protection
https://www.acronis.com/en-us/articles/data-protection

®

Check for
updates

Blockchain Framework for Textile Supply

Chain Management
Improving Transparency, Traceability, and Quality

Magdi ElMessiry!® and Adel ElMessiry>®

! Textile Engineering Department, Faculty of Engineering, Alexandria University,
Alexandria, Egypt
mmessiry@yahoo.com
2 Garment Chain, Nashville, TN, USA

ammessir@ncsu.edu

Abstract. Modern textile supply chain systems are both large and
complicated, with global sources and suppliers feeding into production
lines that can span continents. A substantial amount of defects can’t be
directly traced back to defective batches that entered the supply chain
along the way, causing waste and frustration downstream. Traceability is
almost impossible due to the number of stages the product goes through
and the size of data involved. No single system is globally utilized to
record and trace the product throughout the supply chain. By the time
the root cause of the issue is discovered, no recourse is possible except
to discard the end product, resulting in losses that could reach 40%
of the end product value. Communicating quality issues cross-stream is
virtually nonexistent due to the challenges in identifying the source and
recognizing that the other systems can deal with utilizing it. While trace-
ability is an obvious problem in textile supply chain, transparency is a
more impactful issue that is not well addressed. Cross supply chain and
lack of transparency exacerbates the problems facing each participant
and forces each entity to work locally using the localized information.
This approach is fundamentally flawed as it deals with a global prob-
lem from a localized point of view. Not all industries are ripe for tak-
ing advantage of blockchain technology. Blockchain requires an industry
with a complicated and widely distributed supply chain, containing an
increased number of middle stages. This cannot apply more than in one
of the world’s oldest industries, textile.

In this paper, we propose a complete blockchain-based framework for
textile quality improvement that enables in near real time, cross chain
information sharing with guaranteed authenticity and accuracy allowing
quality defective batches to be identified in all systems as soon as they
are detected in any few.

Keywords: Blockchain - Supply chain - Textile - Garment chain

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 213-227, 2018.
https://doi.org/10.1007/978-3-319-94478-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_15&domain=pdf
http://orcid.org/0000-0001-6074-5221
http://orcid.org/0000-0001-5708-1081

214 M. ElMessiry and A. ElMessiry

1 Introduction

To have an appreciation of the problem we are addressing, we need first to visit
the current status in the textile industry and then provide an understanding of
what blockchain technology is.

1.1 Textile Quality

In the textile industry, the low-cost players have forced many manufacturers to
compromise on quality to be more cost competitive in the face of global compe-
tition. Currently, due to the inefficient quality monitoring systems, the cost of
poor quality is at an average of 14% of sales for textile and apparel industries
versus to other industries (6.5%) [1]. Several papers [4,6] attained the quality
of various products flow in the textile production chain. The evaluation of the
quality control principles through the application of statistical quality control,
statistical processes control, total quality control, total quality management and
Six Sigma are static systems. The dynamic quality control system was suggested
but not fully developed.

Traditionally, high variability has been known to result in a substantial loss
due to the existence of several nonconforming units in a highly variable process
[22]. The On Line Quality Control System comprises with the raw material
quality control and process. Control is the target for controlling the level of the
quality in the production line [11,17]. Despite the advancements in technology
and production-monitoring systems, these quality requirements seem to be a
distant task as on-line systems for monitoring the quality of material at different
stages of processing have not yet received due importance. One of the key issues
for failure that has been identified is the incongruent application of current static
control systems in the complex textile production environment [9,18,21,22].

The quality of the final product is a function of the qualities of the sub prod-
uct that accommodate the complex, dynamic and interactive nature of the textile
production environment. Consequently, the single stage control algorithms usu-
ally lead to loss of production, material and profit. It was revealed that the
total quality of a product is a dynamical function and depends on the transfer
function of the sequential process involved in its production [8,21]. To solve this
problem, several attempts were successfully made to measure the quality param-
eters on line, such as trash %, number of neps, sliver evenness, yarn evenness,
and real-time fabric inspection [3,4]. Thus, there is a need and requirement for
development of new methods for modeling and automated monitoring of key
parameters in the textile processing industry to optimize quality of the product,
which consequently will improve profits.

1.2 Textile Supply Chain

We can view the textile supply chain in a simple view consisting of two main
activities:

Blockchain Framework for Textile Supply Chain 215

Primary Activities. Inbound Logistics - involve relationships with the suppli-
ers and include all the activities required to receive, store, and disseminate
inputs. Operations - are all the activities required to transform inputs into
outputs (products and services). Outbound Logistics - consist of all the activ-
ities required to collect, store, and distribute the output. Marketing and Sales
- activities inform buyers about products and services, induce buyers to pur-
chase them, and facilitate their purchase. Service - includes all the activities
required to keep the product or service working effectively for the buyer after
it is sold and delivered.

Secondary Activities. Procurement - is the acquisition of inputs, or resources,
for the firm. Human Resource Management - consists of all the activities
involved in recruiting, hiring, training, developing, compensating and (if nec-
essary) dismissing or laying off personnel. Technological Development - per-
tains to the equipment, hardware, software, procedures and technical knowl-
edge brought to bear in the firm’s transformation of inputs into outputs.
Infrastructure - serves the company’s needs and ties its various parts together.
It consists of functions or departments, such as accounting, legal, finance,
planning, public affairs, government relations, quality assurance and general
management.

Raw Material. The ability to have full transparency into the raw material is
critical and can lead to huge impact such as in the case with false advertisement.
A case point is that in the week since Indian textile maker Welspun was called out
by Target for mislabeling sheets and pillow cases as premium Egyptian cotton
products, the company’s shares have collapsed. While Target has severed all ties
and Walmart and J.C. Penney have announced their own reviews, Bed Bath
& Beyond has appointed an independent auditor. A year ago, Welspun, one of
the world’s largest manufacturers of home textiles, was boasting of a durable
competitive advantage over Chinese rivals. The latter, it claimed, had higher
labor costs and were dependent on stockpiled Chinese fiber, which tended to
lint.

Manufacturing. Communication and coordination are vital in streamlining
goals and ensuring timelines are met. Effective coordination will result into
successful and smooth order processing. Generally, it has been seen that ship-
ment delay is only the result of poor coordination of merchandisers with another
department. Factory buyers largely depend on factory merchandisers. By increas-
ing knowledge sharing, communicating best practices and developing functional
coordination platforms, merchandisers can place themselves in a better position
to create plans and execute the same as per requirements.

Garments. The dictionary definition of garment is “an article of clothing”,
however, from a textiles supply chain point of view, garments are the end product
of a very long and complicated process. The quality of a single finished garment

216 M. ElMessiry and A. ElMessiry

depends on several quilts of subproducts and materials. This made the second
quality and waste in each sector depend on the previous processes [1,11]. Huge
efforts and cost are spent on the inspection of the quality of the product in the
textile chain, which started with the raw material and is finished by the final
garment product. For example, the garment industry inspected all the fabric
imported and number of defects which are visually inspected before the purchase.
Defect assessment is conducted on between 10%-50% of the produced products
where visible flaws such as stains, stitching, incorrect color variations, patterns,
sizes, and poor alignment, etc., are tested.

The American Apparel Manufacturers (AAMA) point-grading system for
determining fabric quality is the most recommended fabric inspection [13]. The
work presented in [14] provides a good example of the garment value chain
structure as shown in Fig. 1, demonstrating complicated relations between the
different elements of supply chain with each of them having their own quality
control system on their product which reacts on the final quality of the final
garment [12]. The cost of the quality control in the garment industry varies from
11% up to 39%.

Training Investment Information Production Public Financial
Promotion Services Infrastructure Services Services
5 r 1 1 K7 '
bl
PRODUCT DESIGN p’
) Spare Parts
-Natural /
Fibers Spinning Mill —
—> v N Cloth Printing
- Staple N - Mechanical
«— Man-Made * Weaving Mill Finishi
Fibers /"

Labelling

Pressing

Full Package

‘\‘\‘ -Knitting Mill
LI

C
Filament

» Synthetic
le—| Fiber

Dye, Printing
Yarns <+
and Finishing Mill Garment

¥ Te |
Chemical Dyestuffs
Finishes

— ﬁ
Logistic Services ’ Shipping Services Packaging |

Fig. 1. The garment chain structure.

¥

& Finishing

Cloth Accessories
Sewing Threads

1T

Fashion. Fighting fake is not the only benefit that blockchain technology can
offer the fashion world, it also gives consumers and brands the opportunity
to track and display supply chain information [10]. Making this possible is a

Blockchain Framework for Textile Supply Chain 217

company called Provenance. They have used blockchain to build a traceability
data system that will securely store information that is inherently auditable,
unchangeable and open. Their objective is to work towards an open traceability
protocol that allows them to tell every product’s story using blockchain technol-
ogy in a way that enables secure traceability of certifications and other infor-
mation in the supply chains. It answers the question, where does my product
come from? As one of the new emerging technologies, blockchain technology is
empowering brands to take steps towards greater transparency. Should you ever
want to trace the origins, footprint and histories of that cute dress you have your
eye on, then blockchain technology will be able to tell you the product’s story
which leaves us wondering, is fashion ready to be that honest and transparent?
They do this by making sure that every physical product comes with a “digital
passport” that not only proves the product’s authenticity, but also creates an
auditable record of the journey the product took. The quality data hub in various
points of the quality chain has several types of data about the sub product.

1.3 Blockchain

Blockchain technology is a form of an encrypted distributed ledger, essentially
a distributed database of records, or public ledger of all transactions that are
shared among participating parties [5,24].

Consensus of a majority of the participants in the system is the main mech-
anism by which each transaction in the public ledger is verified. Once the trans-
action is deemed verified, it is then admitted to all the records and can never
be erased. The verified transactions are put in a queue to be committed to the
next block. The data is secured using a hash function which is any function that
can be used to map data of arbitrary size to data of fixed size, more formally
defined by Eq. 1, where H is the hash and n is number of bits returned by the
hashing function [15].

H:KxM—{0,1}" (1)

A block consists of the following main parts:

Payload, which contains the actual data to be committed to the blockchain.

Previous Block Hash, the digital fingerprint of the previous block.

Current Block Hash, the current digital fingerprint of the current block pay-
load and the previous block hash.

The main concept of the blockchain can be illustrated in Fig. 2.

The transactions can be traced back to the original first block, commonly
called the genesis block. The genesis block is the only block that does not refer-
ence an actual previous block hash. Blockchain contains a certain and verifiable
record of every single transaction ever made. The first example of a widely used
blockchain application is Bitcoin, the decentralized peer-to-peer digital currency.
The central hypothesis is that the blockchain provides a system of a distributed
consensus in the digital universe, removing the need for trust and transferring it

218 M. ElMessiry and A. ElMessiry

Block i-1 Block i Block i+1

Payload Payload Payload

Block i-1 HasJ Block i Hash_—/
Block i Hash Block i+1 Hash

Fig. 2. Conceptual illustration of the blockchain.

Block i-2 Hash—)

Block i-1 Hash

to a binding contract, which assures the users that a digital event occurred by
creating an irrefutable record in a public ledger [23].

The blockchain can be viewed as a global computing machine with near 100%
uptime due to the fact that the contents of the database and ledger are copied
across thousands of computers. Thus in case of 99% of the computers running
it were taken offline, the records would remain accessible and the network could
rebuild itself. The distributed nature of the blockchain also means that a local
copy can exist at or near the user. This is a very important practical consider-
ation as many of the textile facilities are located in developing countries with
very limited bandwidth. Having a local copy that auto updates reduces potential
failure due to Internet bandwidth.

The central feature of the blockchain technology is an immutable ledger [19].
Immutable means that the contents of the payload of each block cannot be
changed after it is committed to the chain. This is due to the fact that each
block hash is computed based on the payload of the block and the hash of the
previous block as shown in Fig.2. If we want to tamper with block i, we will
need to recompute the hash of block i. That will require us to recompute the
hash of every and all subsequent blocks as changing one hash will invalidate
all subsequent hashes. Now, because the ledger is distributed, we will need to
gain control and change the hashes of at least 51% of the entire network. The
sheer amount of required effort renders it practically impossible. One model of
understanding blockchain is through comparing it to the new application layer
for Internet protocols because blockchain can enable both immediate and long-
term economic transactions, and more complicated financial contracts. It can be
a layer for transactions of different types of assets, currency or financial contracts.
Moreover, a registry and inventory system for recording, tracking, monitoring,
and transacting of all assets could be managed with blockchain. Consequently,
blockchain can be used for any form of asset, including every area of finance,
economics, and money [16].

Blockchain Framework for Textile Supply Chain 219

1.4 Blockchain in Textiles

There are many benefits of blockchain. Yet, there is little to no adoption of
blockchain technology in the textiles supply chain domain. Blockchain technol-
ogy presents many features and characteristics that can be useful in textile indus-
try aspects such as: compliance, transparency, tracking, tracing, error reduction,
payment processing, and many others [20]. IBM has revealed its intention to lead
an “industry-wide collaboration” to create a supply chain and trading ecosystem
built on IBM blockchain technology. It will use the Hyperledger Fabric, which
provides a foundation for developing blockchain solutions with a modular archi-
tecture, pluggable implementations and so-called container technology. There
are numerous organizations, processes, systems, and transactions involved from
field to fabric. Located at the intersection of agriculture, finance and technology,
the Seam with the help of IBM, is in a unique position to introduce blockchain
technology to cotton-affiliated companies around the world. In conjunction with
IBM, the Seam wishes to create a supply chain and trading ecosystem built
on IBM blockchain using the hyperledger fabric. This new technology will be
transformational for the cotton industry. There are numerous organizations, pro-
cesses, systems and transactions involved from field to fabric. The Seam and IBM
launched the first cotton industry blockchain consortium.

2 Problem Statement

The problem we address in this work is as wide as it is deep. It deals with an
industry that has been in existence for as long as humans started coexisting in
large groups. In the following sections, we will go over the main aspects of the
problem in the textiles supply chain.

Transparency. The textiles and clothing sectors are a supply chain consisting of
many discrete activities as shown in Fig. 3. It is being organized as an integrated
production network where the production is sliced into specialized activities and
each activity is located where it can contribute the most to the value of the
product.

When the location decision of each activity is being made, costs, quality,
reliability of delivery, access to quality inputs and transport and transaction costs
are important variables. Walmart insisted that suppliers implement information
technologies for exchange of sales data and adopt standards for product labeling
and methods of material handling. This ensures quick replenishment of apparel,
which in turn allows the retailer to offer a broad variety of fashion clothes without
holding a large inventory. This approach has spread throughout the industry in
the United States as well as elsewhere (and to other industries), shifting the
competitive advantage of suppliers from being mainly a question of production
costs to becoming a question of costs in combination with lead time and flexibility
and quality.

220 M. ElMessiry and A. ElMessiry

The number of the suppliers in any industrial product increased almost expo-
nentially throughout the chain, which means that the reality of an organization
being able to control all aspects and impacts of its supply chain is a goal rather
than a certainty. Figure 3 shows that the reality of tracking and influencing sup-
pliers was clearly articulated. This required high transparency throughout the
supply chain. Consequently, the success of the enterprise depends on the trans-
parency and the trust between the suppliers within the enterprise.

t""e'“me“‘“' EstabliEhment I TEXTILE FEEDING INDUSTRIES SUPPLY CHAINS I

Transparency & Quality
| Bank N\ // l \\

Yarn Fabric
Fiber Supply chain Manufacturing Manufacturing Fabric finishing Finished Fabric

> |/

I TEXTILE FEEDING INDUSTRIES SUPPLY CHAINS I

HAOAd P OoRTW AW EP -

» AP U

Fig. 3. Conceptual illustration of the textile supply chain.

The results of these long chains, the time required for quick response of the
market demands and the cost increased tremendously with instability of the
product quality.

We know surprisingly little about most of the products we use every day.
Even before reaching the end consumer, goods travel through an often-vast net-
work of retailers, distributors, transporters, storage facilities, and suppliers that
participate in design, production, delivery, and sales, yet in almost every case,
these journeys remain an unseen dimension of our possessions. The supply chain
sector represents billions of dollars in enterprise revenue but is fraught with losses
and inefficiencies resulting from risk, fraud or anachronistic manual paperwork
delays. The main challenge is setting up technology for farmers, field workers and
others to collect data and insert it onto a blockchain. Innovative data entry tools
running on ubiquitous smartphones, with backends in the cloud, are expected
to allow field workers to input relevant data to a blockchain ledger that tracks
all data, making it accessible “in minutes, rather than days”, thereby improving
supply chain efficiency, identifying bottlenecks and reducing waste.

The bales of cotton arriving at the port and being scanned automatically
trigger the smart contract to execute the terms, which would involve transferring
the ownership of goods and authorizing payment. This happens because there

Blockchain Framework for Textile Supply Chain 221

is a single document agreed on by all parties and that is only completed once a
certain action has taken place.

Traceability. Traceability has recently gained considerable attention in the
textile industry. Traceability stands for information sharing about a product
including the history, specification, and location. With the involvement of glob-
ally dispersed actors in the textile supply chain, ensuring appropriate product
quality with timely supplies is crucial for surviving in this industry with ever
increasing competition.

Quality. Quality is one of the main cost factors in the textile industry. As manu-
facturers face an increasingly competitive global business environment, they seek
opportunities to reduce production costs without negatively affecting product
yield or quality. Rising quality requirements are driving up costs and decreasing
value added at the plant. The supply chain of the textile product is completed
with involvement of worldwide distributer supplier chains as shown in Fig.6
textile supply chain. The high percentage of quality control cost is related to
lack of data about the subproduct and material and processing defects either in
the previous operations or in processes defects. All the applied quality control
management systems suffer from: late detection of defects, higher cost of defec-
tive work, poor access to previous production supervision, second quality being
higher, more manpower to maintain quality, and higher manufacturing costs.

One of the early works that related information impacted on the product
quality is outlined in [7], where the authors show that in the textile field, the
quality of the final product is normally affected by different material and pro-
duction parameters. They propose a matrix representation of each production
process input and required information as well as the importance of the infor-
mation for the production process. In the case of garments, it is established that
the garment quality is determined by different fabric characteristics such as fab-
ric defects, yarn hairiness, color shades variations, sewing defect, etc. Consider
n quality characteristics of a certain process, defined as Y;(i = 1ton), each Y;
value may be affected by m data value of the previous process parameters defined
as X;,(j = 1tom). The introduction of the entire set of values of the previous
process parameters to predict the entire set of garment characteristics is very
complex. Therefore, the identification of the main data affecting the investigated
set of Y; value characteristics would be very useful. To perform this task, a matrix
A(man) is formed with the variables X; which are expected to affect properties
Y;. Each coefficient a;, j will be equal either to 1 when the corresponding param-
eter X is expected to have an effect on the corresponding garment characteristic
Y; or to zero when no effect is to be expected. Matrix B(n * 1) defines the set
of yarn characteristics to be predicted. The multiplication of the two matrices
(AzB) gives a new matrix C. For the values ¢; > 0 the corresponding data X
should be taken as an input data required for this particular process.

The larger the positive value of ¢; is, the more significant the effect of the
corresponding value X is expected to be. The matrices are used to predict the

222 M. ElMessiry and A. ElMessiry

impact on quality of the different required data that defines the quality. In more
complex systems, the impact of each information would be adjusted using a
learned model [2] (Fig.4).

I Product quality parameters >

a a a5 ... a
g 1 12 13 In b,)
£ Ay Ap Gy ... dyy b,)
4 = =
i|A=|ay ay apm coay, B . C
b .

b (o
Ay Qup Qpz -eo Ay

Fig. 4. Matrices used for the presentation and selection of input parameters from one
stage to the next.

3 Proposed Framework

Our proposed framework works by adding textile materials information to the
blockchain at each point along the supply chain journey. Each atomic unit of raw
material will be uniquely identified, as illustrated in Fig.5. The process starts
at the farm with identifying the seeds used. The resulting crop bales will be
given a unique number as the first component in the manufacturing process. As
raw materials are used in each manufacturing process, the resultant product will
be recorded as a transaction on the blockchain. The transactions can identify
the processes and machinery used and be traced to the previous manufacturing
stage. Each machine or manufacturing unit can be connected directly to the
blockchain and is capable of reading previously recorded data pertaining to the
material which the manufacturer has acquired. The machinery can update new
information regarding only to the material that has been acquired by the manu-
facturer. Before the machine starts processing the material, the machine would
check the reported history by confirmed owners of the same material batch. After
processing the material, the machine would automatically post the results to the
blockchain. A consensus mechanism is used to evaluate when to flag a batch with
a defect.

The framework allows the machine to utilize the information shared by others
to automatically stop processing the material and require human override. The
proposed framework work flow is illustrated in Fig. 6.

3.1 Machine Chain Interface

One critical change required to enable the framework is to upgrade the current
machinery so that it can interface with the blockchain. Most modern textile

223

Blockchain Framework for Textile Supply Chain

_________ Q O
g

v
Consumer
s s | T s | A
Farm L= | L= | Retail
Blockchain

A ~

\

\
Transportation ~——5

Factory

Fig. 5. Matrices used for the presentation and selection of input parameters from one

stage to the next.

. ——
4 Slan) /7 stant)
\Processing / _ Report
S F'y ~
3 i
Scan Material §°E Scan
Address £z ~* | Transactions for
i : { processing wallet
Get Material GRS S
Processing < :
Records Scan wallet
w«----—-* | Transactions for
¥ material address
/N ’
s N\ ¥
~-Yes---< Flagged? » i :
/\ N i } / N\
/N \ H : & >-
Human ‘ / i] - /\‘\Match’?//
i i \ Yes A4 No
No ; : N i
i ;‘ i "
Process ~ E 7~ o
Material Add) \ Discard \)
o ~—

Fig. 6. The proposed framework work flow.

224 M. ElMessiry and A. ElMessiry

machines are equipped with sensors that can communicate measurement back
and allow remote control. The fundamental difference in our model is that each
machine will be identified by a wallet in addition to the existing identifier. Using
a wallet will enable the chain to track incoming material and the processed
output. In addition, due to the ledger architecture, the material will have to be
traced back to the initial creation wallet.

3.2 Material Creation

The first step in the framework is to create the material. Only certain actors
such as farms and fiber manufacturers would be able to create new materials
and record them on the chain. Once the material is created, all the properties
are committed to the chain. This way, the material is traceable back to this
genesis wallet.

3.3 Manufacturing

The process of manufacturing is mapped to the chain by adding a manufacturer
role. A manufacturer can record the purchase of a certain batch of material in
conjunction with the material creator. This is represented by a transaction of
the material portion. The transaction can be of the entire or partial batch. Once
the material is transferred on the chain from the creator to the manufacturer,
the manufacturer is now able to record the material processing results. This is
a fundamental step in the framework to prevent bad actors from destroying the
credibility of competitors. The network will only accept reports from those that
have been recorded on the chain to own the material.

3.4 Reporting and Consensus

Any network participant has full access to the entire network. The information is
publicly accessible. However, only material owners can report on the processing
results of the material. A consensus mechanism requiring certain criteria to be
fulfilled before the material is flagged on the chain. The consensus is a critical
component to remove errors and outliers from the chain. An example of consensus
criteria can be:

— Same material batch

— Similar manufacturing process

— Minimum number of reports

— Defined time in which the reports are recorded.

3.5 Automated Protection

Usually, the action to correct the fault in the textile chain takes place after it
occurs. Through the introduction of the concept of automated protection, if the
equipment queries the chain to find that the batch about to process is flagged
as a bad batch for this process, the equipment will halt the process and notify
the attendant to make a decision based on the provided chain data.

Blockchain Framework for Textile Supply Chain 225
4 Evaluation

It is clear that from a traceability and transparency point of view, our proposed
workframe provides capabilities that do not exist in the current status quo. To
evaluate our proposed workframe from the quality point of view, we need to take
into consideration the potential cost waste due to the degradation in product
quality as a function of information quality.

We build on the approach proposed in [7] by extending it to different stages
in the supply chain as illustrated in Fig. 7. The impact at each stage is computed
and then combined with the following stage as shown in Eq. 2.

Stage 1 - -l Stage2 |- v ----------- -l Stage n

Fig. 7. Abstract representation of textiles supply chain stages.

Quality Impact = 1 — H <i11> (2)
2
i=1

where 7 is the current stage, n the total number of supply chain stages, Si; the
shared information at stage i, while Ai; is the available information at stage 3.
Figure 8.

100%

Percentage Impact

1 2 3 4 H 6 7 8 9 10 1 12 13 14 15 16 17 18 19
Supply Chain Stage

—09% 5 97%

e 8% e 85% e B7% e 86% 85% 849 e 835 e 8256 e 8156 e 80%

Fig. 8. Potential impact of supply chain stage information on quality.

At every stage, the missing information affects not only the current stage
quality, but also the subsequent stages down stream. Our simulation shows that

226 M. ElMessiry and A. ElMessiry

missing information can greatly affect the overall quality of the entire process.
Just missing consistently on 20% throughout the supply chain can lead to more
than 98% quality degradation by the 10" stage. In contrast, we mapped the
information flow in a local garment production line, then assured that all required
fabric information is provided in every stage. We observed that second quality
products dropped by 26.5%.

5 Conclusion

Most agroindustry corporations believe new technologies of blockchain will be
transformational for the cotton industry by making it easier and more secure
to trade the commodity. In this work, we proposed a novel approach to solve a
huge problem in the textiles supply chain. We presented how this approach will
interact with the current status quo and how it will lead to massive improve-
ment in the traceability, transparency and quality of the textile production and
end product. Our work combines one of the oldest technologies known to man
with the latest cutting edge one. In our further research, we will explore exact
parameters for this approach to be adopted as well as the impact on the end
user, consumer, and how it can change the social sensibilities of the consumer.

References

1. Bheda, R.: Do you know the cost of poor quality in your organization? (2010).
http://rajeshbheda.com/pdf/rbe-article.pdf

2. Burke, H., Rosen, D., Goodman, P.: Comparing artificial neural networks to other
statistical methods for medical outcome prediction. In: Proceedings of the IEEE
International Conference on Neural Networks, Orlando, vol. 4, pp. 2213-2216, June
1994

3. Celik, H.I., Topalbekitoglu, M., Diilger, L.: Real-time denim fabric inspection using
image analysis. Fibres Text. Eastern Eur. (2015)

4. Celik, H., Diilger, L., Topalbekiroglu, M.: Development of a machine vision system:
real-time fabric defect detection and classification with neural networks. J. Text.
Inst. 105(6), 575-585 (2014)

5. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V.: Blockchain technology:
beyond bitcoin. Appl. Innov. 2, 6-10 (2016)

6. Das, P., Roy, S., Antony, J.: An application of six sigma methodology to reduce
lot-to-lot shade variation of linen fabrics. J. Ind. Text. 36(3), 227-251 (2007)

7. El Messiry, M., Abd-Ellatif, S.A.M.: Artificial Neural Networks For Solving Textile
Problems

8. Gandino, F., Montrucchio, B., Rebaudengo, M., Sanchez, E.: Analysis of an RFID-
based information system for tracking and tracing in an agri-food chain. In: RFID
Eurasia, 2007 1st annual, pp. 1-6. IEEE (2007)

9. Gunay, M.: Dynamic Textile Process and Quality Control Systems

10. Kapfunde, M.: Is blockchain technology set to revolutionize the fashion
industry? (2016). http://fashnerd.com/2016/10/is-blockchain-technology-set-to-
revolutionize-the-fashion-industry/

http://rajeshbheda.com/pdf/rbc-article.pdf
http://fashnerd.com/2016/10/is-blockchain-technology-set-to-revolutionize-the-fashion-industry/
http://fashnerd.com/2016/10/is-blockchain-technology-set-to-revolutionize-the-fashion-industry/

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Blockchain Framework for Textile Supply Chain 227

Mogahzy, Y.E.E.: Using off-line quality engineering in textile processing: Part I:
concepts and theories. Text. Res. J. 62(5), 266-274 (1992)

Purnomo, M.R.A., Dewi, .LH.S.: A manufacturing quality assessment model based-
on two stages interval type-2 fuzzy logic. In: IOP Conference Series: Materials
Science and Engineering, vol. 105, p. 012044. IOP Publishing (2016)

Rana, N.: Fabric inspection systems for apparel industry. Indian Text. J. (2012)
Richero, R., Ferrigno, S.: A background analysis on transparency and traceabil-
ity in the garment value chain. In: The European International Cooperation And
Development Commission

Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371-388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4.24

Sadouskaya, K., et al.: Adoption of Blockchain Technology in Supply Chain and
Logistics (2017)

Sharif, E.E.: Study on quality management system and technical solution of defects
in lingerie unit. Daffodil International University, Technical report (2014)

Suh, M.W., Gunay, M., Vangala, R.: Dynamic Textile Process and Quality Control
Systems. NC State University, NTC Annual Report (2007)

Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind
Bitcoin is Changing Money, Business, and the World. Penguin (2016)

Tapscott, D., Tapscott, A.: How blockchain will change organizations. MIT Sloan
Manage. Rev. 58(2), 10 (2017)

Vangala, R.N.: Design of a Dynamic Quality Control System for Textile Processes
(2008)

Vangala, R.N.: Dynamic Process/Quality Control System using Structural Equa-
tionsApplications in Ring Spinning and Continuous Dyeing. North Carolina State
University (2013)

Wang, J., Li, L., He, Q., Yu, X., Liu, Z.: Research on the application of block
chain in supply chain finance. In: DEStech Transactions on Computer Science and
Engineering (ICEITT) (2017)

Wright, A., De Filippi, P.: Decentralized Blockchain Technology and the Rise of
Lex Cryptographia (2015)

https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24

)

Check for
updates

Research on the Pricing Strategy
of the CryptoCurrency Miner’s Market

Liping Dengl’z(g), Jin Che'?, Huan Chen'?, and Liang-Jie Zhang'-*

! National Engineering Research Center for Supporting Software of Enterprise
Internet Services, Shenzhen, China
% Kingdee Research, Kingdee International Software Group Company Limited,
Shenzhen, China
liping deng@kingdee. com

Abstract. Although the attitudes of governments and the general public on
virtual currencies vary greatly, the prices of virtual currencies have grown at an
extremely exaggerated rate since 2016, attracting more and more investors and
media attention. Not only that, while virtual currency prices have increased,
mining has turned into a profitable business, and many people have purchased
miners to invest in the mining industry. This article examines the stability of the
two time series of bitcoin’s price and miner’s hashrate from 2016 to the present.
Research shows that price changes are the Granger cause of changes in hashrate.
By establishing a distributed lag model, the quantitative relationship between
hashrate and price is analyzed. Combined with the follow-up investigation of the
miner’s market, it discovered the pricing strategy of the miner’s market, that is,
the current miner’s price is determined by the price of the previous cryptocur-
rency, and the lag period is calculated.

Keywords: Cryptocurrency + Miner - Pricing strategy - Granger causal
Distributed lag model

1 Introduction

With the development and extensive application of blockchain technology, cryp-
tocurrencies represented by bitcoin are also gradually known. Figure 1 is a trend graph
of the frequency with which bitcoin was retrieved as a keyword in Google [1].
Bitcoin’s attention has been increasing since 2016. Although people and government
have different attitudes toward cryptocurrency, and different kinds of virtual currency
prices fluctuate greatly, some investors’ enthusiasm for investing in cryptocurrency
remains unabated.

Different from the traditional currency issuance strategy, the addition of virtual
currency requires the miners to contribute computing resources to compete for addi-
tional currency per unit of time. This process is called mining, and professional mining
tools are called miners. Mining maintains the issuance and circulation of the entire
virtual currency. As the virtual currency prices have risen, mining has turned from the
small profits of the past to a business that can be turned over, and more and more

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 228-240, 2018.
https://doi.org/10.1007/978-3-319-94478-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_16&domain=pdf

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 229

120
100
)
® 80
=
(=]
—
o 60
—
a0
8
o 40
20
0
W VW VW VW VW W N N N N N N 0 ©
< < 9 9 9 9 9 < 9 49 9 < 4 4
c = > S o > £ = > = o > £ =
c & ©®© 2 9o 0 ©& & © 2 o 060 © &
- =2 = woz - = = w oz - 2

Fig. 1. Google trends of Bitcoin

people are starting to purchase large quantities of miners for professional mining.
Naturally, the miner’s price and even the price of the video card have also skyrocketed.

Mining [2] is the process of a node that participating in maintaining the cryp-
tocurrency network obtains a certain amount of new cryptocurrencies through assisting
in generating new blocks. Mining is also a very hot profitable industry. From ordinary
CPUs, GPUs, and FPGAs, to ASIC miners, and to mining pools formed by numerous
miners. In just a few years, the technology of miners has gone through the evolution of
integrated circuit technology over the past decades. At present, mining is mainly
concentrated in China. Driven by huge profits, the Chinese miner’s market has
developed rapidly and is favored by investors. This paper, through the follow-up
investigation of the miner’s market, the pricing strategy of the miner’s market was
discovered. That is, the current miner’s price is determined by the price of the previous
cryptocurrency. The results of this study have important guiding significance for
investors to purchase miners and avoid risks.

2 Research Background

On October 31, 2008, Satoshi Nakamoto first proposed the concept of bitcoin in
Bitcoin: A Peer-to-Peer Electronic Cash System [3]. Bitcoin is a cryptocurrency and
worldwide payment system. It is the first decentralized digital currency, as the system
works without a central bank or single administrator. An alternative, the numerous
among of other cryptocurrencies have been created. In cryptocurrency, miner is a
computer or group of computers searching for cryptocurrency. They constantly verify
transactions and as an incentive, they get rewarded with cryptocurrency.

230 L. Deng et al.

2.1 Bitcoin

Researchers have conducted in-depth research on whether or not bitcoin has monetary
functions and obtained many valuable results. In 2015, Kristoufek [4] used the con-
tinuous wavelet framework to study the evolution of bitcoin in both time and frequency
domains, showing that bitcoin formed a unique asset with standard financial assets and
speculative assets. In 2016, Bouri [5] used the dynamic conditional correlation model
to analyze the relationship between bitcoin and major world equity indices, bonds, oil,
gold, general commodity indices and US dollars. From the perspective of research
assets, bitcoin can be seen as a digital currency. In 2017, Indera [6] proposed a Multi-
Layer Perceptron based Non-Linear Autoregressive model. Use bitcoin’s historical
price trend to predict the future price of bitcoin and achieve better results.

2.2 Cryptocurrency

A cryptocurrency is a digital asset designed to work as a medium of commutation that
uses cryptanalytics to secure its transactions, to control the introduction of additional
unit of measurement, and to verify the transfer of assets. Cryptocurrency is based on
cryptography and network P2P technology, generated by computer programs, and
distributed and circulated on the Internet. The cryptocurrency [7] has received
increasing attention from the media, the public, scholars and the government. In
addition to research from computer science, cryptography, etc., more and more scholars
have begun to pay attention to the economic analysis of cryptocurrencys, its currency or
asset characteristic, and the innovation of cryptocurrency to traditional currency theory
and payment methods.

In 2013, Ahamad [8] criticized the legal currency issued by the government, gave a
detailed introduction to various virtual currencies, and proposed a feasible scheme to
replace the legal currency with virtual currency. Recently, the perspective of the central
bank, the design of cryptocurrency should not only consider protecting people’s pri-
vacy, but also need to pay attention to social security and social order. In short,
cryptocurrency is still in its early stages of development, and many new ideas have
emerged. However, there are obvious argument that guarantee deep research.

2.3 Miner

Mining is the process of confirming the transactions that occur in the bitcoin system
over a period of time and recording the formation of new blocks on the blockchain.
Bitcoin may be obtained through mining, with objective benefits. In 2016, Bouiyour [9]
made a quantitative analysis of the sharp declination in price of bitcoin from 2015 to
mid-2016 using Asymmetric-power GARCH. Researchers showed that the bitcoin
market was very immature and had an impact on price fluctuations in the miner’s
market. In 2015, Hayes [10] analyzed 66 virtual currencies and conducted regression
analysis from the three dimensions: the difficulty in mining for coins, the rate of unit
production and the cryptographic algorithm. Researches showed that bitcoin produc-
tion was similar to the highly competitive commodity market. Theoretically, miners
will always produce until their marginal cost is equal to their marginal turnout.

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 231

Anything that helps to reducing bitcoin’s production costs will have a negative impact
on its price, such as increasing the energy efficiency of mining hardware or lowering
global electricity prices. At the same time, the increased computing power of the global
mining network will increase the difficulty of mining and will have a positive impact on
prices.

Hayes’s researchers showed that bitcoin’s price was related to miner’s hashrate. On
this basis, this paper used Granger causality relation test and distributed lag model,
quantitatively expounded the impact of bitcoin price changes on the changes of
hashrate.

3 The Relationship Between Hashrate and Price

This section examines the relationship between hash rate and price. The information of
bitcoin from 2016.01.01 to 2018.03.31 is obtained from bitinfocharts.com, and the
average price and hash rate are calculated monthly. Figure 2 shows that prices and hash
rates have risen in synchrony. So, is there a stable relationship between them? Is there a
causal relationship with “who causes changes”? The following applies the principles of
econometrics to answer this question.

16,000 . 300
+—=e—Price

14,000

+—#—Hashrate 250
12,000 =
200 S
10,000
D =
£ 8,000 150 S
i -
=W)
6,000 =
100 £
=
4,000 g
I
50
2,000
0 0
(o) (o) o (e} (Vo] (e} M~ ~ ~ ~ M~ ~ [e0] (o]
R R - R B T I
5253825528283 88

Fig. 2. The trend of Bitcoin’s price and hashrate

3.1 Unit Root Test

In econometric theory, finding the relationship between variables requires a stability
test. If it is a stationary time series given that a classical model such as a regression

https://bitinfocharts.com/

232 L. Deng et al.

model can be constructed; if it is not a stationary time series, a stationary series is
constructed by difference, and then a cointegration relationship between variables is
established. Unit root test [11] is often used to verify the smoothness of the variables.

Using Eviews 9.0 [12], the unit root test results for the hash rate series is shown in
Fig. 3. Prob = 1.0000 > 0.05 accepts the null hypothesis. That is, the hash rate series
has a given unit root and is an unstable series.

Null Hypothesis: HASHRATE has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 3.766186 1.0000
Test critical values: 1% level -3.737853

5% level -2.991878

10% level -2.635542

*MacKinnon (1996) one-sided p-values.

Fig. 3. The results of unit root test for hashrate

If a time series is smoothed by a difference, the original series is said to be
integrated of order 1 and denoted as I(1). The differential operation and unit root
verification are performed on the sequence of hashrate. Studies have shown that the
hashrate series is not integrated of order 1 but integrated of order 2. Prob = 0.0028
< 0.05, rejecting the null hypothesis that the second-order difference of the hashrate
series is a stationary sequence (Fig. 4).

Null Hypothesis: D(HASHRATE,2) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.315153 0.0028
Test critical values: 1% level -3.752946

5% level -2.998064

10% level -2.638752

*MacKinnon (1996) one-sided p-values.

Fig. 4. The results of unit root test for hashrate 1(2)

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 233

A unit root test of the price series makes it easy to know that the price series is not a
sequence of I(0) and I(1). In Fig. 5, with Prob = 0.0029 < 0.05, the price series is
integrated of order 2.

Null Hypothesis: D(PRICE,2) has a unit root
Exogenous: Constant
Lag Length: 4 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.387867 0.0029
Test critical values: 1% level -3.808546

5% level -3.020686

10% level -2.650413

*MacKinnon (1996) one-sided p-values.

Fig. 5. The results of unit root test for price

3.2 Cointegration Test

The cointegration test is a causality test for non-stationary sequences. If the linear
combination of non-stationary sequences is stationary, this combination reflects the
long-term stable proportional relationship between variables.

Both the hash rate series and the price series are integrated of order 2 and denoted
as I(2), and the two-variable Engle-Granger test is used to study the assistance rela-
tionships between variables. The OLS (Ordinary Least Square) regression was per-
formed on the second-order differential of the hash rate and price to obtain the residual
sequence denoted as e. The ADF (Augmented Dickey-Full) test result is shown in
Fig. 6.

Null Hypothesis: E has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.716343 0.0010
Test critical values: 1% level -3.737853

5% level -2.991878

10% level -2.635542

*MacKinnon (1996) one-sided p-values.

Fig. 6. The results of ADF test for residual sequence

234 L. Deng et al.

The t-statistic of the residual sequence is —4.716343, Prob = 0.0010 < 0.05, and
the residual sequence of the regression model is a stationary sequence, indicating that
there is a cointegration relationship between the hash rate and price.

3.3 Granger Causal Relation Test

Clive W. J. Granger, winner of the 2003 Nobel Prize in Economics, proposed Gran-
ger’s causality relation test. This method is suitable for econometric variables pre-
diction. Granger causality relation refers to the previous changes in variable X that
helps to explain the future changes of variable Y.

Cointegration results indicate that there is a long-term equilibrium relationship
among variables. In the end, it is “who causes changes”? Granular causality validation
can be used for integrated of the same order.

Pairwise Granger Causality Tests
Date: 04/02/18 Time: 11:10
Sample: 2016M01 2018M03

Lags: 1

Null Hypothesis: Obs F-Statistic Prob.
DHASHRATE does not Granger Cause DPRICE 25 2.85678 0.1051
DPRICE does not Granger Cause DHASHRATE 16.4283 0.0005

Fig. 7. The results of Granger Causality Tests

In Fig. 7, Prob = 0.105 > 0.05, receiving the null hypothesis. In this Case, the
change in hash rate does not Granger cause for price change. Prob = 0.0005 < 0.05,
rejecting the null hypothesis. It shows that the change of the price in the previous
period helps to explain the change of hashrate in the future. That is to say, the change in
price is the Granger cause of change in hashrate.

In the next section, we use the price as an independent variable and the hashrate as
a dependent variable to establish a distributed lag model to reveal the Granger causality
between the hashrate and the price.

4 Distributed Lag Model

4.1 Model Introduction

In real life, there is widespread time lag effect. A certain variable is not only affected by
various factors in current period, but also affected by various factors in the past period
or even its own past value. We call this kind of hysteretic variable in the past period a
lagged variable. Models with lagged variables are called lagged variable models. The
general form of the model [13] is:

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 235

Yl:fx'i_ﬁ()xl"’_ﬁlxtfl"_"'+ﬁpXt7p+ut ([:P+1»P+2aa”) (41)

Equation (4.1) is called the distributed lag model, which shows the influence of the
explanatory variable X over time on the explained variable Y. Where o is a constant
term and u, is the random interference. The coefficient f3; reflects the different degree of
influence of the current value of the explanatory variable and the lag value of each
period on the explained variable, also known as the multiplier.

p is the lag time interval and is called the lag period. If the length of the lag period
is limited, the model is called a finite distributed lag model; if the lag period is infinite,
the model is called an infinite distributed lag model.

4.2 Koyck Method
For the infinite distributed lag model [13],
Y=o+ Y " BXeit+u (4.2)
The degree of influence of the lag explanatory variable on the explained variable is
gradually weakened with the time interval. The Koyck method assumes that the decay
is in decreasing geometric order, that is, the coefficient of the lag explanatory variable
p; satisfies (4.3):

y is called distributed lag decay rate and 1 — y is called speed of adjustment.
Substituting (4.3) into (4.2) gives:

Y, =a+B(Xi+ X1+ X+) (4.4)
Equation (4.4) is called the Koyck distributed lag model.
Y=o+ BX+yX o+ X) U (4.5)
(4.4) minus the result of y multiply by (4.5):
Yr =Y = ol =) + BX; + (ur — yur—1) (4.6)
After finishing:
Y =o(l =)+ X +yYir +vi, v = (u —yuy) (4.7)
From Egq. (4.7), an infinitely distributed lag model can be transformed into an

autoregressive model using the Koyck transform. The larger the y value, the more
prolonged effect of lagged variables.

236 L. Deng et al.

4.3 Model Solving

With 9.0, the Eq. (4.7) is solved by using the OLS method. The time series is con-
structed from the daily price and hash rate of bitcoin from 2016.01.01 to 2018.03.31.

The price unit is $ and the unit of hash rate is 10'° hash/s.

Dependent Variable: HASHRATE

Method: Least Squares

Date: 04/03/18 Time: 15:17

Sample (adjusted): 1/02/2016 3/31/2018
Included observations: 820 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 4.365541 3.655289 1.194308 0.0327
PRICE 0.004325 0.001236 3.497928 0.0005
HASHRATE(-1) 0.974033 0.007902 123.2712 0.0000
R-squared 0.985691 Mean dependentvar 587.6415
Adjusted R-squared 0.985656 S.D.dependentvar 646.7101
S.E. of regression 77.45297 Akaike info criterion 11.54087
Sum squared resid 4901153. Schwarzcriterion 11.55810
Log likelihood -4728.757 Hannan-Quinn criter. 11.54748
F-statistic 28140.90 Durbin-Watson stat 2.524593

Prob(F-statistic) 0.000000

Fig. 8. The results of Least Squares

Figure 8 shows that Adjusted R-squared = 0.985656, DW = 2.5245, p-values for
both t-test and F-test are less than 0.05, and given that the model is significant. Sub-
stituting the coefficient into (4.7) gives:

Y, = 4.3655 +0.0043X; 4-0.9740Y,_, (4.8)

Then, f = 0.0043, y = 0.9740, oo = 167.9038. Substituting the values of f and 7y
into (4.3) obtained:

Y, = 167.9038 +0.0043X, 4 0.0042X,_; 4 0.0041X;_, +0.0040X,_3 + --- (4.9)

4.4 Research Results

In Eq. (4.1), Y7, B; is called the long-term or equilibrium multiplier. It indicates that
when X changes a unit, the total influence of Y on average is caused by lagging effect.

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 237

In Eq. (4.9), > 2, Bi = >0 By = B/(1 —y)<oo. So what should be the lag
period? The distributed lag model gives the definition of the average lag period s:

s= (5, G m)/(327,B) (4.10)

The average lag period is defined as the weighted average of all lags. According to
the Granger causal analysis, the lag period of early price change affects the future
hashrate change is one month. S = 13.92 is obtained by replacing the value of f; into
Eq. (4.10). Which is given that the price modification is the Granger cause of the hash
rate change, and the norm lag period of time is about fourteen days.

5 The Pricing Strategy

Bitmain [14] is a Chinese IC design company established in early 2013. It specializes in
research, development, and sales of bitcoin-specific mining chips and miner. The
AntMiner S9 [15] is a highly available and low power consumption mining equipment
developed by Bitmain. The BM1387 chip used by S9 is bitcoin’s fifth-generation
bitcoin miner chip independently developed by Bitmain. It is by far the lowest power
chip in the history of bitcoin chips. For a given type of miner, before they leave the
factory, its rated hash rate and power are fixed. The AntMiner S9 has a rated hashrate
of 11.85 TH/s (1TH/s equals 10'? hash/s) and the power consumption at the wall is
1172 W.

As we derived, since the modification in bitcoin price is a Granger cause of change
in hashrate, the average lag period is 14 days. At the same time, the rated hashrate of
each mining machine is fixed. Therefore, the price change of the mining machine is
caused by the price change of bitcoin. The same lag period is 14 days. In other words,
the price of bitcoin 14 days ago is in one-to-one correspondence with the price of the
current miner.

Compared with bitcoin prices, miner prices are lagging behind. The main selling of
the miner market is the miner futures. In other words, the future miner’s price is
determined by the price of bit coin in the previous period. The market phenomenon is
consistent with our findings.

5.1 Survey and Forecast

On February 28, 2018, the survey results of the Shenzhen Huagiangbei miner’s market
revealed that the AntMiner S9 had a futures price of 3018.03 dollars. Bitcoin prices and
tracking surveys of miner’s prices are shown in the Table 1 below:

Table 1. The price of bitcoin and miner futures

Date Bitcoin’s price ($) | Price of miner futures ($)
2018/2/28 | 10607.00 3018.03
2018/3/10 | 9252.00 2382.66
2018/3/20 | 8641.00 2223.81

238 L. Deng et al.

On April 1, 2018, the price of bitcoin was 6,826 dollars. Using the linear regression
model, the forecasted miner’s futures price is 1432.77 dollars.

Figure 9 is the scatter plot of bitcoin’s price and price of miner futures, and the
bitcoin’s price is expressed by abscissa, and the price of miner futures is expressed by
ordinate. The straight line in Fig. 9 is linear regression line. When the bitcoin’s price is
6826 dollars, the price of the miner futures will be 1432.77 dollars.

4000

3000

2000 1432.77

1000

Price of miner futures ($)

0
6000 7000 8000 9000 10000 11000

Bitcoin's price (%)

Fig. 9. The linear regression model between bitcoin’s price and the price of miner futures

5.2 Verification of Results

According to the inquiry from the official website of Bitmain, the latest futures price of
the AntMiner S9 is 1509.01 dollars. In Fig. 10, the broken line represents the pre-
diction price of the miner futures, and the diamond square dot represents the actual
price of the current miner futures.

4000 -
3000 -
2000 4 1509.01
5.07%
1000 - 1432.77
0 T T T 1
2018/2/28 2018/3/10 2018/3/20 2018/4/1

Fig. 10. The price trend chart of miner futures

Research on the Pricing Strategy of the CryptoCurrency Miner’s Market 239

|predicted value — actual value |
actual value

the error rate = x 100% (4.11)

In April 1st, the prediction price of AntMiner S9 is 1432.77 dollars, and the actual
price is 1509.01 dollars. In the form of (4.11), the error rate is 5.07%.

The error rate is small, which indicates that our distributed lag model is scientific
and reasonable. We can predict the price of future miners based on the early price of
cryptocurrency.

From the perspective of economics, the cryptocurrency miner can be used to mine
and bring huge gains, which is the value of the cryptocurrency miner. In the cryp-
tocurrency miner market, value determines prices, prices are affected by supply and
demand, and they fluctuate around value. When supply is constant and demand
increases, prices will rise; when demand does not change and supply increases, prices
will fall.

For miner’s suppliers, the goal of pricing strategy is to obtain profits and to raise the
market share. Profit is the most important reference of funds for suppliers. When
suppliers have a dominant position in the product market place, they will object to
maximize net gains. This pricing strategy is based on a comprehensive consideration of
various factors within a certain period of time. Based on the maximum difference that
equals the total revenue minus the total cost, the price of a unified product is deter-
mined to obtain the maximum profit. The maximum profit is the maximum total profit
that the supplier may be prepared to realize in a certain period of time, not the highest
price of the unit product. The maximum price may not be able to obtain the maximum
profit.

For a given miner, its profit and rate of return are determined by the price of the
cryptocurrency. In essence, the price of miners is based on the price of the previous
cryptocurrency, and the lag period is 14 days. This is the pricing strategy for the
miner’s market.

For investors, they are the consumers of the miner’s market. Investors are also
buying miners for maximum profit. The profits made by investors are affected by both
the price of the cryptocurrency and miner. The higher the price of the cryptocurrency,
the shorter the return period of the investment, the higher the profit and the lower risk;
the higher the price of the miner, the longer the return period of the investment, the
lower the profit and the greater risk. This paper studies the law of cryptocurrency price
that determines the price of miners. Based on this strategy, investors can more accu-
rately determine the future price trend of the miner’s market, so as to effectively avoid
investment risks, and make the investment’s profits tend to maximize.

5.3 Conclusion

The current cryptocurrency price determines the future price of miners, and the lag
period is 14 days, which is a common pricing strategy for the cryptocurrency miner’s
market.

240 L. Deng et al.

Acknowledgement. This work is partially supported by the technical projects No. 2017YFB08
02703, No. 2016YFB1000803, No. 2017YFB1400604, No. 2012FU125Q09, No. 2015B0101
31008 and No. JSGG20160331101809920.

References

1. https://trends.google.com/trends/explore?q=bitcoin. Accessed 03 Apr 2018

2. Yang, B., Chen, C.: The Principle, Design and Application Of Blockchain, pp. 80-82. China

Machine Press (2018)

. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted (2008)

4. Kiristoufek, L.: What are the main drivers of the Bitcoin price evidence from wavelet
coherence analysis. PLoS ONE 10(4), e0123923 (2015)

5. Bouri, E., Molnar, P., Azzi, G., et al.: On the hedge and safe haven properties of Bitcoin: is it
really more than a diversifier. Finance Res. Lett. 20, 192-198 (2016)

6. Indera, N.I., Yassin, .M., Zabidi, A., et al.: Non-linear autoregressive with exogeneous input
(NARX) Bitcoin price prediction model using PSO-optimized parameters and moving
average technical indicators. J. Fundam. Appl. Sci. 9(4S), 791-808 (2017)

7. Xie, P., Shi, W.: A literature review of cryptocurrency. J. Financ. Res. 1-15 (2015)

8. Ahamad, S., Nair, M., Varghese, B.: A survey on crypto currencies. In: International
conference on Advances in Civil Engineering AETACE (2013)

9. Bouoiyour, J., Selmi, R.: Bitcoin: a beginning of a new phase. Econ. Bull. 36(4), 1430-1440
(2016)

10. Hayes, A.: Cryptocurrency value formation: an empirical analysis leading to a cost of
production model for valuing Bitcoin. In: Mediterranean Conference on Information
Systems (2015)

11. Cao, Y., Mao, J., Li, X.: Applied Econometrics, pp. 250-265. China Social Sciences Press,
Beijing (2016)

12. Zhao, G., Fan, H.: Eviews/Stat Econometrics Primer, pp. 119-131. China Renmin
University Press (2014)

13. Wang, B.: Econometric Model and Application of R Language, pp. 191-196. Peking
University Press (2015)

14. https://www.bitmain.com. Accessed 03 Apr 2018

15. https://shop.bitmain.com/product/main?locale=zh. Accessed 03 Apr 2018

|9]

https://trends.google.com/trends/explore?q=bitcoin
https://www.bitmain.com
https://shop.bitmain.com/product/main?locale=zh

Short Paper Track: Fundamental
Research

®

Check for
updates

FBaaS: Functional Blockchain as a Service

Huan Chen!2(®) and Liang-Jie Zhang!»?

! National Engineering Research Center for Supporting Software
of Enterprise Internet Services, Shenzhen, China
2 Kingdee Research, Kingdee International Software Group, Shenzhen, China
huan_chen@kingdee.com

Abstract. Serverless architecture has been gaining popularity in the
last three years. Function as a Service (FaaS) is a concrete realization of
the Serverless architecture and has several advantages and features. This
paper proposes a new service model which is based on FaaS model, named
FBaaS — Functional Blockchain as a Service. Compared with Blockchain
as a Service (BaaS), FBaaS has a lighter implementation of top-level
business logics, which brings a number of advantages. Firstly, it could
improve the operation speed of a blockchain. Secondly, the continuous
advances in high robustness, high availability of the underlying FaaS
network can be naturally adapted to the FBaaS because of its hierar-
chical architecture. Thirdly, FaaS implements higher level of abstraction
of the logics that is much succinct. Moreover, this paper proposes an
abstraction method in the realization of a business logic of consortium
blockchain that could further improve the performance. In this paper,
we also unfold the details of a concrete example network, which is the
conference blockchain network for Services Conference Federation (SCF)
2018.

1 Introduction

Serverless architecture [6,16] has been gaining popularity in the last three years.
Function as a Service (FaaS) [10,12] is a concrete realization of the Serverless
architecture and has several advantages and features. This paper proposes a
new service model which is based on FaaS model, named FBaaS — Functional
Blockchain as a Service. Compared with conventional Blockchain as a Service
(BaaS) [8,9,11,13], FBaaS has a lighter implementation of top-level business
logic, which brings a number of straightforward advantages. Firstly, it could
improve the operating speed of a blockchain. Secondly, the advances in high
robustness, high availability of the underlying FaaS network can be naturally
adapted to the FBaaS because of its hierarchical architecture. Thirdly, FaaS
implements higher level of abstraction of the logics that is much succinct [12].
This paper proposes an abstraction method in the realization of business logic
of consortium blockchain that could further improve the overall performance.
In this paper, we also unfold the details of a concrete example network, which
is the conference blockchain network for Services Conference Federation (SCF)

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 243-250, 2018.
https://doi.org/10.1007/978-3-319-94478-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_17&domain=pdf

244 H. Chen and L.-J. Zhang

2018 [14]. In the future, the proposed technologies could be partially applied to
public chains, such as the [13].

This paper is organized as follows: Sect. 2 introduces the concept of server-
less architecture. Section 3 briefly introduces the BaaS. Section 4 illustrates the
proposed ideas of FBaaS. Section 5 concludes the paper and outlines some future
research directions.

2 Serverless

DevOps (Development and Operations) and Serverless architecture have been
gaining popularity in the last three years [6,10,12]. In particular, microser-
vices architecture significantly boosts the development of DevOps. Microservices
architecture helps to split a monolithic application into several smaller services,
which are self-governed and can be easily developed and maintained by smaller
development team. Serverless architecture [6,12] produces a more granular divi-
sion of services than microservices architecture that gives four-fold advantages

to applications (Fig.1):
—
Application Microsenvios s

Granular Services of an Application

Fig. 1. Monolithic application, microservice application and serverless application

— It reduces costs. Serverless produces smaller functional blocks than monolithic
application and microservices, which reduces overhead in larger functional
blocks in a way that serverless only requires on-demand resources and gets
thereby allocated.

— It accelerates the execution. Because of service is divided into smaller func-
tions, only the needed functions are called at the run time. Those unnecessary
functions can be fully stopped instead of standbying that indeed occupies
resources.

— It allows better resilience. Smaller blocks somewhat mean shorter start time
that gives faster response to the callers. In addition, because less overhead
exists, resource allocation can be much more flexible and efficient.

— It enables event-driven applications. Serverless is actually an TPO (Input-
Processing-Output) model, which suits the event-driven applications, for
instance IoT (Internet of Things) applications. A functional block of serverless
architecture is only triggered when it is really required. It would be destroyed
immediately once the caller does not ask for its capability. In other words,
the life cycle of the function is shorter than the ones of the monolithic and
microservices architectures. As a result, event-driven application can leverage
lighter framework, such as the serverless, for much more agile execution.

FBaaS: Functional Blockchain as a Service 245

3 Blockchain as a Service

Block Chain as a Service (BaaS) [8,9,11,13] offers the services for blockchain
manipulations and building, shipping and running the business logics over
blockchain networks. The well-known solutions include but not limited to
IBM blockchain [8], Ethereum Blockchain over Azure [13], Microsoft Azure
Blockchain [11] and R3 Corda [9]. Although many vendors provides different
BaaS, the existing solutions are mainly using the traditional 3-layer cloud archi-
tecture: IaaS, PaaS and SaaS. This paper proposes the FBaaS that has significant
difference when compared with the conventional BaaS offerings.

4 Functional Blockchain as a Service

This section proposes the FBaaS — Functional Blockchain as a Service in details,
by unfolding its architecture, realization process, and a concrete example net-
work. Figure 2 shows the detailed FBaaS architecture.

L9. QoS Management

L7. Security and Privacy Control
L8. Data Governance

L1. Physical Cluster

L2. Operation System

Fig. 2. The architecture of Functional Blockchain as a Service

4.1 Architecture

The underlying architecture of FBaa$S partially follows the ideas of CCOA [17],
but without the ESB [15]. More concretely, the system is implemented in accor-
dance with the Big Data Open Architecture (BDOA) [7]. The layers of BDOA
that have been developed and deployed in the realization of FBaaS are:

— Layer one: Infrastructure layer, realized FBaaS layers 1 and 2. The system is
built onto AWS [1], without using any Amazon Lambda functions, but only
the normal components such EC2 are used. In other words, we do not use the
serverless framework nor the function as a service given by AWS.

— Layer two: Components layer, realized as FBaaS layers 3. The basic functions
are implemented inside this layer. For example, authentication functions and
authorization functions are developed here to be frequently reused in the
upper layer.

246 H. Chen and L.-J. Zhang

— Layer three: Services layer, realized as FBaaS layers 4 and 5. This layer imple-
ments the majority of functions of BaaS. We will unfold the details later.

— Layer four: Business logic layer, realized as APPs and Large-scale Services in
Fig. 2. By grouping the functions of layer three, we are able to easily establish
a blockchain and the complicated large-scale services.

4.2 Functions in the Services Layer

Function 1: Object Storage. Object storage is with strong atomic, which
means the entire object storage process is either successful or failed and there
is no intermediate/uncertain status during the storage process. At the same
time, object uploaded is complete and no breakpoint point resuming uploading
is allowed. The strong consistency of such an object storage scheme brings much
convenience to the users. Users are no need to worry about the problems of
eventual consistency existed in the distributed blockchain networks (Fig. 3).

e

T ¥ \

a 6

‘
]]

Fig. 3. The workflow of object storage and encryption

Function: New Transaction. This function adds the content of a transaction
into a new block, which is then to be encrypted and mined. There is no limitation
for the content of a transaction, however, for the sake of storage, it is good to
have a limit. Moreover, it is better to make abstractions for the content that we
will unfold the details in the remainder of this paper.

Function: Mine. Mining a block is actually a process of simple enumeration
and hashing. To accelerate the mining process, one can apply CUDA [2] of NVidia
GPUs. In the context of FaaS, it is somewhat difficult to directly apply. Instead
of the traditional approach, we introduced the messaging system Kafka [3] for
distributing the hashing requirement in an extremely speedy way. Normally, the
performance reaches as high as 40x compared with the CPU hashing approach.

Function: Chain Info. Blockchain information can be fetched by this function.
Typical data include the number of blocks and the length of the blockchain. It is
important to emphasize that here the length represents the only certified chain
among many chains that has not yet been mined.

Function: Resolve. Resolving function tries to resolve conflicts by running
consistency algorithms, aiming to ensure that all of the nodes have the unique
correct chain.

FBaaS: Functional Blockchain as a Service 247

Function: Add Node. Adding a node is complicated with the conventional
solutions. However, with the help of FaaS, we are able to easily add nodes to
an existing network. First, we retain the current state into the persistent stor-
age. Then, we replicate one node by Container as a Service (CaaS) replication
functions. Afterward, the configuration of the new node is the established by
adjusting the configuration files of the replica node. Finally, we restore the state
from persistent storage and continue executing the network. The performance of
adding the node depends on the size of the existing network. Network manipula-
tion, such as replicating a node, does not take too much and is sometimes trivial.
Most of the time is consumed in the sub procedure of storing and restoring the
states of the system.

4.3 Realization

Function Server. The system is implemented in Python and Golang. Python
is used for the top layer framework and those logics inside functions, which are
then to be called frequently and simultaneously. The layers Function Server and
Container as a Service are implemented in Golang. We developed system over
the OpenFaa$S [12]’s modulars API Gateway and Function Watchdog, shown as
Fig. 4, where the RBAC (Role-Based Access Control) server is used for authenti-
cation and authorization of functions. Implementing the RBAC inside the layer
Function Server increases the complexity of the system and decreases the per-
formance since every function call procedure has to be checked. However, this
scheme allows system administrators to limit the abnormal violate calls from
inner systems. A typical scenario is the short message service. If the RBAC is
only existed in the API gateway, once the function is hacked, the message deliv-
ery cannot be controlled. In contrast, RBAC implemented in the Function Server
can stop only the user whose application server has those hacked functions, and
will allow the functions with the same functionalities but different authorization
to continue working.

Function Server

(RBAC Server)

Fig. 4. The inner components of Function Server

Finer FaaS. A microservice provides less functionality than a monolithic sys-
tem. In other ways, it provides the higher level of abstraction for the service
they provide. Decomposing a microservice into several functions can be similar,
where FaaS is commonly seen as the one with ultimate level abstraction. On
top of FaaS, can we implement a new layer with finer granularity? The certain
answer is to freeze some components of FaaS into constant. Formally, we can
define the function A as the abstraction of part of microservice pu:

248 H. Chen and L.-J. Zhang

A = abs(p(a, 0)) (1)

« denotes the variable part where § denotes the constant part. When we
freeze the 0, the function becomes simpler and its abstraction degree can be
further increased. In the realization process, we can introduce some pre-defined
function to imitate these constant parts. In Fig.5, FaaS is in gray and it is
further decomposed by introducing the IFTTT [4] and Zapier [5]. This way of
decomposing produces finer granularity and increases abstract degree of FaaS.

aep]

[pp |

=))) |

Fig. 5. The finer FaaS by introducing the IFTTT and Zapier

Improving the Performance by Logic Abstraction. In the case of sim-
ple rules, if complex transactions are submitted to a node, and in the case of
high concurrency, the speed of the consortium blockchain (such as Hyperledger
Fabric) will be very poor, which will affect the transaction recording speed and
block generation speed. If we reduce the transaction submission frequency by
assigning complex rules, we can effectively increase the transaction speed to
some extent. For example, we can change the time slot of generating the block
and the size of the content of a block. Formally, we abstract the complex things
(transactions) in the business system into simple logic through a logical abstrac-
tion method, thereby improving the system performance. Such an increase is
essentially achieved by reducing the amount of recorded content, where the con-
tent is now logic abstraction of actual content. It is important to note that the
real state space and abstract state space first satisfy Galois connected:

n(6(abs)) = abs

O(n(real)) D real @)

This means that if we extract an element from the abstract space, materialize it,
and abstract the concrete version, the result is equal to the original. On the other
hand, if you select an element from the real space and abstract out a specific
abstract version, the final result is the original superset. The specific abstract
process is shown in Fig.6. The original logic, if not abstracted, runs according
to the original logic (dashed line) flow. The solid line shows the new process.
First of all, a formal review of the logic of the input ensures that the formality
of the thing is correct, in line with the characteristics that a transaction should
possess. Then, abstract rule matching is performed. The abstract rules mainly
include the following types:

FBaaS: Functional Blockchain as a Service 249

-] L Consortium -
Original Logic Original Process Slaekohain BlockChain
Logic Formality Abstraction Rule]
Chock Matching Abstraction Abstracted Logic

Fig. 6. The abstraction flow

— Only to record the last operation object of the thing;

— Only to record the first object of operation;

— Only to record odd-numbered (or even) atomic-level operation objects;

— Record only Create and Delete operations;

— Only to record the update operation of key data objects;

— Only the fan-in data objects and/or paths affected by the exposed interfaces
of the overall system service interface API is recorded;

— Only the key data object changed in the service interface API are recorded,
that is, changes are recorded by memorizing the state.

4.4 An Example Network

Figure 7 shows an example network for conference blockchain. The blockchain
network consists of five nodes, each of which records the process from ‘Call For
Paper’ (‘CFP’) to ‘Online’. Once a record of a stage, for instance a presentation
of a paper in ‘Present’ process, is bookmarked, such the record will be published
to all of the nodes. Throughout the network, all the records will arrive eventual
consistency. We applied the proposed ideas to the network, benchmarked the
network, and found the performance satisfies the requirement of a conference
blockchain, where the original required TPS is often smaller than 10.

Fig. 7. An example network for conference blockchain

FaaS architecture reduces the overheads and allows developers to focus on
the business logic. For example in the conference blockchain, by using FaaS, we
are able to concentrate on the 6 business logical stages, namely ‘CFP’, ‘review’,
‘accept’, ‘final copy’, ‘present’ and ‘online’; without taking care of the underlying
complex components. Normally in the conventional BaaS solutions, the actual
bottleneck always hides in the network transmission, and we had to consider the
network itself. With leveraging the FBaas, the performance could be naturally
improved with the advanced in the underlying FBaaS dependent components.

250 H. Chen and L.-J. Zhang

5 Conclusion

This paper proposed the first blockchain service model FBaaS over the serverless
architecture. We also proposed abstraction method for reducing the complexity
of developing business logic over blockchain networks and improving its per-
formance. Not only the consortium blockchain that the proposed FBaas could
apply to, but also the partially the public blockchain could. The issue raised when
applied to public blockchain might be from the storage oversize that might be
further improved by abstraction techniques. As a result, future research direc-
tions include developing FBaaS for public blockchain and further improvement
of abstraction techniques.

Acknowledgement. This work is partially supported by the projects No.
2016YFB1000803, No. 2017YFB0802703, No. 2017YFB1400604, No. 2012FU125Q09,
No. 2015B010131008 and No. JSGG20160331101809920.

References
1. Amazon web services (2006). https://aws.amazon.com
2. CUDA: Compute Unified Device Architecture (2007). http://www.nvidia.cn/
object/cuda-about-cn.html
3. Apache Kafka: a distributed streaming platform (2011). http://kafka.apache.org
4. IFTTT (2011). https://ifttt.com
5. Zapier (2011). https://zapier.com
6. The AWS Lambda (2014). https://aws.amazon.com/lambda/
7. BDOA: big data open architecture. Int. J. Big Data (IJBD), 2, 24-48 (2015)
8. IBM Blockchain (2016). https://www.ibm.com/blockchain/
9. R3 Corda (2016). https://www.corda.net/zh-hant/
10. The serverless framework (2016). https://serverless.com
11. Microsoft Azure Blockchain Solutions (2017). https://azure.microsoft.com/en-us/
solutions/blockchain/
12. OpenFaaS (2017). https://www.openfaas.com
13. Ethereum Blockchain as a Service on Azure (2018). https://azure.microsoft.com/
en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
14. SCF: Services Conference Federation (2018). http://blockchain1000.org/2018/

about.html

15. Chappell, D.: Enterprise Service Bus. O’Reilly Media Inc., Sebastopol (2004)

16. Fromm, K.: Why the future of software and apps is serverless (2012). http://
readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless

17. Zhang, L.J., Zhou, Q.: CCOA: cloud computing open architecture. In: IEEE Inter-
national Conference on Web Services, ICWS 2009, pp. 607-616 (2009)

https://aws.amazon.com
http://www.nvidia.cn/object/cuda-about-cn.html
http://www.nvidia.cn/object/cuda-about-cn.html
http://kafka.apache.org
https://ifttt.com
https://zapier.com
https://aws.amazon.com/lambda/
https://www.ibm.com/blockchain/
https://www.corda.net/zh-hant/
https://serverless.com
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.openfaas.com
https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
http://blockchain1000.org/2018/about.html
http://blockchain1000.org/2018/about.html
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless

®

Check for
updates

LedgerGuard: Improving Blockchain
Ledger Dependability

Qi Zhang!®) Petr Novotny', Salman Baset!, Donna Dillenberger!,
Artem Barger?, and Yacov Manevich?

! IBM Research, Thomas J. Watson, Yorktown Heights, USA
q.zhang@ibm.com
2 IBM Research, Haifa, Israel

Abstract. The rise of crypto-currencies has spawned great interest in
their underlying technology, namely, Blockchain. The central component
in a Blockchain is a shared distributed ledger. A ledger comprises series of
blocks, which in turns contains a series of transactions. An identical copy
of the ledger is stored on all nodes in a blockchain network. Maintaining
ledger integrity and security is one of the crucial design aspects of any
blockchain platform. Thus, there are typically built-in validation mecha-
nisms leveraging cryptography to ensure the validity of incoming blocks
before committing them into the ledger. However, a blockchain node
may run over an extended period of time, during which the blocks on
the disk can may become corrupted due to software or hardware failures,
or due to malicious activity. This paper proposes LedgerGuard, a tool to
maintain ledger integrity by detecting corrupted blocks and recovering
these blocks by synchronizing with rest of the network. The experimental
implementation of LedgerGuard is based on Hyperledger Fabric, which
is a popular open source permissioned blockchain platform.

Keywords: Blockchain - Ledger - Dependability - Fault tolerance
Hyperledger Fabric

1 Introduction

A distributed ledger is the central component of any blockchain platform. Each
peer in the Blockchain network maintains its own replica of the ledger. The
ledger is an immutable append-only data structure, which contains a sequence
of historical transactions grouped into blocks. The ledger is formed by chaining
the blocks together with hash pointers (i.e., a subsequent block contains the hash
of its previous block).

The integrity of the ledger is essential for correct functioning of the peer.
With corrupted ledger, the peer is not able to generate valid transactions when
the smart contract needs to retrieve historical transactions from the ledger.
Moreover, when historical transactions recorded in the ledger are requested by
external tools such as analytical or auditing applications, the peer first verifies

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 251-258, 2018.
https://doi.org/10.1007/978-3-319-94478-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_18&domain=pdf

252 Q. Zhang et al.

the integrity and validity of the relevant blocks before extracting the transac-
tions. Any corruption of blocks discovered by these operations leads to significant
degradation of the peer functionality. Typically, the peer will cease to function
till the correct ledger is available. Furthermore, the applications accessing the
corrupted data may become significantly impaired as well.

The peer protects its ledger from introducing corrupted data. When a new
block is received the peer validates the integrity of the block before appending
the block to the ledger. However, the peer lacks the capability of detecting and
recovering the corrupted blocks existing in the ledger during its runtime.

A corruption of the ledger may have one of several different causes. Vari-
ous types of ledger corruptions have been observed on the public Blockchain
platforms, such as Bitcoin [16] and Ethereum [10]. For instance, on Ethereum
platform users reported corrupted data files due to false positives of antivirus
software [5]. Ledger corruptions were also reported by Bitcoin users due to block
checksum mismatch [6]. In private Blockchains such as Hyperledger Fabric [7]
or R3 Corda [9], it is critical to maintain the nodes hosting peers highly secure.
However, when a peer is hosted in a less secure environment, an external attacker
or malicious user can hack into the peer node and modify the content of the ledger
files. Moreover, since the ledger files are typically stored on a storage medium
such as magnetic disks or SSDs, a hardware failure [13,15,17] may also cause a
corruption of the ledger files.

In this paper, we introduce LedgerGuard, a mechanism that enables the peer
to maintain the integrity of its ledger. LedgerGuard enforces the integrity of
the ledger with the following two techniques. First, it validates the content of
each block and the hash links between blocks. Second, if corrupted block is
identified, LedgerGuard recovers the block and corrects the affected part of ledger
without the need for rebuilding the whole ledger. LedgerGuard is designed in a
highly configurable manner. It can be used as a tool (e.g., by an operator) to
validate and correct online or offline ledger. It can also be used as a service of
the peer node, to continuously monitor and correct the ledger and thus increase
the resiliency and availability of the peer.

2 Background

In this section, we briefly describe the ledger design of Hyperledger Fabric.
Although the ledger design varies among different Blockchain platforms, they
follow the same principles. Due to the space limitation, we do not describe the
details of Hyperledger Fabric design in the paper, but we recommend readers to
refer to [11,19,20] for more information.

In Hyperledger Fabric, a transaction is submitted by the client and endorsed
by multiple peers. If being successfully endorsed, the transaction with its endorse-
ments will be further sent to the orderer, who collects transactions from multiple
clients and organizes them into blocks. After that, the orderer delivers the block
to the peers, who finally validates the block and commits it into ledger.

Figure 1 shows the design of the Blockchain ledger in Hyperledger Fabric,
which consists of a chain of blocks that are connected by hash pointers. Normally,

LedgerGuard: Improving Blockchain Ledger Dependability 253

Genesis block Block1 Block2 Block3
Header Header | Header Header
BlockiD BlockiD BlockiD BlockiD

PreviousHash PreviousHash PreviousHash PreviousHash
DataHash DataHash DataHash DataHash

Data Data Data Data

Config trans Transaction Transaction Transaction
Config trans Transaction Transaction Transaction

Metadata Metadata Metadata Metadata

Order key and signature Order key and signature Order key and signature Order key and signature

Trans flags Trans flags Trans flags Trans flags

Last config black info. Last config block info Last conig block info. Last config block info.

Fig. 1. Hyperledger Fabric Blockchain ledger

a block will never be changed after being committed into the ledger. The first
block is called the genesis block, which contains configuration information of
this Blockchain network. Blockchain configuration can be changed over time, for
example, when a new peer joins or an existing peer leaves. The new configuration
transactions will be recorded in the other blocks.

Each block has three sections: block header, block data, and block metadata.
The block header section includes the sequence number of this block, the hash
value of the previous block, and the hash value of the data section in the cur-
rent block. The block data section contains a series of transactions with some
additional information such as the read/write sets and the endorsers’ signatures.
For the medadata section, it incorporates the certificate, public key and the sig-
nature from the orderer. When creating the block, the orderer signs the block
header and stores the signature into the metadata section. Depending on the
architecture, a block can be signed by a single or multiple orderers. The meta-
data section also contains information such as the flags of the validity of each
transaction in the block.

3 Ledger Correction

In this section, we describe LedgerGuard, which improves the Blockchain ledger
dependability by providing a runtime self-correction mechanism for ledger.

Approach Overview. In order to minimize the negative impact brought by
the corrupted ledger, we introduce a runtime self-correction mechanism, Ledger-
Guard, for the Blockchain ledger. LedgerGuard runs as a service on each peer,
checks the integrity of the ledger on the peer, and recovers the corrupted block
if there is any. We provide several options for the users to activate LedgerGuard.
First, it can be setup as a periodically running process in the peer, which is
initialized when the peer starts and runs after every period of time. Second, in
order to not affect the peer performance, LedgerGuard can be triggered by a
resource monitor in the peer when the hardware resource utilization, such as
CPU, is under a pre-configured threshold. Third, LedgerGuard can be provided

254 Q. Zhang et al.

as a peer built-in tool and explicitly activated by the user when he or she wants
to know the integrity of the ledger.

Ledger Corruption Detection. As shown in Fig. 1, the blocks in the ledger are
connected by the hash pointers. LedgerGuard validates the ledger integrity from
two aspects: (1) each single block in the ledger is not corrupted, and (2) the hash
pointers between the blocks are valid. In Hyperledger Fabric, a block is created
by the ordering service, which signs the block header and stores the signature in
the block metadata. Therefore, LedgerGuard uses the certificate of the ordering
service to validate the correctness of each block header. Since the block header
contains the hash value of the block data section and the signature is collected
from the block metadata section, a successfully verified signature indicates the
block has not been tampered with. We assume the root Certificate Authority in
the Hyperledger Fabric Blockchain platform is trusted, thus LedgerGuard can
get a valid ordering service certificate to validate the blocks. To validate the
correctness of the hash pointer, LedgerGuard calculates the hash value of the
current block (e.g. Hash(block X)), and compares this hash value with the value
of “PreviousHash” in the header of block X+1. The hash pointer is integrated if
these two value matches. Otherwise, at least one of the two blocks are corrupted.

Corrupted Ledger Recovery. Once a corrupted block is detected by a specific
peer (e.g. peer 1), LedgerGuard on this peer will send a request to the other peers
(e.g. peer 2) in the same Blockchain network, and ask for the block with the same
ID as the corrupted block. Since all the peers have the same copy of the ledger,
after peer 1 obtains the block from peer 2, it use the approach described in the
previous subsection to validate the correctness of this newly received block. If
this block is invalid, peer 1 will keep asking the other peers for the same block.
Otherwise, peer 1 uses this newly received block to recover the corrupted ledger.
Sometimes multiple blocks need to be retrieved to fix the ledger even though only
one block is corrupted. In Hyperledger Fabric, a ledger consists of one or multiple
fix sized files, and each file contains a continuous series of blocks. A corrupted
block can be either larger or smaller than the original block, thus simply replacing
the corrupted block with a correct block still breaks the integrity of the ledger.
As an example depicted in Fig. 2, block A in file 2 is detected as a corrupted

/ Blockchain ledger

File 2

|

1 . oo rrect ledger file

I ; i

| File1 - m Corrupted ledger, ré e
|

|

|

block A, B and C(casel) ‘."'_
- .. Corrupted ledger, replace
block A, B and C(case2)
- . m Corrupted ledger, replace]
\ block A(case3)

—— e — e — —

Fig. 2. Blockchain ledger stored in files

LedgerGuard: Improving Blockchain Ledger Dependability 255

block. Block A’ is a correct block retrieved from another peer. If the size of block
A is not equal to that of block A’, simply replacing block A with block A’ will
either overwrite part of block B or leave a gap between block A and block B. In
order to solve this problem, LedgerGuard first checks whether the size of block
A has changed. If it is, as shown in Fig. 2, the process will replace all the blocks
in file 2 that are subsequent to block A (casel and case2). Otherwise, only block
A needs to be overwritten (case3).

Optimization. As an in progress work, we are exploring optimizations for
LedgerGuard. For example, since hash value calculation and signature verifica-
tion are CPU intensive, LedgerGuard can use file level verification to decrease its
CPU resource consumption. Concretely, when LedgerGuard validates the ledger
for the first time, it temporarily keeps the validated blocks in memory until
all the blocks in a file have been validated. If all the blocks as well as the hash
pointers are correct, LedgerGuard calculates the hash value of the whole file. The
hash values of the files will be kept by system administrators in a separate secure
storage. Therefore, when the same portion of the ledger needs to be checked for
a second time, only the hashes of the files need to be calculated and compared.
Since a file usually contains many blocks, this will largely reduce the amount of
hash value calculations. The linkage between the two files can be validated by
checking hash pointer between the last block of the previous file and the first
block of the next file.

4 Evaluation

In this section, we evaluate the effectiveness of LedgerGuard on a 4-core VM Ware
virtual machines, with Intel(R) Xeon(R) CPU E5-2698 2.20 GHz with 4 GB of
RAM. The ledgers used in this section is generated by a tool, which closely
simulates the blocks generation on a real Hyperledger Fabric Blockchain network.
The tool first loads peer and orderer private keys and certificates, then crafts
transaction proposals and endorsements signed by the peer private key, and
finally batches the resulting transactions into blocks signed with the orderer
private key. A Hyperledger Fabric Blockchain network used in this section is
setup with 4 peers, and each peer loads the generated ledger.

Figure 3 shows how much time LedgerGuard takes to validate all the blocks
in the ledger. The ledger size of 1000 blocks, 2000 blocks, 5000 blocks, and
10000 blocks are used. For each ledger size, we vary the block size from 50
transactions per block to 150 transactions per block, and each transaction is
3 KB. We observe that first, with different ledger sizes but the same block size,
the larger the ledger is, the longer it takes to finish validation. For example, with
50 transactions per block, it takes 69 s to finish the validation of the ledger with
10000 blocks, while it takes 69 s when there are 5000 blocks in the ledger. This
is because LedgerGuard sequentially scans through each block in the ledger, the
more blocks the ledger contains, the longer time LedgerGuard takes to finish
validation. Second, with the same ledger size but different block sizes, the larger
the block size is, the longer it takes for validation. Taking the ledger with 5000

256 Q. Zhang et al.

200
W 50 trans/block 0 100 trans/block [150 trans/block

160

-
N
o

(second)
3

B

0

. -Hﬂ -Wﬂ I I

1000 2000 5000 10000
Ledger size (# of blocks)

Time to tinish ledger validation

Fig. 3. LedgerGuard ledger validation time

blocks as an example, it takes 39 s to finish validation when each block contains
50 transactions, while that number increases to 110s when each block includes
150 transactions. Our measurement shows that the block hashing time does not
vary much when the block size increases from 50 transactions to 150 transactions,
and also the order signature verification time is independent of the block size.
Therefore, the difference in the ledger validation time is mostly because the
larger the block size is, the more time is spent on I/O to read the blocks.

120 sus 120 - 120 60
o = . =
Koo | 0 % Koo 2 S r ‘ 50 g
s g s g 5 | s
g \ s 3 25| 3
S e 0T = 60 T OE60 £
5 | > 35 5 5 5
= s 2 £ 2 2
5| E B 2B g
20 ns 20 g 20 g
10 30 50 70 20 60 100 120 50 100 150 200
Time (second) Time (second) Time (second)
(a) 50 trans/block (b) 100 trans/block (c) 150 trans/block

Fig. 4. LedgerGuard CPU and memory utilization (ledger size is 10000 blocks)

We also measure how much CPU and memory does LedgerGaurd consume
during ledger validation, and the results are depicted in Fig.4. It shows that,
no matter for what block size, LedgerGuard uses about 60 MB memory, and the
CPU utilization of LedgerGuard starts with around 110%, then drops to around
20% and stays stable. The reason for the initial CPU utilization spike is Ledger-
Guard needs to do some initialization work such as opening the ledger, reading
configuration of the blockchain network, and initializing the MSP (Membership
Service Provider) manager. After that, the LedgerGuard works as a single process
to scan through the ledger and validate each block. Since calculating the block
hash value and verifying the signature are both CPU intensive, the LedgerGuard
occupies the whole CPU core, which leads to around 20% CPU utilization in a
4 core machine.

LedgerGuard: Improving Blockchain Ledger Dependability 257

Moreover, we measure the speed of recovering the ledger. It shows that with
the size of 150 transactions per block, a peer node can fetch the block from
the other peer, validate and commit it in a speed of 8.5 blocks per second. As
part of our on going research, we are working on creating a ledger with different
distribution of corrupted blocks, and measure the effectiveness of LedgerGuard
to recover the corrupted ledger.

5 Related Work

As blockchain technologies gain popularity, issues about the Blockchain plat-
form reliability and security have been observed. Some Ethereum users reported
that the Blockchain ledger on his or her machine has been corrupted due to
a false positive of antivirus software [5]. This was confirmed by another user
who has seen report saying that an antivirus software corrupted an Ethereum
Blockchain by deleting some file from the ledger. The suggested solution was to
delete the ledger data, and restart the client to re-download the whole ledger.
Error of “block checksum mismatch” has also been observed by users of Bit-
coin [16], Litecoin [3], and Dogecoin [2] when Btrfs [18] is used. The reason was
due to single-bit errors when reading from disk, and the proposed solution was
to change the filesystem to EXT4 [12] and re-downloading the whole ledger [6].
Moreover, since smart contracts are programs that could move large value assets
on the Blockchain, they always become the victims of attackers who want to steal
the assets. The DAO attack [4] showed that a program built on the Ethereum
Blockchain platform was breached in a case that results in $50 million worth
of Ether being stolen. Researchers and practitioners are making great efforts
to improve the reliability and security of the Blockchain platform. Nicola [8]
did a survey of the attacks on Ethereum smart contacts by exploiting a series
of attacks and providing a taxonomy of programming pitfalls which can lead
to such vulnerabilities. Zcash [14] was invented by creating transactions that
reveal neither the payment’s origin, destination, nor the amount. This approach
prevents leakage of the users’ spending habits by Blockchain mining [1].

6 Conclusions and Future Work

Blockchain ledger can be corrupted due to many reasons, and ensuring the
integrity of the ledger is critical to the functionality and the performance of
the Blockchain platform. In this paper, we propose LedgerGuard - a mechanism
to keep track of ledger integrity by detecting corrupted blocks and recover the
ledger by synchronizing it with rest of the network, implement a preliminary pro-
totype, and evaluate its effectiveness and overhead. As the on-going and future
work, we are extending and improving the LedgerGuard from multiple aspects.
For example, we are exploring algorithms to enable the LedgerGuard to smartly
select the other peers based on the network connection quality when it tries
to fetch a block, which will further improve the performance of recovering the
ledger. Furthermore, we are investigating more alternative approaches to detect
corrupted blocks other than sequential scan.

258

Q. Zhang et al.

References

=W =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chainalysis. https://www.chainalysis.com/

Dogecoin. http://dogecoin.com/

Litecoin. https://litecoin.org/

Understanding the DAO attack. https://www.coindesk.com/understanding-dao-
hack-journalists/

Antivirus corrupting ethereum block (2018). https://github.com/ethereum/mist/
issues/581

Bitcoin Block Checksum Mismatch (2018). https://github.com/bitcoin/bitcoin/
issues/6528

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro,
A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fab-
ric: A distributed operating system for permissioned blockchains. arXiv preprint
arXiv:1801.10228 (2018)

Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164-186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6-8

Brown, R.G.: Introducing r3 corda: A distributed ledger for financial services. R3,
April 5 (2016)

Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (2016)

Cao, M., Bhattacharya, S., Ts’o, T.: Ext4: The next generation of Ext2/3 filesys-
tem. In: LSF (2007)

Gray, J., Van Ingen, C.: Empirical measurements of disk failure rates and error
rates. arXiv preprint ¢s/0701166 (2007)

Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech-
nical report, 2016-1.10. Zerocoin Electric Coin Company (2016)

Meza, J., Wu, Q., Kumar, S., Mutlu, O.: A large-scale study of flash memory
failures in the field. In: ACM SIGMETRICS Performance Evaluation Review, vol.
43, pp. 177-190. ACM (2015)

Nakamoto, S.: Bitcoin: A Peer-to-peer Electronic Cash System (2008)

Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive
population. In: FAST, vol. 7, pp. 17-23 (2007)

Rodeh, O., Bacik, J., Mason, C.: Btrfs: the linux b-tree filesystem. ACM Trans.
Storage (TOS) 9(3), 9 (2013)

Sousa, J., Bessani, A., Vukoli¢, M.: A byzantine fault-tolerant ordering service for
the hyperledger fabric blockchain platform. arXiv preprint arXiv:1709.06921 (2017)
Vukoli¢, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 3-7. ACM (2017)

https://www.chainalysis.com/
http://dogecoin.com/
https://litecoin.org/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://github.com/ethereum/mist/issues/581
https://github.com/ethereum/mist/issues/581
https://github.com/bitcoin/bitcoin/issues/6528
https://github.com/bitcoin/bitcoin/issues/6528
http://arxiv.org/abs/1801.10228
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://arxiv.org/abs/1709.06921

q

Check for
updates

Blockchain-Based Research Data Sharing
Framework for Incentivizing the Data Owners

(C=9)

Ajay Kumar Shrestha™’ and Julita Vassileva

University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
ajay. shrestha@usask. ca, jiv@cs.usask. ca

Abstract. Data sharing practices are much needed to maximize knowledge
gain by researchers. However, when and what data should be shared with
whom, and how credit should be awarded to the data owner needs to be clearly
addressed to create an individual incentive for data owners to share their data.
A platform that allows owners to control and get rewards from sharing their data
would be an important enabler of research data-sharing, since presently, such
incentives for researchers to share their data are largely missing. Our approach
delivers a usable blockchain based model for a collection of researchers’ data,
providing accountability of access, maintaining the complete and updated
information, and a verifiable record of the provenance, including all
accesses/sharing/usages of the data. Data owners will not only enjoy increased
transparency and protection of data from falling into the wrong hands, but they
will also be incentivized with digital tokens, acknowledgment, or both to share
their data with the interested data seekers, thus becoming active participants that
stand to benefit from the research data economy.

Keywords: Blockchain + Smart contract - Incentive - Data sharing
Privacy

1 Introduction

Over the last decade, there has been a huge technological innovation bringing many
research consortiums to use data-driven approaches and to collaborate in making
intelligent decisions to improve their scientific research activities. Data sharing prac-
tices are undoubtedly necessary to maximize the knowledge gain from the research
effort. They can also reduce duplicative trials and accelerate the discovery and gen-
eration of new ideas for research. However, when and what data should be shared with
whom and by what means, and how credit should be awarded to the dataset owner is
still the matter of intense debate and research. This research spirit has been further
renewed by the emergence of the privacy issues associated with the users’ data col-
lected by different parties whose primary motive is to have enhanced model while
enabling the maximal research knowledge and scientific benefits. Data Analytics
methods can improve significantly the quality of services, but they depend on col-
lecting, sharing and mining research data. The user contributes much of the data
voluntarily; others are obtained by the system from observation of user activities, or
inferred through advanced analysis of volunteered or observed data [1].

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 259-266, 2018.
https://doi.org/10.1007/978-3-319-94478-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_19&domain=pdf

260 A. K. Shrestha and J. Vassileva

In many important domains, for example, medicine and healthcare, both person-
alized patient care and medical research can benefit from sharing research data from
clinical trials in order to maximize the knowledge gain from the research effort [2]. Not
often, all possible purposes for use of those data are known in advance, and data
owner’s consent needs to be asked again, which can be obtrusive to a researcher/data
owner who doesn’t see what there is to gain. In addition, it becomes hard or even
impossible for data owners to remember what consent they have given to which
enterprise and to keep track of who accesses their data and for what purpose. A flexible
mechanism for obtaining and renewing consent for research data usage and sharing is
required that provides appropriate and meaningful incentives to capitalize from data
sharing and ensures transparency for researchers to be aware of which of their dataset
has been accessed, by whom, for what purpose and under what conditions.

It has been observed that the creativity and the advancement of the technologies
have given birth to so many computational backbones to ensure privacy and data
sharing across intelligent computing and security against hackers [3]. However, these
services are often criticized for the centrality issues, as at most cases, they do not collect
and share the diverse fragments of user data coming from the enormous autonomous
and independent entities [4]. The trust resides within the centralized service providers
for all the storage and management of data [5]. In the past few years, distributed ledgers
and blockchain technology have evolved as a promising means to support immutable
and trusted records in various use cases including healthcare, agricultural research
works, tourism domains etc. In addition, many blockchain systems provide a tech-
nology called “smart contract” that allows for building automatic verification of the
conditions for access or modification of each data entity. Smart contracts can be
deployed to encode allowed purposes of research data use, allowed software applica-
tions who can access the data, time limitations, the price for access, etc.

This paper proposes a blockchain based research data sharing framework that
incentivizes the dataset owners with digital tokens, proper acknowledgment or both,
while giving access to the detailed information of all data to them in an immutable and
incorruptible database. The rest of the paper is organized as follows. Section 2
describes the overview of blockchains and smart contract. A brief analysis of the
existing architectures with their limitations is given in Sect. 3. After that, Sect. 4
presents the solution architecture and our implemented model for the decentralized data
sharing in a research domain while ensuring users’ privacy and user control over the
data. Finally, Sect. 5 concludes with future directions.

2 Background

2.1 Blockchain

If there were any critical assets going on a supply chain, we could use distributed ledger
so that we could see where those goods/assets are, what they are doing and we will also
have the trust mechanism behind them so that it will be very difficult for the fraudulent
people to inject false goods into the supply chain [5]. This breakthrough technology is
also called blockchain. The idea was first stated in the original source code for the

Blockchain-Based Research Data Sharing Framework 261

digital cash system, Bitcoin [6], but its effect is being observed to be far wider than just
the virtual cryptocurrency. The blockchain provides a digital ledger of every record
organized in ‘blocks’, which are linked together by cryptographic validation. Each
block aggregates a timestamped batch of transactions to be placed in the chain. All
those blocks refer to the signature of the previous block in the chain, and that chain can
be traced back to the very first genesis block created in the chain.

The blockchain can be private, public or hybrid. MultiChain [7] is best suited for
private blockchain which provides the privacy and control required in an easy to
configure and deploy package. Unlike any other blockchains, MultiChain solves the
problems of mining, privacy, and openness via integrated management of user per-
missions [7]. Once a blockchain is private, problems relating to scale are easily
resolved, since the chain’s participants can control the maximum block size. In Mul-
tiChain, all privileges are granted and revoked using network transactions containing a
special metadata. The miner of the first “Genesis” block automatically receives all
privileges, including administrator rights to manage the privileges of other users. Future
versions of MultiChain could also introduce “super administrators” who can assign and
revoke privileges on their own.

Similarly, Ethereum is another open source platform to create decentralized
applications (dapps) where users interact with the online services in a distributed peer
to peer manner that takes place on censorship proof foundation. Developers can create
interfaces and business logic with any of the known programming languages and tools.
Ethereum has Ether (ETH) as its own virtual currency, which can be used to pay a
transaction fee and to provide a primary liquidity layer for exchanging digital assets.
There are “messages” in Ethereum being created by either an external entity or a
contract unlike the Bitcoin transaction, which can only be created externally [8]. There
is also an explicit option for Ethereum messages to contain data and the recipient of an
Ethereum message, and if it is a contract account, it has the option to return a response
as well. In addition, the Ethereum has “transaction” as the signed data package that
stores a message to be sent from an externally owned account. The state in Ethereum is
made of accounts each consisting of 20 bytes address and state transitions [8]. We have
Ethereum blockchain as a semi-financial application such as on-blockchain escrow,
which allows users to enter into contracts and manage them using their ETH to deal
with non-monetary assets such as the research data.

2.2 Smart Contracts

The Smart contracts are instances of contracts deployed on some blockchains, for
example Ethereum [8]. They consist of different functions that might be called from
outside of a blockchain or by other smart contracts. Blockchain coupled with smart
contract technology removes the reliance on a central node between the transaction
parties. Since the smart contracts are broadcasted on the blockchain, all the connected
parties across the entire cryptocurrency network will have a copy of them. A Smart
contract, as an important piece of software, stores the rules that negotiate the terms of
the contract, automatically verifies the contract and executes the agreed terms [8]. The
smart contract can execute agreed stored process when triggered by an authorized or
agreed event just like traditional systems. All contract transactions are stored in

262 A. K. Shrestha and J. Vassileva

chronological order for future access along with the complete audit trail of events. If
any party tries to change a contract or transaction on the blockchain, all other parties
can detect and prevent it. If any party fails, the system continues to functions with no
loss of data or integrity. Therefore, it creates a single large secure computer system
logically, without the risks, costs and trust issues of a centralized model. The Ethereum
Virtual Machine (EVM) code is used in the contracts that consists of bytes, each
representing an operation. The code can be written in Solidity language and can access
the value of sender and data of the incoming message, block header data, and return a
byte array of data as an output.

3 Related Works

According to Bierer et al. [9], data sharing is the “use of research data by persons other
than those who originally gathered the data, for no longer a hypothetical or occasional
occurrence”. Most of the research on data sharing is relevant to the design framework
that focus on the optimization of those properties. However, the technical performance
of a data sharing system alone does not guarantee the practicality of the systems.
Decentralized approaches for data sharing has achieved the research trend in order to
overcome the limitations brought by the centralized architecture, which has a prede-
fined point of access that leads to the central point of failure.

A few prominent examples of data sharing systems include online P2P file-sharing
networks and data management systems, collaborative repositories such as Wikidata
[10] etc. Almost all of these systems implement different architectures and their
evaluation is based on different non-functional requirements, such as efficiency, scal-
ability, or reliability [11]. With regard to data sharing in the cloud, Liu et al. proposed
an incentive mechanism into rational secret sharing schemes and a fair data access
control scheme for cloud storage [12]. In the scheme, the decryption key reconstruction
activity is to be formalized, and then its security, fairness, and correctness are defined.
Afterward, the decryption key obfuscation is performed with a generation of a large
number of fake keys over the shared data. When rational users exchange the shares,
they adjust the action order through the agreed term.

Ozzie et al. [13] provided an architecture that facilitates user-controlled access to
user profile information. A user is allowed to selectively mask (expose) portions of her
profile to third parties. Advertisers and content providers can offer incentives or
enticement in response to the acceptance of which a user exposes larger portions of
their profile. Online social network, persona as in [14], can allow users to choose and
define the rules who they want to share their personal information like photographs
with and browse through highly sensitive data on web pages. It uses attribute-based
encryption and public key cryptography to hide data and provide the flexibility needed.
For the decryption and authentication by groups and users, it uses group-based access
policies. Persona can perform just as well as the existing online social network with
added privacy features. Similarly, Houdini framework enables the sharing of
context-aware and privacy-conscious user data for global computing [15]. It comes
with a method to collect data from various sources focusing on how and when to share
them. It is built with an infrastructure to manage principles focusing on the preferences.

Blockchain-Based Research Data Sharing Framework 263

The main parts of the infrastructure are how well the underlying rules perform and
providing the preferences by itself.

In the medical field, the research committee is increasingly recognizing the
importance of sharing patients’ level data from clinical trials. European Medicines
Agency (EMA), a number of drug companies and one other trial funder have already
implemented data sharing [2]. However, the issue with them is to address the appro-
priate and meaningful incentives to capitalize on the promise of data sharing, and of
course, they rely on a centralized system for the data storage and management. Most
importantly, with regard to sharing research data, well-developed incentive mecha-
nisms in online communities positively motivate the users to willingly engage in
knowledge sharing with others [16]. Next section will provide the methodologies and
discussions on our model.

4 Solution Framework and Discussions

Figure 1 presents our general solution architecture that introduces a new way of
incentivizing the users for sharing their research data. We have introduced blockchains
to share the data among registered parties/enterprises in their private network by
incorporating automatic contract so that access-control policies would be stored
securely on the blockchain. A user can register into the system by providing her basic
profile information, public wallet-address and activate the smart contract, which
automates the functionality to support the user-controlled privacy in order: (a) to give
the user full transparency over who accesses their data, when and for what purpose,
(b) to allow the user to specify a range of purposes of data sharing, kinds of data that
can be shared, and classes of applications/companies that can access the data through
the smart contract, and (c) to provide an incentive to the user for sharing their research
data (in terms of payment for the use of the data by applications, as specified by a smart
contract). This user-incentive model with the blockchain is run by the public (Ether-
eum) blockchain network nodes.

A |
Register @ ‘
- Data
User . |

Blockchain

Smart Contract

& H
i

Fig. 1. General user-controlled privacy-preserving data sharing architecture.

264 A. K. Shrestha and J. Vassileva

Since the smart contract is stored on the public blockchain, the users should have
their own digital token addresses safely stored in their personal wallet. Once the users’
data are being used by any other participating parties, then the corresponding users will
be incentivized with the digital tokens (ETH). And similarly, for sharing the data
among enterprises, private (MultiChain) blockchains are installed on each participating
registered node, which can publish the items (research dataset) into the stream to be
shared among other nodes in the network.

With reference to this proposed general model, the actual implementation is por-
trayed with the solution framework in Fig. 2. One of the elements of data sharing would
be to whom the data are available for sharing and by what means, and how can the
researchers/data owners be incentivized either with digital tokens or with acknowl-
edgment of their efforts in collecting the data. Our system clearly guides registered users
about what the smart contracts do on their data. With the smart contract in the public
Ethereum blockchain, researchers are able to retain the ownership of data with them-
selves and are incentivized as per the agreed term. Any academic or industrial unit as a
data seeker with valid credentials and approval from a local institutional review board
(IRB) is eligible to access the data. The local IRB must also be enlisted into the system
by providing the certification that it is bound by regulations to look at scientific methods
proposed by a node (data seeker) for accessing the research data. Through the smart
contract, only the selected eligible nodes can access the items (dataset) by subscribing to
the corresponding published streams. The data owner is incentivized as per the nego-
tiation made on the options between the two parties. An acknowledgment can be given
to the data owner during the publication of research article and/or a predefined incentive
is offered in the form of the digital token by transferring ETH to the data owners’ Ether
addresses. An escrow service can be optionally added into the system so as to bind the
users with legal obligations. The access-control policies are stored securely on the
blockchain while retaining the same user-interface.

Escrow
Service Directory
9=/ of dataset
“. Dataset info Search
1
°
Data owner ¥ Data seeker
Smart Contract on Ethereum
Publish
v itenis b Subscribe
() | Streams on | items Y
I -
DaEepostiony \@‘ _m, Data repository
W Transaction W
Digital assets

Fig. 2. User-controlled privacy-preserving research data sharing model.

Blockchain-Based Research Data Sharing Framework 265

The smart contract is deployed just once for each node on Ethereum blockchain
which stores _billingAddress. The smart contract developed with Solidity contains the
following functions:

contract ShareResearch is tested {

function ShareResearch(address _billingAddress)

function getStatus(uint externallncentivelD) constant
returns (string)

function getPrice(uint externallncentivelD) constant
returns(uint)

function startNewIncentive(uint externallncentivelD,
uint price) onlyOwner

function pay(uint externallncentivelD) payable

function finish(uint externallncentivelD) onlyOwner }

In order to provide ETH to the data owner (say nodel) for accessing the data, a
participating eligible data seeker at some node (say node2) queries the system to use the
specific filename. The public key cryptography is implemented to ensure the authenticity
of the eligible users requesting the file. This results in the execution of the
startNewlIncentive function of smart contract with the incentivelD and total incentive to
be paid to the data owner. The incentivelD is generated for the data owner during
registration. Node2 invokes pay function of the smart contract with the incentivelD of
Nodel and the ETH to be sent as an incentive to the data owner. The contract verifies the
two parameters and then it receives the ETH and updates the status accordingly. It then
calls the getStatus function to get the status and with the confirmation of ETH being
provided by Node2, data is made available to the data seeker and finally calls the finish
function to transfer ETH to the _billingAddress. The ETH is made available in the
nodel’s account since the incentivelD is paired with the ETH address of the data owner.
Thus, the data seeker is entitled to the data while incentivizing the corresponding data
owner. There is also no scalability limit in terms of node count for MultiChain block-
chain as demonstrated in [17], because each node does not need to connect to every other
node to create a fully connected peer-to-peer network. However, for all the node
catch-up time, new nodes joining the chain have to replay all transactions from the
beginning, and so it can take them significant time before they are up-to-date. The exact
amount of time will also depend on how many blocks and transactions are in the chain.

5 Conclusions

In summary, our paper presents a decentralized framework for incentivizing researchers
for sharing their research data that provides a way to specify/control the parameters of
sharing and providing full accountability of access to such data. The security, scala-
bility, and privacy of those systems are gracefully realized by the implementation of the
smart contract and blockchains, which can offer the secure distributed research
data-sharing network. Our future works include improving the current model by

266 A. K. Shrestha and J. Vassileva

studying users’ attitudes to research data sharing with blockchain and the incentives
they would find attractive for sharing their assets. We will also evaluate usability and
usefulness of the approach, and the trust users can have in the system.

References

1. Poslad, S.: Ubiquitous Computing: Smart Devices, Environments and Interactions. Wiley
Publishing, New York (2009). ISBN: 978-0-470-03560-3

2. Lo, B., DeMets, D.: Incentives for clinical trialists to share data. N. Engl. J. Med. 375(12),
1112-1115 (2016). https://doi.org/10.1056/nejmp1608351

3. Shrestha, A.K.: Security of SIP-based infrastructure against malicious message attacks. In:
Proceedings of the 8th International Conference on Software, Knowledge, Information
Management and Applications. IEEE (2017). https://doi.org/10.1109/skima.2014.7083519

4. Dolog, P., Vassileva, J.: Decentralized, agent-based and social approaches to user modeling.
In: Workshop DASUM-05, at the 9th International Conference on User Modeling (UM
2005), Edinburgh, Scotland (2005)

5. Shrestha, A.K., Vassileva, J.: Towards decentralized data storage in general cloud platform
for meta-products. In: Proceedings of the International Conference on Big Data and
Advanced Wireless Technologies (BDAW 2016). ACM, New York (2016)

6. original-bitcoin/main.h at master - trottier/original-bitcoin - GitHub. https://github.com/
trottier/original-bitcoin/blob/master/src/main.h#L.795-L803. Accessed 10 Feb 2017

7. Greenspan, G.: MultiChain Private Blockchain — White Paper, 1st edn. (2015)

8. Buterin, V.: A next-generation smart contract and decentralized application platform. In:
GitHub White Paper (2010). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed
19 Sep 2017

9. Bierer, B.E., Crosas, M., Pierce, H.H.: Data authorship as an incentive to data sharing.
N Engl. J. Med. 376(17), 1684-1687 (2017). Retrieved from http://www.nejm.org/doi/pdt/
10.1056/NEJMsb1616595

10. Vrandec, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10) (2014)

11. Davoust, A.: Decentralized Social Data Sharing. Thesis report. Ottawa-Carleton Institute for
Electrical and Computer Engineering (OCIECE) (2015)

12. Liu, H,, Li, X., Xu, M., Mo, R., Ma, J.: A fair data access control towards rational users in
cloud storage. Inf. Sci. 418, 258-271 (2017)

13. Ozzie, G.W.F., Horvitz, E.J., Goodman, J.T., Brill, E.D., Brunell, B.A., Dumais, S.T., Ozzie,
R.E.: User-controlled profile sharing (2009)

14. Starin, D., Baden, R., Bender, A., Spring, N., Bhattacharjee, B.: Persona : an online social
network with user-defined privacy categories and subject descriptors. In: Sigcomm 2009,
pp- 135-146 (2009). https://doi.org/10.1145/1592568.1592585

15. Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P.F., Sahuguet, A., Varadarajan, S.,
Vyas, A.: Enabling context-aware and privacy-conscious user data sharing. In: Proceedings
on IEEE International Conference on Mobile Data Management, pp. 187-198. IEEE (2004).
https://doi.org/10.1109/MDM.2004.1263065

16. Chen, C., Chang, S., Liu, C.: Understanding knowledge-sharing motivation, incentive
mechanisms, and satisfaction in virtual communities. Soc. Behav. Pers. Int. J. 40(4), 639-647
(2012)

17. Shrestha, A.K., Vassileva, J.: User-controlled privacy-preserving user profile data sharing
based on blockchain. In: Proceedings of the Future Technologies Conference (FTC),
Vancouver, Canada. IEEE (2017)

http://dx.doi.org/10.1056/nejmp1608351
http://dx.doi.org/10.1109/skima.2014.7083519
https://github.com/trottier/original-bitcoin/blob/master/src/main.h#L795-L803
https://github.com/trottier/original-bitcoin/blob/master/src/main.h#L795-L803
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.nejm.org/doi/pdf/10.1056/NEJMsb1616595
http://www.nejm.org/doi/pdf/10.1056/NEJMsb1616595
http://dx.doi.org/10.1145/1592568.1592585
http://dx.doi.org/10.1109/MDM.2004.1263065

q

Check for
updates

A Novel Blockchain as a Service Paradigm

Zhitao Wan', Mingiang Cai?®, Jinging Yang', and Xianghua Lin'

! Institute of Advanced Technology Research,
Ge Lian Corporation, Hangzhou, China
zhitao. wan@pku. edu. cn
2 Shanghai University of Finance and Economics, Shanghai, China
caimingiang@l26. com

Abstract. Blockchain brings a new vision for decentralized and trusted systems
with more security, resiliency and efficiency. But the barrier of deployment is
relative high and BaaS (Blockchain as a Service) emerged to meet the challenge.
The current mainstream BaaS providers usually adopt APIs for user access or
simply migrate blockchain application to Cloud. Obviously these BaaSs are
provided in centralized way which erodes the trustless mechanism and incurs
lock-in risk. This paper proposes a novel service paradigm to overcome the
limitation of current BaaS. The paradigm adopts deployable components to
reconstruct the open and decentralized blockchain service with corresponding
long-life encapsulated blockchain service. The meta blockchain service gener-
ates dedicated easy to deploy encapsulated components to build up more parties
BaaS network to guarantee decentralization, auditability and better efficiency.
The encapsulated blockchain service components are the seeds of the whole
blockchain system. A hyperledger based implementation demonstrates the
paradigm can alleviate the erosion of characteristics of blockchain and lock-in
risk caused by current BaaSs.

Keywords: Blockchain as a Service - Cloud computing - Service paradigm

1 Introduction

Blockchain is a type of distributed ledger in which value exchange transactions are
sequentially grouped into blocks. Each block is chained to the previous block and
immutably recorded across a peer-to-peer network, using cryptographic trust and
assurance mechanisms. Blockchain offers a secure way to exchange any kind of dig-
italized assets and build up trusted partnerships. Blockchains have shaken up the
financial industry and more agencies now believe the technology could rejuvenate the
public sector. Proponents argue that its immutability will protect records from fraud-
sters, its transparency will keep employees accountable, and its ability to automatically
process new entries can make agencies more efficient. The blockchain market is set to
grow at a CAGR of 61.5% by 2021, with transparency and immutability as the driving
factors behind the exponential growth of the blockchain market [1].

Nordrum reported in IEEE spectrum that Dubai wants one single software platform
on which agencies will launch different blockchain projects, while Illinois designed a
more experimental process that individual projects testing different types of blockchain

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 267-273, 2018.
https://doi.org/10.1007/978-3-319-94478-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_20&domain=pdf

268 Z. Wan et al.

platforms and applications to find the best fit for their particular needs [2]. Design of
blockchain system is a relative complex and error-prone process. The P2P intercon-
nection, file storage, consensus mechanism and application should be elaborately
developed and tested [3]. To address the challenge of complexity, Tech giants have
jumped on the bandwagon and they are providing BaaSs through their built-in plat-
forms and collaborations. BaaS is set to grow further and become the latest revolution
worldwide that makes the mass adoption of blockchain technology happen.

This paper is an effort to improve the current emerging BaaSs. We propose a
decentralized and trusted BaaS paradigm to keep the core characteristics of blockchain
from the cloud migration incurred erosion. The rest of paper is organized as follows.
Next section introduces blockchain and encapsulated BaaS and its limitation. Then we
propose our novel encapsulated BaaS paradigm. A hyperledger based proof of concept
is followed. In conclusion and future work, we discuss some possible future directions
and conclude the paper.

2 Current Blockchain as a Service

Blockchain has four key characteristics: Decentralization. In centralized systems, the
central trusted agency validates each transaction. The third party agency is no longer
needed in blockchain. Consensus mechanisms in blockchain are used to maintain data
consistency among distributed nodes in blockchain network. Persistency. Transactions
can be validated and fraud transactions would not be admitted by honest nodes. It is
almost impossible to modify a transaction once it has been included in the blockchain.
Anonymity. Each user can join the blockchain with a meaningless address, which does not
reveal the real identity of the user. Auditability. Blockchain stores all previous transac-
tions and data. Once a transaction or data change submitted, the related transactions and
data could be easily tracked [4]. The primary advantage of BaaS is lower entry barrier and
easy to use, but we should check the compliance core blockchain characteristics.

Generally, the BaaS can be classified into two categories: cloudified native
Blockchain as a Service (nBaaS) and cloudified encapsulated Blockchain as a Service
(eBaaS). The nBaaS is to move blockchain nodes to cloud platform and make them
cloud hosted. Compared with nBaaS the eBaaS also provides extra unified interfaces
such as REST APIL The typical nBaaSs include Microsoft Azure hosted R3’s dis-
tributed ledger platform, Corda and R3Net, Ethereum [5], Amazon AWS hosted many
kinds of blockchain applications [6]. The typical eBaaSs include IBM’s Bluemix [7]
based Hyperledger [8] with GUI to deploy blockchain instance with REST API
interface (see Fig. 1). It depicts an example of a blockchain network that consists of
four members with two or three peers for each. An ordering service that defines policies
and network participants. Channel 1 is restricted to three members: Banks B, C, and D,
channel 2 contains all four network members. A client in possession of a certificate is
able to send calls to peers. It’s conceivable that a client doesn’t even know about the
existence of the blockchain. The eBaaS is the focal point of this paper.

Tencent is more aggressive and its TrustSQL [9] is committed to providing
enterprise-class blockchain infrastructure supporting secure, reliable and flexible
blockchain cloud services (see Fig. 2). Besides its highlight features such as consensus

A Novel Blockchain as a Service Paradigm 269

Black Box Service

Consensus &
Ordé¢ring Cluster

Peer

OX

Member

Channell
== Channel2

g Client Bank D

Fig. 1. An IBM BaaS bluemix blockchain network consisting of four members leveraging
channels to isolate data.

Black Box Service

— 0 ®®®

Consensus

— m e EE
b L

pe
;‘L SQL E-; 9 9 Storage
(1 APT o

E 202 + E:g
n Ledger - -’
e Data Checking
282 Authentication
E‘ Client

Fig. 2. Typical Tencent TrustSQL blockchain service and its application scenarios.

algorithm, transaction confirmation in seconds, low-cost fast access, security and
efficient operation, TrustSQL provides SQL like interface for user access. TrustSQL
Platform has a three layered system: core chain layer (Trust SQL), a product service
layer (Trust Platform), and an application layer (Trust Application). The platform
provides such as digital assets, shared books, proof certificates, stock swaps and pro-
prietary transactions, as per the white paper. But, it only provides SQL-like insert and
select operation. Its centralized way erodes decentralized trust machine, the core
motivation of blockchain.

270 Z. Wan et al.

Lower layer networking, storage, computing resources are adopted by the higher
layer cloud services. As we mentioned the nBaaS has little impact on a legacy
blockchain system to be migrated to the cloud. But eBaaS is a black box that erodes the
Decentralization and Auditability of blockchain.

We present a new BaaS paradigm to reconstruct Decentralization by providing
deployable components, which intends to rebuild Auditability by a transparent eBaaS.

3 A Novel Paradigm

The cloudify BaaS should keep the benefit of blockchain and provide more flexibility,
convenience, elastic and so on. As we discussed in previous section, the current eBaaS
is more like a cluster of distributed nodes that provide a unify access point which
breaks down the service side and client side. When a client accesses eBaaS by service
interface such as REST API, it is identical to traditional service and the characteristics
of blockchain are blur. To keep Decentralization, the key characteristic of blockchain,
we propose a new paradigm of eBaaS. The new paradigm supports more flexible
decentralized workload deployment. It is conceivable that a decentralized system has
better Auditability as well.

Black Box Service
No Deployable Component (s)

®

Client Prefer E-C] ient Iclient Prefer
Other Platform(s) T Other Platform(s)

B
@

Current eBaaS Paradigm Proposed eBaaS Paradigm

White Box Service
Deployable Component (s)

@\ (@

JE

L

/

i)

vd

Fig. 3. A new service paradigm for encapsulated BaaS vs. current encapsulated BaaS paradigm.

There are many application scenarios and each instance of a scenario usually
invokes a standalone BaaS. e.g., The Tencent blockchain platform has diversified
implementations in the following scenarios: Proof of authentication, Smart contract,
Shared economy, Digital assets, Shared ledger. IBM blockchain platform provides a
way to develop, govern and operate a blockchain ecosystem. A BaaS invokes a few
nodes to construct a blockchain network. Conventional service is defined as a black
box. But blockchain is preferred to be white box which can be reviewed by public and

A Novel Blockchain as a Service Paradigm 271

easy to keep the Decentralization and Auditability. We solve the problem by adopting
deployable component(s) (see Fig. 3), i.e., all components generated for an instance of
blockchain are also released as part of the blockchain service. Client can deploy any
component to any computing environment such as different cloud services and
on-premises platforms.

4 Implementation and Evaluation

We implement the paradigm basing on the Hyperledger. The Hyperledger is a typical
consortium blockchain. Docker is used as the container for nodes. Hyperledger
Composer is a tool set for building blockchain business networks to create smart
contracts and applications. It is built with JavaScript, leveraging modern tools
including node.js and etc., Composer offers business centric abstractions as well as
sample apps with easy to test devops processes and to create robust blockchain solu-
tions that drives alignment across business requirements with technical development.

4.1 Hyperledger Fabric and Composer

Hyperledger Fabric [10] is a blockchain framework implementation as a foundation for
developing applications or solutions with a modular architecture. Hyperledger Fabric
allows components to be plug-and-play including consensus and membership services.
Hyperledger Fabric leverages container technology to host smart contracts called
chaincode. The chaincode is used to construct the application logic of the system. To
prepare a Hyperledger Fabric environment, cURL tool, docker and docker compose, go
programming language, Node.js runtime and npm and Python are prerequisites.
Hyperledger Composer [11] includes the following main components:

Business Network Archive. Capturing the core data in a business network, including
the business model, transaction logic and access controls, the Business Network
Archive packages these elements up and deploys them to a runtime.

Composer Playground. This Web based tool allows developers to learn Hyper-
ledger Composer, model out their business network, test that network and deploy that
network to a live instance of a blockchain network. Composer playground offers a
repository of sample business networks that can provide a base for building user own
business network.

REST API support and integration capabilities. A Loopback connector for business
networks has been developed that exposes a running network as a REST API which
can easily be consumed by client applications and integrate non-blockchain applica-
tions. It provides that user interface for client to invoke blockchain requests and
encapsulates the blockchain for easy to use.

4.2 Hyperledger and Composer Based Implementation and Evaluation

We use shell script to generate corresponding dockers and expose them as part of
service using HTTP service for third party deployment (see Fig. 4). The main steps are
following:

272 Z. Wan et al.

White Box Service

3 —_—
¥ @

®
r== @
@ o 1@ @) G —
® :d s @
O Member
E® Client /@

Fig. 4. A new BaaS paradigm instance consisting of four members, one order and client side
deployable peer and order.

Define core components. This step includes the definition of assets, participants,
transaction logic, and access controls for the business network, which can then be
shared across multiple organizations and deployed on different platforms.

Generate JavaScript and REST APIs. This step is basing on the business network
definition that can be used to interact with applications, integrate legacy systems, create
skeleton applications and run analytics on the blockchain network.

Develop and test Composer playground, and then deploy the business network to a
blockchain instance of Hyperledger Fabric.

The advantages of hyperledger and composer base implementation include:

Fast creation of blockchain applications. It eliminates the massive effort required to
build blockchain applications from scratch. Edit the shell scripts and configuration file
and compile the source code to get it done.

Flexibility. Hyperledger composer is higher-level abstraction. It is easy to connect
to existing applications.

Deployable. All the components to deploy are in docker container. They can be
easily downloaded and installed.

5 Conclusion and Future Work

The advantages of blockchain based solutions are more widely accepted. The BaaS is
used to accelerate the deployment of blockchain. Compare with conventional block-
chain it provides a universal access and easy to apply approach. However, current
BaaSs erode the core characteristics of decentralization and auditability. The conse-
quence is that the confidence of trust decreased to a lower level similar to legacy
databases or services. We proposed a new paradigm to address the challenge. The
proposed paradigm introduces deployable components as part of blockchain service.
The deployable components can be easily deployed in cloud computing or on-premises
environment. The hyperledger fabric and composer based implementation shows the

A Novel Blockchain as a Service Paradigm 273

paradigm is applicable for current main-stream blockchain system. The proof of con-
cept system demonstrates an acceptable complexity of deployment. Currently, the
deployment requires docker and need some manual installation and configuration. We
will try to make it easier to deploy in more different environments in future with
automatic installation and configuration. And, how to migrate more blockchains to
cloud as BaaSs and find out more paradigms are interesting topics.

References

. Gartner Homepage. http://www.gartner.com. Accessed 31 Mar 2018
. Nordrum, A.: Govern by blockchain Dubai wants one platform to rule them all, while Illinois

will try anything. IEEE Spectr. 54, 54-55 (2017)

. Mehar, M., et al.: Understanding a Revolutionary and Flawed Grand Experiment in

Blockchain: The DAO Attack. Social Science Electronic Publishing (2017)

. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology:

architecture, consensus, and future trends. In: Proceedings - 2017 IEEE 6th International
Congress on Big Data, BigData Congress 2017, pp. 557-564 (2017)

. Blockchain. https://azure.microsoft.com/en-us/solutions/blockchain/. Accessed 31 Mar 2018

AWS Blockchain Partners. https://aws.amazon.com/cn/partners/blockchain/. Accessed 31
Mar 2018

IBM Blockchain Platform. https://console.bluemix.net/catalog/services/blockchain/. Acces-
sed 31 Mar 2018

Home-Hyperledger. https://www.hyperledger.org/. Accessed 31 Mar 2018

TrustSQL. https://trustsql.qq.com/. Accessed 31 Mar 2018

Hyperledger Fabric Homepage. https://hyperledger-fabric.readthedocs.io/en/release-1.1/.
Accessed 31 Mar 2018

. Hyperledger ~Composer Homepage. https://www.hyperledger.org/projects/composer.

Accessed 31 Mar 2018

http://www.gartner.com
https://azure.microsoft.com/en-us/solutions/blockchain/
https://aws.amazon.com/cn/partners/blockchain/
https://console.bluemix.net/catalog/services/blockchain/
https://www.hyperledger.org/
https://trustsql.qq.com/
https://hyperledger-fabric.readthedocs.io/en/release-1.1/
https://www.hyperledger.org/projects/composer

Short Paper Track: Application
Researches

®

Check for
updates

A Business-Oriented Schema
for Blockchain Network Operation

Sheng He'23(®) Chunxiao Xing', and Liang-Jie Zhang??

! Research Institute of Web Information, Tsinghua University, Beijing, China
heshengpku@gmail.com
2 Kingdee Research of Kingdee International Software Incorporation,
Shenzhen, China
3 National Engineering Research Center for Supporting Software
of Enterprise Internet Services, Shenzhen, China

Abstract. The earliest proposed blockchain is a completely open oper-
ating mode, that is the public blockchain, where all operating nodes
can freely join or exit the blockchain network without any restriction.
Because of the inefficiency and the private care of the public blockchain,
the later proposed consortium blockchain or private blockchain restricts
the behavior of joining of the operating nodes according to an advance
agreement. The consensus mechanism, the most important feature of the
blockchain, is however closely related to the chosen operating mode. Dif-
ferent from the endogenous incentives of the public blockchain, the oper-
ating nodes in consortium blockchain are usually based on the extrinsic
values from commercial needs, which actually have weakened the incen-
tives of blockchain system. This paper is trying to design a business-
oriented schema for blockchain network operation, where the consortium-
like nodes can make up a blockchain network but offer a public-like
blockchain network services with a uniform standard. The fundamental
blockchain network can set up enough incentive to drive the operating
nodes focusing on how to improve their operational and service capabil-
ities. Therefore, the business-oriented schema will enable the final busi-
ness service providers (application developers) and the business service
consumers (application users) to use the fundamental blockchain network
services easily and conveniently as the today’s Internet service.

Keywords: Blockchain - Blockchain applications
Business-oriented schema - Internet operation model

1 Backgrounds and Introductions

The original blockchain proposed in 2008, known as Bitcoin [1], is a completely
open operating mode, i.e. the public blockchain model. In the public blockchain
model, anyone from all over the world can join or exit the network as a node of
the blockchain, freely and easily without any restricts. The participants’ identity

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 277-284, 2018.
https://doi.org/10.1007/978-3-319-94478-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_21&domain=pdf

278 S. He et al.

can be directly transformed between the developer, the provider, and the con-
sumer of the blockchain services without any technical constraints. Therefore, a
very important innovation of blockchain is that the blockchain technology can
inimitably create a peer-to-peer (P2P) trust platform in such a completely trust-
less environment without a common centralized and trusted third-party [2]. In
consequence, the public blockchain technology has contributed the most effort to
the consensus mechanism to achieve the consistency of numerous nodes [3]. For
an example, Proof of Work (PoW) powered blockchains currently account for
more than 90% of the total market capitalization of existing digital cryptocur-
rencies. The PoW consensus mechanism requires every node must complete a lot
of but might not be a commercial sense of computations in order to achieve the
entitlement to record the ledger of the blockchain, e.g. a coin or token reward [4].
With this endogenous incentive mechanism, the blockchain operators (nodes) or
so called the blockchain network service provider can be encouraged to stay in
the blockchain network to promote the current blockchain network running more
robustly and steadily.

While a completely open and decentralized operating mode can theoretically
obtain one of the highest levels of trust, it also raises the performance issues of
blockchain network, such as the current highest frequency of transactions is under
6 TPS of Bitcoin and about 15 TPS of Ethereum [5] which is much lower than the
current centralized payment system. The complete decentralization also brings
with the privacy and access control issues as well as particularly the supervision
issues which must be faced by social and commercial applications [6]. Now, the way
under discussion to solve these problems in the public blockchain, such as trading
partitions and data sharing, will inevitably reduce the degree of decentralization.

The consortium blockchain [7] is a later proposed operating mode, which is
trying to touch a compromise between trust level and performance requirements.
In consortium blockchain model, each node must go through certain permission
before joining the blockchain network, so the identities are basically not directly
transformable between the blockchain service provider and the blockchain service
consumer. The consortium blockchain can, therefore, using a more consistent
Byzantine fault-tolerance (BFT) algorithm to solve the Byzantine fault toler-
ance [8,9] of the distributed ledgers. This will also bring an additional benefit
that no bifurcation existed anymore. Nodes of consortium blockchain generally
do not have a mechanism to achieve rewards from the endogenous blockchain
system but are usually driven by the self’s business interests of operators. The
biggest problems that the consortium blockchain will face to put the project for
actual working, is that most of the existing business scenarios are difficult to find
multiple reliable nodes that can reach the consortium blockchain requirement.
For the sake of participants’ own interests, enterprises or other organizations
prefer to control the blockchain network and finally convert the real blockchain
network operating model to a private blockchain, which extremely weakens the
most important characteristic of the blockchain — trust.

After introducing the smart contract [5], the blockchain network service will
have a significant shift for the blockchain network consumer identity which

A Business-Oriented Schema for Blockchain Network Operation 279

is divided from a single-identity of blockchain network user to blockchain
application developers (blockchain application service providers) and blockchain
application users (blockchain application service consumer). The blockchain net-
work services will play as an independent operator role in the service architec-
ture of the blockchain application services. In general, the service providers of
blockchain networks are different from the service providers of blockchain appli-
cations, and most importantly, their goals or incentives would not be the same.
However, due to the uniqueness of the blockchain network, the inconsistencies
of incentives may hinder the development of the blockchain network itself. For
example, the service providers of blockchain networks in the public blockchain,
known as the miners, may simply pursue greater token incentives rather than
satisfying the needs of blockchain application providers and users. In the con-
sortium blockchain network, the nodes will only support the applications in line
with their own commercial interests, rather than to support other external users’
applications. The different commercial interests of enterprises will disperse the
users’ data to different blockchain networks and impede the connection of data.

This paper is an attempt to design a business-oriented schema for blockchain
network operation, where the consortium-like nodes can make up a blockchain
network but offer a public-like blockchain network services with a uniform stan-
dard. The fundamental blockchain network can set up enough incentive to drive
the operating nodes focusing on how to improve their operational and service
capabilities. Therefore, the business-oriented schema will enable the final busi-
ness service provider (application developer) and the business service consumer
(application user) to use the fundamental blockchain network services easily and
conveniently as the today’s Internet service. In Sect.2 we discuss the Internet
operating mode and in Sect.3 we introduce the idea of the Internet operating
mode to blockchain network operating and discuss what is the business-oriented
schema of the blockchain network service with some independent operators. In
Sect. 4, we point out some important features of the business-oriented schema
for blockchain network operation.

2 The Schema of Internet Network Operation

The current operation schema of Internet service is the network operator mode.
The basic services of the Internet are provided by so-called network operators
(most are companies), such as AT&T, China mobile and so on. The hardware
and technology upgrade of the Internet is usually provided by network equipment
providers, such as Huawei and Cisco. The network equipment providers would
upgrade the Internet hardware capabilities under certain technical standards,
such as upgrading from coaxial cable to optical fiber and mobile communication
from 4G to 5G. However, on the service side of Internet applications, the devel-
opers of commercial applications only need to publish their own services via the
Internet, and users can then access these services easily through the Internet.
For applications, the Internet itself is just a medium, and different network oper-
ators or different hardware devices will not have a fundamental impact on the
form of application services (Fig.1).

280 S. He et al.

Internet Application Internet Application Internet Application
Development = Services = Users
A A A
Government/
Internet Operators (Internet Network Services) <& -—| Standardization
organization
A A A
Internet Network Internet Network lrE:ternet Operators
ooperation and
Development Protocol v
Competition

Fig. 1. The operation model of Internet network

Internet network service providers, i.e. network operators, charge the con-
nected Internet service users (including business application developers and
users) according to certain standard rate, which would enhance their ability
to keep up the Internet network service. Therefore, as the underlying technical
support of the Internet, network equipment vendors and other roles are basically
isolated from the service users of the Internet. The advantage of such a layer-
ing is that the iteration of Internet technology will not fundamentally affect the
development, maintenance and the use of the Internet applications. At the same
time, Internet operators must be competitive to improving the service capabili-
ties of the Internet, while application developers can focus on their own business
and explore application scenarios and improve the user experience.

Under the existing Internet operation model, different operators can use var-
ious technologies to offer gradational and multidimensional levels of Internet
access services, such as the Internet access speed. Therefore, the connectivity
between different Internet operators often requires two operators or a certain
organization to achieve the global Internet connectivity in accordance with some
agreements. Internet users that are switching services between different opera-
tors may have to pay for cross-operators or even service disruption. That is,
where the Internet is open, but often because of the natural monopoly of net-
work operators, developers and users are not completely free to choose their
operators.

3 Introducing the Idea to Blockchain Network Operating

The nodes of public blockchain such as Bitcoin are completely open, so both
individuals and companies can run blockchain networks equally as long as they
can provide the corresponding server supports according to the blockchain agree-
ment. However, as the proof of work (POW) to be more and more difficult, it
is almost impossible for an individual’s ordinary server to effectively participate
in the mining competition, substantially out of the Bitcoin network operation.
Thus, a large number of so-called miners whether individuals or companies have

A Business-Oriented Schema for Blockchain Network Operation 281

an increasingly convergence to form the “mine pools” to participate in the min-
ing competition. For example, the top four mining pools of Bitcoin have now
controlled more than 50% calculation power of the entire network. The situation
of Ethereum, the second largest crypto-currency, is also similar to that. It can
be seen that the public blockchain built up by the proof of work shows that with
the increase of the calculation power of the whole network and the difficulty of
mining, the aggregation of computing power is unavoidable from the game point
of view, thus seriously questioning the blockchain. The most important one is
based on the distribution, which has brought great hidden dangers to the unreli-
able modification and stability of the blockchain network. Using other consensus
mechanisms such as POS, DPOS, etc., it is also unavoidable or even active to
reduce the number of nodes actually participating in the consensus and writing
ledgers, in order to reduce the huge loss of POW and expect to improve the
operating performance of blockchain networks. In general, although the public
blockchain upholds the spirit of openness and sharing, now and in the future, the
number of nodes that can actually participate in the consensus is very limited
or even not open to the public.

The consortium blockchain operators are permission as established. All oper-
ators must obey the consortium’s rules to run the blockchain network, so node
to join and exit is limited by the consortium rules. However, in the real business
scenarios, forming a stable consortium is difficult, especially the leader of the
consortium is often applied the main stakeholders have absolute power consor-
tium blockchain and makes consortium blockchain substantially degenerate to
a private blockchain. This will lose the most important characteristics of build-
ing a blockchain — “trust”. Now in the crypto-currency market, a large number
of independent operating blockchain network claim that they are consortium
blockchain network or even public blockchain network, but in essence, they are
just company‘s “private” blockchain just like the above situations.

This is why the Internet network operation model is introduced in the
blockchain. Under the schema of blockchain network operation model, the owner
of the node which is the network operator should be independent business orga-
nization or company. It is like today’s Internet operators, so they don’t need
to profit from application developers and users according to the detail business
scenarios, but from providing universal blockchain network services. Sequentially
different operators will form a new blockchain network relationship with both
cooperation and competition, where the operators can also give more credibil-
ity and more dynamic blockchain services. When more operators dominated in
the consortium blockchain network, the corresponding blockchain network has
more competitive between the various blockchain networks. Under the consor-
tium rules, a few nodes will not be able to control the final blockchain network
(Fig.2).

282 S. He et al.

/E::::cht‘::fcljr; e Blockchain > Blockchain
Development Application Services Application Users
A A 3
Government/
Blockchain Operators (Blockchain nodes, Blockchain Network Services) -~ Standardization
organization/
Open community
A A A
Blockchain Network Blockchain Network lélockchaln Nodes
ooperation and
Development Protocol C :
ompetition

Fig. 2. The business-oriented schema for blockchain network operation

4 Important Features of the Business-Oriented Schema
for Blockchain Network Operation

When establishing a new business-oriented schema for blockchain network oper-
ation, some features are very important and should be paid more attention to.

Separation of Network and Application. For Bitcoin, the application is not sepa-
rated from the Bitcoin network. The Bitcoin network is just the Bitcoin applica-
tion. After the introduction of smart contract concept, the basic network of the
blockchain can be run independently, while the blockchain application can run in
the form of a smart contract or a combination of several smart contracts on the
blockchain network. Although the smart contract has already been implemented
in the blockchain, the maintenance of network operation and application is still
not enough separated. For example, ETC is used to stimulate the nodes in the
Ethereum network. However ETC is also spent for the calculation and storage
cost of the applications on the Ethereum network. The coupling of network and
application results in that the network operators may not benefit the applica-
tion from their own interests and harm the network overall interests. Therefore,
in the schema of blockchain network operation model, the blockchain network
should be independent of the application development and services. In partic-
ular; application development should only follow a unified protocol and some
common underlying interfaces, which can make it easily to be migrated between
different blockchain networks.

Separation of Network Development and Operation. Under the schema of
blockchain network operation model, the network development should be sepa-
rated from the network operations. Technology developers will focus on the devel-
opment and planning of block chain technology. However, the network operators
have the complete right to decide on which new blockchain technology to adopt
as long as it follows the blockchain protocol, standard and consensus mechanism
of the consortium blockchain. The technical differences between nodes bring

A Business-Oriented Schema for Blockchain Network Operation 283

some differentiation of services into blockchain network users, such as in guar-
antee under the premise of using the same blockchain network, some nodes can
provide users with faster query service, while some nodes can provide users with
more storage space outside the blockchain and so on. While running on the same
blockchain network, different nodes can still have different target users, so they
can offer personalized development tools and testing environments. This is a
useful feature for implementing a general-purpose, efficient blockchain network.

Incentives for Different Roles at Multi-levels. For a blockchain system, the incen-
tive is the most important means of governance. The public blockchain often has
only a single incentive mode, namely the incentive of the coin or token to the
blockchain node. After introducing the schema of blockchain network operation
model, the incentive for different roles can be layered. For the blockchain network
technique developers, they must provide better and more powerful blockchain
network technology so as to be adopted by the blockchain network operators.
This is one of the most important incentives for technique developers, unlikely
from today’s blockchain where the technology developers are often also the
blockchain operators. Overlapping of the two roles usually tends to be bad for
the entire network ecosystem and harms the progress and development. For
the blockchain operators, the most important incentive is to provide stable and
continuous blockchain services, thus the numerous blockchain operators must
maintain a dynamic and effective blockchain service with a cooperation and
competition relation. Although for a blockchain network, the network under-
lying protocol and the data are the same, but the operators can still provide
differentiated technology and service ability. At the same time, a blockchain
node can offer multiple blockchain network connectivity; so implementing differ-
ent blockchain networks are also favorable for the formation of blockchain global
ecological system. For blockchain application developers, just like the Internet
application developers do not need too much concerned with the actual oper-
ators, they can focus to provide more valuable, professional application on the
blockchain services. On the basis of the characteristics of blockchain, the applica-
tion server is entirely operated by blockchain network i.e. operator is responsible
for the continuing and tamper-resistant blockchain service after the application
released. The interests of blockchain application users can be protected effec-
tively based on the smart contracts which are written in the clear and open
source programming.

After the establishment of a complete data system [10], the blockchain can
be used as a very suitable big data platform. The data value of the blockchain
system can be continuously mined by using a Big Data Open Architecture [12]
and other big data techniques [11,13].

5 Summary and Conclusion

In this paper, we propose the schema of blockchain network operation model
based on the existing Internet operation mode. The consortium-like nodes can

284 S. He et al.

also make up a blockchain network but offer a public-like blockchain network ser-
vices with a uniform standard. The fundamental blockchain network can set up
enough incentive to drive the operating nodes focusing on how to improve their
operational and service capabilities. It also drives the blockchain network tech-
nique developers focusing on blockchain technique, while the blockchain appli-
cation developers focusing on valuable and professional applications.

Acknowledgement. The author would like to gratefully acknowledge Dr. Huan Chen
and Dr. Cheng Li for the useful discussions and helps. This work is partially supported
by the technical projects No. 2017YFB0802703, and No. JSGG20160331101809920.
This work is also supported by NSFC (91646202) and the National Hig-tech R&D
Program of China (SS2015AA020102).

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

2. Beck, R., et al.: Blockchain-the gateway to trust-free cryptographic transactions.
In: ECIS (2016)

3. Eyal, L., et al.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI (2016)

4. Gervais, A., et al.: On the security and performance of proof of work blockchains.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM (2016)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. White paper (2014). https://github.com/ethereum/wiki/wiki/White- Paper

6. Zyskind, G., Nathan, O.: Decentralizing privacy: using blockchain to protect per-
sonal data. In: Security and Privacy Workshops (SPW). IEEE (2015)

7. Zheng, 7., et al.: An overview of blockchain technology: architecture, consensus,
and future trends. In: 2017 IEEE International Congress on Big Data (2017)

8. Castro, M., Liskov, B.: Byzantine fault tolerance. U.S. Patent No. 6,671,821, 30
December 2003

9. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, vol. 99 (1999)

10. Zheng, Z., et al.: Blockchain challenges and opportunities: a survey. Work Paper
2016 (2016)

11. Zhang, L.-J., Zeng, J.: 5C, a new model of defining big data. Int. J. Big Data
(IJBD) 2(4), 10-23 (2015). https://doi.org/10.29268 /stbd.2015.2.4.2

12. Zhang, L.-J., Chen, H.: BDOA big data open architecture. Int. J. Big Data (IJBD)
2(4), 24-48 (2015). https://doi.org/10.29268/stbd.2015.2.4.3

13. Zhang, L.-J.: Data value chain and service ecosystem - a way to achieve service
computing supporting ‘Internet+’. Int. J. Big Data (IJBD) 2(4), 49-56 (2015).
https://doi.org/10.29268/stbd.2015.2.4.4

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.29268/stbd.2015.2.4.2
https://doi.org/10.29268/stbd.2015.2.4.3
https://doi.org/10.29268/stbd.2015.2.4.4

q

Check for
updates

Your Device and Your Power, My Bitcoin

(C=9]

Song Li and Scott Wu

NewSky Security Solution Inc., 4018 148th Avenue NE,
Redmond, WA 98052, USA
LS@newskysecurity. com

Abstract. The dramatic increase of cryptocurrency price has reshaped the
cyber security landscape. Many IoT malwares are created, turning many kinds
of infected IoT devices into crypto currency mining machines. Crypto currency
miner machines, dedicated IoT devices that are built for the sole purpose to mine
cryptocurrencies, are also becoming hacker’s new target. This paper describes
how attackers are exploiting both the horizontal and vertical of aspects of IoT
devices to mine cryptocurrency and proposed a method to evaluate the cost of
such exploits.

Keywords: Cryptocurrency - Malware - Mining - Power consumption

1 Introduction

The rise of cryptocurrency opens a new way for cyber attackers to profit. Attackers first
built ransomware, a type of malware that encrypts victim’s data. To decrypt their data,
victim needs to pay cryptocurrency to obtain the private key. In the past year attackers
built new malware that directly converts infected devices into cryptocurrency mining
machines. Recently attackers are turning toward a new type of IoT devices, cryp-
tocurrency miner machines, computers that are built for the sole purpose of mining
cryptocurrencies.

Here at NewSky Security, we analyzed both cryptocurrency mining malware, and
the firmware of popular miner machines, to find out how a device can be infected and
mining for attackers. The goal is to find out ways to protect devices from being
controlled by attackers pursuing cryptocurrencies. We also proposed a way to evaluate
the power lose caused by mining malwares, by using miner machine as a baseline.

The rest of this paper is organized as follows: using Bitcoin as example, the second
chapter gives a brief introduction to cryptocurrency, highlighting features in its algo-
rithm that makes any IoT device a mining machine. The third chapter explains how
mining malware exploits the horizontal IoT world, using as many machines as possible.
The fourth chapter describes how a miner machine works, and vulnerabilities a miner
machine exposes to attackers. In the fifth chapter we propose a quantitative way to
evaluate the power loss mining malware causes, using miner machine as a baseline.
The sixth chapter concludes this paper.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 285-292, 2018.
https://doi.org/10.1007/978-3-319-94478-4_22

http://orcid.org/0000-0001-7626-9784
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_22&domain=pdf

286 S.Li and S. Wu

2 Cryptocurrency and the Competition of Computing Power

Since the first appearance in 2009, first as a whitepaper with author’s alias Satoshi
Nakamoto [1], Bitcoin defines a new way to compute ownership in the digital world.
Machines work together to reach a consensus, ownership, and more importantly,
transitions of ownership, is recorded on all participating machines, every machine has a
copy of the ownership transition, hence the name “Distributed Ledger”.

The ledger is designed to use the hash of the latest transaction and the previous
records, making it easy to verify and extremely hard to forge. Each transaction is called
a Block, pointing to previous transaction, forming a chain of transaction history, hence
the name “Block Chain”. All participating machines agree to follow the longest chain,
to prevent discrepancies among machines, such as double-spending.

Cryptocurrencies rely on participating machines, or nodes, to keep track of all
ownership transactions. To encourage nodes to participate, different cryptocurrency
system provides different incentives. Bitcoin, for example, will reward one of the nodes
with the ownership of a Bitcoin. To win this ownership, nodes need to compute a
problem, and the node that came up with a result that is closest to the goal will win the
ownership. This problem, naturally, is calculating hash. The massive calculation of
hash makes it harder to tamper a chain of blocks.

By contributing the computing power to calculate hashes, nodes show their proof of
work, or PoW. In a PoW system, the more hash one node can generate in a given time,
the higher the chance this node can find the best answer and be awarded with the new
ownership, in other words, nodes with more computing power have better chance to be
awarded. Other cryptocurrency systems use Proof of Stake PoS to decide which node is
awarded with the new ownership, where nodes with more ownership have higher
chance to be awarded with the new ownership.

Since Bitcoin is the first and most popular cryptocurrency system that is based on
PoW, mining for Bitcoin, and other POW cryptocurrencies, is a war of competing for
computing powers. Mining machines evolves from regular computers, to servers in the
cloud, to computers with GPUs, and eventually to special purpose machines equipped
with ASIC chips whose sole purpose is to compute hash.

When people realize they are essentially competing for the percentage of com-
puting power in the mining world, they unite and work together, and split the profit.
This effort once reached a point it threated the foundation of Bitcoin. Bitcoin is built on
the assumption that nodes are decentralized, and no more than half of the nodes will
collaborate. If more than half of the nodes collaborate, they can work together and alter
the ledger. The worst case, they can claim all ownership. It was believed back in 2014
that the collective computing power of mining facilities once went beyond 50% of the
entire computing power of Bitcoin community [2].

3 The Rise of Mining Malware

Note that the basic operation of cryptocurrency is mining, or computing hashes,
computing a single hash does not require much computing power. The PoW
arrangement does not enforce data dependency among calculations, making it suitable

Your Device and Your Power, My Bitcoin 287

for a highly parallel computing scheme — any computing device that can communicate
its result to the network can participate. This observation made mining feasible hori-
zontally, across all devices, from super computers to IoT devices operating on battery
power. If a device is less protected, it becomes an easy target of malware. If there are
many of the same kind of vulnerable devices, it is possible to infect them and create a
virtual mining farm. The same observation also made mining more efficiently vertically
— building a machine that is composed of thousands of single-purpose computing
device and dedicated for mining. We will cover this in the next chapter.

A typical mining malware’s behavior is like a botnet — it first tries to gain access to
an IoT device, either through trying weak common passwords, or through CVE or 0
day vulnerability. Once it can create a process running on the target device, it converts
the device into a mining machine, receiving instructions from Command-and-Control
server and calculate hash values using the device’s CPU.

In February 2018, a Czech Republic cybersecurity company reported 15,000
connected devices could be hacked to mine cryptocurrency worth of $1,000 in just 4
days [3].

By running on other people’s device, mining malware calculate and generate
computing power that help attackers profit on cryptocurrencies.

On March 26™ 2018 Brian Krebs’ website shows CoinHive site has malicious code
to turn visitor’s device into mining machines [4].

Fortinet reported new mining malwares are using Javascript to convert a browser
visiting a website into a mining machine [5].

4 The Mining Economy: Miner Machines, Mining Facilities
and Pools

In previous chapter, we described the basic calculation in cryptocurrency, is calculating
hashes, and the calculation can be highly parallel, making it feasible for many com-
puting units, though weak by itself, to create enormous computing power when
combined. We described how attackers use mining malware to collect computing
power from large number of devices and generate cryptocurrency. In this chapter, we
look at how those simple computing units, when packed into a single machine, can also
generate intense computing power, and naturally, make themselves targets of attackers.

4.1 Miner Machines

Miner machines used to be a computer with cryptocurrency mining software installed,
talking to the rest of the nodes in a cryptocurrency system. As owners of the machines
compete for computing power, they start to use workstations, servers and instances in
clouds. Aside from CPUs, people soon find out special processing chips, such as GPUs
and FPGAs can handle large number of parallel hashing tasks and start running miner
machines with GPUs and FPGAs. Eventually people found Application Specific ICs, or
ASIC, offer the best Performance/Price ratio.

This is not the first time we see ASICs, specialized processors and CPUs compete
for the same killer application — when MPEG4 was introduced, ASIC was the first to

288 S.Li and S. Wu

offer acceptable performance for MPEG decoding, thanks to Moore’s law, special
purpose processors such as DSPs caught up, and eventually general-purpose CPUs
offer the same performance while handing other tasks such as sending emails at the
same time. This time for cryptocurrencies, the fast-growing price of coins, and other
factors such as the simplicity of calculation, and energy consumptions, made ASIC the
best choice over GPU, FPGA and CPU.

When this paper is being written, BitMain, one of the major ASIC mining chip and
miner machine providers, claims their AntMiner'™ S9 can run 14 Terra Hashes per
second. In this paper we will use BitMain’s S9 as a baseline for performance and power
consumption. We made this choice because BitMain’s firmware is publicly available
for download, and we bought one AntMiner machine for research purpose.

Unlike individuals who mine with several miners, mining companies combine
miner machines into containers, this helps reduce cost of shipping and management.

4.2 Mining Facilities

Like any high-performance computing facility, the main cost of a miner machine comes
from the energy it consumes. With today’s rate at which Bitcoins are mined, it is
believed that when the Bitcoin price is below $8,000 mining companies will not be able
to make profit, and most of the cost is energy cost. Like data centers, mining companies
constantly seek for low cost electricity, and such locations with low daily temperature
is preferred, as it saves cooling cost and reduces the chance a miner machine is
overheat (Fig. 1).

Fig. 1. A mining facility. Image credit: https://www.politico.com

https://www.politico.com

Your Device and Your Power, My Bitcoin 289

4.3 Pools

When miner machines are installed at the mining facilities, they need to be powered on
and connect to the internet, typically they are connected to one or more websites that
are called Mining Pools or just Pools. A pool is a website that collects the computing
power of miner machines and powers the cryptocurrency computation. A pool will
issue tasks to miner machines, the job is then hashed on the miner machine, and results
are sent back to the pool for evaluation. If a miner’s result is the best answer among all
computed hashes in the entire Bitcoin system, a bitcoin is awarded to the pool. When a
coin is issued to the pool, it is typically split among all members of the pool, according
to their share of computing power contributed. The abundance of computing power,
along with coins that reside in the pool’s database, made them natural targets for
attackers.

4.4 Attacking the Miner Machines and Pools

When a miner machine is powered up, it needs to be configured to communicate with
the pool. The owner of the miner enters his account information to the miner, when a
coin is awarded, the owner’s share will be deposited into her account (Fig. 2).

A
ANTMINER

System || Miner Configuration || Miner status || Network

Miner Status

Summary
Elapsed GH/S(55) GH/S(avg) FoundBlocks LocalWork utility wu Bestshare
7d23h35ma3s 0.00 4,586.26 0 1,481,407,443 5.56 64,060.38 0
Pools
Pool URL User Status Diff GetWorks Priority Accepted Diffi# DiffA# DiffR# DiffS# Rejected Discarded Stale LSDiff LSTime

0 stratum+tcp://solo.antpool.com:3333 antminer_1 Alive 16 14,224 o 63,872 736,520,000 734,498,816 5,652,480 0 362 406,601 0 8,192 3:35:50
1 stratum+tcp://p2p.antpool.com:3333 antminer Dead 0 1 o o 0 0 o 0 0 0
2 stratum+tcp://stratum.f2pool.com:3333 ant.1 Alive 1.02K 1 2 1 3,904 1,024 0 o 0 1 6 1,024 191:35:45
total 14,225 63,873 736,523,904 734,499,840 5,652,480 0 0 406,602 6
HW 1187480 0.1612% 0.1617%

AntMiner
Chain# AsICH Frequency Temp ASIC status

1 as 700 65 00000000 00000 00000000 00000000 00000000 00000000

2 a5 700 65 00000000 00000 00000000 00000000 00000000 00000000

] e 700 co000000 a0 00000005 00000000 acadsann 0000000a

Fan# Fan1 Fan2 Fan3 Fan4 Fans Fan6
Speed (r/min) 0 0

Copyright © 2013-2014, Bitmain Technologies

Fig. 2. Miner’s configuration page. Image credit: http://support.bitmain.com

Naturally, the pool site, where every owner’s account information is stored, is one
of the most attractive targets in the cryptocurrency cybercrime economy. Once the pool
is compromised, miner owner’s information, along with their accounts, will be at
danger.

Besides attacking pool site servers, if a miner machine is directly connected to the
internet, its configuration web interface can be attacked, and the attacker can use his
account to replace the owner’s account. Another attack approach, is to build an
attacker’s pool, and reconfigure the compromised miner machine to work for the
attacker directly, powered by the owner’s electricity supply. Hacking miner machines

http://support.bitmain.com

290 S.Li and S. Wu

is now automated, attackers are using automated tools to scan the internet, looking for
miner machines that are exposed and trying different ways to gain control of the
miners. Figure 3 shows the spike of Mining OS hack attempts captured by NewSky
honeypot.

December 28th 2017, 20:10:36.610 - March 28th 2018, 20:10:36.610 — Auto v

Time _source

v March 27th 2018, 15:12:46.000 message: [10gin BEEesptl (Miner /MiRER) failed eventid: cowrie.login.failed geoip.timez
one: Europe/Paris geoip.ip: 91.121.163.217 geoip.latitude: 48.858 geolp.country name: Fr
ance geoip.country code2: FR geoip.continent code: EU geoip.country code3: FR geoip.loc
ation.lon: 2.339 geoip.location.lat: 48.858 geoip.longitude: 2.339 session: 1f2a6f887e08

sre host: 91.121.163.217 tvna: cowrie tans: are in: 91.121.163.217 nasswnrd: miner

Fig. 3. NewSky honeypot showing spike of Miner hacking attempts. Image credit: https://
newskysecurity.com

5 Evaluating the Loss Caused by Mining Malware Botnet

Prior to mining malware, the loss of a cybercrime incidence is often evaluated against
the damage of the software, hardware or business value. For example, in a DDOS
attack, the loss is estimated on the downtime of the site affected, multiplied by the site’s
average revenue per second. None of the existing methods can be directly applied to
estimate the loss caused by mining malware. Mining malware profit by draining the
extra processor and network bandwidth from the infected device. To some extent, an
infected device runs without interruption benefits both the owner and the attacker.

We propose a new mechanism to evaluate the loss caused by mining malware.
Instead of estimating the data value or business value, we estimate the power con-
sumption of a mining malware. As we pointed out in previous chapters, the major cost
factor of a mining facility is its power bills. While mining malware try to stay under the
radar and only consumes excessive processor and network bandwidth, the extra power
consumption it introduces adds burden to the device owner or service provider.

To evaluate the power consumption, we argue that each mining machine, either a
dedicated miner, or an infected device, is essentially a connected machine that is
capable of manipulating bits. Since the mining operation is essentially calculating
hashes, we can model the simplest form of a mining machine, is a connected computing
device that takes in a vector of bits, after some time and consuming some energy,
returns another vector of bits. We call this simplest form of mining machine a Com-
munication Fabric, where Communitation is a combination of Communication and
Computation, describing both the connecting and computing aspects of an IoT device.

https://newskysecurity.com
https://newskysecurity.com

Your Device and Your Power, My Bitcoin 291

The efficiency of a Communitation Fabric is evaluated as Bits/(Second * Joule), where
Bits is the number of bits produced, at the cost of Second and Joule.

We argue that each mining machine, either specially built, or infected and recruited
by mining malware, is essentially a collection of Communitation Fabric. A miner
machine is a collection of well-designed, uniformly high efficiency fabrics, which is a
vertical of mining IoT devices, while a botnet of mining devices is a collection of
different kinds of Communitation Fabrics, spreading horizontally across the IoT world.
Driven by the energy bill, the miner machine’s Communitation Fabric is the most
energy efficient, and costs less since mining facilities are often using the cheapest
energy that can be found. Given two set of hashes, each has the same number of hashes,
Sh and Sv, where Sh is calculated using horizontal fabrics such as a mining botnet, and
Sv is mined using dedicated miner machines, the energy cost of Sv will not exceed Sh.

Using the latest BitMain AntMiner™ S9 as example, according to S9 manual [6],
one S9 miner’s peak performance is 14Th/S and consuming power at 1323 W.
Assuming this S9 is hashing for Bitcoin network, which hands out hash work at 640
bits. For each second a S9 handles 14T * 640 bits input for hashes, consuming 1323
Joules. Its efficiency is 6.77TBits/(Second * Joule). For a mining malware botnet to
generate the same rate of hashing, it needs to consume at least 1323 W of power. This
is the baseline of power consumption of a mining botnet. Assuming the Bitcoin
rewarding system is fair, meaning each hash value calculated has the same chance to be
the best result, a mining botnet will have the same rate of accumulating Bitcoin as a
miner machine with equal computing power. Bitcoin wallets are tracked online, and its
Bitcoin accumulation rate is publicly available. By monitoring the wallet of mining
malware’s author(s), it is possible to evaluate how many Bitcoins the malware botnet
has calculated and estimate how much power the botnet has consumed by comparing
the gain rate of the botnet to a S9 owner.

6 Conclusion

In this paper we described the ever-changing landscape of cryptocurrency malware, and
how attackers are using all kinds of IoT devices to harvest cryptocurrency, as well as
directly attacking mining facilities and steal cryptocurrency. We described the signif-
icant difference of cryptocurrency attackers from traditional cyber attackers, as cryp-
tocurrency attackers need the infected system to run consistently, so as to drain more
CPU and network bandwidth for mining. At the end of the paper we proposed a new
way to evaluate the damage caused by cryptocurrency mining botnet.

References

1. https://bitcoin.org/bitcoin.pdf

2. https://www.extremetech.com/extreme/184427-one-bitcoin-group-now-controls-5 1-of-total-
mining-power-threatening-entire-currencys-safety

3. https://www.cnbc.com/2018/03/01/thousands-of-iot-devices-can-be-hacked-to-mine-
cryptocurrency-avast.html

https://bitcoin.org/bitcoin.pdf
https://www.extremetech.com/extreme/184427-one-bitcoin-group-now-controls-51-of-total-mining-power-threatening-entire-currencys-safety
https://www.extremetech.com/extreme/184427-one-bitcoin-group-now-controls-51-of-total-mining-power-threatening-entire-currencys-safety
https://www.cnbc.com/2018/03/01/thousands-of-iot-devices-can-be-hacked-to-mine-cryptocurrency-avast.html
https://www.cnbc.com/2018/03/01/thousands-of-iot-devices-can-be-hacked-to-mine-cryptocurrency-avast.html

292 S.Li and S. Wu

4. https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/

5. https://www.fortinet.com/blog/threat-research/the-growing-trend-of-coin-miner-javascript-inf
ection.html

6. https://file.bitmain.com/shop-bitmain/download/AntMiner%20S9%?20Installation%20Guide.
pdf

https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://www.fortinet.com/blog/threat-research/the-growing-trend-of-coin-miner-javascript-infection.html
https://www.fortinet.com/blog/threat-research/the-growing-trend-of-coin-miner-javascript-infection.html
https://file.bitmain.com/shop-bitmain/download/AntMiner%20S9%20Installation%20Guide.pdf
https://file.bitmain.com/shop-bitmain/download/AntMiner%20S9%20Installation%20Guide.pdf

q

Check for
updates

Blockchain in Global Trade

Jack Duan'® and Milan Patel?™®

! Gliding Eagle Inc., San Ramon, CA 94583, USA
jduan@gliding-eagle. com
* IBM, Durham, NC 27603, USA
mspatel@us. ibm. com

Abstract. This paper summarizes the actual adaptation of the Blockchain
(BC) technology in the global trade space. Each product with a unique identi-
fication is tracked from the source manufacturer to the end user across countries.
Data is collected from manufacturers, logistics providers and end users.
A third-party company serves as the BC network operator so that each transaction
is recorded in a private BC network with periodical hash saved onto a public BC
network to ensure data immutability. This paper further explores the use of BC to
manage the owner and users of data sources. There are two business applications
for this system: (1) track and deliver using direct-to-consumer model for over 100
premium California wineries to over 20 countries in the world; (2) track and
deliver using direct-to-hospital model for specialty pharmaceuticals (cancer
drugs, etc.) from the US to designated hospitals in China.

Keywords: Blockchain - Global trade - Supply chain - Self-sovereign identity
Decentralized identity

1 Global Trade

1.1 Pre-identification and Tracking

In the origination country, each product item once manufactured is labeled with a unique
identification number. Traditionally each product is identified with an industry classified
UPC code, but this new level of identification makes each product uniquely marked. For
example, if there are 12 bottles of the same vintage wine, traditionally they will share the
same UPC code, but with per-item tracking, there are 12 unique codes, with each
assigned to every bottle. These identification codes will be saved in the BC network.

1.2 Aggregation and Inference

Using the same example above for 12 bottles of wines. They will be aggregated into a
case, which also has a unique identification code. This case will be linked to an order.
And an order (or orders) will be further aggregated at the shipment level. Once a
shipment is being transported from one party (e.g. manufacturer) to another party (e.g.
shipper), an actual transaction activity occurs. If the links are preserved, we can infer
that all connected orders, cases and bottles will have the same transaction activity
recorded.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 293-296, 2018.
https://doi.org/10.1007/978-3-319-94478-4_23

http://orcid.org/0000-0002-0050-2102
http://orcid.org/0000-0003-1060-7108
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_23&domain=pdf

294 J. Duan and M. Patel

Aggregation
Inference

Case 1 Case 2

00, 0.

1.3 Data Collection from Multiple Parties in Global Supply Chain

Initially the BC network is a private one; with all participants defer peer manageability
to a mutually trusted third-party (i.e. Gliding Eagle) as the network operator. This is
due to the initial high cost for each party (manufacturer, shipper and end user) to host
their own peers. With increased data volume in the future, many parties have the option
to fully host and manage their own peers to replicate data. Each party uploads data to
the private BC network hosted in the global cloud infrastructure using well-defined API
calls. These transactional data can be recorded at any aggregation/inference levels, i.e.,
bottle, case, order, or shipment. The entire data set consists aggregation links, data
source and owner identity, and transactional activity data over time.

D Mobile Verify
Gliding Eagle Cloud System

[ahak
\ =% /
&

HRE e

1 p 3 4)
Production Export Ship Import Delivery

Blockchain in Global Trade 295

1.4 Data Reporting

Data once recorded in BC network in ledger format and in traditional SQL structured
format, two applications are used to manage and report data to relevant parties. For
manufacturers and other participants (logistics providers, exporter and importers,
retailers, etc.) a desktop and mobile-based reporting application can display data based
on proper access authorizations. The network operator manages all data access per-
missions based on participants’ consensus. For the end user, a subset of accessible data
will be displayed on a mobile application. For example, when the end consumer uses a
mobile phone to scan the unique label on the wine bottle, the product information along
with most essential logistical steps in global trade supply chain is displayed pertinent to
that particular bottle.

1.5 Identity Management

Today, each participant within a BC network requires trust with other participants to do
business with confidence. That trust today is based on knowing the participants, either
through previous interactions or through a scaled down “web of trust”.

As BC networks look to scale to open the aperture of participation in business
networks beyond participants who are already “known”, deficiencies are created in
having to perform “Know your customer/participant” to onboard other potential par-
ticipants onto the network that are not previously known to existing participants.
Certain attestations will be required from trusted institutions, such as governments,
banks, and more to prove participants are who they say they are.

In global trade, establishing trust among participating parties is paramount to
facilitate high efficiency in both product logistics flow and money transfers. These
participants such as manufacturers, exporters, transporters, retailers, government
agencies and end users will benefit from the higher efficiency in trade, which means
lower transactional cost economically.

As the spectrum is broadened, in a world with many BC networks that are built on
use case specificity, each network will be considered a “mini city” with specific net-
work defined governance and policies. The question then becomes, not only, how do
participants of BC networks identity themselves within a network but also how do
participants identity other participants across different BC networks. For example, one
manufacturer can belong to a number of different BC networks as different trade
networks where different lines of business are conducted. Identity could be shared
among different BC networks, predicated on standards and interoperability rooted with
trust and non-correlation.

BC is also accelerating the evolution of identity. Identity is entrenched in every
interaction. Enablers such as BC have now made decentralized, self-sovereign identity
a reality. It can also accelerate in rebooting the web of trust at scale and trust is not
compromised. As every identity owner creates their own identity and permissioning of
keys, blockchain provides an immutable, distributed ledger allowing the identity of
people, organizations, and things to be resolved, ensuring trust in direct, point to point
relationships.

296 J. Duan and M. Patel

Edge Layer
(Device/App/Wallet)

.\/.
Identity Owners ”
! !
E
!

!

@ Agent Layer

! !
g N M M

Distributed Ledger Layer

Identification is global trade can leverage self-sovereign, decentralized identity to
ensure more trust and control over how information is exchanged in a more secured
manner. For example, manufacturers can trust shippers to decrease fraud and time in
the shipment of wine. Retailers and buyers can transact with more transparently
knowing who they are doing business with, in point to point relationships. The iden-
tities can be shared between different BC networks, along with their established trust as
an asset to decrease friction in conducting business in global trade.

2 Conclusion

Blockchain as a distributed peer based network with immutable ledger based data
storage is useful for transactional data for global trade. This has been shown for
premium American wines and specialty pharmaceuticals (both are highly regulated
products) use from the US to other countries. The unique direct-to-user business model
simplifies the traditional export and import business models. With all data saved in BC
network it benefits all participates with much trusted channel accountability, product
authenticity, and logistical efficiency. With further BC based identity management
features becoming mature, exchange of identity in global transactions will be more
secured and under the control of identity owners.

Author Index

Amritraj 75 Nizamuddin, Nishara 199

Novotny, Petr 251
Balakarthikeyan 166

Barger, Artem 251

Baset, Salman 251 Parizi, Reza M. 75

Patel, Dhiren 153, 166

Cai, Mingiang 267 Patel, Milan 293

Che, Jin 228 Pi, Bingfeng 3

Chen, Huan 228, 243

Chen, Po-Han 47 Qin, Dong 183

Chen, Shiping 18

Chiu, Chun 47 Salah, Khaled 139, 199

Cui, Hejie 63 Shah, Keivan 153

Shanbhag, Sanket 153

Dehghantanha, Ali 75
chehiantanhid, A1 Shrestha, Ajay Kumar 259

Deng, Liping 228

Dillenberger, Donna 251 gun, §-Iaoh3 3
Duan, Jack 293 un, Jun
ElMessiry, Adel 213 Vassileva, Julita 259

ElMessiry, Magdi 213

Wan, Zhitao 267
Wang, Bozhi 18
Wang, Chenxu 183
Weber, Ingo 107
Wu, Scott 285

Fan, Xinxin 127

Hasan, Haya R. 139, 199

He, Sheng 277

Hoenisch, Philipp 107

Hua, Song 3

Hwang, Gwan-Hwan 47 Xing, Chunxiao 277
Xu, Xiwei 18, 92

Jheng, An-Jie 47

Jiang, Yiming 183 Yamashita, Kazuhiro 3
Jin, Chengxin 63 Yang, Jinging 267

) Yao, Haonan 92
Li, Song 285 Yao, Lina 18

Lin, Hsuan-Cheng 47
Lin, Xianghua 267

Liu, Bin 18 Zhang, Huijuan 63
Liu, Yue 92 Zhang, Liang-Jie 228, 243, 277
Lu, Chun-Hao 47 Zhang, Qi 251
Lu, Qinghua 92 Zhang, Zehao 32
Zhao, Li 32
Manevich, Yacov 251 Zhou, Ence 3

Mistry, Vasu 153, 166 Zhu, Liming 18, 92

	Preface
	Organization
	Contents
	Research Track: Blockchain Research
	Using Ethereum Blockchain in Internet of Things: A Solution for Electric Vehicle Battery Refueling
	Abstract
	1 Introduction
	2 Blockchain Based IoT Solutions
	3 Ethereum Blockchain Based Rich-Thin-Clients IoT Solution
	3.1 System Architecture and Topology
	3.2 Privacy and Security
	3.3 Implementation of Ethereum Based Cyber-Physical Battery Refueling System
	3.4 Experiments

	4 Comparison Between Blockchain Based IoT Solutions
	5 Conclusions and Future Work
	References

	A Simulation Approach for Studying Behavior and Quality of Blockchain Networks
	Abstract
	1 Introduction
	2 Overview of Blockchain
	2.1 Blockchain
	2.2 Proof of Work Protocol in Bitcoin Blockchain
	2.3 Parameters and QoS Metrics for a Blockchain Network

	3 Requirements for Blockchain Simulation
	4 Case Study – Simulate Blockchain Using SimPy
	5 Related Work
	6 Conclusion
	References

	A Design of Digital Rights Management Mechanism Based on Blockchain Technology
	1 Introduction
	2 Related Works
	2.1 Blockchain Technology
	2.2 Digital Rights Management
	2.3 DRM Based on Blockchain Technology

	3 Design of License
	3.1 License Structure
	3.2 License Unit Encoding Structure

	4 Copyright Transaction
	4.1 Price Settings
	4.2 Trade Pledge

	5 Design of Blockchain-Based DRM Mechanism
	5.1 Blockchain-Based DRM Mechanism Prototype
	5.2 DRM Mechanism Process
	5.3 Storage Management
	5.4 Copyright Information Management
	5.5 Transaction Management
	5.6 Potential Business Benefits

	6 Conclusion and Future Work
	References

	InfiniteChain: A Multi-chain Architecture with Distributed Auditing of Sidechains for Public Blockchains
	Abstract
	1 Introduction
	2 A Multi-chain Architecture
	2.1 Existing Sidechain Technologies
	2.2 Sidechain Fraud Proof Performed by Nodes of Main Chain

	3 Why Are Problems P1, P2, P3, and P4 Solved?
	4 Experimental Results
	5 Conclusion
	References

	Research Track: Smart Contracts
	A Method to Predict the Performance and Storage of Executing Contract for Ethereum Consortium-Blockchain
	1 Introduction
	2 Relatived Work
	3 Key Technologies
	3.1 Influencing Factors
	3.2 Height of MPT
	3.3 The Prediction of Transaction Performance and Storage

	4 Experiment
	4.1 Experimental Method
	4.2 Experiment Result

	5 Conclusions
	References

	Smart Contract Programming Languages on Blockchains: An Empirical Evaluation of Usability and Security
	Abstract
	1 Introduction
	2 Smart Contract Programming Languages
	2.1 Solidity and the EVM
	2.2 Pact
	2.3 Liquidity

	3 Empirical Evaluation
	3.1 Experimental Planning
	3.2 Experimental Execution
	3.3 Experimental Results and Analysis
	3.4 Threats to Validity
	3.5 Discussion

	4 Related Work
	5 Conclusion and Future Work
	References

	Applying Design Patterns in Smart Contracts
	1 Introduction
	2 Background and Related Work
	2.1 Blockchain and Smart Contracts
	2.2 Designing Blockchain-Based Applications

	3 Design Patterns of Smart Contract
	3.1 Interaction Among Design Patterns
	3.2 Creational Pattern
	3.3 Structural Pattern
	3.4 Inter-behavioral Pattern
	3.5 Intra-behavioral Pattern

	4 Applying Design Patterns in the Traceability System
	4.1 Traceability Systems
	4.2 Contract Composer for Flexibility on Contract Instantiation
	4.3 Contract Facade for Connectivity Between Contracts
	4.4 Contract Observer for Updatability and Interoperability
	4.5 Hash Secret for Adaptability
	4.6 Multi-signature for Adaptability

	5 Discussion
	6 Conclusion and Future Work
	References

	AODV–Based Routing for Payment Channel Networks
	1 Introduction
	2 Related Work
	3 Requirements and Algorithm Selection
	4 AODV-Based Routing in PCN
	4.1 Route Discovery
	4.2 Route Selection

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

	Application Track: Blockchain Solutions
	Faster Dual-Key Stealth Address for Blockchain-Based Internet of Things Systems
	1 Introduction
	2 Preliminaries
	3 Dual-Key Stealth Address Protocol (DKSAP)
	4 Faster Dual-Key Stealth Address Protocol for Internet of Things (DKSAP-IoT)
	4.1 Design Rationale
	4.2 DKSAP-IoT Specification

	5 Security Analysis and Performance Evaluation
	5.1 Security Analysis
	5.2 Performance Evaluation

	6 Conclusion
	References

	Blockchain-Based Solution for Proof of Delivery of Physical Assets
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Blockchain Solution
	3.1 System Overview and Design

	4 Implementation Details
	5 Testing and Validation
	5.1 Test Case 1: Payable Collateral Amount
	5.2 Test Case 2: Role Restriction
	5.3 Test Case 3: Matching Verification Keys
	5.4 Test Case 4: Dispute and Arbitrator Role

	6 Conclusion
	References

	Towards Legally Enforceable Smart Contracts
	Abstract
	1 Introduction
	2 Relationship Between Programmable Smart Contracts and Legal Contracts: Motivation and Background
	3 Use Case: Distributed Outsourcing Developer Marketplace
	3.1 Freelancer System

	4 Towards Legally Bound Smart Contracts
	5 Conclusions
	Acknowledgements
	References

	Border Control and Immigration on Blockchain
	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Existing Border Control Systems
	2.2 Blockchain
	2.3 Security Vulnerabilities and Weak Points in the Current System

	3 Hyperledger Fabric
	4 Proposed Workflow of Border Control System on Blockchain
	4.1 Maintaining Entry/Exit Records on the Blockchain
	4.2 Detailed Example Workflow During Departure

	5 Implementation Architecture
	5.1 Pseudocode for the Immigration System

	6 Addressing Privacy and Legal Concerns Over Biometrics on the Blockchain
	7 Conclusions
	References

	Application Track: Business Models and Analyses
	RPchain: A Blockchain-Based Academic Social Networking Service for Credible Reputation Building
	Abstract
	1 Introduction
	2 Related Work
	2.1 Blockchain-Based Reputation Building and Social Networks
	2.2 Blockchain Consensus

	3 RPchain
	3.1 RPchain Overview
	3.2 Smart Contracts
	3.3 Reputation Building
	3.4 RPchain Life Cycle
	3.5 Blockchain Structure

	4 Blockchain Consensus and Protocol
	4.1 Related Definitions
	4.2 Proof of Reputation
	4.3 Blockchain Protocol

	5 Incentive Mechanism
	6 Experiment
	7 Conclusion
	Acknowledgement
	References

	IPFS-Blockchain-Based Authenticity of Online Publications
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 System Architecture and Design

	4 Implementation and Testing
	4.1 Implementation Details
	4.2 Testing and Validation
	4.2.1 Test Case 1
	4.2.2 Test Case 2
	4.2.3 Test Case 3
	4.2.4 Test Case 4

	5 Conclusion
	References

	Blockchain Framework for Textile Supply Chain Management
	1 Introduction
	1.1 Textile Quality
	1.2 Textile Supply Chain
	1.3 Blockchain
	1.4 Blockchain in Textiles

	2 Problem Statement
	3 Proposed Framework
	3.1 Machine Chain Interface
	3.2 Material Creation
	3.3 Manufacturing
	3.4 Reporting and Consensus
	3.5 Automated Protection

	4 Evaluation
	5 Conclusion
	References

	Research on the Pricing Strategy of the CryptoCurrency Miner’s Market
	Abstract
	1 Introduction
	2 Research Background
	2.1 Bitcoin
	2.2 Cryptocurrency
	2.3 Miner

	3 The Relationship Between Hashrate and Price
	3.1 Unit Root Test
	3.2 Cointegration Test
	3.3 Granger Causal Relation Test

	4 Distributed Lag Model
	4.1 Model Introduction
	4.2 Koyck Method
	4.3 Model Solving
	4.4 Research Results

	5 The Pricing Strategy
	5.1 Survey and Forecast
	5.2 Verification of Results
	5.3 Conclusion

	Acknowledgement
	References

	Short Paper Track: Fundamental Research
	FBaaS: Functional Blockchain as a Service
	1 Introduction
	2 Serverless
	3 Blockchain as a Service
	4 Functional Blockchain as a Service
	4.1 Architecture
	4.2 Functions in the Services Layer
	4.3 Realization
	4.4 An Example Network

	5 Conclusion
	References

	LedgerGuard: Improving Blockchain Ledger Dependability
	1 Introduction
	2 Background
	3 Ledger Correction
	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Blockchain-Based Research Data Sharing Framework for Incentivizing the Data Owners
	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Smart Contracts

	3 Related Works
	4 Solution Framework and Discussions
	5 Conclusions
	References

	A Novel Blockchain as a Service Paradigm
	Abstract
	1 Introduction
	2 Current Blockchain as a Service
	3 A Novel Paradigm
	4 Implementation and Evaluation
	4.1 Hyperledger Fabric and Composer
	4.2 Hyperledger and Composer Based Implementation and Evaluation

	5 Conclusion and Future Work
	References

	Short Paper Track: Application Researches
	A Business-Oriented Schema for Blockchain Network Operation
	1 Backgrounds and Introductions
	2 The Schema of Internet Network Operation
	3 Introducing the Idea to Blockchain Network Operating
	4 Important Features of the Business-Oriented Schema for Blockchain Network Operation
	5 Summary and Conclusion
	References

	Your Device and Your Power, My Bitcoin
	Abstract
	1 Introduction
	2 Cryptocurrency and the Competition of Computing Power
	3 The Rise of Mining Malware
	4 The Mining Economy: Miner Machines, Mining Facilities and Pools
	4.1 Miner Machines
	4.2 Mining Facilities
	4.3 Pools
	4.4 Attacking the Miner Machines and Pools

	5 Evaluating the Loss Caused by Mining Malware Botnet
	6 Conclusion
	References

	Blockchain in Global Trade
	Abstract
	1 Global Trade
	1.1 Pre-identification and Tracking
	1.2 Aggregation and Inference
	1.3 Data Collection from Multiple Parties in Global Supply Chain
	1.4 Data Reporting
	1.5 Identity Management

	2 Conclusion

	Author Index

